1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalIFunc.h"
32 #include "llvm/IR/GlobalObject.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/IR/ValueSymbolTable.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/SaveAndRestore.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstring>
52 #include <iterator>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 static std::string getTypeString(Type *T) {
58   std::string Result;
59   raw_string_ostream Tmp(Result);
60   Tmp << *T;
61   return Tmp.str();
62 }
63 
64 /// Run: module ::= toplevelentity*
65 bool LLParser::Run() {
66   // Prime the lexer.
67   Lex.Lex();
68 
69   if (Context.shouldDiscardValueNames())
70     return Error(
71         Lex.getLoc(),
72         "Can't read textual IR with a Context that discards named Values");
73 
74   return ParseTopLevelEntities() ||
75          ValidateEndOfModule();
76 }
77 
78 bool LLParser::parseStandaloneConstantValue(Constant *&C,
79                                             const SlotMapping *Slots) {
80   restoreParsingState(Slots);
81   Lex.Lex();
82 
83   Type *Ty = nullptr;
84   if (ParseType(Ty) || parseConstantValue(Ty, C))
85     return true;
86   if (Lex.getKind() != lltok::Eof)
87     return Error(Lex.getLoc(), "expected end of string");
88   return false;
89 }
90 
91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
92                                     const SlotMapping *Slots) {
93   restoreParsingState(Slots);
94   Lex.Lex();
95 
96   Read = 0;
97   SMLoc Start = Lex.getLoc();
98   Ty = nullptr;
99   if (ParseType(Ty))
100     return true;
101   SMLoc End = Lex.getLoc();
102   Read = End.getPointer() - Start.getPointer();
103 
104   return false;
105 }
106 
107 void LLParser::restoreParsingState(const SlotMapping *Slots) {
108   if (!Slots)
109     return;
110   NumberedVals = Slots->GlobalValues;
111   NumberedMetadata = Slots->MetadataNodes;
112   for (const auto &I : Slots->NamedTypes)
113     NamedTypes.insert(
114         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
115   for (const auto &I : Slots->Types)
116     NumberedTypes.insert(
117         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
118 }
119 
120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
121 /// module.
122 bool LLParser::ValidateEndOfModule() {
123   // Handle any function attribute group forward references.
124   for (const auto &RAG : ForwardRefAttrGroups) {
125     Value *V = RAG.first;
126     const std::vector<unsigned> &Attrs = RAG.second;
127     AttrBuilder B;
128 
129     for (const auto &Attr : Attrs)
130       B.merge(NumberedAttrBuilders[Attr]);
131 
132     if (Function *Fn = dyn_cast<Function>(V)) {
133       AttributeList AS = Fn->getAttributes();
134       AttrBuilder FnAttrs(AS.getFnAttributes());
135       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
136 
137       FnAttrs.merge(B);
138 
139       // If the alignment was parsed as an attribute, move to the alignment
140       // field.
141       if (FnAttrs.hasAlignmentAttr()) {
142         Fn->setAlignment(FnAttrs.getAlignment());
143         FnAttrs.removeAttribute(Attribute::Alignment);
144       }
145 
146       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
147                             AttributeSet::get(Context, FnAttrs));
148       Fn->setAttributes(AS);
149     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
150       AttributeList AS = CI->getAttributes();
151       AttrBuilder FnAttrs(AS.getFnAttributes());
152       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
153       FnAttrs.merge(B);
154       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
155                             AttributeSet::get(Context, FnAttrs));
156       CI->setAttributes(AS);
157     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
158       AttributeList AS = II->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttributes());
160       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
161       FnAttrs.merge(B);
162       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
163                             AttributeSet::get(Context, FnAttrs));
164       II->setAttributes(AS);
165     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
166       AttrBuilder Attrs(GV->getAttributes());
167       Attrs.merge(B);
168       GV->setAttributes(AttributeSet::get(Context,Attrs));
169     } else {
170       llvm_unreachable("invalid object with forward attribute group reference");
171     }
172   }
173 
174   // If there are entries in ForwardRefBlockAddresses at this point, the
175   // function was never defined.
176   if (!ForwardRefBlockAddresses.empty())
177     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
178                  "expected function name in blockaddress");
179 
180   for (const auto &NT : NumberedTypes)
181     if (NT.second.second.isValid())
182       return Error(NT.second.second,
183                    "use of undefined type '%" + Twine(NT.first) + "'");
184 
185   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
186        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
187     if (I->second.second.isValid())
188       return Error(I->second.second,
189                    "use of undefined type named '" + I->getKey() + "'");
190 
191   if (!ForwardRefComdats.empty())
192     return Error(ForwardRefComdats.begin()->second,
193                  "use of undefined comdat '$" +
194                      ForwardRefComdats.begin()->first + "'");
195 
196   if (!ForwardRefVals.empty())
197     return Error(ForwardRefVals.begin()->second.second,
198                  "use of undefined value '@" + ForwardRefVals.begin()->first +
199                  "'");
200 
201   if (!ForwardRefValIDs.empty())
202     return Error(ForwardRefValIDs.begin()->second.second,
203                  "use of undefined value '@" +
204                  Twine(ForwardRefValIDs.begin()->first) + "'");
205 
206   if (!ForwardRefMDNodes.empty())
207     return Error(ForwardRefMDNodes.begin()->second.second,
208                  "use of undefined metadata '!" +
209                  Twine(ForwardRefMDNodes.begin()->first) + "'");
210 
211   // Resolve metadata cycles.
212   for (auto &N : NumberedMetadata) {
213     if (N.second && !N.second->isResolved())
214       N.second->resolveCycles();
215   }
216 
217   for (auto *Inst : InstsWithTBAATag) {
218     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
219     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
220     auto *UpgradedMD = UpgradeTBAANode(*MD);
221     if (MD != UpgradedMD)
222       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
223   }
224 
225   // Look for intrinsic functions and CallInst that need to be upgraded
226   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
227     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
228 
229   // Some types could be renamed during loading if several modules are
230   // loaded in the same LLVMContext (LTO scenario). In this case we should
231   // remangle intrinsics names as well.
232   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
233     Function *F = &*FI++;
234     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
235       F->replaceAllUsesWith(Remangled.getValue());
236       F->eraseFromParent();
237     }
238   }
239 
240   if (UpgradeDebugInfo)
241     llvm::UpgradeDebugInfo(*M);
242 
243   UpgradeModuleFlags(*M);
244   UpgradeSectionAttributes(*M);
245 
246   if (!Slots)
247     return false;
248   // Initialize the slot mapping.
249   // Because by this point we've parsed and validated everything, we can "steal"
250   // the mapping from LLParser as it doesn't need it anymore.
251   Slots->GlobalValues = std::move(NumberedVals);
252   Slots->MetadataNodes = std::move(NumberedMetadata);
253   for (const auto &I : NamedTypes)
254     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
255   for (const auto &I : NumberedTypes)
256     Slots->Types.insert(std::make_pair(I.first, I.second.first));
257 
258   return false;
259 }
260 
261 //===----------------------------------------------------------------------===//
262 // Top-Level Entities
263 //===----------------------------------------------------------------------===//
264 
265 bool LLParser::ParseTopLevelEntities() {
266   while (true) {
267     switch (Lex.getKind()) {
268     default:         return TokError("expected top-level entity");
269     case lltok::Eof: return false;
270     case lltok::kw_declare: if (ParseDeclare()) return true; break;
271     case lltok::kw_define:  if (ParseDefine()) return true; break;
272     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
273     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
274     case lltok::kw_source_filename:
275       if (ParseSourceFileName())
276         return true;
277       break;
278     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
279     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
280     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
281     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
282     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
283     case lltok::ComdatVar:  if (parseComdat()) return true; break;
284     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
285     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
286     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
287     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
288     case lltok::kw_uselistorder_bb:
289       if (ParseUseListOrderBB())
290         return true;
291       break;
292     }
293   }
294 }
295 
296 /// toplevelentity
297 ///   ::= 'module' 'asm' STRINGCONSTANT
298 bool LLParser::ParseModuleAsm() {
299   assert(Lex.getKind() == lltok::kw_module);
300   Lex.Lex();
301 
302   std::string AsmStr;
303   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
304       ParseStringConstant(AsmStr)) return true;
305 
306   M->appendModuleInlineAsm(AsmStr);
307   return false;
308 }
309 
310 /// toplevelentity
311 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
312 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
313 bool LLParser::ParseTargetDefinition() {
314   assert(Lex.getKind() == lltok::kw_target);
315   std::string Str;
316   switch (Lex.Lex()) {
317   default: return TokError("unknown target property");
318   case lltok::kw_triple:
319     Lex.Lex();
320     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
321         ParseStringConstant(Str))
322       return true;
323     M->setTargetTriple(Str);
324     return false;
325   case lltok::kw_datalayout:
326     Lex.Lex();
327     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
328         ParseStringConstant(Str))
329       return true;
330     M->setDataLayout(Str);
331     return false;
332   }
333 }
334 
335 /// toplevelentity
336 ///   ::= 'source_filename' '=' STRINGCONSTANT
337 bool LLParser::ParseSourceFileName() {
338   assert(Lex.getKind() == lltok::kw_source_filename);
339   std::string Str;
340   Lex.Lex();
341   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
342       ParseStringConstant(Str))
343     return true;
344   M->setSourceFileName(Str);
345   return false;
346 }
347 
348 /// toplevelentity
349 ///   ::= 'deplibs' '=' '[' ']'
350 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
351 /// FIXME: Remove in 4.0. Currently parse, but ignore.
352 bool LLParser::ParseDepLibs() {
353   assert(Lex.getKind() == lltok::kw_deplibs);
354   Lex.Lex();
355   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
356       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
357     return true;
358 
359   if (EatIfPresent(lltok::rsquare))
360     return false;
361 
362   do {
363     std::string Str;
364     if (ParseStringConstant(Str)) return true;
365   } while (EatIfPresent(lltok::comma));
366 
367   return ParseToken(lltok::rsquare, "expected ']' at end of list");
368 }
369 
370 /// ParseUnnamedType:
371 ///   ::= LocalVarID '=' 'type' type
372 bool LLParser::ParseUnnamedType() {
373   LocTy TypeLoc = Lex.getLoc();
374   unsigned TypeID = Lex.getUIntVal();
375   Lex.Lex(); // eat LocalVarID;
376 
377   if (ParseToken(lltok::equal, "expected '=' after name") ||
378       ParseToken(lltok::kw_type, "expected 'type' after '='"))
379     return true;
380 
381   Type *Result = nullptr;
382   if (ParseStructDefinition(TypeLoc, "",
383                             NumberedTypes[TypeID], Result)) return true;
384 
385   if (!isa<StructType>(Result)) {
386     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
387     if (Entry.first)
388       return Error(TypeLoc, "non-struct types may not be recursive");
389     Entry.first = Result;
390     Entry.second = SMLoc();
391   }
392 
393   return false;
394 }
395 
396 /// toplevelentity
397 ///   ::= LocalVar '=' 'type' type
398 bool LLParser::ParseNamedType() {
399   std::string Name = Lex.getStrVal();
400   LocTy NameLoc = Lex.getLoc();
401   Lex.Lex();  // eat LocalVar.
402 
403   if (ParseToken(lltok::equal, "expected '=' after name") ||
404       ParseToken(lltok::kw_type, "expected 'type' after name"))
405     return true;
406 
407   Type *Result = nullptr;
408   if (ParseStructDefinition(NameLoc, Name,
409                             NamedTypes[Name], Result)) return true;
410 
411   if (!isa<StructType>(Result)) {
412     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
413     if (Entry.first)
414       return Error(NameLoc, "non-struct types may not be recursive");
415     Entry.first = Result;
416     Entry.second = SMLoc();
417   }
418 
419   return false;
420 }
421 
422 /// toplevelentity
423 ///   ::= 'declare' FunctionHeader
424 bool LLParser::ParseDeclare() {
425   assert(Lex.getKind() == lltok::kw_declare);
426   Lex.Lex();
427 
428   std::vector<std::pair<unsigned, MDNode *>> MDs;
429   while (Lex.getKind() == lltok::MetadataVar) {
430     unsigned MDK;
431     MDNode *N;
432     if (ParseMetadataAttachment(MDK, N))
433       return true;
434     MDs.push_back({MDK, N});
435   }
436 
437   Function *F;
438   if (ParseFunctionHeader(F, false))
439     return true;
440   for (auto &MD : MDs)
441     F->addMetadata(MD.first, *MD.second);
442   return false;
443 }
444 
445 /// toplevelentity
446 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
447 bool LLParser::ParseDefine() {
448   assert(Lex.getKind() == lltok::kw_define);
449   Lex.Lex();
450 
451   Function *F;
452   return ParseFunctionHeader(F, true) ||
453          ParseOptionalFunctionMetadata(*F) ||
454          ParseFunctionBody(*F);
455 }
456 
457 /// ParseGlobalType
458 ///   ::= 'constant'
459 ///   ::= 'global'
460 bool LLParser::ParseGlobalType(bool &IsConstant) {
461   if (Lex.getKind() == lltok::kw_constant)
462     IsConstant = true;
463   else if (Lex.getKind() == lltok::kw_global)
464     IsConstant = false;
465   else {
466     IsConstant = false;
467     return TokError("expected 'global' or 'constant'");
468   }
469   Lex.Lex();
470   return false;
471 }
472 
473 bool LLParser::ParseOptionalUnnamedAddr(
474     GlobalVariable::UnnamedAddr &UnnamedAddr) {
475   if (EatIfPresent(lltok::kw_unnamed_addr))
476     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
477   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
478     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
479   else
480     UnnamedAddr = GlobalValue::UnnamedAddr::None;
481   return false;
482 }
483 
484 /// ParseUnnamedGlobal:
485 ///   OptionalVisibility (ALIAS | IFUNC) ...
486 ///   OptionalLinkage OptionalVisibility OptionalDLLStorageClass
487 ///                                                     ...   -> global variable
488 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
489 ///   GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
490 ///                                                     ...   -> global variable
491 bool LLParser::ParseUnnamedGlobal() {
492   unsigned VarID = NumberedVals.size();
493   std::string Name;
494   LocTy NameLoc = Lex.getLoc();
495 
496   // Handle the GlobalID form.
497   if (Lex.getKind() == lltok::GlobalID) {
498     if (Lex.getUIntVal() != VarID)
499       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
500                    Twine(VarID) + "'");
501     Lex.Lex(); // eat GlobalID;
502 
503     if (ParseToken(lltok::equal, "expected '=' after name"))
504       return true;
505   }
506 
507   bool HasLinkage;
508   unsigned Linkage, Visibility, DLLStorageClass;
509   GlobalVariable::ThreadLocalMode TLM;
510   GlobalVariable::UnnamedAddr UnnamedAddr;
511   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
512       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
513     return true;
514 
515   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
516     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
517                        DLLStorageClass, TLM, UnnamedAddr);
518 
519   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
520                              DLLStorageClass, TLM, UnnamedAddr);
521 }
522 
523 /// ParseNamedGlobal:
524 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
525 ///   GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
526 ///                                                     ...   -> global variable
527 bool LLParser::ParseNamedGlobal() {
528   assert(Lex.getKind() == lltok::GlobalVar);
529   LocTy NameLoc = Lex.getLoc();
530   std::string Name = Lex.getStrVal();
531   Lex.Lex();
532 
533   bool HasLinkage;
534   unsigned Linkage, Visibility, DLLStorageClass;
535   GlobalVariable::ThreadLocalMode TLM;
536   GlobalVariable::UnnamedAddr UnnamedAddr;
537   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
538       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
539       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
540     return true;
541 
542   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
543     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
544                        DLLStorageClass, TLM, UnnamedAddr);
545 
546   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
547                              DLLStorageClass, TLM, UnnamedAddr);
548 }
549 
550 bool LLParser::parseComdat() {
551   assert(Lex.getKind() == lltok::ComdatVar);
552   std::string Name = Lex.getStrVal();
553   LocTy NameLoc = Lex.getLoc();
554   Lex.Lex();
555 
556   if (ParseToken(lltok::equal, "expected '=' here"))
557     return true;
558 
559   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
560     return TokError("expected comdat type");
561 
562   Comdat::SelectionKind SK;
563   switch (Lex.getKind()) {
564   default:
565     return TokError("unknown selection kind");
566   case lltok::kw_any:
567     SK = Comdat::Any;
568     break;
569   case lltok::kw_exactmatch:
570     SK = Comdat::ExactMatch;
571     break;
572   case lltok::kw_largest:
573     SK = Comdat::Largest;
574     break;
575   case lltok::kw_noduplicates:
576     SK = Comdat::NoDuplicates;
577     break;
578   case lltok::kw_samesize:
579     SK = Comdat::SameSize;
580     break;
581   }
582   Lex.Lex();
583 
584   // See if the comdat was forward referenced, if so, use the comdat.
585   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
586   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
587   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
588     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
589 
590   Comdat *C;
591   if (I != ComdatSymTab.end())
592     C = &I->second;
593   else
594     C = M->getOrInsertComdat(Name);
595   C->setSelectionKind(SK);
596 
597   return false;
598 }
599 
600 // MDString:
601 //   ::= '!' STRINGCONSTANT
602 bool LLParser::ParseMDString(MDString *&Result) {
603   std::string Str;
604   if (ParseStringConstant(Str)) return true;
605   Result = MDString::get(Context, Str);
606   return false;
607 }
608 
609 // MDNode:
610 //   ::= '!' MDNodeNumber
611 bool LLParser::ParseMDNodeID(MDNode *&Result) {
612   // !{ ..., !42, ... }
613   LocTy IDLoc = Lex.getLoc();
614   unsigned MID = 0;
615   if (ParseUInt32(MID))
616     return true;
617 
618   // If not a forward reference, just return it now.
619   if (NumberedMetadata.count(MID)) {
620     Result = NumberedMetadata[MID];
621     return false;
622   }
623 
624   // Otherwise, create MDNode forward reference.
625   auto &FwdRef = ForwardRefMDNodes[MID];
626   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
627 
628   Result = FwdRef.first.get();
629   NumberedMetadata[MID].reset(Result);
630   return false;
631 }
632 
633 /// ParseNamedMetadata:
634 ///   !foo = !{ !1, !2 }
635 bool LLParser::ParseNamedMetadata() {
636   assert(Lex.getKind() == lltok::MetadataVar);
637   std::string Name = Lex.getStrVal();
638   Lex.Lex();
639 
640   if (ParseToken(lltok::equal, "expected '=' here") ||
641       ParseToken(lltok::exclaim, "Expected '!' here") ||
642       ParseToken(lltok::lbrace, "Expected '{' here"))
643     return true;
644 
645   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
646   if (Lex.getKind() != lltok::rbrace)
647     do {
648       MDNode *N = nullptr;
649       // Parse DIExpressions inline as a special case. They are still MDNodes,
650       // so they can still appear in named metadata. Remove this logic if they
651       // become plain Metadata.
652       if (Lex.getKind() == lltok::MetadataVar &&
653           Lex.getStrVal() == "DIExpression") {
654         if (ParseDIExpression(N, /*IsDistinct=*/false))
655           return true;
656       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
657                  ParseMDNodeID(N)) {
658         return true;
659       }
660       NMD->addOperand(N);
661     } while (EatIfPresent(lltok::comma));
662 
663   return ParseToken(lltok::rbrace, "expected end of metadata node");
664 }
665 
666 /// ParseStandaloneMetadata:
667 ///   !42 = !{...}
668 bool LLParser::ParseStandaloneMetadata() {
669   assert(Lex.getKind() == lltok::exclaim);
670   Lex.Lex();
671   unsigned MetadataID = 0;
672 
673   MDNode *Init;
674   if (ParseUInt32(MetadataID) ||
675       ParseToken(lltok::equal, "expected '=' here"))
676     return true;
677 
678   // Detect common error, from old metadata syntax.
679   if (Lex.getKind() == lltok::Type)
680     return TokError("unexpected type in metadata definition");
681 
682   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
683   if (Lex.getKind() == lltok::MetadataVar) {
684     if (ParseSpecializedMDNode(Init, IsDistinct))
685       return true;
686   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
687              ParseMDTuple(Init, IsDistinct))
688     return true;
689 
690   // See if this was forward referenced, if so, handle it.
691   auto FI = ForwardRefMDNodes.find(MetadataID);
692   if (FI != ForwardRefMDNodes.end()) {
693     FI->second.first->replaceAllUsesWith(Init);
694     ForwardRefMDNodes.erase(FI);
695 
696     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
697   } else {
698     if (NumberedMetadata.count(MetadataID))
699       return TokError("Metadata id is already used");
700     NumberedMetadata[MetadataID].reset(Init);
701   }
702 
703   return false;
704 }
705 
706 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
707   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
708          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
709 }
710 
711 /// parseIndirectSymbol:
712 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility
713 ///                     OptionalDLLStorageClass OptionalThreadLocal
714 ///                     OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol
715 ///
716 /// IndirectSymbol
717 ///   ::= TypeAndValue
718 ///
719 /// Everything through OptionalUnnamedAddr has already been parsed.
720 ///
721 bool LLParser::parseIndirectSymbol(
722     const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility,
723     unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM,
724     GlobalVariable::UnnamedAddr UnnamedAddr) {
725   bool IsAlias;
726   if (Lex.getKind() == lltok::kw_alias)
727     IsAlias = true;
728   else if (Lex.getKind() == lltok::kw_ifunc)
729     IsAlias = false;
730   else
731     llvm_unreachable("Not an alias or ifunc!");
732   Lex.Lex();
733 
734   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
735 
736   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
737     return Error(NameLoc, "invalid linkage type for alias");
738 
739   if (!isValidVisibilityForLinkage(Visibility, L))
740     return Error(NameLoc,
741                  "symbol with local linkage must have default visibility");
742 
743   Type *Ty;
744   LocTy ExplicitTypeLoc = Lex.getLoc();
745   if (ParseType(Ty) ||
746       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
747     return true;
748 
749   Constant *Aliasee;
750   LocTy AliaseeLoc = Lex.getLoc();
751   if (Lex.getKind() != lltok::kw_bitcast &&
752       Lex.getKind() != lltok::kw_getelementptr &&
753       Lex.getKind() != lltok::kw_addrspacecast &&
754       Lex.getKind() != lltok::kw_inttoptr) {
755     if (ParseGlobalTypeAndValue(Aliasee))
756       return true;
757   } else {
758     // The bitcast dest type is not present, it is implied by the dest type.
759     ValID ID;
760     if (ParseValID(ID))
761       return true;
762     if (ID.Kind != ValID::t_Constant)
763       return Error(AliaseeLoc, "invalid aliasee");
764     Aliasee = ID.ConstantVal;
765   }
766 
767   Type *AliaseeType = Aliasee->getType();
768   auto *PTy = dyn_cast<PointerType>(AliaseeType);
769   if (!PTy)
770     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
771   unsigned AddrSpace = PTy->getAddressSpace();
772 
773   if (IsAlias && Ty != PTy->getElementType())
774     return Error(
775         ExplicitTypeLoc,
776         "explicit pointee type doesn't match operand's pointee type");
777 
778   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
779     return Error(
780         ExplicitTypeLoc,
781         "explicit pointee type should be a function type");
782 
783   GlobalValue *GVal = nullptr;
784 
785   // See if the alias was forward referenced, if so, prepare to replace the
786   // forward reference.
787   if (!Name.empty()) {
788     GVal = M->getNamedValue(Name);
789     if (GVal) {
790       if (!ForwardRefVals.erase(Name))
791         return Error(NameLoc, "redefinition of global '@" + Name + "'");
792     }
793   } else {
794     auto I = ForwardRefValIDs.find(NumberedVals.size());
795     if (I != ForwardRefValIDs.end()) {
796       GVal = I->second.first;
797       ForwardRefValIDs.erase(I);
798     }
799   }
800 
801   // Okay, create the alias but do not insert it into the module yet.
802   std::unique_ptr<GlobalIndirectSymbol> GA;
803   if (IsAlias)
804     GA.reset(GlobalAlias::create(Ty, AddrSpace,
805                                  (GlobalValue::LinkageTypes)Linkage, Name,
806                                  Aliasee, /*Parent*/ nullptr));
807   else
808     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
809                                  (GlobalValue::LinkageTypes)Linkage, Name,
810                                  Aliasee, /*Parent*/ nullptr));
811   GA->setThreadLocalMode(TLM);
812   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
813   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
814   GA->setUnnamedAddr(UnnamedAddr);
815 
816   if (Name.empty())
817     NumberedVals.push_back(GA.get());
818 
819   if (GVal) {
820     // Verify that types agree.
821     if (GVal->getType() != GA->getType())
822       return Error(
823           ExplicitTypeLoc,
824           "forward reference and definition of alias have different types");
825 
826     // If they agree, just RAUW the old value with the alias and remove the
827     // forward ref info.
828     GVal->replaceAllUsesWith(GA.get());
829     GVal->eraseFromParent();
830   }
831 
832   // Insert into the module, we know its name won't collide now.
833   if (IsAlias)
834     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
835   else
836     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
837   assert(GA->getName() == Name && "Should not be a name conflict!");
838 
839   // The module owns this now
840   GA.release();
841 
842   return false;
843 }
844 
845 /// ParseGlobal
846 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
847 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
848 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
849 ///   ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
850 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
851 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
852 ///
853 /// Everything up to and including OptionalUnnamedAddr has been parsed
854 /// already.
855 ///
856 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
857                            unsigned Linkage, bool HasLinkage,
858                            unsigned Visibility, unsigned DLLStorageClass,
859                            GlobalVariable::ThreadLocalMode TLM,
860                            GlobalVariable::UnnamedAddr UnnamedAddr) {
861   if (!isValidVisibilityForLinkage(Visibility, Linkage))
862     return Error(NameLoc,
863                  "symbol with local linkage must have default visibility");
864 
865   unsigned AddrSpace;
866   bool IsConstant, IsExternallyInitialized;
867   LocTy IsExternallyInitializedLoc;
868   LocTy TyLoc;
869 
870   Type *Ty = nullptr;
871   if (ParseOptionalAddrSpace(AddrSpace) ||
872       ParseOptionalToken(lltok::kw_externally_initialized,
873                          IsExternallyInitialized,
874                          &IsExternallyInitializedLoc) ||
875       ParseGlobalType(IsConstant) ||
876       ParseType(Ty, TyLoc))
877     return true;
878 
879   // If the linkage is specified and is external, then no initializer is
880   // present.
