1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/IR/AutoUpgrade.h" 17 #include "llvm/IR/CallingConv.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/Dwarf.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/SaveAndRestore.h" 31 #include "llvm/Support/raw_ostream.h" 32 using namespace llvm; 33 34 static std::string getTypeString(Type *T) { 35 std::string Result; 36 raw_string_ostream Tmp(Result); 37 Tmp << *T; 38 return Tmp.str(); 39 } 40 41 /// Run: module ::= toplevelentity* 42 bool LLParser::Run() { 43 // Prime the lexer. 44 Lex.Lex(); 45 46 return ParseTopLevelEntities() || 47 ValidateEndOfModule(); 48 } 49 50 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 51 /// module. 52 bool LLParser::ValidateEndOfModule() { 53 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 54 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 55 56 // Handle any function attribute group forward references. 57 for (std::map<Value*, std::vector<unsigned> >::iterator 58 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end(); 59 I != E; ++I) { 60 Value *V = I->first; 61 std::vector<unsigned> &Vec = I->second; 62 AttrBuilder B; 63 64 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end(); 65 VI != VE; ++VI) 66 B.merge(NumberedAttrBuilders[*VI]); 67 68 if (Function *Fn = dyn_cast<Function>(V)) { 69 AttributeSet AS = Fn->getAttributes(); 70 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 71 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 72 AS.getFnAttributes()); 73 74 FnAttrs.merge(B); 75 76 // If the alignment was parsed as an attribute, move to the alignment 77 // field. 78 if (FnAttrs.hasAlignmentAttr()) { 79 Fn->setAlignment(FnAttrs.getAlignment()); 80 FnAttrs.removeAttribute(Attribute::Alignment); 81 } 82 83 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 84 AttributeSet::get(Context, 85 AttributeSet::FunctionIndex, 86 FnAttrs)); 87 Fn->setAttributes(AS); 88 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 89 AttributeSet AS = CI->getAttributes(); 90 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 91 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 92 AS.getFnAttributes()); 93 FnAttrs.merge(B); 94 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 95 AttributeSet::get(Context, 96 AttributeSet::FunctionIndex, 97 FnAttrs)); 98 CI->setAttributes(AS); 99 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 100 AttributeSet AS = II->getAttributes(); 101 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 102 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 103 AS.getFnAttributes()); 104 FnAttrs.merge(B); 105 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 106 AttributeSet::get(Context, 107 AttributeSet::FunctionIndex, 108 FnAttrs)); 109 II->setAttributes(AS); 110 } else { 111 llvm_unreachable("invalid object with forward attribute group reference"); 112 } 113 } 114 115 // If there are entries in ForwardRefBlockAddresses at this point, the 116 // function was never defined. 117 if (!ForwardRefBlockAddresses.empty()) 118 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 119 "expected function name in blockaddress"); 120 121 for (const auto &NT : NumberedTypes) 122 if (NT.second.second.isValid()) 123 return Error(NT.second.second, 124 "use of undefined type '%" + Twine(NT.first) + "'"); 125 126 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 127 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 128 if (I->second.second.isValid()) 129 return Error(I->second.second, 130 "use of undefined type named '" + I->getKey() + "'"); 131 132 if (!ForwardRefComdats.empty()) 133 return Error(ForwardRefComdats.begin()->second, 134 "use of undefined comdat '$" + 135 ForwardRefComdats.begin()->first + "'"); 136 137 if (!ForwardRefVals.empty()) 138 return Error(ForwardRefVals.begin()->second.second, 139 "use of undefined value '@" + ForwardRefVals.begin()->first + 140 "'"); 141 142 if (!ForwardRefValIDs.empty()) 143 return Error(ForwardRefValIDs.begin()->second.second, 144 "use of undefined value '@" + 145 Twine(ForwardRefValIDs.begin()->first) + "'"); 146 147 if (!ForwardRefMDNodes.empty()) 148 return Error(ForwardRefMDNodes.begin()->second.second, 149 "use of undefined metadata '!" + 150 Twine(ForwardRefMDNodes.begin()->first) + "'"); 151 152 // Resolve metadata cycles. 153 for (auto &N : NumberedMetadata) { 154 if (N.second && !N.second->isResolved()) 155 N.second->resolveCycles(); 156 } 157 158 // Look for intrinsic functions and CallInst that need to be upgraded 159 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 160 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove 161 162 UpgradeDebugInfo(*M); 163 164 return false; 165 } 166 167 //===----------------------------------------------------------------------===// 168 // Top-Level Entities 169 //===----------------------------------------------------------------------===// 170 171 bool LLParser::ParseTopLevelEntities() { 172 while (1) { 173 switch (Lex.getKind()) { 174 default: return TokError("expected top-level entity"); 175 case lltok::Eof: return false; 176 case lltok::kw_declare: if (ParseDeclare()) return true; break; 177 case lltok::kw_define: if (ParseDefine()) return true; break; 178 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 179 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 180 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 181 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 182 case lltok::LocalVar: if (ParseNamedType()) return true; break; 183 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 184 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 185 case lltok::ComdatVar: if (parseComdat()) return true; break; 186 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 187 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 188 189 // The Global variable production with no name can have many different 190 // optional leading prefixes, the production is: 191 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 192 // OptionalThreadLocal OptionalAddrSpace OptionalUnNammedAddr 193 // ('constant'|'global') ... 194 case lltok::kw_private: // OptionalLinkage 195 case lltok::kw_internal: // OptionalLinkage 196 case lltok::kw_weak: // OptionalLinkage 197 case lltok::kw_weak_odr: // OptionalLinkage 198 case lltok::kw_linkonce: // OptionalLinkage 199 case lltok::kw_linkonce_odr: // OptionalLinkage 200 case lltok::kw_appending: // OptionalLinkage 201 case lltok::kw_common: // OptionalLinkage 202 case lltok::kw_extern_weak: // OptionalLinkage 203 case lltok::kw_external: // OptionalLinkage 204 case lltok::kw_default: // OptionalVisibility 205 case lltok::kw_hidden: // OptionalVisibility 206 case lltok::kw_protected: // OptionalVisibility 207 case lltok::kw_dllimport: // OptionalDLLStorageClass 208 case lltok::kw_dllexport: // OptionalDLLStorageClass 209 case lltok::kw_thread_local: // OptionalThreadLocal 210 case lltok::kw_addrspace: // OptionalAddrSpace 211 case lltok::kw_constant: // GlobalType 212 case lltok::kw_global: { // GlobalType 213 unsigned Linkage, Visibility, DLLStorageClass; 214 bool UnnamedAddr; 215 GlobalVariable::ThreadLocalMode TLM; 216 bool HasLinkage; 217 if (ParseOptionalLinkage(Linkage, HasLinkage) || 218 ParseOptionalVisibility(Visibility) || 219 ParseOptionalDLLStorageClass(DLLStorageClass) || 220 ParseOptionalThreadLocal(TLM) || 221 parseOptionalUnnamedAddr(UnnamedAddr) || 222 ParseGlobal("", SMLoc(), Linkage, HasLinkage, Visibility, 223 DLLStorageClass, TLM, UnnamedAddr)) 224 return true; 225 break; 226 } 227 228 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 229 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 230 case lltok::kw_uselistorder_bb: 231 if (ParseUseListOrderBB()) return true; break; 232 } 233 } 234 } 235 236 237 /// toplevelentity 238 /// ::= 'module' 'asm' STRINGCONSTANT 239 bool LLParser::ParseModuleAsm() { 240 assert(Lex.getKind() == lltok::kw_module); 241 Lex.Lex(); 242 243 std::string AsmStr; 244 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 245 ParseStringConstant(AsmStr)) return true; 246 247 M->appendModuleInlineAsm(AsmStr); 248 return false; 249 } 250 251 /// toplevelentity 252 /// ::= 'target' 'triple' '=' STRINGCONSTANT 253 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 254 bool LLParser::ParseTargetDefinition() { 255 assert(Lex.getKind() == lltok::kw_target); 256 std::string Str; 257 switch (Lex.Lex()) { 258 default: return TokError("unknown target property"); 259 case lltok::kw_triple: 260 Lex.Lex(); 261 if (ParseToken(lltok::equal, "expected '=' after target triple") || 262 ParseStringConstant(Str)) 263 return true; 264 M->setTargetTriple(Str); 265 return false; 266 case lltok::kw_datalayout: 267 Lex.Lex(); 268 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 269 ParseStringConstant(Str)) 270 return true; 271 M->setDataLayout(Str); 272 return false; 273 } 274 } 275 276 /// toplevelentity 277 /// ::= 'deplibs' '=' '[' ']' 278 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 279 /// FIXME: Remove in 4.0. Currently parse, but ignore. 280 bool LLParser::ParseDepLibs() { 281 assert(Lex.getKind() == lltok::kw_deplibs); 282 Lex.Lex(); 283 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 284 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 285 return true; 286 287 if (EatIfPresent(lltok::rsquare)) 288 return false; 289 290 do { 291 std::string Str; 292 if (ParseStringConstant(Str)) return true; 293 } while (EatIfPresent(lltok::comma)); 294 295 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 296 } 297 298 /// ParseUnnamedType: 299 /// ::= LocalVarID '=' 'type' type 300 bool LLParser::ParseUnnamedType() { 301 LocTy TypeLoc = Lex.getLoc(); 302 unsigned TypeID = Lex.getUIntVal(); 303 Lex.Lex(); // eat LocalVarID; 304 305 if (ParseToken(lltok::equal, "expected '=' after name") || 306 ParseToken(lltok::kw_type, "expected 'type' after '='")) 307 return true; 308 309 Type *Result = nullptr; 310 if (ParseStructDefinition(TypeLoc, "", 311 NumberedTypes[TypeID], Result)) return true; 312 313 if (!isa<StructType>(Result)) { 314 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 315 if (Entry.first) 316 return Error(TypeLoc, "non-struct types may not be recursive"); 317 Entry.first = Result; 318 Entry.second = SMLoc(); 319 } 320 321 return false; 322 } 323 324 325 /// toplevelentity 326 /// ::= LocalVar '=' 'type' type 327 bool LLParser::ParseNamedType() { 328 std::string Name = Lex.getStrVal(); 329 LocTy NameLoc = Lex.getLoc(); 330 Lex.Lex(); // eat LocalVar. 331 332 if (ParseToken(lltok::equal, "expected '=' after name") || 333 ParseToken(lltok::kw_type, "expected 'type' after name")) 334 return true; 335 336 Type *Result = nullptr; 337 if (ParseStructDefinition(NameLoc, Name, 338 NamedTypes[Name], Result)) return true; 339 340 if (!isa<StructType>(Result)) { 341 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 342 if (Entry.first) 343 return Error(NameLoc, "non-struct types may not be recursive"); 344 Entry.first = Result; 345 Entry.second = SMLoc(); 346 } 347 348 return false; 349 } 350 351 352 /// toplevelentity 353 /// ::= 'declare' FunctionHeader 354 bool LLParser::ParseDeclare() { 355 assert(Lex.getKind() == lltok::kw_declare); 356 Lex.Lex(); 357 358 Function *F; 359 return ParseFunctionHeader(F, false); 360 } 361 362 /// toplevelentity 363 /// ::= 'define' FunctionHeader '{' ... 364 bool LLParser::ParseDefine() { 365 assert(Lex.getKind() == lltok::kw_define); 366 Lex.Lex(); 367 368 Function *F; 369 return ParseFunctionHeader(F, true) || 370 ParseFunctionBody(*F); 371 } 372 373 /// ParseGlobalType 374 /// ::= 'constant' 375 /// ::= 'global' 376 bool LLParser::ParseGlobalType(bool &IsConstant) { 377 if (Lex.getKind() == lltok::kw_constant) 378 IsConstant = true; 379 else if (Lex.getKind() == lltok::kw_global) 380 IsConstant = false; 381 else { 382 IsConstant = false; 383 return TokError("expected 'global' or 'constant'"); 384 } 385 Lex.Lex(); 386 return false; 387 } 388 389 /// ParseUnnamedGlobal: 390 /// OptionalVisibility ALIAS ... 391 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass 392 /// ... -> global variable 393 /// GlobalID '=' OptionalVisibility ALIAS ... 394 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 395 /// ... -> global variable 396 bool LLParser::ParseUnnamedGlobal() { 397 unsigned VarID = NumberedVals.size(); 398 std::string Name; 399 LocTy NameLoc = Lex.getLoc(); 400 401 // Handle the GlobalID form. 402 if (Lex.getKind() == lltok::GlobalID) { 403 if (Lex.getUIntVal() != VarID) 404 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 405 Twine(VarID) + "'"); 406 Lex.Lex(); // eat GlobalID; 407 408 if (ParseToken(lltok::equal, "expected '=' after name")) 409 return true; 410 } 411 412 bool HasLinkage; 413 unsigned Linkage, Visibility, DLLStorageClass; 414 GlobalVariable::ThreadLocalMode TLM; 415 bool UnnamedAddr; 416 if (ParseOptionalLinkage(Linkage, HasLinkage) || 417 ParseOptionalVisibility(Visibility) || 418 ParseOptionalDLLStorageClass(DLLStorageClass) || 419 ParseOptionalThreadLocal(TLM) || 420 parseOptionalUnnamedAddr(UnnamedAddr)) 421 return true; 422 423 if (Lex.getKind() != lltok::kw_alias) 424 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 425 DLLStorageClass, TLM, UnnamedAddr); 426 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM, 427 UnnamedAddr); 428 } 429 430 /// ParseNamedGlobal: 431 /// GlobalVar '=' OptionalVisibility ALIAS ... 432 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 433 /// ... -> global variable 434 bool LLParser::ParseNamedGlobal() { 435 assert(Lex.getKind() == lltok::GlobalVar); 436 LocTy NameLoc = Lex.getLoc(); 437 std::string Name = Lex.getStrVal(); 438 Lex.Lex(); 439 440 bool HasLinkage; 441 unsigned Linkage, Visibility, DLLStorageClass; 442 GlobalVariable::ThreadLocalMode TLM; 443 bool UnnamedAddr; 444 if (ParseToken(lltok::equal, "expected '=' in global variable") || 445 ParseOptionalLinkage(Linkage, HasLinkage) || 446 ParseOptionalVisibility(Visibility) || 447 ParseOptionalDLLStorageClass(DLLStorageClass) || 448 ParseOptionalThreadLocal(TLM) || 449 parseOptionalUnnamedAddr(UnnamedAddr)) 450 return true; 451 452 if (Lex.getKind() != lltok::kw_alias) 453 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 454 DLLStorageClass, TLM, UnnamedAddr); 455 456 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM, 457 UnnamedAddr); 458 } 459 460 bool LLParser::parseComdat() { 461 assert(Lex.getKind() == lltok::ComdatVar); 462 std::string Name = Lex.getStrVal(); 463 LocTy NameLoc = Lex.getLoc(); 464 Lex.Lex(); 465 466 if (ParseToken(lltok::equal, "expected '=' here")) 467 return true; 468 469 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 470 return TokError("expected comdat type"); 471 472 Comdat::SelectionKind SK; 473 switch (Lex.getKind()) { 474 default: 475 return TokError("unknown selection kind"); 476 case lltok::kw_any: 477 SK = Comdat::Any; 478 break; 479 case lltok::kw_exactmatch: 480 SK = Comdat::ExactMatch; 481 break; 482 case lltok::kw_largest: 483 SK = Comdat::Largest; 484 break; 485 case lltok::kw_noduplicates: 486 SK = Comdat::NoDuplicates; 487 break; 488 case lltok::kw_samesize: 489 SK = Comdat::SameSize; 490 break; 491 } 492 Lex.Lex(); 493 494 // See if the comdat was forward referenced, if so, use the comdat. 495 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 496 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 497 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 498 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 499 500 Comdat *C; 501 if (I != ComdatSymTab.end()) 502 C = &I->second; 503 else 504 C = M->getOrInsertComdat(Name); 505 C->setSelectionKind(SK); 506 507 return false; 508 } 509 510 // MDString: 511 // ::= '!' STRINGCONSTANT 512 bool LLParser::ParseMDString(MDString *&Result) { 513 std::string Str; 514 if (ParseStringConstant(Str)) return true; 515 llvm::UpgradeMDStringConstant(Str); 516 Result = MDString::get(Context, Str); 517 return false; 518 } 519 520 // MDNode: 521 // ::= '!' MDNodeNumber 522 bool LLParser::ParseMDNodeID(MDNode *&Result) { 523 // !{ ..., !42, ... } 524 unsigned MID = 0; 525 if (ParseUInt32(MID)) 526 return true; 527 528 // If not a forward reference, just return it now. 529 if (NumberedMetadata.count(MID)) { 530 Result = NumberedMetadata[MID]; 531 return false; 532 } 533 534 // Otherwise, create MDNode forward reference. 535 auto &FwdRef = ForwardRefMDNodes[MID]; 536 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), Lex.getLoc()); 537 538 Result = FwdRef.first.get(); 539 NumberedMetadata[MID].reset(Result); 540 return false; 541 } 542 543 /// ParseNamedMetadata: 544 /// !foo = !{ !1, !2 } 545 bool LLParser::ParseNamedMetadata() { 546 assert(Lex.getKind() == lltok::MetadataVar); 547 std::string Name = Lex.getStrVal(); 548 Lex.Lex(); 549 550 if (ParseToken(lltok::equal, "expected '=' here") || 551 ParseToken(lltok::exclaim, "Expected '!' here") || 552 ParseToken(lltok::lbrace, "Expected '{' here")) 553 return true; 554 555 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 556 if (Lex.getKind() != lltok::rbrace) 557 do { 558 if (ParseToken(lltok::exclaim, "Expected '!' here")) 559 return true; 560 561 MDNode *N = nullptr; 562 if (ParseMDNodeID(N)) return true; 563 NMD->addOperand(N); 564 } while (EatIfPresent(lltok::comma)); 565 566 if (ParseToken(lltok::rbrace, "expected end of metadata node")) 567 return true; 568 569 return false; 570 } 571 572 /// ParseStandaloneMetadata: 573 /// !42 = !{...} 574 bool LLParser::ParseStandaloneMetadata() { 575 assert(Lex.getKind() == lltok::exclaim); 576 Lex.Lex(); 577 unsigned MetadataID = 0; 578 579 MDNode *Init; 580 if (ParseUInt32(MetadataID) || 581 ParseToken(lltok::equal, "expected '=' here")) 582 return true; 583 584 // Detect common error, from old metadata syntax. 585 if (Lex.getKind() == lltok::Type) 586 return TokError("unexpected type in metadata definition"); 587 588 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 589 if (Lex.getKind() == lltok::MetadataVar) { 590 if (ParseSpecializedMDNode(Init, IsDistinct)) 591 return true; 592 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 593 ParseMDTuple(Init, IsDistinct)) 594 return true; 595 596 // See if this was forward referenced, if so, handle it. 597 auto FI = ForwardRefMDNodes.find(MetadataID); 598 if (FI != ForwardRefMDNodes.end()) { 599 FI->second.first->replaceAllUsesWith(Init); 600 ForwardRefMDNodes.erase(FI); 601 602 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 603 } else { 604 if (NumberedMetadata.count(MetadataID)) 605 return TokError("Metadata id is already used"); 606 NumberedMetadata[MetadataID].reset(Init); 607 } 608 609 return false; 610 } 611 612 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 613 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 614 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 615 } 616 617 /// ParseAlias: 618 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility 619 /// OptionalDLLStorageClass OptionalThreadLocal 620 /// OptionalUnNammedAddr 'alias' Aliasee 621 /// 622 /// Aliasee 623 /// ::= TypeAndValue 624 /// 625 /// Everything through OptionalUnNammedAddr has already been parsed. 626 /// 627 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, unsigned L, 628 unsigned Visibility, unsigned DLLStorageClass, 629 GlobalVariable::ThreadLocalMode TLM, 630 bool UnnamedAddr) { 631 assert(Lex.getKind() == lltok::kw_alias); 632 Lex.Lex(); 633 634 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 635 636 if(!GlobalAlias::isValidLinkage(Linkage)) 637 return Error(NameLoc, "invalid linkage type for alias"); 638 639 if (!isValidVisibilityForLinkage(Visibility, L)) 640 return Error(NameLoc, 641 "symbol with local linkage must have default visibility"); 642 643 Constant *Aliasee; 644 LocTy AliaseeLoc = Lex.getLoc(); 645 if (Lex.getKind() != lltok::kw_bitcast && 646 Lex.getKind() != lltok::kw_getelementptr && 647 Lex.getKind() != lltok::kw_addrspacecast && 648 Lex.getKind() != lltok::kw_inttoptr) { 649 if (ParseGlobalTypeAndValue(Aliasee)) 650 return true; 651 } else { 652 // The bitcast dest type is not present, it is implied by the dest type. 653 ValID ID; 654 if (ParseValID(ID)) 655 return true; 656 if (ID.Kind != ValID::t_Constant) 657 return Error(AliaseeLoc, "invalid aliasee"); 658 Aliasee = ID.ConstantVal; 659 } 660 661 Type *AliaseeType = Aliasee->getType(); 662 auto *PTy = dyn_cast<PointerType>(AliaseeType); 663 if (!PTy) 664 return Error(AliaseeLoc, "An alias must have pointer type"); 665 Type *Ty = PTy->getElementType(); 666 unsigned AddrSpace = PTy->getAddressSpace(); 667 668 // Okay, create the alias but do not insert it into the module yet. 669 std::unique_ptr<GlobalAlias> GA( 670 GlobalAlias::create(Ty, AddrSpace, (GlobalValue::LinkageTypes)Linkage, 671 Name, Aliasee, /*Parent*/ nullptr)); 672 GA->setThreadLocalMode(TLM); 673 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 674 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 675 GA->setUnnamedAddr(UnnamedAddr); 676 677 // See if this value already exists in the symbol table. If so, it is either 678 // a redefinition or a definition of a forward reference. 679 if (GlobalValue *Val = M->getNamedValue(Name)) { 680 // See if this was a redefinition. If so, there is no entry in 681 // ForwardRefVals. 682 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 683 I = ForwardRefVals.find(Name); 684 if (I == ForwardRefVals.end()) 685 return Error(NameLoc, "redefinition of global named '@" + Name + "'"); 686 687 // Otherwise, this was a definition of forward ref. Verify that types 688 // agree. 689 if (Val->getType() != GA->getType()) 690 return Error(NameLoc, 691 "forward reference and definition of alias have different types"); 692 693 // If they agree, just RAUW the old value with the alias and remove the 694 // forward ref info. 695 Val->replaceAllUsesWith(GA.get()); 696 Val->eraseFromParent(); 697 ForwardRefVals.erase(I); 698 } 699 700 // Insert into the module, we know its name won't collide now. 701 M->getAliasList().push_back(GA.get()); 702 assert(GA->getName() == Name && "Should not be a name conflict!"); 703 704 // The module owns this now 705 GA.release(); 706 707 return false; 708 } 709 710 /// ParseGlobal 711 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 712 /// OptionalThreadLocal OptionalUnNammedAddr OptionalAddrSpace 713 /// OptionalExternallyInitialized GlobalType Type Const 714 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 715 /// OptionalThreadLocal OptionalUnNammedAddr OptionalAddrSpace 716 /// OptionalExternallyInitialized GlobalType Type Const 717 /// 718 /// Everything up to and including OptionalUnNammedAddr has been parsed 719 /// already. 720 /// 721 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 722 unsigned Linkage, bool HasLinkage, 723 unsigned Visibility, unsigned DLLStorageClass, 724 GlobalVariable::ThreadLocalMode TLM, 725 bool UnnamedAddr) { 726 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 727 return Error(NameLoc, 728 "symbol with local linkage must have default visibility"); 729 730 unsigned AddrSpace; 731 bool IsConstant, IsExternallyInitialized; 732 LocTy IsExternallyInitializedLoc; 733 LocTy TyLoc; 734 735 Type *Ty = nullptr; 736 if (ParseOptionalAddrSpace(AddrSpace) || 737 ParseOptionalToken(lltok::kw_externally_initialized, 738 IsExternallyInitialized, 739 &IsExternallyInitializedLoc) || 740 ParseGlobalType(IsConstant) || 741 ParseType(Ty, TyLoc)) 742 return true; 743 744 // If the linkage is specified and is external, then no initializer is 745 // present. 746 Constant *Init = nullptr; 747 if (!HasLinkage || (Linkage != GlobalValue::ExternalWeakLinkage && 748 Linkage != GlobalValue::ExternalLinkage)) { 749 if (ParseGlobalValue(Ty, Init)) 750 return true; 751 } 752 753 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 754 return Error(TyLoc, "invalid type for global variable"); 755 756 GlobalValue *GVal = nullptr; 757 758 // See if the global was forward referenced, if so, use the global. 759 if (!Name.empty()) { 760 GVal = M->getNamedValue(Name); 761 if (GVal) { 762 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal)) 763 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 764 } 765 } else { 766 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 767 I = ForwardRefValIDs.find(NumberedVals.size()); 768 if (I != ForwardRefValIDs.end()) { 769 GVal = I->second.first; 770 ForwardRefValIDs.erase(I); 771 } 772 } 773 774 GlobalVariable *GV; 775 if (!GVal) { 776 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 777 Name, nullptr, GlobalVariable::NotThreadLocal, 778 AddrSpace); 779 } else { 780 if (GVal->getType()->getElementType() != Ty) 781 return Error(TyLoc, 782 "forward reference and definition of global have different types"); 783 784 GV = cast<GlobalVariable>(GVal); 785 786 // Move the forward-reference to the correct spot in the module. 