1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/AutoUpgrade.h" 16 #include "llvm/CallingConv.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/InlineAsm.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Module.h" 22 #include "llvm/Operator.h" 23 #include "llvm/ValueSymbolTable.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/raw_ostream.h" 27 using namespace llvm; 28 29 /// Run: module ::= toplevelentity* 30 bool LLParser::Run() { 31 // Prime the lexer. 32 Lex.Lex(); 33 34 return ParseTopLevelEntities() || 35 ValidateEndOfModule(); 36 } 37 38 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 39 /// module. 40 bool LLParser::ValidateEndOfModule() { 41 // Handle any instruction metadata forward references. 42 if (!ForwardRefInstMetadata.empty()) { 43 for (DenseMap<Instruction*, std::vector<MDRef> >::iterator 44 I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end(); 45 I != E; ++I) { 46 Instruction *Inst = I->first; 47 const std::vector<MDRef> &MDList = I->second; 48 49 for (unsigned i = 0, e = MDList.size(); i != e; ++i) { 50 unsigned SlotNo = MDList[i].MDSlot; 51 52 if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0) 53 return Error(MDList[i].Loc, "use of undefined metadata '!" + 54 Twine(SlotNo) + "'"); 55 Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]); 56 } 57 } 58 ForwardRefInstMetadata.clear(); 59 } 60 61 62 // Update auto-upgraded malloc calls to "malloc". 63 // FIXME: Remove in LLVM 3.0. 64 if (MallocF) { 65 MallocF->setName("malloc"); 66 // If setName() does not set the name to "malloc", then there is already a 67 // declaration of "malloc". In that case, iterate over all calls to MallocF 68 // and get them to call the declared "malloc" instead. 69 if (MallocF->getName() != "malloc") { 70 Constant *RealMallocF = M->getFunction("malloc"); 71 if (RealMallocF->getType() != MallocF->getType()) 72 RealMallocF = ConstantExpr::getBitCast(RealMallocF, MallocF->getType()); 73 MallocF->replaceAllUsesWith(RealMallocF); 74 MallocF->eraseFromParent(); 75 MallocF = NULL; 76 } 77 } 78 79 80 // If there are entries in ForwardRefBlockAddresses at this point, they are 81 // references after the function was defined. Resolve those now. 82 while (!ForwardRefBlockAddresses.empty()) { 83 // Okay, we are referencing an already-parsed function, resolve them now. 84 Function *TheFn = 0; 85 const ValID &Fn = ForwardRefBlockAddresses.begin()->first; 86 if (Fn.Kind == ValID::t_GlobalName) 87 TheFn = M->getFunction(Fn.StrVal); 88 else if (Fn.UIntVal < NumberedVals.size()) 89 TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]); 90 91 if (TheFn == 0) 92 return Error(Fn.Loc, "unknown function referenced by blockaddress"); 93 94 // Resolve all these references. 95 if (ResolveForwardRefBlockAddresses(TheFn, 96 ForwardRefBlockAddresses.begin()->second, 97 0)) 98 return true; 99 100 ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin()); 101 } 102 103 104 if (!ForwardRefTypes.empty()) 105 return Error(ForwardRefTypes.begin()->second.second, 106 "use of undefined type named '" + 107 ForwardRefTypes.begin()->first + "'"); 108 if (!ForwardRefTypeIDs.empty()) 109 return Error(ForwardRefTypeIDs.begin()->second.second, 110 "use of undefined type '%" + 111 Twine(ForwardRefTypeIDs.begin()->first) + "'"); 112 113 if (!ForwardRefVals.empty()) 114 return Error(ForwardRefVals.begin()->second.second, 115 "use of undefined value '@" + ForwardRefVals.begin()->first + 116 "'"); 117 118 if (!ForwardRefValIDs.empty()) 119 return Error(ForwardRefValIDs.begin()->second.second, 120 "use of undefined value '@" + 121 Twine(ForwardRefValIDs.begin()->first) + "'"); 122 123 if (!ForwardRefMDNodes.empty()) 124 return Error(ForwardRefMDNodes.begin()->second.second, 125 "use of undefined metadata '!" + 126 Twine(ForwardRefMDNodes.begin()->first) + "'"); 127 128 129 // Look for intrinsic functions and CallInst that need to be upgraded 130 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 131 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove 132 133 // Check debug info intrinsics. 134 CheckDebugInfoIntrinsics(M); 135 return false; 136 } 137 138 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn, 139 std::vector<std::pair<ValID, GlobalValue*> > &Refs, 140 PerFunctionState *PFS) { 141 // Loop over all the references, resolving them. 142 for (unsigned i = 0, e = Refs.size(); i != e; ++i) { 143 BasicBlock *Res; 144 if (PFS) { 145 if (Refs[i].first.Kind == ValID::t_LocalName) 146 Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc); 147 else 148 Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc); 149 } else if (Refs[i].first.Kind == ValID::t_LocalID) { 150 return Error(Refs[i].first.Loc, 151 "cannot take address of numeric label after the function is defined"); 152 } else { 153 Res = dyn_cast_or_null<BasicBlock>( 154 TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal)); 155 } 156 157 if (Res == 0) 158 return Error(Refs[i].first.Loc, 159 "referenced value is not a basic block"); 160 161 // Get the BlockAddress for this and update references to use it. 162 BlockAddress *BA = BlockAddress::get(TheFn, Res); 163 Refs[i].second->replaceAllUsesWith(BA); 164 Refs[i].second->eraseFromParent(); 165 } 166 return false; 167 } 168 169 170 //===----------------------------------------------------------------------===// 171 // Top-Level Entities 172 //===----------------------------------------------------------------------===// 173 174 bool LLParser::ParseTopLevelEntities() { 175 while (1) { 176 switch (Lex.getKind()) { 177 default: return TokError("expected top-level entity"); 178 case lltok::Eof: return false; 179 //case lltok::kw_define: 180 case lltok::kw_declare: if (ParseDeclare()) return true; break; 181 case lltok::kw_define: if (ParseDefine()) return true; break; 182 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 183 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 184 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 185 case lltok::kw_type: if (ParseUnnamedType()) return true; break; 186 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 187 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0 188 case lltok::LocalVar: if (ParseNamedType()) return true; break; 189 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 190 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 191 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 192 case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break; 193 194 // The Global variable production with no name can have many different 195 // optional leading prefixes, the production is: 196 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 197 // OptionalAddrSpace OptionalUnNammedAddr 198 // ('constant'|'global') ... 