1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalIFunc.h"
32 #include "llvm/IR/GlobalObject.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/IR/ValueSymbolTable.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/SaveAndRestore.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstring>
52 #include <iterator>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 static std::string getTypeString(Type *T) {
58   std::string Result;
59   raw_string_ostream Tmp(Result);
60   Tmp << *T;
61   return Tmp.str();
62 }
63 
64 /// Run: module ::= toplevelentity*
65 bool LLParser::Run() {
66   // Prime the lexer.
67   Lex.Lex();
68 
69   if (Context.shouldDiscardValueNames())
70     return Error(
71         Lex.getLoc(),
72         "Can't read textual IR with a Context that discards named Values");
73 
74   return ParseTopLevelEntities() ||
75          ValidateEndOfModule();
76 }
77 
78 bool LLParser::parseStandaloneConstantValue(Constant *&C,
79                                             const SlotMapping *Slots) {
80   restoreParsingState(Slots);
81   Lex.Lex();
82 
83   Type *Ty = nullptr;
84   if (ParseType(Ty) || parseConstantValue(Ty, C))
85     return true;
86   if (Lex.getKind() != lltok::Eof)
87     return Error(Lex.getLoc(), "expected end of string");
88   return false;
89 }
90 
91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
92                                     const SlotMapping *Slots) {
93   restoreParsingState(Slots);
94   Lex.Lex();
95 
96   Read = 0;
97   SMLoc Start = Lex.getLoc();
98   Ty = nullptr;
99   if (ParseType(Ty))
100     return true;
101   SMLoc End = Lex.getLoc();
102   Read = End.getPointer() - Start.getPointer();
103 
104   return false;
105 }
106 
107 void LLParser::restoreParsingState(const SlotMapping *Slots) {
108   if (!Slots)
109     return;
110   NumberedVals = Slots->GlobalValues;
111   NumberedMetadata = Slots->MetadataNodes;
112   for (const auto &I : Slots->NamedTypes)
113     NamedTypes.insert(
114         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
115   for (const auto &I : Slots->Types)
116     NumberedTypes.insert(
117         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
118 }
119 
120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
121 /// module.
122 bool LLParser::ValidateEndOfModule() {
123   // Handle any function attribute group forward references.
124   for (const auto &RAG : ForwardRefAttrGroups) {
125     Value *V = RAG.first;
126     const std::vector<unsigned> &Attrs = RAG.second;
127     AttrBuilder B;
128 
129     for (const auto &Attr : Attrs)
130       B.merge(NumberedAttrBuilders[Attr]);
131 
132     if (Function *Fn = dyn_cast<Function>(V)) {
133       AttributeList AS = Fn->getAttributes();
134       AttrBuilder FnAttrs(AS.getFnAttributes());
135       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
136 
137       FnAttrs.merge(B);
138 
139       // If the alignment was parsed as an attribute, move to the alignment
140       // field.
141       if (FnAttrs.hasAlignmentAttr()) {
142         Fn->setAlignment(FnAttrs.getAlignment());
143         FnAttrs.removeAttribute(Attribute::Alignment);
144       }
145 
146       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
147                             AttributeSet::get(Context, FnAttrs));
148       Fn->setAttributes(AS);
149     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
150       AttributeList AS = CI->getAttributes();
151       AttrBuilder FnAttrs(AS.getFnAttributes());
152       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
153       FnAttrs.merge(B);
154       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
155                             AttributeSet::get(Context, FnAttrs));
156       CI->setAttributes(AS);
157     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
158       AttributeList AS = II->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttributes());
160       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
161       FnAttrs.merge(B);
162       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
163                             AttributeSet::get(Context, FnAttrs));
164       II->setAttributes(AS);
165     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
166       AttrBuilder Attrs(GV->getAttributes());
167       Attrs.merge(B);
168       GV->setAttributes(AttributeSet::get(Context,Attrs));
169     } else {
170       llvm_unreachable("invalid object with forward attribute group reference");
171     }
172   }
173 
174   // If there are entries in ForwardRefBlockAddresses at this point, the
175   // function was never defined.
176   if (!ForwardRefBlockAddresses.empty())
177     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
178                  "expected function name in blockaddress");
179 
180   for (const auto &NT : NumberedTypes)
181     if (NT.second.second.isValid())
182       return Error(NT.second.second,
183                    "use of undefined type '%" + Twine(NT.first) + "'");
184 
185   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
186        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
187     if (I->second.second.isValid())
188       return Error(I->second.second,
189                    "use of undefined type named '" + I->getKey() + "'");
190 
191   if (!ForwardRefComdats.empty())
192     return Error(ForwardRefComdats.begin()->second,
193                  "use of undefined comdat '$" +
194                      ForwardRefComdats.begin()->first + "'");
195 
196   if (!ForwardRefVals.empty())
197     return Error(ForwardRefVals.begin()->second.second,
198                  "use of undefined value '@" + ForwardRefVals.begin()->first +
199                  "'");
200 
201   if (!ForwardRefValIDs.empty())
202     return Error(ForwardRefValIDs.begin()->second.second,
203                  "use of undefined value '@" +
204                  Twine(ForwardRefValIDs.begin()->first) + "'");
205 
206   if (!ForwardRefMDNodes.empty())
207     return Error(ForwardRefMDNodes.begin()->second.second,
208                  "use of undefined metadata '!" +
209                  Twine(ForwardRefMDNodes.begin()->first) + "'");
210 
211   // Resolve metadata cycles.
212   for (auto &N : NumberedMetadata) {
213     if (N.second && !N.second->isResolved())
214       N.second->resolveCycles();
215   }
216 
217   for (auto *Inst : InstsWithTBAATag) {
218     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
219     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
220     auto *UpgradedMD = UpgradeTBAANode(*MD);
221     if (MD != UpgradedMD)
222       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
223   }
224 
225   // Look for intrinsic functions and CallInst that need to be upgraded
226   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
227     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
228 
229   // Some types could be renamed during loading if several modules are
230   // loaded in the same LLVMContext (LTO scenario). In this case we should
231   // remangle intrinsics names as well.
232   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
233     Function *F = &*FI++;
234     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
235       F->replaceAllUsesWith(Remangled.getValue());
236       F->eraseFromParent();
237     }
238   }
239 
240   if (UpgradeDebugInfo)
241     llvm::UpgradeDebugInfo(*M);
242 
243   UpgradeModuleFlags(*M);
244   UpgradeSectionAttributes(*M);
245 
246   if (!Slots)
247     return false;
248   // Initialize the slot mapping.
249   // Because by this point we've parsed and validated everything, we can "steal"
250   // the mapping from LLParser as it doesn't need it anymore.
251   Slots->GlobalValues = std::move(NumberedVals);
252   Slots->MetadataNodes = std::move(NumberedMetadata);
253   for (const auto &I : NamedTypes)
254     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
255   for (const auto &I : NumberedTypes)
256     Slots->Types.insert(std::make_pair(I.first, I.second.first));
257 
258   return false;
259 }
260 
261 //===----------------------------------------------------------------------===//
262 // Top-Level Entities
263 //===----------------------------------------------------------------------===//
264 
265 bool LLParser::ParseTopLevelEntities() {
266   while (true) {
267     switch (Lex.getKind()) {
268     default:         return TokError("expected top-level entity");
269     case lltok::Eof: return false;
270     case lltok::kw_declare: if (ParseDeclare()) return true; break;
271     case lltok::kw_define:  if (ParseDefine()) return true; break;
272     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
273     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
274     case lltok::kw_source_filename:
275       if (ParseSourceFileName())
276         return true;
277       break;
278     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
279     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
280     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
281     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
282     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
283     case lltok::ComdatVar:  if (parseComdat()) return true; break;
284     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
285     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
286     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
287     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
288     case lltok::kw_uselistorder_bb:
289       if (ParseUseListOrderBB())
290         return true;
291       break;
292     }
293   }
294 }
295 
296 /// toplevelentity
297 ///   ::= 'module' 'asm' STRINGCONSTANT
298 bool LLParser::ParseModuleAsm() {
299   assert(Lex.getKind() == lltok::kw_module);
300   Lex.Lex();
301 
302   std::string AsmStr;
303   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
304       ParseStringConstant(AsmStr)) return true;
305 
306   M->appendModuleInlineAsm(AsmStr);
307   return false;
308 }
309 
310 /// toplevelentity
311 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
312 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
313 bool LLParser::ParseTargetDefinition() {
314   assert(Lex.getKind() == lltok::kw_target);
315   std::string Str;
316   switch (Lex.Lex()) {
317   default: return TokError("unknown target property");
318   case lltok::kw_triple:
319     Lex.Lex();
320     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
321         ParseStringConstant(Str))
322       return true;
323     M->setTargetTriple(Str);
324     return false;
325   case lltok::kw_datalayout:
326     Lex.Lex();
327     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
328         ParseStringConstant(Str))
329       return true;
330     if (DataLayoutStr.empty())
331       M->setDataLayout(Str);
332     return false;
333   }
334 }
335 
336 /// toplevelentity
337 ///   ::= 'source_filename' '=' STRINGCONSTANT
338 bool LLParser::ParseSourceFileName() {
339   assert(Lex.getKind() == lltok::kw_source_filename);
340   std::string Str;
341   Lex.Lex();
342   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
343       ParseStringConstant(Str))
344     return true;
345   M->setSourceFileName(Str);
346   return false;
347 }
348 
349 /// toplevelentity
350 ///   ::= 'deplibs' '=' '[' ']'
351 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
352 /// FIXME: Remove in 4.0. Currently parse, but ignore.
353 bool LLParser::ParseDepLibs() {
354   assert(Lex.getKind() == lltok::kw_deplibs);
355   Lex.Lex();
356   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
357       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
358     return true;
359 
360   if (EatIfPresent(lltok::rsquare))
361     return false;
362 
363   do {
364     std::string Str;
365     if (ParseStringConstant(Str)) return true;
366   } while (EatIfPresent(lltok::comma));
367 
368   return ParseToken(lltok::rsquare, "expected ']' at end of list");
369 }
370 
371 /// ParseUnnamedType:
372 ///   ::= LocalVarID '=' 'type' type
373 bool LLParser::ParseUnnamedType() {
374   LocTy TypeLoc = Lex.getLoc();
375   unsigned TypeID = Lex.getUIntVal();
376   Lex.Lex(); // eat LocalVarID;
377 
378   if (ParseToken(lltok::equal, "expected '=' after name") ||
379       ParseToken(lltok::kw_type, "expected 'type' after '='"))
380     return true;
381 
382   Type *Result = nullptr;
383   if (ParseStructDefinition(TypeLoc, "",
384                             NumberedTypes[TypeID], Result)) return true;
385 
386   if (!isa<StructType>(Result)) {
387     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
388     if (Entry.first)
389       return Error(TypeLoc, "non-struct types may not be recursive");
390     Entry.first = Result;
391     Entry.second = SMLoc();
392   }
393 
394   return false;
395 }
396 
397 /// toplevelentity
398 ///   ::= LocalVar '=' 'type' type
399 bool LLParser::ParseNamedType() {
400   std::string Name = Lex.getStrVal();
401   LocTy NameLoc = Lex.getLoc();
402   Lex.Lex();  // eat LocalVar.
403 
404   if (ParseToken(lltok::equal, "expected '=' after name") ||
405       ParseToken(lltok::kw_type, "expected 'type' after name"))
406     return true;
407 
408   Type *Result = nullptr;
409   if (ParseStructDefinition(NameLoc, Name,
410                             NamedTypes[Name], Result)) return true;
411 
412   if (!isa<StructType>(Result)) {
413     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
414     if (Entry.first)
415       return Error(NameLoc, "non-struct types may not be recursive");
416     Entry.first = Result;
417     Entry.second = SMLoc();
418   }
419 
420   return false;
421 }
422 
423 /// toplevelentity
424 ///   ::= 'declare' FunctionHeader
425 bool LLParser::ParseDeclare() {
426   assert(Lex.getKind() == lltok::kw_declare);
427   Lex.Lex();
428 
429   std::vector<std::pair<unsigned, MDNode *>> MDs;
430   while (Lex.getKind() == lltok::MetadataVar) {
431     unsigned MDK;
432     MDNode *N;
433     if (ParseMetadataAttachment(MDK, N))
434       return true;
435     MDs.push_back({MDK, N});
436   }
437 
438   Function *F;
439   if (ParseFunctionHeader(F, false))
440     return true;
441   for (auto &MD : MDs)
442     F->addMetadata(MD.first, *MD.second);
443   return false;
444 }
445 
446 /// toplevelentity
447 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
448 bool LLParser::ParseDefine() {
449   assert(Lex.getKind() == lltok::kw_define);
450   Lex.Lex();
451 
452   Function *F;
453   return ParseFunctionHeader(F, true) ||
454          ParseOptionalFunctionMetadata(*F) ||
455          ParseFunctionBody(*F);
456 }
457 
458 /// ParseGlobalType
459 ///   ::= 'constant'
460 ///   ::= 'global'
461 bool LLParser::ParseGlobalType(bool &IsConstant) {
462   if (Lex.getKind() == lltok::kw_constant)
463     IsConstant = true;
464   else if (Lex.getKind() == lltok::kw_global)
465     IsConstant = false;
466   else {
467     IsConstant = false;
468     return TokError("expected 'global' or 'constant'");
469   }
470   Lex.Lex();
471   return false;
472 }
473 
474 bool LLParser::ParseOptionalUnnamedAddr(
475     GlobalVariable::UnnamedAddr &UnnamedAddr) {
476   if (EatIfPresent(lltok::kw_unnamed_addr))
477     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
478   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
479     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
480   else
481     UnnamedAddr = GlobalValue::UnnamedAddr::None;
482   return false;
483 }
484 
485 /// ParseUnnamedGlobal:
486 ///   OptionalVisibility (ALIAS | IFUNC) ...
487 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
488 ///   OptionalDLLStorageClass
489 ///                                                     ...   -> global variable
490 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
491 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
492 ///                OptionalDLLStorageClass
493 ///                                                     ...   -> global variable
494 bool LLParser::ParseUnnamedGlobal() {
495   unsigned VarID = NumberedVals.size();
496   std::string Name;
497   LocTy NameLoc = Lex.getLoc();
498 
499   // Handle the GlobalID form.
500   if (Lex.getKind() == lltok::GlobalID) {
501     if (Lex.getUIntVal() != VarID)
502       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
503                    Twine(VarID) + "'");
504     Lex.Lex(); // eat GlobalID;
505 
506     if (ParseToken(lltok::equal, "expected '=' after name"))
507       return true;
508   }
509 
510   bool HasLinkage;
511   unsigned Linkage, Visibility, DLLStorageClass;
512   bool DSOLocal;
513   GlobalVariable::ThreadLocalMode TLM;
514   GlobalVariable::UnnamedAddr UnnamedAddr;
515   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
516                            DSOLocal) ||
517       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
518     return true;
519 
520   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
521     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
522                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
523 
524   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
525                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
526 }
527 
528 /// ParseNamedGlobal:
529 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
530 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
531 ///                 OptionalVisibility OptionalDLLStorageClass
532 ///                                                     ...   -> global variable
533 bool LLParser::ParseNamedGlobal() {
534   assert(Lex.getKind() == lltok::GlobalVar);
535   LocTy NameLoc = Lex.getLoc();
536   std::string Name = Lex.getStrVal();
537   Lex.Lex();
538 
539   bool HasLinkage;
540   unsigned Linkage, Visibility, DLLStorageClass;
541   bool DSOLocal;
542   GlobalVariable::ThreadLocalMode TLM;
543   GlobalVariable::UnnamedAddr UnnamedAddr;
544   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
545       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
546                            DSOLocal) ||
547       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
548     return true;
549 
550   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
551     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
552                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
553 
554   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
555                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
556 }
557 
558 bool LLParser::parseComdat() {
559   assert(Lex.getKind() == lltok::ComdatVar);
560   std::string Name = Lex.getStrVal();
561   LocTy NameLoc = Lex.getLoc();
562   Lex.Lex();
563 
564   if (ParseToken(lltok::equal, "expected '=' here"))
565     return true;
566 
567   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
568     return TokError("expected comdat type");
569 
570   Comdat::SelectionKind SK;
571   switch (Lex.getKind()) {
572   default:
573     return TokError("unknown selection kind");
574   case lltok::kw_any:
575     SK = Comdat::Any;
576     break;
577   case lltok::kw_exactmatch:
578     SK = Comdat::ExactMatch;
579     break;
580   case lltok::kw_largest:
581     SK = Comdat::Largest;
582     break;
583   case lltok::kw_noduplicates:
584     SK = Comdat::NoDuplicates;
585     break;
586   case lltok::kw_samesize:
587     SK = Comdat::SameSize;
588     break;
589   }
590   Lex.Lex();
591 
592   // See if the comdat was forward referenced, if so, use the comdat.
593   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
594   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
595   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
596     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
597 
598   Comdat *C;
599   if (I != ComdatSymTab.end())
600     C = &I->second;
601   else
602     C = M->getOrInsertComdat(Name);
603   C->setSelectionKind(SK);
604 
605   return false;
606 }
607 
608 // MDString:
609 //   ::= '!' STRINGCONSTANT
610 bool LLParser::ParseMDString(MDString *&Result) {
611   std::string Str;
612   if (ParseStringConstant(Str)) return true;
613   Result = MDString::get(Context, Str);
614   return false;
615 }
616 
617 // MDNode:
618 //   ::= '!' MDNodeNumber
619 bool LLParser::ParseMDNodeID(MDNode *&Result) {
620   // !{ ..., !42, ... }
621   LocTy IDLoc = Lex.getLoc();
622   unsigned MID = 0;
623   if (ParseUInt32(MID))
624     return true;
625 
626   // If not a forward reference, just return it now.
627   if (NumberedMetadata.count(MID)) {
628     Result = NumberedMetadata[MID];
629     return false;
630   }
631 
632   // Otherwise, create MDNode forward reference.
633   auto &FwdRef = ForwardRefMDNodes[MID];
634   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
635 
636   Result = FwdRef.first.get();
637   NumberedMetadata[MID].reset(Result);
638   return false;
639 }
640 
641 /// ParseNamedMetadata:
642 ///   !foo = !{ !1, !2 }
643 bool LLParser::ParseNamedMetadata() {
644   assert(Lex.getKind() == lltok::MetadataVar);
645   std::string Name = Lex.getStrVal();
646   Lex.Lex();
647 
648   if (ParseToken(lltok::equal, "expected '=' here") ||
649       ParseToken(lltok::exclaim, "Expected '!' here") ||
650       ParseToken(lltok::lbrace, "Expected '{' here"))
651     return true;
652 
653   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
654   if (Lex.getKind() != lltok::rbrace)
655     do {
656       MDNode *N = nullptr;
657       // Parse DIExpressions inline as a special case. They are still MDNodes,
658       // so they can still appear in named metadata. Remove this logic if they
659       // become plain Metadata.
660       if (Lex.getKind() == lltok::MetadataVar &&
661           Lex.getStrVal() == "DIExpression") {
662         if (ParseDIExpression(N, /*IsDistinct=*/false))
663           return true;
664       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
665                  ParseMDNodeID(N)) {
666         return true;
667       }
668       NMD->addOperand(N);
669     } while (EatIfPresent(lltok::comma));
670 
671   return ParseToken(lltok::rbrace, "expected end of metadata node");
672 }
673 
674 /// ParseStandaloneMetadata:
675 ///   !42 = !{...}
676 bool LLParser::ParseStandaloneMetadata() {
677   assert(Lex.getKind() == lltok::exclaim);
678   Lex.Lex();
679   unsigned MetadataID = 0;
680 
681   MDNode *Init;
682   if (ParseUInt32(MetadataID) ||
683       ParseToken(lltok::equal, "expected '=' here"))
684     return true;
685 
686   // Detect common error, from old metadata syntax.
687   if (Lex.getKind() == lltok::Type)
688     return TokError("unexpected type in metadata definition");
689 
690   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
691   if (Lex.getKind() == lltok::MetadataVar) {
692     if (ParseSpecializedMDNode(Init, IsDistinct))
693       return true;
694   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
695              ParseMDTuple(Init, IsDistinct))
696     return true;
697 
698   // See if this was forward referenced, if so, handle it.
699   auto FI = ForwardRefMDNodes.find(MetadataID);
700   if (FI != ForwardRefMDNodes.end()) {
701     FI->second.first->replaceAllUsesWith(Init);
702     ForwardRefMDNodes.erase(FI);
703 
704     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
705   } else {
706     if (NumberedMetadata.count(MetadataID))
707       return TokError("Metadata id is already used");
708     NumberedMetadata[MetadataID].reset(Init);
709   }
710 
711   return false;
712 }
713 
714 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
715   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
716          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
717 }
718 
719 // If there was an explicit dso_local, update GV. In the absence of an explicit
720 // dso_local we keep the default value.
721 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
722   if (DSOLocal)
723     GV.setDSOLocal(true);
724 }
725 
726 /// parseIndirectSymbol:
727 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
728 ///                     OptionalVisibility OptionalDLLStorageClass
729 ///                     OptionalThreadLocal OptionalUnnamedAddr
730 //                      'alias|ifunc' IndirectSymbol
731 ///
732 /// IndirectSymbol
733 ///   ::= TypeAndValue
734 ///
735 /// Everything through OptionalUnnamedAddr has already been parsed.
736 ///
737 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
738                                    unsigned L, unsigned Visibility,
739                                    unsigned DLLStorageClass, bool DSOLocal,
740                                    GlobalVariable::ThreadLocalMode TLM,
741                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
742   bool IsAlias;
743   if (Lex.getKind() == lltok::kw_alias)
744     IsAlias = true;
745   else if (Lex.getKind() == lltok::kw_ifunc)
746     IsAlias = false;
747   else
748     llvm_unreachable("Not an alias or ifunc!");
749   Lex.Lex();
750 
751   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
752 
753   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
754     return Error(NameLoc, "invalid linkage type for alias");
755 
756   if (!isValidVisibilityForLinkage(Visibility, L))
757     return Error(NameLoc,
758                  "symbol with local linkage must have default visibility");
759 
760   Type *Ty;
761   LocTy ExplicitTypeLoc = Lex.getLoc();
762   if (ParseType(Ty) ||
763       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
764     return true;
765 
766   Constant *Aliasee;
767   LocTy AliaseeLoc = Lex.getLoc();
768   if (Lex.getKind() != lltok::kw_bitcast &&
769       Lex.getKind() != lltok::kw_getelementptr &&
770       Lex.getKind() != lltok::kw_addrspacecast &&
771       Lex.getKind() != lltok::kw_inttoptr) {
772     if (ParseGlobalTypeAndValue(Aliasee))
773       return true;
774   } else {
775     // The bitcast dest type is not present, it is implied by the dest type.
776     ValID ID;
777     if (ParseValID(ID))
778       return true;
779     if (ID.Kind != ValID::t_Constant)
780       return Error(AliaseeLoc, "invalid aliasee");
781     Aliasee = ID.ConstantVal;
782   }
783 
784   Type *AliaseeType = Aliasee->getType();
785   auto *PTy = dyn_cast<PointerType>(AliaseeType);
786   if (!PTy)
787     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
788   unsigned AddrSpace = PTy->getAddressSpace();
789 
790   if (IsAlias && Ty != PTy->getElementType())
791     return Error(
792         ExplicitTypeLoc,
793         "explicit pointee type doesn't match operand's pointee type");
794 
795   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
796     return Error(
797         ExplicitTypeLoc,
798         "explicit pointee type should be a function type");
799 
800   GlobalValue *GVal = nullptr;
801 
802   // See if the alias was forward referenced, if so, prepare to replace the
803   // forward reference.
804   if (!Name.empty()) {
805     GVal = M->getNamedValue(Name);
806     if (GVal) {
807       if (!ForwardRefVals.erase(Name))
808         return Error(NameLoc, "redefinition of global '@" + Name + "'");
809     }
810   } else {
811     auto I = ForwardRefValIDs.find(NumberedVals.size());
812     if (I != ForwardRefValIDs.end()) {
813       GVal = I->second.first;
814       ForwardRefValIDs.erase(I);
815     }
816   }
817 
818   // Okay, create the alias but do not insert it into the module yet.
819   std::unique_ptr<GlobalIndirectSymbol> GA;
820   if (IsAlias)
821     GA.reset(GlobalAlias::create(Ty, AddrSpace,
822                                  (GlobalValue::LinkageTypes)Linkage, Name,
823                                  Aliasee, /*Parent*/ nullptr));
824   else
825     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
826                                  (GlobalValue::LinkageTypes)Linkage, Name,
827                                  Aliasee, /*Parent*/ nullptr));
828   GA->setThreadLocalMode(TLM);
829   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
830   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
831   GA->setUnnamedAddr(UnnamedAddr);
832   maybeSetDSOLocal(DSOLocal, *GA);
833 
834   if (Name.empty())
835     NumberedVals.push_back(GA.get());
836 
837   if (GVal) {
838     // Verify that types agree.
839     if (GVal->getType() != GA->getType())
840       return Error(
841           ExplicitTypeLoc,
842           "forward reference and definition of alias have different types");
843 
844     // If they agree, just RAUW the old value with the alias and remove the
845     // forward ref info.
846     GVal->replaceAllUsesWith(GA.get());
847     GVal->eraseFromParent();
848   }
849 
850   // Insert into the module, we know its name won't collide now.
851   if (IsAlias)
852     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
853   else
854     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
855   assert(GA->getName() == Name && "Should not be a name conflict!");
856 
857   // The module owns this now
858   GA.release();
859 
860   return false;
861 }
862 
863 /// ParseGlobal
864 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
865 ///       OptionalVisibility OptionalDLLStorageClass
866 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
867 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
868 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
869 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
870 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
871 ///       Const OptionalAttrs
872 ///
873 /// Everything up to and including OptionalUnnamedAddr has been parsed
874 /// already.
875 ///
876 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
877                            unsigned Linkage, bool HasLinkage,
878                            unsigned Visibility, unsigned DLLStorageClass,
879                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
880                            GlobalVariable::UnnamedAddr UnnamedAddr) {
881   if (!isValidVisibilityForLinkage(Visibility, Linkage))
882     return Error(NameLoc,
883                  "symbol with local linkage must have default visibility");
884 
885   unsigned AddrSpace;
886   bool IsConstant, IsExternallyInitialized;
887   LocTy IsExternallyInitializedLoc;
888   LocTy TyLoc;
889 
890   Type *Ty = nullptr;
891   if (ParseOptionalAddrSpace(AddrSpace) ||
892       ParseOptionalToken(lltok::kw_externally_initialized,
893                          IsExternallyInitialized,
894                          &IsExternallyInitializedLoc) ||
895       ParseGlobalType(IsConstant) ||
896       ParseType(Ty, TyLoc))
897     return true;
898 
899   // If the linkage is specified and is external, then no initializer is
900   // present.
