1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/AsmParser/SlotMapping.h" 18 #include "llvm/IR/AutoUpgrade.h" 19 #include "llvm/IR/CallingConv.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DebugInfo.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/ValueSymbolTable.h" 30 #include "llvm/Support/Dwarf.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/SaveAndRestore.h" 33 #include "llvm/Support/raw_ostream.h" 34 using namespace llvm; 35 36 static std::string getTypeString(Type *T) { 37 std::string Result; 38 raw_string_ostream Tmp(Result); 39 Tmp << *T; 40 return Tmp.str(); 41 } 42 43 /// Run: module ::= toplevelentity* 44 bool LLParser::Run() { 45 // Prime the lexer. 46 Lex.Lex(); 47 48 return ParseTopLevelEntities() || 49 ValidateEndOfModule(); 50 } 51 52 bool LLParser::parseStandaloneConstantValue(Constant *&C, 53 const SlotMapping *Slots) { 54 restoreParsingState(Slots); 55 Lex.Lex(); 56 57 Type *Ty = nullptr; 58 if (ParseType(Ty) || parseConstantValue(Ty, C)) 59 return true; 60 if (Lex.getKind() != lltok::Eof) 61 return Error(Lex.getLoc(), "expected end of string"); 62 return false; 63 } 64 65 void LLParser::restoreParsingState(const SlotMapping *Slots) { 66 if (!Slots) 67 return; 68 NumberedVals = Slots->GlobalValues; 69 NumberedMetadata = Slots->MetadataNodes; 70 for (const auto &I : Slots->NamedTypes) 71 NamedTypes.insert( 72 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 73 for (const auto &I : Slots->Types) 74 NumberedTypes.insert( 75 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 76 } 77 78 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 79 /// module. 80 bool LLParser::ValidateEndOfModule() { 81 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 82 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 83 84 // Handle any function attribute group forward references. 85 for (std::map<Value*, std::vector<unsigned> >::iterator 86 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end(); 87 I != E; ++I) { 88 Value *V = I->first; 89 std::vector<unsigned> &Vec = I->second; 90 AttrBuilder B; 91 92 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end(); 93 VI != VE; ++VI) 94 B.merge(NumberedAttrBuilders[*VI]); 95 96 if (Function *Fn = dyn_cast<Function>(V)) { 97 AttributeSet AS = Fn->getAttributes(); 98 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 99 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 100 AS.getFnAttributes()); 101 102 FnAttrs.merge(B); 103 104 // If the alignment was parsed as an attribute, move to the alignment 105 // field. 106 if (FnAttrs.hasAlignmentAttr()) { 107 Fn->setAlignment(FnAttrs.getAlignment()); 108 FnAttrs.removeAttribute(Attribute::Alignment); 109 } 110 111 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 112 AttributeSet::get(Context, 113 AttributeSet::FunctionIndex, 114 FnAttrs)); 115 Fn->setAttributes(AS); 116 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 117 AttributeSet AS = CI->getAttributes(); 118 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 119 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 120 AS.getFnAttributes()); 121 FnAttrs.merge(B); 122 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 123 AttributeSet::get(Context, 124 AttributeSet::FunctionIndex, 125 FnAttrs)); 126 CI->setAttributes(AS); 127 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 128 AttributeSet AS = II->getAttributes(); 129 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 130 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 131 AS.getFnAttributes()); 132 FnAttrs.merge(B); 133 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 134 AttributeSet::get(Context, 135 AttributeSet::FunctionIndex, 136 FnAttrs)); 137 II->setAttributes(AS); 138 } else { 139 llvm_unreachable("invalid object with forward attribute group reference"); 140 } 141 } 142 143 // If there are entries in ForwardRefBlockAddresses at this point, the 144 // function was never defined. 145 if (!ForwardRefBlockAddresses.empty()) 146 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 147 "expected function name in blockaddress"); 148 149 for (const auto &NT : NumberedTypes) 150 if (NT.second.second.isValid()) 151 return Error(NT.second.second, 152 "use of undefined type '%" + Twine(NT.first) + "'"); 153 154 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 155 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 156 if (I->second.second.isValid()) 157 return Error(I->second.second, 158 "use of undefined type named '" + I->getKey() + "'"); 159 160 if (!ForwardRefComdats.empty()) 161 return Error(ForwardRefComdats.begin()->second, 162 "use of undefined comdat '$" + 163 ForwardRefComdats.begin()->first + "'"); 164 165 if (!ForwardRefVals.empty()) 166 return Error(ForwardRefVals.begin()->second.second, 167 "use of undefined value '@" + ForwardRefVals.begin()->first + 168 "'"); 169 170 if (!ForwardRefValIDs.empty()) 171 return Error(ForwardRefValIDs.begin()->second.second, 172 "use of undefined value '@" + 173 Twine(ForwardRefValIDs.begin()->first) + "'"); 174 175 if (!ForwardRefMDNodes.empty()) 176 return Error(ForwardRefMDNodes.begin()->second.second, 177 "use of undefined metadata '!" + 178 Twine(ForwardRefMDNodes.begin()->first) + "'"); 179 180 // Resolve metadata cycles. 181 for (auto &N : NumberedMetadata) { 182 if (N.second && !N.second->isResolved()) 183 N.second->resolveCycles(); 184 } 185 186 // Look for intrinsic functions and CallInst that need to be upgraded 187 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 188 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 189 190 UpgradeDebugInfo(*M); 191 192 if (!Slots) 193 return false; 194 // Initialize the slot mapping. 195 // Because by this point we've parsed and validated everything, we can "steal" 196 // the mapping from LLParser as it doesn't need it anymore. 197 Slots->GlobalValues = std::move(NumberedVals); 198 Slots->MetadataNodes = std::move(NumberedMetadata); 199 for (const auto &I : NamedTypes) 200 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 201 for (const auto &I : NumberedTypes) 202 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 203 204 return false; 205 } 206 207 //===----------------------------------------------------------------------===// 208 // Top-Level Entities 209 //===----------------------------------------------------------------------===// 210 211 bool LLParser::ParseTopLevelEntities() { 212 while (1) { 213 switch (Lex.getKind()) { 214 default: return TokError("expected top-level entity"); 215 case lltok::Eof: return false; 216 case lltok::kw_declare: if (ParseDeclare()) return true; break; 217 case lltok::kw_define: if (ParseDefine()) return true; break; 218 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 219 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 220 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 221 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 222 case lltok::LocalVar: if (ParseNamedType()) return true; break; 223 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 224 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 225 case lltok::ComdatVar: if (parseComdat()) return true; break; 226 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 227 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 228 229 // The Global variable production with no name can have many different 230 // optional leading prefixes, the production is: 231 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 232 // OptionalThreadLocal OptionalAddrSpace OptionalUnnamedAddr 233 // ('constant'|'global') ... 234 case lltok::kw_private: // OptionalLinkage 235 case lltok::kw_internal: // OptionalLinkage 236 case lltok::kw_weak: // OptionalLinkage 237 case lltok::kw_weak_odr: // OptionalLinkage 238 case lltok::kw_linkonce: // OptionalLinkage 239 case lltok::kw_linkonce_odr: // OptionalLinkage 240 case lltok::kw_appending: // OptionalLinkage 241 case lltok::kw_common: // OptionalLinkage 242 case lltok::kw_extern_weak: // OptionalLinkage 243 case lltok::kw_external: // OptionalLinkage 244 case lltok::kw_default: // OptionalVisibility 245 case lltok::kw_hidden: // OptionalVisibility 246 case lltok::kw_protected: // OptionalVisibility 247 case lltok::kw_dllimport: // OptionalDLLStorageClass 248 case lltok::kw_dllexport: // OptionalDLLStorageClass 249 case lltok::kw_thread_local: // OptionalThreadLocal 250 case lltok::kw_addrspace: // OptionalAddrSpace 251 case lltok::kw_constant: // GlobalType 252 case lltok::kw_global: { // GlobalType 253 unsigned Linkage, Visibility, DLLStorageClass; 254 bool UnnamedAddr; 255 GlobalVariable::ThreadLocalMode TLM; 256 bool HasLinkage; 257 if (ParseOptionalLinkage(Linkage, HasLinkage) || 258 ParseOptionalVisibility(Visibility) || 259 ParseOptionalDLLStorageClass(DLLStorageClass) || 260 ParseOptionalThreadLocal(TLM) || 261 parseOptionalUnnamedAddr(UnnamedAddr) || 262 ParseGlobal("", SMLoc(), Linkage, HasLinkage, Visibility, 263 DLLStorageClass, TLM, UnnamedAddr)) 264 return true; 265 break; 266 } 267 268 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 269 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 270 case lltok::kw_uselistorder_bb: 271 if (ParseUseListOrderBB()) return true; break; 272 } 273 } 274 } 275 276 277 /// toplevelentity 278 /// ::= 'module' 'asm' STRINGCONSTANT 279 bool LLParser::ParseModuleAsm() { 280 assert(Lex.getKind() == lltok::kw_module); 281 Lex.Lex(); 282 283 std::string AsmStr; 284 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 285 ParseStringConstant(AsmStr)) return true; 286 287 M->appendModuleInlineAsm(AsmStr); 288 return false; 289 } 290 291 /// toplevelentity 292 /// ::= 'target' 'triple' '=' STRINGCONSTANT 293 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 294 bool LLParser::ParseTargetDefinition() { 295 assert(Lex.getKind() == lltok::kw_target); 296 std::string Str; 297 switch (Lex.Lex()) { 298 default: return TokError("unknown target property"); 299 case lltok::kw_triple: 300 Lex.Lex(); 301 if (ParseToken(lltok::equal, "expected '=' after target triple") || 302 ParseStringConstant(Str)) 303 return true; 304 M->setTargetTriple(Str); 305 return false; 306 case lltok::kw_datalayout: 307 Lex.Lex(); 308 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 309 ParseStringConstant(Str)) 310 return true; 311 M->setDataLayout(Str); 312 return false; 313 } 314 } 315 316 /// toplevelentity 317 /// ::= 'deplibs' '=' '[' ']' 318 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 319 /// FIXME: Remove in 4.0. Currently parse, but ignore. 320 bool LLParser::ParseDepLibs() { 321 assert(Lex.getKind() == lltok::kw_deplibs); 322 Lex.Lex(); 323 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 324 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 325 return true; 326 327 if (EatIfPresent(lltok::rsquare)) 328 return false; 329 330 do { 331 std::string Str; 332 if (ParseStringConstant(Str)) return true; 333 } while (EatIfPresent(lltok::comma)); 334 335 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 336 } 337 338 /// ParseUnnamedType: 339 /// ::= LocalVarID '=' 'type' type 340 bool LLParser::ParseUnnamedType() { 341 LocTy TypeLoc = Lex.getLoc(); 342 unsigned TypeID = Lex.getUIntVal(); 343 Lex.Lex(); // eat LocalVarID; 344 345 if (ParseToken(lltok::equal, "expected '=' after name") || 346 ParseToken(lltok::kw_type, "expected 'type' after '='")) 347 return true; 348 349 Type *Result = nullptr; 350 if (ParseStructDefinition(TypeLoc, "", 351 NumberedTypes[TypeID], Result)) return true; 352 353 if (!isa<StructType>(Result)) { 354 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 355 if (Entry.first) 356 return Error(TypeLoc, "non-struct types may not be recursive"); 357 Entry.first = Result; 358 Entry.second = SMLoc(); 359 } 360 361 return false; 362 } 363 364 365 /// toplevelentity 366 /// ::= LocalVar '=' 'type' type 367 bool LLParser::ParseNamedType() { 368 std::string Name = Lex.getStrVal(); 369 LocTy NameLoc = Lex.getLoc(); 370 Lex.Lex(); // eat LocalVar. 371 372 if (ParseToken(lltok::equal, "expected '=' after name") || 373 ParseToken(lltok::kw_type, "expected 'type' after name")) 374 return true; 375 376 Type *Result = nullptr; 377 if (ParseStructDefinition(NameLoc, Name, 378 NamedTypes[Name], Result)) return true; 379 380 if (!isa<StructType>(Result)) { 381 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 382 if (Entry.first) 383 return Error(NameLoc, "non-struct types may not be recursive"); 384 Entry.first = Result; 385 Entry.second = SMLoc(); 386 } 387 388 return false; 389 } 390 391 392 /// toplevelentity 393 /// ::= 'declare' FunctionHeader 394 bool LLParser::ParseDeclare() { 395 assert(Lex.getKind() == lltok::kw_declare); 396 Lex.Lex(); 397 398 Function *F; 399 return ParseFunctionHeader(F, false); 400 } 401 402 /// toplevelentity 403 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 404 bool LLParser::ParseDefine() { 405 assert(Lex.getKind() == lltok::kw_define); 406 Lex.Lex(); 407 408 Function *F; 409 return ParseFunctionHeader(F, true) || 410 ParseOptionalFunctionMetadata(*F) || 411 ParseFunctionBody(*F); 412 } 413 414 /// ParseGlobalType 415 /// ::= 'constant' 416 /// ::= 'global' 417 bool LLParser::ParseGlobalType(bool &IsConstant) { 418 if (Lex.getKind() == lltok::kw_constant) 419 IsConstant = true; 420 else if (Lex.getKind() == lltok::kw_global) 421 IsConstant = false; 422 else { 423 IsConstant = false; 424 return TokError("expected 'global' or 'constant'"); 425 } 426 Lex.Lex(); 427 return false; 428 } 429 430 /// ParseUnnamedGlobal: 431 /// OptionalVisibility ALIAS ... 432 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass 433 /// ... -> global variable 434 /// GlobalID '=' OptionalVisibility ALIAS ... 435 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 436 /// ... -> global variable 437 bool LLParser::ParseUnnamedGlobal() { 438 unsigned VarID = NumberedVals.size(); 439 std::string Name; 440 LocTy NameLoc = Lex.getLoc(); 441 442 // Handle the GlobalID form. 443 if (Lex.getKind() == lltok::GlobalID) { 444 if (Lex.getUIntVal() != VarID) 445 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 446 Twine(VarID) + "'"); 447 Lex.Lex(); // eat GlobalID; 448 449 if (ParseToken(lltok::equal, "expected '=' after name")) 450 return true; 451 } 452 453 bool HasLinkage; 454 unsigned Linkage, Visibility, DLLStorageClass; 455 GlobalVariable::ThreadLocalMode TLM; 456 bool UnnamedAddr; 457 if (ParseOptionalLinkage(Linkage, HasLinkage) || 458 ParseOptionalVisibility(Visibility) || 459 ParseOptionalDLLStorageClass(DLLStorageClass) || 460 ParseOptionalThreadLocal(TLM) || 461 parseOptionalUnnamedAddr(UnnamedAddr)) 462 return true; 463 464 if (Lex.getKind() != lltok::kw_alias) 465 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 466 DLLStorageClass, TLM, UnnamedAddr); 467 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM, 468 UnnamedAddr); 469 } 470 471 /// ParseNamedGlobal: 472 /// GlobalVar '=' OptionalVisibility ALIAS ... 473 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 474 /// ... -> global variable 475 bool LLParser::ParseNamedGlobal() { 476 assert(Lex.getKind() == lltok::GlobalVar); 477 LocTy NameLoc = Lex.getLoc(); 478 std::string Name = Lex.getStrVal(); 479 Lex.Lex(); 480 481 bool HasLinkage; 482 unsigned Linkage, Visibility, DLLStorageClass; 483 GlobalVariable::ThreadLocalMode TLM; 484 bool UnnamedAddr; 485 if (ParseToken(lltok::equal, "expected '=' in global variable") || 486 ParseOptionalLinkage(Linkage, HasLinkage) || 487 ParseOptionalVisibility(Visibility) || 488 ParseOptionalDLLStorageClass(DLLStorageClass) || 489 ParseOptionalThreadLocal(TLM) || 490 parseOptionalUnnamedAddr(UnnamedAddr)) 491 return true; 492 493 if (Lex.getKind() != lltok::kw_alias) 494 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 495 DLLStorageClass, TLM, UnnamedAddr); 496 497 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM, 498 UnnamedAddr); 499 } 500 501 bool LLParser::parseComdat() { 502 assert(Lex.getKind() == lltok::ComdatVar); 503 std::string Name = Lex.getStrVal(); 504 LocTy NameLoc = Lex.getLoc(); 505 Lex.Lex(); 506 507 if (ParseToken(lltok::equal, "expected '=' here")) 508 return true; 509 510 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 511 return TokError("expected comdat type"); 512 513 Comdat::SelectionKind SK; 514 switch (Lex.getKind()) { 515 default: 516 return TokError("unknown selection kind"); 517 case lltok::kw_any: 518 SK = Comdat::Any; 519 break; 520 case lltok::kw_exactmatch: 521 SK = Comdat::ExactMatch; 522 break; 523 case lltok::kw_largest: 524 SK = Comdat::Largest; 525 break; 526 case lltok::kw_noduplicates: 527 SK = Comdat::NoDuplicates; 528 break; 529 case lltok::kw_samesize: 530 SK = Comdat::SameSize; 531 break; 532 } 533 Lex.Lex(); 534 535 // See if the comdat was forward referenced, if so, use the comdat. 536 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 537 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 538 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 539 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 540 541 Comdat *C; 542 if (I != ComdatSymTab.end()) 543 C = &I->second; 544 else 545 C = M->getOrInsertComdat(Name); 546 C->setSelectionKind(SK); 547 548 return false; 549 } 550 551 // MDString: 552 // ::= '!' STRINGCONSTANT 553 bool LLParser::ParseMDString(MDString *&Result) { 554 std::string Str; 555 if (ParseStringConstant(Str)) return true; 556 llvm::UpgradeMDStringConstant(Str); 557 Result = MDString::get(Context, Str); 558 return false; 559 } 560 561 // MDNode: 562 // ::= '!' MDNodeNumber 563 bool LLParser::ParseMDNodeID(MDNode *&Result) { 564 // !{ ..., !42, ... } 565 unsigned MID = 0; 566 if (ParseUInt32(MID)) 567 return true; 568 569 // If not a forward reference, just return it now. 570 if (NumberedMetadata.count(MID)) { 571 Result = NumberedMetadata[MID]; 572 return false; 573 } 574 575 // Otherwise, create MDNode forward reference. 576 auto &FwdRef = ForwardRefMDNodes[MID]; 577 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), Lex.getLoc()); 578 579 Result = FwdRef.first.get(); 580 NumberedMetadata[MID].reset(Result); 581 return false; 582 } 583 584 /// ParseNamedMetadata: 585 /// !foo = !{ !1, !2 } 586 bool LLParser::ParseNamedMetadata() { 587 assert(Lex.getKind() == lltok::MetadataVar); 588 std::string Name = Lex.getStrVal(); 589 Lex.Lex(); 590 591 if (ParseToken(lltok::equal, "expected '=' here") || 592 ParseToken(lltok::exclaim, "Expected '!' here") || 593 ParseToken(lltok::lbrace, "Expected '{' here")) 594 return true; 595 596 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 597 if (Lex.getKind() != lltok::rbrace) 598 do { 599 if (ParseToken(lltok::exclaim, "Expected '!' here")) 600 return true; 601 602 MDNode *N = nullptr; 603 if (ParseMDNodeID(N)) return true; 604 NMD->addOperand(N); 605 } while (EatIfPresent(lltok::comma)); 606 607 return ParseToken(lltok::rbrace, "expected end of metadata node"); 608 } 609 610 /// ParseStandaloneMetadata: 611 /// !42 = !{...} 612 bool LLParser::ParseStandaloneMetadata() { 613 assert(Lex.getKind() == lltok::exclaim); 614 Lex.Lex(); 615 unsigned MetadataID = 0; 616 617 MDNode *Init; 618 if (ParseUInt32(MetadataID) || 619 ParseToken(lltok::equal, "expected '=' here")) 620 return true; 621 622 // Detect common error, from old metadata syntax. 623 if (Lex.getKind() == lltok::Type) 624 return TokError("unexpected type in metadata definition"); 625 626 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 627 if (Lex.getKind() == lltok::MetadataVar) { 628 if (ParseSpecializedMDNode(Init, IsDistinct)) 629 return true; 630 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 631 ParseMDTuple(Init, IsDistinct)) 632 return true; 633 634 // See if this was forward referenced, if so, handle it. 635 auto FI = ForwardRefMDNodes.find(MetadataID); 636 if (FI != ForwardRefMDNodes.end()) { 637 FI->second.first->replaceAllUsesWith(Init); 638 ForwardRefMDNodes.erase(FI); 639 640 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 641 } else { 642 if (NumberedMetadata.count(MetadataID)) 643 return TokError("Metadata id is already used"); 644 NumberedMetadata[MetadataID].reset(Init); 645 } 646 647 return false; 648 } 649 650 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 651 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 652 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 653 } 654 655 /// ParseAlias: 656 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility 657 /// OptionalDLLStorageClass OptionalThreadLocal 658 /// OptionalUnnamedAddr 'alias' Aliasee 659 /// 660 /// Aliasee 661 /// ::= TypeAndValue 662 /// 663 /// Everything through OptionalUnnamedAddr has already been parsed. 664 /// 665 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, unsigned L, 666 unsigned Visibility, unsigned DLLStorageClass, 667 GlobalVariable::ThreadLocalMode TLM, 668 bool UnnamedAddr) { 669 assert(Lex.getKind() == lltok::kw_alias); 670 Lex.Lex(); 671 672 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 673 674 if(!GlobalAlias::isValidLinkage(Linkage)) 675 return Error(NameLoc, "invalid linkage type for alias"); 676 677 if (!isValidVisibilityForLinkage(Visibility, L)) 678 return Error(NameLoc, 679 "symbol with local linkage must have default visibility"); 680 681 Type *Ty; 682 LocTy ExplicitTypeLoc = Lex.getLoc(); 683 if (ParseType(Ty) || 684 ParseToken(lltok::comma, "expected comma after alias's type")) 685 return true; 686 687 Constant *Aliasee; 688 LocTy AliaseeLoc = Lex.getLoc(); 689 if (Lex.getKind() != lltok::kw_bitcast && 690 Lex.getKind() != lltok::kw_getelementptr && 691 Lex.getKind() != lltok::kw_addrspacecast && 692 Lex.getKind() != lltok::kw_inttoptr) { 693 if (ParseGlobalTypeAndValue(Aliasee)) 694 return true; 695 } else { 696 // The bitcast dest type is not present, it is implied by the dest type. 697 ValID ID; 698 if (ParseValID(ID)) 699 return true; 700 if (ID.Kind != ValID::t_Constant) 701 return Error(AliaseeLoc, "invalid aliasee"); 702 Aliasee = ID.ConstantVal; 703 } 704 705 Type *AliaseeType = Aliasee->getType(); 706 auto *PTy = dyn_cast<PointerType>(AliaseeType); 707 if (!PTy) 708 return Error(AliaseeLoc, "An alias must have pointer type"); 709 unsigned AddrSpace = PTy->getAddressSpace(); 710 711 if (Ty != PTy->getElementType()) 712 return Error( 713 ExplicitTypeLoc, 714 "explicit pointee type doesn't match operand's pointee type"); 715 716 // Okay, create the alias but do not insert it into the module yet. 717 std::unique_ptr<GlobalAlias> GA( 718 GlobalAlias::create(Ty, AddrSpace, (GlobalValue::LinkageTypes)Linkage, 719 Name, Aliasee, /*Parent*/ nullptr)); 720 GA->setThreadLocalMode(TLM); 721 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 722 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 723 GA->setUnnamedAddr(UnnamedAddr); 724 725 if (Name.empty()) 726 NumberedVals.push_back(GA.get()); 727 728 // See if this value already exists in the symbol table. If so, it is either 729 // a redefinition or a definition of a forward reference. 730 if (GlobalValue *Val = M->getNamedValue(Name)) { 731 // See if this was a redefinition. If so, there is no entry in 732 // ForwardRefVals. 733 auto I = ForwardRefVals.find(Name); 734 if (I == ForwardRefVals.end()) 735 return Error(NameLoc, "redefinition of global named '@" + Name + "'"); 736 737 // Otherwise, this was a definition of forward ref. Verify that types 738 // agree. 739 if (Val->getType() != GA->getType()) 740 return Error(NameLoc, 741 "forward reference and definition of alias have different types"); 742 743 // If they agree, just RAUW the old value with the alias and remove the 744 // forward ref info. 745 Val->replaceAllUsesWith(GA.get()); 746 Val->eraseFromParent(); 747 ForwardRefVals.erase(I); 748 } 749 750 // Insert into the module, we know its name won't collide now. 751 M->getAliasList().push_back(GA.get()); 752 assert(GA->getName() == Name && "Should not be a name conflict!"); 753 754 // The module owns this now 755 GA.release(); 756 757 return false; 758 } 759 760 /// ParseGlobal 761 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 762 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 763 /// OptionalExternallyInitialized GlobalType Type Const 764 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 765 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 766 /// OptionalExternallyInitialized GlobalType Type Const 767 /// 768 /// Everything up to and including OptionalUnnamedAddr has been parsed 769 /// already. 770 /// 771 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 772 unsigned Linkage, bool HasLinkage, 773 unsigned Visibility, unsigned DLLStorageClass, 774 GlobalVariable::ThreadLocalMode TLM, 775 bool UnnamedAddr) { 776 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 777 return Error(NameLoc, 778 "symbol with local linkage must have default visibility"); 779 780 unsigned AddrSpace; 781 bool IsConstant, IsExternallyInitialized; 782 LocTy IsExternallyInitializedLoc; 783 LocTy TyLoc; 784 785 Type *Ty = nullptr; 786 if (ParseOptionalAddrSpace(AddrSpace) || 787 ParseOptionalToken(lltok::kw_externally_initialized, 788 IsExternallyInitialized, 789 &IsExternallyInitializedLoc) || 790 ParseGlobalType(IsConstant) || 791 ParseType(Ty, TyLoc)) 792 return true; 793 794 // If the linkage is specified and is external, then no initializer is 795 // present. 796 Constant *Init = nullptr; 797 if (!HasLinkage || (Linkage != GlobalValue::ExternalWeakLinkage && 798 Linkage != GlobalValue::ExternalLinkage)) { 799 if (ParseGlobalValue(Ty, Init)) 800 return true; 801 } 802 803 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 804 return Error(TyLoc, "invalid type for global variable"); 805 806 GlobalValue *GVal = nullptr; 807 808 // See if the global was forward referenced, if so, use the global. 809 if (!Name.empty()) { 810 GVal = M->getNamedValue(Name); 811 if (GVal) { 812 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal)) 813 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 814 } 815 } else { 816 auto I = ForwardRefValIDs.find(NumberedVals.size()); 817 if (I != ForwardRefValIDs.end()) { 818 GVal = I->second.first; 819 ForwardRefValIDs.erase(I); 820 } 821 } 822 823 GlobalVariable *GV; 824 if (!GVal) { 825 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 826 Name, nullptr, GlobalVariable::NotThreadLocal, 827 AddrSpace); 828 } else { 829 if (GVal->getValueType() != Ty) 830 return Error(TyLoc, 831 "forward reference and definition of global have different types"); 832 833 GV = cast<GlobalVariable>(GVal); 834 835 // Move the forward-reference to the correct spot in the module. 