787 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 788 } 789 790 if (Name.empty()) 791 NumberedVals.push_back(GV); 792 793 // Set the parsed properties on the global. 794 if (Init) 795 GV->setInitializer(Init); 796 GV->setConstant(IsConstant); 797 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 798 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 799 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 800 GV->setExternallyInitialized(IsExternallyInitialized); 801 GV->setThreadLocalMode(TLM); 802 GV->setUnnamedAddr(UnnamedAddr); 803 804 // Parse attributes on the global. 805 while (Lex.getKind() == lltok::comma) { 806 Lex.Lex(); 807 808 if (Lex.getKind() == lltok::kw_section) { 809 Lex.Lex(); 810 GV->setSection(Lex.getStrVal()); 811 if (ParseToken(lltok::StringConstant, "expected global section string")) 812 return true; 813 } else if (Lex.getKind() == lltok::kw_align) { 814 unsigned Alignment; 815 if (ParseOptionalAlignment(Alignment)) return true; 816 GV->setAlignment(Alignment); 817 } else { 818 Comdat *C; 819 if (parseOptionalComdat(Name, C)) 820 return true; 821 if (C) 822 GV->setComdat(C); 823 else 824 return TokError("unknown global variable property!"); 825 } 826 } 827 828 return false; 829 } 830 831 /// ParseUnnamedAttrGrp 832 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 833 bool LLParser::ParseUnnamedAttrGrp() { 834 assert(Lex.getKind() == lltok::kw_attributes); 835 LocTy AttrGrpLoc = Lex.getLoc(); 836 Lex.Lex(); 837 838 if (Lex.getKind() != lltok::AttrGrpID) 839 return TokError("expected attribute group id"); 840 841 unsigned VarID = Lex.getUIntVal(); 842 std::vector<unsigned> unused; 843 LocTy BuiltinLoc; 844 Lex.Lex(); 845 846 if (ParseToken(lltok::equal, "expected '=' here") || 847 ParseToken(lltok::lbrace, "expected '{' here") || 848 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 849 BuiltinLoc) || 850 ParseToken(lltok::rbrace, "expected end of attribute group")) 851 return true; 852 853 if (!NumberedAttrBuilders[VarID].hasAttributes()) 854 return Error(AttrGrpLoc, "attribute group has no attributes"); 855 856 return false; 857 } 858 859 /// ParseFnAttributeValuePairs 860 /// ::= <attr> | <attr> '=' <value> 861 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 862 std::vector<unsigned> &FwdRefAttrGrps, 863 bool inAttrGrp, LocTy &BuiltinLoc) { 864 bool HaveError = false; 865 866 B.clear(); 867 868 while (true) { 869 lltok::Kind Token = Lex.getKind(); 870 if (Token == lltok::kw_builtin) 871 BuiltinLoc = Lex.getLoc(); 872 switch (Token) { 873 default: 874 if (!inAttrGrp) return HaveError; 875 return Error(Lex.getLoc(), "unterminated attribute group"); 876 case lltok::rbrace: 877 // Finished. 878 return false; 879 880 case lltok::AttrGrpID: { 881 // Allow a function to reference an attribute group: 882 // 883 // define void @foo() #1 { ... } 884 if (inAttrGrp) 885 HaveError |= 886 Error(Lex.getLoc(), 887 "cannot have an attribute group reference in an attribute group"); 888 889 unsigned AttrGrpNum = Lex.getUIntVal(); 890 if (inAttrGrp) break; 891 892 // Save the reference to the attribute group. We'll fill it in later. 893 FwdRefAttrGrps.push_back(AttrGrpNum); 894 break; 895 } 896 // Target-dependent attributes: 897 case lltok::StringConstant: { 898 std::string Attr = Lex.getStrVal(); 899 Lex.Lex(); 900 std::string Val; 901 if (EatIfPresent(lltok::equal) && 902 ParseStringConstant(Val)) 903 return true; 904 905 B.addAttribute(Attr, Val); 906 continue; 907 } 908 909 // Target-independent attributes: 910 case lltok::kw_align: { 911 // As a hack, we allow function alignment to be initially parsed as an 912 // attribute on a function declaration/definition or added to an attribute 913 // group and later moved to the alignment field. 914 unsigned Alignment; 915 if (inAttrGrp) { 916 Lex.Lex(); 917 if (ParseToken(lltok::equal, "expected '=' here") || 918 ParseUInt32(Alignment)) 919 return true; 920 } else { 921 if (ParseOptionalAlignment(Alignment)) 922 return true; 923 } 924 B.addAlignmentAttr(Alignment); 925 continue; 926 } 927 case lltok::kw_alignstack: { 928 unsigned Alignment; 929 if (inAttrGrp) { 930 Lex.Lex(); 931 if (ParseToken(lltok::equal, "expected '=' here") || 932 ParseUInt32(Alignment)) 933 return true; 934 } else { 935 if (ParseOptionalStackAlignment(Alignment)) 936 return true; 937 } 938 B.addStackAlignmentAttr(Alignment); 939 continue; 940 } 941 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 942 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 943 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 944 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 945 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 946 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 947 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 948 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 949 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 950 case lltok::kw_noimplicitfloat: B.addAttribute(Attribute::NoImplicitFloat); break; 951 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 952 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 953 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 954 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 955 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 956 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 957 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 958 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 959 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 960 case lltok::kw_returns_twice: B.addAttribute(Attribute::ReturnsTwice); break; 961 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 962 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 963 case lltok::kw_sspstrong: B.addAttribute(Attribute::StackProtectStrong); break; 964 case lltok::kw_sanitize_address: B.addAttribute(Attribute::SanitizeAddress); break; 965 case lltok::kw_sanitize_thread: B.addAttribute(Attribute::SanitizeThread); break; 966 case lltok::kw_sanitize_memory: B.addAttribute(Attribute::SanitizeMemory); break; 967 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 968 969 // Error handling. 970 case lltok::kw_inreg: 971 case lltok::kw_signext: 972 case lltok::kw_zeroext: 973 HaveError |= 974 Error(Lex.getLoc(), 975 "invalid use of attribute on a function"); 976 break; 977 case lltok::kw_byval: 978 case lltok::kw_dereferenceable: 979 case lltok::kw_inalloca: 980 case lltok::kw_nest: 981 case lltok::kw_noalias: 982 case lltok::kw_nocapture: 983 case lltok::kw_nonnull: 984 case lltok::kw_returned: 985 case lltok::kw_sret: 986 HaveError |= 987 Error(Lex.getLoc(), 988 "invalid use of parameter-only attribute on a function"); 989 break; 990 } 991 992 Lex.Lex(); 993 } 994 } 995 996 //===----------------------------------------------------------------------===// 997 // GlobalValue Reference/Resolution Routines. 998 //===----------------------------------------------------------------------===// 999 1000 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1001 /// forward reference record if needed. This can return null if the value 1002 /// exists but does not have the right type. 1003 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1004 LocTy Loc) { 1005 PointerType *PTy = dyn_cast<PointerType>(Ty); 1006 if (!PTy) { 1007 Error(Loc, "global variable reference must have pointer type"); 1008 return nullptr; 1009 } 1010 1011 // Look this name up in the normal function symbol table. 1012 GlobalValue *Val = 1013 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1014 1015 // If this is a forward reference for the value, see if we already created a 1016 // forward ref record. 1017 if (!Val) { 1018 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 1019 I = ForwardRefVals.find(Name); 1020 if (I != ForwardRefVals.end()) 1021 Val = I->second.first; 1022 } 1023 1024 // If we have the value in the symbol table or fwd-ref table, return it. 1025 if (Val) { 1026 if (Val->getType() == Ty) return Val; 1027 Error(Loc, "'@" + Name + "' defined with type '" + 1028 getTypeString(Val->getType()) + "'"); 1029 return nullptr; 1030 } 1031 1032 // Otherwise, create a new forward reference for this value and remember it. 1033 GlobalValue *FwdVal; 1034 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1035 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1036 else 1037 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 1038 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1039 nullptr, GlobalVariable::NotThreadLocal, 1040 PTy->getAddressSpace()); 1041 1042 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1043 return FwdVal; 1044 } 1045 1046 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1047 PointerType *PTy = dyn_cast<PointerType>(Ty); 1048 if (!PTy) { 1049 Error(Loc, "global variable reference must have pointer type"); 1050 return nullptr; 1051 } 1052 1053 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1054 1055 // If this is a forward reference for the value, see if we already created a 1056 // forward ref record. 1057 if (!Val) { 1058 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 1059 I = ForwardRefValIDs.find(ID); 1060 if (I != ForwardRefValIDs.end()) 1061 Val = I->second.first; 1062 } 1063 1064 // If we have the value in the symbol table or fwd-ref table, return it. 1065 if (Val) { 1066 if (Val->getType() == Ty) return Val; 1067 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1068 getTypeString(Val->getType()) + "'"); 1069 return nullptr; 1070 } 1071 1072 // Otherwise, create a new forward reference for this value and remember it. 1073 GlobalValue *FwdVal; 1074 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1075 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M); 1076 else 1077 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 1078 GlobalValue::ExternalWeakLinkage, nullptr, ""); 1079 1080 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1081 return FwdVal; 1082 } 1083 1084 1085 //===----------------------------------------------------------------------===// 1086 // Comdat Reference/Resolution Routines. 1087 //===----------------------------------------------------------------------===// 1088 1089 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1090 // Look this name up in the comdat symbol table. 1091 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1092 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1093 if (I != ComdatSymTab.end()) 1094 return &I->second; 1095 1096 // Otherwise, create a new forward reference for this value and remember it. 1097 Comdat *C = M->getOrInsertComdat(Name); 1098 ForwardRefComdats[Name] = Loc; 1099 return C; 1100 } 1101 1102 1103 //===----------------------------------------------------------------------===// 1104 // Helper Routines. 1105 //===----------------------------------------------------------------------===// 1106 1107 /// ParseToken - If the current token has the specified kind, eat it and return 1108 /// success. Otherwise, emit the specified error and return failure. 1109 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1110 if (Lex.getKind() != T) 1111 return TokError(ErrMsg); 1112 Lex.Lex(); 1113 return false; 1114 } 1115 1116 /// ParseStringConstant 1117 /// ::= StringConstant 1118 bool LLParser::ParseStringConstant(std::string &Result) { 1119 if (Lex.getKind() != lltok::StringConstant) 1120 return TokError("expected string constant"); 1121 Result = Lex.getStrVal(); 1122 Lex.Lex(); 1123 return false; 1124 } 1125 1126 /// ParseUInt32 1127 /// ::= uint32 1128 bool LLParser::ParseUInt32(unsigned &Val) { 1129 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1130 return TokError("expected integer"); 1131 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1132 if (Val64 != unsigned(Val64)) 1133 return TokError("expected 32-bit integer (too large)"); 1134 Val = Val64; 1135 Lex.Lex(); 1136 return false; 1137 } 1138 1139 /// ParseUInt64 1140 /// ::= uint64 1141 bool LLParser::ParseUInt64(uint64_t &Val) { 1142 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1143 return TokError("expected integer"); 1144 Val = Lex.getAPSIntVal().getLimitedValue(); 1145 Lex.Lex(); 1146 return false; 1147 } 1148 1149 /// ParseTLSModel 1150 /// := 'localdynamic' 1151 /// := 'initialexec' 1152 /// := 'localexec' 1153 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1154 switch (Lex.getKind()) { 1155 default: 1156 return TokError("expected localdynamic, initialexec or localexec"); 1157 case lltok::kw_localdynamic: 1158 TLM = GlobalVariable::LocalDynamicTLSModel; 1159 break; 1160 case lltok::kw_initialexec: 1161 TLM = GlobalVariable::InitialExecTLSModel; 1162 break; 1163 case lltok::kw_localexec: 1164 TLM = GlobalVariable::LocalExecTLSModel; 1165 break; 1166 } 1167 1168 Lex.Lex(); 1169 return false; 1170 } 1171 1172 /// ParseOptionalThreadLocal 1173 /// := /*empty*/ 1174 /// := 'thread_local' 1175 /// := 'thread_local' '(' tlsmodel ')' 1176 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1177 TLM = GlobalVariable::NotThreadLocal; 1178 if (!EatIfPresent(lltok::kw_thread_local)) 1179 return false; 1180 1181 TLM = GlobalVariable::GeneralDynamicTLSModel; 1182 if (Lex.getKind() == lltok::lparen) { 1183 Lex.Lex(); 1184 return ParseTLSModel(TLM) || 1185 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1186 } 1187 return false; 1188 } 1189 1190 /// ParseOptionalAddrSpace 1191 /// := /*empty*/ 1192 /// := 'addrspace' '(' uint32 ')' 1193 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1194 AddrSpace = 0; 1195 if (!EatIfPresent(lltok::kw_addrspace)) 1196 return false; 1197 return ParseToken(lltok::lparen, "expected '(' in address space") || 1198 ParseUInt32(AddrSpace) || 1199 ParseToken(lltok::rparen, "expected ')' in address space"); 1200 } 1201 1202 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1203 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1204 bool HaveError = false; 1205 1206 B.clear(); 1207 1208 while (1) { 1209 lltok::Kind Token = Lex.getKind(); 1210 switch (Token) { 1211 default: // End of attributes. 1212 return HaveError; 1213 case lltok::kw_align: { 1214 unsigned Alignment; 1215 if (ParseOptionalAlignment(Alignment)) 1216 return true; 1217 B.addAlignmentAttr(Alignment); 1218 continue; 1219 } 1220 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1221 case lltok::kw_dereferenceable: { 1222 uint64_t Bytes; 1223 if (ParseOptionalDereferenceableBytes(Bytes)) 1224 return true; 1225 B.addDereferenceableAttr(Bytes); 1226 continue; 1227 } 1228 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1229 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1230 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1231 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1232 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1233 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1234 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1235 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1236 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1237 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1238 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1239 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1240 1241 case lltok::kw_alignstack: 1242 case lltok::kw_alwaysinline: 1243 case lltok::kw_builtin: 1244 case lltok::kw_inlinehint: 1245 case lltok::kw_jumptable: 1246 case lltok::kw_minsize: 1247 case lltok::kw_naked: 1248 case lltok::kw_nobuiltin: 1249 case lltok::kw_noduplicate: 1250 case lltok::kw_noimplicitfloat: 1251 case lltok::kw_noinline: 1252 case lltok::kw_nonlazybind: 1253 case lltok::kw_noredzone: 1254 case lltok::kw_noreturn: 1255 case lltok::kw_nounwind: 1256 case lltok::kw_optnone: 1257 case lltok::kw_optsize: 1258 case lltok::kw_returns_twice: 1259 case lltok::kw_sanitize_address: 1260 case lltok::kw_sanitize_memory: 1261 case lltok::kw_sanitize_thread: 1262 case lltok::kw_ssp: 1263 case lltok::kw_sspreq: 1264 case lltok::kw_sspstrong: 1265 case lltok::kw_uwtable: 1266 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1267 break; 1268 } 1269 1270 Lex.Lex(); 1271 } 1272 } 1273 1274 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1275 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1276 bool HaveError = false; 1277 1278 B.clear(); 1279 1280 while (1) { 1281 lltok::Kind Token = Lex.getKind(); 1282 switch (Token) { 1283 default: // End of attributes. 1284 return HaveError; 1285 case lltok::kw_dereferenceable: { 1286 uint64_t Bytes; 1287 if (ParseOptionalDereferenceableBytes(Bytes)) 1288 return true; 1289 B.addDereferenceableAttr(Bytes); 1290 continue; 1291 } 1292 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1293 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1294 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1295 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1296 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1297 1298 // Error handling. 1299 case lltok::kw_align: 1300 case lltok::kw_byval: 1301 case lltok::kw_inalloca: 1302 case lltok::kw_nest: 1303 case lltok::kw_nocapture: 1304 case lltok::kw_returned: 1305 case lltok::kw_sret: 1306 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1307 break; 1308 1309 case lltok::kw_alignstack: 1310 case lltok::kw_alwaysinline: 1311 case lltok::kw_builtin: 1312 case lltok::kw_cold: 1313 case lltok::kw_inlinehint: 1314 case lltok::kw_jumptable: 1315 case lltok::kw_minsize: 1316 case lltok::kw_naked: 1317 case lltok::kw_nobuiltin: 1318 case lltok::kw_noduplicate: 1319 case lltok::kw_noimplicitfloat: 1320 case lltok::kw_noinline: 1321 case lltok::kw_nonlazybind: 1322 case lltok::kw_noredzone: 1323 case lltok::kw_noreturn: 1324 case lltok::kw_nounwind: 1325 case lltok::kw_optnone: 1326 case lltok::kw_optsize: 1327 case lltok::kw_returns_twice: 1328 case lltok::kw_sanitize_address: 1329 case lltok::kw_sanitize_memory: 1330 case lltok::kw_sanitize_thread: 1331 case lltok::kw_ssp: 1332 case lltok::kw_sspreq: 1333 case lltok::kw_sspstrong: 1334 case lltok::kw_uwtable: 1335 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1336 break; 1337 1338 case lltok::kw_readnone: 1339 case lltok::kw_readonly: 1340 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1341 } 1342 1343 Lex.Lex(); 1344 } 1345 } 1346 1347 /// ParseOptionalLinkage 1348 /// ::= /*empty*/ 1349 /// ::= 'private' 1350 /// ::= 'internal' 1351 /// ::= 'weak' 1352 /// ::= 'weak_odr' 1353 /// ::= 'linkonce' 1354 /// ::= 'linkonce_odr' 1355 /// ::= 'available_externally' 1356 /// ::= 'appending' 1357 /// ::= 'common' 1358 /// ::= 'extern_weak' 1359 /// ::= 'external' 1360 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { 1361 HasLinkage = false; 1362 switch (Lex.getKind()) { 1363 default: Res=GlobalValue::ExternalLinkage; return false; 1364 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; 1365 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; 1366 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; 1367 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; 1368 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; 1369 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; 1370 case lltok::kw_available_externally: 1371 Res = GlobalValue::AvailableExternallyLinkage; 1372 break; 1373 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; 1374 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; 1375 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; 1376 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; 1377 } 1378 Lex.Lex(); 1379 HasLinkage = true; 1380 return false; 1381 } 1382 1383 /// ParseOptionalVisibility 1384 /// ::= /*empty*/ 1385 /// ::= 'default' 1386 /// ::= 'hidden' 1387 /// ::= 'protected' 1388 /// 1389 bool LLParser::ParseOptionalVisibility(unsigned &Res) { 1390 switch (Lex.getKind()) { 1391 default: Res = GlobalValue::DefaultVisibility; return false; 1392 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; 1393 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; 1394 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; 1395 } 1396 Lex.Lex(); 1397 return false; 1398 } 1399 1400 /// ParseOptionalDLLStorageClass 1401 /// ::= /*empty*/ 1402 /// ::= 'dllimport' 1403 /// ::= 'dllexport' 1404 /// 1405 bool LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1406 switch (Lex.getKind()) { 1407 default: Res = GlobalValue::DefaultStorageClass; return false; 1408 case lltok::kw_dllimport: Res = GlobalValue::DLLImportStorageClass; break; 1409 case lltok::kw_dllexport: Res = GlobalValue::DLLExportStorageClass; break; 1410 } 1411 Lex.Lex(); 1412 return false; 1413 } 1414 1415 /// ParseOptionalCallingConv 1416 /// ::= /*empty*/ 1417 /// ::= 'ccc' 1418 /// ::= 'fastcc' 1419 /// ::= 'intel_ocl_bicc' 1420 /// ::= 'coldcc' 1421 /// ::= 'x86_stdcallcc' 1422 /// ::= 'x86_fastcallcc' 1423 /// ::= 'x86_thiscallcc' 1424 /// ::= 'x86_vectorcallcc' 1425 /// ::= 'arm_apcscc' 1426 /// ::= 'arm_aapcscc' 1427 /// ::= 'arm_aapcs_vfpcc' 1428 /// ::= 'msp430_intrcc' 1429 /// ::= 'ptx_kernel' 1430 /// ::= 'ptx_device' 1431 /// ::= 'spir_func' 1432 /// ::= 'spir_kernel' 1433 /// ::= 'x86_64_sysvcc' 1434 /// ::= 'x86_64_win64cc' 1435 /// ::= 'webkit_jscc' 1436 /// ::= 'anyregcc' 1437 /// ::= 'preserve_mostcc' 1438 /// ::= 'preserve_allcc' 1439 /// ::= 'ghccc' 1440 /// ::= 'cc' UINT 1441 /// 1442 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1443 switch (Lex.getKind()) { 1444 default: CC = CallingConv::C; return false; 1445 case lltok::kw_ccc: CC = CallingConv::C; break; 1446 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1447 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1448 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1449 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1450 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1451 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1452 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1453 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1454 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1455 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1456 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1457 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1458 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1459 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1460 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1461 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1462 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break; 1463 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1464 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1465 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1466 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1467 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1468 case lltok::kw_cc: { 1469 Lex.Lex(); 1470 return ParseUInt32(CC); 1471 } 1472 } 1473 1474 Lex.Lex(); 1475 return false; 1476 } 1477 1478 /// ParseInstructionMetadata 1479 /// ::= !dbg !42 (',' !dbg !57)* 1480 bool LLParser::ParseInstructionMetadata(Instruction *Inst, 1481 PerFunctionState *PFS) { 1482 do { 1483 if (Lex.getKind() != lltok::MetadataVar) 1484 return TokError("expected metadata after comma"); 1485 1486 std::string Name = Lex.getStrVal(); 1487 unsigned MDK = M->getMDKindID(Name); 1488 Lex.Lex(); 1489 1490 MDNode *N; 1491 if (ParseMDNode(N)) 1492 return true; 1493 1494 Inst->setMetadata(MDK, N); 1495 if (MDK == LLVMContext::MD_tbaa) 1496 InstsWithTBAATag.push_back(Inst); 1497 1498 // If this is the end of the list, we're done. 1499 } while (EatIfPresent(lltok::comma)); 1500 return false; 1501 } 1502 1503 /// ParseOptionalAlignment 1504 /// ::= /* empty */ 1505 /// ::= 'align' 4 1506 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1507 Alignment = 0; 1508 if (!EatIfPresent(lltok::kw_align)) 1509 return false; 1510 LocTy AlignLoc = Lex.getLoc(); 1511 if (ParseUInt32(Alignment)) return true; 1512 if (!isPowerOf2_32(Alignment)) 1513 return Error(AlignLoc, "alignment is not a power of two"); 1514 if (Alignment > Value::MaximumAlignment) 1515 return Error(AlignLoc, "huge alignments are not supported yet"); 1516 return false; 1517 } 1518 1519 /// ParseOptionalDereferenceableBytes 1520 /// ::= /* empty */ 1521 /// ::= 'dereferenceable' '(' 4 ')' 1522 bool LLParser::ParseOptionalDereferenceableBytes(uint64_t &Bytes) { 1523 Bytes = 0; 1524 if (!EatIfPresent(lltok::kw_dereferenceable)) 1525 return false; 1526 LocTy ParenLoc = Lex.getLoc(); 1527 if (!EatIfPresent(lltok::lparen)) 1528 return Error(ParenLoc, "expected '('"); 1529 LocTy DerefLoc = Lex.getLoc(); 1530 if (ParseUInt64(Bytes)) return true; 1531 ParenLoc = Lex.getLoc(); 1532 if (!EatIfPresent(lltok::rparen)) 1533 return Error(ParenLoc, "expected ')'"); 1534 if (!Bytes) 1535 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1536 return false; 1537 } 1538 1539 /// ParseOptionalCommaAlign 1540 /// ::= 1541 /// ::= ',' align 4 1542 /// 1543 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1544 /// end. 1545 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1546 bool &AteExtraComma) { 1547 AteExtraComma = false; 1548 while (EatIfPresent(lltok::comma)) { 1549 // Metadata at the end is an early exit. 1550 if (Lex.getKind() == lltok::MetadataVar) { 1551 AteExtraComma = true; 1552 return false; 1553 } 1554 1555 if (Lex.getKind() != lltok::kw_align) 1556 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1557 1558 if (ParseOptionalAlignment(Alignment)) return true; 1559 } 1560 1561 return false; 1562 } 1563 1564 /// ParseScopeAndOrdering 1565 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1566 /// else: ::= 1567 /// 1568 /// This sets Scope and Ordering to the parsed values. 