901   Constant *Init = nullptr;
902   if (!HasLinkage ||
903       !GlobalValue::isValidDeclarationLinkage(
904           (GlobalValue::LinkageTypes)Linkage)) {
905     if (ParseGlobalValue(Ty, Init))
906       return true;
907   }
908 
909   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
910     return Error(TyLoc, "invalid type for global variable");
911 
912   GlobalValue *GVal = nullptr;
913 
914   // See if the global was forward referenced, if so, use the global.
915   if (!Name.empty()) {
916     GVal = M->getNamedValue(Name);
917     if (GVal) {
918       if (!ForwardRefVals.erase(Name))
919         return Error(NameLoc, "redefinition of global '@" + Name + "'");
920     }
921   } else {
922     auto I = ForwardRefValIDs.find(NumberedVals.size());
923     if (I != ForwardRefValIDs.end()) {
924       GVal = I->second.first;
925       ForwardRefValIDs.erase(I);
926     }
927   }
928 
929   GlobalVariable *GV;
930   if (!GVal) {
931     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
932                             Name, nullptr, GlobalVariable::NotThreadLocal,
933                             AddrSpace);
934   } else {
935     if (GVal->getValueType() != Ty)
936       return Error(TyLoc,
937             "forward reference and definition of global have different types");
938 
939     GV = cast<GlobalVariable>(GVal);
940 
941     // Move the forward-reference to the correct spot in the module.
942     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
943   }
944 
945   if (Name.empty())
946     NumberedVals.push_back(GV);
947 
948   // Set the parsed properties on the global.
949   if (Init)
950     GV->setInitializer(Init);
951   GV->setConstant(IsConstant);
952   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
953   maybeSetDSOLocal(DSOLocal, *GV);
954   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
955   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
956   GV->setExternallyInitialized(IsExternallyInitialized);
957   GV->setThreadLocalMode(TLM);
958   GV->setUnnamedAddr(UnnamedAddr);
959 
960   // Parse attributes on the global.
961   while (Lex.getKind() == lltok::comma) {
962     Lex.Lex();
963 
964     if (Lex.getKind() == lltok::kw_section) {
965       Lex.Lex();
966       GV->setSection(Lex.getStrVal());
967       if (ParseToken(lltok::StringConstant, "expected global section string"))
968         return true;
969     } else if (Lex.getKind() == lltok::kw_align) {
970       unsigned Alignment;
971       if (ParseOptionalAlignment(Alignment)) return true;
972       GV->setAlignment(Alignment);
973     } else if (Lex.getKind() == lltok::MetadataVar) {
974       if (ParseGlobalObjectMetadataAttachment(*GV))
975         return true;
976     } else {
977       Comdat *C;
978       if (parseOptionalComdat(Name, C))
979         return true;
980       if (C)
981         GV->setComdat(C);
982       else
983         return TokError("unknown global variable property!");
984     }
985   }
986 
987   AttrBuilder Attrs;
988   LocTy BuiltinLoc;
989   std::vector<unsigned> FwdRefAttrGrps;
990   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
991     return true;
992   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
993     GV->setAttributes(AttributeSet::get(Context, Attrs));
994     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
995   }
996 
997   return false;
998 }
999 
1000 /// ParseUnnamedAttrGrp
1001 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1002 bool LLParser::ParseUnnamedAttrGrp() {
1003   assert(Lex.getKind() == lltok::kw_attributes);
1004   LocTy AttrGrpLoc = Lex.getLoc();
1005   Lex.Lex();
1006 
1007   if (Lex.getKind() != lltok::AttrGrpID)
1008     return TokError("expected attribute group id");
1009 
1010   unsigned VarID = Lex.getUIntVal();
1011   std::vector<unsigned> unused;
1012   LocTy BuiltinLoc;
1013   Lex.Lex();
1014 
1015   if (ParseToken(lltok::equal, "expected '=' here") ||
1016       ParseToken(lltok::lbrace, "expected '{' here") ||
1017       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1018                                  BuiltinLoc) ||
1019       ParseToken(lltok::rbrace, "expected end of attribute group"))
1020     return true;
1021 
1022   if (!NumberedAttrBuilders[VarID].hasAttributes())
1023     return Error(AttrGrpLoc, "attribute group has no attributes");
1024 
1025   return false;
1026 }
1027 
1028 /// ParseFnAttributeValuePairs
1029 ///   ::= <attr> | <attr> '=' <value>
1030 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1031                                           std::vector<unsigned> &FwdRefAttrGrps,
1032                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1033   bool HaveError = false;
1034 
1035   B.clear();
1036 
1037   while (true) {
1038     lltok::Kind Token = Lex.getKind();
1039     if (Token == lltok::kw_builtin)
1040       BuiltinLoc = Lex.getLoc();
1041     switch (Token) {
1042     default:
1043       if (!inAttrGrp) return HaveError;
1044       return Error(Lex.getLoc(), "unterminated attribute group");
1045     case lltok::rbrace:
1046       // Finished.
1047       return false;
1048 
1049     case lltok::AttrGrpID: {
1050       // Allow a function to reference an attribute group:
1051       //
1052       //   define void @foo() #1 { ... }
1053       if (inAttrGrp)
1054         HaveError |=
1055           Error(Lex.getLoc(),
1056               "cannot have an attribute group reference in an attribute group");
1057 
1058       unsigned AttrGrpNum = Lex.getUIntVal();
1059       if (inAttrGrp) break;
1060 
1061       // Save the reference to the attribute group. We'll fill it in later.
1062       FwdRefAttrGrps.push_back(AttrGrpNum);
1063       break;
1064     }
1065     // Target-dependent attributes:
1066     case lltok::StringConstant: {
1067       if (ParseStringAttribute(B))
1068         return true;
1069       continue;
1070     }
1071 
1072     // Target-independent attributes:
1073     case lltok::kw_align: {
1074       // As a hack, we allow function alignment to be initially parsed as an
1075       // attribute on a function declaration/definition or added to an attribute
1076       // group and later moved to the alignment field.
1077       unsigned Alignment;
1078       if (inAttrGrp) {
1079         Lex.Lex();
1080         if (ParseToken(lltok::equal, "expected '=' here") ||
1081             ParseUInt32(Alignment))
1082           return true;
1083       } else {
1084         if (ParseOptionalAlignment(Alignment))
1085           return true;
1086       }
1087       B.addAlignmentAttr(Alignment);
1088       continue;
1089     }
1090     case lltok::kw_alignstack: {
1091       unsigned Alignment;
1092       if (inAttrGrp) {
1093         Lex.Lex();
1094         if (ParseToken(lltok::equal, "expected '=' here") ||
1095             ParseUInt32(Alignment))
1096           return true;
1097       } else {
1098         if (ParseOptionalStackAlignment(Alignment))
1099           return true;
1100       }
1101       B.addStackAlignmentAttr(Alignment);
1102       continue;
1103     }
1104     case lltok::kw_allocsize: {
1105       unsigned ElemSizeArg;
1106       Optional<unsigned> NumElemsArg;
1107       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1108       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1109         return true;
1110       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1111       continue;
1112     }
1113     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1114     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1115     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1116     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1117     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1118     case lltok::kw_inaccessiblememonly:
1119       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1120     case lltok::kw_inaccessiblemem_or_argmemonly:
1121       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1122     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1123     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1124     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1125     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1126     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1127     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1128     case lltok::kw_noimplicitfloat:
1129       B.addAttribute(Attribute::NoImplicitFloat); break;
1130     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1131     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1132     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1133     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1134     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1135     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1136     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1137     case lltok::kw_optforfuzzing:
1138       B.addAttribute(Attribute::OptForFuzzing); break;
1139     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1140     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1141     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1142     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1143     case lltok::kw_returns_twice:
1144       B.addAttribute(Attribute::ReturnsTwice); break;
1145     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1146     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1147     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1148     case lltok::kw_sspstrong:
1149       B.addAttribute(Attribute::StackProtectStrong); break;
1150     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1151     case lltok::kw_shadowcallstack:
1152       B.addAttribute(Attribute::ShadowCallStack); break;
1153     case lltok::kw_sanitize_address:
1154       B.addAttribute(Attribute::SanitizeAddress); break;
1155     case lltok::kw_sanitize_hwaddress:
1156       B.addAttribute(Attribute::SanitizeHWAddress); break;
1157     case lltok::kw_sanitize_thread:
1158       B.addAttribute(Attribute::SanitizeThread); break;
1159     case lltok::kw_sanitize_memory:
1160       B.addAttribute(Attribute::SanitizeMemory); break;
1161     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1162     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1163     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1164 
1165     // Error handling.
1166     case lltok::kw_inreg:
1167     case lltok::kw_signext:
1168     case lltok::kw_zeroext:
1169       HaveError |=
1170         Error(Lex.getLoc(),
1171               "invalid use of attribute on a function");
1172       break;
1173     case lltok::kw_byval:
1174     case lltok::kw_dereferenceable:
1175     case lltok::kw_dereferenceable_or_null:
1176     case lltok::kw_inalloca:
1177     case lltok::kw_nest:
1178     case lltok::kw_noalias:
1179     case lltok::kw_nocapture:
1180     case lltok::kw_nonnull:
1181     case lltok::kw_returned:
1182     case lltok::kw_sret:
1183     case lltok::kw_swifterror:
1184     case lltok::kw_swiftself:
1185       HaveError |=
1186         Error(Lex.getLoc(),
1187               "invalid use of parameter-only attribute on a function");
1188       break;
1189     }
1190 
1191     Lex.Lex();
1192   }
1193 }
1194 
1195 //===----------------------------------------------------------------------===//
1196 // GlobalValue Reference/Resolution Routines.
1197 //===----------------------------------------------------------------------===//
1198 
1199 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1200                                               const std::string &Name) {
1201   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1202     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1203   else
1204     return new GlobalVariable(*M, PTy->getElementType(), false,
1205                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1206                               nullptr, GlobalVariable::NotThreadLocal,
1207                               PTy->getAddressSpace());
1208 }
1209 
1210 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1211 /// forward reference record if needed.  This can return null if the value
1212 /// exists but does not have the right type.
1213 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1214                                     LocTy Loc) {
1215   PointerType *PTy = dyn_cast<PointerType>(Ty);
1216   if (!PTy) {
1217     Error(Loc, "global variable reference must have pointer type");
1218     return nullptr;
1219   }
1220 
1221   // Look this name up in the normal function symbol table.
1222   GlobalValue *Val =
1223     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1224 
1225   // If this is a forward reference for the value, see if we already created a
1226   // forward ref record.
1227   if (!Val) {
1228     auto I = ForwardRefVals.find(Name);
1229     if (I != ForwardRefVals.end())
1230       Val = I->second.first;
1231   }
1232 
1233   // If we have the value in the symbol table or fwd-ref table, return it.
1234   if (Val) {
1235     if (Val->getType() == Ty) return Val;
1236     Error(Loc, "'@" + Name + "' defined with type '" +
1237           getTypeString(Val->getType()) + "'");
1238     return nullptr;
1239   }
1240 
1241   // Otherwise, create a new forward reference for this value and remember it.
1242   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1243   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1244   return FwdVal;
1245 }
1246 
1247 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1248   PointerType *PTy = dyn_cast<PointerType>(Ty);
1249   if (!PTy) {
1250     Error(Loc, "global variable reference must have pointer type");
1251     return nullptr;
1252   }
1253 
1254   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1255 
1256   // If this is a forward reference for the value, see if we already created a
1257   // forward ref record.
1258   if (!Val) {
1259     auto I = ForwardRefValIDs.find(ID);
1260     if (I != ForwardRefValIDs.end())
1261       Val = I->second.first;
1262   }
1263 
1264   // If we have the value in the symbol table or fwd-ref table, return it.
1265   if (Val) {
1266     if (Val->getType() == Ty) return Val;
1267     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1268           getTypeString(Val->getType()) + "'");
1269     return nullptr;
1270   }
1271 
1272   // Otherwise, create a new forward reference for this value and remember it.
1273   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1274   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1275   return FwdVal;
1276 }
1277 
1278 //===----------------------------------------------------------------------===//
1279 // Comdat Reference/Resolution Routines.
1280 //===----------------------------------------------------------------------===//
1281 
1282 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1283   // Look this name up in the comdat symbol table.
1284   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1285   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1286   if (I != ComdatSymTab.end())
1287     return &I->second;
1288 
1289   // Otherwise, create a new forward reference for this value and remember it.
1290   Comdat *C = M->getOrInsertComdat(Name);
1291   ForwardRefComdats[Name] = Loc;
1292   return C;
1293 }
1294 
1295 //===----------------------------------------------------------------------===//
1296 // Helper Routines.
1297 //===----------------------------------------------------------------------===//
1298 
1299 /// ParseToken - If the current token has the specified kind, eat it and return
1300 /// success.  Otherwise, emit the specified error and return failure.
1301 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1302   if (Lex.getKind() != T)
1303     return TokError(ErrMsg);
1304   Lex.Lex();
1305   return false;
1306 }
1307 
1308 /// ParseStringConstant
1309 ///   ::= StringConstant
1310 bool LLParser::ParseStringConstant(std::string &Result) {
1311   if (Lex.getKind() != lltok::StringConstant)
1312     return TokError("expected string constant");
1313   Result = Lex.getStrVal();
1314   Lex.Lex();
1315   return false;
1316 }
1317 
1318 /// ParseUInt32
1319 ///   ::= uint32
1320 bool LLParser::ParseUInt32(uint32_t &Val) {
1321   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1322     return TokError("expected integer");
1323   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1324   if (Val64 != unsigned(Val64))
1325     return TokError("expected 32-bit integer (too large)");
1326   Val = Val64;
1327   Lex.Lex();
1328   return false;
1329 }
1330 
1331 /// ParseUInt64
1332 ///   ::= uint64
1333 bool LLParser::ParseUInt64(uint64_t &Val) {
1334   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1335     return TokError("expected integer");
1336   Val = Lex.getAPSIntVal().getLimitedValue();
1337   Lex.Lex();
1338   return false;
1339 }
1340 
1341 /// ParseTLSModel
1342 ///   := 'localdynamic'
1343 ///   := 'initialexec'
1344 ///   := 'localexec'
1345 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1346   switch (Lex.getKind()) {
1347     default:
1348       return TokError("expected localdynamic, initialexec or localexec");
1349     case lltok::kw_localdynamic:
1350       TLM = GlobalVariable::LocalDynamicTLSModel;
1351       break;
1352     case lltok::kw_initialexec:
1353       TLM = GlobalVariable::InitialExecTLSModel;
1354       break;
1355     case lltok::kw_localexec:
1356       TLM = GlobalVariable::LocalExecTLSModel;
1357       break;
1358   }
1359 
1360   Lex.Lex();
1361   return false;
1362 }
1363 
1364 /// ParseOptionalThreadLocal
1365 ///   := /*empty*/
1366 ///   := 'thread_local'
1367 ///   := 'thread_local' '(' tlsmodel ')'
1368 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1369   TLM = GlobalVariable::NotThreadLocal;
1370   if (!EatIfPresent(lltok::kw_thread_local))
1371     return false;
1372 
1373   TLM = GlobalVariable::GeneralDynamicTLSModel;
1374   if (Lex.getKind() == lltok::lparen) {
1375     Lex.Lex();
1376     return ParseTLSModel(TLM) ||
1377       ParseToken(lltok::rparen, "expected ')' after thread local model");
1378   }
1379   return false;
1380 }
1381 
1382 /// ParseOptionalAddrSpace
1383 ///   := /*empty*/
1384 ///   := 'addrspace' '(' uint32 ')'
1385 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1386   AddrSpace = 0;
1387   if (!EatIfPresent(lltok::kw_addrspace))
1388     return false;
1389   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1390          ParseUInt32(AddrSpace) ||
1391          ParseToken(lltok::rparen, "expected ')' in address space");
1392 }
1393 
1394 /// ParseStringAttribute
1395 ///   := StringConstant
1396 ///   := StringConstant '=' StringConstant
1397 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1398   std::string Attr = Lex.getStrVal();
1399   Lex.Lex();
1400   std::string Val;
1401   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1402     return true;
1403   B.addAttribute(Attr, Val);
1404   return false;
1405 }
1406 
1407 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1408 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1409   bool HaveError = false;
1410 
1411   B.clear();
1412 
1413   while (true) {
1414     lltok::Kind Token = Lex.getKind();
1415     switch (Token) {
1416     default:  // End of attributes.
1417       return HaveError;
1418     case lltok::StringConstant: {
1419       if (ParseStringAttribute(B))
1420         return true;
1421       continue;
1422     }
1423     case lltok::kw_align: {
1424       unsigned Alignment;
1425       if (ParseOptionalAlignment(Alignment))
1426         return true;
1427       B.addAlignmentAttr(Alignment);
1428       continue;
1429     }
1430     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1431     case lltok::kw_dereferenceable: {
1432       uint64_t Bytes;
1433       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1434         return true;
1435       B.addDereferenceableAttr(Bytes);
1436       continue;
1437     }
1438     case lltok::kw_dereferenceable_or_null: {
1439       uint64_t Bytes;
1440       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1441         return true;
1442       B.addDereferenceableOrNullAttr(Bytes);
1443       continue;
1444     }
1445     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1446     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1447     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1448     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1449     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1450     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1451     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1452     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1453     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1454     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1455     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1456     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1457     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1458     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1459     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1460 
1461     case lltok::kw_alignstack:
1462     case lltok::kw_alwaysinline:
1463     case lltok::kw_argmemonly:
1464     case lltok::kw_builtin:
1465     case lltok::kw_inlinehint:
1466     case lltok::kw_jumptable:
1467     case lltok::kw_minsize:
1468     case lltok::kw_naked:
1469     case lltok::kw_nobuiltin:
1470     case lltok::kw_noduplicate:
1471     case lltok::kw_noimplicitfloat:
1472     case lltok::kw_noinline:
1473     case lltok::kw_nonlazybind:
1474     case lltok::kw_noredzone:
1475     case lltok::kw_noreturn:
1476     case lltok::kw_nocf_check:
1477     case lltok::kw_nounwind:
1478     case lltok::kw_optforfuzzing:
1479     case lltok::kw_optnone:
1480     case lltok::kw_optsize:
1481     case lltok::kw_returns_twice:
1482     case lltok::kw_sanitize_address:
1483     case lltok::kw_sanitize_hwaddress:
1484     case lltok::kw_sanitize_memory:
1485     case lltok::kw_sanitize_thread:
1486     case lltok::kw_ssp:
1487     case lltok::kw_sspreq:
1488     case lltok::kw_sspstrong:
1489     case lltok::kw_safestack:
1490     case lltok::kw_shadowcallstack:
1491     case lltok::kw_strictfp:
1492     case lltok::kw_uwtable:
1493       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1494       break;
1495     }
1496 
1497     Lex.Lex();
1498   }
1499 }
1500 
1501 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1502 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1503   bool HaveError = false;
1504 
1505   B.clear();
1506 
1507   while (true) {
1508     lltok::Kind Token = Lex.getKind();
1509     switch (Token) {
1510     default:  // End of attributes.
1511       return HaveError;
1512     case lltok::StringConstant: {
1513       if (ParseStringAttribute(B))
1514         return true;
1515       continue;
1516     }
1517     case lltok::kw_dereferenceable: {
1518       uint64_t Bytes;
1519       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1520         return true;
1521       B.addDereferenceableAttr(Bytes);
1522       continue;
1523     }
1524     case lltok::kw_dereferenceable_or_null: {
1525       uint64_t Bytes;
1526       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1527         return true;
1528       B.addDereferenceableOrNullAttr(Bytes);
1529       continue;
1530     }
1531     case lltok::kw_align: {
1532       unsigned Alignment;
1533       if (ParseOptionalAlignment(Alignment))
1534         return true;
1535       B.addAlignmentAttr(Alignment);
1536       continue;
1537     }
1538     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1539     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1540     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1541     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1542     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1543 
1544     // Error handling.
1545     case lltok::kw_byval:
1546     case lltok::kw_inalloca:
1547     case lltok::kw_nest:
1548     case lltok::kw_nocapture:
1549     case lltok::kw_returned:
1550     case lltok::kw_sret:
1551     case lltok::kw_swifterror:
1552     case lltok::kw_swiftself:
1553       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1554       break;
1555 
1556     case lltok::kw_alignstack:
1557     case lltok::kw_alwaysinline:
1558     case lltok::kw_argmemonly:
1559     case lltok::kw_builtin:
1560     case lltok::kw_cold:
1561     case lltok::kw_inlinehint:
1562     case lltok::kw_jumptable:
1563     case lltok::kw_minsize:
1564     case lltok::kw_naked:
1565     case lltok::kw_nobuiltin:
1566     case lltok::kw_noduplicate:
1567     case lltok::kw_noimplicitfloat:
1568     case lltok::kw_noinline:
1569     case lltok::kw_nonlazybind:
1570     case lltok::kw_noredzone:
1571     case lltok::kw_noreturn:
1572     case lltok::kw_nocf_check:
1573     case lltok::kw_nounwind:
1574     case lltok::kw_optforfuzzing:
1575     case lltok::kw_optnone:
1576     case lltok::kw_optsize:
1577     case lltok::kw_returns_twice:
1578     case lltok::kw_sanitize_address:
1579     case lltok::kw_sanitize_hwaddress:
1580     case lltok::kw_sanitize_memory:
1581     case lltok::kw_sanitize_thread:
1582     case lltok::kw_ssp:
1583     case lltok::kw_sspreq:
1584     case lltok::kw_sspstrong:
1585     case lltok::kw_safestack:
1586     case lltok::kw_shadowcallstack:
1587     case lltok::kw_strictfp:
1588     case lltok::kw_uwtable:
1589       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1590       break;
1591 
1592     case lltok::kw_readnone:
1593     case lltok::kw_readonly:
1594       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1595     }
1596 
1597     Lex.Lex();
1598   }
1599 }
1600 
1601 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1602   HasLinkage = true;
1603   switch (Kind) {
1604   default:
1605     HasLinkage = false;
1606     return GlobalValue::ExternalLinkage;
1607   case lltok::kw_private:
1608     return GlobalValue::PrivateLinkage;
1609   case lltok::kw_internal:
1610     return GlobalValue::InternalLinkage;
1611   case lltok::kw_weak:
1612     return GlobalValue::WeakAnyLinkage;
1613   case lltok::kw_weak_odr:
1614     return GlobalValue::WeakODRLinkage;
1615   case lltok::kw_linkonce:
1616     return GlobalValue::LinkOnceAnyLinkage;
1617   case lltok::kw_linkonce_odr:
1618     return GlobalValue::LinkOnceODRLinkage;
1619   case lltok::kw_available_externally:
1620     return GlobalValue::AvailableExternallyLinkage;
1621   case lltok::kw_appending:
1622     return GlobalValue::AppendingLinkage;
1623   case lltok::kw_common:
1624     return GlobalValue::CommonLinkage;
1625   case lltok::kw_extern_weak:
1626     return GlobalValue::ExternalWeakLinkage;
1627   case lltok::kw_external:
1628     return GlobalValue::ExternalLinkage;
1629   }
1630 }
1631 
1632 /// ParseOptionalLinkage
1633 ///   ::= /*empty*/
1634 ///   ::= 'private'
1635 ///   ::= 'internal'
1636 ///   ::= 'weak'
1637 ///   ::= 'weak_odr'
1638 ///   ::= 'linkonce'
1639 ///   ::= 'linkonce_odr'
1640 ///   ::= 'available_externally'
1641 ///   ::= 'appending'
1642 ///   ::= 'common'
1643 ///   ::= 'extern_weak'
1644 ///   ::= 'external'
1645 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1646                                     unsigned &Visibility,
1647                                     unsigned &DLLStorageClass,
1648                                     bool &DSOLocal) {
1649   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1650   if (HasLinkage)
1651     Lex.Lex();
1652   ParseOptionalDSOLocal(DSOLocal);
1653   ParseOptionalVisibility(Visibility);
1654   ParseOptionalDLLStorageClass(DLLStorageClass);
1655 
1656   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1657     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1658   }
1659 
1660   return false;
1661 }
1662 
1663 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1664   switch (Lex.getKind()) {
1665   default:
1666     DSOLocal = false;
1667     break;
1668   case lltok::kw_dso_local:
1669     DSOLocal = true;
1670     Lex.Lex();
1671     break;
1672   case lltok::kw_dso_preemptable:
1673     DSOLocal = false;
1674     Lex.Lex();
1675     break;
1676   }
1677 }
1678 
1679 /// ParseOptionalVisibility
1680 ///   ::= /*empty*/
1681 ///   ::= 'default'
1682 ///   ::= 'hidden'
1683 ///   ::= 'protected'
1684 ///
1685 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1686   switch (Lex.getKind()) {
1687   default:
1688     Res = GlobalValue::DefaultVisibility;
1689     return;
1690   case lltok::kw_default:
1691     Res = GlobalValue::DefaultVisibility;
1692     break;
1693   case lltok::kw_hidden:
1694     Res = GlobalValue::HiddenVisibility;
1695     break;
1696   case lltok::kw_protected:
1697     Res = GlobalValue::ProtectedVisibility;
1698     break;
1699   }
1700   Lex.Lex();
1701 }
1702 
1703 /// ParseOptionalDLLStorageClass
1704 ///   ::= /*empty*/
1705 ///   ::= 'dllimport'
1706 ///   ::= 'dllexport'
1707 ///
1708 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1709   switch (Lex.getKind()) {
1710   default:
1711     Res = GlobalValue::DefaultStorageClass;
1712     return;
1713   case lltok::kw_dllimport:
1714     Res = GlobalValue::DLLImportStorageClass;
1715     break;
1716   case lltok::kw_dllexport:
1717     Res = GlobalValue::DLLExportStorageClass;
1718     break;
1719   }
1720   Lex.Lex();
1721 }
1722 
1723 /// ParseOptionalCallingConv
1724 ///   ::= /*empty*/
1725 ///   ::= 'ccc'
1726 ///   ::= 'fastcc'
1727 ///   ::= 'intel_ocl_bicc'
1728 ///   ::= 'coldcc'
1729 ///   ::= 'x86_stdcallcc'
1730 ///   ::= 'x86_fastcallcc'
1731 ///   ::= 'x86_thiscallcc'
1732 ///   ::= 'x86_vectorcallcc'
1733 ///   ::= 'arm_apcscc'
1734 ///   ::= 'arm_aapcscc'
1735 ///   ::= 'arm_aapcs_vfpcc'
1736 ///   ::= 'msp430_intrcc'
1737 ///   ::= 'avr_intrcc'
1738 ///   ::= 'avr_signalcc'
1739 ///   ::= 'ptx_kernel'
1740 ///   ::= 'ptx_device'
1741 ///   ::= 'spir_func'
1742 ///   ::= 'spir_kernel'
1743 ///   ::= 'x86_64_sysvcc'
1744 ///   ::= 'win64cc'
1745 ///   ::= 'webkit_jscc'
1746 ///   ::= 'anyregcc'
1747 ///   ::= 'preserve_mostcc'
1748 ///   ::= 'preserve_allcc'
1749 ///   ::= 'ghccc'
1750 ///   ::= 'swiftcc'
1751 ///   ::= 'x86_intrcc'
1752 ///   ::= 'hhvmcc'
1753 ///   ::= 'hhvm_ccc'
1754 ///   ::= 'cxx_fast_tlscc'
1755 ///   ::= 'amdgpu_vs'
1756 ///   ::= 'amdgpu_ls'
1757 ///   ::= 'amdgpu_hs'
1758 ///   ::= 'amdgpu_es'
1759 ///   ::= 'amdgpu_gs'
1760 ///   ::= 'amdgpu_ps'
1761 ///   ::= 'amdgpu_cs'
1762 ///   ::= 'amdgpu_kernel'
1763 ///   ::= 'cc' UINT
1764 ///
1765 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1766   switch (Lex.getKind()) {
1767   default:                       CC = CallingConv::C; return false;
1768   case lltok::kw_ccc:            CC = CallingConv::C; break;
1769   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1770   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1771   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1772   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1773   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1774   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1775   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1776   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1777   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1778   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1779   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1780   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1781   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1782   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1783   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1784   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1785   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1786   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1787   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1788   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1789   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1790   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1791   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1792   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1793   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1794   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1795   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1796   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1797   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1798   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1799   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1800   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1801   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1802   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1803   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1804   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1805   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1806   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1807   case lltok::kw_cc: {
1808       Lex.Lex();
1809       return ParseUInt32(CC);
1810     }
1811   }
1812 
1813   Lex.Lex();
1814   return false;
1815 }
1816 
1817 /// ParseMetadataAttachment
1818 ///   ::= !dbg !42
1819 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1820   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1821 
1822   std::string Name = Lex.getStrVal();
1823   Kind = M->getMDKindID(Name);
1824   Lex.Lex();
1825 
1826   return ParseMDNode(MD);
1827 }
1828 
1829 /// ParseInstructionMetadata
1830 ///   ::= !dbg !42 (',' !dbg !57)*
1831 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1832   do {
1833     if (Lex.getKind() != lltok::MetadataVar)
1834       return TokError("expected metadata after comma");
1835 
1836     unsigned MDK;
1837     MDNode *N;
1838     if (ParseMetadataAttachment(MDK, N))
1839       return true;
1840 
1841     Inst.setMetadata(MDK, N);
1842     if (MDK == LLVMContext::MD_tbaa)
1843       InstsWithTBAATag.push_back(&Inst);
1844 
1845     // If this is the end of the list, we're done.
