1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/AsmParser/LLParser.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/LLToken.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/IR/ValueSymbolTable.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/SaveAndRestore.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstring> 50 #include <iterator> 51 #include <vector> 52 53 using namespace llvm; 54 55 static std::string getTypeString(Type *T) { 56 std::string Result; 57 raw_string_ostream Tmp(Result); 58 Tmp << *T; 59 return Tmp.str(); 60 } 61 62 /// Run: module ::= toplevelentity* 63 bool LLParser::Run(bool UpgradeDebugInfo, 64 DataLayoutCallbackTy DataLayoutCallback) { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 if (M) { 74 if (parseTargetDefinitions()) 75 return true; 76 77 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 78 M->setDataLayout(*LayoutOverride); 79 } 80 81 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 82 validateEndOfIndex(); 83 } 84 85 bool LLParser::parseStandaloneConstantValue(Constant *&C, 86 const SlotMapping *Slots) { 87 restoreParsingState(Slots); 88 Lex.Lex(); 89 90 Type *Ty = nullptr; 91 if (parseType(Ty) || parseConstantValue(Ty, C)) 92 return true; 93 if (Lex.getKind() != lltok::Eof) 94 return error(Lex.getLoc(), "expected end of string"); 95 return false; 96 } 97 98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 99 const SlotMapping *Slots) { 100 restoreParsingState(Slots); 101 Lex.Lex(); 102 103 Read = 0; 104 SMLoc Start = Lex.getLoc(); 105 Ty = nullptr; 106 if (parseType(Ty)) 107 return true; 108 SMLoc End = Lex.getLoc(); 109 Read = End.getPointer() - Start.getPointer(); 110 111 return false; 112 } 113 114 void LLParser::restoreParsingState(const SlotMapping *Slots) { 115 if (!Slots) 116 return; 117 NumberedVals = Slots->GlobalValues; 118 NumberedMetadata = Slots->MetadataNodes; 119 for (const auto &I : Slots->NamedTypes) 120 NamedTypes.insert( 121 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 122 for (const auto &I : Slots->Types) 123 NumberedTypes.insert( 124 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 125 } 126 127 /// validateEndOfModule - Do final validity and sanity checks at the end of the 128 /// module. 129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 130 if (!M) 131 return false; 132 // Handle any function attribute group forward references. 133 for (const auto &RAG : ForwardRefAttrGroups) { 134 Value *V = RAG.first; 135 const std::vector<unsigned> &Attrs = RAG.second; 136 AttrBuilder B; 137 138 for (const auto &Attr : Attrs) 139 B.merge(NumberedAttrBuilders[Attr]); 140 141 if (Function *Fn = dyn_cast<Function>(V)) { 142 AttributeList AS = Fn->getAttributes(); 143 AttrBuilder FnAttrs(AS.getFnAttributes()); 144 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 145 146 FnAttrs.merge(B); 147 148 // If the alignment was parsed as an attribute, move to the alignment 149 // field. 150 if (FnAttrs.hasAlignmentAttr()) { 151 Fn->setAlignment(FnAttrs.getAlignment()); 152 FnAttrs.removeAttribute(Attribute::Alignment); 153 } 154 155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 156 AttributeSet::get(Context, FnAttrs)); 157 Fn->setAttributes(AS); 158 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 159 AttributeList AS = CI->getAttributes(); 160 AttrBuilder FnAttrs(AS.getFnAttributes()); 161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 162 FnAttrs.merge(B); 163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 164 AttributeSet::get(Context, FnAttrs)); 165 CI->setAttributes(AS); 166 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 167 AttributeList AS = II->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes()); 169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 170 FnAttrs.merge(B); 171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 172 AttributeSet::get(Context, FnAttrs)); 173 II->setAttributes(AS); 174 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 175 AttributeList AS = CBI->getAttributes(); 176 AttrBuilder FnAttrs(AS.getFnAttributes()); 177 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 178 FnAttrs.merge(B); 179 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 180 AttributeSet::get(Context, FnAttrs)); 181 CBI->setAttributes(AS); 182 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 183 AttrBuilder Attrs(GV->getAttributes()); 184 Attrs.merge(B); 185 GV->setAttributes(AttributeSet::get(Context,Attrs)); 186 } else { 187 llvm_unreachable("invalid object with forward attribute group reference"); 188 } 189 } 190 191 // If there are entries in ForwardRefBlockAddresses at this point, the 192 // function was never defined. 193 if (!ForwardRefBlockAddresses.empty()) 194 return error(ForwardRefBlockAddresses.begin()->first.Loc, 195 "expected function name in blockaddress"); 196 197 for (const auto &NT : NumberedTypes) 198 if (NT.second.second.isValid()) 199 return error(NT.second.second, 200 "use of undefined type '%" + Twine(NT.first) + "'"); 201 202 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 203 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 204 if (I->second.second.isValid()) 205 return error(I->second.second, 206 "use of undefined type named '" + I->getKey() + "'"); 207 208 if (!ForwardRefComdats.empty()) 209 return error(ForwardRefComdats.begin()->second, 210 "use of undefined comdat '$" + 211 ForwardRefComdats.begin()->first + "'"); 212 213 if (!ForwardRefVals.empty()) 214 return error(ForwardRefVals.begin()->second.second, 215 "use of undefined value '@" + ForwardRefVals.begin()->first + 216 "'"); 217 218 if (!ForwardRefValIDs.empty()) 219 return error(ForwardRefValIDs.begin()->second.second, 220 "use of undefined value '@" + 221 Twine(ForwardRefValIDs.begin()->first) + "'"); 222 223 if (!ForwardRefMDNodes.empty()) 224 return error(ForwardRefMDNodes.begin()->second.second, 225 "use of undefined metadata '!" + 226 Twine(ForwardRefMDNodes.begin()->first) + "'"); 227 228 // Resolve metadata cycles. 229 for (auto &N : NumberedMetadata) { 230 if (N.second && !N.second->isResolved()) 231 N.second->resolveCycles(); 232 } 233 234 for (auto *Inst : InstsWithTBAATag) { 235 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 236 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 237 auto *UpgradedMD = UpgradeTBAANode(*MD); 238 if (MD != UpgradedMD) 239 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 240 } 241 242 // Look for intrinsic functions and CallInst that need to be upgraded 243 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 244 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 245 246 // Some types could be renamed during loading if several modules are 247 // loaded in the same LLVMContext (LTO scenario). In this case we should 248 // remangle intrinsics names as well. 249 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 250 Function *F = &*FI++; 251 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 252 F->replaceAllUsesWith(Remangled.getValue()); 253 F->eraseFromParent(); 254 } 255 } 256 257 if (UpgradeDebugInfo) 258 llvm::UpgradeDebugInfo(*M); 259 260 UpgradeModuleFlags(*M); 261 UpgradeSectionAttributes(*M); 262 263 if (!Slots) 264 return false; 265 // Initialize the slot mapping. 266 // Because by this point we've parsed and validated everything, we can "steal" 267 // the mapping from LLParser as it doesn't need it anymore. 268 Slots->GlobalValues = std::move(NumberedVals); 269 Slots->MetadataNodes = std::move(NumberedMetadata); 270 for (const auto &I : NamedTypes) 271 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 272 for (const auto &I : NumberedTypes) 273 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 274 275 return false; 276 } 277 278 /// Do final validity and sanity checks at the end of the index. 279 bool LLParser::validateEndOfIndex() { 280 if (!Index) 281 return false; 282 283 if (!ForwardRefValueInfos.empty()) 284 return error(ForwardRefValueInfos.begin()->second.front().second, 285 "use of undefined summary '^" + 286 Twine(ForwardRefValueInfos.begin()->first) + "'"); 287 288 if (!ForwardRefAliasees.empty()) 289 return error(ForwardRefAliasees.begin()->second.front().second, 290 "use of undefined summary '^" + 291 Twine(ForwardRefAliasees.begin()->first) + "'"); 292 293 if (!ForwardRefTypeIds.empty()) 294 return error(ForwardRefTypeIds.begin()->second.front().second, 295 "use of undefined type id summary '^" + 296 Twine(ForwardRefTypeIds.begin()->first) + "'"); 297 298 return false; 299 } 300 301 //===----------------------------------------------------------------------===// 302 // Top-Level Entities 303 //===----------------------------------------------------------------------===// 304 305 bool LLParser::parseTargetDefinitions() { 306 while (true) { 307 switch (Lex.getKind()) { 308 case lltok::kw_target: 309 if (parseTargetDefinition()) 310 return true; 311 break; 312 case lltok::kw_source_filename: 313 if (parseSourceFileName()) 314 return true; 315 break; 316 default: 317 return false; 318 } 319 } 320 } 321 322 bool LLParser::parseTopLevelEntities() { 323 // If there is no Module, then parse just the summary index entries. 324 if (!M) { 325 while (true) { 326 switch (Lex.getKind()) { 327 case lltok::Eof: 328 return false; 329 case lltok::SummaryID: 330 if (parseSummaryEntry()) 331 return true; 332 break; 333 case lltok::kw_source_filename: 334 if (parseSourceFileName()) 335 return true; 336 break; 337 default: 338 // Skip everything else 339 Lex.Lex(); 340 } 341 } 342 } 343 while (true) { 344 switch (Lex.getKind()) { 345 default: 346 return tokError("expected top-level entity"); 347 case lltok::Eof: return false; 348 case lltok::kw_declare: 349 if (parseDeclare()) 350 return true; 351 break; 352 case lltok::kw_define: 353 if (parseDefine()) 354 return true; 355 break; 356 case lltok::kw_module: 357 if (parseModuleAsm()) 358 return true; 359 break; 360 case lltok::LocalVarID: 361 if (parseUnnamedType()) 362 return true; 363 break; 364 case lltok::LocalVar: 365 if (parseNamedType()) 366 return true; 367 break; 368 case lltok::GlobalID: 369 if (parseUnnamedGlobal()) 370 return true; 371 break; 372 case lltok::GlobalVar: 373 if (parseNamedGlobal()) 374 return true; 375 break; 376 case lltok::ComdatVar: if (parseComdat()) return true; break; 377 case lltok::exclaim: 378 if (parseStandaloneMetadata()) 379 return true; 380 break; 381 case lltok::SummaryID: 382 if (parseSummaryEntry()) 383 return true; 384 break; 385 case lltok::MetadataVar: 386 if (parseNamedMetadata()) 387 return true; 388 break; 389 case lltok::kw_attributes: 390 if (parseUnnamedAttrGrp()) 391 return true; 392 break; 393 case lltok::kw_uselistorder: 394 if (parseUseListOrder()) 395 return true; 396 break; 397 case lltok::kw_uselistorder_bb: 398 if (parseUseListOrderBB()) 399 return true; 400 break; 401 } 402 } 403 } 404 405 /// toplevelentity 406 /// ::= 'module' 'asm' STRINGCONSTANT 407 bool LLParser::parseModuleAsm() { 408 assert(Lex.getKind() == lltok::kw_module); 409 Lex.Lex(); 410 411 std::string AsmStr; 412 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 413 parseStringConstant(AsmStr)) 414 return true; 415 416 M->appendModuleInlineAsm(AsmStr); 417 return false; 418 } 419 420 /// toplevelentity 421 /// ::= 'target' 'triple' '=' STRINGCONSTANT 422 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 423 bool LLParser::parseTargetDefinition() { 424 assert(Lex.getKind() == lltok::kw_target); 425 std::string Str; 426 switch (Lex.Lex()) { 427 default: 428 return tokError("unknown target property"); 429 case lltok::kw_triple: 430 Lex.Lex(); 431 if (parseToken(lltok::equal, "expected '=' after target triple") || 432 parseStringConstant(Str)) 433 return true; 434 M->setTargetTriple(Str); 435 return false; 436 case lltok::kw_datalayout: 437 Lex.Lex(); 438 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 439 parseStringConstant(Str)) 440 return true; 441 M->setDataLayout(Str); 442 return false; 443 } 444 } 445 446 /// toplevelentity 447 /// ::= 'source_filename' '=' STRINGCONSTANT 448 bool LLParser::parseSourceFileName() { 449 assert(Lex.getKind() == lltok::kw_source_filename); 450 Lex.Lex(); 451 if (parseToken(lltok::equal, "expected '=' after source_filename") || 452 parseStringConstant(SourceFileName)) 453 return true; 454 if (M) 455 M->setSourceFileName(SourceFileName); 456 return false; 457 } 458 459 /// parseUnnamedType: 460 /// ::= LocalVarID '=' 'type' type 461 bool LLParser::parseUnnamedType() { 462 LocTy TypeLoc = Lex.getLoc(); 463 unsigned TypeID = Lex.getUIntVal(); 464 Lex.Lex(); // eat LocalVarID; 465 466 if (parseToken(lltok::equal, "expected '=' after name") || 467 parseToken(lltok::kw_type, "expected 'type' after '='")) 468 return true; 469 470 Type *Result = nullptr; 471 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 472 return true; 473 474 if (!isa<StructType>(Result)) { 475 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 476 if (Entry.first) 477 return error(TypeLoc, "non-struct types may not be recursive"); 478 Entry.first = Result; 479 Entry.second = SMLoc(); 480 } 481 482 return false; 483 } 484 485 /// toplevelentity 486 /// ::= LocalVar '=' 'type' type 487 bool LLParser::parseNamedType() { 488 std::string Name = Lex.getStrVal(); 489 LocTy NameLoc = Lex.getLoc(); 490 Lex.Lex(); // eat LocalVar. 491 492 if (parseToken(lltok::equal, "expected '=' after name") || 493 parseToken(lltok::kw_type, "expected 'type' after name")) 494 return true; 495 496 Type *Result = nullptr; 497 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 498 return true; 499 500 if (!isa<StructType>(Result)) { 501 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 502 if (Entry.first) 503 return error(NameLoc, "non-struct types may not be recursive"); 504 Entry.first = Result; 505 Entry.second = SMLoc(); 506 } 507 508 return false; 509 } 510 511 /// toplevelentity 512 /// ::= 'declare' FunctionHeader 513 bool LLParser::parseDeclare() { 514 assert(Lex.getKind() == lltok::kw_declare); 515 Lex.Lex(); 516 517 std::vector<std::pair<unsigned, MDNode *>> MDs; 518 while (Lex.getKind() == lltok::MetadataVar) { 519 unsigned MDK; 520 MDNode *N; 521 if (parseMetadataAttachment(MDK, N)) 522 return true; 523 MDs.push_back({MDK, N}); 524 } 525 526 Function *F; 527 if (parseFunctionHeader(F, false)) 528 return true; 529 for (auto &MD : MDs) 530 F->addMetadata(MD.first, *MD.second); 531 return false; 532 } 533 534 /// toplevelentity 535 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 536 bool LLParser::parseDefine() { 537 assert(Lex.getKind() == lltok::kw_define); 538 Lex.Lex(); 539 540 Function *F; 541 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 542 parseFunctionBody(*F); 543 } 544 545 /// parseGlobalType 546 /// ::= 'constant' 547 /// ::= 'global' 548 bool LLParser::parseGlobalType(bool &IsConstant) { 549 if (Lex.getKind() == lltok::kw_constant) 550 IsConstant = true; 551 else if (Lex.getKind() == lltok::kw_global) 552 IsConstant = false; 553 else { 554 IsConstant = false; 555 return tokError("expected 'global' or 'constant'"); 556 } 557 Lex.Lex(); 558 return false; 559 } 560 561 bool LLParser::parseOptionalUnnamedAddr( 562 GlobalVariable::UnnamedAddr &UnnamedAddr) { 563 if (EatIfPresent(lltok::kw_unnamed_addr)) 564 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 565 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 566 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 567 else 568 UnnamedAddr = GlobalValue::UnnamedAddr::None; 569 return false; 570 } 571 572 /// parseUnnamedGlobal: 573 /// OptionalVisibility (ALIAS | IFUNC) ... 574 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 575 /// OptionalDLLStorageClass 576 /// ... -> global variable 577 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 578 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 579 /// OptionalVisibility 580 /// OptionalDLLStorageClass 581 /// ... -> global variable 582 bool LLParser::parseUnnamedGlobal() { 583 unsigned VarID = NumberedVals.size(); 584 std::string Name; 585 LocTy NameLoc = Lex.getLoc(); 586 587 // Handle the GlobalID form. 588 if (Lex.getKind() == lltok::GlobalID) { 589 if (Lex.getUIntVal() != VarID) 590 return error(Lex.getLoc(), 591 "variable expected to be numbered '%" + Twine(VarID) + "'"); 592 Lex.Lex(); // eat GlobalID; 593 594 if (parseToken(lltok::equal, "expected '=' after name")) 595 return true; 596 } 597 598 bool HasLinkage; 599 unsigned Linkage, Visibility, DLLStorageClass; 600 bool DSOLocal; 601 GlobalVariable::ThreadLocalMode TLM; 602 GlobalVariable::UnnamedAddr UnnamedAddr; 603 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 604 DSOLocal) || 605 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 606 return true; 607 608 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 609 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 610 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 611 612 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 613 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 614 } 615 616 /// parseNamedGlobal: 617 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 618 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 619 /// OptionalVisibility OptionalDLLStorageClass 620 /// ... -> global variable 621 bool LLParser::parseNamedGlobal() { 622 assert(Lex.getKind() == lltok::GlobalVar); 623 LocTy NameLoc = Lex.getLoc(); 624 std::string Name = Lex.getStrVal(); 625 Lex.Lex(); 626 627 bool HasLinkage; 628 unsigned Linkage, Visibility, DLLStorageClass; 629 bool DSOLocal; 630 GlobalVariable::ThreadLocalMode TLM; 631 GlobalVariable::UnnamedAddr UnnamedAddr; 632 if (parseToken(lltok::equal, "expected '=' in global variable") || 633 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 634 DSOLocal) || 635 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 636 return true; 637 638 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 639 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 640 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 641 642 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 643 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 644 } 645 646 bool LLParser::parseComdat() { 647 assert(Lex.getKind() == lltok::ComdatVar); 648 std::string Name = Lex.getStrVal(); 649 LocTy NameLoc = Lex.getLoc(); 650 Lex.Lex(); 651 652 if (parseToken(lltok::equal, "expected '=' here")) 653 return true; 654 655 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 656 return tokError("expected comdat type"); 657 658 Comdat::SelectionKind SK; 659 switch (Lex.getKind()) { 660 default: 661 return tokError("unknown selection kind"); 662 case lltok::kw_any: 663 SK = Comdat::Any; 664 break; 665 case lltok::kw_exactmatch: 666 SK = Comdat::ExactMatch; 667 break; 668 case lltok::kw_largest: 669 SK = Comdat::Largest; 670 break; 671 case lltok::kw_noduplicates: 672 SK = Comdat::NoDuplicates; 673 break; 674 case lltok::kw_samesize: 675 SK = Comdat::SameSize; 676 break; 677 } 678 Lex.Lex(); 679 680 // See if the comdat was forward referenced, if so, use the comdat. 681 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 682 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 683 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 684 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 685 686 Comdat *C; 687 if (I != ComdatSymTab.end()) 688 C = &I->second; 689 else 690 C = M->getOrInsertComdat(Name); 691 C->setSelectionKind(SK); 692 693 return false; 694 } 695 696 // MDString: 697 // ::= '!' STRINGCONSTANT 698 bool LLParser::parseMDString(MDString *&Result) { 699 std::string Str; 700 if (parseStringConstant(Str)) 701 return true; 702 Result = MDString::get(Context, Str); 703 return false; 704 } 705 706 // MDNode: 707 // ::= '!' MDNodeNumber 708 bool LLParser::parseMDNodeID(MDNode *&Result) { 709 // !{ ..., !42, ... } 710 LocTy IDLoc = Lex.getLoc(); 711 unsigned MID = 0; 712 if (parseUInt32(MID)) 713 return true; 714 715 // If not a forward reference, just return it now. 716 if (NumberedMetadata.count(MID)) { 717 Result = NumberedMetadata[MID]; 718 return false; 719 } 720 721 // Otherwise, create MDNode forward reference. 722 auto &FwdRef = ForwardRefMDNodes[MID]; 723 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 724 725 Result = FwdRef.first.get(); 726 NumberedMetadata[MID].reset(Result); 727 return false; 728 } 729 730 /// parseNamedMetadata: 731 /// !foo = !{ !1, !2 } 732 bool LLParser::parseNamedMetadata() { 733 assert(Lex.getKind() == lltok::MetadataVar); 734 std::string Name = Lex.getStrVal(); 735 Lex.Lex(); 736 737 if (parseToken(lltok::equal, "expected '=' here") || 738 parseToken(lltok::exclaim, "Expected '!' here") || 739 parseToken(lltok::lbrace, "Expected '{' here")) 740 return true; 741 742 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 743 744 if (Lex.getKind() == lltok::rbrace) { 745 Lex.Lex(); 746 return false; 747 } 748 749 do { 750 MDNode *N = nullptr; 751 // Parse uniqued MDNodes inline as a special case. 752 #define HANDLE_MDNODE_LEAF_UNIQUED(CLASS) \ 753 if (Lex.getKind() == lltok::MetadataVar && Lex.getStrVal() == #CLASS) { \ 754 if (parse##CLASS(N, /*IsDistinct=*/false)) \ 755 return true; \ 756 NMD->addOperand(N); \ 757 continue; \ 758 } 759 #include "llvm/IR/Metadata.def" 760 // Parse all other MDNodes as an MDNodeID. 761 if (parseToken(lltok::exclaim, "Expected '!' here") || parseMDNodeID(N)) { 762 return true; 763 } 764 NMD->addOperand(N); 765 } while (EatIfPresent(lltok::comma)); 766 767 return parseToken(lltok::rbrace, "expected end of metadata node"); 768 } 769 770 /// parseStandaloneMetadata: 771 /// !42 = !{...} 772 bool LLParser::parseStandaloneMetadata() { 773 assert(Lex.getKind() == lltok::exclaim); 774 Lex.Lex(); 775 unsigned MetadataID = 0; 776 777 MDNode *Init; 778 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 779 return true; 780 781 // Detect common error, from old metadata syntax. 782 if (Lex.getKind() == lltok::Type) 783 return tokError("unexpected type in metadata definition"); 784 785 auto DistinctLoc = Lex.getLoc(); 786 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 787 if (Lex.getKind() == lltok::MetadataVar) { 788 if (parseSpecializedMDNode(Init, IsDistinct, DistinctLoc)) 789 return true; 790 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 791 parseMDTuple(Init, IsDistinct)) 792 return true; 793 794 // See if this was forward referenced, if so, handle it. 795 auto FI = ForwardRefMDNodes.find(MetadataID); 796 if (FI != ForwardRefMDNodes.end()) { 797 FI->second.first->replaceAllUsesWith(Init); 798 ForwardRefMDNodes.erase(FI); 799 800 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 801 } else { 802 if (NumberedMetadata.count(MetadataID)) 803 return tokError("Metadata id is already used"); 804 NumberedMetadata[MetadataID].reset(Init); 805 } 806 807 return false; 808 } 809 810 // Skips a single module summary entry. 811 bool LLParser::skipModuleSummaryEntry() { 812 // Each module summary entry consists of a tag for the entry 813 // type, followed by a colon, then the fields which may be surrounded by 814 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 815 // support is in place we will look for the tokens corresponding to the 816 // expected tags. 817 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 818 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 819 Lex.getKind() != lltok::kw_blockcount) 820 return tokError( 821 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 822 "start of summary entry"); 823 if (Lex.getKind() == lltok::kw_flags) 824 return parseSummaryIndexFlags(); 825 if (Lex.getKind() == lltok::kw_blockcount) 826 return parseBlockCount(); 827 Lex.Lex(); 828 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 829 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 830 return true; 831 // Now walk through the parenthesized entry, until the number of open 832 // parentheses goes back down to 0 (the first '(' was parsed above). 833 unsigned NumOpenParen = 1; 834 do { 835 switch (Lex.getKind()) { 836 case lltok::lparen: 837 NumOpenParen++; 838 break; 839 case lltok::rparen: 840 NumOpenParen--; 841 break; 842 case lltok::Eof: 843 return tokError("found end of file while parsing summary entry"); 844 default: 845 // Skip everything in between parentheses. 846 break; 847 } 848 Lex.Lex(); 849 } while (NumOpenParen > 0); 850 return false; 851 } 852 853 /// SummaryEntry 854 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 855 bool LLParser::parseSummaryEntry() { 856 assert(Lex.getKind() == lltok::SummaryID); 857 unsigned SummaryID = Lex.getUIntVal(); 858 859 // For summary entries, colons should be treated as distinct tokens, 860 // not an indication of the end of a label token. 861 Lex.setIgnoreColonInIdentifiers(true); 862 863 Lex.Lex(); 864 if (parseToken(lltok::equal, "expected '=' here")) 865 return true; 866 867 // If we don't have an index object, skip the summary entry. 868 if (!Index) 869 return skipModuleSummaryEntry(); 870 871 bool result = false; 872 switch (Lex.getKind()) { 873 case lltok::kw_gv: 874 result = parseGVEntry(SummaryID); 875 break; 876 case lltok::kw_module: 877 result = parseModuleEntry(SummaryID); 878 break; 879 case lltok::kw_typeid: 880 result = parseTypeIdEntry(SummaryID); 881 break; 882 case lltok::kw_typeidCompatibleVTable: 883 result = parseTypeIdCompatibleVtableEntry(SummaryID); 884 break; 885 case lltok::kw_flags: 886 result = parseSummaryIndexFlags(); 887 break; 888 case lltok::kw_blockcount: 889 result = parseBlockCount(); 890 break; 891 default: 892 result = error(Lex.getLoc(), "unexpected summary kind"); 893 break; 894 } 895 Lex.setIgnoreColonInIdentifiers(false); 896 return result; 897 } 898 899 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 900 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 901 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 902 } 903 904 // If there was an explicit dso_local, update GV. In the absence of an explicit 905 // dso_local we keep the default value. 906 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 907 if (DSOLocal) 908 GV.setDSOLocal(true); 909 } 910 911 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1, 912 Type *Ty2) { 913 std::string ErrString; 914 raw_string_ostream ErrOS(ErrString); 915 ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")"; 916 return ErrOS.str(); 917 } 918 919 /// parseIndirectSymbol: 920 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 921 /// OptionalVisibility OptionalDLLStorageClass 922 /// OptionalThreadLocal OptionalUnnamedAddr 923 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 924 /// 925 /// IndirectSymbol 926 /// ::= TypeAndValue 927 /// 928 /// IndirectSymbolAttr 929 /// ::= ',' 'partition' StringConstant 930 /// 931 /// Everything through OptionalUnnamedAddr has already been parsed. 932 /// 933 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 934 unsigned L, unsigned Visibility, 935 unsigned DLLStorageClass, bool DSOLocal, 936 GlobalVariable::ThreadLocalMode TLM, 937 GlobalVariable::UnnamedAddr UnnamedAddr) { 938 bool IsAlias; 939 if (Lex.getKind() == lltok::kw_alias) 940 IsAlias = true; 941 else if (Lex.getKind() == lltok::kw_ifunc) 942 IsAlias = false; 943 else 944 llvm_unreachable("Not an alias or ifunc!"); 945 Lex.Lex(); 946 947 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 948 949 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 950 return error(NameLoc, "invalid linkage type for alias"); 951 952 if (!isValidVisibilityForLinkage(Visibility, L)) 953 return error(NameLoc, 954 "symbol with local linkage must have default visibility"); 955 956 Type *Ty; 957 LocTy ExplicitTypeLoc = Lex.getLoc(); 958 if (parseType(Ty) || 959 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 960 return true; 961 962 Constant *Aliasee; 963 LocTy AliaseeLoc = Lex.getLoc(); 964 if (Lex.getKind() != lltok::kw_bitcast && 965 Lex.getKind() != lltok::kw_getelementptr && 966 Lex.getKind() != lltok::kw_addrspacecast && 967 Lex.getKind() != lltok::kw_inttoptr) { 968 if (parseGlobalTypeAndValue(Aliasee)) 969 return true; 970 } else { 971 // The bitcast dest type is not present, it is implied by the dest type. 972 ValID ID; 973 if (parseValID(ID)) 974 return true; 975 if (ID.Kind != ValID::t_Constant) 976 return error(AliaseeLoc, "invalid aliasee"); 977 Aliasee = ID.ConstantVal; 978 } 979 980 Type *AliaseeType = Aliasee->getType(); 981 auto *PTy = dyn_cast<PointerType>(AliaseeType); 982 if (!PTy) 983 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 984 unsigned AddrSpace = PTy->getAddressSpace(); 985 986 if (IsAlias && !PTy->isOpaqueOrPointeeTypeMatches(Ty)) { 987 return error( 988 ExplicitTypeLoc, 989 typeComparisonErrorMessage( 990 "explicit pointee type doesn't match operand's pointee type", Ty, 991 PTy->getElementType())); 992 } 993 994 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) { 995 return error(ExplicitTypeLoc, 996 "explicit pointee type should be a function type"); 997 } 998 999 GlobalValue *GVal = nullptr; 1000 1001 // See if the alias was forward referenced, if so, prepare to replace the 1002 // forward reference. 1003 if (!Name.empty()) { 1004 auto I = ForwardRefVals.find(Name); 1005 if (I != ForwardRefVals.end()) { 1006 GVal = I->second.first; 1007 ForwardRefVals.erase(Name); 1008 } else if (M->getNamedValue(Name)) { 1009 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1010 } 1011 } else { 1012 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1013 if (I != ForwardRefValIDs.end()) { 1014 GVal = I->second.first; 1015 ForwardRefValIDs.erase(I); 1016 } 1017 } 1018 1019 // Okay, create the alias but do not insert it into the module yet. 1020 std::unique_ptr<GlobalIndirectSymbol> GA; 1021 if (IsAlias) 1022 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1023 (GlobalValue::LinkageTypes)Linkage, Name, 1024 Aliasee, /*Parent*/ nullptr)); 1025 else 1026 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 1027 (GlobalValue::LinkageTypes)Linkage, Name, 1028 Aliasee, /*Parent*/ nullptr)); 1029 GA->setThreadLocalMode(TLM); 1030 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1031 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1032 GA->setUnnamedAddr(UnnamedAddr); 1033 maybeSetDSOLocal(DSOLocal, *GA); 1034 1035 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1036 // Now parse them if there are any. 1037 while (Lex.getKind() == lltok::comma) { 1038 Lex.Lex(); 1039 1040 if (Lex.getKind() == lltok::kw_partition) { 1041 Lex.Lex(); 1042 GA->setPartition(Lex.getStrVal()); 1043 if (parseToken(lltok::StringConstant, "expected partition string")) 1044 return true; 1045 } else { 1046 return tokError("unknown alias or ifunc property!"); 1047 } 1048 } 1049 1050 if (Name.empty()) 1051 NumberedVals.push_back(GA.get()); 1052 1053 if (GVal) { 1054 // Verify that types agree. 1055 if (GVal->getType() != GA->getType()) 1056 return error( 1057 ExplicitTypeLoc, 1058 "forward reference and definition of alias have different types"); 1059 1060 // If they agree, just RAUW the old value with the alias and remove the 1061 // forward ref info. 1062 GVal->replaceAllUsesWith(GA.get()); 1063 GVal->eraseFromParent(); 1064 } 1065 1066 // Insert into the module, we know its name won't collide now. 1067 if (IsAlias) 1068 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1069 else 1070 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1071 assert(GA->getName() == Name && "Should not be a name conflict!"); 1072 1073 // The module owns this now 1074 GA.release(); 1075 1076 return false; 1077 } 1078 1079 /// parseGlobal 1080 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1081 /// OptionalVisibility OptionalDLLStorageClass 1082 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1083 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1084 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1085 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1086 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1087 /// Const OptionalAttrs 1088 /// 1089 /// Everything up to and including OptionalUnnamedAddr has been parsed 1090 /// already. 1091 /// 1092 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1093 unsigned Linkage, bool HasLinkage, 1094 unsigned Visibility, unsigned DLLStorageClass, 1095 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1096 GlobalVariable::UnnamedAddr UnnamedAddr) { 1097 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1098 return error(NameLoc, 1099 "symbol with local linkage must have default visibility"); 1100 1101 unsigned AddrSpace; 1102 bool IsConstant, IsExternallyInitialized; 1103 LocTy IsExternallyInitializedLoc; 1104 LocTy TyLoc; 1105 1106 Type *Ty = nullptr; 1107 if (parseOptionalAddrSpace(AddrSpace) || 1108 parseOptionalToken(lltok::kw_externally_initialized, 1109 IsExternallyInitialized, 1110 &IsExternallyInitializedLoc) || 1111 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1112 return true; 1113 1114 // If the linkage is specified and is external, then no initializer is 1115 // present. 1116 Constant *Init = nullptr; 1117 if (!HasLinkage || 1118 !GlobalValue::isValidDeclarationLinkage( 1119 (GlobalValue::LinkageTypes)Linkage)) { 1120 if (parseGlobalValue(Ty, Init)) 1121 return true; 1122 } 1123 1124 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1125 return error(TyLoc, "invalid type for global variable"); 1126 1127 GlobalValue *GVal = nullptr; 1128 1129 // See if the global was forward referenced, if so, use the global. 1130 if (!Name.empty()) { 1131 auto I = ForwardRefVals.find(Name); 1132 if (I != ForwardRefVals.end()) { 1133 GVal = I->second.first; 1134 ForwardRefVals.erase(I); 1135 } else if (M->getNamedValue(Name)) { 1136 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1137 } 1138 } else { 1139 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1140 if (I != ForwardRefValIDs.end()) { 1141 GVal = I->second.first; 1142 ForwardRefValIDs.erase(I); 1143 } 1144 } 1145 1146 GlobalVariable *GV = new GlobalVariable( 1147 *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr, 1148 GlobalVariable::NotThreadLocal, AddrSpace); 1149 1150 if (Name.empty()) 1151 NumberedVals.push_back(GV); 1152 1153 // Set the parsed properties on the global. 1154 if (Init) 1155 GV->setInitializer(Init); 1156 GV->setConstant(IsConstant); 1157 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1158 maybeSetDSOLocal(DSOLocal, *GV); 1159 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1160 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1161 GV->setExternallyInitialized(IsExternallyInitialized); 1162 GV->setThreadLocalMode(TLM); 1163 GV->setUnnamedAddr(UnnamedAddr); 1164 1165 if (GVal) { 1166 if (!GVal->getType()->isOpaque() && GVal->getValueType() != Ty) 1167 return error( 1168 TyLoc, 1169 "forward reference and definition of global have different types"); 1170 1171 GVal->replaceAllUsesWith(GV); 1172 GVal->eraseFromParent(); 1173 } 1174 1175 // parse attributes on the global. 1176 while (Lex.getKind() == lltok::comma) { 1177 Lex.Lex(); 1178 1179 if (Lex.getKind() == lltok::kw_section) { 1180 Lex.Lex(); 1181 GV->setSection(Lex.getStrVal()); 1182 if (parseToken(lltok::StringConstant, "expected global section string")) 1183 return true; 1184 } else if (Lex.getKind() == lltok::kw_partition) { 1185 Lex.Lex(); 1186 GV->setPartition(Lex.getStrVal()); 1187 if (parseToken(lltok::StringConstant, "expected partition string")) 1188 return true; 1189 } else if (Lex.getKind() == lltok::kw_align) { 1190 MaybeAlign Alignment; 1191 if (parseOptionalAlignment(Alignment)) 1192 return true; 1193 GV->setAlignment(Alignment); 1194 } else if (Lex.getKind() == lltok::MetadataVar) { 1195 if (parseGlobalObjectMetadataAttachment(*GV)) 1196 return true; 1197 } else { 1198 Comdat *C; 1199 if (parseOptionalComdat(Name, C)) 1200 return true; 1201 if (C) 1202 GV->setComdat(C); 1203 else 1204 return tokError("unknown global variable property!"); 1205 } 1206 } 1207 1208 AttrBuilder Attrs; 1209 LocTy BuiltinLoc; 1210 std::vector<unsigned> FwdRefAttrGrps; 1211 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1212 return true; 1213 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1214 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1215 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1216 } 1217 1218 return false; 1219 } 1220 1221 /// parseUnnamedAttrGrp 1222 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1223 bool LLParser::parseUnnamedAttrGrp() { 1224 assert(Lex.getKind() == lltok::kw_attributes); 1225 LocTy AttrGrpLoc = Lex.getLoc(); 1226 Lex.Lex(); 1227 1228 if (Lex.getKind() != lltok::AttrGrpID) 1229 return tokError("expected attribute group id"); 1230 1231 unsigned VarID = Lex.getUIntVal(); 1232 std::vector<unsigned> unused; 1233 LocTy BuiltinLoc; 1234 Lex.Lex(); 1235 1236 if (parseToken(lltok::equal, "expected '=' here") || 1237 parseToken(lltok::lbrace, "expected '{' here") || 1238 parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1239 BuiltinLoc) || 1240 parseToken(lltok::rbrace, "expected end of attribute group")) 1241 return true; 1242 1243 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1244 return error(AttrGrpLoc, "attribute group has no attributes"); 1245 1246 return false; 1247 } 1248 1249 /// parseFnAttributeValuePairs 1250 /// ::= <attr> | <attr> '=' <value> 1251 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1252 std::vector<unsigned> &FwdRefAttrGrps, 1253 bool inAttrGrp, LocTy &BuiltinLoc) { 1254 bool HaveError = false; 1255 1256 B.clear(); 1257 1258 while (true) { 1259 lltok::Kind Token = Lex.getKind(); 1260 if (Token == lltok::kw_builtin) 1261 BuiltinLoc = Lex.getLoc(); 1262 switch (Token) { 1263 default: 1264 if (!inAttrGrp) return HaveError; 1265 return error(Lex.getLoc(), "unterminated attribute group"); 1266 case lltok::rbrace: 1267 // Finished. 1268 return false; 1269 1270 case lltok::AttrGrpID: { 1271 // Allow a function to reference an attribute group: 1272 // 1273 // define void @foo() #1 { ... } 1274 if (inAttrGrp) 1275 HaveError |= error( 1276 Lex.getLoc(), 1277 "cannot have an attribute group reference in an attribute group"); 1278 1279 unsigned AttrGrpNum = Lex.getUIntVal(); 1280 if (inAttrGrp) break; 1281 1282 // Save the reference to the attribute group. We'll fill it in later. 1283 FwdRefAttrGrps.push_back(AttrGrpNum); 1284 break; 1285 } 1286 // Target-dependent attributes: 1287 case lltok::StringConstant: { 1288 if (parseStringAttribute(B)) 1289 return true; 1290 continue; 1291 } 1292 1293 // Target-independent attributes: 1294 case lltok::kw_align: { 1295 // As a hack, we allow function alignment to be initially parsed as an 1296 // attribute on a function declaration/definition or added to an attribute 1297 // group and later moved to the alignment field. 