881   Constant *Init = nullptr;
882   if (!HasLinkage ||
883       !GlobalValue::isValidDeclarationLinkage(
884           (GlobalValue::LinkageTypes)Linkage)) {
885     if (ParseGlobalValue(Ty, Init))
886       return true;
887   }
888 
889   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
890     return Error(TyLoc, "invalid type for global variable");
891 
892   GlobalValue *GVal = nullptr;
893 
894   // See if the global was forward referenced, if so, use the global.
895   if (!Name.empty()) {
896     GVal = M->getNamedValue(Name);
897     if (GVal) {
898       if (!ForwardRefVals.erase(Name))
899         return Error(NameLoc, "redefinition of global '@" + Name + "'");
900     }
901   } else {
902     auto I = ForwardRefValIDs.find(NumberedVals.size());
903     if (I != ForwardRefValIDs.end()) {
904       GVal = I->second.first;
905       ForwardRefValIDs.erase(I);
906     }
907   }
908 
909   GlobalVariable *GV;
910   if (!GVal) {
911     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
912                             Name, nullptr, GlobalVariable::NotThreadLocal,
913                             AddrSpace);
914   } else {
915     if (GVal->getValueType() != Ty)
916       return Error(TyLoc,
917             "forward reference and definition of global have different types");
918 
919     GV = cast<GlobalVariable>(GVal);
920 
921     // Move the forward-reference to the correct spot in the module.
922     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
923   }
924 
925   if (Name.empty())
926     NumberedVals.push_back(GV);
927 
928   // Set the parsed properties on the global.
929   if (Init)
930     GV->setInitializer(Init);
931   GV->setConstant(IsConstant);
932   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
933   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
934   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
935   GV->setExternallyInitialized(IsExternallyInitialized);
936   GV->setThreadLocalMode(TLM);
937   GV->setUnnamedAddr(UnnamedAddr);
938 
939   // Parse attributes on the global.
940   while (Lex.getKind() == lltok::comma) {
941     Lex.Lex();
942 
943     if (Lex.getKind() == lltok::kw_section) {
944       Lex.Lex();
945       GV->setSection(Lex.getStrVal());
946       if (ParseToken(lltok::StringConstant, "expected global section string"))
947         return true;
948     } else if (Lex.getKind() == lltok::kw_align) {
949       unsigned Alignment;
950       if (ParseOptionalAlignment(Alignment)) return true;
951       GV->setAlignment(Alignment);
952     } else if (Lex.getKind() == lltok::MetadataVar) {
953       if (ParseGlobalObjectMetadataAttachment(*GV))
954         return true;
955     } else {
956       Comdat *C;
957       if (parseOptionalComdat(Name, C))
958         return true;
959       if (C)
960         GV->setComdat(C);
961       else
962         return TokError("unknown global variable property!");
963     }
964   }
965 
966   AttrBuilder Attrs;
967   LocTy BuiltinLoc;
968   std::vector<unsigned> FwdRefAttrGrps;
969   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
970     return true;
971   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
972     GV->setAttributes(AttributeSet::get(Context, Attrs));
973     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
974   }
975 
976   return false;
977 }
978 
979 /// ParseUnnamedAttrGrp
980 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
981 bool LLParser::ParseUnnamedAttrGrp() {
982   assert(Lex.getKind() == lltok::kw_attributes);
983   LocTy AttrGrpLoc = Lex.getLoc();
984   Lex.Lex();
985 
986   if (Lex.getKind() != lltok::AttrGrpID)
987     return TokError("expected attribute group id");
988 
989   unsigned VarID = Lex.getUIntVal();
990   std::vector<unsigned> unused;
991   LocTy BuiltinLoc;
992   Lex.Lex();
993 
994   if (ParseToken(lltok::equal, "expected '=' here") ||
995       ParseToken(lltok::lbrace, "expected '{' here") ||
996       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
997                                  BuiltinLoc) ||
998       ParseToken(lltok::rbrace, "expected end of attribute group"))
999     return true;
1000 
1001   if (!NumberedAttrBuilders[VarID].hasAttributes())
1002     return Error(AttrGrpLoc, "attribute group has no attributes");
1003 
1004   return false;
1005 }
1006 
1007 /// ParseFnAttributeValuePairs
1008 ///   ::= <attr> | <attr> '=' <value>
1009 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1010                                           std::vector<unsigned> &FwdRefAttrGrps,
1011                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1012   bool HaveError = false;
1013 
1014   B.clear();
1015 
1016   while (true) {
1017     lltok::Kind Token = Lex.getKind();
1018     if (Token == lltok::kw_builtin)
1019       BuiltinLoc = Lex.getLoc();
1020     switch (Token) {
1021     default:
1022       if (!inAttrGrp) return HaveError;
1023       return Error(Lex.getLoc(), "unterminated attribute group");
1024     case lltok::rbrace:
1025       // Finished.
1026       return false;
1027 
1028     case lltok::AttrGrpID: {
1029       // Allow a function to reference an attribute group:
1030       //
1031       //   define void @foo() #1 { ... }
1032       if (inAttrGrp)
1033         HaveError |=
1034           Error(Lex.getLoc(),
1035               "cannot have an attribute group reference in an attribute group");
1036 
1037       unsigned AttrGrpNum = Lex.getUIntVal();
1038       if (inAttrGrp) break;
1039 
1040       // Save the reference to the attribute group. We'll fill it in later.
1041       FwdRefAttrGrps.push_back(AttrGrpNum);
1042       break;
1043     }
1044     // Target-dependent attributes:
1045     case lltok::StringConstant: {
1046       if (ParseStringAttribute(B))
1047         return true;
1048       continue;
1049     }
1050 
1051     // Target-independent attributes:
1052     case lltok::kw_align: {
1053       // As a hack, we allow function alignment to be initially parsed as an
1054       // attribute on a function declaration/definition or added to an attribute
1055       // group and later moved to the alignment field.
1056       unsigned Alignment;
1057       if (inAttrGrp) {
1058         Lex.Lex();
1059         if (ParseToken(lltok::equal, "expected '=' here") ||
1060             ParseUInt32(Alignment))
1061           return true;
1062       } else {
1063         if (ParseOptionalAlignment(Alignment))
1064           return true;
1065       }
1066       B.addAlignmentAttr(Alignment);
1067       continue;
1068     }
1069     case lltok::kw_alignstack: {
1070       unsigned Alignment;
1071       if (inAttrGrp) {
1072         Lex.Lex();
1073         if (ParseToken(lltok::equal, "expected '=' here") ||
1074             ParseUInt32(Alignment))
1075           return true;
1076       } else {
1077         if (ParseOptionalStackAlignment(Alignment))
1078           return true;
1079       }
1080       B.addStackAlignmentAttr(Alignment);
1081       continue;
1082     }
1083     case lltok::kw_allocsize: {
1084       unsigned ElemSizeArg;
1085       Optional<unsigned> NumElemsArg;
1086       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1087       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1088         return true;
1089       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1090       continue;
1091     }
1092     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1093     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1094     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1095     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1096     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1097     case lltok::kw_inaccessiblememonly:
1098       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1099     case lltok::kw_inaccessiblemem_or_argmemonly:
1100       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1101     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1102     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1103     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1104     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1105     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1106     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1107     case lltok::kw_noimplicitfloat:
1108       B.addAttribute(Attribute::NoImplicitFloat); break;
1109     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1110     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1111     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1112     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1113     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1114     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1115     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1116     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1117     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1118     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1119     case lltok::kw_returns_twice:
1120       B.addAttribute(Attribute::ReturnsTwice); break;
1121     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1122     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1123     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1124     case lltok::kw_sspstrong:
1125       B.addAttribute(Attribute::StackProtectStrong); break;
1126     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1127     case lltok::kw_sanitize_address:
1128       B.addAttribute(Attribute::SanitizeAddress); break;
1129     case lltok::kw_sanitize_thread:
1130       B.addAttribute(Attribute::SanitizeThread); break;
1131     case lltok::kw_sanitize_memory:
1132       B.addAttribute(Attribute::SanitizeMemory); break;
1133     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1134     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1135     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1136 
1137     // Error handling.
1138     case lltok::kw_inreg:
1139     case lltok::kw_signext:
1140     case lltok::kw_zeroext:
1141       HaveError |=
1142         Error(Lex.getLoc(),
1143               "invalid use of attribute on a function");
1144       break;
1145     case lltok::kw_byval:
1146     case lltok::kw_dereferenceable:
1147     case lltok::kw_dereferenceable_or_null:
1148     case lltok::kw_inalloca:
1149     case lltok::kw_nest:
1150     case lltok::kw_noalias:
1151     case lltok::kw_nocapture:
1152     case lltok::kw_nonnull:
1153     case lltok::kw_returned:
1154     case lltok::kw_sret:
1155     case lltok::kw_swifterror:
1156     case lltok::kw_swiftself:
1157       HaveError |=
1158         Error(Lex.getLoc(),
1159               "invalid use of parameter-only attribute on a function");
1160       break;
1161     }
1162 
1163     Lex.Lex();
1164   }
1165 }
1166 
1167 //===----------------------------------------------------------------------===//
1168 // GlobalValue Reference/Resolution Routines.
1169 //===----------------------------------------------------------------------===//
1170 
1171 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1172                                               const std::string &Name) {
1173   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1174     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1175   else
1176     return new GlobalVariable(*M, PTy->getElementType(), false,
1177                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1178                               nullptr, GlobalVariable::NotThreadLocal,
1179                               PTy->getAddressSpace());
1180 }
1181 
1182 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1183 /// forward reference record if needed.  This can return null if the value
1184 /// exists but does not have the right type.
1185 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1186                                     LocTy Loc) {
1187   PointerType *PTy = dyn_cast<PointerType>(Ty);
1188   if (!PTy) {
1189     Error(Loc, "global variable reference must have pointer type");
1190     return nullptr;
1191   }
1192 
1193   // Look this name up in the normal function symbol table.
1194   GlobalValue *Val =
1195     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1196 
1197   // If this is a forward reference for the value, see if we already created a
1198   // forward ref record.
1199   if (!Val) {
1200     auto I = ForwardRefVals.find(Name);
1201     if (I != ForwardRefVals.end())
1202       Val = I->second.first;
1203   }
1204 
1205   // If we have the value in the symbol table or fwd-ref table, return it.
1206   if (Val) {
1207     if (Val->getType() == Ty) return Val;
1208     Error(Loc, "'@" + Name + "' defined with type '" +
1209           getTypeString(Val->getType()) + "'");
1210     return nullptr;
1211   }
1212 
1213   // Otherwise, create a new forward reference for this value and remember it.
1214   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1215   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1216   return FwdVal;
1217 }
1218 
1219 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1220   PointerType *PTy = dyn_cast<PointerType>(Ty);
1221   if (!PTy) {
1222     Error(Loc, "global variable reference must have pointer type");
1223     return nullptr;
1224   }
1225 
1226   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1227 
1228   // If this is a forward reference for the value, see if we already created a
1229   // forward ref record.
1230   if (!Val) {
1231     auto I = ForwardRefValIDs.find(ID);
1232     if (I != ForwardRefValIDs.end())
1233       Val = I->second.first;
1234   }
1235 
1236   // If we have the value in the symbol table or fwd-ref table, return it.
1237   if (Val) {
1238     if (Val->getType() == Ty) return Val;
1239     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1240           getTypeString(Val->getType()) + "'");
1241     return nullptr;
1242   }
1243 
1244   // Otherwise, create a new forward reference for this value and remember it.
1245   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1246   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1247   return FwdVal;
1248 }
1249 
1250 //===----------------------------------------------------------------------===//
1251 // Comdat Reference/Resolution Routines.
1252 //===----------------------------------------------------------------------===//
1253 
1254 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1255   // Look this name up in the comdat symbol table.
1256   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1257   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1258   if (I != ComdatSymTab.end())
1259     return &I->second;
1260 
1261   // Otherwise, create a new forward reference for this value and remember it.
1262   Comdat *C = M->getOrInsertComdat(Name);
1263   ForwardRefComdats[Name] = Loc;
1264   return C;
1265 }
1266 
1267 //===----------------------------------------------------------------------===//
1268 // Helper Routines.
1269 //===----------------------------------------------------------------------===//
1270 
1271 /// ParseToken - If the current token has the specified kind, eat it and return
1272 /// success.  Otherwise, emit the specified error and return failure.
1273 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1274   if (Lex.getKind() != T)
1275     return TokError(ErrMsg);
1276   Lex.Lex();
1277   return false;
1278 }
1279 
1280 /// ParseStringConstant
1281 ///   ::= StringConstant
1282 bool LLParser::ParseStringConstant(std::string &Result) {
1283   if (Lex.getKind() != lltok::StringConstant)
1284     return TokError("expected string constant");
1285   Result = Lex.getStrVal();
1286   Lex.Lex();
1287   return false;
1288 }
1289 
1290 /// ParseUInt32
1291 ///   ::= uint32
1292 bool LLParser::ParseUInt32(uint32_t &Val) {
1293   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1294     return TokError("expected integer");
1295   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1296   if (Val64 != unsigned(Val64))
1297     return TokError("expected 32-bit integer (too large)");
1298   Val = Val64;
1299   Lex.Lex();
1300   return false;
1301 }
1302 
1303 /// ParseUInt64
1304 ///   ::= uint64
1305 bool LLParser::ParseUInt64(uint64_t &Val) {
1306   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1307     return TokError("expected integer");
1308   Val = Lex.getAPSIntVal().getLimitedValue();
1309   Lex.Lex();
1310   return false;
1311 }
1312 
1313 /// ParseTLSModel
1314 ///   := 'localdynamic'
1315 ///   := 'initialexec'
1316 ///   := 'localexec'
1317 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1318   switch (Lex.getKind()) {
1319     default:
1320       return TokError("expected localdynamic, initialexec or localexec");
1321     case lltok::kw_localdynamic:
1322       TLM = GlobalVariable::LocalDynamicTLSModel;
1323       break;
1324     case lltok::kw_initialexec:
1325       TLM = GlobalVariable::InitialExecTLSModel;
1326       break;
1327     case lltok::kw_localexec:
1328       TLM = GlobalVariable::LocalExecTLSModel;
1329       break;
1330   }
1331 
1332   Lex.Lex();
1333   return false;
1334 }
1335 
1336 /// ParseOptionalThreadLocal
1337 ///   := /*empty*/
1338 ///   := 'thread_local'
1339 ///   := 'thread_local' '(' tlsmodel ')'
1340 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1341   TLM = GlobalVariable::NotThreadLocal;
1342   if (!EatIfPresent(lltok::kw_thread_local))
1343     return false;
1344 
1345   TLM = GlobalVariable::GeneralDynamicTLSModel;
1346   if (Lex.getKind() == lltok::lparen) {
1347     Lex.Lex();
1348     return ParseTLSModel(TLM) ||
1349       ParseToken(lltok::rparen, "expected ')' after thread local model");
1350   }
1351   return false;
1352 }
1353 
1354 /// ParseOptionalAddrSpace
1355 ///   := /*empty*/
1356 ///   := 'addrspace' '(' uint32 ')'
1357 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1358   AddrSpace = 0;
1359   if (!EatIfPresent(lltok::kw_addrspace))
1360     return false;
1361   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1362          ParseUInt32(AddrSpace) ||
1363          ParseToken(lltok::rparen, "expected ')' in address space");
1364 }
1365 
1366 /// ParseStringAttribute
1367 ///   := StringConstant
1368 ///   := StringConstant '=' StringConstant
1369 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1370   std::string Attr = Lex.getStrVal();
1371   Lex.Lex();
1372   std::string Val;
1373   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1374     return true;
1375   B.addAttribute(Attr, Val);
1376   return false;
1377 }
1378 
1379 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1380 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1381   bool HaveError = false;
1382 
1383   B.clear();
1384 
1385   while (true) {
1386     lltok::Kind Token = Lex.getKind();
1387     switch (Token) {
1388     default:  // End of attributes.
1389       return HaveError;
1390     case lltok::StringConstant: {
1391       if (ParseStringAttribute(B))
1392         return true;
1393       continue;
1394     }
1395     case lltok::kw_align: {
1396       unsigned Alignment;
1397       if (ParseOptionalAlignment(Alignment))
1398         return true;
1399       B.addAlignmentAttr(Alignment);
1400       continue;
1401     }
1402     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1403     case lltok::kw_dereferenceable: {
1404       uint64_t Bytes;
1405       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1406         return true;
1407       B.addDereferenceableAttr(Bytes);
1408       continue;
1409     }
1410     case lltok::kw_dereferenceable_or_null: {
1411       uint64_t Bytes;
1412       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1413         return true;
1414       B.addDereferenceableOrNullAttr(Bytes);
1415       continue;
1416     }
1417     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1418     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1419     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1420     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1421     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1422     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1423     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1424     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1425     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1426     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1427     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1428     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1429     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1430     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1431     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1432 
1433     case lltok::kw_alignstack:
1434     case lltok::kw_alwaysinline:
1435     case lltok::kw_argmemonly:
1436     case lltok::kw_builtin:
1437     case lltok::kw_inlinehint:
1438     case lltok::kw_jumptable:
1439     case lltok::kw_minsize:
1440     case lltok::kw_naked:
1441     case lltok::kw_nobuiltin:
1442     case lltok::kw_noduplicate:
1443     case lltok::kw_noimplicitfloat:
1444     case lltok::kw_noinline:
1445     case lltok::kw_nonlazybind:
1446     case lltok::kw_noredzone:
1447     case lltok::kw_noreturn:
1448     case lltok::kw_nounwind:
1449     case lltok::kw_optnone:
1450     case lltok::kw_optsize:
1451     case lltok::kw_returns_twice:
1452     case lltok::kw_sanitize_address:
1453     case lltok::kw_sanitize_memory:
1454     case lltok::kw_sanitize_thread:
1455     case lltok::kw_ssp:
1456     case lltok::kw_sspreq:
1457     case lltok::kw_sspstrong:
1458     case lltok::kw_safestack:
1459     case lltok::kw_strictfp:
1460     case lltok::kw_uwtable:
1461       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1462       break;
1463     }
1464 
1465     Lex.Lex();
1466   }
1467 }
1468 
1469 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1470 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1471   bool HaveError = false;
1472 
1473   B.clear();
1474 
1475   while (true) {
1476     lltok::Kind Token = Lex.getKind();
1477     switch (Token) {
1478     default:  // End of attributes.
1479       return HaveError;
1480     case lltok::StringConstant: {
1481       if (ParseStringAttribute(B))
1482         return true;
1483       continue;
1484     }
1485     case lltok::kw_dereferenceable: {
1486       uint64_t Bytes;
1487       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1488         return true;
1489       B.addDereferenceableAttr(Bytes);
1490       continue;
1491     }
1492     case lltok::kw_dereferenceable_or_null: {
1493       uint64_t Bytes;
1494       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1495         return true;
1496       B.addDereferenceableOrNullAttr(Bytes);
1497       continue;
1498     }
1499     case lltok::kw_align: {
1500       unsigned Alignment;
1501       if (ParseOptionalAlignment(Alignment))
1502         return true;
1503       B.addAlignmentAttr(Alignment);
1504       continue;
1505     }
1506     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1507     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1508     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1509     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1510     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1511 
1512     // Error handling.
1513     case lltok::kw_byval:
1514     case lltok::kw_inalloca:
1515     case lltok::kw_nest:
1516     case lltok::kw_nocapture:
1517     case lltok::kw_returned:
1518     case lltok::kw_sret:
1519     case lltok::kw_swifterror:
1520     case lltok::kw_swiftself:
1521       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1522       break;
1523 
1524     case lltok::kw_alignstack:
1525     case lltok::kw_alwaysinline:
1526     case lltok::kw_argmemonly:
1527     case lltok::kw_builtin:
1528     case lltok::kw_cold:
1529     case lltok::kw_inlinehint:
1530     case lltok::kw_jumptable:
1531     case lltok::kw_minsize:
1532     case lltok::kw_naked:
1533     case lltok::kw_nobuiltin:
1534     case lltok::kw_noduplicate:
1535     case lltok::kw_noimplicitfloat:
1536     case lltok::kw_noinline:
1537     case lltok::kw_nonlazybind:
1538     case lltok::kw_noredzone:
1539     case lltok::kw_noreturn:
1540     case lltok::kw_nounwind:
1541     case lltok::kw_optnone:
1542     case lltok::kw_optsize:
1543     case lltok::kw_returns_twice:
1544     case lltok::kw_sanitize_address:
1545     case lltok::kw_sanitize_memory:
1546     case lltok::kw_sanitize_thread:
1547     case lltok::kw_ssp:
1548     case lltok::kw_sspreq:
1549     case lltok::kw_sspstrong:
1550     case lltok::kw_safestack:
1551     case lltok::kw_strictfp:
1552     case lltok::kw_uwtable:
1553       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1554       break;
1555 
1556     case lltok::kw_readnone:
1557     case lltok::kw_readonly:
1558       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1559     }
1560 
1561     Lex.Lex();
1562   }
1563 }
1564 
1565 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1566   HasLinkage = true;
1567   switch (Kind) {
1568   default:
1569     HasLinkage = false;
1570     return GlobalValue::ExternalLinkage;
1571   case lltok::kw_private:
1572     return GlobalValue::PrivateLinkage;
1573   case lltok::kw_internal:
1574     return GlobalValue::InternalLinkage;
1575   case lltok::kw_weak:
1576     return GlobalValue::WeakAnyLinkage;
1577   case lltok::kw_weak_odr:
1578     return GlobalValue::WeakODRLinkage;
1579   case lltok::kw_linkonce:
1580     return GlobalValue::LinkOnceAnyLinkage;
1581   case lltok::kw_linkonce_odr:
1582     return GlobalValue::LinkOnceODRLinkage;
1583   case lltok::kw_available_externally:
1584     return GlobalValue::AvailableExternallyLinkage;
1585   case lltok::kw_appending:
1586     return GlobalValue::AppendingLinkage;
1587   case lltok::kw_common:
1588     return GlobalValue::CommonLinkage;
1589   case lltok::kw_extern_weak:
1590     return GlobalValue::ExternalWeakLinkage;
1591   case lltok::kw_external:
1592     return GlobalValue::ExternalLinkage;
1593   }
1594 }
1595 
1596 /// ParseOptionalLinkage
1597 ///   ::= /*empty*/
1598 ///   ::= 'private'
1599 ///   ::= 'internal'
1600 ///   ::= 'weak'
1601 ///   ::= 'weak_odr'
1602 ///   ::= 'linkonce'
1603 ///   ::= 'linkonce_odr'
1604 ///   ::= 'available_externally'
1605 ///   ::= 'appending'
1606 ///   ::= 'common'
1607 ///   ::= 'extern_weak'
1608 ///   ::= 'external'
1609 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1610                                     unsigned &Visibility,
1611                                     unsigned &DLLStorageClass) {
1612   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1613   if (HasLinkage)
1614     Lex.Lex();
1615   ParseOptionalVisibility(Visibility);
1616   ParseOptionalDLLStorageClass(DLLStorageClass);
1617   return false;
1618 }
1619 
1620 /// ParseOptionalVisibility
1621 ///   ::= /*empty*/
1622 ///   ::= 'default'
1623 ///   ::= 'hidden'
1624 ///   ::= 'protected'
1625 ///
1626 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1627   switch (Lex.getKind()) {
1628   default:
1629     Res = GlobalValue::DefaultVisibility;
1630     return;
1631   case lltok::kw_default:
1632     Res = GlobalValue::DefaultVisibility;
1633     break;
1634   case lltok::kw_hidden:
1635     Res = GlobalValue::HiddenVisibility;
1636     break;
1637   case lltok::kw_protected:
1638     Res = GlobalValue::ProtectedVisibility;
1639     break;
1640   }
1641   Lex.Lex();
1642 }
1643 
1644 /// ParseOptionalDLLStorageClass
1645 ///   ::= /*empty*/
1646 ///   ::= 'dllimport'
1647 ///   ::= 'dllexport'
1648 ///
1649 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1650   switch (Lex.getKind()) {
1651   default:
1652     Res = GlobalValue::DefaultStorageClass;
1653     return;
1654   case lltok::kw_dllimport:
1655     Res = GlobalValue::DLLImportStorageClass;
1656     break;
1657   case lltok::kw_dllexport:
1658     Res = GlobalValue::DLLExportStorageClass;
1659     break;
1660   }
1661   Lex.Lex();
1662 }
1663 
1664 /// ParseOptionalCallingConv
1665 ///   ::= /*empty*/
1666 ///   ::= 'ccc'
1667 ///   ::= 'fastcc'
1668 ///   ::= 'intel_ocl_bicc'
1669 ///   ::= 'coldcc'
1670 ///   ::= 'x86_stdcallcc'
1671 ///   ::= 'x86_fastcallcc'
1672 ///   ::= 'x86_thiscallcc'
1673 ///   ::= 'x86_vectorcallcc'
1674 ///   ::= 'arm_apcscc'
1675 ///   ::= 'arm_aapcscc'
1676 ///   ::= 'arm_aapcs_vfpcc'
1677 ///   ::= 'msp430_intrcc'
1678 ///   ::= 'avr_intrcc'
1679 ///   ::= 'avr_signalcc'
1680 ///   ::= 'ptx_kernel'
1681 ///   ::= 'ptx_device'
1682 ///   ::= 'spir_func'
1683 ///   ::= 'spir_kernel'
1684 ///   ::= 'x86_64_sysvcc'
1685 ///   ::= 'win64cc'
1686 ///   ::= 'webkit_jscc'
1687 ///   ::= 'anyregcc'
1688 ///   ::= 'preserve_mostcc'
1689 ///   ::= 'preserve_allcc'
1690 ///   ::= 'ghccc'
1691 ///   ::= 'swiftcc'
1692 ///   ::= 'x86_intrcc'
1693 ///   ::= 'hhvmcc'
1694 ///   ::= 'hhvm_ccc'
1695 ///   ::= 'cxx_fast_tlscc'
1696 ///   ::= 'amdgpu_vs'
1697 ///   ::= 'amdgpu_ls'
1698 ///   ::= 'amdgpu_hs'
1699 ///   ::= 'amdgpu_es'
1700 ///   ::= 'amdgpu_gs'
1701 ///   ::= 'amdgpu_ps'
1702 ///   ::= 'amdgpu_cs'
1703 ///   ::= 'amdgpu_kernel'
1704 ///   ::= 'cc' UINT
1705 ///
1706 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1707   switch (Lex.getKind()) {
1708   default:                       CC = CallingConv::C; return false;
1709   case lltok::kw_ccc:            CC = CallingConv::C; break;
1710   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1711   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1712   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1713   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1714   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1715   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1716   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1717   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1718   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1719   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1720   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1721   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1722   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1723   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1724   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1725   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1726   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1727   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1728   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1729   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1730   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1731   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1732   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1733   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1734   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1735   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1736   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1737   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1738   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1739   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1740   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1741   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1742   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1743   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1744   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1745   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1746   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1747   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1748   case lltok::kw_cc: {
1749       Lex.Lex();
1750       return ParseUInt32(CC);
1751     }
1752   }
1753 
1754   Lex.Lex();
1755   return false;
1756 }
1757 
1758 /// ParseMetadataAttachment
1759 ///   ::= !dbg !42
1760 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1761   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1762 
1763   std::string Name = Lex.getStrVal();
1764   Kind = M->getMDKindID(Name);
1765   Lex.Lex();
1766 
1767   return ParseMDNode(MD);
1768 }
1769 
1770 /// ParseInstructionMetadata
1771 ///   ::= !dbg !42 (',' !dbg !57)*
1772 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1773   do {
1774     if (Lex.getKind() != lltok::MetadataVar)
1775       return TokError("expected metadata after comma");
1776 
1777     unsigned MDK;
1778     MDNode *N;
1779     if (ParseMetadataAttachment(MDK, N))
1780       return true;
1781 
1782     Inst.setMetadata(MDK, N);
1783     if (MDK == LLVMContext::MD_tbaa)
1784       InstsWithTBAATag.push_back(&Inst);
1785 
1786     // If this is the end of the list, we're done.