1846   } while (EatIfPresent(lltok::comma));
1847   return false;
1848 }
1849 
1850 /// ParseGlobalObjectMetadataAttachment
1851 ///   ::= !dbg !57
1852 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1853   unsigned MDK;
1854   MDNode *N;
1855   if (ParseMetadataAttachment(MDK, N))
1856     return true;
1857 
1858   GO.addMetadata(MDK, *N);
1859   return false;
1860 }
1861 
1862 /// ParseOptionalFunctionMetadata
1863 ///   ::= (!dbg !57)*
1864 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1865   while (Lex.getKind() == lltok::MetadataVar)
1866     if (ParseGlobalObjectMetadataAttachment(F))
1867       return true;
1868   return false;
1869 }
1870 
1871 /// ParseOptionalAlignment
1872 ///   ::= /* empty */
1873 ///   ::= 'align' 4
1874 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1875   Alignment = 0;
1876   if (!EatIfPresent(lltok::kw_align))
1877     return false;
1878   LocTy AlignLoc = Lex.getLoc();
1879   if (ParseUInt32(Alignment)) return true;
1880   if (!isPowerOf2_32(Alignment))
1881     return Error(AlignLoc, "alignment is not a power of two");
1882   if (Alignment > Value::MaximumAlignment)
1883     return Error(AlignLoc, "huge alignments are not supported yet");
1884   return false;
1885 }
1886 
1887 /// ParseOptionalDerefAttrBytes
1888 ///   ::= /* empty */
1889 ///   ::= AttrKind '(' 4 ')'
1890 ///
1891 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1892 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1893                                            uint64_t &Bytes) {
1894   assert((AttrKind == lltok::kw_dereferenceable ||
1895           AttrKind == lltok::kw_dereferenceable_or_null) &&
1896          "contract!");
1897 
1898   Bytes = 0;
1899   if (!EatIfPresent(AttrKind))
1900     return false;
1901   LocTy ParenLoc = Lex.getLoc();
1902   if (!EatIfPresent(lltok::lparen))
1903     return Error(ParenLoc, "expected '('");
1904   LocTy DerefLoc = Lex.getLoc();
1905   if (ParseUInt64(Bytes)) return true;
1906   ParenLoc = Lex.getLoc();
1907   if (!EatIfPresent(lltok::rparen))
1908     return Error(ParenLoc, "expected ')'");
1909   if (!Bytes)
1910     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1911   return false;
1912 }
1913 
1914 /// ParseOptionalCommaAlign
1915 ///   ::=
1916 ///   ::= ',' align 4
1917 ///
1918 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1919 /// end.
1920 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1921                                        bool &AteExtraComma) {
1922   AteExtraComma = false;
1923   while (EatIfPresent(lltok::comma)) {
1924     // Metadata at the end is an early exit.
1925     if (Lex.getKind() == lltok::MetadataVar) {
1926       AteExtraComma = true;
1927       return false;
1928     }
1929 
1930     if (Lex.getKind() != lltok::kw_align)
1931       return Error(Lex.getLoc(), "expected metadata or 'align'");
1932 
1933     if (ParseOptionalAlignment(Alignment)) return true;
1934   }
1935 
1936   return false;
1937 }
1938 
1939 /// ParseOptionalCommaAddrSpace
1940 ///   ::=
1941 ///   ::= ',' addrspace(1)
1942 ///
1943 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1944 /// end.
1945 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
1946                                            LocTy &Loc,
1947                                            bool &AteExtraComma) {
1948   AteExtraComma = false;
1949   while (EatIfPresent(lltok::comma)) {
1950     // Metadata at the end is an early exit.
1951     if (Lex.getKind() == lltok::MetadataVar) {
1952       AteExtraComma = true;
1953       return false;
1954     }
1955 
1956     Loc = Lex.getLoc();
1957     if (Lex.getKind() != lltok::kw_addrspace)
1958       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
1959 
1960     if (ParseOptionalAddrSpace(AddrSpace))
1961       return true;
1962   }
1963 
1964   return false;
1965 }
1966 
1967 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
1968                                        Optional<unsigned> &HowManyArg) {
1969   Lex.Lex();
1970 
1971   auto StartParen = Lex.getLoc();
1972   if (!EatIfPresent(lltok::lparen))
1973     return Error(StartParen, "expected '('");
1974 
1975   if (ParseUInt32(BaseSizeArg))
1976     return true;
1977 
1978   if (EatIfPresent(lltok::comma)) {
1979     auto HowManyAt = Lex.getLoc();
1980     unsigned HowMany;
1981     if (ParseUInt32(HowMany))
1982       return true;
1983     if (HowMany == BaseSizeArg)
1984       return Error(HowManyAt,
1985                    "'allocsize' indices can't refer to the same parameter");
1986     HowManyArg = HowMany;
1987   } else
1988     HowManyArg = None;
1989 
1990   auto EndParen = Lex.getLoc();
1991   if (!EatIfPresent(lltok::rparen))
1992     return Error(EndParen, "expected ')'");
1993   return false;
1994 }
1995 
1996 /// ParseScopeAndOrdering
1997 ///   if isAtomic: ::= SyncScope? AtomicOrdering
1998 ///   else: ::=
1999 ///
2000 /// This sets Scope and Ordering to the parsed values.
2001 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2002                                      AtomicOrdering &Ordering) {
2003   if (!isAtomic)
2004     return false;
2005 
2006   return ParseScope(SSID) || ParseOrdering(Ordering);
2007 }
2008 
2009 /// ParseScope
2010 ///   ::= syncscope("singlethread" | "<target scope>")?
2011 ///
2012 /// This sets synchronization scope ID to the ID of the parsed value.
2013 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2014   SSID = SyncScope::System;
2015   if (EatIfPresent(lltok::kw_syncscope)) {
2016     auto StartParenAt = Lex.getLoc();
2017     if (!EatIfPresent(lltok::lparen))
2018       return Error(StartParenAt, "Expected '(' in syncscope");
2019 
2020     std::string SSN;
2021     auto SSNAt = Lex.getLoc();
2022     if (ParseStringConstant(SSN))
2023       return Error(SSNAt, "Expected synchronization scope name");
2024 
2025     auto EndParenAt = Lex.getLoc();
2026     if (!EatIfPresent(lltok::rparen))
2027       return Error(EndParenAt, "Expected ')' in syncscope");
2028 
2029     SSID = Context.getOrInsertSyncScopeID(SSN);
2030   }
2031 
2032   return false;
2033 }
2034 
2035 /// ParseOrdering
2036 ///   ::= AtomicOrdering
2037 ///
2038 /// This sets Ordering to the parsed value.
2039 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2040   switch (Lex.getKind()) {
2041   default: return TokError("Expected ordering on atomic instruction");
2042   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2043   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2044   // Not specified yet:
2045   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2046   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2047   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2048   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2049   case lltok::kw_seq_cst:
2050     Ordering = AtomicOrdering::SequentiallyConsistent;
2051     break;
2052   }
2053   Lex.Lex();
2054   return false;
2055 }
2056 
2057 /// ParseOptionalStackAlignment
2058 ///   ::= /* empty */
2059 ///   ::= 'alignstack' '(' 4 ')'
2060 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2061   Alignment = 0;
2062   if (!EatIfPresent(lltok::kw_alignstack))
2063     return false;
2064   LocTy ParenLoc = Lex.getLoc();
2065   if (!EatIfPresent(lltok::lparen))
2066     return Error(ParenLoc, "expected '('");
2067   LocTy AlignLoc = Lex.getLoc();
2068   if (ParseUInt32(Alignment)) return true;
2069   ParenLoc = Lex.getLoc();
2070   if (!EatIfPresent(lltok::rparen))
2071     return Error(ParenLoc, "expected ')'");
2072   if (!isPowerOf2_32(Alignment))
2073     return Error(AlignLoc, "stack alignment is not a power of two");
2074   return false;
2075 }
2076 
2077 /// ParseIndexList - This parses the index list for an insert/extractvalue
2078 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2079 /// comma at the end of the line and find that it is followed by metadata.
2080 /// Clients that don't allow metadata can call the version of this function that
2081 /// only takes one argument.
2082 ///
2083 /// ParseIndexList
2084 ///    ::=  (',' uint32)+
2085 ///
2086 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2087                               bool &AteExtraComma) {
2088   AteExtraComma = false;
2089 
2090   if (Lex.getKind() != lltok::comma)
2091     return TokError("expected ',' as start of index list");
2092 
2093   while (EatIfPresent(lltok::comma)) {
2094     if (Lex.getKind() == lltok::MetadataVar) {
2095       if (Indices.empty()) return TokError("expected index");
2096       AteExtraComma = true;
2097       return false;
2098     }
2099     unsigned Idx = 0;
2100     if (ParseUInt32(Idx)) return true;
2101     Indices.push_back(Idx);
2102   }
2103 
2104   return false;
2105 }
2106 
2107 //===----------------------------------------------------------------------===//
2108 // Type Parsing.
2109 //===----------------------------------------------------------------------===//
2110 
2111 /// ParseType - Parse a type.
2112 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2113   SMLoc TypeLoc = Lex.getLoc();
2114   switch (Lex.getKind()) {
2115   default:
2116     return TokError(Msg);
2117   case lltok::Type:
2118     // Type ::= 'float' | 'void' (etc)
2119     Result = Lex.getTyVal();
2120     Lex.Lex();
2121     break;
2122   case lltok::lbrace:
2123     // Type ::= StructType
2124     if (ParseAnonStructType(Result, false))
2125       return true;
2126     break;
2127   case lltok::lsquare:
2128     // Type ::= '[' ... ']'
2129     Lex.Lex(); // eat the lsquare.
2130     if (ParseArrayVectorType(Result, false))
2131       return true;
2132     break;
2133   case lltok::less: // Either vector or packed struct.
2134     // Type ::= '<' ... '>'
2135     Lex.Lex();
2136     if (Lex.getKind() == lltok::lbrace) {
2137       if (ParseAnonStructType(Result, true) ||
2138           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2139         return true;
2140     } else if (ParseArrayVectorType(Result, true))
2141       return true;
2142     break;
2143   case lltok::LocalVar: {
2144     // Type ::= %foo
2145     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2146 
2147     // If the type hasn't been defined yet, create a forward definition and
2148     // remember where that forward def'n was seen (in case it never is defined).
2149     if (!Entry.first) {
2150       Entry.first = StructType::create(Context, Lex.getStrVal());
2151       Entry.second = Lex.getLoc();
2152     }
2153     Result = Entry.first;
2154     Lex.Lex();
2155     break;
2156   }
2157 
2158   case lltok::LocalVarID: {
2159     // Type ::= %4
2160     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2161 
2162     // If the type hasn't been defined yet, create a forward definition and
2163     // remember where that forward def'n was seen (in case it never is defined).
2164     if (!Entry.first) {
2165       Entry.first = StructType::create(Context);
2166       Entry.second = Lex.getLoc();
2167     }
2168     Result = Entry.first;
2169     Lex.Lex();
2170     break;
2171   }
2172   }
2173 
2174   // Parse the type suffixes.
2175   while (true) {
2176     switch (Lex.getKind()) {
2177     // End of type.
2178     default:
2179       if (!AllowVoid && Result->isVoidTy())
2180         return Error(TypeLoc, "void type only allowed for function results");
2181       return false;
2182 
2183     // Type ::= Type '*'
2184     case lltok::star:
2185       if (Result->isLabelTy())
2186         return TokError("basic block pointers are invalid");
2187       if (Result->isVoidTy())
2188         return TokError("pointers to void are invalid - use i8* instead");
2189       if (!PointerType::isValidElementType(Result))
2190         return TokError("pointer to this type is invalid");
2191       Result = PointerType::getUnqual(Result);
2192       Lex.Lex();
2193       break;
2194 
2195     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2196     case lltok::kw_addrspace: {
2197       if (Result->isLabelTy())
2198         return TokError("basic block pointers are invalid");
2199       if (Result->isVoidTy())
2200         return TokError("pointers to void are invalid; use i8* instead");
2201       if (!PointerType::isValidElementType(Result))
2202         return TokError("pointer to this type is invalid");
2203       unsigned AddrSpace;
2204       if (ParseOptionalAddrSpace(AddrSpace) ||
2205           ParseToken(lltok::star, "expected '*' in address space"))
2206         return true;
2207 
2208       Result = PointerType::get(Result, AddrSpace);
2209       break;
2210     }
2211 
2212     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2213     case lltok::lparen:
2214       if (ParseFunctionType(Result))
2215         return true;
2216       break;
2217     }
2218   }
2219 }
2220 
2221 /// ParseParameterList
2222 ///    ::= '(' ')'
2223 ///    ::= '(' Arg (',' Arg)* ')'
2224 ///  Arg
2225 ///    ::= Type OptionalAttributes Value OptionalAttributes
2226 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2227                                   PerFunctionState &PFS, bool IsMustTailCall,
2228                                   bool InVarArgsFunc) {
2229   if (ParseToken(lltok::lparen, "expected '(' in call"))
2230     return true;
2231 
2232   while (Lex.getKind() != lltok::rparen) {
2233     // If this isn't the first argument, we need a comma.
2234     if (!ArgList.empty() &&
2235         ParseToken(lltok::comma, "expected ',' in argument list"))
2236       return true;
2237 
2238     // Parse an ellipsis if this is a musttail call in a variadic function.
2239     if (Lex.getKind() == lltok::dotdotdot) {
2240       const char *Msg = "unexpected ellipsis in argument list for ";
2241       if (!IsMustTailCall)
2242         return TokError(Twine(Msg) + "non-musttail call");
2243       if (!InVarArgsFunc)
2244         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2245       Lex.Lex();  // Lex the '...', it is purely for readability.
2246       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2247     }
2248 
2249     // Parse the argument.
2250     LocTy ArgLoc;
2251     Type *ArgTy = nullptr;
2252     AttrBuilder ArgAttrs;
2253     Value *V;
2254     if (ParseType(ArgTy, ArgLoc))
2255       return true;
2256 
2257     if (ArgTy->isMetadataTy()) {
2258       if (ParseMetadataAsValue(V, PFS))
2259         return true;
2260     } else {
2261       // Otherwise, handle normal operands.
2262       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2263         return true;
2264     }
2265     ArgList.push_back(ParamInfo(
2266         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2267   }
2268 
2269   if (IsMustTailCall && InVarArgsFunc)
2270     return TokError("expected '...' at end of argument list for musttail call "
2271                     "in varargs function");
2272 
2273   Lex.Lex();  // Lex the ')'.
2274   return false;
2275 }
2276 
2277 /// ParseOptionalOperandBundles
2278 ///    ::= /*empty*/
2279 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2280 ///
2281 /// OperandBundle
2282 ///    ::= bundle-tag '(' ')'
2283 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2284 ///
2285 /// bundle-tag ::= String Constant
2286 bool LLParser::ParseOptionalOperandBundles(
2287     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2288   LocTy BeginLoc = Lex.getLoc();
2289   if (!EatIfPresent(lltok::lsquare))
2290     return false;
2291 
2292   while (Lex.getKind() != lltok::rsquare) {
2293     // If this isn't the first operand bundle, we need a comma.
2294     if (!BundleList.empty() &&
2295         ParseToken(lltok::comma, "expected ',' in input list"))
2296       return true;
2297 
2298     std::string Tag;
2299     if (ParseStringConstant(Tag))
2300       return true;
2301 
2302     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2303       return true;
2304 
2305     std::vector<Value *> Inputs;
2306     while (Lex.getKind() != lltok::rparen) {
2307       // If this isn't the first input, we need a comma.
2308       if (!Inputs.empty() &&
2309           ParseToken(lltok::comma, "expected ',' in input list"))
2310         return true;
2311 
2312       Type *Ty = nullptr;
2313       Value *Input = nullptr;
2314       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2315         return true;
2316       Inputs.push_back(Input);
2317     }
2318 
2319     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2320 
2321     Lex.Lex(); // Lex the ')'.
2322   }
2323 
2324   if (BundleList.empty())
2325     return Error(BeginLoc, "operand bundle set must not be empty");
2326 
2327   Lex.Lex(); // Lex the ']'.
2328   return false;
2329 }
2330 
2331 /// ParseArgumentList - Parse the argument list for a function type or function
2332 /// prototype.
2333 ///   ::= '(' ArgTypeListI ')'
2334 /// ArgTypeListI
2335 ///   ::= /*empty*/
2336 ///   ::= '...'
2337 ///   ::= ArgTypeList ',' '...'
2338 ///   ::= ArgType (',' ArgType)*
2339 ///
2340 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2341                                  bool &isVarArg){
2342   isVarArg = false;
2343   assert(Lex.getKind() == lltok::lparen);
2344   Lex.Lex(); // eat the (.
2345 
2346   if (Lex.getKind() == lltok::rparen) {
2347     // empty
2348   } else if (Lex.getKind() == lltok::dotdotdot) {
2349     isVarArg = true;
2350     Lex.Lex();
2351   } else {
2352     LocTy TypeLoc = Lex.getLoc();
2353     Type *ArgTy = nullptr;
2354     AttrBuilder Attrs;
2355     std::string Name;
2356 
2357     if (ParseType(ArgTy) ||
2358         ParseOptionalParamAttrs(Attrs)) return true;
2359 
2360     if (ArgTy->isVoidTy())
2361       return Error(TypeLoc, "argument can not have void type");
2362 
2363     if (Lex.getKind() == lltok::LocalVar) {
2364       Name = Lex.getStrVal();
2365       Lex.Lex();
2366     }
2367 
2368     if (!FunctionType::isValidArgumentType(ArgTy))
2369       return Error(TypeLoc, "invalid type for function argument");
2370 
2371     ArgList.emplace_back(TypeLoc, ArgTy,
2372                          AttributeSet::get(ArgTy->getContext(), Attrs),
2373                          std::move(Name));
2374 
2375     while (EatIfPresent(lltok::comma)) {
2376       // Handle ... at end of arg list.
2377       if (EatIfPresent(lltok::dotdotdot)) {
2378         isVarArg = true;
2379         break;
2380       }
2381 
2382       // Otherwise must be an argument type.
2383       TypeLoc = Lex.getLoc();
2384       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2385 
2386       if (ArgTy->isVoidTy())
2387         return Error(TypeLoc, "argument can not have void type");
2388 
2389       if (Lex.getKind() == lltok::LocalVar) {
2390         Name = Lex.getStrVal();
2391         Lex.Lex();
2392       } else {
2393         Name = "";
2394       }
2395 
2396       if (!ArgTy->isFirstClassType())
2397         return Error(TypeLoc, "invalid type for function argument");
2398 
2399       ArgList.emplace_back(TypeLoc, ArgTy,
2400                            AttributeSet::get(ArgTy->getContext(), Attrs),
2401                            std::move(Name));
2402     }
2403   }
2404 
2405   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2406 }
2407 
2408 /// ParseFunctionType
2409 ///  ::= Type ArgumentList OptionalAttrs
2410 bool LLParser::ParseFunctionType(Type *&Result) {
2411   assert(Lex.getKind() == lltok::lparen);
2412 
2413   if (!FunctionType::isValidReturnType(Result))
2414     return TokError("invalid function return type");
2415 
2416   SmallVector<ArgInfo, 8> ArgList;
2417   bool isVarArg;
2418   if (ParseArgumentList(ArgList, isVarArg))
2419     return true;
2420 
2421   // Reject names on the arguments lists.
2422   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2423     if (!ArgList[i].Name.empty())
2424       return Error(ArgList[i].Loc, "argument name invalid in function type");
2425     if (ArgList[i].Attrs.hasAttributes())
2426       return Error(ArgList[i].Loc,
2427                    "argument attributes invalid in function type");
2428   }
2429 
2430   SmallVector<Type*, 16> ArgListTy;
2431   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2432     ArgListTy.push_back(ArgList[i].Ty);
2433 
2434   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2435   return false;
2436 }
2437 
2438 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2439 /// other structs.
2440 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2441   SmallVector<Type*, 8> Elts;
2442   if (ParseStructBody(Elts)) return true;
2443 
2444   Result = StructType::get(Context, Elts, Packed);
2445   return false;
2446 }
2447 
2448 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2449 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2450                                      std::pair<Type*, LocTy> &Entry,
2451                                      Type *&ResultTy) {
2452   // If the type was already defined, diagnose the redefinition.
2453   if (Entry.first && !Entry.second.isValid())
2454     return Error(TypeLoc, "redefinition of type");
2455 
2456   // If we have opaque, just return without filling in the definition for the
2457   // struct.  This counts as a definition as far as the .ll file goes.
2458   if (EatIfPresent(lltok::kw_opaque)) {
2459     // This type is being defined, so clear the location to indicate this.
2460     Entry.second = SMLoc();
2461 
2462     // If this type number has never been uttered, create it.
2463     if (!Entry.first)
2464       Entry.first = StructType::create(Context, Name);
2465     ResultTy = Entry.first;
2466     return false;
2467   }
2468 
2469   // If the type starts with '<', then it is either a packed struct or a vector.
2470   bool isPacked = EatIfPresent(lltok::less);
2471 
2472   // If we don't have a struct, then we have a random type alias, which we
2473   // accept for compatibility with old files.  These types are not allowed to be
2474   // forward referenced and not allowed to be recursive.
2475   if (Lex.getKind() != lltok::lbrace) {
2476     if (Entry.first)
2477       return Error(TypeLoc, "forward references to non-struct type");
2478 
2479     ResultTy = nullptr;
2480     if (isPacked)
2481       return ParseArrayVectorType(ResultTy, true);
2482     return ParseType(ResultTy);
2483   }
2484 
2485   // This type is being defined, so clear the location to indicate this.
2486   Entry.second = SMLoc();
2487 
2488   // If this type number has never been uttered, create it.
2489   if (!Entry.first)
2490     Entry.first = StructType::create(Context, Name);
2491 
2492   StructType *STy = cast<StructType>(Entry.first);
2493 
2494   SmallVector<Type*, 8> Body;
2495   if (ParseStructBody(Body) ||
2496       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2497     return true;
2498 
2499   STy->setBody(Body, isPacked);
2500   ResultTy = STy;
2501   return false;
2502 }
2503 
2504 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2505 ///   StructType
2506 ///     ::= '{' '}'
2507 ///     ::= '{' Type (',' Type)* '}'
2508 ///     ::= '<' '{' '}' '>'
2509 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2510 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2511   assert(Lex.getKind() == lltok::lbrace);
2512   Lex.Lex(); // Consume the '{'
2513 
2514   // Handle the empty struct.
2515   if (EatIfPresent(lltok::rbrace))
2516     return false;
2517 
2518   LocTy EltTyLoc = Lex.getLoc();
2519   Type *Ty = nullptr;
2520   if (ParseType(Ty)) return true;
2521   Body.push_back(Ty);
2522 
2523   if (!StructType::isValidElementType(Ty))
2524     return Error(EltTyLoc, "invalid element type for struct");
2525 
2526   while (EatIfPresent(lltok::comma)) {
2527     EltTyLoc = Lex.getLoc();
2528     if (ParseType(Ty)) return true;
2529 
2530     if (!StructType::isValidElementType(Ty))
2531       return Error(EltTyLoc, "invalid element type for struct");
2532 
2533     Body.push_back(Ty);
2534   }
2535 
2536   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2537 }
2538 
2539 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2540 /// token has already been consumed.
2541 ///   Type
2542 ///     ::= '[' APSINTVAL 'x' Types ']'
2543 ///     ::= '<' APSINTVAL 'x' Types '>'
2544 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2545   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2546       Lex.getAPSIntVal().getBitWidth() > 64)
2547     return TokError("expected number in address space");
2548 
2549   LocTy SizeLoc = Lex.getLoc();
2550   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2551   Lex.Lex();
2552 
2553   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2554       return true;
2555 
2556   LocTy TypeLoc = Lex.getLoc();
2557   Type *EltTy = nullptr;
2558   if (ParseType(EltTy)) return true;
2559 
2560   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2561                  "expected end of sequential type"))
2562     return true;
2563 
2564   if (isVector) {
2565     if (Size == 0)
2566       return Error(SizeLoc, "zero element vector is illegal");
2567     if ((unsigned)Size != Size)
2568       return Error(SizeLoc, "size too large for vector");
2569     if (!VectorType::isValidElementType(EltTy))
2570       return Error(TypeLoc, "invalid vector element type");
2571     Result = VectorType::get(EltTy, unsigned(Size));
2572   } else {
2573     if (!ArrayType::isValidElementType(EltTy))
2574       return Error(TypeLoc, "invalid array element type");
2575     Result = ArrayType::get(EltTy, Size);
2576   }
2577   return false;
2578 }
2579 
2580 //===----------------------------------------------------------------------===//
2581 // Function Semantic Analysis.