199 case lltok::kw_private: // OptionalLinkage 200 case lltok::kw_linker_private: // OptionalLinkage 201 case lltok::kw_linker_private_weak: // OptionalLinkage 202 case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage 203 case lltok::kw_internal: // OptionalLinkage 204 case lltok::kw_weak: // OptionalLinkage 205 case lltok::kw_weak_odr: // OptionalLinkage 206 case lltok::kw_linkonce: // OptionalLinkage 207 case lltok::kw_linkonce_odr: // OptionalLinkage 208 case lltok::kw_appending: // OptionalLinkage 209 case lltok::kw_dllexport: // OptionalLinkage 210 case lltok::kw_common: // OptionalLinkage 211 case lltok::kw_dllimport: // OptionalLinkage 212 case lltok::kw_extern_weak: // OptionalLinkage 213 case lltok::kw_external: { // OptionalLinkage 214 unsigned Linkage, Visibility; 215 if (ParseOptionalLinkage(Linkage) || 216 ParseOptionalVisibility(Visibility) || 217 ParseGlobal("", SMLoc(), Linkage, true, Visibility)) 218 return true; 219 break; 220 } 221 case lltok::kw_default: // OptionalVisibility 222 case lltok::kw_hidden: // OptionalVisibility 223 case lltok::kw_protected: { // OptionalVisibility 224 unsigned Visibility; 225 if (ParseOptionalVisibility(Visibility) || 226 ParseGlobal("", SMLoc(), 0, false, Visibility)) 227 return true; 228 break; 229 } 230 231 case lltok::kw_thread_local: // OptionalThreadLocal 232 case lltok::kw_addrspace: // OptionalAddrSpace 233 case lltok::kw_constant: // GlobalType 234 case lltok::kw_global: // GlobalType 235 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true; 236 break; 237 } 238 } 239 } 240 241 242 /// toplevelentity 243 /// ::= 'module' 'asm' STRINGCONSTANT 244 bool LLParser::ParseModuleAsm() { 245 assert(Lex.getKind() == lltok::kw_module); 246 Lex.Lex(); 247 248 std::string AsmStr; 249 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 250 ParseStringConstant(AsmStr)) return true; 251 252 M->appendModuleInlineAsm(AsmStr); 253 return false; 254 } 255 256 /// toplevelentity 257 /// ::= 'target' 'triple' '=' STRINGCONSTANT 258 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 259 bool LLParser::ParseTargetDefinition() { 260 assert(Lex.getKind() == lltok::kw_target); 261 std::string Str; 262 switch (Lex.Lex()) { 263 default: return TokError("unknown target property"); 264 case lltok::kw_triple: 265 Lex.Lex(); 266 if (ParseToken(lltok::equal, "expected '=' after target triple") || 267 ParseStringConstant(Str)) 268 return true; 269 M->setTargetTriple(Str); 270 return false; 271 case lltok::kw_datalayout: 272 Lex.Lex(); 273 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 274 ParseStringConstant(Str)) 275 return true; 276 M->setDataLayout(Str); 277 return false; 278 } 279 } 280 281 /// toplevelentity 282 /// ::= 'deplibs' '=' '[' ']' 283 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 284 bool LLParser::ParseDepLibs() { 285 assert(Lex.getKind() == lltok::kw_deplibs); 286 Lex.Lex(); 287 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 288 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 289 return true; 290 291 if (EatIfPresent(lltok::rsquare)) 292 return false; 293 294 std::string Str; 295 if (ParseStringConstant(Str)) return true; 296 M->addLibrary(Str); 297 298 while (EatIfPresent(lltok::comma)) { 299 if (ParseStringConstant(Str)) return true; 300 M->addLibrary(Str); 301 } 302 303 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 304 } 305 306 /// ParseUnnamedType: 307 /// ::= 'type' type 308 /// ::= LocalVarID '=' 'type' type 309 bool LLParser::ParseUnnamedType() { 310 unsigned TypeID = NumberedTypes.size(); 311 312 // Handle the LocalVarID form. 313 if (Lex.getKind() == lltok::LocalVarID) { 314 if (Lex.getUIntVal() != TypeID) 315 return Error(Lex.getLoc(), "type expected to be numbered '%" + 316 Twine(TypeID) + "'"); 317 Lex.Lex(); // eat LocalVarID; 318 319 if (ParseToken(lltok::equal, "expected '=' after name")) 320 return true; 321 } 322 323 LocTy TypeLoc = Lex.getLoc(); 324 if (ParseToken(lltok::kw_type, "expected 'type' after '='")) return true; 325 326 PATypeHolder Ty(Type::getVoidTy(Context)); 327 if (ParseType(Ty)) return true; 328 329 // See if this type was previously referenced. 330 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator 331 FI = ForwardRefTypeIDs.find(TypeID); 332 if (FI != ForwardRefTypeIDs.end()) { 333 if (FI->second.first.get() == Ty) 334 return Error(TypeLoc, "self referential type is invalid"); 335 336 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty); 337 Ty = FI->second.first.get(); 338 ForwardRefTypeIDs.erase(FI); 339 } 340 341 NumberedTypes.push_back(Ty); 342 343 return false; 344 } 345 346 /// toplevelentity 347 /// ::= LocalVar '=' 'type' type 348 bool LLParser::ParseNamedType() { 349 std::string Name = Lex.getStrVal(); 350 LocTy NameLoc = Lex.getLoc(); 351 Lex.Lex(); // eat LocalVar. 352 353 PATypeHolder Ty(Type::getVoidTy(Context)); 354 355 if (ParseToken(lltok::equal, "expected '=' after name") || 356 ParseToken(lltok::kw_type, "expected 'type' after name") || 357 ParseType(Ty)) 358 return true; 359 360 // Set the type name, checking for conflicts as we do so. 361 bool AlreadyExists = M->addTypeName(Name, Ty); 362 if (!AlreadyExists) return false; 363 364 // See if this type is a forward reference. We need to eagerly resolve 365 // types to allow recursive type redefinitions below. 366 std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator 367 FI = ForwardRefTypes.find(Name); 368 if (FI != ForwardRefTypes.end()) { 369 if (FI->second.first.get() == Ty) 370 return Error(NameLoc, "self referential type is invalid"); 371 372 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty); 373 Ty = FI->second.first.get(); 374 ForwardRefTypes.erase(FI); 375 } 376 377 // Inserting a name that is already defined, get the existing name. 378 const Type *Existing = M->getTypeByName(Name); 379 assert(Existing && "Conflict but no matching type?!"); 380 381 // Otherwise, this is an attempt to redefine a type. That's okay if 382 // the redefinition is identical to the original. 383 // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0 384 if (Existing == Ty) return false; 385 386 // Any other kind of (non-equivalent) redefinition is an error. 