836 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 837 } 838 839 if (Name.empty()) 840 NumberedVals.push_back(GV); 841 842 // Set the parsed properties on the global. 843 if (Init) 844 GV->setInitializer(Init); 845 GV->setConstant(IsConstant); 846 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 847 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 848 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 849 GV->setExternallyInitialized(IsExternallyInitialized); 850 GV->setThreadLocalMode(TLM); 851 GV->setUnnamedAddr(UnnamedAddr); 852 853 // Parse attributes on the global. 854 while (Lex.getKind() == lltok::comma) { 855 Lex.Lex(); 856 857 if (Lex.getKind() == lltok::kw_section) { 858 Lex.Lex(); 859 GV->setSection(Lex.getStrVal()); 860 if (ParseToken(lltok::StringConstant, "expected global section string")) 861 return true; 862 } else if (Lex.getKind() == lltok::kw_align) { 863 unsigned Alignment; 864 if (ParseOptionalAlignment(Alignment)) return true; 865 GV->setAlignment(Alignment); 866 } else { 867 Comdat *C; 868 if (parseOptionalComdat(Name, C)) 869 return true; 870 if (C) 871 GV->setComdat(C); 872 else 873 return TokError("unknown global variable property!"); 874 } 875 } 876 877 return false; 878 } 879 880 /// ParseUnnamedAttrGrp 881 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 882 bool LLParser::ParseUnnamedAttrGrp() { 883 assert(Lex.getKind() == lltok::kw_attributes); 884 LocTy AttrGrpLoc = Lex.getLoc(); 885 Lex.Lex(); 886 887 if (Lex.getKind() != lltok::AttrGrpID) 888 return TokError("expected attribute group id"); 889 890 unsigned VarID = Lex.getUIntVal(); 891 std::vector<unsigned> unused; 892 LocTy BuiltinLoc; 893 Lex.Lex(); 894 895 if (ParseToken(lltok::equal, "expected '=' here") || 896 ParseToken(lltok::lbrace, "expected '{' here") || 897 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 898 BuiltinLoc) || 899 ParseToken(lltok::rbrace, "expected end of attribute group")) 900 return true; 901 902 if (!NumberedAttrBuilders[VarID].hasAttributes()) 903 return Error(AttrGrpLoc, "attribute group has no attributes"); 904 905 return false; 906 } 907 908 /// ParseFnAttributeValuePairs 909 /// ::= <attr> | <attr> '=' <value> 910 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 911 std::vector<unsigned> &FwdRefAttrGrps, 912 bool inAttrGrp, LocTy &BuiltinLoc) { 913 bool HaveError = false; 914 915 B.clear(); 916 917 while (true) { 918 lltok::Kind Token = Lex.getKind(); 919 if (Token == lltok::kw_builtin) 920 BuiltinLoc = Lex.getLoc(); 921 switch (Token) { 922 default: 923 if (!inAttrGrp) return HaveError; 924 return Error(Lex.getLoc(), "unterminated attribute group"); 925 case lltok::rbrace: 926 // Finished. 927 return false; 928 929 case lltok::AttrGrpID: { 930 // Allow a function to reference an attribute group: 931 // 932 // define void @foo() #1 { ... } 933 if (inAttrGrp) 934 HaveError |= 935 Error(Lex.getLoc(), 936 "cannot have an attribute group reference in an attribute group"); 937 938 unsigned AttrGrpNum = Lex.getUIntVal(); 939 if (inAttrGrp) break; 940 941 // Save the reference to the attribute group. We'll fill it in later. 942 FwdRefAttrGrps.push_back(AttrGrpNum); 943 break; 944 } 945 // Target-dependent attributes: 946 case lltok::StringConstant: { 947 if (ParseStringAttribute(B)) 948 return true; 949 continue; 950 } 951 952 // Target-independent attributes: 953 case lltok::kw_align: { 954 // As a hack, we allow function alignment to be initially parsed as an 955 // attribute on a function declaration/definition or added to an attribute 956 // group and later moved to the alignment field. 957 unsigned Alignment; 958 if (inAttrGrp) { 959 Lex.Lex(); 960 if (ParseToken(lltok::equal, "expected '=' here") || 961 ParseUInt32(Alignment)) 962 return true; 963 } else { 964 if (ParseOptionalAlignment(Alignment)) 965 return true; 966 } 967 B.addAlignmentAttr(Alignment); 968 continue; 969 } 970 case lltok::kw_alignstack: { 971 unsigned Alignment; 972 if (inAttrGrp) { 973 Lex.Lex(); 974 if (ParseToken(lltok::equal, "expected '=' here") || 975 ParseUInt32(Alignment)) 976 return true; 977 } else { 978 if (ParseOptionalStackAlignment(Alignment)) 979 return true; 980 } 981 B.addStackAlignmentAttr(Alignment); 982 continue; 983 } 984 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 985 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 986 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 987 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 988 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 989 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 990 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 991 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 992 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 993 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 994 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 995 case lltok::kw_noimplicitfloat: 996 B.addAttribute(Attribute::NoImplicitFloat); break; 997 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 998 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 999 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1000 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1001 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1002 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1003 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1004 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1005 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1006 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1007 case lltok::kw_returns_twice: 1008 B.addAttribute(Attribute::ReturnsTwice); break; 1009 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1010 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1011 case lltok::kw_sspstrong: 1012 B.addAttribute(Attribute::StackProtectStrong); break; 1013 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1014 case lltok::kw_sanitize_address: 1015 B.addAttribute(Attribute::SanitizeAddress); break; 1016 case lltok::kw_sanitize_thread: 1017 B.addAttribute(Attribute::SanitizeThread); break; 1018 case lltok::kw_sanitize_memory: 1019 B.addAttribute(Attribute::SanitizeMemory); break; 1020 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1021 1022 // Error handling. 1023 case lltok::kw_inreg: 1024 case lltok::kw_signext: 1025 case lltok::kw_zeroext: 1026 HaveError |= 1027 Error(Lex.getLoc(), 1028 "invalid use of attribute on a function"); 1029 break; 1030 case lltok::kw_byval: 1031 case lltok::kw_dereferenceable: 1032 case lltok::kw_dereferenceable_or_null: 1033 case lltok::kw_inalloca: 1034 case lltok::kw_nest: 1035 case lltok::kw_noalias: 1036 case lltok::kw_nocapture: 1037 case lltok::kw_nonnull: 1038 case lltok::kw_returned: 1039 case lltok::kw_sret: 1040 HaveError |= 1041 Error(Lex.getLoc(), 1042 "invalid use of parameter-only attribute on a function"); 1043 break; 1044 } 1045 1046 Lex.Lex(); 1047 } 1048 } 1049 1050 //===----------------------------------------------------------------------===// 1051 // GlobalValue Reference/Resolution Routines. 1052 //===----------------------------------------------------------------------===// 1053 1054 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1055 const std::string &Name) { 1056 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1057 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1058 else 1059 return new GlobalVariable(*M, PTy->getElementType(), false, 1060 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1061 nullptr, GlobalVariable::NotThreadLocal, 1062 PTy->getAddressSpace()); 1063 } 1064 1065 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1066 /// forward reference record if needed. This can return null if the value 1067 /// exists but does not have the right type. 1068 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1069 LocTy Loc) { 1070 PointerType *PTy = dyn_cast<PointerType>(Ty); 1071 if (!PTy) { 1072 Error(Loc, "global variable reference must have pointer type"); 1073 return nullptr; 1074 } 1075 1076 // Look this name up in the normal function symbol table. 1077 GlobalValue *Val = 1078 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1079 1080 // If this is a forward reference for the value, see if we already created a 1081 // forward ref record. 1082 if (!Val) { 1083 auto I = ForwardRefVals.find(Name); 1084 if (I != ForwardRefVals.end()) 1085 Val = I->second.first; 1086 } 1087 1088 // If we have the value in the symbol table or fwd-ref table, return it. 1089 if (Val) { 1090 if (Val->getType() == Ty) return Val; 1091 Error(Loc, "'@" + Name + "' defined with type '" + 1092 getTypeString(Val->getType()) + "'"); 1093 return nullptr; 1094 } 1095 1096 // Otherwise, create a new forward reference for this value and remember it. 1097 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1098 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1099 return FwdVal; 1100 } 1101 1102 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1103 PointerType *PTy = dyn_cast<PointerType>(Ty); 1104 if (!PTy) { 1105 Error(Loc, "global variable reference must have pointer type"); 1106 return nullptr; 1107 } 1108 1109 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1110 1111 // If this is a forward reference for the value, see if we already created a 1112 // forward ref record. 1113 if (!Val) { 1114 auto I = ForwardRefValIDs.find(ID); 1115 if (I != ForwardRefValIDs.end()) 1116 Val = I->second.first; 1117 } 1118 1119 // If we have the value in the symbol table or fwd-ref table, return it. 1120 if (Val) { 1121 if (Val->getType() == Ty) return Val; 1122 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1123 getTypeString(Val->getType()) + "'"); 1124 return nullptr; 1125 } 1126 1127 // Otherwise, create a new forward reference for this value and remember it. 1128 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1129 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1130 return FwdVal; 1131 } 1132 1133 1134 //===----------------------------------------------------------------------===// 1135 // Comdat Reference/Resolution Routines. 1136 //===----------------------------------------------------------------------===// 1137 1138 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1139 // Look this name up in the comdat symbol table. 1140 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1141 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1142 if (I != ComdatSymTab.end()) 1143 return &I->second; 1144 1145 // Otherwise, create a new forward reference for this value and remember it. 1146 Comdat *C = M->getOrInsertComdat(Name); 1147 ForwardRefComdats[Name] = Loc; 1148 return C; 1149 } 1150 1151 1152 //===----------------------------------------------------------------------===// 1153 // Helper Routines. 1154 //===----------------------------------------------------------------------===// 1155 1156 /// ParseToken - If the current token has the specified kind, eat it and return 1157 /// success. Otherwise, emit the specified error and return failure. 1158 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1159 if (Lex.getKind() != T) 1160 return TokError(ErrMsg); 1161 Lex.Lex(); 1162 return false; 1163 } 1164 1165 /// ParseStringConstant 1166 /// ::= StringConstant 1167 bool LLParser::ParseStringConstant(std::string &Result) { 1168 if (Lex.getKind() != lltok::StringConstant) 1169 return TokError("expected string constant"); 1170 Result = Lex.getStrVal(); 1171 Lex.Lex(); 1172 return false; 1173 } 1174 1175 /// ParseUInt32 1176 /// ::= uint32 1177 bool LLParser::ParseUInt32(unsigned &Val) { 1178 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1179 return TokError("expected integer"); 1180 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1181 if (Val64 != unsigned(Val64)) 1182 return TokError("expected 32-bit integer (too large)"); 1183 Val = Val64; 1184 Lex.Lex(); 1185 return false; 1186 } 1187 1188 /// ParseUInt64 1189 /// ::= uint64 1190 bool LLParser::ParseUInt64(uint64_t &Val) { 1191 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1192 return TokError("expected integer"); 1193 Val = Lex.getAPSIntVal().getLimitedValue(); 1194 Lex.Lex(); 1195 return false; 1196 } 1197 1198 /// ParseTLSModel 1199 /// := 'localdynamic' 1200 /// := 'initialexec' 1201 /// := 'localexec' 1202 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1203 switch (Lex.getKind()) { 1204 default: 1205 return TokError("expected localdynamic, initialexec or localexec"); 1206 case lltok::kw_localdynamic: 1207 TLM = GlobalVariable::LocalDynamicTLSModel; 1208 break; 1209 case lltok::kw_initialexec: 1210 TLM = GlobalVariable::InitialExecTLSModel; 1211 break; 1212 case lltok::kw_localexec: 1213 TLM = GlobalVariable::LocalExecTLSModel; 1214 break; 1215 } 1216 1217 Lex.Lex(); 1218 return false; 1219 } 1220 1221 /// ParseOptionalThreadLocal 1222 /// := /*empty*/ 1223 /// := 'thread_local' 1224 /// := 'thread_local' '(' tlsmodel ')' 1225 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1226 TLM = GlobalVariable::NotThreadLocal; 1227 if (!EatIfPresent(lltok::kw_thread_local)) 1228 return false; 1229 1230 TLM = GlobalVariable::GeneralDynamicTLSModel; 1231 if (Lex.getKind() == lltok::lparen) { 1232 Lex.Lex(); 1233 return ParseTLSModel(TLM) || 1234 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1235 } 1236 return false; 1237 } 1238 1239 /// ParseOptionalAddrSpace 1240 /// := /*empty*/ 1241 /// := 'addrspace' '(' uint32 ')' 1242 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1243 AddrSpace = 0; 1244 if (!EatIfPresent(lltok::kw_addrspace)) 1245 return false; 1246 return ParseToken(lltok::lparen, "expected '(' in address space") || 1247 ParseUInt32(AddrSpace) || 1248 ParseToken(lltok::rparen, "expected ')' in address space"); 1249 } 1250 1251 /// ParseStringAttribute 1252 /// := StringConstant 1253 /// := StringConstant '=' StringConstant 1254 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1255 std::string Attr = Lex.getStrVal(); 1256 Lex.Lex(); 1257 std::string Val; 1258 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1259 return true; 1260 B.addAttribute(Attr, Val); 1261 return false; 1262 } 1263 1264 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1265 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1266 bool HaveError = false; 1267 1268 B.clear(); 1269 1270 while (1) { 1271 lltok::Kind Token = Lex.getKind(); 1272 switch (Token) { 1273 default: // End of attributes. 1274 return HaveError; 1275 case lltok::StringConstant: { 1276 if (ParseStringAttribute(B)) 1277 return true; 1278 continue; 1279 } 1280 case lltok::kw_align: { 1281 unsigned Alignment; 1282 if (ParseOptionalAlignment(Alignment)) 1283 return true; 1284 B.addAlignmentAttr(Alignment); 1285 continue; 1286 } 1287 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1288 case lltok::kw_dereferenceable: { 1289 uint64_t Bytes; 1290 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1291 return true; 1292 B.addDereferenceableAttr(Bytes); 1293 continue; 1294 } 1295 case lltok::kw_dereferenceable_or_null: { 1296 uint64_t Bytes; 1297 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1298 return true; 1299 B.addDereferenceableOrNullAttr(Bytes); 1300 continue; 1301 } 1302 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1303 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1304 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1305 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1306 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1307 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1308 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1309 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1310 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1311 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1312 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1313 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1314 1315 case lltok::kw_alignstack: 1316 case lltok::kw_alwaysinline: 1317 case lltok::kw_argmemonly: 1318 case lltok::kw_builtin: 1319 case lltok::kw_inlinehint: 1320 case lltok::kw_jumptable: 1321 case lltok::kw_minsize: 1322 case lltok::kw_naked: 1323 case lltok::kw_nobuiltin: 1324 case lltok::kw_noduplicate: 1325 case lltok::kw_noimplicitfloat: 1326 case lltok::kw_noinline: 1327 case lltok::kw_nonlazybind: 1328 case lltok::kw_noredzone: 1329 case lltok::kw_noreturn: 1330 case lltok::kw_nounwind: 1331 case lltok::kw_optnone: 1332 case lltok::kw_optsize: 1333 case lltok::kw_returns_twice: 1334 case lltok::kw_sanitize_address: 1335 case lltok::kw_sanitize_memory: 1336 case lltok::kw_sanitize_thread: 1337 case lltok::kw_ssp: 1338 case lltok::kw_sspreq: 1339 case lltok::kw_sspstrong: 1340 case lltok::kw_safestack: 1341 case lltok::kw_uwtable: 1342 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1343 break; 1344 } 1345 1346 Lex.Lex(); 1347 } 1348 } 1349 1350 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1351 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1352 bool HaveError = false; 1353 1354 B.clear(); 1355 1356 while (1) { 1357 lltok::Kind Token = Lex.getKind(); 1358 switch (Token) { 1359 default: // End of attributes. 1360 return HaveError; 1361 case lltok::StringConstant: { 1362 if (ParseStringAttribute(B)) 1363 return true; 1364 continue; 1365 } 1366 case lltok::kw_dereferenceable: { 1367 uint64_t Bytes; 1368 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1369 return true; 1370 B.addDereferenceableAttr(Bytes); 1371 continue; 1372 } 1373 case lltok::kw_dereferenceable_or_null: { 1374 uint64_t Bytes; 1375 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1376 return true; 1377 B.addDereferenceableOrNullAttr(Bytes); 1378 continue; 1379 } 1380 case lltok::kw_align: { 1381 unsigned Alignment; 1382 if (ParseOptionalAlignment(Alignment)) 1383 return true; 1384 B.addAlignmentAttr(Alignment); 1385 continue; 1386 } 1387 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1388 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1389 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1390 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1391 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1392 1393 // Error handling. 1394 case lltok::kw_byval: 1395 case lltok::kw_inalloca: 1396 case lltok::kw_nest: 1397 case lltok::kw_nocapture: 1398 case lltok::kw_returned: 1399 case lltok::kw_sret: 1400 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1401 break; 1402 1403 case lltok::kw_alignstack: 1404 case lltok::kw_alwaysinline: 1405 case lltok::kw_argmemonly: 1406 case lltok::kw_builtin: 1407 case lltok::kw_cold: 1408 case lltok::kw_inlinehint: 1409 case lltok::kw_jumptable: 1410 case lltok::kw_minsize: 1411 case lltok::kw_naked: 1412 case lltok::kw_nobuiltin: 1413 case lltok::kw_noduplicate: 1414 case lltok::kw_noimplicitfloat: 1415 case lltok::kw_noinline: 1416 case lltok::kw_nonlazybind: 1417 case lltok::kw_noredzone: 1418 case lltok::kw_noreturn: 1419 case lltok::kw_nounwind: 1420 case lltok::kw_optnone: 1421 case lltok::kw_optsize: 1422 case lltok::kw_returns_twice: 1423 case lltok::kw_sanitize_address: 1424 case lltok::kw_sanitize_memory: 1425 case lltok::kw_sanitize_thread: 1426 case lltok::kw_ssp: 1427 case lltok::kw_sspreq: 1428 case lltok::kw_sspstrong: 1429 case lltok::kw_safestack: 1430 case lltok::kw_uwtable: 1431 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1432 break; 1433 1434 case lltok::kw_readnone: 1435 case lltok::kw_readonly: 1436 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1437 } 1438 1439 Lex.Lex(); 1440 } 1441 } 1442 1443 /// ParseOptionalLinkage 1444 /// ::= /*empty*/ 1445 /// ::= 'private' 1446 /// ::= 'internal' 1447 /// ::= 'weak' 1448 /// ::= 'weak_odr' 1449 /// ::= 'linkonce' 1450 /// ::= 'linkonce_odr' 1451 /// ::= 'available_externally' 1452 /// ::= 'appending' 1453 /// ::= 'common' 1454 /// ::= 'extern_weak' 1455 /// ::= 'external' 1456 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { 1457 HasLinkage = false; 1458 switch (Lex.getKind()) { 1459 default: Res=GlobalValue::ExternalLinkage; return false; 1460 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; 1461 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; 1462 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; 1463 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; 1464 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; 1465 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; 1466 case lltok::kw_available_externally: 1467 Res = GlobalValue::AvailableExternallyLinkage; 1468 break; 1469 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; 1470 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; 1471 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; 1472 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; 1473 } 1474 Lex.Lex(); 1475 HasLinkage = true; 1476 return false; 1477 } 1478 1479 /// ParseOptionalVisibility 1480 /// ::= /*empty*/ 1481 /// ::= 'default' 1482 /// ::= 'hidden' 1483 /// ::= 'protected' 1484 /// 1485 bool LLParser::ParseOptionalVisibility(unsigned &Res) { 1486 switch (Lex.getKind()) { 1487 default: Res = GlobalValue::DefaultVisibility; return false; 1488 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; 1489 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; 1490 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; 1491 } 1492 Lex.Lex(); 1493 return false; 1494 } 1495 1496 /// ParseOptionalDLLStorageClass 1497 /// ::= /*empty*/ 1498 /// ::= 'dllimport' 1499 /// ::= 'dllexport' 1500 /// 1501 bool LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1502 switch (Lex.getKind()) { 1503 default: Res = GlobalValue::DefaultStorageClass; return false; 1504 case lltok::kw_dllimport: Res = GlobalValue::DLLImportStorageClass; break; 1505 case lltok::kw_dllexport: Res = GlobalValue::DLLExportStorageClass; break; 1506 } 1507 Lex.Lex(); 1508 return false; 1509 } 1510 1511 /// ParseOptionalCallingConv 1512 /// ::= /*empty*/ 1513 /// ::= 'ccc' 1514 /// ::= 'fastcc' 1515 /// ::= 'intel_ocl_bicc' 1516 /// ::= 'coldcc' 1517 /// ::= 'x86_stdcallcc' 1518 /// ::= 'x86_fastcallcc' 1519 /// ::= 'x86_thiscallcc' 1520 /// ::= 'x86_vectorcallcc' 1521 /// ::= 'arm_apcscc' 1522 /// ::= 'arm_aapcscc' 1523 /// ::= 'arm_aapcs_vfpcc' 1524 /// ::= 'msp430_intrcc' 1525 /// ::= 'ptx_kernel' 1526 /// ::= 'ptx_device' 1527 /// ::= 'spir_func' 1528 /// ::= 'spir_kernel' 1529 /// ::= 'x86_64_sysvcc' 1530 /// ::= 'x86_64_win64cc' 1531 /// ::= 'webkit_jscc' 1532 /// ::= 'anyregcc' 1533 /// ::= 'preserve_mostcc' 1534 /// ::= 'preserve_allcc' 1535 /// ::= 'ghccc' 1536 /// ::= 'hhvmcc' 1537 /// ::= 'hhvm_ccc' 1538 /// ::= 'cc' UINT 1539 /// 1540 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1541 switch (Lex.getKind()) { 1542 default: CC = CallingConv::C; return false; 1543 case lltok::kw_ccc: CC = CallingConv::C; break; 1544 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1545 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1546 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1547 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1548 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1549 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1550 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1551 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1552 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1553 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1554 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1555 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1556 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1557 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1558 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1559 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1560 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break; 1561 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1562 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1563 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1564 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1565 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1566 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1567 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1568 case lltok::kw_cc: { 1569 Lex.Lex(); 1570 return ParseUInt32(CC); 1571 } 1572 } 1573 1574 Lex.Lex(); 1575 return false; 1576 } 1577 1578 /// ParseMetadataAttachment 1579 /// ::= !dbg !42 1580 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1581 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1582 1583 std::string Name = Lex.getStrVal(); 1584 Kind = M->getMDKindID(Name); 1585 Lex.Lex(); 1586 1587 return ParseMDNode(MD); 1588 } 1589 1590 /// ParseInstructionMetadata 1591 /// ::= !dbg !42 (',' !dbg !57)* 1592 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1593 do { 1594 if (Lex.getKind() != lltok::MetadataVar) 1595 return TokError("expected metadata after comma"); 1596 1597 unsigned MDK; 1598 MDNode *N; 1599 if (ParseMetadataAttachment(MDK, N)) 1600 return true; 1601 1602 Inst.setMetadata(MDK, N); 1603 if (MDK == LLVMContext::MD_tbaa) 1604 InstsWithTBAATag.push_back(&Inst); 1605 1606 // If this is the end of the list, we're done. 1607 } while (EatIfPresent(lltok::comma)); 1608 return false; 1609 } 1610 1611 /// ParseOptionalFunctionMetadata 1612 /// ::= (!dbg !57)* 1613 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1614 while (Lex.getKind() == lltok::MetadataVar) { 1615 unsigned MDK; 1616 MDNode *N; 1617 if (ParseMetadataAttachment(MDK, N)) 1618 return true; 1619 1620 F.setMetadata(MDK, N); 1621 } 1622 return false; 1623 } 1624 1625 /// ParseOptionalAlignment 1626 /// ::= /* empty */ 1627 /// ::= 'align' 4 1628 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1629 Alignment = 0; 1630 if (!EatIfPresent(lltok::kw_align)) 1631 return false; 1632 LocTy AlignLoc = Lex.getLoc(); 1633 if (ParseUInt32(Alignment)) return true; 1634 if (!isPowerOf2_32(Alignment)) 1635 return Error(AlignLoc, "alignment is not a power of two"); 1636 if (Alignment > Value::MaximumAlignment) 1637 return Error(AlignLoc, "huge alignments are not supported yet"); 1638 return false; 1639 } 1640 1641 /// ParseOptionalDerefAttrBytes 1642 /// ::= /* empty */ 1643 /// ::= AttrKind '(' 4 ')' 1644 /// 1645 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1646 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1647 uint64_t &Bytes) { 1648 assert((AttrKind == lltok::kw_dereferenceable || 1649 AttrKind == lltok::kw_dereferenceable_or_null) && 1650 "contract!"); 1651 1652 Bytes = 0; 1653 if (!EatIfPresent(AttrKind)) 1654 return false; 1655 LocTy ParenLoc = Lex.getLoc(); 1656 if (!EatIfPresent(lltok::lparen)) 1657 return Error(ParenLoc, "expected '('"); 1658 LocTy DerefLoc = Lex.getLoc(); 1659 if (ParseUInt64(Bytes)) return true; 1660 ParenLoc = Lex.getLoc(); 1661 if (!EatIfPresent(lltok::rparen)) 1662 return Error(ParenLoc, "expected ')'"); 1663 if (!Bytes) 1664 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1665 return false; 1666 } 1667 1668 /// ParseOptionalCommaAlign 1669 /// ::= 1670 /// ::= ',' align 4 1671 /// 1672 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1673 /// end. 1674 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1675 bool &AteExtraComma) { 1676 AteExtraComma = false; 1677 while (EatIfPresent(lltok::comma)) { 1678 // Metadata at the end is an early exit. 1679 if (Lex.getKind() == lltok::MetadataVar) { 1680 AteExtraComma = true; 1681 return false; 1682 } 1683 1684 if (Lex.getKind() != lltok::kw_align) 1685 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1686 1687 if (ParseOptionalAlignment(Alignment)) return true; 1688 } 1689 1690 return false; 1691 } 1692 1693 /// ParseScopeAndOrdering 1694 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1695 /// else: ::= 1696 /// 1697 /// This sets Scope and Ordering to the parsed values. 