1787   } while (EatIfPresent(lltok::comma));
1788   return false;
1789 }
1790 
1791 /// ParseGlobalObjectMetadataAttachment
1792 ///   ::= !dbg !57
1793 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1794   unsigned MDK;
1795   MDNode *N;
1796   if (ParseMetadataAttachment(MDK, N))
1797     return true;
1798 
1799   GO.addMetadata(MDK, *N);
1800   return false;
1801 }
1802 
1803 /// ParseOptionalFunctionMetadata
1804 ///   ::= (!dbg !57)*
1805 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1806   while (Lex.getKind() == lltok::MetadataVar)
1807     if (ParseGlobalObjectMetadataAttachment(F))
1808       return true;
1809   return false;
1810 }
1811 
1812 /// ParseOptionalAlignment
1813 ///   ::= /* empty */
1814 ///   ::= 'align' 4
1815 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1816   Alignment = 0;
1817   if (!EatIfPresent(lltok::kw_align))
1818     return false;
1819   LocTy AlignLoc = Lex.getLoc();
1820   if (ParseUInt32(Alignment)) return true;
1821   if (!isPowerOf2_32(Alignment))
1822     return Error(AlignLoc, "alignment is not a power of two");
1823   if (Alignment > Value::MaximumAlignment)
1824     return Error(AlignLoc, "huge alignments are not supported yet");
1825   return false;
1826 }
1827 
1828 /// ParseOptionalDerefAttrBytes
1829 ///   ::= /* empty */
1830 ///   ::= AttrKind '(' 4 ')'
1831 ///
1832 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1833 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1834                                            uint64_t &Bytes) {
1835   assert((AttrKind == lltok::kw_dereferenceable ||
1836           AttrKind == lltok::kw_dereferenceable_or_null) &&
1837          "contract!");
1838 
1839   Bytes = 0;
1840   if (!EatIfPresent(AttrKind))
1841     return false;
1842   LocTy ParenLoc = Lex.getLoc();
1843   if (!EatIfPresent(lltok::lparen))
1844     return Error(ParenLoc, "expected '('");
1845   LocTy DerefLoc = Lex.getLoc();
1846   if (ParseUInt64(Bytes)) return true;
1847   ParenLoc = Lex.getLoc();
1848   if (!EatIfPresent(lltok::rparen))
1849     return Error(ParenLoc, "expected ')'");
1850   if (!Bytes)
1851     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1852   return false;
1853 }
1854 
1855 /// ParseOptionalCommaAlign
1856 ///   ::=
1857 ///   ::= ',' align 4
1858 ///
1859 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1860 /// end.
1861 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1862                                        bool &AteExtraComma) {
1863   AteExtraComma = false;
1864   while (EatIfPresent(lltok::comma)) {
1865     // Metadata at the end is an early exit.
1866     if (Lex.getKind() == lltok::MetadataVar) {
1867       AteExtraComma = true;
1868       return false;
1869     }
1870 
1871     if (Lex.getKind() != lltok::kw_align)
1872       return Error(Lex.getLoc(), "expected metadata or 'align'");
1873 
1874     if (ParseOptionalAlignment(Alignment)) return true;
1875   }
1876 
1877   return false;
1878 }
1879 
1880 /// ParseOptionalCommaAddrSpace
1881 ///   ::=
1882 ///   ::= ',' addrspace(1)
1883 ///
1884 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1885 /// end.
1886 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
1887                                            LocTy &Loc,
1888                                            bool &AteExtraComma) {
1889   AteExtraComma = false;
1890   while (EatIfPresent(lltok::comma)) {
1891     // Metadata at the end is an early exit.
1892     if (Lex.getKind() == lltok::MetadataVar) {
1893       AteExtraComma = true;
1894       return false;
1895     }
1896 
1897     Loc = Lex.getLoc();
1898     if (Lex.getKind() != lltok::kw_addrspace)
1899       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
1900 
1901     if (ParseOptionalAddrSpace(AddrSpace))
1902       return true;
1903   }
1904 
1905   return false;
1906 }
1907 
1908 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
1909                                        Optional<unsigned> &HowManyArg) {
1910   Lex.Lex();
1911 
1912   auto StartParen = Lex.getLoc();
1913   if (!EatIfPresent(lltok::lparen))
1914     return Error(StartParen, "expected '('");
1915 
1916   if (ParseUInt32(BaseSizeArg))
1917     return true;
1918 
1919   if (EatIfPresent(lltok::comma)) {
1920     auto HowManyAt = Lex.getLoc();
1921     unsigned HowMany;
1922     if (ParseUInt32(HowMany))
1923       return true;
1924     if (HowMany == BaseSizeArg)
1925       return Error(HowManyAt,
1926                    "'allocsize' indices can't refer to the same parameter");
1927     HowManyArg = HowMany;
1928   } else
1929     HowManyArg = None;
1930 
1931   auto EndParen = Lex.getLoc();
1932   if (!EatIfPresent(lltok::rparen))
1933     return Error(EndParen, "expected ')'");
1934   return false;
1935 }
1936 
1937 /// ParseScopeAndOrdering
1938 ///   if isAtomic: ::= SyncScope? AtomicOrdering
1939 ///   else: ::=
1940 ///
1941 /// This sets Scope and Ordering to the parsed values.
1942 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
1943                                      AtomicOrdering &Ordering) {
1944   if (!isAtomic)
1945     return false;
1946 
1947   return ParseScope(SSID) || ParseOrdering(Ordering);
1948 }
1949 
1950 /// ParseScope
1951 ///   ::= syncscope("singlethread" | "<target scope>")?
1952 ///
1953 /// This sets synchronization scope ID to the ID of the parsed value.
1954 bool LLParser::ParseScope(SyncScope::ID &SSID) {
1955   SSID = SyncScope::System;
1956   if (EatIfPresent(lltok::kw_syncscope)) {
1957     auto StartParenAt = Lex.getLoc();
1958     if (!EatIfPresent(lltok::lparen))
1959       return Error(StartParenAt, "Expected '(' in syncscope");
1960 
1961     std::string SSN;
1962     auto SSNAt = Lex.getLoc();
1963     if (ParseStringConstant(SSN))
1964       return Error(SSNAt, "Expected synchronization scope name");
1965 
1966     auto EndParenAt = Lex.getLoc();
1967     if (!EatIfPresent(lltok::rparen))
1968       return Error(EndParenAt, "Expected ')' in syncscope");
1969 
1970     SSID = Context.getOrInsertSyncScopeID(SSN);
1971   }
1972 
1973   return false;
1974 }
1975 
1976 /// ParseOrdering
1977 ///   ::= AtomicOrdering
1978 ///
1979 /// This sets Ordering to the parsed value.
1980 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
1981   switch (Lex.getKind()) {
1982   default: return TokError("Expected ordering on atomic instruction");
1983   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
1984   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
1985   // Not specified yet:
1986   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
1987   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
1988   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
1989   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
1990   case lltok::kw_seq_cst:
1991     Ordering = AtomicOrdering::SequentiallyConsistent;
1992     break;
1993   }
1994   Lex.Lex();
1995   return false;
1996 }
1997 
1998 /// ParseOptionalStackAlignment
1999 ///   ::= /* empty */
2000 ///   ::= 'alignstack' '(' 4 ')'
2001 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2002   Alignment = 0;
2003   if (!EatIfPresent(lltok::kw_alignstack))
2004     return false;
2005   LocTy ParenLoc = Lex.getLoc();
2006   if (!EatIfPresent(lltok::lparen))
2007     return Error(ParenLoc, "expected '('");
2008   LocTy AlignLoc = Lex.getLoc();
2009   if (ParseUInt32(Alignment)) return true;
2010   ParenLoc = Lex.getLoc();
2011   if (!EatIfPresent(lltok::rparen))
2012     return Error(ParenLoc, "expected ')'");
2013   if (!isPowerOf2_32(Alignment))
2014     return Error(AlignLoc, "stack alignment is not a power of two");
2015   return false;
2016 }
2017 
2018 /// ParseIndexList - This parses the index list for an insert/extractvalue
2019 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2020 /// comma at the end of the line and find that it is followed by metadata.
2021 /// Clients that don't allow metadata can call the version of this function that
2022 /// only takes one argument.
2023 ///
2024 /// ParseIndexList
2025 ///    ::=  (',' uint32)+
2026 ///
2027 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2028                               bool &AteExtraComma) {
2029   AteExtraComma = false;
2030 
2031   if (Lex.getKind() != lltok::comma)
2032     return TokError("expected ',' as start of index list");
2033 
2034   while (EatIfPresent(lltok::comma)) {
2035     if (Lex.getKind() == lltok::MetadataVar) {
2036       if (Indices.empty()) return TokError("expected index");
2037       AteExtraComma = true;
2038       return false;
2039     }
2040     unsigned Idx = 0;
2041     if (ParseUInt32(Idx)) return true;
2042     Indices.push_back(Idx);
2043   }
2044 
2045   return false;
2046 }
2047 
2048 //===----------------------------------------------------------------------===//
2049 // Type Parsing.
2050 //===----------------------------------------------------------------------===//
2051 
2052 /// ParseType - Parse a type.
2053 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2054   SMLoc TypeLoc = Lex.getLoc();
2055   switch (Lex.getKind()) {
2056   default:
2057     return TokError(Msg);
2058   case lltok::Type:
2059     // Type ::= 'float' | 'void' (etc)
2060     Result = Lex.getTyVal();
2061     Lex.Lex();
2062     break;
2063   case lltok::lbrace:
2064     // Type ::= StructType
2065     if (ParseAnonStructType(Result, false))
2066       return true;
2067     break;
2068   case lltok::lsquare:
2069     // Type ::= '[' ... ']'
2070     Lex.Lex(); // eat the lsquare.
2071     if (ParseArrayVectorType(Result, false))
2072       return true;
2073     break;
2074   case lltok::less: // Either vector or packed struct.
2075     // Type ::= '<' ... '>'
2076     Lex.Lex();
2077     if (Lex.getKind() == lltok::lbrace) {
2078       if (ParseAnonStructType(Result, true) ||
2079           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2080         return true;
2081     } else if (ParseArrayVectorType(Result, true))
2082       return true;
2083     break;
2084   case lltok::LocalVar: {
2085     // Type ::= %foo
2086     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2087 
2088     // If the type hasn't been defined yet, create a forward definition and
2089     // remember where that forward def'n was seen (in case it never is defined).
2090     if (!Entry.first) {
2091       Entry.first = StructType::create(Context, Lex.getStrVal());
2092       Entry.second = Lex.getLoc();
2093     }
2094     Result = Entry.first;
2095     Lex.Lex();
2096     break;
2097   }
2098 
2099   case lltok::LocalVarID: {
2100     // Type ::= %4
2101     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2102 
2103     // If the type hasn't been defined yet, create a forward definition and
2104     // remember where that forward def'n was seen (in case it never is defined).
2105     if (!Entry.first) {
2106       Entry.first = StructType::create(Context);
2107       Entry.second = Lex.getLoc();
2108     }
2109     Result = Entry.first;
2110     Lex.Lex();
2111     break;
2112   }
2113   }
2114 
2115   // Parse the type suffixes.
2116   while (true) {
2117     switch (Lex.getKind()) {
2118     // End of type.
2119     default:
2120       if (!AllowVoid && Result->isVoidTy())
2121         return Error(TypeLoc, "void type only allowed for function results");
2122       return false;
2123 
2124     // Type ::= Type '*'
2125     case lltok::star:
2126       if (Result->isLabelTy())
2127         return TokError("basic block pointers are invalid");
2128       if (Result->isVoidTy())
2129         return TokError("pointers to void are invalid - use i8* instead");
2130       if (!PointerType::isValidElementType(Result))
2131         return TokError("pointer to this type is invalid");
2132       Result = PointerType::getUnqual(Result);
2133       Lex.Lex();
2134       break;
2135 
2136     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2137     case lltok::kw_addrspace: {
2138       if (Result->isLabelTy())
2139         return TokError("basic block pointers are invalid");
2140       if (Result->isVoidTy())
2141         return TokError("pointers to void are invalid; use i8* instead");
2142       if (!PointerType::isValidElementType(Result))
2143         return TokError("pointer to this type is invalid");
2144       unsigned AddrSpace;
2145       if (ParseOptionalAddrSpace(AddrSpace) ||
2146           ParseToken(lltok::star, "expected '*' in address space"))
2147         return true;
2148 
2149       Result = PointerType::get(Result, AddrSpace);
2150       break;
2151     }
2152 
2153     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2154     case lltok::lparen:
2155       if (ParseFunctionType(Result))
2156         return true;
2157       break;
2158     }
2159   }
2160 }
2161 
2162 /// ParseParameterList
2163 ///    ::= '(' ')'
2164 ///    ::= '(' Arg (',' Arg)* ')'
2165 ///  Arg
2166 ///    ::= Type OptionalAttributes Value OptionalAttributes
2167 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2168                                   PerFunctionState &PFS, bool IsMustTailCall,
2169                                   bool InVarArgsFunc) {
2170   if (ParseToken(lltok::lparen, "expected '(' in call"))
2171     return true;
2172 
2173   while (Lex.getKind() != lltok::rparen) {
2174     // If this isn't the first argument, we need a comma.
2175     if (!ArgList.empty() &&
2176         ParseToken(lltok::comma, "expected ',' in argument list"))
2177       return true;
2178 
2179     // Parse an ellipsis if this is a musttail call in a variadic function.
2180     if (Lex.getKind() == lltok::dotdotdot) {
2181       const char *Msg = "unexpected ellipsis in argument list for ";
2182       if (!IsMustTailCall)
2183         return TokError(Twine(Msg) + "non-musttail call");
2184       if (!InVarArgsFunc)
2185         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2186       Lex.Lex();  // Lex the '...', it is purely for readability.
2187       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2188     }
2189 
2190     // Parse the argument.
2191     LocTy ArgLoc;
2192     Type *ArgTy = nullptr;
2193     AttrBuilder ArgAttrs;
2194     Value *V;
2195     if (ParseType(ArgTy, ArgLoc))
2196       return true;
2197 
2198     if (ArgTy->isMetadataTy()) {
2199       if (ParseMetadataAsValue(V, PFS))
2200         return true;
2201     } else {
2202       // Otherwise, handle normal operands.
2203       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2204         return true;
2205     }
2206     ArgList.push_back(ParamInfo(
2207         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2208   }
2209 
2210   if (IsMustTailCall && InVarArgsFunc)
2211     return TokError("expected '...' at end of argument list for musttail call "
2212                     "in varargs function");
2213 
2214   Lex.Lex();  // Lex the ')'.
2215   return false;
2216 }
2217 
2218 /// ParseOptionalOperandBundles
2219 ///    ::= /*empty*/
2220 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2221 ///
2222 /// OperandBundle
2223 ///    ::= bundle-tag '(' ')'
2224 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2225 ///
2226 /// bundle-tag ::= String Constant
2227 bool LLParser::ParseOptionalOperandBundles(
2228     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2229   LocTy BeginLoc = Lex.getLoc();
2230   if (!EatIfPresent(lltok::lsquare))
2231     return false;
2232 
2233   while (Lex.getKind() != lltok::rsquare) {
2234     // If this isn't the first operand bundle, we need a comma.
2235     if (!BundleList.empty() &&
2236         ParseToken(lltok::comma, "expected ',' in input list"))
2237       return true;
2238 
2239     std::string Tag;
2240     if (ParseStringConstant(Tag))
2241       return true;
2242 
2243     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2244       return true;
2245 
2246     std::vector<Value *> Inputs;
2247     while (Lex.getKind() != lltok::rparen) {
2248       // If this isn't the first input, we need a comma.
2249       if (!Inputs.empty() &&
2250           ParseToken(lltok::comma, "expected ',' in input list"))
2251         return true;
2252 
2253       Type *Ty = nullptr;
2254       Value *Input = nullptr;
2255       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2256         return true;
2257       Inputs.push_back(Input);
2258     }
2259 
2260     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2261 
2262     Lex.Lex(); // Lex the ')'.
2263   }
2264 
2265   if (BundleList.empty())
2266     return Error(BeginLoc, "operand bundle set must not be empty");
2267 
2268   Lex.Lex(); // Lex the ']'.
2269   return false;
2270 }
2271 
2272 /// ParseArgumentList - Parse the argument list for a function type or function
2273 /// prototype.
2274 ///   ::= '(' ArgTypeListI ')'
2275 /// ArgTypeListI
2276 ///   ::= /*empty*/
2277 ///   ::= '...'
2278 ///   ::= ArgTypeList ',' '...'
2279 ///   ::= ArgType (',' ArgType)*
2280 ///
2281 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2282                                  bool &isVarArg){
2283   isVarArg = false;
2284   assert(Lex.getKind() == lltok::lparen);
2285   Lex.Lex(); // eat the (.
2286 
2287   if (Lex.getKind() == lltok::rparen) {
2288     // empty
2289   } else if (Lex.getKind() == lltok::dotdotdot) {
2290     isVarArg = true;
2291     Lex.Lex();
2292   } else {
2293     LocTy TypeLoc = Lex.getLoc();
2294     Type *ArgTy = nullptr;
2295     AttrBuilder Attrs;
2296     std::string Name;
2297 
2298     if (ParseType(ArgTy) ||
2299         ParseOptionalParamAttrs(Attrs)) return true;
2300 
2301     if (ArgTy->isVoidTy())
2302       return Error(TypeLoc, "argument can not have void type");
2303 
2304     if (Lex.getKind() == lltok::LocalVar) {
2305       Name = Lex.getStrVal();
2306       Lex.Lex();
2307     }
2308 
2309     if (!FunctionType::isValidArgumentType(ArgTy))
2310       return Error(TypeLoc, "invalid type for function argument");
2311 
2312     ArgList.emplace_back(TypeLoc, ArgTy,
2313                          AttributeSet::get(ArgTy->getContext(), Attrs),
2314                          std::move(Name));
2315 
2316     while (EatIfPresent(lltok::comma)) {
2317       // Handle ... at end of arg list.
2318       if (EatIfPresent(lltok::dotdotdot)) {
2319         isVarArg = true;
2320         break;
2321       }
2322 
2323       // Otherwise must be an argument type.
2324       TypeLoc = Lex.getLoc();
2325       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2326 
2327       if (ArgTy->isVoidTy())
2328         return Error(TypeLoc, "argument can not have void type");
2329 
2330       if (Lex.getKind() == lltok::LocalVar) {
2331         Name = Lex.getStrVal();
2332         Lex.Lex();
2333       } else {
2334         Name = "";
2335       }
2336 
2337       if (!ArgTy->isFirstClassType())
2338         return Error(TypeLoc, "invalid type for function argument");
2339 
2340       ArgList.emplace_back(TypeLoc, ArgTy,
2341                            AttributeSet::get(ArgTy->getContext(), Attrs),
2342                            std::move(Name));
2343     }
2344   }
2345 
2346   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2347 }
2348 
2349 /// ParseFunctionType
2350 ///  ::= Type ArgumentList OptionalAttrs
2351 bool LLParser::ParseFunctionType(Type *&Result) {
2352   assert(Lex.getKind() == lltok::lparen);
2353 
2354   if (!FunctionType::isValidReturnType(Result))
2355     return TokError("invalid function return type");
2356 
2357   SmallVector<ArgInfo, 8> ArgList;
2358   bool isVarArg;
2359   if (ParseArgumentList(ArgList, isVarArg))
2360     return true;
2361 
2362   // Reject names on the arguments lists.
2363   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2364     if (!ArgList[i].Name.empty())
2365       return Error(ArgList[i].Loc, "argument name invalid in function type");
2366     if (ArgList[i].Attrs.hasAttributes())
2367       return Error(ArgList[i].Loc,
2368                    "argument attributes invalid in function type");
2369   }
2370 
2371   SmallVector<Type*, 16> ArgListTy;
2372   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2373     ArgListTy.push_back(ArgList[i].Ty);
2374 
2375   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2376   return false;
2377 }
2378 
2379 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2380 /// other structs.
2381 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2382   SmallVector<Type*, 8> Elts;
2383   if (ParseStructBody(Elts)) return true;
2384 
2385   Result = StructType::get(Context, Elts, Packed);
2386   return false;
2387 }
2388 
2389 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2390 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2391                                      std::pair<Type*, LocTy> &Entry,
2392                                      Type *&ResultTy) {
2393   // If the type was already defined, diagnose the redefinition.
2394   if (Entry.first && !Entry.second.isValid())
2395     return Error(TypeLoc, "redefinition of type");
2396 
2397   // If we have opaque, just return without filling in the definition for the
2398   // struct.  This counts as a definition as far as the .ll file goes.
2399   if (EatIfPresent(lltok::kw_opaque)) {
2400     // This type is being defined, so clear the location to indicate this.
2401     Entry.second = SMLoc();
2402 
2403     // If this type number has never been uttered, create it.
2404     if (!Entry.first)
2405       Entry.first = StructType::create(Context, Name);
2406     ResultTy = Entry.first;
2407     return false;
2408   }
2409 
2410   // If the type starts with '<', then it is either a packed struct or a vector.
2411   bool isPacked = EatIfPresent(lltok::less);
2412 
2413   // If we don't have a struct, then we have a random type alias, which we
2414   // accept for compatibility with old files.  These types are not allowed to be
2415   // forward referenced and not allowed to be recursive.
2416   if (Lex.getKind() != lltok::lbrace) {
2417     if (Entry.first)
2418       return Error(TypeLoc, "forward references to non-struct type");
2419 
2420     ResultTy = nullptr;
2421     if (isPacked)
2422       return ParseArrayVectorType(ResultTy, true);
2423     return ParseType(ResultTy);
2424   }
2425 
2426   // This type is being defined, so clear the location to indicate this.
2427   Entry.second = SMLoc();
2428 
2429   // If this type number has never been uttered, create it.
2430   if (!Entry.first)
2431     Entry.first = StructType::create(Context, Name);
2432 
2433   StructType *STy = cast<StructType>(Entry.first);
2434 
2435   SmallVector<Type*, 8> Body;
2436   if (ParseStructBody(Body) ||
2437       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2438     return true;
2439 
2440   STy->setBody(Body, isPacked);
2441   ResultTy = STy;
2442   return false;
2443 }
2444 
2445 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2446 ///   StructType
2447 ///     ::= '{' '}'
2448 ///     ::= '{' Type (',' Type)* '}'
2449 ///     ::= '<' '{' '}' '>'
2450 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2451 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2452   assert(Lex.getKind() == lltok::lbrace);
2453   Lex.Lex(); // Consume the '{'
2454 
2455   // Handle the empty struct.
2456   if (EatIfPresent(lltok::rbrace))
2457     return false;
2458 
2459   LocTy EltTyLoc = Lex.getLoc();
2460   Type *Ty = nullptr;
2461   if (ParseType(Ty)) return true;
2462   Body.push_back(Ty);
2463 
2464   if (!StructType::isValidElementType(Ty))
2465     return Error(EltTyLoc, "invalid element type for struct");
2466 
2467   while (EatIfPresent(lltok::comma)) {
2468     EltTyLoc = Lex.getLoc();
2469     if (ParseType(Ty)) return true;
2470 
2471     if (!StructType::isValidElementType(Ty))
2472       return Error(EltTyLoc, "invalid element type for struct");
2473 
2474     Body.push_back(Ty);
2475   }
2476 
2477   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2478 }
2479 
2480 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2481 /// token has already been consumed.
2482 ///   Type
2483 ///     ::= '[' APSINTVAL 'x' Types ']'
2484 ///     ::= '<' APSINTVAL 'x' Types '>'
2485 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2486   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2487       Lex.getAPSIntVal().getBitWidth() > 64)
2488     return TokError("expected number in address space");
2489 
2490   LocTy SizeLoc = Lex.getLoc();
2491   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2492   Lex.Lex();
2493 
2494   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2495       return true;
2496 
2497   LocTy TypeLoc = Lex.getLoc();
2498   Type *EltTy = nullptr;
2499   if (ParseType(EltTy)) return true;
2500 
2501   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2502                  "expected end of sequential type"))
2503     return true;
2504 
2505   if (isVector) {
2506     if (Size == 0)
2507       return Error(SizeLoc, "zero element vector is illegal");
2508     if ((unsigned)Size != Size)
2509       return Error(SizeLoc, "size too large for vector");
2510     if (!VectorType::isValidElementType(EltTy))
2511       return Error(TypeLoc, "invalid vector element type");
2512     Result = VectorType::get(EltTy, unsigned(Size));
2513   } else {
2514     if (!ArrayType::isValidElementType(EltTy))
2515       return Error(TypeLoc, "invalid array element type");
2516     Result = ArrayType::get(EltTy, Size);
2517   }
2518   return false;
2519 }
2520 
2521 //===----------------------------------------------------------------------===//
2522 // Function Semantic Analysis.