387 return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" + 388 Ty->getDescription() + "'"); 389 } 390 391 392 /// toplevelentity 393 /// ::= 'declare' FunctionHeader 394 bool LLParser::ParseDeclare() { 395 assert(Lex.getKind() == lltok::kw_declare); 396 Lex.Lex(); 397 398 Function *F; 399 return ParseFunctionHeader(F, false); 400 } 401 402 /// toplevelentity 403 /// ::= 'define' FunctionHeader '{' ... 404 bool LLParser::ParseDefine() { 405 assert(Lex.getKind() == lltok::kw_define); 406 Lex.Lex(); 407 408 Function *F; 409 return ParseFunctionHeader(F, true) || 410 ParseFunctionBody(*F); 411 } 412 413 /// ParseGlobalType 414 /// ::= 'constant' 415 /// ::= 'global' 416 bool LLParser::ParseGlobalType(bool &IsConstant) { 417 if (Lex.getKind() == lltok::kw_constant) 418 IsConstant = true; 419 else if (Lex.getKind() == lltok::kw_global) 420 IsConstant = false; 421 else { 422 IsConstant = false; 423 return TokError("expected 'global' or 'constant'"); 424 } 425 Lex.Lex(); 426 return false; 427 } 428 429 /// ParseUnnamedGlobal: 430 /// OptionalVisibility ALIAS ... 431 /// OptionalLinkage OptionalVisibility ... -> global variable 432 /// GlobalID '=' OptionalVisibility ALIAS ... 433 /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable 434 bool LLParser::ParseUnnamedGlobal() { 435 unsigned VarID = NumberedVals.size(); 436 std::string Name; 437 LocTy NameLoc = Lex.getLoc(); 438 439 // Handle the GlobalID form. 440 if (Lex.getKind() == lltok::GlobalID) { 441 if (Lex.getUIntVal() != VarID) 442 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 443 Twine(VarID) + "'"); 444 Lex.Lex(); // eat GlobalID; 445 446 if (ParseToken(lltok::equal, "expected '=' after name")) 447 return true; 448 } 449 450 bool HasLinkage; 451 unsigned Linkage, Visibility; 452 if (ParseOptionalLinkage(Linkage, HasLinkage) || 453 ParseOptionalVisibility(Visibility)) 454 return true; 455 456 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 457 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 458 return ParseAlias(Name, NameLoc, Visibility); 459 } 460 461 /// ParseNamedGlobal: 462 /// GlobalVar '=' OptionalVisibility ALIAS ... 463 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable 464 bool LLParser::ParseNamedGlobal() { 465 assert(Lex.getKind() == lltok::GlobalVar); 466 LocTy NameLoc = Lex.getLoc(); 467 std::string Name = Lex.getStrVal(); 468 Lex.Lex(); 469 470 bool HasLinkage; 471 unsigned Linkage, Visibility; 472 if (ParseToken(lltok::equal, "expected '=' in global variable") || 473 ParseOptionalLinkage(Linkage, HasLinkage) || 474 ParseOptionalVisibility(Visibility)) 475 return true; 476 477 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 478 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 479 return ParseAlias(Name, NameLoc, Visibility); 480 } 481 482 // MDString: 483 // ::= '!' STRINGCONSTANT 484 bool LLParser::ParseMDString(MDString *&Result) { 485 std::string Str; 486 if (ParseStringConstant(Str)) return true; 487 Result = MDString::get(Context, Str); 488 return false; 489 } 490 491 // MDNode: 492 // ::= '!' MDNodeNumber 493 // 494 /// This version of ParseMDNodeID returns the slot number and null in the case 495 /// of a forward reference. 496 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) { 497 // !{ ..., !42, ... } 498 if (ParseUInt32(SlotNo)) return true; 499 500 // Check existing MDNode. 501 if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0) 502 Result = NumberedMetadata[SlotNo]; 503 else 504 Result = 0; 505 return false; 506 } 507 508 bool LLParser::ParseMDNodeID(MDNode *&Result) { 509 // !{ ..., !42, ... } 510 unsigned MID = 0; 511 if (ParseMDNodeID(Result, MID)) return true; 512 513 // If not a forward reference, just return it now. 514 if (Result) return false; 515 516 // Otherwise, create MDNode forward reference. 517 MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>()); 518 ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc()); 519 520 if (NumberedMetadata.size() <= MID) 521 NumberedMetadata.resize(MID+1); 522 NumberedMetadata[MID] = FwdNode; 523 Result = FwdNode; 524 return false; 525 } 526 527 /// ParseNamedMetadata: 528 /// !foo = !{ !1, !2 } 529 bool LLParser::ParseNamedMetadata() { 530 assert(Lex.getKind() == lltok::MetadataVar); 531 std::string Name = Lex.getStrVal(); 532 Lex.Lex(); 533 534 if (ParseToken(lltok::equal, "expected '=' here") || 535 ParseToken(lltok::exclaim, "Expected '!' here") || 536 ParseToken(lltok::lbrace, "Expected '{' here")) 537 return true; 538 539 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 540 if (Lex.getKind() != lltok::rbrace) 541 do { 542 if (ParseToken(lltok::exclaim, "Expected '!' here")) 543 return true; 544 545 MDNode *N = 0; 546 if (ParseMDNodeID(N)) return true; 547 NMD->addOperand(N); 548 } while (EatIfPresent(lltok::comma)); 549 550 if (ParseToken(lltok::rbrace, "expected end of metadata node")) 551 return true; 552 553 return false; 554 } 555 556 /// ParseStandaloneMetadata: 557 /// !42 = !{...} 558 bool LLParser::ParseStandaloneMetadata() { 559 assert(Lex.getKind() == lltok::exclaim); 560 Lex.Lex(); 561 unsigned MetadataID = 0; 562 563 LocTy TyLoc; 564 PATypeHolder Ty(Type::getVoidTy(Context)); 565 SmallVector<Value *, 16> Elts; 566 if (ParseUInt32(MetadataID) || 567 ParseToken(lltok::equal, "expected '=' here") || 568 ParseType(Ty, TyLoc) || 569 ParseToken(lltok::exclaim, "Expected '!' here") || 570 ParseToken(lltok::lbrace, "Expected '{' here") || 571 ParseMDNodeVector(Elts, NULL) || 572 ParseToken(lltok::rbrace, "expected end of metadata node")) 573 return true; 574 575 MDNode *Init = MDNode::get(Context, Elts); 576 577 // See if this was forward referenced, if so, handle it. 578 std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator 579 FI = ForwardRefMDNodes.find(MetadataID); 580 if (FI != ForwardRefMDNodes.end()) { 581 MDNode *Temp = FI->second.first; 582 Temp->replaceAllUsesWith(Init); 583 MDNode::deleteTemporary(Temp); 584 ForwardRefMDNodes.erase(FI); 585 586 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 587 } else { 588 if (MetadataID >= NumberedMetadata.size()) 589 NumberedMetadata.resize(MetadataID+1); 590 591 if (NumberedMetadata[MetadataID] != 0) 592 return TokError("Metadata id is already used"); 593 NumberedMetadata[MetadataID] = Init; 594 } 595 596 return false; 597 } 598 599 /// ParseAlias: 600 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee 601 /// Aliasee 602 /// ::= TypeAndValue 603 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')' 604 /// ::= 'getelementptr' 'inbounds'? '(' ... ')' 605 /// 606 /// Everything through visibility has already been parsed. 