1298 MaybeAlign Alignment; 1299 if (inAttrGrp) { 1300 Lex.Lex(); 1301 uint32_t Value = 0; 1302 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1303 return true; 1304 Alignment = Align(Value); 1305 } else { 1306 if (parseOptionalAlignment(Alignment)) 1307 return true; 1308 } 1309 B.addAlignmentAttr(Alignment); 1310 continue; 1311 } 1312 case lltok::kw_alignstack: { 1313 unsigned Alignment; 1314 if (inAttrGrp) { 1315 Lex.Lex(); 1316 if (parseToken(lltok::equal, "expected '=' here") || 1317 parseUInt32(Alignment)) 1318 return true; 1319 } else { 1320 if (parseOptionalStackAlignment(Alignment)) 1321 return true; 1322 } 1323 B.addStackAlignmentAttr(Alignment); 1324 continue; 1325 } 1326 case lltok::kw_allocsize: { 1327 unsigned ElemSizeArg; 1328 Optional<unsigned> NumElemsArg; 1329 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1330 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1331 return true; 1332 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1333 continue; 1334 } 1335 case lltok::kw_vscale_range: { 1336 unsigned MinValue, MaxValue; 1337 // inAttrGrp doesn't matter; we only support vscale_range(a[, b]) 1338 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1339 return true; 1340 B.addVScaleRangeAttr(MinValue, MaxValue); 1341 continue; 1342 } 1343 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1344 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1345 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1346 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1347 case lltok::kw_hot: B.addAttribute(Attribute::Hot); break; 1348 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1349 case lltok::kw_inaccessiblememonly: 1350 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1351 case lltok::kw_inaccessiblemem_or_argmemonly: 1352 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1353 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1354 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1355 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1356 case lltok::kw_mustprogress: 1357 B.addAttribute(Attribute::MustProgress); 1358 break; 1359 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1360 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1361 case lltok::kw_nocallback: 1362 B.addAttribute(Attribute::NoCallback); 1363 break; 1364 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1365 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1366 case lltok::kw_noimplicitfloat: 1367 B.addAttribute(Attribute::NoImplicitFloat); break; 1368 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1369 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1370 case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break; 1371 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1372 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1373 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1374 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1375 case lltok::kw_noprofile: B.addAttribute(Attribute::NoProfile); break; 1376 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1377 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1378 case lltok::kw_nosanitize_coverage: 1379 B.addAttribute(Attribute::NoSanitizeCoverage); 1380 break; 1381 case lltok::kw_null_pointer_is_valid: 1382 B.addAttribute(Attribute::NullPointerIsValid); break; 1383 case lltok::kw_optforfuzzing: 1384 B.addAttribute(Attribute::OptForFuzzing); break; 1385 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1386 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1387 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1388 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1389 case lltok::kw_returns_twice: 1390 B.addAttribute(Attribute::ReturnsTwice); break; 1391 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1392 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1393 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1394 case lltok::kw_sspstrong: 1395 B.addAttribute(Attribute::StackProtectStrong); break; 1396 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1397 case lltok::kw_shadowcallstack: 1398 B.addAttribute(Attribute::ShadowCallStack); break; 1399 case lltok::kw_sanitize_address: 1400 B.addAttribute(Attribute::SanitizeAddress); break; 1401 case lltok::kw_sanitize_hwaddress: 1402 B.addAttribute(Attribute::SanitizeHWAddress); break; 1403 case lltok::kw_sanitize_memtag: 1404 B.addAttribute(Attribute::SanitizeMemTag); break; 1405 case lltok::kw_sanitize_thread: 1406 B.addAttribute(Attribute::SanitizeThread); break; 1407 case lltok::kw_sanitize_memory: 1408 B.addAttribute(Attribute::SanitizeMemory); break; 1409 case lltok::kw_speculative_load_hardening: 1410 B.addAttribute(Attribute::SpeculativeLoadHardening); 1411 break; 1412 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1413 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1414 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1415 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1416 case lltok::kw_preallocated: { 1417 Type *Ty; 1418 if (parsePreallocated(Ty)) 1419 return true; 1420 B.addPreallocatedAttr(Ty); 1421 break; 1422 } 1423 1424 // error handling. 1425 case lltok::kw_inreg: 1426 case lltok::kw_signext: 1427 case lltok::kw_zeroext: 1428 HaveError |= 1429 error(Lex.getLoc(), "invalid use of attribute on a function"); 1430 break; 1431 case lltok::kw_byval: 1432 case lltok::kw_dereferenceable: 1433 case lltok::kw_dereferenceable_or_null: 1434 case lltok::kw_inalloca: 1435 case lltok::kw_nest: 1436 case lltok::kw_noalias: 1437 case lltok::kw_noundef: 1438 case lltok::kw_nocapture: 1439 case lltok::kw_nonnull: 1440 case lltok::kw_returned: 1441 case lltok::kw_sret: 1442 case lltok::kw_swifterror: 1443 case lltok::kw_swiftself: 1444 case lltok::kw_swiftasync: 1445 case lltok::kw_immarg: 1446 case lltok::kw_byref: 1447 HaveError |= 1448 error(Lex.getLoc(), 1449 "invalid use of parameter-only attribute on a function"); 1450 break; 1451 } 1452 1453 // parsePreallocated() consumes token 1454 if (Token != lltok::kw_preallocated) 1455 Lex.Lex(); 1456 } 1457 } 1458 1459 //===----------------------------------------------------------------------===// 1460 // GlobalValue Reference/Resolution Routines. 1461 //===----------------------------------------------------------------------===// 1462 1463 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) { 1464 // For opaque pointers, the used global type does not matter. We will later 1465 // RAUW it with a global/function of the correct type. 1466 if (PTy->isOpaque()) 1467 return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false, 1468 GlobalValue::ExternalWeakLinkage, nullptr, "", 1469 nullptr, GlobalVariable::NotThreadLocal, 1470 PTy->getAddressSpace()); 1471 1472 if (auto *FT = dyn_cast<FunctionType>(PTy->getPointerElementType())) 1473 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1474 PTy->getAddressSpace(), "", M); 1475 else 1476 return new GlobalVariable(*M, PTy->getPointerElementType(), false, 1477 GlobalValue::ExternalWeakLinkage, nullptr, "", 1478 nullptr, GlobalVariable::NotThreadLocal, 1479 PTy->getAddressSpace()); 1480 } 1481 1482 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1483 Value *Val, bool IsCall) { 1484 Type *ValTy = Val->getType(); 1485 if (ValTy == Ty) 1486 return Val; 1487 // For calls, we also allow opaque pointers. 1488 if (IsCall && ValTy == PointerType::get(Ty->getContext(), 1489 Ty->getPointerAddressSpace())) 1490 return Val; 1491 if (Ty->isLabelTy()) 1492 error(Loc, "'" + Name + "' is not a basic block"); 1493 else 1494 error(Loc, "'" + Name + "' defined with type '" + 1495 getTypeString(Val->getType()) + "' but expected '" + 1496 getTypeString(Ty) + "'"); 1497 return nullptr; 1498 } 1499 1500 /// getGlobalVal - Get a value with the specified name or ID, creating a 1501 /// forward reference record if needed. This can return null if the value 1502 /// exists but does not have the right type. 1503 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1504 LocTy Loc, bool IsCall) { 1505 PointerType *PTy = dyn_cast<PointerType>(Ty); 1506 if (!PTy) { 1507 error(Loc, "global variable reference must have pointer type"); 1508 return nullptr; 1509 } 1510 1511 // Look this name up in the normal function symbol table. 1512 GlobalValue *Val = 1513 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1514 1515 // If this is a forward reference for the value, see if we already created a 1516 // forward ref record. 1517 if (!Val) { 1518 auto I = ForwardRefVals.find(Name); 1519 if (I != ForwardRefVals.end()) 1520 Val = I->second.first; 1521 } 1522 1523 // If we have the value in the symbol table or fwd-ref table, return it. 1524 if (Val) 1525 return cast_or_null<GlobalValue>( 1526 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1527 1528 // Otherwise, create a new forward reference for this value and remember it. 1529 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1530 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1531 return FwdVal; 1532 } 1533 1534 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1535 bool IsCall) { 1536 PointerType *PTy = dyn_cast<PointerType>(Ty); 1537 if (!PTy) { 1538 error(Loc, "global variable reference must have pointer type"); 1539 return nullptr; 1540 } 1541 1542 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1543 1544 // If this is a forward reference for the value, see if we already created a 1545 // forward ref record. 1546 if (!Val) { 1547 auto I = ForwardRefValIDs.find(ID); 1548 if (I != ForwardRefValIDs.end()) 1549 Val = I->second.first; 1550 } 1551 1552 // If we have the value in the symbol table or fwd-ref table, return it. 1553 if (Val) 1554 return cast_or_null<GlobalValue>( 1555 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1556 1557 // Otherwise, create a new forward reference for this value and remember it. 1558 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1559 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1560 return FwdVal; 1561 } 1562 1563 //===----------------------------------------------------------------------===// 1564 // Comdat Reference/Resolution Routines. 1565 //===----------------------------------------------------------------------===// 1566 1567 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1568 // Look this name up in the comdat symbol table. 1569 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1570 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1571 if (I != ComdatSymTab.end()) 1572 return &I->second; 1573 1574 // Otherwise, create a new forward reference for this value and remember it. 1575 Comdat *C = M->getOrInsertComdat(Name); 1576 ForwardRefComdats[Name] = Loc; 1577 return C; 1578 } 1579 1580 //===----------------------------------------------------------------------===// 1581 // Helper Routines. 1582 //===----------------------------------------------------------------------===// 1583 1584 /// parseToken - If the current token has the specified kind, eat it and return 1585 /// success. Otherwise, emit the specified error and return failure. 1586 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1587 if (Lex.getKind() != T) 1588 return tokError(ErrMsg); 1589 Lex.Lex(); 1590 return false; 1591 } 1592 1593 /// parseStringConstant 1594 /// ::= StringConstant 1595 bool LLParser::parseStringConstant(std::string &Result) { 1596 if (Lex.getKind() != lltok::StringConstant) 1597 return tokError("expected string constant"); 1598 Result = Lex.getStrVal(); 1599 Lex.Lex(); 1600 return false; 1601 } 1602 1603 /// parseUInt32 1604 /// ::= uint32 1605 bool LLParser::parseUInt32(uint32_t &Val) { 1606 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1607 return tokError("expected integer"); 1608 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1609 if (Val64 != unsigned(Val64)) 1610 return tokError("expected 32-bit integer (too large)"); 1611 Val = Val64; 1612 Lex.Lex(); 1613 return false; 1614 } 1615 1616 /// parseUInt64 1617 /// ::= uint64 1618 bool LLParser::parseUInt64(uint64_t &Val) { 1619 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1620 return tokError("expected integer"); 1621 Val = Lex.getAPSIntVal().getLimitedValue(); 1622 Lex.Lex(); 1623 return false; 1624 } 1625 1626 /// parseTLSModel 1627 /// := 'localdynamic' 1628 /// := 'initialexec' 1629 /// := 'localexec' 1630 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1631 switch (Lex.getKind()) { 1632 default: 1633 return tokError("expected localdynamic, initialexec or localexec"); 1634 case lltok::kw_localdynamic: 1635 TLM = GlobalVariable::LocalDynamicTLSModel; 1636 break; 1637 case lltok::kw_initialexec: 1638 TLM = GlobalVariable::InitialExecTLSModel; 1639 break; 1640 case lltok::kw_localexec: 1641 TLM = GlobalVariable::LocalExecTLSModel; 1642 break; 1643 } 1644 1645 Lex.Lex(); 1646 return false; 1647 } 1648 1649 /// parseOptionalThreadLocal 1650 /// := /*empty*/ 1651 /// := 'thread_local' 1652 /// := 'thread_local' '(' tlsmodel ')' 1653 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1654 TLM = GlobalVariable::NotThreadLocal; 1655 if (!EatIfPresent(lltok::kw_thread_local)) 1656 return false; 1657 1658 TLM = GlobalVariable::GeneralDynamicTLSModel; 1659 if (Lex.getKind() == lltok::lparen) { 1660 Lex.Lex(); 1661 return parseTLSModel(TLM) || 1662 parseToken(lltok::rparen, "expected ')' after thread local model"); 1663 } 1664 return false; 1665 } 1666 1667 /// parseOptionalAddrSpace 1668 /// := /*empty*/ 1669 /// := 'addrspace' '(' uint32 ')' 1670 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1671 AddrSpace = DefaultAS; 1672 if (!EatIfPresent(lltok::kw_addrspace)) 1673 return false; 1674 return parseToken(lltok::lparen, "expected '(' in address space") || 1675 parseUInt32(AddrSpace) || 1676 parseToken(lltok::rparen, "expected ')' in address space"); 1677 } 1678 1679 /// parseStringAttribute 1680 /// := StringConstant 1681 /// := StringConstant '=' StringConstant 1682 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1683 std::string Attr = Lex.getStrVal(); 1684 Lex.Lex(); 1685 std::string Val; 1686 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1687 return true; 1688 B.addAttribute(Attr, Val); 1689 return false; 1690 } 1691 1692 /// parseOptionalParamAttrs - parse a potentially empty list of parameter 1693 /// attributes. 1694 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) { 1695 bool HaveError = false; 1696 1697 B.clear(); 1698 1699 while (true) { 1700 lltok::Kind Token = Lex.getKind(); 1701 switch (Token) { 1702 default: // End of attributes. 1703 return HaveError; 1704 case lltok::StringConstant: { 1705 if (parseStringAttribute(B)) 1706 return true; 1707 continue; 1708 } 1709 case lltok::kw_align: { 1710 MaybeAlign Alignment; 1711 if (parseOptionalAlignment(Alignment, true)) 1712 return true; 1713 B.addAlignmentAttr(Alignment); 1714 continue; 1715 } 1716 case lltok::kw_alignstack: { 1717 unsigned Alignment; 1718 if (parseOptionalStackAlignment(Alignment)) 1719 return true; 1720 B.addStackAlignmentAttr(Alignment); 1721 continue; 1722 } 1723 case lltok::kw_byval: { 1724 Type *Ty; 1725 if (parseRequiredTypeAttr(Ty, lltok::kw_byval)) 1726 return true; 1727 B.addByValAttr(Ty); 1728 continue; 1729 } 1730 case lltok::kw_sret: { 1731 Type *Ty; 1732 if (parseRequiredTypeAttr(Ty, lltok::kw_sret)) 1733 return true; 1734 B.addStructRetAttr(Ty); 1735 continue; 1736 } 1737 case lltok::kw_preallocated: { 1738 Type *Ty; 1739 if (parsePreallocated(Ty)) 1740 return true; 1741 B.addPreallocatedAttr(Ty); 1742 continue; 1743 } 1744 case lltok::kw_inalloca: { 1745 Type *Ty; 1746 if (parseInalloca(Ty)) 1747 return true; 1748 B.addInAllocaAttr(Ty); 1749 continue; 1750 } 1751 case lltok::kw_dereferenceable: { 1752 uint64_t Bytes; 1753 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1754 return true; 1755 B.addDereferenceableAttr(Bytes); 1756 continue; 1757 } 1758 case lltok::kw_dereferenceable_or_null: { 1759 uint64_t Bytes; 1760 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1761 return true; 1762 B.addDereferenceableOrNullAttr(Bytes); 1763 continue; 1764 } 1765 case lltok::kw_byref: { 1766 Type *Ty; 1767 if (parseByRef(Ty)) 1768 return true; 1769 B.addByRefAttr(Ty); 1770 continue; 1771 } 1772 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1773 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1774 case lltok::kw_noundef: 1775 B.addAttribute(Attribute::NoUndef); 1776 break; 1777 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1778 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1779 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1780 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1781 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1782 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1783 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1784 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1785 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1786 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1787 case lltok::kw_swiftasync: B.addAttribute(Attribute::SwiftAsync); break; 1788 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1789 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1790 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1791 1792 case lltok::kw_alwaysinline: 1793 case lltok::kw_argmemonly: 1794 case lltok::kw_builtin: 1795 case lltok::kw_inlinehint: 1796 case lltok::kw_jumptable: 1797 case lltok::kw_minsize: 1798 case lltok::kw_mustprogress: 1799 case lltok::kw_naked: 1800 case lltok::kw_nobuiltin: 1801 case lltok::kw_noduplicate: 1802 case lltok::kw_noimplicitfloat: 1803 case lltok::kw_noinline: 1804 case lltok::kw_nonlazybind: 1805 case lltok::kw_nomerge: 1806 case lltok::kw_noprofile: 1807 case lltok::kw_noredzone: 1808 case lltok::kw_noreturn: 1809 case lltok::kw_nocf_check: 1810 case lltok::kw_nounwind: 1811 case lltok::kw_nosanitize_coverage: 1812 case lltok::kw_optforfuzzing: 1813 case lltok::kw_optnone: 1814 case lltok::kw_optsize: 1815 case lltok::kw_returns_twice: 1816 case lltok::kw_sanitize_address: 1817 case lltok::kw_sanitize_hwaddress: 1818 case lltok::kw_sanitize_memtag: 1819 case lltok::kw_sanitize_memory: 1820 case lltok::kw_sanitize_thread: 1821 case lltok::kw_speculative_load_hardening: 1822 case lltok::kw_ssp: 1823 case lltok::kw_sspreq: 1824 case lltok::kw_sspstrong: 1825 case lltok::kw_safestack: 1826 case lltok::kw_shadowcallstack: 1827 case lltok::kw_strictfp: 1828 case lltok::kw_uwtable: 1829 case lltok::kw_vscale_range: 1830 HaveError |= 1831 error(Lex.getLoc(), "invalid use of function-only attribute"); 1832 break; 1833 } 1834 1835 Lex.Lex(); 1836 } 1837 } 1838 1839 /// parseOptionalReturnAttrs - parse a potentially empty list of return 1840 /// attributes. 1841 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) { 1842 bool HaveError = false; 1843 1844 B.clear(); 1845 1846 while (true) { 1847 lltok::Kind Token = Lex.getKind(); 1848 switch (Token) { 1849 default: // End of attributes. 1850 return HaveError; 1851 case lltok::StringConstant: { 1852 if (parseStringAttribute(B)) 1853 return true; 1854 continue; 1855 } 1856 case lltok::kw_dereferenceable: { 1857 uint64_t Bytes; 1858 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1859 return true; 1860 B.addDereferenceableAttr(Bytes); 1861 continue; 1862 } 1863 case lltok::kw_dereferenceable_or_null: { 1864 uint64_t Bytes; 1865 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1866 return true; 1867 B.addDereferenceableOrNullAttr(Bytes); 1868 continue; 1869 } 1870 case lltok::kw_align: { 1871 MaybeAlign Alignment; 1872 if (parseOptionalAlignment(Alignment)) 1873 return true; 1874 B.addAlignmentAttr(Alignment); 1875 continue; 1876 } 1877 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1878 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1879 case lltok::kw_noundef: 1880 B.addAttribute(Attribute::NoUndef); 1881 break; 1882 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1883 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1884 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1885 1886 // error handling. 1887 case lltok::kw_byval: 1888 case lltok::kw_inalloca: 1889 case lltok::kw_nest: 1890 case lltok::kw_nocapture: 1891 case lltok::kw_returned: 1892 case lltok::kw_sret: 1893 case lltok::kw_swifterror: 1894 case lltok::kw_swiftself: 1895 case lltok::kw_swiftasync: 1896 case lltok::kw_immarg: 1897 case lltok::kw_byref: 1898 HaveError |= 1899 error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1900 break; 1901 1902 case lltok::kw_alignstack: 1903 case lltok::kw_alwaysinline: 1904 case lltok::kw_argmemonly: 1905 case lltok::kw_builtin: 1906 case lltok::kw_cold: 1907 case lltok::kw_inlinehint: 1908 case lltok::kw_jumptable: 1909 case lltok::kw_minsize: 1910 case lltok::kw_mustprogress: 1911 case lltok::kw_naked: 1912 case lltok::kw_nobuiltin: 1913 case lltok::kw_noduplicate: 1914 case lltok::kw_noimplicitfloat: 1915 case lltok::kw_noinline: 1916 case lltok::kw_nonlazybind: 1917 case lltok::kw_nomerge: 1918 case lltok::kw_noprofile: 1919 case lltok::kw_noredzone: 1920 case lltok::kw_noreturn: 1921 case lltok::kw_nocf_check: 1922 case lltok::kw_nounwind: 1923 case lltok::kw_nosanitize_coverage: 1924 case lltok::kw_optforfuzzing: 1925 case lltok::kw_optnone: 1926 case lltok::kw_optsize: 1927 case lltok::kw_returns_twice: 1928 case lltok::kw_sanitize_address: 1929 case lltok::kw_sanitize_hwaddress: 1930 case lltok::kw_sanitize_memtag: 1931 case lltok::kw_sanitize_memory: 1932 case lltok::kw_sanitize_thread: 1933 case lltok::kw_speculative_load_hardening: 1934 case lltok::kw_ssp: 1935 case lltok::kw_sspreq: 1936 case lltok::kw_sspstrong: 1937 case lltok::kw_safestack: 1938 case lltok::kw_shadowcallstack: 1939 case lltok::kw_strictfp: 1940 case lltok::kw_uwtable: 1941 case lltok::kw_vscale_range: 1942 HaveError |= 1943 error(Lex.getLoc(), "invalid use of function-only attribute"); 1944 break; 1945 case lltok::kw_readnone: 1946 case lltok::kw_readonly: 1947 HaveError |= 1948 error(Lex.getLoc(), "invalid use of attribute on return type"); 1949 break; 1950 case lltok::kw_preallocated: 1951 HaveError |= 1952 error(Lex.getLoc(), 1953 "invalid use of parameter-only/call site-only attribute"); 1954 break; 1955 } 1956 1957 Lex.Lex(); 1958 } 1959 } 1960 1961 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1962 HasLinkage = true; 1963 switch (Kind) { 1964 default: 1965 HasLinkage = false; 1966 return GlobalValue::ExternalLinkage; 1967 case lltok::kw_private: 1968 return GlobalValue::PrivateLinkage; 1969 case lltok::kw_internal: 1970 return GlobalValue::InternalLinkage; 1971 case lltok::kw_weak: 1972 return GlobalValue::WeakAnyLinkage; 1973 case lltok::kw_weak_odr: 1974 return GlobalValue::WeakODRLinkage; 1975 case lltok::kw_linkonce: 1976 return GlobalValue::LinkOnceAnyLinkage; 1977 case lltok::kw_linkonce_odr: 1978 return GlobalValue::LinkOnceODRLinkage; 1979 case lltok::kw_available_externally: 1980 return GlobalValue::AvailableExternallyLinkage; 1981 case lltok::kw_appending: 1982 return GlobalValue::AppendingLinkage; 1983 case lltok::kw_common: 1984 return GlobalValue::CommonLinkage; 1985 case lltok::kw_extern_weak: 1986 return GlobalValue::ExternalWeakLinkage; 1987 case lltok::kw_external: 1988 return GlobalValue::ExternalLinkage; 1989 } 1990 } 1991 1992 /// parseOptionalLinkage 1993 /// ::= /*empty*/ 1994 /// ::= 'private' 1995 /// ::= 'internal' 1996 /// ::= 'weak' 1997 /// ::= 'weak_odr' 1998 /// ::= 'linkonce' 1999 /// ::= 'linkonce_odr' 2000 /// ::= 'available_externally' 2001 /// ::= 'appending' 2002 /// ::= 'common' 2003 /// ::= 'extern_weak' 2004 /// ::= 'external' 2005 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 2006 unsigned &Visibility, 2007 unsigned &DLLStorageClass, bool &DSOLocal) { 2008 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 2009 if (HasLinkage) 2010 Lex.Lex(); 2011 parseOptionalDSOLocal(DSOLocal); 2012 parseOptionalVisibility(Visibility); 2013 parseOptionalDLLStorageClass(DLLStorageClass); 2014 2015 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 2016 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 2017 } 2018 2019 return false; 2020 } 2021 2022 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 2023 switch (Lex.getKind()) { 2024 default: 2025 DSOLocal = false; 2026 break; 2027 case lltok::kw_dso_local: 2028 DSOLocal = true; 2029 Lex.Lex(); 2030 break; 2031 case lltok::kw_dso_preemptable: 2032 DSOLocal = false; 2033 Lex.Lex(); 2034 break; 2035 } 2036 } 2037 2038 /// parseOptionalVisibility 2039 /// ::= /*empty*/ 2040 /// ::= 'default' 2041 /// ::= 'hidden' 2042 /// ::= 'protected' 2043 /// 2044 void LLParser::parseOptionalVisibility(unsigned &Res) { 2045 switch (Lex.getKind()) { 2046 default: 2047 Res = GlobalValue::DefaultVisibility; 2048 return; 2049 case lltok::kw_default: 2050 Res = GlobalValue::DefaultVisibility; 2051 break; 2052 case lltok::kw_hidden: 2053 Res = GlobalValue::HiddenVisibility; 2054 break; 2055 case lltok::kw_protected: 2056 Res = GlobalValue::ProtectedVisibility; 2057 break; 2058 } 2059 Lex.Lex(); 2060 } 2061 2062 /// parseOptionalDLLStorageClass 2063 /// ::= /*empty*/ 2064 /// ::= 'dllimport' 2065 /// ::= 'dllexport' 2066 /// 2067 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 2068 switch (Lex.getKind()) { 2069 default: 2070 Res = GlobalValue::DefaultStorageClass; 2071 return; 2072 case lltok::kw_dllimport: 2073 Res = GlobalValue::DLLImportStorageClass; 2074 break; 2075 case lltok::kw_dllexport: 2076 Res = GlobalValue::DLLExportStorageClass; 2077 break; 2078 } 2079 Lex.Lex(); 2080 } 2081 2082 /// parseOptionalCallingConv 2083 /// ::= /*empty*/ 2084 /// ::= 'ccc' 2085 /// ::= 'fastcc' 2086 /// ::= 'intel_ocl_bicc' 2087 /// ::= 'coldcc' 2088 /// ::= 'cfguard_checkcc' 2089 /// ::= 'x86_stdcallcc' 2090 /// ::= 'x86_fastcallcc' 2091 /// ::= 'x86_thiscallcc' 2092 /// ::= 'x86_vectorcallcc' 2093 /// ::= 'arm_apcscc' 2094 /// ::= 'arm_aapcscc' 2095 /// ::= 'arm_aapcs_vfpcc' 2096 /// ::= 'aarch64_vector_pcs' 2097 /// ::= 'aarch64_sve_vector_pcs' 2098 /// ::= 'msp430_intrcc' 2099 /// ::= 'avr_intrcc' 2100 /// ::= 'avr_signalcc' 2101 /// ::= 'ptx_kernel' 2102 /// ::= 'ptx_device' 2103 /// ::= 'spir_func' 2104 /// ::= 'spir_kernel' 2105 /// ::= 'x86_64_sysvcc' 2106 /// ::= 'win64cc' 2107 /// ::= 'webkit_jscc' 2108 /// ::= 'anyregcc' 2109 /// ::= 'preserve_mostcc' 2110 /// ::= 'preserve_allcc' 2111 /// ::= 'ghccc' 2112 /// ::= 'swiftcc' 2113 /// ::= 'swifttailcc' 2114 /// ::= 'x86_intrcc' 2115 /// ::= 'hhvmcc' 2116 /// ::= 'hhvm_ccc' 2117 /// ::= 'cxx_fast_tlscc' 2118 /// ::= 'amdgpu_vs' 2119 /// ::= 'amdgpu_ls' 2120 /// ::= 'amdgpu_hs' 2121 /// ::= 'amdgpu_es' 2122 /// ::= 'amdgpu_gs' 2123 /// ::= 'amdgpu_ps' 2124 /// ::= 'amdgpu_cs' 2125 /// ::= 'amdgpu_kernel' 2126 /// ::= 'tailcc' 2127 /// ::= 'cc' UINT 2128 /// 2129 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 2130 switch (Lex.getKind()) { 2131 default: CC = CallingConv::C; return false; 2132 case lltok::kw_ccc: CC = CallingConv::C; break; 2133 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 2134 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 2135 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 2136 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 2137 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 2138 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 2139 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 2140 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 2141 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 2142 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 2143 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 2144 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 2145 case lltok::kw_aarch64_sve_vector_pcs: 2146 CC = CallingConv::AArch64_SVE_VectorCall; 2147 break; 2148 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 2149 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 2150 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 2151 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 2152 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 2153 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 2154 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 2155 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 2156 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 2157 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 2158 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 2159 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 2160 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 2161 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 2162 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 2163 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 2164 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; 2165 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 2166 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 2167 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 2168 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 2169 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2170 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 2171 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2172 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2173 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2174 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2175 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2176 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2177 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2178 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2179 case lltok::kw_cc: { 2180 Lex.Lex(); 2181 return parseUInt32(CC); 2182 } 2183 } 2184 2185 Lex.Lex(); 2186 return false; 2187 } 2188 2189 /// parseMetadataAttachment 2190 /// ::= !dbg !42 2191 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2192 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2193 2194 std::string Name = Lex.getStrVal(); 2195 Kind = M->getMDKindID(Name); 2196 Lex.Lex(); 2197 2198 return parseMDNode(MD); 2199 } 2200 2201 /// parseInstructionMetadata 2202 /// ::= !dbg !42 (',' !dbg !57)* 2203 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 2204 do { 2205 if (Lex.getKind() != lltok::MetadataVar) 2206 return tokError("expected metadata after comma"); 2207 2208 unsigned MDK; 2209 MDNode *N; 2210 if (parseMetadataAttachment(MDK, N)) 2211 return true; 2212 2213 Inst.setMetadata(MDK, N); 2214 if (MDK == LLVMContext::MD_tbaa) 2215 InstsWithTBAATag.push_back(&Inst); 2216 2217 // If this is the end of the list, we're done. 2218 } while (EatIfPresent(lltok::comma)); 2219 return false; 2220 } 2221 2222 /// parseGlobalObjectMetadataAttachment 2223 /// ::= !dbg !57 2224 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2225 unsigned MDK; 2226 MDNode *N; 2227 if (parseMetadataAttachment(MDK, N)) 2228 return true; 2229 2230 GO.addMetadata(MDK, *N); 2231 return false; 2232 } 2233 2234 /// parseOptionalFunctionMetadata 2235 /// ::= (!dbg !57)* 2236 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 2237 while (Lex.getKind() == lltok::MetadataVar) 2238 if (parseGlobalObjectMetadataAttachment(F)) 2239 return true; 2240 return false; 2241 } 2242 2243 /// parseOptionalAlignment 2244 /// ::= /* empty */ 2245 /// ::= 'align' 4 2246 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 2247 Alignment = None; 2248 if (!EatIfPresent(lltok::kw_align)) 2249 return false; 2250 LocTy AlignLoc = Lex.getLoc(); 2251 uint32_t Value = 0; 2252 2253 LocTy ParenLoc = Lex.getLoc(); 2254 bool HaveParens = false; 2255 if (AllowParens) { 2256 if (EatIfPresent(lltok::lparen)) 2257 HaveParens = true; 2258 } 2259 2260 if (parseUInt32(Value)) 2261 return true; 2262 2263 if (HaveParens && !EatIfPresent(lltok::rparen)) 2264 return error(ParenLoc, "expected ')'"); 2265 2266 if (!isPowerOf2_32(Value)) 2267 return error(AlignLoc, "alignment is not a power of two"); 2268 if (Value > Value::MaximumAlignment) 2269 return error(AlignLoc, "huge alignments are not supported yet"); 2270 Alignment = Align(Value); 2271 return false; 2272 } 2273 2274 /// parseOptionalDerefAttrBytes 2275 /// ::= /* empty */ 2276 /// ::= AttrKind '(' 4 ')' 2277 /// 2278 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2279 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2280 uint64_t &Bytes) { 2281 assert((AttrKind == lltok::kw_dereferenceable || 2282 AttrKind == lltok::kw_dereferenceable_or_null) && 2283 "contract!"); 2284 2285 Bytes = 0; 2286 if (!EatIfPresent(AttrKind)) 2287 return false; 2288 LocTy ParenLoc = Lex.getLoc(); 2289 if (!EatIfPresent(lltok::lparen)) 2290 return error(ParenLoc, "expected '('"); 2291 LocTy DerefLoc = Lex.getLoc(); 2292 if (parseUInt64(Bytes)) 2293 return true; 2294 ParenLoc = Lex.getLoc(); 2295 if (!EatIfPresent(lltok::rparen)) 2296 return error(ParenLoc, "expected ')'"); 2297 if (!Bytes) 2298 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 2299 return false; 2300 } 2301 2302 /// parseOptionalCommaAlign 2303 /// ::= 2304 /// ::= ',' align 4 2305 /// 2306 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2307 /// end. 2308 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 2309 bool &AteExtraComma) { 2310 AteExtraComma = false; 2311 while (EatIfPresent(lltok::comma)) { 2312 // Metadata at the end is an early exit. 2313 if (Lex.getKind() == lltok::MetadataVar) { 2314 AteExtraComma = true; 2315 return false; 2316 } 2317 2318 if (Lex.getKind() != lltok::kw_align) 2319 return error(Lex.getLoc(), "expected metadata or 'align'"); 2320 2321 if (parseOptionalAlignment(Alignment)) 2322 return true; 2323 } 2324 2325 return false; 2326 } 2327 2328 /// parseOptionalCommaAddrSpace 2329 /// ::= 2330 /// ::= ',' addrspace(1) 2331 /// 2332 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2333 /// end. 2334 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2335 bool &AteExtraComma) { 2336 AteExtraComma = false; 2337 while (EatIfPresent(lltok::comma)) { 2338 // Metadata at the end is an early exit. 2339 if (Lex.getKind() == lltok::MetadataVar) { 2340 AteExtraComma = true; 2341 return false; 2342 } 2343 2344 Loc = Lex.getLoc(); 2345 if (Lex.getKind() != lltok::kw_addrspace) 2346 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2347 2348 if (parseOptionalAddrSpace(AddrSpace)) 2349 return true; 2350 } 2351 2352 return false; 2353 } 2354 2355 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2356 Optional<unsigned> &HowManyArg) { 2357 Lex.Lex(); 2358 2359 auto StartParen = Lex.getLoc(); 2360 if (!EatIfPresent(lltok::lparen)) 2361 return error(StartParen, "expected '('"); 2362 2363 if (parseUInt32(BaseSizeArg)) 2364 return true; 2365 2366 if (EatIfPresent(lltok::comma)) { 2367 auto HowManyAt = Lex.getLoc(); 2368 unsigned HowMany; 2369 if (parseUInt32(HowMany)) 2370 return true; 2371 if (HowMany == BaseSizeArg) 2372 return error(HowManyAt, 2373 "'allocsize' indices can't refer to the same parameter"); 2374 HowManyArg = HowMany; 2375 } else 2376 HowManyArg = None; 2377 2378 auto EndParen = Lex.getLoc(); 2379 if (!EatIfPresent(lltok::rparen)) 2380 return error(EndParen, "expected ')'"); 2381 return false; 2382 } 2383 2384 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2385 unsigned &MaxValue) { 2386 Lex.Lex(); 2387 2388 auto StartParen = Lex.getLoc(); 2389 if (!EatIfPresent(lltok::lparen)) 2390 return error(StartParen, "expected '('"); 2391 2392 if (parseUInt32(MinValue)) 2393 return true; 2394 2395 if (EatIfPresent(lltok::comma)) { 2396 if (parseUInt32(MaxValue)) 2397 return true; 2398 } else 2399 MaxValue = MinValue; 2400 2401 auto EndParen = Lex.getLoc(); 2402 if (!EatIfPresent(lltok::rparen)) 2403 return error(EndParen, "expected ')'"); 2404 return false; 2405 } 2406 2407 /// parseScopeAndOrdering 2408 /// if isAtomic: ::= SyncScope? AtomicOrdering 2409 /// else: ::= 2410 /// 2411 /// This sets Scope and Ordering to the parsed values. 2412 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2413 AtomicOrdering &Ordering) { 2414 if (!IsAtomic) 2415 return false; 2416 2417 return parseScope(SSID) || parseOrdering(Ordering); 2418 } 2419 2420 /// parseScope 2421 /// ::= syncscope("singlethread" | "<target scope>")? 2422 /// 2423 /// This sets synchronization scope ID to the ID of the parsed value. 2424 bool LLParser::parseScope(SyncScope::ID &SSID) { 2425 SSID = SyncScope::System; 2426 if (EatIfPresent(lltok::kw_syncscope)) { 2427 auto StartParenAt = Lex.getLoc(); 2428 if (!EatIfPresent(lltok::lparen)) 2429 return error(StartParenAt, "Expected '(' in syncscope"); 2430 2431 std::string SSN; 2432 auto SSNAt = Lex.getLoc(); 2433 if (parseStringConstant(SSN)) 2434 return error(SSNAt, "Expected synchronization scope name"); 2435 2436 auto EndParenAt = Lex.getLoc(); 2437 if (!EatIfPresent(lltok::rparen)) 2438 return error(EndParenAt, "Expected ')' in syncscope"); 2439 2440 SSID = Context.getOrInsertSyncScopeID(SSN); 2441 } 2442 2443 return false; 2444 } 2445 2446 /// parseOrdering 2447 /// ::= AtomicOrdering 2448 /// 2449 /// This sets Ordering to the parsed value. 2450 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2451 switch (Lex.getKind()) { 2452 default: 2453 return tokError("Expected ordering on atomic instruction"); 2454 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2455 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2456 // Not specified yet: 2457 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2458 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2459 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2460 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2461 case lltok::kw_seq_cst: 2462 Ordering = AtomicOrdering::SequentiallyConsistent; 2463 break; 2464 } 2465 Lex.Lex(); 2466 return false; 2467 } 2468 2469 /// parseOptionalStackAlignment 2470 /// ::= /* empty */ 2471 /// ::= 'alignstack' '(' 4 ')' 2472 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2473 Alignment = 0; 2474 if (!EatIfPresent(lltok::kw_alignstack)) 2475 return false; 2476 LocTy ParenLoc = Lex.getLoc(); 2477 if (!EatIfPresent(lltok::lparen)) 2478 return error(ParenLoc, "expected '('"); 2479 LocTy AlignLoc = Lex.getLoc(); 2480 if (parseUInt32(Alignment)) 2481 return true; 2482 ParenLoc = Lex.getLoc(); 2483 if (!EatIfPresent(lltok::rparen)) 2484 return error(ParenLoc, "expected ')'"); 2485 if (!isPowerOf2_32(Alignment)) 2486 return error(AlignLoc, "stack alignment is not a power of two"); 2487 return false; 2488 } 2489 2490 /// parseIndexList - This parses the index list for an insert/extractvalue 2491 /// instruction. This sets AteExtraComma in the case where we eat an extra 2492 /// comma at the end of the line and find that it is followed by metadata. 2493 /// Clients that don't allow metadata can call the version of this function that 2494 /// only takes one argument. 2495 /// 2496 /// parseIndexList 2497 /// ::= (',' uint32)+ 2498 /// 2499 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2500 bool &AteExtraComma) { 2501 AteExtraComma = false; 2502 2503 if (Lex.getKind() != lltok::comma) 2504 return tokError("expected ',' as start of index list"); 2505 2506 while (EatIfPresent(lltok::comma)) { 2507 if (Lex.getKind() == lltok::MetadataVar) { 2508 if (Indices.empty()) 2509 return tokError("expected index"); 2510 AteExtraComma = true; 2511 return false; 2512 } 2513 unsigned Idx = 0; 2514 if (parseUInt32(Idx)) 2515 return true; 2516 Indices.push_back(Idx); 2517 } 2518 2519 return false; 2520 } 2521 2522 //===----------------------------------------------------------------------===// 2523 // Type Parsing. 2524 //===----------------------------------------------------------------------===// 2525 2526 /// parseType - parse a type. 2527 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2528 SMLoc TypeLoc = Lex.getLoc(); 2529 switch (Lex.getKind()) { 2530 default: 2531 return tokError(Msg); 2532 case lltok::Type: 2533 // Type ::= 'float' | 'void' (etc) 2534 Result = Lex.getTyVal(); 2535 Lex.Lex(); 2536 break; 2537 case lltok::lbrace: 2538 // Type ::= StructType 2539 if (parseAnonStructType(Result, false)) 2540 return true; 2541 break; 2542 case lltok::lsquare: 2543 // Type ::= '[' ... ']' 2544 Lex.Lex(); // eat the lsquare. 2545 if (parseArrayVectorType(Result, false)) 2546 return true; 2547 break; 2548 case lltok::less: // Either vector or packed struct. 