2523 //===----------------------------------------------------------------------===//
2524 
2525 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2526                                              int functionNumber)
2527   : P(p), F(f), FunctionNumber(functionNumber) {
2528 
2529   // Insert unnamed arguments into the NumberedVals list.
2530   for (Argument &A : F.args())
2531     if (!A.hasName())
2532       NumberedVals.push_back(&A);
2533 }
2534 
2535 LLParser::PerFunctionState::~PerFunctionState() {
2536   // If there were any forward referenced non-basicblock values, delete them.
2537 
2538   for (const auto &P : ForwardRefVals) {
2539     if (isa<BasicBlock>(P.second.first))
2540       continue;
2541     P.second.first->replaceAllUsesWith(
2542         UndefValue::get(P.second.first->getType()));
2543     P.second.first->deleteValue();
2544   }
2545 
2546   for (const auto &P : ForwardRefValIDs) {
2547     if (isa<BasicBlock>(P.second.first))
2548       continue;
2549     P.second.first->replaceAllUsesWith(
2550         UndefValue::get(P.second.first->getType()));
2551     P.second.first->deleteValue();
2552   }
2553 }
2554 
2555 bool LLParser::PerFunctionState::FinishFunction() {
2556   if (!ForwardRefVals.empty())
2557     return P.Error(ForwardRefVals.begin()->second.second,
2558                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2559                    "'");
2560   if (!ForwardRefValIDs.empty())
2561     return P.Error(ForwardRefValIDs.begin()->second.second,
2562                    "use of undefined value '%" +
2563                    Twine(ForwardRefValIDs.begin()->first) + "'");
2564   return false;
2565 }
2566 
2567 /// GetVal - Get a value with the specified name or ID, creating a
2568 /// forward reference record if needed.  This can return null if the value
2569 /// exists but does not have the right type.
2570 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2571                                           LocTy Loc) {
2572   // Look this name up in the normal function symbol table.
2573   Value *Val = F.getValueSymbolTable()->lookup(Name);
2574 
2575   // If this is a forward reference for the value, see if we already created a
2576   // forward ref record.
2577   if (!Val) {
2578     auto I = ForwardRefVals.find(Name);
2579     if (I != ForwardRefVals.end())
2580       Val = I->second.first;
2581   }
2582 
2583   // If we have the value in the symbol table or fwd-ref table, return it.
2584   if (Val) {
2585     if (Val->getType() == Ty) return Val;
2586     if (Ty->isLabelTy())
2587       P.Error(Loc, "'%" + Name + "' is not a basic block");
2588     else
2589       P.Error(Loc, "'%" + Name + "' defined with type '" +
2590               getTypeString(Val->getType()) + "'");
2591     return nullptr;
2592   }
2593 
2594   // Don't make placeholders with invalid type.
2595   if (!Ty->isFirstClassType()) {
2596     P.Error(Loc, "invalid use of a non-first-class type");
2597     return nullptr;
2598   }
2599 
2600   // Otherwise, create a new forward reference for this value and remember it.
2601   Value *FwdVal;
2602   if (Ty->isLabelTy()) {
2603     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2604   } else {
2605     FwdVal = new Argument(Ty, Name);
2606   }
2607 
2608   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2609   return FwdVal;
2610 }
2611 
2612 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) {
2613   // Look this name up in the normal function symbol table.
2614   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2615 
2616   // If this is a forward reference for the value, see if we already created a
2617   // forward ref record.
2618   if (!Val) {
2619     auto I = ForwardRefValIDs.find(ID);
2620     if (I != ForwardRefValIDs.end())
2621       Val = I->second.first;
2622   }
2623 
2624   // If we have the value in the symbol table or fwd-ref table, return it.
2625   if (Val) {
2626     if (Val->getType() == Ty) return Val;
2627     if (Ty->isLabelTy())
2628       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2629     else
2630       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2631               getTypeString(Val->getType()) + "'");
2632     return nullptr;
2633   }
2634 
2635   if (!Ty->isFirstClassType()) {
2636     P.Error(Loc, "invalid use of a non-first-class type");
2637     return nullptr;
2638   }
2639 
2640   // Otherwise, create a new forward reference for this value and remember it.
2641   Value *FwdVal;
2642   if (Ty->isLabelTy()) {
2643     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2644   } else {
2645     FwdVal = new Argument(Ty);
2646   }
2647 
2648   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2649   return FwdVal;
2650 }
2651 
2652 /// SetInstName - After an instruction is parsed and inserted into its
2653 /// basic block, this installs its name.
2654 bool LLParser::PerFunctionState::SetInstName(int NameID,
2655                                              const std::string &NameStr,
2656                                              LocTy NameLoc, Instruction *Inst) {
2657   // If this instruction has void type, it cannot have a name or ID specified.
2658   if (Inst->getType()->isVoidTy()) {
2659     if (NameID != -1 || !NameStr.empty())
2660       return P.Error(NameLoc, "instructions returning void cannot have a name");
2661     return false;
2662   }
2663 
2664   // If this was a numbered instruction, verify that the instruction is the
2665   // expected value and resolve any forward references.
2666   if (NameStr.empty()) {
2667     // If neither a name nor an ID was specified, just use the next ID.
2668     if (NameID == -1)
2669       NameID = NumberedVals.size();
2670 
2671     if (unsigned(NameID) != NumberedVals.size())
2672       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2673                      Twine(NumberedVals.size()) + "'");
2674 
2675     auto FI = ForwardRefValIDs.find(NameID);
2676     if (FI != ForwardRefValIDs.end()) {
2677       Value *Sentinel = FI->second.first;
2678       if (Sentinel->getType() != Inst->getType())
2679         return P.Error(NameLoc, "instruction forward referenced with type '" +
2680                        getTypeString(FI->second.first->getType()) + "'");
2681 
2682       Sentinel->replaceAllUsesWith(Inst);
2683       Sentinel->deleteValue();
2684       ForwardRefValIDs.erase(FI);
2685     }
2686 
2687     NumberedVals.push_back(Inst);
2688     return false;
2689   }
2690 
2691   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2692   auto FI = ForwardRefVals.find(NameStr);
2693   if (FI != ForwardRefVals.end()) {
2694     Value *Sentinel = FI->second.first;
2695     if (Sentinel->getType() != Inst->getType())
2696       return P.Error(NameLoc, "instruction forward referenced with type '" +
2697                      getTypeString(FI->second.first->getType()) + "'");
2698 
2699     Sentinel->replaceAllUsesWith(Inst);
2700     Sentinel->deleteValue();
2701     ForwardRefVals.erase(FI);
2702   }
2703 
2704   // Set the name on the instruction.
2705   Inst->setName(NameStr);
2706 
2707   if (Inst->getName() != NameStr)
2708     return P.Error(NameLoc, "multiple definition of local value named '" +
2709                    NameStr + "'");
2710   return false;
2711 }
2712 
2713 /// GetBB - Get a basic block with the specified name or ID, creating a
2714 /// forward reference record if needed.
2715 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2716                                               LocTy Loc) {
2717   return dyn_cast_or_null<BasicBlock>(GetVal(Name,
2718                                       Type::getLabelTy(F.getContext()), Loc));
2719 }
2720 
2721 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2722   return dyn_cast_or_null<BasicBlock>(GetVal(ID,
2723                                       Type::getLabelTy(F.getContext()), Loc));
2724 }
2725 
2726 /// DefineBB - Define the specified basic block, which is either named or
2727 /// unnamed.  If there is an error, this returns null otherwise it returns
2728 /// the block being defined.
2729 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2730                                                  LocTy Loc) {
2731   BasicBlock *BB;
2732   if (Name.empty())
2733     BB = GetBB(NumberedVals.size(), Loc);
2734   else
2735     BB = GetBB(Name, Loc);
2736   if (!BB) return nullptr; // Already diagnosed error.
2737 
2738   // Move the block to the end of the function.  Forward ref'd blocks are
2739   // inserted wherever they happen to be referenced.
2740   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2741 
2742   // Remove the block from forward ref sets.
2743   if (Name.empty()) {
2744     ForwardRefValIDs.erase(NumberedVals.size());
2745     NumberedVals.push_back(BB);
2746   } else {
2747     // BB forward references are already in the function symbol table.
2748     ForwardRefVals.erase(Name);
2749   }
2750 
2751   return BB;
2752 }
2753 
2754 //===----------------------------------------------------------------------===//
2755 // Constants.
2756 //===----------------------------------------------------------------------===//
2757 
2758 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2759 /// type implied.  For example, if we parse "4" we don't know what integer type
2760 /// it has.  The value will later be combined with its type and checked for
2761 /// sanity.  PFS is used to convert function-local operands of metadata (since
2762 /// metadata operands are not just parsed here but also converted to values).
2763 /// PFS can be null when we are not parsing metadata values inside a function.
2764 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2765   ID.Loc = Lex.getLoc();
2766   switch (Lex.getKind()) {
2767   default: return TokError("expected value token");
2768   case lltok::GlobalID:  // @42
2769     ID.UIntVal = Lex.getUIntVal();
2770     ID.Kind = ValID::t_GlobalID;
2771     break;
2772   case lltok::GlobalVar:  // @foo
2773     ID.StrVal = Lex.getStrVal();
2774     ID.Kind = ValID::t_GlobalName;
2775     break;
2776   case lltok::LocalVarID:  // %42
2777     ID.UIntVal = Lex.getUIntVal();
2778     ID.Kind = ValID::t_LocalID;
2779     break;
2780   case lltok::LocalVar:  // %foo
2781     ID.StrVal = Lex.getStrVal();
2782     ID.Kind = ValID::t_LocalName;
2783     break;
2784   case lltok::APSInt:
2785     ID.APSIntVal = Lex.getAPSIntVal();
2786     ID.Kind = ValID::t_APSInt;
2787     break;
2788   case lltok::APFloat:
2789     ID.APFloatVal = Lex.getAPFloatVal();
2790     ID.Kind = ValID::t_APFloat;
2791     break;
2792   case lltok::kw_true:
2793     ID.ConstantVal = ConstantInt::getTrue(Context);
2794     ID.Kind = ValID::t_Constant;
2795     break;
2796   case lltok::kw_false:
2797     ID.ConstantVal = ConstantInt::getFalse(Context);
2798     ID.Kind = ValID::t_Constant;
2799     break;
2800   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2801   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2802   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2803   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2804 
2805   case lltok::lbrace: {
2806     // ValID ::= '{' ConstVector '}'
2807     Lex.Lex();
2808     SmallVector<Constant*, 16> Elts;
2809     if (ParseGlobalValueVector(Elts) ||
2810         ParseToken(lltok::rbrace, "expected end of struct constant"))
2811       return true;
2812 
2813     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2814     ID.UIntVal = Elts.size();
2815     memcpy(ID.ConstantStructElts.get(), Elts.data(),
2816            Elts.size() * sizeof(Elts[0]));
2817     ID.Kind = ValID::t_ConstantStruct;
2818     return false;
2819   }
2820   case lltok::less: {
2821     // ValID ::= '<' ConstVector '>'         --> Vector.
2822     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2823     Lex.Lex();
2824     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2825 
2826     SmallVector<Constant*, 16> Elts;
2827     LocTy FirstEltLoc = Lex.getLoc();
2828     if (ParseGlobalValueVector(Elts) ||
2829         (isPackedStruct &&
2830          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2831         ParseToken(lltok::greater, "expected end of constant"))
2832       return true;
2833 
2834     if (isPackedStruct) {
2835       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2836       memcpy(ID.ConstantStructElts.get(), Elts.data(),
2837              Elts.size() * sizeof(Elts[0]));
2838       ID.UIntVal = Elts.size();
2839       ID.Kind = ValID::t_PackedConstantStruct;
2840       return false;
2841     }
2842 
2843     if (Elts.empty())
2844       return Error(ID.Loc, "constant vector must not be empty");
2845 
2846     if (!Elts[0]->getType()->isIntegerTy() &&
2847         !Elts[0]->getType()->isFloatingPointTy() &&
2848         !Elts[0]->getType()->isPointerTy())
2849       return Error(FirstEltLoc,
2850             "vector elements must have integer, pointer or floating point type");
2851 
2852     // Verify that all the vector elements have the same type.
2853     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2854       if (Elts[i]->getType() != Elts[0]->getType())
2855         return Error(FirstEltLoc,
2856                      "vector element #" + Twine(i) +
2857                     " is not of type '" + getTypeString(Elts[0]->getType()));
2858 
2859     ID.ConstantVal = ConstantVector::get(Elts);
2860     ID.Kind = ValID::t_Constant;
2861     return false;
2862   }
2863   case lltok::lsquare: {   // Array Constant
2864     Lex.Lex();
2865     SmallVector<Constant*, 16> Elts;
2866     LocTy FirstEltLoc = Lex.getLoc();
2867     if (ParseGlobalValueVector(Elts) ||
2868         ParseToken(lltok::rsquare, "expected end of array constant"))
2869       return true;
2870 
2871     // Handle empty element.
2872     if (Elts.empty()) {
2873       // Use undef instead of an array because it's inconvenient to determine
2874       // the element type at this point, there being no elements to examine.
2875       ID.Kind = ValID::t_EmptyArray;
2876       return false;
2877     }
2878 
2879     if (!Elts[0]->getType()->isFirstClassType())
2880       return Error(FirstEltLoc, "invalid array element type: " +
2881                    getTypeString(Elts[0]->getType()));
2882 
2883     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2884 
2885     // Verify all elements are correct type!
2886     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2887       if (Elts[i]->getType() != Elts[0]->getType())
2888         return Error(FirstEltLoc,
2889                      "array element #" + Twine(i) +
2890                      " is not of type '" + getTypeString(Elts[0]->getType()));
2891     }
2892 
2893     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2894     ID.Kind = ValID::t_Constant;
2895     return false;
2896   }
2897   case lltok::kw_c:  // c "foo"
2898     Lex.Lex();
2899     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2900                                                   false);
2901     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2902     ID.Kind = ValID::t_Constant;
2903     return false;
2904 
2905   case lltok::kw_asm: {
2906     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2907     //             STRINGCONSTANT
2908     bool HasSideEffect, AlignStack, AsmDialect;
2909     Lex.Lex();
2910     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2911         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2912         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2913         ParseStringConstant(ID.StrVal) ||
2914         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2915         ParseToken(lltok::StringConstant, "expected constraint string"))
2916       return true;
2917     ID.StrVal2 = Lex.getStrVal();
2918     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2919       (unsigned(AsmDialect)<<2);
2920     ID.Kind = ValID::t_InlineAsm;
2921     return false;
2922   }
2923 
2924   case lltok::kw_blockaddress: {
2925     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2926     Lex.Lex();
2927 
2928     ValID Fn, Label;
2929 
2930     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2931         ParseValID(Fn) ||
2932         ParseToken(lltok::comma, "expected comma in block address expression")||
2933         ParseValID(Label) ||
2934         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2935       return true;
2936 
2937     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2938       return Error(Fn.Loc, "expected function name in blockaddress");
2939     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2940       return Error(Label.Loc, "expected basic block name in blockaddress");
2941 
2942     // Try to find the function (but skip it if it's forward-referenced).
2943     GlobalValue *GV = nullptr;
2944     if (Fn.Kind == ValID::t_GlobalID) {
2945       if (Fn.UIntVal < NumberedVals.size())
2946         GV = NumberedVals[Fn.UIntVal];
2947     } else if (!ForwardRefVals.count(Fn.StrVal)) {
2948       GV = M->getNamedValue(Fn.StrVal);
2949     }
2950     Function *F = nullptr;
2951     if (GV) {
2952       // Confirm that it's actually a function with a definition.
2953       if (!isa<Function>(GV))
2954         return Error(Fn.Loc, "expected function name in blockaddress");
2955       F = cast<Function>(GV);
2956       if (F->isDeclaration())
2957         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
2958     }
2959 
2960     if (!F) {
2961       // Make a global variable as a placeholder for this reference.
2962       GlobalValue *&FwdRef =
2963           ForwardRefBlockAddresses.insert(std::make_pair(
2964                                               std::move(Fn),
2965                                               std::map<ValID, GlobalValue *>()))
2966               .first->second.insert(std::make_pair(std::move(Label), nullptr))
2967               .first->second;
2968       if (!FwdRef)
2969         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
2970                                     GlobalValue::InternalLinkage, nullptr, "");
2971       ID.ConstantVal = FwdRef;
2972       ID.Kind = ValID::t_Constant;
2973       return false;
2974     }
2975 
2976     // We found the function; now find the basic block.  Don't use PFS, since we
2977     // might be inside a constant expression.
2978     BasicBlock *BB;
2979     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
2980       if (Label.Kind == ValID::t_LocalID)
2981         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
2982       else
2983         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
2984       if (!BB)
2985         return Error(Label.Loc, "referenced value is not a basic block");
2986     } else {
2987       if (Label.Kind == ValID::t_LocalID)
2988         return Error(Label.Loc, "cannot take address of numeric label after "
2989                                 "the function is defined");
2990       BB = dyn_cast_or_null<BasicBlock>(
2991           F->getValueSymbolTable()->lookup(Label.StrVal));
2992       if (!BB)
2993         return Error(Label.Loc, "referenced value is not a basic block");
2994     }
2995 
2996     ID.ConstantVal = BlockAddress::get(F, BB);
2997     ID.Kind = ValID::t_Constant;
2998     return false;
2999   }
3000 
3001   case lltok::kw_trunc:
3002   case lltok::kw_zext:
3003   case lltok::kw_sext:
3004   case lltok::kw_fptrunc:
3005   case lltok::kw_fpext:
3006   case lltok::kw_bitcast:
3007   case lltok::kw_addrspacecast:
3008   case lltok::kw_uitofp:
3009   case lltok::kw_sitofp:
3010   case lltok::kw_fptoui:
3011   case lltok::kw_fptosi:
3012   case lltok::kw_inttoptr:
3013   case lltok::kw_ptrtoint: {
3014     unsigned Opc = Lex.getUIntVal();
3015     Type *DestTy = nullptr;
3016     Constant *SrcVal;
3017     Lex.Lex();
3018     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3019         ParseGlobalTypeAndValue(SrcVal) ||
3020         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3021         ParseType(DestTy) ||
3022         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3023       return true;
3024     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3025       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3026                    getTypeString(SrcVal->getType()) + "' to '" +
3027                    getTypeString(DestTy) + "'");
3028     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3029                                                  SrcVal, DestTy);
3030     ID.Kind = ValID::t_Constant;
3031     return false;
3032   }
3033   case lltok::kw_extractvalue: {
3034     Lex.Lex();
3035     Constant *Val;
3036     SmallVector<unsigned, 4> Indices;
3037     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3038         ParseGlobalTypeAndValue(Val) ||
3039         ParseIndexList(Indices) ||
3040         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3041       return true;
3042 
3043     if (!Val->getType()->isAggregateType())
3044       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3045     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3046       return Error(ID.Loc, "invalid indices for extractvalue");
3047     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3048     ID.Kind = ValID::t_Constant;
3049     return false;
3050   }
3051   case lltok::kw_insertvalue: {
3052     Lex.Lex();
3053     Constant *Val0, *Val1;
3054     SmallVector<unsigned, 4> Indices;
3055     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3056         ParseGlobalTypeAndValue(Val0) ||
3057         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3058         ParseGlobalTypeAndValue(Val1) ||
3059         ParseIndexList(Indices) ||
3060         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3061       return true;
3062     if (!Val0->getType()->isAggregateType())
3063       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3064     Type *IndexedType =
3065         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3066     if (!IndexedType)
3067       return Error(ID.Loc, "invalid indices for insertvalue");
3068     if (IndexedType != Val1->getType())
3069       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3070                                getTypeString(Val1->getType()) +
3071                                "' instead of '" + getTypeString(IndexedType) +
3072                                "'");
3073     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3074     ID.Kind = ValID::t_Constant;
3075     return false;
3076   }
3077   case lltok::kw_icmp:
3078   case lltok::kw_fcmp: {
3079     unsigned PredVal, Opc = Lex.getUIntVal();
3080     Constant *Val0, *Val1;
3081     Lex.Lex();
3082     if (ParseCmpPredicate(PredVal, Opc) ||
3083         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3084         ParseGlobalTypeAndValue(Val0) ||
3085         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3086         ParseGlobalTypeAndValue(Val1) ||
3087         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3088       return true;
3089 
3090     if (Val0->getType() != Val1->getType())
3091       return Error(ID.Loc, "compare operands must have the same type");
3092 
3093     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3094 
3095     if (Opc == Instruction::FCmp) {
3096       if (!Val0->getType()->isFPOrFPVectorTy())
3097         return Error(ID.Loc, "fcmp requires floating point operands");
3098       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3099     } else {
3100       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3101       if (!Val0->getType()->isIntOrIntVectorTy() &&
3102           !Val0->getType()->isPtrOrPtrVectorTy())
3103         return Error(ID.Loc, "icmp requires pointer or integer operands");
3104       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3105     }
3106     ID.Kind = ValID::t_Constant;
3107     return false;
3108   }
3109 
3110   // Binary Operators.
3111   case lltok::kw_add:
3112   case lltok::kw_fadd:
3113   case lltok::kw_sub:
3114   case lltok::kw_fsub:
3115   case lltok::kw_mul:
3116   case lltok::kw_fmul:
3117   case lltok::kw_udiv:
3118   case lltok::kw_sdiv:
3119   case lltok::kw_fdiv:
3120   case lltok::kw_urem:
3121   case lltok::kw_srem:
3122   case lltok::kw_frem:
3123   case lltok::kw_shl:
3124   case lltok::kw_lshr:
3125   case lltok::kw_ashr: {
3126     bool NUW = false;
3127     bool NSW = false;
3128     bool Exact = false;
3129     unsigned Opc = Lex.getUIntVal();
3130     Constant *Val0, *Val1;
3131     Lex.Lex();
3132     LocTy ModifierLoc = Lex.getLoc();
3133     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3134         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3135       if (EatIfPresent(lltok::kw_nuw))
3136         NUW = true;
3137       if (EatIfPresent(lltok::kw_nsw)) {
3138         NSW = true;
3139         if (EatIfPresent(lltok::kw_nuw))
3140           NUW = true;
3141       }
3142     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3143                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3144       if (EatIfPresent(lltok::kw_exact))
3145         Exact = true;
3146     }
3147     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3148         ParseGlobalTypeAndValue(Val0) ||
3149         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3150         ParseGlobalTypeAndValue(Val1) ||
3151         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3152       return true;
3153     if (Val0->getType() != Val1->getType())
3154       return Error(ID.Loc, "operands of constexpr must have same type");
3155     if (!Val0->getType()->isIntOrIntVectorTy()) {
3156       if (NUW)
3157         return Error(ModifierLoc, "nuw only applies to integer operations");
3158       if (NSW)
3159         return Error(ModifierLoc, "nsw only applies to integer operations");
3160     }
3161     // Check that the type is valid for the operator.
3162     switch (Opc) {
3163     case Instruction::Add:
3164     case Instruction::Sub:
3165     case Instruction::Mul:
3166     case Instruction::UDiv:
3167     case Instruction::SDiv:
3168     case Instruction::URem:
3169     case Instruction::SRem:
3170     case Instruction::Shl:
3171     case Instruction::AShr:
3172     case Instruction::LShr:
3173       if (!Val0->getType()->isIntOrIntVectorTy())
3174         return Error(ID.Loc, "constexpr requires integer operands");
3175       break;
3176     case Instruction::FAdd:
3177     case Instruction::FSub:
3178     case Instruction::FMul:
3179     case Instruction::FDiv:
3180     case Instruction::FRem:
3181       if (!Val0->getType()->isFPOrFPVectorTy())
3182         return Error(ID.Loc, "constexpr requires fp operands");
3183       break;
3184     default: llvm_unreachable("Unknown binary operator!");
3185     }
3186     unsigned Flags = 0;
3187     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3188     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3189     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3190     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3191     ID.ConstantVal = C;
3192     ID.Kind = ValID::t_Constant;
3193     return false;
3194   }
3195 
3196   // Logical Operations
3197   case lltok::kw_and:
3198   case lltok::kw_or:
3199   case lltok::kw_xor: {
3200     unsigned Opc = Lex.getUIntVal();
3201     Constant *Val0, *Val1;
3202     Lex.Lex();
3203     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3204         ParseGlobalTypeAndValue(Val0) ||
3205         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3206         ParseGlobalTypeAndValue(Val1) ||
3207         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3208       return true;
3209     if (Val0->getType() != Val1->getType())
3210       return Error(ID.Loc, "operands of constexpr must have same type");
3211     if (!Val0->getType()->isIntOrIntVectorTy())
3212       return Error(ID.Loc,
3213                    "constexpr requires integer or integer vector operands");
3214     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3215     ID.Kind = ValID::t_Constant;
3216     return false;
3217   }
3218 
3219   case lltok::kw_getelementptr:
3220   case lltok::kw_shufflevector:
3221   case lltok::kw_insertelement:
3222   case lltok::kw_extractelement:
3223   case lltok::kw_select: {
3224     unsigned Opc = Lex.getUIntVal();
3225     SmallVector<Constant*, 16> Elts;
3226     bool InBounds = false;
3227     Type *Ty;
3228     Lex.Lex();
3229 
3230     if (Opc == Instruction::GetElementPtr)
3231       InBounds = EatIfPresent(lltok::kw_inbounds);
3232 
3233     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3234       return true;
3235 
3236     LocTy ExplicitTypeLoc = Lex.getLoc();
3237     if (Opc == Instruction::GetElementPtr) {
3238       if (ParseType(Ty) ||
3239           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3240         return true;
3241     }
3242 
3243     Optional<unsigned> InRangeOp;
3244     if (ParseGlobalValueVector(
3245             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3246         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3247       return true;
3248 
3249     if (Opc == Instruction::GetElementPtr) {
3250       if (Elts.size() == 0 ||
3251           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3252         return Error(ID.Loc, "base of getelementptr must be a pointer");
3253 
3254       Type *BaseType = Elts[0]->getType();
3255       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3256       if (Ty != BasePointerType->getElementType())
3257         return Error(
3258             ExplicitTypeLoc,
3259             "explicit pointee type doesn't match operand's pointee type");
3260 
3261       unsigned GEPWidth =
3262           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3263 
3264       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3265       for (Constant *Val : Indices) {
3266         Type *ValTy = Val->getType();
3267         if (!ValTy->isIntOrIntVectorTy())
3268           return Error(ID.Loc, "getelementptr index must be an integer");
3269         if (ValTy->isVectorTy()) {
3270           unsigned ValNumEl = ValTy->getVectorNumElements();
3271           if (GEPWidth && (ValNumEl != GEPWidth))
3272             return Error(
3273                 ID.Loc,
3274                 "getelementptr vector index has a wrong number of elements");
3275           // GEPWidth may have been unknown because the base is a scalar,
3276           // but it is known now.