2582 //===----------------------------------------------------------------------===//
2583 
2584 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2585                                              int functionNumber)
2586   : P(p), F(f), FunctionNumber(functionNumber) {
2587 
2588   // Insert unnamed arguments into the NumberedVals list.
2589   for (Argument &A : F.args())
2590     if (!A.hasName())
2591       NumberedVals.push_back(&A);
2592 }
2593 
2594 LLParser::PerFunctionState::~PerFunctionState() {
2595   // If there were any forward referenced non-basicblock values, delete them.
2596 
2597   for (const auto &P : ForwardRefVals) {
2598     if (isa<BasicBlock>(P.second.first))
2599       continue;
2600     P.second.first->replaceAllUsesWith(
2601         UndefValue::get(P.second.first->getType()));
2602     P.second.first->deleteValue();
2603   }
2604 
2605   for (const auto &P : ForwardRefValIDs) {
2606     if (isa<BasicBlock>(P.second.first))
2607       continue;
2608     P.second.first->replaceAllUsesWith(
2609         UndefValue::get(P.second.first->getType()));
2610     P.second.first->deleteValue();
2611   }
2612 }
2613 
2614 bool LLParser::PerFunctionState::FinishFunction() {
2615   if (!ForwardRefVals.empty())
2616     return P.Error(ForwardRefVals.begin()->second.second,
2617                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2618                    "'");
2619   if (!ForwardRefValIDs.empty())
2620     return P.Error(ForwardRefValIDs.begin()->second.second,
2621                    "use of undefined value '%" +
2622                    Twine(ForwardRefValIDs.begin()->first) + "'");
2623   return false;
2624 }
2625 
2626 static bool isValidVariableType(Module *M, Type *Ty, Value *Val, bool IsCall) {
2627   if (Val->getType() == Ty)
2628     return true;
2629   // For calls we also accept variables in the program address space
2630   if (IsCall && isa<PointerType>(Ty)) {
2631     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
2632         M->getDataLayout().getProgramAddressSpace());
2633     if (Val->getType() == TyInProgAS)
2634       return true;
2635   }
2636   return false;
2637 }
2638 
2639 /// GetVal - Get a value with the specified name or ID, creating a
2640 /// forward reference record if needed.  This can return null if the value
2641 /// exists but does not have the right type.
2642 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2643                                           LocTy Loc, bool IsCall) {
2644   // Look this name up in the normal function symbol table.
2645   Value *Val = F.getValueSymbolTable()->lookup(Name);
2646 
2647   // If this is a forward reference for the value, see if we already created a
2648   // forward ref record.
2649   if (!Val) {
2650     auto I = ForwardRefVals.find(Name);
2651     if (I != ForwardRefVals.end())
2652       Val = I->second.first;
2653   }
2654 
2655   // If we have the value in the symbol table or fwd-ref table, return it.
2656   if (Val) {
2657     if (isValidVariableType(P.M, Ty, Val, IsCall))
2658       return Val;
2659     if (Ty->isLabelTy())
2660       P.Error(Loc, "'%" + Name + "' is not a basic block");
2661     else
2662       P.Error(Loc, "'%" + Name + "' defined with type '" +
2663               getTypeString(Val->getType()) + "'");
2664     return nullptr;
2665   }
2666 
2667   // Don't make placeholders with invalid type.
2668   if (!Ty->isFirstClassType()) {
2669     P.Error(Loc, "invalid use of a non-first-class type");
2670     return nullptr;
2671   }
2672 
2673   // Otherwise, create a new forward reference for this value and remember it.
2674   Value *FwdVal;
2675   if (Ty->isLabelTy()) {
2676     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2677   } else {
2678     FwdVal = new Argument(Ty, Name);
2679   }
2680 
2681   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2682   return FwdVal;
2683 }
2684 
2685 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2686                                           bool IsCall) {
2687   // Look this name up in the normal function symbol table.
2688   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2689 
2690   // If this is a forward reference for the value, see if we already created a
2691   // forward ref record.
2692   if (!Val) {
2693     auto I = ForwardRefValIDs.find(ID);
2694     if (I != ForwardRefValIDs.end())
2695       Val = I->second.first;
2696   }
2697 
2698   // If we have the value in the symbol table or fwd-ref table, return it.
2699   if (Val) {
2700     if (isValidVariableType(P.M, Ty, Val, IsCall))
2701       return Val;
2702     if (Ty->isLabelTy())
2703       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2704     else
2705       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2706               getTypeString(Val->getType()) + "'");
2707     return nullptr;
2708   }
2709 
2710   if (!Ty->isFirstClassType()) {
2711     P.Error(Loc, "invalid use of a non-first-class type");
2712     return nullptr;
2713   }
2714 
2715   // Otherwise, create a new forward reference for this value and remember it.
2716   Value *FwdVal;
2717   if (Ty->isLabelTy()) {
2718     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2719   } else {
2720     FwdVal = new Argument(Ty);
2721   }
2722 
2723   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2724   return FwdVal;
2725 }
2726 
2727 /// SetInstName - After an instruction is parsed and inserted into its
2728 /// basic block, this installs its name.
2729 bool LLParser::PerFunctionState::SetInstName(int NameID,
2730                                              const std::string &NameStr,
2731                                              LocTy NameLoc, Instruction *Inst) {
2732   // If this instruction has void type, it cannot have a name or ID specified.
2733   if (Inst->getType()->isVoidTy()) {
2734     if (NameID != -1 || !NameStr.empty())
2735       return P.Error(NameLoc, "instructions returning void cannot have a name");
2736     return false;
2737   }
2738 
2739   // If this was a numbered instruction, verify that the instruction is the
2740   // expected value and resolve any forward references.
2741   if (NameStr.empty()) {
2742     // If neither a name nor an ID was specified, just use the next ID.
2743     if (NameID == -1)
2744       NameID = NumberedVals.size();
2745 
2746     if (unsigned(NameID) != NumberedVals.size())
2747       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2748                      Twine(NumberedVals.size()) + "'");
2749 
2750     auto FI = ForwardRefValIDs.find(NameID);
2751     if (FI != ForwardRefValIDs.end()) {
2752       Value *Sentinel = FI->second.first;
2753       if (Sentinel->getType() != Inst->getType())
2754         return P.Error(NameLoc, "instruction forward referenced with type '" +
2755                        getTypeString(FI->second.first->getType()) + "'");
2756 
2757       Sentinel->replaceAllUsesWith(Inst);
2758       Sentinel->deleteValue();
2759       ForwardRefValIDs.erase(FI);
2760     }
2761 
2762     NumberedVals.push_back(Inst);
2763     return false;
2764   }
2765 
2766   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2767   auto FI = ForwardRefVals.find(NameStr);
2768   if (FI != ForwardRefVals.end()) {
2769     Value *Sentinel = FI->second.first;
2770     if (Sentinel->getType() != Inst->getType())
2771       return P.Error(NameLoc, "instruction forward referenced with type '" +
2772                      getTypeString(FI->second.first->getType()) + "'");
2773 
2774     Sentinel->replaceAllUsesWith(Inst);
2775     Sentinel->deleteValue();
2776     ForwardRefVals.erase(FI);
2777   }
2778 
2779   // Set the name on the instruction.
2780   Inst->setName(NameStr);
2781 
2782   if (Inst->getName() != NameStr)
2783     return P.Error(NameLoc, "multiple definition of local value named '" +
2784                    NameStr + "'");
2785   return false;
2786 }
2787 
2788 /// GetBB - Get a basic block with the specified name or ID, creating a
2789 /// forward reference record if needed.
2790 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2791                                               LocTy Loc) {
2792   return dyn_cast_or_null<BasicBlock>(
2793       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2794 }
2795 
2796 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2797   return dyn_cast_or_null<BasicBlock>(
2798       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2799 }
2800 
2801 /// DefineBB - Define the specified basic block, which is either named or
2802 /// unnamed.  If there is an error, this returns null otherwise it returns
2803 /// the block being defined.
2804 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2805                                                  LocTy Loc) {
2806   BasicBlock *BB;
2807   if (Name.empty())
2808     BB = GetBB(NumberedVals.size(), Loc);
2809   else
2810     BB = GetBB(Name, Loc);
2811   if (!BB) return nullptr; // Already diagnosed error.
2812 
2813   // Move the block to the end of the function.  Forward ref'd blocks are
2814   // inserted wherever they happen to be referenced.
2815   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2816 
2817   // Remove the block from forward ref sets.
2818   if (Name.empty()) {
2819     ForwardRefValIDs.erase(NumberedVals.size());
2820     NumberedVals.push_back(BB);
2821   } else {
2822     // BB forward references are already in the function symbol table.
2823     ForwardRefVals.erase(Name);
2824   }
2825 
2826   return BB;
2827 }
2828 
2829 //===----------------------------------------------------------------------===//
2830 // Constants.
2831 //===----------------------------------------------------------------------===//
2832 
2833 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2834 /// type implied.  For example, if we parse "4" we don't know what integer type
2835 /// it has.  The value will later be combined with its type and checked for
2836 /// sanity.  PFS is used to convert function-local operands of metadata (since
2837 /// metadata operands are not just parsed here but also converted to values).
2838 /// PFS can be null when we are not parsing metadata values inside a function.
2839 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2840   ID.Loc = Lex.getLoc();
2841   switch (Lex.getKind()) {
2842   default: return TokError("expected value token");
2843   case lltok::GlobalID:  // @42
2844     ID.UIntVal = Lex.getUIntVal();
2845     ID.Kind = ValID::t_GlobalID;
2846     break;
2847   case lltok::GlobalVar:  // @foo
2848     ID.StrVal = Lex.getStrVal();
2849     ID.Kind = ValID::t_GlobalName;
2850     break;
2851   case lltok::LocalVarID:  // %42
2852     ID.UIntVal = Lex.getUIntVal();
2853     ID.Kind = ValID::t_LocalID;
2854     break;
2855   case lltok::LocalVar:  // %foo
2856     ID.StrVal = Lex.getStrVal();
2857     ID.Kind = ValID::t_LocalName;
2858     break;
2859   case lltok::APSInt:
2860     ID.APSIntVal = Lex.getAPSIntVal();
2861     ID.Kind = ValID::t_APSInt;
2862     break;
2863   case lltok::APFloat:
2864     ID.APFloatVal = Lex.getAPFloatVal();
2865     ID.Kind = ValID::t_APFloat;
2866     break;
2867   case lltok::kw_true:
2868     ID.ConstantVal = ConstantInt::getTrue(Context);
2869     ID.Kind = ValID::t_Constant;
2870     break;
2871   case lltok::kw_false:
2872     ID.ConstantVal = ConstantInt::getFalse(Context);
2873     ID.Kind = ValID::t_Constant;
2874     break;
2875   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2876   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2877   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2878   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2879 
2880   case lltok::lbrace: {
2881     // ValID ::= '{' ConstVector '}'
2882     Lex.Lex();
2883     SmallVector<Constant*, 16> Elts;
2884     if (ParseGlobalValueVector(Elts) ||
2885         ParseToken(lltok::rbrace, "expected end of struct constant"))
2886       return true;
2887 
2888     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2889     ID.UIntVal = Elts.size();
2890     memcpy(ID.ConstantStructElts.get(), Elts.data(),
2891            Elts.size() * sizeof(Elts[0]));
2892     ID.Kind = ValID::t_ConstantStruct;
2893     return false;
2894   }
2895   case lltok::less: {
2896     // ValID ::= '<' ConstVector '>'         --> Vector.
2897     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2898     Lex.Lex();
2899     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2900 
2901     SmallVector<Constant*, 16> Elts;
2902     LocTy FirstEltLoc = Lex.getLoc();
2903     if (ParseGlobalValueVector(Elts) ||
2904         (isPackedStruct &&
2905          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2906         ParseToken(lltok::greater, "expected end of constant"))
2907       return true;
2908 
2909     if (isPackedStruct) {
2910       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2911       memcpy(ID.ConstantStructElts.get(), Elts.data(),
2912              Elts.size() * sizeof(Elts[0]));
2913       ID.UIntVal = Elts.size();
2914       ID.Kind = ValID::t_PackedConstantStruct;
2915       return false;
2916     }
2917 
2918     if (Elts.empty())
2919       return Error(ID.Loc, "constant vector must not be empty");
2920 
2921     if (!Elts[0]->getType()->isIntegerTy() &&
2922         !Elts[0]->getType()->isFloatingPointTy() &&
2923         !Elts[0]->getType()->isPointerTy())
2924       return Error(FirstEltLoc,
2925             "vector elements must have integer, pointer or floating point type");
2926 
2927     // Verify that all the vector elements have the same type.
2928     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2929       if (Elts[i]->getType() != Elts[0]->getType())
2930         return Error(FirstEltLoc,
2931                      "vector element #" + Twine(i) +
2932                     " is not of type '" + getTypeString(Elts[0]->getType()));
2933 
2934     ID.ConstantVal = ConstantVector::get(Elts);
2935     ID.Kind = ValID::t_Constant;
2936     return false;
2937   }
2938   case lltok::lsquare: {   // Array Constant
2939     Lex.Lex();
2940     SmallVector<Constant*, 16> Elts;
2941     LocTy FirstEltLoc = Lex.getLoc();
2942     if (ParseGlobalValueVector(Elts) ||
2943         ParseToken(lltok::rsquare, "expected end of array constant"))
2944       return true;
2945 
2946     // Handle empty element.
2947     if (Elts.empty()) {
2948       // Use undef instead of an array because it's inconvenient to determine
2949       // the element type at this point, there being no elements to examine.
2950       ID.Kind = ValID::t_EmptyArray;
2951       return false;
2952     }
2953 
2954     if (!Elts[0]->getType()->isFirstClassType())
2955       return Error(FirstEltLoc, "invalid array element type: " +
2956                    getTypeString(Elts[0]->getType()));
2957 
2958     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2959 
2960     // Verify all elements are correct type!
2961     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2962       if (Elts[i]->getType() != Elts[0]->getType())
2963         return Error(FirstEltLoc,
2964                      "array element #" + Twine(i) +
2965                      " is not of type '" + getTypeString(Elts[0]->getType()));
2966     }
2967 
2968     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2969     ID.Kind = ValID::t_Constant;
2970     return false;
2971   }
2972   case lltok::kw_c:  // c "foo"
2973     Lex.Lex();
2974     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2975                                                   false);
2976     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2977     ID.Kind = ValID::t_Constant;
2978     return false;
2979 
2980   case lltok::kw_asm: {
2981     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2982     //             STRINGCONSTANT
2983     bool HasSideEffect, AlignStack, AsmDialect;
2984     Lex.Lex();
2985     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2986         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2987         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2988         ParseStringConstant(ID.StrVal) ||
2989         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2990         ParseToken(lltok::StringConstant, "expected constraint string"))
2991       return true;
2992     ID.StrVal2 = Lex.getStrVal();
2993     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2994       (unsigned(AsmDialect)<<2);
2995     ID.Kind = ValID::t_InlineAsm;
2996     return false;
2997   }
2998 
2999   case lltok::kw_blockaddress: {
3000     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3001     Lex.Lex();
3002 
3003     ValID Fn, Label;
3004 
3005     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3006         ParseValID(Fn) ||
3007         ParseToken(lltok::comma, "expected comma in block address expression")||
3008         ParseValID(Label) ||
3009         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3010       return true;
3011 
3012     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3013       return Error(Fn.Loc, "expected function name in blockaddress");
3014     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3015       return Error(Label.Loc, "expected basic block name in blockaddress");
3016 
3017     // Try to find the function (but skip it if it's forward-referenced).
3018     GlobalValue *GV = nullptr;
3019     if (Fn.Kind == ValID::t_GlobalID) {
3020       if (Fn.UIntVal < NumberedVals.size())
3021         GV = NumberedVals[Fn.UIntVal];
3022     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3023       GV = M->getNamedValue(Fn.StrVal);
3024     }
3025     Function *F = nullptr;
3026     if (GV) {
3027       // Confirm that it's actually a function with a definition.
3028       if (!isa<Function>(GV))
3029         return Error(Fn.Loc, "expected function name in blockaddress");
3030       F = cast<Function>(GV);
3031       if (F->isDeclaration())
3032         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3033     }
3034 
3035     if (!F) {
3036       // Make a global variable as a placeholder for this reference.
3037       GlobalValue *&FwdRef =
3038           ForwardRefBlockAddresses.insert(std::make_pair(
3039                                               std::move(Fn),
3040                                               std::map<ValID, GlobalValue *>()))
3041               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3042               .first->second;
3043       if (!FwdRef)
3044         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3045                                     GlobalValue::InternalLinkage, nullptr, "");
3046       ID.ConstantVal = FwdRef;
3047       ID.Kind = ValID::t_Constant;
3048       return false;
3049     }
3050 
3051     // We found the function; now find the basic block.  Don't use PFS, since we
3052     // might be inside a constant expression.
3053     BasicBlock *BB;
3054     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3055       if (Label.Kind == ValID::t_LocalID)
3056         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3057       else
3058         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3059       if (!BB)
3060         return Error(Label.Loc, "referenced value is not a basic block");
3061     } else {
3062       if (Label.Kind == ValID::t_LocalID)
3063         return Error(Label.Loc, "cannot take address of numeric label after "
3064                                 "the function is defined");
3065       BB = dyn_cast_or_null<BasicBlock>(
3066           F->getValueSymbolTable()->lookup(Label.StrVal));
3067       if (!BB)
3068         return Error(Label.Loc, "referenced value is not a basic block");
3069     }
3070 
3071     ID.ConstantVal = BlockAddress::get(F, BB);
3072     ID.Kind = ValID::t_Constant;
3073     return false;
3074   }
3075 
3076   case lltok::kw_trunc:
3077   case lltok::kw_zext:
3078   case lltok::kw_sext:
3079   case lltok::kw_fptrunc:
3080   case lltok::kw_fpext:
3081   case lltok::kw_bitcast:
3082   case lltok::kw_addrspacecast:
3083   case lltok::kw_uitofp:
3084   case lltok::kw_sitofp:
3085   case lltok::kw_fptoui:
3086   case lltok::kw_fptosi:
3087   case lltok::kw_inttoptr:
3088   case lltok::kw_ptrtoint: {
3089     unsigned Opc = Lex.getUIntVal();
3090     Type *DestTy = nullptr;
3091     Constant *SrcVal;
3092     Lex.Lex();
3093     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3094         ParseGlobalTypeAndValue(SrcVal) ||
3095         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3096         ParseType(DestTy) ||
3097         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3098       return true;
3099     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3100       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3101                    getTypeString(SrcVal->getType()) + "' to '" +
3102                    getTypeString(DestTy) + "'");
3103     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3104                                                  SrcVal, DestTy);
3105     ID.Kind = ValID::t_Constant;
3106     return false;
3107   }
3108   case lltok::kw_extractvalue: {
3109     Lex.Lex();
3110     Constant *Val;
3111     SmallVector<unsigned, 4> Indices;
3112     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3113         ParseGlobalTypeAndValue(Val) ||
3114         ParseIndexList(Indices) ||
3115         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3116       return true;
3117 
3118     if (!Val->getType()->isAggregateType())
3119       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3120     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3121       return Error(ID.Loc, "invalid indices for extractvalue");
3122     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3123     ID.Kind = ValID::t_Constant;
3124     return false;
3125   }
3126   case lltok::kw_insertvalue: {
3127     Lex.Lex();
3128     Constant *Val0, *Val1;
3129     SmallVector<unsigned, 4> Indices;
3130     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3131         ParseGlobalTypeAndValue(Val0) ||
3132         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3133         ParseGlobalTypeAndValue(Val1) ||
3134         ParseIndexList(Indices) ||
3135         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3136       return true;
3137     if (!Val0->getType()->isAggregateType())
3138       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3139     Type *IndexedType =
3140         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3141     if (!IndexedType)
3142       return Error(ID.Loc, "invalid indices for insertvalue");
3143     if (IndexedType != Val1->getType())
3144       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3145                                getTypeString(Val1->getType()) +
3146                                "' instead of '" + getTypeString(IndexedType) +
3147                                "'");
3148     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3149     ID.Kind = ValID::t_Constant;
3150     return false;
3151   }
3152   case lltok::kw_icmp:
3153   case lltok::kw_fcmp: {
3154     unsigned PredVal, Opc = Lex.getUIntVal();
3155     Constant *Val0, *Val1;
3156     Lex.Lex();
3157     if (ParseCmpPredicate(PredVal, Opc) ||
3158         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3159         ParseGlobalTypeAndValue(Val0) ||
3160         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3161         ParseGlobalTypeAndValue(Val1) ||
3162         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3163       return true;
3164 
3165     if (Val0->getType() != Val1->getType())
3166       return Error(ID.Loc, "compare operands must have the same type");
3167 
3168     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3169 
3170     if (Opc == Instruction::FCmp) {
3171       if (!Val0->getType()->isFPOrFPVectorTy())
3172         return Error(ID.Loc, "fcmp requires floating point operands");
3173       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3174     } else {
3175       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3176       if (!Val0->getType()->isIntOrIntVectorTy() &&
3177           !Val0->getType()->isPtrOrPtrVectorTy())
3178         return Error(ID.Loc, "icmp requires pointer or integer operands");
3179       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3180     }
3181     ID.Kind = ValID::t_Constant;
3182     return false;
3183   }
3184 
3185   // Binary Operators.
3186   case lltok::kw_add:
3187   case lltok::kw_fadd:
3188   case lltok::kw_sub:
3189   case lltok::kw_fsub:
3190   case lltok::kw_mul:
3191   case lltok::kw_fmul:
3192   case lltok::kw_udiv:
3193   case lltok::kw_sdiv:
3194   case lltok::kw_fdiv:
3195   case lltok::kw_urem:
3196   case lltok::kw_srem:
3197   case lltok::kw_frem:
3198   case lltok::kw_shl:
3199   case lltok::kw_lshr:
3200   case lltok::kw_ashr: {
3201     bool NUW = false;
3202     bool NSW = false;
3203     bool Exact = false;
3204     unsigned Opc = Lex.getUIntVal();
3205     Constant *Val0, *Val1;
3206     Lex.Lex();
3207     LocTy ModifierLoc = Lex.getLoc();
3208     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3209         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3210       if (EatIfPresent(lltok::kw_nuw))
3211         NUW = true;
3212       if (EatIfPresent(lltok::kw_nsw)) {
3213         NSW = true;
3214         if (EatIfPresent(lltok::kw_nuw))
3215           NUW = true;
3216       }
3217     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3218                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3219       if (EatIfPresent(lltok::kw_exact))
3220         Exact = true;
3221     }
3222     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3223         ParseGlobalTypeAndValue(Val0) ||
3224         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3225         ParseGlobalTypeAndValue(Val1) ||
3226         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3227       return true;
3228     if (Val0->getType() != Val1->getType())
3229       return Error(ID.Loc, "operands of constexpr must have same type");
3230     if (!Val0->getType()->isIntOrIntVectorTy()) {
3231       if (NUW)
3232         return Error(ModifierLoc, "nuw only applies to integer operations");
3233       if (NSW)
3234         return Error(ModifierLoc, "nsw only applies to integer operations");
3235     }
3236     // Check that the type is valid for the operator.
3237     switch (Opc) {
3238     case Instruction::Add:
3239     case Instruction::Sub:
3240     case Instruction::Mul:
3241     case Instruction::UDiv:
3242     case Instruction::SDiv:
3243     case Instruction::URem:
3244     case Instruction::SRem:
3245     case Instruction::Shl:
3246     case Instruction::AShr:
3247     case Instruction::LShr:
3248       if (!Val0->getType()->isIntOrIntVectorTy())
3249         return Error(ID.Loc, "constexpr requires integer operands");
3250       break;
3251     case Instruction::FAdd:
3252     case Instruction::FSub:
3253     case Instruction::FMul:
3254     case Instruction::FDiv:
3255     case Instruction::FRem:
3256       if (!Val0->getType()->isFPOrFPVectorTy())
3257         return Error(ID.Loc, "constexpr requires fp operands");
3258       break;
3259     default: llvm_unreachable("Unknown binary operator!");
3260     }
3261     unsigned Flags = 0;
3262     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3263     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3264     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3265     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3266     ID.ConstantVal = C;
3267     ID.Kind = ValID::t_Constant;
3268     return false;
3269   }
3270 
3271   // Logical Operations
3272   case lltok::kw_and:
3273   case lltok::kw_or:
3274   case lltok::kw_xor: {
3275     unsigned Opc = Lex.getUIntVal();
3276     Constant *Val0, *Val1;
3277     Lex.Lex();
3278     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3279         ParseGlobalTypeAndValue(Val0) ||
3280         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3281         ParseGlobalTypeAndValue(Val1) ||
3282         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3283       return true;
3284     if (Val0->getType() != Val1->getType())
3285       return Error(ID.Loc, "operands of constexpr must have same type");
3286     if (!Val0->getType()->isIntOrIntVectorTy())
3287       return Error(ID.Loc,
3288                    "constexpr requires integer or integer vector operands");
3289     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3290     ID.Kind = ValID::t_Constant;
3291     return false;
3292   }
3293 
3294   case lltok::kw_getelementptr:
3295   case lltok::kw_shufflevector:
3296   case lltok::kw_insertelement:
3297   case lltok::kw_extractelement:
3298   case lltok::kw_select: {
3299     unsigned Opc = Lex.getUIntVal();
3300     SmallVector<Constant*, 16> Elts;
3301     bool InBounds = false;
3302     Type *Ty;
3303     Lex.Lex();
3304 
3305     if (Opc == Instruction::GetElementPtr)
3306       InBounds = EatIfPresent(lltok::kw_inbounds);
3307 
3308     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3309       return true;
3310 
3311     LocTy ExplicitTypeLoc = Lex.getLoc();
3312     if (Opc == Instruction::GetElementPtr) {
3313       if (ParseType(Ty) ||
3314           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3315         return true;
3316     }
3317 
3318     Optional<unsigned> InRangeOp;
3319     if (ParseGlobalValueVector(
3320             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3321         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3322       return true;
3323 
3324     if (Opc == Instruction::GetElementPtr) {
3325       if (Elts.size() == 0 ||
3326           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3327         return Error(ID.Loc, "base of getelementptr must be a pointer");
3328 
3329       Type *BaseType = Elts[0]->getType();
3330       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3331       if (Ty != BasePointerType->getElementType())
3332         return Error(
3333             ExplicitTypeLoc,
3334             "explicit pointee type doesn't match operand's pointee type");
3335 
3336       unsigned GEPWidth =
3337           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3338 
3339       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3340       for (Constant *Val : Indices) {
3341         Type *ValTy = Val->getType();
3342         if (!ValTy->isIntOrIntVectorTy())
3343           return Error(ID.Loc, "getelementptr index must be an integer");
3344         if (ValTy->isVectorTy()) {
3345           unsigned ValNumEl = ValTy->getVectorNumElements();
3346           if (GEPWidth && (ValNumEl != GEPWidth))
3347             return Error(
3348                 ID.Loc,
3349                 "getelementptr vector index has a wrong number of elements");
3350           // GEPWidth may have been unknown because the base is a scalar,
3351           // but it is known now.