2549 // Type ::= '<' ... '>' 2550 Lex.Lex(); 2551 if (Lex.getKind() == lltok::lbrace) { 2552 if (parseAnonStructType(Result, true) || 2553 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2554 return true; 2555 } else if (parseArrayVectorType(Result, true)) 2556 return true; 2557 break; 2558 case lltok::LocalVar: { 2559 // Type ::= %foo 2560 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2561 2562 // If the type hasn't been defined yet, create a forward definition and 2563 // remember where that forward def'n was seen (in case it never is defined). 2564 if (!Entry.first) { 2565 Entry.first = StructType::create(Context, Lex.getStrVal()); 2566 Entry.second = Lex.getLoc(); 2567 } 2568 Result = Entry.first; 2569 Lex.Lex(); 2570 break; 2571 } 2572 2573 case lltok::LocalVarID: { 2574 // Type ::= %4 2575 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2576 2577 // If the type hasn't been defined yet, create a forward definition and 2578 // remember where that forward def'n was seen (in case it never is defined). 2579 if (!Entry.first) { 2580 Entry.first = StructType::create(Context); 2581 Entry.second = Lex.getLoc(); 2582 } 2583 Result = Entry.first; 2584 Lex.Lex(); 2585 break; 2586 } 2587 } 2588 2589 // Handle (explicit) opaque pointer types (not --force-opaque-pointers). 2590 // 2591 // Type ::= ptr ('addrspace' '(' uint32 ')')? 2592 if (Result->isOpaquePointerTy()) { 2593 unsigned AddrSpace; 2594 if (parseOptionalAddrSpace(AddrSpace)) 2595 return true; 2596 Result = PointerType::get(getContext(), AddrSpace); 2597 2598 // Give a nice error for 'ptr*'. 2599 if (Lex.getKind() == lltok::star) 2600 return tokError("ptr* is invalid - use ptr instead"); 2601 2602 // Fall through to parsing the type suffixes only if this 'ptr' is a 2603 // function return. Otherwise, return success, implicitly rejecting other 2604 // suffixes. 2605 if (Lex.getKind() != lltok::lparen) 2606 return false; 2607 } 2608 2609 // parse the type suffixes. 2610 while (true) { 2611 switch (Lex.getKind()) { 2612 // End of type. 2613 default: 2614 if (!AllowVoid && Result->isVoidTy()) 2615 return error(TypeLoc, "void type only allowed for function results"); 2616 return false; 2617 2618 // Type ::= Type '*' 2619 case lltok::star: 2620 if (Result->isLabelTy()) 2621 return tokError("basic block pointers are invalid"); 2622 if (Result->isVoidTy()) 2623 return tokError("pointers to void are invalid - use i8* instead"); 2624 if (!PointerType::isValidElementType(Result)) 2625 return tokError("pointer to this type is invalid"); 2626 Result = PointerType::getUnqual(Result); 2627 Lex.Lex(); 2628 break; 2629 2630 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2631 case lltok::kw_addrspace: { 2632 if (Result->isLabelTy()) 2633 return tokError("basic block pointers are invalid"); 2634 if (Result->isVoidTy()) 2635 return tokError("pointers to void are invalid; use i8* instead"); 2636 if (!PointerType::isValidElementType(Result)) 2637 return tokError("pointer to this type is invalid"); 2638 unsigned AddrSpace; 2639 if (parseOptionalAddrSpace(AddrSpace) || 2640 parseToken(lltok::star, "expected '*' in address space")) 2641 return true; 2642 2643 Result = PointerType::get(Result, AddrSpace); 2644 break; 2645 } 2646 2647 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2648 case lltok::lparen: 2649 if (parseFunctionType(Result)) 2650 return true; 2651 break; 2652 } 2653 } 2654 } 2655 2656 /// parseParameterList 2657 /// ::= '(' ')' 2658 /// ::= '(' Arg (',' Arg)* ')' 2659 /// Arg 2660 /// ::= Type OptionalAttributes Value OptionalAttributes 2661 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2662 PerFunctionState &PFS, bool IsMustTailCall, 2663 bool InVarArgsFunc) { 2664 if (parseToken(lltok::lparen, "expected '(' in call")) 2665 return true; 2666 2667 while (Lex.getKind() != lltok::rparen) { 2668 // If this isn't the first argument, we need a comma. 2669 if (!ArgList.empty() && 2670 parseToken(lltok::comma, "expected ',' in argument list")) 2671 return true; 2672 2673 // parse an ellipsis if this is a musttail call in a variadic function. 2674 if (Lex.getKind() == lltok::dotdotdot) { 2675 const char *Msg = "unexpected ellipsis in argument list for "; 2676 if (!IsMustTailCall) 2677 return tokError(Twine(Msg) + "non-musttail call"); 2678 if (!InVarArgsFunc) 2679 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2680 Lex.Lex(); // Lex the '...', it is purely for readability. 2681 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2682 } 2683 2684 // parse the argument. 2685 LocTy ArgLoc; 2686 Type *ArgTy = nullptr; 2687 AttrBuilder ArgAttrs; 2688 Value *V; 2689 if (parseType(ArgTy, ArgLoc)) 2690 return true; 2691 2692 if (ArgTy->isMetadataTy()) { 2693 if (parseMetadataAsValue(V, PFS)) 2694 return true; 2695 } else { 2696 // Otherwise, handle normal operands. 2697 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2698 return true; 2699 } 2700 ArgList.push_back(ParamInfo( 2701 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2702 } 2703 2704 if (IsMustTailCall && InVarArgsFunc) 2705 return tokError("expected '...' at end of argument list for musttail call " 2706 "in varargs function"); 2707 2708 Lex.Lex(); // Lex the ')'. 2709 return false; 2710 } 2711 2712 /// parseRequiredTypeAttr 2713 /// ::= attrname(<ty>) 2714 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) { 2715 Result = nullptr; 2716 if (!EatIfPresent(AttrName)) 2717 return true; 2718 if (!EatIfPresent(lltok::lparen)) 2719 return error(Lex.getLoc(), "expected '('"); 2720 if (parseType(Result)) 2721 return true; 2722 if (!EatIfPresent(lltok::rparen)) 2723 return error(Lex.getLoc(), "expected ')'"); 2724 return false; 2725 } 2726 2727 /// parsePreallocated 2728 /// ::= preallocated(<ty>) 2729 bool LLParser::parsePreallocated(Type *&Result) { 2730 return parseRequiredTypeAttr(Result, lltok::kw_preallocated); 2731 } 2732 2733 /// parseInalloca 2734 /// ::= inalloca(<ty>) 2735 bool LLParser::parseInalloca(Type *&Result) { 2736 return parseRequiredTypeAttr(Result, lltok::kw_inalloca); 2737 } 2738 2739 /// parseByRef 2740 /// ::= byref(<type>) 2741 bool LLParser::parseByRef(Type *&Result) { 2742 return parseRequiredTypeAttr(Result, lltok::kw_byref); 2743 } 2744 2745 /// parseOptionalOperandBundles 2746 /// ::= /*empty*/ 2747 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2748 /// 2749 /// OperandBundle 2750 /// ::= bundle-tag '(' ')' 2751 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2752 /// 2753 /// bundle-tag ::= String Constant 2754 bool LLParser::parseOptionalOperandBundles( 2755 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2756 LocTy BeginLoc = Lex.getLoc(); 2757 if (!EatIfPresent(lltok::lsquare)) 2758 return false; 2759 2760 while (Lex.getKind() != lltok::rsquare) { 2761 // If this isn't the first operand bundle, we need a comma. 2762 if (!BundleList.empty() && 2763 parseToken(lltok::comma, "expected ',' in input list")) 2764 return true; 2765 2766 std::string Tag; 2767 if (parseStringConstant(Tag)) 2768 return true; 2769 2770 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2771 return true; 2772 2773 std::vector<Value *> Inputs; 2774 while (Lex.getKind() != lltok::rparen) { 2775 // If this isn't the first input, we need a comma. 2776 if (!Inputs.empty() && 2777 parseToken(lltok::comma, "expected ',' in input list")) 2778 return true; 2779 2780 Type *Ty = nullptr; 2781 Value *Input = nullptr; 2782 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2783 return true; 2784 Inputs.push_back(Input); 2785 } 2786 2787 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2788 2789 Lex.Lex(); // Lex the ')'. 2790 } 2791 2792 if (BundleList.empty()) 2793 return error(BeginLoc, "operand bundle set must not be empty"); 2794 2795 Lex.Lex(); // Lex the ']'. 2796 return false; 2797 } 2798 2799 /// parseArgumentList - parse the argument list for a function type or function 2800 /// prototype. 2801 /// ::= '(' ArgTypeListI ')' 2802 /// ArgTypeListI 2803 /// ::= /*empty*/ 2804 /// ::= '...' 2805 /// ::= ArgTypeList ',' '...' 2806 /// ::= ArgType (',' ArgType)* 2807 /// 2808 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2809 bool &IsVarArg) { 2810 unsigned CurValID = 0; 2811 IsVarArg = false; 2812 assert(Lex.getKind() == lltok::lparen); 2813 Lex.Lex(); // eat the (. 2814 2815 if (Lex.getKind() == lltok::rparen) { 2816 // empty 2817 } else if (Lex.getKind() == lltok::dotdotdot) { 2818 IsVarArg = true; 2819 Lex.Lex(); 2820 } else { 2821 LocTy TypeLoc = Lex.getLoc(); 2822 Type *ArgTy = nullptr; 2823 AttrBuilder Attrs; 2824 std::string Name; 2825 2826 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2827 return true; 2828 2829 if (ArgTy->isVoidTy()) 2830 return error(TypeLoc, "argument can not have void type"); 2831 2832 if (Lex.getKind() == lltok::LocalVar) { 2833 Name = Lex.getStrVal(); 2834 Lex.Lex(); 2835 } else if (Lex.getKind() == lltok::LocalVarID) { 2836 if (Lex.getUIntVal() != CurValID) 2837 return error(TypeLoc, "argument expected to be numbered '%" + 2838 Twine(CurValID) + "'"); 2839 ++CurValID; 2840 Lex.Lex(); 2841 } 2842 2843 if (!FunctionType::isValidArgumentType(ArgTy)) 2844 return error(TypeLoc, "invalid type for function argument"); 2845 2846 ArgList.emplace_back(TypeLoc, ArgTy, 2847 AttributeSet::get(ArgTy->getContext(), Attrs), 2848 std::move(Name)); 2849 2850 while (EatIfPresent(lltok::comma)) { 2851 // Handle ... at end of arg list. 2852 if (EatIfPresent(lltok::dotdotdot)) { 2853 IsVarArg = true; 2854 break; 2855 } 2856 2857 // Otherwise must be an argument type. 2858 TypeLoc = Lex.getLoc(); 2859 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2860 return true; 2861 2862 if (ArgTy->isVoidTy()) 2863 return error(TypeLoc, "argument can not have void type"); 2864 2865 if (Lex.getKind() == lltok::LocalVar) { 2866 Name = Lex.getStrVal(); 2867 Lex.Lex(); 2868 } else { 2869 if (Lex.getKind() == lltok::LocalVarID) { 2870 if (Lex.getUIntVal() != CurValID) 2871 return error(TypeLoc, "argument expected to be numbered '%" + 2872 Twine(CurValID) + "'"); 2873 Lex.Lex(); 2874 } 2875 ++CurValID; 2876 Name = ""; 2877 } 2878 2879 if (!ArgTy->isFirstClassType()) 2880 return error(TypeLoc, "invalid type for function argument"); 2881 2882 ArgList.emplace_back(TypeLoc, ArgTy, 2883 AttributeSet::get(ArgTy->getContext(), Attrs), 2884 std::move(Name)); 2885 } 2886 } 2887 2888 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2889 } 2890 2891 /// parseFunctionType 2892 /// ::= Type ArgumentList OptionalAttrs 2893 bool LLParser::parseFunctionType(Type *&Result) { 2894 assert(Lex.getKind() == lltok::lparen); 2895 2896 if (!FunctionType::isValidReturnType(Result)) 2897 return tokError("invalid function return type"); 2898 2899 SmallVector<ArgInfo, 8> ArgList; 2900 bool IsVarArg; 2901 if (parseArgumentList(ArgList, IsVarArg)) 2902 return true; 2903 2904 // Reject names on the arguments lists. 2905 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2906 if (!ArgList[i].Name.empty()) 2907 return error(ArgList[i].Loc, "argument name invalid in function type"); 2908 if (ArgList[i].Attrs.hasAttributes()) 2909 return error(ArgList[i].Loc, 2910 "argument attributes invalid in function type"); 2911 } 2912 2913 SmallVector<Type*, 16> ArgListTy; 2914 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2915 ArgListTy.push_back(ArgList[i].Ty); 2916 2917 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2918 return false; 2919 } 2920 2921 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2922 /// other structs. 2923 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2924 SmallVector<Type*, 8> Elts; 2925 if (parseStructBody(Elts)) 2926 return true; 2927 2928 Result = StructType::get(Context, Elts, Packed); 2929 return false; 2930 } 2931 2932 /// parseStructDefinition - parse a struct in a 'type' definition. 2933 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2934 std::pair<Type *, LocTy> &Entry, 2935 Type *&ResultTy) { 2936 // If the type was already defined, diagnose the redefinition. 2937 if (Entry.first && !Entry.second.isValid()) 2938 return error(TypeLoc, "redefinition of type"); 2939 2940 // If we have opaque, just return without filling in the definition for the 2941 // struct. This counts as a definition as far as the .ll file goes. 2942 if (EatIfPresent(lltok::kw_opaque)) { 2943 // This type is being defined, so clear the location to indicate this. 2944 Entry.second = SMLoc(); 2945 2946 // If this type number has never been uttered, create it. 2947 if (!Entry.first) 2948 Entry.first = StructType::create(Context, Name); 2949 ResultTy = Entry.first; 2950 return false; 2951 } 2952 2953 // If the type starts with '<', then it is either a packed struct or a vector. 2954 bool isPacked = EatIfPresent(lltok::less); 2955 2956 // If we don't have a struct, then we have a random type alias, which we 2957 // accept for compatibility with old files. These types are not allowed to be 2958 // forward referenced and not allowed to be recursive. 2959 if (Lex.getKind() != lltok::lbrace) { 2960 if (Entry.first) 2961 return error(TypeLoc, "forward references to non-struct type"); 2962 2963 ResultTy = nullptr; 2964 if (isPacked) 2965 return parseArrayVectorType(ResultTy, true); 2966 return parseType(ResultTy); 2967 } 2968 2969 // This type is being defined, so clear the location to indicate this. 2970 Entry.second = SMLoc(); 2971 2972 // If this type number has never been uttered, create it. 2973 if (!Entry.first) 2974 Entry.first = StructType::create(Context, Name); 2975 2976 StructType *STy = cast<StructType>(Entry.first); 2977 2978 SmallVector<Type*, 8> Body; 2979 if (parseStructBody(Body) || 2980 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2981 return true; 2982 2983 STy->setBody(Body, isPacked); 2984 ResultTy = STy; 2985 return false; 2986 } 2987 2988 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2989 /// StructType 2990 /// ::= '{' '}' 2991 /// ::= '{' Type (',' Type)* '}' 2992 /// ::= '<' '{' '}' '>' 2993 /// ::= '<' '{' Type (',' Type)* '}' '>' 2994 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2995 assert(Lex.getKind() == lltok::lbrace); 2996 Lex.Lex(); // Consume the '{' 2997 2998 // Handle the empty struct. 2999 if (EatIfPresent(lltok::rbrace)) 3000 return false; 3001 3002 LocTy EltTyLoc = Lex.getLoc(); 3003 Type *Ty = nullptr; 3004 if (parseType(Ty)) 3005 return true; 3006 Body.push_back(Ty); 3007 3008 if (!StructType::isValidElementType(Ty)) 3009 return error(EltTyLoc, "invalid element type for struct"); 3010 3011 while (EatIfPresent(lltok::comma)) { 3012 EltTyLoc = Lex.getLoc(); 3013 if (parseType(Ty)) 3014 return true; 3015 3016 if (!StructType::isValidElementType(Ty)) 3017 return error(EltTyLoc, "invalid element type for struct"); 3018 3019 Body.push_back(Ty); 3020 } 3021 3022 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 3023 } 3024 3025 /// parseArrayVectorType - parse an array or vector type, assuming the first 3026 /// token has already been consumed. 3027 /// Type 3028 /// ::= '[' APSINTVAL 'x' Types ']' 3029 /// ::= '<' APSINTVAL 'x' Types '>' 3030 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 3031 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 3032 bool Scalable = false; 3033 3034 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 3035 Lex.Lex(); // consume the 'vscale' 3036 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 3037 return true; 3038 3039 Scalable = true; 3040 } 3041 3042 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 3043 Lex.getAPSIntVal().getBitWidth() > 64) 3044 return tokError("expected number in address space"); 3045 3046 LocTy SizeLoc = Lex.getLoc(); 3047 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 3048 Lex.Lex(); 3049 3050 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 3051 return true; 3052 3053 LocTy TypeLoc = Lex.getLoc(); 3054 Type *EltTy = nullptr; 3055 if (parseType(EltTy)) 3056 return true; 3057 3058 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 3059 "expected end of sequential type")) 3060 return true; 3061 3062 if (IsVector) { 3063 if (Size == 0) 3064 return error(SizeLoc, "zero element vector is illegal"); 3065 if ((unsigned)Size != Size) 3066 return error(SizeLoc, "size too large for vector"); 3067 if (!VectorType::isValidElementType(EltTy)) 3068 return error(TypeLoc, "invalid vector element type"); 3069 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 3070 } else { 3071 if (!ArrayType::isValidElementType(EltTy)) 3072 return error(TypeLoc, "invalid array element type"); 3073 Result = ArrayType::get(EltTy, Size); 3074 } 3075 return false; 3076 } 3077 3078 //===----------------------------------------------------------------------===// 3079 // Function Semantic Analysis. 3080 //===----------------------------------------------------------------------===// 3081 3082 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 3083 int functionNumber) 3084 : P(p), F(f), FunctionNumber(functionNumber) { 3085 3086 // Insert unnamed arguments into the NumberedVals list. 3087 for (Argument &A : F.args()) 3088 if (!A.hasName()) 3089 NumberedVals.push_back(&A); 3090 } 3091 3092 LLParser::PerFunctionState::~PerFunctionState() { 3093 // If there were any forward referenced non-basicblock values, delete them. 3094 3095 for (const auto &P : ForwardRefVals) { 3096 if (isa<BasicBlock>(P.second.first)) 3097 continue; 3098 P.second.first->replaceAllUsesWith( 3099 UndefValue::get(P.second.first->getType())); 3100 P.second.first->deleteValue(); 3101 } 3102 3103 for (const auto &P : ForwardRefValIDs) { 3104 if (isa<BasicBlock>(P.second.first)) 3105 continue; 3106 P.second.first->replaceAllUsesWith( 3107 UndefValue::get(P.second.first->getType())); 3108 P.second.first->deleteValue(); 3109 } 3110 } 3111 3112 bool LLParser::PerFunctionState::finishFunction() { 3113 if (!ForwardRefVals.empty()) 3114 return P.error(ForwardRefVals.begin()->second.second, 3115 "use of undefined value '%" + ForwardRefVals.begin()->first + 3116 "'"); 3117 if (!ForwardRefValIDs.empty()) 3118 return P.error(ForwardRefValIDs.begin()->second.second, 3119 "use of undefined value '%" + 3120 Twine(ForwardRefValIDs.begin()->first) + "'"); 3121 return false; 3122 } 3123 3124 /// getVal - Get a value with the specified name or ID, creating a 3125 /// forward reference record if needed. This can return null if the value 3126 /// exists but does not have the right type. 3127 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 3128 LocTy Loc, bool IsCall) { 3129 // Look this name up in the normal function symbol table. 3130 Value *Val = F.getValueSymbolTable()->lookup(Name); 3131 3132 // If this is a forward reference for the value, see if we already created a 3133 // forward ref record. 3134 if (!Val) { 3135 auto I = ForwardRefVals.find(Name); 3136 if (I != ForwardRefVals.end()) 3137 Val = I->second.first; 3138 } 3139 3140 // If we have the value in the symbol table or fwd-ref table, return it. 3141 if (Val) 3142 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 3143 3144 // Don't make placeholders with invalid type. 3145 if (!Ty->isFirstClassType()) { 3146 P.error(Loc, "invalid use of a non-first-class type"); 3147 return nullptr; 3148 } 3149 3150 // Otherwise, create a new forward reference for this value and remember it. 3151 Value *FwdVal; 3152 if (Ty->isLabelTy()) { 3153 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 3154 } else { 3155 FwdVal = new Argument(Ty, Name); 3156 } 3157 3158 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 3159 return FwdVal; 3160 } 3161 3162 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc, 3163 bool IsCall) { 3164 // Look this name up in the normal function symbol table. 3165 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 3166 3167 // If this is a forward reference for the value, see if we already created a 3168 // forward ref record. 3169 if (!Val) { 3170 auto I = ForwardRefValIDs.find(ID); 3171 if (I != ForwardRefValIDs.end()) 3172 Val = I->second.first; 3173 } 3174 3175 // If we have the value in the symbol table or fwd-ref table, return it. 3176 if (Val) 3177 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 3178 3179 if (!Ty->isFirstClassType()) { 3180 P.error(Loc, "invalid use of a non-first-class type"); 3181 return nullptr; 3182 } 3183 3184 // Otherwise, create a new forward reference for this value and remember it. 3185 Value *FwdVal; 3186 if (Ty->isLabelTy()) { 3187 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 3188 } else { 3189 FwdVal = new Argument(Ty); 3190 } 3191 3192 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 3193 return FwdVal; 3194 } 3195 3196 /// setInstName - After an instruction is parsed and inserted into its 3197 /// basic block, this installs its name. 3198 bool LLParser::PerFunctionState::setInstName(int NameID, 3199 const std::string &NameStr, 3200 LocTy NameLoc, Instruction *Inst) { 3201 // If this instruction has void type, it cannot have a name or ID specified. 3202 if (Inst->getType()->isVoidTy()) { 3203 if (NameID != -1 || !NameStr.empty()) 3204 return P.error(NameLoc, "instructions returning void cannot have a name"); 3205 return false; 3206 } 3207 3208 // If this was a numbered instruction, verify that the instruction is the 3209 // expected value and resolve any forward references. 3210 if (NameStr.empty()) { 3211 // If neither a name nor an ID was specified, just use the next ID. 3212 if (NameID == -1) 3213 NameID = NumberedVals.size(); 3214 3215 if (unsigned(NameID) != NumberedVals.size()) 3216 return P.error(NameLoc, "instruction expected to be numbered '%" + 3217 Twine(NumberedVals.size()) + "'"); 3218 3219 auto FI = ForwardRefValIDs.find(NameID); 3220 if (FI != ForwardRefValIDs.end()) { 3221 Value *Sentinel = FI->second.first; 3222 if (Sentinel->getType() != Inst->getType()) 3223 return P.error(NameLoc, "instruction forward referenced with type '" + 3224 getTypeString(FI->second.first->getType()) + 3225 "'"); 3226 3227 Sentinel->replaceAllUsesWith(Inst); 3228 Sentinel->deleteValue(); 3229 ForwardRefValIDs.erase(FI); 3230 } 3231 3232 NumberedVals.push_back(Inst); 3233 return false; 3234 } 3235 3236 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3237 auto FI = ForwardRefVals.find(NameStr); 3238 if (FI != ForwardRefVals.end()) { 3239 Value *Sentinel = FI->second.first; 3240 if (Sentinel->getType() != Inst->getType()) 3241 return P.error(NameLoc, "instruction forward referenced with type '" + 3242 getTypeString(FI->second.first->getType()) + 3243 "'"); 3244 3245 Sentinel->replaceAllUsesWith(Inst); 3246 Sentinel->deleteValue(); 3247 ForwardRefVals.erase(FI); 3248 } 3249 3250 // Set the name on the instruction. 3251 Inst->setName(NameStr); 3252 3253 if (Inst->getName() != NameStr) 3254 return P.error(NameLoc, "multiple definition of local value named '" + 3255 NameStr + "'"); 3256 return false; 3257 } 3258 3259 /// getBB - Get a basic block with the specified name or ID, creating a 3260 /// forward reference record if needed. 3261 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 3262 LocTy Loc) { 3263 return dyn_cast_or_null<BasicBlock>( 3264 getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3265 } 3266 3267 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 3268 return dyn_cast_or_null<BasicBlock>( 3269 getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3270 } 3271 3272 /// defineBB - Define the specified basic block, which is either named or 3273 /// unnamed. If there is an error, this returns null otherwise it returns 3274 /// the block being defined. 3275 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 3276 int NameID, LocTy Loc) { 3277 BasicBlock *BB; 3278 if (Name.empty()) { 3279 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3280 P.error(Loc, "label expected to be numbered '" + 3281 Twine(NumberedVals.size()) + "'"); 3282 return nullptr; 3283 } 3284 BB = getBB(NumberedVals.size(), Loc); 3285 if (!BB) { 3286 P.error(Loc, "unable to create block numbered '" + 3287 Twine(NumberedVals.size()) + "'"); 3288 return nullptr; 3289 } 3290 } else { 3291 BB = getBB(Name, Loc); 3292 if (!BB) { 3293 P.error(Loc, "unable to create block named '" + Name + "'"); 3294 return nullptr; 3295 } 3296 } 3297 3298 // Move the block to the end of the function. Forward ref'd blocks are 3299 // inserted wherever they happen to be referenced. 3300 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3301 3302 // Remove the block from forward ref sets. 3303 if (Name.empty()) { 3304 ForwardRefValIDs.erase(NumberedVals.size()); 3305 NumberedVals.push_back(BB); 3306 } else { 3307 // BB forward references are already in the function symbol table. 3308 ForwardRefVals.erase(Name); 3309 } 3310 3311 return BB; 3312 } 3313 3314 //===----------------------------------------------------------------------===// 3315 // Constants. 3316 //===----------------------------------------------------------------------===// 3317 3318 /// parseValID - parse an abstract value that doesn't necessarily have a 3319 /// type implied. For example, if we parse "4" we don't know what integer type 3320 /// it has. The value will later be combined with its type and checked for 3321 /// sanity. PFS is used to convert function-local operands of metadata (since 3322 /// metadata operands are not just parsed here but also converted to values). 3323 /// PFS can be null when we are not parsing metadata values inside a function. 3324 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) { 3325 ID.Loc = Lex.getLoc(); 3326 switch (Lex.getKind()) { 3327 default: 3328 return tokError("expected value token"); 3329 case lltok::GlobalID: // @42 3330 ID.UIntVal = Lex.getUIntVal(); 3331 ID.Kind = ValID::t_GlobalID; 3332 break; 3333 case lltok::GlobalVar: // @foo 3334 ID.StrVal = Lex.getStrVal(); 3335 ID.Kind = ValID::t_GlobalName; 3336 break; 3337 case lltok::LocalVarID: // %42 3338 ID.UIntVal = Lex.getUIntVal(); 3339 ID.Kind = ValID::t_LocalID; 3340 break; 3341 case lltok::LocalVar: // %foo 3342 ID.StrVal = Lex.getStrVal(); 3343 ID.Kind = ValID::t_LocalName; 3344 break; 3345 case lltok::APSInt: 3346 ID.APSIntVal = Lex.getAPSIntVal(); 3347 ID.Kind = ValID::t_APSInt; 3348 break; 3349 case lltok::APFloat: 3350 ID.APFloatVal = Lex.getAPFloatVal(); 3351 ID.Kind = ValID::t_APFloat; 3352 break; 3353 case lltok::kw_true: 3354 ID.ConstantVal = ConstantInt::getTrue(Context); 3355 ID.Kind = ValID::t_Constant; 3356 break; 3357 case lltok::kw_false: 3358 ID.ConstantVal = ConstantInt::getFalse(Context); 3359 ID.Kind = ValID::t_Constant; 3360 break; 3361 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3362 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3363 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3364 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3365 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3366 3367 case lltok::lbrace: { 3368 // ValID ::= '{' ConstVector '}' 3369 Lex.Lex(); 3370 SmallVector<Constant*, 16> Elts; 3371 if (parseGlobalValueVector(Elts) || 3372 parseToken(lltok::rbrace, "expected end of struct constant")) 3373 return true; 3374 3375 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3376 ID.UIntVal = Elts.size(); 3377 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3378 Elts.size() * sizeof(Elts[0])); 3379 ID.Kind = ValID::t_ConstantStruct; 3380 return false; 3381 } 3382 case lltok::less: { 3383 // ValID ::= '<' ConstVector '>' --> Vector. 3384 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3385 Lex.Lex(); 3386 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3387 3388 SmallVector<Constant*, 16> Elts; 3389 LocTy FirstEltLoc = Lex.getLoc(); 3390 if (parseGlobalValueVector(Elts) || 3391 (isPackedStruct && 3392 parseToken(lltok::rbrace, "expected end of packed struct")) || 3393 parseToken(lltok::greater, "expected end of constant")) 3394 return true; 3395 3396 if (isPackedStruct) { 3397 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3398 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3399 Elts.size() * sizeof(Elts[0])); 3400 ID.UIntVal = Elts.size(); 3401 ID.Kind = ValID::t_PackedConstantStruct; 3402 return false; 3403 } 3404 3405 if (Elts.empty()) 3406 return error(ID.Loc, "constant vector must not be empty"); 3407 3408 if (!Elts[0]->getType()->isIntegerTy() && 3409 !Elts[0]->getType()->isFloatingPointTy() && 3410 !Elts[0]->getType()->isPointerTy()) 3411 return error( 3412 FirstEltLoc, 3413 "vector elements must have integer, pointer or floating point type"); 3414 3415 // Verify that all the vector elements have the same type. 3416 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3417 if (Elts[i]->getType() != Elts[0]->getType()) 3418 return error(FirstEltLoc, "vector element #" + Twine(i) + 3419 " is not of type '" + 3420 getTypeString(Elts[0]->getType())); 3421 3422 ID.ConstantVal = ConstantVector::get(Elts); 3423 ID.Kind = ValID::t_Constant; 3424 return false; 3425 } 3426 case lltok::lsquare: { // Array Constant 3427 Lex.Lex(); 3428 SmallVector<Constant*, 16> Elts; 3429 LocTy FirstEltLoc = Lex.getLoc(); 3430 if (parseGlobalValueVector(Elts) || 3431 parseToken(lltok::rsquare, "expected end of array constant")) 3432 return true; 3433 3434 // Handle empty element. 3435 if (Elts.empty()) { 3436 // Use undef instead of an array because it's inconvenient to determine 3437 // the element type at this point, there being no elements to examine. 3438 ID.Kind = ValID::t_EmptyArray; 3439 return false; 3440 } 3441 3442 if (!Elts[0]->getType()->isFirstClassType()) 3443 return error(FirstEltLoc, "invalid array element type: " + 3444 getTypeString(Elts[0]->getType())); 3445 3446 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3447 3448 // Verify all elements are correct type! 3449 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3450 if (Elts[i]->getType() != Elts[0]->getType()) 3451 return error(FirstEltLoc, "array element #" + Twine(i) + 3452 " is not of type '" + 3453 getTypeString(Elts[0]->getType())); 3454 } 3455 3456 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3457 ID.Kind = ValID::t_Constant; 3458 return false; 3459 } 3460 case lltok::kw_c: // c "foo" 3461 Lex.Lex(); 3462 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3463 false); 3464 if (parseToken(lltok::StringConstant, "expected string")) 3465 return true; 3466 ID.Kind = ValID::t_Constant; 3467 return false; 3468 3469 case lltok::kw_asm: { 3470 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3471 // STRINGCONSTANT 3472 bool HasSideEffect, AlignStack, AsmDialect, CanThrow; 3473 Lex.Lex(); 3474 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3475 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3476 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3477 parseOptionalToken(lltok::kw_unwind, CanThrow) || 3478 parseStringConstant(ID.StrVal) || 3479 parseToken(lltok::comma, "expected comma in inline asm expression") || 3480 parseToken(lltok::StringConstant, "expected constraint string")) 3481 return true; 3482 ID.StrVal2 = Lex.getStrVal(); 3483 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | 3484 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); 3485 ID.Kind = ValID::t_InlineAsm; 3486 return false; 3487 } 3488 3489 case lltok::kw_blockaddress: { 3490 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3491 Lex.Lex(); 3492 3493 ValID Fn, Label; 3494 3495 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3496 parseValID(Fn) || 3497 parseToken(lltok::comma, 3498 "expected comma in block address expression") || 3499 parseValID(Label) || 3500 parseToken(lltok::rparen, "expected ')' in block address expression")) 3501 return true; 3502 3503 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3504 return error(Fn.Loc, "expected function name in blockaddress"); 3505 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3506 return error(Label.Loc, "expected basic block name in blockaddress"); 3507 3508 // Try to find the function (but skip it if it's forward-referenced). 3509 GlobalValue *GV = nullptr; 3510 if (Fn.Kind == ValID::t_GlobalID) { 3511 if (Fn.UIntVal < NumberedVals.size()) 3512 GV = NumberedVals[Fn.UIntVal]; 3513 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3514 GV = M->getNamedValue(Fn.StrVal); 3515 } 3516 Function *F = nullptr; 3517 if (GV) { 3518 // Confirm that it's actually a function with a definition. 3519 if (!isa<Function>(GV)) 3520 return error(Fn.Loc, "expected function name in blockaddress"); 3521 F = cast<Function>(GV); 3522 if (F->isDeclaration()) 3523 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3524 } 3525 3526 if (!F) { 3527 // Make a global variable as a placeholder for this reference. 3528 GlobalValue *&FwdRef = 3529 ForwardRefBlockAddresses.insert(std::make_pair( 3530 std::move(Fn), 3531 std::map<ValID, GlobalValue *>())) 3532 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3533 .first->second; 3534 if (!FwdRef) 3535 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3536 GlobalValue::InternalLinkage, nullptr, ""); 3537 ID.ConstantVal = FwdRef; 3538 ID.Kind = ValID::t_Constant; 3539 return false; 3540 } 3541 3542 // We found the function; now find the basic block. Don't use PFS, since we 3543 // might be inside a constant expression. 3544 BasicBlock *BB; 3545 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3546 if (Label.Kind == ValID::t_LocalID) 3547 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3548 else 3549 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3550 if (!BB) 3551 return error(Label.Loc, "referenced value is not a basic block"); 3552 } else { 3553 if (Label.Kind == ValID::t_LocalID) 3554 return error(Label.Loc, "cannot take address of numeric label after " 3555 "the function is defined"); 3556 BB = dyn_cast_or_null<BasicBlock>( 3557 F->getValueSymbolTable()->lookup(Label.StrVal)); 3558 if (!BB) 3559 return error(Label.Loc, "referenced value is not a basic block"); 3560 } 3561 3562 ID.ConstantVal = BlockAddress::get(F, BB); 3563 ID.Kind = ValID::t_Constant; 3564 return false; 3565 } 3566 3567 case lltok::kw_dso_local_equivalent: { 3568 // ValID ::= 'dso_local_equivalent' @foo 3569 Lex.Lex(); 3570 3571 ValID Fn; 3572 3573 if (parseValID(Fn)) 3574 return true; 3575 3576 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3577 return error(Fn.Loc, 3578 "expected global value name in dso_local_equivalent"); 3579 3580 // Try to find the function (but skip it if it's forward-referenced). 3581 GlobalValue *GV = nullptr; 3582 if (Fn.Kind == ValID::t_GlobalID) { 3583 if (Fn.UIntVal < NumberedVals.size()) 3584 GV = NumberedVals[Fn.UIntVal]; 3585 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3586 GV = M->getNamedValue(Fn.StrVal); 3587 } 3588 3589 assert(GV && "Could not find a corresponding global variable"); 3590 3591 if (!GV->getValueType()->isFunctionTy()) 3592 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3593 "in dso_local_equivalent"); 3594 3595 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3596 ID.Kind = ValID::t_Constant; 3597 return false; 3598 } 3599 3600 case lltok::kw_trunc: 3601 case lltok::kw_zext: 3602 case lltok::kw_sext: 3603 case lltok::kw_fptrunc: 3604 case lltok::kw_fpext: 3605 case lltok::kw_bitcast: 3606 case lltok::kw_addrspacecast: 3607 case lltok::kw_uitofp: 3608 case lltok::kw_sitofp: 3609 case lltok::kw_fptoui: 3610 case lltok::kw_fptosi: 3611 case lltok::kw_inttoptr: 3612 case lltok::kw_ptrtoint: { 3613 unsigned Opc = Lex.getUIntVal(); 3614 Type *DestTy = nullptr; 3615 Constant *SrcVal; 3616 Lex.Lex(); 3617 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3618 parseGlobalTypeAndValue(SrcVal) || 3619 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3620 parseType(DestTy) || 3621 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3622 return true; 3623 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3624 return error(ID.Loc, "invalid cast opcode for cast from '" + 3625 getTypeString(SrcVal->getType()) + "' to '" + 3626 getTypeString(DestTy) + "'"); 3627 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3628 SrcVal, DestTy); 3629 ID.Kind = ValID::t_Constant; 3630 return false; 3631 } 3632 case lltok::kw_extractvalue: { 3633 Lex.Lex(); 3634 Constant *Val; 3635 SmallVector<unsigned, 4> Indices; 3636 if (parseToken(lltok::lparen, 3637 "expected '(' in extractvalue constantexpr") || 3638 parseGlobalTypeAndValue(Val) || parseIndexList(Indices) || 3639 parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3640 return true; 3641 3642 if (!Val->getType()->isAggregateType()) 3643 return error(ID.Loc, "extractvalue operand must be aggregate type"); 3644 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3645 return error(ID.Loc, "invalid indices for extractvalue"); 3646 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3647 ID.Kind = ValID::t_Constant; 3648 return false; 3649 } 3650 case lltok::kw_insertvalue: { 3651 Lex.Lex(); 3652 Constant *Val0, *Val1; 3653 SmallVector<unsigned, 4> Indices; 3654 if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") || 3655 parseGlobalTypeAndValue(Val0) || 3656 parseToken(lltok::comma, 3657 "expected comma in insertvalue constantexpr") || 3658 parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) || 3659 parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3660 return true; 3661 if (!Val0->getType()->isAggregateType()) 3662 return error(ID.Loc, "insertvalue operand must be aggregate type"); 3663 Type *IndexedType = 3664 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3665 if (!IndexedType) 3666 return error(ID.Loc, "invalid indices for insertvalue"); 3667 if (IndexedType != Val1->getType()) 3668 return error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3669 getTypeString(Val1->getType()) + 3670 "' instead of '" + getTypeString(IndexedType) + 3671 "'"); 3672 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3673 ID.Kind = ValID::t_Constant; 3674 return false; 3675 } 3676 case lltok::kw_icmp: 3677 case lltok::kw_fcmp: { 3678 unsigned PredVal, Opc = Lex.getUIntVal(); 3679 Constant *Val0, *Val1; 3680 Lex.Lex(); 3681 if (parseCmpPredicate(PredVal, Opc) || 3682 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3683 parseGlobalTypeAndValue(Val0) || 3684 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3685 parseGlobalTypeAndValue(Val1) || 3686 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3687 return true; 3688 3689 if (Val0->getType() != Val1->getType()) 3690 return error(ID.Loc, "compare operands must have the same type"); 3691 3692 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3693 3694 if (Opc == Instruction::FCmp) { 3695 if (!Val0->getType()->isFPOrFPVectorTy()) 3696 return error(ID.Loc, "fcmp requires floating point operands"); 3697 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3698 } else { 3699 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3700 if (!Val0->getType()->isIntOrIntVectorTy() && 3701 !Val0->getType()->isPtrOrPtrVectorTy()) 3702 return error(ID.Loc, "icmp requires pointer or integer operands"); 3703 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3704 } 3705 ID.Kind = ValID::t_Constant; 3706 return false; 3707 } 3708 3709 // Unary Operators. 3710 case lltok::kw_fneg: { 3711 unsigned Opc = Lex.getUIntVal(); 3712 Constant *Val; 3713 Lex.Lex(); 3714 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3715 parseGlobalTypeAndValue(Val) || 3716 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3717 return true; 3718 3719 // Check that the type is valid for the operator. 3720 switch (Opc) { 3721 case Instruction::FNeg: 3722 if (!Val->getType()->isFPOrFPVectorTy()) 3723 return error(ID.Loc, "constexpr requires fp operands"); 3724 break; 3725 default: llvm_unreachable("Unknown unary operator!"); 3726 } 3727 unsigned Flags = 0; 3728 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3729 ID.ConstantVal = C; 3730 ID.Kind = ValID::t_Constant; 3731 return false; 3732 } 3733 // Binary Operators. 