3277           GEPWidth = ValNumEl;
3278         }
3279       }
3280 
3281       SmallPtrSet<Type*, 4> Visited;
3282       if (!Indices.empty() && !Ty->isSized(&Visited))
3283         return Error(ID.Loc, "base element of getelementptr must be sized");
3284 
3285       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3286         return Error(ID.Loc, "invalid getelementptr indices");
3287 
3288       if (InRangeOp) {
3289         if (*InRangeOp == 0)
3290           return Error(ID.Loc,
3291                        "inrange keyword may not appear on pointer operand");
3292         --*InRangeOp;
3293       }
3294 
3295       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3296                                                       InBounds, InRangeOp);
3297     } else if (Opc == Instruction::Select) {
3298       if (Elts.size() != 3)
3299         return Error(ID.Loc, "expected three operands to select");
3300       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3301                                                               Elts[2]))
3302         return Error(ID.Loc, Reason);
3303       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3304     } else if (Opc == Instruction::ShuffleVector) {
3305       if (Elts.size() != 3)
3306         return Error(ID.Loc, "expected three operands to shufflevector");
3307       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3308         return Error(ID.Loc, "invalid operands to shufflevector");
3309       ID.ConstantVal =
3310                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3311     } else if (Opc == Instruction::ExtractElement) {
3312       if (Elts.size() != 2)
3313         return Error(ID.Loc, "expected two operands to extractelement");
3314       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3315         return Error(ID.Loc, "invalid extractelement operands");
3316       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3317     } else {
3318       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3319       if (Elts.size() != 3)
3320       return Error(ID.Loc, "expected three operands to insertelement");
3321       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3322         return Error(ID.Loc, "invalid insertelement operands");
3323       ID.ConstantVal =
3324                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3325     }
3326 
3327     ID.Kind = ValID::t_Constant;
3328     return false;
3329   }
3330   }
3331 
3332   Lex.Lex();
3333   return false;
3334 }
3335 
3336 /// ParseGlobalValue - Parse a global value with the specified type.
3337 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3338   C = nullptr;
3339   ValID ID;
3340   Value *V = nullptr;
3341   bool Parsed = ParseValID(ID) ||
3342                 ConvertValIDToValue(Ty, ID, V, nullptr);
3343   if (V && !(C = dyn_cast<Constant>(V)))
3344     return Error(ID.Loc, "global values must be constants");
3345   return Parsed;
3346 }
3347 
3348 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3349   Type *Ty = nullptr;
3350   return ParseType(Ty) ||
3351          ParseGlobalValue(Ty, V);
3352 }
3353 
3354 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3355   C = nullptr;
3356 
3357   LocTy KwLoc = Lex.getLoc();
3358   if (!EatIfPresent(lltok::kw_comdat))
3359     return false;
3360 
3361   if (EatIfPresent(lltok::lparen)) {
3362     if (Lex.getKind() != lltok::ComdatVar)
3363       return TokError("expected comdat variable");
3364     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3365     Lex.Lex();
3366     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3367       return true;
3368   } else {
3369     if (GlobalName.empty())
3370       return TokError("comdat cannot be unnamed");
3371     C = getComdat(GlobalName, KwLoc);
3372   }
3373 
3374   return false;
3375 }
3376 
3377 /// ParseGlobalValueVector
3378 ///   ::= /*empty*/
3379 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3380 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3381                                       Optional<unsigned> *InRangeOp) {
3382   // Empty list.
3383   if (Lex.getKind() == lltok::rbrace ||
3384       Lex.getKind() == lltok::rsquare ||
3385       Lex.getKind() == lltok::greater ||
3386       Lex.getKind() == lltok::rparen)
3387     return false;
3388 
3389   do {
3390     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3391       *InRangeOp = Elts.size();
3392 
3393     Constant *C;
3394     if (ParseGlobalTypeAndValue(C)) return true;
3395     Elts.push_back(C);
3396   } while (EatIfPresent(lltok::comma));
3397 
3398   return false;
3399 }
3400 
3401 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3402   SmallVector<Metadata *, 16> Elts;
3403   if (ParseMDNodeVector(Elts))
3404     return true;
3405 
3406   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3407   return false;
3408 }
3409 
3410 /// MDNode:
3411 ///  ::= !{ ... }
3412 ///  ::= !7
3413 ///  ::= !DILocation(...)
3414 bool LLParser::ParseMDNode(MDNode *&N) {
3415   if (Lex.getKind() == lltok::MetadataVar)
3416     return ParseSpecializedMDNode(N);
3417 
3418   return ParseToken(lltok::exclaim, "expected '!' here") ||
3419          ParseMDNodeTail(N);
3420 }
3421 
3422 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3423   // !{ ... }
3424   if (Lex.getKind() == lltok::lbrace)
3425     return ParseMDTuple(N);
3426 
3427   // !42
3428   return ParseMDNodeID(N);
3429 }
3430 
3431 namespace {
3432 
3433 /// Structure to represent an optional metadata field.
3434 template <class FieldTy> struct MDFieldImpl {
3435   typedef MDFieldImpl ImplTy;
3436   FieldTy Val;
3437   bool Seen;
3438 
3439   void assign(FieldTy Val) {
3440     Seen = true;
3441     this->Val = std::move(Val);
3442   }
3443 
3444   explicit MDFieldImpl(FieldTy Default)
3445       : Val(std::move(Default)), Seen(false) {}
3446 };
3447 
3448 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3449   uint64_t Max;
3450 
3451   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3452       : ImplTy(Default), Max(Max) {}
3453 };
3454 
3455 struct LineField : public MDUnsignedField {
3456   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3457 };
3458 
3459 struct ColumnField : public MDUnsignedField {
3460   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3461 };
3462 
3463 struct DwarfTagField : public MDUnsignedField {
3464   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3465   DwarfTagField(dwarf::Tag DefaultTag)
3466       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3467 };
3468 
3469 struct DwarfMacinfoTypeField : public MDUnsignedField {
3470   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3471   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3472     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3473 };
3474 
3475 struct DwarfAttEncodingField : public MDUnsignedField {
3476   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3477 };
3478 
3479 struct DwarfVirtualityField : public MDUnsignedField {
3480   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3481 };
3482 
3483 struct DwarfLangField : public MDUnsignedField {
3484   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3485 };
3486 
3487 struct DwarfCCField : public MDUnsignedField {
3488   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3489 };
3490 
3491 struct EmissionKindField : public MDUnsignedField {
3492   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3493 };
3494 
3495 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3496   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3497 };
3498 
3499 struct MDSignedField : public MDFieldImpl<int64_t> {
3500   int64_t Min;
3501   int64_t Max;
3502 
3503   MDSignedField(int64_t Default = 0)
3504       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3505   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3506       : ImplTy(Default), Min(Min), Max(Max) {}
3507 };
3508 
3509 struct MDBoolField : public MDFieldImpl<bool> {
3510   MDBoolField(bool Default = false) : ImplTy(Default) {}
3511 };
3512 
3513 struct MDField : public MDFieldImpl<Metadata *> {
3514   bool AllowNull;
3515 
3516   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3517 };
3518 
3519 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3520   MDConstant() : ImplTy(nullptr) {}
3521 };
3522 
3523 struct MDStringField : public MDFieldImpl<MDString *> {
3524   bool AllowEmpty;
3525   MDStringField(bool AllowEmpty = true)
3526       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3527 };
3528 
3529 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3530   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3531 };
3532 
3533 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3534   ChecksumKindField() : ImplTy(DIFile::CSK_None) {}
3535   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3536 };
3537 
3538 } // end anonymous namespace
3539 
3540 namespace llvm {
3541 
3542 template <>
3543 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3544                             MDUnsignedField &Result) {
3545   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3546     return TokError("expected unsigned integer");
3547 
3548   auto &U = Lex.getAPSIntVal();
3549   if (U.ugt(Result.Max))
3550     return TokError("value for '" + Name + "' too large, limit is " +
3551                     Twine(Result.Max));
3552   Result.assign(U.getZExtValue());
3553   assert(Result.Val <= Result.Max && "Expected value in range");
3554   Lex.Lex();
3555   return false;
3556 }
3557 
3558 template <>
3559 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3560   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3561 }
3562 template <>
3563 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3564   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3565 }
3566 
3567 template <>
3568 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3569   if (Lex.getKind() == lltok::APSInt)
3570     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3571 
3572   if (Lex.getKind() != lltok::DwarfTag)
3573     return TokError("expected DWARF tag");
3574 
3575   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3576   if (Tag == dwarf::DW_TAG_invalid)
3577     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3578   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3579 
3580   Result.assign(Tag);
3581   Lex.Lex();
3582   return false;
3583 }
3584 
3585 template <>
3586 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3587                             DwarfMacinfoTypeField &Result) {
3588   if (Lex.getKind() == lltok::APSInt)
3589     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3590 
3591   if (Lex.getKind() != lltok::DwarfMacinfo)
3592     return TokError("expected DWARF macinfo type");
3593 
3594   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3595   if (Macinfo == dwarf::DW_MACINFO_invalid)
3596     return TokError(
3597         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3598   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3599 
3600   Result.assign(Macinfo);
3601   Lex.Lex();
3602   return false;
3603 }
3604 
3605 template <>
3606 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3607                             DwarfVirtualityField &Result) {
3608   if (Lex.getKind() == lltok::APSInt)
3609     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3610 
3611   if (Lex.getKind() != lltok::DwarfVirtuality)
3612     return TokError("expected DWARF virtuality code");
3613 
3614   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3615   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3616     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3617                     Lex.getStrVal() + "'");
3618   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3619   Result.assign(Virtuality);
3620   Lex.Lex();
3621   return false;
3622 }
3623 
3624 template <>
3625 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3626   if (Lex.getKind() == lltok::APSInt)
3627     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3628 
3629   if (Lex.getKind() != lltok::DwarfLang)
3630     return TokError("expected DWARF language");
3631 
3632   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3633   if (!Lang)
3634     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3635                     "'");
3636   assert(Lang <= Result.Max && "Expected valid DWARF language");
3637   Result.assign(Lang);
3638   Lex.Lex();
3639   return false;
3640 }
3641 
3642 template <>
3643 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3644   if (Lex.getKind() == lltok::APSInt)
3645     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3646 
3647   if (Lex.getKind() != lltok::DwarfCC)
3648     return TokError("expected DWARF calling convention");
3649 
3650   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3651   if (!CC)
3652     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3653                     "'");
3654   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3655   Result.assign(CC);
3656   Lex.Lex();
3657   return false;
3658 }
3659 
3660 template <>
3661 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3662   if (Lex.getKind() == lltok::APSInt)
3663     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3664 
3665   if (Lex.getKind() != lltok::EmissionKind)
3666     return TokError("expected emission kind");
3667 
3668   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3669   if (!Kind)
3670     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3671                     "'");
3672   assert(*Kind <= Result.Max && "Expected valid emission kind");
3673   Result.assign(*Kind);
3674   Lex.Lex();
3675   return false;
3676 }
3677 
3678 template <>
3679 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3680                             DwarfAttEncodingField &Result) {
3681   if (Lex.getKind() == lltok::APSInt)
3682     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3683 
3684   if (Lex.getKind() != lltok::DwarfAttEncoding)
3685     return TokError("expected DWARF type attribute encoding");
3686 
3687   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3688   if (!Encoding)
3689     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3690                     Lex.getStrVal() + "'");
3691   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3692   Result.assign(Encoding);
3693   Lex.Lex();
3694   return false;
3695 }
3696 
3697 /// DIFlagField
3698 ///  ::= uint32
3699 ///  ::= DIFlagVector
3700 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3701 template <>
3702 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3703 
3704   // Parser for a single flag.
3705   auto parseFlag = [&](DINode::DIFlags &Val) {
3706     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
3707       uint32_t TempVal = static_cast<uint32_t>(Val);
3708       bool Res = ParseUInt32(TempVal);
3709       Val = static_cast<DINode::DIFlags>(TempVal);
3710       return Res;
3711     }
3712 
3713     if (Lex.getKind() != lltok::DIFlag)
3714       return TokError("expected debug info flag");
3715 
3716     Val = DINode::getFlag(Lex.getStrVal());
3717     if (!Val)
3718       return TokError(Twine("invalid debug info flag flag '") +
3719                       Lex.getStrVal() + "'");
3720     Lex.Lex();
3721     return false;
3722   };
3723 
3724   // Parse the flags and combine them together.
3725   DINode::DIFlags Combined = DINode::FlagZero;
3726   do {
3727     DINode::DIFlags Val;
3728     if (parseFlag(Val))
3729       return true;
3730     Combined |= Val;
3731   } while (EatIfPresent(lltok::bar));
3732 
3733   Result.assign(Combined);
3734   return false;
3735 }
3736 
3737 template <>
3738 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3739                             MDSignedField &Result) {
3740   if (Lex.getKind() != lltok::APSInt)
3741     return TokError("expected signed integer");
3742 
3743   auto &S = Lex.getAPSIntVal();
3744   if (S < Result.Min)
3745     return TokError("value for '" + Name + "' too small, limit is " +
3746                     Twine(Result.Min));
3747   if (S > Result.Max)
3748     return TokError("value for '" + Name + "' too large, limit is " +
3749                     Twine(Result.Max));
3750   Result.assign(S.getExtValue());
3751   assert(Result.Val >= Result.Min && "Expected value in range");
3752   assert(Result.Val <= Result.Max && "Expected value in range");
3753   Lex.Lex();
3754   return false;
3755 }
3756 
3757 template <>
3758 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3759   switch (Lex.getKind()) {
3760   default:
3761     return TokError("expected 'true' or 'false'");
3762   case lltok::kw_true:
3763     Result.assign(true);
3764     break;
3765   case lltok::kw_false:
3766     Result.assign(false);
3767     break;
3768   }
3769   Lex.Lex();
3770   return false;
3771 }
3772 
3773 template <>
3774 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3775   if (Lex.getKind() == lltok::kw_null) {
3776     if (!Result.AllowNull)
3777       return TokError("'" + Name + "' cannot be null");
3778     Lex.Lex();
3779     Result.assign(nullptr);
3780     return false;
3781   }
3782 
3783   Metadata *MD;
3784   if (ParseMetadata(MD, nullptr))
3785     return true;
3786 
3787   Result.assign(MD);
3788   return false;
3789 }
3790 
3791 template <>
3792 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3793   LocTy ValueLoc = Lex.getLoc();
3794   std::string S;
3795   if (ParseStringConstant(S))
3796     return true;
3797 
3798   if (!Result.AllowEmpty && S.empty())
3799     return Error(ValueLoc, "'" + Name + "' cannot be empty");
3800 
3801   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3802   return false;
3803 }
3804 
3805 template <>
3806 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3807   SmallVector<Metadata *, 4> MDs;
3808   if (ParseMDNodeVector(MDs))
3809     return true;
3810 
3811   Result.assign(std::move(MDs));
3812   return false;
3813 }
3814 
3815 template <>
3816 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3817                             ChecksumKindField &Result) {
3818   if (Lex.getKind() != lltok::ChecksumKind)
3819     return TokError(
3820         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
3821 
3822   DIFile::ChecksumKind CSKind = DIFile::getChecksumKind(Lex.getStrVal());
3823 
3824   Result.assign(CSKind);
3825   Lex.Lex();
3826   return false;
3827 }
3828 
3829 } // end namespace llvm
3830 
3831 template <class ParserTy>
3832 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3833   do {
3834     if (Lex.getKind() != lltok::LabelStr)
3835       return TokError("expected field label here");
3836 
3837     if (parseField())
3838       return true;
3839   } while (EatIfPresent(lltok::comma));
3840 
3841   return false;
3842 }
3843 
3844 template <class ParserTy>
3845 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3846   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3847   Lex.Lex();
3848 
3849   if (ParseToken(lltok::lparen, "expected '(' here"))
3850     return true;
3851   if (Lex.getKind() != lltok::rparen)
3852     if (ParseMDFieldsImplBody(parseField))
3853       return true;
3854 
3855   ClosingLoc = Lex.getLoc();
3856   return ParseToken(lltok::rparen, "expected ')' here");
3857 }
3858 
3859 template <class FieldTy>
3860 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3861   if (Result.Seen)
3862     return TokError("field '" + Name + "' cannot be specified more than once");
3863 
3864   LocTy Loc = Lex.getLoc();
3865   Lex.Lex();
3866   return ParseMDField(Loc, Name, Result);
3867 }
3868 
3869 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3870   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3871 
3872 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
3873   if (Lex.getStrVal() == #CLASS)                                               \
3874     return Parse##CLASS(N, IsDistinct);
3875 #include "llvm/IR/Metadata.def"
3876 
3877   return TokError("expected metadata type");
3878 }
3879 
3880 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
3881 #define NOP_FIELD(NAME, TYPE, INIT)
3882 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
3883   if (!NAME.Seen)                                                              \
3884     return Error(ClosingLoc, "missing required field '" #NAME "'");
3885 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
3886   if (Lex.getStrVal() == #NAME)                                                \
3887     return ParseMDField(#NAME, NAME);
3888 #define PARSE_MD_FIELDS()                                                      \
3889   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
3890   do {                                                                         \
3891     LocTy ClosingLoc;                                                          \
3892     if (ParseMDFieldsImpl([&]() -> bool {                                      \
3893       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
3894       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
3895     }, ClosingLoc))                                                            \
3896       return true;                                                             \
3897     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
3898   } while (false)
3899 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
3900   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
3901 
3902 /// ParseDILocationFields:
3903 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
3904 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
3905 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3906   OPTIONAL(line, LineField, );                                                 \
3907   OPTIONAL(column, ColumnField, );                                             \
3908   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3909   OPTIONAL(inlinedAt, MDField, );
3910   PARSE_MD_FIELDS();
3911 #undef VISIT_MD_FIELDS
3912 
3913   Result = GET_OR_DISTINCT(
3914       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
3915   return false;
3916 }
3917 
3918 /// ParseGenericDINode:
3919 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
3920 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
3921 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3922   REQUIRED(tag, DwarfTagField, );                                              \
3923   OPTIONAL(header, MDStringField, );                                           \
3924   OPTIONAL(operands, MDFieldList, );
3925   PARSE_MD_FIELDS();
3926 #undef VISIT_MD_FIELDS
3927 
3928   Result = GET_OR_DISTINCT(GenericDINode,
3929                            (Context, tag.Val, header.Val, operands.Val));
3930   return false;
3931 }
3932 
3933 /// ParseDISubrange:
3934 ///   ::= !DISubrange(count: 30, lowerBound: 2)
3935 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
3936 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3937   REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX));                         \
3938   OPTIONAL(lowerBound, MDSignedField, );
3939   PARSE_MD_FIELDS();
3940 #undef VISIT_MD_FIELDS
3941 
3942   Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val));
3943   return false;
3944 }
3945 
3946 /// ParseDIEnumerator:
3947 ///   ::= !DIEnumerator(value: 30, name: "SomeKind")
3948 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
3949 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3950   REQUIRED(name, MDStringField, );                                             \
3951   REQUIRED(value, MDSignedField, );
3952   PARSE_MD_FIELDS();
3953 #undef VISIT_MD_FIELDS
3954 
3955   Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
3956   return false;
3957 }
3958 
3959 /// ParseDIBasicType:
3960 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
3961 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
3962 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3963   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
3964   OPTIONAL(name, MDStringField, );                                             \
3965   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3966   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
3967   OPTIONAL(encoding, DwarfAttEncodingField, );
3968   PARSE_MD_FIELDS();
3969 #undef VISIT_MD_FIELDS
3970 
3971   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
3972                                          align.Val, encoding.Val));
3973   return false;
3974 }
3975 
3976 /// ParseDIDerivedType:
3977 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
3978 ///                      line: 7, scope: !1, baseType: !2, size: 32,
3979 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
3980 ///                      dwarfAddressSpace: 3)
3981 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
3982 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3983   REQUIRED(tag, DwarfTagField, );                                              \
3984   OPTIONAL(name, MDStringField, );                                             \
3985   OPTIONAL(file, MDField, );                                                   \
3986   OPTIONAL(line, LineField, );                                                 \
3987   OPTIONAL(scope, MDField, );                                                  \
3988   REQUIRED(baseType, MDField, );                                               \
3989   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3990   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
3991   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3992   OPTIONAL(flags, DIFlagField, );                                              \
3993   OPTIONAL(extraData, MDField, );                                              \
3994   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
3995   PARSE_MD_FIELDS();
3996 #undef VISIT_MD_FIELDS
3997 
3998   Optional<unsigned> DWARFAddressSpace;
3999   if (dwarfAddressSpace.Val != UINT32_MAX)
4000     DWARFAddressSpace = dwarfAddressSpace.Val;
4001 
4002   Result = GET_OR_DISTINCT(DIDerivedType,
4003                            (Context, tag.Val, name.Val, file.Val, line.Val,
4004                             scope.Val, baseType.Val, size.Val, align.Val,
4005                             offset.Val, DWARFAddressSpace, flags.Val,
4006                             extraData.Val));
4007   return false;
4008 }
4009 
4010 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4011 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4012   REQUIRED(tag, DwarfTagField, );                                              \
4013   OPTIONAL(name, MDStringField, );                                             \
4014   OPTIONAL(file, MDField, );                                                   \
4015   OPTIONAL(line, LineField, );                                                 \
4016   OPTIONAL(scope, MDField, );                                                  \
4017   OPTIONAL(baseType, MDField, );                                               \
4018   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4019   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4020   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4021   OPTIONAL(flags, DIFlagField, );                                              \
4022   OPTIONAL(elements, MDField, );                                               \
4023   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4024   OPTIONAL(vtableHolder, MDField, );                                           \
4025   OPTIONAL(templateParams, MDField, );                                         \
4026   OPTIONAL(identifier, MDStringField, );
4027   PARSE_MD_FIELDS();
4028 #undef VISIT_MD_FIELDS
4029 
4030   // If this has an identifier try to build an ODR type.
4031   if (identifier.Val)
4032     if (auto *CT = DICompositeType::buildODRType(
4033             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4034             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4035             elements.Val, runtimeLang.Val, vtableHolder.Val,
4036             templateParams.Val)) {
4037       Result = CT;
4038       return false;
4039     }
4040 
4041   // Create a new node, and save it in the context if it belongs in the type
4042   // map.