3352           GEPWidth = ValNumEl;
3353         }
3354       }
3355 
3356       SmallPtrSet<Type*, 4> Visited;
3357       if (!Indices.empty() && !Ty->isSized(&Visited))
3358         return Error(ID.Loc, "base element of getelementptr must be sized");
3359 
3360       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3361         return Error(ID.Loc, "invalid getelementptr indices");
3362 
3363       if (InRangeOp) {
3364         if (*InRangeOp == 0)
3365           return Error(ID.Loc,
3366                        "inrange keyword may not appear on pointer operand");
3367         --*InRangeOp;
3368       }
3369 
3370       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3371                                                       InBounds, InRangeOp);
3372     } else if (Opc == Instruction::Select) {
3373       if (Elts.size() != 3)
3374         return Error(ID.Loc, "expected three operands to select");
3375       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3376                                                               Elts[2]))
3377         return Error(ID.Loc, Reason);
3378       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3379     } else if (Opc == Instruction::ShuffleVector) {
3380       if (Elts.size() != 3)
3381         return Error(ID.Loc, "expected three operands to shufflevector");
3382       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3383         return Error(ID.Loc, "invalid operands to shufflevector");
3384       ID.ConstantVal =
3385                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3386     } else if (Opc == Instruction::ExtractElement) {
3387       if (Elts.size() != 2)
3388         return Error(ID.Loc, "expected two operands to extractelement");
3389       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3390         return Error(ID.Loc, "invalid extractelement operands");
3391       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3392     } else {
3393       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3394       if (Elts.size() != 3)
3395       return Error(ID.Loc, "expected three operands to insertelement");
3396       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3397         return Error(ID.Loc, "invalid insertelement operands");
3398       ID.ConstantVal =
3399                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3400     }
3401 
3402     ID.Kind = ValID::t_Constant;
3403     return false;
3404   }
3405   }
3406 
3407   Lex.Lex();
3408   return false;
3409 }
3410 
3411 /// ParseGlobalValue - Parse a global value with the specified type.
3412 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3413   C = nullptr;
3414   ValID ID;
3415   Value *V = nullptr;
3416   bool Parsed = ParseValID(ID) ||
3417                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3418   if (V && !(C = dyn_cast<Constant>(V)))
3419     return Error(ID.Loc, "global values must be constants");
3420   return Parsed;
3421 }
3422 
3423 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3424   Type *Ty = nullptr;
3425   return ParseType(Ty) ||
3426          ParseGlobalValue(Ty, V);
3427 }
3428 
3429 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3430   C = nullptr;
3431 
3432   LocTy KwLoc = Lex.getLoc();
3433   if (!EatIfPresent(lltok::kw_comdat))
3434     return false;
3435 
3436   if (EatIfPresent(lltok::lparen)) {
3437     if (Lex.getKind() != lltok::ComdatVar)
3438       return TokError("expected comdat variable");
3439     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3440     Lex.Lex();
3441     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3442       return true;
3443   } else {
3444     if (GlobalName.empty())
3445       return TokError("comdat cannot be unnamed");
3446     C = getComdat(GlobalName, KwLoc);
3447   }
3448 
3449   return false;
3450 }
3451 
3452 /// ParseGlobalValueVector
3453 ///   ::= /*empty*/
3454 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3455 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3456                                       Optional<unsigned> *InRangeOp) {
3457   // Empty list.
3458   if (Lex.getKind() == lltok::rbrace ||
3459       Lex.getKind() == lltok::rsquare ||
3460       Lex.getKind() == lltok::greater ||
3461       Lex.getKind() == lltok::rparen)
3462     return false;
3463 
3464   do {
3465     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3466       *InRangeOp = Elts.size();
3467 
3468     Constant *C;
3469     if (ParseGlobalTypeAndValue(C)) return true;
3470     Elts.push_back(C);
3471   } while (EatIfPresent(lltok::comma));
3472 
3473   return false;
3474 }
3475 
3476 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3477   SmallVector<Metadata *, 16> Elts;
3478   if (ParseMDNodeVector(Elts))
3479     return true;
3480 
3481   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3482   return false;
3483 }
3484 
3485 /// MDNode:
3486 ///  ::= !{ ... }
3487 ///  ::= !7
3488 ///  ::= !DILocation(...)
3489 bool LLParser::ParseMDNode(MDNode *&N) {
3490   if (Lex.getKind() == lltok::MetadataVar)
3491     return ParseSpecializedMDNode(N);
3492 
3493   return ParseToken(lltok::exclaim, "expected '!' here") ||
3494          ParseMDNodeTail(N);
3495 }
3496 
3497 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3498   // !{ ... }
3499   if (Lex.getKind() == lltok::lbrace)
3500     return ParseMDTuple(N);
3501 
3502   // !42
3503   return ParseMDNodeID(N);
3504 }
3505 
3506 namespace {
3507 
3508 /// Structure to represent an optional metadata field.
3509 template <class FieldTy> struct MDFieldImpl {
3510   typedef MDFieldImpl ImplTy;
3511   FieldTy Val;
3512   bool Seen;
3513 
3514   void assign(FieldTy Val) {
3515     Seen = true;
3516     this->Val = std::move(Val);
3517   }
3518 
3519   explicit MDFieldImpl(FieldTy Default)
3520       : Val(std::move(Default)), Seen(false) {}
3521 };
3522 
3523 /// Structure to represent an optional metadata field that
3524 /// can be of either type (A or B) and encapsulates the
3525 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3526 /// to reimplement the specifics for representing each Field.
3527 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3528   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3529   FieldTypeA A;
3530   FieldTypeB B;
3531   bool Seen;
3532 
3533   enum {
3534     IsInvalid = 0,
3535     IsTypeA = 1,
3536     IsTypeB = 2
3537   } WhatIs;
3538 
3539   void assign(FieldTypeA A) {
3540     Seen = true;
3541     this->A = std::move(A);
3542     WhatIs = IsTypeA;
3543   }
3544 
3545   void assign(FieldTypeB B) {
3546     Seen = true;
3547     this->B = std::move(B);
3548     WhatIs = IsTypeB;
3549   }
3550 
3551   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3552       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3553         WhatIs(IsInvalid) {}
3554 };
3555 
3556 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3557   uint64_t Max;
3558 
3559   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3560       : ImplTy(Default), Max(Max) {}
3561 };
3562 
3563 struct LineField : public MDUnsignedField {
3564   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3565 };
3566 
3567 struct ColumnField : public MDUnsignedField {
3568   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3569 };
3570 
3571 struct DwarfTagField : public MDUnsignedField {
3572   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3573   DwarfTagField(dwarf::Tag DefaultTag)
3574       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3575 };
3576 
3577 struct DwarfMacinfoTypeField : public MDUnsignedField {
3578   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3579   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3580     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3581 };
3582 
3583 struct DwarfAttEncodingField : public MDUnsignedField {
3584   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3585 };
3586 
3587 struct DwarfVirtualityField : public MDUnsignedField {
3588   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3589 };
3590 
3591 struct DwarfLangField : public MDUnsignedField {
3592   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3593 };
3594 
3595 struct DwarfCCField : public MDUnsignedField {
3596   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3597 };
3598 
3599 struct EmissionKindField : public MDUnsignedField {
3600   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3601 };
3602 
3603 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3604   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3605 };
3606 
3607 struct MDSignedField : public MDFieldImpl<int64_t> {
3608   int64_t Min;
3609   int64_t Max;
3610 
3611   MDSignedField(int64_t Default = 0)
3612       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3613   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3614       : ImplTy(Default), Min(Min), Max(Max) {}
3615 };
3616 
3617 struct MDBoolField : public MDFieldImpl<bool> {
3618   MDBoolField(bool Default = false) : ImplTy(Default) {}
3619 };
3620 
3621 struct MDField : public MDFieldImpl<Metadata *> {
3622   bool AllowNull;
3623 
3624   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3625 };
3626 
3627 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3628   MDConstant() : ImplTy(nullptr) {}
3629 };
3630 
3631 struct MDStringField : public MDFieldImpl<MDString *> {
3632   bool AllowEmpty;
3633   MDStringField(bool AllowEmpty = true)
3634       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3635 };
3636 
3637 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3638   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3639 };
3640 
3641 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3642   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3643 };
3644 
3645 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3646   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3647       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3648 
3649   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3650                     bool AllowNull = true)
3651       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3652 
3653   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3654   bool isMDField() const { return WhatIs == IsTypeB; }
3655   int64_t getMDSignedValue() const {
3656     assert(isMDSignedField() && "Wrong field type");
3657     return A.Val;
3658   }
3659   Metadata *getMDFieldValue() const {
3660     assert(isMDField() && "Wrong field type");
3661     return B.Val;
3662   }
3663 };
3664 
3665 struct MDSignedOrUnsignedField
3666     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3667   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3668 
3669   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3670   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3671   int64_t getMDSignedValue() const {
3672     assert(isMDSignedField() && "Wrong field type");
3673     return A.Val;
3674   }
3675   uint64_t getMDUnsignedValue() const {
3676     assert(isMDUnsignedField() && "Wrong field type");
3677     return B.Val;
3678   }
3679 };
3680 
3681 } // end anonymous namespace
3682 
3683 namespace llvm {
3684 
3685 template <>
3686 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3687                             MDUnsignedField &Result) {
3688   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3689     return TokError("expected unsigned integer");
3690 
3691   auto &U = Lex.getAPSIntVal();
3692   if (U.ugt(Result.Max))
3693     return TokError("value for '" + Name + "' too large, limit is " +
3694                     Twine(Result.Max));
3695   Result.assign(U.getZExtValue());
3696   assert(Result.Val <= Result.Max && "Expected value in range");
3697   Lex.Lex();
3698   return false;
3699 }
3700 
3701 template <>
3702 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3703   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3704 }
3705 template <>
3706 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3707   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3708 }
3709 
3710 template <>
3711 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3712   if (Lex.getKind() == lltok::APSInt)
3713     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3714 
3715   if (Lex.getKind() != lltok::DwarfTag)
3716     return TokError("expected DWARF tag");
3717 
3718   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3719   if (Tag == dwarf::DW_TAG_invalid)
3720     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3721   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3722 
3723   Result.assign(Tag);
3724   Lex.Lex();
3725   return false;
3726 }
3727 
3728 template <>
3729 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3730                             DwarfMacinfoTypeField &Result) {
3731   if (Lex.getKind() == lltok::APSInt)
3732     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3733 
3734   if (Lex.getKind() != lltok::DwarfMacinfo)
3735     return TokError("expected DWARF macinfo type");
3736 
3737   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3738   if (Macinfo == dwarf::DW_MACINFO_invalid)
3739     return TokError(
3740         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3741   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3742 
3743   Result.assign(Macinfo);
3744   Lex.Lex();
3745   return false;
3746 }
3747 
3748 template <>
3749 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3750                             DwarfVirtualityField &Result) {
3751   if (Lex.getKind() == lltok::APSInt)
3752     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3753 
3754   if (Lex.getKind() != lltok::DwarfVirtuality)
3755     return TokError("expected DWARF virtuality code");
3756 
3757   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3758   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3759     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3760                     Lex.getStrVal() + "'");
3761   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3762   Result.assign(Virtuality);
3763   Lex.Lex();
3764   return false;
3765 }
3766 
3767 template <>
3768 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3769   if (Lex.getKind() == lltok::APSInt)
3770     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3771 
3772   if (Lex.getKind() != lltok::DwarfLang)
3773     return TokError("expected DWARF language");
3774 
3775   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3776   if (!Lang)
3777     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3778                     "'");
3779   assert(Lang <= Result.Max && "Expected valid DWARF language");
3780   Result.assign(Lang);
3781   Lex.Lex();
3782   return false;
3783 }
3784 
3785 template <>
3786 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3787   if (Lex.getKind() == lltok::APSInt)
3788     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3789 
3790   if (Lex.getKind() != lltok::DwarfCC)
3791     return TokError("expected DWARF calling convention");
3792 
3793   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3794   if (!CC)
3795     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3796                     "'");
3797   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3798   Result.assign(CC);
3799   Lex.Lex();
3800   return false;
3801 }
3802 
3803 template <>
3804 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3805   if (Lex.getKind() == lltok::APSInt)
3806     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3807 
3808   if (Lex.getKind() != lltok::EmissionKind)
3809     return TokError("expected emission kind");
3810 
3811   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3812   if (!Kind)
3813     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3814                     "'");
3815   assert(*Kind <= Result.Max && "Expected valid emission kind");
3816   Result.assign(*Kind);
3817   Lex.Lex();
3818   return false;
3819 }
3820 
3821 template <>
3822 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3823                             DwarfAttEncodingField &Result) {
3824   if (Lex.getKind() == lltok::APSInt)
3825     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3826 
3827   if (Lex.getKind() != lltok::DwarfAttEncoding)
3828     return TokError("expected DWARF type attribute encoding");
3829 
3830   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3831   if (!Encoding)
3832     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3833                     Lex.getStrVal() + "'");
3834   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3835   Result.assign(Encoding);
3836   Lex.Lex();
3837   return false;
3838 }
3839 
3840 /// DIFlagField
3841 ///  ::= uint32
3842 ///  ::= DIFlagVector
3843 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3844 template <>
3845 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3846 
3847   // Parser for a single flag.
3848   auto parseFlag = [&](DINode::DIFlags &Val) {
3849     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
3850       uint32_t TempVal = static_cast<uint32_t>(Val);
3851       bool Res = ParseUInt32(TempVal);
3852       Val = static_cast<DINode::DIFlags>(TempVal);
3853       return Res;
3854     }
3855 
3856     if (Lex.getKind() != lltok::DIFlag)
3857       return TokError("expected debug info flag");
3858 
3859     Val = DINode::getFlag(Lex.getStrVal());
3860     if (!Val)
3861       return TokError(Twine("invalid debug info flag flag '") +
3862                       Lex.getStrVal() + "'");
3863     Lex.Lex();
3864     return false;
3865   };
3866 
3867   // Parse the flags and combine them together.
3868   DINode::DIFlags Combined = DINode::FlagZero;
3869   do {
3870     DINode::DIFlags Val;
3871     if (parseFlag(Val))
3872       return true;
3873     Combined |= Val;
3874   } while (EatIfPresent(lltok::bar));
3875 
3876   Result.assign(Combined);
3877   return false;
3878 }
3879 
3880 template <>
3881 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3882                             MDSignedField &Result) {
3883   if (Lex.getKind() != lltok::APSInt)
3884     return TokError("expected signed integer");
3885 
3886   auto &S = Lex.getAPSIntVal();
3887   if (S < Result.Min)
3888     return TokError("value for '" + Name + "' too small, limit is " +
3889                     Twine(Result.Min));
3890   if (S > Result.Max)
3891     return TokError("value for '" + Name + "' too large, limit is " +
3892                     Twine(Result.Max));
3893   Result.assign(S.getExtValue());
3894   assert(Result.Val >= Result.Min && "Expected value in range");
3895   assert(Result.Val <= Result.Max && "Expected value in range");
3896   Lex.Lex();
3897   return false;
3898 }
3899 
3900 template <>
3901 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3902   switch (Lex.getKind()) {
3903   default:
3904     return TokError("expected 'true' or 'false'");
3905   case lltok::kw_true:
3906     Result.assign(true);
3907     break;
3908   case lltok::kw_false:
3909     Result.assign(false);
3910     break;
3911   }
3912   Lex.Lex();
3913   return false;
3914 }
3915 
3916 template <>
3917 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3918   if (Lex.getKind() == lltok::kw_null) {
3919     if (!Result.AllowNull)
3920       return TokError("'" + Name + "' cannot be null");
3921     Lex.Lex();
3922     Result.assign(nullptr);
3923     return false;
3924   }
3925 
3926   Metadata *MD;
3927   if (ParseMetadata(MD, nullptr))
3928     return true;
3929 
3930   Result.assign(MD);
3931   return false;
3932 }
3933 
3934 template <>
3935 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3936                             MDSignedOrMDField &Result) {
3937   // Try to parse a signed int.
3938   if (Lex.getKind() == lltok::APSInt) {
3939     MDSignedField Res = Result.A;
3940     if (!ParseMDField(Loc, Name, Res)) {
3941       Result.assign(Res);
3942       return false;
3943     }
3944     return true;
3945   }
3946 
3947   // Otherwise, try to parse as an MDField.
3948   MDField Res = Result.B;
3949   if (!ParseMDField(Loc, Name, Res)) {
3950     Result.assign(Res);
3951     return false;
3952   }
3953 
3954   return true;
3955 }
3956 
3957 template <>
3958 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3959                             MDSignedOrUnsignedField &Result) {
3960   if (Lex.getKind() != lltok::APSInt)
3961     return false;
3962 
3963   if (Lex.getAPSIntVal().isSigned()) {
3964     MDSignedField Res = Result.A;
3965     if (ParseMDField(Loc, Name, Res))
3966       return true;
3967     Result.assign(Res);
3968     return false;
3969   }
3970 
3971   MDUnsignedField Res = Result.B;
3972   if (ParseMDField(Loc, Name, Res))
3973     return true;
3974   Result.assign(Res);
3975   return false;
3976 }
3977 
3978 template <>
3979 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3980   LocTy ValueLoc = Lex.getLoc();
3981   std::string S;
3982   if (ParseStringConstant(S))
3983     return true;
3984 
3985   if (!Result.AllowEmpty && S.empty())
3986     return Error(ValueLoc, "'" + Name + "' cannot be empty");
3987 
3988   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3989   return false;
3990 }
3991 
3992 template <>
3993 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3994   SmallVector<Metadata *, 4> MDs;
3995   if (ParseMDNodeVector(MDs))
3996     return true;
3997 
3998   Result.assign(std::move(MDs));
3999   return false;
4000 }
4001 
4002 template <>
4003 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4004                             ChecksumKindField &Result) {
4005   Optional<DIFile::ChecksumKind> CSKind =
4006       DIFile::getChecksumKind(Lex.getStrVal());
4007 
4008   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4009     return TokError(
4010         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4011 
4012   Result.assign(*CSKind);
4013   Lex.Lex();
4014   return false;
4015 }
4016 
4017 } // end namespace llvm
4018 
4019 template <class ParserTy>
4020 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4021   do {
4022     if (Lex.getKind() != lltok::LabelStr)
4023       return TokError("expected field label here");
4024 
4025     if (parseField())
4026       return true;
4027   } while (EatIfPresent(lltok::comma));
4028 
4029   return false;
4030 }
4031 
4032 template <class ParserTy>
4033 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4034   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4035   Lex.Lex();
4036 
4037   if (ParseToken(lltok::lparen, "expected '(' here"))
4038     return true;
4039   if (Lex.getKind() != lltok::rparen)
4040     if (ParseMDFieldsImplBody(parseField))
4041       return true;
4042 
4043   ClosingLoc = Lex.getLoc();
4044   return ParseToken(lltok::rparen, "expected ')' here");
4045 }
4046 
4047 template <class FieldTy>
4048 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4049   if (Result.Seen)
4050     return TokError("field '" + Name + "' cannot be specified more than once");
4051 
4052   LocTy Loc = Lex.getLoc();
4053   Lex.Lex();
4054   return ParseMDField(Loc, Name, Result);
4055 }
4056 
4057 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4058   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4059 
4060 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4061   if (Lex.getStrVal() == #CLASS)                                               \
4062     return Parse##CLASS(N, IsDistinct);
4063 #include "llvm/IR/Metadata.def"
4064 
4065   return TokError("expected metadata type");
4066 }
4067 
4068 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4069 #define NOP_FIELD(NAME, TYPE, INIT)
4070 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4071   if (!NAME.Seen)                                                              \
4072     return Error(ClosingLoc, "missing required field '" #NAME "'");
4073 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4074   if (Lex.getStrVal() == #NAME)                                                \
4075     return ParseMDField(#NAME, NAME);
4076 #define PARSE_MD_FIELDS()                                                      \
4077   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4078   do {                                                                         \
4079     LocTy ClosingLoc;                                                          \
4080     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4081       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4082       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4083     }, ClosingLoc))                                                            \
4084       return true;                                                             \
4085     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4086   } while (false)
4087 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4088   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4089 
4090 /// ParseDILocationFields:
4091 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
4092 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4093 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4094   OPTIONAL(line, LineField, );                                                 \
4095   OPTIONAL(column, ColumnField, );                                             \
4096   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4097   OPTIONAL(inlinedAt, MDField, );
4098   PARSE_MD_FIELDS();
4099 #undef VISIT_MD_FIELDS
4100 
4101   Result = GET_OR_DISTINCT(
4102       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
4103   return false;
4104 }
4105 
4106 /// ParseGenericDINode:
4107 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4108 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4109 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4110   REQUIRED(tag, DwarfTagField, );                                              \
4111   OPTIONAL(header, MDStringField, );                                           \
4112   OPTIONAL(operands, MDFieldList, );
4113   PARSE_MD_FIELDS();
4114 #undef VISIT_MD_FIELDS
4115 
4116   Result = GET_OR_DISTINCT(GenericDINode,
4117                            (Context, tag.Val, header.Val, operands.Val));
4118   return false;
4119 }
4120 
4121 /// ParseDISubrange:
4122 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4123 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4124 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4125 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4126   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4127   OPTIONAL(lowerBound, MDSignedField, );
4128   PARSE_MD_FIELDS();
4129 #undef VISIT_MD_FIELDS
4130 
4131   if (count.isMDSignedField())
4132     Result = GET_OR_DISTINCT(
4133         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4134   else if (count.isMDField())
4135     Result = GET_OR_DISTINCT(
4136         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4137   else
4138     return true;
4139 
4140   return false;
4141 }
4142 
4143 /// ParseDIEnumerator:
4144 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4145 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4146 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4147   REQUIRED(name, MDStringField, );                                             \
4148   REQUIRED(value, MDSignedOrUnsignedField, );                                  \
4149   OPTIONAL(isUnsigned, MDBoolField, (false));
4150   PARSE_MD_FIELDS();
4151 #undef VISIT_MD_FIELDS
4152 
4153   if (isUnsigned.Val && value.isMDSignedField())
4154     return TokError("unsigned enumerator with negative value");
4155 
4156   int64_t Value = value.isMDSignedField()
4157                       ? value.getMDSignedValue()
4158                       : static_cast<int64_t>(value.getMDUnsignedValue());
4159   Result =
4160       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4161 
4162   return false;
4163 }
4164 
4165 /// ParseDIBasicType:
4166 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
4167 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4168 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4169   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4170   OPTIONAL(name, MDStringField, );                                             \
4171   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4172   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4173   OPTIONAL(encoding, DwarfAttEncodingField, );
4174   PARSE_MD_FIELDS();
4175 #undef VISIT_MD_FIELDS
4176 
4177   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4178                                          align.Val, encoding.Val));
4179   return false;
4180 }
4181 
4182 /// ParseDIDerivedType:
4183 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4184 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4185 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4186 ///                      dwarfAddressSpace: 3)
4187 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4188 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4189   REQUIRED(tag, DwarfTagField, );                                              \
4190   OPTIONAL(name, MDStringField, );                                             \
4191   OPTIONAL(file, MDField, );                                                   \
4192   OPTIONAL(line, LineField, );                                                 \
4193   OPTIONAL(scope, MDField, );                                                  \
4194   REQUIRED(baseType, MDField, );                                               \
4195   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4196   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4197   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4198   OPTIONAL(flags, DIFlagField, );                                              \
4199   OPTIONAL(extraData, MDField, );                                              \
4200   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4201   PARSE_MD_FIELDS();
4202 #undef VISIT_MD_FIELDS
4203 
4204   Optional<unsigned> DWARFAddressSpace;
4205   if (dwarfAddressSpace.Val != UINT32_MAX)
4206     DWARFAddressSpace = dwarfAddressSpace.Val;
4207 
4208   Result = GET_OR_DISTINCT(DIDerivedType,
4209                            (Context, tag.Val, name.Val, file.Val, line.Val,
4210                             scope.Val, baseType.Val, size.Val, align.Val,
4211                             offset.Val, DWARFAddressSpace, flags.Val,
4212                             extraData.Val));
4213   return false;
4214 }
4215 
4216 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4217 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4218   REQUIRED(tag, DwarfTagField, );                                              \
4219   OPTIONAL(name, MDStringField, );                                             \
4220   OPTIONAL(file, MDField, );                                                   \
4221   OPTIONAL(line, LineField, );                                                 \
4222   OPTIONAL(scope, MDField, );                                                  \
4223   OPTIONAL(baseType, MDField, );                                               \
4224   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4225   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4226   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4227   OPTIONAL(flags, DIFlagField, );                                              \
4228   OPTIONAL(elements, MDField, );                                               \
4229   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4230   OPTIONAL(vtableHolder, MDField, );                                           \
4231   OPTIONAL(templateParams, MDField, );                                         \
4232   OPTIONAL(identifier, MDStringField, );                                       \
4233   OPTIONAL(discriminator, MDField, );
4234   PARSE_MD_FIELDS();
4235 #undef VISIT_MD_FIELDS
4236 
4237   // If this has an identifier try to build an ODR type.
4238   if (identifier.Val)
4239     if (auto *CT = DICompositeType::buildODRType(
4240             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4241             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4242             elements.Val, runtimeLang.Val, vtableHolder.Val,
4243             templateParams.Val, discriminator.Val)) {
4244       Result = CT;
4245       return false;
4246     }
4247 
4248   // Create a new node, and save it in the context if it belongs in the type
4249   // map.
4250   Result = GET_OR_DISTINCT(
4251       DICompositeType,
4252       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4253        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4254        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4255        discriminator.Val));
4256   return false;
4257 }
4258 
4259 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4260 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4261   OPTIONAL(flags, DIFlagField, );                                              \
4262   OPTIONAL(cc, DwarfCCField, );                                                \
4263   REQUIRED(types, MDField, );
4264   PARSE_MD_FIELDS();
4265 #undef VISIT_MD_FIELDS
4266 
4267   Result = GET_OR_DISTINCT(DISubroutineType,
4268                            (Context, flags.Val, cc.Val, types.Val));
4269   return false;
4270 }
4271 
4272 /// ParseDIFileType:
4273 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4274 ///                   checksumkind: CSK_MD5,
4275 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4276 ///                   source: "source file contents")
4277 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4278   // The default constructed value for checksumkind is required, but will never
4279   // be used, as the parser checks if the field was actually Seen before using
4280   // the Val.