1569 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1570 AtomicOrdering &Ordering) { 1571 if (!isAtomic) 1572 return false; 1573 1574 Scope = CrossThread; 1575 if (EatIfPresent(lltok::kw_singlethread)) 1576 Scope = SingleThread; 1577 1578 return ParseOrdering(Ordering); 1579 } 1580 1581 /// ParseOrdering 1582 /// ::= AtomicOrdering 1583 /// 1584 /// This sets Ordering to the parsed value. 1585 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 1586 switch (Lex.getKind()) { 1587 default: return TokError("Expected ordering on atomic instruction"); 1588 case lltok::kw_unordered: Ordering = Unordered; break; 1589 case lltok::kw_monotonic: Ordering = Monotonic; break; 1590 case lltok::kw_acquire: Ordering = Acquire; break; 1591 case lltok::kw_release: Ordering = Release; break; 1592 case lltok::kw_acq_rel: Ordering = AcquireRelease; break; 1593 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break; 1594 } 1595 Lex.Lex(); 1596 return false; 1597 } 1598 1599 /// ParseOptionalStackAlignment 1600 /// ::= /* empty */ 1601 /// ::= 'alignstack' '(' 4 ')' 1602 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1603 Alignment = 0; 1604 if (!EatIfPresent(lltok::kw_alignstack)) 1605 return false; 1606 LocTy ParenLoc = Lex.getLoc(); 1607 if (!EatIfPresent(lltok::lparen)) 1608 return Error(ParenLoc, "expected '('"); 1609 LocTy AlignLoc = Lex.getLoc(); 1610 if (ParseUInt32(Alignment)) return true; 1611 ParenLoc = Lex.getLoc(); 1612 if (!EatIfPresent(lltok::rparen)) 1613 return Error(ParenLoc, "expected ')'"); 1614 if (!isPowerOf2_32(Alignment)) 1615 return Error(AlignLoc, "stack alignment is not a power of two"); 1616 return false; 1617 } 1618 1619 /// ParseIndexList - This parses the index list for an insert/extractvalue 1620 /// instruction. This sets AteExtraComma in the case where we eat an extra 1621 /// comma at the end of the line and find that it is followed by metadata. 1622 /// Clients that don't allow metadata can call the version of this function that 1623 /// only takes one argument. 1624 /// 1625 /// ParseIndexList 1626 /// ::= (',' uint32)+ 1627 /// 1628 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1629 bool &AteExtraComma) { 1630 AteExtraComma = false; 1631 1632 if (Lex.getKind() != lltok::comma) 1633 return TokError("expected ',' as start of index list"); 1634 1635 while (EatIfPresent(lltok::comma)) { 1636 if (Lex.getKind() == lltok::MetadataVar) { 1637 if (Indices.empty()) return TokError("expected index"); 1638 AteExtraComma = true; 1639 return false; 1640 } 1641 unsigned Idx = 0; 1642 if (ParseUInt32(Idx)) return true; 1643 Indices.push_back(Idx); 1644 } 1645 1646 return false; 1647 } 1648 1649 //===----------------------------------------------------------------------===// 1650 // Type Parsing. 1651 //===----------------------------------------------------------------------===// 1652 1653 /// ParseType - Parse a type. 1654 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 1655 SMLoc TypeLoc = Lex.getLoc(); 1656 switch (Lex.getKind()) { 1657 default: 1658 return TokError(Msg); 1659 case lltok::Type: 1660 // Type ::= 'float' | 'void' (etc) 1661 Result = Lex.getTyVal(); 1662 Lex.Lex(); 1663 break; 1664 case lltok::lbrace: 1665 // Type ::= StructType 1666 if (ParseAnonStructType(Result, false)) 1667 return true; 1668 break; 1669 case lltok::lsquare: 1670 // Type ::= '[' ... ']' 1671 Lex.Lex(); // eat the lsquare. 1672 if (ParseArrayVectorType(Result, false)) 1673 return true; 1674 break; 1675 case lltok::less: // Either vector or packed struct. 1676 // Type ::= '<' ... '>' 1677 Lex.Lex(); 1678 if (Lex.getKind() == lltok::lbrace) { 1679 if (ParseAnonStructType(Result, true) || 1680 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1681 return true; 1682 } else if (ParseArrayVectorType(Result, true)) 1683 return true; 1684 break; 1685 case lltok::LocalVar: { 1686 // Type ::= %foo 1687 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1688 1689 // If the type hasn't been defined yet, create a forward definition and 1690 // remember where that forward def'n was seen (in case it never is defined). 1691 if (!Entry.first) { 1692 Entry.first = StructType::create(Context, Lex.getStrVal()); 1693 Entry.second = Lex.getLoc(); 1694 } 1695 Result = Entry.first; 1696 Lex.Lex(); 1697 break; 1698 } 1699 1700 case lltok::LocalVarID: { 1701 // Type ::= %4 1702 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 1703 1704 // If the type hasn't been defined yet, create a forward definition and 1705 // remember where that forward def'n was seen (in case it never is defined). 1706 if (!Entry.first) { 1707 Entry.first = StructType::create(Context); 1708 Entry.second = Lex.getLoc(); 1709 } 1710 Result = Entry.first; 1711 Lex.Lex(); 1712 break; 1713 } 1714 } 1715 1716 // Parse the type suffixes. 1717 while (1) { 1718 switch (Lex.getKind()) { 1719 // End of type. 1720 default: 1721 if (!AllowVoid && Result->isVoidTy()) 1722 return Error(TypeLoc, "void type only allowed for function results"); 1723 return false; 1724 1725 // Type ::= Type '*' 1726 case lltok::star: 1727 if (Result->isLabelTy()) 1728 return TokError("basic block pointers are invalid"); 1729 if (Result->isVoidTy()) 1730 return TokError("pointers to void are invalid - use i8* instead"); 1731 if (!PointerType::isValidElementType(Result)) 1732 return TokError("pointer to this type is invalid"); 1733 Result = PointerType::getUnqual(Result); 1734 Lex.Lex(); 1735 break; 1736 1737 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 1738 case lltok::kw_addrspace: { 1739 if (Result->isLabelTy()) 1740 return TokError("basic block pointers are invalid"); 1741 if (Result->isVoidTy()) 1742 return TokError("pointers to void are invalid; use i8* instead"); 1743 if (!PointerType::isValidElementType(Result)) 1744 return TokError("pointer to this type is invalid"); 1745 unsigned AddrSpace; 1746 if (ParseOptionalAddrSpace(AddrSpace) || 1747 ParseToken(lltok::star, "expected '*' in address space")) 1748 return true; 1749 1750 Result = PointerType::get(Result, AddrSpace); 1751 break; 1752 } 1753 1754 /// Types '(' ArgTypeListI ')' OptFuncAttrs 1755 case lltok::lparen: 1756 if (ParseFunctionType(Result)) 1757 return true; 1758 break; 1759 } 1760 } 1761 } 1762 1763 /// ParseParameterList 1764 /// ::= '(' ')' 1765 /// ::= '(' Arg (',' Arg)* ')' 1766 /// Arg 1767 /// ::= Type OptionalAttributes Value OptionalAttributes 1768 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 1769 PerFunctionState &PFS, bool IsMustTailCall, 1770 bool InVarArgsFunc) { 1771 if (ParseToken(lltok::lparen, "expected '(' in call")) 1772 return true; 1773 1774 unsigned AttrIndex = 1; 1775 while (Lex.getKind() != lltok::rparen) { 1776 // If this isn't the first argument, we need a comma. 1777 if (!ArgList.empty() && 1778 ParseToken(lltok::comma, "expected ',' in argument list")) 1779 return true; 1780 1781 // Parse an ellipsis if this is a musttail call in a variadic function. 1782 if (Lex.getKind() == lltok::dotdotdot) { 1783 const char *Msg = "unexpected ellipsis in argument list for "; 1784 if (!IsMustTailCall) 1785 return TokError(Twine(Msg) + "non-musttail call"); 1786 if (!InVarArgsFunc) 1787 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 1788 Lex.Lex(); // Lex the '...', it is purely for readability. 1789 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 1790 } 1791 1792 // Parse the argument. 1793 LocTy ArgLoc; 1794 Type *ArgTy = nullptr; 1795 AttrBuilder ArgAttrs; 1796 Value *V; 1797 if (ParseType(ArgTy, ArgLoc)) 1798 return true; 1799 1800 if (ArgTy->isMetadataTy()) { 1801 if (ParseMetadataAsValue(V, PFS)) 1802 return true; 1803 } else { 1804 // Otherwise, handle normal operands. 1805 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 1806 return true; 1807 } 1808 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(), 1809 AttrIndex++, 1810 ArgAttrs))); 1811 } 1812 1813 if (IsMustTailCall && InVarArgsFunc) 1814 return TokError("expected '...' at end of argument list for musttail call " 1815 "in varargs function"); 1816 1817 Lex.Lex(); // Lex the ')'. 1818 return false; 1819 } 1820 1821 1822 1823 /// ParseArgumentList - Parse the argument list for a function type or function 1824 /// prototype. 1825 /// ::= '(' ArgTypeListI ')' 1826 /// ArgTypeListI 1827 /// ::= /*empty*/ 1828 /// ::= '...' 1829 /// ::= ArgTypeList ',' '...' 1830 /// ::= ArgType (',' ArgType)* 1831 /// 1832 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 1833 bool &isVarArg){ 1834 isVarArg = false; 1835 assert(Lex.getKind() == lltok::lparen); 1836 Lex.Lex(); // eat the (. 1837 1838 if (Lex.getKind() == lltok::rparen) { 1839 // empty 1840 } else if (Lex.getKind() == lltok::dotdotdot) { 1841 isVarArg = true; 1842 Lex.Lex(); 1843 } else { 1844 LocTy TypeLoc = Lex.getLoc(); 1845 Type *ArgTy = nullptr; 1846 AttrBuilder Attrs; 1847 std::string Name; 1848 1849 if (ParseType(ArgTy) || 1850 ParseOptionalParamAttrs(Attrs)) return true; 1851 1852 if (ArgTy->isVoidTy()) 1853 return Error(TypeLoc, "argument can not have void type"); 1854 1855 if (Lex.getKind() == lltok::LocalVar) { 1856 Name = Lex.getStrVal(); 1857 Lex.Lex(); 1858 } 1859 1860 if (!FunctionType::isValidArgumentType(ArgTy)) 1861 return Error(TypeLoc, "invalid type for function argument"); 1862 1863 unsigned AttrIndex = 1; 1864 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, 1865 AttributeSet::get(ArgTy->getContext(), 1866 AttrIndex++, Attrs), Name)); 1867 1868 while (EatIfPresent(lltok::comma)) { 1869 // Handle ... at end of arg list. 1870 if (EatIfPresent(lltok::dotdotdot)) { 1871 isVarArg = true; 1872 break; 1873 } 1874 1875 // Otherwise must be an argument type. 1876 TypeLoc = Lex.getLoc(); 1877 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 1878 1879 if (ArgTy->isVoidTy()) 1880 return Error(TypeLoc, "argument can not have void type"); 1881 1882 if (Lex.getKind() == lltok::LocalVar) { 1883 Name = Lex.getStrVal(); 1884 Lex.Lex(); 1885 } else { 1886 Name = ""; 1887 } 1888 1889 if (!ArgTy->isFirstClassType()) 1890 return Error(TypeLoc, "invalid type for function argument"); 1891 1892 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, 1893 AttributeSet::get(ArgTy->getContext(), 1894 AttrIndex++, Attrs), 1895 Name)); 1896 } 1897 } 1898 1899 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 1900 } 1901 1902 /// ParseFunctionType 1903 /// ::= Type ArgumentList OptionalAttrs 1904 bool LLParser::ParseFunctionType(Type *&Result) { 1905 assert(Lex.getKind() == lltok::lparen); 1906 1907 if (!FunctionType::isValidReturnType(Result)) 1908 return TokError("invalid function return type"); 1909 1910 SmallVector<ArgInfo, 8> ArgList; 1911 bool isVarArg; 1912 if (ParseArgumentList(ArgList, isVarArg)) 1913 return true; 1914 1915 // Reject names on the arguments lists. 1916 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 1917 if (!ArgList[i].Name.empty()) 1918 return Error(ArgList[i].Loc, "argument name invalid in function type"); 1919 if (ArgList[i].Attrs.hasAttributes(i + 1)) 1920 return Error(ArgList[i].Loc, 1921 "argument attributes invalid in function type"); 1922 } 1923 1924 SmallVector<Type*, 16> ArgListTy; 1925 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 1926 ArgListTy.push_back(ArgList[i].Ty); 1927 1928 Result = FunctionType::get(Result, ArgListTy, isVarArg); 1929 return false; 1930 } 1931 1932 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 1933 /// other structs. 1934 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 1935 SmallVector<Type*, 8> Elts; 1936 if (ParseStructBody(Elts)) return true; 1937 1938 Result = StructType::get(Context, Elts, Packed); 1939 return false; 1940 } 1941 1942 /// ParseStructDefinition - Parse a struct in a 'type' definition. 1943 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 1944 std::pair<Type*, LocTy> &Entry, 1945 Type *&ResultTy) { 1946 // If the type was already defined, diagnose the redefinition. 1947 if (Entry.first && !Entry.second.isValid()) 1948 return Error(TypeLoc, "redefinition of type"); 1949 1950 // If we have opaque, just return without filling in the definition for the 1951 // struct. This counts as a definition as far as the .ll file goes. 1952 if (EatIfPresent(lltok::kw_opaque)) { 1953 // This type is being defined, so clear the location to indicate this. 1954 Entry.second = SMLoc(); 1955 1956 // If this type number has never been uttered, create it. 1957 if (!Entry.first) 1958 Entry.first = StructType::create(Context, Name); 1959 ResultTy = Entry.first; 1960 return false; 1961 } 1962 1963 // If the type starts with '<', then it is either a packed struct or a vector. 1964 bool isPacked = EatIfPresent(lltok::less); 1965 1966 // If we don't have a struct, then we have a random type alias, which we 1967 // accept for compatibility with old files. These types are not allowed to be 1968 // forward referenced and not allowed to be recursive. 1969 if (Lex.getKind() != lltok::lbrace) { 1970 if (Entry.first) 1971 return Error(TypeLoc, "forward references to non-struct type"); 1972 1973 ResultTy = nullptr; 1974 if (isPacked) 1975 return ParseArrayVectorType(ResultTy, true); 1976 return ParseType(ResultTy); 1977 } 1978 1979 // This type is being defined, so clear the location to indicate this. 1980 Entry.second = SMLoc(); 1981 1982 // If this type number has never been uttered, create it. 1983 if (!Entry.first) 1984 Entry.first = StructType::create(Context, Name); 1985 1986 StructType *STy = cast<StructType>(Entry.first); 1987 1988 SmallVector<Type*, 8> Body; 1989 if (ParseStructBody(Body) || 1990 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 1991 return true; 1992 1993 STy->setBody(Body, isPacked); 1994 ResultTy = STy; 1995 return false; 1996 } 1997 1998 1999 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2000 /// StructType 2001 /// ::= '{' '}' 2002 /// ::= '{' Type (',' Type)* '}' 2003 /// ::= '<' '{' '}' '>' 2004 /// ::= '<' '{' Type (',' Type)* '}' '>' 2005 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2006 assert(Lex.getKind() == lltok::lbrace); 2007 Lex.Lex(); // Consume the '{' 2008 2009 // Handle the empty struct. 2010 if (EatIfPresent(lltok::rbrace)) 2011 return false; 2012 2013 LocTy EltTyLoc = Lex.getLoc(); 2014 Type *Ty = nullptr; 2015 if (ParseType(Ty)) return true; 2016 Body.push_back(Ty); 2017 2018 if (!StructType::isValidElementType(Ty)) 2019 return Error(EltTyLoc, "invalid element type for struct"); 2020 2021 while (EatIfPresent(lltok::comma)) { 2022 EltTyLoc = Lex.getLoc(); 2023 if (ParseType(Ty)) return true; 2024 2025 if (!StructType::isValidElementType(Ty)) 2026 return Error(EltTyLoc, "invalid element type for struct"); 2027 2028 Body.push_back(Ty); 2029 } 2030 2031 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2032 } 2033 2034 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2035 /// token has already been consumed. 2036 /// Type 2037 /// ::= '[' APSINTVAL 'x' Types ']' 2038 /// ::= '<' APSINTVAL 'x' Types '>' 2039 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2040 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2041 Lex.getAPSIntVal().getBitWidth() > 64) 2042 return TokError("expected number in address space"); 2043 2044 LocTy SizeLoc = Lex.getLoc(); 2045 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2046 Lex.Lex(); 2047 2048 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2049 return true; 2050 2051 LocTy TypeLoc = Lex.getLoc(); 2052 Type *EltTy = nullptr; 2053 if (ParseType(EltTy)) return true; 2054 2055 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2056 "expected end of sequential type")) 2057 return true; 2058 2059 if (isVector) { 2060 if (Size == 0) 2061 return Error(SizeLoc, "zero element vector is illegal"); 2062 if ((unsigned)Size != Size) 2063 return Error(SizeLoc, "size too large for vector"); 2064 if (!VectorType::isValidElementType(EltTy)) 2065 return Error(TypeLoc, "invalid vector element type"); 2066 Result = VectorType::get(EltTy, unsigned(Size)); 2067 } else { 2068 if (!ArrayType::isValidElementType(EltTy)) 2069 return Error(TypeLoc, "invalid array element type"); 2070 Result = ArrayType::get(EltTy, Size); 2071 } 2072 return false; 2073 } 2074 2075 //===----------------------------------------------------------------------===// 2076 // Function Semantic Analysis. 2077 //===----------------------------------------------------------------------===// 2078 2079 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2080 int functionNumber) 2081 : P(p), F(f), FunctionNumber(functionNumber) { 2082 2083 // Insert unnamed arguments into the NumberedVals list. 2084 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); 2085 AI != E; ++AI) 2086 if (!AI->hasName()) 2087 NumberedVals.push_back(AI); 2088 } 2089 2090 LLParser::PerFunctionState::~PerFunctionState() { 2091 // If there were any forward referenced non-basicblock values, delete them. 2092 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator 2093 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I) 2094 if (!isa<BasicBlock>(I->second.first)) { 2095 I->second.first->replaceAllUsesWith( 2096 UndefValue::get(I->second.first->getType())); 2097 delete I->second.first; 2098 I->second.first = nullptr; 2099 } 2100 2101 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator 2102 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I) 2103 if (!isa<BasicBlock>(I->second.first)) { 2104 I->second.first->replaceAllUsesWith( 2105 UndefValue::get(I->second.first->getType())); 2106 delete I->second.first; 2107 I->second.first = nullptr; 2108 } 2109 } 2110 2111 bool LLParser::PerFunctionState::FinishFunction() { 2112 if (!ForwardRefVals.empty()) 2113 return P.Error(ForwardRefVals.begin()->second.second, 2114 "use of undefined value '%" + ForwardRefVals.begin()->first + 2115 "'"); 2116 if (!ForwardRefValIDs.empty()) 2117 return P.Error(ForwardRefValIDs.begin()->second.second, 2118 "use of undefined value '%" + 2119 Twine(ForwardRefValIDs.begin()->first) + "'"); 2120 return false; 2121 } 2122 2123 2124 /// GetVal - Get a value with the specified name or ID, creating a 2125 /// forward reference record if needed. This can return null if the value 2126 /// exists but does not have the right type. 2127 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, 2128 Type *Ty, LocTy Loc) { 2129 // Look this name up in the normal function symbol table. 2130 Value *Val = F.getValueSymbolTable().lookup(Name); 2131 2132 // If this is a forward reference for the value, see if we already created a 2133 // forward ref record. 2134 if (!Val) { 2135 std::map<std::string, std::pair<Value*, LocTy> >::iterator 2136 I = ForwardRefVals.find(Name); 2137 if (I != ForwardRefVals.end()) 2138 Val = I->second.first; 2139 } 2140 2141 // If we have the value in the symbol table or fwd-ref table, return it. 2142 if (Val) { 2143 if (Val->getType() == Ty) return Val; 2144 if (Ty->isLabelTy()) 2145 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2146 else 2147 P.Error(Loc, "'%" + Name + "' defined with type '" + 2148 getTypeString(Val->getType()) + "'"); 2149 return nullptr; 2150 } 2151 2152 // Don't make placeholders with invalid type. 2153 if (!Ty->isFirstClassType()) { 2154 P.Error(Loc, "invalid use of a non-first-class type"); 2155 return nullptr; 2156 } 2157 2158 // Otherwise, create a new forward reference for this value and remember it. 2159 Value *FwdVal; 2160 if (Ty->isLabelTy()) 2161 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2162 else 2163 FwdVal = new Argument(Ty, Name); 2164 2165 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2166 return FwdVal; 2167 } 2168 2169 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, 2170 LocTy Loc) { 2171 // Look this name up in the normal function symbol table. 2172 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2173 2174 // If this is a forward reference for the value, see if we already created a 2175 // forward ref record. 2176 if (!Val) { 2177 std::map<unsigned, std::pair<Value*, LocTy> >::iterator 2178 I = ForwardRefValIDs.find(ID); 2179 if (I != ForwardRefValIDs.end()) 2180 Val = I->second.first; 2181 } 2182 2183 // If we have the value in the symbol table or fwd-ref table, return it. 2184 if (Val) { 2185 if (Val->getType() == Ty) return Val; 2186 if (Ty->isLabelTy()) 2187 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2188 else 2189 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2190 getTypeString(Val->getType()) + "'"); 2191 return nullptr; 2192 } 2193 2194 if (!Ty->isFirstClassType()) { 2195 P.Error(Loc, "invalid use of a non-first-class type"); 2196 return nullptr; 2197 } 2198 2199 // Otherwise, create a new forward reference for this value and remember it. 2200 Value *FwdVal; 2201 if (Ty->isLabelTy()) 2202 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2203 else 2204 FwdVal = new Argument(Ty); 2205 2206 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2207 return FwdVal; 2208 } 2209 2210 /// SetInstName - After an instruction is parsed and inserted into its 2211 /// basic block, this installs its name. 2212 bool LLParser::PerFunctionState::SetInstName(int NameID, 2213 const std::string &NameStr, 2214 LocTy NameLoc, Instruction *Inst) { 2215 // If this instruction has void type, it cannot have a name or ID specified. 2216 if (Inst->getType()->isVoidTy()) { 2217 if (NameID != -1 || !NameStr.empty()) 2218 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2219 return false; 2220 } 2221 2222 // If this was a numbered instruction, verify that the instruction is the 2223 // expected value and resolve any forward references. 2224 if (NameStr.empty()) { 2225 // If neither a name nor an ID was specified, just use the next ID. 2226 if (NameID == -1) 2227 NameID = NumberedVals.size(); 2228 2229 if (unsigned(NameID) != NumberedVals.size()) 2230 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2231 Twine(NumberedVals.size()) + "'"); 2232 2233 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI = 2234 ForwardRefValIDs.find(NameID); 2235 if (FI != ForwardRefValIDs.end()) { 2236 if (FI->second.first->getType() != Inst->getType()) 2237 return P.Error(NameLoc, "instruction forward referenced with type '" + 2238 getTypeString(FI->second.first->getType()) + "'"); 2239 FI->second.first->replaceAllUsesWith(Inst); 2240 delete FI->second.first; 2241 ForwardRefValIDs.erase(FI); 2242 } 2243 2244 NumberedVals.push_back(Inst); 2245 return false; 2246 } 2247 2248 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2249 std::map<std::string, std::pair<Value*, LocTy> >::iterator 2250 FI = ForwardRefVals.find(NameStr); 2251 if (FI != ForwardRefVals.end()) { 2252 if (FI->second.first->getType() != Inst->getType()) 2253 return P.Error(NameLoc, "instruction forward referenced with type '" + 2254 getTypeString(FI->second.first->getType()) + "'"); 2255 FI->second.first->replaceAllUsesWith(Inst); 2256 delete FI->second.first; 2257 ForwardRefVals.erase(FI); 2258 } 2259 2260 // Set the name on the instruction. 