607 /// 608 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, 609 unsigned Visibility) { 610 assert(Lex.getKind() == lltok::kw_alias); 611 Lex.Lex(); 612 unsigned Linkage; 613 LocTy LinkageLoc = Lex.getLoc(); 614 if (ParseOptionalLinkage(Linkage)) 615 return true; 616 617 if (Linkage != GlobalValue::ExternalLinkage && 618 Linkage != GlobalValue::WeakAnyLinkage && 619 Linkage != GlobalValue::WeakODRLinkage && 620 Linkage != GlobalValue::InternalLinkage && 621 Linkage != GlobalValue::PrivateLinkage && 622 Linkage != GlobalValue::LinkerPrivateLinkage && 623 Linkage != GlobalValue::LinkerPrivateWeakLinkage && 624 Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage) 625 return Error(LinkageLoc, "invalid linkage type for alias"); 626 627 Constant *Aliasee; 628 LocTy AliaseeLoc = Lex.getLoc(); 629 if (Lex.getKind() != lltok::kw_bitcast && 630 Lex.getKind() != lltok::kw_getelementptr) { 631 if (ParseGlobalTypeAndValue(Aliasee)) return true; 632 } else { 633 // The bitcast dest type is not present, it is implied by the dest type. 634 ValID ID; 635 if (ParseValID(ID)) return true; 636 if (ID.Kind != ValID::t_Constant) 637 return Error(AliaseeLoc, "invalid aliasee"); 638 Aliasee = ID.ConstantVal; 639 } 640 641 if (!Aliasee->getType()->isPointerTy()) 642 return Error(AliaseeLoc, "alias must have pointer type"); 643 644 // Okay, create the alias but do not insert it into the module yet. 645 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), 646 (GlobalValue::LinkageTypes)Linkage, Name, 647 Aliasee); 648 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 649 650 // See if this value already exists in the symbol table. If so, it is either 651 // a redefinition or a definition of a forward reference. 652 if (GlobalValue *Val = M->getNamedValue(Name)) { 653 // See if this was a redefinition. If so, there is no entry in 654 // ForwardRefVals. 655 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 656 I = ForwardRefVals.find(Name); 657 if (I == ForwardRefVals.end()) 658 return Error(NameLoc, "redefinition of global named '@" + Name + "'"); 659 660 // Otherwise, this was a definition of forward ref. Verify that types 661 // agree. 662 if (Val->getType() != GA->getType()) 663 return Error(NameLoc, 664 "forward reference and definition of alias have different types"); 665 666 // If they agree, just RAUW the old value with the alias and remove the 667 // forward ref info. 668 Val->replaceAllUsesWith(GA); 669 Val->eraseFromParent(); 670 ForwardRefVals.erase(I); 671 } 672 673 // Insert into the module, we know its name won't collide now. 674 M->getAliasList().push_back(GA); 675 assert(GA->getName() == Name && "Should not be a name conflict!"); 676 677 return false; 678 } 679 680 /// ParseGlobal 681 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal 682 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const 683 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 684 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const 685 /// 686 /// Everything through visibility has been parsed already. 687 /// 688 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 689 unsigned Linkage, bool HasLinkage, 690 unsigned Visibility) { 691 unsigned AddrSpace; 692 bool ThreadLocal, IsConstant, UnnamedAddr; 693 LocTy UnnamedAddrLoc; 694 LocTy TyLoc; 695 696 PATypeHolder Ty(Type::getVoidTy(Context)); 697 if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) || 698 ParseOptionalAddrSpace(AddrSpace) || 699 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 700 &UnnamedAddrLoc) || 701 ParseGlobalType(IsConstant) || 702 ParseType(Ty, TyLoc)) 703 return true; 704 705 // If the linkage is specified and is external, then no initializer is 706 // present. 707 Constant *Init = 0; 708 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage && 709 Linkage != GlobalValue::ExternalWeakLinkage && 710 Linkage != GlobalValue::ExternalLinkage)) { 711 if (ParseGlobalValue(Ty, Init)) 712 return true; 713 } 714 715 if (Ty->isFunctionTy() || Ty->isLabelTy()) 716 return Error(TyLoc, "invalid type for global variable"); 717 718 GlobalVariable *GV = 0; 719 720 // See if the global was forward referenced, if so, use the global. 721 if (!Name.empty()) { 722 if (GlobalValue *GVal = M->getNamedValue(Name)) { 723 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal)) 724 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 725 GV = cast<GlobalVariable>(GVal); 726 } 727 } else { 728 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 729 I = ForwardRefValIDs.find(NumberedVals.size()); 730 if (I != ForwardRefValIDs.end()) { 731 GV = cast<GlobalVariable>(I->second.first); 732 ForwardRefValIDs.erase(I); 733 } 734 } 735 736 if (GV == 0) { 737 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0, 738 Name, 0, false, AddrSpace); 739 } else { 740 if (GV->getType()->getElementType() != Ty) 741 return Error(TyLoc, 742 "forward reference and definition of global have different types"); 743 744 // Move the forward-reference to the correct spot in the module. 745 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 746 } 747 748 if (Name.empty()) 749 NumberedVals.push_back(GV); 750 751 // Set the parsed properties on the global. 752 if (Init) 753 GV->setInitializer(Init); 754 GV->setConstant(IsConstant); 755 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 756 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 757 GV->setThreadLocal(ThreadLocal); 758 GV->setUnnamedAddr(UnnamedAddr); 759 760 // Parse attributes on the global. 761 while (Lex.getKind() == lltok::comma) { 762 Lex.Lex(); 763 764 if (Lex.getKind() == lltok::kw_section) { 765 Lex.Lex(); 766 GV->setSection(Lex.getStrVal()); 767 if (ParseToken(lltok::StringConstant, "expected global section string")) 768 return true; 769 } else if (Lex.getKind() == lltok::kw_align) { 770 unsigned Alignment; 771 if (ParseOptionalAlignment(Alignment)) return true; 772 GV->setAlignment(Alignment); 773 } else { 774 TokError("unknown global variable property!"); 775 } 776 } 777 778 return false; 779 } 780 781 782 //===----------------------------------------------------------------------===// 783 // GlobalValue Reference/Resolution Routines. 784 //===----------------------------------------------------------------------===// 785 786 /// GetGlobalVal - Get a value with the specified name or ID, creating a 787 /// forward reference record if needed. This can return null if the value 788 /// exists but does not have the right type. 789 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty, 790 LocTy Loc) { 791 const PointerType *PTy = dyn_cast<PointerType>(Ty); 792 if (PTy == 0) { 793 Error(Loc, "global variable reference must have pointer type"); 794 return 0; 795 } 796 797 // Look this name up in the normal function symbol table. 