3734 case lltok::kw_add: 3735 case lltok::kw_fadd: 3736 case lltok::kw_sub: 3737 case lltok::kw_fsub: 3738 case lltok::kw_mul: 3739 case lltok::kw_fmul: 3740 case lltok::kw_udiv: 3741 case lltok::kw_sdiv: 3742 case lltok::kw_fdiv: 3743 case lltok::kw_urem: 3744 case lltok::kw_srem: 3745 case lltok::kw_frem: 3746 case lltok::kw_shl: 3747 case lltok::kw_lshr: 3748 case lltok::kw_ashr: { 3749 bool NUW = false; 3750 bool NSW = false; 3751 bool Exact = false; 3752 unsigned Opc = Lex.getUIntVal(); 3753 Constant *Val0, *Val1; 3754 Lex.Lex(); 3755 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3756 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3757 if (EatIfPresent(lltok::kw_nuw)) 3758 NUW = true; 3759 if (EatIfPresent(lltok::kw_nsw)) { 3760 NSW = true; 3761 if (EatIfPresent(lltok::kw_nuw)) 3762 NUW = true; 3763 } 3764 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3765 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3766 if (EatIfPresent(lltok::kw_exact)) 3767 Exact = true; 3768 } 3769 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3770 parseGlobalTypeAndValue(Val0) || 3771 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3772 parseGlobalTypeAndValue(Val1) || 3773 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3774 return true; 3775 if (Val0->getType() != Val1->getType()) 3776 return error(ID.Loc, "operands of constexpr must have same type"); 3777 // Check that the type is valid for the operator. 3778 switch (Opc) { 3779 case Instruction::Add: 3780 case Instruction::Sub: 3781 case Instruction::Mul: 3782 case Instruction::UDiv: 3783 case Instruction::SDiv: 3784 case Instruction::URem: 3785 case Instruction::SRem: 3786 case Instruction::Shl: 3787 case Instruction::AShr: 3788 case Instruction::LShr: 3789 if (!Val0->getType()->isIntOrIntVectorTy()) 3790 return error(ID.Loc, "constexpr requires integer operands"); 3791 break; 3792 case Instruction::FAdd: 3793 case Instruction::FSub: 3794 case Instruction::FMul: 3795 case Instruction::FDiv: 3796 case Instruction::FRem: 3797 if (!Val0->getType()->isFPOrFPVectorTy()) 3798 return error(ID.Loc, "constexpr requires fp operands"); 3799 break; 3800 default: llvm_unreachable("Unknown binary operator!"); 3801 } 3802 unsigned Flags = 0; 3803 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3804 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3805 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3806 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3807 ID.ConstantVal = C; 3808 ID.Kind = ValID::t_Constant; 3809 return false; 3810 } 3811 3812 // Logical Operations 3813 case lltok::kw_and: 3814 case lltok::kw_or: 3815 case lltok::kw_xor: { 3816 unsigned Opc = Lex.getUIntVal(); 3817 Constant *Val0, *Val1; 3818 Lex.Lex(); 3819 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3820 parseGlobalTypeAndValue(Val0) || 3821 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3822 parseGlobalTypeAndValue(Val1) || 3823 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3824 return true; 3825 if (Val0->getType() != Val1->getType()) 3826 return error(ID.Loc, "operands of constexpr must have same type"); 3827 if (!Val0->getType()->isIntOrIntVectorTy()) 3828 return error(ID.Loc, 3829 "constexpr requires integer or integer vector operands"); 3830 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3831 ID.Kind = ValID::t_Constant; 3832 return false; 3833 } 3834 3835 case lltok::kw_getelementptr: 3836 case lltok::kw_shufflevector: 3837 case lltok::kw_insertelement: 3838 case lltok::kw_extractelement: 3839 case lltok::kw_select: { 3840 unsigned Opc = Lex.getUIntVal(); 3841 SmallVector<Constant*, 16> Elts; 3842 bool InBounds = false; 3843 Type *Ty; 3844 Lex.Lex(); 3845 3846 if (Opc == Instruction::GetElementPtr) 3847 InBounds = EatIfPresent(lltok::kw_inbounds); 3848 3849 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3850 return true; 3851 3852 LocTy ExplicitTypeLoc = Lex.getLoc(); 3853 if (Opc == Instruction::GetElementPtr) { 3854 if (parseType(Ty) || 3855 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3856 return true; 3857 } 3858 3859 Optional<unsigned> InRangeOp; 3860 if (parseGlobalValueVector( 3861 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3862 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3863 return true; 3864 3865 if (Opc == Instruction::GetElementPtr) { 3866 if (Elts.size() == 0 || 3867 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3868 return error(ID.Loc, "base of getelementptr must be a pointer"); 3869 3870 Type *BaseType = Elts[0]->getType(); 3871 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3872 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 3873 return error( 3874 ExplicitTypeLoc, 3875 typeComparisonErrorMessage( 3876 "explicit pointee type doesn't match operand's pointee type", 3877 Ty, BasePointerType->getElementType())); 3878 } 3879 3880 unsigned GEPWidth = 3881 BaseType->isVectorTy() 3882 ? cast<FixedVectorType>(BaseType)->getNumElements() 3883 : 0; 3884 3885 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3886 for (Constant *Val : Indices) { 3887 Type *ValTy = Val->getType(); 3888 if (!ValTy->isIntOrIntVectorTy()) 3889 return error(ID.Loc, "getelementptr index must be an integer"); 3890 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3891 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3892 if (GEPWidth && (ValNumEl != GEPWidth)) 3893 return error( 3894 ID.Loc, 3895 "getelementptr vector index has a wrong number of elements"); 3896 // GEPWidth may have been unknown because the base is a scalar, 3897 // but it is known now. 3898 GEPWidth = ValNumEl; 3899 } 3900 } 3901 3902 SmallPtrSet<Type*, 4> Visited; 3903 if (!Indices.empty() && !Ty->isSized(&Visited)) 3904 return error(ID.Loc, "base element of getelementptr must be sized"); 3905 3906 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3907 return error(ID.Loc, "invalid getelementptr indices"); 3908 3909 if (InRangeOp) { 3910 if (*InRangeOp == 0) 3911 return error(ID.Loc, 3912 "inrange keyword may not appear on pointer operand"); 3913 --*InRangeOp; 3914 } 3915 3916 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3917 InBounds, InRangeOp); 3918 } else if (Opc == Instruction::Select) { 3919 if (Elts.size() != 3) 3920 return error(ID.Loc, "expected three operands to select"); 3921 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3922 Elts[2])) 3923 return error(ID.Loc, Reason); 3924 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3925 } else if (Opc == Instruction::ShuffleVector) { 3926 if (Elts.size() != 3) 3927 return error(ID.Loc, "expected three operands to shufflevector"); 3928 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3929 return error(ID.Loc, "invalid operands to shufflevector"); 3930 SmallVector<int, 16> Mask; 3931 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3932 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3933 } else if (Opc == Instruction::ExtractElement) { 3934 if (Elts.size() != 2) 3935 return error(ID.Loc, "expected two operands to extractelement"); 3936 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3937 return error(ID.Loc, "invalid extractelement operands"); 3938 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3939 } else { 3940 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3941 if (Elts.size() != 3) 3942 return error(ID.Loc, "expected three operands to insertelement"); 3943 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3944 return error(ID.Loc, "invalid insertelement operands"); 3945 ID.ConstantVal = 3946 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3947 } 3948 3949 ID.Kind = ValID::t_Constant; 3950 return false; 3951 } 3952 } 3953 3954 Lex.Lex(); 3955 return false; 3956 } 3957 3958 /// parseGlobalValue - parse a global value with the specified type. 3959 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3960 C = nullptr; 3961 ValID ID; 3962 Value *V = nullptr; 3963 bool Parsed = parseValID(ID) || 3964 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3965 if (V && !(C = dyn_cast<Constant>(V))) 3966 return error(ID.Loc, "global values must be constants"); 3967 return Parsed; 3968 } 3969 3970 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3971 Type *Ty = nullptr; 3972 return parseType(Ty) || parseGlobalValue(Ty, V); 3973 } 3974 3975 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3976 C = nullptr; 3977 3978 LocTy KwLoc = Lex.getLoc(); 3979 if (!EatIfPresent(lltok::kw_comdat)) 3980 return false; 3981 3982 if (EatIfPresent(lltok::lparen)) { 3983 if (Lex.getKind() != lltok::ComdatVar) 3984 return tokError("expected comdat variable"); 3985 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3986 Lex.Lex(); 3987 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3988 return true; 3989 } else { 3990 if (GlobalName.empty()) 3991 return tokError("comdat cannot be unnamed"); 3992 C = getComdat(std::string(GlobalName), KwLoc); 3993 } 3994 3995 return false; 3996 } 3997 3998 /// parseGlobalValueVector 3999 /// ::= /*empty*/ 4000 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 4001 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 4002 Optional<unsigned> *InRangeOp) { 4003 // Empty list. 4004 if (Lex.getKind() == lltok::rbrace || 4005 Lex.getKind() == lltok::rsquare || 4006 Lex.getKind() == lltok::greater || 4007 Lex.getKind() == lltok::rparen) 4008 return false; 4009 4010 do { 4011 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 4012 *InRangeOp = Elts.size(); 4013 4014 Constant *C; 4015 if (parseGlobalTypeAndValue(C)) 4016 return true; 4017 Elts.push_back(C); 4018 } while (EatIfPresent(lltok::comma)); 4019 4020 return false; 4021 } 4022 4023 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 4024 SmallVector<Metadata *, 16> Elts; 4025 if (parseMDNodeVector(Elts)) 4026 return true; 4027 4028 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 4029 return false; 4030 } 4031 4032 /// MDNode: 4033 /// ::= !{ ... } 4034 /// ::= !7 4035 /// ::= !DILocation(...) 4036 bool LLParser::parseMDNode(MDNode *&N) { 4037 if (Lex.getKind() == lltok::MetadataVar) 4038 return parseSpecializedMDNode(N); 4039 4040 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 4041 } 4042 4043 bool LLParser::parseMDNodeTail(MDNode *&N) { 4044 // !{ ... } 4045 if (Lex.getKind() == lltok::lbrace) 4046 return parseMDTuple(N); 4047 4048 // !42 4049 return parseMDNodeID(N); 4050 } 4051 4052 namespace { 4053 4054 /// Structure to represent an optional metadata field. 4055 template <class FieldTy> struct MDFieldImpl { 4056 typedef MDFieldImpl ImplTy; 4057 FieldTy Val; 4058 bool Seen; 4059 4060 void assign(FieldTy Val) { 4061 Seen = true; 4062 this->Val = std::move(Val); 4063 } 4064 4065 explicit MDFieldImpl(FieldTy Default) 4066 : Val(std::move(Default)), Seen(false) {} 4067 }; 4068 4069 /// Structure to represent an optional metadata field that 4070 /// can be of either type (A or B) and encapsulates the 4071 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 4072 /// to reimplement the specifics for representing each Field. 4073 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 4074 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 4075 FieldTypeA A; 4076 FieldTypeB B; 4077 bool Seen; 4078 4079 enum { 4080 IsInvalid = 0, 4081 IsTypeA = 1, 4082 IsTypeB = 2 4083 } WhatIs; 4084 4085 void assign(FieldTypeA A) { 4086 Seen = true; 4087 this->A = std::move(A); 4088 WhatIs = IsTypeA; 4089 } 4090 4091 void assign(FieldTypeB B) { 4092 Seen = true; 4093 this->B = std::move(B); 4094 WhatIs = IsTypeB; 4095 } 4096 4097 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 4098 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 4099 WhatIs(IsInvalid) {} 4100 }; 4101 4102 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 4103 uint64_t Max; 4104 4105 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 4106 : ImplTy(Default), Max(Max) {} 4107 }; 4108 4109 struct LineField : public MDUnsignedField { 4110 LineField() : MDUnsignedField(0, UINT32_MAX) {} 4111 }; 4112 4113 struct ColumnField : public MDUnsignedField { 4114 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 4115 }; 4116 4117 struct DwarfTagField : public MDUnsignedField { 4118 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 4119 DwarfTagField(dwarf::Tag DefaultTag) 4120 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 4121 }; 4122 4123 struct DwarfMacinfoTypeField : public MDUnsignedField { 4124 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 4125 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 4126 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 4127 }; 4128 4129 struct DwarfAttEncodingField : public MDUnsignedField { 4130 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 4131 }; 4132 4133 struct DwarfVirtualityField : public MDUnsignedField { 4134 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 4135 }; 4136 4137 struct DwarfLangField : public MDUnsignedField { 4138 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 4139 }; 4140 4141 struct DwarfCCField : public MDUnsignedField { 4142 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 4143 }; 4144 4145 struct EmissionKindField : public MDUnsignedField { 4146 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 4147 }; 4148 4149 struct NameTableKindField : public MDUnsignedField { 4150 NameTableKindField() 4151 : MDUnsignedField( 4152 0, (unsigned) 4153 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 4154 }; 4155 4156 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 4157 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 4158 }; 4159 4160 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 4161 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 4162 }; 4163 4164 struct MDAPSIntField : public MDFieldImpl<APSInt> { 4165 MDAPSIntField() : ImplTy(APSInt()) {} 4166 }; 4167 4168 struct MDSignedField : public MDFieldImpl<int64_t> { 4169 int64_t Min; 4170 int64_t Max; 4171 4172 MDSignedField(int64_t Default = 0) 4173 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 4174 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 4175 : ImplTy(Default), Min(Min), Max(Max) {} 4176 }; 4177 4178 struct MDBoolField : public MDFieldImpl<bool> { 4179 MDBoolField(bool Default = false) : ImplTy(Default) {} 4180 }; 4181 4182 struct MDField : public MDFieldImpl<Metadata *> { 4183 bool AllowNull; 4184 4185 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 4186 }; 4187 4188 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 4189 MDConstant() : ImplTy(nullptr) {} 4190 }; 4191 4192 struct MDStringField : public MDFieldImpl<MDString *> { 4193 bool AllowEmpty; 4194 MDStringField(bool AllowEmpty = true) 4195 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 4196 }; 4197 4198 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 4199 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 4200 }; 4201 4202 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 4203 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 4204 }; 4205 4206 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 4207 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 4208 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 4209 4210 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 4211 bool AllowNull = true) 4212 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 4213 4214 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4215 bool isMDField() const { return WhatIs == IsTypeB; } 4216 int64_t getMDSignedValue() const { 4217 assert(isMDSignedField() && "Wrong field type"); 4218 return A.Val; 4219 } 4220 Metadata *getMDFieldValue() const { 4221 assert(isMDField() && "Wrong field type"); 4222 return B.Val; 4223 } 4224 }; 4225 4226 struct MDSignedOrUnsignedField 4227 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 4228 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 4229 4230 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4231 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 4232 int64_t getMDSignedValue() const { 4233 assert(isMDSignedField() && "Wrong field type"); 4234 return A.Val; 4235 } 4236 uint64_t getMDUnsignedValue() const { 4237 assert(isMDUnsignedField() && "Wrong field type"); 4238 return B.Val; 4239 } 4240 }; 4241 4242 } // end anonymous namespace 4243 4244 namespace llvm { 4245 4246 template <> 4247 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 4248 if (Lex.getKind() != lltok::APSInt) 4249 return tokError("expected integer"); 4250 4251 Result.assign(Lex.getAPSIntVal()); 4252 Lex.Lex(); 4253 return false; 4254 } 4255 4256 template <> 4257 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4258 MDUnsignedField &Result) { 4259 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4260 return tokError("expected unsigned integer"); 4261 4262 auto &U = Lex.getAPSIntVal(); 4263 if (U.ugt(Result.Max)) 4264 return tokError("value for '" + Name + "' too large, limit is " + 4265 Twine(Result.Max)); 4266 Result.assign(U.getZExtValue()); 4267 assert(Result.Val <= Result.Max && "Expected value in range"); 4268 Lex.Lex(); 4269 return false; 4270 } 4271 4272 template <> 4273 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4274 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4275 } 4276 template <> 4277 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4278 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4279 } 4280 4281 template <> 4282 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4283 if (Lex.getKind() == lltok::APSInt) 4284 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4285 4286 if (Lex.getKind() != lltok::DwarfTag) 4287 return tokError("expected DWARF tag"); 4288 4289 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4290 if (Tag == dwarf::DW_TAG_invalid) 4291 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4292 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4293 4294 Result.assign(Tag); 4295 Lex.Lex(); 4296 return false; 4297 } 4298 4299 template <> 4300 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4301 DwarfMacinfoTypeField &Result) { 4302 if (Lex.getKind() == lltok::APSInt) 4303 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4304 4305 if (Lex.getKind() != lltok::DwarfMacinfo) 4306 return tokError("expected DWARF macinfo type"); 4307 4308 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4309 if (Macinfo == dwarf::DW_MACINFO_invalid) 4310 return tokError("invalid DWARF macinfo type" + Twine(" '") + 4311 Lex.getStrVal() + "'"); 4312 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4313 4314 Result.assign(Macinfo); 4315 Lex.Lex(); 4316 return false; 4317 } 4318 4319 template <> 4320 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4321 DwarfVirtualityField &Result) { 4322 if (Lex.getKind() == lltok::APSInt) 4323 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4324 4325 if (Lex.getKind() != lltok::DwarfVirtuality) 4326 return tokError("expected DWARF virtuality code"); 4327 4328 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4329 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4330 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4331 Lex.getStrVal() + "'"); 4332 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4333 Result.assign(Virtuality); 4334 Lex.Lex(); 4335 return false; 4336 } 4337 4338 template <> 4339 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4340 if (Lex.getKind() == lltok::APSInt) 4341 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4342 4343 if (Lex.getKind() != lltok::DwarfLang) 4344 return tokError("expected DWARF language"); 4345 4346 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4347 if (!Lang) 4348 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4349 "'"); 4350 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4351 Result.assign(Lang); 4352 Lex.Lex(); 4353 return false; 4354 } 4355 4356 template <> 4357 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4358 if (Lex.getKind() == lltok::APSInt) 4359 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4360 4361 if (Lex.getKind() != lltok::DwarfCC) 4362 return tokError("expected DWARF calling convention"); 4363 4364 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4365 if (!CC) 4366 return tokError("invalid DWARF calling convention" + Twine(" '") + 4367 Lex.getStrVal() + "'"); 4368 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4369 Result.assign(CC); 4370 Lex.Lex(); 4371 return false; 4372 } 4373 4374 template <> 4375 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4376 EmissionKindField &Result) { 4377 if (Lex.getKind() == lltok::APSInt) 4378 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4379 4380 if (Lex.getKind() != lltok::EmissionKind) 4381 return tokError("expected emission kind"); 4382 4383 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4384 if (!Kind) 4385 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4386 "'"); 4387 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4388 Result.assign(*Kind); 4389 Lex.Lex(); 4390 return false; 4391 } 4392 4393 template <> 4394 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4395 NameTableKindField &Result) { 4396 if (Lex.getKind() == lltok::APSInt) 4397 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4398 4399 if (Lex.getKind() != lltok::NameTableKind) 4400 return tokError("expected nameTable kind"); 4401 4402 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4403 if (!Kind) 4404 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4405 "'"); 4406 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4407 Result.assign((unsigned)*Kind); 4408 Lex.Lex(); 4409 return false; 4410 } 4411 4412 template <> 4413 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4414 DwarfAttEncodingField &Result) { 4415 if (Lex.getKind() == lltok::APSInt) 4416 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4417 4418 if (Lex.getKind() != lltok::DwarfAttEncoding) 4419 return tokError("expected DWARF type attribute encoding"); 4420 4421 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4422 if (!Encoding) 4423 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4424 Lex.getStrVal() + "'"); 4425 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4426 Result.assign(Encoding); 4427 Lex.Lex(); 4428 return false; 4429 } 4430 4431 /// DIFlagField 4432 /// ::= uint32 4433 /// ::= DIFlagVector 4434 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4435 template <> 4436 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4437 4438 // parser for a single flag. 4439 auto parseFlag = [&](DINode::DIFlags &Val) { 4440 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4441 uint32_t TempVal = static_cast<uint32_t>(Val); 4442 bool Res = parseUInt32(TempVal); 4443 Val = static_cast<DINode::DIFlags>(TempVal); 4444 return Res; 4445 } 4446 4447 if (Lex.getKind() != lltok::DIFlag) 4448 return tokError("expected debug info flag"); 4449 4450 Val = DINode::getFlag(Lex.getStrVal()); 4451 if (!Val) 4452 return tokError(Twine("invalid debug info flag flag '") + 4453 Lex.getStrVal() + "'"); 4454 Lex.Lex(); 4455 return false; 4456 }; 4457 4458 // parse the flags and combine them together. 4459 DINode::DIFlags Combined = DINode::FlagZero; 4460 do { 4461 DINode::DIFlags Val; 4462 if (parseFlag(Val)) 4463 return true; 4464 Combined |= Val; 4465 } while (EatIfPresent(lltok::bar)); 4466 4467 Result.assign(Combined); 4468 return false; 4469 } 4470 4471 /// DISPFlagField 4472 /// ::= uint32 4473 /// ::= DISPFlagVector 4474 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4475 template <> 4476 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4477 4478 // parser for a single flag. 4479 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4480 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4481 uint32_t TempVal = static_cast<uint32_t>(Val); 4482 bool Res = parseUInt32(TempVal); 4483 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4484 return Res; 4485 } 4486 4487 if (Lex.getKind() != lltok::DISPFlag) 4488 return tokError("expected debug info flag"); 4489 4490 Val = DISubprogram::getFlag(Lex.getStrVal()); 4491 if (!Val) 4492 return tokError(Twine("invalid subprogram debug info flag '") + 4493 Lex.getStrVal() + "'"); 4494 Lex.Lex(); 4495 return false; 4496 }; 4497 4498 // parse the flags and combine them together. 4499 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4500 do { 4501 DISubprogram::DISPFlags Val; 4502 if (parseFlag(Val)) 4503 return true; 4504 Combined |= Val; 4505 } while (EatIfPresent(lltok::bar)); 4506 4507 Result.assign(Combined); 4508 return false; 4509 } 4510 4511 template <> 4512 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4513 if (Lex.getKind() != lltok::APSInt) 4514 return tokError("expected signed integer"); 4515 4516 auto &S = Lex.getAPSIntVal(); 4517 if (S < Result.Min) 4518 return tokError("value for '" + Name + "' too small, limit is " + 4519 Twine(Result.Min)); 4520 if (S > Result.Max) 4521 return tokError("value for '" + Name + "' too large, limit is " + 4522 Twine(Result.Max)); 4523 Result.assign(S.getExtValue()); 4524 assert(Result.Val >= Result.Min && "Expected value in range"); 4525 assert(Result.Val <= Result.Max && "Expected value in range"); 4526 Lex.Lex(); 4527 return false; 4528 } 4529 4530 template <> 4531 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4532 switch (Lex.getKind()) { 4533 default: 4534 return tokError("expected 'true' or 'false'"); 4535 case lltok::kw_true: 4536 Result.assign(true); 4537 break; 4538 case lltok::kw_false: 4539 Result.assign(false); 4540 break; 4541 } 4542 Lex.Lex(); 4543 return false; 4544 } 4545 4546 template <> 4547 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4548 if (Lex.getKind() == lltok::kw_null) { 4549 if (!Result.AllowNull) 4550 return tokError("'" + Name + "' cannot be null"); 4551 Lex.Lex(); 4552 Result.assign(nullptr); 4553 return false; 4554 } 4555 4556 Metadata *MD; 4557 if (parseMetadata(MD, nullptr)) 4558 return true; 4559 4560 Result.assign(MD); 4561 return false; 4562 } 4563 4564 template <> 4565 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4566 MDSignedOrMDField &Result) { 4567 // Try to parse a signed int. 4568 if (Lex.getKind() == lltok::APSInt) { 4569 MDSignedField Res = Result.A; 4570 if (!parseMDField(Loc, Name, Res)) { 4571 Result.assign(Res); 4572 return false; 4573 } 4574 return true; 4575 } 4576 4577 // Otherwise, try to parse as an MDField. 4578 MDField Res = Result.B; 4579 if (!parseMDField(Loc, Name, Res)) { 4580 Result.assign(Res); 4581 return false; 4582 } 4583 4584 return true; 4585 } 4586 4587 template <> 4588 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4589 LocTy ValueLoc = Lex.getLoc(); 4590 std::string S; 4591 if (parseStringConstant(S)) 4592 return true; 4593 4594 if (!Result.AllowEmpty && S.empty()) 4595 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4596 4597 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4598 return false; 4599 } 4600 4601 template <> 4602 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4603 SmallVector<Metadata *, 4> MDs; 4604 if (parseMDNodeVector(MDs)) 4605 return true; 4606 4607 Result.assign(std::move(MDs)); 4608 return false; 4609 } 4610 4611 template <> 4612 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4613 ChecksumKindField &Result) { 4614 Optional<DIFile::ChecksumKind> CSKind = 4615 DIFile::getChecksumKind(Lex.getStrVal()); 4616 4617 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4618 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4619 "'"); 4620 4621 Result.assign(*CSKind); 4622 Lex.Lex(); 4623 return false; 4624 } 4625 4626 } // end namespace llvm 4627 4628 template <class ParserTy> 4629 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4630 do { 4631 if (Lex.getKind() != lltok::LabelStr) 4632 return tokError("expected field label here"); 4633 4634 if (ParseField()) 4635 return true; 4636 } while (EatIfPresent(lltok::comma)); 4637 4638 return false; 4639 } 4640 4641 template <class ParserTy> 4642 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4643 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4644 Lex.Lex(); 4645 4646 if (parseToken(lltok::lparen, "expected '(' here")) 4647 return true; 4648 if (Lex.getKind() != lltok::rparen) 4649 if (parseMDFieldsImplBody(ParseField)) 4650 return true; 4651 4652 ClosingLoc = Lex.getLoc(); 4653 return parseToken(lltok::rparen, "expected ')' here"); 4654 } 4655 4656 template <class FieldTy> 4657 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4658 if (Result.Seen) 4659 return tokError("field '" + Name + "' cannot be specified more than once"); 4660 4661 LocTy Loc = Lex.getLoc(); 4662 Lex.Lex(); 4663 return parseMDField(Loc, Name, Result); 4664 } 4665 4666 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct, 4667 LocTy DistinctLoc) { 4668 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4669 4670 #define HANDLE_SPECIALIZED_MDNODE_LEAF_UNIQUABLE(CLASS) \ 4671 if (Lex.getStrVal() == #CLASS) \ 4672 return parse##CLASS(N, IsDistinct); 4673 #define HANDLE_SPECIALIZED_MDNODE_LEAF_UNIQUED(CLASS) \ 4674 if (Lex.getStrVal() == #CLASS) { \ 4675 if (IsDistinct) \ 4676 return error(DistinctLoc, "'distinct' not allowed for !" #CLASS); \ 4677 return parse##CLASS(N, IsDistinct); \ 4678 } 4679 #define HANDLE_SPECIALIZED_MDNODE_LEAF_DISTINCT(CLASS) \ 4680 if (Lex.getStrVal() == #CLASS) { \ 4681 if (!IsDistinct) \ 4682 return error(DistinctLoc, "missing 'distinct', required for !" #CLASS); \ 4683 return parse##CLASS(N, IsDistinct); \ 4684 } 4685 #include "llvm/IR/Metadata.def" 4686 4687 return tokError("expected metadata type"); 4688 } 4689 4690 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4691 #define NOP_FIELD(NAME, TYPE, INIT) 4692 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4693 if (!NAME.Seen) \ 4694 return error(ClosingLoc, "missing required field '" #NAME "'"); 4695 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4696 if (Lex.getStrVal() == #NAME) \ 4697 return parseMDField(#NAME, NAME); 4698 #define PARSE_MD_FIELDS() \ 4699 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4700 do { \ 4701 LocTy ClosingLoc; \ 4702 if (parseMDFieldsImpl( \ 4703 [&]() -> bool { \ 4704 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4705 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4706 "'"); \ 4707 }, \ 4708 ClosingLoc)) \ 4709 return true; \ 4710 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4711 } while (false) 4712 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4713 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4714 4715 /// parseDILocationFields: 4716 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4717 /// isImplicitCode: true) 4718 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4719 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4720 OPTIONAL(line, LineField, ); \ 4721 OPTIONAL(column, ColumnField, ); \ 4722 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4723 OPTIONAL(inlinedAt, MDField, ); \ 4724 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4725 PARSE_MD_FIELDS(); 4726 #undef VISIT_MD_FIELDS 4727 4728 Result = 4729 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4730 inlinedAt.Val, isImplicitCode.Val)); 4731 return false; 4732 } 4733 4734 /// parseGenericDINode: 4735 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4736 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4737 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4738 REQUIRED(tag, DwarfTagField, ); \ 4739 OPTIONAL(header, MDStringField, ); \ 4740 OPTIONAL(operands, MDFieldList, ); 4741 PARSE_MD_FIELDS(); 4742 #undef VISIT_MD_FIELDS 4743 4744 Result = GET_OR_DISTINCT(GenericDINode, 4745 (Context, tag.Val, header.Val, operands.Val)); 4746 return false; 4747 } 4748 4749 /// parseDISubrange: 4750 /// ::= !DISubrange(count: 30, lowerBound: 2) 4751 /// ::= !DISubrange(count: !node, lowerBound: 2) 4752 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4753 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4754 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4755 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4756 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4757 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4758 OPTIONAL(stride, MDSignedOrMDField, ); 4759 PARSE_MD_FIELDS(); 4760 #undef VISIT_MD_FIELDS 4761 4762 Metadata *Count = nullptr; 4763 Metadata *LowerBound = nullptr; 4764 Metadata *UpperBound = nullptr; 4765 Metadata *Stride = nullptr; 4766 4767 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4768 if (Bound.isMDSignedField()) 4769 return ConstantAsMetadata::get(ConstantInt::getSigned( 4770 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4771 if (Bound.isMDField()) 4772 return Bound.getMDFieldValue(); 4773 return nullptr; 4774 }; 4775 4776 Count = convToMetadata(count); 4777 LowerBound = convToMetadata(lowerBound); 4778 UpperBound = convToMetadata(upperBound); 4779 Stride = convToMetadata(stride); 4780 4781 Result = GET_OR_DISTINCT(DISubrange, 4782 (Context, Count, LowerBound, UpperBound, Stride)); 4783 4784 return false; 4785 } 4786 4787 /// parseDIGenericSubrange: 4788 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4789 /// !node3) 4790 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4791 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4792 OPTIONAL(count, MDSignedOrMDField, ); \ 4793 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4794 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4795 OPTIONAL(stride, MDSignedOrMDField, ); 4796 PARSE_MD_FIELDS(); 4797 #undef VISIT_MD_FIELDS 4798 4799 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4800 if (Bound.isMDSignedField()) 4801 return DIExpression::get( 4802 Context, {dwarf::DW_OP_consts, 4803 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4804 if (Bound.isMDField()) 4805 return Bound.getMDFieldValue(); 4806 return nullptr; 4807 }; 4808 4809 Metadata *Count = ConvToMetadata(count); 4810 Metadata *LowerBound = ConvToMetadata(lowerBound); 4811 Metadata *UpperBound = ConvToMetadata(upperBound); 4812 Metadata *Stride = ConvToMetadata(stride); 4813 4814 Result = GET_OR_DISTINCT(DIGenericSubrange, 4815 (Context, Count, LowerBound, UpperBound, Stride)); 4816 4817 return false; 4818 } 4819 4820 /// parseDIEnumerator: 4821 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4822 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4823 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4824 REQUIRED(name, MDStringField, ); \ 4825 REQUIRED(value, MDAPSIntField, ); \ 4826 OPTIONAL(isUnsigned, MDBoolField, (false)); 4827 PARSE_MD_FIELDS(); 4828 #undef VISIT_MD_FIELDS 4829 4830 if (isUnsigned.Val && value.Val.isNegative()) 4831 return tokError("unsigned enumerator with negative value"); 4832 4833 APSInt Value(value.Val); 4834 // Add a leading zero so that unsigned values with the msb set are not 4835 // mistaken for negative values when used for signed enumerators. 