2261 Inst->setName(NameStr); 2262 2263 if (Inst->getName() != NameStr) 2264 return P.Error(NameLoc, "multiple definition of local value named '" + 2265 NameStr + "'"); 2266 return false; 2267 } 2268 2269 /// GetBB - Get a basic block with the specified name or ID, creating a 2270 /// forward reference record if needed. 2271 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2272 LocTy Loc) { 2273 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2274 Type::getLabelTy(F.getContext()), Loc)); 2275 } 2276 2277 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2278 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2279 Type::getLabelTy(F.getContext()), Loc)); 2280 } 2281 2282 /// DefineBB - Define the specified basic block, which is either named or 2283 /// unnamed. If there is an error, this returns null otherwise it returns 2284 /// the block being defined. 2285 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2286 LocTy Loc) { 2287 BasicBlock *BB; 2288 if (Name.empty()) 2289 BB = GetBB(NumberedVals.size(), Loc); 2290 else 2291 BB = GetBB(Name, Loc); 2292 if (!BB) return nullptr; // Already diagnosed error. 2293 2294 // Move the block to the end of the function. Forward ref'd blocks are 2295 // inserted wherever they happen to be referenced. 2296 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2297 2298 // Remove the block from forward ref sets. 2299 if (Name.empty()) { 2300 ForwardRefValIDs.erase(NumberedVals.size()); 2301 NumberedVals.push_back(BB); 2302 } else { 2303 // BB forward references are already in the function symbol table. 2304 ForwardRefVals.erase(Name); 2305 } 2306 2307 return BB; 2308 } 2309 2310 //===----------------------------------------------------------------------===// 2311 // Constants. 2312 //===----------------------------------------------------------------------===// 2313 2314 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2315 /// type implied. For example, if we parse "4" we don't know what integer type 2316 /// it has. The value will later be combined with its type and checked for 2317 /// sanity. PFS is used to convert function-local operands of metadata (since 2318 /// metadata operands are not just parsed here but also converted to values). 2319 /// PFS can be null when we are not parsing metadata values inside a function. 2320 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2321 ID.Loc = Lex.getLoc(); 2322 switch (Lex.getKind()) { 2323 default: return TokError("expected value token"); 2324 case lltok::GlobalID: // @42 2325 ID.UIntVal = Lex.getUIntVal(); 2326 ID.Kind = ValID::t_GlobalID; 2327 break; 2328 case lltok::GlobalVar: // @foo 2329 ID.StrVal = Lex.getStrVal(); 2330 ID.Kind = ValID::t_GlobalName; 2331 break; 2332 case lltok::LocalVarID: // %42 2333 ID.UIntVal = Lex.getUIntVal(); 2334 ID.Kind = ValID::t_LocalID; 2335 break; 2336 case lltok::LocalVar: // %foo 2337 ID.StrVal = Lex.getStrVal(); 2338 ID.Kind = ValID::t_LocalName; 2339 break; 2340 case lltok::APSInt: 2341 ID.APSIntVal = Lex.getAPSIntVal(); 2342 ID.Kind = ValID::t_APSInt; 2343 break; 2344 case lltok::APFloat: 2345 ID.APFloatVal = Lex.getAPFloatVal(); 2346 ID.Kind = ValID::t_APFloat; 2347 break; 2348 case lltok::kw_true: 2349 ID.ConstantVal = ConstantInt::getTrue(Context); 2350 ID.Kind = ValID::t_Constant; 2351 break; 2352 case lltok::kw_false: 2353 ID.ConstantVal = ConstantInt::getFalse(Context); 2354 ID.Kind = ValID::t_Constant; 2355 break; 2356 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2357 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2358 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2359 2360 case lltok::lbrace: { 2361 // ValID ::= '{' ConstVector '}' 2362 Lex.Lex(); 2363 SmallVector<Constant*, 16> Elts; 2364 if (ParseGlobalValueVector(Elts) || 2365 ParseToken(lltok::rbrace, "expected end of struct constant")) 2366 return true; 2367 2368 ID.ConstantStructElts = new Constant*[Elts.size()]; 2369 ID.UIntVal = Elts.size(); 2370 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 2371 ID.Kind = ValID::t_ConstantStruct; 2372 return false; 2373 } 2374 case lltok::less: { 2375 // ValID ::= '<' ConstVector '>' --> Vector. 2376 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2377 Lex.Lex(); 2378 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2379 2380 SmallVector<Constant*, 16> Elts; 2381 LocTy FirstEltLoc = Lex.getLoc(); 2382 if (ParseGlobalValueVector(Elts) || 2383 (isPackedStruct && 2384 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2385 ParseToken(lltok::greater, "expected end of constant")) 2386 return true; 2387 2388 if (isPackedStruct) { 2389 ID.ConstantStructElts = new Constant*[Elts.size()]; 2390 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 2391 ID.UIntVal = Elts.size(); 2392 ID.Kind = ValID::t_PackedConstantStruct; 2393 return false; 2394 } 2395 2396 if (Elts.empty()) 2397 return Error(ID.Loc, "constant vector must not be empty"); 2398 2399 if (!Elts[0]->getType()->isIntegerTy() && 2400 !Elts[0]->getType()->isFloatingPointTy() && 2401 !Elts[0]->getType()->isPointerTy()) 2402 return Error(FirstEltLoc, 2403 "vector elements must have integer, pointer or floating point type"); 2404 2405 // Verify that all the vector elements have the same type. 2406 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2407 if (Elts[i]->getType() != Elts[0]->getType()) 2408 return Error(FirstEltLoc, 2409 "vector element #" + Twine(i) + 2410 " is not of type '" + getTypeString(Elts[0]->getType())); 2411 2412 ID.ConstantVal = ConstantVector::get(Elts); 2413 ID.Kind = ValID::t_Constant; 2414 return false; 2415 } 2416 case lltok::lsquare: { // Array Constant 2417 Lex.Lex(); 2418 SmallVector<Constant*, 16> Elts; 2419 LocTy FirstEltLoc = Lex.getLoc(); 2420 if (ParseGlobalValueVector(Elts) || 2421 ParseToken(lltok::rsquare, "expected end of array constant")) 2422 return true; 2423 2424 // Handle empty element. 2425 if (Elts.empty()) { 2426 // Use undef instead of an array because it's inconvenient to determine 2427 // the element type at this point, there being no elements to examine. 2428 ID.Kind = ValID::t_EmptyArray; 2429 return false; 2430 } 2431 2432 if (!Elts[0]->getType()->isFirstClassType()) 2433 return Error(FirstEltLoc, "invalid array element type: " + 2434 getTypeString(Elts[0]->getType())); 2435 2436 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2437 2438 // Verify all elements are correct type! 2439 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2440 if (Elts[i]->getType() != Elts[0]->getType()) 2441 return Error(FirstEltLoc, 2442 "array element #" + Twine(i) + 2443 " is not of type '" + getTypeString(Elts[0]->getType())); 2444 } 2445 2446 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2447 ID.Kind = ValID::t_Constant; 2448 return false; 2449 } 2450 case lltok::kw_c: // c "foo" 2451 Lex.Lex(); 2452 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2453 false); 2454 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2455 ID.Kind = ValID::t_Constant; 2456 return false; 2457 2458 case lltok::kw_asm: { 2459 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2460 // STRINGCONSTANT 2461 bool HasSideEffect, AlignStack, AsmDialect; 2462 Lex.Lex(); 2463 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2464 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2465 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2466 ParseStringConstant(ID.StrVal) || 2467 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2468 ParseToken(lltok::StringConstant, "expected constraint string")) 2469 return true; 2470 ID.StrVal2 = Lex.getStrVal(); 2471 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2472 (unsigned(AsmDialect)<<2); 2473 ID.Kind = ValID::t_InlineAsm; 2474 return false; 2475 } 2476 2477 case lltok::kw_blockaddress: { 2478 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2479 Lex.Lex(); 2480 2481 ValID Fn, Label; 2482 2483 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2484 ParseValID(Fn) || 2485 ParseToken(lltok::comma, "expected comma in block address expression")|| 2486 ParseValID(Label) || 2487 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2488 return true; 2489 2490 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2491 return Error(Fn.Loc, "expected function name in blockaddress"); 2492 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2493 return Error(Label.Loc, "expected basic block name in blockaddress"); 2494 2495 // Try to find the function (but skip it if it's forward-referenced). 2496 GlobalValue *GV = nullptr; 2497 if (Fn.Kind == ValID::t_GlobalID) { 2498 if (Fn.UIntVal < NumberedVals.size()) 2499 GV = NumberedVals[Fn.UIntVal]; 2500 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2501 GV = M->getNamedValue(Fn.StrVal); 2502 } 2503 Function *F = nullptr; 2504 if (GV) { 2505 // Confirm that it's actually a function with a definition. 2506 if (!isa<Function>(GV)) 2507 return Error(Fn.Loc, "expected function name in blockaddress"); 2508 F = cast<Function>(GV); 2509 if (F->isDeclaration()) 2510 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 2511 } 2512 2513 if (!F) { 2514 // Make a global variable as a placeholder for this reference. 2515 GlobalValue *&FwdRef = 2516 ForwardRefBlockAddresses.insert(std::make_pair( 2517 std::move(Fn), 2518 std::map<ValID, GlobalValue *>())) 2519 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 2520 .first->second; 2521 if (!FwdRef) 2522 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 2523 GlobalValue::InternalLinkage, nullptr, ""); 2524 ID.ConstantVal = FwdRef; 2525 ID.Kind = ValID::t_Constant; 2526 return false; 2527 } 2528 2529 // We found the function; now find the basic block. Don't use PFS, since we 2530 // might be inside a constant expression. 2531 BasicBlock *BB; 2532 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 2533 if (Label.Kind == ValID::t_LocalID) 2534 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 2535 else 2536 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 2537 if (!BB) 2538 return Error(Label.Loc, "referenced value is not a basic block"); 2539 } else { 2540 if (Label.Kind == ValID::t_LocalID) 2541 return Error(Label.Loc, "cannot take address of numeric label after " 2542 "the function is defined"); 2543 BB = dyn_cast_or_null<BasicBlock>( 2544 F->getValueSymbolTable().lookup(Label.StrVal)); 2545 if (!BB) 2546 return Error(Label.Loc, "referenced value is not a basic block"); 2547 } 2548 2549 ID.ConstantVal = BlockAddress::get(F, BB); 2550 ID.Kind = ValID::t_Constant; 2551 return false; 2552 } 2553 2554 case lltok::kw_trunc: 2555 case lltok::kw_zext: 2556 case lltok::kw_sext: 2557 case lltok::kw_fptrunc: 2558 case lltok::kw_fpext: 2559 case lltok::kw_bitcast: 2560 case lltok::kw_addrspacecast: 2561 case lltok::kw_uitofp: 2562 case lltok::kw_sitofp: 2563 case lltok::kw_fptoui: 2564 case lltok::kw_fptosi: 2565 case lltok::kw_inttoptr: 2566 case lltok::kw_ptrtoint: { 2567 unsigned Opc = Lex.getUIntVal(); 2568 Type *DestTy = nullptr; 2569 Constant *SrcVal; 2570 Lex.Lex(); 2571 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2572 ParseGlobalTypeAndValue(SrcVal) || 2573 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2574 ParseType(DestTy) || 2575 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2576 return true; 2577 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2578 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2579 getTypeString(SrcVal->getType()) + "' to '" + 2580 getTypeString(DestTy) + "'"); 2581 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2582 SrcVal, DestTy); 2583 ID.Kind = ValID::t_Constant; 2584 return false; 2585 } 2586 case lltok::kw_extractvalue: { 2587 Lex.Lex(); 2588 Constant *Val; 2589 SmallVector<unsigned, 4> Indices; 2590 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2591 ParseGlobalTypeAndValue(Val) || 2592 ParseIndexList(Indices) || 2593 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2594 return true; 2595 2596 if (!Val->getType()->isAggregateType()) 2597 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2598 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2599 return Error(ID.Loc, "invalid indices for extractvalue"); 2600 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2601 ID.Kind = ValID::t_Constant; 2602 return false; 2603 } 2604 case lltok::kw_insertvalue: { 2605 Lex.Lex(); 2606 Constant *Val0, *Val1; 2607 SmallVector<unsigned, 4> Indices; 2608 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2609 ParseGlobalTypeAndValue(Val0) || 2610 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2611 ParseGlobalTypeAndValue(Val1) || 2612 ParseIndexList(Indices) || 2613 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2614 return true; 2615 if (!Val0->getType()->isAggregateType()) 2616 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2617 Type *IndexedType = 2618 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 2619 if (!IndexedType) 2620 return Error(ID.Loc, "invalid indices for insertvalue"); 2621 if (IndexedType != Val1->getType()) 2622 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 2623 getTypeString(Val1->getType()) + 2624 "' instead of '" + getTypeString(IndexedType) + 2625 "'"); 2626 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2627 ID.Kind = ValID::t_Constant; 2628 return false; 2629 } 2630 case lltok::kw_icmp: 2631 case lltok::kw_fcmp: { 2632 unsigned PredVal, Opc = Lex.getUIntVal(); 2633 Constant *Val0, *Val1; 2634 Lex.Lex(); 2635 if (ParseCmpPredicate(PredVal, Opc) || 2636 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2637 ParseGlobalTypeAndValue(Val0) || 2638 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2639 ParseGlobalTypeAndValue(Val1) || 2640 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2641 return true; 2642 2643 if (Val0->getType() != Val1->getType()) 2644 return Error(ID.Loc, "compare operands must have the same type"); 2645 2646 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2647 2648 if (Opc == Instruction::FCmp) { 2649 if (!Val0->getType()->isFPOrFPVectorTy()) 2650 return Error(ID.Loc, "fcmp requires floating point operands"); 2651 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2652 } else { 2653 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2654 if (!Val0->getType()->isIntOrIntVectorTy() && 2655 !Val0->getType()->getScalarType()->isPointerTy()) 2656 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2657 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2658 } 2659 ID.Kind = ValID::t_Constant; 2660 return false; 2661 } 2662 2663 // Binary Operators. 2664 case lltok::kw_add: 2665 case lltok::kw_fadd: 2666 case lltok::kw_sub: 2667 case lltok::kw_fsub: 2668 case lltok::kw_mul: 2669 case lltok::kw_fmul: 2670 case lltok::kw_udiv: 2671 case lltok::kw_sdiv: 2672 case lltok::kw_fdiv: 2673 case lltok::kw_urem: 2674 case lltok::kw_srem: 2675 case lltok::kw_frem: 2676 case lltok::kw_shl: 2677 case lltok::kw_lshr: 2678 case lltok::kw_ashr: { 2679 bool NUW = false; 2680 bool NSW = false; 2681 bool Exact = false; 2682 unsigned Opc = Lex.getUIntVal(); 2683 Constant *Val0, *Val1; 2684 Lex.Lex(); 2685 LocTy ModifierLoc = Lex.getLoc(); 2686 if (Opc == Instruction::Add || Opc == Instruction::Sub || 2687 Opc == Instruction::Mul || Opc == Instruction::Shl) { 2688 if (EatIfPresent(lltok::kw_nuw)) 2689 NUW = true; 2690 if (EatIfPresent(lltok::kw_nsw)) { 2691 NSW = true; 2692 if (EatIfPresent(lltok::kw_nuw)) 2693 NUW = true; 2694 } 2695 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 2696 Opc == Instruction::LShr || Opc == Instruction::AShr) { 2697 if (EatIfPresent(lltok::kw_exact)) 2698 Exact = true; 2699 } 2700 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 2701 ParseGlobalTypeAndValue(Val0) || 2702 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 2703 ParseGlobalTypeAndValue(Val1) || 2704 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 2705 return true; 2706 if (Val0->getType() != Val1->getType()) 2707 return Error(ID.Loc, "operands of constexpr must have same type"); 2708 if (!Val0->getType()->isIntOrIntVectorTy()) { 2709 if (NUW) 2710 return Error(ModifierLoc, "nuw only applies to integer operations"); 2711 if (NSW) 2712 return Error(ModifierLoc, "nsw only applies to integer operations"); 2713 } 2714 // Check that the type is valid for the operator. 2715 switch (Opc) { 2716 case Instruction::Add: 2717 case Instruction::Sub: 2718 case Instruction::Mul: 2719 case Instruction::UDiv: 2720 case Instruction::SDiv: 2721 case Instruction::URem: 2722 case Instruction::SRem: 2723 case Instruction::Shl: 2724 case Instruction::AShr: 2725 case Instruction::LShr: 2726 if (!Val0->getType()->isIntOrIntVectorTy()) 2727 return Error(ID.Loc, "constexpr requires integer operands"); 2728 break; 2729 case Instruction::FAdd: 2730 case Instruction::FSub: 2731 case Instruction::FMul: 2732 case Instruction::FDiv: 2733 case Instruction::FRem: 2734 if (!Val0->getType()->isFPOrFPVectorTy()) 2735 return Error(ID.Loc, "constexpr requires fp operands"); 2736 break; 2737 default: llvm_unreachable("Unknown binary operator!"); 2738 } 2739 unsigned Flags = 0; 2740 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2741 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 2742 if (Exact) Flags |= PossiblyExactOperator::IsExact; 2743 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 2744 ID.ConstantVal = C; 2745 ID.Kind = ValID::t_Constant; 2746 return false; 2747 } 2748 2749 // Logical Operations 2750 case lltok::kw_and: 2751 case lltok::kw_or: 2752 case lltok::kw_xor: { 2753 unsigned Opc = Lex.getUIntVal(); 2754 Constant *Val0, *Val1; 2755 Lex.Lex(); 2756 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 2757 ParseGlobalTypeAndValue(Val0) || 2758 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 2759 ParseGlobalTypeAndValue(Val1) || 2760 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 2761 return true; 2762 if (Val0->getType() != Val1->getType()) 2763 return Error(ID.Loc, "operands of constexpr must have same type"); 2764 if (!Val0->getType()->isIntOrIntVectorTy()) 2765 return Error(ID.Loc, 2766 "constexpr requires integer or integer vector operands"); 2767 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 2768 ID.Kind = ValID::t_Constant; 2769 return false; 2770 } 2771 2772 case lltok::kw_getelementptr: 2773 case lltok::kw_shufflevector: 2774 case lltok::kw_insertelement: 2775 case lltok::kw_extractelement: 2776 case lltok::kw_select: { 2777 unsigned Opc = Lex.getUIntVal(); 2778 SmallVector<Constant*, 16> Elts; 2779 bool InBounds = false; 2780 Type *Ty; 2781 Lex.Lex(); 2782 2783 if (Opc == Instruction::GetElementPtr) 2784 InBounds = EatIfPresent(lltok::kw_inbounds); 2785 2786 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 2787 return true; 2788 2789 LocTy ExplicitTypeLoc = Lex.getLoc(); 2790 if (Opc == Instruction::GetElementPtr) { 2791 if (ParseType(Ty) || 2792 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 2793 return true; 2794 } 2795 2796 if (ParseGlobalValueVector(Elts) || 2797 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 2798 return true; 2799 2800 if (Opc == Instruction::GetElementPtr) { 2801 if (Elts.size() == 0 || 2802 !Elts[0]->getType()->getScalarType()->isPointerTy()) 2803 return Error(ID.Loc, "base of getelementptr must be a pointer"); 2804 2805 Type *BaseType = Elts[0]->getType(); 2806 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 2807 if (Ty != BasePointerType->getElementType()) 2808 return Error( 2809 ExplicitTypeLoc, 2810 "explicit pointee type doesn't match operand's pointee type"); 2811 2812 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2813 for (Constant *Val : Indices) { 2814 Type *ValTy = Val->getType(); 2815 if (!ValTy->getScalarType()->isIntegerTy()) 2816 return Error(ID.Loc, "getelementptr index must be an integer"); 2817 if (ValTy->isVectorTy() != BaseType->isVectorTy()) 2818 return Error(ID.Loc, "getelementptr index type missmatch"); 2819 if (ValTy->isVectorTy()) { 2820 unsigned ValNumEl = cast<VectorType>(ValTy)->getNumElements(); 2821 unsigned PtrNumEl = cast<VectorType>(BaseType)->getNumElements(); 2822 if (ValNumEl != PtrNumEl) 2823 return Error( 2824 ID.Loc, 2825 "getelementptr vector index has a wrong number of elements"); 2826 } 2827 } 2828 2829 SmallPtrSet<const Type*, 4> Visited; 2830 if (!Indices.empty() && 2831 !BasePointerType->getElementType()->isSized(&Visited)) 2832 return Error(ID.Loc, "base element of getelementptr must be sized"); 2833 2834 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 2835 return Error(ID.Loc, "invalid getelementptr indices"); 2836 ID.ConstantVal = 2837 ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds); 2838 } else if (Opc == Instruction::Select) { 2839 if (Elts.size() != 3) 2840 return Error(ID.Loc, "expected three operands to select"); 2841 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 2842 Elts[2])) 2843 return Error(ID.Loc, Reason); 2844 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 2845 } else if (Opc == Instruction::ShuffleVector) { 2846 if (Elts.size() != 3) 2847 return Error(ID.Loc, "expected three operands to shufflevector"); 2848 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2849 return Error(ID.Loc, "invalid operands to shufflevector"); 2850 ID.ConstantVal = 2851 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 2852 } else if (Opc == Instruction::ExtractElement) { 2853 if (Elts.size() != 2) 2854 return Error(ID.Loc, "expected two operands to extractelement"); 2855 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 2856 return Error(ID.Loc, "invalid extractelement operands"); 2857 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 2858 } else { 2859 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 2860 if (Elts.size() != 3) 2861 return Error(ID.Loc, "expected three operands to insertelement"); 2862 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2863 return Error(ID.Loc, "invalid insertelement operands"); 2864 ID.ConstantVal = 2865 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 2866 } 2867 2868 ID.Kind = ValID::t_Constant; 2869 return false; 2870 } 2871 } 2872 2873 Lex.Lex(); 2874 return false; 2875 } 2876 2877 /// ParseGlobalValue - Parse a global value with the specified type. 2878 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 2879 C = nullptr; 2880 ValID ID; 2881 Value *V = nullptr; 2882 bool Parsed = ParseValID(ID) || 2883 ConvertValIDToValue(Ty, ID, V, nullptr); 2884 if (V && !(C = dyn_cast<Constant>(V))) 2885 return Error(ID.Loc, "global values must be constants"); 2886 return Parsed; 2887 } 2888 2889 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 2890 Type *Ty = nullptr; 2891 return ParseType(Ty) || 2892 ParseGlobalValue(Ty, V); 2893 } 2894 2895 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 2896 C = nullptr; 2897 2898 LocTy KwLoc = Lex.getLoc(); 2899 if (!EatIfPresent(lltok::kw_comdat)) 2900 return false; 2901 2902 if (EatIfPresent(lltok::lparen)) { 2903 if (Lex.getKind() != lltok::ComdatVar) 2904 return TokError("expected comdat variable"); 2905 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 2906 Lex.Lex(); 2907 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 2908 return true; 2909 } else { 2910 if (GlobalName.empty()) 2911 return TokError("comdat cannot be unnamed"); 2912 C = getComdat(GlobalName, KwLoc); 2913 } 2914 2915 return false; 2916 } 2917 2918 /// ParseGlobalValueVector 2919 /// ::= /*empty*/ 2920 /// ::= TypeAndValue (',' TypeAndValue)* 2921 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) { 2922 // Empty list. 2923 if (Lex.getKind() == lltok::rbrace || 2924 Lex.getKind() == lltok::rsquare || 2925 Lex.getKind() == lltok::greater || 2926 Lex.getKind() == lltok::rparen) 2927 return false; 2928 2929 Constant *C; 2930 if (ParseGlobalTypeAndValue(C)) return true; 2931 Elts.push_back(C); 2932 2933 while (EatIfPresent(lltok::comma)) { 2934 if (ParseGlobalTypeAndValue(C)) return true; 2935 Elts.push_back(C); 2936 } 2937 2938 return false; 2939 } 2940 2941 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 2942 SmallVector<Metadata *, 16> Elts; 2943 if (ParseMDNodeVector(Elts)) 2944 return true; 2945 2946 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 2947 return false; 2948 } 2949 2950 /// MDNode: 2951 /// ::= !{ ... } 2952 /// ::= !7 2953 /// ::= !MDLocation(...) 2954 bool LLParser::ParseMDNode(MDNode *&N) { 2955 if (Lex.getKind() == lltok::MetadataVar) 2956 return ParseSpecializedMDNode(N); 2957 2958 return ParseToken(lltok::exclaim, "expected '!' here") || 2959 ParseMDNodeTail(N); 2960 } 2961 2962 bool LLParser::ParseMDNodeTail(MDNode *&N) { 2963 // !