1698 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1699 AtomicOrdering &Ordering) { 1700 if (!isAtomic) 1701 return false; 1702 1703 Scope = CrossThread; 1704 if (EatIfPresent(lltok::kw_singlethread)) 1705 Scope = SingleThread; 1706 1707 return ParseOrdering(Ordering); 1708 } 1709 1710 /// ParseOrdering 1711 /// ::= AtomicOrdering 1712 /// 1713 /// This sets Ordering to the parsed value. 1714 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 1715 switch (Lex.getKind()) { 1716 default: return TokError("Expected ordering on atomic instruction"); 1717 case lltok::kw_unordered: Ordering = Unordered; break; 1718 case lltok::kw_monotonic: Ordering = Monotonic; break; 1719 case lltok::kw_acquire: Ordering = Acquire; break; 1720 case lltok::kw_release: Ordering = Release; break; 1721 case lltok::kw_acq_rel: Ordering = AcquireRelease; break; 1722 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break; 1723 } 1724 Lex.Lex(); 1725 return false; 1726 } 1727 1728 /// ParseOptionalStackAlignment 1729 /// ::= /* empty */ 1730 /// ::= 'alignstack' '(' 4 ')' 1731 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1732 Alignment = 0; 1733 if (!EatIfPresent(lltok::kw_alignstack)) 1734 return false; 1735 LocTy ParenLoc = Lex.getLoc(); 1736 if (!EatIfPresent(lltok::lparen)) 1737 return Error(ParenLoc, "expected '('"); 1738 LocTy AlignLoc = Lex.getLoc(); 1739 if (ParseUInt32(Alignment)) return true; 1740 ParenLoc = Lex.getLoc(); 1741 if (!EatIfPresent(lltok::rparen)) 1742 return Error(ParenLoc, "expected ')'"); 1743 if (!isPowerOf2_32(Alignment)) 1744 return Error(AlignLoc, "stack alignment is not a power of two"); 1745 return false; 1746 } 1747 1748 /// ParseIndexList - This parses the index list for an insert/extractvalue 1749 /// instruction. This sets AteExtraComma in the case where we eat an extra 1750 /// comma at the end of the line and find that it is followed by metadata. 1751 /// Clients that don't allow metadata can call the version of this function that 1752 /// only takes one argument. 1753 /// 1754 /// ParseIndexList 1755 /// ::= (',' uint32)+ 1756 /// 1757 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1758 bool &AteExtraComma) { 1759 AteExtraComma = false; 1760 1761 if (Lex.getKind() != lltok::comma) 1762 return TokError("expected ',' as start of index list"); 1763 1764 while (EatIfPresent(lltok::comma)) { 1765 if (Lex.getKind() == lltok::MetadataVar) { 1766 if (Indices.empty()) return TokError("expected index"); 1767 AteExtraComma = true; 1768 return false; 1769 } 1770 unsigned Idx = 0; 1771 if (ParseUInt32(Idx)) return true; 1772 Indices.push_back(Idx); 1773 } 1774 1775 return false; 1776 } 1777 1778 //===----------------------------------------------------------------------===// 1779 // Type Parsing. 1780 //===----------------------------------------------------------------------===// 1781 1782 /// ParseType - Parse a type. 1783 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 1784 SMLoc TypeLoc = Lex.getLoc(); 1785 switch (Lex.getKind()) { 1786 default: 1787 return TokError(Msg); 1788 case lltok::Type: 1789 // Type ::= 'float' | 'void' (etc) 1790 Result = Lex.getTyVal(); 1791 Lex.Lex(); 1792 break; 1793 case lltok::lbrace: 1794 // Type ::= StructType 1795 if (ParseAnonStructType(Result, false)) 1796 return true; 1797 break; 1798 case lltok::lsquare: 1799 // Type ::= '[' ... ']' 1800 Lex.Lex(); // eat the lsquare. 1801 if (ParseArrayVectorType(Result, false)) 1802 return true; 1803 break; 1804 case lltok::less: // Either vector or packed struct. 1805 // Type ::= '<' ... '>' 1806 Lex.Lex(); 1807 if (Lex.getKind() == lltok::lbrace) { 1808 if (ParseAnonStructType(Result, true) || 1809 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1810 return true; 1811 } else if (ParseArrayVectorType(Result, true)) 1812 return true; 1813 break; 1814 case lltok::LocalVar: { 1815 // Type ::= %foo 1816 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1817 1818 // If the type hasn't been defined yet, create a forward definition and 1819 // remember where that forward def'n was seen (in case it never is defined). 1820 if (!Entry.first) { 1821 Entry.first = StructType::create(Context, Lex.getStrVal()); 1822 Entry.second = Lex.getLoc(); 1823 } 1824 Result = Entry.first; 1825 Lex.Lex(); 1826 break; 1827 } 1828 1829 case lltok::LocalVarID: { 1830 // Type ::= %4 1831 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 1832 1833 // If the type hasn't been defined yet, create a forward definition and 1834 // remember where that forward def'n was seen (in case it never is defined). 1835 if (!Entry.first) { 1836 Entry.first = StructType::create(Context); 1837 Entry.second = Lex.getLoc(); 1838 } 1839 Result = Entry.first; 1840 Lex.Lex(); 1841 break; 1842 } 1843 } 1844 1845 // Parse the type suffixes. 1846 while (1) { 1847 switch (Lex.getKind()) { 1848 // End of type. 1849 default: 1850 if (!AllowVoid && Result->isVoidTy()) 1851 return Error(TypeLoc, "void type only allowed for function results"); 1852 return false; 1853 1854 // Type ::= Type '*' 1855 case lltok::star: 1856 if (Result->isLabelTy()) 1857 return TokError("basic block pointers are invalid"); 1858 if (Result->isVoidTy()) 1859 return TokError("pointers to void are invalid - use i8* instead"); 1860 if (!PointerType::isValidElementType(Result)) 1861 return TokError("pointer to this type is invalid"); 1862 Result = PointerType::getUnqual(Result); 1863 Lex.Lex(); 1864 break; 1865 1866 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 1867 case lltok::kw_addrspace: { 1868 if (Result->isLabelTy()) 1869 return TokError("basic block pointers are invalid"); 1870 if (Result->isVoidTy()) 1871 return TokError("pointers to void are invalid; use i8* instead"); 1872 if (!PointerType::isValidElementType(Result)) 1873 return TokError("pointer to this type is invalid"); 1874 unsigned AddrSpace; 1875 if (ParseOptionalAddrSpace(AddrSpace) || 1876 ParseToken(lltok::star, "expected '*' in address space")) 1877 return true; 1878 1879 Result = PointerType::get(Result, AddrSpace); 1880 break; 1881 } 1882 1883 /// Types '(' ArgTypeListI ')' OptFuncAttrs 1884 case lltok::lparen: 1885 if (ParseFunctionType(Result)) 1886 return true; 1887 break; 1888 } 1889 } 1890 } 1891 1892 /// ParseParameterList 1893 /// ::= '(' ')' 1894 /// ::= '(' Arg (',' Arg)* ')' 1895 /// Arg 1896 /// ::= Type OptionalAttributes Value OptionalAttributes 1897 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 1898 PerFunctionState &PFS, bool IsMustTailCall, 1899 bool InVarArgsFunc) { 1900 if (ParseToken(lltok::lparen, "expected '(' in call")) 1901 return true; 1902 1903 unsigned AttrIndex = 1; 1904 while (Lex.getKind() != lltok::rparen) { 1905 // If this isn't the first argument, we need a comma. 1906 if (!ArgList.empty() && 1907 ParseToken(lltok::comma, "expected ',' in argument list")) 1908 return true; 1909 1910 // Parse an ellipsis if this is a musttail call in a variadic function. 1911 if (Lex.getKind() == lltok::dotdotdot) { 1912 const char *Msg = "unexpected ellipsis in argument list for "; 1913 if (!IsMustTailCall) 1914 return TokError(Twine(Msg) + "non-musttail call"); 1915 if (!InVarArgsFunc) 1916 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 1917 Lex.Lex(); // Lex the '...', it is purely for readability. 1918 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 1919 } 1920 1921 // Parse the argument. 1922 LocTy ArgLoc; 1923 Type *ArgTy = nullptr; 1924 AttrBuilder ArgAttrs; 1925 Value *V; 1926 if (ParseType(ArgTy, ArgLoc)) 1927 return true; 1928 1929 if (ArgTy->isMetadataTy()) { 1930 if (ParseMetadataAsValue(V, PFS)) 1931 return true; 1932 } else { 1933 // Otherwise, handle normal operands. 1934 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 1935 return true; 1936 } 1937 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(), 1938 AttrIndex++, 1939 ArgAttrs))); 1940 } 1941 1942 if (IsMustTailCall && InVarArgsFunc) 1943 return TokError("expected '...' at end of argument list for musttail call " 1944 "in varargs function"); 1945 1946 Lex.Lex(); // Lex the ')'. 1947 return false; 1948 } 1949 1950 /// ParseOptionalOperandBundles 1951 /// ::= /*empty*/ 1952 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 1953 /// 1954 /// OperandBundle 1955 /// ::= bundle-tag '(' ')' 1956 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 1957 /// 1958 /// bundle-tag ::= String Constant 1959 bool LLParser::ParseOptionalOperandBundles( 1960 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 1961 LocTy BeginLoc = Lex.getLoc(); 1962 if (!EatIfPresent(lltok::lsquare)) 1963 return false; 1964 1965 while (Lex.getKind() != lltok::rsquare) { 1966 // If this isn't the first operand bundle, we need a comma. 1967 if (!BundleList.empty() && 1968 ParseToken(lltok::comma, "expected ',' in input list")) 1969 return true; 1970 1971 std::string Tag; 1972 if (ParseStringConstant(Tag)) 1973 return true; 1974 1975 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 1976 return true; 1977 1978 std::vector<Value *> Inputs; 1979 while (Lex.getKind() != lltok::rparen) { 1980 // If this isn't the first input, we need a comma. 1981 if (!Inputs.empty() && 1982 ParseToken(lltok::comma, "expected ',' in input list")) 1983 return true; 1984 1985 Type *Ty = nullptr; 1986 Value *Input = nullptr; 1987 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 1988 return true; 1989 Inputs.push_back(Input); 1990 } 1991 1992 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 1993 1994 Lex.Lex(); // Lex the ')'. 1995 } 1996 1997 if (BundleList.empty()) 1998 return Error(BeginLoc, "operand bundle set must not be empty"); 1999 2000 Lex.Lex(); // Lex the ']'. 2001 return false; 2002 } 2003 2004 /// ParseArgumentList - Parse the argument list for a function type or function 2005 /// prototype. 2006 /// ::= '(' ArgTypeListI ')' 2007 /// ArgTypeListI 2008 /// ::= /*empty*/ 2009 /// ::= '...' 2010 /// ::= ArgTypeList ',' '...' 2011 /// ::= ArgType (',' ArgType)* 2012 /// 2013 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2014 bool &isVarArg){ 2015 isVarArg = false; 2016 assert(Lex.getKind() == lltok::lparen); 2017 Lex.Lex(); // eat the (. 2018 2019 if (Lex.getKind() == lltok::rparen) { 2020 // empty 2021 } else if (Lex.getKind() == lltok::dotdotdot) { 2022 isVarArg = true; 2023 Lex.Lex(); 2024 } else { 2025 LocTy TypeLoc = Lex.getLoc(); 2026 Type *ArgTy = nullptr; 2027 AttrBuilder Attrs; 2028 std::string Name; 2029 2030 if (ParseType(ArgTy) || 2031 ParseOptionalParamAttrs(Attrs)) return true; 2032 2033 if (ArgTy->isVoidTy()) 2034 return Error(TypeLoc, "argument can not have void type"); 2035 2036 if (Lex.getKind() == lltok::LocalVar) { 2037 Name = Lex.getStrVal(); 2038 Lex.Lex(); 2039 } 2040 2041 if (!FunctionType::isValidArgumentType(ArgTy)) 2042 return Error(TypeLoc, "invalid type for function argument"); 2043 2044 unsigned AttrIndex = 1; 2045 ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(), 2046 AttrIndex++, Attrs), 2047 std::move(Name)); 2048 2049 while (EatIfPresent(lltok::comma)) { 2050 // Handle ... at end of arg list. 2051 if (EatIfPresent(lltok::dotdotdot)) { 2052 isVarArg = true; 2053 break; 2054 } 2055 2056 // Otherwise must be an argument type. 2057 TypeLoc = Lex.getLoc(); 2058 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2059 2060 if (ArgTy->isVoidTy()) 2061 return Error(TypeLoc, "argument can not have void type"); 2062 2063 if (Lex.getKind() == lltok::LocalVar) { 2064 Name = Lex.getStrVal(); 2065 Lex.Lex(); 2066 } else { 2067 Name = ""; 2068 } 2069 2070 if (!ArgTy->isFirstClassType()) 2071 return Error(TypeLoc, "invalid type for function argument"); 2072 2073 ArgList.emplace_back( 2074 TypeLoc, ArgTy, 2075 AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs), 2076 std::move(Name)); 2077 } 2078 } 2079 2080 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2081 } 2082 2083 /// ParseFunctionType 2084 /// ::= Type ArgumentList OptionalAttrs 2085 bool LLParser::ParseFunctionType(Type *&Result) { 2086 assert(Lex.getKind() == lltok::lparen); 2087 2088 if (!FunctionType::isValidReturnType(Result)) 2089 return TokError("invalid function return type"); 2090 2091 SmallVector<ArgInfo, 8> ArgList; 2092 bool isVarArg; 2093 if (ParseArgumentList(ArgList, isVarArg)) 2094 return true; 2095 2096 // Reject names on the arguments lists. 2097 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2098 if (!ArgList[i].Name.empty()) 2099 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2100 if (ArgList[i].Attrs.hasAttributes(i + 1)) 2101 return Error(ArgList[i].Loc, 2102 "argument attributes invalid in function type"); 2103 } 2104 2105 SmallVector<Type*, 16> ArgListTy; 2106 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2107 ArgListTy.push_back(ArgList[i].Ty); 2108 2109 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2110 return false; 2111 } 2112 2113 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2114 /// other structs. 2115 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2116 SmallVector<Type*, 8> Elts; 2117 if (ParseStructBody(Elts)) return true; 2118 2119 Result = StructType::get(Context, Elts, Packed); 2120 return false; 2121 } 2122 2123 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2124 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2125 std::pair<Type*, LocTy> &Entry, 2126 Type *&ResultTy) { 2127 // If the type was already defined, diagnose the redefinition. 2128 if (Entry.first && !Entry.second.isValid()) 2129 return Error(TypeLoc, "redefinition of type"); 2130 2131 // If we have opaque, just return without filling in the definition for the 2132 // struct. This counts as a definition as far as the .ll file goes. 2133 if (EatIfPresent(lltok::kw_opaque)) { 2134 // This type is being defined, so clear the location to indicate this. 2135 Entry.second = SMLoc(); 2136 2137 // If this type number has never been uttered, create it. 2138 if (!Entry.first) 2139 Entry.first = StructType::create(Context, Name); 2140 ResultTy = Entry.first; 2141 return false; 2142 } 2143 2144 // If the type starts with '<', then it is either a packed struct or a vector. 2145 bool isPacked = EatIfPresent(lltok::less); 2146 2147 // If we don't have a struct, then we have a random type alias, which we 2148 // accept for compatibility with old files. These types are not allowed to be 2149 // forward referenced and not allowed to be recursive. 2150 if (Lex.getKind() != lltok::lbrace) { 2151 if (Entry.first) 2152 return Error(TypeLoc, "forward references to non-struct type"); 2153 2154 ResultTy = nullptr; 2155 if (isPacked) 2156 return ParseArrayVectorType(ResultTy, true); 2157 return ParseType(ResultTy); 2158 } 2159 2160 // This type is being defined, so clear the location to indicate this. 2161 Entry.second = SMLoc(); 2162 2163 // If this type number has never been uttered, create it. 2164 if (!Entry.first) 2165 Entry.first = StructType::create(Context, Name); 2166 2167 StructType *STy = cast<StructType>(Entry.first); 2168 2169 SmallVector<Type*, 8> Body; 2170 if (ParseStructBody(Body) || 2171 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2172 return true; 2173 2174 STy->setBody(Body, isPacked); 2175 ResultTy = STy; 2176 return false; 2177 } 2178 2179 2180 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2181 /// StructType 2182 /// ::= '{' '}' 2183 /// ::= '{' Type (',' Type)* '}' 2184 /// ::= '<' '{' '}' '>' 2185 /// ::= '<' '{' Type (',' Type)* '}' '>' 2186 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2187 assert(Lex.getKind() == lltok::lbrace); 2188 Lex.Lex(); // Consume the '{' 2189 2190 // Handle the empty struct. 2191 if (EatIfPresent(lltok::rbrace)) 2192 return false; 2193 2194 LocTy EltTyLoc = Lex.getLoc(); 2195 Type *Ty = nullptr; 2196 if (ParseType(Ty)) return true; 2197 Body.push_back(Ty); 2198 2199 if (!StructType::isValidElementType(Ty)) 2200 return Error(EltTyLoc, "invalid element type for struct"); 2201 2202 while (EatIfPresent(lltok::comma)) { 2203 EltTyLoc = Lex.getLoc(); 2204 if (ParseType(Ty)) return true; 2205 2206 if (!StructType::isValidElementType(Ty)) 2207 return Error(EltTyLoc, "invalid element type for struct"); 2208 2209 Body.push_back(Ty); 2210 } 2211 2212 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2213 } 2214 2215 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2216 /// token has already been consumed. 2217 /// Type 2218 /// ::= '[' APSINTVAL 'x' Types ']' 2219 /// ::= '<' APSINTVAL 'x' Types '>' 2220 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2221 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2222 Lex.getAPSIntVal().getBitWidth() > 64) 2223 return TokError("expected number in address space"); 2224 2225 LocTy SizeLoc = Lex.getLoc(); 2226 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2227 Lex.Lex(); 2228 2229 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2230 return true; 2231 2232 LocTy TypeLoc = Lex.getLoc(); 2233 Type *EltTy = nullptr; 2234 if (ParseType(EltTy)) return true; 2235 2236 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2237 "expected end of sequential type")) 2238 return true; 2239 2240 if (isVector) { 2241 if (Size == 0) 2242 return Error(SizeLoc, "zero element vector is illegal"); 2243 if ((unsigned)Size != Size) 2244 return Error(SizeLoc, "size too large for vector"); 2245 if (!VectorType::isValidElementType(EltTy)) 2246 return Error(TypeLoc, "invalid vector element type"); 2247 Result = VectorType::get(EltTy, unsigned(Size)); 2248 } else { 2249 if (!ArrayType::isValidElementType(EltTy)) 2250 return Error(TypeLoc, "invalid array element type"); 2251 Result = ArrayType::get(EltTy, Size); 2252 } 2253 return false; 2254 } 2255 2256 //===----------------------------------------------------------------------===// 2257 // Function Semantic Analysis. 2258 //===----------------------------------------------------------------------===// 2259 2260 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2261 int functionNumber) 2262 : P(p), F(f), FunctionNumber(functionNumber) { 2263 2264 // Insert unnamed arguments into the NumberedVals list. 2265 for (Argument &A : F.args()) 2266 if (!A.hasName()) 2267 NumberedVals.push_back(&A); 2268 } 2269 2270 LLParser::PerFunctionState::~PerFunctionState() { 2271 // If there were any forward referenced non-basicblock values, delete them. 2272 2273 for (const auto &P : ForwardRefVals) { 2274 if (isa<BasicBlock>(P.second.first)) 2275 continue; 2276 P.second.first->replaceAllUsesWith( 2277 UndefValue::get(P.second.first->getType())); 2278 delete P.second.first; 2279 } 2280 2281 for (const auto &P : ForwardRefValIDs) { 2282 if (isa<BasicBlock>(P.second.first)) 2283 continue; 2284 P.second.first->replaceAllUsesWith( 2285 UndefValue::get(P.second.first->getType())); 2286 delete P.second.first; 2287 } 2288 } 2289 2290 bool LLParser::PerFunctionState::FinishFunction() { 2291 if (!ForwardRefVals.empty()) 2292 return P.Error(ForwardRefVals.begin()->second.second, 2293 "use of undefined value '%" + ForwardRefVals.begin()->first + 2294 "'"); 2295 if (!ForwardRefValIDs.empty()) 2296 return P.Error(ForwardRefValIDs.begin()->second.second, 2297 "use of undefined value '%" + 2298 Twine(ForwardRefValIDs.begin()->first) + "'"); 2299 return false; 2300 } 2301 2302 2303 /// GetVal - Get a value with the specified name or ID, creating a 2304 /// forward reference record if needed. This can return null if the value 2305 /// exists but does not have the right type. 2306 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2307 LocTy Loc, OperatorConstraint OC) { 2308 // Look this name up in the normal function symbol table. 2309 Value *Val = F.getValueSymbolTable().lookup(Name); 2310 2311 // If this is a forward reference for the value, see if we already created a 2312 // forward ref record. 2313 if (!Val) { 2314 auto I = ForwardRefVals.find(Name); 2315 if (I != ForwardRefVals.end()) 2316 Val = I->second.first; 2317 } 2318 2319 // If we have the value in the symbol table or fwd-ref table, return it. 2320 if (Val) { 2321 // Check operator constraints. 2322 switch (OC) { 2323 case OC_None: 2324 // no constraint 2325 break; 2326 case OC_CatchPad: 2327 if (!isa<CatchPadInst>(Val)) { 2328 P.Error(Loc, "'%" + Name + "' is not a catchpad"); 2329 return nullptr; 2330 } 2331 break; 2332 case OC_CleanupPad: 2333 if (!isa<CleanupPadInst>(Val)) { 2334 P.Error(Loc, "'%" + Name + "' is not a cleanuppad"); 2335 return nullptr; 2336 } 2337 break; 2338 } 2339 if (Val->getType() == Ty) return Val; 2340 if (Ty->isLabelTy()) 2341 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2342 else 2343 P.Error(Loc, "'%" + Name + "' defined with type '" + 2344 getTypeString(Val->getType()) + "'"); 2345 return nullptr; 2346 } 2347 2348 // Don't make placeholders with invalid type. 2349 if (!Ty->isFirstClassType()) { 2350 P.Error(Loc, "invalid use of a non-first-class type"); 2351 return nullptr; 2352 } 2353 2354 // Otherwise, create a new forward reference for this value and remember it. 2355 Value *FwdVal; 2356 if (Ty->isLabelTy()) { 2357 assert(!OC); 2358 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2359 } else if (!OC) { 2360 FwdVal = new Argument(Ty, Name); 2361 } else { 2362 switch (OC) { 2363 case OC_CatchPad: 2364 FwdVal = CatchPadInst::Create(&F.getEntryBlock(), &F.getEntryBlock(), {}, 2365 Name); 2366 break; 2367 case OC_CleanupPad: 2368 FwdVal = CleanupPadInst::Create(F.getContext(), {}, Name); 2369 break; 2370 default: 2371 llvm_unreachable("unexpected constraint"); 2372 } 2373 } 2374 2375 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2376 return FwdVal; 2377 } 2378 2379 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2380 OperatorConstraint OC) { 2381 // Look this name up in the normal function symbol table. 2382 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2383 2384 // If this is a forward reference for the value, see if we already created a 2385 // forward ref record. 2386 if (!Val) { 2387 auto I = ForwardRefValIDs.find(ID); 2388 if (I != ForwardRefValIDs.end()) 2389 Val = I->second.first; 2390 } 2391 2392 // If we have the value in the symbol table or fwd-ref table, return it. 2393 if (Val) { 2394 // Check operator constraint. 2395 switch (OC) { 2396 case OC_None: 2397 // no constraint 2398 break; 2399 case OC_CatchPad: 2400 if (!isa<CatchPadInst>(Val)) { 2401 P.Error(Loc, "'%" + Twine(ID) + "' is not a catchpad"); 2402 return nullptr; 2403 } 2404 break; 2405 case OC_CleanupPad: 2406 if (!isa<CleanupPadInst>(Val)) { 2407 P.Error(Loc, "'%" + Twine(ID) + "' is not a cleanuppad"); 2408 return nullptr; 2409 } 2410 break; 2411 } 2412 if (Val->getType() == Ty) return Val; 2413 if (Ty->isLabelTy()) 2414 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2415 else 2416 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2417 getTypeString(Val->getType()) + "'"); 2418 return nullptr; 2419 } 2420 2421 if (!Ty->isFirstClassType()) { 2422 P.Error(Loc, "invalid use of a non-first-class type"); 2423 return nullptr; 2424 } 2425 2426 // Otherwise, create a new forward reference for this value and remember it. 2427 Value *FwdVal; 2428 if (Ty->isLabelTy()) { 2429 assert(!OC); 2430 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2431 } else if (!OC) { 2432 FwdVal = new Argument(Ty); 2433 } else { 2434 switch (OC) { 2435 case OC_CatchPad: 2436 FwdVal = CatchPadInst::Create(&F.getEntryBlock(), &F.getEntryBlock(), {}); 2437 break; 2438 case OC_CleanupPad: 2439 FwdVal = CleanupPadInst::Create(F.getContext(), {}); 2440 break; 2441 default: 2442 llvm_unreachable("unexpected constraint"); 2443 } 2444 } 2445 2446 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2447 return FwdVal; 2448 } 2449 2450 /// SetInstName - After an instruction is parsed and inserted into its 2451 /// basic block, this installs its name. 2452 bool LLParser::PerFunctionState::SetInstName(int NameID, 2453 const std::string &NameStr, 2454 LocTy NameLoc, Instruction *Inst) { 2455 // If this instruction has void type, it cannot have a name or ID specified. 2456 if (Inst->getType()->isVoidTy()) { 2457 if (NameID != -1 || !NameStr.empty()) 2458 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2459 return false; 2460 } 2461 2462 // If this was a numbered instruction, verify that the instruction is the 2463 // expected value and resolve any forward references. 