4043   Result = GET_OR_DISTINCT(
4044       DICompositeType,
4045       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4046        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4047        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
4048   return false;
4049 }
4050 
4051 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4052 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4053   OPTIONAL(flags, DIFlagField, );                                              \
4054   OPTIONAL(cc, DwarfCCField, );                                                \
4055   REQUIRED(types, MDField, );
4056   PARSE_MD_FIELDS();
4057 #undef VISIT_MD_FIELDS
4058 
4059   Result = GET_OR_DISTINCT(DISubroutineType,
4060                            (Context, flags.Val, cc.Val, types.Val));
4061   return false;
4062 }
4063 
4064 /// ParseDIFileType:
4065 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir"
4066 ///                   checksumkind: CSK_MD5,
4067 ///                   checksum: "000102030405060708090a0b0c0d0e0f")
4068 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4069 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4070   REQUIRED(filename, MDStringField, );                                         \
4071   REQUIRED(directory, MDStringField, );                                        \
4072   OPTIONAL(checksumkind, ChecksumKindField, );                                 \
4073   OPTIONAL(checksum, MDStringField, );
4074   PARSE_MD_FIELDS();
4075 #undef VISIT_MD_FIELDS
4076 
4077   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4078                                     checksumkind.Val, checksum.Val));
4079   return false;
4080 }
4081 
4082 /// ParseDICompileUnit:
4083 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4084 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4085 ///                      splitDebugFilename: "abc.debug",
4086 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4087 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4088 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4089   if (!IsDistinct)
4090     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4091 
4092 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4093   REQUIRED(language, DwarfLangField, );                                        \
4094   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4095   OPTIONAL(producer, MDStringField, );                                         \
4096   OPTIONAL(isOptimized, MDBoolField, );                                        \
4097   OPTIONAL(flags, MDStringField, );                                            \
4098   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4099   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4100   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4101   OPTIONAL(enums, MDField, );                                                  \
4102   OPTIONAL(retainedTypes, MDField, );                                          \
4103   OPTIONAL(globals, MDField, );                                                \
4104   OPTIONAL(imports, MDField, );                                                \
4105   OPTIONAL(macros, MDField, );                                                 \
4106   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4107   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4108   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4109   OPTIONAL(gnuPubnames, MDBoolField, = false);
4110   PARSE_MD_FIELDS();
4111 #undef VISIT_MD_FIELDS
4112 
4113   Result = DICompileUnit::getDistinct(
4114       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4115       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4116       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4117       splitDebugInlining.Val, debugInfoForProfiling.Val, gnuPubnames.Val);
4118   return false;
4119 }
4120 
4121 /// ParseDISubprogram:
4122 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4123 ///                     file: !1, line: 7, type: !2, isLocal: false,
4124 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4125 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4126 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4127 ///                     isOptimized: false, templateParams: !4, declaration: !5,
4128 ///                     variables: !6, thrownTypes: !7)
4129 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4130   auto Loc = Lex.getLoc();
4131 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4132   OPTIONAL(scope, MDField, );                                                  \
4133   OPTIONAL(name, MDStringField, );                                             \
4134   OPTIONAL(linkageName, MDStringField, );                                      \
4135   OPTIONAL(file, MDField, );                                                   \
4136   OPTIONAL(line, LineField, );                                                 \
4137   OPTIONAL(type, MDField, );                                                   \
4138   OPTIONAL(isLocal, MDBoolField, );                                            \
4139   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4140   OPTIONAL(scopeLine, LineField, );                                            \
4141   OPTIONAL(containingType, MDField, );                                         \
4142   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4143   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4144   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4145   OPTIONAL(flags, DIFlagField, );                                              \
4146   OPTIONAL(isOptimized, MDBoolField, );                                        \
4147   OPTIONAL(unit, MDField, );                                                   \
4148   OPTIONAL(templateParams, MDField, );                                         \
4149   OPTIONAL(declaration, MDField, );                                            \
4150   OPTIONAL(variables, MDField, );                                              \
4151   OPTIONAL(thrownTypes, MDField, );
4152   PARSE_MD_FIELDS();
4153 #undef VISIT_MD_FIELDS
4154 
4155   if (isDefinition.Val && !IsDistinct)
4156     return Lex.Error(
4157         Loc,
4158         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
4159 
4160   Result = GET_OR_DISTINCT(
4161       DISubprogram,
4162       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4163        type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val,
4164        containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val,
4165        flags.Val, isOptimized.Val, unit.Val, templateParams.Val,
4166        declaration.Val, variables.Val, thrownTypes.Val));
4167   return false;
4168 }
4169 
4170 /// ParseDILexicalBlock:
4171 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4172 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4173 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4174   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4175   OPTIONAL(file, MDField, );                                                   \
4176   OPTIONAL(line, LineField, );                                                 \
4177   OPTIONAL(column, ColumnField, );
4178   PARSE_MD_FIELDS();
4179 #undef VISIT_MD_FIELDS
4180 
4181   Result = GET_OR_DISTINCT(
4182       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4183   return false;
4184 }
4185 
4186 /// ParseDILexicalBlockFile:
4187 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4188 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4189 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4190   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4191   OPTIONAL(file, MDField, );                                                   \
4192   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4193   PARSE_MD_FIELDS();
4194 #undef VISIT_MD_FIELDS
4195 
4196   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4197                            (Context, scope.Val, file.Val, discriminator.Val));
4198   return false;
4199 }
4200 
4201 /// ParseDINamespace:
4202 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4203 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4204 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4205   REQUIRED(scope, MDField, );                                                  \
4206   OPTIONAL(name, MDStringField, );                                             \
4207   OPTIONAL(exportSymbols, MDBoolField, );
4208   PARSE_MD_FIELDS();
4209 #undef VISIT_MD_FIELDS
4210 
4211   Result = GET_OR_DISTINCT(DINamespace,
4212                            (Context, scope.Val, name.Val, exportSymbols.Val));
4213   return false;
4214 }
4215 
4216 /// ParseDIMacro:
4217 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4218 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4219 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4220   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4221   OPTIONAL(line, LineField, );                                                 \
4222   REQUIRED(name, MDStringField, );                                             \
4223   OPTIONAL(value, MDStringField, );
4224   PARSE_MD_FIELDS();
4225 #undef VISIT_MD_FIELDS
4226 
4227   Result = GET_OR_DISTINCT(DIMacro,
4228                            (Context, type.Val, line.Val, name.Val, value.Val));
4229   return false;
4230 }
4231 
4232 /// ParseDIMacroFile:
4233 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4234 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4235 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4236   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4237   OPTIONAL(line, LineField, );                                                 \
4238   REQUIRED(file, MDField, );                                                   \
4239   OPTIONAL(nodes, MDField, );
4240   PARSE_MD_FIELDS();
4241 #undef VISIT_MD_FIELDS
4242 
4243   Result = GET_OR_DISTINCT(DIMacroFile,
4244                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4245   return false;
4246 }
4247 
4248 /// ParseDIModule:
4249 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4250 ///                 includePath: "/usr/include", isysroot: "/")
4251 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4252 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4253   REQUIRED(scope, MDField, );                                                  \
4254   REQUIRED(name, MDStringField, );                                             \
4255   OPTIONAL(configMacros, MDStringField, );                                     \
4256   OPTIONAL(includePath, MDStringField, );                                      \
4257   OPTIONAL(isysroot, MDStringField, );
4258   PARSE_MD_FIELDS();
4259 #undef VISIT_MD_FIELDS
4260 
4261   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4262                            configMacros.Val, includePath.Val, isysroot.Val));
4263   return false;
4264 }
4265 
4266 /// ParseDITemplateTypeParameter:
4267 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4268 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4269 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4270   OPTIONAL(name, MDStringField, );                                             \
4271   REQUIRED(type, MDField, );
4272   PARSE_MD_FIELDS();
4273 #undef VISIT_MD_FIELDS
4274 
4275   Result =
4276       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4277   return false;
4278 }
4279 
4280 /// ParseDITemplateValueParameter:
4281 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4282 ///                                 name: "V", type: !1, value: i32 7)
4283 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4284 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4285   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4286   OPTIONAL(name, MDStringField, );                                             \
4287   OPTIONAL(type, MDField, );                                                   \
4288   REQUIRED(value, MDField, );
4289   PARSE_MD_FIELDS();
4290 #undef VISIT_MD_FIELDS
4291 
4292   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4293                            (Context, tag.Val, name.Val, type.Val, value.Val));
4294   return false;
4295 }
4296 
4297 /// ParseDIGlobalVariable:
4298 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4299 ///                         file: !1, line: 7, type: !2, isLocal: false,
4300 ///                         isDefinition: true, declaration: !3, align: 8)
4301 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4302 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4303   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4304   OPTIONAL(scope, MDField, );                                                  \
4305   OPTIONAL(linkageName, MDStringField, );                                      \
4306   OPTIONAL(file, MDField, );                                                   \
4307   OPTIONAL(line, LineField, );                                                 \
4308   OPTIONAL(type, MDField, );                                                   \
4309   OPTIONAL(isLocal, MDBoolField, );                                            \
4310   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4311   OPTIONAL(declaration, MDField, );                                            \
4312   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4313   PARSE_MD_FIELDS();
4314 #undef VISIT_MD_FIELDS
4315 
4316   Result = GET_OR_DISTINCT(DIGlobalVariable,
4317                            (Context, scope.Val, name.Val, linkageName.Val,
4318                             file.Val, line.Val, type.Val, isLocal.Val,
4319                             isDefinition.Val, declaration.Val, align.Val));
4320   return false;
4321 }
4322 
4323 /// ParseDILocalVariable:
4324 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4325 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4326 ///                        align: 8)
4327 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4328 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4329 ///                        align: 8)
4330 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4331 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4332   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4333   OPTIONAL(name, MDStringField, );                                             \
4334   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4335   OPTIONAL(file, MDField, );                                                   \
4336   OPTIONAL(line, LineField, );                                                 \
4337   OPTIONAL(type, MDField, );                                                   \
4338   OPTIONAL(flags, DIFlagField, );                                              \
4339   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4340   PARSE_MD_FIELDS();
4341 #undef VISIT_MD_FIELDS
4342 
4343   Result = GET_OR_DISTINCT(DILocalVariable,
4344                            (Context, scope.Val, name.Val, file.Val, line.Val,
4345                             type.Val, arg.Val, flags.Val, align.Val));
4346   return false;
4347 }
4348 
4349 /// ParseDIExpression:
4350 ///   ::= !DIExpression(0, 7, -1)
4351 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4352   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4353   Lex.Lex();
4354 
4355   if (ParseToken(lltok::lparen, "expected '(' here"))
4356     return true;
4357 
4358   SmallVector<uint64_t, 8> Elements;
4359   if (Lex.getKind() != lltok::rparen)
4360     do {
4361       if (Lex.getKind() == lltok::DwarfOp) {
4362         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4363           Lex.Lex();
4364           Elements.push_back(Op);
4365           continue;
4366         }
4367         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4368       }
4369 
4370       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4371         return TokError("expected unsigned integer");
4372 
4373       auto &U = Lex.getAPSIntVal();
4374       if (U.ugt(UINT64_MAX))
4375         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4376       Elements.push_back(U.getZExtValue());
4377       Lex.Lex();
4378     } while (EatIfPresent(lltok::comma));
4379 
4380   if (ParseToken(lltok::rparen, "expected ')' here"))
4381     return true;
4382 
4383   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4384   return false;
4385 }
4386 
4387 /// ParseDIGlobalVariableExpression:
4388 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4389 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4390                                                bool IsDistinct) {
4391 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4392   REQUIRED(var, MDField, );                                                    \
4393   REQUIRED(expr, MDField, );
4394   PARSE_MD_FIELDS();
4395 #undef VISIT_MD_FIELDS
4396 
4397   Result =
4398       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4399   return false;
4400 }
4401 
4402 /// ParseDIObjCProperty:
4403 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4404 ///                       getter: "getFoo", attributes: 7, type: !2)
4405 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4406 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4407   OPTIONAL(name, MDStringField, );                                             \
4408   OPTIONAL(file, MDField, );                                                   \
4409   OPTIONAL(line, LineField, );                                                 \
4410   OPTIONAL(setter, MDStringField, );                                           \
4411   OPTIONAL(getter, MDStringField, );                                           \
4412   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4413   OPTIONAL(type, MDField, );
4414   PARSE_MD_FIELDS();
4415 #undef VISIT_MD_FIELDS
4416 
4417   Result = GET_OR_DISTINCT(DIObjCProperty,
4418                            (Context, name.Val, file.Val, line.Val, setter.Val,
4419                             getter.Val, attributes.Val, type.Val));
4420   return false;
4421 }
4422 
4423 /// ParseDIImportedEntity:
4424 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4425 ///                         line: 7, name: "foo")
4426 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4427 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4428   REQUIRED(tag, DwarfTagField, );                                              \
4429   REQUIRED(scope, MDField, );                                                  \
4430   OPTIONAL(entity, MDField, );                                                 \
4431   OPTIONAL(file, MDField, );                                                   \
4432   OPTIONAL(line, LineField, );                                                 \
4433   OPTIONAL(name, MDStringField, );
4434   PARSE_MD_FIELDS();
4435 #undef VISIT_MD_FIELDS
4436 
4437   Result = GET_OR_DISTINCT(
4438       DIImportedEntity,
4439       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4440   return false;
4441 }
4442 
4443 #undef PARSE_MD_FIELD
4444 #undef NOP_FIELD
4445 #undef REQUIRE_FIELD
4446 #undef DECLARE_FIELD
4447 
4448 /// ParseMetadataAsValue
4449 ///  ::= metadata i32 %local
4450 ///  ::= metadata i32 @global
4451 ///  ::= metadata i32 7
4452 ///  ::= metadata !0
4453 ///  ::= metadata !{...}
4454 ///  ::= metadata !"string"
4455 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4456   // Note: the type 'metadata' has already been parsed.
4457   Metadata *MD;
4458   if (ParseMetadata(MD, &PFS))
4459     return true;
4460 
4461   V = MetadataAsValue::get(Context, MD);
4462   return false;
4463 }
4464 
4465 /// ParseValueAsMetadata
4466 ///  ::= i32 %local
4467 ///  ::= i32 @global
4468 ///  ::= i32 7
4469 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4470                                     PerFunctionState *PFS) {
4471   Type *Ty;
4472   LocTy Loc;
4473   if (ParseType(Ty, TypeMsg, Loc))
4474     return true;
4475   if (Ty->isMetadataTy())
4476     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4477 
4478   Value *V;
4479   if (ParseValue(Ty, V, PFS))
4480     return true;
4481 
4482   MD = ValueAsMetadata::get(V);
4483   return false;
4484 }
4485 
4486 /// ParseMetadata
4487 ///  ::= i32 %local
4488 ///  ::= i32 @global
4489 ///  ::= i32 7
4490 ///  ::= !42
4491 ///  ::= !{...}
4492 ///  ::= !"string"
4493 ///  ::= !DILocation(...)
4494 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4495   if (Lex.getKind() == lltok::MetadataVar) {
4496     MDNode *N;
4497     if (ParseSpecializedMDNode(N))
4498       return true;
4499     MD = N;
4500     return false;
4501   }
4502 
4503   // ValueAsMetadata:
4504   // <type> <value>
4505   if (Lex.getKind() != lltok::exclaim)
4506     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4507 
4508   // '!'.
4509   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4510   Lex.Lex();
4511 
4512   // MDString:
4513   //   ::= '!' STRINGCONSTANT
4514   if (Lex.getKind() == lltok::StringConstant) {
4515     MDString *S;
4516     if (ParseMDString(S))
4517       return true;
4518     MD = S;
4519     return false;
4520   }
4521 
4522   // MDNode:
4523   // !{ ... }
4524   // !7
4525   MDNode *N;
4526   if (ParseMDNodeTail(N))
4527     return true;
4528   MD = N;
4529   return false;
4530 }
4531 
4532 //===----------------------------------------------------------------------===//
4533 // Function Parsing.
4534 //===----------------------------------------------------------------------===//
4535 
4536 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4537                                    PerFunctionState *PFS) {
4538   if (Ty->isFunctionTy())
4539     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4540 
4541   switch (ID.Kind) {
4542   case ValID::t_LocalID:
4543     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4544     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
4545     return V == nullptr;
4546   case ValID::t_LocalName:
4547     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4548     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
4549     return V == nullptr;
4550   case ValID::t_InlineAsm: {
4551     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4552       return Error(ID.Loc, "invalid type for inline asm constraint string");
4553     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4554                        (ID.UIntVal >> 1) & 1,
4555                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4556     return false;
4557   }
4558   case ValID::t_GlobalName:
4559     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4560     return V == nullptr;
4561   case ValID::t_GlobalID:
4562     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4563     return V == nullptr;
4564   case ValID::t_APSInt:
4565     if (!Ty->isIntegerTy())
4566       return Error(ID.Loc, "integer constant must have integer type");
4567     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4568     V = ConstantInt::get(Context, ID.APSIntVal);
4569     return false;
4570   case ValID::t_APFloat:
4571     if (!Ty->isFloatingPointTy() ||
4572         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4573       return Error(ID.Loc, "floating point constant invalid for type");
4574 
4575     // The lexer has no type info, so builds all half, float, and double FP
4576     // constants as double.  Fix this here.  Long double does not need this.
4577     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
4578       bool Ignored;
4579       if (Ty->isHalfTy())
4580         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
4581                               &Ignored);
4582       else if (Ty->isFloatTy())
4583         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
4584                               &Ignored);
4585     }
4586     V = ConstantFP::get(Context, ID.APFloatVal);
4587 
4588     if (V->getType() != Ty)
4589       return Error(ID.Loc, "floating point constant does not have type '" +
4590                    getTypeString(Ty) + "'");
4591 
4592     return false;
4593   case ValID::t_Null:
4594     if (!Ty->isPointerTy())
4595       return Error(ID.Loc, "null must be a pointer type");
4596     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4597     return false;
4598   case ValID::t_Undef:
4599     // FIXME: LabelTy should not be a first-class type.
4600     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4601       return Error(ID.Loc, "invalid type for undef constant");
4602     V = UndefValue::get(Ty);
4603     return false;
4604   case ValID::t_EmptyArray:
4605     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4606       return Error(ID.Loc, "invalid empty array initializer");
4607     V = UndefValue::get(Ty);
4608     return false;
4609   case ValID::t_Zero:
4610     // FIXME: LabelTy should not be a first-class type.
4611     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4612       return Error(ID.Loc, "invalid type for null constant");
4613     V = Constant::getNullValue(Ty);
4614     return false;
4615   case ValID::t_None:
4616     if (!Ty->isTokenTy())
4617       return Error(ID.Loc, "invalid type for none constant");
4618     V = Constant::getNullValue(Ty);
4619     return false;
4620   case ValID::t_Constant:
4621     if (ID.ConstantVal->getType() != Ty)
4622       return Error(ID.Loc, "constant expression type mismatch");
4623 
4624     V = ID.ConstantVal;
4625     return false;
4626   case ValID::t_ConstantStruct:
4627   case ValID::t_PackedConstantStruct:
4628     if (StructType *ST = dyn_cast<StructType>(Ty)) {
4629       if (ST->getNumElements() != ID.UIntVal)
4630         return Error(ID.Loc,
4631                      "initializer with struct type has wrong # elements");
4632       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4633         return Error(ID.Loc, "packed'ness of initializer and type don't match");
4634 
4635       // Verify that the elements are compatible with the structtype.
4636       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4637         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4638           return Error(ID.Loc, "element " + Twine(i) +
4639                     " of struct initializer doesn't match struct element type");
4640 
4641       V = ConstantStruct::get(
4642           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4643     } else
4644       return Error(ID.Loc, "constant expression type mismatch");
4645     return false;
4646   }
4647   llvm_unreachable("Invalid ValID");
4648 }
4649 
4650 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4651   C = nullptr;
4652   ValID ID;
4653   auto Loc = Lex.getLoc();
4654   if (ParseValID(ID, /*PFS=*/nullptr))
4655     return true;
4656   switch (ID.Kind) {
4657   case ValID::t_APSInt:
4658   case ValID::t_APFloat:
4659   case ValID::t_Undef:
4660   case ValID::t_Constant:
4661   case ValID::t_ConstantStruct:
4662   case ValID::t_PackedConstantStruct: {
4663     Value *V;
4664     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
4665       return true;
4666     assert(isa<Constant>(V) && "Expected a constant value");
4667     C = cast<Constant>(V);
4668     return false;
4669   }
4670   case ValID::t_Null:
4671     C = Constant::getNullValue(Ty);
4672     return false;
4673   default:
4674     return Error(Loc, "expected a constant value");
4675   }
4676 }
4677 
4678 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4679   V = nullptr;
4680   ValID ID;
4681   return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS);
4682 }
4683 
4684 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4685   Type *Ty = nullptr;
4686   return ParseType(Ty) ||
4687          ParseValue(Ty, V, PFS);
4688 }
4689 
4690 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4691                                       PerFunctionState &PFS) {
4692   Value *V;
4693   Loc = Lex.getLoc();
4694   if (ParseTypeAndValue(V, PFS)) return true;
4695   if (!isa<BasicBlock>(V))
4696     return Error(Loc, "expected a basic block");
4697   BB = cast<BasicBlock>(V);
4698   return false;
4699 }
4700 
4701 /// FunctionHeader
4702 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
4703 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
4704 ///       OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
4705 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4706   // Parse the linkage.
4707   LocTy LinkageLoc = Lex.getLoc();
4708   unsigned Linkage;
4709 
4710   unsigned Visibility;
4711   unsigned DLLStorageClass;
4712   AttrBuilder RetAttrs;
4713   unsigned CC;
4714   bool HasLinkage;
4715   Type *RetType = nullptr;
4716   LocTy RetTypeLoc = Lex.getLoc();
4717   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
4718       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
4719       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4720     return true;
4721 
4722   // Verify that the linkage is ok.
4723   switch ((GlobalValue::LinkageTypes)Linkage) {
4724   case GlobalValue::ExternalLinkage:
4725     break; // always ok.
4726   case GlobalValue::ExternalWeakLinkage:
4727     if (isDefine)
4728       return Error(LinkageLoc, "invalid linkage for function definition");
4729     break;
4730   case GlobalValue::PrivateLinkage:
4731   case GlobalValue::InternalLinkage:
4732   case GlobalValue::AvailableExternallyLinkage:
4733   case GlobalValue::LinkOnceAnyLinkage:
4734   case GlobalValue::LinkOnceODRLinkage:
4735   case GlobalValue::WeakAnyLinkage:
4736   case GlobalValue::WeakODRLinkage:
4737     if (!isDefine)
4738       return Error(LinkageLoc, "invalid linkage for function declaration");
4739     break;
4740   case GlobalValue::AppendingLinkage:
4741   case GlobalValue::CommonLinkage:
4742     return Error(LinkageLoc, "invalid function linkage type");
4743   }
4744 
4745   if (!isValidVisibilityForLinkage(Visibility, Linkage))
4746     return Error(LinkageLoc,
4747                  "symbol with local linkage must have default visibility");
4748 
4749   if (!FunctionType::isValidReturnType(RetType))
4750     return Error(RetTypeLoc, "invalid function return type");
4751 
4752   LocTy NameLoc = Lex.getLoc();
4753 
4754   std::string FunctionName;
4755   if (Lex.getKind() == lltok::GlobalVar) {
4756     FunctionName = Lex.getStrVal();
4757   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
4758     unsigned NameID = Lex.getUIntVal();
4759 
4760     if (NameID != NumberedVals.size())
4761       return TokError("function expected to be numbered '%" +
4762                       Twine(NumberedVals.size()) + "'");
4763   } else {
4764     return TokError("expected function name");
4765   }
4766 
4767   Lex.Lex();
4768 
4769   if (Lex.getKind() != lltok::lparen)
4770     return TokError("expected '(' in function argument list");
4771 
4772   SmallVector<ArgInfo, 8> ArgList;
4773   bool isVarArg;
4774   AttrBuilder FuncAttrs;
4775   std::vector<unsigned> FwdRefAttrGrps;
4776   LocTy BuiltinLoc;
4777   std::string Section;
4778   unsigned Alignment;
4779   std::string GC;
4780   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4781   Constant *Prefix = nullptr;
4782   Constant *Prologue = nullptr;
4783   Constant *PersonalityFn = nullptr;
4784   Comdat *C;
4785 
4786   if (ParseArgumentList(ArgList, isVarArg) ||
4787       ParseOptionalUnnamedAddr(UnnamedAddr) ||
4788       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4789                                  BuiltinLoc) ||
4790       (EatIfPresent(lltok::kw_section) &&
4791        ParseStringConstant(Section)) ||
4792       parseOptionalComdat(FunctionName, C) ||
4793       ParseOptionalAlignment(Alignment) ||
4794       (EatIfPresent(lltok::kw_gc) &&
4795        ParseStringConstant(GC)) ||
4796       (EatIfPresent(lltok::kw_prefix) &&
4797        ParseGlobalTypeAndValue(Prefix)) ||
4798       (EatIfPresent(lltok::kw_prologue) &&
4799        ParseGlobalTypeAndValue(Prologue)) ||
4800       (EatIfPresent(lltok::kw_personality) &&
4801        ParseGlobalTypeAndValue(PersonalityFn)))
4802     return true;
4803 
4804   if (FuncAttrs.contains(Attribute::Builtin))
4805     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4806 
4807   // If the alignment was parsed as an attribute, move to the alignment field.
4808   if (FuncAttrs.hasAlignmentAttr()) {
4809     Alignment = FuncAttrs.getAlignment();
4810     FuncAttrs.removeAttribute(Attribute::Alignment);
4811   }
4812 
4813   // Okay, if we got here, the function is syntactically valid.  Convert types
4814   // and do semantic checks.
4815   std::vector<Type*> ParamTypeList;
4816   SmallVector<AttributeSet, 8> Attrs;
4817 
4818   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4819     ParamTypeList.push_back(ArgList[i].Ty);
4820     Attrs.push_back(ArgList[i].Attrs);
4821   }
4822 
4823   AttributeList PAL =
4824       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
4825                          AttributeSet::get(Context, RetAttrs), Attrs);
4826 
4827   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4828     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4829 
4830   FunctionType *FT =
4831     FunctionType::get(RetType, ParamTypeList, isVarArg);
4832   PointerType *PFT = PointerType::getUnqual(FT);
4833 
4834   Fn = nullptr;
4835   if (!FunctionName.empty()) {
4836     // If this was a definition of a forward reference, remove the definition
4837     // from the forward reference table and fill in the forward ref.
4838     auto FRVI = ForwardRefVals.find(FunctionName);
4839     if (FRVI != ForwardRefVals.end()) {
4840       Fn = M->getFunction(FunctionName);
4841       if (!Fn)
4842         return Error(FRVI->second.second, "invalid forward reference to "
4843                      "function as global value!");
4844       if (Fn->getType() != PFT)
4845         return Error(FRVI->second.second, "invalid forward reference to "
4846                      "function '" + FunctionName + "' with wrong type!");
4847 
4848       ForwardRefVals.erase(FRVI);
4849     } else if ((Fn = M->getFunction(FunctionName))) {
4850       // Reject redefinitions.
4851       return Error(NameLoc, "invalid redefinition of function '" +
4852                    FunctionName + "'");
4853     } else if (M->getNamedValue(FunctionName)) {
4854       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4855     }
4856 
4857   } else {
4858     // If this is a definition of a forward referenced function, make sure the
4859     // types agree.
4860     auto I = ForwardRefValIDs.find(NumberedVals.size());
4861     if (I != ForwardRefValIDs.end()) {
4862       Fn = cast<Function>(I->second.first);
4863       if (Fn->getType() != PFT)
4864         return Error(NameLoc, "type of definition and forward reference of '@" +
4865                      Twine(NumberedVals.size()) + "' disagree");
4866       ForwardRefValIDs.erase(I);
4867     }
4868   }
4869 
4870   if (!Fn)
4871     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
4872   else // Move the forward-reference to the correct spot in the module.
4873     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
4874 
4875   if (FunctionName.empty())
4876     NumberedVals.push_back(Fn);
4877 
4878   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
4879   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
4880   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
4881   Fn->setCallingConv(CC);
4882   Fn->setAttributes(PAL);
4883   Fn->setUnnamedAddr(UnnamedAddr);
4884   Fn->setAlignment(Alignment);
4885   Fn->setSection(Section);
4886   Fn->setComdat(C);
4887   Fn->setPersonalityFn(PersonalityFn);
4888   if (!GC.empty()) Fn->setGC(GC);
4889   Fn->setPrefixData(Prefix);
4890   Fn->setPrologueData(Prologue);
4891   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
4892 
4893   // Add all of the arguments we parsed to the function.
4894   Function::arg_iterator ArgIt = Fn->arg_begin();
4895   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
4896     // If the argument has a name, insert it into the argument symbol table.
4897     if (ArgList[i].Name.empty()) continue;
4898 
4899     // Set the name, if it conflicted, it will be auto-renamed.