4836 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4837 Value = Value.zext(Value.getBitWidth() + 1); 4838 4839 Result = 4840 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4841 4842 return false; 4843 } 4844 4845 /// parseDIBasicType: 4846 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4847 /// encoding: DW_ATE_encoding, flags: 0) 4848 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4849 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4850 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4851 OPTIONAL(name, MDStringField, ); \ 4852 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4853 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4854 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4855 OPTIONAL(flags, DIFlagField, ); 4856 PARSE_MD_FIELDS(); 4857 #undef VISIT_MD_FIELDS 4858 4859 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4860 align.Val, encoding.Val, flags.Val)); 4861 return false; 4862 } 4863 4864 /// parseDIStringType: 4865 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4866 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4867 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4868 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4869 OPTIONAL(name, MDStringField, ); \ 4870 OPTIONAL(stringLength, MDField, ); \ 4871 OPTIONAL(stringLengthExpression, MDField, ); \ 4872 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4873 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4874 OPTIONAL(encoding, DwarfAttEncodingField, ); 4875 PARSE_MD_FIELDS(); 4876 #undef VISIT_MD_FIELDS 4877 4878 Result = GET_OR_DISTINCT(DIStringType, 4879 (Context, tag.Val, name.Val, stringLength.Val, 4880 stringLengthExpression.Val, size.Val, align.Val, 4881 encoding.Val)); 4882 return false; 4883 } 4884 4885 /// parseDIDerivedType: 4886 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4887 /// line: 7, scope: !1, baseType: !2, size: 32, 4888 /// align: 32, offset: 0, flags: 0, extraData: !3, 4889 /// dwarfAddressSpace: 3) 4890 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4891 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4892 REQUIRED(tag, DwarfTagField, ); \ 4893 OPTIONAL(name, MDStringField, ); \ 4894 OPTIONAL(file, MDField, ); \ 4895 OPTIONAL(line, LineField, ); \ 4896 OPTIONAL(scope, MDField, ); \ 4897 REQUIRED(baseType, MDField, ); \ 4898 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4899 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4900 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4901 OPTIONAL(flags, DIFlagField, ); \ 4902 OPTIONAL(extraData, MDField, ); \ 4903 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4904 PARSE_MD_FIELDS(); 4905 #undef VISIT_MD_FIELDS 4906 4907 Optional<unsigned> DWARFAddressSpace; 4908 if (dwarfAddressSpace.Val != UINT32_MAX) 4909 DWARFAddressSpace = dwarfAddressSpace.Val; 4910 4911 Result = GET_OR_DISTINCT(DIDerivedType, 4912 (Context, tag.Val, name.Val, file.Val, line.Val, 4913 scope.Val, baseType.Val, size.Val, align.Val, 4914 offset.Val, DWARFAddressSpace, flags.Val, 4915 extraData.Val)); 4916 return false; 4917 } 4918 4919 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4920 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4921 REQUIRED(tag, DwarfTagField, ); \ 4922 OPTIONAL(name, MDStringField, ); \ 4923 OPTIONAL(file, MDField, ); \ 4924 OPTIONAL(line, LineField, ); \ 4925 OPTIONAL(scope, MDField, ); \ 4926 OPTIONAL(baseType, MDField, ); \ 4927 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4928 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4929 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4930 OPTIONAL(flags, DIFlagField, ); \ 4931 OPTIONAL(elements, MDField, ); \ 4932 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4933 OPTIONAL(vtableHolder, MDField, ); \ 4934 OPTIONAL(templateParams, MDField, ); \ 4935 OPTIONAL(identifier, MDStringField, ); \ 4936 OPTIONAL(discriminator, MDField, ); \ 4937 OPTIONAL(dataLocation, MDField, ); \ 4938 OPTIONAL(associated, MDField, ); \ 4939 OPTIONAL(allocated, MDField, ); \ 4940 OPTIONAL(rank, MDSignedOrMDField, ); 4941 PARSE_MD_FIELDS(); 4942 #undef VISIT_MD_FIELDS 4943 4944 Metadata *Rank = nullptr; 4945 if (rank.isMDSignedField()) 4946 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4947 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4948 else if (rank.isMDField()) 4949 Rank = rank.getMDFieldValue(); 4950 4951 // If this has an identifier try to build an ODR type. 4952 if (identifier.Val) 4953 if (auto *CT = DICompositeType::buildODRType( 4954 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4955 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4956 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4957 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4958 Rank)) { 4959 Result = CT; 4960 return false; 4961 } 4962 4963 // Create a new node, and save it in the context if it belongs in the type 4964 // map. 4965 Result = GET_OR_DISTINCT( 4966 DICompositeType, 4967 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4968 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4969 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4970 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4971 Rank)); 4972 return false; 4973 } 4974 4975 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4976 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4977 OPTIONAL(flags, DIFlagField, ); \ 4978 OPTIONAL(cc, DwarfCCField, ); \ 4979 REQUIRED(types, MDField, ); 4980 PARSE_MD_FIELDS(); 4981 #undef VISIT_MD_FIELDS 4982 4983 Result = GET_OR_DISTINCT(DISubroutineType, 4984 (Context, flags.Val, cc.Val, types.Val)); 4985 return false; 4986 } 4987 4988 /// parseDIFileType: 4989 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4990 /// checksumkind: CSK_MD5, 4991 /// checksum: "000102030405060708090a0b0c0d0e0f", 4992 /// source: "source file contents") 4993 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4994 // The default constructed value for checksumkind is required, but will never 4995 // be used, as the parser checks if the field was actually Seen before using 4996 // the Val. 4997 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4998 REQUIRED(filename, MDStringField, ); \ 4999 REQUIRED(directory, MDStringField, ); \ 5000 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 5001 OPTIONAL(checksum, MDStringField, ); \ 5002 OPTIONAL(source, MDStringField, ); 5003 PARSE_MD_FIELDS(); 5004 #undef VISIT_MD_FIELDS 5005 5006 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 5007 if (checksumkind.Seen && checksum.Seen) 5008 OptChecksum.emplace(checksumkind.Val, checksum.Val); 5009 else if (checksumkind.Seen || checksum.Seen) 5010 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 5011 5012 Optional<MDString *> OptSource; 5013 if (source.Seen) 5014 OptSource = source.Val; 5015 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 5016 OptChecksum, OptSource)); 5017 return false; 5018 } 5019 5020 /// parseDICompileUnit: 5021 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 5022 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 5023 /// splitDebugFilename: "abc.debug", 5024 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 5025 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 5026 /// sysroot: "/", sdk: "MacOSX.sdk") 5027 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 5028 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5029 REQUIRED(language, DwarfLangField, ); \ 5030 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 5031 OPTIONAL(producer, MDStringField, ); \ 5032 OPTIONAL(isOptimized, MDBoolField, ); \ 5033 OPTIONAL(flags, MDStringField, ); \ 5034 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 5035 OPTIONAL(splitDebugFilename, MDStringField, ); \ 5036 OPTIONAL(emissionKind, EmissionKindField, ); \ 5037 OPTIONAL(enums, MDField, ); \ 5038 OPTIONAL(retainedTypes, MDField, ); \ 5039 OPTIONAL(globals, MDField, ); \ 5040 OPTIONAL(imports, MDField, ); \ 5041 OPTIONAL(macros, MDField, ); \ 5042 OPTIONAL(dwoId, MDUnsignedField, ); \ 5043 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 5044 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 5045 OPTIONAL(nameTableKind, NameTableKindField, ); \ 5046 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 5047 OPTIONAL(sysroot, MDStringField, ); \ 5048 OPTIONAL(sdk, MDStringField, ); 5049 PARSE_MD_FIELDS(); 5050 #undef VISIT_MD_FIELDS 5051 5052 Result = DICompileUnit::getDistinct( 5053 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 5054 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 5055 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 5056 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 5057 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 5058 return false; 5059 } 5060 5061 /// parseDISubprogram: 5062 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 5063 /// file: !1, line: 7, type: !2, isLocal: false, 5064 /// isDefinition: true, scopeLine: 8, containingType: !3, 5065 /// virtuality: DW_VIRTUALTIY_pure_virtual, 5066 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 5067 /// spFlags: 10, isOptimized: false, templateParams: !4, 5068 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 5069 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 5070 auto Loc = Lex.getLoc(); 5071 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5072 OPTIONAL(scope, MDField, ); \ 5073 OPTIONAL(name, MDStringField, ); \ 5074 OPTIONAL(linkageName, MDStringField, ); \ 5075 OPTIONAL(file, MDField, ); \ 5076 OPTIONAL(line, LineField, ); \ 5077 OPTIONAL(type, MDField, ); \ 5078 OPTIONAL(isLocal, MDBoolField, ); \ 5079 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5080 OPTIONAL(scopeLine, LineField, ); \ 5081 OPTIONAL(containingType, MDField, ); \ 5082 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 5083 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 5084 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 5085 OPTIONAL(flags, DIFlagField, ); \ 5086 OPTIONAL(spFlags, DISPFlagField, ); \ 5087 OPTIONAL(isOptimized, MDBoolField, ); \ 5088 OPTIONAL(unit, MDField, ); \ 5089 OPTIONAL(templateParams, MDField, ); \ 5090 OPTIONAL(declaration, MDField, ); \ 5091 OPTIONAL(retainedNodes, MDField, ); \ 5092 OPTIONAL(thrownTypes, MDField, ); 5093 PARSE_MD_FIELDS(); 5094 #undef VISIT_MD_FIELDS 5095 5096 // An explicit spFlags field takes precedence over individual fields in 5097 // older IR versions. 5098 DISubprogram::DISPFlags SPFlags = 5099 spFlags.Seen ? spFlags.Val 5100 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 5101 isOptimized.Val, virtuality.Val); 5102 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 5103 return Lex.Error( 5104 Loc, 5105 "missing 'distinct', required for !DISubprogram that is a Definition"); 5106 Result = GET_OR_DISTINCT( 5107 DISubprogram, 5108 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 5109 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 5110 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 5111 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 5112 return false; 5113 } 5114 5115 /// parseDILexicalBlock: 5116 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 5117 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 5118 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5119 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5120 OPTIONAL(file, MDField, ); \ 5121 OPTIONAL(line, LineField, ); \ 5122 OPTIONAL(column, ColumnField, ); 5123 PARSE_MD_FIELDS(); 5124 #undef VISIT_MD_FIELDS 5125 5126 Result = GET_OR_DISTINCT( 5127 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 5128 return false; 5129 } 5130 5131 /// parseDILexicalBlockFile: 5132 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 5133 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 5134 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5135 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5136 OPTIONAL(file, MDField, ); \ 5137 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 5138 PARSE_MD_FIELDS(); 5139 #undef VISIT_MD_FIELDS 5140 5141 Result = GET_OR_DISTINCT(DILexicalBlockFile, 5142 (Context, scope.Val, file.Val, discriminator.Val)); 5143 return false; 5144 } 5145 5146 /// parseDICommonBlock: 5147 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 5148 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 5149 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5150 REQUIRED(scope, MDField, ); \ 5151 OPTIONAL(declaration, MDField, ); \ 5152 OPTIONAL(name, MDStringField, ); \ 5153 OPTIONAL(file, MDField, ); \ 5154 OPTIONAL(line, LineField, ); 5155 PARSE_MD_FIELDS(); 5156 #undef VISIT_MD_FIELDS 5157 5158 Result = GET_OR_DISTINCT(DICommonBlock, 5159 (Context, scope.Val, declaration.Val, name.Val, 5160 file.Val, line.Val)); 5161 return false; 5162 } 5163 5164 /// parseDINamespace: 5165 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 5166 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 5167 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5168 REQUIRED(scope, MDField, ); \ 5169 OPTIONAL(name, MDStringField, ); \ 5170 OPTIONAL(exportSymbols, MDBoolField, ); 5171 PARSE_MD_FIELDS(); 5172 #undef VISIT_MD_FIELDS 5173 5174 Result = GET_OR_DISTINCT(DINamespace, 5175 (Context, scope.Val, name.Val, exportSymbols.Val)); 5176 return false; 5177 } 5178 5179 /// parseDIMacro: 5180 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 5181 /// "SomeValue") 5182 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 5183 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5184 REQUIRED(type, DwarfMacinfoTypeField, ); \ 5185 OPTIONAL(line, LineField, ); \ 5186 REQUIRED(name, MDStringField, ); \ 5187 OPTIONAL(value, MDStringField, ); 5188 PARSE_MD_FIELDS(); 5189 #undef VISIT_MD_FIELDS 5190 5191 Result = GET_OR_DISTINCT(DIMacro, 5192 (Context, type.Val, line.Val, name.Val, value.Val)); 5193 return false; 5194 } 5195 5196 /// parseDIMacroFile: 5197 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 5198 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 5199 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5200 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 5201 OPTIONAL(line, LineField, ); \ 5202 REQUIRED(file, MDField, ); \ 5203 OPTIONAL(nodes, MDField, ); 5204 PARSE_MD_FIELDS(); 5205 #undef VISIT_MD_FIELDS 5206 5207 Result = GET_OR_DISTINCT(DIMacroFile, 5208 (Context, type.Val, line.Val, file.Val, nodes.Val)); 5209 return false; 5210 } 5211 5212 /// parseDIModule: 5213 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 5214 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 5215 /// file: !1, line: 4, isDecl: false) 5216 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 5217 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5218 REQUIRED(scope, MDField, ); \ 5219 REQUIRED(name, MDStringField, ); \ 5220 OPTIONAL(configMacros, MDStringField, ); \ 5221 OPTIONAL(includePath, MDStringField, ); \ 5222 OPTIONAL(apinotes, MDStringField, ); \ 5223 OPTIONAL(file, MDField, ); \ 5224 OPTIONAL(line, LineField, ); \ 5225 OPTIONAL(isDecl, MDBoolField, ); 5226 PARSE_MD_FIELDS(); 5227 #undef VISIT_MD_FIELDS 5228 5229 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 5230 configMacros.Val, includePath.Val, 5231 apinotes.Val, line.Val, isDecl.Val)); 5232 return false; 5233 } 5234 5235 /// parseDITemplateTypeParameter: 5236 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 5237 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 5238 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5239 OPTIONAL(name, MDStringField, ); \ 5240 REQUIRED(type, MDField, ); \ 5241 OPTIONAL(defaulted, MDBoolField, ); 5242 PARSE_MD_FIELDS(); 5243 #undef VISIT_MD_FIELDS 5244 5245 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 5246 (Context, name.Val, type.Val, defaulted.Val)); 5247 return false; 5248 } 5249 5250 /// parseDITemplateValueParameter: 5251 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 5252 /// name: "V", type: !1, defaulted: false, 5253 /// value: i32 7) 5254 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 5255 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5256 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 5257 OPTIONAL(name, MDStringField, ); \ 5258 OPTIONAL(type, MDField, ); \ 5259 OPTIONAL(defaulted, MDBoolField, ); \ 5260 REQUIRED(value, MDField, ); 5261 5262 PARSE_MD_FIELDS(); 5263 #undef VISIT_MD_FIELDS 5264 5265 Result = GET_OR_DISTINCT( 5266 DITemplateValueParameter, 5267 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 5268 return false; 5269 } 5270 5271 /// parseDIGlobalVariable: 5272 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 5273 /// file: !1, line: 7, type: !2, isLocal: false, 5274 /// isDefinition: true, templateParams: !3, 5275 /// declaration: !4, align: 8) 5276 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 5277 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5278 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 5279 OPTIONAL(scope, MDField, ); \ 5280 OPTIONAL(linkageName, MDStringField, ); \ 5281 OPTIONAL(file, MDField, ); \ 5282 OPTIONAL(line, LineField, ); \ 5283 OPTIONAL(type, MDField, ); \ 5284 OPTIONAL(isLocal, MDBoolField, ); \ 5285 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5286 OPTIONAL(templateParams, MDField, ); \ 5287 OPTIONAL(declaration, MDField, ); \ 5288 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5289 PARSE_MD_FIELDS(); 5290 #undef VISIT_MD_FIELDS 5291 5292 Result = 5293 GET_OR_DISTINCT(DIGlobalVariable, 5294 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 5295 line.Val, type.Val, isLocal.Val, isDefinition.Val, 5296 declaration.Val, templateParams.Val, align.Val)); 5297 return false; 5298 } 5299 5300 /// parseDILocalVariable: 5301 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 5302 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5303 /// align: 8) 5304 /// ::= !DILocalVariable(scope: !0, name: "foo", 5305 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5306 /// align: 8) 5307 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5308 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5309 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5310 OPTIONAL(name, MDStringField, ); \ 5311 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5312 OPTIONAL(file, MDField, ); \ 5313 OPTIONAL(line, LineField, ); \ 5314 OPTIONAL(type, MDField, ); \ 5315 OPTIONAL(flags, DIFlagField, ); \ 5316 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5317 PARSE_MD_FIELDS(); 5318 #undef VISIT_MD_FIELDS 5319 5320 Result = GET_OR_DISTINCT(DILocalVariable, 5321 (Context, scope.Val, name.Val, file.Val, line.Val, 5322 type.Val, arg.Val, flags.Val, align.Val)); 5323 return false; 5324 } 5325 5326 /// parseDILabel: 5327 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5328 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5329 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5330 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5331 REQUIRED(name, MDStringField, ); \ 5332 REQUIRED(file, MDField, ); \ 5333 REQUIRED(line, LineField, ); 5334 PARSE_MD_FIELDS(); 5335 #undef VISIT_MD_FIELDS 5336 5337 Result = GET_OR_DISTINCT(DILabel, 5338 (Context, scope.Val, name.Val, file.Val, line.Val)); 5339 return false; 5340 } 5341 5342 /// parseDIExpression: 5343 /// ::= !DIExpression(0, 7, -1) 5344 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5345 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5346 Lex.Lex(); 5347 5348 if (parseToken(lltok::lparen, "expected '(' here")) 5349 return true; 5350 5351 SmallVector<uint64_t, 8> Elements; 5352 if (Lex.getKind() != lltok::rparen) 5353 do { 5354 if (Lex.getKind() == lltok::DwarfOp) { 5355 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5356 Lex.Lex(); 5357 Elements.push_back(Op); 5358 continue; 5359 } 5360 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5361 } 5362 5363 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5364 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5365 Lex.Lex(); 5366 Elements.push_back(Op); 5367 continue; 5368 } 5369 return tokError(Twine("invalid DWARF attribute encoding '") + 5370 Lex.getStrVal() + "'"); 5371 } 5372 5373 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5374 return tokError("expected unsigned integer"); 5375 5376 auto &U = Lex.getAPSIntVal(); 5377 if (U.ugt(UINT64_MAX)) 5378 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5379 Elements.push_back(U.getZExtValue()); 5380 Lex.Lex(); 5381 } while (EatIfPresent(lltok::comma)); 5382 5383 if (parseToken(lltok::rparen, "expected ')' here")) 5384 return true; 5385 5386 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5387 return false; 5388 } 5389 5390 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) { 5391 return tokError("!DIArgList cannot appear outside of a function"); 5392 } 5393 /// ParseDIArgList: 5394 /// ::= !DIArgList(i32 7, i64 %0) 5395 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct, 5396 PerFunctionState *PFS) { 5397 assert(PFS && "Expected valid function state"); 5398 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5399 Lex.Lex(); 5400 5401 if (parseToken(lltok::lparen, "expected '(' here")) 5402 return true; 5403 5404 SmallVector<ValueAsMetadata *, 4> Args; 5405 if (Lex.getKind() != lltok::rparen) 5406 do { 5407 Metadata *MD; 5408 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5409 return true; 5410 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5411 } while (EatIfPresent(lltok::comma)); 5412 5413 if (parseToken(lltok::rparen, "expected ')' here")) 5414 return true; 5415 5416 Result = GET_OR_DISTINCT(DIArgList, (Context, Args)); 5417 return false; 5418 } 5419 5420 /// parseDIGlobalVariableExpression: 5421 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5422 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5423 bool IsDistinct) { 5424 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5425 REQUIRED(var, MDField, ); \ 5426 REQUIRED(expr, MDField, ); 5427 PARSE_MD_FIELDS(); 5428 #undef VISIT_MD_FIELDS 5429 5430 Result = 5431 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5432 return false; 5433 } 5434 5435 /// parseDIObjCProperty: 5436 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5437 /// getter: "getFoo", attributes: 7, type: !2) 5438 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5439 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5440 OPTIONAL(name, MDStringField, ); \ 5441 OPTIONAL(file, MDField, ); \ 5442 OPTIONAL(line, LineField, ); \ 5443 OPTIONAL(setter, MDStringField, ); \ 5444 OPTIONAL(getter, MDStringField, ); \ 5445 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5446 OPTIONAL(type, MDField, ); 5447 PARSE_MD_FIELDS(); 5448 #undef VISIT_MD_FIELDS 5449 5450 Result = GET_OR_DISTINCT(DIObjCProperty, 5451 (Context, name.Val, file.Val, line.Val, setter.Val, 5452 getter.Val, attributes.Val, type.Val)); 5453 return false; 5454 } 5455 5456 /// parseDIImportedEntity: 5457 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5458 /// line: 7, name: "foo") 5459 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5460 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5461 REQUIRED(tag, DwarfTagField, ); \ 5462 REQUIRED(scope, MDField, ); \ 5463 OPTIONAL(entity, MDField, ); \ 5464 OPTIONAL(file, MDField, ); \ 5465 OPTIONAL(line, LineField, ); \ 5466 OPTIONAL(name, MDStringField, ); 5467 PARSE_MD_FIELDS(); 5468 #undef VISIT_MD_FIELDS 5469 5470 Result = GET_OR_DISTINCT( 5471 DIImportedEntity, 5472 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5473 return false; 5474 } 5475 5476 #undef PARSE_MD_FIELD 5477 #undef NOP_FIELD 5478 #undef REQUIRE_FIELD 5479 #undef DECLARE_FIELD 5480 5481 /// parseMetadataAsValue 5482 /// ::= metadata i32 %local 5483 /// ::= metadata i32 @global 5484 /// ::= metadata i32 7 5485 /// ::= metadata !0 5486 /// ::= metadata !{...} 5487 /// ::= metadata !"string" 5488 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5489 // Note: the type 'metadata' has already been parsed. 5490 Metadata *MD; 5491 if (parseMetadata(MD, &PFS)) 5492 return true; 5493 5494 V = MetadataAsValue::get(Context, MD); 5495 return false; 5496 } 5497 5498 /// parseValueAsMetadata 5499 /// ::= i32 %local 5500 /// ::= i32 @global 5501 /// ::= i32 7 5502 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5503 PerFunctionState *PFS) { 5504 Type *Ty; 5505 LocTy Loc; 5506 if (parseType(Ty, TypeMsg, Loc)) 5507 return true; 5508 if (Ty->isMetadataTy()) 5509 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5510 5511 Value *V; 5512 if (parseValue(Ty, V, PFS)) 5513 return true; 5514 5515 MD = ValueAsMetadata::get(V); 5516 return false; 5517 } 5518 5519 /// parseMetadata 5520 /// ::= i32 %local 5521 /// ::= i32 @global 5522 /// ::= i32 7 5523 /// ::= !42 5524 /// ::= !{...} 5525 /// ::= !"string" 5526 /// ::= !DILocation(...) 5527 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5528 if (Lex.getKind() == lltok::MetadataVar) { 5529 MDNode *N; 5530 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5531 // so parsing this requires a Function State. 5532 if (Lex.getStrVal() == "DIArgList") { 5533 if (parseDIArgList(N, false, PFS)) 5534 return true; 5535 } else if (parseSpecializedMDNode(N)) { 5536 return true; 5537 } 5538 MD = N; 5539 return false; 5540 } 5541 5542 // ValueAsMetadata: 5543 // <type> <value> 5544 if (Lex.getKind() != lltok::exclaim) 5545 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5546 5547 // '!'. 5548 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5549 Lex.Lex(); 5550 5551 // MDString: 5552 // ::= '!' STRINGCONSTANT 5553 if (Lex.getKind() == lltok::StringConstant) { 5554 MDString *S; 5555 if (parseMDString(S)) 5556 return true; 5557 MD = S; 5558 return false; 5559 } 5560 5561 // MDNode: 5562 // !{ ... } 5563 // !7 5564 MDNode *N; 5565 if (parseMDNodeTail(N)) 5566 return true; 5567 MD = N; 5568 return false; 5569 } 5570 5571 //===----------------------------------------------------------------------===// 5572 // Function Parsing. 5573 //===----------------------------------------------------------------------===// 5574 5575 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5576 PerFunctionState *PFS, bool IsCall) { 5577 if (Ty->isFunctionTy()) 5578 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5579 5580 switch (ID.Kind) { 5581 case ValID::t_LocalID: 5582 if (!PFS) 5583 return error(ID.Loc, "invalid use of function-local name"); 5584 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5585 return V == nullptr; 5586 case ValID::t_LocalName: 5587 if (!PFS) 5588 return error(ID.Loc, "invalid use of function-local name"); 5589 V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall); 5590 return V == nullptr; 5591 case ValID::t_InlineAsm: { 5592 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5593 return error(ID.Loc, "invalid type for inline asm constraint string"); 5594 V = InlineAsm::get( 5595 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, 5596 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); 5597 return false; 5598 } 5599 case ValID::t_GlobalName: 5600 V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5601 return V == nullptr; 5602 case ValID::t_GlobalID: 5603 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5604 return V == nullptr; 5605 case ValID::t_APSInt: 5606 if (!Ty->isIntegerTy()) 5607 return error(ID.Loc, "integer constant must have integer type"); 5608 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5609 V = ConstantInt::get(Context, ID.APSIntVal); 5610 return false; 5611 case ValID::t_APFloat: 5612 if (!Ty->isFloatingPointTy() || 5613 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5614 return error(ID.Loc, "floating point constant invalid for type"); 5615 5616 // The lexer has no type info, so builds all half, bfloat, float, and double 5617 // FP constants as double. Fix this here. Long double does not need this. 5618 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5619 // Check for signaling before potentially converting and losing that info. 5620 bool IsSNAN = ID.APFloatVal.isSignaling(); 5621 bool Ignored; 5622 if (Ty->isHalfTy()) 5623 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5624 &Ignored); 5625 else if (Ty->isBFloatTy()) 5626 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5627 &Ignored); 5628 else if (Ty->isFloatTy()) 5629 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5630 &Ignored); 5631 if (IsSNAN) { 5632 // The convert call above may quiet an SNaN, so manufacture another 5633 // SNaN. The bitcast works because the payload (significand) parameter 5634 // is truncated to fit. 5635 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5636 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5637 ID.APFloatVal.isNegative(), &Payload); 5638 } 5639 } 5640 V = ConstantFP::get(Context, ID.APFloatVal); 5641 5642 if (V->getType() != Ty) 5643 return error(ID.Loc, "floating point constant does not have type '" + 5644 getTypeString(Ty) + "'"); 5645 5646 return false; 5647 case ValID::t_Null: 5648 if (!Ty->isPointerTy()) 5649 return error(ID.Loc, "null must be a pointer type"); 5650 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5651 return false; 5652 case ValID::t_Undef: 5653 // FIXME: LabelTy should not be a first-class type. 5654 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5655 return error(ID.Loc, "invalid type for undef constant"); 5656 V = UndefValue::get(Ty); 5657 return false; 5658 case ValID::t_EmptyArray: 5659 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5660 return error(ID.Loc, "invalid empty array initializer"); 5661 V = UndefValue::get(Ty); 5662 return false; 5663 case ValID::t_Zero: 5664 // FIXME: LabelTy should not be a first-class type. 5665 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5666 return error(ID.Loc, "invalid type for null constant"); 5667 V = Constant::getNullValue(Ty); 5668 return false; 5669 case ValID::t_None: 5670 if (!Ty->isTokenTy()) 5671 return error(ID.Loc, "invalid type for none constant"); 5672 V = Constant::getNullValue(Ty); 5673 return false; 5674 case ValID::t_Poison: 5675 // FIXME: LabelTy should not be a first-class type. 5676 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5677 return error(ID.Loc, "invalid type for poison constant"); 5678 V = PoisonValue::get(Ty); 5679 return false; 5680 case ValID::t_Constant: 5681 if (ID.ConstantVal->getType() != Ty) 5682 return error(ID.Loc, "constant expression type mismatch"); 5683 V = ID.ConstantVal; 5684 return false; 5685 case ValID::t_ConstantStruct: 5686 case ValID::t_PackedConstantStruct: 5687 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5688 if (ST->getNumElements() != ID.UIntVal) 5689 return error(ID.Loc, 5690 "initializer with struct type has wrong # elements"); 5691 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5692 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5693 5694 // Verify that the elements are compatible with the structtype. 5695 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5696 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5697 return error( 5698 ID.Loc, 5699 "element " + Twine(i) + 5700 " of struct initializer doesn't match struct element type"); 5701 5702 V = ConstantStruct::get( 5703 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5704 } else 5705 return error(ID.Loc, "constant expression type mismatch"); 5706 return false; 5707 } 5708 llvm_unreachable("Invalid ValID"); 5709 } 5710 5711 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5712 C = nullptr; 5713 ValID ID; 5714 auto Loc = Lex.getLoc(); 5715 if (parseValID(ID, /*PFS=*/nullptr)) 5716 return true; 5717 switch (ID.Kind) { 5718 case ValID::t_APSInt: 5719 case ValID::t_APFloat: 5720 case ValID::t_Undef: 5721 case ValID::t_Constant: 5722 case ValID::t_ConstantStruct: 5723 case ValID::t_PackedConstantStruct: { 5724 Value *V; 5725 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5726 return true; 5727 assert(isa<Constant>(V) && "Expected a constant value"); 5728 C = cast<Constant>(V); 5729 return false; 5730 } 5731 case ValID::t_Null: 5732 C = Constant::getNullValue(Ty); 5733 return false; 5734 default: 5735 return error(Loc, "expected a constant value"); 5736 } 5737 } 5738 5739 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5740 V = nullptr; 5741 ValID ID; 5742 return parseValID(ID, PFS) || 5743 convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5744 } 5745 5746 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5747 Type *Ty = nullptr; 5748 return parseType(Ty) || parseValue(Ty, V, PFS); 5749 } 5750 5751 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5752 PerFunctionState &PFS) { 5753 Value *V; 5754 Loc = Lex.getLoc(); 5755 if (parseTypeAndValue(V, PFS)) 5756 return true; 5757 if (!isa<BasicBlock>(V)) 5758 return error(Loc, "expected a basic block"); 5759 BB = cast<BasicBlock>(V); 5760 return false; 5761 } 5762 5763 /// FunctionHeader 5764 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5765 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5766 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5767 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5768 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5769 // parse the linkage. 5770 LocTy LinkageLoc = Lex.getLoc(); 5771 unsigned Linkage; 5772 unsigned Visibility; 5773 unsigned DLLStorageClass; 5774 bool DSOLocal; 5775 AttrBuilder RetAttrs; 5776 unsigned CC; 5777 bool HasLinkage; 5778 Type *RetType = nullptr; 5779 LocTy RetTypeLoc = Lex.getLoc(); 5780 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5781 DSOLocal) || 5782 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5783 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5784 return true; 5785 5786 // Verify that the linkage is ok. 5787 switch ((GlobalValue::LinkageTypes)Linkage) { 5788 case GlobalValue::ExternalLinkage: 5789 break; // always ok. 5790 case GlobalValue::ExternalWeakLinkage: 5791 if (IsDefine) 5792 return error(LinkageLoc, "invalid linkage for function definition"); 5793 break; 5794 case GlobalValue::PrivateLinkage: 5795 case GlobalValue::InternalLinkage: 5796 case GlobalValue::AvailableExternallyLinkage: 5797 case GlobalValue::LinkOnceAnyLinkage: 5798 case GlobalValue::LinkOnceODRLinkage: 5799 case GlobalValue::WeakAnyLinkage: 5800 case GlobalValue::WeakODRLinkage: 5801 if (!IsDefine) 5802 return error(LinkageLoc, "invalid linkage for function declaration"); 5803 break; 5804 case GlobalValue::AppendingLinkage: 5805 case GlobalValue::CommonLinkage: 5806 return error(LinkageLoc, "invalid function linkage type"); 5807 } 5808 5809 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5810 return error(LinkageLoc, 5811 "symbol with local linkage must have default visibility"); 5812 5813 if (!FunctionType::isValidReturnType(RetType)) 5814 return error(RetTypeLoc, "invalid function return type"); 5815 5816 LocTy NameLoc = Lex.getLoc(); 5817 5818 std::string FunctionName; 5819 if (Lex.getKind() == lltok::GlobalVar) { 5820 FunctionName = Lex.getStrVal(); 5821 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5822 unsigned NameID = Lex.getUIntVal(); 5823 5824 if (NameID != NumberedVals.size()) 5825 return tokError("function expected to be numbered '%" + 5826 Twine(NumberedVals.size()) + "'"); 5827 } else { 5828 return tokError("expected function name"); 5829 } 5830 5831 Lex.Lex(); 5832 5833 if (Lex.getKind() != lltok::lparen) 5834 return tokError("expected '(' in function argument list"); 5835 5836 SmallVector<ArgInfo, 8> ArgList; 5837 bool IsVarArg; 5838 AttrBuilder FuncAttrs; 5839 std::vector<unsigned> FwdRefAttrGrps; 5840 LocTy BuiltinLoc; 5841 std::string Section; 5842 std::string Partition; 5843 MaybeAlign Alignment; 5844 std::string GC; 5845 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5846 unsigned AddrSpace = 0; 5847 Constant *Prefix = nullptr; 5848 Constant *Prologue = nullptr; 5849 Constant *PersonalityFn = nullptr; 5850 Comdat *C; 5851 5852 if (parseArgumentList(ArgList, IsVarArg) || 5853 parseOptionalUnnamedAddr(UnnamedAddr) || 5854 parseOptionalProgramAddrSpace(AddrSpace) || 5855 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5856 BuiltinLoc) || 5857 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5858 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5859 parseOptionalComdat(FunctionName, C) || 5860 parseOptionalAlignment(Alignment) || 5861 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5862 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5863 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5864 (EatIfPresent(lltok::kw_personality) && 5865 parseGlobalTypeAndValue(PersonalityFn))) 5866 return true; 5867 5868 if (FuncAttrs.contains(Attribute::Builtin)) 5869 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5870 5871 // If the alignment was parsed as an attribute, move to the alignment field. 5872 if (FuncAttrs.hasAlignmentAttr()) { 5873 Alignment = FuncAttrs.getAlignment(); 5874 FuncAttrs.removeAttribute(Attribute::Alignment); 5875 } 5876 5877 // Okay, if we got here, the function is syntactically valid. Convert types 5878 // and do semantic checks. 5879 std::vector<Type*> ParamTypeList; 5880 SmallVector<AttributeSet, 8> Attrs; 5881 5882 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5883 ParamTypeList.push_back(ArgList[i].Ty); 5884 Attrs.push_back(ArgList[i].Attrs); 5885 } 5886 5887 AttributeList PAL = 5888 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5889 AttributeSet::get(Context, RetAttrs), Attrs); 5890 5891 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5892 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5893 5894 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5895 PointerType *PFT = PointerType::get(FT, AddrSpace); 5896 5897 Fn = nullptr; 5898 GlobalValue *FwdFn = nullptr; 5899 if (!FunctionName.empty()) { 5900 // If this was a definition of a forward reference, remove the definition 5901 // from the forward reference table and fill in the forward ref. 5902 auto FRVI = ForwardRefVals.find(FunctionName); 5903 if (FRVI != ForwardRefVals.end()) { 5904 FwdFn = FRVI->second.first; 5905 if (!FwdFn->getType()->isOpaque()) { 5906 if (!FwdFn->getType()->getPointerElementType()->isFunctionTy()) 5907 return error(FRVI->second.second, "invalid forward reference to " 5908 "function as global value!"); 5909 if (FwdFn->getType() != PFT) 5910 return error(FRVI->second.second, 5911 "invalid forward reference to " 5912 "function '" + 5913 FunctionName + 5914 "' with wrong type: " 5915 "expected '" + 5916 getTypeString(PFT) + "' but was '" + 5917 getTypeString(FwdFn->getType()) + "'"); 5918 } 5919 ForwardRefVals.erase(FRVI); 5920 } else if ((Fn = M->getFunction(FunctionName))) { 5921 // Reject redefinitions. 5922 return error(NameLoc, 5923 "invalid redefinition of function '" + FunctionName + "'"); 5924 } else if (M->getNamedValue(FunctionName)) { 5925 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5926 } 5927 5928 } else { 5929 // If this is a definition of a forward referenced function, make sure the 5930 // types agree. 5931 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5932 if (I != ForwardRefValIDs.end()) { 5933 FwdFn = cast<Function>(I->second.first); 5934 if (!FwdFn->getType()->isOpaque() && FwdFn->getType() != PFT) 5935 return error(NameLoc, "type of definition and forward reference of '@" + 5936 Twine(NumberedVals.size()) + 5937 "' disagree: " 5938 "expected '" + 5939 getTypeString(PFT) + "' but was '" + 5940 getTypeString(FwdFn->getType()) + "'"); 5941 ForwardRefValIDs.erase(I); 5942 } 5943 } 5944 5945 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5946 FunctionName, M); 5947 5948 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5949 5950 if (FunctionName.empty()) 5951 NumberedVals.push_back(Fn); 5952 5953 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5954 maybeSetDSOLocal(DSOLocal, *Fn); 5955 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5956 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5957 Fn->setCallingConv(CC); 5958 Fn->setAttributes(PAL); 5959 Fn->setUnnamedAddr(UnnamedAddr); 5960 Fn->setAlignment(MaybeAlign(Alignment)); 5961 Fn->setSection(Section); 5962 Fn->setPartition(Partition); 5963 Fn->setComdat(C); 5964 Fn->setPersonalityFn(PersonalityFn); 5965 if (!GC.empty()) Fn->setGC(GC); 5966 Fn->setPrefixData(Prefix); 5967 Fn->setPrologueData(Prologue); 5968 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5969 5970 // Add all of the arguments we parsed to the function. 5971 Function::arg_iterator ArgIt = Fn->arg_begin(); 5972 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5973 // If the argument has a name, insert it into the argument symbol table. 5974 if (ArgList[i].Name.empty()) continue; 5975 5976 // Set the name, if it conflicted, it will be auto-renamed. 5977 ArgIt->setName(ArgList[i].Name); 5978 5979 if (ArgIt->getName() != ArgList[i].Name) 5980 return error(ArgList[i].Loc, 5981 "redefinition of argument '%" + ArgList[i].Name + "'"); 5982 } 5983 5984 if (FwdFn) { 5985 FwdFn->replaceAllUsesWith(Fn); 5986 FwdFn->eraseFromParent(); 5987 } 5988 5989 if (IsDefine) 5990 return false; 5991 5992 // Check the declaration has no block address forward references. 5993 ValID ID; 5994 if (FunctionName.empty()) { 5995 ID.Kind = ValID::t_GlobalID; 5996 ID.UIntVal = NumberedVals.size() - 1; 5997 } else { 5998 ID.Kind = ValID::t_GlobalName; 5999 ID.StrVal = FunctionName; 6000 } 6001 auto Blocks = ForwardRefBlockAddresses.find(ID); 6002 if (Blocks != ForwardRefBlockAddresses.end()) 6003 return error(Blocks->first.Loc, 6004 "cannot take blockaddress inside a declaration"); 6005 return false; 6006 } 6007 6008 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 6009 ValID ID; 6010 if (FunctionNumber == -1) { 6011 ID.Kind = ValID::t_GlobalName; 6012 ID.StrVal = std::string(F.getName()); 6013 } else { 6014 ID.Kind = ValID::t_GlobalID; 6015 ID.UIntVal = FunctionNumber; 6016 } 6017 6018 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 6019 if (Blocks == P.ForwardRefBlockAddresses.end()) 6020 return false; 6021 6022 for (const auto &I : Blocks->second) { 6023 const ValID &BBID = I.first; 6024 GlobalValue *GV = I.second; 6025 6026 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 6027 "Expected local id or name"); 6028 BasicBlock *BB; 6029 if (BBID.Kind == ValID::t_LocalName) 6030 BB = getBB(BBID.StrVal, BBID.Loc); 6031 else 6032 BB = getBB(BBID.UIntVal, BBID.Loc); 6033 if (!BB) 6034 return P.error(BBID.Loc, "referenced value is not a basic block"); 6035 6036 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 6037 GV->eraseFromParent(); 6038 } 6039 6040 P.ForwardRefBlockAddresses.erase(Blocks); 6041 return false; 6042 } 6043 6044 /// parseFunctionBody 6045 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 6046 bool LLParser::parseFunctionBody(Function &Fn) { 6047 if (Lex.getKind() != lltok::lbrace) 6048 return tokError("expected '{' in function body"); 6049 Lex.Lex(); // eat the {. 6050 6051 int FunctionNumber = -1; 6052 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 6053 6054 PerFunctionState PFS(*this, Fn, FunctionNumber); 6055 6056 // Resolve block addresses and allow basic blocks to be forward-declared 6057 // within this function. 6058 if (PFS.resolveForwardRefBlockAddresses()) 6059 return true; 6060 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 6061 6062 // We need at least one basic block. 6063 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 6064 return tokError("function body requires at least one basic block"); 6065 6066 while (Lex.getKind() != lltok::rbrace && 6067 Lex.getKind() != lltok::kw_uselistorder) 6068 if (parseBasicBlock(PFS)) 6069 return true; 6070 6071 while (Lex.getKind() != lltok::rbrace) 6072 if (parseUseListOrder(&PFS)) 6073 return true; 6074 6075 // Eat the }. 6076 Lex.Lex(); 6077 6078 // Verify function is ok. 6079 return PFS.finishFunction(); 6080 } 6081 6082 /// parseBasicBlock 6083 /// ::= (LabelStr|LabelID)? Instruction* 6084 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 6085 // If this basic block starts out with a name, remember it. 6086 std::string Name; 6087 int NameID = -1; 6088 LocTy NameLoc = Lex.getLoc(); 6089 if (Lex.getKind() == lltok::LabelStr) { 6090 Name = Lex.getStrVal(); 6091 Lex.Lex(); 6092 } else if (Lex.getKind() == lltok::LabelID) { 6093 NameID = Lex.getUIntVal(); 6094 Lex.Lex(); 6095 } 6096 6097 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 6098 if (!BB) 6099 return true; 6100 6101 std::string NameStr; 6102 6103 // parse the instructions in this block until we get a terminator. 6104 Instruction *Inst; 6105 do { 6106 // This instruction may have three possibilities for a name: a) none 6107 // specified, b) name specified "%foo =", c) number specified: "%4 =". 6108 LocTy NameLoc = Lex.getLoc(); 6109 int NameID = -1; 6110 NameStr = ""; 6111 6112 if (Lex.getKind() == lltok::LocalVarID) { 6113 NameID = Lex.getUIntVal(); 6114 Lex.Lex(); 6115 if (parseToken(lltok::equal, "expected '=' after instruction id")) 6116 return true; 6117 } else if (Lex.getKind() == lltok::LocalVar) { 6118 NameStr = Lex.getStrVal(); 6119 Lex.Lex(); 6120 if (parseToken(lltok::equal, "expected '=' after instruction name")) 6121 return true; 6122 } 6123 6124 switch (parseInstruction(Inst, BB, PFS)) { 6125 default: 6126 llvm_unreachable("Unknown parseInstruction result!"); 6127 case InstError: return true; 6128 case InstNormal: 6129 BB->getInstList().push_back(Inst); 6130 6131 // With a normal result, we check to see if the instruction is followed by 6132 // a comma and metadata. 6133 if (EatIfPresent(lltok::comma)) 6134 if (parseInstructionMetadata(*Inst)) 6135 return true; 6136 break; 6137 case InstExtraComma: 6138 BB->getInstList().push_back(Inst); 6139 6140 // If the instruction parser ate an extra comma at the end of it, it 6141 // *must* be followed by metadata. 6142 if (parseInstructionMetadata(*Inst)) 6143 return true; 6144 break; 6145 } 6146 6147 // Set the name on the instruction. 6148 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 6149 return true; 6150 } while (!Inst->isTerminator()); 6151 6152 return false; 6153 } 6154 6155 //===----------------------------------------------------------------------===// 6156 // Instruction Parsing. 6157 //===----------------------------------------------------------------------===// 6158 6159 /// parseInstruction - parse one of the many different instructions. 6160 /// 6161 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 6162 PerFunctionState &PFS) { 6163 lltok::Kind Token = Lex.getKind(); 6164 if (Token == lltok::Eof) 6165 return tokError("found end of file when expecting more instructions"); 6166 LocTy Loc = Lex.getLoc(); 6167 unsigned KeywordVal = Lex.getUIntVal(); 6168 Lex.Lex(); // Eat the keyword. 6169 6170 switch (Token) { 6171 default: 6172 return error(Loc, "expected instruction opcode"); 6173 // Terminator Instructions. 6174 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 6175 case lltok::kw_ret: 6176 return parseRet(Inst, BB, PFS); 6177 case lltok::kw_br: 6178 return parseBr(Inst, PFS); 6179 case lltok::kw_switch: 6180 return parseSwitch(Inst, PFS); 6181 case lltok::kw_indirectbr: 6182 return parseIndirectBr(Inst, PFS); 6183 case lltok::kw_invoke: 6184 return parseInvoke(Inst, PFS); 6185 case lltok::kw_resume: 6186 return parseResume(Inst, PFS); 6187 case lltok::kw_cleanupret: 6188 return parseCleanupRet(Inst, PFS); 6189 case lltok::kw_catchret: 6190 return parseCatchRet(Inst, PFS); 6191 case lltok::kw_catchswitch: 6192 return parseCatchSwitch(Inst, PFS); 6193 case lltok::kw_catchpad: 6194 return parseCatchPad(Inst, PFS); 6195 case lltok::kw_cleanuppad: 6196 return parseCleanupPad(Inst, PFS); 6197 case lltok::kw_callbr: 6198 return parseCallBr(Inst, PFS); 6199 // Unary Operators. 6200 case lltok::kw_fneg: { 6201 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6202 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 6203 if (Res != 0) 6204 return Res; 6205 if (FMF.any()) 6206 Inst->setFastMathFlags(FMF); 6207 return false; 6208 } 6209 // Binary Operators. 6210 case lltok::kw_add: 6211 case lltok::kw_sub: 6212 case lltok::kw_mul: 6213 case lltok::kw_shl: { 6214 bool NUW = EatIfPresent(lltok::kw_nuw); 6215 bool NSW = EatIfPresent(lltok::kw_nsw); 6216 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 6217 6218 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6219 return true; 6220 6221 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 6222 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 6223 return false; 6224 } 6225 case lltok::kw_fadd: 6226 case lltok::kw_fsub: 6227 case lltok::kw_fmul: 6228 case lltok::kw_fdiv: 6229 case lltok::kw_frem: { 6230 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6231 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 6232 if (Res != 0) 6233 return Res; 6234 if (FMF.any()) 6235 Inst->setFastMathFlags(FMF); 6236 return 0; 6237 } 6238 6239 case lltok::kw_sdiv: 6240 case lltok::kw_udiv: 6241 case lltok::kw_lshr: 6242 case lltok::kw_ashr: { 6243 bool Exact = EatIfPresent(lltok::kw_exact); 6244 6245 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6246 return true; 6247 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 6248 return false; 6249 } 6250 6251 case lltok::kw_urem: 6252 case lltok::kw_srem: 6253 return parseArithmetic(Inst, PFS, KeywordVal, 6254 /*IsFP*/ false); 6255 case lltok::kw_and: 6256 case lltok::kw_or: 6257 case lltok::kw_xor: 6258 return parseLogical(Inst, PFS, KeywordVal); 6259 case lltok::kw_icmp: 6260 return parseCompare(Inst, PFS, KeywordVal); 6261 case lltok::kw_fcmp: { 6262 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6263 int Res = parseCompare(Inst, PFS, KeywordVal); 6264 if (Res != 0) 6265 return Res; 6266 if (FMF.any()) 6267 Inst->setFastMathFlags(FMF); 6268 return 0; 6269 } 6270 6271 // Casts. 6272 case lltok::kw_trunc: 6273 case lltok::kw_zext: 6274 case lltok::kw_sext: 6275 case lltok::kw_fptrunc: 6276 case lltok::kw_fpext: 6277 case lltok::kw_bitcast: 6278 case lltok::kw_addrspacecast: 6279 case lltok::kw_uitofp: 6280 case lltok::kw_sitofp: 6281 case lltok::kw_fptoui: 6282 case lltok::kw_fptosi: 6283 case lltok::kw_inttoptr: 6284 case lltok::kw_ptrtoint: 6285 return parseCast(Inst, PFS, KeywordVal); 6286 // Other. 6287 case lltok::kw_select: { 6288 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6289 int Res = parseSelect(Inst, PFS); 6290 if (Res != 0) 6291 return Res; 6292 if (FMF.any()) { 6293 if (!isa<FPMathOperator>(Inst)) 6294 return error(Loc, "fast-math-flags specified for select without " 6295 "floating-point scalar or vector return type"); 6296 Inst->setFastMathFlags(FMF); 6297 } 6298 return 0; 6299 } 6300 case lltok::kw_va_arg: 6301 return parseVAArg(Inst, PFS); 6302 case lltok::kw_extractelement: 6303 return parseExtractElement(Inst, PFS); 6304 case lltok::kw_insertelement: 6305 return parseInsertElement(Inst, PFS); 6306 case lltok::kw_shufflevector: 6307 return parseShuffleVector(Inst, PFS); 6308 case lltok::kw_phi: { 6309 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6310 int Res = parsePHI(Inst, PFS); 6311 if (Res != 0) 6312 return Res; 6313 if (FMF.any()) { 6314 if (!isa<FPMathOperator>(Inst)) 6315 return error(Loc, "fast-math-flags specified for phi without " 6316 "floating-point scalar or vector return type"); 6317 Inst->setFastMathFlags(FMF); 6318 } 6319 return 0; 6320 } 6321 case lltok::kw_landingpad: 6322 return parseLandingPad(Inst, PFS); 6323 case lltok::kw_freeze: 6324 return parseFreeze(Inst, PFS); 6325 // Call. 6326 case lltok::kw_call: 6327 return parseCall(Inst, PFS, CallInst::TCK_None); 6328 case lltok::kw_tail: 6329 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6330 case lltok::kw_musttail: 6331 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6332 case lltok::kw_notail: 6333 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6334 // Memory. 6335 case lltok::kw_alloca: 6336 return parseAlloc(Inst, PFS); 6337 case lltok::kw_load: 6338 return parseLoad(Inst, PFS); 6339 case lltok::kw_store: 6340 return parseStore(Inst, PFS); 6341 case lltok::kw_cmpxchg: 6342 return parseCmpXchg(Inst, PFS); 6343 case lltok::kw_atomicrmw: 6344 return parseAtomicRMW(Inst, PFS); 6345 case lltok::kw_fence: 6346 return parseFence(Inst, PFS); 6347 case lltok::kw_getelementptr: 6348 return parseGetElementPtr(Inst, PFS); 6349 case lltok::kw_extractvalue: 6350 return parseExtractValue(Inst, PFS); 6351 case lltok::kw_insertvalue: 6352 return parseInsertValue(Inst, PFS); 6353 } 6354 } 6355 6356 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6357 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6358 if (Opc == Instruction::FCmp) { 6359 switch (Lex.getKind()) { 6360 default: 6361 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6362 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6363 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6364 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6365 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6366 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6367 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6368 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6369 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6370 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6371 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6372 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6373 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6374 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6375 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6376 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6377 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6378 } 6379 } else { 6380 switch (Lex.getKind()) { 6381 default: 6382 return tokError("expected icmp predicate (e.g. 'eq')"); 6383 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6384 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6385 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6386 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6387 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6388 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6389 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6390 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6391 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6392 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6393 } 6394 } 6395 Lex.Lex(); 6396 return false; 6397 } 6398 6399 //===----------------------------------------------------------------------===// 6400 // Terminator Instructions. 6401 //===----------------------------------------------------------------------===// 6402 6403 /// parseRet - parse a return instruction. 6404 /// ::= 'ret' void (',' !dbg, !1)* 6405 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6406 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6407 PerFunctionState &PFS) { 6408 SMLoc TypeLoc = Lex.getLoc(); 6409 Type *Ty = nullptr; 6410 if (parseType(Ty, true /*void allowed*/)) 6411 return true; 6412 6413 Type *ResType = PFS.getFunction().getReturnType(); 6414 6415 if (Ty->isVoidTy()) { 6416 if (!ResType->isVoidTy()) 6417 return error(TypeLoc, "value doesn't match function result type '" + 6418 getTypeString(ResType) + "'"); 6419 6420 Inst = ReturnInst::Create(Context); 6421 return false; 6422 } 6423 6424 Value *RV; 6425 if (parseValue(Ty, RV, PFS)) 6426 return true; 6427 6428 if (ResType != RV->getType()) 6429 return error(TypeLoc, "value doesn't match function result type '" + 6430 getTypeString(ResType) + "'"); 6431 6432 Inst = ReturnInst::Create(Context, RV); 6433 return false; 6434 } 6435 6436 /// parseBr 6437 /// ::= 'br' TypeAndValue 6438 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6439 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6440 LocTy Loc, Loc2; 6441 Value *Op0; 6442 BasicBlock *Op1, *Op2; 6443 if (parseTypeAndValue(Op0, Loc, PFS)) 6444 return true; 6445 6446 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6447 Inst = BranchInst::Create(BB); 6448 return false; 6449 } 6450 6451 if (Op0->getType() != Type::getInt1Ty(Context)) 6452 return error(Loc, "branch condition must have 'i1' type"); 6453 6454 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6455 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6456 parseToken(lltok::comma, "expected ',' after true destination") || 6457 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6458 return true; 6459 6460 Inst = BranchInst::Create(Op1, Op2, Op0); 6461 return false; 6462 } 6463 6464 /// parseSwitch 6465 /// Instruction 6466 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6467 /// JumpTable 6468 /// ::= (TypeAndValue ',' TypeAndValue)* 6469 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6470 LocTy CondLoc, BBLoc; 6471 Value *Cond; 6472 BasicBlock *DefaultBB; 6473 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6474 parseToken(lltok::comma, "expected ',' after switch condition") || 6475 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6476 parseToken(lltok::lsquare, "expected '[' with switch table")) 6477 return true; 6478 6479 if (!Cond->getType()->isIntegerTy()) 6480 return error(CondLoc, "switch condition must have integer type"); 6481 6482 // parse the jump table pairs. 6483 SmallPtrSet<Value*, 32> SeenCases; 6484 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6485 while (Lex.getKind() != lltok::rsquare) { 6486 Value *Constant; 6487 BasicBlock *DestBB; 6488 6489 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6490 parseToken(lltok::comma, "expected ',' after case value") || 6491 parseTypeAndBasicBlock(DestBB, PFS)) 6492 return true; 6493 6494 if (!SeenCases.insert(Constant).second) 6495 return error(CondLoc, "duplicate case value in switch"); 6496 if (!isa<ConstantInt>(Constant)) 6497 return error(CondLoc, "case value is not a constant integer"); 6498 6499 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6500 } 6501 6502 Lex.Lex(); // Eat the ']'. 6503 6504 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6505 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6506 SI->addCase(Table[i].first, Table[i].second); 6507 Inst = SI; 6508 return false; 6509 } 6510 6511 /// parseIndirectBr 6512 /// Instruction 6513 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6514 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6515 LocTy AddrLoc; 6516 Value *Address; 6517 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6518 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6519 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6520 return true; 6521 6522 if (!Address->getType()->isPointerTy()) 6523 return error(AddrLoc, "indirectbr address must have pointer type"); 6524 6525 // parse the destination list. 6526 SmallVector<BasicBlock*, 16> DestList; 6527 6528 if (Lex.getKind() != lltok::rsquare) { 6529 BasicBlock *DestBB; 6530 if (parseTypeAndBasicBlock(DestBB, PFS)) 6531 return true; 6532 DestList.push_back(DestBB); 6533 6534 while (EatIfPresent(lltok::comma)) { 6535 if (parseTypeAndBasicBlock(DestBB, PFS)) 6536 return true; 6537 DestList.push_back(DestBB); 6538 } 6539 } 6540 6541 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6542 return true; 6543 6544 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6545 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6546 IBI->addDestination(DestList[i]); 6547 Inst = IBI; 6548 return false; 6549 } 6550 6551 /// parseInvoke 6552 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6553 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6554 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6555 LocTy CallLoc = Lex.getLoc(); 6556 AttrBuilder RetAttrs, FnAttrs; 6557 std::vector<unsigned> FwdRefAttrGrps; 6558 LocTy NoBuiltinLoc; 6559 unsigned CC; 6560 unsigned InvokeAddrSpace; 6561 Type *RetType = nullptr; 6562 LocTy RetTypeLoc; 6563 ValID CalleeID; 6564 SmallVector<ParamInfo, 16> ArgList; 6565 SmallVector<OperandBundleDef, 2> BundleList; 6566 6567 BasicBlock *NormalBB, *UnwindBB; 6568 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6569 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6570 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6571 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6572 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6573 NoBuiltinLoc) || 6574 parseOptionalOperandBundles(BundleList, PFS) || 6575 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6576 parseTypeAndBasicBlock(NormalBB, PFS) || 6577 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6578 parseTypeAndBasicBlock(UnwindBB, PFS)) 6579 return true; 6580 6581 // If RetType is a non-function pointer type, then this is the short syntax 6582 // for the call, which means that RetType is just the return type. Infer the 6583 // rest of the function argument types from the arguments that are present. 6584 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6585 if (!Ty) { 6586 // Pull out the types of all of the arguments... 6587 std::vector<Type*> ParamTypes; 6588 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6589 ParamTypes.push_back(ArgList[i].V->getType()); 6590 6591 if (!FunctionType::isValidReturnType(RetType)) 6592 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6593 6594 Ty = FunctionType::get(RetType, ParamTypes, false); 6595 } 6596 6597 CalleeID.FTy = Ty; 6598 6599 // Look up the callee. 6600 Value *Callee; 6601 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6602 Callee, &PFS, /*IsCall=*/true)) 6603 return true; 6604 6605 // Set up the Attribute for the function. 6606 SmallVector<Value *, 8> Args; 6607 SmallVector<AttributeSet, 8> ArgAttrs; 6608 6609 // Loop through FunctionType's arguments and ensure they are specified 6610 // correctly. Also, gather any parameter attributes. 6611 FunctionType::param_iterator I = Ty->param_begin(); 6612 FunctionType::param_iterator E = Ty->param_end(); 6613 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6614 Type *ExpectedTy = nullptr; 6615 if (I != E) { 6616 ExpectedTy = *I++; 6617 } else if (!Ty->isVarArg()) { 6618 return error(ArgList[i].Loc, "too many arguments specified"); 6619 } 6620 6621 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6622 return error(ArgList[i].Loc, "argument is not of expected type '" + 6623 getTypeString(ExpectedTy) + "'"); 6624 Args.push_back(ArgList[i].V); 6625 ArgAttrs.push_back(ArgList[i].Attrs); 6626 } 6627 6628 if (I != E) 6629 return error(CallLoc, "not enough parameters specified for call"); 6630 6631 if (FnAttrs.hasAlignmentAttr()) 6632 return error(CallLoc, "invoke instructions may not have an alignment"); 6633 6634 // Finish off the Attribute and check them 6635 AttributeList PAL = 6636 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6637 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6638 6639 InvokeInst *II = 6640 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6641 II->setCallingConv(CC); 6642 II->setAttributes(PAL); 6643 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6644 Inst = II; 6645 return false; 6646 } 6647 6648 /// parseResume 6649 /// ::= 'resume' TypeAndValue 6650 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6651 Value *Exn; LocTy ExnLoc; 6652 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6653 return true; 6654 6655 ResumeInst *RI = ResumeInst::Create(Exn); 6656 Inst = RI; 6657 return false; 6658 } 6659 6660 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6661 PerFunctionState &PFS) { 6662 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6663 return true; 6664 6665 while (Lex.getKind() != lltok::rsquare) { 6666 // If this isn't the first argument, we need a comma. 6667 if (!Args.empty() && 6668 parseToken(lltok::comma, "expected ',' in argument list")) 6669 return true; 6670 6671 // parse the argument. 6672 LocTy ArgLoc; 6673 Type *ArgTy = nullptr; 6674 if (parseType(ArgTy, ArgLoc)) 6675 return true; 6676 6677 Value *V; 6678 if (ArgTy->isMetadataTy()) { 6679 if (parseMetadataAsValue(V, PFS)) 6680 return true; 6681 } else { 6682 if (parseValue(ArgTy, V, PFS)) 6683 return true; 6684 } 6685 Args.push_back(V); 6686 } 6687 6688 Lex.Lex(); // Lex the ']'. 6689 return false; 6690 } 6691 6692 /// parseCleanupRet 6693 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6694 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6695 Value *CleanupPad = nullptr; 6696 6697 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6698 return true; 6699 6700 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6701 return true; 6702 6703 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6704 return true; 6705 6706 BasicBlock *UnwindBB = nullptr; 6707 if (Lex.getKind() == lltok::kw_to) { 6708 Lex.Lex(); 6709 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6710 return true; 6711 } else { 6712 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6713 return true; 6714 } 6715 } 6716 6717 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6718 return false; 6719 } 6720 6721 /// parseCatchRet 6722 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6723 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6724 Value *CatchPad = nullptr; 6725 6726 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6727 return true; 6728 6729 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6730 return true; 6731 6732 BasicBlock *BB; 6733 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6734 parseTypeAndBasicBlock(BB, PFS)) 6735 return true; 6736 6737 Inst = CatchReturnInst::Create(CatchPad, BB); 6738 return false; 6739 } 6740 6741 /// parseCatchSwitch 6742 /// ::= 'catchswitch' within Parent 6743 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6744 Value *ParentPad; 6745 6746 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6747 return true; 6748 6749 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6750 Lex.getKind() != lltok::LocalVarID) 6751 return tokError("expected scope value for catchswitch"); 6752 6753 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6754 return true; 6755 6756 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6757 return true; 6758 6759 SmallVector<BasicBlock *, 32> Table; 6760 do { 6761 BasicBlock *DestBB; 6762 if (parseTypeAndBasicBlock(DestBB, PFS)) 6763 return true; 6764 Table.push_back(DestBB); 6765 } while (EatIfPresent(lltok::comma)); 6766 6767 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6768 return true; 6769 6770 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6771 return true; 6772 6773 BasicBlock *UnwindBB = nullptr; 6774 if (EatIfPresent(lltok::kw_to)) { 6775 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6776 return true; 6777 } else { 6778 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6779 return true; 6780 } 6781 6782 auto *CatchSwitch = 6783 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6784 for (BasicBlock *DestBB : Table) 6785 CatchSwitch->addHandler(DestBB); 6786 Inst = CatchSwitch; 6787 return false; 6788 } 6789 6790 /// parseCatchPad 6791 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6792 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6793 Value *CatchSwitch = nullptr; 6794 6795 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6796 return true; 6797 6798 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6799 return tokError("expected scope value for catchpad"); 6800 6801 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6802 return true; 6803 6804 SmallVector<Value *, 8> Args; 6805 if (parseExceptionArgs(Args, PFS)) 6806 return true; 6807 6808 Inst = CatchPadInst::Create(CatchSwitch, Args); 6809 return false; 6810 } 6811 6812 /// parseCleanupPad 6813 /// ::= 'cleanuppad' within Parent ParamList 6814 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6815 Value *ParentPad = nullptr; 6816 6817 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6818 return true; 6819 6820 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6821 Lex.getKind() != lltok::LocalVarID) 6822 return tokError("expected scope value for cleanuppad"); 6823 6824 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6825 return true; 6826 6827 SmallVector<Value *, 8> Args; 6828 if (parseExceptionArgs(Args, PFS)) 6829 return true; 6830 6831 Inst = CleanupPadInst::Create(ParentPad, Args); 6832 return false; 6833 } 6834 6835 //===----------------------------------------------------------------------===// 6836 // Unary Operators. 6837 //===----------------------------------------------------------------------===// 6838 6839 /// parseUnaryOp 6840 /// ::= UnaryOp TypeAndValue ',' Value 6841 /// 6842 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6843 /// operand is allowed. 6844 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6845 unsigned Opc, bool IsFP) { 6846 LocTy Loc; Value *LHS; 6847 if (parseTypeAndValue(LHS, Loc, PFS)) 6848 return true; 6849 6850 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6851 : LHS->getType()->isIntOrIntVectorTy(); 6852 6853 if (!Valid) 6854 return error(Loc, "invalid operand type for instruction"); 6855 6856 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6857 return false; 6858 } 6859 6860 /// parseCallBr 6861 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6862 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6863 /// '[' LabelList ']' 6864 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6865 LocTy CallLoc = Lex.getLoc(); 6866 AttrBuilder RetAttrs, FnAttrs; 6867 std::vector<unsigned> FwdRefAttrGrps; 6868 LocTy NoBuiltinLoc; 6869 unsigned CC; 6870 Type *RetType = nullptr; 6871 LocTy RetTypeLoc; 6872 ValID CalleeID; 6873 SmallVector<ParamInfo, 16> ArgList; 6874 SmallVector<OperandBundleDef, 2> BundleList; 6875 6876 BasicBlock *DefaultDest; 6877 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6878 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6879 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6880 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6881 NoBuiltinLoc) || 6882 parseOptionalOperandBundles(BundleList, PFS) || 6883 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6884 parseTypeAndBasicBlock(DefaultDest, PFS) || 6885 parseToken(lltok::lsquare, "expected '[' in callbr")) 6886 return true; 6887 6888 // parse the destination list. 6889 SmallVector<BasicBlock *, 16> IndirectDests; 6890 6891 if (Lex.getKind() != lltok::rsquare) { 6892 BasicBlock *DestBB; 6893 if (parseTypeAndBasicBlock(DestBB, PFS)) 6894 return true; 6895 IndirectDests.push_back(DestBB); 6896 6897 while (EatIfPresent(lltok::comma)) { 6898 if (parseTypeAndBasicBlock(DestBB, PFS)) 6899 return true; 6900 IndirectDests.push_back(DestBB); 6901 } 6902 } 6903 6904 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6905 return true; 6906 6907 // If RetType is a non-function pointer type, then this is the short syntax 6908 // for the call, which means that RetType is just the return type. Infer the 6909 // rest of the function argument types from the arguments that are present. 6910 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6911 if (!Ty) { 6912 // Pull out the types of all of the arguments... 6913 std::vector<Type *> ParamTypes; 6914 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6915 ParamTypes.push_back(ArgList[i].V->getType()); 6916 6917 if (!FunctionType::isValidReturnType(RetType)) 6918 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6919 6920 Ty = FunctionType::get(RetType, ParamTypes, false); 6921 } 6922 6923 CalleeID.FTy = Ty; 6924 6925 // Look up the callee. 6926 Value *Callee; 6927 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6928 /*IsCall=*/true)) 6929 return true; 6930 6931 // Set up the Attribute for the function. 6932 SmallVector<Value *, 8> Args; 6933 SmallVector<AttributeSet, 8> ArgAttrs; 6934 6935 // Loop through FunctionType's arguments and ensure they are specified 6936 // correctly. Also, gather any parameter attributes. 6937 FunctionType::param_iterator I = Ty->param_begin(); 6938 FunctionType::param_iterator E = Ty->param_end(); 6939 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6940 Type *ExpectedTy = nullptr; 6941 if (I != E) { 6942 ExpectedTy = *I++; 6943 } else if (!Ty->isVarArg()) { 6944 return error(ArgList[i].Loc, "too many arguments specified"); 6945 } 6946 6947 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6948 return error(ArgList[i].Loc, "argument is not of expected type '" + 6949 getTypeString(ExpectedTy) + "'"); 6950 Args.push_back(ArgList[i].V); 6951 ArgAttrs.push_back(ArgList[i].Attrs); 6952 } 6953 6954 if (I != E) 6955 return error(CallLoc, "not enough parameters specified for call"); 6956 6957 if (FnAttrs.hasAlignmentAttr()) 6958 return error(CallLoc, "callbr instructions may not have an alignment"); 6959 6960 // Finish off the Attribute and check them 6961 AttributeList PAL = 6962 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6963 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6964 6965 CallBrInst *CBI = 6966 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6967 BundleList); 6968 CBI->setCallingConv(CC); 6969 CBI->setAttributes(PAL); 6970 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6971 Inst = CBI; 6972 return false; 6973 } 6974 6975 //===----------------------------------------------------------------------===// 6976 // Binary Operators. 6977 //===----------------------------------------------------------------------===// 6978 6979 /// parseArithmetic 6980 /// ::= ArithmeticOps TypeAndValue ',' Value 6981 /// 6982 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6983 /// operand is allowed. 6984 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6985 unsigned Opc, bool IsFP) { 6986 LocTy Loc; Value *LHS, *RHS; 6987 if (parseTypeAndValue(LHS, Loc, PFS) || 6988 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6989 parseValue(LHS->getType(), RHS, PFS)) 6990 return true; 6991 6992 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6993 : LHS->getType()->isIntOrIntVectorTy(); 6994 6995 if (!Valid) 6996 return error(Loc, "invalid operand type for instruction"); 6997 6998 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6999 return false; 7000 } 7001 7002 /// parseLogical 7003 /// ::= ArithmeticOps TypeAndValue ',' Value { 7004 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 7005 unsigned Opc) { 7006 LocTy Loc; Value *LHS, *RHS; 7007 if (parseTypeAndValue(LHS, Loc, PFS) || 7008 parseToken(lltok::comma, "expected ',' in logical operation") || 7009 parseValue(LHS->getType(), RHS, PFS)) 7010 return true; 7011 7012 if (!LHS->getType()->isIntOrIntVectorTy()) 7013 return error(Loc, 7014 "instruction requires integer or integer vector operands"); 7015 7016 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 7017 return false; 7018 } 7019 7020 /// parseCompare 7021 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 7022 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 7023 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 7024 unsigned Opc) { 7025 // parse the integer/fp comparison predicate. 7026 LocTy Loc; 7027 unsigned Pred; 7028 Value *LHS, *RHS; 7029 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 7030 parseToken(lltok::comma, "expected ',' after compare value") || 7031 parseValue(LHS->getType(), RHS, PFS)) 7032 return true; 7033 7034 if (Opc == Instruction::FCmp) { 7035 if (!LHS->getType()->isFPOrFPVectorTy()) 7036 return error(Loc, "fcmp requires floating point operands"); 7037 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 7038 } else { 7039 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 7040 if (!LHS->getType()->isIntOrIntVectorTy() && 7041 !LHS->getType()->isPtrOrPtrVectorTy()) 7042 return error(Loc, "icmp requires integer operands"); 7043 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 7044 } 7045 return false; 7046 } 7047 7048 //===----------------------------------------------------------------------===// 7049 // Other Instructions. 7050 //===----------------------------------------------------------------------===// 7051 7052 /// parseCast 7053 /// ::= CastOpc TypeAndValue 'to' Type 7054 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 7055 unsigned Opc) { 7056 LocTy Loc; 7057 Value *Op; 7058 Type *DestTy = nullptr; 7059 if (parseTypeAndValue(Op, Loc, PFS) || 7060 parseToken(lltok::kw_to, "expected 'to' after cast value") || 7061 parseType(DestTy)) 7062 return true; 7063 7064 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 7065 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 7066 return error(Loc, "invalid cast opcode for cast from '" + 7067 getTypeString(Op->getType()) + "' to '" + 7068 getTypeString(DestTy) + "'"); 7069 } 7070 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 7071 return false; 7072 } 7073 7074 /// parseSelect 7075 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7076 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 7077 LocTy Loc; 7078 Value *Op0, *Op1, *Op2; 7079 if (parseTypeAndValue(Op0, Loc, PFS) || 7080 parseToken(lltok::comma, "expected ',' after select condition") || 7081 parseTypeAndValue(Op1, PFS) || 7082 parseToken(lltok::comma, "expected ',' after select value") || 7083 parseTypeAndValue(Op2, PFS)) 7084 return true; 7085 7086 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 7087 return error(Loc, Reason); 7088 7089 Inst = SelectInst::Create(Op0, Op1, Op2); 7090 return false; 7091 } 7092 7093 /// parseVAArg 7094 /// ::= 'va_arg' TypeAndValue ',' Type 7095 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 7096 Value *Op; 7097 Type *EltTy = nullptr; 7098 LocTy TypeLoc; 7099 if (parseTypeAndValue(Op, PFS) || 7100 parseToken(lltok::comma, "expected ',' after vaarg operand") || 7101 parseType(EltTy, TypeLoc)) 7102 return true; 7103 7104 if (!EltTy->isFirstClassType()) 7105 return error(TypeLoc, "va_arg requires operand with first class type"); 7106 7107 Inst = new VAArgInst(Op, EltTy); 7108 return false; 7109 } 7110 7111 /// parseExtractElement 7112 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 7113 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 7114 LocTy Loc; 7115 Value *Op0, *Op1; 7116 if (parseTypeAndValue(Op0, Loc, PFS) || 7117 parseToken(lltok::comma, "expected ',' after extract value") || 7118 parseTypeAndValue(Op1, PFS)) 7119 return true; 7120 7121 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 7122 return error(Loc, "invalid extractelement operands"); 7123 7124 Inst = ExtractElementInst::Create(Op0, Op1); 7125 return false; 7126 } 7127 7128 /// parseInsertElement 7129 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7130 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 7131 LocTy Loc; 7132 Value *Op0, *Op1, *Op2; 7133 if (parseTypeAndValue(Op0, Loc, PFS) || 7134 parseToken(lltok::comma, "expected ',' after insertelement value") || 7135 parseTypeAndValue(Op1, PFS) || 7136 parseToken(lltok::comma, "expected ',' after insertelement value") || 7137 parseTypeAndValue(Op2, PFS)) 7138 return true; 7139 7140 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 7141 return error(Loc, "invalid insertelement operands"); 7142 7143 Inst = InsertElementInst::Create(Op0, Op1, Op2); 7144 return false; 7145 } 7146 7147 /// parseShuffleVector 7148 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7149 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 7150 LocTy Loc; 7151 Value *Op0, *Op1, *Op2; 7152 if (parseTypeAndValue(Op0, Loc, PFS) || 7153 parseToken(lltok::comma, "expected ',' after shuffle mask") || 7154 parseTypeAndValue(Op1, PFS) || 7155 parseToken(lltok::comma, "expected ',' after shuffle value") || 7156 parseTypeAndValue(Op2, PFS)) 7157 return true; 7158 7159 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 7160 return error(Loc, "invalid shufflevector operands"); 7161 7162 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 7163 return false; 7164 } 7165 7166 /// parsePHI 7167 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 7168 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 7169 Type *Ty = nullptr; LocTy TypeLoc; 7170 Value *Op0, *Op1; 7171 7172 if (parseType(Ty, TypeLoc) || 7173 parseToken(lltok::lsquare, "expected '[' in phi value list") || 7174 parseValue(Ty, Op0, PFS) || 7175 parseToken(lltok::comma, "expected ',' after insertelement value") || 7176 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7177 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7178 return true; 7179 7180 bool AteExtraComma = false; 7181 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 7182 7183 while (true) { 7184 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 7185 7186 if (!EatIfPresent(lltok::comma)) 7187 break; 7188 7189 if (Lex.getKind() == lltok::MetadataVar) { 7190 AteExtraComma = true; 7191 break; 7192 } 7193 7194 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 7195 parseValue(Ty, Op0, PFS) || 7196 parseToken(lltok::comma, "expected ',' after insertelement value") || 7197 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7198 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7199 return true; 7200 } 7201 7202 if (!Ty->isFirstClassType()) 7203 return error(TypeLoc, "phi node must have first class type"); 7204 7205 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 7206 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 7207 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 7208 Inst = PN; 7209 return AteExtraComma ? InstExtraComma : InstNormal; 7210 } 7211 7212 /// parseLandingPad 7213 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 7214 /// Clause 7215 /// ::= 'catch' TypeAndValue 7216 /// ::= 'filter' 7217 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 7218 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 7219 Type *Ty = nullptr; LocTy TyLoc; 7220 7221 if (parseType(Ty, TyLoc)) 7222 return true; 7223 7224 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 7225 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 7226 7227 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 7228 LandingPadInst::ClauseType CT; 7229 if (EatIfPresent(lltok::kw_catch)) 7230 CT = LandingPadInst::Catch; 7231 else if (EatIfPresent(lltok::kw_filter)) 7232 CT = LandingPadInst::Filter; 7233 else 7234 return tokError("expected 'catch' or 'filter' clause type"); 7235 7236 Value *V; 7237 LocTy VLoc; 7238 if (parseTypeAndValue(V, VLoc, PFS)) 7239 return true; 7240 7241 // A 'catch' type expects a non-array constant. A filter clause expects an 7242 // array constant. 7243 if (CT == LandingPadInst::Catch) { 7244 if (isa<ArrayType>(V->getType())) 7245 error(VLoc, "'catch' clause has an invalid type"); 7246 } else { 7247 if (!isa<ArrayType>(V->getType())) 7248 error(VLoc, "'filter' clause has an invalid type"); 7249 } 7250 7251 Constant *CV = dyn_cast<Constant>(V); 7252 if (!CV) 7253 return error(VLoc, "clause argument must be a constant"); 7254 LP->addClause(CV); 7255 } 7256 7257 Inst = LP.release(); 7258 return false; 7259 } 7260 7261 /// parseFreeze 7262 /// ::= 'freeze' Type Value 7263 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 7264 LocTy Loc; 7265 Value *Op; 7266 if (parseTypeAndValue(Op, Loc, PFS)) 7267 return true; 7268 7269 Inst = new FreezeInst(Op); 7270 return false; 7271 } 7272 7273 /// parseCall 7274 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 7275 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7276 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 7277 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7278 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 7279 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7280 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 7281 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7282 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 7283 CallInst::TailCallKind TCK) { 7284 AttrBuilder RetAttrs, FnAttrs; 7285 std::vector<unsigned> FwdRefAttrGrps; 7286 LocTy BuiltinLoc; 7287 unsigned CallAddrSpace; 7288 unsigned CC; 7289 Type *RetType = nullptr; 7290 LocTy RetTypeLoc; 7291 ValID CalleeID; 7292 SmallVector<ParamInfo, 16> ArgList; 7293 SmallVector<OperandBundleDef, 2> BundleList; 7294 LocTy CallLoc = Lex.getLoc(); 7295 7296 if (TCK != CallInst::TCK_None && 7297 parseToken(lltok::kw_call, 7298 "expected 'tail call', 'musttail call', or 'notail call'")) 7299 return true; 7300 7301 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 7302 7303 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7304 parseOptionalProgramAddrSpace(CallAddrSpace) || 7305 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7306 parseValID(CalleeID) || 7307 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 7308 PFS.getFunction().isVarArg()) || 7309 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 7310 parseOptionalOperandBundles(BundleList, PFS)) 7311 return true; 7312 7313 // If RetType is a non-function pointer type, then this is the short syntax 7314 // for the call, which means that RetType is just the return type. Infer the 7315 // rest of the function argument types from the arguments that are present. 