798 GlobalValue *Val = 799 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 800 801 // If this is a forward reference for the value, see if we already created a 802 // forward ref record. 803 if (Val == 0) { 804 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 805 I = ForwardRefVals.find(Name); 806 if (I != ForwardRefVals.end()) 807 Val = I->second.first; 808 } 809 810 // If we have the value in the symbol table or fwd-ref table, return it. 811 if (Val) { 812 if (Val->getType() == Ty) return Val; 813 Error(Loc, "'@" + Name + "' defined with type '" + 814 Val->getType()->getDescription() + "'"); 815 return 0; 816 } 817 818 // Otherwise, create a new forward reference for this value and remember it. 819 GlobalValue *FwdVal; 820 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) { 821 // Function types can return opaque but functions can't. 822 if (FT->getReturnType()->isOpaqueTy()) { 823 Error(Loc, "function may not return opaque type"); 824 return 0; 825 } 826 827 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 828 } else { 829 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 830 GlobalValue::ExternalWeakLinkage, 0, Name); 831 } 832 833 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 834 return FwdVal; 835 } 836 837 GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) { 838 const PointerType *PTy = dyn_cast<PointerType>(Ty); 839 if (PTy == 0) { 840 Error(Loc, "global variable reference must have pointer type"); 841 return 0; 842 } 843 844 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 845 846 // If this is a forward reference for the value, see if we already created a 847 // forward ref record. 848 if (Val == 0) { 849 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 850 I = ForwardRefValIDs.find(ID); 851 if (I != ForwardRefValIDs.end()) 852 Val = I->second.first; 853 } 854 855 // If we have the value in the symbol table or fwd-ref table, return it. 856 if (Val) { 857 if (Val->getType() == Ty) return Val; 858 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 859 Val->getType()->getDescription() + "'"); 860 return 0; 861 } 862 863 // Otherwise, create a new forward reference for this value and remember it. 864 GlobalValue *FwdVal; 865 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) { 866 // Function types can return opaque but functions can't. 867 if (FT->getReturnType()->isOpaqueTy()) { 868 Error(Loc, "function may not return opaque type"); 869 return 0; 870 } 871 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M); 872 } else { 873 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 874 GlobalValue::ExternalWeakLinkage, 0, ""); 875 } 876 877 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 878 return FwdVal; 879 } 880 881 882 //===----------------------------------------------------------------------===// 883 // Helper Routines. 884 //===----------------------------------------------------------------------===// 885 886 /// ParseToken - If the current token has the specified kind, eat it and return 887 /// success. Otherwise, emit the specified error and return failure. 888 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 889 if (Lex.getKind() != T) 890 return TokError(ErrMsg); 891 Lex.Lex(); 892 return false; 893 } 894 895 /// ParseStringConstant 896 /// ::= StringConstant 897 bool LLParser::ParseStringConstant(std::string &Result) { 898 if (Lex.getKind() != lltok::StringConstant) 899 return TokError("expected string constant"); 900 Result = Lex.getStrVal(); 901 Lex.Lex(); 902 return false; 903 } 904 905 /// ParseUInt32 906 /// ::= uint32 907 bool LLParser::ParseUInt32(unsigned &Val) { 908 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 909 return TokError("expected integer"); 910 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 911 if (Val64 != unsigned(Val64)) 912 return TokError("expected 32-bit integer (too large)"); 913 Val = Val64; 914 Lex.Lex(); 915 return false; 916 } 917 918 919 /// ParseOptionalAddrSpace 920 /// := /*empty*/ 921 /// := 'addrspace' '(' uint32 ')' 922 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 923 AddrSpace = 0; 924 if (!EatIfPresent(lltok::kw_addrspace)) 925 return false; 926 return ParseToken(lltok::lparen, "expected '(' in address space") || 927 ParseUInt32(AddrSpace) || 928 ParseToken(lltok::rparen, "expected ')' in address space"); 929 } 930 931 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind 932 /// indicates what kind of attribute list this is: 0: function arg, 1: result, 933 /// 2: function attr. 934 /// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0 935 bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) { 936 Attrs = Attribute::None; 937 LocTy AttrLoc = Lex.getLoc(); 938 939 while (1) { 940 switch (Lex.getKind()) { 941 case lltok::kw_sext: 942 case lltok::kw_zext: 943 // Treat these as signext/zeroext if they occur in the argument list after 944 // the value, as in "call i8 @foo(i8 10 sext)". If they occur before the 945 // value, as in "call i8 @foo(i8 sext (" then it is part of a constant 946 // expr. 947 // FIXME: REMOVE THIS IN LLVM 3.0 948 if (AttrKind == 3) { 949 if (Lex.getKind() == lltok::kw_sext) 950 Attrs |= Attribute::SExt; 951 else 952 Attrs |= Attribute::ZExt; 953 break; 954 } 955 // FALL THROUGH. 956 default: // End of attributes. 