4900     ArgIt->setName(ArgList[i].Name);
4901 
4902     if (ArgIt->getName() != ArgList[i].Name)
4903       return Error(ArgList[i].Loc, "redefinition of argument '%" +
4904                    ArgList[i].Name + "'");
4905   }
4906 
4907   if (isDefine)
4908     return false;
4909 
4910   // Check the declaration has no block address forward references.
4911   ValID ID;
4912   if (FunctionName.empty()) {
4913     ID.Kind = ValID::t_GlobalID;
4914     ID.UIntVal = NumberedVals.size() - 1;
4915   } else {
4916     ID.Kind = ValID::t_GlobalName;
4917     ID.StrVal = FunctionName;
4918   }
4919   auto Blocks = ForwardRefBlockAddresses.find(ID);
4920   if (Blocks != ForwardRefBlockAddresses.end())
4921     return Error(Blocks->first.Loc,
4922                  "cannot take blockaddress inside a declaration");
4923   return false;
4924 }
4925 
4926 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
4927   ValID ID;
4928   if (FunctionNumber == -1) {
4929     ID.Kind = ValID::t_GlobalName;
4930     ID.StrVal = F.getName();
4931   } else {
4932     ID.Kind = ValID::t_GlobalID;
4933     ID.UIntVal = FunctionNumber;
4934   }
4935 
4936   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
4937   if (Blocks == P.ForwardRefBlockAddresses.end())
4938     return false;
4939 
4940   for (const auto &I : Blocks->second) {
4941     const ValID &BBID = I.first;
4942     GlobalValue *GV = I.second;
4943 
4944     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
4945            "Expected local id or name");
4946     BasicBlock *BB;
4947     if (BBID.Kind == ValID::t_LocalName)
4948       BB = GetBB(BBID.StrVal, BBID.Loc);
4949     else
4950       BB = GetBB(BBID.UIntVal, BBID.Loc);
4951     if (!BB)
4952       return P.Error(BBID.Loc, "referenced value is not a basic block");
4953 
4954     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
4955     GV->eraseFromParent();
4956   }
4957 
4958   P.ForwardRefBlockAddresses.erase(Blocks);
4959   return false;
4960 }
4961 
4962 /// ParseFunctionBody
4963 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
4964 bool LLParser::ParseFunctionBody(Function &Fn) {
4965   if (Lex.getKind() != lltok::lbrace)
4966     return TokError("expected '{' in function body");
4967   Lex.Lex();  // eat the {.
4968 
4969   int FunctionNumber = -1;
4970   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
4971 
4972   PerFunctionState PFS(*this, Fn, FunctionNumber);
4973 
4974   // Resolve block addresses and allow basic blocks to be forward-declared
4975   // within this function.
4976   if (PFS.resolveForwardRefBlockAddresses())
4977     return true;
4978   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
4979 
4980   // We need at least one basic block.
4981   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
4982     return TokError("function body requires at least one basic block");
4983 
4984   while (Lex.getKind() != lltok::rbrace &&
4985          Lex.getKind() != lltok::kw_uselistorder)
4986     if (ParseBasicBlock(PFS)) return true;
4987 
4988   while (Lex.getKind() != lltok::rbrace)
4989     if (ParseUseListOrder(&PFS))
4990       return true;
4991 
4992   // Eat the }.
4993   Lex.Lex();
4994 
4995   // Verify function is ok.
4996   return PFS.FinishFunction();
4997 }
4998 
4999 /// ParseBasicBlock
5000 ///   ::= LabelStr? Instruction*
5001 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5002   // If this basic block starts out with a name, remember it.
5003   std::string Name;
5004   LocTy NameLoc = Lex.getLoc();
5005   if (Lex.getKind() == lltok::LabelStr) {
5006     Name = Lex.getStrVal();
5007     Lex.Lex();
5008   }
5009 
5010   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
5011   if (!BB)
5012     return Error(NameLoc,
5013                  "unable to create block named '" + Name + "'");
5014 
5015   std::string NameStr;
5016 
5017   // Parse the instructions in this block until we get a terminator.
5018   Instruction *Inst;
5019   do {
5020     // This instruction may have three possibilities for a name: a) none
5021     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5022     LocTy NameLoc = Lex.getLoc();
5023     int NameID = -1;
5024     NameStr = "";
5025 
5026     if (Lex.getKind() == lltok::LocalVarID) {
5027       NameID = Lex.getUIntVal();
5028       Lex.Lex();
5029       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5030         return true;
5031     } else if (Lex.getKind() == lltok::LocalVar) {
5032       NameStr = Lex.getStrVal();
5033       Lex.Lex();
5034       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5035         return true;
5036     }
5037 
5038     switch (ParseInstruction(Inst, BB, PFS)) {
5039     default: llvm_unreachable("Unknown ParseInstruction result!");
5040     case InstError: return true;
5041     case InstNormal:
5042       BB->getInstList().push_back(Inst);
5043 
5044       // With a normal result, we check to see if the instruction is followed by
5045       // a comma and metadata.
5046       if (EatIfPresent(lltok::comma))
5047         if (ParseInstructionMetadata(*Inst))
5048           return true;
5049       break;
5050     case InstExtraComma:
5051       BB->getInstList().push_back(Inst);
5052 
5053       // If the instruction parser ate an extra comma at the end of it, it
5054       // *must* be followed by metadata.
5055       if (ParseInstructionMetadata(*Inst))
5056         return true;
5057       break;
5058     }
5059 
5060     // Set the name on the instruction.
5061     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5062   } while (!isa<TerminatorInst>(Inst));
5063 
5064   return false;
5065 }
5066 
5067 //===----------------------------------------------------------------------===//
5068 // Instruction Parsing.
5069 //===----------------------------------------------------------------------===//
5070 
5071 /// ParseInstruction - Parse one of the many different instructions.
5072 ///
5073 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5074                                PerFunctionState &PFS) {
5075   lltok::Kind Token = Lex.getKind();
5076   if (Token == lltok::Eof)
5077     return TokError("found end of file when expecting more instructions");
5078   LocTy Loc = Lex.getLoc();
5079   unsigned KeywordVal = Lex.getUIntVal();
5080   Lex.Lex();  // Eat the keyword.
5081 
5082   switch (Token) {
5083   default:                    return Error(Loc, "expected instruction opcode");
5084   // Terminator Instructions.
5085   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5086   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5087   case lltok::kw_br:          return ParseBr(Inst, PFS);
5088   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5089   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5090   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5091   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5092   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5093   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5094   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5095   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5096   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5097   // Binary Operators.
5098   case lltok::kw_add:
5099   case lltok::kw_sub:
5100   case lltok::kw_mul:
5101   case lltok::kw_shl: {
5102     bool NUW = EatIfPresent(lltok::kw_nuw);
5103     bool NSW = EatIfPresent(lltok::kw_nsw);
5104     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5105 
5106     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5107 
5108     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5109     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5110     return false;
5111   }
5112   case lltok::kw_fadd:
5113   case lltok::kw_fsub:
5114   case lltok::kw_fmul:
5115   case lltok::kw_fdiv:
5116   case lltok::kw_frem: {
5117     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5118     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5119     if (Res != 0)
5120       return Res;
5121     if (FMF.any())
5122       Inst->setFastMathFlags(FMF);
5123     return 0;
5124   }
5125 
5126   case lltok::kw_sdiv:
5127   case lltok::kw_udiv:
5128   case lltok::kw_lshr:
5129   case lltok::kw_ashr: {
5130     bool Exact = EatIfPresent(lltok::kw_exact);
5131 
5132     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5133     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5134     return false;
5135   }
5136 
5137   case lltok::kw_urem:
5138   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5139   case lltok::kw_and:
5140   case lltok::kw_or:
5141   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5142   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5143   case lltok::kw_fcmp: {
5144     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5145     int Res = ParseCompare(Inst, PFS, KeywordVal);
5146     if (Res != 0)
5147       return Res;
5148     if (FMF.any())
5149       Inst->setFastMathFlags(FMF);
5150     return 0;
5151   }
5152 
5153   // Casts.
5154   case lltok::kw_trunc:
5155   case lltok::kw_zext:
5156   case lltok::kw_sext:
5157   case lltok::kw_fptrunc:
5158   case lltok::kw_fpext:
5159   case lltok::kw_bitcast:
5160   case lltok::kw_addrspacecast:
5161   case lltok::kw_uitofp:
5162   case lltok::kw_sitofp:
5163   case lltok::kw_fptoui:
5164   case lltok::kw_fptosi:
5165   case lltok::kw_inttoptr:
5166   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5167   // Other.
5168   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5169   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5170   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5171   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5172   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5173   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5174   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5175   // Call.
5176   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5177   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5178   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5179   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5180   // Memory.
5181   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5182   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5183   case lltok::kw_store:          return ParseStore(Inst, PFS);
5184   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5185   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5186   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5187   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5188   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5189   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5190   }
5191 }
5192 
5193 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5194 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5195   if (Opc == Instruction::FCmp) {
5196     switch (Lex.getKind()) {
5197     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5198     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5199     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5200     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5201     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5202     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5203     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5204     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5205     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5206     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5207     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5208     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5209     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5210     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5211     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5212     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5213     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5214     }
5215   } else {
5216     switch (Lex.getKind()) {
5217     default: return TokError("expected icmp predicate (e.g. 'eq')");
5218     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5219     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5220     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5221     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5222     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5223     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5224     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5225     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5226     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5227     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5228     }
5229   }
5230   Lex.Lex();
5231   return false;
5232 }
5233 
5234 //===----------------------------------------------------------------------===//
5235 // Terminator Instructions.
5236 //===----------------------------------------------------------------------===//
5237 
5238 /// ParseRet - Parse a return instruction.
5239 ///   ::= 'ret' void (',' !dbg, !1)*
5240 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5241 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5242                         PerFunctionState &PFS) {
5243   SMLoc TypeLoc = Lex.getLoc();
5244   Type *Ty = nullptr;
5245   if (ParseType(Ty, true /*void allowed*/)) return true;
5246 
5247   Type *ResType = PFS.getFunction().getReturnType();
5248 
5249   if (Ty->isVoidTy()) {
5250     if (!ResType->isVoidTy())
5251       return Error(TypeLoc, "value doesn't match function result type '" +
5252                    getTypeString(ResType) + "'");
5253 
5254     Inst = ReturnInst::Create(Context);
5255     return false;
5256   }
5257 
5258   Value *RV;
5259   if (ParseValue(Ty, RV, PFS)) return true;
5260 
5261   if (ResType != RV->getType())
5262     return Error(TypeLoc, "value doesn't match function result type '" +
5263                  getTypeString(ResType) + "'");
5264 
5265   Inst = ReturnInst::Create(Context, RV);
5266   return false;
5267 }
5268 
5269 /// ParseBr
5270 ///   ::= 'br' TypeAndValue
5271 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5272 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5273   LocTy Loc, Loc2;
5274   Value *Op0;
5275   BasicBlock *Op1, *Op2;
5276   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5277 
5278   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5279     Inst = BranchInst::Create(BB);
5280     return false;
5281   }
5282 
5283   if (Op0->getType() != Type::getInt1Ty(Context))
5284     return Error(Loc, "branch condition must have 'i1' type");
5285 
5286   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5287       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5288       ParseToken(lltok::comma, "expected ',' after true destination") ||
5289       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5290     return true;
5291 
5292   Inst = BranchInst::Create(Op1, Op2, Op0);
5293   return false;
5294 }
5295 
5296 /// ParseSwitch
5297 ///  Instruction
5298 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5299 ///  JumpTable
5300 ///    ::= (TypeAndValue ',' TypeAndValue)*
5301 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5302   LocTy CondLoc, BBLoc;
5303   Value *Cond;
5304   BasicBlock *DefaultBB;
5305   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5306       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5307       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5308       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5309     return true;
5310 
5311   if (!Cond->getType()->isIntegerTy())
5312     return Error(CondLoc, "switch condition must have integer type");
5313 
5314   // Parse the jump table pairs.
5315   SmallPtrSet<Value*, 32> SeenCases;
5316   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5317   while (Lex.getKind() != lltok::rsquare) {
5318     Value *Constant;
5319     BasicBlock *DestBB;
5320 
5321     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5322         ParseToken(lltok::comma, "expected ',' after case value") ||
5323         ParseTypeAndBasicBlock(DestBB, PFS))
5324       return true;
5325 
5326     if (!SeenCases.insert(Constant).second)
5327       return Error(CondLoc, "duplicate case value in switch");
5328     if (!isa<ConstantInt>(Constant))
5329       return Error(CondLoc, "case value is not a constant integer");
5330 
5331     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5332   }
5333 
5334   Lex.Lex();  // Eat the ']'.
5335 
5336   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5337   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5338     SI->addCase(Table[i].first, Table[i].second);
5339   Inst = SI;
5340   return false;
5341 }
5342 
5343 /// ParseIndirectBr
5344 ///  Instruction
5345 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5346 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5347   LocTy AddrLoc;
5348   Value *Address;
5349   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5350       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5351       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5352     return true;
5353 
5354   if (!Address->getType()->isPointerTy())
5355     return Error(AddrLoc, "indirectbr address must have pointer type");
5356 
5357   // Parse the destination list.
5358   SmallVector<BasicBlock*, 16> DestList;
5359 
5360   if (Lex.getKind() != lltok::rsquare) {
5361     BasicBlock *DestBB;
5362     if (ParseTypeAndBasicBlock(DestBB, PFS))
5363       return true;
5364     DestList.push_back(DestBB);
5365 
5366     while (EatIfPresent(lltok::comma)) {
5367       if (ParseTypeAndBasicBlock(DestBB, PFS))
5368         return true;
5369       DestList.push_back(DestBB);
5370     }
5371   }
5372 
5373   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5374     return true;
5375 
5376   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5377   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5378     IBI->addDestination(DestList[i]);
5379   Inst = IBI;
5380   return false;
5381 }
5382 
5383 /// ParseInvoke
5384 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5385 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5386 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5387   LocTy CallLoc = Lex.getLoc();
5388   AttrBuilder RetAttrs, FnAttrs;
5389   std::vector<unsigned> FwdRefAttrGrps;
5390   LocTy NoBuiltinLoc;
5391   unsigned CC;
5392   Type *RetType = nullptr;
5393   LocTy RetTypeLoc;
5394   ValID CalleeID;
5395   SmallVector<ParamInfo, 16> ArgList;
5396   SmallVector<OperandBundleDef, 2> BundleList;
5397 
5398   BasicBlock *NormalBB, *UnwindBB;
5399   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5400       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5401       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5402       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5403                                  NoBuiltinLoc) ||
5404       ParseOptionalOperandBundles(BundleList, PFS) ||
5405       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5406       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5407       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5408       ParseTypeAndBasicBlock(UnwindBB, PFS))
5409     return true;
5410 
5411   // If RetType is a non-function pointer type, then this is the short syntax
5412   // for the call, which means that RetType is just the return type.  Infer the
5413   // rest of the function argument types from the arguments that are present.
5414   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5415   if (!Ty) {
5416     // Pull out the types of all of the arguments...
5417     std::vector<Type*> ParamTypes;
5418     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5419       ParamTypes.push_back(ArgList[i].V->getType());
5420 
5421     if (!FunctionType::isValidReturnType(RetType))
5422       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5423 
5424     Ty = FunctionType::get(RetType, ParamTypes, false);
5425   }
5426 
5427   CalleeID.FTy = Ty;
5428 
5429   // Look up the callee.
5430   Value *Callee;
5431   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5432     return true;
5433 
5434   // Set up the Attribute for the function.
5435   SmallVector<Value *, 8> Args;
5436   SmallVector<AttributeSet, 8> ArgAttrs;
5437 
5438   // Loop through FunctionType's arguments and ensure they are specified
5439   // correctly.  Also, gather any parameter attributes.
5440   FunctionType::param_iterator I = Ty->param_begin();
5441   FunctionType::param_iterator E = Ty->param_end();
5442   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5443     Type *ExpectedTy = nullptr;
5444     if (I != E) {
5445       ExpectedTy = *I++;
5446     } else if (!Ty->isVarArg()) {
5447       return Error(ArgList[i].Loc, "too many arguments specified");
5448     }
5449 
5450     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5451       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5452                    getTypeString(ExpectedTy) + "'");
5453     Args.push_back(ArgList[i].V);
5454     ArgAttrs.push_back(ArgList[i].Attrs);
5455   }
5456 
5457   if (I != E)
5458     return Error(CallLoc, "not enough parameters specified for call");
5459 
5460   if (FnAttrs.hasAlignmentAttr())
5461     return Error(CallLoc, "invoke instructions may not have an alignment");
5462 
5463   // Finish off the Attribute and check them
5464   AttributeList PAL =
5465       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
5466                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
5467 
5468   InvokeInst *II =
5469       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5470   II->setCallingConv(CC);
5471   II->setAttributes(PAL);
5472   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5473   Inst = II;
5474   return false;
5475 }
5476 
5477 /// ParseResume
5478 ///   ::= 'resume' TypeAndValue
5479 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5480   Value *Exn; LocTy ExnLoc;
5481   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5482     return true;
5483 
5484   ResumeInst *RI = ResumeInst::Create(Exn);
5485   Inst = RI;
5486   return false;
5487 }
5488 
5489 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5490                                   PerFunctionState &PFS) {
5491   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5492     return true;
5493 
5494   while (Lex.getKind() != lltok::rsquare) {
5495     // If this isn't the first argument, we need a comma.
5496     if (!Args.empty() &&
5497         ParseToken(lltok::comma, "expected ',' in argument list"))
5498       return true;
5499 
5500     // Parse the argument.
5501     LocTy ArgLoc;
5502     Type *ArgTy = nullptr;
5503     if (ParseType(ArgTy, ArgLoc))
5504       return true;
5505 
5506     Value *V;
5507     if (ArgTy->isMetadataTy()) {
5508       if (ParseMetadataAsValue(V, PFS))
5509         return true;
5510     } else {
5511       if (ParseValue(ArgTy, V, PFS))
5512         return true;
5513     }
5514     Args.push_back(V);
5515   }
5516 
5517   Lex.Lex();  // Lex the ']'.
5518   return false;
5519 }
5520 
5521 /// ParseCleanupRet
5522 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
5523 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5524   Value *CleanupPad = nullptr;
5525 
5526   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5527     return true;
5528 
5529   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5530     return true;
5531 
5532   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5533     return true;
5534 
5535   BasicBlock *UnwindBB = nullptr;
5536   if (Lex.getKind() == lltok::kw_to) {
5537     Lex.Lex();
5538     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5539       return true;
5540   } else {
5541     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5542       return true;
5543     }
5544   }
5545 
5546   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5547   return false;
5548 }
5549 
5550 /// ParseCatchRet
5551 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
5552 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5553   Value *CatchPad = nullptr;
5554 
5555   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5556     return true;
5557 
5558   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5559     return true;
5560 
5561   BasicBlock *BB;
5562   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5563       ParseTypeAndBasicBlock(BB, PFS))
5564       return true;
5565 
5566   Inst = CatchReturnInst::Create(CatchPad, BB);
5567   return false;
5568 }
5569 
5570 /// ParseCatchSwitch
5571 ///   ::= 'catchswitch' within Parent
5572 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5573   Value *ParentPad;
5574 
5575   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5576     return true;
5577 
5578   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5579       Lex.getKind() != lltok::LocalVarID)
5580     return TokError("expected scope value for catchswitch");
5581 
5582   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5583     return true;
5584 
5585   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5586     return true;
5587 
5588   SmallVector<BasicBlock *, 32> Table;
5589   do {
5590     BasicBlock *DestBB;
5591     if (ParseTypeAndBasicBlock(DestBB, PFS))
5592       return true;
5593     Table.push_back(DestBB);
5594   } while (EatIfPresent(lltok::comma));
5595 
5596   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5597     return true;
5598 
5599   if (ParseToken(lltok::kw_unwind,
5600                  "expected 'unwind' after catchswitch scope"))
5601     return true;
5602 
5603   BasicBlock *UnwindBB = nullptr;
5604   if (EatIfPresent(lltok::kw_to)) {
5605     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5606       return true;
5607   } else {
5608     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5609       return true;
5610   }
5611 
5612   auto *CatchSwitch =
5613       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5614   for (BasicBlock *DestBB : Table)
5615     CatchSwitch->addHandler(DestBB);
5616   Inst = CatchSwitch;
5617   return false;
5618 }
5619 
5620 /// ParseCatchPad
5621 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
5622 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5623   Value *CatchSwitch = nullptr;
5624 
5625   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5626     return true;
5627 
5628   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5629     return TokError("expected scope value for catchpad");
5630 
5631   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5632     return true;
5633 
5634   SmallVector<Value *, 8> Args;
5635   if (ParseExceptionArgs(Args, PFS))
5636     return true;
5637 
5638   Inst = CatchPadInst::Create(CatchSwitch, Args);
5639   return false;
5640 }
5641 
5642 /// ParseCleanupPad
5643 ///   ::= 'cleanuppad' within Parent ParamList
5644 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
5645   Value *ParentPad = nullptr;
5646 
5647   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
5648     return true;
5649 
5650   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5651       Lex.getKind() != lltok::LocalVarID)
5652     return TokError("expected scope value for cleanuppad");
5653 
5654   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5655     return true;
5656 
5657   SmallVector<Value *, 8> Args;
5658   if (ParseExceptionArgs(Args, PFS))
5659     return true;
5660 
5661   Inst = CleanupPadInst::Create(ParentPad, Args);
5662   return false;
5663 }
5664 
5665 //===----------------------------------------------------------------------===//
5666 // Binary Operators.
5667 //===----------------------------------------------------------------------===//
5668 
5669 /// ParseArithmetic
5670 ///  ::= ArithmeticOps TypeAndValue ',' Value
5671 ///
5672 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
5673 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
5674 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
5675                                unsigned Opc, unsigned OperandType) {
5676   LocTy Loc; Value *LHS, *RHS;
5677   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5678       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
5679       ParseValue(LHS->getType(), RHS, PFS))
5680     return true;
5681 
5682   bool Valid;
5683   switch (OperandType) {
5684   default: llvm_unreachable("Unknown operand type!");
5685   case 0: // int or FP.
5686     Valid = LHS->getType()->isIntOrIntVectorTy() ||
5687             LHS->getType()->isFPOrFPVectorTy();
5688     break;
5689   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
5690   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
5691   }
5692 
5693   if (!Valid)
5694     return Error(Loc, "invalid operand type for instruction");
5695 
5696   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5697   return false;
5698 }
5699 
5700 /// ParseLogical
5701 ///  ::= ArithmeticOps TypeAndValue ',' Value {
5702 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
5703                             unsigned Opc) {
5704   LocTy Loc; Value *LHS, *RHS;
5705   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5706       ParseToken(lltok::comma, "expected ',' in logical operation") ||
5707       ParseValue(LHS->getType(), RHS, PFS))
5708     return true;
5709 
5710   if (!LHS->getType()->isIntOrIntVectorTy())
5711     return Error(Loc,"instruction requires integer or integer vector operands");
5712 
5713   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5714   return false;
5715 }
5716 
5717 /// ParseCompare
5718 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
5719 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
5720 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
5721                             unsigned Opc) {
5722   // Parse the integer/fp comparison predicate.
5723   LocTy Loc;
5724   unsigned Pred;
5725   Value *LHS, *RHS;
5726   if (ParseCmpPredicate(Pred, Opc) ||
5727       ParseTypeAndValue(LHS, Loc, PFS) ||
5728       ParseToken(lltok::comma, "expected ',' after compare value") ||
5729       ParseValue(LHS->getType(), RHS, PFS))
5730     return true;
5731 
5732   if (Opc == Instruction::FCmp) {
5733     if (!LHS->getType()->isFPOrFPVectorTy())
5734       return Error(Loc, "fcmp requires floating point operands");
5735     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5736   } else {
5737     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
5738     if (!LHS->getType()->isIntOrIntVectorTy() &&
5739         !LHS->getType()->isPtrOrPtrVectorTy())
5740       return Error(Loc, "icmp requires integer operands");
5741     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5742   }
5743   return false;
5744 }
5745 
5746 //===----------------------------------------------------------------------===//
5747 // Other Instructions.