{ ... } 2964 if (Lex.getKind() == lltok::lbrace) 2965 return ParseMDTuple(N); 2966 2967 // !42 2968 return ParseMDNodeID(N); 2969 } 2970 2971 namespace { 2972 2973 /// Structure to represent an optional metadata field. 2974 template <class FieldTy> struct MDFieldImpl { 2975 typedef MDFieldImpl ImplTy; 2976 FieldTy Val; 2977 bool Seen; 2978 2979 void assign(FieldTy Val) { 2980 Seen = true; 2981 this->Val = std::move(Val); 2982 } 2983 2984 explicit MDFieldImpl(FieldTy Default) 2985 : Val(std::move(Default)), Seen(false) {} 2986 }; 2987 2988 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 2989 uint64_t Max; 2990 2991 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 2992 : ImplTy(Default), Max(Max) {} 2993 }; 2994 struct LineField : public MDUnsignedField { 2995 LineField() : MDUnsignedField(0, UINT32_MAX) {} 2996 }; 2997 struct ColumnField : public MDUnsignedField { 2998 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 2999 }; 3000 struct DwarfTagField : public MDUnsignedField { 3001 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3002 DwarfTagField(dwarf::Tag DefaultTag) 3003 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3004 }; 3005 struct DwarfAttEncodingField : public MDUnsignedField { 3006 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3007 }; 3008 struct DwarfVirtualityField : public MDUnsignedField { 3009 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3010 }; 3011 struct DwarfLangField : public MDUnsignedField { 3012 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3013 }; 3014 3015 struct DIFlagField : public MDUnsignedField { 3016 DIFlagField() : MDUnsignedField(0, UINT32_MAX) {} 3017 }; 3018 3019 struct MDSignedField : public MDFieldImpl<int64_t> { 3020 int64_t Min; 3021 int64_t Max; 3022 3023 MDSignedField(int64_t Default = 0) 3024 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3025 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3026 : ImplTy(Default), Min(Min), Max(Max) {} 3027 }; 3028 3029 struct MDBoolField : public MDFieldImpl<bool> { 3030 MDBoolField(bool Default = false) : ImplTy(Default) {} 3031 }; 3032 struct MDField : public MDFieldImpl<Metadata *> { 3033 bool AllowNull; 3034 3035 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3036 }; 3037 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3038 MDConstant() : ImplTy(nullptr) {} 3039 }; 3040 struct MDStringField : public MDFieldImpl<MDString *> { 3041 bool AllowEmpty; 3042 MDStringField(bool AllowEmpty = true) 3043 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3044 }; 3045 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3046 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3047 }; 3048 3049 } // end namespace 3050 3051 namespace llvm { 3052 3053 template <> 3054 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3055 MDUnsignedField &Result) { 3056 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3057 return TokError("expected unsigned integer"); 3058 3059 auto &U = Lex.getAPSIntVal(); 3060 if (U.ugt(Result.Max)) 3061 return TokError("value for '" + Name + "' too large, limit is " + 3062 Twine(Result.Max)); 3063 Result.assign(U.getZExtValue()); 3064 assert(Result.Val <= Result.Max && "Expected value in range"); 3065 Lex.Lex(); 3066 return false; 3067 } 3068 3069 template <> 3070 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3071 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3072 } 3073 template <> 3074 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3075 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3076 } 3077 3078 template <> 3079 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3080 if (Lex.getKind() == lltok::APSInt) 3081 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3082 3083 if (Lex.getKind() != lltok::DwarfTag) 3084 return TokError("expected DWARF tag"); 3085 3086 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3087 if (Tag == dwarf::DW_TAG_invalid) 3088 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3089 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3090 3091 Result.assign(Tag); 3092 Lex.Lex(); 3093 return false; 3094 } 3095 3096 template <> 3097 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3098 DwarfVirtualityField &Result) { 3099 if (Lex.getKind() == lltok::APSInt) 3100 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3101 3102 if (Lex.getKind() != lltok::DwarfVirtuality) 3103 return TokError("expected DWARF virtuality code"); 3104 3105 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3106 if (!Virtuality) 3107 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3108 Lex.getStrVal() + "'"); 3109 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3110 Result.assign(Virtuality); 3111 Lex.Lex(); 3112 return false; 3113 } 3114 3115 template <> 3116 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3117 if (Lex.getKind() == lltok::APSInt) 3118 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3119 3120 if (Lex.getKind() != lltok::DwarfLang) 3121 return TokError("expected DWARF language"); 3122 3123 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3124 if (!Lang) 3125 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3126 "'"); 3127 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3128 Result.assign(Lang); 3129 Lex.Lex(); 3130 return false; 3131 } 3132 3133 template <> 3134 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3135 DwarfAttEncodingField &Result) { 3136 if (Lex.getKind() == lltok::APSInt) 3137 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3138 3139 if (Lex.getKind() != lltok::DwarfAttEncoding) 3140 return TokError("expected DWARF type attribute encoding"); 3141 3142 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3143 if (!Encoding) 3144 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3145 Lex.getStrVal() + "'"); 3146 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3147 Result.assign(Encoding); 3148 Lex.Lex(); 3149 return false; 3150 } 3151 3152 /// DIFlagField 3153 /// ::= uint32 3154 /// ::= DIFlagVector 3155 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3156 template <> 3157 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3158 assert(Result.Max == UINT32_MAX && "Expected only 32-bits"); 3159 3160 // Parser for a single flag. 3161 auto parseFlag = [&](unsigned &Val) { 3162 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) 3163 return ParseUInt32(Val); 3164 3165 if (Lex.getKind() != lltok::DIFlag) 3166 return TokError("expected debug info flag"); 3167 3168 Val = DIDescriptor::getFlag(Lex.getStrVal()); 3169 if (!Val) 3170 return TokError(Twine("invalid debug info flag flag '") + 3171 Lex.getStrVal() + "'"); 3172 Lex.Lex(); 3173 return false; 3174 }; 3175 3176 // Parse the flags and combine them together. 3177 unsigned Combined = 0; 3178 do { 3179 unsigned Val; 3180 if (parseFlag(Val)) 3181 return true; 3182 Combined |= Val; 3183 } while (EatIfPresent(lltok::bar)); 3184 3185 Result.assign(Combined); 3186 return false; 3187 } 3188 3189 template <> 3190 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3191 MDSignedField &Result) { 3192 if (Lex.getKind() != lltok::APSInt) 3193 return TokError("expected signed integer"); 3194 3195 auto &S = Lex.getAPSIntVal(); 3196 if (S < Result.Min) 3197 return TokError("value for '" + Name + "' too small, limit is " + 3198 Twine(Result.Min)); 3199 if (S > Result.Max) 3200 return TokError("value for '" + Name + "' too large, limit is " + 3201 Twine(Result.Max)); 3202 Result.assign(S.getExtValue()); 3203 assert(Result.Val >= Result.Min && "Expected value in range"); 3204 assert(Result.Val <= Result.Max && "Expected value in range"); 3205 Lex.Lex(); 3206 return false; 3207 } 3208 3209 template <> 3210 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3211 switch (Lex.getKind()) { 3212 default: 3213 return TokError("expected 'true' or 'false'"); 3214 case lltok::kw_true: 3215 Result.assign(true); 3216 break; 3217 case lltok::kw_false: 3218 Result.assign(false); 3219 break; 3220 } 3221 Lex.Lex(); 3222 return false; 3223 } 3224 3225 template <> 3226 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3227 if (Lex.getKind() == lltok::kw_null) { 3228 if (!Result.AllowNull) 3229 return TokError("'" + Name + "' cannot be null"); 3230 Lex.Lex(); 3231 Result.assign(nullptr); 3232 return false; 3233 } 3234 3235 Metadata *MD; 3236 if (ParseMetadata(MD, nullptr)) 3237 return true; 3238 3239 Result.assign(MD); 3240 return false; 3241 } 3242 3243 template <> 3244 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) { 3245 Metadata *MD; 3246 if (ParseValueAsMetadata(MD, "expected constant", nullptr)) 3247 return true; 3248 3249 Result.assign(cast<ConstantAsMetadata>(MD)); 3250 return false; 3251 } 3252 3253 template <> 3254 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3255 LocTy ValueLoc = Lex.getLoc(); 3256 std::string S; 3257 if (ParseStringConstant(S)) 3258 return true; 3259 3260 if (!Result.AllowEmpty && S.empty()) 3261 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3262 3263 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3264 return false; 3265 } 3266 3267 template <> 3268 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3269 SmallVector<Metadata *, 4> MDs; 3270 if (ParseMDNodeVector(MDs)) 3271 return true; 3272 3273 Result.assign(std::move(MDs)); 3274 return false; 3275 } 3276 3277 } // end namespace llvm 3278 3279 template <class ParserTy> 3280 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3281 do { 3282 if (Lex.getKind() != lltok::LabelStr) 3283 return TokError("expected field label here"); 3284 3285 if (parseField()) 3286 return true; 3287 } while (EatIfPresent(lltok::comma)); 3288 3289 return false; 3290 } 3291 3292 template <class ParserTy> 3293 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3294 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3295 Lex.Lex(); 3296 3297 if (ParseToken(lltok::lparen, "expected '(' here")) 3298 return true; 3299 if (Lex.getKind() != lltok::rparen) 3300 if (ParseMDFieldsImplBody(parseField)) 3301 return true; 3302 3303 ClosingLoc = Lex.getLoc(); 3304 return ParseToken(lltok::rparen, "expected ')' here"); 3305 } 3306 3307 template <class FieldTy> 3308 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3309 if (Result.Seen) 3310 return TokError("field '" + Name + "' cannot be specified more than once"); 3311 3312 LocTy Loc = Lex.getLoc(); 3313 Lex.Lex(); 3314 return ParseMDField(Loc, Name, Result); 3315 } 3316 3317 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3318 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3319 3320 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3321 if (Lex.getStrVal() == #CLASS) \ 3322 return Parse##CLASS(N, IsDistinct); 3323 #include "llvm/IR/Metadata.def" 3324 3325 return TokError("expected metadata type"); 3326 } 3327 3328 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3329 #define NOP_FIELD(NAME, TYPE, INIT) 3330 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3331 if (!NAME.Seen) \ 3332 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3333 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3334 if (Lex.getStrVal() == #NAME) \ 3335 return ParseMDField(#NAME, NAME); 3336 #define PARSE_MD_FIELDS() \ 3337 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3338 do { \ 3339 LocTy ClosingLoc; \ 3340 if (ParseMDFieldsImpl([&]() -> bool { \ 3341 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3342 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3343 }, ClosingLoc)) \ 3344 return true; \ 3345 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3346 } while (false) 3347 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3348 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3349 3350 /// ParseMDLocationFields: 3351 /// ::= !MDLocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3352 bool LLParser::ParseMDLocation(MDNode *&Result, bool IsDistinct) { 3353 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3354 OPTIONAL(line, LineField, ); \ 3355 OPTIONAL(column, ColumnField, ); \ 3356 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3357 OPTIONAL(inlinedAt, MDField, ); 3358 PARSE_MD_FIELDS(); 3359 #undef VISIT_MD_FIELDS 3360 3361 Result = GET_OR_DISTINCT( 3362 MDLocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3363 return false; 3364 } 3365 3366 /// ParseGenericDebugNode: 3367 /// ::= !GenericDebugNode(tag: 15, header: "...", operands: {...}) 3368 bool LLParser::ParseGenericDebugNode(MDNode *&Result, bool IsDistinct) { 3369 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3370 REQUIRED(tag, DwarfTagField, ); \ 3371 OPTIONAL(header, MDStringField, ); \ 3372 OPTIONAL(operands, MDFieldList, ); 3373 PARSE_MD_FIELDS(); 3374 #undef VISIT_MD_FIELDS 3375 3376 Result = GET_OR_DISTINCT(GenericDebugNode, 3377 (Context, tag.Val, header.Val, operands.Val)); 3378 return false; 3379 } 3380 3381 /// ParseMDSubrange: 3382 /// ::= !MDSubrange(count: 30, lowerBound: 2) 3383 bool LLParser::ParseMDSubrange(MDNode *&Result, bool IsDistinct) { 3384 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3385 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3386 OPTIONAL(lowerBound, MDSignedField, ); 3387 PARSE_MD_FIELDS(); 3388 #undef VISIT_MD_FIELDS 3389 3390 Result = GET_OR_DISTINCT(MDSubrange, (Context, count.Val, lowerBound.Val)); 3391 return false; 3392 } 3393 3394 /// ParseMDEnumerator: 3395 /// ::= !MDEnumerator(value: 30, name: "SomeKind") 3396 bool LLParser::ParseMDEnumerator(MDNode *&Result, bool IsDistinct) { 3397 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3398 REQUIRED(name, MDStringField, ); \ 3399 REQUIRED(value, MDSignedField, ); 3400 PARSE_MD_FIELDS(); 3401 #undef VISIT_MD_FIELDS 3402 3403 Result = GET_OR_DISTINCT(MDEnumerator, (Context, value.Val, name.Val)); 3404 return false; 3405 } 3406 3407 /// ParseMDBasicType: 3408 /// ::= !MDBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 3409 bool LLParser::ParseMDBasicType(MDNode *&Result, bool IsDistinct) { 3410 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3411 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 3412 OPTIONAL(name, MDStringField, ); \ 3413 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3414 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3415 OPTIONAL(encoding, DwarfAttEncodingField, ); 3416 PARSE_MD_FIELDS(); 3417 #undef VISIT_MD_FIELDS 3418 3419 Result = GET_OR_DISTINCT(MDBasicType, (Context, tag.Val, name.Val, size.Val, 3420 align.Val, encoding.Val)); 3421 return false; 3422 } 3423 3424 /// ParseMDDerivedType: 3425 /// ::= !MDDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 3426 /// line: 7, scope: !1, baseType: !2, size: 32, 3427 /// align: 32, offset: 0, flags: 0, extraData: !3) 3428 bool LLParser::ParseMDDerivedType(MDNode *&Result, bool IsDistinct) { 3429 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3430 REQUIRED(tag, DwarfTagField, ); \ 3431 OPTIONAL(name, MDStringField, ); \ 3432 OPTIONAL(file, MDField, ); \ 3433 OPTIONAL(line, LineField, ); \ 3434 OPTIONAL(scope, MDField, ); \ 3435 REQUIRED(baseType, MDField, ); \ 3436 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3437 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3438 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3439 OPTIONAL(flags, DIFlagField, ); \ 3440 OPTIONAL(extraData, MDField, ); 3441 PARSE_MD_FIELDS(); 3442 #undef VISIT_MD_FIELDS 3443 3444 Result = GET_OR_DISTINCT(MDDerivedType, 3445 (Context, tag.Val, name.Val, file.Val, line.Val, 3446 scope.Val, baseType.Val, size.Val, align.Val, 3447 offset.Val, flags.Val, extraData.Val)); 3448 return false; 3449 } 3450 3451 bool LLParser::ParseMDCompositeType(MDNode *&Result, bool IsDistinct) { 3452 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3453 REQUIRED(tag, DwarfTagField, ); \ 3454 OPTIONAL(name, MDStringField, ); \ 3455 OPTIONAL(file, MDField, ); \ 3456 OPTIONAL(line, LineField, ); \ 3457 OPTIONAL(scope, MDField, ); \ 3458 OPTIONAL(baseType, MDField, ); \ 3459 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3460 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3461 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3462 OPTIONAL(flags, DIFlagField, ); \ 3463 OPTIONAL(elements, MDField, ); \ 3464 OPTIONAL(runtimeLang, DwarfLangField, ); \ 3465 OPTIONAL(vtableHolder, MDField, ); \ 3466 OPTIONAL(templateParams, MDField, ); \ 3467 OPTIONAL(identifier, MDStringField, ); 3468 PARSE_MD_FIELDS(); 3469 #undef VISIT_MD_FIELDS 3470 3471 Result = GET_OR_DISTINCT( 3472 MDCompositeType, 3473 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 3474 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 3475 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 3476 return false; 3477 } 3478 3479 bool LLParser::ParseMDSubroutineType(MDNode *&Result, bool IsDistinct) { 3480 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3481 OPTIONAL(flags, DIFlagField, ); \ 3482 REQUIRED(types, MDField, ); 3483 PARSE_MD_FIELDS(); 3484 #undef VISIT_MD_FIELDS 3485 3486 Result = GET_OR_DISTINCT(MDSubroutineType, (Context, flags.Val, types.Val)); 3487 return false; 3488 } 3489 3490 /// ParseMDFileType: 3491 /// ::= !MDFileType(filename: "path/to/file", directory: "/path/to/dir") 3492 bool LLParser::ParseMDFile(MDNode *&Result, bool IsDistinct) { 3493 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3494 REQUIRED(filename, MDStringField, ); \ 3495 REQUIRED(directory, MDStringField, ); 3496 PARSE_MD_FIELDS(); 3497 #undef VISIT_MD_FIELDS 3498 3499 Result = GET_OR_DISTINCT(MDFile, (Context, filename.Val, directory.Val)); 3500 return false; 3501 } 3502 3503 /// ParseMDCompileUnit: 3504 /// ::= !MDCompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 3505 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 3506 /// splitDebugFilename: "abc.debug", emissionKind: 1, 3507 /// enums: !1, retainedTypes: !2, subprograms: !3, 3508 /// globals: !4, imports: !5) 3509 bool LLParser::ParseMDCompileUnit(MDNode *&Result, bool IsDistinct) { 3510 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3511 REQUIRED(language, DwarfLangField, ); \ 3512 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 3513 OPTIONAL(producer, MDStringField, ); \ 3514 OPTIONAL(isOptimized, MDBoolField, ); \ 3515 OPTIONAL(flags, MDStringField, ); \ 3516 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 3517 OPTIONAL(splitDebugFilename, MDStringField, ); \ 3518 OPTIONAL(emissionKind, MDUnsignedField, (0, UINT32_MAX)); \ 3519 OPTIONAL(enums, MDField, ); \ 3520 OPTIONAL(retainedTypes, MDField, ); \ 3521 OPTIONAL(subprograms, MDField, ); \ 3522 OPTIONAL(globals, MDField, ); \ 3523 OPTIONAL(imports, MDField, ); 3524 PARSE_MD_FIELDS(); 3525 #undef VISIT_MD_FIELDS 3526 3527 Result = GET_OR_DISTINCT(MDCompileUnit, 3528 (Context, language.Val, file.Val, producer.Val, 3529 isOptimized.Val, flags.Val, runtimeVersion.Val, 3530 splitDebugFilename.Val, emissionKind.Val, enums.Val, 3531 retainedTypes.Val, subprograms.Val, globals.Val, 3532 imports.Val)); 3533 return false; 3534 } 3535 3536 /// ParseMDSubprogram: 3537 /// ::= !MDSubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 3538 /// file: !1, line: 7, type: !2, isLocal: false, 3539 /// isDefinition: true, scopeLine: 8, containingType: !3, 3540 /// virtuality: DW_VIRTUALTIY_pure_virtual, 3541 /// virtualIndex: 10, flags: 11, 3542 /// isOptimized: false, function: void ()* @_Z3foov, 3543 /// templateParams: !4, declaration: !5, variables: !6) 3544 bool LLParser::ParseMDSubprogram(MDNode *&Result, bool IsDistinct) { 3545 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3546 OPTIONAL(scope, MDField, ); \ 3547 OPTIONAL(name, MDStringField, ); \ 3548 OPTIONAL(linkageName, MDStringField, ); \ 3549 OPTIONAL(file, MDField, ); \ 3550 OPTIONAL(line, LineField, ); \ 3551 OPTIONAL(type, MDField, ); \ 3552 OPTIONAL(isLocal, MDBoolField, ); \ 3553 OPTIONAL(isDefinition, MDBoolField, (true)); \ 3554 OPTIONAL(scopeLine, LineField, ); \ 3555 OPTIONAL(containingType, MDField, ); \ 3556 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 3557 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 3558 OPTIONAL(flags, DIFlagField, ); \ 3559 OPTIONAL(isOptimized, MDBoolField, ); \ 3560 OPTIONAL(function, MDConstant, ); \ 3561 OPTIONAL(templateParams, MDField, ); \ 3562 OPTIONAL(declaration, MDField, ); \ 3563 OPTIONAL(variables, MDField, ); 3564 PARSE_MD_FIELDS(); 3565 #undef VISIT_MD_FIELDS 3566 3567 Result = GET_OR_DISTINCT( 3568 MDSubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val, 3569 line.Val, type.Val, isLocal.Val, isDefinition.Val, 3570 scopeLine.Val, containingType.Val, virtuality.Val, 3571 virtualIndex.Val, flags.Val, isOptimized.Val, function.Val, 3572 templateParams.Val, declaration.Val, variables.Val)); 3573 return false; 3574 } 3575 3576 /// ParseMDLexicalBlock: 3577 /// ::= !MDLexicalBlock(scope: !0, file: !2, line: 7, column: 9) 3578 bool LLParser::ParseMDLexicalBlock(MDNode *&Result, bool IsDistinct) { 3579 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3580 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3581 OPTIONAL(file, MDField, ); \ 3582 OPTIONAL(line, LineField, ); \ 3583 OPTIONAL(column, ColumnField, ); 3584 PARSE_MD_FIELDS(); 3585 #undef VISIT_MD_FIELDS 3586 3587 Result = GET_OR_DISTINCT( 3588 MDLexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 3589 return false; 3590 } 3591 3592 /// ParseMDLexicalBlockFile: 3593 /// ::= !MDLexicalBlockFile(scope: !0, file: !2, discriminator: 9) 3594 bool LLParser::ParseMDLexicalBlockFile(MDNode *&Result, bool IsDistinct) { 3595 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3596 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3597 OPTIONAL(file, MDField, ); \ 3598 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 3599 PARSE_MD_FIELDS(); 3600 #undef VISIT_MD_FIELDS 3601 3602 Result = GET_OR_DISTINCT(MDLexicalBlockFile, 3603 (Context, scope.Val, file.Val, discriminator.Val)); 3604 return false; 3605 } 3606 3607 /// ParseMDNamespace: 3608 /// ::= !MDNamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 3609 bool LLParser::ParseMDNamespace(MDNode *&Result, bool IsDistinct) { 3610 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3611 REQUIRED(scope, MDField, ); \ 3612 OPTIONAL(file, MDField, ); \ 3613 OPTIONAL(name, MDStringField, ); \ 3614 OPTIONAL(line, LineField, ); 3615 PARSE_MD_FIELDS(); 3616 #undef VISIT_MD_FIELDS 3617 3618 Result = GET_OR_DISTINCT(MDNamespace, 3619 (Context, scope.Val, file.Val, name.Val, line.Val)); 3620 return false; 3621 } 3622 3623 /// ParseMDTemplateTypeParameter: 3624 /// ::= !MDTemplateTypeParameter(name: "Ty", type: !1) 3625 bool LLParser::ParseMDTemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 3626 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3627 OPTIONAL(name, MDStringField, ); \ 3628 REQUIRED(type, MDField, ); 3629 PARSE_MD_FIELDS(); 3630 #undef VISIT_MD_FIELDS 3631 3632 Result = 3633 GET_OR_DISTINCT(MDTemplateTypeParameter, (Context, name.Val, type.Val)); 3634 return false; 3635 } 3636 3637 /// ParseMDTemplateValueParameter: 3638 /// ::= !MDTemplateValueParameter(tag: DW_TAG_template_value_parameter, 3639 /// name: "V", type: !1, value: i32 7) 3640 bool LLParser::ParseMDTemplateValueParameter(MDNode *&Result, bool IsDistinct) { 3641 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3642 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 3643 OPTIONAL(name, MDStringField, ); \ 3644 OPTIONAL(type, MDField, ); \ 3645 REQUIRED(value, MDField, ); 3646 PARSE_MD_FIELDS(); 3647 #undef VISIT_MD_FIELDS 3648 3649 Result = GET_OR_DISTINCT(MDTemplateValueParameter, 3650 (Context, tag.Val, name.Val, type.Val, value.Val)); 3651 return false; 3652 } 3653 3654 /// ParseMDGlobalVariable: 3655 /// ::= !MDGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 3656 /// file: !1, line: 7, type: !2, isLocal: false, 3657 /// isDefinition: true, variable: i32* @foo, 3658 /// declaration: !3) 3659 bool LLParser::ParseMDGlobalVariable(MDNode *&Result, bool IsDistinct) { 3660 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3661 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 3662 OPTIONAL(scope, MDField, ); \ 3663 OPTIONAL(linkageName, MDStringField, ); \ 3664 OPTIONAL(file, MDField, ); \ 3665 OPTIONAL(line, LineField, ); \ 3666 OPTIONAL(type, MDField, ); \ 3667 OPTIONAL(isLocal, MDBoolField, ); \ 3668 OPTIONAL(isDefinition, MDBoolField, (true)); \ 3669 