957 if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly)) 958 return Error(AttrLoc, "invalid use of function-only attribute"); 959 960 if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly)) 961 return Error(AttrLoc, "invalid use of parameter-only attribute"); 962 963 return false; 964 case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break; 965 case lltok::kw_signext: Attrs |= Attribute::SExt; break; 966 case lltok::kw_inreg: Attrs |= Attribute::InReg; break; 967 case lltok::kw_sret: Attrs |= Attribute::StructRet; break; 968 case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break; 969 case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break; 970 case lltok::kw_byval: Attrs |= Attribute::ByVal; break; 971 case lltok::kw_nest: Attrs |= Attribute::Nest; break; 972 973 case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break; 974 case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break; 975 case lltok::kw_noinline: Attrs |= Attribute::NoInline; break; 976 case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break; 977 case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break; 978 case lltok::kw_inlinehint: Attrs |= Attribute::InlineHint; break; 979 case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break; 980 case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break; 981 case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break; 982 case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break; 983 case lltok::kw_noredzone: Attrs |= Attribute::NoRedZone; break; 984 case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break; 985 case lltok::kw_naked: Attrs |= Attribute::Naked; break; 986 case lltok::kw_hotpatch: Attrs |= Attribute::Hotpatch; break; 987 988 case lltok::kw_alignstack: { 989 unsigned Alignment; 990 if (ParseOptionalStackAlignment(Alignment)) 991 return true; 992 Attrs |= Attribute::constructStackAlignmentFromInt(Alignment); 993 continue; 994 } 995 996 case lltok::kw_align: { 997 unsigned Alignment; 998 if (ParseOptionalAlignment(Alignment)) 999 return true; 1000 Attrs |= Attribute::constructAlignmentFromInt(Alignment); 1001 continue; 1002 } 1003 1004 } 1005 Lex.Lex(); 1006 } 1007 } 1008 1009 /// ParseOptionalLinkage 1010 /// ::= /*empty*/ 1011 /// ::= 'private' 1012 /// ::= 'linker_private' 1013 /// ::= 'linker_private_weak' 1014 /// ::= 'linker_private_weak_def_auto' 1015 /// ::= 'internal' 1016 /// ::= 'weak' 1017 /// ::= 'weak_odr' 1018 /// ::= 'linkonce' 1019 /// ::= 'linkonce_odr' 1020 /// ::= 'available_externally' 1021 /// ::= 'appending' 1022 /// ::= 'dllexport' 1023 /// ::= 'common' 1024 /// ::= 'dllimport' 1025 /// ::= 'extern_weak' 1026 /// ::= 'external' 1027 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { 1028 HasLinkage = false; 1029 switch (Lex.getKind()) { 1030 default: Res=GlobalValue::ExternalLinkage; return false; 1031 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; 1032 case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break; 1033 case lltok::kw_linker_private_weak: 1034 Res = GlobalValue::LinkerPrivateWeakLinkage; 1035 break; 1036 case lltok::kw_linker_private_weak_def_auto: 1037 Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage; 1038 break; 1039 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; 1040 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; 1041 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; 1042 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; 1043 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; 1044 case lltok::kw_available_externally: 1045 Res = GlobalValue::AvailableExternallyLinkage; 1046 break; 1047 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; 1048 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break; 1049 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; 1050 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break; 1051 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; 1052 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; 1053 } 1054 Lex.Lex(); 1055 HasLinkage = true; 1056 return false; 1057 } 1058 1059 /// ParseOptionalVisibility 1060 /// ::= /*empty*/ 1061 /// ::= 'default' 1062 /// ::= 'hidden' 1063 /// ::= 'protected' 1064 /// 1065 bool LLParser::ParseOptionalVisibility(unsigned &Res) { 1066 switch (Lex.getKind()) { 1067 default: Res = GlobalValue::DefaultVisibility; return false; 1068 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; 1069 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; 1070 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; 1071 } 1072 Lex.Lex(); 1073 return false; 1074 } 1075 1076 /// ParseOptionalCallingConv 1077 /// ::= /*empty*/ 1078 /// ::= 'ccc' 1079 /// ::= 'fastcc' 1080 /// ::= 'coldcc' 1081 /// ::= 'x86_stdcallcc' 1082 /// ::= 'x86_fastcallcc' 1083 /// ::= 'x86_thiscallcc' 1084 /// ::= 'arm_apcscc' 1085 /// ::= 'arm_aapcscc' 1086 /// ::= 'arm_aapcs_vfpcc' 1087 /// ::= 'msp430_intrcc' 1088 /// ::= 'ptx_kernel' 1089 /// ::= 'ptx_device' 1090 /// ::= 'cc' UINT 1091 /// 1092 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) { 1093 switch (Lex.getKind()) { 1094 default: CC = CallingConv::C; return false; 1095 case lltok::kw_ccc: CC = CallingConv::C; break; 1096 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1097 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1098 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1099 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1100 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1101 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1102 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1103 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1104 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1105 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1106 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1107 case lltok::kw_cc: { 1108 unsigned ArbitraryCC; 1109 Lex.Lex(); 1110 if (ParseUInt32(ArbitraryCC)) { 1111 return true; 1112 } else 1113 CC = static_cast<CallingConv::ID>(ArbitraryCC); 1114 return false; 1115 } 1116 break; 1117 } 1118 1119 Lex.Lex(); 1120 return false; 1121 } 1122 1123 /// ParseInstructionMetadata 1124 /// ::= !dbg !42 (',' !dbg !57)* 1125 bool LLParser::ParseInstructionMetadata(Instruction *Inst, 1126 PerFunctionState *PFS) { 1127 do { 1128 if (Lex.getKind() != lltok::MetadataVar) 1129 return TokError("expected metadata after comma"); 1130 1131 std::string Name = Lex.getStrVal(); 1132 unsigned MDK = M->getMDKindID(Name.c_str()); 1133 Lex.Lex(); 1134 1135 MDNode *Node; 1136 SMLoc Loc = Lex.getLoc(); 1137 1138 if (ParseToken(lltok::exclaim, "expected '!' here")) 1139 return true; 1140 1141 // This code is similar to that of ParseMetadataValue, however it needs to 1142 // have special-case code for a forward reference; see the comments on 1143 // ForwardRefInstMetadata for details. Also, MDStrings are not supported 1144 // at the top level here. 1145 if (Lex.getKind() == lltok::lbrace) { 1146 ValID ID; 1147 if (ParseMetadataListValue(ID, PFS)) 1148 return true; 1149 assert(ID.Kind == ValID::t_MDNode); 1150 Inst->setMetadata(MDK, ID.MDNodeVal); 1151 } else { 1152 unsigned NodeID = 0; 1153 if (ParseMDNodeID(Node, NodeID)) 1154 return true; 1155 if (Node) { 1156 // If we got the node, add it to the instruction. 1157 Inst->setMetadata(MDK, Node); 1158 } else { 1159 MDRef R = { Loc, MDK, NodeID }; 1160 // Otherwise, remember that this should be resolved later. 