7316 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 7317 if (!Ty) { 7318 // Pull out the types of all of the arguments... 7319 std::vector<Type*> ParamTypes; 7320 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 7321 ParamTypes.push_back(ArgList[i].V->getType()); 7322 7323 if (!FunctionType::isValidReturnType(RetType)) 7324 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7325 7326 Ty = FunctionType::get(RetType, ParamTypes, false); 7327 } 7328 7329 CalleeID.FTy = Ty; 7330 7331 // Look up the callee. 7332 Value *Callee; 7333 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7334 &PFS, /*IsCall=*/true)) 7335 return true; 7336 7337 // Set up the Attribute for the function. 7338 SmallVector<AttributeSet, 8> Attrs; 7339 7340 SmallVector<Value*, 8> Args; 7341 7342 // Loop through FunctionType's arguments and ensure they are specified 7343 // correctly. Also, gather any parameter attributes. 7344 FunctionType::param_iterator I = Ty->param_begin(); 7345 FunctionType::param_iterator E = Ty->param_end(); 7346 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7347 Type *ExpectedTy = nullptr; 7348 if (I != E) { 7349 ExpectedTy = *I++; 7350 } else if (!Ty->isVarArg()) { 7351 return error(ArgList[i].Loc, "too many arguments specified"); 7352 } 7353 7354 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7355 return error(ArgList[i].Loc, "argument is not of expected type '" + 7356 getTypeString(ExpectedTy) + "'"); 7357 Args.push_back(ArgList[i].V); 7358 Attrs.push_back(ArgList[i].Attrs); 7359 } 7360 7361 if (I != E) 7362 return error(CallLoc, "not enough parameters specified for call"); 7363 7364 if (FnAttrs.hasAlignmentAttr()) 7365 return error(CallLoc, "call instructions may not have an alignment"); 7366 7367 // Finish off the Attribute and check them 7368 AttributeList PAL = 7369 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7370 AttributeSet::get(Context, RetAttrs), Attrs); 7371 7372 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7373 CI->setTailCallKind(TCK); 7374 CI->setCallingConv(CC); 7375 if (FMF.any()) { 7376 if (!isa<FPMathOperator>(CI)) { 7377 CI->deleteValue(); 7378 return error(CallLoc, "fast-math-flags specified for call without " 7379 "floating-point scalar or vector return type"); 7380 } 7381 CI->setFastMathFlags(FMF); 7382 } 7383 CI->setAttributes(PAL); 7384 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7385 Inst = CI; 7386 return false; 7387 } 7388 7389 //===----------------------------------------------------------------------===// 7390 // Memory Instructions. 7391 //===----------------------------------------------------------------------===// 7392 7393 /// parseAlloc 7394 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7395 /// (',' 'align' i32)? (',', 'addrspace(n))? 7396 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7397 Value *Size = nullptr; 7398 LocTy SizeLoc, TyLoc, ASLoc; 7399 MaybeAlign Alignment; 7400 unsigned AddrSpace = 0; 7401 Type *Ty = nullptr; 7402 7403 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7404 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7405 7406 if (parseType(Ty, TyLoc)) 7407 return true; 7408 7409 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7410 return error(TyLoc, "invalid type for alloca"); 7411 7412 bool AteExtraComma = false; 7413 if (EatIfPresent(lltok::comma)) { 7414 if (Lex.getKind() == lltok::kw_align) { 7415 if (parseOptionalAlignment(Alignment)) 7416 return true; 7417 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7418 return true; 7419 } else if (Lex.getKind() == lltok::kw_addrspace) { 7420 ASLoc = Lex.getLoc(); 7421 if (parseOptionalAddrSpace(AddrSpace)) 7422 return true; 7423 } else if (Lex.getKind() == lltok::MetadataVar) { 7424 AteExtraComma = true; 7425 } else { 7426 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7427 return true; 7428 if (EatIfPresent(lltok::comma)) { 7429 if (Lex.getKind() == lltok::kw_align) { 7430 if (parseOptionalAlignment(Alignment)) 7431 return true; 7432 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7433 return true; 7434 } else if (Lex.getKind() == lltok::kw_addrspace) { 7435 ASLoc = Lex.getLoc(); 7436 if (parseOptionalAddrSpace(AddrSpace)) 7437 return true; 7438 } else if (Lex.getKind() == lltok::MetadataVar) { 7439 AteExtraComma = true; 7440 } 7441 } 7442 } 7443 } 7444 7445 if (Size && !Size->getType()->isIntegerTy()) 7446 return error(SizeLoc, "element count must have integer type"); 7447 7448 SmallPtrSet<Type *, 4> Visited; 7449 if (!Alignment && !Ty->isSized(&Visited)) 7450 return error(TyLoc, "Cannot allocate unsized type"); 7451 if (!Alignment) 7452 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7453 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7454 AI->setUsedWithInAlloca(IsInAlloca); 7455 AI->setSwiftError(IsSwiftError); 7456 Inst = AI; 7457 return AteExtraComma ? InstExtraComma : InstNormal; 7458 } 7459 7460 /// parseLoad 7461 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7462 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7463 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7464 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7465 Value *Val; LocTy Loc; 7466 MaybeAlign Alignment; 7467 bool AteExtraComma = false; 7468 bool isAtomic = false; 7469 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7470 SyncScope::ID SSID = SyncScope::System; 7471 7472 if (Lex.getKind() == lltok::kw_atomic) { 7473 isAtomic = true; 7474 Lex.Lex(); 7475 } 7476 7477 bool isVolatile = false; 7478 if (Lex.getKind() == lltok::kw_volatile) { 7479 isVolatile = true; 7480 Lex.Lex(); 7481 } 7482 7483 Type *Ty; 7484 LocTy ExplicitTypeLoc = Lex.getLoc(); 7485 if (parseType(Ty) || 7486 parseToken(lltok::comma, "expected comma after load's type") || 7487 parseTypeAndValue(Val, Loc, PFS) || 7488 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7489 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7490 return true; 7491 7492 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7493 return error(Loc, "load operand must be a pointer to a first class type"); 7494 if (isAtomic && !Alignment) 7495 return error(Loc, "atomic load must have explicit non-zero alignment"); 7496 if (Ordering == AtomicOrdering::Release || 7497 Ordering == AtomicOrdering::AcquireRelease) 7498 return error(Loc, "atomic load cannot use Release ordering"); 7499 7500 if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) { 7501 return error( 7502 ExplicitTypeLoc, 7503 typeComparisonErrorMessage( 7504 "explicit pointee type doesn't match operand's pointee type", Ty, 7505 cast<PointerType>(Val->getType())->getElementType())); 7506 } 7507 SmallPtrSet<Type *, 4> Visited; 7508 if (!Alignment && !Ty->isSized(&Visited)) 7509 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7510 if (!Alignment) 7511 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7512 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7513 return AteExtraComma ? InstExtraComma : InstNormal; 7514 } 7515 7516 /// parseStore 7517 7518 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7519 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7520 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7521 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7522 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7523 MaybeAlign Alignment; 7524 bool AteExtraComma = false; 7525 bool isAtomic = false; 7526 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7527 SyncScope::ID SSID = SyncScope::System; 7528 7529 if (Lex.getKind() == lltok::kw_atomic) { 7530 isAtomic = true; 7531 Lex.Lex(); 7532 } 7533 7534 bool isVolatile = false; 7535 if (Lex.getKind() == lltok::kw_volatile) { 7536 isVolatile = true; 7537 Lex.Lex(); 7538 } 7539 7540 if (parseTypeAndValue(Val, Loc, PFS) || 7541 parseToken(lltok::comma, "expected ',' after store operand") || 7542 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7543 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7544 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7545 return true; 7546 7547 if (!Ptr->getType()->isPointerTy()) 7548 return error(PtrLoc, "store operand must be a pointer"); 7549 if (!Val->getType()->isFirstClassType()) 7550 return error(Loc, "store operand must be a first class value"); 7551 if (!cast<PointerType>(Ptr->getType()) 7552 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7553 return error(Loc, "stored value and pointer type do not match"); 7554 if (isAtomic && !Alignment) 7555 return error(Loc, "atomic store must have explicit non-zero alignment"); 7556 if (Ordering == AtomicOrdering::Acquire || 7557 Ordering == AtomicOrdering::AcquireRelease) 7558 return error(Loc, "atomic store cannot use Acquire ordering"); 7559 SmallPtrSet<Type *, 4> Visited; 7560 if (!Alignment && !Val->getType()->isSized(&Visited)) 7561 return error(Loc, "storing unsized types is not allowed"); 7562 if (!Alignment) 7563 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7564 7565 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7566 return AteExtraComma ? InstExtraComma : InstNormal; 7567 } 7568 7569 /// parseCmpXchg 7570 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7571 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7572 /// 'Align'? 7573 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7574 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7575 bool AteExtraComma = false; 7576 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7577 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7578 SyncScope::ID SSID = SyncScope::System; 7579 bool isVolatile = false; 7580 bool isWeak = false; 7581 MaybeAlign Alignment; 7582 7583 if (EatIfPresent(lltok::kw_weak)) 7584 isWeak = true; 7585 7586 if (EatIfPresent(lltok::kw_volatile)) 7587 isVolatile = true; 7588 7589 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7590 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7591 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7592 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7593 parseTypeAndValue(New, NewLoc, PFS) || 7594 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7595 parseOrdering(FailureOrdering) || 7596 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7597 return true; 7598 7599 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 7600 return tokError("invalid cmpxchg success ordering"); 7601 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 7602 return tokError("invalid cmpxchg failure ordering"); 7603 if (!Ptr->getType()->isPointerTy()) 7604 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7605 if (!cast<PointerType>(Ptr->getType()) 7606 ->isOpaqueOrPointeeTypeMatches(Cmp->getType())) 7607 return error(CmpLoc, "compare value and pointer type do not match"); 7608 if (!cast<PointerType>(Ptr->getType()) 7609 ->isOpaqueOrPointeeTypeMatches(New->getType())) 7610 return error(NewLoc, "new value and pointer type do not match"); 7611 if (Cmp->getType() != New->getType()) 7612 return error(NewLoc, "compare value and new value type do not match"); 7613 if (!New->getType()->isFirstClassType()) 7614 return error(NewLoc, "cmpxchg operand must be a first class value"); 7615 7616 const Align DefaultAlignment( 7617 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7618 Cmp->getType())); 7619 7620 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7621 Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering, 7622 FailureOrdering, SSID); 7623 CXI->setVolatile(isVolatile); 7624 CXI->setWeak(isWeak); 7625 7626 Inst = CXI; 7627 return AteExtraComma ? InstExtraComma : InstNormal; 7628 } 7629 7630 /// parseAtomicRMW 7631 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7632 /// 'singlethread'? AtomicOrdering 7633 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7634 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7635 bool AteExtraComma = false; 7636 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7637 SyncScope::ID SSID = SyncScope::System; 7638 bool isVolatile = false; 7639 bool IsFP = false; 7640 AtomicRMWInst::BinOp Operation; 7641 MaybeAlign Alignment; 7642 7643 if (EatIfPresent(lltok::kw_volatile)) 7644 isVolatile = true; 7645 7646 switch (Lex.getKind()) { 7647 default: 7648 return tokError("expected binary operation in atomicrmw"); 7649 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7650 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7651 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7652 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7653 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7654 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7655 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7656 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7657 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7658 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7659 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7660 case lltok::kw_fadd: 7661 Operation = AtomicRMWInst::FAdd; 7662 IsFP = true; 7663 break; 7664 case lltok::kw_fsub: 7665 Operation = AtomicRMWInst::FSub; 7666 IsFP = true; 7667 break; 7668 } 7669 Lex.Lex(); // Eat the operation. 7670 7671 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7672 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7673 parseTypeAndValue(Val, ValLoc, PFS) || 7674 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7675 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7676 return true; 7677 7678 if (Ordering == AtomicOrdering::Unordered) 7679 return tokError("atomicrmw cannot be unordered"); 7680 if (!Ptr->getType()->isPointerTy()) 7681 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7682 if (!cast<PointerType>(Ptr->getType()) 7683 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7684 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7685 7686 if (Operation == AtomicRMWInst::Xchg) { 7687 if (!Val->getType()->isIntegerTy() && 7688 !Val->getType()->isFloatingPointTy()) { 7689 return error(ValLoc, 7690 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7691 " operand must be an integer or floating point type"); 7692 } 7693 } else if (IsFP) { 7694 if (!Val->getType()->isFloatingPointTy()) { 7695 return error(ValLoc, "atomicrmw " + 7696 AtomicRMWInst::getOperationName(Operation) + 7697 " operand must be a floating point type"); 7698 } 7699 } else { 7700 if (!Val->getType()->isIntegerTy()) { 7701 return error(ValLoc, "atomicrmw " + 7702 AtomicRMWInst::getOperationName(Operation) + 7703 " operand must be an integer"); 7704 } 7705 } 7706 7707 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7708 if (Size < 8 || (Size & (Size - 1))) 7709 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7710 " integer"); 7711 const Align DefaultAlignment( 7712 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7713 Val->getType())); 7714 AtomicRMWInst *RMWI = 7715 new AtomicRMWInst(Operation, Ptr, Val, 7716 Alignment.getValueOr(DefaultAlignment), Ordering, SSID); 7717 RMWI->setVolatile(isVolatile); 7718 Inst = RMWI; 7719 return AteExtraComma ? InstExtraComma : InstNormal; 7720 } 7721 7722 /// parseFence 7723 /// ::= 'fence' 'singlethread'? AtomicOrdering 7724 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7725 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7726 SyncScope::ID SSID = SyncScope::System; 7727 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7728 return true; 7729 7730 if (Ordering == AtomicOrdering::Unordered) 7731 return tokError("fence cannot be unordered"); 7732 if (Ordering == AtomicOrdering::Monotonic) 7733 return tokError("fence cannot be monotonic"); 7734 7735 Inst = new FenceInst(Context, Ordering, SSID); 7736 return InstNormal; 7737 } 7738 7739 /// parseGetElementPtr 7740 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7741 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7742 Value *Ptr = nullptr; 7743 Value *Val = nullptr; 7744 LocTy Loc, EltLoc; 7745 7746 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7747 7748 Type *Ty = nullptr; 7749 LocTy ExplicitTypeLoc = Lex.getLoc(); 7750 if (parseType(Ty) || 7751 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7752 parseTypeAndValue(Ptr, Loc, PFS)) 7753 return true; 7754 7755 Type *BaseType = Ptr->getType(); 7756 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7757 if (!BasePointerType) 7758 return error(Loc, "base of getelementptr must be a pointer"); 7759 7760 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 7761 return error( 7762 ExplicitTypeLoc, 7763 typeComparisonErrorMessage( 7764 "explicit pointee type doesn't match operand's pointee type", Ty, 7765 BasePointerType->getElementType())); 7766 } 7767 7768 SmallVector<Value*, 16> Indices; 7769 bool AteExtraComma = false; 7770 // GEP returns a vector of pointers if at least one of parameters is a vector. 7771 // All vector parameters should have the same vector width. 7772 ElementCount GEPWidth = BaseType->isVectorTy() 7773 ? cast<VectorType>(BaseType)->getElementCount() 7774 : ElementCount::getFixed(0); 7775 7776 while (EatIfPresent(lltok::comma)) { 7777 if (Lex.getKind() == lltok::MetadataVar) { 7778 AteExtraComma = true; 7779 break; 7780 } 7781 if (parseTypeAndValue(Val, EltLoc, PFS)) 7782 return true; 7783 if (!Val->getType()->isIntOrIntVectorTy()) 7784 return error(EltLoc, "getelementptr index must be an integer"); 7785 7786 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7787 ElementCount ValNumEl = ValVTy->getElementCount(); 7788 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7789 return error( 7790 EltLoc, 7791 "getelementptr vector index has a wrong number of elements"); 7792 GEPWidth = ValNumEl; 7793 } 7794 Indices.push_back(Val); 7795 } 7796 7797 SmallPtrSet<Type*, 4> Visited; 7798 if (!Indices.empty() && !Ty->isSized(&Visited)) 7799 return error(Loc, "base element of getelementptr must be sized"); 7800 7801 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7802 return error(Loc, "invalid getelementptr indices"); 7803 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7804 if (InBounds) 7805 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7806 return AteExtraComma ? InstExtraComma : InstNormal; 7807 } 7808 7809 /// parseExtractValue 7810 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7811 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7812 Value *Val; LocTy Loc; 7813 SmallVector<unsigned, 4> Indices; 7814 bool AteExtraComma; 7815 if (parseTypeAndValue(Val, Loc, PFS) || 7816 parseIndexList(Indices, AteExtraComma)) 7817 return true; 7818 7819 if (!Val->getType()->isAggregateType()) 7820 return error(Loc, "extractvalue operand must be aggregate type"); 7821 7822 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7823 return error(Loc, "invalid indices for extractvalue"); 7824 Inst = ExtractValueInst::Create(Val, Indices); 7825 return AteExtraComma ? InstExtraComma : InstNormal; 7826 } 7827 7828 /// parseInsertValue 7829 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7830 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7831 Value *Val0, *Val1; LocTy Loc0, Loc1; 7832 SmallVector<unsigned, 4> Indices; 7833 bool AteExtraComma; 7834 if (parseTypeAndValue(Val0, Loc0, PFS) || 7835 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7836 parseTypeAndValue(Val1, Loc1, PFS) || 7837 parseIndexList(Indices, AteExtraComma)) 7838 return true; 7839 7840 if (!Val0->getType()->isAggregateType()) 7841 return error(Loc0, "insertvalue operand must be aggregate type"); 7842 7843 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7844 if (!IndexedType) 7845 return error(Loc0, "invalid indices for insertvalue"); 7846 if (IndexedType != Val1->getType()) 7847 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7848 getTypeString(Val1->getType()) + "' instead of '" + 7849 getTypeString(IndexedType) + "'"); 7850 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7851 return AteExtraComma ? InstExtraComma : InstNormal; 7852 } 7853 7854 //===----------------------------------------------------------------------===// 7855 // Embedded metadata. 7856 //===----------------------------------------------------------------------===// 7857 7858 /// parseMDNodeVector 7859 /// ::= { Element (',' Element)* } 7860 /// Element 7861 /// ::= 'null' | TypeAndValue 7862 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7863 if (parseToken(lltok::lbrace, "expected '{' here")) 7864 return true; 7865 7866 // Check for an empty list. 7867 if (EatIfPresent(lltok::rbrace)) 7868 return false; 7869 7870 do { 7871 // Null is a special case since it is typeless. 7872 if (EatIfPresent(lltok::kw_null)) { 7873 Elts.push_back(nullptr); 7874 continue; 7875 } 7876 7877 Metadata *MD; 7878 if (parseMetadata(MD, nullptr)) 7879 return true; 7880 Elts.push_back(MD); 7881 } while (EatIfPresent(lltok::comma)); 7882 7883 return parseToken(lltok::rbrace, "expected end of metadata node"); 7884 } 7885 7886 //===----------------------------------------------------------------------===// 7887 // Use-list order directives. 7888 //===----------------------------------------------------------------------===// 7889 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7890 SMLoc Loc) { 7891 if (V->use_empty()) 7892 return error(Loc, "value has no uses"); 7893 7894 unsigned NumUses = 0; 7895 SmallDenseMap<const Use *, unsigned, 16> Order; 7896 for (const Use &U : V->uses()) { 7897 if (++NumUses > Indexes.size()) 7898 break; 7899 Order[&U] = Indexes[NumUses - 1]; 7900 } 7901 if (NumUses < 2) 7902 return error(Loc, "value only has one use"); 7903 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7904 return error(Loc, 7905 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7906 7907 V->sortUseList([&](const Use &L, const Use &R) { 7908 return Order.lookup(&L) < Order.lookup(&R); 7909 }); 7910 return false; 7911 } 7912 7913 /// parseUseListOrderIndexes 7914 /// ::= '{' uint32 (',' uint32)+ '}' 7915 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7916 SMLoc Loc = Lex.getLoc(); 7917 if (parseToken(lltok::lbrace, "expected '{' here")) 7918 return true; 7919 if (Lex.getKind() == lltok::rbrace) 7920 return Lex.Error("expected non-empty list of uselistorder indexes"); 7921 7922 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7923 // indexes should be distinct numbers in the range [0, size-1], and should 7924 // not be in order. 7925 unsigned Offset = 0; 7926 unsigned Max = 0; 7927 bool IsOrdered = true; 7928 assert(Indexes.empty() && "Expected empty order vector"); 7929 do { 7930 unsigned Index; 7931 if (parseUInt32(Index)) 7932 return true; 7933 7934 // Update consistency checks. 7935 Offset += Index - Indexes.size(); 7936 Max = std::max(Max, Index); 7937 IsOrdered &= Index == Indexes.size(); 7938 7939 Indexes.push_back(Index); 7940 } while (EatIfPresent(lltok::comma)); 7941 7942 if (parseToken(lltok::rbrace, "expected '}' here")) 7943 return true; 7944 7945 if (Indexes.size() < 2) 7946 return error(Loc, "expected >= 2 uselistorder indexes"); 7947 if (Offset != 0 || Max >= Indexes.size()) 7948 return error(Loc, 7949 "expected distinct uselistorder indexes in range [0, size)"); 7950 if (IsOrdered) 7951 return error(Loc, "expected uselistorder indexes to change the order"); 7952 7953 return false; 7954 } 7955 7956 /// parseUseListOrder 7957 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7958 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7959 SMLoc Loc = Lex.getLoc(); 7960 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7961 return true; 7962 7963 Value *V; 7964 SmallVector<unsigned, 16> Indexes; 7965 if (parseTypeAndValue(V, PFS) || 7966 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7967 parseUseListOrderIndexes(Indexes)) 7968 return true; 7969 7970 return sortUseListOrder(V, Indexes, Loc); 7971 } 7972 7973 /// parseUseListOrderBB 7974 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7975 bool LLParser::parseUseListOrderBB() { 7976 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7977 SMLoc Loc = Lex.getLoc(); 7978 Lex.Lex(); 7979 7980 ValID Fn, Label; 7981 SmallVector<unsigned, 16> Indexes; 7982 if (parseValID(Fn) || 7983 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7984 parseValID(Label) || 7985 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7986 parseUseListOrderIndexes(Indexes)) 7987 return true; 7988 7989 // Check the function. 7990 GlobalValue *GV; 7991 if (Fn.Kind == ValID::t_GlobalName) 7992 GV = M->getNamedValue(Fn.StrVal); 7993 else if (Fn.Kind == ValID::t_GlobalID) 7994 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7995 else 7996 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7997 if (!GV) 7998 return error(Fn.Loc, 7999 "invalid function forward reference in uselistorder_bb"); 8000 auto *F = dyn_cast<Function>(GV); 8001 if (!F) 8002 return error(Fn.Loc, "expected function name in uselistorder_bb"); 8003 if (F->isDeclaration()) 8004 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 8005 8006 // Check the basic block. 8007 if (Label.Kind == ValID::t_LocalID) 8008 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 8009 if (Label.Kind != ValID::t_LocalName) 8010 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 8011 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 8012 if (!V) 8013 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 8014 if (!isa<BasicBlock>(V)) 8015 return error(Label.Loc, "expected basic block in uselistorder_bb"); 8016 8017 return sortUseListOrder(V, Indexes, Loc); 8018 } 8019 8020 /// ModuleEntry 8021 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 8022 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 8023 bool LLParser::parseModuleEntry(unsigned ID) { 8024 assert(Lex.getKind() == lltok::kw_module); 8025 Lex.Lex(); 8026 8027 std::string Path; 8028 if (parseToken(lltok::colon, "expected ':' here") || 8029 parseToken(lltok::lparen, "expected '(' here") || 8030 parseToken(lltok::kw_path, "expected 'path' here") || 8031 parseToken(lltok::colon, "expected ':' here") || 8032 parseStringConstant(Path) || 8033 parseToken(lltok::comma, "expected ',' here") || 8034 parseToken(lltok::kw_hash, "expected 'hash' here") || 8035 parseToken(lltok::colon, "expected ':' here") || 8036 parseToken(lltok::lparen, "expected '(' here")) 8037 return true; 8038 8039 ModuleHash Hash; 8040 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 8041 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 8042 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 8043 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 8044 parseUInt32(Hash[4])) 8045 return true; 8046 8047 if (parseToken(lltok::rparen, "expected ')' here") || 8048 parseToken(lltok::rparen, "expected ')' here")) 8049 return true; 8050 8051 auto ModuleEntry = Index->addModule(Path, ID, Hash); 8052 ModuleIdMap[ID] = ModuleEntry->first(); 8053 8054 return false; 8055 } 8056 8057 /// TypeIdEntry 8058 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 8059 bool LLParser::parseTypeIdEntry(unsigned ID) { 8060 assert(Lex.getKind() == lltok::kw_typeid); 8061 Lex.Lex(); 8062 8063 std::string Name; 8064 if (parseToken(lltok::colon, "expected ':' here") || 8065 parseToken(lltok::lparen, "expected '(' here") || 8066 parseToken(lltok::kw_name, "expected 'name' here") || 8067 parseToken(lltok::colon, "expected ':' here") || 8068 parseStringConstant(Name)) 8069 return true; 8070 8071 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 8072 if (parseToken(lltok::comma, "expected ',' here") || 8073 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 8074 return true; 8075 8076 // Check if this ID was forward referenced, and if so, update the 8077 // corresponding GUIDs. 8078 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8079 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8080 for (auto TIDRef : FwdRefTIDs->second) { 8081 assert(!*TIDRef.first && 8082 "Forward referenced type id GUID expected to be 0"); 8083 *TIDRef.first = GlobalValue::getGUID(Name); 8084 } 8085 ForwardRefTypeIds.erase(FwdRefTIDs); 8086 } 8087 8088 return false; 8089 } 8090 8091 /// TypeIdSummary 8092 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 8093 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 8094 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 8095 parseToken(lltok::colon, "expected ':' here") || 8096 parseToken(lltok::lparen, "expected '(' here") || 8097 parseTypeTestResolution(TIS.TTRes)) 8098 return true; 8099 8100 if (EatIfPresent(lltok::comma)) { 8101 // Expect optional wpdResolutions field 8102 if (parseOptionalWpdResolutions(TIS.WPDRes)) 8103 return true; 8104 } 8105 8106 if (parseToken(lltok::rparen, "expected ')' here")) 8107 return true; 8108 8109 return false; 8110 } 8111 8112 static ValueInfo EmptyVI = 8113 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 8114 8115 /// TypeIdCompatibleVtableEntry 8116 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 8117 /// TypeIdCompatibleVtableInfo 8118 /// ')' 8119 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 8120 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 8121 Lex.Lex(); 8122 8123 std::string Name; 8124 if (parseToken(lltok::colon, "expected ':' here") || 8125 parseToken(lltok::lparen, "expected '(' here") || 8126 parseToken(lltok::kw_name, "expected 'name' here") || 8127 parseToken(lltok::colon, "expected ':' here") || 8128 parseStringConstant(Name)) 8129 return true; 8130 8131 TypeIdCompatibleVtableInfo &TI = 8132 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 8133 if (parseToken(lltok::comma, "expected ',' here") || 8134 parseToken(lltok::kw_summary, "expected 'summary' here") || 8135 parseToken(lltok::colon, "expected ':' here") || 8136 parseToken(lltok::lparen, "expected '(' here")) 8137 return true; 8138 8139 IdToIndexMapType IdToIndexMap; 8140 // parse each call edge 8141 do { 8142 uint64_t Offset; 8143 if (parseToken(lltok::lparen, "expected '(' here") || 8144 parseToken(lltok::kw_offset, "expected 'offset' here") || 8145 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8146 parseToken(lltok::comma, "expected ',' here")) 8147 return true; 8148 8149 LocTy Loc = Lex.getLoc(); 8150 unsigned GVId; 8151 ValueInfo VI; 8152 if (parseGVReference(VI, GVId)) 8153 return true; 8154 8155 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 8156 // forward reference. We will save the location of the ValueInfo needing an 8157 // update, but can only do so once the std::vector is finalized. 8158 if (VI == EmptyVI) 8159 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 8160 TI.push_back({Offset, VI}); 8161 8162 if (parseToken(lltok::rparen, "expected ')' in call")) 8163 return true; 8164 } while (EatIfPresent(lltok::comma)); 8165 8166 // Now that the TI vector is finalized, it is safe to save the locations 8167 // of any forward GV references that need updating later. 8168 for (auto I : IdToIndexMap) { 8169 auto &Infos = ForwardRefValueInfos[I.first]; 8170 for (auto P : I.second) { 8171 assert(TI[P.first].VTableVI == EmptyVI && 8172 "Forward referenced ValueInfo expected to be empty"); 8173 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 8174 } 8175 } 8176 8177 if (parseToken(lltok::rparen, "expected ')' here") || 8178 parseToken(lltok::rparen, "expected ')' here")) 8179 return true; 8180 8181 // Check if this ID was forward referenced, and if so, update the 8182 // corresponding GUIDs. 8183 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8184 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8185 for (auto TIDRef : FwdRefTIDs->second) { 8186 assert(!*TIDRef.first && 8187 "Forward referenced type id GUID expected to be 0"); 8188 *TIDRef.first = GlobalValue::getGUID(Name); 8189 } 8190 ForwardRefTypeIds.erase(FwdRefTIDs); 8191 } 8192 8193 return false; 8194 } 8195 8196 /// TypeTestResolution 8197 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 8198 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 8199 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 8200 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 8201 /// [',' 'inlinesBits' ':' UInt64]? ')' 8202 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 8203 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 8204 parseToken(lltok::colon, "expected ':' here") || 8205 parseToken(lltok::lparen, "expected '(' here") || 8206 parseToken(lltok::kw_kind, "expected 'kind' here") || 8207 parseToken(lltok::colon, "expected ':' here")) 8208 return true; 8209 8210 switch (Lex.getKind()) { 8211 case lltok::kw_unknown: 8212 TTRes.TheKind = TypeTestResolution::Unknown; 8213 break; 8214 case lltok::kw_unsat: 8215 TTRes.TheKind = TypeTestResolution::Unsat; 8216 break; 8217 case lltok::kw_byteArray: 8218 TTRes.TheKind = TypeTestResolution::ByteArray; 8219 break; 8220 case lltok::kw_inline: 8221 TTRes.TheKind = TypeTestResolution::Inline; 8222 break; 8223 case lltok::kw_single: 8224 TTRes.TheKind = TypeTestResolution::Single; 8225 break; 8226 case lltok::kw_allOnes: 8227 TTRes.TheKind = TypeTestResolution::AllOnes; 8228 break; 8229 default: 8230 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 8231 } 8232 Lex.Lex(); 8233 8234 if (parseToken(lltok::comma, "expected ',' here") || 8235 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 8236 parseToken(lltok::colon, "expected ':' here") || 8237 parseUInt32(TTRes.SizeM1BitWidth)) 8238 return true; 8239 8240 // parse optional fields 8241 while (EatIfPresent(lltok::comma)) { 8242 switch (Lex.getKind()) { 8243 case lltok::kw_alignLog2: 8244 Lex.Lex(); 8245 if (parseToken(lltok::colon, "expected ':'") || 8246 parseUInt64(TTRes.AlignLog2)) 8247 return true; 8248 break; 8249 case lltok::kw_sizeM1: 8250 Lex.Lex(); 8251 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 8252 return true; 8253 break; 8254 case lltok::kw_bitMask: { 8255 unsigned Val; 8256 Lex.Lex(); 8257 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 8258 return true; 8259 assert(Val <= 0xff); 8260 TTRes.BitMask = (uint8_t)Val; 8261 break; 8262 } 8263 case lltok::kw_inlineBits: 8264 Lex.Lex(); 8265 if (parseToken(lltok::colon, "expected ':'") || 8266 parseUInt64(TTRes.InlineBits)) 8267 return true; 8268 break; 8269 default: 8270 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 8271 } 8272 } 8273 8274 if (parseToken(lltok::rparen, "expected ')' here")) 8275 return true; 8276 8277 return false; 8278 } 8279 8280 /// OptionalWpdResolutions 8281 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 8282 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 8283 bool LLParser::parseOptionalWpdResolutions( 8284 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 8285 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 8286 parseToken(lltok::colon, "expected ':' here") || 8287 parseToken(lltok::lparen, "expected '(' here")) 8288 return true; 8289 8290 do { 8291 uint64_t Offset; 8292 WholeProgramDevirtResolution WPDRes; 8293 if (parseToken(lltok::lparen, "expected '(' here") || 8294 parseToken(lltok::kw_offset, "expected 'offset' here") || 8295 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8296 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 8297 parseToken(lltok::rparen, "expected ')' here")) 8298 return true; 8299 WPDResMap[Offset] = WPDRes; 8300 } while (EatIfPresent(lltok::comma)); 8301 8302 if (parseToken(lltok::rparen, "expected ')' here")) 8303 return true; 8304 8305 return false; 8306 } 8307 8308 /// WpdRes 8309 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 8310 /// [',' OptionalResByArg]? ')' 8311 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 8312 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 8313 /// [',' OptionalResByArg]? ')' 8314 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 8315 /// [',' OptionalResByArg]? ')' 8316 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 8317 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 8318 parseToken(lltok::colon, "expected ':' here") || 8319 parseToken(lltok::lparen, "expected '(' here") || 8320 parseToken(lltok::kw_kind, "expected 'kind' here") || 8321 parseToken(lltok::colon, "expected ':' here")) 8322 return true; 8323 8324 switch (Lex.getKind()) { 8325 case lltok::kw_indir: 8326 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8327 break; 8328 case lltok::kw_singleImpl: 8329 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8330 break; 8331 case lltok::kw_branchFunnel: 8332 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8333 break; 8334 default: 8335 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8336 } 8337 Lex.Lex(); 8338 8339 // parse optional fields 8340 while (EatIfPresent(lltok::comma)) { 8341 switch (Lex.getKind()) { 8342 case lltok::kw_singleImplName: 8343 Lex.Lex(); 8344 if (parseToken(lltok::colon, "expected ':' here") || 8345 parseStringConstant(WPDRes.SingleImplName)) 8346 return true; 8347 break; 8348 case lltok::kw_resByArg: 8349 if (parseOptionalResByArg(WPDRes.ResByArg)) 8350 return true; 8351 break; 8352 default: 8353 return error(Lex.getLoc(), 8354 "expected optional WholeProgramDevirtResolution field"); 8355 } 8356 } 8357 8358 if (parseToken(lltok::rparen, "expected ')' here")) 8359 return true; 8360 8361 return false; 8362 } 8363 8364 /// OptionalResByArg 8365 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8366 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8367 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8368 /// 'virtualConstProp' ) 8369 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8370 /// [',' 'bit' ':' UInt32]? ')' 8371 bool LLParser::parseOptionalResByArg( 8372 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8373 &ResByArg) { 8374 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8375 parseToken(lltok::colon, "expected ':' here") || 8376 parseToken(lltok::lparen, "expected '(' here")) 8377 return true; 8378 8379 do { 8380 std::vector<uint64_t> Args; 8381 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8382 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8383 parseToken(lltok::colon, "expected ':' here") || 8384 parseToken(lltok::lparen, "expected '(' here") || 8385 parseToken(lltok::kw_kind, "expected 'kind' here") || 8386 parseToken(lltok::colon, "expected ':' here")) 8387 return true; 8388 8389 WholeProgramDevirtResolution::ByArg ByArg; 8390 switch (Lex.getKind()) { 8391 case lltok::kw_indir: 8392 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8393 break; 8394 case lltok::kw_uniformRetVal: 8395 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8396 break; 8397 case lltok::kw_uniqueRetVal: 8398 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8399 break; 8400 case lltok::kw_virtualConstProp: 8401 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8402 break; 8403 default: 8404 return error(Lex.getLoc(), 8405 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8406 } 8407 Lex.Lex(); 8408 8409 // parse optional fields 8410 while (EatIfPresent(lltok::comma)) { 8411 switch (Lex.getKind()) { 8412 case lltok::kw_info: 8413 Lex.Lex(); 8414 if (parseToken(lltok::colon, "expected ':' here") || 8415 parseUInt64(ByArg.Info)) 8416 return true; 8417 break; 8418 case lltok::kw_byte: 8419 Lex.Lex(); 8420 if (parseToken(lltok::colon, "expected ':' here") || 8421 parseUInt32(ByArg.Byte)) 8422 return true; 8423 break; 8424 case lltok::kw_bit: 8425 Lex.Lex(); 8426 if (parseToken(lltok::colon, "expected ':' here") || 8427 parseUInt32(ByArg.Bit)) 8428 return true; 8429 break; 8430 default: 8431 return error(Lex.getLoc(), 8432 "expected optional whole program devirt field"); 8433 } 8434 } 8435 8436 if (parseToken(lltok::rparen, "expected ')' here")) 8437 return true; 8438 8439 ResByArg[Args] = ByArg; 8440 } while (EatIfPresent(lltok::comma)); 8441 8442 if (parseToken(lltok::rparen, "expected ')' here")) 8443 return true; 8444 8445 return false; 8446 } 8447 8448 /// OptionalResByArg 8449 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8450 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8451 if (parseToken(lltok::kw_args, "expected 'args' here") || 8452 parseToken(lltok::colon, "expected ':' here") || 8453 parseToken(lltok::lparen, "expected '(' here")) 8454 return true; 8455 8456 do { 8457 uint64_t Val; 8458 if (parseUInt64(Val)) 8459 return true; 8460 Args.push_back(Val); 8461 } while (EatIfPresent(lltok::comma)); 8462 8463 if (parseToken(lltok::rparen, "expected ')' here")) 8464 return true; 8465 8466 return false; 8467 } 8468 8469 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8470 8471 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8472 bool ReadOnly = Fwd->isReadOnly(); 8473 bool WriteOnly = Fwd->isWriteOnly(); 8474 assert(!(ReadOnly && WriteOnly)); 8475 *Fwd = Resolved; 8476 if (ReadOnly) 8477 Fwd->setReadOnly(); 8478 if (WriteOnly) 8479 Fwd->setWriteOnly(); 8480 } 8481 8482 /// Stores the given Name/GUID and associated summary into the Index. 8483 /// Also updates any forward references to the associated entry ID. 8484 void LLParser::addGlobalValueToIndex( 8485 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8486 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8487 // First create the ValueInfo utilizing the Name or GUID. 8488 ValueInfo VI; 8489 if (GUID != 0) { 8490 assert(Name.empty()); 8491 VI = Index->getOrInsertValueInfo(GUID); 8492 } else { 8493 assert(!Name.empty()); 8494 if (M) { 8495 auto *GV = M->getNamedValue(Name); 8496 assert(GV); 8497 VI = Index->getOrInsertValueInfo(GV); 8498 } else { 8499 assert( 8500 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8501 "Need a source_filename to compute GUID for local"); 8502 GUID = GlobalValue::getGUID( 8503 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8504 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8505 } 8506 } 8507 8508 // Resolve forward references from calls/refs 8509 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8510 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8511 for (auto VIRef : FwdRefVIs->second) { 8512 assert(VIRef.first->getRef() == FwdVIRef && 8513 "Forward referenced ValueInfo expected to be empty"); 8514 resolveFwdRef(VIRef.first, VI); 8515 } 8516 ForwardRefValueInfos.erase(FwdRefVIs); 8517 } 8518 8519 // Resolve forward references from aliases 8520 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8521 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8522 for (auto AliaseeRef : FwdRefAliasees->second) { 8523 assert(!AliaseeRef.first->hasAliasee() && 8524 "Forward referencing alias already has aliasee"); 8525 assert(Summary && "Aliasee must be a definition"); 8526 AliaseeRef.first->setAliasee(VI, Summary.get()); 8527 } 8528 ForwardRefAliasees.erase(FwdRefAliasees); 8529 } 8530 8531 // Add the summary if one was provided. 8532 if (Summary) 8533 Index->addGlobalValueSummary(VI, std::move(Summary)); 8534 8535 // Save the associated ValueInfo for use in later references by ID. 8536 if (ID == NumberedValueInfos.size()) 8537 NumberedValueInfos.push_back(VI); 8538 else { 8539 // Handle non-continuous numbers (to make test simplification easier). 8540 if (ID > NumberedValueInfos.size()) 8541 NumberedValueInfos.resize(ID + 1); 8542 NumberedValueInfos[ID] = VI; 8543 } 8544 } 8545 8546 /// parseSummaryIndexFlags 8547 /// ::= 'flags' ':' UInt64 8548 bool LLParser::parseSummaryIndexFlags() { 8549 assert(Lex.getKind() == lltok::kw_flags); 8550 Lex.Lex(); 8551 8552 if (parseToken(lltok::colon, "expected ':' here")) 8553 return true; 8554 uint64_t Flags; 8555 if (parseUInt64(Flags)) 8556 return true; 8557 if (Index) 8558 Index->setFlags(Flags); 8559 return false; 8560 } 8561 8562 /// parseBlockCount 8563 /// ::= 'blockcount' ':' UInt64 8564 bool LLParser::parseBlockCount() { 8565 assert(Lex.getKind() == lltok::kw_blockcount); 8566 Lex.Lex(); 8567 8568 if (parseToken(lltok::colon, "expected ':' here")) 8569 return true; 8570 uint64_t BlockCount; 8571 if (parseUInt64(BlockCount)) 8572 return true; 8573 if (Index) 8574 Index->setBlockCount(BlockCount); 8575 return false; 8576 } 8577 8578 /// parseGVEntry 8579 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8580 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8581 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8582 bool LLParser::parseGVEntry(unsigned ID) { 8583 assert(Lex.getKind() == lltok::kw_gv); 8584 Lex.Lex(); 8585 8586 if (parseToken(lltok::colon, "expected ':' here") || 8587 parseToken(lltok::lparen, "expected '(' here")) 8588 return true; 8589 8590 std::string Name; 8591 GlobalValue::GUID GUID = 0; 8592 switch (Lex.getKind()) { 8593 case lltok::kw_name: 8594 Lex.Lex(); 8595 if (parseToken(lltok::colon, "expected ':' here") || 8596 parseStringConstant(Name)) 8597 return true; 8598 // Can't create GUID/ValueInfo until we have the linkage. 8599 break; 8600 case lltok::kw_guid: 8601 Lex.Lex(); 8602 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8603 return true; 8604 break; 8605 default: 8606 return error(Lex.getLoc(), "expected name or guid tag"); 8607 } 8608 8609 if (!EatIfPresent(lltok::comma)) { 8610 // No summaries. Wrap up. 8611 if (parseToken(lltok::rparen, "expected ')' here")) 8612 return true; 8613 // This was created for a call to an external or indirect target. 8614 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8615 // created for indirect calls with VP. A Name with no GUID came from 8616 // an external definition. We pass ExternalLinkage since that is only 8617 // used when the GUID must be computed from Name, and in that case 8618 // the symbol must have external linkage. 8619 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8620 nullptr); 8621 return false; 8622 } 8623 8624 // Have a list of summaries 8625 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8626 parseToken(lltok::colon, "expected ':' here") || 8627 parseToken(lltok::lparen, "expected '(' here")) 8628 return true; 8629 do { 8630 switch (Lex.getKind()) { 8631 case lltok::kw_function: 8632 if (parseFunctionSummary(Name, GUID, ID)) 8633 return true; 8634 break; 8635 case lltok::kw_variable: 8636 if (parseVariableSummary(Name, GUID, ID)) 8637 return true; 8638 break; 8639 case lltok::kw_alias: 8640 if (parseAliasSummary(Name, GUID, ID)) 8641 return true; 8642 break; 8643 default: 8644 return error(Lex.getLoc(), "expected summary type"); 8645 } 8646 } while (EatIfPresent(lltok::comma)); 8647 8648 if (parseToken(lltok::rparen, "expected ')' here") || 8649 parseToken(lltok::rparen, "expected ')' here")) 8650 return true; 8651 8652 return false; 8653 } 8654 8655 /// FunctionSummary 8656 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8657 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8658 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8659 /// [',' OptionalRefs]? ')' 8660 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8661 unsigned ID) { 8662 assert(Lex.getKind() == lltok::kw_function); 8663 Lex.Lex(); 8664 8665 StringRef ModulePath; 8666 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8667 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8668 /*NotEligibleToImport=*/false, 8669 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8670 unsigned InstCount; 8671 std::vector<FunctionSummary::EdgeTy> Calls; 8672 FunctionSummary::TypeIdInfo TypeIdInfo; 8673 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8674 std::vector<ValueInfo> Refs; 8675 // Default is all-zeros (conservative values). 8676 FunctionSummary::FFlags FFlags = {}; 8677 if (parseToken(lltok::colon, "expected ':' here") || 8678 parseToken(lltok::lparen, "expected '(' here") || 8679 parseModuleReference(ModulePath) || 8680 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8681 parseToken(lltok::comma, "expected ',' here") || 8682 parseToken(lltok::kw_insts, "expected 'insts' here") || 8683 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8684 return true; 8685 8686 // parse optional fields 8687 while (EatIfPresent(lltok::comma)) { 8688 switch (Lex.getKind()) { 8689 case lltok::kw_funcFlags: 8690 if (parseOptionalFFlags(FFlags)) 8691 return true; 8692 break; 8693 case lltok::kw_calls: 8694 if (parseOptionalCalls(Calls)) 8695 return true; 8696 break; 8697 case lltok::kw_typeIdInfo: 8698 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8699 return true; 8700 break; 8701 case lltok::kw_refs: 8702 if (parseOptionalRefs(Refs)) 8703 return true; 8704 break; 8705 case lltok::kw_params: 8706 if (parseOptionalParamAccesses(ParamAccesses)) 8707 return true; 8708 break; 8709 default: 8710 return error(Lex.getLoc(), "expected optional function summary field"); 8711 } 8712 } 8713 8714 if (parseToken(lltok::rparen, "expected ')' here")) 8715 return true; 8716 8717 auto FS = std::make_unique<FunctionSummary>( 8718 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8719 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8720 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8721 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8722 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8723 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8724 std::move(ParamAccesses)); 8725 8726 FS->setModulePath(ModulePath); 8727 8728 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8729 ID, std::move(FS)); 8730 8731 return false; 8732 } 8733 8734 /// VariableSummary 8735 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8736 /// [',' OptionalRefs]? ')' 8737 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8738 unsigned ID) { 8739 assert(Lex.getKind() == lltok::kw_variable); 8740 Lex.Lex(); 8741 8742 StringRef ModulePath; 8743 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8744 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8745 /*NotEligibleToImport=*/false, 8746 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8747 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8748 /* WriteOnly */ false, 8749 /* Constant */ false, 8750 GlobalObject::VCallVisibilityPublic); 8751 std::vector<ValueInfo> Refs; 8752 VTableFuncList VTableFuncs; 8753 if (parseToken(lltok::colon, "expected ':' here") || 8754 parseToken(lltok::lparen, "expected '(' here") || 8755 parseModuleReference(ModulePath) || 8756 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8757 parseToken(lltok::comma, "expected ',' here") || 8758 parseGVarFlags(GVarFlags)) 8759 return true; 8760 8761 // parse optional fields 8762 while (EatIfPresent(lltok::comma)) { 8763 switch (Lex.getKind()) { 8764 case lltok::kw_vTableFuncs: 8765 if (parseOptionalVTableFuncs(VTableFuncs)) 8766 return true; 8767 break; 8768 case lltok::kw_refs: 8769 if (parseOptionalRefs(Refs)) 8770 return true; 8771 break; 8772 default: 8773 return error(Lex.getLoc(), "expected optional variable summary field"); 8774 } 8775 } 8776 8777 if (parseToken(lltok::rparen, "expected ')' here")) 8778 return true; 8779 8780 auto GS = 8781 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8782 8783 GS->setModulePath(ModulePath); 8784 GS->setVTableFuncs(std::move(VTableFuncs)); 8785 8786 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8787 ID, std::move(GS)); 8788 8789 return false; 8790 } 8791 8792 /// AliasSummary 8793 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8794 /// 'aliasee' ':' GVReference ')' 8795 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8796 unsigned ID) { 8797 assert(Lex.getKind() == lltok::kw_alias); 8798 LocTy Loc = Lex.getLoc(); 8799 Lex.Lex(); 8800 8801 StringRef ModulePath; 8802 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8803 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8804 /*NotEligibleToImport=*/false, 8805 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8806 if (parseToken(lltok::colon, "expected ':' here") || 8807 parseToken(lltok::lparen, "expected '(' here") || 8808 parseModuleReference(ModulePath) || 8809 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8810 parseToken(lltok::comma, "expected ',' here") || 8811 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8812 parseToken(lltok::colon, "expected ':' here")) 8813 return true; 8814 8815 ValueInfo AliaseeVI; 8816 unsigned GVId; 8817 if (parseGVReference(AliaseeVI, GVId)) 8818 return true; 8819 8820 if (parseToken(lltok::rparen, "expected ')' here")) 8821 return true; 8822 8823 auto AS = std::make_unique<AliasSummary>(GVFlags); 8824 8825 AS->setModulePath(ModulePath); 8826 8827 // Record forward reference if the aliasee is not parsed yet. 8828 if (AliaseeVI.getRef() == FwdVIRef) { 8829 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8830 } else { 8831 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8832 assert(Summary && "Aliasee must be a definition"); 8833 AS->setAliasee(AliaseeVI, Summary); 8834 } 8835 8836 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8837 ID, std::move(AS)); 8838 8839 return false; 8840 } 8841 8842 /// Flag 8843 /// ::= [0|1] 8844 bool LLParser::parseFlag(unsigned &Val) { 8845 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8846 return tokError("expected integer"); 8847 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8848 Lex.Lex(); 8849 return false; 8850 } 8851 8852 /// OptionalFFlags 8853 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8854 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8855 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8856 /// [',' 'noInline' ':' Flag]? ')' 8857 /// [',' 'alwaysInline' ':' Flag]? ')' 8858 8859 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8860 assert(Lex.getKind() == lltok::kw_funcFlags); 8861 Lex.Lex(); 8862 8863 if (parseToken(lltok::colon, "expected ':' in funcFlags") | 8864 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8865 return true; 8866 8867 do { 8868 unsigned Val = 0; 8869 switch (Lex.getKind()) { 8870 case lltok::kw_readNone: 8871 Lex.Lex(); 8872 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8873 return true; 8874 FFlags.ReadNone = Val; 8875 break; 8876 case lltok::kw_readOnly: 8877 Lex.Lex(); 8878 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8879 return true; 8880 FFlags.ReadOnly = Val; 8881 break; 8882 case lltok::kw_noRecurse: 8883 Lex.Lex(); 8884 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8885 return true; 8886 FFlags.NoRecurse = Val; 8887 break; 8888 case lltok::kw_returnDoesNotAlias: 8889 Lex.Lex(); 8890 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8891 return true; 8892 FFlags.ReturnDoesNotAlias = Val; 8893 break; 8894 case lltok::kw_noInline: 8895 Lex.Lex(); 8896 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8897 return true; 8898 FFlags.NoInline = Val; 8899 break; 8900 case lltok::kw_alwaysInline: 8901 Lex.Lex(); 8902 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8903 return true; 8904 FFlags.AlwaysInline = Val; 8905 break; 8906 default: 8907 return error(Lex.getLoc(), "expected function flag type"); 8908 } 8909 } while (EatIfPresent(lltok::comma)); 8910 8911 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8912 return true; 8913 8914 return false; 8915 } 8916 8917 /// OptionalCalls 8918 /// := 'calls' ':' '(' Call [',' Call]* ')' 8919 /// Call ::= '(' 'callee' ':' GVReference 8920 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8921 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8922 assert(Lex.getKind() == lltok::kw_calls); 8923 Lex.Lex(); 8924 8925 if (parseToken(lltok::colon, "expected ':' in calls") | 8926 parseToken(lltok::lparen, "expected '(' in calls")) 8927 return true; 8928 8929 IdToIndexMapType IdToIndexMap; 8930 // parse each call edge 8931 do { 8932 ValueInfo VI; 8933 if (parseToken(lltok::lparen, "expected '(' in call") || 8934 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8935 parseToken(lltok::colon, "expected ':'")) 8936 return true; 8937 8938 LocTy Loc = Lex.getLoc(); 8939 unsigned GVId; 8940 if (parseGVReference(VI, GVId)) 8941 return true; 8942 8943 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8944 unsigned RelBF = 0; 8945 if (EatIfPresent(lltok::comma)) { 8946 // Expect either hotness or relbf 8947 if (EatIfPresent(lltok::kw_hotness)) { 8948 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8949 return true; 8950 } else { 8951 if (parseToken(lltok::kw_relbf, "expected relbf") || 8952 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8953 return true; 8954 } 8955 } 8956 // Keep track of the Call array index needing a forward reference. 8957 // We will save the location of the ValueInfo needing an update, but 8958 // can only do so once the std::vector is finalized. 8959 if (VI.getRef() == FwdVIRef) 8960 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8961 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8962 8963 if (parseToken(lltok::rparen, "expected ')' in call")) 8964 return true; 8965 } while (EatIfPresent(lltok::comma)); 8966 8967 // Now that the Calls vector is finalized, it is safe to save the locations 8968 // of any forward GV references that need updating later. 8969 for (auto I : IdToIndexMap) { 8970 auto &Infos = ForwardRefValueInfos[I.first]; 8971 for (auto P : I.second) { 8972 assert(Calls[P.first].first.getRef() == FwdVIRef && 8973 "Forward referenced ValueInfo expected to be empty"); 8974 Infos.emplace_back(&Calls[P.first].first, P.second); 8975 } 8976 } 8977 8978 if (parseToken(lltok::rparen, "expected ')' in calls")) 8979 return true; 8980 8981 return false; 8982 } 8983 8984 /// Hotness 8985 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8986 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8987 switch (Lex.getKind()) { 8988 case lltok::kw_unknown: 8989 Hotness = CalleeInfo::HotnessType::Unknown; 8990 break; 8991 case lltok::kw_cold: 8992 Hotness = CalleeInfo::HotnessType::Cold; 8993 break; 8994 case lltok::kw_none: 8995 Hotness = CalleeInfo::HotnessType::None; 8996 break; 8997 case lltok::kw_hot: 8998 Hotness = CalleeInfo::HotnessType::Hot; 8999 break; 9000 case lltok::kw_critical: 9001 Hotness = CalleeInfo::HotnessType::Critical; 9002 break; 9003 default: 9004 return error(Lex.getLoc(), "invalid call edge hotness"); 9005 } 9006 Lex.Lex(); 9007 return false; 9008 } 9009 9010 /// OptionalVTableFuncs 9011 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 9012 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 9013 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 9014 assert(Lex.getKind() == lltok::kw_vTableFuncs); 9015 Lex.Lex(); 9016 9017 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") | 9018 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 9019 return true; 9020 9021 IdToIndexMapType IdToIndexMap; 9022 // parse each virtual function pair 9023 do { 9024 ValueInfo VI; 9025 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 9026 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 9027 parseToken(lltok::colon, "expected ':'")) 9028 return true; 9029 9030 LocTy Loc = Lex.getLoc(); 9031 unsigned GVId; 9032 if (parseGVReference(VI, GVId)) 9033 return true; 9034 9035 uint64_t Offset; 9036 if (parseToken(lltok::comma, "expected comma") || 9037 parseToken(lltok::kw_offset, "expected offset") || 9038 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 9039 return true; 9040 9041 // Keep track of the VTableFuncs array index needing a forward reference. 9042 // We will save the location of the ValueInfo needing an update, but 9043 // can only do so once the std::vector is finalized. 9044 if (VI == EmptyVI) 9045 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 9046 VTableFuncs.push_back({VI, Offset}); 9047 9048 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 9049 return true; 9050 } while (EatIfPresent(lltok::comma)); 9051 9052 // Now that the VTableFuncs vector is finalized, it is safe to save the 9053 // locations of any forward GV references that need updating later. 9054 for (auto I : IdToIndexMap) { 9055 auto &Infos = ForwardRefValueInfos[I.first]; 9056 for (auto P : I.second) { 9057 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 9058 "Forward referenced ValueInfo expected to be empty"); 9059 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 9060 } 9061 } 9062 9063 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 9064 return true; 9065 9066 return false; 9067 } 9068 9069 /// ParamNo := 'param' ':' UInt64 9070 bool LLParser::parseParamNo(uint64_t &ParamNo) { 9071 if (parseToken(lltok::kw_param, "expected 'param' here") || 9072 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 9073 return true; 9074 return false; 9075 } 9076 9077 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 9078 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 9079 APSInt Lower; 9080 APSInt Upper; 9081 auto ParseAPSInt = [&](APSInt &Val) { 9082 if (Lex.getKind() != lltok::APSInt) 9083 return tokError("expected integer"); 9084 Val = Lex.getAPSIntVal(); 9085 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 9086 Val.setIsSigned(true); 9087 Lex.Lex(); 9088 return false; 9089 }; 9090 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 9091 parseToken(lltok::colon, "expected ':' here") || 9092 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 9093 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 9094 parseToken(lltok::rsquare, "expected ']' here")) 9095 return true; 9096 9097 ++Upper; 9098 Range = 9099 (Lower == Upper && !Lower.isMaxValue()) 9100 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 9101 : ConstantRange(Lower, Upper); 9102 9103 return false; 9104 } 9105 9106 /// ParamAccessCall 9107 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 9108 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 9109 IdLocListType &IdLocList) { 9110 if (parseToken(lltok::lparen, "expected '(' here") || 9111 parseToken(lltok::kw_callee, "expected 'callee' here") || 9112 parseToken(lltok::colon, "expected ':' here")) 9113 return true; 9114 9115 unsigned GVId; 9116 ValueInfo VI; 9117 LocTy Loc = Lex.getLoc(); 9118 if (parseGVReference(VI, GVId)) 9119 return true; 9120 9121 Call.Callee = VI; 9122 IdLocList.emplace_back(GVId, Loc); 9123 9124 if (parseToken(lltok::comma, "expected ',' here") || 9125 parseParamNo(Call.ParamNo) || 9126 parseToken(lltok::comma, "expected ',' here") || 9127 parseParamAccessOffset(Call.Offsets)) 9128 return true; 9129 9130 if (parseToken(lltok::rparen, "expected ')' here")) 9131 return true; 9132 9133 return false; 9134 } 9135 9136 /// ParamAccess 9137 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 9138 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 9139 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 9140 IdLocListType &IdLocList) { 9141 if (parseToken(lltok::lparen, "expected '(' here") || 9142 parseParamNo(Param.ParamNo) || 9143 parseToken(lltok::comma, "expected ',' here") || 9144 parseParamAccessOffset(Param.Use)) 9145 return true; 9146 9147 if (EatIfPresent(lltok::comma)) { 9148 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 9149 parseToken(lltok::colon, "expected ':' here") || 9150 parseToken(lltok::lparen, "expected '(' here")) 9151 return true; 9152 do { 9153 FunctionSummary::ParamAccess::Call Call; 9154 if (parseParamAccessCall(Call, IdLocList)) 9155 return true; 9156 Param.Calls.push_back(Call); 9157 } while (EatIfPresent(lltok::comma)); 9158 9159 if (parseToken(lltok::rparen, "expected ')' here")) 9160 return true; 9161 } 9162 9163 if (parseToken(lltok::rparen, "expected ')' here")) 9164 return true; 9165 9166 return false; 9167 } 9168 9169 /// OptionalParamAccesses 9170 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 9171 bool LLParser::parseOptionalParamAccesses( 9172 std::vector<FunctionSummary::ParamAccess> &Params) { 9173 assert(Lex.getKind() == lltok::kw_params); 9174 Lex.Lex(); 9175 9176 if (parseToken(lltok::colon, "expected ':' here") || 9177 parseToken(lltok::lparen, "expected '(' here")) 9178 return true; 9179 9180 IdLocListType VContexts; 9181 size_t CallsNum = 0; 9182 do { 9183 FunctionSummary::ParamAccess ParamAccess; 9184 if (parseParamAccess(ParamAccess, VContexts)) 9185 return true; 9186 CallsNum += ParamAccess.Calls.size(); 9187 assert(VContexts.size() == CallsNum); 9188 (void)CallsNum; 9189 Params.emplace_back(std::move(ParamAccess)); 9190 } while (EatIfPresent(lltok::comma)); 9191 9192 if (parseToken(lltok::rparen, "expected ')' here")) 9193 return true; 9194 9195 // Now that the Params is finalized, it is safe to save the locations 9196 // of any forward GV references that need updating later. 9197 IdLocListType::const_iterator ItContext = VContexts.begin(); 9198 for (auto &PA : Params) { 9199 for (auto &C : PA.Calls) { 9200 if (C.Callee.getRef() == FwdVIRef) 9201 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 9202 ItContext->second); 9203 ++ItContext; 9204 } 9205 } 9206 assert(ItContext == VContexts.end()); 9207 9208 return false; 9209 } 9210 9211 /// OptionalRefs 9212 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 9213 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 9214 assert(Lex.getKind() == lltok::kw_refs); 9215 Lex.Lex(); 9216 9217 if (parseToken(lltok::colon, "expected ':' in refs") || 9218 parseToken(lltok::lparen, "expected '(' in refs")) 9219 return true; 9220 9221 struct ValueContext { 9222 ValueInfo VI; 9223 unsigned GVId; 9224 LocTy Loc; 9225 }; 9226 std::vector<ValueContext> VContexts; 9227 // parse each ref edge 9228 do { 9229 ValueContext VC; 9230 VC.Loc = Lex.getLoc(); 9231 if (parseGVReference(VC.VI, VC.GVId)) 9232 return true; 9233 VContexts.push_back(VC); 9234 } while (EatIfPresent(lltok::comma)); 9235 9236 // Sort value contexts so that ones with writeonly 9237 // and readonly ValueInfo are at the end of VContexts vector. 9238 // See FunctionSummary::specialRefCounts() 9239 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 9240 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 9241 }); 9242 9243 IdToIndexMapType IdToIndexMap; 9244 for (auto &VC : VContexts) { 9245 // Keep track of the Refs array index needing a forward reference. 9246 // We will save the location of the ValueInfo needing an update, but 9247 // can only do so once the std::vector is finalized. 9248 if (VC.VI.getRef() == FwdVIRef) 9249 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 9250 Refs.push_back(VC.VI); 9251 } 9252 9253 // Now that the Refs vector is finalized, it is safe to save the locations 9254 // of any forward GV references that need updating later. 9255 for (auto I : IdToIndexMap) { 9256 auto &Infos = ForwardRefValueInfos[I.first]; 9257 for (auto P : I.second) { 9258 assert(Refs[P.first].getRef() == FwdVIRef && 9259 "Forward referenced ValueInfo expected to be empty"); 9260 Infos.emplace_back(&Refs[P.first], P.second); 9261 } 9262 } 9263 9264 if (parseToken(lltok::rparen, "expected ')' in refs")) 9265 return true; 9266 9267 return false; 9268 } 9269 9270 /// OptionalTypeIdInfo 9271 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 9272 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 9273 /// [',' TypeCheckedLoadConstVCalls]? ')' 9274 bool LLParser::parseOptionalTypeIdInfo( 9275 FunctionSummary::TypeIdInfo &TypeIdInfo) { 9276 assert(Lex.getKind() == lltok::kw_typeIdInfo); 9277 Lex.Lex(); 9278 9279 if (parseToken(lltok::colon, "expected ':' here") || 9280 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9281 return true; 9282 9283 do { 9284 switch (Lex.getKind()) { 9285 case lltok::kw_typeTests: 9286 if (parseTypeTests(TypeIdInfo.TypeTests)) 9287 return true; 9288 break; 9289 case lltok::kw_typeTestAssumeVCalls: 9290 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 9291 TypeIdInfo.TypeTestAssumeVCalls)) 9292 return true; 9293 break; 9294 case lltok::kw_typeCheckedLoadVCalls: 9295 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 9296 TypeIdInfo.TypeCheckedLoadVCalls)) 9297 return true; 9298 break; 9299 case lltok::kw_typeTestAssumeConstVCalls: 9300 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 9301 TypeIdInfo.TypeTestAssumeConstVCalls)) 9302 return true; 9303 break; 9304 case lltok::kw_typeCheckedLoadConstVCalls: 9305 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9306 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9307 return true; 9308 break; 9309 default: 9310 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9311 } 9312 } while (EatIfPresent(lltok::comma)); 9313 9314 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9315 return true; 9316 9317 return false; 9318 } 9319 9320 /// TypeTests 9321 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9322 /// [',' (SummaryID | UInt64)]* ')' 9323 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9324 assert(Lex.getKind() == lltok::kw_typeTests); 9325 Lex.Lex(); 9326 9327 if (parseToken(lltok::colon, "expected ':' here") || 9328 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9329 return true; 9330 9331 IdToIndexMapType IdToIndexMap; 9332 do { 9333 GlobalValue::GUID GUID = 0; 9334 if (Lex.getKind() == lltok::SummaryID) { 9335 unsigned ID = Lex.getUIntVal(); 9336 LocTy Loc = Lex.getLoc(); 9337 // Keep track of the TypeTests array index needing a forward reference. 9338 // We will save the location of the GUID needing an update, but 9339 // can only do so once the std::vector is finalized. 9340 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9341 Lex.Lex(); 9342 } else if (parseUInt64(GUID)) 9343 return true; 9344 TypeTests.push_back(GUID); 9345 } while (EatIfPresent(lltok::comma)); 9346 9347 // Now that the TypeTests vector is finalized, it is safe to save the 9348 // locations of any forward GV references that need updating later. 9349 for (auto I : IdToIndexMap) { 9350 auto &Ids = ForwardRefTypeIds[I.first]; 9351 for (auto P : I.second) { 9352 assert(TypeTests[P.first] == 0 && 9353 "Forward referenced type id GUID expected to be 0"); 9354 Ids.emplace_back(&TypeTests[P.first], P.second); 9355 } 9356 } 9357 9358 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9359 return true; 9360 9361 return false; 9362 } 9363 9364 /// VFuncIdList 9365 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9366 bool LLParser::parseVFuncIdList( 9367 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9368 assert(Lex.getKind() == Kind); 9369 Lex.Lex(); 9370 9371 if (parseToken(lltok::colon, "expected ':' here") || 9372 parseToken(lltok::lparen, "expected '(' here")) 9373 return true; 9374 9375 IdToIndexMapType IdToIndexMap; 9376 do { 9377 FunctionSummary::VFuncId VFuncId; 9378 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9379 return true; 9380 VFuncIdList.push_back(VFuncId); 9381 } while (EatIfPresent(lltok::comma)); 9382 9383 if (parseToken(lltok::rparen, "expected ')' here")) 9384 return true; 9385 9386 // Now that the VFuncIdList vector is finalized, it is safe to save the 9387 // locations of any forward GV references that need updating later. 9388 for (auto I : IdToIndexMap) { 9389 auto &Ids = ForwardRefTypeIds[I.first]; 9390 for (auto P : I.second) { 9391 assert(VFuncIdList[P.first].GUID == 0 && 9392 "Forward referenced type id GUID expected to be 0"); 9393 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9394 } 9395 } 9396 9397 return false; 9398 } 9399 9400 /// ConstVCallList 9401 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9402 bool LLParser::parseConstVCallList( 9403 lltok::Kind Kind, 9404 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9405 assert(Lex.getKind() == Kind); 9406 Lex.Lex(); 9407 9408 if (parseToken(lltok::colon, "expected ':' here") || 9409 parseToken(lltok::lparen, "expected '(' here")) 9410 return true; 9411 9412 IdToIndexMapType IdToIndexMap; 9413 do { 9414 FunctionSummary::ConstVCall ConstVCall; 9415 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9416 return true; 9417 ConstVCallList.push_back(ConstVCall); 9418 } while (EatIfPresent(lltok::comma)); 9419 9420 if (parseToken(lltok::rparen, "expected ')' here")) 9421 return true; 9422 9423 // Now that the ConstVCallList vector is finalized, it is safe to save the 9424 // locations of any forward GV references that need updating later. 9425 for (auto I : IdToIndexMap) { 9426 auto &Ids = ForwardRefTypeIds[I.first]; 9427 for (auto P : I.second) { 9428 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9429 "Forward referenced type id GUID expected to be 0"); 9430 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9431 } 9432 } 9433 9434 return false; 9435 } 9436 9437 /// ConstVCall 9438 /// ::= '(' VFuncId ',' Args ')' 9439 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9440 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9441 if (parseToken(lltok::lparen, "expected '(' here") || 9442 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9443 return true; 9444 9445 if (EatIfPresent(lltok::comma)) 9446 if (parseArgs(ConstVCall.Args)) 9447 return true; 9448 9449 if (parseToken(lltok::rparen, "expected ')' here")) 9450 return true; 9451 9452 return false; 9453 } 9454 9455 /// VFuncId 9456 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9457 /// 'offset' ':' UInt64 ')' 9458 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9459 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9460 assert(Lex.getKind() == lltok::kw_vFuncId); 9461 Lex.Lex(); 9462 9463 if (parseToken(lltok::colon, "expected ':' here") || 9464 parseToken(lltok::lparen, "expected '(' here")) 9465 return true; 9466 9467 if (Lex.getKind() == lltok::SummaryID) { 9468 VFuncId.GUID = 0; 9469 unsigned ID = Lex.getUIntVal(); 9470 LocTy Loc = Lex.getLoc(); 9471 // Keep track of the array index needing a forward reference. 9472 // We will save the location of the GUID needing an update, but 9473 // can only do so once the caller's std::vector is finalized. 9474 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9475 Lex.Lex(); 9476 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9477 parseToken(lltok::colon, "expected ':' here") || 9478 parseUInt64(VFuncId.GUID)) 9479 return true; 9480 9481 if (parseToken(lltok::comma, "expected ',' here") || 9482 parseToken(lltok::kw_offset, "expected 'offset' here") || 9483 parseToken(lltok::colon, "expected ':' here") || 9484 parseUInt64(VFuncId.Offset) || 9485 parseToken(lltok::rparen, "expected ')' here")) 9486 return true; 9487 9488 return false; 9489 } 9490 9491 /// GVFlags 9492 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9493 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9494 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9495 /// 'canAutoHide' ':' Flag ',' ')' 9496 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9497 assert(Lex.getKind() == lltok::kw_flags); 9498 Lex.Lex(); 9499 9500 if (parseToken(lltok::colon, "expected ':' here") || 9501 parseToken(lltok::lparen, "expected '(' here")) 9502 return true; 9503 9504 do { 9505 unsigned Flag = 0; 9506 switch (Lex.getKind()) { 9507 case lltok::kw_linkage: 9508 Lex.Lex(); 9509 if (parseToken(lltok::colon, "expected ':'")) 9510 return true; 9511 bool HasLinkage; 9512 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9513 assert(HasLinkage && "Linkage not optional in summary entry"); 9514 Lex.Lex(); 9515 break; 9516 case lltok::kw_visibility: 9517 Lex.Lex(); 9518 if (parseToken(lltok::colon, "expected ':'")) 9519 return true; 9520 parseOptionalVisibility(Flag); 9521 GVFlags.Visibility = Flag; 9522 break; 9523 case lltok::kw_notEligibleToImport: 9524 Lex.Lex(); 9525 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9526 return true; 9527 GVFlags.NotEligibleToImport = Flag; 9528 break; 9529 case lltok::kw_live: 9530 Lex.Lex(); 9531 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9532 return true; 9533 GVFlags.Live = Flag; 9534 break; 9535 case lltok::kw_dsoLocal: 9536 Lex.Lex(); 9537 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9538 return true; 9539 GVFlags.DSOLocal = Flag; 9540 break; 9541 case lltok::kw_canAutoHide: 9542 Lex.Lex(); 9543 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9544 return true; 9545 GVFlags.CanAutoHide = Flag; 9546 break; 9547 default: 9548 return error(Lex.getLoc(), "expected gv flag type"); 9549 } 9550 } while (EatIfPresent(lltok::comma)); 9551 9552 if (parseToken(lltok::rparen, "expected ')' here")) 9553 return true; 9554 9555 return false; 9556 } 9557 9558 /// GVarFlags 9559 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9560 /// ',' 'writeonly' ':' Flag 9561 /// ',' 'constant' ':' Flag ')' 9562 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9563 assert(Lex.getKind() == lltok::kw_varFlags); 9564 Lex.Lex(); 9565 9566 if (parseToken(lltok::colon, "expected ':' here") || 9567 parseToken(lltok::lparen, "expected '(' here")) 9568 return true; 9569 9570 auto ParseRest = [this](unsigned int &Val) { 9571 Lex.Lex(); 9572 if (parseToken(lltok::colon, "expected ':'")) 9573 return true; 9574 return parseFlag(Val); 9575 }; 9576 9577 do { 9578 unsigned Flag = 0; 9579 switch (Lex.getKind()) { 9580 case lltok::kw_readonly: 9581 if (ParseRest(Flag)) 9582 return true; 9583 GVarFlags.MaybeReadOnly = Flag; 9584 break; 9585 case lltok::kw_writeonly: 9586 if (ParseRest(Flag)) 9587 return true; 9588 GVarFlags.MaybeWriteOnly = Flag; 9589 break; 9590 case lltok::kw_constant: 9591 if (ParseRest(Flag)) 9592 return true; 9593 GVarFlags.Constant = Flag; 9594 break; 9595 case lltok::kw_vcall_visibility: 9596 if (ParseRest(Flag)) 9597 return true; 9598 GVarFlags.VCallVisibility = Flag; 9599 break; 9600 default: 9601 return error(Lex.getLoc(), "expected gvar flag type"); 9602 } 9603 } while (EatIfPresent(lltok::comma)); 9604 return parseToken(lltok::rparen, "expected ')' here"); 9605 } 9606 9607 /// ModuleReference 9608 /// ::= 'module' ':' UInt 9609 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9610 // parse module id. 9611 if (parseToken(lltok::kw_module, "expected 'module' here") || 9612 parseToken(lltok::colon, "expected ':' here") || 9613 parseToken(lltok::SummaryID, "expected module ID")) 9614 return true; 9615 9616 unsigned ModuleID = Lex.getUIntVal(); 9617 auto I = ModuleIdMap.find(ModuleID); 9618 // We should have already parsed all module IDs 9619 assert(I != ModuleIdMap.end()); 9620 ModulePath = I->second; 9621 return false; 9622 } 9623 9624 /// GVReference 9625 /// ::= SummaryID 9626 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9627 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9628 if (!ReadOnly) 9629 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9630 if (parseToken(lltok::SummaryID, "expected GV ID")) 9631 return true; 9632 9633 GVId = Lex.getUIntVal(); 9634 // Check if we already have a VI for this GV 9635 if (GVId < NumberedValueInfos.size()) { 9636 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9637 VI = NumberedValueInfos[GVId]; 9638 } else 9639 // We will create a forward reference to the stored location. 9640 VI = ValueInfo(false, FwdVIRef); 9641 9642 if (ReadOnly) 9643 VI.setReadOnly(); 9644 if (WriteOnly) 9645 VI.setWriteOnly(); 9646 return false; 9647 } 9648