OPTIONAL(variable, MDConstant, ); \ 3670 OPTIONAL(declaration, MDField, ); 3671 PARSE_MD_FIELDS(); 3672 #undef VISIT_MD_FIELDS 3673 3674 Result = GET_OR_DISTINCT(MDGlobalVariable, 3675 (Context, scope.Val, name.Val, linkageName.Val, 3676 file.Val, line.Val, type.Val, isLocal.Val, 3677 isDefinition.Val, variable.Val, declaration.Val)); 3678 return false; 3679 } 3680 3681 /// ParseMDLocalVariable: 3682 /// ::= !MDLocalVariable(tag: DW_TAG_arg_variable, scope: !0, name: "foo", 3683 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 3684 /// inlinedAt: !3) 3685 bool LLParser::ParseMDLocalVariable(MDNode *&Result, bool IsDistinct) { 3686 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3687 REQUIRED(tag, DwarfTagField, ); \ 3688 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3689 OPTIONAL(name, MDStringField, ); \ 3690 OPTIONAL(file, MDField, ); \ 3691 OPTIONAL(line, LineField, ); \ 3692 OPTIONAL(type, MDField, ); \ 3693 OPTIONAL(arg, MDUnsignedField, (0, UINT8_MAX)); \ 3694 OPTIONAL(flags, DIFlagField, ); \ 3695 OPTIONAL(inlinedAt, MDField, ); 3696 PARSE_MD_FIELDS(); 3697 #undef VISIT_MD_FIELDS 3698 3699 Result = GET_OR_DISTINCT( 3700 MDLocalVariable, (Context, tag.Val, scope.Val, name.Val, file.Val, 3701 line.Val, type.Val, arg.Val, flags.Val, inlinedAt.Val)); 3702 return false; 3703 } 3704 3705 /// ParseMDExpression: 3706 /// ::= !MDExpression(0, 7, -1) 3707 bool LLParser::ParseMDExpression(MDNode *&Result, bool IsDistinct) { 3708 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3709 Lex.Lex(); 3710 3711 if (ParseToken(lltok::lparen, "expected '(' here")) 3712 return true; 3713 3714 SmallVector<uint64_t, 8> Elements; 3715 if (Lex.getKind() != lltok::rparen) 3716 do { 3717 if (Lex.getKind() == lltok::DwarfOp) { 3718 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 3719 Lex.Lex(); 3720 Elements.push_back(Op); 3721 continue; 3722 } 3723 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 3724 } 3725 3726 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3727 return TokError("expected unsigned integer"); 3728 3729 auto &U = Lex.getAPSIntVal(); 3730 if (U.ugt(UINT64_MAX)) 3731 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 3732 Elements.push_back(U.getZExtValue()); 3733 Lex.Lex(); 3734 } while (EatIfPresent(lltok::comma)); 3735 3736 if (ParseToken(lltok::rparen, "expected ')' here")) 3737 return true; 3738 3739 Result = GET_OR_DISTINCT(MDExpression, (Context, Elements)); 3740 return false; 3741 } 3742 3743 /// ParseMDObjCProperty: 3744 /// ::= !MDObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 3745 /// getter: "getFoo", attributes: 7, type: !2) 3746 bool LLParser::ParseMDObjCProperty(MDNode *&Result, bool IsDistinct) { 3747 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3748 OPTIONAL(name, MDStringField, ); \ 3749 OPTIONAL(file, MDField, ); \ 3750 OPTIONAL(line, LineField, ); \ 3751 OPTIONAL(setter, MDStringField, ); \ 3752 OPTIONAL(getter, MDStringField, ); \ 3753 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 3754 OPTIONAL(type, MDField, ); 3755 PARSE_MD_FIELDS(); 3756 #undef VISIT_MD_FIELDS 3757 3758 Result = GET_OR_DISTINCT(MDObjCProperty, 3759 (Context, name.Val, file.Val, line.Val, setter.Val, 3760 getter.Val, attributes.Val, type.Val)); 3761 return false; 3762 } 3763 3764 /// ParseMDImportedEntity: 3765 /// ::= !MDImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 3766 /// line: 7, name: "foo") 3767 bool LLParser::ParseMDImportedEntity(MDNode *&Result, bool IsDistinct) { 3768 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3769 REQUIRED(tag, DwarfTagField, ); \ 3770 REQUIRED(scope, MDField, ); \ 3771 OPTIONAL(entity, MDField, ); \ 3772 OPTIONAL(line, LineField, ); \ 3773 OPTIONAL(name, MDStringField, ); 3774 PARSE_MD_FIELDS(); 3775 #undef VISIT_MD_FIELDS 3776 3777 Result = GET_OR_DISTINCT(MDImportedEntity, (Context, tag.Val, scope.Val, 3778 entity.Val, line.Val, name.Val)); 3779 return false; 3780 } 3781 3782 #undef PARSE_MD_FIELD 3783 #undef NOP_FIELD 3784 #undef REQUIRE_FIELD 3785 #undef DECLARE_FIELD 3786 3787 /// ParseMetadataAsValue 3788 /// ::= metadata i32 %local 3789 /// ::= metadata i32 @global 3790 /// ::= metadata i32 7 3791 /// ::= metadata !0 3792 /// ::= metadata !{...} 3793 /// ::= metadata !"string" 3794 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 3795 // Note: the type 'metadata' has already been parsed. 3796 Metadata *MD; 3797 if (ParseMetadata(MD, &PFS)) 3798 return true; 3799 3800 V = MetadataAsValue::get(Context, MD); 3801 return false; 3802 } 3803 3804 /// ParseValueAsMetadata 3805 /// ::= i32 %local 3806 /// ::= i32 @global 3807 /// ::= i32 7 3808 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 3809 PerFunctionState *PFS) { 3810 Type *Ty; 3811 LocTy Loc; 3812 if (ParseType(Ty, TypeMsg, Loc)) 3813 return true; 3814 if (Ty->isMetadataTy()) 3815 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 3816 3817 Value *V; 3818 if (ParseValue(Ty, V, PFS)) 3819 return true; 3820 3821 MD = ValueAsMetadata::get(V); 3822 return false; 3823 } 3824 3825 /// ParseMetadata 3826 /// ::= i32 %local 3827 /// ::= i32 @global 3828 /// ::= i32 7 3829 /// ::= !42 3830 /// ::= !{...} 3831 /// ::= !"string" 3832 /// ::= !MDLocation(...) 3833 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 3834 if (Lex.getKind() == lltok::MetadataVar) { 3835 MDNode *N; 3836 if (ParseSpecializedMDNode(N)) 3837 return true; 3838 MD = N; 3839 return false; 3840 } 3841 3842 // ValueAsMetadata: 3843 // <type> <value> 3844 if (Lex.getKind() != lltok::exclaim) 3845 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 3846 3847 // '!'. 3848 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 3849 Lex.Lex(); 3850 3851 // MDString: 3852 // ::= '!' STRINGCONSTANT 3853 if (Lex.getKind() == lltok::StringConstant) { 3854 MDString *S; 3855 if (ParseMDString(S)) 3856 return true; 3857 MD = S; 3858 return false; 3859 } 3860 3861 // MDNode: 3862 // !{ ... } 3863 // !7 3864 MDNode *N; 3865 if (ParseMDNodeTail(N)) 3866 return true; 3867 MD = N; 3868 return false; 3869 } 3870 3871 3872 //===----------------------------------------------------------------------===// 3873 // Function Parsing. 3874 //===----------------------------------------------------------------------===// 3875 3876 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 3877 PerFunctionState *PFS) { 3878 if (Ty->isFunctionTy()) 3879 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 3880 3881 switch (ID.Kind) { 3882 case ValID::t_LocalID: 3883 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 3884 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 3885 return V == nullptr; 3886 case ValID::t_LocalName: 3887 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 3888 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 3889 return V == nullptr; 3890 case ValID::t_InlineAsm: { 3891 PointerType *PTy = dyn_cast<PointerType>(Ty); 3892 FunctionType *FTy = 3893 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : nullptr; 3894 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2)) 3895 return Error(ID.Loc, "invalid type for inline asm constraint string"); 3896 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, 3897 (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2))); 3898 return false; 3899 } 3900 case ValID::t_GlobalName: 3901 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 3902 return V == nullptr; 3903 case ValID::t_GlobalID: 3904 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 3905 return V == nullptr; 3906 case ValID::t_APSInt: 3907 if (!Ty->isIntegerTy()) 3908 return Error(ID.Loc, "integer constant must have integer type"); 3909 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 3910 V = ConstantInt::get(Context, ID.APSIntVal); 3911 return false; 3912 case ValID::t_APFloat: 3913 if (!Ty->isFloatingPointTy() || 3914 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 3915 return Error(ID.Loc, "floating point constant invalid for type"); 3916 3917 // The lexer has no type info, so builds all half, float, and double FP 3918 // constants as double. Fix this here. Long double does not need this. 3919 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 3920 bool Ignored; 3921 if (Ty->isHalfTy()) 3922 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 3923 &Ignored); 3924 else if (Ty->isFloatTy()) 3925 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 3926 &Ignored); 3927 } 3928 V = ConstantFP::get(Context, ID.APFloatVal); 3929 3930 if (V->getType() != Ty) 3931 return Error(ID.Loc, "floating point constant does not have type '" + 3932 getTypeString(Ty) + "'"); 3933 3934 return false; 3935 case ValID::t_Null: 3936 if (!Ty->isPointerTy()) 3937 return Error(ID.Loc, "null must be a pointer type"); 3938 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 3939 return false; 3940 case ValID::t_Undef: 3941 // FIXME: LabelTy should not be a first-class type. 3942 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 3943 return Error(ID.Loc, "invalid type for undef constant"); 3944 V = UndefValue::get(Ty); 3945 return false; 3946 case ValID::t_EmptyArray: 3947 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 3948 return Error(ID.Loc, "invalid empty array initializer"); 3949 V = UndefValue::get(Ty); 3950 return false; 3951 case ValID::t_Zero: 3952 // FIXME: LabelTy should not be a first-class type. 3953 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 3954 return Error(ID.Loc, "invalid type for null constant"); 3955 V = Constant::getNullValue(Ty); 3956 return false; 3957 case ValID::t_Constant: 3958 if (ID.ConstantVal->getType() != Ty) 3959 return Error(ID.Loc, "constant expression type mismatch"); 3960 3961 V = ID.ConstantVal; 3962 return false; 3963 case ValID::t_ConstantStruct: 3964 case ValID::t_PackedConstantStruct: 3965 if (StructType *ST = dyn_cast<StructType>(Ty)) { 3966 if (ST->getNumElements() != ID.UIntVal) 3967 return Error(ID.Loc, 3968 "initializer with struct type has wrong # elements"); 3969 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 3970 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 3971 3972 // Verify that the elements are compatible with the structtype. 3973 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 3974 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 3975 return Error(ID.Loc, "element " + Twine(i) + 3976 " of struct initializer doesn't match struct element type"); 3977 3978 V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts, 3979 ID.UIntVal)); 3980 } else 3981 return Error(ID.Loc, "constant expression type mismatch"); 3982 return false; 3983 } 3984 llvm_unreachable("Invalid ValID"); 3985 } 3986 3987 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 3988 V = nullptr; 3989 ValID ID; 3990 return ParseValID(ID, PFS) || 3991 ConvertValIDToValue(Ty, ID, V, PFS); 3992 } 3993 3994 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 3995 Type *Ty = nullptr; 3996 return ParseType(Ty) || 3997 ParseValue(Ty, V, PFS); 3998 } 3999 4000 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4001 PerFunctionState &PFS) { 4002 Value *V; 4003 Loc = Lex.getLoc(); 4004 if (ParseTypeAndValue(V, PFS)) return true; 4005 if (!isa<BasicBlock>(V)) 4006 return Error(Loc, "expected a basic block"); 4007 BB = cast<BasicBlock>(V); 4008 return false; 4009 } 4010 4011 4012 /// FunctionHeader 4013 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 4014 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 4015 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue 4016 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4017 // Parse the linkage. 4018 LocTy LinkageLoc = Lex.getLoc(); 4019 unsigned Linkage; 4020 4021 unsigned Visibility; 4022 unsigned DLLStorageClass; 4023 AttrBuilder RetAttrs; 4024 unsigned CC; 4025 Type *RetType = nullptr; 4026 LocTy RetTypeLoc = Lex.getLoc(); 4027 if (ParseOptionalLinkage(Linkage) || 4028 ParseOptionalVisibility(Visibility) || 4029 ParseOptionalDLLStorageClass(DLLStorageClass) || 4030 ParseOptionalCallingConv(CC) || 4031 ParseOptionalReturnAttrs(RetAttrs) || 4032 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4033 return true; 4034 4035 // Verify that the linkage is ok. 4036 switch ((GlobalValue::LinkageTypes)Linkage) { 4037 case GlobalValue::ExternalLinkage: 4038 break; // always ok. 4039 case GlobalValue::ExternalWeakLinkage: 4040 if (isDefine) 4041 return Error(LinkageLoc, "invalid linkage for function definition"); 4042 break; 4043 case GlobalValue::PrivateLinkage: 4044 case GlobalValue::InternalLinkage: 4045 case GlobalValue::AvailableExternallyLinkage: 4046 case GlobalValue::LinkOnceAnyLinkage: 4047 case GlobalValue::LinkOnceODRLinkage: 4048 case GlobalValue::WeakAnyLinkage: 4049 case GlobalValue::WeakODRLinkage: 4050 if (!isDefine) 4051 return Error(LinkageLoc, "invalid linkage for function declaration"); 4052 break; 4053 case GlobalValue::AppendingLinkage: 4054 case GlobalValue::CommonLinkage: 4055 return Error(LinkageLoc, "invalid function linkage type"); 4056 } 4057 4058 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4059 return Error(LinkageLoc, 4060 "symbol with local linkage must have default visibility"); 4061 4062 if (!FunctionType::isValidReturnType(RetType)) 4063 return Error(RetTypeLoc, "invalid function return type"); 4064 4065 LocTy NameLoc = Lex.getLoc(); 4066 4067 std::string FunctionName; 4068 if (Lex.getKind() == lltok::GlobalVar) { 4069 FunctionName = Lex.getStrVal(); 4070 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4071 unsigned NameID = Lex.getUIntVal(); 4072 4073 if (NameID != NumberedVals.size()) 4074 return TokError("function expected to be numbered '%" + 4075 Twine(NumberedVals.size()) + "'"); 4076 } else { 4077 return TokError("expected function name"); 4078 } 4079 4080 Lex.Lex(); 4081 4082 if (Lex.getKind() != lltok::lparen) 4083 return TokError("expected '(' in function argument list"); 4084 4085 SmallVector<ArgInfo, 8> ArgList; 4086 bool isVarArg; 4087 AttrBuilder FuncAttrs; 4088 std::vector<unsigned> FwdRefAttrGrps; 4089 LocTy BuiltinLoc; 4090 std::string Section; 4091 unsigned Alignment; 4092 std::string GC; 4093 bool UnnamedAddr; 4094 LocTy UnnamedAddrLoc; 4095 Constant *Prefix = nullptr; 4096 Constant *Prologue = nullptr; 4097 Comdat *C; 4098 4099 if (ParseArgumentList(ArgList, isVarArg) || 4100 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 4101 &UnnamedAddrLoc) || 4102 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4103 BuiltinLoc) || 4104 (EatIfPresent(lltok::kw_section) && 4105 ParseStringConstant(Section)) || 4106 parseOptionalComdat(FunctionName, C) || 4107 ParseOptionalAlignment(Alignment) || 4108 (EatIfPresent(lltok::kw_gc) && 4109 ParseStringConstant(GC)) || 4110 (EatIfPresent(lltok::kw_prefix) && 4111 ParseGlobalTypeAndValue(Prefix)) || 4112 (EatIfPresent(lltok::kw_prologue) && 4113 ParseGlobalTypeAndValue(Prologue))) 4114 return true; 4115 4116 if (FuncAttrs.contains(Attribute::Builtin)) 4117 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4118 4119 // If the alignment was parsed as an attribute, move to the alignment field. 4120 if (FuncAttrs.hasAlignmentAttr()) { 4121 Alignment = FuncAttrs.getAlignment(); 4122 FuncAttrs.removeAttribute(Attribute::Alignment); 4123 } 4124 4125 // Okay, if we got here, the function is syntactically valid. Convert types 4126 // and do semantic checks. 4127 std::vector<Type*> ParamTypeList; 4128 SmallVector<AttributeSet, 8> Attrs; 4129 4130 if (RetAttrs.hasAttributes()) 4131 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4132 AttributeSet::ReturnIndex, 4133 RetAttrs)); 4134 4135 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4136 ParamTypeList.push_back(ArgList[i].Ty); 4137 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 4138 AttrBuilder B(ArgList[i].Attrs, i + 1); 4139 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 4140 } 4141 } 4142 4143 if (FuncAttrs.hasAttributes()) 4144 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4145 AttributeSet::FunctionIndex, 4146 FuncAttrs)); 4147 4148 AttributeSet PAL = AttributeSet::get(Context, Attrs); 4149 4150 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4151 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4152 4153 FunctionType *FT = 4154 FunctionType::get(RetType, ParamTypeList, isVarArg); 4155 PointerType *PFT = PointerType::getUnqual(FT); 4156 4157 Fn = nullptr; 4158 if (!FunctionName.empty()) { 4159 // If this was a definition of a forward reference, remove the definition 4160 // from the forward reference table and fill in the forward ref. 4161 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI = 4162 ForwardRefVals.find(FunctionName); 4163 if (FRVI != ForwardRefVals.end()) { 4164 Fn = M->getFunction(FunctionName); 4165 if (!Fn) 4166 return Error(FRVI->second.second, "invalid forward reference to " 4167 "function as global value!"); 4168 if (Fn->getType() != PFT) 4169 return Error(FRVI->second.second, "invalid forward reference to " 4170 "function '" + FunctionName + "' with wrong type!"); 4171 4172 ForwardRefVals.erase(FRVI); 4173 } else if ((Fn = M->getFunction(FunctionName))) { 4174 // Reject redefinitions. 4175 return Error(NameLoc, "invalid redefinition of function '" + 4176 FunctionName + "'"); 4177 } else if (M->getNamedValue(FunctionName)) { 4178 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4179 } 4180 4181 } else { 4182 // If this is a definition of a forward referenced function, make sure the 4183 // types agree. 4184 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I 4185 = ForwardRefValIDs.find(NumberedVals.size()); 4186 if (I != ForwardRefValIDs.end()) { 4187 Fn = cast<Function>(I->second.first); 4188 if (Fn->getType() != PFT) 4189 return Error(NameLoc, "type of definition and forward reference of '@" + 4190 Twine(NumberedVals.size()) + "' disagree"); 4191 ForwardRefValIDs.erase(I); 4192 } 4193 } 4194 4195 if (!Fn) 4196 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4197 else // Move the forward-reference to the correct spot in the module. 4198 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4199 4200 if (FunctionName.empty()) 4201 NumberedVals.push_back(Fn); 4202 4203 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4204 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4205 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4206 Fn->setCallingConv(CC); 4207 Fn->setAttributes(PAL); 4208 Fn->setUnnamedAddr(UnnamedAddr); 4209 Fn->setAlignment(Alignment); 4210 Fn->setSection(Section); 4211 Fn->setComdat(C); 4212 if (!GC.empty()) Fn->setGC(GC.c_str()); 4213 Fn->setPrefixData(Prefix); 4214 Fn->setPrologueData(Prologue); 4215 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4216 4217 // Add all of the arguments we parsed to the function. 4218 Function::arg_iterator ArgIt = Fn->arg_begin(); 4219 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4220 // If the argument has a name, insert it into the argument symbol table. 4221 if (ArgList[i].Name.empty()) continue; 4222 4223 // Set the name, if it conflicted, it will be auto-renamed. 4224 ArgIt->setName(ArgList[i].Name); 4225 4226 if (ArgIt->getName() != ArgList[i].Name) 4227 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4228 ArgList[i].Name + "'"); 4229 } 4230 4231 if (isDefine) 4232 return false; 4233 4234 // Check the declaration has no block address forward references. 4235 ValID ID; 4236 if (FunctionName.empty()) { 4237 ID.Kind = ValID::t_GlobalID; 4238 ID.UIntVal = NumberedVals.size() - 1; 4239 } else { 4240 ID.Kind = ValID::t_GlobalName; 4241 ID.StrVal = FunctionName; 4242 } 4243 auto Blocks = ForwardRefBlockAddresses.find(ID); 4244 if (Blocks != ForwardRefBlockAddresses.end()) 4245 return Error(Blocks->first.Loc, 4246 "cannot take blockaddress inside a declaration"); 4247 return false; 4248 } 4249 4250 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4251 ValID ID; 4252 if (FunctionNumber == -1) { 4253 ID.Kind = ValID::t_GlobalName; 4254 ID.StrVal = F.getName(); 4255 } else { 4256 ID.Kind = ValID::t_GlobalID; 4257 ID.UIntVal = FunctionNumber; 4258 } 4259 4260 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4261 if (Blocks == P.ForwardRefBlockAddresses.end()) 4262 return false; 4263 4264 for (const auto &I : Blocks->second) { 4265 const ValID &BBID = I.first; 4266 GlobalValue *GV = I.second; 4267 4268 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4269 "Expected local id or name"); 4270 BasicBlock *BB; 4271 if (BBID.Kind == ValID::t_LocalName) 4272 BB = GetBB(BBID.StrVal, BBID.Loc); 4273 else 4274 BB = GetBB(BBID.UIntVal, BBID.Loc); 4275 if (!BB) 4276 return P.Error(BBID.Loc, "referenced value is not a basic block"); 4277 4278 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 4279 GV->eraseFromParent(); 4280 } 4281 4282 P.ForwardRefBlockAddresses.erase(Blocks); 4283 return false; 4284 } 4285 4286 /// ParseFunctionBody 4287 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 4288 bool LLParser::ParseFunctionBody(Function &Fn) { 4289 if (Lex.getKind() != lltok::lbrace) 4290 return TokError("expected '{' in function body"); 4291 Lex.Lex(); // eat the {. 4292 4293 int FunctionNumber = -1; 4294 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 4295 4296 PerFunctionState PFS(*this, Fn, FunctionNumber); 4297 4298 // Resolve block addresses and allow basic blocks to be forward-declared 4299 // within this function. 4300 if (PFS.resolveForwardRefBlockAddresses()) 4301 return true; 4302 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 4303 4304 // We need at least one basic block. 4305 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 4306 return TokError("function body requires at least one basic block"); 4307 4308 while (Lex.getKind() != lltok::rbrace && 4309 Lex.getKind() != lltok::kw_uselistorder) 4310 if (ParseBasicBlock(PFS)) return true; 4311 4312 while (Lex.getKind() != lltok::rbrace) 4313 if (ParseUseListOrder(&PFS)) 4314 return true; 4315 4316 // Eat the }. 4317 Lex.Lex(); 4318 4319 // Verify function is ok. 4320 return PFS.FinishFunction(); 4321 } 4322 4323 /// ParseBasicBlock 4324 /// ::= LabelStr? Instruction* 4325 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 4326 // If this basic block starts out with a name, remember it. 4327 std::string Name; 4328 LocTy NameLoc = Lex.getLoc(); 4329 if (Lex.getKind() == lltok::LabelStr) { 4330 Name = Lex.getStrVal(); 4331 Lex.Lex(); 4332 } 4333 4334 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 4335 if (!BB) 4336 return Error(NameLoc, 4337 "unable to create block named '" + Name + "'"); 4338 4339 std::string NameStr; 4340 4341 // Parse the instructions in this block until we get a terminator. 4342 Instruction *Inst; 4343 do { 4344 // This instruction may have three possibilities for a name: a) none 4345 // specified, b) name specified "%foo =", c) number specified: "%4 =". 4346 LocTy NameLoc = Lex.getLoc(); 4347 int NameID = -1; 4348 NameStr = ""; 4349 4350 if (Lex.getKind() == lltok::LocalVarID) { 4351 NameID = Lex.getUIntVal(); 4352 Lex.Lex(); 4353 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 4354 return true; 4355 } else if (Lex.getKind() == lltok::LocalVar) { 4356 NameStr = Lex.getStrVal(); 4357 Lex.Lex(); 4358 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 4359 return true; 4360 } 4361 4362 switch (ParseInstruction(Inst, BB, PFS)) { 4363 default: llvm_unreachable("Unknown ParseInstruction result!"); 4364 case InstError: return true; 4365 case InstNormal: 4366 BB->getInstList().push_back(Inst); 4367 4368 // With a normal result, we check to see if the instruction is followed by 4369 // a comma and metadata. 4370 if (EatIfPresent(lltok::comma)) 4371 if (ParseInstructionMetadata(Inst, &PFS)) 4372 return true; 4373 break; 4374 case InstExtraComma: 4375 BB->getInstList().push_back(Inst); 4376 4377 // If the instruction parser ate an extra comma at the end of it, it 4378 // *must* be followed by metadata. 4379 if (ParseInstructionMetadata(Inst, &PFS)) 4380 return true; 4381 break; 4382 } 4383 4384 // Set the name on the instruction. 4385 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 4386 } while (!isa<TerminatorInst>(Inst)); 4387 4388 return false; 4389 } 4390 4391 //===----------------------------------------------------------------------===// 4392 // Instruction Parsing. 4393 //===----------------------------------------------------------------------===// 4394 4395 /// ParseInstruction - Parse one of the many different instructions. 