4281 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4282   REQUIRED(filename, MDStringField, );                                         \
4283   REQUIRED(directory, MDStringField, );                                        \
4284   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4285   OPTIONAL(checksum, MDStringField, );                                         \
4286   OPTIONAL(source, MDStringField, );
4287   PARSE_MD_FIELDS();
4288 #undef VISIT_MD_FIELDS
4289 
4290   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4291   if (checksumkind.Seen && checksum.Seen)
4292     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4293   else if (checksumkind.Seen || checksum.Seen)
4294     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4295 
4296   Optional<MDString *> OptSource;
4297   if (source.Seen)
4298     OptSource = source.Val;
4299   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4300                                     OptChecksum, OptSource));
4301   return false;
4302 }
4303 
4304 /// ParseDICompileUnit:
4305 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4306 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4307 ///                      splitDebugFilename: "abc.debug",
4308 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4309 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4310 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4311   if (!IsDistinct)
4312     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4313 
4314 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4315   REQUIRED(language, DwarfLangField, );                                        \
4316   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4317   OPTIONAL(producer, MDStringField, );                                         \
4318   OPTIONAL(isOptimized, MDBoolField, );                                        \
4319   OPTIONAL(flags, MDStringField, );                                            \
4320   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4321   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4322   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4323   OPTIONAL(enums, MDField, );                                                  \
4324   OPTIONAL(retainedTypes, MDField, );                                          \
4325   OPTIONAL(globals, MDField, );                                                \
4326   OPTIONAL(imports, MDField, );                                                \
4327   OPTIONAL(macros, MDField, );                                                 \
4328   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4329   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4330   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4331   OPTIONAL(gnuPubnames, MDBoolField, = false);
4332   PARSE_MD_FIELDS();
4333 #undef VISIT_MD_FIELDS
4334 
4335   Result = DICompileUnit::getDistinct(
4336       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4337       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4338       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4339       splitDebugInlining.Val, debugInfoForProfiling.Val, gnuPubnames.Val);
4340   return false;
4341 }
4342 
4343 /// ParseDISubprogram:
4344 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4345 ///                     file: !1, line: 7, type: !2, isLocal: false,
4346 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4347 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4348 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4349 ///                     isOptimized: false, templateParams: !4, declaration: !5,
4350 ///                     variables: !6, thrownTypes: !7)
4351 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4352   auto Loc = Lex.getLoc();
4353 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4354   OPTIONAL(scope, MDField, );                                                  \
4355   OPTIONAL(name, MDStringField, );                                             \
4356   OPTIONAL(linkageName, MDStringField, );                                      \
4357   OPTIONAL(file, MDField, );                                                   \
4358   OPTIONAL(line, LineField, );                                                 \
4359   OPTIONAL(type, MDField, );                                                   \
4360   OPTIONAL(isLocal, MDBoolField, );                                            \
4361   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4362   OPTIONAL(scopeLine, LineField, );                                            \
4363   OPTIONAL(containingType, MDField, );                                         \
4364   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4365   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4366   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4367   OPTIONAL(flags, DIFlagField, );                                              \
4368   OPTIONAL(isOptimized, MDBoolField, );                                        \
4369   OPTIONAL(unit, MDField, );                                                   \
4370   OPTIONAL(templateParams, MDField, );                                         \
4371   OPTIONAL(declaration, MDField, );                                            \
4372   OPTIONAL(variables, MDField, );                                              \
4373   OPTIONAL(thrownTypes, MDField, );
4374   PARSE_MD_FIELDS();
4375 #undef VISIT_MD_FIELDS
4376 
4377   if (isDefinition.Val && !IsDistinct)
4378     return Lex.Error(
4379         Loc,
4380         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
4381 
4382   Result = GET_OR_DISTINCT(
4383       DISubprogram,
4384       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4385        type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val,
4386        containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val,
4387        flags.Val, isOptimized.Val, unit.Val, templateParams.Val,
4388        declaration.Val, variables.Val, thrownTypes.Val));
4389   return false;
4390 }
4391 
4392 /// ParseDILexicalBlock:
4393 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4394 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4395 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4396   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4397   OPTIONAL(file, MDField, );                                                   \
4398   OPTIONAL(line, LineField, );                                                 \
4399   OPTIONAL(column, ColumnField, );
4400   PARSE_MD_FIELDS();
4401 #undef VISIT_MD_FIELDS
4402 
4403   Result = GET_OR_DISTINCT(
4404       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4405   return false;
4406 }
4407 
4408 /// ParseDILexicalBlockFile:
4409 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4410 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4411 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4412   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4413   OPTIONAL(file, MDField, );                                                   \
4414   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4415   PARSE_MD_FIELDS();
4416 #undef VISIT_MD_FIELDS
4417 
4418   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4419                            (Context, scope.Val, file.Val, discriminator.Val));
4420   return false;
4421 }
4422 
4423 /// ParseDINamespace:
4424 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4425 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4426 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4427   REQUIRED(scope, MDField, );                                                  \
4428   OPTIONAL(name, MDStringField, );                                             \
4429   OPTIONAL(exportSymbols, MDBoolField, );
4430   PARSE_MD_FIELDS();
4431 #undef VISIT_MD_FIELDS
4432 
4433   Result = GET_OR_DISTINCT(DINamespace,
4434                            (Context, scope.Val, name.Val, exportSymbols.Val));
4435   return false;
4436 }
4437 
4438 /// ParseDIMacro:
4439 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4440 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4441 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4442   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4443   OPTIONAL(line, LineField, );                                                 \
4444   REQUIRED(name, MDStringField, );                                             \
4445   OPTIONAL(value, MDStringField, );
4446   PARSE_MD_FIELDS();
4447 #undef VISIT_MD_FIELDS
4448 
4449   Result = GET_OR_DISTINCT(DIMacro,
4450                            (Context, type.Val, line.Val, name.Val, value.Val));
4451   return false;
4452 }
4453 
4454 /// ParseDIMacroFile:
4455 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4456 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4457 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4458   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4459   OPTIONAL(line, LineField, );                                                 \
4460   REQUIRED(file, MDField, );                                                   \
4461   OPTIONAL(nodes, MDField, );
4462   PARSE_MD_FIELDS();
4463 #undef VISIT_MD_FIELDS
4464 
4465   Result = GET_OR_DISTINCT(DIMacroFile,
4466                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4467   return false;
4468 }
4469 
4470 /// ParseDIModule:
4471 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4472 ///                 includePath: "/usr/include", isysroot: "/")
4473 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4474 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4475   REQUIRED(scope, MDField, );                                                  \
4476   REQUIRED(name, MDStringField, );                                             \
4477   OPTIONAL(configMacros, MDStringField, );                                     \
4478   OPTIONAL(includePath, MDStringField, );                                      \
4479   OPTIONAL(isysroot, MDStringField, );
4480   PARSE_MD_FIELDS();
4481 #undef VISIT_MD_FIELDS
4482 
4483   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4484                            configMacros.Val, includePath.Val, isysroot.Val));
4485   return false;
4486 }
4487 
4488 /// ParseDITemplateTypeParameter:
4489 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4490 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4491 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4492   OPTIONAL(name, MDStringField, );                                             \
4493   REQUIRED(type, MDField, );
4494   PARSE_MD_FIELDS();
4495 #undef VISIT_MD_FIELDS
4496 
4497   Result =
4498       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4499   return false;
4500 }
4501 
4502 /// ParseDITemplateValueParameter:
4503 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4504 ///                                 name: "V", type: !1, value: i32 7)
4505 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4506 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4507   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4508   OPTIONAL(name, MDStringField, );                                             \
4509   OPTIONAL(type, MDField, );                                                   \
4510   REQUIRED(value, MDField, );
4511   PARSE_MD_FIELDS();
4512 #undef VISIT_MD_FIELDS
4513 
4514   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4515                            (Context, tag.Val, name.Val, type.Val, value.Val));
4516   return false;
4517 }
4518 
4519 /// ParseDIGlobalVariable:
4520 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4521 ///                         file: !1, line: 7, type: !2, isLocal: false,
4522 ///                         isDefinition: true, declaration: !3, align: 8)
4523 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4524 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4525   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4526   OPTIONAL(scope, MDField, );                                                  \
4527   OPTIONAL(linkageName, MDStringField, );                                      \
4528   OPTIONAL(file, MDField, );                                                   \
4529   OPTIONAL(line, LineField, );                                                 \
4530   OPTIONAL(type, MDField, );                                                   \
4531   OPTIONAL(isLocal, MDBoolField, );                                            \
4532   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4533   OPTIONAL(declaration, MDField, );                                            \
4534   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4535   PARSE_MD_FIELDS();
4536 #undef VISIT_MD_FIELDS
4537 
4538   Result = GET_OR_DISTINCT(DIGlobalVariable,
4539                            (Context, scope.Val, name.Val, linkageName.Val,
4540                             file.Val, line.Val, type.Val, isLocal.Val,
4541                             isDefinition.Val, declaration.Val, align.Val));
4542   return false;
4543 }
4544 
4545 /// ParseDILocalVariable:
4546 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4547 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4548 ///                        align: 8)
4549 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4550 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4551 ///                        align: 8)
4552 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4553 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4554   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4555   OPTIONAL(name, MDStringField, );                                             \
4556   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4557   OPTIONAL(file, MDField, );                                                   \
4558   OPTIONAL(line, LineField, );                                                 \
4559   OPTIONAL(type, MDField, );                                                   \
4560   OPTIONAL(flags, DIFlagField, );                                              \
4561   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4562   PARSE_MD_FIELDS();
4563 #undef VISIT_MD_FIELDS
4564 
4565   Result = GET_OR_DISTINCT(DILocalVariable,
4566                            (Context, scope.Val, name.Val, file.Val, line.Val,
4567                             type.Val, arg.Val, flags.Val, align.Val));
4568   return false;
4569 }
4570 
4571 /// ParseDIExpression:
4572 ///   ::= !DIExpression(0, 7, -1)
4573 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4574   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4575   Lex.Lex();
4576 
4577   if (ParseToken(lltok::lparen, "expected '(' here"))
4578     return true;
4579 
4580   SmallVector<uint64_t, 8> Elements;
4581   if (Lex.getKind() != lltok::rparen)
4582     do {
4583       if (Lex.getKind() == lltok::DwarfOp) {
4584         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4585           Lex.Lex();
4586           Elements.push_back(Op);
4587           continue;
4588         }
4589         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4590       }
4591 
4592       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4593         return TokError("expected unsigned integer");
4594 
4595       auto &U = Lex.getAPSIntVal();
4596       if (U.ugt(UINT64_MAX))
4597         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4598       Elements.push_back(U.getZExtValue());
4599       Lex.Lex();
4600     } while (EatIfPresent(lltok::comma));
4601 
4602   if (ParseToken(lltok::rparen, "expected ')' here"))
4603     return true;
4604 
4605   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4606   return false;
4607 }
4608 
4609 /// ParseDIGlobalVariableExpression:
4610 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4611 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4612                                                bool IsDistinct) {
4613 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4614   REQUIRED(var, MDField, );                                                    \
4615   REQUIRED(expr, MDField, );
4616   PARSE_MD_FIELDS();
4617 #undef VISIT_MD_FIELDS
4618 
4619   Result =
4620       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4621   return false;
4622 }
4623 
4624 /// ParseDIObjCProperty:
4625 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4626 ///                       getter: "getFoo", attributes: 7, type: !2)
4627 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4628 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4629   OPTIONAL(name, MDStringField, );                                             \
4630   OPTIONAL(file, MDField, );                                                   \
4631   OPTIONAL(line, LineField, );                                                 \
4632   OPTIONAL(setter, MDStringField, );                                           \
4633   OPTIONAL(getter, MDStringField, );                                           \
4634   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4635   OPTIONAL(type, MDField, );
4636   PARSE_MD_FIELDS();
4637 #undef VISIT_MD_FIELDS
4638 
4639   Result = GET_OR_DISTINCT(DIObjCProperty,
4640                            (Context, name.Val, file.Val, line.Val, setter.Val,
4641                             getter.Val, attributes.Val, type.Val));
4642   return false;
4643 }
4644 
4645 /// ParseDIImportedEntity:
4646 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4647 ///                         line: 7, name: "foo")
4648 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4649 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4650   REQUIRED(tag, DwarfTagField, );                                              \
4651   REQUIRED(scope, MDField, );                                                  \
4652   OPTIONAL(entity, MDField, );                                                 \
4653   OPTIONAL(file, MDField, );                                                   \
4654   OPTIONAL(line, LineField, );                                                 \
4655   OPTIONAL(name, MDStringField, );
4656   PARSE_MD_FIELDS();
4657 #undef VISIT_MD_FIELDS
4658 
4659   Result = GET_OR_DISTINCT(
4660       DIImportedEntity,
4661       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4662   return false;
4663 }
4664 
4665 #undef PARSE_MD_FIELD
4666 #undef NOP_FIELD
4667 #undef REQUIRE_FIELD
4668 #undef DECLARE_FIELD
4669 
4670 /// ParseMetadataAsValue
4671 ///  ::= metadata i32 %local
4672 ///  ::= metadata i32 @global
4673 ///  ::= metadata i32 7
4674 ///  ::= metadata !0
4675 ///  ::= metadata !{...}
4676 ///  ::= metadata !"string"
4677 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4678   // Note: the type 'metadata' has already been parsed.
4679   Metadata *MD;
4680   if (ParseMetadata(MD, &PFS))
4681     return true;
4682 
4683   V = MetadataAsValue::get(Context, MD);
4684   return false;
4685 }
4686 
4687 /// ParseValueAsMetadata
4688 ///  ::= i32 %local
4689 ///  ::= i32 @global
4690 ///  ::= i32 7
4691 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4692                                     PerFunctionState *PFS) {
4693   Type *Ty;
4694   LocTy Loc;
4695   if (ParseType(Ty, TypeMsg, Loc))
4696     return true;
4697   if (Ty->isMetadataTy())
4698     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4699 
4700   Value *V;
4701   if (ParseValue(Ty, V, PFS))
4702     return true;
4703 
4704   MD = ValueAsMetadata::get(V);
4705   return false;
4706 }
4707 
4708 /// ParseMetadata
4709 ///  ::= i32 %local
4710 ///  ::= i32 @global
4711 ///  ::= i32 7
4712 ///  ::= !42
4713 ///  ::= !{...}
4714 ///  ::= !"string"
4715 ///  ::= !DILocation(...)
4716 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4717   if (Lex.getKind() == lltok::MetadataVar) {
4718     MDNode *N;
4719     if (ParseSpecializedMDNode(N))
4720       return true;
4721     MD = N;
4722     return false;
4723   }
4724 
4725   // ValueAsMetadata:
4726   // <type> <value>
4727   if (Lex.getKind() != lltok::exclaim)
4728     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4729 
4730   // '!'.
4731   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4732   Lex.Lex();
4733 
4734   // MDString:
4735   //   ::= '!' STRINGCONSTANT
4736   if (Lex.getKind() == lltok::StringConstant) {
4737     MDString *S;
4738     if (ParseMDString(S))
4739       return true;
4740     MD = S;
4741     return false;
4742   }
4743 
4744   // MDNode:
4745   // !{ ... }
4746   // !7
4747   MDNode *N;
4748   if (ParseMDNodeTail(N))
4749     return true;
4750   MD = N;
4751   return false;
4752 }
4753 
4754 //===----------------------------------------------------------------------===//
4755 // Function Parsing.
4756 //===----------------------------------------------------------------------===//
4757 
4758 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4759                                    PerFunctionState *PFS, bool IsCall) {
4760   if (Ty->isFunctionTy())
4761     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4762 
4763   switch (ID.Kind) {
4764   case ValID::t_LocalID:
4765     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4766     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
4767     return V == nullptr;
4768   case ValID::t_LocalName:
4769     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4770     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
4771     return V == nullptr;
4772   case ValID::t_InlineAsm: {
4773     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4774       return Error(ID.Loc, "invalid type for inline asm constraint string");
4775     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4776                        (ID.UIntVal >> 1) & 1,
4777                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4778     return false;
4779   }
4780   case ValID::t_GlobalName:
4781     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4782     return V == nullptr;
4783   case ValID::t_GlobalID:
4784     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4785     return V == nullptr;
4786   case ValID::t_APSInt:
4787     if (!Ty->isIntegerTy())
4788       return Error(ID.Loc, "integer constant must have integer type");
4789     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4790     V = ConstantInt::get(Context, ID.APSIntVal);
4791     return false;
4792   case ValID::t_APFloat:
4793     if (!Ty->isFloatingPointTy() ||
4794         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4795       return Error(ID.Loc, "floating point constant invalid for type");
4796 
4797     // The lexer has no type info, so builds all half, float, and double FP
4798     // constants as double.  Fix this here.  Long double does not need this.
4799     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
4800       bool Ignored;
4801       if (Ty->isHalfTy())
4802         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
4803                               &Ignored);
4804       else if (Ty->isFloatTy())
4805         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
4806                               &Ignored);
4807     }
4808     V = ConstantFP::get(Context, ID.APFloatVal);
4809 
4810     if (V->getType() != Ty)
4811       return Error(ID.Loc, "floating point constant does not have type '" +
4812                    getTypeString(Ty) + "'");
4813 
4814     return false;
4815   case ValID::t_Null:
4816     if (!Ty->isPointerTy())
4817       return Error(ID.Loc, "null must be a pointer type");
4818     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4819     return false;
4820   case ValID::t_Undef:
4821     // FIXME: LabelTy should not be a first-class type.
4822     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4823       return Error(ID.Loc, "invalid type for undef constant");
4824     V = UndefValue::get(Ty);
4825     return false;
4826   case ValID::t_EmptyArray:
4827     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4828       return Error(ID.Loc, "invalid empty array initializer");
4829     V = UndefValue::get(Ty);
4830     return false;
4831   case ValID::t_Zero:
4832     // FIXME: LabelTy should not be a first-class type.
4833     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4834       return Error(ID.Loc, "invalid type for null constant");
4835     V = Constant::getNullValue(Ty);
4836     return false;
4837   case ValID::t_None:
4838     if (!Ty->isTokenTy())
4839       return Error(ID.Loc, "invalid type for none constant");
4840     V = Constant::getNullValue(Ty);
4841     return false;
4842   case ValID::t_Constant:
4843     if (ID.ConstantVal->getType() != Ty)
4844       return Error(ID.Loc, "constant expression type mismatch");
4845 
4846     V = ID.ConstantVal;
4847     return false;
4848   case ValID::t_ConstantStruct:
4849   case ValID::t_PackedConstantStruct:
4850     if (StructType *ST = dyn_cast<StructType>(Ty)) {
4851       if (ST->getNumElements() != ID.UIntVal)
4852         return Error(ID.Loc,
4853                      "initializer with struct type has wrong # elements");
4854       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4855         return Error(ID.Loc, "packed'ness of initializer and type don't match");
4856 
4857       // Verify that the elements are compatible with the structtype.
4858       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4859         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4860           return Error(ID.Loc, "element " + Twine(i) +
4861                     " of struct initializer doesn't match struct element type");
4862 
4863       V = ConstantStruct::get(
4864           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4865     } else
4866       return Error(ID.Loc, "constant expression type mismatch");
4867     return false;
4868   }
4869   llvm_unreachable("Invalid ValID");
4870 }
4871 
4872 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4873   C = nullptr;
4874   ValID ID;
4875   auto Loc = Lex.getLoc();
4876   if (ParseValID(ID, /*PFS=*/nullptr))
4877     return true;
4878   switch (ID.Kind) {
4879   case ValID::t_APSInt:
4880   case ValID::t_APFloat:
4881   case ValID::t_Undef:
4882   case ValID::t_Constant:
4883   case ValID::t_ConstantStruct:
4884   case ValID::t_PackedConstantStruct: {
4885     Value *V;
4886     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
4887       return true;
4888     assert(isa<Constant>(V) && "Expected a constant value");
4889     C = cast<Constant>(V);
4890     return false;
4891   }
4892   case ValID::t_Null:
4893     C = Constant::getNullValue(Ty);
4894     return false;
4895   default:
4896     return Error(Loc, "expected a constant value");
4897   }
4898 }
4899 
4900 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4901   V = nullptr;
4902   ValID ID;
4903   return ParseValID(ID, PFS) ||
4904          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
4905 }
4906 
4907 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4908   Type *Ty = nullptr;
4909   return ParseType(Ty) ||
4910          ParseValue(Ty, V, PFS);
4911 }
4912 
4913 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4914                                       PerFunctionState &PFS) {
4915   Value *V;
4916   Loc = Lex.getLoc();
4917   if (ParseTypeAndValue(V, PFS)) return true;
4918   if (!isa<BasicBlock>(V))
4919     return Error(Loc, "expected a basic block");
4920   BB = cast<BasicBlock>(V);
4921   return false;
4922 }
4923 
4924 /// FunctionHeader
4925 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
4926 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
4927 ///       '(' ArgList ')' OptFuncAttrs OptSection OptionalAlign OptGC
4928 ///       OptionalPrefix OptionalPrologue OptPersonalityFn
4929 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4930   // Parse the linkage.
4931   LocTy LinkageLoc = Lex.getLoc();
4932   unsigned Linkage;
4933   unsigned Visibility;
4934   unsigned DLLStorageClass;
4935   bool DSOLocal;
4936   AttrBuilder RetAttrs;
4937   unsigned CC;
4938   bool HasLinkage;
4939   Type *RetType = nullptr;
4940   LocTy RetTypeLoc = Lex.getLoc();
4941   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
4942                            DSOLocal) ||
4943       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
4944       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4945     return true;
4946 
4947   // Verify that the linkage is ok.
4948   switch ((GlobalValue::LinkageTypes)Linkage) {
4949   case GlobalValue::ExternalLinkage:
4950     break; // always ok.
4951   case GlobalValue::ExternalWeakLinkage:
4952     if (isDefine)
4953       return Error(LinkageLoc, "invalid linkage for function definition");
4954     break;
4955   case GlobalValue::PrivateLinkage:
4956   case GlobalValue::InternalLinkage:
4957   case GlobalValue::AvailableExternallyLinkage:
4958   case GlobalValue::LinkOnceAnyLinkage:
4959   case GlobalValue::LinkOnceODRLinkage:
4960   case GlobalValue::WeakAnyLinkage:
4961   case GlobalValue::WeakODRLinkage:
4962     if (!isDefine)
4963       return Error(LinkageLoc, "invalid linkage for function declaration");
4964     break;
4965   case GlobalValue::AppendingLinkage:
4966   case GlobalValue::CommonLinkage:
4967     return Error(LinkageLoc, "invalid function linkage type");
4968   }
4969 
4970   if (!isValidVisibilityForLinkage(Visibility, Linkage))
4971     return Error(LinkageLoc,
4972                  "symbol with local linkage must have default visibility");
4973 
4974   if (!FunctionType::isValidReturnType(RetType))
4975     return Error(RetTypeLoc, "invalid function return type");
4976 
4977   LocTy NameLoc = Lex.getLoc();
4978 
4979   std::string FunctionName;
4980   if (Lex.getKind() == lltok::GlobalVar) {
4981     FunctionName = Lex.getStrVal();
4982   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
4983     unsigned NameID = Lex.getUIntVal();
4984 
4985     if (NameID != NumberedVals.size())
4986       return TokError("function expected to be numbered '%" +
4987                       Twine(NumberedVals.size()) + "'");
4988   } else {
4989     return TokError("expected function name");
4990   }
4991 
4992   Lex.Lex();
4993 
4994   if (Lex.getKind() != lltok::lparen)
4995     return TokError("expected '(' in function argument list");
4996 
4997   SmallVector<ArgInfo, 8> ArgList;
4998   bool isVarArg;
4999   AttrBuilder FuncAttrs;
5000   std::vector<unsigned> FwdRefAttrGrps;
5001   LocTy BuiltinLoc;
5002   std::string Section;
5003   unsigned Alignment;
5004   std::string GC;
5005   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5006   Constant *Prefix = nullptr;
5007   Constant *Prologue = nullptr;
5008   Constant *PersonalityFn = nullptr;
5009   Comdat *C;
5010 
5011   if (ParseArgumentList(ArgList, isVarArg) ||
5012       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5013       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5014                                  BuiltinLoc) ||
5015       (EatIfPresent(lltok::kw_section) &&
5016        ParseStringConstant(Section)) ||
5017       parseOptionalComdat(FunctionName, C) ||
5018       ParseOptionalAlignment(Alignment) ||
5019       (EatIfPresent(lltok::kw_gc) &&
5020        ParseStringConstant(GC)) ||
5021       (EatIfPresent(lltok::kw_prefix) &&
5022        ParseGlobalTypeAndValue(Prefix)) ||
5023       (EatIfPresent(lltok::kw_prologue) &&
5024        ParseGlobalTypeAndValue(Prologue)) ||
5025       (EatIfPresent(lltok::kw_personality) &&
5026        ParseGlobalTypeAndValue(PersonalityFn)))
5027     return true;
5028 
5029   if (FuncAttrs.contains(Attribute::Builtin))
5030     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5031 
5032   // If the alignment was parsed as an attribute, move to the alignment field.
5033   if (FuncAttrs.hasAlignmentAttr()) {
5034     Alignment = FuncAttrs.getAlignment();
5035     FuncAttrs.removeAttribute(Attribute::Alignment);
5036   }
5037 
5038   // Okay, if we got here, the function is syntactically valid.  Convert types
5039   // and do semantic checks.
5040   std::vector<Type*> ParamTypeList;
5041   SmallVector<AttributeSet, 8> Attrs;
5042 
5043   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5044     ParamTypeList.push_back(ArgList[i].Ty);
5045     Attrs.push_back(ArgList[i].Attrs);
5046   }
5047 
5048   AttributeList PAL =
5049       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5050                          AttributeSet::get(Context, RetAttrs), Attrs);
5051 
5052   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5053     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5054 
5055   FunctionType *FT =
5056     FunctionType::get(RetType, ParamTypeList, isVarArg);
5057   PointerType *PFT = PointerType::getUnqual(FT);
5058 
5059   Fn = nullptr;
5060   if (!FunctionName.empty()) {
5061     // If this was a definition of a forward reference, remove the definition
5062     // from the forward reference table and fill in the forward ref.
5063     auto FRVI = ForwardRefVals.find(FunctionName);
5064     if (FRVI != ForwardRefVals.end()) {
5065       Fn = M->getFunction(FunctionName);
5066       if (!Fn)
5067         return Error(FRVI->second.second, "invalid forward reference to "
5068                      "function as global value!");
5069       if (Fn->getType() != PFT)
5070         return Error(FRVI->second.second, "invalid forward reference to "
5071                      "function '" + FunctionName + "' with wrong type!");
5072 
5073       ForwardRefVals.erase(FRVI);
5074     } else if ((Fn = M->getFunction(FunctionName))) {
5075       // Reject redefinitions.
5076       return Error(NameLoc, "invalid redefinition of function '" +
5077                    FunctionName + "'");
5078     } else if (M->getNamedValue(FunctionName)) {
5079       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5080     }
5081 
5082   } else {
5083     // If this is a definition of a forward referenced function, make sure the
5084     // types agree.
5085     auto I = ForwardRefValIDs.find(NumberedVals.size());
5086     if (I != ForwardRefValIDs.end()) {
5087       Fn = cast<Function>(I->second.first);
5088       if (Fn->getType() != PFT)
5089         return Error(NameLoc, "type of definition and forward reference of '@" +
5090                      Twine(NumberedVals.size()) + "' disagree");
5091       ForwardRefValIDs.erase(I);
5092     }
5093   }
5094 
5095   if (!Fn)
5096     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
5097   else // Move the forward-reference to the correct spot in the module.
5098     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5099 
5100   if (FunctionName.empty())
5101     NumberedVals.push_back(Fn);
5102 
5103   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5104   maybeSetDSOLocal(DSOLocal, *Fn);
5105   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5106   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5107   Fn->setCallingConv(CC);
5108   Fn->setAttributes(PAL);
5109   Fn->setUnnamedAddr(UnnamedAddr);
5110   Fn->setAlignment(Alignment);
5111   Fn->setSection(Section);
5112   Fn->setComdat(C);
5113   Fn->setPersonalityFn(PersonalityFn);
5114   if (!GC.empty()) Fn->setGC(GC);
5115   Fn->setPrefixData(Prefix);
5116   Fn->setPrologueData(Prologue);
5117   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5118 
5119   // Add all of the arguments we parsed to the function.
5120   Function::arg_iterator ArgIt = Fn->arg_begin();
5121   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5122     // If the argument has a name, insert it into the argument symbol table.
5123     if (ArgList[i].Name.empty()) continue;
5124 
5125     // Set the name, if it conflicted, it will be auto-renamed.
5126     ArgIt->setName(ArgList[i].Name);
5127 
5128     if (ArgIt->getName() != ArgList[i].Name)
5129       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5130                    ArgList[i].Name + "'");
5131   }
5132 
5133   if (isDefine)
5134     return false;
5135 
5136   // Check the declaration has no block address forward references.
5137   ValID ID;
5138   if (FunctionName.empty()) {
5139     ID.Kind = ValID::t_GlobalID;
5140     ID.UIntVal = NumberedVals.size() - 1;
5141   } else {
5142     ID.Kind = ValID::t_GlobalName;
5143     ID.StrVal = FunctionName;
5144   }
5145   auto Blocks = ForwardRefBlockAddresses.find(ID);
5146   if (Blocks != ForwardRefBlockAddresses.end())
5147     return Error(Blocks->first.Loc,
5148                  "cannot take blockaddress inside a declaration");
5149   return false;
5150 }
5151 
5152 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5153   ValID ID;
5154   if (FunctionNumber == -1) {
5155     ID.Kind = ValID::t_GlobalName;
5156     ID.StrVal = F.getName();
5157   } else {
5158     ID.Kind = ValID::t_GlobalID;
5159     ID.UIntVal = FunctionNumber;
5160   }
5161 
5162   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5163   if (Blocks == P.ForwardRefBlockAddresses.end())
5164     return false;
5165 
5166   for (const auto &I : Blocks->second) {
5167     const ValID &BBID = I.first;
5168     GlobalValue *GV = I.second;
5169 
5170     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5171            "Expected local id or name");
5172     BasicBlock *BB;
5173     if (BBID.Kind == ValID::t_LocalName)
5174       BB = GetBB(BBID.StrVal, BBID.Loc);
5175     else
5176       BB = GetBB(BBID.UIntVal, BBID.Loc);
5177     if (!BB)
5178       return P.Error(BBID.Loc, "referenced value is not a basic block");
5179 
5180     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5181     GV->eraseFromParent();
5182   }
5183 
5184   P.ForwardRefBlockAddresses.erase(Blocks);
5185   return false;
5186 }
5187 
5188 /// ParseFunctionBody
5189 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5190 bool LLParser::ParseFunctionBody(Function &Fn) {
5191   if (Lex.getKind() != lltok::lbrace)
5192     return TokError("expected '{' in function body");
5193   Lex.Lex();  // eat the {.
5194 
5195   int FunctionNumber = -1;
5196   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5197 
5198   PerFunctionState PFS(*this, Fn, FunctionNumber);
5199 
5200   // Resolve block addresses and allow basic blocks to be forward-declared
5201   // within this function.
5202   if (PFS.resolveForwardRefBlockAddresses())
5203     return true;
5204   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5205 
5206   // We need at least one basic block.
5207   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5208     return TokError("function body requires at least one basic block");
5209 
5210   while (Lex.getKind() != lltok::rbrace &&
5211          Lex.getKind() != lltok::kw_uselistorder)
5212     if (ParseBasicBlock(PFS)) return true;
5213 
5214   while (Lex.getKind() != lltok::rbrace)
5215     if (ParseUseListOrder(&PFS))
5216       return true;
5217 
5218   // Eat the }.
5219   Lex.Lex();
5220 
5221   // Verify function is ok.
5222   return PFS.FinishFunction();
5223 }
5224 
5225 /// ParseBasicBlock
5226 ///   ::= LabelStr? Instruction*
5227 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5228   // If this basic block starts out with a name, remember it.
5229   std::string Name;
5230   LocTy NameLoc = Lex.getLoc();
5231   if (Lex.getKind() == lltok::LabelStr) {
5232     Name = Lex.getStrVal();
5233     Lex.Lex();
5234   }
5235 
5236   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
5237   if (!BB)
5238     return Error(NameLoc,
5239                  "unable to create block named '" + Name + "'");
5240 
5241   std::string NameStr;
5242 
5243   // Parse the instructions in this block until we get a terminator.
5244   Instruction *Inst;
5245   do {
5246     // This instruction may have three possibilities for a name: a) none
5247     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5248     LocTy NameLoc = Lex.getLoc();
5249     int NameID = -1;
5250     NameStr = "";
5251 
5252     if (Lex.getKind() == lltok::LocalVarID) {
5253       NameID = Lex.getUIntVal();
5254       Lex.Lex();
5255       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5256         return true;
5257     } else if (Lex.getKind() == lltok::LocalVar) {
5258       NameStr = Lex.getStrVal();
5259       Lex.Lex();
5260       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5261         return true;
5262     }
5263 
5264     switch (ParseInstruction(Inst, BB, PFS)) {
5265     default: llvm_unreachable("Unknown ParseInstruction result!");
5266     case InstError: return true;
5267     case InstNormal:
5268       BB->getInstList().push_back(Inst);
5269 
5270       // With a normal result, we check to see if the instruction is followed by
5271       // a comma and metadata.
5272       if (EatIfPresent(lltok::comma))
5273         if (ParseInstructionMetadata(*Inst))
5274           return true;
5275       break;
5276     case InstExtraComma:
5277       BB->getInstList().push_back(Inst);
5278 
5279       // If the instruction parser ate an extra comma at the end of it, it
5280       // *must* be followed by metadata.
5281       if (ParseInstructionMetadata(*Inst))
5282         return true;
5283       break;
5284     }
5285 
5286     // Set the name on the instruction.
5287     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5288   } while (!isa<TerminatorInst>(Inst));
5289 
5290   return false;
5291 }
5292 
5293 //===----------------------------------------------------------------------===//
5294 // Instruction Parsing.
5295 //===----------------------------------------------------------------------===//
5296 
5297 /// ParseInstruction - Parse one of the many different instructions.
5298 ///
5299 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5300                                PerFunctionState &PFS) {
5301   lltok::Kind Token = Lex.getKind();
5302   if (Token == lltok::Eof)
5303     return TokError("found end of file when expecting more instructions");
5304   LocTy Loc = Lex.getLoc();
5305   unsigned KeywordVal = Lex.getUIntVal();
5306   Lex.Lex();  // Eat the keyword.
5307 
5308   switch (Token) {
5309   default:                    return Error(Loc, "expected instruction opcode");
5310   // Terminator Instructions.
5311   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5312   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5313   case lltok::kw_br:          return ParseBr(Inst, PFS);
5314   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5315   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5316   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5317   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5318   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5319   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5320   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5321   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5322   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5323   // Binary Operators.
5324   case lltok::kw_add:
5325   case lltok::kw_sub:
5326   case lltok::kw_mul:
5327   case lltok::kw_shl: {
5328     bool NUW = EatIfPresent(lltok::kw_nuw);
5329     bool NSW = EatIfPresent(lltok::kw_nsw);
5330     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5331 
5332     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5333 
5334     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5335     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5336     return false;
5337   }
5338   case lltok::kw_fadd:
5339   case lltok::kw_fsub:
5340   case lltok::kw_fmul:
5341   case lltok::kw_fdiv:
5342   case lltok::kw_frem: {
5343     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5344     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5345     if (Res != 0)
5346       return Res;
5347     if (FMF.any())
5348       Inst->setFastMathFlags(FMF);
5349     return 0;
5350   }
5351 
5352   case lltok::kw_sdiv:
5353   case lltok::kw_udiv:
5354   case lltok::kw_lshr:
5355   case lltok::kw_ashr: {
5356     bool Exact = EatIfPresent(lltok::kw_exact);
5357 
5358     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5359     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5360     return false;
5361   }
5362 
5363   case lltok::kw_urem:
5364   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5365   case lltok::kw_and:
5366   case lltok::kw_or:
5367   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5368   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5369   case lltok::kw_fcmp: {
5370     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5371     int Res = ParseCompare(Inst, PFS, KeywordVal);
5372     if (Res != 0)
5373       return Res;
5374     if (FMF.any())
5375       Inst->setFastMathFlags(FMF);
5376     return 0;
5377   }
5378 
5379   // Casts.
5380   case lltok::kw_trunc:
5381   case lltok::kw_zext:
5382   case lltok::kw_sext:
5383   case lltok::kw_fptrunc:
5384   case lltok::kw_fpext:
5385   case lltok::kw_bitcast:
5386   case lltok::kw_addrspacecast:
5387   case lltok::kw_uitofp:
5388   case lltok::kw_sitofp:
5389   case lltok::kw_fptoui:
5390   case lltok::kw_fptosi:
5391   case lltok::kw_inttoptr:
5392   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5393   // Other.
5394   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5395   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5396   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5397   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5398   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5399   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5400   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5401   // Call.
5402   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5403   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5404   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5405   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5406   // Memory.
5407   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5408   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5409   case lltok::kw_store:          return ParseStore(Inst, PFS);
5410   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5411   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5412   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5413   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5414   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5415   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5416   }
5417 }
5418 
5419 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5420 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5421   if (Opc == Instruction::FCmp) {
5422     switch (Lex.getKind()) {
5423     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5424     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5425     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5426     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5427     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5428     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5429     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5430     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5431     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5432     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5433     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5434     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5435     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5436     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5437     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5438     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5439     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5440     }
5441   } else {
5442     switch (Lex.getKind()) {
5443     default: return TokError("expected icmp predicate (e.g. 'eq')");
5444     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5445     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5446     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5447     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5448     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5449     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5450     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5451     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5452     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5453     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5454     }
5455   }
5456   Lex.Lex();
5457   return false;
5458 }
5459 
5460 //===----------------------------------------------------------------------===//
5461 // Terminator Instructions.
5462 //===----------------------------------------------------------------------===//
5463 
5464 /// ParseRet - Parse a return instruction.
5465 ///   ::= 'ret' void (',' !dbg, !1)*
5466 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5467 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5468                         PerFunctionState &PFS) {
5469   SMLoc TypeLoc = Lex.getLoc();
5470   Type *Ty = nullptr;
5471   if (ParseType(Ty, true /*void allowed*/)) return true;
5472 
5473   Type *ResType = PFS.getFunction().getReturnType();
5474 
5475   if (Ty->isVoidTy()) {
5476     if (!ResType->isVoidTy())
5477       return Error(TypeLoc, "value doesn't match function result type '" +
5478                    getTypeString(ResType) + "'");
5479 
5480     Inst = ReturnInst::Create(Context);
5481     return false;
5482   }
5483 
5484   Value *RV;
5485   if (ParseValue(Ty, RV, PFS)) return true;
5486 
5487   if (ResType != RV->getType())
5488     return Error(TypeLoc, "value doesn't match function result type '" +
5489                  getTypeString(ResType) + "'");
5490 
5491   Inst = ReturnInst::Create(Context, RV);
5492   return false;
5493 }
5494 
5495 /// ParseBr
5496 ///   ::= 'br' TypeAndValue
5497 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5498 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5499   LocTy Loc, Loc2;
5500   Value *Op0;
5501   BasicBlock *Op1, *Op2;
5502   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5503 
5504   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5505     Inst = BranchInst::Create(BB);
5506     return false;
5507   }
5508 
5509   if (Op0->getType() != Type::getInt1Ty(Context))
5510     return Error(Loc, "branch condition must have 'i1' type");
5511 
5512   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5513       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5514       ParseToken(lltok::comma, "expected ',' after true destination") ||
5515       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5516     return true;
5517 
5518   Inst = BranchInst::Create(Op1, Op2, Op0);
5519   return false;
5520 }
5521 
5522 /// ParseSwitch
5523 ///  Instruction
5524 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5525 ///  JumpTable
5526 ///    ::= (TypeAndValue ',' TypeAndValue)*
5527 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5528   LocTy CondLoc, BBLoc;
5529   Value *Cond;
5530   BasicBlock *DefaultBB;
5531   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5532       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5533       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5534       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5535     return true;
5536 
5537   if (!Cond->getType()->isIntegerTy())
5538     return Error(CondLoc, "switch condition must have integer type");
5539 
5540   // Parse the jump table pairs.
5541   SmallPtrSet<Value*, 32> SeenCases;
5542   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5543   while (Lex.getKind() != lltok::rsquare) {
5544     Value *Constant;
5545     BasicBlock *DestBB;
5546 
5547     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5548         ParseToken(lltok::comma, "expected ',' after case value") ||
5549         ParseTypeAndBasicBlock(DestBB, PFS))
5550       return true;
5551 
5552     if (!SeenCases.insert(Constant).second)
5553       return Error(CondLoc, "duplicate case value in switch");
5554     if (!isa<ConstantInt>(Constant))
5555       return Error(CondLoc, "case value is not a constant integer");
5556 
5557     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5558   }
5559 
5560   Lex.Lex();  // Eat the ']'.
5561 
5562   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5563   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5564     SI->addCase(Table[i].first, Table[i].second);
5565   Inst = SI;
5566   return false;
5567 }
5568 
5569 /// ParseIndirectBr
5570 ///  Instruction
5571 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5572 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5573   LocTy AddrLoc;
5574   Value *Address;
5575   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5576       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5577       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5578     return true;
5579 
5580   if (!Address->getType()->isPointerTy())
5581     return Error(AddrLoc, "indirectbr address must have pointer type");
5582 
5583   // Parse the destination list.
5584   SmallVector<BasicBlock*, 16> DestList;
5585 
5586   if (Lex.getKind() != lltok::rsquare) {
5587     BasicBlock *DestBB;
5588     if (ParseTypeAndBasicBlock(DestBB, PFS))
5589       return true;
5590     DestList.push_back(DestBB);
5591 
5592     while (EatIfPresent(lltok::comma)) {
5593       if (ParseTypeAndBasicBlock(DestBB, PFS))
5594         return true;
5595       DestList.push_back(DestBB);
5596     }
5597   }
5598 
5599   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5600     return true;
5601 
5602   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5603   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5604     IBI->addDestination(DestList[i]);
5605   Inst = IBI;
5606   return false;
5607 }
5608 
5609 /// ParseInvoke
5610 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5611 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5612 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5613   LocTy CallLoc = Lex.getLoc();
5614   AttrBuilder RetAttrs, FnAttrs;
5615   std::vector<unsigned> FwdRefAttrGrps;
5616   LocTy NoBuiltinLoc;
5617   unsigned CC;
5618   Type *RetType = nullptr;
5619   LocTy RetTypeLoc;
5620   ValID CalleeID;
5621   SmallVector<ParamInfo, 16> ArgList;
5622   SmallVector<OperandBundleDef, 2> BundleList;
5623 
5624   BasicBlock *NormalBB, *UnwindBB;
5625   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5626       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5627       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5628       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5629                                  NoBuiltinLoc) ||
5630       ParseOptionalOperandBundles(BundleList, PFS) ||
5631       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5632       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5633       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5634       ParseTypeAndBasicBlock(UnwindBB, PFS))
5635     return true;
5636 
5637   // If RetType is a non-function pointer type, then this is the short syntax
5638   // for the call, which means that RetType is just the return type.  Infer the
5639   // rest of the function argument types from the arguments that are present.
5640   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5641   if (!Ty) {
5642     // Pull out the types of all of the arguments...
5643     std::vector<Type*> ParamTypes;
5644     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5645       ParamTypes.push_back(ArgList[i].V->getType());
5646 
5647     if (!FunctionType::isValidReturnType(RetType))
5648       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5649 
5650     Ty = FunctionType::get(RetType, ParamTypes, false);
5651   }
5652 
5653   CalleeID.FTy = Ty;
5654 
5655   // Look up the callee.
5656   Value *Callee;
5657   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
5658                           /*IsCall=*/true))
5659     return true;
5660 
5661   // Set up the Attribute for the function.
5662   SmallVector<Value *, 8> Args;
5663   SmallVector<AttributeSet, 8> ArgAttrs;
5664 
5665   // Loop through FunctionType's arguments and ensure they are specified
5666   // correctly.  Also, gather any parameter attributes.
5667   FunctionType::param_iterator I = Ty->param_begin();
5668   FunctionType::param_iterator E = Ty->param_end();
5669   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5670     Type *ExpectedTy = nullptr;
5671     if (I != E) {
5672       ExpectedTy = *I++;
5673     } else if (!Ty->isVarArg()) {
5674       return Error(ArgList[i].Loc, "too many arguments specified");
5675     }
5676 
5677     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5678       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5679                    getTypeString(ExpectedTy) + "'");
5680     Args.push_back(ArgList[i].V);
5681     ArgAttrs.push_back(ArgList[i].Attrs);
5682   }
5683 
5684   if (I != E)
5685     return Error(CallLoc, "not enough parameters specified for call");
5686 
5687   if (FnAttrs.hasAlignmentAttr())
5688     return Error(CallLoc, "invoke instructions may not have an alignment");
5689 
5690   // Finish off the Attribute and check them
5691   AttributeList PAL =
5692       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
5693                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
5694 
5695   InvokeInst *II =
5696       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5697   II->setCallingConv(CC);
5698   II->setAttributes(PAL);
5699   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5700   Inst = II;
5701   return false;
5702 }
5703 
5704 /// ParseResume
5705 ///   ::= 'resume' TypeAndValue
5706 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5707   Value *Exn; LocTy ExnLoc;
5708   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5709     return true;
5710 
5711   ResumeInst *RI = ResumeInst::Create(Exn);
5712   Inst = RI;
5713   return false;
5714 }
5715 
5716 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5717                                   PerFunctionState &PFS) {
5718   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5719     return true;
5720 
5721   while (Lex.getKind() != lltok::rsquare) {
5722     // If this isn't the first argument, we need a comma.
5723     if (!Args.empty() &&
5724         ParseToken(lltok::comma, "expected ',' in argument list"))
5725       return true;
5726 
5727     // Parse the argument.
5728     LocTy ArgLoc;
5729     Type *ArgTy = nullptr;
5730     if (ParseType(ArgTy, ArgLoc))
5731       return true;
5732 
5733     Value *V;
5734     if (ArgTy->isMetadataTy()) {
5735       if (ParseMetadataAsValue(V, PFS))
5736         return true;
5737     } else {
5738       if (ParseValue(ArgTy, V, PFS))
5739         return true;
5740     }
5741     Args.push_back(V);
5742   }
5743 
5744   Lex.Lex();  // Lex the ']'.
5745   return false;
5746 }
5747 
5748 /// ParseCleanupRet
5749 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
5750 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5751   Value *CleanupPad = nullptr;
5752 
5753   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5754     return true;
5755 
5756   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5757     return true;
5758 
5759   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5760     return true;
5761 
5762   BasicBlock *UnwindBB = nullptr;
5763   if (Lex.getKind() == lltok::kw_to) {
5764     Lex.Lex();
5765     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5766       return true;
5767   } else {
5768     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5769       return true;
5770     }
5771   }
5772 
5773   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5774   return false;
5775 }
5776 
5777 /// ParseCatchRet
5778 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
5779 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5780   Value *CatchPad = nullptr;
5781 
5782   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5783     return true;
5784 
5785   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5786     return true;
5787 
5788   BasicBlock *BB;
5789   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5790       ParseTypeAndBasicBlock(BB, PFS))
5791       return true;
5792 
5793   Inst = CatchReturnInst::Create(CatchPad, BB);
5794   return false;
5795 }
5796 
5797 /// ParseCatchSwitch
5798 ///   ::= 'catchswitch' within Parent
5799 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5800   Value *ParentPad;
5801 
5802   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5803     return true;
5804 
5805   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5806       Lex.getKind() != lltok::LocalVarID)
5807     return TokError("expected scope value for catchswitch");
5808 
5809   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5810     return true;
5811 
5812   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5813     return true;
5814 
5815   SmallVector<BasicBlock *, 32> Table;
5816   do {
5817     BasicBlock *DestBB;
5818     if (ParseTypeAndBasicBlock(DestBB, PFS))
5819       return true;
5820     Table.push_back(DestBB);
5821   } while (EatIfPresent(lltok::comma));
5822 
5823   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5824     return true;
5825 
5826   if (ParseToken(lltok::kw_unwind,
5827                  "expected 'unwind' after catchswitch scope"))
5828     return true;
5829 
5830   BasicBlock *UnwindBB = nullptr;
5831   if (EatIfPresent(lltok::kw_to)) {
5832     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5833       return true;
5834   } else {
5835     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5836       return true;
5837   }
5838 
5839   auto *CatchSwitch =
5840       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5841   for (BasicBlock *DestBB : Table)
5842     CatchSwitch->addHandler(DestBB);
5843   Inst = CatchSwitch;
5844   return false;
5845 }
5846 
5847 /// ParseCatchPad
5848 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
5849 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5850   Value *CatchSwitch = nullptr;
5851 
5852   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5853     return true;
5854 
5855   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5856     return TokError("expected scope value for catchpad");
5857 
5858   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5859     return true;
5860 
5861   SmallVector<Value *, 8> Args;
5862   if (ParseExceptionArgs(Args, PFS))
5863     return true;
5864 
5865   Inst = CatchPadInst::Create(CatchSwitch, Args);
5866   return false;
5867 }
5868 
5869 /// ParseCleanupPad
5870 ///   ::= 'cleanuppad' within Parent ParamList
5871 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
5872   Value *ParentPad = nullptr;
5873 
5874   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
5875     return true;
5876 
5877   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5878       Lex.getKind() != lltok::LocalVarID)
5879     return TokError("expected scope value for cleanuppad");
5880 
5881   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5882     return true;
5883 
5884   SmallVector<Value *, 8> Args;
5885   if (ParseExceptionArgs(Args, PFS))
5886     return true;
5887 
5888   Inst = CleanupPadInst::Create(ParentPad, Args);
5889   return false;
5890 }
5891 
5892 //===----------------------------------------------------------------------===//
5893 // Binary Operators.
5894 //===----------------------------------------------------------------------===//
5895 
5896 /// ParseArithmetic
5897 ///  ::= ArithmeticOps TypeAndValue ',' Value
5898 ///
5899 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
5900 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
5901 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
5902                                unsigned Opc, unsigned OperandType) {
5903   LocTy Loc; Value *LHS, *RHS;
5904   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5905       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
5906       ParseValue(LHS->getType(), RHS, PFS))
5907     return true;
5908 
5909   bool Valid;
5910   switch (OperandType) {
5911   default: llvm_unreachable("Unknown operand type!");
5912   case 0: // int or FP.
5913     Valid = LHS->getType()->isIntOrIntVectorTy() ||
5914             LHS->getType()->isFPOrFPVectorTy();
5915     break;
5916   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
5917   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
5918   }
5919 
5920   if (!Valid)
5921     return Error(Loc, "invalid operand type for instruction");
5922 
5923   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5924   return false;
5925 }
5926 
5927 /// ParseLogical
5928 ///  ::= ArithmeticOps TypeAndValue ',' Value {
5929 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
5930                             unsigned Opc) {
5931   LocTy Loc; Value *LHS, *RHS;
5932   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5933       ParseToken(lltok::comma, "expected ',' in logical operation") ||
5934       ParseValue(LHS->getType(), RHS, PFS))
5935     return true;
5936 
5937   if (!LHS->getType()->isIntOrIntVectorTy())
5938     return Error(Loc,"instruction requires integer or integer vector operands");
5939 
5940   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5941   return false;
5942 }
5943 
5944 /// ParseCompare
5945 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
5946 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
5947 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
5948                             unsigned Opc) {
5949   // Parse the integer/fp comparison predicate.
5950   LocTy Loc;
5951   unsigned Pred;
5952   Value *LHS, *RHS;
5953   if (ParseCmpPredicate(Pred, Opc) ||
5954       ParseTypeAndValue(LHS, Loc, PFS) ||
5955       ParseToken(lltok::comma, "expected ',' after compare value") ||
5956       ParseValue(LHS->getType(), RHS, PFS))
5957     return true;
5958 
5959   if (Opc == Instruction::FCmp) {
5960     if (!LHS->getType()->isFPOrFPVectorTy())
5961       return Error(Loc, "fcmp requires floating point operands");
5962     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5963   } else {
5964     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
5965     if (!LHS->getType()->isIntOrIntVectorTy() &&
5966         !LHS->getType()->isPtrOrPtrVectorTy())
5967       return Error(Loc, "icmp requires integer operands");
5968     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5969   }
5970   return false;
5971 }
5972 
5973 //===----------------------------------------------------------------------===//
5974 // Other Instructions.
5975 //===----------------------------------------------------------------------===//
5976 
5977 
5978 /// ParseCast
5979 ///   ::= CastOpc TypeAndValue 'to' Type
5980 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
5981                          unsigned Opc) {
5982   LocTy Loc;
5983   Value *Op;
5984   Type *DestTy = nullptr;
5985   if (ParseTypeAndValue(Op, Loc, PFS) ||
5986       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
5987       ParseType(DestTy))
5988     return true;
5989 
5990   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
5991     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
5992     return Error(Loc, "invalid cast opcode for cast from '" +
5993                  getTypeString(Op->getType()) + "' to '" +
5994                  getTypeString(DestTy) + "'");
5995   }
5996   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
5997   return false;
5998 }
5999 
6000 /// ParseSelect
6001 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6002 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6003   LocTy Loc;
6004   Value *Op0, *Op1, *Op2;
6005   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6006       ParseToken(lltok::comma, "expected ',' after select condition") ||
6007       ParseTypeAndValue(Op1, PFS) ||
6008       ParseToken(lltok::comma, "expected ',' after select value") ||
6009       ParseTypeAndValue(Op2, PFS))
6010     return true;
6011 
6012   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6013     return Error(Loc, Reason);
6014 
6015   Inst = SelectInst::Create(Op0, Op1, Op2);
6016   return false;
6017 }
6018 
6019 /// ParseVA_Arg
6020 ///   ::= 'va_arg' TypeAndValue ',' Type
6021 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6022   Value *Op;
6023   Type *EltTy = nullptr;
6024   LocTy TypeLoc;
6025   if (ParseTypeAndValue(Op, PFS) ||
6026       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6027       ParseType(EltTy, TypeLoc))
6028     return true;
6029 
6030   if (!EltTy->isFirstClassType())
6031     return Error(TypeLoc, "va_arg requires operand with first class type");
6032 
6033   Inst = new VAArgInst(Op, EltTy);
6034   return false;
6035 }
6036 
6037 /// ParseExtractElement
6038 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6039 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6040   LocTy Loc;
6041   Value *Op0, *Op1;
6042   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6043       ParseToken(lltok::comma, "expected ',' after extract value") ||
6044       ParseTypeAndValue(Op1, PFS))
6045     return true;
6046 
6047   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6048     return Error(Loc, "invalid extractelement operands");
6049 
6050   Inst = ExtractElementInst::Create(Op0, Op1);
6051   return false;
6052 }
6053 
6054 /// ParseInsertElement
6055 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6056 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6057   LocTy Loc;
6058   Value *Op0, *Op1, *Op2;
6059   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6060       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6061       ParseTypeAndValue(Op1, PFS) ||
6062       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6063       ParseTypeAndValue(Op2, PFS))
6064     return true;
6065 
6066   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6067     return Error(Loc, "invalid insertelement operands");
6068 
6069   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6070   return false;
6071 }
6072 
6073 /// ParseShuffleVector
6074 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6075 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6076   LocTy Loc;
6077   Value *Op0, *Op1, *Op2;
6078   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6079       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6080       ParseTypeAndValue(Op1, PFS) ||
6081       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6082       ParseTypeAndValue(Op2, PFS))
6083     return true;
6084 
6085   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6086     return Error(Loc, "invalid shufflevector operands");
6087 
6088   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6089   return false;
6090 }
6091 
6092 /// ParsePHI
6093 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6094 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6095   Type *Ty = nullptr;  LocTy TypeLoc;
6096   Value *Op0, *Op1;
6097 
6098   if (ParseType(Ty, TypeLoc) ||
6099       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6100       ParseValue(Ty, Op0, PFS) ||
6101       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6102       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6103       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6104     return true;
6105 
6106   bool AteExtraComma = false;
6107   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6108 
6109   while (true) {
6110     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6111 
6112     if (!EatIfPresent(lltok::comma))
6113       break;
6114 
6115     if (Lex.getKind() == lltok::MetadataVar) {
6116       AteExtraComma = true;
6117       break;
6118     }
6119 
6120     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6121         ParseValue(Ty, Op0, PFS) ||
6122         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6123         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6124         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6125       return true;
6126   }
6127 
6128   if (!Ty->isFirstClassType())
6129     return Error(TypeLoc, "phi node must have first class type");
6130 
6131   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6132   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6133     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6134   Inst = PN;
6135   return AteExtraComma ? InstExtraComma : InstNormal;
6136 }
6137 
6138 /// ParseLandingPad
6139 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6140 /// Clause
6141 ///   ::= 'catch' TypeAndValue
6142 ///   ::= 'filter'
6143 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6144 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6145   Type *Ty = nullptr; LocTy TyLoc;
6146 
6147   if (ParseType(Ty, TyLoc))
6148     return true;
6149 
6150   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6151   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6152 
6153   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6154     LandingPadInst::ClauseType CT;
6155     if (EatIfPresent(lltok::kw_catch))
6156       CT = LandingPadInst::Catch;
6157     else if (EatIfPresent(lltok::kw_filter))
6158       CT = LandingPadInst::Filter;
6159     else
6160       return TokError("expected 'catch' or 'filter' clause type");
6161 
6162     Value *V;
6163     LocTy VLoc;
6164     if (ParseTypeAndValue(V, VLoc, PFS))
6165       return true;
6166 
6167     // A 'catch' type expects a non-array constant. A filter clause expects an
6168     // array constant.
6169     if (CT == LandingPadInst::Catch) {
6170       if (isa<ArrayType>(V->getType()))
6171         Error(VLoc, "'catch' clause has an invalid type");
6172     } else {
6173       if (!isa<ArrayType>(V->getType()))
6174         Error(VLoc, "'filter' clause has an invalid type");
6175     }
6176 
6177     Constant *CV = dyn_cast<Constant>(V);
6178     if (!CV)
6179       return Error(VLoc, "clause argument must be a constant");
6180     LP->addClause(CV);
6181   }
6182 
6183   Inst = LP.release();
6184   return false;
6185 }
6186 
6187 /// ParseCall
6188 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6189 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6190 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6191 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6192 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6193 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6194 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6195 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6196 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6197                          CallInst::TailCallKind TCK) {
6198   AttrBuilder RetAttrs, FnAttrs;
6199   std::vector<unsigned> FwdRefAttrGrps;
6200   LocTy BuiltinLoc;
6201   unsigned CC;
6202   Type *RetType = nullptr;
6203   LocTy RetTypeLoc;
6204   ValID CalleeID;
6205   SmallVector<ParamInfo, 16> ArgList;
6206   SmallVector<OperandBundleDef, 2> BundleList;
6207   LocTy CallLoc = Lex.getLoc();
6208 
6209   if (TCK != CallInst::TCK_None &&
6210       ParseToken(lltok::kw_call,
6211                  "expected 'tail call', 'musttail call', or 'notail call'"))
6212     return true;
6213 
6214   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6215 
6216   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6217       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6218       ParseValID(CalleeID) ||
6219       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6220                          PFS.getFunction().isVarArg()) ||
6221       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6222       ParseOptionalOperandBundles(BundleList, PFS))
6223     return true;
6224 
6225   if (FMF.any() && !RetType->isFPOrFPVectorTy())
6226     return Error(CallLoc, "fast-math-flags specified for call without "
6227                           "floating-point scalar or vector return type");
6228 
6229   // If RetType is a non-function pointer type, then this is the short syntax
6230   // for the call, which means that RetType is just the return type.  Infer the
6231   // rest of the function argument types from the arguments that are present.
6232   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6233   if (!Ty) {
6234     // Pull out the types of all of the arguments...
6235     std::vector<Type*> ParamTypes;
6236     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6237       ParamTypes.push_back(ArgList[i].V->getType());
6238 
6239     if (!FunctionType::isValidReturnType(RetType))
6240       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6241 
6242     Ty = FunctionType::get(RetType, ParamTypes, false);
6243   }
6244 
6245   CalleeID.FTy = Ty;
6246 
6247   // Look up the callee.
6248   Value *Callee;
6249   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6250                           /*IsCall=*/true))
6251     return true;
6252 
6253   // Set up the Attribute for the function.
6254   SmallVector<AttributeSet, 8> Attrs;
6255 
6256   SmallVector<Value*, 8> Args;
6257 
6258   // Loop through FunctionType's arguments and ensure they are specified
6259   // correctly.  Also, gather any parameter attributes.
6260   FunctionType::param_iterator I = Ty->param_begin();
6261   FunctionType::param_iterator E = Ty->param_end();
6262   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6263     Type *ExpectedTy = nullptr;
6264     if (I != E) {
6265       ExpectedTy = *I++;
6266     } else if (!Ty->isVarArg()) {
6267       return Error(ArgList[i].Loc, "too many arguments specified");
6268     }
6269 
6270     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6271       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6272                    getTypeString(ExpectedTy) + "'");
6273     Args.push_back(ArgList[i].V);
6274     Attrs.push_back(ArgList[i].Attrs);
6275   }
6276 
6277   if (I != E)
6278     return Error(CallLoc, "not enough parameters specified for call");
6279 
6280   if (FnAttrs.hasAlignmentAttr())
6281     return Error(CallLoc, "call instructions may not have an alignment");
6282 
6283   // Finish off the Attribute and check them
6284   AttributeList PAL =
6285       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6286                          AttributeSet::get(Context, RetAttrs), Attrs);
6287 
6288   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6289   CI->setTailCallKind(TCK);
6290   CI->setCallingConv(CC);
6291   if (FMF.any())
6292     CI->setFastMathFlags(FMF);
6293   CI->setAttributes(PAL);
6294   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6295   Inst = CI;
6296   return false;
6297 }
6298 
6299 //===----------------------------------------------------------------------===//
6300 // Memory Instructions.
6301 //===----------------------------------------------------------------------===//
6302 
6303 /// ParseAlloc
6304 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6305 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6306 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6307   Value *Size = nullptr;
6308   LocTy SizeLoc, TyLoc, ASLoc;
6309   unsigned Alignment = 0;
6310   unsigned AddrSpace = 0;
6311   Type *Ty = nullptr;
6312 
6313   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6314   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6315 
6316   if (ParseType(Ty, TyLoc)) return true;
6317 
6318   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6319     return Error(TyLoc, "invalid type for alloca");
6320 
6321   bool AteExtraComma = false;
6322   if (EatIfPresent(lltok::comma)) {
6323     if (Lex.getKind() == lltok::kw_align) {
6324       if (ParseOptionalAlignment(Alignment))
6325         return true;
6326       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6327         return true;
6328     } else if (Lex.getKind() == lltok::kw_addrspace) {
6329       ASLoc = Lex.getLoc();
6330       if (ParseOptionalAddrSpace(AddrSpace))
6331         return true;
6332     } else if (Lex.getKind() == lltok::MetadataVar) {
6333       AteExtraComma = true;
6334     } else {
6335       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6336         return true;
6337       if (EatIfPresent(lltok::comma)) {
6338         if (Lex.getKind() == lltok::kw_align) {
6339           if (ParseOptionalAlignment(Alignment))
6340             return true;
6341           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6342             return true;
6343         } else if (Lex.getKind() == lltok::kw_addrspace) {
6344           ASLoc = Lex.getLoc();
6345           if (ParseOptionalAddrSpace(AddrSpace))
6346             return true;
6347         } else if (Lex.getKind() == lltok::MetadataVar) {
6348           AteExtraComma = true;
6349         }
6350       }
6351     }
6352   }
6353 
6354   if (Size && !Size->getType()->isIntegerTy())
6355     return Error(SizeLoc, "element count must have integer type");
6356 
6357   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6358   AI->setUsedWithInAlloca(IsInAlloca);
6359   AI->setSwiftError(IsSwiftError);
6360   Inst = AI;
6361   return AteExtraComma ? InstExtraComma : InstNormal;
6362 }
6363 
6364 /// ParseLoad
6365 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6366 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6367 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6368 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6369   Value *Val; LocTy Loc;
6370   unsigned Alignment = 0;
6371   bool AteExtraComma = false;
6372   bool isAtomic = false;
6373   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6374   SyncScope::ID SSID = SyncScope::System;
6375 
6376   if (Lex.getKind() == lltok::kw_atomic) {
6377     isAtomic = true;
6378     Lex.Lex();
6379   }
6380 
6381   bool isVolatile = false;
6382   if (Lex.getKind() == lltok::kw_volatile) {
6383     isVolatile = true;
6384     Lex.Lex();
6385   }
6386 
6387   Type *Ty;
6388   LocTy ExplicitTypeLoc = Lex.getLoc();
6389   if (ParseType(Ty) ||
6390       ParseToken(lltok::comma, "expected comma after load's type") ||
6391       ParseTypeAndValue(Val, Loc, PFS) ||
6392       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6393       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6394     return true;
6395 
6396   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6397     return Error(Loc, "load operand must be a pointer to a first class type");
6398   if (isAtomic && !Alignment)
6399     return Error(Loc, "atomic load must have explicit non-zero alignment");
6400   if (Ordering == AtomicOrdering::Release ||
6401       Ordering == AtomicOrdering::AcquireRelease)
6402     return Error(Loc, "atomic load cannot use Release ordering");
6403 
6404   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6405     return Error(ExplicitTypeLoc,
6406                  "explicit pointee type doesn't match operand's pointee type");
6407 
6408   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6409   return AteExtraComma ? InstExtraComma : InstNormal;
6410 }
6411 
6412 /// ParseStore
6413 
6414 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6415 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6416 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6417 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6418   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6419   unsigned Alignment = 0;
6420   bool AteExtraComma = false;
6421   bool isAtomic = false;
6422   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6423   SyncScope::ID SSID = SyncScope::System;
6424 
6425   if (Lex.getKind() == lltok::kw_atomic) {
6426     isAtomic = true;
6427     Lex.Lex();
6428   }
6429 
6430   bool isVolatile = false;
6431   if (Lex.getKind() == lltok::kw_volatile) {
6432     isVolatile = true;
6433     Lex.Lex();
6434   }
6435 
6436   if (ParseTypeAndValue(Val, Loc, PFS) ||
6437       ParseToken(lltok::comma, "expected ',' after store operand") ||
6438       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6439       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6440       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6441     return true;
6442 
6443   if (!Ptr->getType()->isPointerTy())
6444     return Error(PtrLoc, "store operand must be a pointer");
6445   if (!Val->getType()->isFirstClassType())
6446     return Error(Loc, "store operand must be a first class value");
6447   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6448     return Error(Loc, "stored value and pointer type do not match");
6449   if (isAtomic && !Alignment)
6450     return Error(Loc, "atomic store must have explicit non-zero alignment");
6451   if (Ordering == AtomicOrdering::Acquire ||
6452       Ordering == AtomicOrdering::AcquireRelease)
6453     return Error(Loc, "atomic store cannot use Acquire ordering");
6454 
6455   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6456   return AteExtraComma ? InstExtraComma : InstNormal;
6457 }
6458 
6459 /// ParseCmpXchg
6460 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6461 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6462 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6463   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6464   bool AteExtraComma = false;
6465   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6466   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6467   SyncScope::ID SSID = SyncScope::System;
6468   bool isVolatile = false;
6469   bool isWeak = false;
6470 
6471   if (EatIfPresent(lltok::kw_weak))
6472     isWeak = true;
6473 
6474   if (EatIfPresent(lltok::kw_volatile))
6475     isVolatile = true;
6476 
6477   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6478       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6479       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6480       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6481       ParseTypeAndValue(New, NewLoc, PFS) ||
6482       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6483       ParseOrdering(FailureOrdering))
6484     return true;
6485 
6486   if (SuccessOrdering == AtomicOrdering::Unordered ||
6487       FailureOrdering == AtomicOrdering::Unordered)
6488     return TokError("cmpxchg cannot be unordered");
6489   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6490     return TokError("cmpxchg failure argument shall be no stronger than the "
6491                     "success argument");
6492   if (FailureOrdering == AtomicOrdering::Release ||
6493       FailureOrdering == AtomicOrdering::AcquireRelease)
6494     return TokError(
6495         "cmpxchg failure ordering cannot include release semantics");
6496   if (!Ptr->getType()->isPointerTy())
6497     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6498   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6499     return Error(CmpLoc, "compare value and pointer type do not match");
6500   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6501     return Error(NewLoc, "new value and pointer type do not match");
6502   if (!New->getType()->isFirstClassType())
6503     return Error(NewLoc, "cmpxchg operand must be a first class value");
6504   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6505       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
6506   CXI->setVolatile(isVolatile);
6507   CXI->setWeak(isWeak);
6508   Inst = CXI;
6509   return AteExtraComma ? InstExtraComma : InstNormal;
6510 }
6511 
6512 /// ParseAtomicRMW
6513 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6514 ///       'singlethread'? AtomicOrdering
6515 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6516   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6517   bool AteExtraComma = false;
6518   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6519   SyncScope::ID SSID = SyncScope::System;
6520   bool isVolatile = false;
6521   AtomicRMWInst::BinOp Operation;
6522 
6523   if (EatIfPresent(lltok::kw_volatile))
6524     isVolatile = true;
6525 
6526   switch (Lex.getKind()) {
6527   default: return TokError("expected binary operation in atomicrmw");
6528   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6529   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6530   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6531   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6532   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6533   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6534   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6535   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6536   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6537   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6538   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6539   }
6540   Lex.Lex();  // Eat the operation.
6541 
6542   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6543       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6544       ParseTypeAndValue(Val, ValLoc, PFS) ||
6545       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6546     return true;
6547 
6548   if (Ordering == AtomicOrdering::Unordered)
6549     return TokError("atomicrmw cannot be unordered");
6550   if (!Ptr->getType()->isPointerTy())
6551     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6552   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6553     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6554   if (!Val->getType()->isIntegerTy())
6555     return Error(ValLoc, "atomicrmw operand must be an integer");
6556   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6557   if (Size < 8 || (Size & (Size - 1)))
6558     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6559                          " integer");
6560 
6561   AtomicRMWInst *RMWI =
6562     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
6563   RMWI->setVolatile(isVolatile);
6564   Inst = RMWI;
6565   return AteExtraComma ? InstExtraComma : InstNormal;
6566 }
6567 
6568 /// ParseFence
6569 ///   ::= 'fence' 'singlethread'? AtomicOrdering
6570 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6571   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6572   SyncScope::ID SSID = SyncScope::System;
6573   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6574     return true;
6575 
6576   if (Ordering == AtomicOrdering::Unordered)
6577     return TokError("fence cannot be unordered");
6578   if (Ordering == AtomicOrdering::Monotonic)
6579     return TokError("fence cannot be monotonic");
6580 
6581   Inst = new FenceInst(Context, Ordering, SSID);
6582   return InstNormal;
6583 }
6584 
6585 /// ParseGetElementPtr
6586 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
6587 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6588   Value *Ptr = nullptr;
6589   Value *Val = nullptr;
6590   LocTy Loc, EltLoc;
6591 
6592   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6593 
6594   Type *Ty = nullptr;
6595   LocTy ExplicitTypeLoc = Lex.getLoc();
6596   if (ParseType(Ty) ||
6597       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6598       ParseTypeAndValue(Ptr, Loc, PFS))
6599     return true;
6600 
6601   Type *BaseType = Ptr->getType();
6602   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6603   if (!BasePointerType)
6604     return Error(Loc, "base of getelementptr must be a pointer");
6605 
6606   if (Ty != BasePointerType->getElementType())
6607     return Error(ExplicitTypeLoc,
6608                  "explicit pointee type doesn't match operand's pointee type");
6609 
6610   SmallVector<Value*, 16> Indices;
6611   bool AteExtraComma = false;
6612   // GEP returns a vector of pointers if at least one of parameters is a vector.
6613   // All vector parameters should have the same vector width.
6614   unsigned GEPWidth = BaseType->isVectorTy() ?
6615     BaseType->getVectorNumElements() : 0;
6616 
6617   while (EatIfPresent(lltok::comma)) {
6618     if (Lex.getKind() == lltok::MetadataVar) {
6619       AteExtraComma = true;
6620       break;
6621     }
6622     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6623     if (!Val->getType()->isIntOrIntVectorTy())
6624       return Error(EltLoc, "getelementptr index must be an integer");
6625 
6626     if (Val->getType()->isVectorTy()) {
6627       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6628       if (GEPWidth && GEPWidth != ValNumEl)
6629         return Error(EltLoc,
6630           "getelementptr vector index has a wrong number of elements");
6631       GEPWidth = ValNumEl;
6632     }
6633     Indices.push_back(Val);
6634   }
6635 
6636   SmallPtrSet<Type*, 4> Visited;
6637   if (!Indices.empty() && !Ty->isSized(&Visited))
6638     return Error(Loc, "base element of getelementptr must be sized");
6639 
6640   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6641     return Error(Loc, "invalid getelementptr indices");
6642   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6643   if (InBounds)
6644     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6645   return AteExtraComma ? InstExtraComma : InstNormal;
6646 }
6647 
6648 /// ParseExtractValue
6649 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6650 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6651   Value *Val; LocTy Loc;
6652   SmallVector<unsigned, 4> Indices;
6653   bool AteExtraComma;
6654   if (ParseTypeAndValue(Val, Loc, PFS) ||
6655       ParseIndexList(Indices, AteExtraComma))
6656     return true;
6657 
6658   if (!Val->getType()->isAggregateType())
6659     return Error(Loc, "extractvalue operand must be aggregate type");
6660 
6661   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6662     return Error(Loc, "invalid indices for extractvalue");
6663   Inst = ExtractValueInst::Create(Val, Indices);
6664   return AteExtraComma ? InstExtraComma : InstNormal;
6665 }
6666 
6667 /// ParseInsertValue
6668 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6669 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6670   Value *Val0, *Val1; LocTy Loc0, Loc1;
6671   SmallVector<unsigned, 4> Indices;
6672   bool AteExtraComma;
6673   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6674       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6675       ParseTypeAndValue(Val1, Loc1, PFS) ||
6676       ParseIndexList(Indices, AteExtraComma))
6677     return true;
6678 
6679   if (!Val0->getType()->isAggregateType())
6680     return Error(Loc0, "insertvalue operand must be aggregate type");
6681 
6682   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6683   if (!IndexedType)
6684     return Error(Loc0, "invalid indices for insertvalue");
6685   if (IndexedType != Val1->getType())
6686     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6687                            getTypeString(Val1->getType()) + "' instead of '" +
6688                            getTypeString(IndexedType) + "'");
6689   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6690   return AteExtraComma ? InstExtraComma : InstNormal;
6691 }
6692 
6693 //===----------------------------------------------------------------------===//
6694 // Embedded metadata.
6695 //===----------------------------------------------------------------------===//
6696 
6697 /// ParseMDNodeVector
6698 ///   ::= { Element (',' Element)* }
6699 /// Element
6700 ///   ::= 'null' | TypeAndValue
6701 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6702   if (ParseToken(lltok::lbrace, "expected '{' here"))
6703     return true;
6704 
6705   // Check for an empty list.
6706   if (EatIfPresent(lltok::rbrace))
6707     return false;
6708 
6709   do {
6710     // Null is a special case since it is typeless.
6711     if (EatIfPresent(lltok::kw_null)) {
6712       Elts.push_back(nullptr);
6713       continue;
6714     }
6715 
6716     Metadata *MD;
6717     if (ParseMetadata(MD, nullptr))
6718       return true;
6719     Elts.push_back(MD);
6720   } while (EatIfPresent(lltok::comma));
6721 
6722   return ParseToken(lltok::rbrace, "expected end of metadata node");
6723 }
6724 
6725 //===----------------------------------------------------------------------===//
6726 // Use-list order directives.
6727 //===----------------------------------------------------------------------===//
6728 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6729                                 SMLoc Loc) {
6730   if (V->use_empty())
6731     return Error(Loc, "value has no uses");
6732 
6733   unsigned NumUses = 0;
6734   SmallDenseMap<const Use *, unsigned, 16> Order;
6735   for (const Use &U : V->uses()) {
6736     if (++NumUses > Indexes.size())
6737       break;
6738     Order[&U] = Indexes[NumUses - 1];
6739   }
6740   if (NumUses < 2)
6741     return Error(Loc, "value only has one use");
6742   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6743     return Error(Loc, "wrong number of indexes, expected " +
6744                           Twine(std::distance(V->use_begin(), V->use_end())));
6745 
6746   V->sortUseList([&](const Use &L, const Use &R) {
6747     return Order.lookup(&L) < Order.lookup(&R);
6748   });
6749   return false;
6750 }
6751 
6752 /// ParseUseListOrderIndexes
6753 ///   ::= '{' uint32 (',' uint32)+ '}'
6754 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6755   SMLoc Loc = Lex.getLoc();
6756   if (ParseToken(lltok::lbrace, "expected '{' here"))
6757     return true;
6758   if (Lex.getKind() == lltok::rbrace)
6759     return Lex.Error("expected non-empty list of uselistorder indexes");
6760 
6761   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6762   // indexes should be distinct numbers in the range [0, size-1], and should
6763   // not be in order.
6764   unsigned Offset = 0;
6765   unsigned Max = 0;
6766   bool IsOrdered = true;
6767   assert(Indexes.empty() && "Expected empty order vector");
6768   do {
6769     unsigned Index;
6770     if (ParseUInt32(Index))
6771       return true;
6772 
6773     // Update consistency checks.
6774     Offset += Index - Indexes.size();
6775     Max = std::max(Max, Index);
6776     IsOrdered &= Index == Indexes.size();
6777 
6778     Indexes.push_back(Index);
6779   } while (EatIfPresent(lltok::comma));
6780 
6781   if (ParseToken(lltok::rbrace, "expected '}' here"))
6782     return true;
6783 
6784   if (Indexes.size() < 2)
6785     return Error(Loc, "expected >= 2 uselistorder indexes");
6786   if (Offset != 0 || Max >= Indexes.size())
6787     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6788   if (IsOrdered)
6789     return Error(Loc, "expected uselistorder indexes to change the order");
6790 
6791   return false;
6792 }
6793 
6794 /// ParseUseListOrder
6795 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
6796 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6797   SMLoc Loc = Lex.getLoc();
6798   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6799     return true;
6800 
6801   Value *V;
6802   SmallVector<unsigned, 16> Indexes;
6803   if (ParseTypeAndValue(V, PFS) ||
6804       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6805       ParseUseListOrderIndexes(Indexes))
6806     return true;
6807 
6808   return sortUseListOrder(V, Indexes, Loc);
6809 }
6810 
6811 /// ParseUseListOrderBB
6812 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
6813 bool LLParser::ParseUseListOrderBB() {
6814   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6815   SMLoc Loc = Lex.getLoc();
6816   Lex.Lex();
6817 
6818   ValID Fn, Label;
6819   SmallVector<unsigned, 16> Indexes;
6820   if (ParseValID(Fn) ||
6821       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6822       ParseValID(Label) ||
6823       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6824       ParseUseListOrderIndexes(Indexes))
6825     return true;
6826 
6827   // Check the function.
6828   GlobalValue *GV;
6829   if (Fn.Kind == ValID::t_GlobalName)
6830     GV = M->getNamedValue(Fn.StrVal);
6831   else if (Fn.Kind == ValID::t_GlobalID)
6832     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6833   else
6834     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6835   if (!GV)
6836     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6837   auto *F = dyn_cast<Function>(GV);
6838   if (!F)
6839     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6840   if (F->isDeclaration())
6841     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6842 
6843   // Check the basic block.
6844   if (Label.Kind == ValID::t_LocalID)
6845     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6846   if (Label.Kind != ValID::t_LocalName)
6847     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6848   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
6849   if (!V)
6850     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6851   if (!isa<BasicBlock>(V))
6852     return Error(Label.Loc, "expected basic block in uselistorder_bb");
6853 
6854   return sortUseListOrder(V, Indexes, Loc);
6855 }
6856