5748 //===----------------------------------------------------------------------===//
5749 
5750 
5751 /// ParseCast
5752 ///   ::= CastOpc TypeAndValue 'to' Type
5753 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
5754                          unsigned Opc) {
5755   LocTy Loc;
5756   Value *Op;
5757   Type *DestTy = nullptr;
5758   if (ParseTypeAndValue(Op, Loc, PFS) ||
5759       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
5760       ParseType(DestTy))
5761     return true;
5762 
5763   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
5764     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
5765     return Error(Loc, "invalid cast opcode for cast from '" +
5766                  getTypeString(Op->getType()) + "' to '" +
5767                  getTypeString(DestTy) + "'");
5768   }
5769   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
5770   return false;
5771 }
5772 
5773 /// ParseSelect
5774 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5775 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
5776   LocTy Loc;
5777   Value *Op0, *Op1, *Op2;
5778   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5779       ParseToken(lltok::comma, "expected ',' after select condition") ||
5780       ParseTypeAndValue(Op1, PFS) ||
5781       ParseToken(lltok::comma, "expected ',' after select value") ||
5782       ParseTypeAndValue(Op2, PFS))
5783     return true;
5784 
5785   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
5786     return Error(Loc, Reason);
5787 
5788   Inst = SelectInst::Create(Op0, Op1, Op2);
5789   return false;
5790 }
5791 
5792 /// ParseVA_Arg
5793 ///   ::= 'va_arg' TypeAndValue ',' Type
5794 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
5795   Value *Op;
5796   Type *EltTy = nullptr;
5797   LocTy TypeLoc;
5798   if (ParseTypeAndValue(Op, PFS) ||
5799       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
5800       ParseType(EltTy, TypeLoc))
5801     return true;
5802 
5803   if (!EltTy->isFirstClassType())
5804     return Error(TypeLoc, "va_arg requires operand with first class type");
5805 
5806   Inst = new VAArgInst(Op, EltTy);
5807   return false;
5808 }
5809 
5810 /// ParseExtractElement
5811 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
5812 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
5813   LocTy Loc;
5814   Value *Op0, *Op1;
5815   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5816       ParseToken(lltok::comma, "expected ',' after extract value") ||
5817       ParseTypeAndValue(Op1, PFS))
5818     return true;
5819 
5820   if (!ExtractElementInst::isValidOperands(Op0, Op1))
5821     return Error(Loc, "invalid extractelement operands");
5822 
5823   Inst = ExtractElementInst::Create(Op0, Op1);
5824   return false;
5825 }
5826 
5827 /// ParseInsertElement
5828 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5829 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
5830   LocTy Loc;
5831   Value *Op0, *Op1, *Op2;
5832   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5833       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5834       ParseTypeAndValue(Op1, PFS) ||
5835       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5836       ParseTypeAndValue(Op2, PFS))
5837     return true;
5838 
5839   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
5840     return Error(Loc, "invalid insertelement operands");
5841 
5842   Inst = InsertElementInst::Create(Op0, Op1, Op2);
5843   return false;
5844 }
5845 
5846 /// ParseShuffleVector
5847 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5848 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
5849   LocTy Loc;
5850   Value *Op0, *Op1, *Op2;
5851   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5852       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
5853       ParseTypeAndValue(Op1, PFS) ||
5854       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
5855       ParseTypeAndValue(Op2, PFS))
5856     return true;
5857 
5858   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
5859     return Error(Loc, "invalid shufflevector operands");
5860 
5861   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
5862   return false;
5863 }
5864 
5865 /// ParsePHI
5866 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
5867 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
5868   Type *Ty = nullptr;  LocTy TypeLoc;
5869   Value *Op0, *Op1;
5870 
5871   if (ParseType(Ty, TypeLoc) ||
5872       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5873       ParseValue(Ty, Op0, PFS) ||
5874       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5875       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5876       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5877     return true;
5878 
5879   bool AteExtraComma = false;
5880   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
5881 
5882   while (true) {
5883     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
5884 
5885     if (!EatIfPresent(lltok::comma))
5886       break;
5887 
5888     if (Lex.getKind() == lltok::MetadataVar) {
5889       AteExtraComma = true;
5890       break;
5891     }
5892 
5893     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5894         ParseValue(Ty, Op0, PFS) ||
5895         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5896         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5897         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5898       return true;
5899   }
5900 
5901   if (!Ty->isFirstClassType())
5902     return Error(TypeLoc, "phi node must have first class type");
5903 
5904   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
5905   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
5906     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
5907   Inst = PN;
5908   return AteExtraComma ? InstExtraComma : InstNormal;
5909 }
5910 
5911 /// ParseLandingPad
5912 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
5913 /// Clause
5914 ///   ::= 'catch' TypeAndValue
5915 ///   ::= 'filter'
5916 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
5917 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
5918   Type *Ty = nullptr; LocTy TyLoc;
5919 
5920   if (ParseType(Ty, TyLoc))
5921     return true;
5922 
5923   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
5924   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
5925 
5926   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
5927     LandingPadInst::ClauseType CT;
5928     if (EatIfPresent(lltok::kw_catch))
5929       CT = LandingPadInst::Catch;
5930     else if (EatIfPresent(lltok::kw_filter))
5931       CT = LandingPadInst::Filter;
5932     else
5933       return TokError("expected 'catch' or 'filter' clause type");
5934 
5935     Value *V;
5936     LocTy VLoc;
5937     if (ParseTypeAndValue(V, VLoc, PFS))
5938       return true;
5939 
5940     // A 'catch' type expects a non-array constant. A filter clause expects an
5941     // array constant.
5942     if (CT == LandingPadInst::Catch) {
5943       if (isa<ArrayType>(V->getType()))
5944         Error(VLoc, "'catch' clause has an invalid type");
5945     } else {
5946       if (!isa<ArrayType>(V->getType()))
5947         Error(VLoc, "'filter' clause has an invalid type");
5948     }
5949 
5950     Constant *CV = dyn_cast<Constant>(V);
5951     if (!CV)
5952       return Error(VLoc, "clause argument must be a constant");
5953     LP->addClause(CV);
5954   }
5955 
5956   Inst = LP.release();
5957   return false;
5958 }
5959 
5960 /// ParseCall
5961 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
5962 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5963 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
5964 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5965 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
5966 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5967 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
5968 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5969 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
5970                          CallInst::TailCallKind TCK) {
5971   AttrBuilder RetAttrs, FnAttrs;
5972   std::vector<unsigned> FwdRefAttrGrps;
5973   LocTy BuiltinLoc;
5974   unsigned CC;
5975   Type *RetType = nullptr;
5976   LocTy RetTypeLoc;
5977   ValID CalleeID;
5978   SmallVector<ParamInfo, 16> ArgList;
5979   SmallVector<OperandBundleDef, 2> BundleList;
5980   LocTy CallLoc = Lex.getLoc();
5981 
5982   if (TCK != CallInst::TCK_None &&
5983       ParseToken(lltok::kw_call,
5984                  "expected 'tail call', 'musttail call', or 'notail call'"))
5985     return true;
5986 
5987   FastMathFlags FMF = EatFastMathFlagsIfPresent();
5988 
5989   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5990       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5991       ParseValID(CalleeID) ||
5992       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
5993                          PFS.getFunction().isVarArg()) ||
5994       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
5995       ParseOptionalOperandBundles(BundleList, PFS))
5996     return true;
5997 
5998   if (FMF.any() && !RetType->isFPOrFPVectorTy())
5999     return Error(CallLoc, "fast-math-flags specified for call without "
6000                           "floating-point scalar or vector return type");
6001 
6002   // If RetType is a non-function pointer type, then this is the short syntax
6003   // for the call, which means that RetType is just the return type.  Infer the
6004   // rest of the function argument types from the arguments that are present.
6005   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6006   if (!Ty) {
6007     // Pull out the types of all of the arguments...
6008     std::vector<Type*> ParamTypes;
6009     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6010       ParamTypes.push_back(ArgList[i].V->getType());
6011 
6012     if (!FunctionType::isValidReturnType(RetType))
6013       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6014 
6015     Ty = FunctionType::get(RetType, ParamTypes, false);
6016   }
6017 
6018   CalleeID.FTy = Ty;
6019 
6020   // Look up the callee.
6021   Value *Callee;
6022   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
6023     return true;
6024 
6025   // Set up the Attribute for the function.
6026   SmallVector<AttributeSet, 8> Attrs;
6027 
6028   SmallVector<Value*, 8> Args;
6029 
6030   // Loop through FunctionType's arguments and ensure they are specified
6031   // correctly.  Also, gather any parameter attributes.
6032   FunctionType::param_iterator I = Ty->param_begin();
6033   FunctionType::param_iterator E = Ty->param_end();
6034   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6035     Type *ExpectedTy = nullptr;
6036     if (I != E) {
6037       ExpectedTy = *I++;
6038     } else if (!Ty->isVarArg()) {
6039       return Error(ArgList[i].Loc, "too many arguments specified");
6040     }
6041 
6042     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6043       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6044                    getTypeString(ExpectedTy) + "'");
6045     Args.push_back(ArgList[i].V);
6046     Attrs.push_back(ArgList[i].Attrs);
6047   }
6048 
6049   if (I != E)
6050     return Error(CallLoc, "not enough parameters specified for call");
6051 
6052   if (FnAttrs.hasAlignmentAttr())
6053     return Error(CallLoc, "call instructions may not have an alignment");
6054 
6055   // Finish off the Attribute and check them
6056   AttributeList PAL =
6057       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6058                          AttributeSet::get(Context, RetAttrs), Attrs);
6059 
6060   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6061   CI->setTailCallKind(TCK);
6062   CI->setCallingConv(CC);
6063   if (FMF.any())
6064     CI->setFastMathFlags(FMF);
6065   CI->setAttributes(PAL);
6066   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6067   Inst = CI;
6068   return false;
6069 }
6070 
6071 //===----------------------------------------------------------------------===//
6072 // Memory Instructions.
6073 //===----------------------------------------------------------------------===//
6074 
6075 /// ParseAlloc
6076 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6077 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6078 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6079   Value *Size = nullptr;
6080   LocTy SizeLoc, TyLoc, ASLoc;
6081   unsigned Alignment = 0;
6082   unsigned AddrSpace = 0;
6083   Type *Ty = nullptr;
6084 
6085   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6086   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6087 
6088   if (ParseType(Ty, TyLoc)) return true;
6089 
6090   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6091     return Error(TyLoc, "invalid type for alloca");
6092 
6093   bool AteExtraComma = false;
6094   if (EatIfPresent(lltok::comma)) {
6095     if (Lex.getKind() == lltok::kw_align) {
6096       if (ParseOptionalAlignment(Alignment))
6097         return true;
6098       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6099         return true;
6100     } else if (Lex.getKind() == lltok::kw_addrspace) {
6101       ASLoc = Lex.getLoc();
6102       if (ParseOptionalAddrSpace(AddrSpace))
6103         return true;
6104     } else if (Lex.getKind() == lltok::MetadataVar) {
6105       AteExtraComma = true;
6106     } else {
6107       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6108         return true;
6109       if (EatIfPresent(lltok::comma)) {
6110         if (Lex.getKind() == lltok::kw_align) {
6111           if (ParseOptionalAlignment(Alignment))
6112             return true;
6113           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6114             return true;
6115         } else if (Lex.getKind() == lltok::kw_addrspace) {
6116           ASLoc = Lex.getLoc();
6117           if (ParseOptionalAddrSpace(AddrSpace))
6118             return true;
6119         } else if (Lex.getKind() == lltok::MetadataVar) {
6120           AteExtraComma = true;
6121         }
6122       }
6123     }
6124   }
6125 
6126   if (Size && !Size->getType()->isIntegerTy())
6127     return Error(SizeLoc, "element count must have integer type");
6128 
6129   const DataLayout &DL = M->getDataLayout();
6130   unsigned AS = DL.getAllocaAddrSpace();
6131   if (AS != AddrSpace) {
6132     // TODO: In the future it should be possible to specify addrspace per-alloca.
6133     return Error(ASLoc, "address space must match datalayout");
6134   }
6135 
6136   AllocaInst *AI = new AllocaInst(Ty, AS, Size, Alignment);
6137   AI->setUsedWithInAlloca(IsInAlloca);
6138   AI->setSwiftError(IsSwiftError);
6139   Inst = AI;
6140   return AteExtraComma ? InstExtraComma : InstNormal;
6141 }
6142 
6143 /// ParseLoad
6144 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6145 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6146 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6147 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6148   Value *Val; LocTy Loc;
6149   unsigned Alignment = 0;
6150   bool AteExtraComma = false;
6151   bool isAtomic = false;
6152   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6153   SyncScope::ID SSID = SyncScope::System;
6154 
6155   if (Lex.getKind() == lltok::kw_atomic) {
6156     isAtomic = true;
6157     Lex.Lex();
6158   }
6159 
6160   bool isVolatile = false;
6161   if (Lex.getKind() == lltok::kw_volatile) {
6162     isVolatile = true;
6163     Lex.Lex();
6164   }
6165 
6166   Type *Ty;
6167   LocTy ExplicitTypeLoc = Lex.getLoc();
6168   if (ParseType(Ty) ||
6169       ParseToken(lltok::comma, "expected comma after load's type") ||
6170       ParseTypeAndValue(Val, Loc, PFS) ||
6171       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6172       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6173     return true;
6174 
6175   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6176     return Error(Loc, "load operand must be a pointer to a first class type");
6177   if (isAtomic && !Alignment)
6178     return Error(Loc, "atomic load must have explicit non-zero alignment");
6179   if (Ordering == AtomicOrdering::Release ||
6180       Ordering == AtomicOrdering::AcquireRelease)
6181     return Error(Loc, "atomic load cannot use Release ordering");
6182 
6183   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6184     return Error(ExplicitTypeLoc,
6185                  "explicit pointee type doesn't match operand's pointee type");
6186 
6187   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6188   return AteExtraComma ? InstExtraComma : InstNormal;
6189 }
6190 
6191 /// ParseStore
6192 
6193 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6194 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6195 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6196 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6197   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6198   unsigned Alignment = 0;
6199   bool AteExtraComma = false;
6200   bool isAtomic = false;
6201   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6202   SyncScope::ID SSID = SyncScope::System;
6203 
6204   if (Lex.getKind() == lltok::kw_atomic) {
6205     isAtomic = true;
6206     Lex.Lex();
6207   }
6208 
6209   bool isVolatile = false;
6210   if (Lex.getKind() == lltok::kw_volatile) {
6211     isVolatile = true;
6212     Lex.Lex();
6213   }
6214 
6215   if (ParseTypeAndValue(Val, Loc, PFS) ||
6216       ParseToken(lltok::comma, "expected ',' after store operand") ||
6217       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6218       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6219       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6220     return true;
6221 
6222   if (!Ptr->getType()->isPointerTy())
6223     return Error(PtrLoc, "store operand must be a pointer");
6224   if (!Val->getType()->isFirstClassType())
6225     return Error(Loc, "store operand must be a first class value");
6226   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6227     return Error(Loc, "stored value and pointer type do not match");
6228   if (isAtomic && !Alignment)
6229     return Error(Loc, "atomic store must have explicit non-zero alignment");
6230   if (Ordering == AtomicOrdering::Acquire ||
6231       Ordering == AtomicOrdering::AcquireRelease)
6232     return Error(Loc, "atomic store cannot use Acquire ordering");
6233 
6234   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6235   return AteExtraComma ? InstExtraComma : InstNormal;
6236 }
6237 
6238 /// ParseCmpXchg
6239 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6240 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6241 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6242   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6243   bool AteExtraComma = false;
6244   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6245   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6246   SyncScope::ID SSID = SyncScope::System;
6247   bool isVolatile = false;
6248   bool isWeak = false;
6249 
6250   if (EatIfPresent(lltok::kw_weak))
6251     isWeak = true;
6252 
6253   if (EatIfPresent(lltok::kw_volatile))
6254     isVolatile = true;
6255 
6256   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6257       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6258       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6259       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6260       ParseTypeAndValue(New, NewLoc, PFS) ||
6261       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6262       ParseOrdering(FailureOrdering))
6263     return true;
6264 
6265   if (SuccessOrdering == AtomicOrdering::Unordered ||
6266       FailureOrdering == AtomicOrdering::Unordered)
6267     return TokError("cmpxchg cannot be unordered");
6268   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6269     return TokError("cmpxchg failure argument shall be no stronger than the "
6270                     "success argument");
6271   if (FailureOrdering == AtomicOrdering::Release ||
6272       FailureOrdering == AtomicOrdering::AcquireRelease)
6273     return TokError(
6274         "cmpxchg failure ordering cannot include release semantics");
6275   if (!Ptr->getType()->isPointerTy())
6276     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6277   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6278     return Error(CmpLoc, "compare value and pointer type do not match");
6279   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6280     return Error(NewLoc, "new value and pointer type do not match");
6281   if (!New->getType()->isFirstClassType())
6282     return Error(NewLoc, "cmpxchg operand must be a first class value");
6283   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6284       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
6285   CXI->setVolatile(isVolatile);
6286   CXI->setWeak(isWeak);
6287   Inst = CXI;
6288   return AteExtraComma ? InstExtraComma : InstNormal;
6289 }
6290 
6291 /// ParseAtomicRMW
6292 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6293 ///       'singlethread'? AtomicOrdering
6294 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6295   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6296   bool AteExtraComma = false;
6297   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6298   SyncScope::ID SSID = SyncScope::System;
6299   bool isVolatile = false;
6300   AtomicRMWInst::BinOp Operation;
6301 
6302   if (EatIfPresent(lltok::kw_volatile))
6303     isVolatile = true;
6304 
6305   switch (Lex.getKind()) {
6306   default: return TokError("expected binary operation in atomicrmw");
6307   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6308   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6309   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6310   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6311   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6312   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6313   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6314   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6315   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6316   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6317   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6318   }
6319   Lex.Lex();  // Eat the operation.
6320 
6321   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6322       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6323       ParseTypeAndValue(Val, ValLoc, PFS) ||
6324       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6325     return true;
6326 
6327   if (Ordering == AtomicOrdering::Unordered)
6328     return TokError("atomicrmw cannot be unordered");
6329   if (!Ptr->getType()->isPointerTy())
6330     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6331   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6332     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6333   if (!Val->getType()->isIntegerTy())
6334     return Error(ValLoc, "atomicrmw operand must be an integer");
6335   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6336   if (Size < 8 || (Size & (Size - 1)))
6337     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6338                          " integer");
6339 
6340   AtomicRMWInst *RMWI =
6341     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
6342   RMWI->setVolatile(isVolatile);
6343   Inst = RMWI;
6344   return AteExtraComma ? InstExtraComma : InstNormal;
6345 }
6346 
6347 /// ParseFence
6348 ///   ::= 'fence' 'singlethread'? AtomicOrdering
6349 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6350   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6351   SyncScope::ID SSID = SyncScope::System;
6352   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6353     return true;
6354 
6355   if (Ordering == AtomicOrdering::Unordered)
6356     return TokError("fence cannot be unordered");
6357   if (Ordering == AtomicOrdering::Monotonic)
6358     return TokError("fence cannot be monotonic");
6359 
6360   Inst = new FenceInst(Context, Ordering, SSID);
6361   return InstNormal;
6362 }
6363 
6364 /// ParseGetElementPtr
6365 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
6366 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6367   Value *Ptr = nullptr;
6368   Value *Val = nullptr;
6369   LocTy Loc, EltLoc;
6370 
6371   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6372 
6373   Type *Ty = nullptr;
6374   LocTy ExplicitTypeLoc = Lex.getLoc();
6375   if (ParseType(Ty) ||
6376       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6377       ParseTypeAndValue(Ptr, Loc, PFS))
6378     return true;
6379 
6380   Type *BaseType = Ptr->getType();
6381   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6382   if (!BasePointerType)
6383     return Error(Loc, "base of getelementptr must be a pointer");
6384 
6385   if (Ty != BasePointerType->getElementType())
6386     return Error(ExplicitTypeLoc,
6387                  "explicit pointee type doesn't match operand's pointee type");
6388 
6389   SmallVector<Value*, 16> Indices;
6390   bool AteExtraComma = false;
6391   // GEP returns a vector of pointers if at least one of parameters is a vector.
6392   // All vector parameters should have the same vector width.
6393   unsigned GEPWidth = BaseType->isVectorTy() ?
6394     BaseType->getVectorNumElements() : 0;
6395 
6396   while (EatIfPresent(lltok::comma)) {
6397     if (Lex.getKind() == lltok::MetadataVar) {
6398       AteExtraComma = true;
6399       break;
6400     }
6401     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6402     if (!Val->getType()->isIntOrIntVectorTy())
6403       return Error(EltLoc, "getelementptr index must be an integer");
6404 
6405     if (Val->getType()->isVectorTy()) {
6406       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6407       if (GEPWidth && GEPWidth != ValNumEl)
6408         return Error(EltLoc,
6409           "getelementptr vector index has a wrong number of elements");
6410       GEPWidth = ValNumEl;
6411     }
6412     Indices.push_back(Val);
6413   }
6414 
6415   SmallPtrSet<Type*, 4> Visited;
6416   if (!Indices.empty() && !Ty->isSized(&Visited))
6417     return Error(Loc, "base element of getelementptr must be sized");
6418 
6419   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6420     return Error(Loc, "invalid getelementptr indices");
6421   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6422   if (InBounds)
6423     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6424   return AteExtraComma ? InstExtraComma : InstNormal;
6425 }
6426 
6427 /// ParseExtractValue
6428 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6429 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6430   Value *Val; LocTy Loc;
6431   SmallVector<unsigned, 4> Indices;
6432   bool AteExtraComma;
6433   if (ParseTypeAndValue(Val, Loc, PFS) ||
6434       ParseIndexList(Indices, AteExtraComma))
6435     return true;
6436 
6437   if (!Val->getType()->isAggregateType())
6438     return Error(Loc, "extractvalue operand must be aggregate type");
6439 
6440   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6441     return Error(Loc, "invalid indices for extractvalue");
6442   Inst = ExtractValueInst::Create(Val, Indices);
6443   return AteExtraComma ? InstExtraComma : InstNormal;
6444 }
6445 
6446 /// ParseInsertValue
6447 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6448 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6449   Value *Val0, *Val1; LocTy Loc0, Loc1;
6450   SmallVector<unsigned, 4> Indices;
6451   bool AteExtraComma;
6452   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6453       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6454       ParseTypeAndValue(Val1, Loc1, PFS) ||
6455       ParseIndexList(Indices, AteExtraComma))
6456     return true;
6457 
6458   if (!Val0->getType()->isAggregateType())
6459     return Error(Loc0, "insertvalue operand must be aggregate type");
6460 
6461   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6462   if (!IndexedType)
6463     return Error(Loc0, "invalid indices for insertvalue");
6464   if (IndexedType != Val1->getType())
6465     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6466                            getTypeString(Val1->getType()) + "' instead of '" +
6467                            getTypeString(IndexedType) + "'");
6468   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6469   return AteExtraComma ? InstExtraComma : InstNormal;
6470 }
6471 
6472 //===----------------------------------------------------------------------===//
6473 // Embedded metadata.
6474 //===----------------------------------------------------------------------===//
6475 
6476 /// ParseMDNodeVector
6477 ///   ::= { Element (',' Element)* }
6478 /// Element
6479 ///   ::= 'null' | TypeAndValue
6480 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6481   if (ParseToken(lltok::lbrace, "expected '{' here"))
6482     return true;
6483 
6484   // Check for an empty list.
6485   if (EatIfPresent(lltok::rbrace))
6486     return false;
6487 
6488   do {
6489     // Null is a special case since it is typeless.
6490     if (EatIfPresent(lltok::kw_null)) {
6491       Elts.push_back(nullptr);
6492       continue;
6493     }
6494 
6495     Metadata *MD;
6496     if (ParseMetadata(MD, nullptr))
6497       return true;
6498     Elts.push_back(MD);
6499   } while (EatIfPresent(lltok::comma));
6500 
6501   return ParseToken(lltok::rbrace, "expected end of metadata node");
6502 }
6503 
6504 //===----------------------------------------------------------------------===//
6505 // Use-list order directives.
6506 //===----------------------------------------------------------------------===//
6507 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6508                                 SMLoc Loc) {
6509   if (V->use_empty())
6510     return Error(Loc, "value has no uses");
6511 
6512   unsigned NumUses = 0;
6513   SmallDenseMap<const Use *, unsigned, 16> Order;
6514   for (const Use &U : V->uses()) {
6515     if (++NumUses > Indexes.size())
6516       break;
6517     Order[&U] = Indexes[NumUses - 1];
6518   }
6519   if (NumUses < 2)
6520     return Error(Loc, "value only has one use");
6521   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6522     return Error(Loc, "wrong number of indexes, expected " +
6523                           Twine(std::distance(V->use_begin(), V->use_end())));
6524 
6525   V->sortUseList([&](const Use &L, const Use &R) {
6526     return Order.lookup(&L) < Order.lookup(&R);
6527   });
6528   return false;
6529 }
6530 
6531 /// ParseUseListOrderIndexes
6532 ///   ::= '{' uint32 (',' uint32)+ '}'
6533 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6534   SMLoc Loc = Lex.getLoc();
6535   if (ParseToken(lltok::lbrace, "expected '{' here"))
6536     return true;
6537   if (Lex.getKind() == lltok::rbrace)
6538     return Lex.Error("expected non-empty list of uselistorder indexes");
6539 
6540   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6541   // indexes should be distinct numbers in the range [0, size-1], and should
6542   // not be in order.
6543   unsigned Offset = 0;
6544   unsigned Max = 0;
6545   bool IsOrdered = true;
6546   assert(Indexes.empty() && "Expected empty order vector");
6547   do {
6548     unsigned Index;
6549     if (ParseUInt32(Index))
6550       return true;
6551 
6552     // Update consistency checks.
6553     Offset += Index - Indexes.size();
6554     Max = std::max(Max, Index);
6555     IsOrdered &= Index == Indexes.size();
6556 
6557     Indexes.push_back(Index);
6558   } while (EatIfPresent(lltok::comma));
6559 
6560   if (ParseToken(lltok::rbrace, "expected '}' here"))
6561     return true;
6562 
6563   if (Indexes.size() < 2)
6564     return Error(Loc, "expected >= 2 uselistorder indexes");
6565   if (Offset != 0 || Max >= Indexes.size())
6566     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6567   if (IsOrdered)
6568     return Error(Loc, "expected uselistorder indexes to change the order");
6569 
6570   return false;
6571 }
6572 
6573 /// ParseUseListOrder
6574 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
6575 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6576   SMLoc Loc = Lex.getLoc();
6577   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6578     return true;
6579 
6580   Value *V;
6581   SmallVector<unsigned, 16> Indexes;
6582   if (ParseTypeAndValue(V, PFS) ||
6583       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6584       ParseUseListOrderIndexes(Indexes))
6585     return true;
6586 
6587   return sortUseListOrder(V, Indexes, Loc);
6588 }
6589 
6590 /// ParseUseListOrderBB
6591 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
6592 bool LLParser::ParseUseListOrderBB() {
6593   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6594   SMLoc Loc = Lex.getLoc();
6595   Lex.Lex();
6596 
6597   ValID Fn, Label;
6598   SmallVector<unsigned, 16> Indexes;
6599   if (ParseValID(Fn) ||
6600       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6601       ParseValID(Label) ||
6602       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6603       ParseUseListOrderIndexes(Indexes))
6604     return true;
6605 
6606   // Check the function.
6607   GlobalValue *GV;
6608   if (Fn.Kind == ValID::t_GlobalName)
6609     GV = M->getNamedValue(Fn.StrVal);
6610   else if (Fn.Kind == ValID::t_GlobalID)
6611     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6612   else
6613     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6614   if (!GV)
6615     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6616   auto *F = dyn_cast<Function>(GV);
6617   if (!F)
6618     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6619   if (F->isDeclaration())
6620     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6621 
6622   // Check the basic block.
6623   if (Label.Kind == ValID::t_LocalID)
6624     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6625   if (Label.Kind != ValID::t_LocalName)
6626     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6627   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
6628   if (!V)
6629     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6630   if (!isa<BasicBlock>(V))
6631     return Error(Label.Loc, "expected basic block in uselistorder_bb");
6632 
6633   return sortUseListOrder(V, Indexes, Loc);
6634 }
6635