4396 /// 4397 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 4398 PerFunctionState &PFS) { 4399 lltok::Kind Token = Lex.getKind(); 4400 if (Token == lltok::Eof) 4401 return TokError("found end of file when expecting more instructions"); 4402 LocTy Loc = Lex.getLoc(); 4403 unsigned KeywordVal = Lex.getUIntVal(); 4404 Lex.Lex(); // Eat the keyword. 4405 4406 switch (Token) { 4407 default: return Error(Loc, "expected instruction opcode"); 4408 // Terminator Instructions. 4409 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 4410 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 4411 case lltok::kw_br: return ParseBr(Inst, PFS); 4412 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 4413 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 4414 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 4415 case lltok::kw_resume: return ParseResume(Inst, PFS); 4416 // Binary Operators. 4417 case lltok::kw_add: 4418 case lltok::kw_sub: 4419 case lltok::kw_mul: 4420 case lltok::kw_shl: { 4421 bool NUW = EatIfPresent(lltok::kw_nuw); 4422 bool NSW = EatIfPresent(lltok::kw_nsw); 4423 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 4424 4425 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4426 4427 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 4428 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 4429 return false; 4430 } 4431 case lltok::kw_fadd: 4432 case lltok::kw_fsub: 4433 case lltok::kw_fmul: 4434 case lltok::kw_fdiv: 4435 case lltok::kw_frem: { 4436 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4437 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 4438 if (Res != 0) 4439 return Res; 4440 if (FMF.any()) 4441 Inst->setFastMathFlags(FMF); 4442 return 0; 4443 } 4444 4445 case lltok::kw_sdiv: 4446 case lltok::kw_udiv: 4447 case lltok::kw_lshr: 4448 case lltok::kw_ashr: { 4449 bool Exact = EatIfPresent(lltok::kw_exact); 4450 4451 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4452 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 4453 return false; 4454 } 4455 4456 case lltok::kw_urem: 4457 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 4458 case lltok::kw_and: 4459 case lltok::kw_or: 4460 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 4461 case lltok::kw_icmp: 4462 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal); 4463 // Casts. 4464 case lltok::kw_trunc: 4465 case lltok::kw_zext: 4466 case lltok::kw_sext: 4467 case lltok::kw_fptrunc: 4468 case lltok::kw_fpext: 4469 case lltok::kw_bitcast: 4470 case lltok::kw_addrspacecast: 4471 case lltok::kw_uitofp: 4472 case lltok::kw_sitofp: 4473 case lltok::kw_fptoui: 4474 case lltok::kw_fptosi: 4475 case lltok::kw_inttoptr: 4476 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 4477 // Other. 4478 case lltok::kw_select: return ParseSelect(Inst, PFS); 4479 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 4480 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 4481 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 4482 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 4483 case lltok::kw_phi: return ParsePHI(Inst, PFS); 4484 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 4485 // Call. 4486 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 4487 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 4488 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 4489 // Memory. 4490 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 4491 case lltok::kw_load: return ParseLoad(Inst, PFS); 4492 case lltok::kw_store: return ParseStore(Inst, PFS); 4493 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 4494 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 4495 case lltok::kw_fence: return ParseFence(Inst, PFS); 4496 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 4497 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 4498 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 4499 } 4500 } 4501 4502 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 4503 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 4504 if (Opc == Instruction::FCmp) { 4505 switch (Lex.getKind()) { 4506 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 4507 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 4508 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 4509 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 4510 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 4511 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 4512 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 4513 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 4514 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 4515 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 4516 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 4517 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 4518 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 4519 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 4520 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 4521 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 4522 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 4523 } 4524 } else { 4525 switch (Lex.getKind()) { 4526 default: return TokError("expected icmp predicate (e.g. 'eq')"); 4527 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 4528 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 4529 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 4530 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 4531 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 4532 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 4533 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 4534 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 4535 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 4536 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 4537 } 4538 } 4539 Lex.Lex(); 4540 return false; 4541 } 4542 4543 //===----------------------------------------------------------------------===// 4544 // Terminator Instructions. 4545 //===----------------------------------------------------------------------===// 4546 4547 /// ParseRet - Parse a return instruction. 4548 /// ::= 'ret' void (',' !dbg, !1)* 4549 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 4550 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 4551 PerFunctionState &PFS) { 4552 SMLoc TypeLoc = Lex.getLoc(); 4553 Type *Ty = nullptr; 4554 if (ParseType(Ty, true /*void allowed*/)) return true; 4555 4556 Type *ResType = PFS.getFunction().getReturnType(); 4557 4558 if (Ty->isVoidTy()) { 4559 if (!ResType->isVoidTy()) 4560 return Error(TypeLoc, "value doesn't match function result type '" + 4561 getTypeString(ResType) + "'"); 4562 4563 Inst = ReturnInst::Create(Context); 4564 return false; 4565 } 4566 4567 Value *RV; 4568 if (ParseValue(Ty, RV, PFS)) return true; 4569 4570 if (ResType != RV->getType()) 4571 return Error(TypeLoc, "value doesn't match function result type '" + 4572 getTypeString(ResType) + "'"); 4573 4574 Inst = ReturnInst::Create(Context, RV); 4575 return false; 4576 } 4577 4578 4579 /// ParseBr 4580 /// ::= 'br' TypeAndValue 4581 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 4582 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 4583 LocTy Loc, Loc2; 4584 Value *Op0; 4585 BasicBlock *Op1, *Op2; 4586 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 4587 4588 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 4589 Inst = BranchInst::Create(BB); 4590 return false; 4591 } 4592 4593 if (Op0->getType() != Type::getInt1Ty(Context)) 4594 return Error(Loc, "branch condition must have 'i1' type"); 4595 4596 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 4597 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 4598 ParseToken(lltok::comma, "expected ',' after true destination") || 4599 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 4600 return true; 4601 4602 Inst = BranchInst::Create(Op1, Op2, Op0); 4603 return false; 4604 } 4605 4606 /// ParseSwitch 4607 /// Instruction 4608 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 4609 /// JumpTable 4610 /// ::= (TypeAndValue ',' TypeAndValue)* 4611 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 4612 LocTy CondLoc, BBLoc; 4613 Value *Cond; 4614 BasicBlock *DefaultBB; 4615 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 4616 ParseToken(lltok::comma, "expected ',' after switch condition") || 4617 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 4618 ParseToken(lltok::lsquare, "expected '[' with switch table")) 4619 return true; 4620 4621 if (!Cond->getType()->isIntegerTy()) 4622 return Error(CondLoc, "switch condition must have integer type"); 4623 4624 // Parse the jump table pairs. 4625 SmallPtrSet<Value*, 32> SeenCases; 4626 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 4627 while (Lex.getKind() != lltok::rsquare) { 4628 Value *Constant; 4629 BasicBlock *DestBB; 4630 4631 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 4632 ParseToken(lltok::comma, "expected ',' after case value") || 4633 ParseTypeAndBasicBlock(DestBB, PFS)) 4634 return true; 4635 4636 if (!SeenCases.insert(Constant).second) 4637 return Error(CondLoc, "duplicate case value in switch"); 4638 if (!isa<ConstantInt>(Constant)) 4639 return Error(CondLoc, "case value is not a constant integer"); 4640 4641 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 4642 } 4643 4644 Lex.Lex(); // Eat the ']'. 4645 4646 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 4647 for (unsigned i = 0, e = Table.size(); i != e; ++i) 4648 SI->addCase(Table[i].first, Table[i].second); 4649 Inst = SI; 4650 return false; 4651 } 4652 4653 /// ParseIndirectBr 4654 /// Instruction 4655 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 4656 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 4657 LocTy AddrLoc; 4658 Value *Address; 4659 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 4660 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 4661 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 4662 return true; 4663 4664 if (!Address->getType()->isPointerTy()) 4665 return Error(AddrLoc, "indirectbr address must have pointer type"); 4666 4667 // Parse the destination list. 4668 SmallVector<BasicBlock*, 16> DestList; 4669 4670 if (Lex.getKind() != lltok::rsquare) { 4671 BasicBlock *DestBB; 4672 if (ParseTypeAndBasicBlock(DestBB, PFS)) 4673 return true; 4674 DestList.push_back(DestBB); 4675 4676 while (EatIfPresent(lltok::comma)) { 4677 if (ParseTypeAndBasicBlock(DestBB, PFS)) 4678 return true; 4679 DestList.push_back(DestBB); 4680 } 4681 } 4682 4683 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 4684 return true; 4685 4686 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 4687 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 4688 IBI->addDestination(DestList[i]); 4689 Inst = IBI; 4690 return false; 4691 } 4692 4693 4694 /// ParseInvoke 4695 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 4696 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 4697 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 4698 LocTy CallLoc = Lex.getLoc(); 4699 AttrBuilder RetAttrs, FnAttrs; 4700 std::vector<unsigned> FwdRefAttrGrps; 4701 LocTy NoBuiltinLoc; 4702 unsigned CC; 4703 Type *RetType = nullptr; 4704 LocTy RetTypeLoc; 4705 ValID CalleeID; 4706 SmallVector<ParamInfo, 16> ArgList; 4707 4708 BasicBlock *NormalBB, *UnwindBB; 4709 if (ParseOptionalCallingConv(CC) || 4710 ParseOptionalReturnAttrs(RetAttrs) || 4711 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 4712 ParseValID(CalleeID) || 4713 ParseParameterList(ArgList, PFS) || 4714 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 4715 NoBuiltinLoc) || 4716 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 4717 ParseTypeAndBasicBlock(NormalBB, PFS) || 4718 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 4719 ParseTypeAndBasicBlock(UnwindBB, PFS)) 4720 return true; 4721 4722 // If RetType is a non-function pointer type, then this is the short syntax 4723 // for the call, which means that RetType is just the return type. Infer the 4724 // rest of the function argument types from the arguments that are present. 4725 PointerType *PFTy = nullptr; 4726 FunctionType *Ty = nullptr; 4727 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 4728 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 4729 // Pull out the types of all of the arguments... 4730 std::vector<Type*> ParamTypes; 4731 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 4732 ParamTypes.push_back(ArgList[i].V->getType()); 4733 4734 if (!FunctionType::isValidReturnType(RetType)) 4735 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 4736 4737 Ty = FunctionType::get(RetType, ParamTypes, false); 4738 PFTy = PointerType::getUnqual(Ty); 4739 } 4740 4741 // Look up the callee. 4742 Value *Callee; 4743 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 4744 4745 // Set up the Attribute for the function. 4746 SmallVector<AttributeSet, 8> Attrs; 4747 if (RetAttrs.hasAttributes()) 4748 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4749 AttributeSet::ReturnIndex, 4750 RetAttrs)); 4751 4752 SmallVector<Value*, 8> Args; 4753 4754 // Loop through FunctionType's arguments and ensure they are specified 4755 // correctly. Also, gather any parameter attributes. 4756 FunctionType::param_iterator I = Ty->param_begin(); 4757 FunctionType::param_iterator E = Ty->param_end(); 4758 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4759 Type *ExpectedTy = nullptr; 4760 if (I != E) { 4761 ExpectedTy = *I++; 4762 } else if (!Ty->isVarArg()) { 4763 return Error(ArgList[i].Loc, "too many arguments specified"); 4764 } 4765 4766 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 4767 return Error(ArgList[i].Loc, "argument is not of expected type '" + 4768 getTypeString(ExpectedTy) + "'"); 4769 Args.push_back(ArgList[i].V); 4770 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 4771 AttrBuilder B(ArgList[i].Attrs, i + 1); 4772 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 4773 } 4774 } 4775 4776 if (I != E) 4777 return Error(CallLoc, "not enough parameters specified for call"); 4778 4779 if (FnAttrs.hasAttributes()) { 4780 if (FnAttrs.hasAlignmentAttr()) 4781 return Error(CallLoc, "invoke instructions may not have an alignment"); 4782 4783 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4784 AttributeSet::FunctionIndex, 4785 FnAttrs)); 4786 } 4787 4788 // Finish off the Attribute and check them 4789 AttributeSet PAL = AttributeSet::get(Context, Attrs); 4790 4791 InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args); 4792 II->setCallingConv(CC); 4793 II->setAttributes(PAL); 4794 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 4795 Inst = II; 4796 return false; 4797 } 4798 4799 /// ParseResume 4800 /// ::= 'resume' TypeAndValue 4801 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 4802 Value *Exn; LocTy ExnLoc; 4803 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 4804 return true; 4805 4806 ResumeInst *RI = ResumeInst::Create(Exn); 4807 Inst = RI; 4808 return false; 4809 } 4810 4811 //===----------------------------------------------------------------------===// 4812 // Binary Operators. 4813 //===----------------------------------------------------------------------===// 4814 4815 /// ParseArithmetic 4816 /// ::= ArithmeticOps TypeAndValue ',' Value 4817 /// 4818 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 4819 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 4820 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 4821 unsigned Opc, unsigned OperandType) { 4822 LocTy Loc; Value *LHS, *RHS; 4823 if (ParseTypeAndValue(LHS, Loc, PFS) || 4824 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 4825 ParseValue(LHS->getType(), RHS, PFS)) 4826 return true; 4827 4828 bool Valid; 4829 switch (OperandType) { 4830 default: llvm_unreachable("Unknown operand type!"); 4831 case 0: // int or FP. 4832 Valid = LHS->getType()->isIntOrIntVectorTy() || 4833 LHS->getType()->isFPOrFPVectorTy(); 4834 break; 4835 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 4836 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 4837 } 4838 4839 if (!Valid) 4840 return Error(Loc, "invalid operand type for instruction"); 4841 4842 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4843 return false; 4844 } 4845 4846 /// ParseLogical 4847 /// ::= ArithmeticOps TypeAndValue ',' Value { 4848 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 4849 unsigned Opc) { 4850 LocTy Loc; Value *LHS, *RHS; 4851 if (ParseTypeAndValue(LHS, Loc, PFS) || 4852 ParseToken(lltok::comma, "expected ',' in logical operation") || 4853 ParseValue(LHS->getType(), RHS, PFS)) 4854 return true; 4855 4856 if (!LHS->getType()->isIntOrIntVectorTy()) 4857 return Error(Loc,"instruction requires integer or integer vector operands"); 4858 4859 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4860 return false; 4861 } 4862 4863 4864 /// ParseCompare 4865 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 4866 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 4867 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 4868 unsigned Opc) { 4869 // Parse the integer/fp comparison predicate. 4870 LocTy Loc; 4871 unsigned Pred; 4872 Value *LHS, *RHS; 4873 if (ParseCmpPredicate(Pred, Opc) || 4874 ParseTypeAndValue(LHS, Loc, PFS) || 4875 ParseToken(lltok::comma, "expected ',' after compare value") || 4876 ParseValue(LHS->getType(), RHS, PFS)) 4877 return true; 4878 4879 if (Opc == Instruction::FCmp) { 4880 if (!LHS->getType()->isFPOrFPVectorTy()) 4881 return Error(Loc, "fcmp requires floating point operands"); 4882 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 4883 } else { 4884 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 4885 if (!LHS->getType()->isIntOrIntVectorTy() && 4886 !LHS->getType()->getScalarType()->isPointerTy()) 4887 return Error(Loc, "icmp requires integer operands"); 4888 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 4889 } 4890 return false; 4891 } 4892 4893 //===----------------------------------------------------------------------===// 4894 // Other Instructions. 4895 //===----------------------------------------------------------------------===// 4896 4897 4898 /// ParseCast 4899 /// ::= CastOpc TypeAndValue 'to' Type 4900 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 4901 unsigned Opc) { 4902 LocTy Loc; 4903 Value *Op; 4904 Type *DestTy = nullptr; 4905 if (ParseTypeAndValue(Op, Loc, PFS) || 4906 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 4907 ParseType(DestTy)) 4908 return true; 4909 4910 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 4911 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 4912 return Error(Loc, "invalid cast opcode for cast from '" + 4913 getTypeString(Op->getType()) + "' to '" + 4914 getTypeString(DestTy) + "'"); 4915 } 4916 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 4917 return false; 4918 } 4919 4920 /// ParseSelect 4921 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 4922 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 4923 LocTy Loc; 4924 Value *Op0, *Op1, *Op2; 4925 if (ParseTypeAndValue(Op0, Loc, PFS) || 4926 ParseToken(lltok::comma, "expected ',' after select condition") || 4927 ParseTypeAndValue(Op1, PFS) || 4928 ParseToken(lltok::comma, "expected ',' after select value") || 4929 ParseTypeAndValue(Op2, PFS)) 4930 return true; 4931 4932 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 4933 return Error(Loc, Reason); 4934 4935 Inst = SelectInst::Create(Op0, Op1, Op2); 4936 return false; 4937 } 4938 4939 /// ParseVA_Arg 4940 /// ::= 'va_arg' TypeAndValue ',' Type 4941 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 4942 Value *Op; 4943 Type *EltTy = nullptr; 4944 LocTy TypeLoc; 4945 if (ParseTypeAndValue(Op, PFS) || 4946 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 4947 ParseType(EltTy, TypeLoc)) 4948 return true; 4949 4950 if (!EltTy->isFirstClassType()) 4951 return Error(TypeLoc, "va_arg requires operand with first class type"); 4952 4953 Inst = new VAArgInst(Op, EltTy); 4954 return false; 4955 } 4956 4957 /// ParseExtractElement 4958 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 4959 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 4960 LocTy Loc; 4961 Value *Op0, *Op1; 4962 if (ParseTypeAndValue(Op0, Loc, PFS) || 4963 ParseToken(lltok::comma, "expected ',' after extract value") || 4964 ParseTypeAndValue(Op1, PFS)) 4965 return true; 4966 4967 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 4968 return Error(Loc, "invalid extractelement operands"); 4969 4970 Inst = ExtractElementInst::Create(Op0, Op1); 4971 return false; 4972 } 4973 4974 /// ParseInsertElement 4975 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 4976 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 4977 LocTy Loc; 4978 Value *Op0, *Op1, *Op2; 4979 if (ParseTypeAndValue(Op0, Loc, PFS) || 4980 ParseToken(lltok::comma, "expected ',' after insertelement value") || 4981 ParseTypeAndValue(Op1, PFS) || 4982 ParseToken(lltok::comma, "expected ',' after insertelement value") || 4983 ParseTypeAndValue(Op2, PFS)) 4984 return true; 4985 4986 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 4987 return Error(Loc, "invalid insertelement operands"); 4988 4989 Inst = InsertElementInst::Create(Op0, Op1, Op2); 4990 return false; 4991 } 4992 4993 /// ParseShuffleVector 4994 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 4995 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 4996 LocTy Loc; 4997 Value *Op0, *Op1, *Op2; 4998 if (ParseTypeAndValue(Op0, Loc, PFS) || 4999 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5000 ParseTypeAndValue(Op1, PFS) || 5001 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5002 ParseTypeAndValue(Op2, PFS)) 5003 return true; 5004 5005 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5006 return Error(Loc, "invalid shufflevector operands"); 5007 5008 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5009 return false; 5010 } 5011 5012 /// ParsePHI 5013 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5014 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5015 Type *Ty = nullptr; LocTy TypeLoc; 5016 Value *Op0, *Op1; 5017 5018 if (ParseType(Ty, TypeLoc) || 5019 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5020 ParseValue(Ty, Op0, PFS) || 5021 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5022 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5023 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5024 return true; 5025 5026 bool AteExtraComma = false; 5027 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5028 while (1) { 5029 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5030 5031 if (!EatIfPresent(lltok::comma)) 5032 break; 5033 5034 if (Lex.getKind() == lltok::MetadataVar) { 5035 AteExtraComma = true; 5036 break; 5037 } 5038 5039 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5040 ParseValue(Ty, Op0, PFS) || 5041 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5042 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5043 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5044 return true; 5045 } 5046 5047 if (!Ty->isFirstClassType()) 5048 return Error(TypeLoc, "phi node must have first class type"); 5049 5050 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5051 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5052 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5053 Inst = PN; 5054 return AteExtraComma ? InstExtraComma : InstNormal; 5055 } 5056 5057 /// ParseLandingPad 5058 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5059 /// Clause 5060 /// ::= 'catch' TypeAndValue 5061 /// ::= 'filter' 5062 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5063 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5064 Type *Ty = nullptr; LocTy TyLoc; 5065 Value *PersFn; LocTy PersFnLoc; 5066 5067 if (ParseType(Ty, TyLoc) || 5068 ParseToken(lltok::kw_personality, "expected 'personality'") || 5069 ParseTypeAndValue(PersFn, PersFnLoc, PFS)) 5070 return true; 5071 5072 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, PersFn, 0)); 5073 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5074 5075 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5076 LandingPadInst::ClauseType CT; 5077 if (EatIfPresent(lltok::kw_catch)) 5078 CT = LandingPadInst::Catch; 5079 else if (EatIfPresent(lltok::kw_filter)) 5080 CT = LandingPadInst::Filter; 5081 else 5082 return TokError("expected 'catch' or 'filter' clause type"); 5083 5084 Value *V; 5085 LocTy VLoc; 5086 if (ParseTypeAndValue(V, VLoc, PFS)) 5087 return true; 5088 5089 // A 'catch' type expects a non-array constant. A filter clause expects an 5090 // array constant. 