2464 if (NameStr.empty()) { 2465 // If neither a name nor an ID was specified, just use the next ID. 2466 if (NameID == -1) 2467 NameID = NumberedVals.size(); 2468 2469 if (unsigned(NameID) != NumberedVals.size()) 2470 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2471 Twine(NumberedVals.size()) + "'"); 2472 2473 auto FI = ForwardRefValIDs.find(NameID); 2474 if (FI != ForwardRefValIDs.end()) { 2475 Value *Sentinel = FI->second.first; 2476 if (Sentinel->getType() != Inst->getType()) 2477 return P.Error(NameLoc, "instruction forward referenced with type '" + 2478 getTypeString(FI->second.first->getType()) + "'"); 2479 // Check operator constraints. We only put cleanuppads or catchpads in 2480 // the forward value map if the value is constrained to match. 2481 if (isa<CatchPadInst>(Sentinel)) { 2482 if (!isa<CatchPadInst>(Inst)) 2483 return P.Error(FI->second.second, 2484 "'%" + Twine(NameID) + "' is not a catchpad"); 2485 } else if (isa<CleanupPadInst>(Sentinel)) { 2486 if (!isa<CleanupPadInst>(Inst)) 2487 return P.Error(FI->second.second, 2488 "'%" + Twine(NameID) + "' is not a cleanuppad"); 2489 } 2490 2491 Sentinel->replaceAllUsesWith(Inst); 2492 delete Sentinel; 2493 ForwardRefValIDs.erase(FI); 2494 } 2495 2496 NumberedVals.push_back(Inst); 2497 return false; 2498 } 2499 2500 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2501 auto FI = ForwardRefVals.find(NameStr); 2502 if (FI != ForwardRefVals.end()) { 2503 Value *Sentinel = FI->second.first; 2504 if (Sentinel->getType() != Inst->getType()) 2505 return P.Error(NameLoc, "instruction forward referenced with type '" + 2506 getTypeString(FI->second.first->getType()) + "'"); 2507 // Check operator constraints. We only put cleanuppads or catchpads in 2508 // the forward value map if the value is constrained to match. 2509 if (isa<CatchPadInst>(Sentinel)) { 2510 if (!isa<CatchPadInst>(Inst)) 2511 return P.Error(FI->second.second, 2512 "'%" + NameStr + "' is not a catchpad"); 2513 } else if (isa<CleanupPadInst>(Sentinel)) { 2514 if (!isa<CleanupPadInst>(Inst)) 2515 return P.Error(FI->second.second, 2516 "'%" + NameStr + "' is not a cleanuppad"); 2517 } 2518 2519 Sentinel->replaceAllUsesWith(Inst); 2520 delete Sentinel; 2521 ForwardRefVals.erase(FI); 2522 } 2523 2524 // Set the name on the instruction. 2525 Inst->setName(NameStr); 2526 2527 if (Inst->getName() != NameStr) 2528 return P.Error(NameLoc, "multiple definition of local value named '" + 2529 NameStr + "'"); 2530 return false; 2531 } 2532 2533 /// GetBB - Get a basic block with the specified name or ID, creating a 2534 /// forward reference record if needed. 2535 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2536 LocTy Loc) { 2537 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2538 Type::getLabelTy(F.getContext()), Loc)); 2539 } 2540 2541 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2542 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2543 Type::getLabelTy(F.getContext()), Loc)); 2544 } 2545 2546 /// DefineBB - Define the specified basic block, which is either named or 2547 /// unnamed. If there is an error, this returns null otherwise it returns 2548 /// the block being defined. 2549 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2550 LocTy Loc) { 2551 BasicBlock *BB; 2552 if (Name.empty()) 2553 BB = GetBB(NumberedVals.size(), Loc); 2554 else 2555 BB = GetBB(Name, Loc); 2556 if (!BB) return nullptr; // Already diagnosed error. 2557 2558 // Move the block to the end of the function. Forward ref'd blocks are 2559 // inserted wherever they happen to be referenced. 2560 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2561 2562 // Remove the block from forward ref sets. 2563 if (Name.empty()) { 2564 ForwardRefValIDs.erase(NumberedVals.size()); 2565 NumberedVals.push_back(BB); 2566 } else { 2567 // BB forward references are already in the function symbol table. 2568 ForwardRefVals.erase(Name); 2569 } 2570 2571 return BB; 2572 } 2573 2574 //===----------------------------------------------------------------------===// 2575 // Constants. 2576 //===----------------------------------------------------------------------===// 2577 2578 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2579 /// type implied. For example, if we parse "4" we don't know what integer type 2580 /// it has. The value will later be combined with its type and checked for 2581 /// sanity. PFS is used to convert function-local operands of metadata (since 2582 /// metadata operands are not just parsed here but also converted to values). 2583 /// PFS can be null when we are not parsing metadata values inside a function. 2584 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2585 ID.Loc = Lex.getLoc(); 2586 switch (Lex.getKind()) { 2587 default: return TokError("expected value token"); 2588 case lltok::GlobalID: // @42 2589 ID.UIntVal = Lex.getUIntVal(); 2590 ID.Kind = ValID::t_GlobalID; 2591 break; 2592 case lltok::GlobalVar: // @foo 2593 ID.StrVal = Lex.getStrVal(); 2594 ID.Kind = ValID::t_GlobalName; 2595 break; 2596 case lltok::LocalVarID: // %42 2597 ID.UIntVal = Lex.getUIntVal(); 2598 ID.Kind = ValID::t_LocalID; 2599 break; 2600 case lltok::LocalVar: // %foo 2601 ID.StrVal = Lex.getStrVal(); 2602 ID.Kind = ValID::t_LocalName; 2603 break; 2604 case lltok::APSInt: 2605 ID.APSIntVal = Lex.getAPSIntVal(); 2606 ID.Kind = ValID::t_APSInt; 2607 break; 2608 case lltok::APFloat: 2609 ID.APFloatVal = Lex.getAPFloatVal(); 2610 ID.Kind = ValID::t_APFloat; 2611 break; 2612 case lltok::kw_true: 2613 ID.ConstantVal = ConstantInt::getTrue(Context); 2614 ID.Kind = ValID::t_Constant; 2615 break; 2616 case lltok::kw_false: 2617 ID.ConstantVal = ConstantInt::getFalse(Context); 2618 ID.Kind = ValID::t_Constant; 2619 break; 2620 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2621 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2622 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2623 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2624 2625 case lltok::lbrace: { 2626 // ValID ::= '{' ConstVector '}' 2627 Lex.Lex(); 2628 SmallVector<Constant*, 16> Elts; 2629 if (ParseGlobalValueVector(Elts) || 2630 ParseToken(lltok::rbrace, "expected end of struct constant")) 2631 return true; 2632 2633 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2634 ID.UIntVal = Elts.size(); 2635 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2636 Elts.size() * sizeof(Elts[0])); 2637 ID.Kind = ValID::t_ConstantStruct; 2638 return false; 2639 } 2640 case lltok::less: { 2641 // ValID ::= '<' ConstVector '>' --> Vector. 2642 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2643 Lex.Lex(); 2644 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2645 2646 SmallVector<Constant*, 16> Elts; 2647 LocTy FirstEltLoc = Lex.getLoc(); 2648 if (ParseGlobalValueVector(Elts) || 2649 (isPackedStruct && 2650 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2651 ParseToken(lltok::greater, "expected end of constant")) 2652 return true; 2653 2654 if (isPackedStruct) { 2655 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2656 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2657 Elts.size() * sizeof(Elts[0])); 2658 ID.UIntVal = Elts.size(); 2659 ID.Kind = ValID::t_PackedConstantStruct; 2660 return false; 2661 } 2662 2663 if (Elts.empty()) 2664 return Error(ID.Loc, "constant vector must not be empty"); 2665 2666 if (!Elts[0]->getType()->isIntegerTy() && 2667 !Elts[0]->getType()->isFloatingPointTy() && 2668 !Elts[0]->getType()->isPointerTy()) 2669 return Error(FirstEltLoc, 2670 "vector elements must have integer, pointer or floating point type"); 2671 2672 // Verify that all the vector elements have the same type. 2673 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2674 if (Elts[i]->getType() != Elts[0]->getType()) 2675 return Error(FirstEltLoc, 2676 "vector element #" + Twine(i) + 2677 " is not of type '" + getTypeString(Elts[0]->getType())); 2678 2679 ID.ConstantVal = ConstantVector::get(Elts); 2680 ID.Kind = ValID::t_Constant; 2681 return false; 2682 } 2683 case lltok::lsquare: { // Array Constant 2684 Lex.Lex(); 2685 SmallVector<Constant*, 16> Elts; 2686 LocTy FirstEltLoc = Lex.getLoc(); 2687 if (ParseGlobalValueVector(Elts) || 2688 ParseToken(lltok::rsquare, "expected end of array constant")) 2689 return true; 2690 2691 // Handle empty element. 2692 if (Elts.empty()) { 2693 // Use undef instead of an array because it's inconvenient to determine 2694 // the element type at this point, there being no elements to examine. 2695 ID.Kind = ValID::t_EmptyArray; 2696 return false; 2697 } 2698 2699 if (!Elts[0]->getType()->isFirstClassType()) 2700 return Error(FirstEltLoc, "invalid array element type: " + 2701 getTypeString(Elts[0]->getType())); 2702 2703 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2704 2705 // Verify all elements are correct type! 2706 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2707 if (Elts[i]->getType() != Elts[0]->getType()) 2708 return Error(FirstEltLoc, 2709 "array element #" + Twine(i) + 2710 " is not of type '" + getTypeString(Elts[0]->getType())); 2711 } 2712 2713 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2714 ID.Kind = ValID::t_Constant; 2715 return false; 2716 } 2717 case lltok::kw_c: // c "foo" 2718 Lex.Lex(); 2719 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2720 false); 2721 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2722 ID.Kind = ValID::t_Constant; 2723 return false; 2724 2725 case lltok::kw_asm: { 2726 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2727 // STRINGCONSTANT 2728 bool HasSideEffect, AlignStack, AsmDialect; 2729 Lex.Lex(); 2730 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2731 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2732 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2733 ParseStringConstant(ID.StrVal) || 2734 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2735 ParseToken(lltok::StringConstant, "expected constraint string")) 2736 return true; 2737 ID.StrVal2 = Lex.getStrVal(); 2738 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2739 (unsigned(AsmDialect)<<2); 2740 ID.Kind = ValID::t_InlineAsm; 2741 return false; 2742 } 2743 2744 case lltok::kw_blockaddress: { 2745 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2746 Lex.Lex(); 2747 2748 ValID Fn, Label; 2749 2750 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2751 ParseValID(Fn) || 2752 ParseToken(lltok::comma, "expected comma in block address expression")|| 2753 ParseValID(Label) || 2754 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2755 return true; 2756 2757 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2758 return Error(Fn.Loc, "expected function name in blockaddress"); 2759 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2760 return Error(Label.Loc, "expected basic block name in blockaddress"); 2761 2762 // Try to find the function (but skip it if it's forward-referenced). 2763 GlobalValue *GV = nullptr; 2764 if (Fn.Kind == ValID::t_GlobalID) { 2765 if (Fn.UIntVal < NumberedVals.size()) 2766 GV = NumberedVals[Fn.UIntVal]; 2767 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2768 GV = M->getNamedValue(Fn.StrVal); 2769 } 2770 Function *F = nullptr; 2771 if (GV) { 2772 // Confirm that it's actually a function with a definition. 2773 if (!isa<Function>(GV)) 2774 return Error(Fn.Loc, "expected function name in blockaddress"); 2775 F = cast<Function>(GV); 2776 if (F->isDeclaration()) 2777 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 2778 } 2779 2780 if (!F) { 2781 // Make a global variable as a placeholder for this reference. 2782 GlobalValue *&FwdRef = 2783 ForwardRefBlockAddresses.insert(std::make_pair( 2784 std::move(Fn), 2785 std::map<ValID, GlobalValue *>())) 2786 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 2787 .first->second; 2788 if (!FwdRef) 2789 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 2790 GlobalValue::InternalLinkage, nullptr, ""); 2791 ID.ConstantVal = FwdRef; 2792 ID.Kind = ValID::t_Constant; 2793 return false; 2794 } 2795 2796 // We found the function; now find the basic block. Don't use PFS, since we 2797 // might be inside a constant expression. 2798 BasicBlock *BB; 2799 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 2800 if (Label.Kind == ValID::t_LocalID) 2801 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 2802 else 2803 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 2804 if (!BB) 2805 return Error(Label.Loc, "referenced value is not a basic block"); 2806 } else { 2807 if (Label.Kind == ValID::t_LocalID) 2808 return Error(Label.Loc, "cannot take address of numeric label after " 2809 "the function is defined"); 2810 BB = dyn_cast_or_null<BasicBlock>( 2811 F->getValueSymbolTable().lookup(Label.StrVal)); 2812 if (!BB) 2813 return Error(Label.Loc, "referenced value is not a basic block"); 2814 } 2815 2816 ID.ConstantVal = BlockAddress::get(F, BB); 2817 ID.Kind = ValID::t_Constant; 2818 return false; 2819 } 2820 2821 case lltok::kw_trunc: 2822 case lltok::kw_zext: 2823 case lltok::kw_sext: 2824 case lltok::kw_fptrunc: 2825 case lltok::kw_fpext: 2826 case lltok::kw_bitcast: 2827 case lltok::kw_addrspacecast: 2828 case lltok::kw_uitofp: 2829 case lltok::kw_sitofp: 2830 case lltok::kw_fptoui: 2831 case lltok::kw_fptosi: 2832 case lltok::kw_inttoptr: 2833 case lltok::kw_ptrtoint: { 2834 unsigned Opc = Lex.getUIntVal(); 2835 Type *DestTy = nullptr; 2836 Constant *SrcVal; 2837 Lex.Lex(); 2838 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2839 ParseGlobalTypeAndValue(SrcVal) || 2840 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2841 ParseType(DestTy) || 2842 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2843 return true; 2844 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2845 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2846 getTypeString(SrcVal->getType()) + "' to '" + 2847 getTypeString(DestTy) + "'"); 2848 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2849 SrcVal, DestTy); 2850 ID.Kind = ValID::t_Constant; 2851 return false; 2852 } 2853 case lltok::kw_extractvalue: { 2854 Lex.Lex(); 2855 Constant *Val; 2856 SmallVector<unsigned, 4> Indices; 2857 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2858 ParseGlobalTypeAndValue(Val) || 2859 ParseIndexList(Indices) || 2860 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2861 return true; 2862 2863 if (!Val->getType()->isAggregateType()) 2864 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2865 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2866 return Error(ID.Loc, "invalid indices for extractvalue"); 2867 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2868 ID.Kind = ValID::t_Constant; 2869 return false; 2870 } 2871 case lltok::kw_insertvalue: { 2872 Lex.Lex(); 2873 Constant *Val0, *Val1; 2874 SmallVector<unsigned, 4> Indices; 2875 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2876 ParseGlobalTypeAndValue(Val0) || 2877 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2878 ParseGlobalTypeAndValue(Val1) || 2879 ParseIndexList(Indices) || 2880 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2881 return true; 2882 if (!Val0->getType()->isAggregateType()) 2883 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2884 Type *IndexedType = 2885 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 2886 if (!IndexedType) 2887 return Error(ID.Loc, "invalid indices for insertvalue"); 2888 if (IndexedType != Val1->getType()) 2889 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 2890 getTypeString(Val1->getType()) + 2891 "' instead of '" + getTypeString(IndexedType) + 2892 "'"); 2893 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2894 ID.Kind = ValID::t_Constant; 2895 return false; 2896 } 2897 case lltok::kw_icmp: 2898 case lltok::kw_fcmp: { 2899 unsigned PredVal, Opc = Lex.getUIntVal(); 2900 Constant *Val0, *Val1; 2901 Lex.Lex(); 2902 if (ParseCmpPredicate(PredVal, Opc) || 2903 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2904 ParseGlobalTypeAndValue(Val0) || 2905 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2906 ParseGlobalTypeAndValue(Val1) || 2907 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2908 return true; 2909 2910 if (Val0->getType() != Val1->getType()) 2911 return Error(ID.Loc, "compare operands must have the same type"); 2912 2913 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2914 2915 if (Opc == Instruction::FCmp) { 2916 if (!Val0->getType()->isFPOrFPVectorTy()) 2917 return Error(ID.Loc, "fcmp requires floating point operands"); 2918 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2919 } else { 2920 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2921 if (!Val0->getType()->isIntOrIntVectorTy() && 2922 !Val0->getType()->getScalarType()->isPointerTy()) 2923 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2924 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2925 } 2926 ID.Kind = ValID::t_Constant; 2927 return false; 2928 } 2929 2930 // Binary Operators. 2931 case lltok::kw_add: 2932 case lltok::kw_fadd: 2933 case lltok::kw_sub: 2934 case lltok::kw_fsub: 2935 case lltok::kw_mul: 2936 case lltok::kw_fmul: 2937 case lltok::kw_udiv: 2938 case lltok::kw_sdiv: 2939 case lltok::kw_fdiv: 2940 case lltok::kw_urem: 2941 case lltok::kw_srem: 2942 case lltok::kw_frem: 2943 case lltok::kw_shl: 2944 case lltok::kw_lshr: 2945 case lltok::kw_ashr: { 2946 bool NUW = false; 2947 bool NSW = false; 2948 bool Exact = false; 2949 unsigned Opc = Lex.getUIntVal(); 2950 Constant *Val0, *Val1; 2951 Lex.Lex(); 2952 LocTy ModifierLoc = Lex.getLoc(); 2953 if (Opc == Instruction::Add || Opc == Instruction::Sub || 2954 Opc == Instruction::Mul || Opc == Instruction::Shl) { 2955 if (EatIfPresent(lltok::kw_nuw)) 2956 NUW = true; 2957 if (EatIfPresent(lltok::kw_nsw)) { 2958 NSW = true; 2959 if (EatIfPresent(lltok::kw_nuw)) 2960 NUW = true; 2961 } 2962 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 2963 Opc == Instruction::LShr || Opc == Instruction::AShr) { 2964 if (EatIfPresent(lltok::kw_exact)) 2965 Exact = true; 2966 } 2967 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 2968 ParseGlobalTypeAndValue(Val0) || 2969 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 2970 ParseGlobalTypeAndValue(Val1) || 2971 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 2972 return true; 2973 if (Val0->getType() != Val1->getType()) 2974 return Error(ID.Loc, "operands of constexpr must have same type"); 2975 if (!Val0->getType()->isIntOrIntVectorTy()) { 2976 if (NUW) 2977 return Error(ModifierLoc, "nuw only applies to integer operations"); 2978 if (NSW) 2979 return Error(ModifierLoc, "nsw only applies to integer operations"); 2980 } 2981 // Check that the type is valid for the operator. 2982 switch (Opc) { 2983 case Instruction::Add: 2984 case Instruction::Sub: 2985 case Instruction::Mul: 2986 case Instruction::UDiv: 2987 case Instruction::SDiv: 2988 case Instruction::URem: 2989 case Instruction::SRem: 2990 case Instruction::Shl: 2991 case Instruction::AShr: 2992 case Instruction::LShr: 2993 if (!Val0->getType()->isIntOrIntVectorTy()) 2994 return Error(ID.Loc, "constexpr requires integer operands"); 2995 break; 2996 case Instruction::FAdd: 2997 case Instruction::FSub: 2998 case Instruction::FMul: 2999 case Instruction::FDiv: 3000 case Instruction::FRem: 3001 if (!Val0->getType()->isFPOrFPVectorTy()) 3002 return Error(ID.Loc, "constexpr requires fp operands"); 3003 break; 3004 default: llvm_unreachable("Unknown binary operator!"); 3005 } 3006 unsigned Flags = 0; 3007 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3008 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3009 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3010 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3011 ID.ConstantVal = C; 3012 ID.Kind = ValID::t_Constant; 3013 return false; 3014 } 3015 3016 // Logical Operations 3017 case lltok::kw_and: 3018 case lltok::kw_or: 3019 case lltok::kw_xor: { 3020 unsigned Opc = Lex.getUIntVal(); 3021 Constant *Val0, *Val1; 3022 Lex.Lex(); 3023 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3024 ParseGlobalTypeAndValue(Val0) || 3025 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3026 ParseGlobalTypeAndValue(Val1) || 3027 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3028 return true; 3029 if (Val0->getType() != Val1->getType()) 3030 return Error(ID.Loc, "operands of constexpr must have same type"); 3031 if (!Val0->getType()->isIntOrIntVectorTy()) 3032 return Error(ID.Loc, 3033 "constexpr requires integer or integer vector operands"); 3034 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3035 ID.Kind = ValID::t_Constant; 3036 return false; 3037 } 3038 3039 case lltok::kw_getelementptr: 3040 case lltok::kw_shufflevector: 3041 case lltok::kw_insertelement: 3042 case lltok::kw_extractelement: 3043 case lltok::kw_select: { 3044 unsigned Opc = Lex.getUIntVal(); 3045 SmallVector<Constant*, 16> Elts; 3046 bool InBounds = false; 3047 Type *Ty; 3048 Lex.Lex(); 3049 3050 if (Opc == Instruction::GetElementPtr) 3051 InBounds = EatIfPresent(lltok::kw_inbounds); 3052 3053 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3054 return true; 3055 3056 LocTy ExplicitTypeLoc = Lex.getLoc(); 3057 if (Opc == Instruction::GetElementPtr) { 3058 if (ParseType(Ty) || 3059 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3060 return true; 3061 } 3062 3063 if (ParseGlobalValueVector(Elts) || 3064 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3065 return true; 3066 3067 if (Opc == Instruction::GetElementPtr) { 3068 if (Elts.size() == 0 || 3069 !Elts[0]->getType()->getScalarType()->isPointerTy()) 3070 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3071 3072 Type *BaseType = Elts[0]->getType(); 3073 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3074 if (Ty != BasePointerType->getElementType()) 3075 return Error( 3076 ExplicitTypeLoc, 3077 "explicit pointee type doesn't match operand's pointee type"); 3078 3079 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3080 for (Constant *Val : Indices) { 3081 Type *ValTy = Val->getType(); 3082 if (!ValTy->getScalarType()->isIntegerTy()) 3083 return Error(ID.Loc, "getelementptr index must be an integer"); 3084 if (ValTy->isVectorTy() != BaseType->isVectorTy()) 3085 return Error(ID.Loc, "getelementptr index type missmatch"); 3086 if (ValTy->isVectorTy()) { 3087 unsigned ValNumEl = ValTy->getVectorNumElements(); 3088 unsigned PtrNumEl = BaseType->getVectorNumElements(); 3089 if (ValNumEl != PtrNumEl) 3090 return Error( 3091 ID.Loc, 3092 "getelementptr vector index has a wrong number of elements"); 3093 } 3094 } 3095 3096 SmallPtrSet<Type*, 4> Visited; 3097 if (!Indices.empty() && !Ty->isSized(&Visited)) 3098 return Error(ID.Loc, "base element of getelementptr must be sized"); 3099 3100 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3101 return Error(ID.Loc, "invalid getelementptr indices"); 3102 ID.ConstantVal = 3103 ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds); 3104 } else if (Opc == Instruction::Select) { 3105 if (Elts.size() != 3) 3106 return Error(ID.Loc, "expected three operands to select"); 3107 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3108 Elts[2])) 3109 return Error(ID.Loc, Reason); 3110 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3111 } else if (Opc == Instruction::ShuffleVector) { 3112 if (Elts.size() != 3) 3113 return Error(ID.Loc, "expected three operands to shufflevector"); 3114 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3115 return Error(ID.Loc, "invalid operands to shufflevector"); 3116 ID.ConstantVal = 3117 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3118 } else if (Opc == Instruction::ExtractElement) { 3119 if (Elts.size() != 2) 3120 return Error(ID.Loc, "expected two operands to extractelement"); 3121 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3122 return Error(ID.Loc, "invalid extractelement operands"); 3123 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3124 } else { 3125 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3126 if (Elts.size() != 3) 3127 return Error(ID.Loc, "expected three operands to insertelement"); 3128 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3129 return Error(ID.Loc, "invalid insertelement operands"); 3130 ID.ConstantVal = 3131 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3132 } 3133 3134 ID.Kind = ValID::t_Constant; 3135 return false; 3136 } 3137 } 3138 3139 Lex.Lex(); 3140 return false; 3141 } 3142 3143 /// ParseGlobalValue - Parse a global value with the specified type. 3144 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3145 C = nullptr; 3146 ValID ID; 3147 Value *V = nullptr; 3148 bool Parsed = ParseValID(ID) || 3149 ConvertValIDToValue(Ty, ID, V, nullptr); 3150 if (V && !(C = dyn_cast<Constant>(V))) 3151 return Error(ID.Loc, "global values must be constants"); 3152 return Parsed; 3153 } 3154 3155 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3156 Type *Ty = nullptr; 3157 return ParseType(Ty) || 3158 ParseGlobalValue(Ty, V); 3159 } 3160 3161 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3162 C = nullptr; 3163 3164 LocTy KwLoc = Lex.getLoc(); 3165 if (!EatIfPresent(lltok::kw_comdat)) 3166 return false; 3167 3168 if (EatIfPresent(lltok::lparen)) { 3169 if (Lex.getKind() != lltok::ComdatVar) 3170 return TokError("expected comdat variable"); 3171 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3172 Lex.Lex(); 3173 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3174 return true; 3175 } else { 3176 if (GlobalName.empty()) 3177 return TokError("comdat cannot be unnamed"); 3178 C = getComdat(GlobalName, KwLoc); 3179 } 3180 3181 return false; 3182 } 3183 3184 /// ParseGlobalValueVector 3185 /// ::= /*empty*/ 3186 /// ::= TypeAndValue (',' TypeAndValue)* 3187 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) { 3188 // Empty list. 3189 if (Lex.getKind() == lltok::rbrace || 3190 Lex.getKind() == lltok::rsquare || 3191 Lex.getKind() == lltok::greater || 3192 Lex.getKind() == lltok::rparen) 3193 return false; 3194 3195 Constant *C; 3196 if (ParseGlobalTypeAndValue(C)) return true; 3197 Elts.push_back(C); 3198 3199 while (EatIfPresent(lltok::comma)) { 3200 if (ParseGlobalTypeAndValue(C)) return true; 3201 Elts.push_back(C); 3202 } 3203 3204 return false; 3205 } 3206 3207 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3208 SmallVector<Metadata *, 16> Elts; 3209 if (ParseMDNodeVector(Elts)) 3210 return true; 3211 3212 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3213 return false; 3214 } 3215 3216 /// MDNode: 3217 /// ::= !