1161 ForwardRefInstMetadata[Inst].push_back(R); 1162 } 1163 } 1164 1165 // If this is the end of the list, we're done. 1166 } while (EatIfPresent(lltok::comma)); 1167 return false; 1168 } 1169 1170 /// ParseOptionalAlignment 1171 /// ::= /* empty */ 1172 /// ::= 'align' 4 1173 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1174 Alignment = 0; 1175 if (!EatIfPresent(lltok::kw_align)) 1176 return false; 1177 LocTy AlignLoc = Lex.getLoc(); 1178 if (ParseUInt32(Alignment)) return true; 1179 if (!isPowerOf2_32(Alignment)) 1180 return Error(AlignLoc, "alignment is not a power of two"); 1181 if (Alignment > Value::MaximumAlignment) 1182 return Error(AlignLoc, "huge alignments are not supported yet"); 1183 return false; 1184 } 1185 1186 /// ParseOptionalCommaAlign 1187 /// ::= 1188 /// ::= ',' align 4 1189 /// 1190 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1191 /// end. 1192 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1193 bool &AteExtraComma) { 1194 AteExtraComma = false; 1195 while (EatIfPresent(lltok::comma)) { 1196 // Metadata at the end is an early exit. 1197 if (Lex.getKind() == lltok::MetadataVar) { 1198 AteExtraComma = true; 1199 return false; 1200 } 1201 1202 if (Lex.getKind() != lltok::kw_align) 1203 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1204 1205 if (ParseOptionalAlignment(Alignment)) return true; 1206 } 1207 1208 return false; 1209 } 1210 1211 /// ParseOptionalStackAlignment 1212 /// ::= /* empty */ 1213 /// ::= 'alignstack' '(' 4 ')' 1214 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1215 Alignment = 0; 1216 if (!EatIfPresent(lltok::kw_alignstack)) 1217 return false; 1218 LocTy ParenLoc = Lex.getLoc(); 1219 if (!EatIfPresent(lltok::lparen)) 1220 return Error(ParenLoc, "expected '('"); 1221 LocTy AlignLoc = Lex.getLoc(); 1222 if (ParseUInt32(Alignment)) return true; 1223 ParenLoc = Lex.getLoc(); 1224 if (!EatIfPresent(lltok::rparen)) 1225 return Error(ParenLoc, "expected ')'"); 1226 if (!isPowerOf2_32(Alignment)) 1227 return Error(AlignLoc, "stack alignment is not a power of two"); 1228 return false; 1229 } 1230 1231 /// ParseIndexList - This parses the index list for an insert/extractvalue 1232 /// instruction. This sets AteExtraComma in the case where we eat an extra 1233 /// comma at the end of the line and find that it is followed by metadata. 1234 /// Clients that don't allow metadata can call the version of this function that 1235 /// only takes one argument. 1236 /// 1237 /// ParseIndexList 1238 /// ::= (',' uint32)+ 1239 /// 1240 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1241 bool &AteExtraComma) { 1242 AteExtraComma = false; 1243 1244 if (Lex.getKind() != lltok::comma) 1245 return TokError("expected ',' as start of index list"); 1246 1247 while (EatIfPresent(lltok::comma)) { 1248 if (Lex.getKind() == lltok::MetadataVar) { 1249 AteExtraComma = true; 1250 return false; 1251 } 1252 unsigned Idx = 0; 1253 if (ParseUInt32(Idx)) return true; 1254 Indices.push_back(Idx); 1255 } 1256 1257 return false; 1258 } 1259 1260 //===----------------------------------------------------------------------===// 1261 // Type Parsing. 1262 //===----------------------------------------------------------------------===// 1263 1264 /// ParseType - Parse and resolve a full type. 1265 bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) { 1266 LocTy TypeLoc = Lex.getLoc(); 1267 if (ParseTypeRec(Result)) return true; 1268 1269 // Verify no unresolved uprefs. 1270 if (!UpRefs.empty()) 1271 return Error(UpRefs.back().Loc, "invalid unresolved type up reference"); 1272 1273 if (!AllowVoid && Result.get()->isVoidTy()) 1274 return Error(TypeLoc, "void type only allowed for function results"); 1275 1276 return false; 1277 } 1278 1279 /// HandleUpRefs - Every time we finish a new layer of types, this function is 1280 /// called. It loops through the UpRefs vector, which is a list of the 1281 /// currently active types. For each type, if the up-reference is contained in 1282 /// the newly completed type, we decrement the level count. When the level 1283 /// count reaches zero, the up-referenced type is the type that is passed in: 1284 /// thus we can complete the cycle. 1285 /// 1286 PATypeHolder LLParser::HandleUpRefs(const Type *ty) { 1287 // If Ty isn't abstract, or if there are no up-references in it, then there is 1288 // nothing to resolve here. 1289 if (!ty->isAbstract() || UpRefs.empty()) return ty; 1290 1291 PATypeHolder Ty(ty); 1292 #if 0 1293 dbgs() << "Type '" << Ty->getDescription() 1294 << "' newly formed. Resolving upreferences.\n" 1295 << UpRefs.size() << " upreferences active!\n"; 1296 #endif 1297 1298 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes 1299 // to zero), we resolve them all together before we resolve them to Ty. At 1300 // the end of the loop, if there is anything to resolve to Ty, it will be in 1301 // this variable. 1302 OpaqueType *TypeToResolve = 0; 1303 1304 for (unsigned i = 0; i != UpRefs.size(); ++i) { 1305 // Determine if 'Ty' directly contains this up-references 'LastContainedTy'. 1306 bool ContainsType = 1307 std::find(Ty->subtype_begin(), Ty->subtype_end(), 1308 UpRefs[i].LastContainedTy) != Ty->subtype_end(); 1309 1310 #if 0 1311 dbgs() << " UR#" << i << " - TypeContains(" << Ty->getDescription() << ", " 1312 << UpRefs[i].LastContainedTy->getDescription() << ") = " 1313 << (ContainsType ? "true" : "false") 1314 << " level=" << UpRefs[i].NestingLevel << "\n"; 1315 #endif 1316 if (!ContainsType) 1317 continue; 1318 1319 // Decrement level of upreference 1320 unsigned Level = --UpRefs[i].NestingLevel; 1321 UpRefs[i].LastContainedTy = Ty; 1322 1323 // If the Up-reference has a non-zero level, it shouldn't be resolved yet. 1324 if (Level != 0) 1325 continue; 1326 1327 #if 0 1328 dbgs() << " * Resolving upreference for " << UpRefs[i].UpRefTy << "\n"; 1329 #endif 1330 if (!TypeToResolve) 1331 TypeToResolve = UpRefs[i].UpRefTy; 1332 else 1333 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve); 1334 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list. 1335 --i; // Do not skip the next element. 1336 } 1337 1338 if (TypeToResolve) 1339 TypeToResolve->refineAbstractTypeTo(Ty); 1340 1341 return Ty; 1342 } 1343 1344 1345 /// ParseTypeRec - The recursive function used to process the internal 1346 /// implementation details of types. 