5091 if (CT == LandingPadInst::Catch) { 5092 if (isa<ArrayType>(V->getType())) 5093 Error(VLoc, "'catch' clause has an invalid type"); 5094 } else { 5095 if (!isa<ArrayType>(V->getType())) 5096 Error(VLoc, "'filter' clause has an invalid type"); 5097 } 5098 5099 Constant *CV = dyn_cast<Constant>(V); 5100 if (!CV) 5101 return Error(VLoc, "clause argument must be a constant"); 5102 LP->addClause(CV); 5103 } 5104 5105 Inst = LP.release(); 5106 return false; 5107 } 5108 5109 /// ParseCall 5110 /// ::= 'call' OptionalCallingConv OptionalAttrs Type Value 5111 /// ParameterList OptionalAttrs 5112 /// ::= 'tail' 'call' OptionalCallingConv OptionalAttrs Type Value 5113 /// ParameterList OptionalAttrs 5114 /// ::= 'musttail' 'call' OptionalCallingConv OptionalAttrs Type Value 5115 /// ParameterList OptionalAttrs 5116 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 5117 CallInst::TailCallKind TCK) { 5118 AttrBuilder RetAttrs, FnAttrs; 5119 std::vector<unsigned> FwdRefAttrGrps; 5120 LocTy BuiltinLoc; 5121 unsigned CC; 5122 Type *RetType = nullptr; 5123 LocTy RetTypeLoc; 5124 ValID CalleeID; 5125 SmallVector<ParamInfo, 16> ArgList; 5126 LocTy CallLoc = Lex.getLoc(); 5127 5128 if ((TCK != CallInst::TCK_None && 5129 ParseToken(lltok::kw_call, "expected 'tail call'")) || 5130 ParseOptionalCallingConv(CC) || 5131 ParseOptionalReturnAttrs(RetAttrs) || 5132 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5133 ParseValID(CalleeID) || 5134 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 5135 PFS.getFunction().isVarArg()) || 5136 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5137 BuiltinLoc)) 5138 return true; 5139 5140 // If RetType is a non-function pointer type, then this is the short syntax 5141 // for the call, which means that RetType is just the return type. Infer the 5142 // rest of the function argument types from the arguments that are present. 5143 PointerType *PFTy = nullptr; 5144 FunctionType *Ty = nullptr; 5145 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 5146 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 5147 // Pull out the types of all of the arguments... 5148 std::vector<Type*> ParamTypes; 5149 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5150 ParamTypes.push_back(ArgList[i].V->getType()); 5151 5152 if (!FunctionType::isValidReturnType(RetType)) 5153 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5154 5155 Ty = FunctionType::get(RetType, ParamTypes, false); 5156 PFTy = PointerType::getUnqual(Ty); 5157 } 5158 5159 // Look up the callee. 5160 Value *Callee; 5161 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 5162 5163 // Set up the Attribute for the function. 5164 SmallVector<AttributeSet, 8> Attrs; 5165 if (RetAttrs.hasAttributes()) 5166 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5167 AttributeSet::ReturnIndex, 5168 RetAttrs)); 5169 5170 SmallVector<Value*, 8> Args; 5171 5172 // Loop through FunctionType's arguments and ensure they are specified 5173 // correctly. Also, gather any parameter attributes. 5174 FunctionType::param_iterator I = Ty->param_begin(); 5175 FunctionType::param_iterator E = Ty->param_end(); 5176 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5177 Type *ExpectedTy = nullptr; 5178 if (I != E) { 5179 ExpectedTy = *I++; 5180 } else if (!Ty->isVarArg()) { 5181 return Error(ArgList[i].Loc, "too many arguments specified"); 5182 } 5183 5184 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5185 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5186 getTypeString(ExpectedTy) + "'"); 5187 Args.push_back(ArgList[i].V); 5188 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5189 AttrBuilder B(ArgList[i].Attrs, i + 1); 5190 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5191 } 5192 } 5193 5194 if (I != E) 5195 return Error(CallLoc, "not enough parameters specified for call"); 5196 5197 if (FnAttrs.hasAttributes()) { 5198 if (FnAttrs.hasAlignmentAttr()) 5199 return Error(CallLoc, "call instructions may not have an alignment"); 5200 5201 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5202 AttributeSet::FunctionIndex, 5203 FnAttrs)); 5204 } 5205 5206 // Finish off the Attribute and check them 5207 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5208 5209 CallInst *CI = CallInst::Create(Callee, Args); 5210 CI->setTailCallKind(TCK); 5211 CI->setCallingConv(CC); 5212 CI->setAttributes(PAL); 5213 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 5214 Inst = CI; 5215 return false; 5216 } 5217 5218 //===----------------------------------------------------------------------===// 5219 // Memory Instructions. 5220 //===----------------------------------------------------------------------===// 5221 5222 /// ParseAlloc 5223 /// ::= 'alloca' 'inalloca'? Type (',' TypeAndValue)? (',' 'align' i32)? 5224 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 5225 Value *Size = nullptr; 5226 LocTy SizeLoc, TyLoc; 5227 unsigned Alignment = 0; 5228 Type *Ty = nullptr; 5229 5230 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 5231 5232 if (ParseType(Ty, TyLoc)) return true; 5233 5234 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 5235 return Error(TyLoc, "invalid type for alloca"); 5236 5237 bool AteExtraComma = false; 5238 if (EatIfPresent(lltok::comma)) { 5239 if (Lex.getKind() == lltok::kw_align) { 5240 if (ParseOptionalAlignment(Alignment)) return true; 5241 } else if (Lex.getKind() == lltok::MetadataVar) { 5242 AteExtraComma = true; 5243 } else { 5244 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 5245 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5246 return true; 5247 } 5248 } 5249 5250 if (Size && !Size->getType()->isIntegerTy()) 5251 return Error(SizeLoc, "element count must have integer type"); 5252 5253 AllocaInst *AI = new AllocaInst(Ty, Size, Alignment); 5254 AI->setUsedWithInAlloca(IsInAlloca); 5255 Inst = AI; 5256 return AteExtraComma ? InstExtraComma : InstNormal; 5257 } 5258 5259 /// ParseLoad 5260 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 5261 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 5262 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 5263 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 5264 Value *Val; LocTy Loc; 5265 unsigned Alignment = 0; 5266 bool AteExtraComma = false; 5267 bool isAtomic = false; 5268 AtomicOrdering Ordering = NotAtomic; 5269 SynchronizationScope Scope = CrossThread; 5270 5271 if (Lex.getKind() == lltok::kw_atomic) { 5272 isAtomic = true; 5273 Lex.Lex(); 5274 } 5275 5276 bool isVolatile = false; 5277 if (Lex.getKind() == lltok::kw_volatile) { 5278 isVolatile = true; 5279 Lex.Lex(); 5280 } 5281 5282 Type *Ty = nullptr; 5283 LocTy ExplicitTypeLoc = Lex.getLoc(); 5284 if (ParseType(Ty) || 5285 ParseToken(lltok::comma, "expected comma after load's type") || 5286 ParseTypeAndValue(Val, Loc, PFS) || 5287 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 5288 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5289 return true; 5290 5291 if (!Val->getType()->isPointerTy() || 5292 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType()) 5293 return Error(Loc, "load operand must be a pointer to a first class type"); 5294 if (isAtomic && !Alignment) 5295 return Error(Loc, "atomic load must have explicit non-zero alignment"); 5296 if (Ordering == Release || Ordering == AcquireRelease) 5297 return Error(Loc, "atomic load cannot use Release ordering"); 5298 5299 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 5300 return Error(ExplicitTypeLoc, 5301 "explicit pointee type doesn't match operand's pointee type"); 5302 5303 Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope); 5304 return AteExtraComma ? InstExtraComma : InstNormal; 5305 } 5306 5307 /// ParseStore 5308 5309 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 5310 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 5311 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 5312 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 5313 Value *Val, *Ptr; LocTy Loc, PtrLoc; 5314 unsigned Alignment = 0; 5315 bool AteExtraComma = false; 5316 bool isAtomic = false; 5317 AtomicOrdering Ordering = NotAtomic; 5318 SynchronizationScope Scope = CrossThread; 5319 5320 if (Lex.getKind() == lltok::kw_atomic) { 5321 isAtomic = true; 5322 Lex.Lex(); 5323 } 5324 5325 bool isVolatile = false; 5326 if (Lex.getKind() == lltok::kw_volatile) { 5327 isVolatile = true; 5328 Lex.Lex(); 5329 } 5330 5331 if (ParseTypeAndValue(Val, Loc, PFS) || 5332 ParseToken(lltok::comma, "expected ',' after store operand") || 5333 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5334 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 5335 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5336 return true; 5337 5338 if (!Ptr->getType()->isPointerTy()) 5339 return Error(PtrLoc, "store operand must be a pointer"); 5340 if (!Val->getType()->isFirstClassType()) 5341 return Error(Loc, "store operand must be a first class value"); 5342 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 5343 return Error(Loc, "stored value and pointer type do not match"); 5344 if (isAtomic && !Alignment) 5345 return Error(Loc, "atomic store must have explicit non-zero alignment"); 5346 if (Ordering == Acquire || Ordering == AcquireRelease) 5347 return Error(Loc, "atomic store cannot use Acquire ordering"); 5348 5349 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 5350 return AteExtraComma ? InstExtraComma : InstNormal; 5351 } 5352 5353 /// ParseCmpXchg 5354 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 5355 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 5356 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 5357 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 5358 bool AteExtraComma = false; 5359 AtomicOrdering SuccessOrdering = NotAtomic; 5360 AtomicOrdering FailureOrdering = NotAtomic; 5361 SynchronizationScope Scope = CrossThread; 5362 bool isVolatile = false; 5363 bool isWeak = false; 5364 5365 if (EatIfPresent(lltok::kw_weak)) 5366 isWeak = true; 5367 5368 if (EatIfPresent(lltok::kw_volatile)) 5369 isVolatile = true; 5370 5371 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5372 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 5373 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 5374 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 5375 ParseTypeAndValue(New, NewLoc, PFS) || 5376 ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) || 5377 ParseOrdering(FailureOrdering)) 5378 return true; 5379 5380 if (SuccessOrdering == Unordered || FailureOrdering == Unordered) 5381 return TokError("cmpxchg cannot be unordered"); 5382 if (SuccessOrdering < FailureOrdering) 5383 return TokError("cmpxchg must be at least as ordered on success as failure"); 5384 if (FailureOrdering == Release || FailureOrdering == AcquireRelease) 5385 return TokError("cmpxchg failure ordering cannot include release semantics"); 5386 if (!Ptr->getType()->isPointerTy()) 5387 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 5388 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 5389 return Error(CmpLoc, "compare value and pointer type do not match"); 5390 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 5391 return Error(NewLoc, "new value and pointer type do not match"); 5392 if (!New->getType()->isIntegerTy()) 5393 return Error(NewLoc, "cmpxchg operand must be an integer"); 5394 unsigned Size = New->getType()->getPrimitiveSizeInBits(); 5395 if (Size < 8 || (Size & (Size - 1))) 5396 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized" 5397 " integer"); 5398 5399 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 5400 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope); 5401 CXI->setVolatile(isVolatile); 5402 CXI->setWeak(isWeak); 5403 Inst = CXI; 5404 return AteExtraComma ? InstExtraComma : InstNormal; 5405 } 5406 5407 /// ParseAtomicRMW 5408 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 5409 /// 'singlethread'? AtomicOrdering 5410 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 5411 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 5412 bool AteExtraComma = false; 5413 AtomicOrdering Ordering = NotAtomic; 5414 SynchronizationScope Scope = CrossThread; 5415 bool isVolatile = false; 5416 AtomicRMWInst::BinOp Operation; 5417 5418 if (EatIfPresent(lltok::kw_volatile)) 5419 isVolatile = true; 5420 5421 switch (Lex.getKind()) { 5422 default: return TokError("expected binary operation in atomicrmw"); 5423 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 5424 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 5425 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 5426 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 5427 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 5428 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 5429 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 5430 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 5431 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 5432 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 5433 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 5434 } 5435 Lex.Lex(); // Eat the operation. 5436 5437 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5438 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 5439 ParseTypeAndValue(Val, ValLoc, PFS) || 5440 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 5441 return true; 5442 5443 if (Ordering == Unordered) 5444 return TokError("atomicrmw cannot be unordered"); 5445 if (!Ptr->getType()->isPointerTy()) 5446 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 5447 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 5448 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 5449 if (!Val->getType()->isIntegerTy()) 5450 return Error(ValLoc, "atomicrmw operand must be an integer"); 5451 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 5452 if (Size < 8 || (Size & (Size - 1))) 5453 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 5454 " integer"); 5455 5456 AtomicRMWInst *RMWI = 5457 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 5458 RMWI->setVolatile(isVolatile); 5459 Inst = RMWI; 5460 return AteExtraComma ? InstExtraComma : InstNormal; 5461 } 5462 5463 /// ParseFence 5464 /// ::= 'fence' 'singlethread'? AtomicOrdering 5465 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 5466 AtomicOrdering Ordering = NotAtomic; 5467 SynchronizationScope Scope = CrossThread; 5468 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 5469 return true; 5470 5471 if (Ordering == Unordered) 5472 return TokError("fence cannot be unordered"); 5473 if (Ordering == Monotonic) 5474 return TokError("fence cannot be monotonic"); 5475 5476 Inst = new FenceInst(Context, Ordering, Scope); 5477 return InstNormal; 5478 } 5479 5480 /// ParseGetElementPtr 5481 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 5482 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 5483 Value *Ptr = nullptr; 5484 Value *Val = nullptr; 5485 LocTy Loc, EltLoc; 5486 5487 bool InBounds = EatIfPresent(lltok::kw_inbounds); 5488 5489 Type *Ty = nullptr; 5490 LocTy ExplicitTypeLoc = Lex.getLoc(); 5491 if (ParseType(Ty) || 5492 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 5493 ParseTypeAndValue(Ptr, Loc, PFS)) 5494 return true; 5495 5496 Type *BaseType = Ptr->getType(); 5497 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 5498 if (!BasePointerType) 5499 return Error(Loc, "base of getelementptr must be a pointer"); 5500 5501 if (Ty != BasePointerType->getElementType()) 5502 return Error(ExplicitTypeLoc, 5503 "explicit pointee type doesn't match operand's pointee type"); 5504 5505 SmallVector<Value*, 16> Indices; 5506 bool AteExtraComma = false; 5507 while (EatIfPresent(lltok::comma)) { 5508 if (Lex.getKind() == lltok::MetadataVar) { 5509 AteExtraComma = true; 5510 break; 5511 } 5512 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 5513 if (!Val->getType()->getScalarType()->isIntegerTy()) 5514 return Error(EltLoc, "getelementptr index must be an integer"); 5515 if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy()) 5516 return Error(EltLoc, "getelementptr index type missmatch"); 5517 if (Val->getType()->isVectorTy()) { 5518 unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements(); 5519 unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements(); 5520 if (ValNumEl != PtrNumEl) 5521 return Error(EltLoc, 5522 "getelementptr vector index has a wrong number of elements"); 5523 } 5524 Indices.push_back(Val); 5525 } 5526 5527 SmallPtrSet<const Type*, 4> Visited; 5528 if (!Indices.empty() && 5529 !BasePointerType->getElementType()->isSized(&Visited)) 5530 return Error(Loc, "base element of getelementptr must be sized"); 5531 5532 if (!GetElementPtrInst::getIndexedType( 5533 cast<PointerType>(BaseType->getScalarType())->getElementType(), 5534 Indices)) 5535 return Error(Loc, "invalid getelementptr indices"); 5536 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 5537 if (InBounds) 5538 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 5539 return AteExtraComma ? InstExtraComma : InstNormal; 5540 } 5541 5542 /// ParseExtractValue 5543 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 5544 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 5545 Value *Val; LocTy Loc; 5546 SmallVector<unsigned, 4> Indices; 5547 bool AteExtraComma; 5548 if (ParseTypeAndValue(Val, Loc, PFS) || 5549 ParseIndexList(Indices, AteExtraComma)) 5550 return true; 5551 5552 if (!Val->getType()->isAggregateType()) 5553 return Error(Loc, "extractvalue operand must be aggregate type"); 5554 5555 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 5556 return Error(Loc, "invalid indices for extractvalue"); 5557 Inst = ExtractValueInst::Create(Val, Indices); 5558 return AteExtraComma ? InstExtraComma : InstNormal; 5559 } 5560 5561 /// ParseInsertValue 5562 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 5563 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 5564 Value *Val0, *Val1; LocTy Loc0, Loc1; 5565 SmallVector<unsigned, 4> Indices; 5566 bool AteExtraComma; 5567 if (ParseTypeAndValue(Val0, Loc0, PFS) || 5568 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 5569 ParseTypeAndValue(Val1, Loc1, PFS) || 5570 ParseIndexList(Indices, AteExtraComma)) 5571 return true; 5572 5573 if (!Val0->getType()->isAggregateType()) 5574 return Error(Loc0, "insertvalue operand must be aggregate type"); 5575 5576 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 5577 if (!IndexedType) 5578 return Error(Loc0, "invalid indices for insertvalue"); 5579 if (IndexedType != Val1->getType()) 5580 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 5581 getTypeString(Val1->getType()) + "' instead of '" + 5582 getTypeString(IndexedType) + "'"); 5583 Inst = InsertValueInst::Create(Val0, Val1, Indices); 5584 return AteExtraComma ? InstExtraComma : InstNormal; 5585 } 5586 5587 //===----------------------------------------------------------------------===// 5588 // Embedded metadata. 5589 //===----------------------------------------------------------------------===// 5590 5591 /// ParseMDNodeVector 5592 /// ::= { Element (',' Element)* } 5593 /// Element 5594 /// ::= 'null' | TypeAndValue 5595 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 5596 if (ParseToken(lltok::lbrace, "expected '{' here")) 5597 return true; 5598 5599 // Check for an empty list. 5600 if (EatIfPresent(lltok::rbrace)) 5601 return false; 5602 5603 do { 5604 // Null is a special case since it is typeless. 5605 if (EatIfPresent(lltok::kw_null)) { 5606 Elts.push_back(nullptr); 5607 continue; 5608 } 5609 5610 Metadata *MD; 5611 if (ParseMetadata(MD, nullptr)) 5612 return true; 5613 Elts.push_back(MD); 5614 } while (EatIfPresent(lltok::comma)); 5615 5616 return ParseToken(lltok::rbrace, "expected end of metadata node"); 5617 } 5618 5619 //===----------------------------------------------------------------------===// 5620 // Use-list order directives. 5621 //===----------------------------------------------------------------------===// 5622 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 5623 SMLoc Loc) { 5624 if (V->use_empty()) 5625 return Error(Loc, "value has no uses"); 5626 5627 unsigned NumUses = 0; 5628 SmallDenseMap<const Use *, unsigned, 16> Order; 5629 for (const Use &U : V->uses()) { 5630 if (++NumUses > Indexes.size()) 5631 break; 5632 Order[&U] = Indexes[NumUses - 1]; 5633 } 5634 if (NumUses < 2) 5635 return Error(Loc, "value only has one use"); 5636 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 5637 return Error(Loc, "wrong number of indexes, expected " + 5638 Twine(std::distance(V->use_begin(), V->use_end()))); 5639 5640 V->sortUseList([&](const Use &L, const Use &R) { 5641 return Order.lookup(&L) < Order.lookup(&R); 5642 }); 5643 return false; 5644 } 5645 5646 /// ParseUseListOrderIndexes 5647 /// ::= '{' uint32 (',' uint32)+ '}' 5648 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 5649 SMLoc Loc = Lex.getLoc(); 5650 if (ParseToken(lltok::lbrace, "expected '{' here")) 5651 return true; 5652 if (Lex.getKind() == lltok::rbrace) 5653 return Lex.Error("expected non-empty list of uselistorder indexes"); 5654 5655 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 5656 // indexes should be distinct numbers in the range [0, size-1], and should 5657 // not be in order. 5658 unsigned Offset = 0; 5659 unsigned Max = 0; 5660 bool IsOrdered = true; 5661 assert(Indexes.empty() && "Expected empty order vector"); 5662 do { 5663 unsigned Index; 5664 if (ParseUInt32(Index)) 5665 return true; 5666 5667 // Update consistency checks. 5668 Offset += Index - Indexes.size(); 5669 Max = std::max(Max, Index); 5670 IsOrdered &= Index == Indexes.size(); 5671 5672 Indexes.push_back(Index); 5673 } while (EatIfPresent(lltok::comma)); 5674 5675 if (ParseToken(lltok::rbrace, "expected '}' here")) 5676 return true; 5677 5678 if (Indexes.size() < 2) 5679 return Error(Loc, "expected >= 2 uselistorder indexes"); 5680 if (Offset != 0 || Max >= Indexes.size()) 5681 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 5682 if (IsOrdered) 5683 return Error(Loc, "expected uselistorder indexes to change the order"); 5684 5685 return false; 5686 } 5687 5688 /// ParseUseListOrder 5689 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 5690 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 5691 SMLoc Loc = Lex.getLoc(); 5692 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 5693 return true; 5694 5695 Value *V; 5696 SmallVector<unsigned, 16> Indexes; 5697 if (ParseTypeAndValue(V, PFS) || 5698 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 5699 ParseUseListOrderIndexes(Indexes)) 5700 return true; 5701 5702 return sortUseListOrder(V, Indexes, Loc); 5703 } 5704 5705 /// ParseUseListOrderBB 5706 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 5707 bool LLParser::ParseUseListOrderBB() { 5708 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 5709 SMLoc Loc = Lex.getLoc(); 5710 Lex.Lex(); 5711 5712 ValID Fn, Label; 5713 SmallVector<unsigned, 16> Indexes; 5714 if (ParseValID(Fn) || 5715 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 5716 ParseValID(Label) || 5717 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 5718 ParseUseListOrderIndexes(Indexes)) 5719 return true; 5720 5721 // Check the function. 5722 GlobalValue *GV; 5723 if (Fn.Kind == ValID::t_GlobalName) 5724 GV = M->getNamedValue(Fn.StrVal); 5725 else if (Fn.Kind == ValID::t_GlobalID) 5726 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 5727 else 5728 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 5729 if (!GV) 5730 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 5731 auto *F = dyn_cast<Function>(GV); 5732 if (!F) 5733 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 5734 if (F->isDeclaration()) 5735 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 5736 5737 // Check the basic block. 5738 if (Label.Kind == ValID::t_LocalID) 5739 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 5740 if (Label.Kind != ValID::t_LocalName) 5741 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 5742 Value *V = F->getValueSymbolTable().lookup(Label.StrVal); 5743 if (!V) 5744 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 5745 if (!isa<BasicBlock>(V)) 5746 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 5747 5748 return sortUseListOrder(V, Indexes, Loc); 5749 } 5750