{ ... } 3218 /// ::= !7 3219 /// ::= !DILocation(...) 3220 bool LLParser::ParseMDNode(MDNode *&N) { 3221 if (Lex.getKind() == lltok::MetadataVar) 3222 return ParseSpecializedMDNode(N); 3223 3224 return ParseToken(lltok::exclaim, "expected '!' here") || 3225 ParseMDNodeTail(N); 3226 } 3227 3228 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3229 // !{ ... } 3230 if (Lex.getKind() == lltok::lbrace) 3231 return ParseMDTuple(N); 3232 3233 // !42 3234 return ParseMDNodeID(N); 3235 } 3236 3237 namespace { 3238 3239 /// Structure to represent an optional metadata field. 3240 template <class FieldTy> struct MDFieldImpl { 3241 typedef MDFieldImpl ImplTy; 3242 FieldTy Val; 3243 bool Seen; 3244 3245 void assign(FieldTy Val) { 3246 Seen = true; 3247 this->Val = std::move(Val); 3248 } 3249 3250 explicit MDFieldImpl(FieldTy Default) 3251 : Val(std::move(Default)), Seen(false) {} 3252 }; 3253 3254 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3255 uint64_t Max; 3256 3257 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3258 : ImplTy(Default), Max(Max) {} 3259 }; 3260 struct LineField : public MDUnsignedField { 3261 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3262 }; 3263 struct ColumnField : public MDUnsignedField { 3264 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3265 }; 3266 struct DwarfTagField : public MDUnsignedField { 3267 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3268 DwarfTagField(dwarf::Tag DefaultTag) 3269 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3270 }; 3271 struct DwarfAttEncodingField : public MDUnsignedField { 3272 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3273 }; 3274 struct DwarfVirtualityField : public MDUnsignedField { 3275 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3276 }; 3277 struct DwarfLangField : public MDUnsignedField { 3278 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3279 }; 3280 3281 struct DIFlagField : public MDUnsignedField { 3282 DIFlagField() : MDUnsignedField(0, UINT32_MAX) {} 3283 }; 3284 3285 struct MDSignedField : public MDFieldImpl<int64_t> { 3286 int64_t Min; 3287 int64_t Max; 3288 3289 MDSignedField(int64_t Default = 0) 3290 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3291 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3292 : ImplTy(Default), Min(Min), Max(Max) {} 3293 }; 3294 3295 struct MDBoolField : public MDFieldImpl<bool> { 3296 MDBoolField(bool Default = false) : ImplTy(Default) {} 3297 }; 3298 struct MDField : public MDFieldImpl<Metadata *> { 3299 bool AllowNull; 3300 3301 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3302 }; 3303 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3304 MDConstant() : ImplTy(nullptr) {} 3305 }; 3306 struct MDStringField : public MDFieldImpl<MDString *> { 3307 bool AllowEmpty; 3308 MDStringField(bool AllowEmpty = true) 3309 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3310 }; 3311 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3312 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3313 }; 3314 3315 } // end namespace 3316 3317 namespace llvm { 3318 3319 template <> 3320 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3321 MDUnsignedField &Result) { 3322 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3323 return TokError("expected unsigned integer"); 3324 3325 auto &U = Lex.getAPSIntVal(); 3326 if (U.ugt(Result.Max)) 3327 return TokError("value for '" + Name + "' too large, limit is " + 3328 Twine(Result.Max)); 3329 Result.assign(U.getZExtValue()); 3330 assert(Result.Val <= Result.Max && "Expected value in range"); 3331 Lex.Lex(); 3332 return false; 3333 } 3334 3335 template <> 3336 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3337 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3338 } 3339 template <> 3340 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3341 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3342 } 3343 3344 template <> 3345 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3346 if (Lex.getKind() == lltok::APSInt) 3347 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3348 3349 if (Lex.getKind() != lltok::DwarfTag) 3350 return TokError("expected DWARF tag"); 3351 3352 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3353 if (Tag == dwarf::DW_TAG_invalid) 3354 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3355 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3356 3357 Result.assign(Tag); 3358 Lex.Lex(); 3359 return false; 3360 } 3361 3362 template <> 3363 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3364 DwarfVirtualityField &Result) { 3365 if (Lex.getKind() == lltok::APSInt) 3366 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3367 3368 if (Lex.getKind() != lltok::DwarfVirtuality) 3369 return TokError("expected DWARF virtuality code"); 3370 3371 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3372 if (!Virtuality) 3373 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3374 Lex.getStrVal() + "'"); 3375 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3376 Result.assign(Virtuality); 3377 Lex.Lex(); 3378 return false; 3379 } 3380 3381 template <> 3382 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3383 if (Lex.getKind() == lltok::APSInt) 3384 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3385 3386 if (Lex.getKind() != lltok::DwarfLang) 3387 return TokError("expected DWARF language"); 3388 3389 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3390 if (!Lang) 3391 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3392 "'"); 3393 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3394 Result.assign(Lang); 3395 Lex.Lex(); 3396 return false; 3397 } 3398 3399 template <> 3400 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3401 DwarfAttEncodingField &Result) { 3402 if (Lex.getKind() == lltok::APSInt) 3403 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3404 3405 if (Lex.getKind() != lltok::DwarfAttEncoding) 3406 return TokError("expected DWARF type attribute encoding"); 3407 3408 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3409 if (!Encoding) 3410 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3411 Lex.getStrVal() + "'"); 3412 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3413 Result.assign(Encoding); 3414 Lex.Lex(); 3415 return false; 3416 } 3417 3418 /// DIFlagField 3419 /// ::= uint32 3420 /// ::= DIFlagVector 3421 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3422 template <> 3423 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3424 assert(Result.Max == UINT32_MAX && "Expected only 32-bits"); 3425 3426 // Parser for a single flag. 3427 auto parseFlag = [&](unsigned &Val) { 3428 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) 3429 return ParseUInt32(Val); 3430 3431 if (Lex.getKind() != lltok::DIFlag) 3432 return TokError("expected debug info flag"); 3433 3434 Val = DINode::getFlag(Lex.getStrVal()); 3435 if (!Val) 3436 return TokError(Twine("invalid debug info flag flag '") + 3437 Lex.getStrVal() + "'"); 3438 Lex.Lex(); 3439 return false; 3440 }; 3441 3442 // Parse the flags and combine them together. 3443 unsigned Combined = 0; 3444 do { 3445 unsigned Val; 3446 if (parseFlag(Val)) 3447 return true; 3448 Combined |= Val; 3449 } while (EatIfPresent(lltok::bar)); 3450 3451 Result.assign(Combined); 3452 return false; 3453 } 3454 3455 template <> 3456 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3457 MDSignedField &Result) { 3458 if (Lex.getKind() != lltok::APSInt) 3459 return TokError("expected signed integer"); 3460 3461 auto &S = Lex.getAPSIntVal(); 3462 if (S < Result.Min) 3463 return TokError("value for '" + Name + "' too small, limit is " + 3464 Twine(Result.Min)); 3465 if (S > Result.Max) 3466 return TokError("value for '" + Name + "' too large, limit is " + 3467 Twine(Result.Max)); 3468 Result.assign(S.getExtValue()); 3469 assert(Result.Val >= Result.Min && "Expected value in range"); 3470 assert(Result.Val <= Result.Max && "Expected value in range"); 3471 Lex.Lex(); 3472 return false; 3473 } 3474 3475 template <> 3476 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3477 switch (Lex.getKind()) { 3478 default: 3479 return TokError("expected 'true' or 'false'"); 3480 case lltok::kw_true: 3481 Result.assign(true); 3482 break; 3483 case lltok::kw_false: 3484 Result.assign(false); 3485 break; 3486 } 3487 Lex.Lex(); 3488 return false; 3489 } 3490 3491 template <> 3492 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3493 if (Lex.getKind() == lltok::kw_null) { 3494 if (!Result.AllowNull) 3495 return TokError("'" + Name + "' cannot be null"); 3496 Lex.Lex(); 3497 Result.assign(nullptr); 3498 return false; 3499 } 3500 3501 Metadata *MD; 3502 if (ParseMetadata(MD, nullptr)) 3503 return true; 3504 3505 Result.assign(MD); 3506 return false; 3507 } 3508 3509 template <> 3510 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) { 3511 Metadata *MD; 3512 if (ParseValueAsMetadata(MD, "expected constant", nullptr)) 3513 return true; 3514 3515 Result.assign(cast<ConstantAsMetadata>(MD)); 3516 return false; 3517 } 3518 3519 template <> 3520 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3521 LocTy ValueLoc = Lex.getLoc(); 3522 std::string S; 3523 if (ParseStringConstant(S)) 3524 return true; 3525 3526 if (!Result.AllowEmpty && S.empty()) 3527 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3528 3529 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3530 return false; 3531 } 3532 3533 template <> 3534 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3535 SmallVector<Metadata *, 4> MDs; 3536 if (ParseMDNodeVector(MDs)) 3537 return true; 3538 3539 Result.assign(std::move(MDs)); 3540 return false; 3541 } 3542 3543 } // end namespace llvm 3544 3545 template <class ParserTy> 3546 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3547 do { 3548 if (Lex.getKind() != lltok::LabelStr) 3549 return TokError("expected field label here"); 3550 3551 if (parseField()) 3552 return true; 3553 } while (EatIfPresent(lltok::comma)); 3554 3555 return false; 3556 } 3557 3558 template <class ParserTy> 3559 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3560 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3561 Lex.Lex(); 3562 3563 if (ParseToken(lltok::lparen, "expected '(' here")) 3564 return true; 3565 if (Lex.getKind() != lltok::rparen) 3566 if (ParseMDFieldsImplBody(parseField)) 3567 return true; 3568 3569 ClosingLoc = Lex.getLoc(); 3570 return ParseToken(lltok::rparen, "expected ')' here"); 3571 } 3572 3573 template <class FieldTy> 3574 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3575 if (Result.Seen) 3576 return TokError("field '" + Name + "' cannot be specified more than once"); 3577 3578 LocTy Loc = Lex.getLoc(); 3579 Lex.Lex(); 3580 return ParseMDField(Loc, Name, Result); 3581 } 3582 3583 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3584 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3585 3586 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3587 if (Lex.getStrVal() == #CLASS) \ 3588 return Parse##CLASS(N, IsDistinct); 3589 #include "llvm/IR/Metadata.def" 3590 3591 return TokError("expected metadata type"); 3592 } 3593 3594 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3595 #define NOP_FIELD(NAME, TYPE, INIT) 3596 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3597 if (!NAME.Seen) \ 3598 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3599 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3600 if (Lex.getStrVal() == #NAME) \ 3601 return ParseMDField(#NAME, NAME); 3602 #define PARSE_MD_FIELDS() \ 3603 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3604 do { \ 3605 LocTy ClosingLoc; \ 3606 if (ParseMDFieldsImpl([&]() -> bool { \ 3607 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3608 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3609 }, ClosingLoc)) \ 3610 return true; \ 3611 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3612 } while (false) 3613 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3614 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3615 3616 /// ParseDILocationFields: 3617 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3618 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 3619 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3620 OPTIONAL(line, LineField, ); \ 3621 OPTIONAL(column, ColumnField, ); \ 3622 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3623 OPTIONAL(inlinedAt, MDField, ); 3624 PARSE_MD_FIELDS(); 3625 #undef VISIT_MD_FIELDS 3626 3627 Result = GET_OR_DISTINCT( 3628 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3629 return false; 3630 } 3631 3632 /// ParseGenericDINode: 3633 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 3634 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 3635 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3636 REQUIRED(tag, DwarfTagField, ); \ 3637 OPTIONAL(header, MDStringField, ); \ 3638 OPTIONAL(operands, MDFieldList, ); 3639 PARSE_MD_FIELDS(); 3640 #undef VISIT_MD_FIELDS 3641 3642 Result = GET_OR_DISTINCT(GenericDINode, 3643 (Context, tag.Val, header.Val, operands.Val)); 3644 return false; 3645 } 3646 3647 /// ParseDISubrange: 3648 /// ::= !DISubrange(count: 30, lowerBound: 2) 3649 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 3650 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3651 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3652 OPTIONAL(lowerBound, MDSignedField, ); 3653 PARSE_MD_FIELDS(); 3654 #undef VISIT_MD_FIELDS 3655 3656 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val)); 3657 return false; 3658 } 3659 3660 /// ParseDIEnumerator: 3661 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 3662 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 3663 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3664 REQUIRED(name, MDStringField, ); \ 3665 REQUIRED(value, MDSignedField, ); 3666 PARSE_MD_FIELDS(); 3667 #undef VISIT_MD_FIELDS 3668 3669 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 3670 return false; 3671 } 3672 3673 /// ParseDIBasicType: 3674 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 3675 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 3676 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3677 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 3678 OPTIONAL(name, MDStringField, ); \ 3679 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3680 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3681 OPTIONAL(encoding, DwarfAttEncodingField, ); 3682 PARSE_MD_FIELDS(); 3683 #undef VISIT_MD_FIELDS 3684 3685 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 3686 align.Val, encoding.Val)); 3687 return false; 3688 } 3689 3690 /// ParseDIDerivedType: 3691 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 3692 /// line: 7, scope: !1, baseType: !2, size: 32, 3693 /// align: 32, offset: 0, flags: 0, extraData: !3) 3694 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 3695 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3696 REQUIRED(tag, DwarfTagField, ); \ 3697 OPTIONAL(name, MDStringField, ); \ 3698 OPTIONAL(file, MDField, ); \ 3699 OPTIONAL(line, LineField, ); \ 3700 OPTIONAL(scope, MDField, ); \ 3701 REQUIRED(baseType, MDField, ); \ 3702 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3703 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3704 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3705 OPTIONAL(flags, DIFlagField, ); \ 3706 OPTIONAL(extraData, MDField, ); 3707 PARSE_MD_FIELDS(); 3708 #undef VISIT_MD_FIELDS 3709 3710 Result = GET_OR_DISTINCT(DIDerivedType, 3711 (Context, tag.Val, name.Val, file.Val, line.Val, 3712 scope.Val, baseType.Val, size.Val, align.Val, 3713 offset.Val, flags.Val, extraData.Val)); 3714 return false; 3715 } 3716 3717 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 3718 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3719 REQUIRED(tag, DwarfTagField, ); \ 3720 OPTIONAL(name, MDStringField, ); \ 3721 OPTIONAL(file, MDField, ); \ 3722 OPTIONAL(line, LineField, ); \ 3723 OPTIONAL(scope, MDField, ); \ 3724 OPTIONAL(baseType, MDField, ); \ 3725 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3726 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3727 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3728 OPTIONAL(flags, DIFlagField, ); \ 3729 OPTIONAL(elements, MDField, ); \ 3730 OPTIONAL(runtimeLang, DwarfLangField, ); \ 3731 OPTIONAL(vtableHolder, MDField, ); \ 3732 OPTIONAL(templateParams, MDField, ); \ 3733 OPTIONAL(identifier, MDStringField, ); 3734 PARSE_MD_FIELDS(); 3735 #undef VISIT_MD_FIELDS 3736 3737 Result = GET_OR_DISTINCT( 3738 DICompositeType, 3739 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 3740 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 3741 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 3742 return false; 3743 } 3744 3745 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 3746 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3747 OPTIONAL(flags, DIFlagField, ); \ 3748 REQUIRED(types, MDField, ); 3749 PARSE_MD_FIELDS(); 3750 #undef VISIT_MD_FIELDS 3751 3752 Result = GET_OR_DISTINCT(DISubroutineType, (Context, flags.Val, types.Val)); 3753 return false; 3754 } 3755 3756 /// ParseDIFileType: 3757 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir") 3758 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 3759 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3760 REQUIRED(filename, MDStringField, ); \ 3761 REQUIRED(directory, MDStringField, ); 3762 PARSE_MD_FIELDS(); 3763 #undef VISIT_MD_FIELDS 3764 3765 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val)); 3766 return false; 3767 } 3768 3769 /// ParseDICompileUnit: 3770 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 3771 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 3772 /// splitDebugFilename: "abc.debug", emissionKind: 1, 3773 /// enums: !1, retainedTypes: !2, subprograms: !3, 3774 /// globals: !4, imports: !5, dwoId: 0x0abcd) 3775 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 3776 if (!IsDistinct) 3777 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 3778 3779 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3780 REQUIRED(language, DwarfLangField, ); \ 3781 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 3782 OPTIONAL(producer, MDStringField, ); \ 3783 OPTIONAL(isOptimized, MDBoolField, ); \ 3784 OPTIONAL(flags, MDStringField, ); \ 3785 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 3786 OPTIONAL(splitDebugFilename, MDStringField, ); \ 3787 OPTIONAL(emissionKind, MDUnsignedField, (0, UINT32_MAX)); \ 3788 OPTIONAL(enums, MDField, ); \ 3789 OPTIONAL(retainedTypes, MDField, ); \ 3790 OPTIONAL(subprograms, MDField, ); \ 3791 OPTIONAL(globals, MDField, ); \ 3792 OPTIONAL(imports, MDField, ); \ 3793 OPTIONAL(dwoId, MDUnsignedField, ); 3794 PARSE_MD_FIELDS(); 3795 #undef VISIT_MD_FIELDS 3796 3797 Result = DICompileUnit::getDistinct( 3798 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 3799 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 3800 retainedTypes.Val, subprograms.Val, globals.Val, imports.Val, dwoId.Val); 3801 return false; 3802 } 3803 3804 /// ParseDISubprogram: 3805 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 3806 /// file: !1, line: 7, type: !2, isLocal: false, 3807 /// isDefinition: true, scopeLine: 8, containingType: !3, 3808 /// virtuality: DW_VIRTUALTIY_pure_virtual, 3809 /// virtualIndex: 10, flags: 11, 3810 /// isOptimized: false, templateParams: !4, declaration: !5, 3811 /// variables: !6) 3812 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 3813 auto Loc = Lex.getLoc(); 3814 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3815 OPTIONAL(scope, MDField, ); \ 3816 OPTIONAL(name, MDStringField, ); \ 3817 OPTIONAL(linkageName, MDStringField, ); \ 3818 OPTIONAL(file, MDField, ); \ 3819 OPTIONAL(line, LineField, ); \ 3820 OPTIONAL(type, MDField, ); \ 3821 OPTIONAL(isLocal, MDBoolField, ); \ 3822 OPTIONAL(isDefinition, MDBoolField, (true)); \ 3823 OPTIONAL(scopeLine, LineField, ); \ 3824 OPTIONAL(containingType, MDField, ); \ 3825 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 3826 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 3827 OPTIONAL(flags, DIFlagField, ); \ 3828 OPTIONAL(isOptimized, MDBoolField, ); \ 3829 OPTIONAL(templateParams, MDField, ); \ 3830 OPTIONAL(declaration, MDField, ); \ 3831 OPTIONAL(variables, MDField, ); 3832 PARSE_MD_FIELDS(); 3833 #undef VISIT_MD_FIELDS 3834 3835 if (isDefinition.Val && !IsDistinct) 3836 return Lex.Error( 3837 Loc, 3838 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 3839 3840 Result = GET_OR_DISTINCT( 3841 DISubprogram, 3842 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 3843 type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val, 3844 containingType.Val, virtuality.Val, virtualIndex.Val, flags.Val, 3845 isOptimized.Val, templateParams.Val, declaration.Val, variables.Val)); 3846 return false; 3847 } 3848 3849 /// ParseDILexicalBlock: 3850 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 3851 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 3852 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3853 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3854 OPTIONAL(file, MDField, ); \ 3855 OPTIONAL(line, LineField, ); \ 3856 OPTIONAL(column, ColumnField, ); 3857 PARSE_MD_FIELDS(); 3858 #undef VISIT_MD_FIELDS 3859 3860 Result = GET_OR_DISTINCT( 3861 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 3862 return false; 3863 } 3864 3865 /// ParseDILexicalBlockFile: 3866 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 3867 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 3868 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3869 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3870 OPTIONAL(file, MDField, ); \ 3871 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 3872 PARSE_MD_FIELDS(); 3873 #undef VISIT_MD_FIELDS 3874 3875 Result = GET_OR_DISTINCT(DILexicalBlockFile, 3876 (Context, scope.Val, file.Val, discriminator.Val)); 3877 return false; 3878 } 3879 3880 /// ParseDINamespace: 3881 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 3882 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 3883 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3884 REQUIRED(scope, MDField, ); \ 3885 OPTIONAL(file, MDField, ); \ 3886 OPTIONAL(name, MDStringField, ); \ 3887 OPTIONAL(line, LineField, ); 3888 PARSE_MD_FIELDS(); 3889 #undef VISIT_MD_FIELDS 3890 3891 Result = GET_OR_DISTINCT(DINamespace, 3892 (Context, scope.Val, file.Val, name.Val, line.Val)); 3893 return false; 3894 } 3895 3896 /// ParseDIModule: 3897 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 3898 /// includePath: "/usr/include", isysroot: "/") 3899 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 3900 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3901 REQUIRED(scope, MDField, ); \ 3902 REQUIRED(name, MDStringField, ); \ 3903 OPTIONAL(configMacros, MDStringField, ); \ 3904 OPTIONAL(includePath, MDStringField, ); \ 3905 OPTIONAL(isysroot, MDStringField, ); 3906 PARSE_MD_FIELDS(); 3907 #undef VISIT_MD_FIELDS 3908 3909 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 3910 configMacros.Val, includePath.Val, isysroot.Val)); 3911 return false; 3912 } 3913 3914 /// ParseDITemplateTypeParameter: 3915 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 3916 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 3917 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3918 OPTIONAL(name, MDStringField, ); \ 3919 REQUIRED(type, MDField, ); 3920 PARSE_MD_FIELDS(); 3921 #undef VISIT_MD_FIELDS 3922 3923 Result = 3924 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 3925 return false; 3926 } 3927 3928 /// ParseDITemplateValueParameter: 3929 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 3930 /// name: "V", type: !1, value: i32 7) 3931 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 3932 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3933 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 3934 OPTIONAL(name, MDStringField, ); \ 3935 OPTIONAL(type, MDField, ); \ 3936 REQUIRED(value, MDField, ); 3937 PARSE_MD_FIELDS(); 3938 #undef VISIT_MD_FIELDS 3939 3940 Result = GET_OR_DISTINCT(DITemplateValueParameter, 3941 (Context, tag.Val, name.Val, type.Val, value.Val)); 3942 return false; 3943 } 3944 3945 /// ParseDIGlobalVariable: 3946 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 3947 /// file: !1, line: 7, type: !2, isLocal: false, 3948 /// isDefinition: true, variable: i32* @foo, 3949 /// declaration: !3) 3950 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 3951 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3952 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 3953 OPTIONAL(scope, MDField, ); \ 3954 OPTIONAL(linkageName, MDStringField, ); \ 3955 OPTIONAL(file, MDField, ); \ 3956 OPTIONAL(line, LineField, ); \ 3957 OPTIONAL(type, MDField, ); \ 3958 OPTIONAL(isLocal, MDBoolField, ); \ 3959 OPTIONAL(isDefinition, MDBoolField, (true)); \ 3960 OPTIONAL(variable, MDConstant, ); \ 3961 OPTIONAL(declaration, MDField, ); 3962 PARSE_MD_FIELDS(); 3963 #undef VISIT_MD_FIELDS 3964 3965 Result = GET_OR_DISTINCT(DIGlobalVariable, 3966 (Context, scope.Val, name.Val, linkageName.Val, 3967 file.Val, line.Val, type.Val, isLocal.Val, 3968 isDefinition.Val, variable.Val, declaration.Val)); 3969 return false; 3970 } 3971 3972 /// ParseDILocalVariable: 3973 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 3974 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 3975 /// ::= !DILocalVariable(scope: !0, name: "foo", 3976 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 3977 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 3978 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3979 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3980 OPTIONAL(name, MDStringField, ); \ 3981 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 3982 OPTIONAL(file, MDField, ); \ 3983 OPTIONAL(line, LineField, ); \ 3984 OPTIONAL(type, MDField, ); \ 3985 OPTIONAL(flags, DIFlagField, ); 3986 PARSE_MD_FIELDS(); 3987 #undef VISIT_MD_FIELDS 3988 3989 Result = GET_OR_DISTINCT(DILocalVariable, 3990 (Context, scope.Val, name.Val, file.Val, line.Val, 3991 type.Val, arg.Val, flags.Val)); 3992 return false; 3993 } 3994 3995 /// ParseDIExpression: 3996 /// ::= !DIExpression(0, 7, -1) 3997 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 3998 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3999 Lex.Lex(); 4000 4001 if (ParseToken(lltok::lparen, "expected '(' here")) 4002 return true; 4003 4004 SmallVector<uint64_t, 8> Elements; 4005 if (Lex.getKind() != lltok::rparen) 4006 do { 4007 if (Lex.getKind() == lltok::DwarfOp) { 4008 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4009 Lex.Lex(); 4010 Elements.push_back(Op); 4011 continue; 4012 } 4013 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4014 } 4015 4016 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4017 return TokError("expected unsigned integer"); 4018 4019 auto &U = Lex.getAPSIntVal(); 4020 if (U.ugt(UINT64_MAX)) 4021 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4022 Elements.push_back(U.getZExtValue()); 4023 Lex.Lex(); 4024 } while (EatIfPresent(lltok::comma)); 4025 4026 if (ParseToken(lltok::rparen, "expected ')' here")) 4027 return true; 4028 4029 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4030 return false; 4031 } 4032 4033 /// ParseDIObjCProperty: 4034 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4035 /// getter: "getFoo", attributes: 7, type: !2) 4036 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4037 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4038 OPTIONAL(name, MDStringField, ); \ 4039 OPTIONAL(file, MDField, ); \ 4040 OPTIONAL(line, LineField, ); \ 4041 OPTIONAL(setter, MDStringField, ); \ 4042 OPTIONAL(getter, MDStringField, ); \ 4043 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4044 OPTIONAL(type, MDField, ); 4045 PARSE_MD_FIELDS(); 4046 #undef VISIT_MD_FIELDS 4047 4048 Result = GET_OR_DISTINCT(DIObjCProperty, 4049 (Context, name.Val, file.Val, line.Val, setter.Val, 4050 getter.Val, attributes.Val, type.Val)); 4051 return false; 4052 } 4053 4054 /// ParseDIImportedEntity: 4055 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4056 /// line: 7, name: "foo") 4057 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4058 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4059 REQUIRED(tag, DwarfTagField, ); \ 4060 REQUIRED(scope, MDField, ); \ 4061 OPTIONAL(entity, MDField, ); \ 4062 OPTIONAL(line, LineField, ); \ 4063 OPTIONAL(name, MDStringField, ); 4064 PARSE_MD_FIELDS(); 4065 #undef VISIT_MD_FIELDS 4066 4067 Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val, 4068 entity.Val, line.Val, name.Val)); 4069 return false; 4070 } 4071 4072 #undef PARSE_MD_FIELD 4073 #undef NOP_FIELD 4074 #undef REQUIRE_FIELD 4075 #undef DECLARE_FIELD 4076 4077 /// ParseMetadataAsValue 4078 /// ::= metadata i32 %local 4079 /// ::= metadata i32 @global 4080 /// ::= metadata i32 7 4081 /// ::= metadata !0 4082 /// ::= metadata !