1347 bool LLParser::ParseTypeRec(PATypeHolder &Result) { 1348 switch (Lex.getKind()) { 1349 default: 1350 return TokError("expected type"); 1351 case lltok::Type: 1352 // TypeRec ::= 'float' | 'void' (etc) 1353 Result = Lex.getTyVal(); 1354 Lex.Lex(); 1355 break; 1356 case lltok::kw_opaque: 1357 // TypeRec ::= 'opaque' 1358 Result = OpaqueType::get(Context); 1359 Lex.Lex(); 1360 break; 1361 case lltok::lbrace: 1362 // TypeRec ::= '{' ... '}' 1363 if (ParseStructType(Result, false)) 1364 return true; 1365 break; 1366 case lltok::lsquare: 1367 // TypeRec ::= '[' ... ']' 1368 Lex.Lex(); // eat the lsquare. 1369 if (ParseArrayVectorType(Result, false)) 1370 return true; 1371 break; 1372 case lltok::less: // Either vector or packed struct. 1373 // TypeRec ::= '<' ... '>' 1374 Lex.Lex(); 1375 if (Lex.getKind() == lltok::lbrace) { 1376 if (ParseStructType(Result, true) || 1377 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1378 return true; 1379 } else if (ParseArrayVectorType(Result, true)) 1380 return true; 1381 break; 1382 case lltok::LocalVar: 1383 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0 1384 // TypeRec ::= %foo 1385 if (const Type *T = M->getTypeByName(Lex.getStrVal())) { 1386 Result = T; 1387 } else { 1388 Result = OpaqueType::get(Context); 1389 ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(), 1390 std::make_pair(Result, 1391 Lex.getLoc()))); 1392 M->addTypeName(Lex.getStrVal(), Result.get()); 1393 } 1394 Lex.Lex(); 1395 break; 1396 1397 case lltok::LocalVarID: 1398 // TypeRec ::= %4 1399 if (Lex.getUIntVal() < NumberedTypes.size()) 1400 Result = NumberedTypes[Lex.getUIntVal()]; 1401 else { 1402 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator 1403 I = ForwardRefTypeIDs.find(Lex.getUIntVal()); 1404 if (I != ForwardRefTypeIDs.end()) 1405 Result = I->second.first; 1406 else { 1407 Result = OpaqueType::get(Context); 1408 ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(), 1409 std::make_pair(Result, 1410 Lex.getLoc()))); 1411 } 1412 } 1413 Lex.Lex(); 1414 break; 1415 case lltok::backslash: { 1416 // TypeRec ::= '\' 4 1417 Lex.Lex(); 1418 unsigned Val; 1419 if (ParseUInt32(Val)) return true; 1420 OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder. 1421 UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT)); 1422 Result = OT; 1423 break; 1424 } 1425 } 1426 1427 // Parse the type suffixes. 1428 while (1) { 1429 switch (Lex.getKind()) { 1430 // End of type. 1431 default: return false; 1432 1433 // TypeRec ::= TypeRec '*' 1434 case lltok::star: 1435 if (Result.get()->isLabelTy()) 1436 return TokError("basic block pointers are invalid"); 1437 if (Result.get()->isVoidTy()) 1438 return TokError("pointers to void are invalid; use i8* instead"); 1439 if (!PointerType::isValidElementType(Result.get())) 1440 return TokError("pointer to this type is invalid"); 1441 Result = HandleUpRefs(PointerType::getUnqual(Result.get())); 1442 Lex.Lex(); 1443 break; 1444 1445 // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*' 1446 case lltok::kw_addrspace: { 1447 if (Result.get()->isLabelTy()) 1448 return TokError("basic block pointers are invalid"); 1449 if (Result.get()->isVoidTy()) 1450 return TokError("pointers to void are invalid; use i8* instead"); 1451 if (!PointerType::isValidElementType(Result.get())) 1452 return TokError("pointer to this type is invalid"); 1453 unsigned AddrSpace; 1454 if (ParseOptionalAddrSpace(AddrSpace) || 1455 ParseToken(lltok::star, "expected '*' in address space")) 1456 return true; 1457 1458 Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace)); 1459 break; 1460 } 1461 1462 /// Types '(' ArgTypeListI ')' OptFuncAttrs 1463 case lltok::lparen: 1464 if (ParseFunctionType(Result)) 1465 return true; 1466 break; 1467 } 1468 } 1469 } 1470 1471 /// ParseParameterList 1472 /// ::= '(' ')' 1473 /// ::= '(' Arg (',' Arg)* ')' 1474 /// Arg 1475 /// ::= Type OptionalAttributes Value OptionalAttributes 1476 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 1477 PerFunctionState &PFS) { 1478 if (ParseToken(lltok::lparen, "expected '(' in call")) 1479 return true; 1480 1481 while (Lex.getKind() != lltok::rparen) { 1482 // If this isn't the first argument, we need a comma. 1483 if (!ArgList.empty() && 1484 ParseToken(lltok::comma, "expected ',' in argument list")) 1485 return true; 1486 1487 // Parse the argument. 1488 LocTy ArgLoc; 1489 PATypeHolder ArgTy(Type::getVoidTy(Context)); 1490 unsigned ArgAttrs1 = Attribute::None; 1491 unsigned ArgAttrs2 = Attribute::None; 1492 Value *V; 1493 if (ParseType(ArgTy, ArgLoc)) 1494 return true; 1495 1496 // Otherwise, handle normal operands. 1497 if (ParseOptionalAttrs(ArgAttrs1, 0) || 1498 ParseValue(ArgTy, V, PFS) || 1499 // FIXME: Should not allow attributes after the argument, remove this 1500 // in LLVM 3.0. 1501 ParseOptionalAttrs(ArgAttrs2, 3)) 1502 return true; 1503 ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2)); 1504 } 1505 1506 Lex.Lex(); // Lex the ')'. 1507 return false; 1508 } 1509 1510 1511 1512 /// ParseArgumentList - Parse the argument list for a function type or function 1513 /// prototype. If 'inType' is true then we are parsing a FunctionType. 1514 /// ::= '(' ArgTypeListI ')' 1515 /// ArgTypeListI 1516 /// ::= /*empty*/ 1517 /// ::= '...' 1518 /// ::= ArgTypeList ',' '...' 1519 /// ::= ArgType (',' ArgType)* 1520 /// 1521 bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList, 1522 bool &isVarArg, bool inType) { 1523 isVarArg = false; 1524 assert(Lex.getKind() == lltok::lparen); 1525 Lex.Lex(); // eat the (. 1526 1527 if (Lex.getKind() == lltok::rparen) { 1528 // empty 1529 } else if (Lex.getKind() == lltok::dotdotdot) { 1530 isVarArg = true; 1531 Lex.Lex(); 1532 } else { 1533 LocTy TypeLoc = Lex.getLoc(); 1534 PATypeHolder ArgTy(Type::getVoidTy(Context)); 1535 unsigned Attrs; 1536 std::string Name; 1537 1538 // If we're parsing a type, use ParseTypeRec, because we allow recursive 1539 // types (such as a function returning a pointer to itself). If parsing a 1540 // function prototype, we require fully resolved types. 1541 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) || 1542 ParseOptionalAttrs(Attrs, 0)) return true; 1543 1544 if (ArgTy->isVoidTy()) 1545 return Error(TypeLoc, "argument can not have void type"); 1546 1547 if (Lex.getKind() == lltok::LocalVar || 1548 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0 1549 Name = Lex.getStrVal(); 1550 Lex.Lex(); 1551 } 1552 1553 if (!FunctionType::isValidArgumentType(ArgTy)) 1554 return Error(TypeLoc, "invalid type for function argument"); 1555 1556 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); 1557 1558 while (EatIfPresent(lltok::comma)) { 1559 // