1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/AsmParser/SlotMapping.h" 18 #include "llvm/IR/AutoUpgrade.h" 19 #include "llvm/IR/CallingConv.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DebugInfo.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/ValueSymbolTable.h" 30 #include "llvm/Support/Dwarf.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/SaveAndRestore.h" 33 #include "llvm/Support/raw_ostream.h" 34 using namespace llvm; 35 36 static std::string getTypeString(Type *T) { 37 std::string Result; 38 raw_string_ostream Tmp(Result); 39 Tmp << *T; 40 return Tmp.str(); 41 } 42 43 /// Run: module ::= toplevelentity* 44 bool LLParser::Run() { 45 // Prime the lexer. 46 Lex.Lex(); 47 48 return ParseTopLevelEntities() || 49 ValidateEndOfModule(); 50 } 51 52 bool LLParser::parseStandaloneConstantValue(Constant *&C, 53 const SlotMapping *Slots) { 54 restoreParsingState(Slots); 55 Lex.Lex(); 56 57 Type *Ty = nullptr; 58 if (ParseType(Ty) || parseConstantValue(Ty, C)) 59 return true; 60 if (Lex.getKind() != lltok::Eof) 61 return Error(Lex.getLoc(), "expected end of string"); 62 return false; 63 } 64 65 void LLParser::restoreParsingState(const SlotMapping *Slots) { 66 if (!Slots) 67 return; 68 NumberedVals = Slots->GlobalValues; 69 NumberedMetadata = Slots->MetadataNodes; 70 for (const auto &I : Slots->NamedTypes) 71 NamedTypes.insert( 72 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 73 for (const auto &I : Slots->Types) 74 NumberedTypes.insert( 75 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 76 } 77 78 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 79 /// module. 80 bool LLParser::ValidateEndOfModule() { 81 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 82 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 83 84 // Handle any function attribute group forward references. 85 for (std::map<Value*, std::vector<unsigned> >::iterator 86 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end(); 87 I != E; ++I) { 88 Value *V = I->first; 89 std::vector<unsigned> &Vec = I->second; 90 AttrBuilder B; 91 92 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end(); 93 VI != VE; ++VI) 94 B.merge(NumberedAttrBuilders[*VI]); 95 96 if (Function *Fn = dyn_cast<Function>(V)) { 97 AttributeSet AS = Fn->getAttributes(); 98 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 99 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 100 AS.getFnAttributes()); 101 102 FnAttrs.merge(B); 103 104 // If the alignment was parsed as an attribute, move to the alignment 105 // field. 106 if (FnAttrs.hasAlignmentAttr()) { 107 Fn->setAlignment(FnAttrs.getAlignment()); 108 FnAttrs.removeAttribute(Attribute::Alignment); 109 } 110 111 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 112 AttributeSet::get(Context, 113 AttributeSet::FunctionIndex, 114 FnAttrs)); 115 Fn->setAttributes(AS); 116 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 117 AttributeSet AS = CI->getAttributes(); 118 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 119 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 120 AS.getFnAttributes()); 121 FnAttrs.merge(B); 122 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 123 AttributeSet::get(Context, 124 AttributeSet::FunctionIndex, 125 FnAttrs)); 126 CI->setAttributes(AS); 127 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 128 AttributeSet AS = II->getAttributes(); 129 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 130 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 131 AS.getFnAttributes()); 132 FnAttrs.merge(B); 133 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 134 AttributeSet::get(Context, 135 AttributeSet::FunctionIndex, 136 FnAttrs)); 137 II->setAttributes(AS); 138 } else { 139 llvm_unreachable("invalid object with forward attribute group reference"); 140 } 141 } 142 143 // If there are entries in ForwardRefBlockAddresses at this point, the 144 // function was never defined. 145 if (!ForwardRefBlockAddresses.empty()) 146 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 147 "expected function name in blockaddress"); 148 149 for (const auto &NT : NumberedTypes) 150 if (NT.second.second.isValid()) 151 return Error(NT.second.second, 152 "use of undefined type '%" + Twine(NT.first) + "'"); 153 154 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 155 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 156 if (I->second.second.isValid()) 157 return Error(I->second.second, 158 "use of undefined type named '" + I->getKey() + "'"); 159 160 if (!ForwardRefComdats.empty()) 161 return Error(ForwardRefComdats.begin()->second, 162 "use of undefined comdat '$" + 163 ForwardRefComdats.begin()->first + "'"); 164 165 if (!ForwardRefVals.empty()) 166 return Error(ForwardRefVals.begin()->second.second, 167 "use of undefined value '@" + ForwardRefVals.begin()->first + 168 "'"); 169 170 if (!ForwardRefValIDs.empty()) 171 return Error(ForwardRefValIDs.begin()->second.second, 172 "use of undefined value '@" + 173 Twine(ForwardRefValIDs.begin()->first) + "'"); 174 175 if (!ForwardRefMDNodes.empty()) 176 return Error(ForwardRefMDNodes.begin()->second.second, 177 "use of undefined metadata '!" + 178 Twine(ForwardRefMDNodes.begin()->first) + "'"); 179 180 // Resolve metadata cycles. 181 for (auto &N : NumberedMetadata) { 182 if (N.second && !N.second->isResolved()) 183 N.second->resolveCycles(); 184 } 185 186 // Look for intrinsic functions and CallInst that need to be upgraded 187 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 188 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 189 190 UpgradeDebugInfo(*M); 191 192 if (!Slots) 193 return false; 194 // Initialize the slot mapping. 195 // Because by this point we've parsed and validated everything, we can "steal" 196 // the mapping from LLParser as it doesn't need it anymore. 197 Slots->GlobalValues = std::move(NumberedVals); 198 Slots->MetadataNodes = std::move(NumberedMetadata); 199 for (const auto &I : NamedTypes) 200 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 201 for (const auto &I : NumberedTypes) 202 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 203 204 return false; 205 } 206 207 //===----------------------------------------------------------------------===// 208 // Top-Level Entities 209 //===----------------------------------------------------------------------===// 210 211 bool LLParser::ParseTopLevelEntities() { 212 while (1) { 213 switch (Lex.getKind()) { 214 default: return TokError("expected top-level entity"); 215 case lltok::Eof: return false; 216 case lltok::kw_declare: if (ParseDeclare()) return true; break; 217 case lltok::kw_define: if (ParseDefine()) return true; break; 218 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 219 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 220 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 221 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 222 case lltok::LocalVar: if (ParseNamedType()) return true; break; 223 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 224 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 225 case lltok::ComdatVar: if (parseComdat()) return true; break; 226 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 227 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 228 229 // The Global variable production with no name can have many different 230 // optional leading prefixes, the production is: 231 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 232 // OptionalThreadLocal OptionalAddrSpace OptionalUnnamedAddr 233 // ('constant'|'global') ... 234 case lltok::kw_private: // OptionalLinkage 235 case lltok::kw_internal: // OptionalLinkage 236 case lltok::kw_weak: // OptionalLinkage 237 case lltok::kw_weak_odr: // OptionalLinkage 238 case lltok::kw_linkonce: // OptionalLinkage 239 case lltok::kw_linkonce_odr: // OptionalLinkage 240 case lltok::kw_appending: // OptionalLinkage 241 case lltok::kw_common: // OptionalLinkage 242 case lltok::kw_extern_weak: // OptionalLinkage 243 case lltok::kw_external: // OptionalLinkage 244 case lltok::kw_default: // OptionalVisibility 245 case lltok::kw_hidden: // OptionalVisibility 246 case lltok::kw_protected: // OptionalVisibility 247 case lltok::kw_dllimport: // OptionalDLLStorageClass 248 case lltok::kw_dllexport: // OptionalDLLStorageClass 249 case lltok::kw_thread_local: // OptionalThreadLocal 250 case lltok::kw_addrspace: // OptionalAddrSpace 251 case lltok::kw_constant: // GlobalType 252 case lltok::kw_global: { // GlobalType 253 unsigned Linkage, Visibility, DLLStorageClass; 254 bool UnnamedAddr; 255 GlobalVariable::ThreadLocalMode TLM; 256 bool HasLinkage; 257 if (ParseOptionalLinkage(Linkage, HasLinkage) || 258 ParseOptionalVisibility(Visibility) || 259 ParseOptionalDLLStorageClass(DLLStorageClass) || 260 ParseOptionalThreadLocal(TLM) || 261 parseOptionalUnnamedAddr(UnnamedAddr) || 262 ParseGlobal("", SMLoc(), Linkage, HasLinkage, Visibility, 263 DLLStorageClass, TLM, UnnamedAddr)) 264 return true; 265 break; 266 } 267 268 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 269 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 270 case lltok::kw_uselistorder_bb: 271 if (ParseUseListOrderBB()) return true; break; 272 } 273 } 274 } 275 276 277 /// toplevelentity 278 /// ::= 'module' 'asm' STRINGCONSTANT 279 bool LLParser::ParseModuleAsm() { 280 assert(Lex.getKind() == lltok::kw_module); 281 Lex.Lex(); 282 283 std::string AsmStr; 284 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 285 ParseStringConstant(AsmStr)) return true; 286 287 M->appendModuleInlineAsm(AsmStr); 288 return false; 289 } 290 291 /// toplevelentity 292 /// ::= 'target' 'triple' '=' STRINGCONSTANT 293 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 294 bool LLParser::ParseTargetDefinition() { 295 assert(Lex.getKind() == lltok::kw_target); 296 std::string Str; 297 switch (Lex.Lex()) { 298 default: return TokError("unknown target property"); 299 case lltok::kw_triple: 300 Lex.Lex(); 301 if (ParseToken(lltok::equal, "expected '=' after target triple") || 302 ParseStringConstant(Str)) 303 return true; 304 M->setTargetTriple(Str); 305 return false; 306 case lltok::kw_datalayout: 307 Lex.Lex(); 308 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 309 ParseStringConstant(Str)) 310 return true; 311 M->setDataLayout(Str); 312 return false; 313 } 314 } 315 316 /// toplevelentity 317 /// ::= 'deplibs' '=' '[' ']' 318 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 319 /// FIXME: Remove in 4.0. Currently parse, but ignore. 320 bool LLParser::ParseDepLibs() { 321 assert(Lex.getKind() == lltok::kw_deplibs); 322 Lex.Lex(); 323 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 324 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 325 return true; 326 327 if (EatIfPresent(lltok::rsquare)) 328 return false; 329 330 do { 331 std::string Str; 332 if (ParseStringConstant(Str)) return true; 333 } while (EatIfPresent(lltok::comma)); 334 335 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 336 } 337 338 /// ParseUnnamedType: 339 /// ::= LocalVarID '=' 'type' type 340 bool LLParser::ParseUnnamedType() { 341 LocTy TypeLoc = Lex.getLoc(); 342 unsigned TypeID = Lex.getUIntVal(); 343 Lex.Lex(); // eat LocalVarID; 344 345 if (ParseToken(lltok::equal, "expected '=' after name") || 346 ParseToken(lltok::kw_type, "expected 'type' after '='")) 347 return true; 348 349 Type *Result = nullptr; 350 if (ParseStructDefinition(TypeLoc, "", 351 NumberedTypes[TypeID], Result)) return true; 352 353 if (!isa<StructType>(Result)) { 354 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 355 if (Entry.first) 356 return Error(TypeLoc, "non-struct types may not be recursive"); 357 Entry.first = Result; 358 Entry.second = SMLoc(); 359 } 360 361 return false; 362 } 363 364 365 /// toplevelentity 366 /// ::= LocalVar '=' 'type' type 367 bool LLParser::ParseNamedType() { 368 std::string Name = Lex.getStrVal(); 369 LocTy NameLoc = Lex.getLoc(); 370 Lex.Lex(); // eat LocalVar. 371 372 if (ParseToken(lltok::equal, "expected '=' after name") || 373 ParseToken(lltok::kw_type, "expected 'type' after name")) 374 return true; 375 376 Type *Result = nullptr; 377 if (ParseStructDefinition(NameLoc, Name, 378 NamedTypes[Name], Result)) return true; 379 380 if (!isa<StructType>(Result)) { 381 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 382 if (Entry.first) 383 return Error(NameLoc, "non-struct types may not be recursive"); 384 Entry.first = Result; 385 Entry.second = SMLoc(); 386 } 387 388 return false; 389 } 390 391 392 /// toplevelentity 393 /// ::= 'declare' FunctionHeader 394 bool LLParser::ParseDeclare() { 395 assert(Lex.getKind() == lltok::kw_declare); 396 Lex.Lex(); 397 398 Function *F; 399 return ParseFunctionHeader(F, false); 400 } 401 402 /// toplevelentity 403 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 404 bool LLParser::ParseDefine() { 405 assert(Lex.getKind() == lltok::kw_define); 406 Lex.Lex(); 407 408 Function *F; 409 return ParseFunctionHeader(F, true) || 410 ParseOptionalFunctionMetadata(*F) || 411 ParseFunctionBody(*F); 412 } 413 414 /// ParseGlobalType 415 /// ::= 'constant' 416 /// ::= 'global' 417 bool LLParser::ParseGlobalType(bool &IsConstant) { 418 if (Lex.getKind() == lltok::kw_constant) 419 IsConstant = true; 420 else if (Lex.getKind() == lltok::kw_global) 421 IsConstant = false; 422 else { 423 IsConstant = false; 424 return TokError("expected 'global' or 'constant'"); 425 } 426 Lex.Lex(); 427 return false; 428 } 429 430 /// ParseUnnamedGlobal: 431 /// OptionalVisibility ALIAS ... 432 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass 433 /// ... -> global variable 434 /// GlobalID '=' OptionalVisibility ALIAS ... 435 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 436 /// ... -> global variable 437 bool LLParser::ParseUnnamedGlobal() { 438 unsigned VarID = NumberedVals.size(); 439 std::string Name; 440 LocTy NameLoc = Lex.getLoc(); 441 442 // Handle the GlobalID form. 443 if (Lex.getKind() == lltok::GlobalID) { 444 if (Lex.getUIntVal() != VarID) 445 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 446 Twine(VarID) + "'"); 447 Lex.Lex(); // eat GlobalID; 448 449 if (ParseToken(lltok::equal, "expected '=' after name")) 450 return true; 451 } 452 453 bool HasLinkage; 454 unsigned Linkage, Visibility, DLLStorageClass; 455 GlobalVariable::ThreadLocalMode TLM; 456 bool UnnamedAddr; 457 if (ParseOptionalLinkage(Linkage, HasLinkage) || 458 ParseOptionalVisibility(Visibility) || 459 ParseOptionalDLLStorageClass(DLLStorageClass) || 460 ParseOptionalThreadLocal(TLM) || 461 parseOptionalUnnamedAddr(UnnamedAddr)) 462 return true; 463 464 if (Lex.getKind() != lltok::kw_alias) 465 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 466 DLLStorageClass, TLM, UnnamedAddr); 467 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM, 468 UnnamedAddr); 469 } 470 471 /// ParseNamedGlobal: 472 /// GlobalVar '=' OptionalVisibility ALIAS ... 473 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 474 /// ... -> global variable 475 bool LLParser::ParseNamedGlobal() { 476 assert(Lex.getKind() == lltok::GlobalVar); 477 LocTy NameLoc = Lex.getLoc(); 478 std::string Name = Lex.getStrVal(); 479 Lex.Lex(); 480 481 bool HasLinkage; 482 unsigned Linkage, Visibility, DLLStorageClass; 483 GlobalVariable::ThreadLocalMode TLM; 484 bool UnnamedAddr; 485 if (ParseToken(lltok::equal, "expected '=' in global variable") || 486 ParseOptionalLinkage(Linkage, HasLinkage) || 487 ParseOptionalVisibility(Visibility) || 488 ParseOptionalDLLStorageClass(DLLStorageClass) || 489 ParseOptionalThreadLocal(TLM) || 490 parseOptionalUnnamedAddr(UnnamedAddr)) 491 return true; 492 493 if (Lex.getKind() != lltok::kw_alias) 494 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 495 DLLStorageClass, TLM, UnnamedAddr); 496 497 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM, 498 UnnamedAddr); 499 } 500 501 bool LLParser::parseComdat() { 502 assert(Lex.getKind() == lltok::ComdatVar); 503 std::string Name = Lex.getStrVal(); 504 LocTy NameLoc = Lex.getLoc(); 505 Lex.Lex(); 506 507 if (ParseToken(lltok::equal, "expected '=' here")) 508 return true; 509 510 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 511 return TokError("expected comdat type"); 512 513 Comdat::SelectionKind SK; 514 switch (Lex.getKind()) { 515 default: 516 return TokError("unknown selection kind"); 517 case lltok::kw_any: 518 SK = Comdat::Any; 519 break; 520 case lltok::kw_exactmatch: 521 SK = Comdat::ExactMatch; 522 break; 523 case lltok::kw_largest: 524 SK = Comdat::Largest; 525 break; 526 case lltok::kw_noduplicates: 527 SK = Comdat::NoDuplicates; 528 break; 529 case lltok::kw_samesize: 530 SK = Comdat::SameSize; 531 break; 532 } 533 Lex.Lex(); 534 535 // See if the comdat was forward referenced, if so, use the comdat. 536 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 537 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 538 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 539 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 540 541 Comdat *C; 542 if (I != ComdatSymTab.end()) 543 C = &I->second; 544 else 545 C = M->getOrInsertComdat(Name); 546 C->setSelectionKind(SK); 547 548 return false; 549 } 550 551 // MDString: 552 // ::= '!' STRINGCONSTANT 553 bool LLParser::ParseMDString(MDString *&Result) { 554 std::string Str; 555 if (ParseStringConstant(Str)) return true; 556 llvm::UpgradeMDStringConstant(Str); 557 Result = MDString::get(Context, Str); 558 return false; 559 } 560 561 // MDNode: 562 // ::= '!' MDNodeNumber 563 bool LLParser::ParseMDNodeID(MDNode *&Result) { 564 // !{ ..., !42, ... } 565 unsigned MID = 0; 566 if (ParseUInt32(MID)) 567 return true; 568 569 // If not a forward reference, just return it now. 570 if (NumberedMetadata.count(MID)) { 571 Result = NumberedMetadata[MID]; 572 return false; 573 } 574 575 // Otherwise, create MDNode forward reference. 576 auto &FwdRef = ForwardRefMDNodes[MID]; 577 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), Lex.getLoc()); 578 579 Result = FwdRef.first.get(); 580 NumberedMetadata[MID].reset(Result); 581 return false; 582 } 583 584 /// ParseNamedMetadata: 585 /// !foo = !{ !1, !2 } 586 bool LLParser::ParseNamedMetadata() { 587 assert(Lex.getKind() == lltok::MetadataVar); 588 std::string Name = Lex.getStrVal(); 589 Lex.Lex(); 590 591 if (ParseToken(lltok::equal, "expected '=' here") || 592 ParseToken(lltok::exclaim, "Expected '!' here") || 593 ParseToken(lltok::lbrace, "Expected '{' here")) 594 return true; 595 596 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 597 if (Lex.getKind() != lltok::rbrace) 598 do { 599 if (ParseToken(lltok::exclaim, "Expected '!' here")) 600 return true; 601 602 MDNode *N = nullptr; 603 if (ParseMDNodeID(N)) return true; 604 NMD->addOperand(N); 605 } while (EatIfPresent(lltok::comma)); 606 607 return ParseToken(lltok::rbrace, "expected end of metadata node"); 608 } 609 610 /// ParseStandaloneMetadata: 611 /// !42 = !{...} 612 bool LLParser::ParseStandaloneMetadata() { 613 assert(Lex.getKind() == lltok::exclaim); 614 Lex.Lex(); 615 unsigned MetadataID = 0; 616 617 MDNode *Init; 618 if (ParseUInt32(MetadataID) || 619 ParseToken(lltok::equal, "expected '=' here")) 620 return true; 621 622 // Detect common error, from old metadata syntax. 623 if (Lex.getKind() == lltok::Type) 624 return TokError("unexpected type in metadata definition"); 625 626 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 627 if (Lex.getKind() == lltok::MetadataVar) { 628 if (ParseSpecializedMDNode(Init, IsDistinct)) 629 return true; 630 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 631 ParseMDTuple(Init, IsDistinct)) 632 return true; 633 634 // See if this was forward referenced, if so, handle it. 635 auto FI = ForwardRefMDNodes.find(MetadataID); 636 if (FI != ForwardRefMDNodes.end()) { 637 FI->second.first->replaceAllUsesWith(Init); 638 ForwardRefMDNodes.erase(FI); 639 640 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 641 } else { 642 if (NumberedMetadata.count(MetadataID)) 643 return TokError("Metadata id is already used"); 644 NumberedMetadata[MetadataID].reset(Init); 645 } 646 647 return false; 648 } 649 650 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 651 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 652 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 653 } 654 655 /// ParseAlias: 656 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility 657 /// OptionalDLLStorageClass OptionalThreadLocal 658 /// OptionalUnnamedAddr 'alias' Aliasee 659 /// 660 /// Aliasee 661 /// ::= TypeAndValue 662 /// 663 /// Everything through OptionalUnnamedAddr has already been parsed. 664 /// 665 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, unsigned L, 666 unsigned Visibility, unsigned DLLStorageClass, 667 GlobalVariable::ThreadLocalMode TLM, 668 bool UnnamedAddr) { 669 assert(Lex.getKind() == lltok::kw_alias); 670 Lex.Lex(); 671 672 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 673 674 if(!GlobalAlias::isValidLinkage(Linkage)) 675 return Error(NameLoc, "invalid linkage type for alias"); 676 677 if (!isValidVisibilityForLinkage(Visibility, L)) 678 return Error(NameLoc, 679 "symbol with local linkage must have default visibility"); 680 681 Type *Ty; 682 LocTy ExplicitTypeLoc = Lex.getLoc(); 683 if (ParseType(Ty) || 684 ParseToken(lltok::comma, "expected comma after alias's type")) 685 return true; 686 687 Constant *Aliasee; 688 LocTy AliaseeLoc = Lex.getLoc(); 689 if (Lex.getKind() != lltok::kw_bitcast && 690 Lex.getKind() != lltok::kw_getelementptr && 691 Lex.getKind() != lltok::kw_addrspacecast && 692 Lex.getKind() != lltok::kw_inttoptr) { 693 if (ParseGlobalTypeAndValue(Aliasee)) 694 return true; 695 } else { 696 // The bitcast dest type is not present, it is implied by the dest type. 697 ValID ID; 698 if (ParseValID(ID)) 699 return true; 700 if (ID.Kind != ValID::t_Constant) 701 return Error(AliaseeLoc, "invalid aliasee"); 702 Aliasee = ID.ConstantVal; 703 } 704 705 Type *AliaseeType = Aliasee->getType(); 706 auto *PTy = dyn_cast<PointerType>(AliaseeType); 707 if (!PTy) 708 return Error(AliaseeLoc, "An alias must have pointer type"); 709 unsigned AddrSpace = PTy->getAddressSpace(); 710 711 if (Ty != PTy->getElementType()) 712 return Error( 713 ExplicitTypeLoc, 714 "explicit pointee type doesn't match operand's pointee type"); 715 716 GlobalValue *GVal = nullptr; 717 718 // See if the alias was forward referenced, if so, prepare to replace the 719 // forward reference. 720 if (!Name.empty()) { 721 GVal = M->getNamedValue(Name); 722 if (GVal) { 723 if (!ForwardRefVals.erase(Name)) 724 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 725 } 726 } else { 727 auto I = ForwardRefValIDs.find(NumberedVals.size()); 728 if (I != ForwardRefValIDs.end()) { 729 GVal = I->second.first; 730 ForwardRefValIDs.erase(I); 731 } 732 } 733 734 // Okay, create the alias but do not insert it into the module yet. 735 std::unique_ptr<GlobalAlias> GA( 736 GlobalAlias::create(Ty, AddrSpace, (GlobalValue::LinkageTypes)Linkage, 737 Name, Aliasee, /*Parent*/ nullptr)); 738 GA->setThreadLocalMode(TLM); 739 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 740 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 741 GA->setUnnamedAddr(UnnamedAddr); 742 743 if (Name.empty()) 744 NumberedVals.push_back(GA.get()); 745 746 if (GVal) { 747 // Verify that types agree. 748 if (GVal->getType() != GA->getType()) 749 return Error( 750 ExplicitTypeLoc, 751 "forward reference and definition of alias have different types"); 752 753 // If they agree, just RAUW the old value with the alias and remove the 754 // forward ref info. 755 GVal->replaceAllUsesWith(GA.get()); 756 GVal->eraseFromParent(); 757 } 758 759 // Insert into the module, we know its name won't collide now. 760 M->getAliasList().push_back(GA.get()); 761 assert(GA->getName() == Name && "Should not be a name conflict!"); 762 763 // The module owns this now 764 GA.release(); 765 766 return false; 767 } 768 769 /// ParseGlobal 770 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 771 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 772 /// OptionalExternallyInitialized GlobalType Type Const 773 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 774 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 775 /// OptionalExternallyInitialized GlobalType Type Const 776 /// 777 /// Everything up to and including OptionalUnnamedAddr has been parsed 778 /// already. 779 /// 780 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 781 unsigned Linkage, bool HasLinkage, 782 unsigned Visibility, unsigned DLLStorageClass, 783 GlobalVariable::ThreadLocalMode TLM, 784 bool UnnamedAddr) { 785 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 786 return Error(NameLoc, 787 "symbol with local linkage must have default visibility"); 788 789 unsigned AddrSpace; 790 bool IsConstant, IsExternallyInitialized; 791 LocTy IsExternallyInitializedLoc; 792 LocTy TyLoc; 793 794 Type *Ty = nullptr; 795 if (ParseOptionalAddrSpace(AddrSpace) || 796 ParseOptionalToken(lltok::kw_externally_initialized, 797 IsExternallyInitialized, 798 &IsExternallyInitializedLoc) || 799 ParseGlobalType(IsConstant) || 800 ParseType(Ty, TyLoc)) 801 return true; 802 803 // If the linkage is specified and is external, then no initializer is 804 // present. 805 Constant *Init = nullptr; 806 if (!HasLinkage || (Linkage != GlobalValue::ExternalWeakLinkage && 807 Linkage != GlobalValue::ExternalLinkage)) { 808 if (ParseGlobalValue(Ty, Init)) 809 return true; 810 } 811 812 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 813 return Error(TyLoc, "invalid type for global variable"); 814 815 GlobalValue *GVal = nullptr; 816 817 // See if the global was forward referenced, if so, use the global. 818 if (!Name.empty()) { 819 GVal = M->getNamedValue(Name); 820 if (GVal) { 821 if (!ForwardRefVals.erase(Name)) 822 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 823 } 824 } else { 825 auto I = ForwardRefValIDs.find(NumberedVals.size()); 826 if (I != ForwardRefValIDs.end()) { 827 GVal = I->second.first; 828 ForwardRefValIDs.erase(I); 829 } 830 } 831 832 GlobalVariable *GV; 833 if (!GVal) { 834 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 835 Name, nullptr, GlobalVariable::NotThreadLocal, 836 AddrSpace); 837 } else { 838 if (GVal->getValueType() != Ty) 839 return Error(TyLoc, 840 "forward reference and definition of global have different types"); 841 842 GV = cast<GlobalVariable>(GVal); 843 844 // Move the forward-reference to the correct spot in the module. 845 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 846 } 847 848 if (Name.empty()) 849 NumberedVals.push_back(GV); 850 851 // Set the parsed properties on the global. 852 if (Init) 853 GV->setInitializer(Init); 854 GV->setConstant(IsConstant); 855 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 856 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 857 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 858 GV->setExternallyInitialized(IsExternallyInitialized); 859 GV->setThreadLocalMode(TLM); 860 GV->setUnnamedAddr(UnnamedAddr); 861 862 // Parse attributes on the global. 863 while (Lex.getKind() == lltok::comma) { 864 Lex.Lex(); 865 866 if (Lex.getKind() == lltok::kw_section) { 867 Lex.Lex(); 868 GV->setSection(Lex.getStrVal()); 869 if (ParseToken(lltok::StringConstant, "expected global section string")) 870 return true; 871 } else if (Lex.getKind() == lltok::kw_align) { 872 unsigned Alignment; 873 if (ParseOptionalAlignment(Alignment)) return true; 874 GV->setAlignment(Alignment); 875 } else { 876 Comdat *C; 877 if (parseOptionalComdat(Name, C)) 878 return true; 879 if (C) 880 GV->setComdat(C); 881 else 882 return TokError("unknown global variable property!"); 883 } 884 } 885 886 return false; 887 } 888 889 /// ParseUnnamedAttrGrp 890 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 891 bool LLParser::ParseUnnamedAttrGrp() { 892 assert(Lex.getKind() == lltok::kw_attributes); 893 LocTy AttrGrpLoc = Lex.getLoc(); 894 Lex.Lex(); 895 896 if (Lex.getKind() != lltok::AttrGrpID) 897 return TokError("expected attribute group id"); 898 899 unsigned VarID = Lex.getUIntVal(); 900 std::vector<unsigned> unused; 901 LocTy BuiltinLoc; 902 Lex.Lex(); 903 904 if (ParseToken(lltok::equal, "expected '=' here") || 905 ParseToken(lltok::lbrace, "expected '{' here") || 906 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 907 BuiltinLoc) || 908 ParseToken(lltok::rbrace, "expected end of attribute group")) 909 return true; 910 911 if (!NumberedAttrBuilders[VarID].hasAttributes()) 912 return Error(AttrGrpLoc, "attribute group has no attributes"); 913 914 return false; 915 } 916 917 /// ParseFnAttributeValuePairs 918 /// ::= <attr> | <attr> '=' <value> 919 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 920 std::vector<unsigned> &FwdRefAttrGrps, 921 bool inAttrGrp, LocTy &BuiltinLoc) { 922 bool HaveError = false; 923 924 B.clear(); 925 926 while (true) { 927 lltok::Kind Token = Lex.getKind(); 928 if (Token == lltok::kw_builtin) 929 BuiltinLoc = Lex.getLoc(); 930 switch (Token) { 931 default: 932 if (!inAttrGrp) return HaveError; 933 return Error(Lex.getLoc(), "unterminated attribute group"); 934 case lltok::rbrace: 935 // Finished. 936 return false; 937 938 case lltok::AttrGrpID: { 939 // Allow a function to reference an attribute group: 940 // 941 // define void @foo() #1 { ... } 942 if (inAttrGrp) 943 HaveError |= 944 Error(Lex.getLoc(), 945 "cannot have an attribute group reference in an attribute group"); 946 947 unsigned AttrGrpNum = Lex.getUIntVal(); 948 if (inAttrGrp) break; 949 950 // Save the reference to the attribute group. We'll fill it in later. 951 FwdRefAttrGrps.push_back(AttrGrpNum); 952 break; 953 } 954 // Target-dependent attributes: 955 case lltok::StringConstant: { 956 if (ParseStringAttribute(B)) 957 return true; 958 continue; 959 } 960 961 // Target-independent attributes: 962 case lltok::kw_align: { 963 // As a hack, we allow function alignment to be initially parsed as an 964 // attribute on a function declaration/definition or added to an attribute 965 // group and later moved to the alignment field. 966 unsigned Alignment; 967 if (inAttrGrp) { 968 Lex.Lex(); 969 if (ParseToken(lltok::equal, "expected '=' here") || 970 ParseUInt32(Alignment)) 971 return true; 972 } else { 973 if (ParseOptionalAlignment(Alignment)) 974 return true; 975 } 976 B.addAlignmentAttr(Alignment); 977 continue; 978 } 979 case lltok::kw_alignstack: { 980 unsigned Alignment; 981 if (inAttrGrp) { 982 Lex.Lex(); 983 if (ParseToken(lltok::equal, "expected '=' here") || 984 ParseUInt32(Alignment)) 985 return true; 986 } else { 987 if (ParseOptionalStackAlignment(Alignment)) 988 return true; 989 } 990 B.addStackAlignmentAttr(Alignment); 991 continue; 992 } 993 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 994 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 995 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 996 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 997 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 998 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 999 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1000 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1001 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1002 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1003 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1004 case lltok::kw_noimplicitfloat: 1005 B.addAttribute(Attribute::NoImplicitFloat); break; 1006 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1007 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1008 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1009 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1010 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1011 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1012 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1013 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1014 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1015 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1016 case lltok::kw_returns_twice: 1017 B.addAttribute(Attribute::ReturnsTwice); break; 1018 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1019 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1020 case lltok::kw_sspstrong: 1021 B.addAttribute(Attribute::StackProtectStrong); break; 1022 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1023 case lltok::kw_sanitize_address: 1024 B.addAttribute(Attribute::SanitizeAddress); break; 1025 case lltok::kw_sanitize_thread: 1026 B.addAttribute(Attribute::SanitizeThread); break; 1027 case lltok::kw_sanitize_memory: 1028 B.addAttribute(Attribute::SanitizeMemory); break; 1029 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1030 1031 // Error handling. 1032 case lltok::kw_inreg: 1033 case lltok::kw_signext: 1034 case lltok::kw_zeroext: 1035 HaveError |= 1036 Error(Lex.getLoc(), 1037 "invalid use of attribute on a function"); 1038 break; 1039 case lltok::kw_byval: 1040 case lltok::kw_dereferenceable: 1041 case lltok::kw_dereferenceable_or_null: 1042 case lltok::kw_inalloca: 1043 case lltok::kw_nest: 1044 case lltok::kw_noalias: 1045 case lltok::kw_nocapture: 1046 case lltok::kw_nonnull: 1047 case lltok::kw_returned: 1048 case lltok::kw_sret: 1049 HaveError |= 1050 Error(Lex.getLoc(), 1051 "invalid use of parameter-only attribute on a function"); 1052 break; 1053 } 1054 1055 Lex.Lex(); 1056 } 1057 } 1058 1059 //===----------------------------------------------------------------------===// 1060 // GlobalValue Reference/Resolution Routines. 1061 //===----------------------------------------------------------------------===// 1062 1063 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1064 const std::string &Name) { 1065 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1066 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1067 else 1068 return new GlobalVariable(*M, PTy->getElementType(), false, 1069 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1070 nullptr, GlobalVariable::NotThreadLocal, 1071 PTy->getAddressSpace()); 1072 } 1073 1074 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1075 /// forward reference record if needed. This can return null if the value 1076 /// exists but does not have the right type. 1077 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1078 LocTy Loc) { 1079 PointerType *PTy = dyn_cast<PointerType>(Ty); 1080 if (!PTy) { 1081 Error(Loc, "global variable reference must have pointer type"); 1082 return nullptr; 1083 } 1084 1085 // Look this name up in the normal function symbol table. 1086 GlobalValue *Val = 1087 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1088 1089 // If this is a forward reference for the value, see if we already created a 1090 // forward ref record. 1091 if (!Val) { 1092 auto I = ForwardRefVals.find(Name); 1093 if (I != ForwardRefVals.end()) 1094 Val = I->second.first; 1095 } 1096 1097 // If we have the value in the symbol table or fwd-ref table, return it. 1098 if (Val) { 1099 if (Val->getType() == Ty) return Val; 1100 Error(Loc, "'@" + Name + "' defined with type '" + 1101 getTypeString(Val->getType()) + "'"); 1102 return nullptr; 1103 } 1104 1105 // Otherwise, create a new forward reference for this value and remember it. 1106 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1107 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1108 return FwdVal; 1109 } 1110 1111 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1112 PointerType *PTy = dyn_cast<PointerType>(Ty); 1113 if (!PTy) { 1114 Error(Loc, "global variable reference must have pointer type"); 1115 return nullptr; 1116 } 1117 1118 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1119 1120 // If this is a forward reference for the value, see if we already created a 1121 // forward ref record. 1122 if (!Val) { 1123 auto I = ForwardRefValIDs.find(ID); 1124 if (I != ForwardRefValIDs.end()) 1125 Val = I->second.first; 1126 } 1127 1128 // If we have the value in the symbol table or fwd-ref table, return it. 1129 if (Val) { 1130 if (Val->getType() == Ty) return Val; 1131 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1132 getTypeString(Val->getType()) + "'"); 1133 return nullptr; 1134 } 1135 1136 // Otherwise, create a new forward reference for this value and remember it. 1137 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1138 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1139 return FwdVal; 1140 } 1141 1142 1143 //===----------------------------------------------------------------------===// 1144 // Comdat Reference/Resolution Routines. 1145 //===----------------------------------------------------------------------===// 1146 1147 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1148 // Look this name up in the comdat symbol table. 1149 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1150 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1151 if (I != ComdatSymTab.end()) 1152 return &I->second; 1153 1154 // Otherwise, create a new forward reference for this value and remember it. 1155 Comdat *C = M->getOrInsertComdat(Name); 1156 ForwardRefComdats[Name] = Loc; 1157 return C; 1158 } 1159 1160 1161 //===----------------------------------------------------------------------===// 1162 // Helper Routines. 1163 //===----------------------------------------------------------------------===// 1164 1165 /// ParseToken - If the current token has the specified kind, eat it and return 1166 /// success. Otherwise, emit the specified error and return failure. 1167 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1168 if (Lex.getKind() != T) 1169 return TokError(ErrMsg); 1170 Lex.Lex(); 1171 return false; 1172 } 1173 1174 /// ParseStringConstant 1175 /// ::= StringConstant 1176 bool LLParser::ParseStringConstant(std::string &Result) { 1177 if (Lex.getKind() != lltok::StringConstant) 1178 return TokError("expected string constant"); 1179 Result = Lex.getStrVal(); 1180 Lex.Lex(); 1181 return false; 1182 } 1183 1184 /// ParseUInt32 1185 /// ::= uint32 1186 bool LLParser::ParseUInt32(unsigned &Val) { 1187 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1188 return TokError("expected integer"); 1189 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1190 if (Val64 != unsigned(Val64)) 1191 return TokError("expected 32-bit integer (too large)"); 1192 Val = Val64; 1193 Lex.Lex(); 1194 return false; 1195 } 1196 1197 /// ParseUInt64 1198 /// ::= uint64 1199 bool LLParser::ParseUInt64(uint64_t &Val) { 1200 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1201 return TokError("expected integer"); 1202 Val = Lex.getAPSIntVal().getLimitedValue(); 1203 Lex.Lex(); 1204 return false; 1205 } 1206 1207 /// ParseTLSModel 1208 /// := 'localdynamic' 1209 /// := 'initialexec' 1210 /// := 'localexec' 1211 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1212 switch (Lex.getKind()) { 1213 default: 1214 return TokError("expected localdynamic, initialexec or localexec"); 1215 case lltok::kw_localdynamic: 1216 TLM = GlobalVariable::LocalDynamicTLSModel; 1217 break; 1218 case lltok::kw_initialexec: 1219 TLM = GlobalVariable::InitialExecTLSModel; 1220 break; 1221 case lltok::kw_localexec: 1222 TLM = GlobalVariable::LocalExecTLSModel; 1223 break; 1224 } 1225 1226 Lex.Lex(); 1227 return false; 1228 } 1229 1230 /// ParseOptionalThreadLocal 1231 /// := /*empty*/ 1232 /// := 'thread_local' 1233 /// := 'thread_local' '(' tlsmodel ')' 1234 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1235 TLM = GlobalVariable::NotThreadLocal; 1236 if (!EatIfPresent(lltok::kw_thread_local)) 1237 return false; 1238 1239 TLM = GlobalVariable::GeneralDynamicTLSModel; 1240 if (Lex.getKind() == lltok::lparen) { 1241 Lex.Lex(); 1242 return ParseTLSModel(TLM) || 1243 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1244 } 1245 return false; 1246 } 1247 1248 /// ParseOptionalAddrSpace 1249 /// := /*empty*/ 1250 /// := 'addrspace' '(' uint32 ')' 1251 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1252 AddrSpace = 0; 1253 if (!EatIfPresent(lltok::kw_addrspace)) 1254 return false; 1255 return ParseToken(lltok::lparen, "expected '(' in address space") || 1256 ParseUInt32(AddrSpace) || 1257 ParseToken(lltok::rparen, "expected ')' in address space"); 1258 } 1259 1260 /// ParseStringAttribute 1261 /// := StringConstant 1262 /// := StringConstant '=' StringConstant 1263 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1264 std::string Attr = Lex.getStrVal(); 1265 Lex.Lex(); 1266 std::string Val; 1267 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1268 return true; 1269 B.addAttribute(Attr, Val); 1270 return false; 1271 } 1272 1273 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1274 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1275 bool HaveError = false; 1276 1277 B.clear(); 1278 1279 while (1) { 1280 lltok::Kind Token = Lex.getKind(); 1281 switch (Token) { 1282 default: // End of attributes. 1283 return HaveError; 1284 case lltok::StringConstant: { 1285 if (ParseStringAttribute(B)) 1286 return true; 1287 continue; 1288 } 1289 case lltok::kw_align: { 1290 unsigned Alignment; 1291 if (ParseOptionalAlignment(Alignment)) 1292 return true; 1293 B.addAlignmentAttr(Alignment); 1294 continue; 1295 } 1296 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1297 case lltok::kw_dereferenceable: { 1298 uint64_t Bytes; 1299 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1300 return true; 1301 B.addDereferenceableAttr(Bytes); 1302 continue; 1303 } 1304 case lltok::kw_dereferenceable_or_null: { 1305 uint64_t Bytes; 1306 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1307 return true; 1308 B.addDereferenceableOrNullAttr(Bytes); 1309 continue; 1310 } 1311 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1312 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1313 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1314 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1315 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1316 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1317 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1318 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1319 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1320 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1321 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1322 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1323 1324 case lltok::kw_alignstack: 1325 case lltok::kw_alwaysinline: 1326 case lltok::kw_argmemonly: 1327 case lltok::kw_builtin: 1328 case lltok::kw_inlinehint: 1329 case lltok::kw_jumptable: 1330 case lltok::kw_minsize: 1331 case lltok::kw_naked: 1332 case lltok::kw_nobuiltin: 1333 case lltok::kw_noduplicate: 1334 case lltok::kw_noimplicitfloat: 1335 case lltok::kw_noinline: 1336 case lltok::kw_nonlazybind: 1337 case lltok::kw_noredzone: 1338 case lltok::kw_noreturn: 1339 case lltok::kw_nounwind: 1340 case lltok::kw_optnone: 1341 case lltok::kw_optsize: 1342 case lltok::kw_returns_twice: 1343 case lltok::kw_sanitize_address: 1344 case lltok::kw_sanitize_memory: 1345 case lltok::kw_sanitize_thread: 1346 case lltok::kw_ssp: 1347 case lltok::kw_sspreq: 1348 case lltok::kw_sspstrong: 1349 case lltok::kw_safestack: 1350 case lltok::kw_uwtable: 1351 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1352 break; 1353 } 1354 1355 Lex.Lex(); 1356 } 1357 } 1358 1359 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1360 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1361 bool HaveError = false; 1362 1363 B.clear(); 1364 1365 while (1) { 1366 lltok::Kind Token = Lex.getKind(); 1367 switch (Token) { 1368 default: // End of attributes. 1369 return HaveError; 1370 case lltok::StringConstant: { 1371 if (ParseStringAttribute(B)) 1372 return true; 1373 continue; 1374 } 1375 case lltok::kw_dereferenceable: { 1376 uint64_t Bytes; 1377 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1378 return true; 1379 B.addDereferenceableAttr(Bytes); 1380 continue; 1381 } 1382 case lltok::kw_dereferenceable_or_null: { 1383 uint64_t Bytes; 1384 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1385 return true; 1386 B.addDereferenceableOrNullAttr(Bytes); 1387 continue; 1388 } 1389 case lltok::kw_align: { 1390 unsigned Alignment; 1391 if (ParseOptionalAlignment(Alignment)) 1392 return true; 1393 B.addAlignmentAttr(Alignment); 1394 continue; 1395 } 1396 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1397 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1398 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1399 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1400 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1401 1402 // Error handling. 1403 case lltok::kw_byval: 1404 case lltok::kw_inalloca: 1405 case lltok::kw_nest: 1406 case lltok::kw_nocapture: 1407 case lltok::kw_returned: 1408 case lltok::kw_sret: 1409 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1410 break; 1411 1412 case lltok::kw_alignstack: 1413 case lltok::kw_alwaysinline: 1414 case lltok::kw_argmemonly: 1415 case lltok::kw_builtin: 1416 case lltok::kw_cold: 1417 case lltok::kw_inlinehint: 1418 case lltok::kw_jumptable: 1419 case lltok::kw_minsize: 1420 case lltok::kw_naked: 1421 case lltok::kw_nobuiltin: 1422 case lltok::kw_noduplicate: 1423 case lltok::kw_noimplicitfloat: 1424 case lltok::kw_noinline: 1425 case lltok::kw_nonlazybind: 1426 case lltok::kw_noredzone: 1427 case lltok::kw_noreturn: 1428 case lltok::kw_nounwind: 1429 case lltok::kw_optnone: 1430 case lltok::kw_optsize: 1431 case lltok::kw_returns_twice: 1432 case lltok::kw_sanitize_address: 1433 case lltok::kw_sanitize_memory: 1434 case lltok::kw_sanitize_thread: 1435 case lltok::kw_ssp: 1436 case lltok::kw_sspreq: 1437 case lltok::kw_sspstrong: 1438 case lltok::kw_safestack: 1439 case lltok::kw_uwtable: 1440 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1441 break; 1442 1443 case lltok::kw_readnone: 1444 case lltok::kw_readonly: 1445 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1446 } 1447 1448 Lex.Lex(); 1449 } 1450 } 1451 1452 /// ParseOptionalLinkage 1453 /// ::= /*empty*/ 1454 /// ::= 'private' 1455 /// ::= 'internal' 1456 /// ::= 'weak' 1457 /// ::= 'weak_odr' 1458 /// ::= 'linkonce' 1459 /// ::= 'linkonce_odr' 1460 /// ::= 'available_externally' 1461 /// ::= 'appending' 1462 /// ::= 'common' 1463 /// ::= 'extern_weak' 1464 /// ::= 'external' 1465 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { 1466 HasLinkage = false; 1467 switch (Lex.getKind()) { 1468 default: Res=GlobalValue::ExternalLinkage; return false; 1469 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; 1470 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; 1471 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; 1472 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; 1473 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; 1474 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; 1475 case lltok::kw_available_externally: 1476 Res = GlobalValue::AvailableExternallyLinkage; 1477 break; 1478 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; 1479 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; 1480 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; 1481 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; 1482 } 1483 Lex.Lex(); 1484 HasLinkage = true; 1485 return false; 1486 } 1487 1488 /// ParseOptionalVisibility 1489 /// ::= /*empty*/ 1490 /// ::= 'default' 1491 /// ::= 'hidden' 1492 /// ::= 'protected' 1493 /// 1494 bool LLParser::ParseOptionalVisibility(unsigned &Res) { 1495 switch (Lex.getKind()) { 1496 default: Res = GlobalValue::DefaultVisibility; return false; 1497 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; 1498 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; 1499 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; 1500 } 1501 Lex.Lex(); 1502 return false; 1503 } 1504 1505 /// ParseOptionalDLLStorageClass 1506 /// ::= /*empty*/ 1507 /// ::= 'dllimport' 1508 /// ::= 'dllexport' 1509 /// 1510 bool LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1511 switch (Lex.getKind()) { 1512 default: Res = GlobalValue::DefaultStorageClass; return false; 1513 case lltok::kw_dllimport: Res = GlobalValue::DLLImportStorageClass; break; 1514 case lltok::kw_dllexport: Res = GlobalValue::DLLExportStorageClass; break; 1515 } 1516 Lex.Lex(); 1517 return false; 1518 } 1519 1520 /// ParseOptionalCallingConv 1521 /// ::= /*empty*/ 1522 /// ::= 'ccc' 1523 /// ::= 'fastcc' 1524 /// ::= 'intel_ocl_bicc' 1525 /// ::= 'coldcc' 1526 /// ::= 'x86_stdcallcc' 1527 /// ::= 'x86_fastcallcc' 1528 /// ::= 'x86_thiscallcc' 1529 /// ::= 'x86_vectorcallcc' 1530 /// ::= 'arm_apcscc' 1531 /// ::= 'arm_aapcscc' 1532 /// ::= 'arm_aapcs_vfpcc' 1533 /// ::= 'msp430_intrcc' 1534 /// ::= 'ptx_kernel' 1535 /// ::= 'ptx_device' 1536 /// ::= 'spir_func' 1537 /// ::= 'spir_kernel' 1538 /// ::= 'x86_64_sysvcc' 1539 /// ::= 'x86_64_win64cc' 1540 /// ::= 'webkit_jscc' 1541 /// ::= 'anyregcc' 1542 /// ::= 'preserve_mostcc' 1543 /// ::= 'preserve_allcc' 1544 /// ::= 'ghccc' 1545 /// ::= 'hhvmcc' 1546 /// ::= 'hhvm_ccc' 1547 /// ::= 'cxx_fast_tlscc' 1548 /// ::= 'cc' UINT 1549 /// 1550 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1551 switch (Lex.getKind()) { 1552 default: CC = CallingConv::C; return false; 1553 case lltok::kw_ccc: CC = CallingConv::C; break; 1554 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1555 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1556 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1557 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1558 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1559 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1560 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1561 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1562 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1563 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1564 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1565 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1566 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1567 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1568 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1569 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1570 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break; 1571 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1572 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1573 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1574 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1575 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1576 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1577 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1578 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1579 case lltok::kw_cc: { 1580 Lex.Lex(); 1581 return ParseUInt32(CC); 1582 } 1583 } 1584 1585 Lex.Lex(); 1586 return false; 1587 } 1588 1589 /// ParseMetadataAttachment 1590 /// ::= !dbg !42 1591 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1592 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1593 1594 std::string Name = Lex.getStrVal(); 1595 Kind = M->getMDKindID(Name); 1596 Lex.Lex(); 1597 1598 return ParseMDNode(MD); 1599 } 1600 1601 /// ParseInstructionMetadata 1602 /// ::= !dbg !42 (',' !dbg !57)* 1603 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1604 do { 1605 if (Lex.getKind() != lltok::MetadataVar) 1606 return TokError("expected metadata after comma"); 1607 1608 unsigned MDK; 1609 MDNode *N; 1610 if (ParseMetadataAttachment(MDK, N)) 1611 return true; 1612 1613 Inst.setMetadata(MDK, N); 1614 if (MDK == LLVMContext::MD_tbaa) 1615 InstsWithTBAATag.push_back(&Inst); 1616 1617 // If this is the end of the list, we're done. 1618 } while (EatIfPresent(lltok::comma)); 1619 return false; 1620 } 1621 1622 /// ParseOptionalFunctionMetadata 1623 /// ::= (!dbg !57)* 1624 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1625 while (Lex.getKind() == lltok::MetadataVar) { 1626 unsigned MDK; 1627 MDNode *N; 1628 if (ParseMetadataAttachment(MDK, N)) 1629 return true; 1630 1631 F.setMetadata(MDK, N); 1632 } 1633 return false; 1634 } 1635 1636 /// ParseOptionalAlignment 1637 /// ::= /* empty */ 1638 /// ::= 'align' 4 1639 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1640 Alignment = 0; 1641 if (!EatIfPresent(lltok::kw_align)) 1642 return false; 1643 LocTy AlignLoc = Lex.getLoc(); 1644 if (ParseUInt32(Alignment)) return true; 1645 if (!isPowerOf2_32(Alignment)) 1646 return Error(AlignLoc, "alignment is not a power of two"); 1647 if (Alignment > Value::MaximumAlignment) 1648 return Error(AlignLoc, "huge alignments are not supported yet"); 1649 return false; 1650 } 1651 1652 /// ParseOptionalDerefAttrBytes 1653 /// ::= /* empty */ 1654 /// ::= AttrKind '(' 4 ')' 1655 /// 1656 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1657 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1658 uint64_t &Bytes) { 1659 assert((AttrKind == lltok::kw_dereferenceable || 1660 AttrKind == lltok::kw_dereferenceable_or_null) && 1661 "contract!"); 1662 1663 Bytes = 0; 1664 if (!EatIfPresent(AttrKind)) 1665 return false; 1666 LocTy ParenLoc = Lex.getLoc(); 1667 if (!EatIfPresent(lltok::lparen)) 1668 return Error(ParenLoc, "expected '('"); 1669 LocTy DerefLoc = Lex.getLoc(); 1670 if (ParseUInt64(Bytes)) return true; 1671 ParenLoc = Lex.getLoc(); 1672 if (!EatIfPresent(lltok::rparen)) 1673 return Error(ParenLoc, "expected ')'"); 1674 if (!Bytes) 1675 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1676 return false; 1677 } 1678 1679 /// ParseOptionalCommaAlign 1680 /// ::= 1681 /// ::= ',' align 4 1682 /// 1683 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1684 /// end. 1685 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1686 bool &AteExtraComma) { 1687 AteExtraComma = false; 1688 while (EatIfPresent(lltok::comma)) { 1689 // Metadata at the end is an early exit. 1690 if (Lex.getKind() == lltok::MetadataVar) { 1691 AteExtraComma = true; 1692 return false; 1693 } 1694 1695 if (Lex.getKind() != lltok::kw_align) 1696 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1697 1698 if (ParseOptionalAlignment(Alignment)) return true; 1699 } 1700 1701 return false; 1702 } 1703 1704 /// ParseScopeAndOrdering 1705 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1706 /// else: ::= 1707 /// 1708 /// This sets Scope and Ordering to the parsed values. 1709 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1710 AtomicOrdering &Ordering) { 1711 if (!isAtomic) 1712 return false; 1713 1714 Scope = CrossThread; 1715 if (EatIfPresent(lltok::kw_singlethread)) 1716 Scope = SingleThread; 1717 1718 return ParseOrdering(Ordering); 1719 } 1720 1721 /// ParseOrdering 1722 /// ::= AtomicOrdering 1723 /// 1724 /// This sets Ordering to the parsed value. 1725 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 1726 switch (Lex.getKind()) { 1727 default: return TokError("Expected ordering on atomic instruction"); 1728 case lltok::kw_unordered: Ordering = Unordered; break; 1729 case lltok::kw_monotonic: Ordering = Monotonic; break; 1730 case lltok::kw_acquire: Ordering = Acquire; break; 1731 case lltok::kw_release: Ordering = Release; break; 1732 case lltok::kw_acq_rel: Ordering = AcquireRelease; break; 1733 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break; 1734 } 1735 Lex.Lex(); 1736 return false; 1737 } 1738 1739 /// ParseOptionalStackAlignment 1740 /// ::= /* empty */ 1741 /// ::= 'alignstack' '(' 4 ')' 1742 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1743 Alignment = 0; 1744 if (!EatIfPresent(lltok::kw_alignstack)) 1745 return false; 1746 LocTy ParenLoc = Lex.getLoc(); 1747 if (!EatIfPresent(lltok::lparen)) 1748 return Error(ParenLoc, "expected '('"); 1749 LocTy AlignLoc = Lex.getLoc(); 1750 if (ParseUInt32(Alignment)) return true; 1751 ParenLoc = Lex.getLoc(); 1752 if (!EatIfPresent(lltok::rparen)) 1753 return Error(ParenLoc, "expected ')'"); 1754 if (!isPowerOf2_32(Alignment)) 1755 return Error(AlignLoc, "stack alignment is not a power of two"); 1756 return false; 1757 } 1758 1759 /// ParseIndexList - This parses the index list for an insert/extractvalue 1760 /// instruction. This sets AteExtraComma in the case where we eat an extra 1761 /// comma at the end of the line and find that it is followed by metadata. 1762 /// Clients that don't allow metadata can call the version of this function that 1763 /// only takes one argument. 1764 /// 1765 /// ParseIndexList 1766 /// ::= (',' uint32)+ 1767 /// 1768 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1769 bool &AteExtraComma) { 1770 AteExtraComma = false; 1771 1772 if (Lex.getKind() != lltok::comma) 1773 return TokError("expected ',' as start of index list"); 1774 1775 while (EatIfPresent(lltok::comma)) { 1776 if (Lex.getKind() == lltok::MetadataVar) { 1777 if (Indices.empty()) return TokError("expected index"); 1778 AteExtraComma = true; 1779 return false; 1780 } 1781 unsigned Idx = 0; 1782 if (ParseUInt32(Idx)) return true; 1783 Indices.push_back(Idx); 1784 } 1785 1786 return false; 1787 } 1788 1789 //===----------------------------------------------------------------------===// 1790 // Type Parsing. 1791 //===----------------------------------------------------------------------===// 1792 1793 /// ParseType - Parse a type. 1794 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 1795 SMLoc TypeLoc = Lex.getLoc(); 1796 switch (Lex.getKind()) { 1797 default: 1798 return TokError(Msg); 1799 case lltok::Type: 1800 // Type ::= 'float' | 'void' (etc) 1801 Result = Lex.getTyVal(); 1802 Lex.Lex(); 1803 break; 1804 case lltok::lbrace: 1805 // Type ::= StructType 1806 if (ParseAnonStructType(Result, false)) 1807 return true; 1808 break; 1809 case lltok::lsquare: 1810 // Type ::= '[' ... ']' 1811 Lex.Lex(); // eat the lsquare. 1812 if (ParseArrayVectorType(Result, false)) 1813 return true; 1814 break; 1815 case lltok::less: // Either vector or packed struct. 1816 // Type ::= '<' ... '>' 1817 Lex.Lex(); 1818 if (Lex.getKind() == lltok::lbrace) { 1819 if (ParseAnonStructType(Result, true) || 1820 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1821 return true; 1822 } else if (ParseArrayVectorType(Result, true)) 1823 return true; 1824 break; 1825 case lltok::LocalVar: { 1826 // Type ::= %foo 1827 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1828 1829 // If the type hasn't been defined yet, create a forward definition and 1830 // remember where that forward def'n was seen (in case it never is defined). 1831 if (!Entry.first) { 1832 Entry.first = StructType::create(Context, Lex.getStrVal()); 1833 Entry.second = Lex.getLoc(); 1834 } 1835 Result = Entry.first; 1836 Lex.Lex(); 1837 break; 1838 } 1839 1840 case lltok::LocalVarID: { 1841 // Type ::= %4 1842 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 1843 1844 // If the type hasn't been defined yet, create a forward definition and 1845 // remember where that forward def'n was seen (in case it never is defined). 1846 if (!Entry.first) { 1847 Entry.first = StructType::create(Context); 1848 Entry.second = Lex.getLoc(); 1849 } 1850 Result = Entry.first; 1851 Lex.Lex(); 1852 break; 1853 } 1854 } 1855 1856 // Parse the type suffixes. 1857 while (1) { 1858 switch (Lex.getKind()) { 1859 // End of type. 1860 default: 1861 if (!AllowVoid && Result->isVoidTy()) 1862 return Error(TypeLoc, "void type only allowed for function results"); 1863 return false; 1864 1865 // Type ::= Type '*' 1866 case lltok::star: 1867 if (Result->isLabelTy()) 1868 return TokError("basic block pointers are invalid"); 1869 if (Result->isVoidTy()) 1870 return TokError("pointers to void are invalid - use i8* instead"); 1871 if (!PointerType::isValidElementType(Result)) 1872 return TokError("pointer to this type is invalid"); 1873 Result = PointerType::getUnqual(Result); 1874 Lex.Lex(); 1875 break; 1876 1877 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 1878 case lltok::kw_addrspace: { 1879 if (Result->isLabelTy()) 1880 return TokError("basic block pointers are invalid"); 1881 if (Result->isVoidTy()) 1882 return TokError("pointers to void are invalid; use i8* instead"); 1883 if (!PointerType::isValidElementType(Result)) 1884 return TokError("pointer to this type is invalid"); 1885 unsigned AddrSpace; 1886 if (ParseOptionalAddrSpace(AddrSpace) || 1887 ParseToken(lltok::star, "expected '*' in address space")) 1888 return true; 1889 1890 Result = PointerType::get(Result, AddrSpace); 1891 break; 1892 } 1893 1894 /// Types '(' ArgTypeListI ')' OptFuncAttrs 1895 case lltok::lparen: 1896 if (ParseFunctionType(Result)) 1897 return true; 1898 break; 1899 } 1900 } 1901 } 1902 1903 /// ParseParameterList 1904 /// ::= '(' ')' 1905 /// ::= '(' Arg (',' Arg)* ')' 1906 /// Arg 1907 /// ::= Type OptionalAttributes Value OptionalAttributes 1908 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 1909 PerFunctionState &PFS, bool IsMustTailCall, 1910 bool InVarArgsFunc) { 1911 if (ParseToken(lltok::lparen, "expected '(' in call")) 1912 return true; 1913 1914 unsigned AttrIndex = 1; 1915 while (Lex.getKind() != lltok::rparen) { 1916 // If this isn't the first argument, we need a comma. 1917 if (!ArgList.empty() && 1918 ParseToken(lltok::comma, "expected ',' in argument list")) 1919 return true; 1920 1921 // Parse an ellipsis if this is a musttail call in a variadic function. 1922 if (Lex.getKind() == lltok::dotdotdot) { 1923 const char *Msg = "unexpected ellipsis in argument list for "; 1924 if (!IsMustTailCall) 1925 return TokError(Twine(Msg) + "non-musttail call"); 1926 if (!InVarArgsFunc) 1927 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 1928 Lex.Lex(); // Lex the '...', it is purely for readability. 1929 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 1930 } 1931 1932 // Parse the argument. 1933 LocTy ArgLoc; 1934 Type *ArgTy = nullptr; 1935 AttrBuilder ArgAttrs; 1936 Value *V; 1937 if (ParseType(ArgTy, ArgLoc)) 1938 return true; 1939 1940 if (ArgTy->isMetadataTy()) { 1941 if (ParseMetadataAsValue(V, PFS)) 1942 return true; 1943 } else { 1944 // Otherwise, handle normal operands. 1945 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 1946 return true; 1947 } 1948 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(), 1949 AttrIndex++, 1950 ArgAttrs))); 1951 } 1952 1953 if (IsMustTailCall && InVarArgsFunc) 1954 return TokError("expected '...' at end of argument list for musttail call " 1955 "in varargs function"); 1956 1957 Lex.Lex(); // Lex the ')'. 1958 return false; 1959 } 1960 1961 /// ParseOptionalOperandBundles 1962 /// ::= /*empty*/ 1963 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 1964 /// 1965 /// OperandBundle 1966 /// ::= bundle-tag '(' ')' 1967 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 1968 /// 1969 /// bundle-tag ::= String Constant 1970 bool LLParser::ParseOptionalOperandBundles( 1971 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 1972 LocTy BeginLoc = Lex.getLoc(); 1973 if (!EatIfPresent(lltok::lsquare)) 1974 return false; 1975 1976 while (Lex.getKind() != lltok::rsquare) { 1977 // If this isn't the first operand bundle, we need a comma. 1978 if (!BundleList.empty() && 1979 ParseToken(lltok::comma, "expected ',' in input list")) 1980 return true; 1981 1982 std::string Tag; 1983 if (ParseStringConstant(Tag)) 1984 return true; 1985 1986 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 1987 return true; 1988 1989 std::vector<Value *> Inputs; 1990 while (Lex.getKind() != lltok::rparen) { 1991 // If this isn't the first input, we need a comma. 1992 if (!Inputs.empty() && 1993 ParseToken(lltok::comma, "expected ',' in input list")) 1994 return true; 1995 1996 Type *Ty = nullptr; 1997 Value *Input = nullptr; 1998 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 1999 return true; 2000 Inputs.push_back(Input); 2001 } 2002 2003 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2004 2005 Lex.Lex(); // Lex the ')'. 2006 } 2007 2008 if (BundleList.empty()) 2009 return Error(BeginLoc, "operand bundle set must not be empty"); 2010 2011 Lex.Lex(); // Lex the ']'. 2012 return false; 2013 } 2014 2015 /// ParseArgumentList - Parse the argument list for a function type or function 2016 /// prototype. 2017 /// ::= '(' ArgTypeListI ')' 2018 /// ArgTypeListI 2019 /// ::= /*empty*/ 2020 /// ::= '...' 2021 /// ::= ArgTypeList ',' '...' 2022 /// ::= ArgType (',' ArgType)* 2023 /// 2024 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2025 bool &isVarArg){ 2026 isVarArg = false; 2027 assert(Lex.getKind() == lltok::lparen); 2028 Lex.Lex(); // eat the (. 2029 2030 if (Lex.getKind() == lltok::rparen) { 2031 // empty 2032 } else if (Lex.getKind() == lltok::dotdotdot) { 2033 isVarArg = true; 2034 Lex.Lex(); 2035 } else { 2036 LocTy TypeLoc = Lex.getLoc(); 2037 Type *ArgTy = nullptr; 2038 AttrBuilder Attrs; 2039 std::string Name; 2040 2041 if (ParseType(ArgTy) || 2042 ParseOptionalParamAttrs(Attrs)) return true; 2043 2044 if (ArgTy->isVoidTy()) 2045 return Error(TypeLoc, "argument can not have void type"); 2046 2047 if (Lex.getKind() == lltok::LocalVar) { 2048 Name = Lex.getStrVal(); 2049 Lex.Lex(); 2050 } 2051 2052 if (!FunctionType::isValidArgumentType(ArgTy)) 2053 return Error(TypeLoc, "invalid type for function argument"); 2054 2055 unsigned AttrIndex = 1; 2056 ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(), 2057 AttrIndex++, Attrs), 2058 std::move(Name)); 2059 2060 while (EatIfPresent(lltok::comma)) { 2061 // Handle ... at end of arg list. 2062 if (EatIfPresent(lltok::dotdotdot)) { 2063 isVarArg = true; 2064 break; 2065 } 2066 2067 // Otherwise must be an argument type. 2068 TypeLoc = Lex.getLoc(); 2069 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2070 2071 if (ArgTy->isVoidTy()) 2072 return Error(TypeLoc, "argument can not have void type"); 2073 2074 if (Lex.getKind() == lltok::LocalVar) { 2075 Name = Lex.getStrVal(); 2076 Lex.Lex(); 2077 } else { 2078 Name = ""; 2079 } 2080 2081 if (!ArgTy->isFirstClassType()) 2082 return Error(TypeLoc, "invalid type for function argument"); 2083 2084 ArgList.emplace_back( 2085 TypeLoc, ArgTy, 2086 AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs), 2087 std::move(Name)); 2088 } 2089 } 2090 2091 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2092 } 2093 2094 /// ParseFunctionType 2095 /// ::= Type ArgumentList OptionalAttrs 2096 bool LLParser::ParseFunctionType(Type *&Result) { 2097 assert(Lex.getKind() == lltok::lparen); 2098 2099 if (!FunctionType::isValidReturnType(Result)) 2100 return TokError("invalid function return type"); 2101 2102 SmallVector<ArgInfo, 8> ArgList; 2103 bool isVarArg; 2104 if (ParseArgumentList(ArgList, isVarArg)) 2105 return true; 2106 2107 // Reject names on the arguments lists. 2108 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2109 if (!ArgList[i].Name.empty()) 2110 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2111 if (ArgList[i].Attrs.hasAttributes(i + 1)) 2112 return Error(ArgList[i].Loc, 2113 "argument attributes invalid in function type"); 2114 } 2115 2116 SmallVector<Type*, 16> ArgListTy; 2117 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2118 ArgListTy.push_back(ArgList[i].Ty); 2119 2120 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2121 return false; 2122 } 2123 2124 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2125 /// other structs. 2126 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2127 SmallVector<Type*, 8> Elts; 2128 if (ParseStructBody(Elts)) return true; 2129 2130 Result = StructType::get(Context, Elts, Packed); 2131 return false; 2132 } 2133 2134 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2135 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2136 std::pair<Type*, LocTy> &Entry, 2137 Type *&ResultTy) { 2138 // If the type was already defined, diagnose the redefinition. 2139 if (Entry.first && !Entry.second.isValid()) 2140 return Error(TypeLoc, "redefinition of type"); 2141 2142 // If we have opaque, just return without filling in the definition for the 2143 // struct. This counts as a definition as far as the .ll file goes. 2144 if (EatIfPresent(lltok::kw_opaque)) { 2145 // This type is being defined, so clear the location to indicate this. 2146 Entry.second = SMLoc(); 2147 2148 // If this type number has never been uttered, create it. 2149 if (!Entry.first) 2150 Entry.first = StructType::create(Context, Name); 2151 ResultTy = Entry.first; 2152 return false; 2153 } 2154 2155 // If the type starts with '<', then it is either a packed struct or a vector. 2156 bool isPacked = EatIfPresent(lltok::less); 2157 2158 // If we don't have a struct, then we have a random type alias, which we 2159 // accept for compatibility with old files. These types are not allowed to be 2160 // forward referenced and not allowed to be recursive. 2161 if (Lex.getKind() != lltok::lbrace) { 2162 if (Entry.first) 2163 return Error(TypeLoc, "forward references to non-struct type"); 2164 2165 ResultTy = nullptr; 2166 if (isPacked) 2167 return ParseArrayVectorType(ResultTy, true); 2168 return ParseType(ResultTy); 2169 } 2170 2171 // This type is being defined, so clear the location to indicate this. 2172 Entry.second = SMLoc(); 2173 2174 // If this type number has never been uttered, create it. 2175 if (!Entry.first) 2176 Entry.first = StructType::create(Context, Name); 2177 2178 StructType *STy = cast<StructType>(Entry.first); 2179 2180 SmallVector<Type*, 8> Body; 2181 if (ParseStructBody(Body) || 2182 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2183 return true; 2184 2185 STy->setBody(Body, isPacked); 2186 ResultTy = STy; 2187 return false; 2188 } 2189 2190 2191 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2192 /// StructType 2193 /// ::= '{' '}' 2194 /// ::= '{' Type (',' Type)* '}' 2195 /// ::= '<' '{' '}' '>' 2196 /// ::= '<' '{' Type (',' Type)* '}' '>' 2197 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2198 assert(Lex.getKind() == lltok::lbrace); 2199 Lex.Lex(); // Consume the '{' 2200 2201 // Handle the empty struct. 2202 if (EatIfPresent(lltok::rbrace)) 2203 return false; 2204 2205 LocTy EltTyLoc = Lex.getLoc(); 2206 Type *Ty = nullptr; 2207 if (ParseType(Ty)) return true; 2208 Body.push_back(Ty); 2209 2210 if (!StructType::isValidElementType(Ty)) 2211 return Error(EltTyLoc, "invalid element type for struct"); 2212 2213 while (EatIfPresent(lltok::comma)) { 2214 EltTyLoc = Lex.getLoc(); 2215 if (ParseType(Ty)) return true; 2216 2217 if (!StructType::isValidElementType(Ty)) 2218 return Error(EltTyLoc, "invalid element type for struct"); 2219 2220 Body.push_back(Ty); 2221 } 2222 2223 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2224 } 2225 2226 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2227 /// token has already been consumed. 2228 /// Type 2229 /// ::= '[' APSINTVAL 'x' Types ']' 2230 /// ::= '<' APSINTVAL 'x' Types '>' 2231 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2232 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2233 Lex.getAPSIntVal().getBitWidth() > 64) 2234 return TokError("expected number in address space"); 2235 2236 LocTy SizeLoc = Lex.getLoc(); 2237 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2238 Lex.Lex(); 2239 2240 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2241 return true; 2242 2243 LocTy TypeLoc = Lex.getLoc(); 2244 Type *EltTy = nullptr; 2245 if (ParseType(EltTy)) return true; 2246 2247 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2248 "expected end of sequential type")) 2249 return true; 2250 2251 if (isVector) { 2252 if (Size == 0) 2253 return Error(SizeLoc, "zero element vector is illegal"); 2254 if ((unsigned)Size != Size) 2255 return Error(SizeLoc, "size too large for vector"); 2256 if (!VectorType::isValidElementType(EltTy)) 2257 return Error(TypeLoc, "invalid vector element type"); 2258 Result = VectorType::get(EltTy, unsigned(Size)); 2259 } else { 2260 if (!ArrayType::isValidElementType(EltTy)) 2261 return Error(TypeLoc, "invalid array element type"); 2262 Result = ArrayType::get(EltTy, Size); 2263 } 2264 return false; 2265 } 2266 2267 //===----------------------------------------------------------------------===// 2268 // Function Semantic Analysis. 2269 //===----------------------------------------------------------------------===// 2270 2271 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2272 int functionNumber) 2273 : P(p), F(f), FunctionNumber(functionNumber) { 2274 2275 // Insert unnamed arguments into the NumberedVals list. 2276 for (Argument &A : F.args()) 2277 if (!A.hasName()) 2278 NumberedVals.push_back(&A); 2279 } 2280 2281 LLParser::PerFunctionState::~PerFunctionState() { 2282 // If there were any forward referenced non-basicblock values, delete them. 2283 2284 for (const auto &P : ForwardRefVals) { 2285 if (isa<BasicBlock>(P.second.first)) 2286 continue; 2287 P.second.first->replaceAllUsesWith( 2288 UndefValue::get(P.second.first->getType())); 2289 delete P.second.first; 2290 } 2291 2292 for (const auto &P : ForwardRefValIDs) { 2293 if (isa<BasicBlock>(P.second.first)) 2294 continue; 2295 P.second.first->replaceAllUsesWith( 2296 UndefValue::get(P.second.first->getType())); 2297 delete P.second.first; 2298 } 2299 } 2300 2301 bool LLParser::PerFunctionState::FinishFunction() { 2302 if (!ForwardRefVals.empty()) 2303 return P.Error(ForwardRefVals.begin()->second.second, 2304 "use of undefined value '%" + ForwardRefVals.begin()->first + 2305 "'"); 2306 if (!ForwardRefValIDs.empty()) 2307 return P.Error(ForwardRefValIDs.begin()->second.second, 2308 "use of undefined value '%" + 2309 Twine(ForwardRefValIDs.begin()->first) + "'"); 2310 return false; 2311 } 2312 2313 2314 /// GetVal - Get a value with the specified name or ID, creating a 2315 /// forward reference record if needed. This can return null if the value 2316 /// exists but does not have the right type. 2317 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2318 LocTy Loc, OperatorConstraint OC) { 2319 // Look this name up in the normal function symbol table. 2320 Value *Val = F.getValueSymbolTable().lookup(Name); 2321 2322 // If this is a forward reference for the value, see if we already created a 2323 // forward ref record. 2324 if (!Val) { 2325 auto I = ForwardRefVals.find(Name); 2326 if (I != ForwardRefVals.end()) 2327 Val = I->second.first; 2328 } 2329 2330 // If we have the value in the symbol table or fwd-ref table, return it. 2331 if (Val) { 2332 // Check operator constraints. 2333 switch (OC) { 2334 case OC_None: 2335 // no constraint 2336 break; 2337 case OC_CatchPad: 2338 if (!isa<CatchPadInst>(Val)) { 2339 P.Error(Loc, "'%" + Name + "' is not a catchpad"); 2340 return nullptr; 2341 } 2342 break; 2343 case OC_CleanupPad: 2344 if (!isa<CleanupPadInst>(Val)) { 2345 P.Error(Loc, "'%" + Name + "' is not a cleanuppad"); 2346 return nullptr; 2347 } 2348 break; 2349 } 2350 if (Val->getType() == Ty) return Val; 2351 if (Ty->isLabelTy()) 2352 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2353 else 2354 P.Error(Loc, "'%" + Name + "' defined with type '" + 2355 getTypeString(Val->getType()) + "'"); 2356 return nullptr; 2357 } 2358 2359 // Don't make placeholders with invalid type. 2360 if (!Ty->isFirstClassType()) { 2361 P.Error(Loc, "invalid use of a non-first-class type"); 2362 return nullptr; 2363 } 2364 2365 // Otherwise, create a new forward reference for this value and remember it. 2366 Value *FwdVal; 2367 if (Ty->isLabelTy()) { 2368 assert(!OC); 2369 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2370 } else if (!OC) { 2371 FwdVal = new Argument(Ty, Name); 2372 } else { 2373 switch (OC) { 2374 case OC_CatchPad: 2375 FwdVal = CatchPadInst::Create(&F.getEntryBlock(), &F.getEntryBlock(), {}, 2376 Name); 2377 break; 2378 case OC_CleanupPad: 2379 FwdVal = CleanupPadInst::Create(F.getContext(), {}, Name); 2380 break; 2381 default: 2382 llvm_unreachable("unexpected constraint"); 2383 } 2384 } 2385 2386 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2387 return FwdVal; 2388 } 2389 2390 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2391 OperatorConstraint OC) { 2392 // Look this name up in the normal function symbol table. 2393 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2394 2395 // If this is a forward reference for the value, see if we already created a 2396 // forward ref record. 2397 if (!Val) { 2398 auto I = ForwardRefValIDs.find(ID); 2399 if (I != ForwardRefValIDs.end()) 2400 Val = I->second.first; 2401 } 2402 2403 // If we have the value in the symbol table or fwd-ref table, return it. 2404 if (Val) { 2405 // Check operator constraint. 2406 switch (OC) { 2407 case OC_None: 2408 // no constraint 2409 break; 2410 case OC_CatchPad: 2411 if (!isa<CatchPadInst>(Val)) { 2412 P.Error(Loc, "'%" + Twine(ID) + "' is not a catchpad"); 2413 return nullptr; 2414 } 2415 break; 2416 case OC_CleanupPad: 2417 if (!isa<CleanupPadInst>(Val)) { 2418 P.Error(Loc, "'%" + Twine(ID) + "' is not a cleanuppad"); 2419 return nullptr; 2420 } 2421 break; 2422 } 2423 if (Val->getType() == Ty) return Val; 2424 if (Ty->isLabelTy()) 2425 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2426 else 2427 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2428 getTypeString(Val->getType()) + "'"); 2429 return nullptr; 2430 } 2431 2432 if (!Ty->isFirstClassType()) { 2433 P.Error(Loc, "invalid use of a non-first-class type"); 2434 return nullptr; 2435 } 2436 2437 // Otherwise, create a new forward reference for this value and remember it. 2438 Value *FwdVal; 2439 if (Ty->isLabelTy()) { 2440 assert(!OC); 2441 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2442 } else if (!OC) { 2443 FwdVal = new Argument(Ty); 2444 } else { 2445 switch (OC) { 2446 case OC_CatchPad: 2447 FwdVal = CatchPadInst::Create(&F.getEntryBlock(), &F.getEntryBlock(), {}); 2448 break; 2449 case OC_CleanupPad: 2450 FwdVal = CleanupPadInst::Create(F.getContext(), {}); 2451 break; 2452 default: 2453 llvm_unreachable("unexpected constraint"); 2454 } 2455 } 2456 2457 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2458 return FwdVal; 2459 } 2460 2461 /// SetInstName - After an instruction is parsed and inserted into its 2462 /// basic block, this installs its name. 2463 bool LLParser::PerFunctionState::SetInstName(int NameID, 2464 const std::string &NameStr, 2465 LocTy NameLoc, Instruction *Inst) { 2466 // If this instruction has void type, it cannot have a name or ID specified. 2467 if (Inst->getType()->isVoidTy()) { 2468 if (NameID != -1 || !NameStr.empty()) 2469 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2470 return false; 2471 } 2472 2473 // If this was a numbered instruction, verify that the instruction is the 2474 // expected value and resolve any forward references. 2475 if (NameStr.empty()) { 2476 // If neither a name nor an ID was specified, just use the next ID. 2477 if (NameID == -1) 2478 NameID = NumberedVals.size(); 2479 2480 if (unsigned(NameID) != NumberedVals.size()) 2481 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2482 Twine(NumberedVals.size()) + "'"); 2483 2484 auto FI = ForwardRefValIDs.find(NameID); 2485 if (FI != ForwardRefValIDs.end()) { 2486 Value *Sentinel = FI->second.first; 2487 if (Sentinel->getType() != Inst->getType()) 2488 return P.Error(NameLoc, "instruction forward referenced with type '" + 2489 getTypeString(FI->second.first->getType()) + "'"); 2490 // Check operator constraints. We only put cleanuppads or catchpads in 2491 // the forward value map if the value is constrained to match. 2492 if (isa<CatchPadInst>(Sentinel)) { 2493 if (!isa<CatchPadInst>(Inst)) 2494 return P.Error(FI->second.second, 2495 "'%" + Twine(NameID) + "' is not a catchpad"); 2496 } else if (isa<CleanupPadInst>(Sentinel)) { 2497 if (!isa<CleanupPadInst>(Inst)) 2498 return P.Error(FI->second.second, 2499 "'%" + Twine(NameID) + "' is not a cleanuppad"); 2500 } 2501 2502 Sentinel->replaceAllUsesWith(Inst); 2503 delete Sentinel; 2504 ForwardRefValIDs.erase(FI); 2505 } 2506 2507 NumberedVals.push_back(Inst); 2508 return false; 2509 } 2510 2511 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2512 auto FI = ForwardRefVals.find(NameStr); 2513 if (FI != ForwardRefVals.end()) { 2514 Value *Sentinel = FI->second.first; 2515 if (Sentinel->getType() != Inst->getType()) 2516 return P.Error(NameLoc, "instruction forward referenced with type '" + 2517 getTypeString(FI->second.first->getType()) + "'"); 2518 // Check operator constraints. We only put cleanuppads or catchpads in 2519 // the forward value map if the value is constrained to match. 2520 if (isa<CatchPadInst>(Sentinel)) { 2521 if (!isa<CatchPadInst>(Inst)) 2522 return P.Error(FI->second.second, 2523 "'%" + NameStr + "' is not a catchpad"); 2524 } else if (isa<CleanupPadInst>(Sentinel)) { 2525 if (!isa<CleanupPadInst>(Inst)) 2526 return P.Error(FI->second.second, 2527 "'%" + NameStr + "' is not a cleanuppad"); 2528 } 2529 2530 Sentinel->replaceAllUsesWith(Inst); 2531 delete Sentinel; 2532 ForwardRefVals.erase(FI); 2533 } 2534 2535 // Set the name on the instruction. 2536 Inst->setName(NameStr); 2537 2538 if (Inst->getName() != NameStr) 2539 return P.Error(NameLoc, "multiple definition of local value named '" + 2540 NameStr + "'"); 2541 return false; 2542 } 2543 2544 /// GetBB - Get a basic block with the specified name or ID, creating a 2545 /// forward reference record if needed. 2546 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2547 LocTy Loc) { 2548 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2549 Type::getLabelTy(F.getContext()), Loc)); 2550 } 2551 2552 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2553 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2554 Type::getLabelTy(F.getContext()), Loc)); 2555 } 2556 2557 /// DefineBB - Define the specified basic block, which is either named or 2558 /// unnamed. If there is an error, this returns null otherwise it returns 2559 /// the block being defined. 2560 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2561 LocTy Loc) { 2562 BasicBlock *BB; 2563 if (Name.empty()) 2564 BB = GetBB(NumberedVals.size(), Loc); 2565 else 2566 BB = GetBB(Name, Loc); 2567 if (!BB) return nullptr; // Already diagnosed error. 2568 2569 // Move the block to the end of the function. Forward ref'd blocks are 2570 // inserted wherever they happen to be referenced. 2571 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2572 2573 // Remove the block from forward ref sets. 2574 if (Name.empty()) { 2575 ForwardRefValIDs.erase(NumberedVals.size()); 2576 NumberedVals.push_back(BB); 2577 } else { 2578 // BB forward references are already in the function symbol table. 2579 ForwardRefVals.erase(Name); 2580 } 2581 2582 return BB; 2583 } 2584 2585 //===----------------------------------------------------------------------===// 2586 // Constants. 2587 //===----------------------------------------------------------------------===// 2588 2589 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2590 /// type implied. For example, if we parse "4" we don't know what integer type 2591 /// it has. The value will later be combined with its type and checked for 2592 /// sanity. PFS is used to convert function-local operands of metadata (since 2593 /// metadata operands are not just parsed here but also converted to values). 2594 /// PFS can be null when we are not parsing metadata values inside a function. 2595 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2596 ID.Loc = Lex.getLoc(); 2597 switch (Lex.getKind()) { 2598 default: return TokError("expected value token"); 2599 case lltok::GlobalID: // @42 2600 ID.UIntVal = Lex.getUIntVal(); 2601 ID.Kind = ValID::t_GlobalID; 2602 break; 2603 case lltok::GlobalVar: // @foo 2604 ID.StrVal = Lex.getStrVal(); 2605 ID.Kind = ValID::t_GlobalName; 2606 break; 2607 case lltok::LocalVarID: // %42 2608 ID.UIntVal = Lex.getUIntVal(); 2609 ID.Kind = ValID::t_LocalID; 2610 break; 2611 case lltok::LocalVar: // %foo 2612 ID.StrVal = Lex.getStrVal(); 2613 ID.Kind = ValID::t_LocalName; 2614 break; 2615 case lltok::APSInt: 2616 ID.APSIntVal = Lex.getAPSIntVal(); 2617 ID.Kind = ValID::t_APSInt; 2618 break; 2619 case lltok::APFloat: 2620 ID.APFloatVal = Lex.getAPFloatVal(); 2621 ID.Kind = ValID::t_APFloat; 2622 break; 2623 case lltok::kw_true: 2624 ID.ConstantVal = ConstantInt::getTrue(Context); 2625 ID.Kind = ValID::t_Constant; 2626 break; 2627 case lltok::kw_false: 2628 ID.ConstantVal = ConstantInt::getFalse(Context); 2629 ID.Kind = ValID::t_Constant; 2630 break; 2631 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2632 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2633 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2634 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2635 2636 case lltok::lbrace: { 2637 // ValID ::= '{' ConstVector '}' 2638 Lex.Lex(); 2639 SmallVector<Constant*, 16> Elts; 2640 if (ParseGlobalValueVector(Elts) || 2641 ParseToken(lltok::rbrace, "expected end of struct constant")) 2642 return true; 2643 2644 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2645 ID.UIntVal = Elts.size(); 2646 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2647 Elts.size() * sizeof(Elts[0])); 2648 ID.Kind = ValID::t_ConstantStruct; 2649 return false; 2650 } 2651 case lltok::less: { 2652 // ValID ::= '<' ConstVector '>' --> Vector. 2653 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2654 Lex.Lex(); 2655 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2656 2657 SmallVector<Constant*, 16> Elts; 2658 LocTy FirstEltLoc = Lex.getLoc(); 2659 if (ParseGlobalValueVector(Elts) || 2660 (isPackedStruct && 2661 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2662 ParseToken(lltok::greater, "expected end of constant")) 2663 return true; 2664 2665 if (isPackedStruct) { 2666 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2667 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2668 Elts.size() * sizeof(Elts[0])); 2669 ID.UIntVal = Elts.size(); 2670 ID.Kind = ValID::t_PackedConstantStruct; 2671 return false; 2672 } 2673 2674 if (Elts.empty()) 2675 return Error(ID.Loc, "constant vector must not be empty"); 2676 2677 if (!Elts[0]->getType()->isIntegerTy() && 2678 !Elts[0]->getType()->isFloatingPointTy() && 2679 !Elts[0]->getType()->isPointerTy()) 2680 return Error(FirstEltLoc, 2681 "vector elements must have integer, pointer or floating point type"); 2682 2683 // Verify that all the vector elements have the same type. 2684 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2685 if (Elts[i]->getType() != Elts[0]->getType()) 2686 return Error(FirstEltLoc, 2687 "vector element #" + Twine(i) + 2688 " is not of type '" + getTypeString(Elts[0]->getType())); 2689 2690 ID.ConstantVal = ConstantVector::get(Elts); 2691 ID.Kind = ValID::t_Constant; 2692 return false; 2693 } 2694 case lltok::lsquare: { // Array Constant 2695 Lex.Lex(); 2696 SmallVector<Constant*, 16> Elts; 2697 LocTy FirstEltLoc = Lex.getLoc(); 2698 if (ParseGlobalValueVector(Elts) || 2699 ParseToken(lltok::rsquare, "expected end of array constant")) 2700 return true; 2701 2702 // Handle empty element. 2703 if (Elts.empty()) { 2704 // Use undef instead of an array because it's inconvenient to determine 2705 // the element type at this point, there being no elements to examine. 2706 ID.Kind = ValID::t_EmptyArray; 2707 return false; 2708 } 2709 2710 if (!Elts[0]->getType()->isFirstClassType()) 2711 return Error(FirstEltLoc, "invalid array element type: " + 2712 getTypeString(Elts[0]->getType())); 2713 2714 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2715 2716 // Verify all elements are correct type! 2717 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2718 if (Elts[i]->getType() != Elts[0]->getType()) 2719 return Error(FirstEltLoc, 2720 "array element #" + Twine(i) + 2721 " is not of type '" + getTypeString(Elts[0]->getType())); 2722 } 2723 2724 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2725 ID.Kind = ValID::t_Constant; 2726 return false; 2727 } 2728 case lltok::kw_c: // c "foo" 2729 Lex.Lex(); 2730 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2731 false); 2732 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2733 ID.Kind = ValID::t_Constant; 2734 return false; 2735 2736 case lltok::kw_asm: { 2737 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2738 // STRINGCONSTANT 2739 bool HasSideEffect, AlignStack, AsmDialect; 2740 Lex.Lex(); 2741 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2742 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2743 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2744 ParseStringConstant(ID.StrVal) || 2745 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2746 ParseToken(lltok::StringConstant, "expected constraint string")) 2747 return true; 2748 ID.StrVal2 = Lex.getStrVal(); 2749 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2750 (unsigned(AsmDialect)<<2); 2751 ID.Kind = ValID::t_InlineAsm; 2752 return false; 2753 } 2754 2755 case lltok::kw_blockaddress: { 2756 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2757 Lex.Lex(); 2758 2759 ValID Fn, Label; 2760 2761 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2762 ParseValID(Fn) || 2763 ParseToken(lltok::comma, "expected comma in block address expression")|| 2764 ParseValID(Label) || 2765 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2766 return true; 2767 2768 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2769 return Error(Fn.Loc, "expected function name in blockaddress"); 2770 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2771 return Error(Label.Loc, "expected basic block name in blockaddress"); 2772 2773 // Try to find the function (but skip it if it's forward-referenced). 2774 GlobalValue *GV = nullptr; 2775 if (Fn.Kind == ValID::t_GlobalID) { 2776 if (Fn.UIntVal < NumberedVals.size()) 2777 GV = NumberedVals[Fn.UIntVal]; 2778 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2779 GV = M->getNamedValue(Fn.StrVal); 2780 } 2781 Function *F = nullptr; 2782 if (GV) { 2783 // Confirm that it's actually a function with a definition. 2784 if (!isa<Function>(GV)) 2785 return Error(Fn.Loc, "expected function name in blockaddress"); 2786 F = cast<Function>(GV); 2787 if (F->isDeclaration()) 2788 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 2789 } 2790 2791 if (!F) { 2792 // Make a global variable as a placeholder for this reference. 2793 GlobalValue *&FwdRef = 2794 ForwardRefBlockAddresses.insert(std::make_pair( 2795 std::move(Fn), 2796 std::map<ValID, GlobalValue *>())) 2797 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 2798 .first->second; 2799 if (!FwdRef) 2800 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 2801 GlobalValue::InternalLinkage, nullptr, ""); 2802 ID.ConstantVal = FwdRef; 2803 ID.Kind = ValID::t_Constant; 2804 return false; 2805 } 2806 2807 // We found the function; now find the basic block. Don't use PFS, since we 2808 // might be inside a constant expression. 2809 BasicBlock *BB; 2810 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 2811 if (Label.Kind == ValID::t_LocalID) 2812 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 2813 else 2814 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 2815 if (!BB) 2816 return Error(Label.Loc, "referenced value is not a basic block"); 2817 } else { 2818 if (Label.Kind == ValID::t_LocalID) 2819 return Error(Label.Loc, "cannot take address of numeric label after " 2820 "the function is defined"); 2821 BB = dyn_cast_or_null<BasicBlock>( 2822 F->getValueSymbolTable().lookup(Label.StrVal)); 2823 if (!BB) 2824 return Error(Label.Loc, "referenced value is not a basic block"); 2825 } 2826 2827 ID.ConstantVal = BlockAddress::get(F, BB); 2828 ID.Kind = ValID::t_Constant; 2829 return false; 2830 } 2831 2832 case lltok::kw_trunc: 2833 case lltok::kw_zext: 2834 case lltok::kw_sext: 2835 case lltok::kw_fptrunc: 2836 case lltok::kw_fpext: 2837 case lltok::kw_bitcast: 2838 case lltok::kw_addrspacecast: 2839 case lltok::kw_uitofp: 2840 case lltok::kw_sitofp: 2841 case lltok::kw_fptoui: 2842 case lltok::kw_fptosi: 2843 case lltok::kw_inttoptr: 2844 case lltok::kw_ptrtoint: { 2845 unsigned Opc = Lex.getUIntVal(); 2846 Type *DestTy = nullptr; 2847 Constant *SrcVal; 2848 Lex.Lex(); 2849 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2850 ParseGlobalTypeAndValue(SrcVal) || 2851 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2852 ParseType(DestTy) || 2853 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2854 return true; 2855 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2856 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2857 getTypeString(SrcVal->getType()) + "' to '" + 2858 getTypeString(DestTy) + "'"); 2859 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2860 SrcVal, DestTy); 2861 ID.Kind = ValID::t_Constant; 2862 return false; 2863 } 2864 case lltok::kw_extractvalue: { 2865 Lex.Lex(); 2866 Constant *Val; 2867 SmallVector<unsigned, 4> Indices; 2868 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2869 ParseGlobalTypeAndValue(Val) || 2870 ParseIndexList(Indices) || 2871 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2872 return true; 2873 2874 if (!Val->getType()->isAggregateType()) 2875 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2876 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2877 return Error(ID.Loc, "invalid indices for extractvalue"); 2878 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2879 ID.Kind = ValID::t_Constant; 2880 return false; 2881 } 2882 case lltok::kw_insertvalue: { 2883 Lex.Lex(); 2884 Constant *Val0, *Val1; 2885 SmallVector<unsigned, 4> Indices; 2886 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2887 ParseGlobalTypeAndValue(Val0) || 2888 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2889 ParseGlobalTypeAndValue(Val1) || 2890 ParseIndexList(Indices) || 2891 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2892 return true; 2893 if (!Val0->getType()->isAggregateType()) 2894 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2895 Type *IndexedType = 2896 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 2897 if (!IndexedType) 2898 return Error(ID.Loc, "invalid indices for insertvalue"); 2899 if (IndexedType != Val1->getType()) 2900 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 2901 getTypeString(Val1->getType()) + 2902 "' instead of '" + getTypeString(IndexedType) + 2903 "'"); 2904 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2905 ID.Kind = ValID::t_Constant; 2906 return false; 2907 } 2908 case lltok::kw_icmp: 2909 case lltok::kw_fcmp: { 2910 unsigned PredVal, Opc = Lex.getUIntVal(); 2911 Constant *Val0, *Val1; 2912 Lex.Lex(); 2913 if (ParseCmpPredicate(PredVal, Opc) || 2914 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2915 ParseGlobalTypeAndValue(Val0) || 2916 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2917 ParseGlobalTypeAndValue(Val1) || 2918 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2919 return true; 2920 2921 if (Val0->getType() != Val1->getType()) 2922 return Error(ID.Loc, "compare operands must have the same type"); 2923 2924 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2925 2926 if (Opc == Instruction::FCmp) { 2927 if (!Val0->getType()->isFPOrFPVectorTy()) 2928 return Error(ID.Loc, "fcmp requires floating point operands"); 2929 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2930 } else { 2931 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2932 if (!Val0->getType()->isIntOrIntVectorTy() && 2933 !Val0->getType()->getScalarType()->isPointerTy()) 2934 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2935 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2936 } 2937 ID.Kind = ValID::t_Constant; 2938 return false; 2939 } 2940 2941 // Binary Operators. 2942 case lltok::kw_add: 2943 case lltok::kw_fadd: 2944 case lltok::kw_sub: 2945 case lltok::kw_fsub: 2946 case lltok::kw_mul: 2947 case lltok::kw_fmul: 2948 case lltok::kw_udiv: 2949 case lltok::kw_sdiv: 2950 case lltok::kw_fdiv: 2951 case lltok::kw_urem: 2952 case lltok::kw_srem: 2953 case lltok::kw_frem: 2954 case lltok::kw_shl: 2955 case lltok::kw_lshr: 2956 case lltok::kw_ashr: { 2957 bool NUW = false; 2958 bool NSW = false; 2959 bool Exact = false; 2960 unsigned Opc = Lex.getUIntVal(); 2961 Constant *Val0, *Val1; 2962 Lex.Lex(); 2963 LocTy ModifierLoc = Lex.getLoc(); 2964 if (Opc == Instruction::Add || Opc == Instruction::Sub || 2965 Opc == Instruction::Mul || Opc == Instruction::Shl) { 2966 if (EatIfPresent(lltok::kw_nuw)) 2967 NUW = true; 2968 if (EatIfPresent(lltok::kw_nsw)) { 2969 NSW = true; 2970 if (EatIfPresent(lltok::kw_nuw)) 2971 NUW = true; 2972 } 2973 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 2974 Opc == Instruction::LShr || Opc == Instruction::AShr) { 2975 if (EatIfPresent(lltok::kw_exact)) 2976 Exact = true; 2977 } 2978 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 2979 ParseGlobalTypeAndValue(Val0) || 2980 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 2981 ParseGlobalTypeAndValue(Val1) || 2982 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 2983 return true; 2984 if (Val0->getType() != Val1->getType()) 2985 return Error(ID.Loc, "operands of constexpr must have same type"); 2986 if (!Val0->getType()->isIntOrIntVectorTy()) { 2987 if (NUW) 2988 return Error(ModifierLoc, "nuw only applies to integer operations"); 2989 if (NSW) 2990 return Error(ModifierLoc, "nsw only applies to integer operations"); 2991 } 2992 // Check that the type is valid for the operator. 2993 switch (Opc) { 2994 case Instruction::Add: 2995 case Instruction::Sub: 2996 case Instruction::Mul: 2997 case Instruction::UDiv: 2998 case Instruction::SDiv: 2999 case Instruction::URem: 3000 case Instruction::SRem: 3001 case Instruction::Shl: 3002 case Instruction::AShr: 3003 case Instruction::LShr: 3004 if (!Val0->getType()->isIntOrIntVectorTy()) 3005 return Error(ID.Loc, "constexpr requires integer operands"); 3006 break; 3007 case Instruction::FAdd: 3008 case Instruction::FSub: 3009 case Instruction::FMul: 3010 case Instruction::FDiv: 3011 case Instruction::FRem: 3012 if (!Val0->getType()->isFPOrFPVectorTy()) 3013 return Error(ID.Loc, "constexpr requires fp operands"); 3014 break; 3015 default: llvm_unreachable("Unknown binary operator!"); 3016 } 3017 unsigned Flags = 0; 3018 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3019 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3020 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3021 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3022 ID.ConstantVal = C; 3023 ID.Kind = ValID::t_Constant; 3024 return false; 3025 } 3026 3027 // Logical Operations 3028 case lltok::kw_and: 3029 case lltok::kw_or: 3030 case lltok::kw_xor: { 3031 unsigned Opc = Lex.getUIntVal(); 3032 Constant *Val0, *Val1; 3033 Lex.Lex(); 3034 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3035 ParseGlobalTypeAndValue(Val0) || 3036 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3037 ParseGlobalTypeAndValue(Val1) || 3038 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3039 return true; 3040 if (Val0->getType() != Val1->getType()) 3041 return Error(ID.Loc, "operands of constexpr must have same type"); 3042 if (!Val0->getType()->isIntOrIntVectorTy()) 3043 return Error(ID.Loc, 3044 "constexpr requires integer or integer vector operands"); 3045 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3046 ID.Kind = ValID::t_Constant; 3047 return false; 3048 } 3049 3050 case lltok::kw_getelementptr: 3051 case lltok::kw_shufflevector: 3052 case lltok::kw_insertelement: 3053 case lltok::kw_extractelement: 3054 case lltok::kw_select: { 3055 unsigned Opc = Lex.getUIntVal(); 3056 SmallVector<Constant*, 16> Elts; 3057 bool InBounds = false; 3058 Type *Ty; 3059 Lex.Lex(); 3060 3061 if (Opc == Instruction::GetElementPtr) 3062 InBounds = EatIfPresent(lltok::kw_inbounds); 3063 3064 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3065 return true; 3066 3067 LocTy ExplicitTypeLoc = Lex.getLoc(); 3068 if (Opc == Instruction::GetElementPtr) { 3069 if (ParseType(Ty) || 3070 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3071 return true; 3072 } 3073 3074 if (ParseGlobalValueVector(Elts) || 3075 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3076 return true; 3077 3078 if (Opc == Instruction::GetElementPtr) { 3079 if (Elts.size() == 0 || 3080 !Elts[0]->getType()->getScalarType()->isPointerTy()) 3081 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3082 3083 Type *BaseType = Elts[0]->getType(); 3084 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3085 if (Ty != BasePointerType->getElementType()) 3086 return Error( 3087 ExplicitTypeLoc, 3088 "explicit pointee type doesn't match operand's pointee type"); 3089 3090 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3091 for (Constant *Val : Indices) { 3092 Type *ValTy = Val->getType(); 3093 if (!ValTy->getScalarType()->isIntegerTy()) 3094 return Error(ID.Loc, "getelementptr index must be an integer"); 3095 if (ValTy->isVectorTy() != BaseType->isVectorTy()) 3096 return Error(ID.Loc, "getelementptr index type missmatch"); 3097 if (ValTy->isVectorTy()) { 3098 unsigned ValNumEl = ValTy->getVectorNumElements(); 3099 unsigned PtrNumEl = BaseType->getVectorNumElements(); 3100 if (ValNumEl != PtrNumEl) 3101 return Error( 3102 ID.Loc, 3103 "getelementptr vector index has a wrong number of elements"); 3104 } 3105 } 3106 3107 SmallPtrSet<Type*, 4> Visited; 3108 if (!Indices.empty() && !Ty->isSized(&Visited)) 3109 return Error(ID.Loc, "base element of getelementptr must be sized"); 3110 3111 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3112 return Error(ID.Loc, "invalid getelementptr indices"); 3113 ID.ConstantVal = 3114 ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds); 3115 } else if (Opc == Instruction::Select) { 3116 if (Elts.size() != 3) 3117 return Error(ID.Loc, "expected three operands to select"); 3118 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3119 Elts[2])) 3120 return Error(ID.Loc, Reason); 3121 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3122 } else if (Opc == Instruction::ShuffleVector) { 3123 if (Elts.size() != 3) 3124 return Error(ID.Loc, "expected three operands to shufflevector"); 3125 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3126 return Error(ID.Loc, "invalid operands to shufflevector"); 3127 ID.ConstantVal = 3128 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3129 } else if (Opc == Instruction::ExtractElement) { 3130 if (Elts.size() != 2) 3131 return Error(ID.Loc, "expected two operands to extractelement"); 3132 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3133 return Error(ID.Loc, "invalid extractelement operands"); 3134 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3135 } else { 3136 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3137 if (Elts.size() != 3) 3138 return Error(ID.Loc, "expected three operands to insertelement"); 3139 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3140 return Error(ID.Loc, "invalid insertelement operands"); 3141 ID.ConstantVal = 3142 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3143 } 3144 3145 ID.Kind = ValID::t_Constant; 3146 return false; 3147 } 3148 } 3149 3150 Lex.Lex(); 3151 return false; 3152 } 3153 3154 /// ParseGlobalValue - Parse a global value with the specified type. 3155 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3156 C = nullptr; 3157 ValID ID; 3158 Value *V = nullptr; 3159 bool Parsed = ParseValID(ID) || 3160 ConvertValIDToValue(Ty, ID, V, nullptr); 3161 if (V && !(C = dyn_cast<Constant>(V))) 3162 return Error(ID.Loc, "global values must be constants"); 3163 return Parsed; 3164 } 3165 3166 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3167 Type *Ty = nullptr; 3168 return ParseType(Ty) || 3169 ParseGlobalValue(Ty, V); 3170 } 3171 3172 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3173 C = nullptr; 3174 3175 LocTy KwLoc = Lex.getLoc(); 3176 if (!EatIfPresent(lltok::kw_comdat)) 3177 return false; 3178 3179 if (EatIfPresent(lltok::lparen)) { 3180 if (Lex.getKind() != lltok::ComdatVar) 3181 return TokError("expected comdat variable"); 3182 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3183 Lex.Lex(); 3184 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3185 return true; 3186 } else { 3187 if (GlobalName.empty()) 3188 return TokError("comdat cannot be unnamed"); 3189 C = getComdat(GlobalName, KwLoc); 3190 } 3191 3192 return false; 3193 } 3194 3195 /// ParseGlobalValueVector 3196 /// ::= /*empty*/ 3197 /// ::= TypeAndValue (',' TypeAndValue)* 3198 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) { 3199 // Empty list. 3200 if (Lex.getKind() == lltok::rbrace || 3201 Lex.getKind() == lltok::rsquare || 3202 Lex.getKind() == lltok::greater || 3203 Lex.getKind() == lltok::rparen) 3204 return false; 3205 3206 Constant *C; 3207 if (ParseGlobalTypeAndValue(C)) return true; 3208 Elts.push_back(C); 3209 3210 while (EatIfPresent(lltok::comma)) { 3211 if (ParseGlobalTypeAndValue(C)) return true; 3212 Elts.push_back(C); 3213 } 3214 3215 return false; 3216 } 3217 3218 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3219 SmallVector<Metadata *, 16> Elts; 3220 if (ParseMDNodeVector(Elts)) 3221 return true; 3222 3223 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3224 return false; 3225 } 3226 3227 /// MDNode: 3228 /// ::= !{ ... } 3229 /// ::= !7 3230 /// ::= !DILocation(...) 3231 bool LLParser::ParseMDNode(MDNode *&N) { 3232 if (Lex.getKind() == lltok::MetadataVar) 3233 return ParseSpecializedMDNode(N); 3234 3235 return ParseToken(lltok::exclaim, "expected '!' here") || 3236 ParseMDNodeTail(N); 3237 } 3238 3239 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3240 // !{ ... } 3241 if (Lex.getKind() == lltok::lbrace) 3242 return ParseMDTuple(N); 3243 3244 // !42 3245 return ParseMDNodeID(N); 3246 } 3247 3248 namespace { 3249 3250 /// Structure to represent an optional metadata field. 3251 template <class FieldTy> struct MDFieldImpl { 3252 typedef MDFieldImpl ImplTy; 3253 FieldTy Val; 3254 bool Seen; 3255 3256 void assign(FieldTy Val) { 3257 Seen = true; 3258 this->Val = std::move(Val); 3259 } 3260 3261 explicit MDFieldImpl(FieldTy Default) 3262 : Val(std::move(Default)), Seen(false) {} 3263 }; 3264 3265 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3266 uint64_t Max; 3267 3268 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3269 : ImplTy(Default), Max(Max) {} 3270 }; 3271 struct LineField : public MDUnsignedField { 3272 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3273 }; 3274 struct ColumnField : public MDUnsignedField { 3275 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3276 }; 3277 struct DwarfTagField : public MDUnsignedField { 3278 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3279 DwarfTagField(dwarf::Tag DefaultTag) 3280 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3281 }; 3282 struct DwarfAttEncodingField : public MDUnsignedField { 3283 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3284 }; 3285 struct DwarfVirtualityField : public MDUnsignedField { 3286 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3287 }; 3288 struct DwarfLangField : public MDUnsignedField { 3289 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3290 }; 3291 3292 struct DIFlagField : public MDUnsignedField { 3293 DIFlagField() : MDUnsignedField(0, UINT32_MAX) {} 3294 }; 3295 3296 struct MDSignedField : public MDFieldImpl<int64_t> { 3297 int64_t Min; 3298 int64_t Max; 3299 3300 MDSignedField(int64_t Default = 0) 3301 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3302 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3303 : ImplTy(Default), Min(Min), Max(Max) {} 3304 }; 3305 3306 struct MDBoolField : public MDFieldImpl<bool> { 3307 MDBoolField(bool Default = false) : ImplTy(Default) {} 3308 }; 3309 struct MDField : public MDFieldImpl<Metadata *> { 3310 bool AllowNull; 3311 3312 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3313 }; 3314 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3315 MDConstant() : ImplTy(nullptr) {} 3316 }; 3317 struct MDStringField : public MDFieldImpl<MDString *> { 3318 bool AllowEmpty; 3319 MDStringField(bool AllowEmpty = true) 3320 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3321 }; 3322 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3323 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3324 }; 3325 3326 } // end namespace 3327 3328 namespace llvm { 3329 3330 template <> 3331 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3332 MDUnsignedField &Result) { 3333 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3334 return TokError("expected unsigned integer"); 3335 3336 auto &U = Lex.getAPSIntVal(); 3337 if (U.ugt(Result.Max)) 3338 return TokError("value for '" + Name + "' too large, limit is " + 3339 Twine(Result.Max)); 3340 Result.assign(U.getZExtValue()); 3341 assert(Result.Val <= Result.Max && "Expected value in range"); 3342 Lex.Lex(); 3343 return false; 3344 } 3345 3346 template <> 3347 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3348 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3349 } 3350 template <> 3351 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3352 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3353 } 3354 3355 template <> 3356 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3357 if (Lex.getKind() == lltok::APSInt) 3358 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3359 3360 if (Lex.getKind() != lltok::DwarfTag) 3361 return TokError("expected DWARF tag"); 3362 3363 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3364 if (Tag == dwarf::DW_TAG_invalid) 3365 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3366 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3367 3368 Result.assign(Tag); 3369 Lex.Lex(); 3370 return false; 3371 } 3372 3373 template <> 3374 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3375 DwarfVirtualityField &Result) { 3376 if (Lex.getKind() == lltok::APSInt) 3377 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3378 3379 if (Lex.getKind() != lltok::DwarfVirtuality) 3380 return TokError("expected DWARF virtuality code"); 3381 3382 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3383 if (!Virtuality) 3384 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3385 Lex.getStrVal() + "'"); 3386 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3387 Result.assign(Virtuality); 3388 Lex.Lex(); 3389 return false; 3390 } 3391 3392 template <> 3393 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3394 if (Lex.getKind() == lltok::APSInt) 3395 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3396 3397 if (Lex.getKind() != lltok::DwarfLang) 3398 return TokError("expected DWARF language"); 3399 3400 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3401 if (!Lang) 3402 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3403 "'"); 3404 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3405 Result.assign(Lang); 3406 Lex.Lex(); 3407 return false; 3408 } 3409 3410 template <> 3411 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3412 DwarfAttEncodingField &Result) { 3413 if (Lex.getKind() == lltok::APSInt) 3414 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3415 3416 if (Lex.getKind() != lltok::DwarfAttEncoding) 3417 return TokError("expected DWARF type attribute encoding"); 3418 3419 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3420 if (!Encoding) 3421 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3422 Lex.getStrVal() + "'"); 3423 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3424 Result.assign(Encoding); 3425 Lex.Lex(); 3426 return false; 3427 } 3428 3429 /// DIFlagField 3430 /// ::= uint32 3431 /// ::= DIFlagVector 3432 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3433 template <> 3434 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3435 assert(Result.Max == UINT32_MAX && "Expected only 32-bits"); 3436 3437 // Parser for a single flag. 3438 auto parseFlag = [&](unsigned &Val) { 3439 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) 3440 return ParseUInt32(Val); 3441 3442 if (Lex.getKind() != lltok::DIFlag) 3443 return TokError("expected debug info flag"); 3444 3445 Val = DINode::getFlag(Lex.getStrVal()); 3446 if (!Val) 3447 return TokError(Twine("invalid debug info flag flag '") + 3448 Lex.getStrVal() + "'"); 3449 Lex.Lex(); 3450 return false; 3451 }; 3452 3453 // Parse the flags and combine them together. 3454 unsigned Combined = 0; 3455 do { 3456 unsigned Val; 3457 if (parseFlag(Val)) 3458 return true; 3459 Combined |= Val; 3460 } while (EatIfPresent(lltok::bar)); 3461 3462 Result.assign(Combined); 3463 return false; 3464 } 3465 3466 template <> 3467 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3468 MDSignedField &Result) { 3469 if (Lex.getKind() != lltok::APSInt) 3470 return TokError("expected signed integer"); 3471 3472 auto &S = Lex.getAPSIntVal(); 3473 if (S < Result.Min) 3474 return TokError("value for '" + Name + "' too small, limit is " + 3475 Twine(Result.Min)); 3476 if (S > Result.Max) 3477 return TokError("value for '" + Name + "' too large, limit is " + 3478 Twine(Result.Max)); 3479 Result.assign(S.getExtValue()); 3480 assert(Result.Val >= Result.Min && "Expected value in range"); 3481 assert(Result.Val <= Result.Max && "Expected value in range"); 3482 Lex.Lex(); 3483 return false; 3484 } 3485 3486 template <> 3487 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3488 switch (Lex.getKind()) { 3489 default: 3490 return TokError("expected 'true' or 'false'"); 3491 case lltok::kw_true: 3492 Result.assign(true); 3493 break; 3494 case lltok::kw_false: 3495 Result.assign(false); 3496 break; 3497 } 3498 Lex.Lex(); 3499 return false; 3500 } 3501 3502 template <> 3503 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3504 if (Lex.getKind() == lltok::kw_null) { 3505 if (!Result.AllowNull) 3506 return TokError("'" + Name + "' cannot be null"); 3507 Lex.Lex(); 3508 Result.assign(nullptr); 3509 return false; 3510 } 3511 3512 Metadata *MD; 3513 if (ParseMetadata(MD, nullptr)) 3514 return true; 3515 3516 Result.assign(MD); 3517 return false; 3518 } 3519 3520 template <> 3521 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) { 3522 Metadata *MD; 3523 if (ParseValueAsMetadata(MD, "expected constant", nullptr)) 3524 return true; 3525 3526 Result.assign(cast<ConstantAsMetadata>(MD)); 3527 return false; 3528 } 3529 3530 template <> 3531 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3532 LocTy ValueLoc = Lex.getLoc(); 3533 std::string S; 3534 if (ParseStringConstant(S)) 3535 return true; 3536 3537 if (!Result.AllowEmpty && S.empty()) 3538 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3539 3540 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3541 return false; 3542 } 3543 3544 template <> 3545 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3546 SmallVector<Metadata *, 4> MDs; 3547 if (ParseMDNodeVector(MDs)) 3548 return true; 3549 3550 Result.assign(std::move(MDs)); 3551 return false; 3552 } 3553 3554 } // end namespace llvm 3555 3556 template <class ParserTy> 3557 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3558 do { 3559 if (Lex.getKind() != lltok::LabelStr) 3560 return TokError("expected field label here"); 3561 3562 if (parseField()) 3563 return true; 3564 } while (EatIfPresent(lltok::comma)); 3565 3566 return false; 3567 } 3568 3569 template <class ParserTy> 3570 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3571 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3572 Lex.Lex(); 3573 3574 if (ParseToken(lltok::lparen, "expected '(' here")) 3575 return true; 3576 if (Lex.getKind() != lltok::rparen) 3577 if (ParseMDFieldsImplBody(parseField)) 3578 return true; 3579 3580 ClosingLoc = Lex.getLoc(); 3581 return ParseToken(lltok::rparen, "expected ')' here"); 3582 } 3583 3584 template <class FieldTy> 3585 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3586 if (Result.Seen) 3587 return TokError("field '" + Name + "' cannot be specified more than once"); 3588 3589 LocTy Loc = Lex.getLoc(); 3590 Lex.Lex(); 3591 return ParseMDField(Loc, Name, Result); 3592 } 3593 3594 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3595 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3596 3597 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3598 if (Lex.getStrVal() == #CLASS) \ 3599 return Parse##CLASS(N, IsDistinct); 3600 #include "llvm/IR/Metadata.def" 3601 3602 return TokError("expected metadata type"); 3603 } 3604 3605 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3606 #define NOP_FIELD(NAME, TYPE, INIT) 3607 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3608 if (!NAME.Seen) \ 3609 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3610 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3611 if (Lex.getStrVal() == #NAME) \ 3612 return ParseMDField(#NAME, NAME); 3613 #define PARSE_MD_FIELDS() \ 3614 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3615 do { \ 3616 LocTy ClosingLoc; \ 3617 if (ParseMDFieldsImpl([&]() -> bool { \ 3618 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3619 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3620 }, ClosingLoc)) \ 3621 return true; \ 3622 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3623 } while (false) 3624 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3625 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3626 3627 /// ParseDILocationFields: 3628 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3629 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 3630 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3631 OPTIONAL(line, LineField, ); \ 3632 OPTIONAL(column, ColumnField, ); \ 3633 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3634 OPTIONAL(inlinedAt, MDField, ); 3635 PARSE_MD_FIELDS(); 3636 #undef VISIT_MD_FIELDS 3637 3638 Result = GET_OR_DISTINCT( 3639 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3640 return false; 3641 } 3642 3643 /// ParseGenericDINode: 3644 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 3645 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 3646 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3647 REQUIRED(tag, DwarfTagField, ); \ 3648 OPTIONAL(header, MDStringField, ); \ 3649 OPTIONAL(operands, MDFieldList, ); 3650 PARSE_MD_FIELDS(); 3651 #undef VISIT_MD_FIELDS 3652 3653 Result = GET_OR_DISTINCT(GenericDINode, 3654 (Context, tag.Val, header.Val, operands.Val)); 3655 return false; 3656 } 3657 3658 /// ParseDISubrange: 3659 /// ::= !DISubrange(count: 30, lowerBound: 2) 3660 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 3661 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3662 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3663 OPTIONAL(lowerBound, MDSignedField, ); 3664 PARSE_MD_FIELDS(); 3665 #undef VISIT_MD_FIELDS 3666 3667 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val)); 3668 return false; 3669 } 3670 3671 /// ParseDIEnumerator: 3672 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 3673 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 3674 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3675 REQUIRED(name, MDStringField, ); \ 3676 REQUIRED(value, MDSignedField, ); 3677 PARSE_MD_FIELDS(); 3678 #undef VISIT_MD_FIELDS 3679 3680 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 3681 return false; 3682 } 3683 3684 /// ParseDIBasicType: 3685 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 3686 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 3687 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3688 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 3689 OPTIONAL(name, MDStringField, ); \ 3690 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3691 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3692 OPTIONAL(encoding, DwarfAttEncodingField, ); 3693 PARSE_MD_FIELDS(); 3694 #undef VISIT_MD_FIELDS 3695 3696 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 3697 align.Val, encoding.Val)); 3698 return false; 3699 } 3700 3701 /// ParseDIDerivedType: 3702 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 3703 /// line: 7, scope: !1, baseType: !2, size: 32, 3704 /// align: 32, offset: 0, flags: 0, extraData: !3) 3705 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 3706 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3707 REQUIRED(tag, DwarfTagField, ); \ 3708 OPTIONAL(name, MDStringField, ); \ 3709 OPTIONAL(file, MDField, ); \ 3710 OPTIONAL(line, LineField, ); \ 3711 OPTIONAL(scope, MDField, ); \ 3712 REQUIRED(baseType, MDField, ); \ 3713 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3714 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3715 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3716 OPTIONAL(flags, DIFlagField, ); \ 3717 OPTIONAL(extraData, MDField, ); 3718 PARSE_MD_FIELDS(); 3719 #undef VISIT_MD_FIELDS 3720 3721 Result = GET_OR_DISTINCT(DIDerivedType, 3722 (Context, tag.Val, name.Val, file.Val, line.Val, 3723 scope.Val, baseType.Val, size.Val, align.Val, 3724 offset.Val, flags.Val, extraData.Val)); 3725 return false; 3726 } 3727 3728 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 3729 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3730 REQUIRED(tag, DwarfTagField, ); \ 3731 OPTIONAL(name, MDStringField, ); \ 3732 OPTIONAL(file, MDField, ); \ 3733 OPTIONAL(line, LineField, ); \ 3734 OPTIONAL(scope, MDField, ); \ 3735 OPTIONAL(baseType, MDField, ); \ 3736 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3737 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3738 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3739 OPTIONAL(flags, DIFlagField, ); \ 3740 OPTIONAL(elements, MDField, ); \ 3741 OPTIONAL(runtimeLang, DwarfLangField, ); \ 3742 OPTIONAL(vtableHolder, MDField, ); \ 3743 OPTIONAL(templateParams, MDField, ); \ 3744 OPTIONAL(identifier, MDStringField, ); 3745 PARSE_MD_FIELDS(); 3746 #undef VISIT_MD_FIELDS 3747 3748 Result = GET_OR_DISTINCT( 3749 DICompositeType, 3750 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 3751 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 3752 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 3753 return false; 3754 } 3755 3756 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 3757 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3758 OPTIONAL(flags, DIFlagField, ); \ 3759 REQUIRED(types, MDField, ); 3760 PARSE_MD_FIELDS(); 3761 #undef VISIT_MD_FIELDS 3762 3763 Result = GET_OR_DISTINCT(DISubroutineType, (Context, flags.Val, types.Val)); 3764 return false; 3765 } 3766 3767 /// ParseDIFileType: 3768 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir") 3769 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 3770 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3771 REQUIRED(filename, MDStringField, ); \ 3772 REQUIRED(directory, MDStringField, ); 3773 PARSE_MD_FIELDS(); 3774 #undef VISIT_MD_FIELDS 3775 3776 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val)); 3777 return false; 3778 } 3779 3780 /// ParseDICompileUnit: 3781 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 3782 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 3783 /// splitDebugFilename: "abc.debug", emissionKind: 1, 3784 /// enums: !1, retainedTypes: !2, subprograms: !3, 3785 /// globals: !4, imports: !5, dwoId: 0x0abcd) 3786 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 3787 if (!IsDistinct) 3788 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 3789 3790 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3791 REQUIRED(language, DwarfLangField, ); \ 3792 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 3793 OPTIONAL(producer, MDStringField, ); \ 3794 OPTIONAL(isOptimized, MDBoolField, ); \ 3795 OPTIONAL(flags, MDStringField, ); \ 3796 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 3797 OPTIONAL(splitDebugFilename, MDStringField, ); \ 3798 OPTIONAL(emissionKind, MDUnsignedField, (0, UINT32_MAX)); \ 3799 OPTIONAL(enums, MDField, ); \ 3800 OPTIONAL(retainedTypes, MDField, ); \ 3801 OPTIONAL(subprograms, MDField, ); \ 3802 OPTIONAL(globals, MDField, ); \ 3803 OPTIONAL(imports, MDField, ); \ 3804 OPTIONAL(dwoId, MDUnsignedField, ); 3805 PARSE_MD_FIELDS(); 3806 #undef VISIT_MD_FIELDS 3807 3808 Result = DICompileUnit::getDistinct( 3809 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 3810 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 3811 retainedTypes.Val, subprograms.Val, globals.Val, imports.Val, dwoId.Val); 3812 return false; 3813 } 3814 3815 /// ParseDISubprogram: 3816 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 3817 /// file: !1, line: 7, type: !2, isLocal: false, 3818 /// isDefinition: true, scopeLine: 8, containingType: !3, 3819 /// virtuality: DW_VIRTUALTIY_pure_virtual, 3820 /// virtualIndex: 10, flags: 11, 3821 /// isOptimized: false, templateParams: !4, declaration: !5, 3822 /// variables: !6) 3823 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 3824 auto Loc = Lex.getLoc(); 3825 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3826 OPTIONAL(scope, MDField, ); \ 3827 OPTIONAL(name, MDStringField, ); \ 3828 OPTIONAL(linkageName, MDStringField, ); \ 3829 OPTIONAL(file, MDField, ); \ 3830 OPTIONAL(line, LineField, ); \ 3831 OPTIONAL(type, MDField, ); \ 3832 OPTIONAL(isLocal, MDBoolField, ); \ 3833 OPTIONAL(isDefinition, MDBoolField, (true)); \ 3834 OPTIONAL(scopeLine, LineField, ); \ 3835 OPTIONAL(containingType, MDField, ); \ 3836 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 3837 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 3838 OPTIONAL(flags, DIFlagField, ); \ 3839 OPTIONAL(isOptimized, MDBoolField, ); \ 3840 OPTIONAL(templateParams, MDField, ); \ 3841 OPTIONAL(declaration, MDField, ); \ 3842 OPTIONAL(variables, MDField, ); 3843 PARSE_MD_FIELDS(); 3844 #undef VISIT_MD_FIELDS 3845 3846 if (isDefinition.Val && !IsDistinct) 3847 return Lex.Error( 3848 Loc, 3849 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 3850 3851 Result = GET_OR_DISTINCT( 3852 DISubprogram, 3853 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 3854 type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val, 3855 containingType.Val, virtuality.Val, virtualIndex.Val, flags.Val, 3856 isOptimized.Val, templateParams.Val, declaration.Val, variables.Val)); 3857 return false; 3858 } 3859 3860 /// ParseDILexicalBlock: 3861 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 3862 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 3863 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3864 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3865 OPTIONAL(file, MDField, ); \ 3866 OPTIONAL(line, LineField, ); \ 3867 OPTIONAL(column, ColumnField, ); 3868 PARSE_MD_FIELDS(); 3869 #undef VISIT_MD_FIELDS 3870 3871 Result = GET_OR_DISTINCT( 3872 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 3873 return false; 3874 } 3875 3876 /// ParseDILexicalBlockFile: 3877 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 3878 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 3879 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3880 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3881 OPTIONAL(file, MDField, ); \ 3882 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 3883 PARSE_MD_FIELDS(); 3884 #undef VISIT_MD_FIELDS 3885 3886 Result = GET_OR_DISTINCT(DILexicalBlockFile, 3887 (Context, scope.Val, file.Val, discriminator.Val)); 3888 return false; 3889 } 3890 3891 /// ParseDINamespace: 3892 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 3893 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 3894 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3895 REQUIRED(scope, MDField, ); \ 3896 OPTIONAL(file, MDField, ); \ 3897 OPTIONAL(name, MDStringField, ); \ 3898 OPTIONAL(line, LineField, ); 3899 PARSE_MD_FIELDS(); 3900 #undef VISIT_MD_FIELDS 3901 3902 Result = GET_OR_DISTINCT(DINamespace, 3903 (Context, scope.Val, file.Val, name.Val, line.Val)); 3904 return false; 3905 } 3906 3907 /// ParseDIModule: 3908 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 3909 /// includePath: "/usr/include", isysroot: "/") 3910 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 3911 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3912 REQUIRED(scope, MDField, ); \ 3913 REQUIRED(name, MDStringField, ); \ 3914 OPTIONAL(configMacros, MDStringField, ); \ 3915 OPTIONAL(includePath, MDStringField, ); \ 3916 OPTIONAL(isysroot, MDStringField, ); 3917 PARSE_MD_FIELDS(); 3918 #undef VISIT_MD_FIELDS 3919 3920 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 3921 configMacros.Val, includePath.Val, isysroot.Val)); 3922 return false; 3923 } 3924 3925 /// ParseDITemplateTypeParameter: 3926 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 3927 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 3928 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3929 OPTIONAL(name, MDStringField, ); \ 3930 REQUIRED(type, MDField, ); 3931 PARSE_MD_FIELDS(); 3932 #undef VISIT_MD_FIELDS 3933 3934 Result = 3935 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 3936 return false; 3937 } 3938 3939 /// ParseDITemplateValueParameter: 3940 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 3941 /// name: "V", type: !1, value: i32 7) 3942 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 3943 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3944 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 3945 OPTIONAL(name, MDStringField, ); \ 3946 OPTIONAL(type, MDField, ); \ 3947 REQUIRED(value, MDField, ); 3948 PARSE_MD_FIELDS(); 3949 #undef VISIT_MD_FIELDS 3950 3951 Result = GET_OR_DISTINCT(DITemplateValueParameter, 3952 (Context, tag.Val, name.Val, type.Val, value.Val)); 3953 return false; 3954 } 3955 3956 /// ParseDIGlobalVariable: 3957 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 3958 /// file: !1, line: 7, type: !2, isLocal: false, 3959 /// isDefinition: true, variable: i32* @foo, 3960 /// declaration: !3) 3961 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 3962 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3963 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 3964 OPTIONAL(scope, MDField, ); \ 3965 OPTIONAL(linkageName, MDStringField, ); \ 3966 OPTIONAL(file, MDField, ); \ 3967 OPTIONAL(line, LineField, ); \ 3968 OPTIONAL(type, MDField, ); \ 3969 OPTIONAL(isLocal, MDBoolField, ); \ 3970 OPTIONAL(isDefinition, MDBoolField, (true)); \ 3971 OPTIONAL(variable, MDConstant, ); \ 3972 OPTIONAL(declaration, MDField, ); 3973 PARSE_MD_FIELDS(); 3974 #undef VISIT_MD_FIELDS 3975 3976 Result = GET_OR_DISTINCT(DIGlobalVariable, 3977 (Context, scope.Val, name.Val, linkageName.Val, 3978 file.Val, line.Val, type.Val, isLocal.Val, 3979 isDefinition.Val, variable.Val, declaration.Val)); 3980 return false; 3981 } 3982 3983 /// ParseDILocalVariable: 3984 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 3985 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 3986 /// ::= !DILocalVariable(scope: !0, name: "foo", 3987 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 3988 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 3989 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3990 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3991 OPTIONAL(name, MDStringField, ); \ 3992 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 3993 OPTIONAL(file, MDField, ); \ 3994 OPTIONAL(line, LineField, ); \ 3995 OPTIONAL(type, MDField, ); \ 3996 OPTIONAL(flags, DIFlagField, ); 3997 PARSE_MD_FIELDS(); 3998 #undef VISIT_MD_FIELDS 3999 4000 Result = GET_OR_DISTINCT(DILocalVariable, 4001 (Context, scope.Val, name.Val, file.Val, line.Val, 4002 type.Val, arg.Val, flags.Val)); 4003 return false; 4004 } 4005 4006 /// ParseDIExpression: 4007 /// ::= !DIExpression(0, 7, -1) 4008 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4009 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4010 Lex.Lex(); 4011 4012 if (ParseToken(lltok::lparen, "expected '(' here")) 4013 return true; 4014 4015 SmallVector<uint64_t, 8> Elements; 4016 if (Lex.getKind() != lltok::rparen) 4017 do { 4018 if (Lex.getKind() == lltok::DwarfOp) { 4019 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4020 Lex.Lex(); 4021 Elements.push_back(Op); 4022 continue; 4023 } 4024 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4025 } 4026 4027 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4028 return TokError("expected unsigned integer"); 4029 4030 auto &U = Lex.getAPSIntVal(); 4031 if (U.ugt(UINT64_MAX)) 4032 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4033 Elements.push_back(U.getZExtValue()); 4034 Lex.Lex(); 4035 } while (EatIfPresent(lltok::comma)); 4036 4037 if (ParseToken(lltok::rparen, "expected ')' here")) 4038 return true; 4039 4040 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4041 return false; 4042 } 4043 4044 /// ParseDIObjCProperty: 4045 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4046 /// getter: "getFoo", attributes: 7, type: !2) 4047 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4048 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4049 OPTIONAL(name, MDStringField, ); \ 4050 OPTIONAL(file, MDField, ); \ 4051 OPTIONAL(line, LineField, ); \ 4052 OPTIONAL(setter, MDStringField, ); \ 4053 OPTIONAL(getter, MDStringField, ); \ 4054 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4055 OPTIONAL(type, MDField, ); 4056 PARSE_MD_FIELDS(); 4057 #undef VISIT_MD_FIELDS 4058 4059 Result = GET_OR_DISTINCT(DIObjCProperty, 4060 (Context, name.Val, file.Val, line.Val, setter.Val, 4061 getter.Val, attributes.Val, type.Val)); 4062 return false; 4063 } 4064 4065 /// ParseDIImportedEntity: 4066 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4067 /// line: 7, name: "foo") 4068 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4069 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4070 REQUIRED(tag, DwarfTagField, ); \ 4071 REQUIRED(scope, MDField, ); \ 4072 OPTIONAL(entity, MDField, ); \ 4073 OPTIONAL(line, LineField, ); \ 4074 OPTIONAL(name, MDStringField, ); 4075 PARSE_MD_FIELDS(); 4076 #undef VISIT_MD_FIELDS 4077 4078 Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val, 4079 entity.Val, line.Val, name.Val)); 4080 return false; 4081 } 4082 4083 #undef PARSE_MD_FIELD 4084 #undef NOP_FIELD 4085 #undef REQUIRE_FIELD 4086 #undef DECLARE_FIELD 4087 4088 /// ParseMetadataAsValue 4089 /// ::= metadata i32 %local 4090 /// ::= metadata i32 @global 4091 /// ::= metadata i32 7 4092 /// ::= metadata !0 4093 /// ::= metadata !{...} 4094 /// ::= metadata !"string" 4095 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4096 // Note: the type 'metadata' has already been parsed. 4097 Metadata *MD; 4098 if (ParseMetadata(MD, &PFS)) 4099 return true; 4100 4101 V = MetadataAsValue::get(Context, MD); 4102 return false; 4103 } 4104 4105 /// ParseValueAsMetadata 4106 /// ::= i32 %local 4107 /// ::= i32 @global 4108 /// ::= i32 7 4109 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4110 PerFunctionState *PFS) { 4111 Type *Ty; 4112 LocTy Loc; 4113 if (ParseType(Ty, TypeMsg, Loc)) 4114 return true; 4115 if (Ty->isMetadataTy()) 4116 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4117 4118 Value *V; 4119 if (ParseValue(Ty, V, PFS)) 4120 return true; 4121 4122 MD = ValueAsMetadata::get(V); 4123 return false; 4124 } 4125 4126 /// ParseMetadata 4127 /// ::= i32 %local 4128 /// ::= i32 @global 4129 /// ::= i32 7 4130 /// ::= !42 4131 /// ::= !{...} 4132 /// ::= !"string" 4133 /// ::= !DILocation(...) 4134 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4135 if (Lex.getKind() == lltok::MetadataVar) { 4136 MDNode *N; 4137 if (ParseSpecializedMDNode(N)) 4138 return true; 4139 MD = N; 4140 return false; 4141 } 4142 4143 // ValueAsMetadata: 4144 // <type> <value> 4145 if (Lex.getKind() != lltok::exclaim) 4146 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4147 4148 // '!'. 4149 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4150 Lex.Lex(); 4151 4152 // MDString: 4153 // ::= '!' STRINGCONSTANT 4154 if (Lex.getKind() == lltok::StringConstant) { 4155 MDString *S; 4156 if (ParseMDString(S)) 4157 return true; 4158 MD = S; 4159 return false; 4160 } 4161 4162 // MDNode: 4163 // !{ ... } 4164 // !7 4165 MDNode *N; 4166 if (ParseMDNodeTail(N)) 4167 return true; 4168 MD = N; 4169 return false; 4170 } 4171 4172 4173 //===----------------------------------------------------------------------===// 4174 // Function Parsing. 4175 //===----------------------------------------------------------------------===// 4176 4177 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4178 PerFunctionState *PFS, 4179 OperatorConstraint OC) { 4180 if (Ty->isFunctionTy()) 4181 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4182 4183 if (OC && ID.Kind != ValID::t_LocalID && ID.Kind != ValID::t_LocalName) { 4184 switch (OC) { 4185 case OC_CatchPad: 4186 return Error(ID.Loc, "Catchpad value required in this position"); 4187 case OC_CleanupPad: 4188 return Error(ID.Loc, "Cleanuppad value required in this position"); 4189 default: 4190 llvm_unreachable("Unexpected constraint kind"); 4191 } 4192 } 4193 4194 switch (ID.Kind) { 4195 case ValID::t_LocalID: 4196 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4197 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, OC); 4198 return V == nullptr; 4199 case ValID::t_LocalName: 4200 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4201 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, OC); 4202 return V == nullptr; 4203 case ValID::t_InlineAsm: { 4204 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4205 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4206 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4207 (ID.UIntVal >> 1) & 1, 4208 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4209 return false; 4210 } 4211 case ValID::t_GlobalName: 4212 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4213 return V == nullptr; 4214 case ValID::t_GlobalID: 4215 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4216 return V == nullptr; 4217 case ValID::t_APSInt: 4218 if (!Ty->isIntegerTy()) 4219 return Error(ID.Loc, "integer constant must have integer type"); 4220 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4221 V = ConstantInt::get(Context, ID.APSIntVal); 4222 return false; 4223 case ValID::t_APFloat: 4224 if (!Ty->isFloatingPointTy() || 4225 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4226 return Error(ID.Loc, "floating point constant invalid for type"); 4227 4228 // The lexer has no type info, so builds all half, float, and double FP 4229 // constants as double. Fix this here. Long double does not need this. 4230 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 4231 bool Ignored; 4232 if (Ty->isHalfTy()) 4233 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 4234 &Ignored); 4235 else if (Ty->isFloatTy()) 4236 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 4237 &Ignored); 4238 } 4239 V = ConstantFP::get(Context, ID.APFloatVal); 4240 4241 if (V->getType() != Ty) 4242 return Error(ID.Loc, "floating point constant does not have type '" + 4243 getTypeString(Ty) + "'"); 4244 4245 return false; 4246 case ValID::t_Null: 4247 if (!Ty->isPointerTy()) 4248 return Error(ID.Loc, "null must be a pointer type"); 4249 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4250 return false; 4251 case ValID::t_Undef: 4252 // FIXME: LabelTy should not be a first-class type. 4253 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4254 return Error(ID.Loc, "invalid type for undef constant"); 4255 V = UndefValue::get(Ty); 4256 return false; 4257 case ValID::t_EmptyArray: 4258 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4259 return Error(ID.Loc, "invalid empty array initializer"); 4260 V = UndefValue::get(Ty); 4261 return false; 4262 case ValID::t_Zero: 4263 // FIXME: LabelTy should not be a first-class type. 4264 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4265 return Error(ID.Loc, "invalid type for null constant"); 4266 V = Constant::getNullValue(Ty); 4267 return false; 4268 case ValID::t_None: 4269 if (!Ty->isTokenTy()) 4270 return Error(ID.Loc, "invalid type for none constant"); 4271 V = Constant::getNullValue(Ty); 4272 return false; 4273 case ValID::t_Constant: 4274 if (ID.ConstantVal->getType() != Ty) 4275 return Error(ID.Loc, "constant expression type mismatch"); 4276 4277 V = ID.ConstantVal; 4278 return false; 4279 case ValID::t_ConstantStruct: 4280 case ValID::t_PackedConstantStruct: 4281 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4282 if (ST->getNumElements() != ID.UIntVal) 4283 return Error(ID.Loc, 4284 "initializer with struct type has wrong # elements"); 4285 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4286 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4287 4288 // Verify that the elements are compatible with the structtype. 4289 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4290 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4291 return Error(ID.Loc, "element " + Twine(i) + 4292 " of struct initializer doesn't match struct element type"); 4293 4294 V = ConstantStruct::get( 4295 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4296 } else 4297 return Error(ID.Loc, "constant expression type mismatch"); 4298 return false; 4299 } 4300 llvm_unreachable("Invalid ValID"); 4301 } 4302 4303 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4304 C = nullptr; 4305 ValID ID; 4306 auto Loc = Lex.getLoc(); 4307 if (ParseValID(ID, /*PFS=*/nullptr)) 4308 return true; 4309 switch (ID.Kind) { 4310 case ValID::t_APSInt: 4311 case ValID::t_APFloat: 4312 case ValID::t_Undef: 4313 case ValID::t_Constant: 4314 case ValID::t_ConstantStruct: 4315 case ValID::t_PackedConstantStruct: { 4316 Value *V; 4317 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4318 return true; 4319 assert(isa<Constant>(V) && "Expected a constant value"); 4320 C = cast<Constant>(V); 4321 return false; 4322 } 4323 default: 4324 return Error(Loc, "expected a constant value"); 4325 } 4326 } 4327 4328 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS, 4329 OperatorConstraint OC) { 4330 V = nullptr; 4331 ValID ID; 4332 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS, OC); 4333 } 4334 4335 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4336 Type *Ty = nullptr; 4337 return ParseType(Ty) || 4338 ParseValue(Ty, V, PFS); 4339 } 4340 4341 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4342 PerFunctionState &PFS) { 4343 Value *V; 4344 Loc = Lex.getLoc(); 4345 if (ParseTypeAndValue(V, PFS)) return true; 4346 if (!isa<BasicBlock>(V)) 4347 return Error(Loc, "expected a basic block"); 4348 BB = cast<BasicBlock>(V); 4349 return false; 4350 } 4351 4352 4353 /// FunctionHeader 4354 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 4355 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 4356 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 4357 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4358 // Parse the linkage. 4359 LocTy LinkageLoc = Lex.getLoc(); 4360 unsigned Linkage; 4361 4362 unsigned Visibility; 4363 unsigned DLLStorageClass; 4364 AttrBuilder RetAttrs; 4365 unsigned CC; 4366 Type *RetType = nullptr; 4367 LocTy RetTypeLoc = Lex.getLoc(); 4368 if (ParseOptionalLinkage(Linkage) || 4369 ParseOptionalVisibility(Visibility) || 4370 ParseOptionalDLLStorageClass(DLLStorageClass) || 4371 ParseOptionalCallingConv(CC) || 4372 ParseOptionalReturnAttrs(RetAttrs) || 4373 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4374 return true; 4375 4376 // Verify that the linkage is ok. 4377 switch ((GlobalValue::LinkageTypes)Linkage) { 4378 case GlobalValue::ExternalLinkage: 4379 break; // always ok. 4380 case GlobalValue::ExternalWeakLinkage: 4381 if (isDefine) 4382 return Error(LinkageLoc, "invalid linkage for function definition"); 4383 break; 4384 case GlobalValue::PrivateLinkage: 4385 case GlobalValue::InternalLinkage: 4386 case GlobalValue::AvailableExternallyLinkage: 4387 case GlobalValue::LinkOnceAnyLinkage: 4388 case GlobalValue::LinkOnceODRLinkage: 4389 case GlobalValue::WeakAnyLinkage: 4390 case GlobalValue::WeakODRLinkage: 4391 if (!isDefine) 4392 return Error(LinkageLoc, "invalid linkage for function declaration"); 4393 break; 4394 case GlobalValue::AppendingLinkage: 4395 case GlobalValue::CommonLinkage: 4396 return Error(LinkageLoc, "invalid function linkage type"); 4397 } 4398 4399 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4400 return Error(LinkageLoc, 4401 "symbol with local linkage must have default visibility"); 4402 4403 if (!FunctionType::isValidReturnType(RetType)) 4404 return Error(RetTypeLoc, "invalid function return type"); 4405 4406 LocTy NameLoc = Lex.getLoc(); 4407 4408 std::string FunctionName; 4409 if (Lex.getKind() == lltok::GlobalVar) { 4410 FunctionName = Lex.getStrVal(); 4411 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4412 unsigned NameID = Lex.getUIntVal(); 4413 4414 if (NameID != NumberedVals.size()) 4415 return TokError("function expected to be numbered '%" + 4416 Twine(NumberedVals.size()) + "'"); 4417 } else { 4418 return TokError("expected function name"); 4419 } 4420 4421 Lex.Lex(); 4422 4423 if (Lex.getKind() != lltok::lparen) 4424 return TokError("expected '(' in function argument list"); 4425 4426 SmallVector<ArgInfo, 8> ArgList; 4427 bool isVarArg; 4428 AttrBuilder FuncAttrs; 4429 std::vector<unsigned> FwdRefAttrGrps; 4430 LocTy BuiltinLoc; 4431 std::string Section; 4432 unsigned Alignment; 4433 std::string GC; 4434 bool UnnamedAddr; 4435 LocTy UnnamedAddrLoc; 4436 Constant *Prefix = nullptr; 4437 Constant *Prologue = nullptr; 4438 Constant *PersonalityFn = nullptr; 4439 Comdat *C; 4440 4441 if (ParseArgumentList(ArgList, isVarArg) || 4442 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 4443 &UnnamedAddrLoc) || 4444 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4445 BuiltinLoc) || 4446 (EatIfPresent(lltok::kw_section) && 4447 ParseStringConstant(Section)) || 4448 parseOptionalComdat(FunctionName, C) || 4449 ParseOptionalAlignment(Alignment) || 4450 (EatIfPresent(lltok::kw_gc) && 4451 ParseStringConstant(GC)) || 4452 (EatIfPresent(lltok::kw_prefix) && 4453 ParseGlobalTypeAndValue(Prefix)) || 4454 (EatIfPresent(lltok::kw_prologue) && 4455 ParseGlobalTypeAndValue(Prologue)) || 4456 (EatIfPresent(lltok::kw_personality) && 4457 ParseGlobalTypeAndValue(PersonalityFn))) 4458 return true; 4459 4460 if (FuncAttrs.contains(Attribute::Builtin)) 4461 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4462 4463 // If the alignment was parsed as an attribute, move to the alignment field. 4464 if (FuncAttrs.hasAlignmentAttr()) { 4465 Alignment = FuncAttrs.getAlignment(); 4466 FuncAttrs.removeAttribute(Attribute::Alignment); 4467 } 4468 4469 // Okay, if we got here, the function is syntactically valid. Convert types 4470 // and do semantic checks. 4471 std::vector<Type*> ParamTypeList; 4472 SmallVector<AttributeSet, 8> Attrs; 4473 4474 if (RetAttrs.hasAttributes()) 4475 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4476 AttributeSet::ReturnIndex, 4477 RetAttrs)); 4478 4479 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4480 ParamTypeList.push_back(ArgList[i].Ty); 4481 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 4482 AttrBuilder B(ArgList[i].Attrs, i + 1); 4483 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 4484 } 4485 } 4486 4487 if (FuncAttrs.hasAttributes()) 4488 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4489 AttributeSet::FunctionIndex, 4490 FuncAttrs)); 4491 4492 AttributeSet PAL = AttributeSet::get(Context, Attrs); 4493 4494 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4495 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4496 4497 FunctionType *FT = 4498 FunctionType::get(RetType, ParamTypeList, isVarArg); 4499 PointerType *PFT = PointerType::getUnqual(FT); 4500 4501 Fn = nullptr; 4502 if (!FunctionName.empty()) { 4503 // If this was a definition of a forward reference, remove the definition 4504 // from the forward reference table and fill in the forward ref. 4505 auto FRVI = ForwardRefVals.find(FunctionName); 4506 if (FRVI != ForwardRefVals.end()) { 4507 Fn = M->getFunction(FunctionName); 4508 if (!Fn) 4509 return Error(FRVI->second.second, "invalid forward reference to " 4510 "function as global value!"); 4511 if (Fn->getType() != PFT) 4512 return Error(FRVI->second.second, "invalid forward reference to " 4513 "function '" + FunctionName + "' with wrong type!"); 4514 4515 ForwardRefVals.erase(FRVI); 4516 } else if ((Fn = M->getFunction(FunctionName))) { 4517 // Reject redefinitions. 4518 return Error(NameLoc, "invalid redefinition of function '" + 4519 FunctionName + "'"); 4520 } else if (M->getNamedValue(FunctionName)) { 4521 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4522 } 4523 4524 } else { 4525 // If this is a definition of a forward referenced function, make sure the 4526 // types agree. 4527 auto I = ForwardRefValIDs.find(NumberedVals.size()); 4528 if (I != ForwardRefValIDs.end()) { 4529 Fn = cast<Function>(I->second.first); 4530 if (Fn->getType() != PFT) 4531 return Error(NameLoc, "type of definition and forward reference of '@" + 4532 Twine(NumberedVals.size()) + "' disagree"); 4533 ForwardRefValIDs.erase(I); 4534 } 4535 } 4536 4537 if (!Fn) 4538 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4539 else // Move the forward-reference to the correct spot in the module. 4540 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4541 4542 if (FunctionName.empty()) 4543 NumberedVals.push_back(Fn); 4544 4545 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4546 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4547 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4548 Fn->setCallingConv(CC); 4549 Fn->setAttributes(PAL); 4550 Fn->setUnnamedAddr(UnnamedAddr); 4551 Fn->setAlignment(Alignment); 4552 Fn->setSection(Section); 4553 Fn->setComdat(C); 4554 Fn->setPersonalityFn(PersonalityFn); 4555 if (!GC.empty()) Fn->setGC(GC.c_str()); 4556 Fn->setPrefixData(Prefix); 4557 Fn->setPrologueData(Prologue); 4558 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4559 4560 // Add all of the arguments we parsed to the function. 4561 Function::arg_iterator ArgIt = Fn->arg_begin(); 4562 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4563 // If the argument has a name, insert it into the argument symbol table. 4564 if (ArgList[i].Name.empty()) continue; 4565 4566 // Set the name, if it conflicted, it will be auto-renamed. 4567 ArgIt->setName(ArgList[i].Name); 4568 4569 if (ArgIt->getName() != ArgList[i].Name) 4570 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4571 ArgList[i].Name + "'"); 4572 } 4573 4574 if (isDefine) 4575 return false; 4576 4577 // Check the declaration has no block address forward references. 4578 ValID ID; 4579 if (FunctionName.empty()) { 4580 ID.Kind = ValID::t_GlobalID; 4581 ID.UIntVal = NumberedVals.size() - 1; 4582 } else { 4583 ID.Kind = ValID::t_GlobalName; 4584 ID.StrVal = FunctionName; 4585 } 4586 auto Blocks = ForwardRefBlockAddresses.find(ID); 4587 if (Blocks != ForwardRefBlockAddresses.end()) 4588 return Error(Blocks->first.Loc, 4589 "cannot take blockaddress inside a declaration"); 4590 return false; 4591 } 4592 4593 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4594 ValID ID; 4595 if (FunctionNumber == -1) { 4596 ID.Kind = ValID::t_GlobalName; 4597 ID.StrVal = F.getName(); 4598 } else { 4599 ID.Kind = ValID::t_GlobalID; 4600 ID.UIntVal = FunctionNumber; 4601 } 4602 4603 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4604 if (Blocks == P.ForwardRefBlockAddresses.end()) 4605 return false; 4606 4607 for (const auto &I : Blocks->second) { 4608 const ValID &BBID = I.first; 4609 GlobalValue *GV = I.second; 4610 4611 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4612 "Expected local id or name"); 4613 BasicBlock *BB; 4614 if (BBID.Kind == ValID::t_LocalName) 4615 BB = GetBB(BBID.StrVal, BBID.Loc); 4616 else 4617 BB = GetBB(BBID.UIntVal, BBID.Loc); 4618 if (!BB) 4619 return P.Error(BBID.Loc, "referenced value is not a basic block"); 4620 4621 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 4622 GV->eraseFromParent(); 4623 } 4624 4625 P.ForwardRefBlockAddresses.erase(Blocks); 4626 return false; 4627 } 4628 4629 /// ParseFunctionBody 4630 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 4631 bool LLParser::ParseFunctionBody(Function &Fn) { 4632 if (Lex.getKind() != lltok::lbrace) 4633 return TokError("expected '{' in function body"); 4634 Lex.Lex(); // eat the {. 4635 4636 int FunctionNumber = -1; 4637 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 4638 4639 PerFunctionState PFS(*this, Fn, FunctionNumber); 4640 4641 // Resolve block addresses and allow basic blocks to be forward-declared 4642 // within this function. 4643 if (PFS.resolveForwardRefBlockAddresses()) 4644 return true; 4645 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 4646 4647 // We need at least one basic block. 4648 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 4649 return TokError("function body requires at least one basic block"); 4650 4651 while (Lex.getKind() != lltok::rbrace && 4652 Lex.getKind() != lltok::kw_uselistorder) 4653 if (ParseBasicBlock(PFS)) return true; 4654 4655 while (Lex.getKind() != lltok::rbrace) 4656 if (ParseUseListOrder(&PFS)) 4657 return true; 4658 4659 // Eat the }. 4660 Lex.Lex(); 4661 4662 // Verify function is ok. 4663 return PFS.FinishFunction(); 4664 } 4665 4666 /// ParseBasicBlock 4667 /// ::= LabelStr? Instruction* 4668 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 4669 // If this basic block starts out with a name, remember it. 4670 std::string Name; 4671 LocTy NameLoc = Lex.getLoc(); 4672 if (Lex.getKind() == lltok::LabelStr) { 4673 Name = Lex.getStrVal(); 4674 Lex.Lex(); 4675 } 4676 4677 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 4678 if (!BB) 4679 return Error(NameLoc, 4680 "unable to create block named '" + Name + "'"); 4681 4682 std::string NameStr; 4683 4684 // Parse the instructions in this block until we get a terminator. 4685 Instruction *Inst; 4686 do { 4687 // This instruction may have three possibilities for a name: a) none 4688 // specified, b) name specified "%foo =", c) number specified: "%4 =". 4689 LocTy NameLoc = Lex.getLoc(); 4690 int NameID = -1; 4691 NameStr = ""; 4692 4693 if (Lex.getKind() == lltok::LocalVarID) { 4694 NameID = Lex.getUIntVal(); 4695 Lex.Lex(); 4696 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 4697 return true; 4698 } else if (Lex.getKind() == lltok::LocalVar) { 4699 NameStr = Lex.getStrVal(); 4700 Lex.Lex(); 4701 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 4702 return true; 4703 } 4704 4705 switch (ParseInstruction(Inst, BB, PFS)) { 4706 default: llvm_unreachable("Unknown ParseInstruction result!"); 4707 case InstError: return true; 4708 case InstNormal: 4709 BB->getInstList().push_back(Inst); 4710 4711 // With a normal result, we check to see if the instruction is followed by 4712 // a comma and metadata. 4713 if (EatIfPresent(lltok::comma)) 4714 if (ParseInstructionMetadata(*Inst)) 4715 return true; 4716 break; 4717 case InstExtraComma: 4718 BB->getInstList().push_back(Inst); 4719 4720 // If the instruction parser ate an extra comma at the end of it, it 4721 // *must* be followed by metadata. 4722 if (ParseInstructionMetadata(*Inst)) 4723 return true; 4724 break; 4725 } 4726 4727 // Set the name on the instruction. 4728 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 4729 } while (!isa<TerminatorInst>(Inst)); 4730 4731 return false; 4732 } 4733 4734 //===----------------------------------------------------------------------===// 4735 // Instruction Parsing. 4736 //===----------------------------------------------------------------------===// 4737 4738 /// ParseInstruction - Parse one of the many different instructions. 4739 /// 4740 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 4741 PerFunctionState &PFS) { 4742 lltok::Kind Token = Lex.getKind(); 4743 if (Token == lltok::Eof) 4744 return TokError("found end of file when expecting more instructions"); 4745 LocTy Loc = Lex.getLoc(); 4746 unsigned KeywordVal = Lex.getUIntVal(); 4747 Lex.Lex(); // Eat the keyword. 4748 4749 switch (Token) { 4750 default: return Error(Loc, "expected instruction opcode"); 4751 // Terminator Instructions. 4752 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 4753 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 4754 case lltok::kw_br: return ParseBr(Inst, PFS); 4755 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 4756 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 4757 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 4758 case lltok::kw_resume: return ParseResume(Inst, PFS); 4759 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 4760 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 4761 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 4762 case lltok::kw_terminatepad: return ParseTerminatePad(Inst, PFS); 4763 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 4764 case lltok::kw_catchendpad: return ParseCatchEndPad(Inst, PFS); 4765 case lltok::kw_cleanupendpad: return ParseCleanupEndPad(Inst, PFS); 4766 // Binary Operators. 4767 case lltok::kw_add: 4768 case lltok::kw_sub: 4769 case lltok::kw_mul: 4770 case lltok::kw_shl: { 4771 bool NUW = EatIfPresent(lltok::kw_nuw); 4772 bool NSW = EatIfPresent(lltok::kw_nsw); 4773 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 4774 4775 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4776 4777 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 4778 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 4779 return false; 4780 } 4781 case lltok::kw_fadd: 4782 case lltok::kw_fsub: 4783 case lltok::kw_fmul: 4784 case lltok::kw_fdiv: 4785 case lltok::kw_frem: { 4786 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4787 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 4788 if (Res != 0) 4789 return Res; 4790 if (FMF.any()) 4791 Inst->setFastMathFlags(FMF); 4792 return 0; 4793 } 4794 4795 case lltok::kw_sdiv: 4796 case lltok::kw_udiv: 4797 case lltok::kw_lshr: 4798 case lltok::kw_ashr: { 4799 bool Exact = EatIfPresent(lltok::kw_exact); 4800 4801 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4802 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 4803 return false; 4804 } 4805 4806 case lltok::kw_urem: 4807 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 4808 case lltok::kw_and: 4809 case lltok::kw_or: 4810 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 4811 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 4812 case lltok::kw_fcmp: { 4813 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4814 int Res = ParseCompare(Inst, PFS, KeywordVal); 4815 if (Res != 0) 4816 return Res; 4817 if (FMF.any()) 4818 Inst->setFastMathFlags(FMF); 4819 return 0; 4820 } 4821 4822 // Casts. 4823 case lltok::kw_trunc: 4824 case lltok::kw_zext: 4825 case lltok::kw_sext: 4826 case lltok::kw_fptrunc: 4827 case lltok::kw_fpext: 4828 case lltok::kw_bitcast: 4829 case lltok::kw_addrspacecast: 4830 case lltok::kw_uitofp: 4831 case lltok::kw_sitofp: 4832 case lltok::kw_fptoui: 4833 case lltok::kw_fptosi: 4834 case lltok::kw_inttoptr: 4835 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 4836 // Other. 4837 case lltok::kw_select: return ParseSelect(Inst, PFS); 4838 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 4839 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 4840 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 4841 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 4842 case lltok::kw_phi: return ParsePHI(Inst, PFS); 4843 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 4844 // Call. 4845 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 4846 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 4847 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 4848 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 4849 // Memory. 4850 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 4851 case lltok::kw_load: return ParseLoad(Inst, PFS); 4852 case lltok::kw_store: return ParseStore(Inst, PFS); 4853 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 4854 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 4855 case lltok::kw_fence: return ParseFence(Inst, PFS); 4856 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 4857 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 4858 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 4859 } 4860 } 4861 4862 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 4863 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 4864 if (Opc == Instruction::FCmp) { 4865 switch (Lex.getKind()) { 4866 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 4867 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 4868 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 4869 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 4870 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 4871 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 4872 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 4873 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 4874 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 4875 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 4876 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 4877 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 4878 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 4879 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 4880 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 4881 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 4882 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 4883 } 4884 } else { 4885 switch (Lex.getKind()) { 4886 default: return TokError("expected icmp predicate (e.g. 'eq')"); 4887 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 4888 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 4889 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 4890 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 4891 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 4892 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 4893 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 4894 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 4895 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 4896 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 4897 } 4898 } 4899 Lex.Lex(); 4900 return false; 4901 } 4902 4903 //===----------------------------------------------------------------------===// 4904 // Terminator Instructions. 4905 //===----------------------------------------------------------------------===// 4906 4907 /// ParseRet - Parse a return instruction. 4908 /// ::= 'ret' void (',' !dbg, !1)* 4909 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 4910 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 4911 PerFunctionState &PFS) { 4912 SMLoc TypeLoc = Lex.getLoc(); 4913 Type *Ty = nullptr; 4914 if (ParseType(Ty, true /*void allowed*/)) return true; 4915 4916 Type *ResType = PFS.getFunction().getReturnType(); 4917 4918 if (Ty->isVoidTy()) { 4919 if (!ResType->isVoidTy()) 4920 return Error(TypeLoc, "value doesn't match function result type '" + 4921 getTypeString(ResType) + "'"); 4922 4923 Inst = ReturnInst::Create(Context); 4924 return false; 4925 } 4926 4927 Value *RV; 4928 if (ParseValue(Ty, RV, PFS)) return true; 4929 4930 if (ResType != RV->getType()) 4931 return Error(TypeLoc, "value doesn't match function result type '" + 4932 getTypeString(ResType) + "'"); 4933 4934 Inst = ReturnInst::Create(Context, RV); 4935 return false; 4936 } 4937 4938 4939 /// ParseBr 4940 /// ::= 'br' TypeAndValue 4941 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 4942 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 4943 LocTy Loc, Loc2; 4944 Value *Op0; 4945 BasicBlock *Op1, *Op2; 4946 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 4947 4948 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 4949 Inst = BranchInst::Create(BB); 4950 return false; 4951 } 4952 4953 if (Op0->getType() != Type::getInt1Ty(Context)) 4954 return Error(Loc, "branch condition must have 'i1' type"); 4955 4956 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 4957 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 4958 ParseToken(lltok::comma, "expected ',' after true destination") || 4959 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 4960 return true; 4961 4962 Inst = BranchInst::Create(Op1, Op2, Op0); 4963 return false; 4964 } 4965 4966 /// ParseSwitch 4967 /// Instruction 4968 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 4969 /// JumpTable 4970 /// ::= (TypeAndValue ',' TypeAndValue)* 4971 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 4972 LocTy CondLoc, BBLoc; 4973 Value *Cond; 4974 BasicBlock *DefaultBB; 4975 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 4976 ParseToken(lltok::comma, "expected ',' after switch condition") || 4977 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 4978 ParseToken(lltok::lsquare, "expected '[' with switch table")) 4979 return true; 4980 4981 if (!Cond->getType()->isIntegerTy()) 4982 return Error(CondLoc, "switch condition must have integer type"); 4983 4984 // Parse the jump table pairs. 4985 SmallPtrSet<Value*, 32> SeenCases; 4986 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 4987 while (Lex.getKind() != lltok::rsquare) { 4988 Value *Constant; 4989 BasicBlock *DestBB; 4990 4991 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 4992 ParseToken(lltok::comma, "expected ',' after case value") || 4993 ParseTypeAndBasicBlock(DestBB, PFS)) 4994 return true; 4995 4996 if (!SeenCases.insert(Constant).second) 4997 return Error(CondLoc, "duplicate case value in switch"); 4998 if (!isa<ConstantInt>(Constant)) 4999 return Error(CondLoc, "case value is not a constant integer"); 5000 5001 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5002 } 5003 5004 Lex.Lex(); // Eat the ']'. 5005 5006 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5007 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5008 SI->addCase(Table[i].first, Table[i].second); 5009 Inst = SI; 5010 return false; 5011 } 5012 5013 /// ParseIndirectBr 5014 /// Instruction 5015 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5016 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5017 LocTy AddrLoc; 5018 Value *Address; 5019 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5020 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5021 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5022 return true; 5023 5024 if (!Address->getType()->isPointerTy()) 5025 return Error(AddrLoc, "indirectbr address must have pointer type"); 5026 5027 // Parse the destination list. 5028 SmallVector<BasicBlock*, 16> DestList; 5029 5030 if (Lex.getKind() != lltok::rsquare) { 5031 BasicBlock *DestBB; 5032 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5033 return true; 5034 DestList.push_back(DestBB); 5035 5036 while (EatIfPresent(lltok::comma)) { 5037 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5038 return true; 5039 DestList.push_back(DestBB); 5040 } 5041 } 5042 5043 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5044 return true; 5045 5046 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5047 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5048 IBI->addDestination(DestList[i]); 5049 Inst = IBI; 5050 return false; 5051 } 5052 5053 5054 /// ParseInvoke 5055 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5056 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5057 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5058 LocTy CallLoc = Lex.getLoc(); 5059 AttrBuilder RetAttrs, FnAttrs; 5060 std::vector<unsigned> FwdRefAttrGrps; 5061 LocTy NoBuiltinLoc; 5062 unsigned CC; 5063 Type *RetType = nullptr; 5064 LocTy RetTypeLoc; 5065 ValID CalleeID; 5066 SmallVector<ParamInfo, 16> ArgList; 5067 SmallVector<OperandBundleDef, 2> BundleList; 5068 5069 BasicBlock *NormalBB, *UnwindBB; 5070 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5071 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5072 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5073 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5074 NoBuiltinLoc) || 5075 ParseOptionalOperandBundles(BundleList, PFS) || 5076 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5077 ParseTypeAndBasicBlock(NormalBB, PFS) || 5078 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5079 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5080 return true; 5081 5082 // If RetType is a non-function pointer type, then this is the short syntax 5083 // for the call, which means that RetType is just the return type. Infer the 5084 // rest of the function argument types from the arguments that are present. 5085 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5086 if (!Ty) { 5087 // Pull out the types of all of the arguments... 5088 std::vector<Type*> ParamTypes; 5089 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5090 ParamTypes.push_back(ArgList[i].V->getType()); 5091 5092 if (!FunctionType::isValidReturnType(RetType)) 5093 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5094 5095 Ty = FunctionType::get(RetType, ParamTypes, false); 5096 } 5097 5098 CalleeID.FTy = Ty; 5099 5100 // Look up the callee. 5101 Value *Callee; 5102 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5103 return true; 5104 5105 // Set up the Attribute for the function. 5106 SmallVector<AttributeSet, 8> Attrs; 5107 if (RetAttrs.hasAttributes()) 5108 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5109 AttributeSet::ReturnIndex, 5110 RetAttrs)); 5111 5112 SmallVector<Value*, 8> Args; 5113 5114 // Loop through FunctionType's arguments and ensure they are specified 5115 // correctly. Also, gather any parameter attributes. 5116 FunctionType::param_iterator I = Ty->param_begin(); 5117 FunctionType::param_iterator E = Ty->param_end(); 5118 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5119 Type *ExpectedTy = nullptr; 5120 if (I != E) { 5121 ExpectedTy = *I++; 5122 } else if (!Ty->isVarArg()) { 5123 return Error(ArgList[i].Loc, "too many arguments specified"); 5124 } 5125 5126 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5127 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5128 getTypeString(ExpectedTy) + "'"); 5129 Args.push_back(ArgList[i].V); 5130 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5131 AttrBuilder B(ArgList[i].Attrs, i + 1); 5132 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5133 } 5134 } 5135 5136 if (I != E) 5137 return Error(CallLoc, "not enough parameters specified for call"); 5138 5139 if (FnAttrs.hasAttributes()) { 5140 if (FnAttrs.hasAlignmentAttr()) 5141 return Error(CallLoc, "invoke instructions may not have an alignment"); 5142 5143 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5144 AttributeSet::FunctionIndex, 5145 FnAttrs)); 5146 } 5147 5148 // Finish off the Attribute and check them 5149 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5150 5151 InvokeInst *II = 5152 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5153 II->setCallingConv(CC); 5154 II->setAttributes(PAL); 5155 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5156 Inst = II; 5157 return false; 5158 } 5159 5160 /// ParseResume 5161 /// ::= 'resume' TypeAndValue 5162 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5163 Value *Exn; LocTy ExnLoc; 5164 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5165 return true; 5166 5167 ResumeInst *RI = ResumeInst::Create(Exn); 5168 Inst = RI; 5169 return false; 5170 } 5171 5172 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5173 PerFunctionState &PFS) { 5174 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5175 return true; 5176 5177 while (Lex.getKind() != lltok::rsquare) { 5178 // If this isn't the first argument, we need a comma. 5179 if (!Args.empty() && 5180 ParseToken(lltok::comma, "expected ',' in argument list")) 5181 return true; 5182 5183 // Parse the argument. 5184 LocTy ArgLoc; 5185 Type *ArgTy = nullptr; 5186 if (ParseType(ArgTy, ArgLoc)) 5187 return true; 5188 5189 Value *V; 5190 if (ArgTy->isMetadataTy()) { 5191 if (ParseMetadataAsValue(V, PFS)) 5192 return true; 5193 } else { 5194 if (ParseValue(ArgTy, V, PFS)) 5195 return true; 5196 } 5197 Args.push_back(V); 5198 } 5199 5200 Lex.Lex(); // Lex the ']'. 5201 return false; 5202 } 5203 5204 /// ParseCleanupRet 5205 /// ::= 'cleanupret' Value unwind ('to' 'caller' | TypeAndValue) 5206 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5207 Value *CleanupPad = nullptr; 5208 5209 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS, OC_CleanupPad)) 5210 return true; 5211 5212 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5213 return true; 5214 5215 BasicBlock *UnwindBB = nullptr; 5216 if (Lex.getKind() == lltok::kw_to) { 5217 Lex.Lex(); 5218 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5219 return true; 5220 } else { 5221 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5222 return true; 5223 } 5224 } 5225 5226 Inst = CleanupReturnInst::Create(cast<CleanupPadInst>(CleanupPad), UnwindBB); 5227 return false; 5228 } 5229 5230 /// ParseCatchRet 5231 /// ::= 'catchret' Value 'to' TypeAndValue 5232 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5233 Value *CatchPad = nullptr; 5234 5235 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS, OC_CatchPad)) 5236 return true; 5237 5238 BasicBlock *BB; 5239 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5240 ParseTypeAndBasicBlock(BB, PFS)) 5241 return true; 5242 5243 Inst = CatchReturnInst::Create(cast<CatchPadInst>(CatchPad), BB); 5244 return false; 5245 } 5246 5247 /// ParseCatchPad 5248 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5249 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5250 SmallVector<Value *, 8> Args; 5251 if (ParseExceptionArgs(Args, PFS)) 5252 return true; 5253 5254 BasicBlock *NormalBB, *UnwindBB; 5255 if (ParseToken(lltok::kw_to, "expected 'to' in catchpad") || 5256 ParseTypeAndBasicBlock(NormalBB, PFS) || 5257 ParseToken(lltok::kw_unwind, "expected 'unwind' in catchpad") || 5258 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5259 return true; 5260 5261 Inst = CatchPadInst::Create(NormalBB, UnwindBB, Args); 5262 return false; 5263 } 5264 5265 /// ParseTerminatePad 5266 /// ::= 'terminatepad' ParamList 'to' TypeAndValue 5267 bool LLParser::ParseTerminatePad(Instruction *&Inst, PerFunctionState &PFS) { 5268 SmallVector<Value *, 8> Args; 5269 if (ParseExceptionArgs(Args, PFS)) 5270 return true; 5271 5272 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in terminatepad")) 5273 return true; 5274 5275 BasicBlock *UnwindBB = nullptr; 5276 if (Lex.getKind() == lltok::kw_to) { 5277 Lex.Lex(); 5278 if (ParseToken(lltok::kw_caller, "expected 'caller' in terminatepad")) 5279 return true; 5280 } else { 5281 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5282 return true; 5283 } 5284 } 5285 5286 Inst = TerminatePadInst::Create(Context, UnwindBB, Args); 5287 return false; 5288 } 5289 5290 /// ParseCleanupPad 5291 /// ::= 'cleanuppad' ParamList 5292 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5293 SmallVector<Value *, 8> Args; 5294 if (ParseExceptionArgs(Args, PFS)) 5295 return true; 5296 5297 Inst = CleanupPadInst::Create(Context, Args); 5298 return false; 5299 } 5300 5301 /// ParseCatchEndPad 5302 /// ::= 'catchendpad' unwind ('to' 'caller' | TypeAndValue) 5303 bool LLParser::ParseCatchEndPad(Instruction *&Inst, PerFunctionState &PFS) { 5304 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in catchendpad")) 5305 return true; 5306 5307 BasicBlock *UnwindBB = nullptr; 5308 if (Lex.getKind() == lltok::kw_to) { 5309 Lex.Lex(); 5310 if (Lex.getKind() == lltok::kw_caller) { 5311 Lex.Lex(); 5312 } else { 5313 return true; 5314 } 5315 } else { 5316 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5317 return true; 5318 } 5319 } 5320 5321 Inst = CatchEndPadInst::Create(Context, UnwindBB); 5322 return false; 5323 } 5324 5325 /// ParseCatchEndPad 5326 /// ::= 'cleanupendpad' Value unwind ('to' 'caller' | TypeAndValue) 5327 bool LLParser::ParseCleanupEndPad(Instruction *&Inst, PerFunctionState &PFS) { 5328 Value *CleanupPad = nullptr; 5329 5330 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS, OC_CleanupPad)) 5331 return true; 5332 5333 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in catchendpad")) 5334 return true; 5335 5336 BasicBlock *UnwindBB = nullptr; 5337 if (Lex.getKind() == lltok::kw_to) { 5338 Lex.Lex(); 5339 if (Lex.getKind() == lltok::kw_caller) { 5340 Lex.Lex(); 5341 } else { 5342 return true; 5343 } 5344 } else { 5345 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5346 return true; 5347 } 5348 } 5349 5350 Inst = CleanupEndPadInst::Create(cast<CleanupPadInst>(CleanupPad), UnwindBB); 5351 return false; 5352 } 5353 5354 //===----------------------------------------------------------------------===// 5355 // Binary Operators. 5356 //===----------------------------------------------------------------------===// 5357 5358 /// ParseArithmetic 5359 /// ::= ArithmeticOps TypeAndValue ',' Value 5360 /// 5361 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5362 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5363 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5364 unsigned Opc, unsigned OperandType) { 5365 LocTy Loc; Value *LHS, *RHS; 5366 if (ParseTypeAndValue(LHS, Loc, PFS) || 5367 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5368 ParseValue(LHS->getType(), RHS, PFS)) 5369 return true; 5370 5371 bool Valid; 5372 switch (OperandType) { 5373 default: llvm_unreachable("Unknown operand type!"); 5374 case 0: // int or FP. 5375 Valid = LHS->getType()->isIntOrIntVectorTy() || 5376 LHS->getType()->isFPOrFPVectorTy(); 5377 break; 5378 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5379 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5380 } 5381 5382 if (!Valid) 5383 return Error(Loc, "invalid operand type for instruction"); 5384 5385 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5386 return false; 5387 } 5388 5389 /// ParseLogical 5390 /// ::= ArithmeticOps TypeAndValue ',' Value { 5391 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5392 unsigned Opc) { 5393 LocTy Loc; Value *LHS, *RHS; 5394 if (ParseTypeAndValue(LHS, Loc, PFS) || 5395 ParseToken(lltok::comma, "expected ',' in logical operation") || 5396 ParseValue(LHS->getType(), RHS, PFS)) 5397 return true; 5398 5399 if (!LHS->getType()->isIntOrIntVectorTy()) 5400 return Error(Loc,"instruction requires integer or integer vector operands"); 5401 5402 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5403 return false; 5404 } 5405 5406 5407 /// ParseCompare 5408 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5409 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5410 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5411 unsigned Opc) { 5412 // Parse the integer/fp comparison predicate. 5413 LocTy Loc; 5414 unsigned Pred; 5415 Value *LHS, *RHS; 5416 if (ParseCmpPredicate(Pred, Opc) || 5417 ParseTypeAndValue(LHS, Loc, PFS) || 5418 ParseToken(lltok::comma, "expected ',' after compare value") || 5419 ParseValue(LHS->getType(), RHS, PFS)) 5420 return true; 5421 5422 if (Opc == Instruction::FCmp) { 5423 if (!LHS->getType()->isFPOrFPVectorTy()) 5424 return Error(Loc, "fcmp requires floating point operands"); 5425 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5426 } else { 5427 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5428 if (!LHS->getType()->isIntOrIntVectorTy() && 5429 !LHS->getType()->getScalarType()->isPointerTy()) 5430 return Error(Loc, "icmp requires integer operands"); 5431 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5432 } 5433 return false; 5434 } 5435 5436 //===----------------------------------------------------------------------===// 5437 // Other Instructions. 5438 //===----------------------------------------------------------------------===// 5439 5440 5441 /// ParseCast 5442 /// ::= CastOpc TypeAndValue 'to' Type 5443 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5444 unsigned Opc) { 5445 LocTy Loc; 5446 Value *Op; 5447 Type *DestTy = nullptr; 5448 if (ParseTypeAndValue(Op, Loc, PFS) || 5449 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5450 ParseType(DestTy)) 5451 return true; 5452 5453 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5454 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5455 return Error(Loc, "invalid cast opcode for cast from '" + 5456 getTypeString(Op->getType()) + "' to '" + 5457 getTypeString(DestTy) + "'"); 5458 } 5459 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5460 return false; 5461 } 5462 5463 /// ParseSelect 5464 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5465 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5466 LocTy Loc; 5467 Value *Op0, *Op1, *Op2; 5468 if (ParseTypeAndValue(Op0, Loc, PFS) || 5469 ParseToken(lltok::comma, "expected ',' after select condition") || 5470 ParseTypeAndValue(Op1, PFS) || 5471 ParseToken(lltok::comma, "expected ',' after select value") || 5472 ParseTypeAndValue(Op2, PFS)) 5473 return true; 5474 5475 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5476 return Error(Loc, Reason); 5477 5478 Inst = SelectInst::Create(Op0, Op1, Op2); 5479 return false; 5480 } 5481 5482 /// ParseVA_Arg 5483 /// ::= 'va_arg' TypeAndValue ',' Type 5484 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5485 Value *Op; 5486 Type *EltTy = nullptr; 5487 LocTy TypeLoc; 5488 if (ParseTypeAndValue(Op, PFS) || 5489 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5490 ParseType(EltTy, TypeLoc)) 5491 return true; 5492 5493 if (!EltTy->isFirstClassType()) 5494 return Error(TypeLoc, "va_arg requires operand with first class type"); 5495 5496 Inst = new VAArgInst(Op, EltTy); 5497 return false; 5498 } 5499 5500 /// ParseExtractElement 5501 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5502 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5503 LocTy Loc; 5504 Value *Op0, *Op1; 5505 if (ParseTypeAndValue(Op0, Loc, PFS) || 5506 ParseToken(lltok::comma, "expected ',' after extract value") || 5507 ParseTypeAndValue(Op1, PFS)) 5508 return true; 5509 5510 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5511 return Error(Loc, "invalid extractelement operands"); 5512 5513 Inst = ExtractElementInst::Create(Op0, Op1); 5514 return false; 5515 } 5516 5517 /// ParseInsertElement 5518 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5519 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5520 LocTy Loc; 5521 Value *Op0, *Op1, *Op2; 5522 if (ParseTypeAndValue(Op0, Loc, PFS) || 5523 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5524 ParseTypeAndValue(Op1, PFS) || 5525 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5526 ParseTypeAndValue(Op2, PFS)) 5527 return true; 5528 5529 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5530 return Error(Loc, "invalid insertelement operands"); 5531 5532 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5533 return false; 5534 } 5535 5536 /// ParseShuffleVector 5537 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5538 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5539 LocTy Loc; 5540 Value *Op0, *Op1, *Op2; 5541 if (ParseTypeAndValue(Op0, Loc, PFS) || 5542 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5543 ParseTypeAndValue(Op1, PFS) || 5544 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5545 ParseTypeAndValue(Op2, PFS)) 5546 return true; 5547 5548 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5549 return Error(Loc, "invalid shufflevector operands"); 5550 5551 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5552 return false; 5553 } 5554 5555 /// ParsePHI 5556 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5557 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5558 Type *Ty = nullptr; LocTy TypeLoc; 5559 Value *Op0, *Op1; 5560 5561 if (ParseType(Ty, TypeLoc) || 5562 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5563 ParseValue(Ty, Op0, PFS) || 5564 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5565 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5566 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5567 return true; 5568 5569 bool AteExtraComma = false; 5570 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5571 while (1) { 5572 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5573 5574 if (!EatIfPresent(lltok::comma)) 5575 break; 5576 5577 if (Lex.getKind() == lltok::MetadataVar) { 5578 AteExtraComma = true; 5579 break; 5580 } 5581 5582 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5583 ParseValue(Ty, Op0, PFS) || 5584 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5585 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5586 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5587 return true; 5588 } 5589 5590 if (!Ty->isFirstClassType()) 5591 return Error(TypeLoc, "phi node must have first class type"); 5592 5593 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5594 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5595 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5596 Inst = PN; 5597 return AteExtraComma ? InstExtraComma : InstNormal; 5598 } 5599 5600 /// ParseLandingPad 5601 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5602 /// Clause 5603 /// ::= 'catch' TypeAndValue 5604 /// ::= 'filter' 5605 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5606 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5607 Type *Ty = nullptr; LocTy TyLoc; 5608 5609 if (ParseType(Ty, TyLoc)) 5610 return true; 5611 5612 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 5613 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5614 5615 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5616 LandingPadInst::ClauseType CT; 5617 if (EatIfPresent(lltok::kw_catch)) 5618 CT = LandingPadInst::Catch; 5619 else if (EatIfPresent(lltok::kw_filter)) 5620 CT = LandingPadInst::Filter; 5621 else 5622 return TokError("expected 'catch' or 'filter' clause type"); 5623 5624 Value *V; 5625 LocTy VLoc; 5626 if (ParseTypeAndValue(V, VLoc, PFS)) 5627 return true; 5628 5629 // A 'catch' type expects a non-array constant. A filter clause expects an 5630 // array constant. 5631 if (CT == LandingPadInst::Catch) { 5632 if (isa<ArrayType>(V->getType())) 5633 Error(VLoc, "'catch' clause has an invalid type"); 5634 } else { 5635 if (!isa<ArrayType>(V->getType())) 5636 Error(VLoc, "'filter' clause has an invalid type"); 5637 } 5638 5639 Constant *CV = dyn_cast<Constant>(V); 5640 if (!CV) 5641 return Error(VLoc, "clause argument must be a constant"); 5642 LP->addClause(CV); 5643 } 5644 5645 Inst = LP.release(); 5646 return false; 5647 } 5648 5649 /// ParseCall 5650 /// ::= 'call' OptionalCallingConv OptionalAttrs Type Value 5651 /// ParameterList OptionalAttrs 5652 /// ::= 'tail' 'call' OptionalCallingConv OptionalAttrs Type Value 5653 /// ParameterList OptionalAttrs 5654 /// ::= 'musttail' 'call' OptionalCallingConv OptionalAttrs Type Value 5655 /// ParameterList OptionalAttrs 5656 /// ::= 'notail' 'call' OptionalCallingConv OptionalAttrs Type Value 5657 /// ParameterList OptionalAttrs 5658 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 5659 CallInst::TailCallKind TCK) { 5660 AttrBuilder RetAttrs, FnAttrs; 5661 std::vector<unsigned> FwdRefAttrGrps; 5662 LocTy BuiltinLoc; 5663 unsigned CC; 5664 Type *RetType = nullptr; 5665 LocTy RetTypeLoc; 5666 ValID CalleeID; 5667 SmallVector<ParamInfo, 16> ArgList; 5668 SmallVector<OperandBundleDef, 2> BundleList; 5669 LocTy CallLoc = Lex.getLoc(); 5670 5671 if ((TCK != CallInst::TCK_None && 5672 ParseToken(lltok::kw_call, 5673 "expected 'tail call', 'musttail call', or 'notail call'")) || 5674 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5675 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5676 ParseValID(CalleeID) || 5677 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 5678 PFS.getFunction().isVarArg()) || 5679 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 5680 ParseOptionalOperandBundles(BundleList, PFS)) 5681 return true; 5682 5683 // If RetType is a non-function pointer type, then this is the short syntax 5684 // for the call, which means that RetType is just the return type. Infer the 5685 // rest of the function argument types from the arguments that are present. 5686 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5687 if (!Ty) { 5688 // Pull out the types of all of the arguments... 5689 std::vector<Type*> ParamTypes; 5690 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5691 ParamTypes.push_back(ArgList[i].V->getType()); 5692 5693 if (!FunctionType::isValidReturnType(RetType)) 5694 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5695 5696 Ty = FunctionType::get(RetType, ParamTypes, false); 5697 } 5698 5699 CalleeID.FTy = Ty; 5700 5701 // Look up the callee. 5702 Value *Callee; 5703 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5704 return true; 5705 5706 // Set up the Attribute for the function. 5707 SmallVector<AttributeSet, 8> Attrs; 5708 if (RetAttrs.hasAttributes()) 5709 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5710 AttributeSet::ReturnIndex, 5711 RetAttrs)); 5712 5713 SmallVector<Value*, 8> Args; 5714 5715 // Loop through FunctionType's arguments and ensure they are specified 5716 // correctly. Also, gather any parameter attributes. 5717 FunctionType::param_iterator I = Ty->param_begin(); 5718 FunctionType::param_iterator E = Ty->param_end(); 5719 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5720 Type *ExpectedTy = nullptr; 5721 if (I != E) { 5722 ExpectedTy = *I++; 5723 } else if (!Ty->isVarArg()) { 5724 return Error(ArgList[i].Loc, "too many arguments specified"); 5725 } 5726 5727 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5728 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5729 getTypeString(ExpectedTy) + "'"); 5730 Args.push_back(ArgList[i].V); 5731 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5732 AttrBuilder B(ArgList[i].Attrs, i + 1); 5733 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5734 } 5735 } 5736 5737 if (I != E) 5738 return Error(CallLoc, "not enough parameters specified for call"); 5739 5740 if (FnAttrs.hasAttributes()) { 5741 if (FnAttrs.hasAlignmentAttr()) 5742 return Error(CallLoc, "call instructions may not have an alignment"); 5743 5744 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5745 AttributeSet::FunctionIndex, 5746 FnAttrs)); 5747 } 5748 5749 // Finish off the Attribute and check them 5750 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5751 5752 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 5753 CI->setTailCallKind(TCK); 5754 CI->setCallingConv(CC); 5755 CI->setAttributes(PAL); 5756 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 5757 Inst = CI; 5758 return false; 5759 } 5760 5761 //===----------------------------------------------------------------------===// 5762 // Memory Instructions. 5763 //===----------------------------------------------------------------------===// 5764 5765 /// ParseAlloc 5766 /// ::= 'alloca' 'inalloca'? Type (',' TypeAndValue)? (',' 'align' i32)? 5767 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 5768 Value *Size = nullptr; 5769 LocTy SizeLoc, TyLoc; 5770 unsigned Alignment = 0; 5771 Type *Ty = nullptr; 5772 5773 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 5774 5775 if (ParseType(Ty, TyLoc)) return true; 5776 5777 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 5778 return Error(TyLoc, "invalid type for alloca"); 5779 5780 bool AteExtraComma = false; 5781 if (EatIfPresent(lltok::comma)) { 5782 if (Lex.getKind() == lltok::kw_align) { 5783 if (ParseOptionalAlignment(Alignment)) return true; 5784 } else if (Lex.getKind() == lltok::MetadataVar) { 5785 AteExtraComma = true; 5786 } else { 5787 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 5788 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5789 return true; 5790 } 5791 } 5792 5793 if (Size && !Size->getType()->isIntegerTy()) 5794 return Error(SizeLoc, "element count must have integer type"); 5795 5796 AllocaInst *AI = new AllocaInst(Ty, Size, Alignment); 5797 AI->setUsedWithInAlloca(IsInAlloca); 5798 Inst = AI; 5799 return AteExtraComma ? InstExtraComma : InstNormal; 5800 } 5801 5802 /// ParseLoad 5803 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 5804 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 5805 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 5806 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 5807 Value *Val; LocTy Loc; 5808 unsigned Alignment = 0; 5809 bool AteExtraComma = false; 5810 bool isAtomic = false; 5811 AtomicOrdering Ordering = NotAtomic; 5812 SynchronizationScope Scope = CrossThread; 5813 5814 if (Lex.getKind() == lltok::kw_atomic) { 5815 isAtomic = true; 5816 Lex.Lex(); 5817 } 5818 5819 bool isVolatile = false; 5820 if (Lex.getKind() == lltok::kw_volatile) { 5821 isVolatile = true; 5822 Lex.Lex(); 5823 } 5824 5825 Type *Ty; 5826 LocTy ExplicitTypeLoc = Lex.getLoc(); 5827 if (ParseType(Ty) || 5828 ParseToken(lltok::comma, "expected comma after load's type") || 5829 ParseTypeAndValue(Val, Loc, PFS) || 5830 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 5831 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5832 return true; 5833 5834 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 5835 return Error(Loc, "load operand must be a pointer to a first class type"); 5836 if (isAtomic && !Alignment) 5837 return Error(Loc, "atomic load must have explicit non-zero alignment"); 5838 if (Ordering == Release || Ordering == AcquireRelease) 5839 return Error(Loc, "atomic load cannot use Release ordering"); 5840 5841 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 5842 return Error(ExplicitTypeLoc, 5843 "explicit pointee type doesn't match operand's pointee type"); 5844 5845 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope); 5846 return AteExtraComma ? InstExtraComma : InstNormal; 5847 } 5848 5849 /// ParseStore 5850 5851 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 5852 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 5853 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 5854 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 5855 Value *Val, *Ptr; LocTy Loc, PtrLoc; 5856 unsigned Alignment = 0; 5857 bool AteExtraComma = false; 5858 bool isAtomic = false; 5859 AtomicOrdering Ordering = NotAtomic; 5860 SynchronizationScope Scope = CrossThread; 5861 5862 if (Lex.getKind() == lltok::kw_atomic) { 5863 isAtomic = true; 5864 Lex.Lex(); 5865 } 5866 5867 bool isVolatile = false; 5868 if (Lex.getKind() == lltok::kw_volatile) { 5869 isVolatile = true; 5870 Lex.Lex(); 5871 } 5872 5873 if (ParseTypeAndValue(Val, Loc, PFS) || 5874 ParseToken(lltok::comma, "expected ',' after store operand") || 5875 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5876 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 5877 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5878 return true; 5879 5880 if (!Ptr->getType()->isPointerTy()) 5881 return Error(PtrLoc, "store operand must be a pointer"); 5882 if (!Val->getType()->isFirstClassType()) 5883 return Error(Loc, "store operand must be a first class value"); 5884 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 5885 return Error(Loc, "stored value and pointer type do not match"); 5886 if (isAtomic && !Alignment) 5887 return Error(Loc, "atomic store must have explicit non-zero alignment"); 5888 if (Ordering == Acquire || Ordering == AcquireRelease) 5889 return Error(Loc, "atomic store cannot use Acquire ordering"); 5890 5891 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 5892 return AteExtraComma ? InstExtraComma : InstNormal; 5893 } 5894 5895 /// ParseCmpXchg 5896 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 5897 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 5898 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 5899 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 5900 bool AteExtraComma = false; 5901 AtomicOrdering SuccessOrdering = NotAtomic; 5902 AtomicOrdering FailureOrdering = NotAtomic; 5903 SynchronizationScope Scope = CrossThread; 5904 bool isVolatile = false; 5905 bool isWeak = false; 5906 5907 if (EatIfPresent(lltok::kw_weak)) 5908 isWeak = true; 5909 5910 if (EatIfPresent(lltok::kw_volatile)) 5911 isVolatile = true; 5912 5913 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5914 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 5915 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 5916 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 5917 ParseTypeAndValue(New, NewLoc, PFS) || 5918 ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) || 5919 ParseOrdering(FailureOrdering)) 5920 return true; 5921 5922 if (SuccessOrdering == Unordered || FailureOrdering == Unordered) 5923 return TokError("cmpxchg cannot be unordered"); 5924 if (SuccessOrdering < FailureOrdering) 5925 return TokError("cmpxchg must be at least as ordered on success as failure"); 5926 if (FailureOrdering == Release || FailureOrdering == AcquireRelease) 5927 return TokError("cmpxchg failure ordering cannot include release semantics"); 5928 if (!Ptr->getType()->isPointerTy()) 5929 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 5930 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 5931 return Error(CmpLoc, "compare value and pointer type do not match"); 5932 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 5933 return Error(NewLoc, "new value and pointer type do not match"); 5934 if (!New->getType()->isIntegerTy()) 5935 return Error(NewLoc, "cmpxchg operand must be an integer"); 5936 unsigned Size = New->getType()->getPrimitiveSizeInBits(); 5937 if (Size < 8 || (Size & (Size - 1))) 5938 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized" 5939 " integer"); 5940 5941 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 5942 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope); 5943 CXI->setVolatile(isVolatile); 5944 CXI->setWeak(isWeak); 5945 Inst = CXI; 5946 return AteExtraComma ? InstExtraComma : InstNormal; 5947 } 5948 5949 /// ParseAtomicRMW 5950 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 5951 /// 'singlethread'? AtomicOrdering 5952 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 5953 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 5954 bool AteExtraComma = false; 5955 AtomicOrdering Ordering = NotAtomic; 5956 SynchronizationScope Scope = CrossThread; 5957 bool isVolatile = false; 5958 AtomicRMWInst::BinOp Operation; 5959 5960 if (EatIfPresent(lltok::kw_volatile)) 5961 isVolatile = true; 5962 5963 switch (Lex.getKind()) { 5964 default: return TokError("expected binary operation in atomicrmw"); 5965 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 5966 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 5967 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 5968 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 5969 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 5970 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 5971 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 5972 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 5973 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 5974 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 5975 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 5976 } 5977 Lex.Lex(); // Eat the operation. 5978 5979 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5980 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 5981 ParseTypeAndValue(Val, ValLoc, PFS) || 5982 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 5983 return true; 5984 5985 if (Ordering == Unordered) 5986 return TokError("atomicrmw cannot be unordered"); 5987 if (!Ptr->getType()->isPointerTy()) 5988 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 5989 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 5990 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 5991 if (!Val->getType()->isIntegerTy()) 5992 return Error(ValLoc, "atomicrmw operand must be an integer"); 5993 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 5994 if (Size < 8 || (Size & (Size - 1))) 5995 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 5996 " integer"); 5997 5998 AtomicRMWInst *RMWI = 5999 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 6000 RMWI->setVolatile(isVolatile); 6001 Inst = RMWI; 6002 return AteExtraComma ? InstExtraComma : InstNormal; 6003 } 6004 6005 /// ParseFence 6006 /// ::= 'fence' 'singlethread'? AtomicOrdering 6007 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6008 AtomicOrdering Ordering = NotAtomic; 6009 SynchronizationScope Scope = CrossThread; 6010 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6011 return true; 6012 6013 if (Ordering == Unordered) 6014 return TokError("fence cannot be unordered"); 6015 if (Ordering == Monotonic) 6016 return TokError("fence cannot be monotonic"); 6017 6018 Inst = new FenceInst(Context, Ordering, Scope); 6019 return InstNormal; 6020 } 6021 6022 /// ParseGetElementPtr 6023 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6024 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6025 Value *Ptr = nullptr; 6026 Value *Val = nullptr; 6027 LocTy Loc, EltLoc; 6028 6029 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6030 6031 Type *Ty = nullptr; 6032 LocTy ExplicitTypeLoc = Lex.getLoc(); 6033 if (ParseType(Ty) || 6034 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6035 ParseTypeAndValue(Ptr, Loc, PFS)) 6036 return true; 6037 6038 Type *BaseType = Ptr->getType(); 6039 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6040 if (!BasePointerType) 6041 return Error(Loc, "base of getelementptr must be a pointer"); 6042 6043 if (Ty != BasePointerType->getElementType()) 6044 return Error(ExplicitTypeLoc, 6045 "explicit pointee type doesn't match operand's pointee type"); 6046 6047 SmallVector<Value*, 16> Indices; 6048 bool AteExtraComma = false; 6049 // GEP returns a vector of pointers if at least one of parameters is a vector. 6050 // All vector parameters should have the same vector width. 6051 unsigned GEPWidth = BaseType->isVectorTy() ? 6052 BaseType->getVectorNumElements() : 0; 6053 6054 while (EatIfPresent(lltok::comma)) { 6055 if (Lex.getKind() == lltok::MetadataVar) { 6056 AteExtraComma = true; 6057 break; 6058 } 6059 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6060 if (!Val->getType()->getScalarType()->isIntegerTy()) 6061 return Error(EltLoc, "getelementptr index must be an integer"); 6062 6063 if (Val->getType()->isVectorTy()) { 6064 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6065 if (GEPWidth && GEPWidth != ValNumEl) 6066 return Error(EltLoc, 6067 "getelementptr vector index has a wrong number of elements"); 6068 GEPWidth = ValNumEl; 6069 } 6070 Indices.push_back(Val); 6071 } 6072 6073 SmallPtrSet<Type*, 4> Visited; 6074 if (!Indices.empty() && !Ty->isSized(&Visited)) 6075 return Error(Loc, "base element of getelementptr must be sized"); 6076 6077 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6078 return Error(Loc, "invalid getelementptr indices"); 6079 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6080 if (InBounds) 6081 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6082 return AteExtraComma ? InstExtraComma : InstNormal; 6083 } 6084 6085 /// ParseExtractValue 6086 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6087 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6088 Value *Val; LocTy Loc; 6089 SmallVector<unsigned, 4> Indices; 6090 bool AteExtraComma; 6091 if (ParseTypeAndValue(Val, Loc, PFS) || 6092 ParseIndexList(Indices, AteExtraComma)) 6093 return true; 6094 6095 if (!Val->getType()->isAggregateType()) 6096 return Error(Loc, "extractvalue operand must be aggregate type"); 6097 6098 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6099 return Error(Loc, "invalid indices for extractvalue"); 6100 Inst = ExtractValueInst::Create(Val, Indices); 6101 return AteExtraComma ? InstExtraComma : InstNormal; 6102 } 6103 6104 /// ParseInsertValue 6105 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6106 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6107 Value *Val0, *Val1; LocTy Loc0, Loc1; 6108 SmallVector<unsigned, 4> Indices; 6109 bool AteExtraComma; 6110 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6111 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6112 ParseTypeAndValue(Val1, Loc1, PFS) || 6113 ParseIndexList(Indices, AteExtraComma)) 6114 return true; 6115 6116 if (!Val0->getType()->isAggregateType()) 6117 return Error(Loc0, "insertvalue operand must be aggregate type"); 6118 6119 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6120 if (!IndexedType) 6121 return Error(Loc0, "invalid indices for insertvalue"); 6122 if (IndexedType != Val1->getType()) 6123 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6124 getTypeString(Val1->getType()) + "' instead of '" + 6125 getTypeString(IndexedType) + "'"); 6126 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6127 return AteExtraComma ? InstExtraComma : InstNormal; 6128 } 6129 6130 //===----------------------------------------------------------------------===// 6131 // Embedded metadata. 6132 //===----------------------------------------------------------------------===// 6133 6134 /// ParseMDNodeVector 6135 /// ::= { Element (',' Element)* } 6136 /// Element 6137 /// ::= 'null' | TypeAndValue 6138 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6139 if (ParseToken(lltok::lbrace, "expected '{' here")) 6140 return true; 6141 6142 // Check for an empty list. 6143 if (EatIfPresent(lltok::rbrace)) 6144 return false; 6145 6146 do { 6147 // Null is a special case since it is typeless. 6148 if (EatIfPresent(lltok::kw_null)) { 6149 Elts.push_back(nullptr); 6150 continue; 6151 } 6152 6153 Metadata *MD; 6154 if (ParseMetadata(MD, nullptr)) 6155 return true; 6156 Elts.push_back(MD); 6157 } while (EatIfPresent(lltok::comma)); 6158 6159 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6160 } 6161 6162 //===----------------------------------------------------------------------===// 6163 // Use-list order directives. 6164 //===----------------------------------------------------------------------===// 6165 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6166 SMLoc Loc) { 6167 if (V->use_empty()) 6168 return Error(Loc, "value has no uses"); 6169 6170 unsigned NumUses = 0; 6171 SmallDenseMap<const Use *, unsigned, 16> Order; 6172 for (const Use &U : V->uses()) { 6173 if (++NumUses > Indexes.size()) 6174 break; 6175 Order[&U] = Indexes[NumUses - 1]; 6176 } 6177 if (NumUses < 2) 6178 return Error(Loc, "value only has one use"); 6179 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6180 return Error(Loc, "wrong number of indexes, expected " + 6181 Twine(std::distance(V->use_begin(), V->use_end()))); 6182 6183 V->sortUseList([&](const Use &L, const Use &R) { 6184 return Order.lookup(&L) < Order.lookup(&R); 6185 }); 6186 return false; 6187 } 6188 6189 /// ParseUseListOrderIndexes 6190 /// ::= '{' uint32 (',' uint32)+ '}' 6191 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6192 SMLoc Loc = Lex.getLoc(); 6193 if (ParseToken(lltok::lbrace, "expected '{' here")) 6194 return true; 6195 if (Lex.getKind() == lltok::rbrace) 6196 return Lex.Error("expected non-empty list of uselistorder indexes"); 6197 6198 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6199 // indexes should be distinct numbers in the range [0, size-1], and should 6200 // not be in order. 6201 unsigned Offset = 0; 6202 unsigned Max = 0; 6203 bool IsOrdered = true; 6204 assert(Indexes.empty() && "Expected empty order vector"); 6205 do { 6206 unsigned Index; 6207 if (ParseUInt32(Index)) 6208 return true; 6209 6210 // Update consistency checks. 6211 Offset += Index - Indexes.size(); 6212 Max = std::max(Max, Index); 6213 IsOrdered &= Index == Indexes.size(); 6214 6215 Indexes.push_back(Index); 6216 } while (EatIfPresent(lltok::comma)); 6217 6218 if (ParseToken(lltok::rbrace, "expected '}' here")) 6219 return true; 6220 6221 if (Indexes.size() < 2) 6222 return Error(Loc, "expected >= 2 uselistorder indexes"); 6223 if (Offset != 0 || Max >= Indexes.size()) 6224 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6225 if (IsOrdered) 6226 return Error(Loc, "expected uselistorder indexes to change the order"); 6227 6228 return false; 6229 } 6230 6231 /// ParseUseListOrder 6232 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6233 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6234 SMLoc Loc = Lex.getLoc(); 6235 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6236 return true; 6237 6238 Value *V; 6239 SmallVector<unsigned, 16> Indexes; 6240 if (ParseTypeAndValue(V, PFS) || 6241 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6242 ParseUseListOrderIndexes(Indexes)) 6243 return true; 6244 6245 return sortUseListOrder(V, Indexes, Loc); 6246 } 6247 6248 /// ParseUseListOrderBB 6249 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6250 bool LLParser::ParseUseListOrderBB() { 6251 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6252 SMLoc Loc = Lex.getLoc(); 6253 Lex.Lex(); 6254 6255 ValID Fn, Label; 6256 SmallVector<unsigned, 16> Indexes; 6257 if (ParseValID(Fn) || 6258 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6259 ParseValID(Label) || 6260 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6261 ParseUseListOrderIndexes(Indexes)) 6262 return true; 6263 6264 // Check the function. 6265 GlobalValue *GV; 6266 if (Fn.Kind == ValID::t_GlobalName) 6267 GV = M->getNamedValue(Fn.StrVal); 6268 else if (Fn.Kind == ValID::t_GlobalID) 6269 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6270 else 6271 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6272 if (!GV) 6273 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6274 auto *F = dyn_cast<Function>(GV); 6275 if (!F) 6276 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6277 if (F->isDeclaration()) 6278 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6279 6280 // Check the basic block. 6281 if (Label.Kind == ValID::t_LocalID) 6282 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6283 if (Label.Kind != ValID::t_LocalName) 6284 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6285 Value *V = F->getValueSymbolTable().lookup(Label.StrVal); 6286 if (!V) 6287 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6288 if (!isa<BasicBlock>(V)) 6289 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6290 6291 return sortUseListOrder(V, Indexes, Loc); 6292 } 6293