{...} 4083 /// ::= metadata !"string" 4084 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4085 // Note: the type 'metadata' has already been parsed. 4086 Metadata *MD; 4087 if (ParseMetadata(MD, &PFS)) 4088 return true; 4089 4090 V = MetadataAsValue::get(Context, MD); 4091 return false; 4092 } 4093 4094 /// ParseValueAsMetadata 4095 /// ::= i32 %local 4096 /// ::= i32 @global 4097 /// ::= i32 7 4098 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4099 PerFunctionState *PFS) { 4100 Type *Ty; 4101 LocTy Loc; 4102 if (ParseType(Ty, TypeMsg, Loc)) 4103 return true; 4104 if (Ty->isMetadataTy()) 4105 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4106 4107 Value *V; 4108 if (ParseValue(Ty, V, PFS)) 4109 return true; 4110 4111 MD = ValueAsMetadata::get(V); 4112 return false; 4113 } 4114 4115 /// ParseMetadata 4116 /// ::= i32 %local 4117 /// ::= i32 @global 4118 /// ::= i32 7 4119 /// ::= !42 4120 /// ::= !{...} 4121 /// ::= !"string" 4122 /// ::= !DILocation(...) 4123 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4124 if (Lex.getKind() == lltok::MetadataVar) { 4125 MDNode *N; 4126 if (ParseSpecializedMDNode(N)) 4127 return true; 4128 MD = N; 4129 return false; 4130 } 4131 4132 // ValueAsMetadata: 4133 // <type> <value> 4134 if (Lex.getKind() != lltok::exclaim) 4135 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4136 4137 // '!'. 4138 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4139 Lex.Lex(); 4140 4141 // MDString: 4142 // ::= '!' STRINGCONSTANT 4143 if (Lex.getKind() == lltok::StringConstant) { 4144 MDString *S; 4145 if (ParseMDString(S)) 4146 return true; 4147 MD = S; 4148 return false; 4149 } 4150 4151 // MDNode: 4152 // !{ ... } 4153 // !7 4154 MDNode *N; 4155 if (ParseMDNodeTail(N)) 4156 return true; 4157 MD = N; 4158 return false; 4159 } 4160 4161 4162 //===----------------------------------------------------------------------===// 4163 // Function Parsing. 4164 //===----------------------------------------------------------------------===// 4165 4166 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4167 PerFunctionState *PFS, 4168 OperatorConstraint OC) { 4169 if (Ty->isFunctionTy()) 4170 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4171 4172 if (OC && ID.Kind != ValID::t_LocalID && ID.Kind != ValID::t_LocalName) { 4173 switch (OC) { 4174 case OC_CatchPad: 4175 return Error(ID.Loc, "Catchpad value required in this position"); 4176 case OC_CleanupPad: 4177 return Error(ID.Loc, "Cleanuppad value required in this position"); 4178 default: 4179 llvm_unreachable("Unexpected constraint kind"); 4180 } 4181 } 4182 4183 switch (ID.Kind) { 4184 case ValID::t_LocalID: 4185 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4186 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, OC); 4187 return V == nullptr; 4188 case ValID::t_LocalName: 4189 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4190 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, OC); 4191 return V == nullptr; 4192 case ValID::t_InlineAsm: { 4193 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4194 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4195 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4196 (ID.UIntVal >> 1) & 1, 4197 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4198 return false; 4199 } 4200 case ValID::t_GlobalName: 4201 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4202 return V == nullptr; 4203 case ValID::t_GlobalID: 4204 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4205 return V == nullptr; 4206 case ValID::t_APSInt: 4207 if (!Ty->isIntegerTy()) 4208 return Error(ID.Loc, "integer constant must have integer type"); 4209 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4210 V = ConstantInt::get(Context, ID.APSIntVal); 4211 return false; 4212 case ValID::t_APFloat: 4213 if (!Ty->isFloatingPointTy() || 4214 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4215 return Error(ID.Loc, "floating point constant invalid for type"); 4216 4217 // The lexer has no type info, so builds all half, float, and double FP 4218 // constants as double. Fix this here. Long double does not need this. 4219 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 4220 bool Ignored; 4221 if (Ty->isHalfTy()) 4222 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 4223 &Ignored); 4224 else if (Ty->isFloatTy()) 4225 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 4226 &Ignored); 4227 } 4228 V = ConstantFP::get(Context, ID.APFloatVal); 4229 4230 if (V->getType() != Ty) 4231 return Error(ID.Loc, "floating point constant does not have type '" + 4232 getTypeString(Ty) + "'"); 4233 4234 return false; 4235 case ValID::t_Null: 4236 if (!Ty->isPointerTy()) 4237 return Error(ID.Loc, "null must be a pointer type"); 4238 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4239 return false; 4240 case ValID::t_Undef: 4241 // FIXME: LabelTy should not be a first-class type. 4242 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4243 return Error(ID.Loc, "invalid type for undef constant"); 4244 V = UndefValue::get(Ty); 4245 return false; 4246 case ValID::t_EmptyArray: 4247 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4248 return Error(ID.Loc, "invalid empty array initializer"); 4249 V = UndefValue::get(Ty); 4250 return false; 4251 case ValID::t_Zero: 4252 // FIXME: LabelTy should not be a first-class type. 4253 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4254 return Error(ID.Loc, "invalid type for null constant"); 4255 V = Constant::getNullValue(Ty); 4256 return false; 4257 case ValID::t_None: 4258 if (!Ty->isTokenTy()) 4259 return Error(ID.Loc, "invalid type for none constant"); 4260 V = Constant::getNullValue(Ty); 4261 return false; 4262 case ValID::t_Constant: 4263 if (ID.ConstantVal->getType() != Ty) 4264 return Error(ID.Loc, "constant expression type mismatch"); 4265 4266 V = ID.ConstantVal; 4267 return false; 4268 case ValID::t_ConstantStruct: 4269 case ValID::t_PackedConstantStruct: 4270 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4271 if (ST->getNumElements() != ID.UIntVal) 4272 return Error(ID.Loc, 4273 "initializer with struct type has wrong # elements"); 4274 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4275 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4276 4277 // Verify that the elements are compatible with the structtype. 4278 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4279 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4280 return Error(ID.Loc, "element " + Twine(i) + 4281 " of struct initializer doesn't match struct element type"); 4282 4283 V = ConstantStruct::get( 4284 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4285 } else 4286 return Error(ID.Loc, "constant expression type mismatch"); 4287 return false; 4288 } 4289 llvm_unreachable("Invalid ValID"); 4290 } 4291 4292 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4293 C = nullptr; 4294 ValID ID; 4295 auto Loc = Lex.getLoc(); 4296 if (ParseValID(ID, /*PFS=*/nullptr)) 4297 return true; 4298 switch (ID.Kind) { 4299 case ValID::t_APSInt: 4300 case ValID::t_APFloat: 4301 case ValID::t_Undef: 4302 case ValID::t_Constant: 4303 case ValID::t_ConstantStruct: 4304 case ValID::t_PackedConstantStruct: { 4305 Value *V; 4306 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4307 return true; 4308 assert(isa<Constant>(V) && "Expected a constant value"); 4309 C = cast<Constant>(V); 4310 return false; 4311 } 4312 default: 4313 return Error(Loc, "expected a constant value"); 4314 } 4315 } 4316 4317 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS, 4318 OperatorConstraint OC) { 4319 V = nullptr; 4320 ValID ID; 4321 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS, OC); 4322 } 4323 4324 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4325 Type *Ty = nullptr; 4326 return ParseType(Ty) || 4327 ParseValue(Ty, V, PFS); 4328 } 4329 4330 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4331 PerFunctionState &PFS) { 4332 Value *V; 4333 Loc = Lex.getLoc(); 4334 if (ParseTypeAndValue(V, PFS)) return true; 4335 if (!isa<BasicBlock>(V)) 4336 return Error(Loc, "expected a basic block"); 4337 BB = cast<BasicBlock>(V); 4338 return false; 4339 } 4340 4341 4342 /// FunctionHeader 4343 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 4344 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 4345 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 4346 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4347 // Parse the linkage. 4348 LocTy LinkageLoc = Lex.getLoc(); 4349 unsigned Linkage; 4350 4351 unsigned Visibility; 4352 unsigned DLLStorageClass; 4353 AttrBuilder RetAttrs; 4354 unsigned CC; 4355 Type *RetType = nullptr; 4356 LocTy RetTypeLoc = Lex.getLoc(); 4357 if (ParseOptionalLinkage(Linkage) || 4358 ParseOptionalVisibility(Visibility) || 4359 ParseOptionalDLLStorageClass(DLLStorageClass) || 4360 ParseOptionalCallingConv(CC) || 4361 ParseOptionalReturnAttrs(RetAttrs) || 4362 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4363 return true; 4364 4365 // Verify that the linkage is ok. 4366 switch ((GlobalValue::LinkageTypes)Linkage) { 4367 case GlobalValue::ExternalLinkage: 4368 break; // always ok. 4369 case GlobalValue::ExternalWeakLinkage: 4370 if (isDefine) 4371 return Error(LinkageLoc, "invalid linkage for function definition"); 4372 break; 4373 case GlobalValue::PrivateLinkage: 4374 case GlobalValue::InternalLinkage: 4375 case GlobalValue::AvailableExternallyLinkage: 4376 case GlobalValue::LinkOnceAnyLinkage: 4377 case GlobalValue::LinkOnceODRLinkage: 4378 case GlobalValue::WeakAnyLinkage: 4379 case GlobalValue::WeakODRLinkage: 4380 if (!isDefine) 4381 return Error(LinkageLoc, "invalid linkage for function declaration"); 4382 break; 4383 case GlobalValue::AppendingLinkage: 4384 case GlobalValue::CommonLinkage: 4385 return Error(LinkageLoc, "invalid function linkage type"); 4386 } 4387 4388 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4389 return Error(LinkageLoc, 4390 "symbol with local linkage must have default visibility"); 4391 4392 if (!FunctionType::isValidReturnType(RetType)) 4393 return Error(RetTypeLoc, "invalid function return type"); 4394 4395 LocTy NameLoc = Lex.getLoc(); 4396 4397 std::string FunctionName; 4398 if (Lex.getKind() == lltok::GlobalVar) { 4399 FunctionName = Lex.getStrVal(); 4400 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4401 unsigned NameID = Lex.getUIntVal(); 4402 4403 if (NameID != NumberedVals.size()) 4404 return TokError("function expected to be numbered '%" + 4405 Twine(NumberedVals.size()) + "'"); 4406 } else { 4407 return TokError("expected function name"); 4408 } 4409 4410 Lex.Lex(); 4411 4412 if (Lex.getKind() != lltok::lparen) 4413 return TokError("expected '(' in function argument list"); 4414 4415 SmallVector<ArgInfo, 8> ArgList; 4416 bool isVarArg; 4417 AttrBuilder FuncAttrs; 4418 std::vector<unsigned> FwdRefAttrGrps; 4419 LocTy BuiltinLoc; 4420 std::string Section; 4421 unsigned Alignment; 4422 std::string GC; 4423 bool UnnamedAddr; 4424 LocTy UnnamedAddrLoc; 4425 Constant *Prefix = nullptr; 4426 Constant *Prologue = nullptr; 4427 Constant *PersonalityFn = nullptr; 4428 Comdat *C; 4429 4430 if (ParseArgumentList(ArgList, isVarArg) || 4431 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 4432 &UnnamedAddrLoc) || 4433 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4434 BuiltinLoc) || 4435 (EatIfPresent(lltok::kw_section) && 4436 ParseStringConstant(Section)) || 4437 parseOptionalComdat(FunctionName, C) || 4438 ParseOptionalAlignment(Alignment) || 4439 (EatIfPresent(lltok::kw_gc) && 4440 ParseStringConstant(GC)) || 4441 (EatIfPresent(lltok::kw_prefix) && 4442 ParseGlobalTypeAndValue(Prefix)) || 4443 (EatIfPresent(lltok::kw_prologue) && 4444 ParseGlobalTypeAndValue(Prologue)) || 4445 (EatIfPresent(lltok::kw_personality) && 4446 ParseGlobalTypeAndValue(PersonalityFn))) 4447 return true; 4448 4449 if (FuncAttrs.contains(Attribute::Builtin)) 4450 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4451 4452 // If the alignment was parsed as an attribute, move to the alignment field. 4453 if (FuncAttrs.hasAlignmentAttr()) { 4454 Alignment = FuncAttrs.getAlignment(); 4455 FuncAttrs.removeAttribute(Attribute::Alignment); 4456 } 4457 4458 // Okay, if we got here, the function is syntactically valid. Convert types 4459 // and do semantic checks. 4460 std::vector<Type*> ParamTypeList; 4461 SmallVector<AttributeSet, 8> Attrs; 4462 4463 if (RetAttrs.hasAttributes()) 4464 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4465 AttributeSet::ReturnIndex, 4466 RetAttrs)); 4467 4468 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4469 ParamTypeList.push_back(ArgList[i].Ty); 4470 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 4471 AttrBuilder B(ArgList[i].Attrs, i + 1); 4472 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 4473 } 4474 } 4475 4476 if (FuncAttrs.hasAttributes()) 4477 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4478 AttributeSet::FunctionIndex, 4479 FuncAttrs)); 4480 4481 AttributeSet PAL = AttributeSet::get(Context, Attrs); 4482 4483 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4484 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4485 4486 FunctionType *FT = 4487 FunctionType::get(RetType, ParamTypeList, isVarArg); 4488 PointerType *PFT = PointerType::getUnqual(FT); 4489 4490 Fn = nullptr; 4491 if (!FunctionName.empty()) { 4492 // If this was a definition of a forward reference, remove the definition 4493 // from the forward reference table and fill in the forward ref. 4494 auto FRVI = ForwardRefVals.find(FunctionName); 4495 if (FRVI != ForwardRefVals.end()) { 4496 Fn = M->getFunction(FunctionName); 4497 if (!Fn) 4498 return Error(FRVI->second.second, "invalid forward reference to " 4499 "function as global value!"); 4500 if (Fn->getType() != PFT) 4501 return Error(FRVI->second.second, "invalid forward reference to " 4502 "function '" + FunctionName + "' with wrong type!"); 4503 4504 ForwardRefVals.erase(FRVI); 4505 } else if ((Fn = M->getFunction(FunctionName))) { 4506 // Reject redefinitions. 4507 return Error(NameLoc, "invalid redefinition of function '" + 4508 FunctionName + "'"); 4509 } else if (M->getNamedValue(FunctionName)) { 4510 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4511 } 4512 4513 } else { 4514 // If this is a definition of a forward referenced function, make sure the 4515 // types agree. 4516 auto I = ForwardRefValIDs.find(NumberedVals.size()); 4517 if (I != ForwardRefValIDs.end()) { 4518 Fn = cast<Function>(I->second.first); 4519 if (Fn->getType() != PFT) 4520 return Error(NameLoc, "type of definition and forward reference of '@" + 4521 Twine(NumberedVals.size()) + "' disagree"); 4522 ForwardRefValIDs.erase(I); 4523 } 4524 } 4525 4526 if (!Fn) 4527 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4528 else // Move the forward-reference to the correct spot in the module. 4529 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4530 4531 if (FunctionName.empty()) 4532 NumberedVals.push_back(Fn); 4533 4534 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4535 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4536 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4537 Fn->setCallingConv(CC); 4538 Fn->setAttributes(PAL); 4539 Fn->setUnnamedAddr(UnnamedAddr); 4540 Fn->setAlignment(Alignment); 4541 Fn->setSection(Section); 4542 Fn->setComdat(C); 4543 Fn->setPersonalityFn(PersonalityFn); 4544 if (!GC.empty()) Fn->setGC(GC.c_str()); 4545 Fn->setPrefixData(Prefix); 4546 Fn->setPrologueData(Prologue); 4547 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4548 4549 // Add all of the arguments we parsed to the function. 4550 Function::arg_iterator ArgIt = Fn->arg_begin(); 4551 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4552 // If the argument has a name, insert it into the argument symbol table. 4553 if (ArgList[i].Name.empty()) continue; 4554 4555 // Set the name, if it conflicted, it will be auto-renamed. 4556 ArgIt->setName(ArgList[i].Name); 4557 4558 if (ArgIt->getName() != ArgList[i].Name) 4559 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4560 ArgList[i].Name + "'"); 4561 } 4562 4563 if (isDefine) 4564 return false; 4565 4566 // Check the declaration has no block address forward references. 4567 ValID ID; 4568 if (FunctionName.empty()) { 4569 ID.Kind = ValID::t_GlobalID; 4570 ID.UIntVal = NumberedVals.size() - 1; 4571 } else { 4572 ID.Kind = ValID::t_GlobalName; 4573 ID.StrVal = FunctionName; 4574 } 4575 auto Blocks = ForwardRefBlockAddresses.find(ID); 4576 if (Blocks != ForwardRefBlockAddresses.end()) 4577 return Error(Blocks->first.Loc, 4578 "cannot take blockaddress inside a declaration"); 4579 return false; 4580 } 4581 4582 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4583 ValID ID; 4584 if (FunctionNumber == -1) { 4585 ID.Kind = ValID::t_GlobalName; 4586 ID.StrVal = F.getName(); 4587 } else { 4588 ID.Kind = ValID::t_GlobalID; 4589 ID.UIntVal = FunctionNumber; 4590 } 4591 4592 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4593 if (Blocks == P.ForwardRefBlockAddresses.end()) 4594 return false; 4595 4596 for (const auto &I : Blocks->second) { 4597 const ValID &BBID = I.first; 4598 GlobalValue *GV = I.second; 4599 4600 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4601 "Expected local id or name"); 4602 BasicBlock *BB; 4603 if (BBID.Kind == ValID::t_LocalName) 4604 BB = GetBB(BBID.StrVal, BBID.Loc); 4605 else 4606 BB = GetBB(BBID.UIntVal, BBID.Loc); 4607 if (!BB) 4608 return P.Error(BBID.Loc, "referenced value is not a basic block"); 4609 4610 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 4611 GV->eraseFromParent(); 4612 } 4613 4614 P.ForwardRefBlockAddresses.erase(Blocks); 4615 return false; 4616 } 4617 4618 /// ParseFunctionBody 4619 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 4620 bool LLParser::ParseFunctionBody(Function &Fn) { 4621 if (Lex.getKind() != lltok::lbrace) 4622 return TokError("expected '{' in function body"); 4623 Lex.Lex(); // eat the {. 4624 4625 int FunctionNumber = -1; 4626 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 4627 4628 PerFunctionState PFS(*this, Fn, FunctionNumber); 4629 4630 // Resolve block addresses and allow basic blocks to be forward-declared 4631 // within this function. 4632 if (PFS.resolveForwardRefBlockAddresses()) 4633 return true; 4634 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 4635 4636 // We need at least one basic block. 4637 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 4638 return TokError("function body requires at least one basic block"); 4639 4640 while (Lex.getKind() != lltok::rbrace && 4641 Lex.getKind() != lltok::kw_uselistorder) 4642 if (ParseBasicBlock(PFS)) return true; 4643 4644 while (Lex.getKind() != lltok::rbrace) 4645 if (ParseUseListOrder(&PFS)) 4646 return true; 4647 4648 // Eat the }. 4649 Lex.Lex(); 4650 4651 // Verify function is ok. 4652 return PFS.FinishFunction(); 4653 } 4654 4655 /// ParseBasicBlock 4656 /// ::= LabelStr? Instruction* 4657 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 4658 // If this basic block starts out with a name, remember it. 4659 std::string Name; 4660 LocTy NameLoc = Lex.getLoc(); 4661 if (Lex.getKind() == lltok::LabelStr) { 4662 Name = Lex.getStrVal(); 4663 Lex.Lex(); 4664 } 4665 4666 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 4667 if (!BB) 4668 return Error(NameLoc, 4669 "unable to create block named '" + Name + "'"); 4670 4671 std::string NameStr; 4672 4673 // Parse the instructions in this block until we get a terminator. 4674 Instruction *Inst; 4675 do { 4676 // This instruction may have three possibilities for a name: a) none 4677 // specified, b) name specified "%foo =", c) number specified: "%4 =". 4678 LocTy NameLoc = Lex.getLoc(); 4679 int NameID = -1; 4680 NameStr = ""; 4681 4682 if (Lex.getKind() == lltok::LocalVarID) { 4683 NameID = Lex.getUIntVal(); 4684 Lex.Lex(); 4685 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 4686 return true; 4687 } else if (Lex.getKind() == lltok::LocalVar) { 4688 NameStr = Lex.getStrVal(); 4689 Lex.Lex(); 4690 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 4691 return true; 4692 } 4693 4694 switch (ParseInstruction(Inst, BB, PFS)) { 4695 default: llvm_unreachable("Unknown ParseInstruction result!"); 4696 case InstError: return true; 4697 case InstNormal: 4698 BB->getInstList().push_back(Inst); 4699 4700 // With a normal result, we check to see if the instruction is followed by 4701 // a comma and metadata. 4702 if (EatIfPresent(lltok::comma)) 4703 if (ParseInstructionMetadata(*Inst)) 4704 return true; 4705 break; 4706 case InstExtraComma: 4707 BB->getInstList().push_back(Inst); 4708 4709 // If the instruction parser ate an extra comma at the end of it, it 4710 // *must* be followed by metadata. 4711 if (ParseInstructionMetadata(*Inst)) 4712 return true; 4713 break; 4714 } 4715 4716 // Set the name on the instruction. 4717 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 4718 } while (!isa<TerminatorInst>(Inst)); 4719 4720 return false; 4721 } 4722 4723 //===----------------------------------------------------------------------===// 4724 // Instruction Parsing. 4725 //===----------------------------------------------------------------------===// 4726 4727 /// ParseInstruction - Parse one of the many different instructions. 4728 /// 4729 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 4730 PerFunctionState &PFS) { 4731 lltok::Kind Token = Lex.getKind(); 4732 if (Token == lltok::Eof) 4733 return TokError("found end of file when expecting more instructions"); 4734 LocTy Loc = Lex.getLoc(); 4735 unsigned KeywordVal = Lex.getUIntVal(); 4736 Lex.Lex(); // Eat the keyword. 4737 4738 switch (Token) { 4739 default: return Error(Loc, "expected instruction opcode"); 4740 // Terminator Instructions. 4741 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 4742 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 4743 case lltok::kw_br: return ParseBr(Inst, PFS); 4744 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 4745 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 4746 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 4747 case lltok::kw_resume: return ParseResume(Inst, PFS); 4748 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 4749 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 4750 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 4751 case lltok::kw_terminatepad: return ParseTerminatePad(Inst, PFS); 4752 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 4753 case lltok::kw_catchendpad: return ParseCatchEndPad(Inst, PFS); 4754 case lltok::kw_cleanupendpad: return ParseCleanupEndPad(Inst, PFS); 4755 // Binary Operators. 4756 case lltok::kw_add: 4757 case lltok::kw_sub: 4758 case lltok::kw_mul: 4759 case lltok::kw_shl: { 4760 bool NUW = EatIfPresent(lltok::kw_nuw); 4761 bool NSW = EatIfPresent(lltok::kw_nsw); 4762 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 4763 4764 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4765 4766 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 4767 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 4768 return false; 4769 } 4770 case lltok::kw_fadd: 4771 case lltok::kw_fsub: 4772 case lltok::kw_fmul: 4773 case lltok::kw_fdiv: 4774 case lltok::kw_frem: { 4775 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4776 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 4777 if (Res != 0) 4778 return Res; 4779 if (FMF.any()) 4780 Inst->setFastMathFlags(FMF); 4781 return 0; 4782 } 4783 4784 case lltok::kw_sdiv: 4785 case lltok::kw_udiv: 4786 case lltok::kw_lshr: 4787 case lltok::kw_ashr: { 4788 bool Exact = EatIfPresent(lltok::kw_exact); 4789 4790 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4791 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 4792 return false; 4793 } 4794 4795 case lltok::kw_urem: 4796 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 4797 case lltok::kw_and: 4798 case lltok::kw_or: 4799 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 4800 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 4801 case lltok::kw_fcmp: { 4802 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4803 int Res = ParseCompare(Inst, PFS, KeywordVal); 4804 if (Res != 0) 4805 return Res; 4806 if (FMF.any()) 4807 Inst->setFastMathFlags(FMF); 4808 return 0; 4809 } 4810 4811 // Casts. 4812 case lltok::kw_trunc: 4813 case lltok::kw_zext: 4814 case lltok::kw_sext: 4815 case lltok::kw_fptrunc: 4816 case lltok::kw_fpext: 4817 case lltok::kw_bitcast: 4818 case lltok::kw_addrspacecast: 4819 case lltok::kw_uitofp: 4820 case lltok::kw_sitofp: 4821 case lltok::kw_fptoui: 4822 case lltok::kw_fptosi: 4823 case lltok::kw_inttoptr: 4824 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 4825 // Other. 4826 case lltok::kw_select: return ParseSelect(Inst, PFS); 4827 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 4828 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 4829 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 4830 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 4831 case lltok::kw_phi: return ParsePHI(Inst, PFS); 4832 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 4833 // Call. 4834 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 4835 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 4836 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 4837 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 4838 // Memory. 4839 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 4840 case lltok::kw_load: return ParseLoad(Inst, PFS); 4841 case lltok::kw_store: return ParseStore(Inst, PFS); 4842 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 4843 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 4844 case lltok::kw_fence: return ParseFence(Inst, PFS); 4845 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 4846 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 4847 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 4848 } 4849 } 4850 4851 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 4852 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 4853 if (Opc == Instruction::FCmp) { 4854 switch (Lex.getKind()) { 4855 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 4856 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 4857 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 4858 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 4859 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 4860 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 4861 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 4862 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 4863 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 4864 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 4865 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 4866 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 4867 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 4868 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 4869 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 4870 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 4871 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 4872 } 4873 } else { 4874 switch (Lex.getKind()) { 4875 default: return TokError("expected icmp predicate (e.g. 'eq')"); 4876 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 4877 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 4878 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 4879 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 4880 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 4881 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 4882 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 4883 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 4884 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 4885 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 4886 } 4887 } 4888 Lex.Lex(); 4889 return false; 4890 } 4891 4892 //===----------------------------------------------------------------------===// 4893 // Terminator Instructions. 4894 //===----------------------------------------------------------------------===// 4895 4896 /// ParseRet - Parse a return instruction. 4897 /// ::= 'ret' void (',' !dbg, !1)* 4898 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 4899 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 4900 PerFunctionState &PFS) { 4901 SMLoc TypeLoc = Lex.getLoc(); 4902 Type *Ty = nullptr; 4903 if (ParseType(Ty, true /*void allowed*/)) return true; 4904 4905 Type *ResType = PFS.getFunction().getReturnType(); 4906 4907 if (Ty->isVoidTy()) { 4908 if (!ResType->isVoidTy()) 4909 return Error(TypeLoc, "value doesn't match function result type '" + 4910 getTypeString(ResType) + "'"); 4911 4912 Inst = ReturnInst::Create(Context); 4913 return false; 4914 } 4915 4916 Value *RV; 4917 if (ParseValue(Ty, RV, PFS)) return true; 4918 4919 if (ResType != RV->getType()) 4920 return Error(TypeLoc, "value doesn't match function result type '" + 4921 getTypeString(ResType) + "'"); 4922 4923 Inst = ReturnInst::Create(Context, RV); 4924 return false; 4925 } 4926 4927 4928 /// ParseBr 4929 /// ::= 'br' TypeAndValue 4930 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 4931 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 4932 LocTy Loc, Loc2; 4933 Value *Op0; 4934 BasicBlock *Op1, *Op2; 4935 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 4936 4937 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 4938 Inst = BranchInst::Create(BB); 4939 return false; 4940 } 4941 4942 if (Op0->getType() != Type::getInt1Ty(Context)) 4943 return Error(Loc, "branch condition must have 'i1' type"); 4944 4945 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 4946 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 4947 ParseToken(lltok::comma, "expected ',' after true destination") || 4948 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 4949 return true; 4950 4951 Inst = BranchInst::Create(Op1, Op2, Op0); 4952 return false; 4953 } 4954 4955 /// ParseSwitch 4956 /// Instruction 4957 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 4958 /// JumpTable 4959 /// ::= (TypeAndValue ',' TypeAndValue)* 4960 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 4961 LocTy CondLoc, BBLoc; 4962 Value *Cond; 4963 BasicBlock *DefaultBB; 4964 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 4965 ParseToken(lltok::comma, "expected ',' after switch condition") || 4966 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 4967 ParseToken(lltok::lsquare, "expected '[' with switch table")) 4968 return true; 4969 4970 if (!Cond->getType()->isIntegerTy()) 4971 return Error(CondLoc, "switch condition must have integer type"); 4972 4973 // Parse the jump table pairs. 4974 SmallPtrSet<Value*, 32> SeenCases; 4975 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 4976 while (Lex.getKind() != lltok::rsquare) { 4977 Value *Constant; 4978 BasicBlock *DestBB; 4979 4980 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 4981 ParseToken(lltok::comma, "expected ',' after case value") || 4982 ParseTypeAndBasicBlock(DestBB, PFS)) 4983 return true; 4984 4985 if (!SeenCases.insert(Constant).second) 4986 return Error(CondLoc, "duplicate case value in switch"); 4987 if (!isa<ConstantInt>(Constant)) 4988 return Error(CondLoc, "case value is not a constant integer"); 4989 4990 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 4991 } 4992 4993 Lex.Lex(); // Eat the ']'. 4994 4995 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 4996 for (unsigned i = 0, e = Table.size(); i != e; ++i) 4997 SI->addCase(Table[i].first, Table[i].second); 4998 Inst = SI; 4999 return false; 5000 } 5001 5002 /// ParseIndirectBr 5003 /// Instruction 5004 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5005 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5006 LocTy AddrLoc; 5007 Value *Address; 5008 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5009 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5010 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5011 return true; 5012 5013 if (!Address->getType()->isPointerTy()) 5014 return Error(AddrLoc, "indirectbr address must have pointer type"); 5015 5016 // Parse the destination list. 5017 SmallVector<BasicBlock*, 16> DestList; 5018 5019 if (Lex.getKind() != lltok::rsquare) { 5020 BasicBlock *DestBB; 5021 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5022 return true; 5023 DestList.push_back(DestBB); 5024 5025 while (EatIfPresent(lltok::comma)) { 5026 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5027 return true; 5028 DestList.push_back(DestBB); 5029 } 5030 } 5031 5032 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5033 return true; 5034 5035 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5036 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5037 IBI->addDestination(DestList[i]); 5038 Inst = IBI; 5039 return false; 5040 } 5041 5042 5043 /// ParseInvoke 5044 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5045 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5046 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5047 LocTy CallLoc = Lex.getLoc(); 5048 AttrBuilder RetAttrs, FnAttrs; 5049 std::vector<unsigned> FwdRefAttrGrps; 5050 LocTy NoBuiltinLoc; 5051 unsigned CC; 5052 Type *RetType = nullptr; 5053 LocTy RetTypeLoc; 5054 ValID CalleeID; 5055 SmallVector<ParamInfo, 16> ArgList; 5056 SmallVector<OperandBundleDef, 2> BundleList; 5057 5058 BasicBlock *NormalBB, *UnwindBB; 5059 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5060 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5061 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5062 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5063 NoBuiltinLoc) || 5064 ParseOptionalOperandBundles(BundleList, PFS) || 5065 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5066 ParseTypeAndBasicBlock(NormalBB, PFS) || 5067 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5068 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5069 return true; 5070 5071 // If RetType is a non-function pointer type, then this is the short syntax 5072 // for the call, which means that RetType is just the return type. Infer the 5073 // rest of the function argument types from the arguments that are present. 5074 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5075 if (!Ty) { 5076 // Pull out the types of all of the arguments... 5077 std::vector<Type*> ParamTypes; 5078 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5079 ParamTypes.push_back(ArgList[i].V->getType()); 5080 5081 if (!FunctionType::isValidReturnType(RetType)) 5082 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5083 5084 Ty = FunctionType::get(RetType, ParamTypes, false); 5085 } 5086 5087 CalleeID.FTy = Ty; 5088 5089 // Look up the callee. 5090 Value *Callee; 5091 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5092 return true; 5093 5094 // Set up the Attribute for the function. 5095 SmallVector<AttributeSet, 8> Attrs; 5096 if (RetAttrs.hasAttributes()) 5097 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5098 AttributeSet::ReturnIndex, 5099 RetAttrs)); 5100 5101 SmallVector<Value*, 8> Args; 5102 5103 // Loop through FunctionType's arguments and ensure they are specified 5104 // correctly. Also, gather any parameter attributes. 5105 FunctionType::param_iterator I = Ty->param_begin(); 5106 FunctionType::param_iterator E = Ty->param_end(); 5107 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5108 Type *ExpectedTy = nullptr; 5109 if (I != E) { 5110 ExpectedTy = *I++; 5111 } else if (!Ty->isVarArg()) { 5112 return Error(ArgList[i].Loc, "too many arguments specified"); 5113 } 5114 5115 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5116 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5117 getTypeString(ExpectedTy) + "'"); 5118 Args.push_back(ArgList[i].V); 5119 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5120 AttrBuilder B(ArgList[i].Attrs, i + 1); 5121 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5122 } 5123 } 5124 5125 if (I != E) 5126 return Error(CallLoc, "not enough parameters specified for call"); 5127 5128 if (FnAttrs.hasAttributes()) { 5129 if (FnAttrs.hasAlignmentAttr()) 5130 return Error(CallLoc, "invoke instructions may not have an alignment"); 5131 5132 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5133 AttributeSet::FunctionIndex, 5134 FnAttrs)); 5135 } 5136 5137 // Finish off the Attribute and check them 5138 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5139 5140 InvokeInst *II = 5141 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5142 II->setCallingConv(CC); 5143 II->setAttributes(PAL); 5144 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5145 Inst = II; 5146 return false; 5147 } 5148 5149 /// ParseResume 5150 /// ::= 'resume' TypeAndValue 5151 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5152 Value *Exn; LocTy ExnLoc; 5153 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5154 return true; 5155 5156 ResumeInst *RI = ResumeInst::Create(Exn); 5157 Inst = RI; 5158 return false; 5159 } 5160 5161 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5162 PerFunctionState &PFS) { 5163 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5164 return true; 5165 5166 while (Lex.getKind() != lltok::rsquare) { 5167 // If this isn't the first argument, we need a comma. 5168 if (!Args.empty() && 5169 ParseToken(lltok::comma, "expected ',' in argument list")) 5170 return true; 5171 5172 // Parse the argument. 5173 LocTy ArgLoc; 5174 Type *ArgTy = nullptr; 5175 if (ParseType(ArgTy, ArgLoc)) 5176 return true; 5177 5178 Value *V; 5179 if (ArgTy->isMetadataTy()) { 5180 if (ParseMetadataAsValue(V, PFS)) 5181 return true; 5182 } else { 5183 if (ParseValue(ArgTy, V, PFS)) 5184 return true; 5185 } 5186 Args.push_back(V); 5187 } 5188 5189 Lex.Lex(); // Lex the ']'. 5190 return false; 5191 } 5192 5193 /// ParseCleanupRet 5194 /// ::= 'cleanupret' Value unwind ('to' 'caller' | TypeAndValue) 5195 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5196 Value *CleanupPad = nullptr; 5197 5198 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS, OC_CleanupPad)) 5199 return true; 5200 5201 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5202 return true; 5203 5204 BasicBlock *UnwindBB = nullptr; 5205 if (Lex.getKind() == lltok::kw_to) { 5206 Lex.Lex(); 5207 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5208 return true; 5209 } else { 5210 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5211 return true; 5212 } 5213 } 5214 5215 Inst = CleanupReturnInst::Create(cast<CleanupPadInst>(CleanupPad), UnwindBB); 5216 return false; 5217 } 5218 5219 /// ParseCatchRet 5220 /// ::= 'catchret' Value 'to' TypeAndValue 5221 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5222 Value *CatchPad = nullptr; 5223 5224 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS, OC_CatchPad)) 5225 return true; 5226 5227 BasicBlock *BB; 5228 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5229 ParseTypeAndBasicBlock(BB, PFS)) 5230 return true; 5231 5232 Inst = CatchReturnInst::Create(cast<CatchPadInst>(CatchPad), BB); 5233 return false; 5234 } 5235 5236 /// ParseCatchPad 5237 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5238 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5239 SmallVector<Value *, 8> Args; 5240 if (ParseExceptionArgs(Args, PFS)) 5241 return true; 5242 5243 BasicBlock *NormalBB, *UnwindBB; 5244 if (ParseToken(lltok::kw_to, "expected 'to' in catchpad") || 5245 ParseTypeAndBasicBlock(NormalBB, PFS) || 5246 ParseToken(lltok::kw_unwind, "expected 'unwind' in catchpad") || 5247 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5248 return true; 5249 5250 Inst = CatchPadInst::Create(NormalBB, UnwindBB, Args); 5251 return false; 5252 } 5253 5254 /// ParseTerminatePad 5255 /// ::= 'terminatepad' ParamList 'to' TypeAndValue 5256 bool LLParser::ParseTerminatePad(Instruction *&Inst, PerFunctionState &PFS) { 5257 SmallVector<Value *, 8> Args; 5258 if (ParseExceptionArgs(Args, PFS)) 5259 return true; 5260 5261 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in terminatepad")) 5262 return true; 5263 5264 BasicBlock *UnwindBB = nullptr; 5265 if (Lex.getKind() == lltok::kw_to) { 5266 Lex.Lex(); 5267 if (ParseToken(lltok::kw_caller, "expected 'caller' in terminatepad")) 5268 return true; 5269 } else { 5270 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5271 return true; 5272 } 5273 } 5274 5275 Inst = TerminatePadInst::Create(Context, UnwindBB, Args); 5276 return false; 5277 } 5278 5279 /// ParseCleanupPad 5280 /// ::= 'cleanuppad' ParamList 5281 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5282 SmallVector<Value *, 8> Args; 5283 if (ParseExceptionArgs(Args, PFS)) 5284 return true; 5285 5286 Inst = CleanupPadInst::Create(Context, Args); 5287 return false; 5288 } 5289 5290 /// ParseCatchEndPad 5291 /// ::= 'catchendpad' unwind ('to' 'caller' | TypeAndValue) 5292 bool LLParser::ParseCatchEndPad(Instruction *&Inst, PerFunctionState &PFS) { 5293 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in catchendpad")) 5294 return true; 5295 5296 BasicBlock *UnwindBB = nullptr; 5297 if (Lex.getKind() == lltok::kw_to) { 5298 Lex.Lex(); 5299 if (Lex.getKind() == lltok::kw_caller) { 5300 Lex.Lex(); 5301 } else { 5302 return true; 5303 } 5304 } else { 5305 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5306 return true; 5307 } 5308 } 5309 5310 Inst = CatchEndPadInst::Create(Context, UnwindBB); 5311 return false; 5312 } 5313 5314 /// ParseCatchEndPad 5315 /// ::= 'cleanupendpad' Value unwind ('to' 'caller' | TypeAndValue) 5316 bool LLParser::ParseCleanupEndPad(Instruction *&Inst, PerFunctionState &PFS) { 5317 Value *CleanupPad = nullptr; 5318 5319 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS, OC_CleanupPad)) 5320 return true; 5321 5322 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in catchendpad")) 5323 return true; 5324 5325 BasicBlock *UnwindBB = nullptr; 5326 if (Lex.getKind() == lltok::kw_to) { 5327 Lex.Lex(); 5328 if (Lex.getKind() == lltok::kw_caller) { 5329 Lex.Lex(); 5330 } else { 5331 return true; 5332 } 5333 } else { 5334 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5335 return true; 5336 } 5337 } 5338 5339 Inst = CleanupEndPadInst::Create(cast<CleanupPadInst>(CleanupPad), UnwindBB); 5340 return false; 5341 } 5342 5343 //===----------------------------------------------------------------------===// 5344 // Binary Operators. 5345 //===----------------------------------------------------------------------===// 5346 5347 /// ParseArithmetic 5348 /// ::= ArithmeticOps TypeAndValue ',' Value 5349 /// 5350 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5351 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5352 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5353 unsigned Opc, unsigned OperandType) { 5354 LocTy Loc; Value *LHS, *RHS; 5355 if (ParseTypeAndValue(LHS, Loc, PFS) || 5356 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5357 ParseValue(LHS->getType(), RHS, PFS)) 5358 return true; 5359 5360 bool Valid; 5361 switch (OperandType) { 5362 default: llvm_unreachable("Unknown operand type!"); 5363 case 0: // int or FP. 5364 Valid = LHS->getType()->isIntOrIntVectorTy() || 5365 LHS->getType()->isFPOrFPVectorTy(); 5366 break; 5367 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5368 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5369 } 5370 5371 if (!Valid) 5372 return Error(Loc, "invalid operand type for instruction"); 5373 5374 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5375 return false; 5376 } 5377 5378 /// ParseLogical 5379 /// ::= ArithmeticOps TypeAndValue ',' Value { 5380 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5381 unsigned Opc) { 5382 LocTy Loc; Value *LHS, *RHS; 5383 if (ParseTypeAndValue(LHS, Loc, PFS) || 5384 ParseToken(lltok::comma, "expected ',' in logical operation") || 5385 ParseValue(LHS->getType(), RHS, PFS)) 5386 return true; 5387 5388 if (!LHS->getType()->isIntOrIntVectorTy()) 5389 return Error(Loc,"instruction requires integer or integer vector operands"); 5390 5391 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5392 return false; 5393 } 5394 5395 5396 /// ParseCompare 5397 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5398 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5399 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5400 unsigned Opc) { 5401 // Parse the integer/fp comparison predicate. 5402 LocTy Loc; 5403 unsigned Pred; 5404 Value *LHS, *RHS; 5405 if (ParseCmpPredicate(Pred, Opc) || 5406 ParseTypeAndValue(LHS, Loc, PFS) || 5407 ParseToken(lltok::comma, "expected ',' after compare value") || 5408 ParseValue(LHS->getType(), RHS, PFS)) 5409 return true; 5410 5411 if (Opc == Instruction::FCmp) { 5412 if (!LHS->getType()->isFPOrFPVectorTy()) 5413 return Error(Loc, "fcmp requires floating point operands"); 5414 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5415 } else { 5416 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5417 if (!LHS->getType()->isIntOrIntVectorTy() && 5418 !LHS->getType()->getScalarType()->isPointerTy()) 5419 return Error(Loc, "icmp requires integer operands"); 5420 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5421 } 5422 return false; 5423 } 5424 5425 //===----------------------------------------------------------------------===// 5426 // Other Instructions. 5427 //===----------------------------------------------------------------------===// 5428 5429 5430 /// ParseCast 5431 /// ::= CastOpc TypeAndValue 'to' Type 5432 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5433 unsigned Opc) { 5434 LocTy Loc; 5435 Value *Op; 5436 Type *DestTy = nullptr; 5437 if (ParseTypeAndValue(Op, Loc, PFS) || 5438 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5439 ParseType(DestTy)) 5440 return true; 5441 5442 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5443 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5444 return Error(Loc, "invalid cast opcode for cast from '" + 5445 getTypeString(Op->getType()) + "' to '" + 5446 getTypeString(DestTy) + "'"); 5447 } 5448 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5449 return false; 5450 } 5451 5452 /// ParseSelect 5453 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5454 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5455 LocTy Loc; 5456 Value *Op0, *Op1, *Op2; 5457 if (ParseTypeAndValue(Op0, Loc, PFS) || 5458 ParseToken(lltok::comma, "expected ',' after select condition") || 5459 ParseTypeAndValue(Op1, PFS) || 5460 ParseToken(lltok::comma, "expected ',' after select value") || 5461 ParseTypeAndValue(Op2, PFS)) 5462 return true; 5463 5464 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5465 return Error(Loc, Reason); 5466 5467 Inst = SelectInst::Create(Op0, Op1, Op2); 5468 return false; 5469 } 5470 5471 /// ParseVA_Arg 5472 /// ::= 'va_arg' TypeAndValue ',' Type 5473 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5474 Value *Op; 5475 Type *EltTy = nullptr; 5476 LocTy TypeLoc; 5477 if (ParseTypeAndValue(Op, PFS) || 5478 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5479 ParseType(EltTy, TypeLoc)) 5480 return true; 5481 5482 if (!EltTy->isFirstClassType()) 5483 return Error(TypeLoc, "va_arg requires operand with first class type"); 5484 5485 Inst = new VAArgInst(Op, EltTy); 5486 return false; 5487 } 5488 5489 /// ParseExtractElement 5490 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5491 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5492 LocTy Loc; 5493 Value *Op0, *Op1; 5494 if (ParseTypeAndValue(Op0, Loc, PFS) || 5495 ParseToken(lltok::comma, "expected ',' after extract value") || 5496 ParseTypeAndValue(Op1, PFS)) 5497 return true; 5498 5499 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5500 return Error(Loc, "invalid extractelement operands"); 5501 5502 Inst = ExtractElementInst::Create(Op0, Op1); 5503 return false; 5504 } 5505 5506 /// ParseInsertElement 5507 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5508 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5509 LocTy Loc; 5510 Value *Op0, *Op1, *Op2; 5511 if (ParseTypeAndValue(Op0, Loc, PFS) || 5512 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5513 ParseTypeAndValue(Op1, PFS) || 5514 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5515 ParseTypeAndValue(Op2, PFS)) 5516 return true; 5517 5518 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5519 return Error(Loc, "invalid insertelement operands"); 5520 5521 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5522 return false; 5523 } 5524 5525 /// ParseShuffleVector 5526 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5527 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5528 LocTy Loc; 5529 Value *Op0, *Op1, *Op2; 5530 if (ParseTypeAndValue(Op0, Loc, PFS) || 5531 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5532 ParseTypeAndValue(Op1, PFS) || 5533 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5534 ParseTypeAndValue(Op2, PFS)) 5535 return true; 5536 5537 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5538 return Error(Loc, "invalid shufflevector operands"); 5539 5540 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5541 return false; 5542 } 5543 5544 /// ParsePHI 5545 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5546 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5547 Type *Ty = nullptr; LocTy TypeLoc; 5548 Value *Op0, *Op1; 5549 5550 if (ParseType(Ty, TypeLoc) || 5551 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5552 ParseValue(Ty, Op0, PFS) || 5553 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5554 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5555 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5556 return true; 5557 5558 bool AteExtraComma = false; 5559 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5560 while (1) { 5561 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5562 5563 if (!EatIfPresent(lltok::comma)) 5564 break; 5565 5566 if (Lex.getKind() == lltok::MetadataVar) { 5567 AteExtraComma = true; 5568 break; 5569 } 5570 5571 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5572 ParseValue(Ty, Op0, PFS) || 5573 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5574 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5575 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5576 return true; 5577 } 5578 5579 if (!Ty->isFirstClassType()) 5580 return Error(TypeLoc, "phi node must have first class type"); 5581 5582 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5583 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5584 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5585 Inst = PN; 5586 return AteExtraComma ? InstExtraComma : InstNormal; 5587 } 5588 5589 /// ParseLandingPad 5590 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5591 /// Clause 5592 /// ::= 'catch' TypeAndValue 5593 /// ::= 'filter' 5594 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5595 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5596 Type *Ty = nullptr; LocTy TyLoc; 5597 5598 if (ParseType(Ty, TyLoc)) 5599 return true; 5600 5601 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 5602 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5603 5604 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5605 LandingPadInst::ClauseType CT; 5606 if (EatIfPresent(lltok::kw_catch)) 5607 CT = LandingPadInst::Catch; 5608 else if (EatIfPresent(lltok::kw_filter)) 5609 CT = LandingPadInst::Filter; 5610 else 5611 return TokError("expected 'catch' or 'filter' clause type"); 5612 5613 Value *V; 5614 LocTy VLoc; 5615 if (ParseTypeAndValue(V, VLoc, PFS)) 5616 return true; 5617 5618 // A 'catch' type expects a non-array constant. A filter clause expects an 5619 // array constant. 5620 if (CT == LandingPadInst::Catch) { 5621 if (isa<ArrayType>(V->getType())) 5622 Error(VLoc, "'catch' clause has an invalid type"); 5623 } else { 5624 if (!isa<ArrayType>(V->getType())) 5625 Error(VLoc, "'filter' clause has an invalid type"); 5626 } 5627 5628 Constant *CV = dyn_cast<Constant>(V); 5629 if (!CV) 5630 return Error(VLoc, "clause argument must be a constant"); 5631 LP->addClause(CV); 5632 } 5633 5634 Inst = LP.release(); 5635 return false; 5636 } 5637 5638 /// ParseCall 5639 /// ::= 'call' OptionalCallingConv OptionalAttrs Type Value 5640 /// ParameterList OptionalAttrs 5641 /// ::= 'tail' 'call' OptionalCallingConv OptionalAttrs Type Value 5642 /// ParameterList OptionalAttrs 5643 /// ::= 'musttail' 'call' OptionalCallingConv OptionalAttrs Type Value 5644 /// ParameterList OptionalAttrs 5645 /// ::= 'notail' 'call' OptionalCallingConv OptionalAttrs Type Value 5646 /// ParameterList OptionalAttrs 5647 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 5648 CallInst::TailCallKind TCK) { 5649 AttrBuilder RetAttrs, FnAttrs; 5650 std::vector<unsigned> FwdRefAttrGrps; 5651 LocTy BuiltinLoc; 5652 unsigned CC; 5653 Type *RetType = nullptr; 5654 LocTy RetTypeLoc; 5655 ValID CalleeID; 5656 SmallVector<ParamInfo, 16> ArgList; 5657 SmallVector<OperandBundleDef, 2> BundleList; 5658 LocTy CallLoc = Lex.getLoc(); 5659 5660 if ((TCK != CallInst::TCK_None && 5661 ParseToken(lltok::kw_call, 5662 "expected 'tail call', 'musttail call', or 'notail call'")) || 5663 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5664 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5665 ParseValID(CalleeID) || 5666 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 5667 PFS.getFunction().isVarArg()) || 5668 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 5669 ParseOptionalOperandBundles(BundleList, PFS)) 5670 return true; 5671 5672 // If RetType is a non-function pointer type, then this is the short syntax 5673 // for the call, which means that RetType is just the return type. Infer the 5674 // rest of the function argument types from the arguments that are present. 5675 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5676 if (!Ty) { 5677 // Pull out the types of all of the arguments... 5678 std::vector<Type*> ParamTypes; 5679 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5680 ParamTypes.push_back(ArgList[i].V->getType()); 5681 5682 if (!FunctionType::isValidReturnType(RetType)) 5683 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5684 5685 Ty = FunctionType::get(RetType, ParamTypes, false); 5686 } 5687 5688 CalleeID.FTy = Ty; 5689 5690 // Look up the callee. 5691 Value *Callee; 5692 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5693 return true; 5694 5695 // Set up the Attribute for the function. 5696 SmallVector<AttributeSet, 8> Attrs; 5697 if (RetAttrs.hasAttributes()) 5698 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5699 AttributeSet::ReturnIndex, 5700 RetAttrs)); 5701 5702 SmallVector<Value*, 8> Args; 5703 5704 // Loop through FunctionType's arguments and ensure they are specified 5705 // correctly. Also, gather any parameter attributes. 5706 FunctionType::param_iterator I = Ty->param_begin(); 5707 FunctionType::param_iterator E = Ty->param_end(); 5708 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5709 Type *ExpectedTy = nullptr; 5710 if (I != E) { 5711 ExpectedTy = *I++; 5712 } else if (!Ty->isVarArg()) { 5713 return Error(ArgList[i].Loc, "too many arguments specified"); 5714 } 5715 5716 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5717 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5718 getTypeString(ExpectedTy) + "'"); 5719 Args.push_back(ArgList[i].V); 5720 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5721 AttrBuilder B(ArgList[i].Attrs, i + 1); 5722 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5723 } 5724 } 5725 5726 if (I != E) 5727 return Error(CallLoc, "not enough parameters specified for call"); 5728 5729 if (FnAttrs.hasAttributes()) { 5730 if (FnAttrs.hasAlignmentAttr()) 5731 return Error(CallLoc, "call instructions may not have an alignment"); 5732 5733 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5734 AttributeSet::FunctionIndex, 5735 FnAttrs)); 5736 } 5737 5738 // Finish off the Attribute and check them 5739 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5740 5741 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 5742 CI->setTailCallKind(TCK); 5743 CI->setCallingConv(CC); 5744 CI->setAttributes(PAL); 5745 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 5746 Inst = CI; 5747 return false; 5748 } 5749 5750 //===----------------------------------------------------------------------===// 5751 // Memory Instructions. 5752 //===----------------------------------------------------------------------===// 5753 5754 /// ParseAlloc 5755 /// ::= 'alloca' 'inalloca'? Type (',' TypeAndValue)? (',' 'align' i32)? 5756 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 5757 Value *Size = nullptr; 5758 LocTy SizeLoc, TyLoc; 5759 unsigned Alignment = 0; 5760 Type *Ty = nullptr; 5761 5762 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 5763 5764 if (ParseType(Ty, TyLoc)) return true; 5765 5766 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 5767 return Error(TyLoc, "invalid type for alloca"); 5768 5769 bool AteExtraComma = false; 5770 if (EatIfPresent(lltok::comma)) { 5771 if (Lex.getKind() == lltok::kw_align) { 5772 if (ParseOptionalAlignment(Alignment)) return true; 5773 } else if (Lex.getKind() == lltok::MetadataVar) { 5774 AteExtraComma = true; 5775 } else { 5776 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 5777 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5778 return true; 5779 } 5780 } 5781 5782 if (Size && !Size->getType()->isIntegerTy()) 5783 return Error(SizeLoc, "element count must have integer type"); 5784 5785 AllocaInst *AI = new AllocaInst(Ty, Size, Alignment); 5786 AI->setUsedWithInAlloca(IsInAlloca); 5787 Inst = AI; 5788 return AteExtraComma ? InstExtraComma : InstNormal; 5789 } 5790 5791 /// ParseLoad 5792 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 5793 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 5794 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 5795 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 5796 Value *Val; LocTy Loc; 5797 unsigned Alignment = 0; 5798 bool AteExtraComma = false; 5799 bool isAtomic = false; 5800 AtomicOrdering Ordering = NotAtomic; 5801 SynchronizationScope Scope = CrossThread; 5802 5803 if (Lex.getKind() == lltok::kw_atomic) { 5804 isAtomic = true; 5805 Lex.Lex(); 5806 } 5807 5808 bool isVolatile = false; 5809 if (Lex.getKind() == lltok::kw_volatile) { 5810 isVolatile = true; 5811 Lex.Lex(); 5812 } 5813 5814 Type *Ty; 5815 LocTy ExplicitTypeLoc = Lex.getLoc(); 5816 if (ParseType(Ty) || 5817 ParseToken(lltok::comma, "expected comma after load's type") || 5818 ParseTypeAndValue(Val, Loc, PFS) || 5819 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 5820 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5821 return true; 5822 5823 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 5824 return Error(Loc, "load operand must be a pointer to a first class type"); 5825 if (isAtomic && !Alignment) 5826 return Error(Loc, "atomic load must have explicit non-zero alignment"); 5827 if (Ordering == Release || Ordering == AcquireRelease) 5828 return Error(Loc, "atomic load cannot use Release ordering"); 5829 5830 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 5831 return Error(ExplicitTypeLoc, 5832 "explicit pointee type doesn't match operand's pointee type"); 5833 5834 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope); 5835 return AteExtraComma ? InstExtraComma : InstNormal; 5836 } 5837 5838 /// ParseStore 5839 5840 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 5841 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 5842 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 5843 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 5844 Value *Val, *Ptr; LocTy Loc, PtrLoc; 5845 unsigned Alignment = 0; 5846 bool AteExtraComma = false; 5847 bool isAtomic = false; 5848 AtomicOrdering Ordering = NotAtomic; 5849 SynchronizationScope Scope = CrossThread; 5850 5851 if (Lex.getKind() == lltok::kw_atomic) { 5852 isAtomic = true; 5853 Lex.Lex(); 5854 } 5855 5856 bool isVolatile = false; 5857 if (Lex.getKind() == lltok::kw_volatile) { 5858 isVolatile = true; 5859 Lex.Lex(); 5860 } 5861 5862 if (ParseTypeAndValue(Val, Loc, PFS) || 5863 ParseToken(lltok::comma, "expected ',' after store operand") || 5864 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5865 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 5866 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5867 return true; 5868 5869 if (!Ptr->getType()->isPointerTy()) 5870 return Error(PtrLoc, "store operand must be a pointer"); 5871 if (!Val->getType()->isFirstClassType()) 5872 return Error(Loc, "store operand must be a first class value"); 5873 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 5874 return Error(Loc, "stored value and pointer type do not match"); 5875 if (isAtomic && !Alignment) 5876 return Error(Loc, "atomic store must have explicit non-zero alignment"); 5877 if (Ordering == Acquire || Ordering == AcquireRelease) 5878 return Error(Loc, "atomic store cannot use Acquire ordering"); 5879 5880 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 5881 return AteExtraComma ? InstExtraComma : InstNormal; 5882 } 5883 5884 /// ParseCmpXchg 5885 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 5886 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 5887 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 5888 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 5889 bool AteExtraComma = false; 5890 AtomicOrdering SuccessOrdering = NotAtomic; 5891 AtomicOrdering FailureOrdering = NotAtomic; 5892 SynchronizationScope Scope = CrossThread; 5893 bool isVolatile = false; 5894 bool isWeak = false; 5895 5896 if (EatIfPresent(lltok::kw_weak)) 5897 isWeak = true; 5898 5899 if (EatIfPresent(lltok::kw_volatile)) 5900 isVolatile = true; 5901 5902 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5903 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 5904 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 5905 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 5906 ParseTypeAndValue(New, NewLoc, PFS) || 5907 ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) || 5908 ParseOrdering(FailureOrdering)) 5909 return true; 5910 5911 if (SuccessOrdering == Unordered || FailureOrdering == Unordered) 5912 return TokError("cmpxchg cannot be unordered"); 5913 if (SuccessOrdering < FailureOrdering) 5914 return TokError("cmpxchg must be at least as ordered on success as failure"); 5915 if (FailureOrdering == Release || FailureOrdering == AcquireRelease) 5916 return TokError("cmpxchg failure ordering cannot include release semantics"); 5917 if (!Ptr->getType()->isPointerTy()) 5918 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 5919 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 5920 return Error(CmpLoc, "compare value and pointer type do not match"); 5921 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 5922 return Error(NewLoc, "new value and pointer type do not match"); 5923 if (!New->getType()->isIntegerTy()) 5924 return Error(NewLoc, "cmpxchg operand must be an integer"); 5925 unsigned Size = New->getType()->getPrimitiveSizeInBits(); 5926 if (Size < 8 || (Size & (Size - 1))) 5927 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized" 5928 " integer"); 5929 5930 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 5931 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope); 5932 CXI->setVolatile(isVolatile); 5933 CXI->setWeak(isWeak); 5934 Inst = CXI; 5935 return AteExtraComma ? InstExtraComma : InstNormal; 5936 } 5937 5938 /// ParseAtomicRMW 5939 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 5940 /// 'singlethread'? AtomicOrdering 5941 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 5942 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 5943 bool AteExtraComma = false; 5944 AtomicOrdering Ordering = NotAtomic; 5945 SynchronizationScope Scope = CrossThread; 5946 bool isVolatile = false; 5947 AtomicRMWInst::BinOp Operation; 5948 5949 if (EatIfPresent(lltok::kw_volatile)) 5950 isVolatile = true; 5951 5952 switch (Lex.getKind()) { 5953 default: return TokError("expected binary operation in atomicrmw"); 5954 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 5955 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 5956 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 5957 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 5958 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 5959 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 5960 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 5961 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 5962 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 5963 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 5964 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 5965 } 5966 Lex.Lex(); // Eat the operation. 5967 5968 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5969 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 5970 ParseTypeAndValue(Val, ValLoc, PFS) || 5971 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 5972 return true; 5973 5974 if (Ordering == Unordered) 5975 return TokError("atomicrmw cannot be unordered"); 5976 if (!Ptr->getType()->isPointerTy()) 5977 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 5978 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 5979 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 5980 if (!Val->getType()->isIntegerTy()) 5981 return Error(ValLoc, "atomicrmw operand must be an integer"); 5982 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 5983 if (Size < 8 || (Size & (Size - 1))) 5984 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 5985 " integer"); 5986 5987 AtomicRMWInst *RMWI = 5988 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 5989 RMWI->setVolatile(isVolatile); 5990 Inst = RMWI; 5991 return AteExtraComma ? InstExtraComma : InstNormal; 5992 } 5993 5994 /// ParseFence 5995 /// ::= 'fence' 'singlethread'? AtomicOrdering 5996 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 5997 AtomicOrdering Ordering = NotAtomic; 5998 SynchronizationScope Scope = CrossThread; 5999 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6000 return true; 6001 6002 if (Ordering == Unordered) 6003 return TokError("fence cannot be unordered"); 6004 if (Ordering == Monotonic) 6005 return TokError("fence cannot be monotonic"); 6006 6007 Inst = new FenceInst(Context, Ordering, Scope); 6008 return InstNormal; 6009 } 6010 6011 /// ParseGetElementPtr 6012 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6013 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6014 Value *Ptr = nullptr; 6015 Value *Val = nullptr; 6016 LocTy Loc, EltLoc; 6017 6018 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6019 6020 Type *Ty = nullptr; 6021 LocTy ExplicitTypeLoc = Lex.getLoc(); 6022 if (ParseType(Ty) || 6023 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6024 ParseTypeAndValue(Ptr, Loc, PFS)) 6025 return true; 6026 6027 Type *BaseType = Ptr->getType(); 6028 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6029 if (!BasePointerType) 6030 return Error(Loc, "base of getelementptr must be a pointer"); 6031 6032 if (Ty != BasePointerType->getElementType()) 6033 return Error(ExplicitTypeLoc, 6034 "explicit pointee type doesn't match operand's pointee type"); 6035 6036 SmallVector<Value*, 16> Indices; 6037 bool AteExtraComma = false; 6038 // GEP returns a vector of pointers if at least one of parameters is a vector. 6039 // All vector parameters should have the same vector width. 6040 unsigned GEPWidth = BaseType->isVectorTy() ? 6041 BaseType->getVectorNumElements() : 0; 6042 6043 while (EatIfPresent(lltok::comma)) { 6044 if (Lex.getKind() == lltok::MetadataVar) { 6045 AteExtraComma = true; 6046 break; 6047 } 6048 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6049 if (!Val->getType()->getScalarType()->isIntegerTy()) 6050 return Error(EltLoc, "getelementptr index must be an integer"); 6051 6052 if (Val->getType()->isVectorTy()) { 6053 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6054 if (GEPWidth && GEPWidth != ValNumEl) 6055 return Error(EltLoc, 6056 "getelementptr vector index has a wrong number of elements"); 6057 GEPWidth = ValNumEl; 6058 } 6059 Indices.push_back(Val); 6060 } 6061 6062 SmallPtrSet<Type*, 4> Visited; 6063 if (!Indices.empty() && !Ty->isSized(&Visited)) 6064 return Error(Loc, "base element of getelementptr must be sized"); 6065 6066 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6067 return Error(Loc, "invalid getelementptr indices"); 6068 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6069 if (InBounds) 6070 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6071 return AteExtraComma ? InstExtraComma : InstNormal; 6072 } 6073 6074 /// ParseExtractValue 6075 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6076 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6077 Value *Val; LocTy Loc; 6078 SmallVector<unsigned, 4> Indices; 6079 bool AteExtraComma; 6080 if (ParseTypeAndValue(Val, Loc, PFS) || 6081 ParseIndexList(Indices, AteExtraComma)) 6082 return true; 6083 6084 if (!Val->getType()->isAggregateType()) 6085 return Error(Loc, "extractvalue operand must be aggregate type"); 6086 6087 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6088 return Error(Loc, "invalid indices for extractvalue"); 6089 Inst = ExtractValueInst::Create(Val, Indices); 6090 return AteExtraComma ? InstExtraComma : InstNormal; 6091 } 6092 6093 /// ParseInsertValue 6094 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6095 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6096 Value *Val0, *Val1; LocTy Loc0, Loc1; 6097 SmallVector<unsigned, 4> Indices; 6098 bool AteExtraComma; 6099 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6100 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6101 ParseTypeAndValue(Val1, Loc1, PFS) || 6102 ParseIndexList(Indices, AteExtraComma)) 6103 return true; 6104 6105 if (!Val0->getType()->isAggregateType()) 6106 return Error(Loc0, "insertvalue operand must be aggregate type"); 6107 6108 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6109 if (!IndexedType) 6110 return Error(Loc0, "invalid indices for insertvalue"); 6111 if (IndexedType != Val1->getType()) 6112 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6113 getTypeString(Val1->getType()) + "' instead of '" + 6114 getTypeString(IndexedType) + "'"); 6115 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6116 return AteExtraComma ? InstExtraComma : InstNormal; 6117 } 6118 6119 //===----------------------------------------------------------------------===// 6120 // Embedded metadata. 6121 //===----------------------------------------------------------------------===// 6122 6123 /// ParseMDNodeVector 6124 /// ::= { Element (',' Element)* } 6125 /// Element 6126 /// ::= 'null' | TypeAndValue 6127 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6128 if (ParseToken(lltok::lbrace, "expected '{' here")) 6129 return true; 6130 6131 // Check for an empty list. 6132 if (EatIfPresent(lltok::rbrace)) 6133 return false; 6134 6135 do { 6136 // Null is a special case since it is typeless. 6137 if (EatIfPresent(lltok::kw_null)) { 6138 Elts.push_back(nullptr); 6139 continue; 6140 } 6141 6142 Metadata *MD; 6143 if (ParseMetadata(MD, nullptr)) 6144 return true; 6145 Elts.push_back(MD); 6146 } while (EatIfPresent(lltok::comma)); 6147 6148 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6149 } 6150 6151 //===----------------------------------------------------------------------===// 6152 // Use-list order directives. 6153 //===----------------------------------------------------------------------===// 6154 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6155 SMLoc Loc) { 6156 if (V->use_empty()) 6157 return Error(Loc, "value has no uses"); 6158 6159 unsigned NumUses = 0; 6160 SmallDenseMap<const Use *, unsigned, 16> Order; 6161 for (const Use &U : V->uses()) { 6162 if (++NumUses > Indexes.size()) 6163 break; 6164 Order[&U] = Indexes[NumUses - 1]; 6165 } 6166 if (NumUses < 2) 6167 return Error(Loc, "value only has one use"); 6168 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6169 return Error(Loc, "wrong number of indexes, expected " + 6170 Twine(std::distance(V->use_begin(), V->use_end()))); 6171 6172 V->sortUseList([&](const Use &L, const Use &R) { 6173 return Order.lookup(&L) < Order.lookup(&R); 6174 }); 6175 return false; 6176 } 6177 6178 /// ParseUseListOrderIndexes 6179 /// ::= '{' uint32 (',' uint32)+ '}' 6180 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6181 SMLoc Loc = Lex.getLoc(); 6182 if (ParseToken(lltok::lbrace, "expected '{' here")) 6183 return true; 6184 if (Lex.getKind() == lltok::rbrace) 6185 return Lex.Error("expected non-empty list of uselistorder indexes"); 6186 6187 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6188 // indexes should be distinct numbers in the range [0, size-1], and should 6189 // not be in order. 6190 unsigned Offset = 0; 6191 unsigned Max = 0; 6192 bool IsOrdered = true; 6193 assert(Indexes.empty() && "Expected empty order vector"); 6194 do { 6195 unsigned Index; 6196 if (ParseUInt32(Index)) 6197 return true; 6198 6199 // Update consistency checks. 6200 Offset += Index - Indexes.size(); 6201 Max = std::max(Max, Index); 6202 IsOrdered &= Index == Indexes.size(); 6203 6204 Indexes.push_back(Index); 6205 } while (EatIfPresent(lltok::comma)); 6206 6207 if (ParseToken(lltok::rbrace, "expected '}' here")) 6208 return true; 6209 6210 if (Indexes.size() < 2) 6211 return Error(Loc, "expected >= 2 uselistorder indexes"); 6212 if (Offset != 0 || Max >= Indexes.size()) 6213 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6214 if (IsOrdered) 6215 return Error(Loc, "expected uselistorder indexes to change the order"); 6216 6217 return false; 6218 } 6219 6220 /// ParseUseListOrder 6221 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6222 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6223 SMLoc Loc = Lex.getLoc(); 6224 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6225 return true; 6226 6227 Value *V; 6228 SmallVector<unsigned, 16> Indexes; 6229 if (ParseTypeAndValue(V, PFS) || 6230 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6231 ParseUseListOrderIndexes(Indexes)) 6232 return true; 6233 6234 return sortUseListOrder(V, Indexes, Loc); 6235 } 6236 6237 /// ParseUseListOrderBB 6238 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6239 bool LLParser::ParseUseListOrderBB() { 6240 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6241 SMLoc Loc = Lex.getLoc(); 6242 Lex.Lex(); 6243 6244 ValID Fn, Label; 6245 SmallVector<unsigned, 16> Indexes; 6246 if (ParseValID(Fn) || 6247 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6248 ParseValID(Label) || 6249 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6250 ParseUseListOrderIndexes(Indexes)) 6251 return true; 6252 6253 // Check the function. 6254 GlobalValue *GV; 6255 if (Fn.Kind == ValID::t_GlobalName) 6256 GV = M->getNamedValue(Fn.StrVal); 6257 else if (Fn.Kind == ValID::t_GlobalID) 6258 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6259 else 6260 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6261 if (!GV) 6262 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6263 auto *F = dyn_cast<Function>(GV); 6264 if (!F) 6265 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6266 if (F->isDeclaration()) 6267 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6268 6269 // Check the basic block. 6270 if (Label.Kind == ValID::t_LocalID) 6271 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6272 if (Label.Kind != ValID::t_LocalName) 6273 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6274 Value *V = F->getValueSymbolTable().lookup(Label.StrVal); 6275 if (!V) 6276 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6277 if (!isa<BasicBlock>(V)) 6278 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6279 6280 return sortUseListOrder(V, Indexes, Loc); 6281 } 6282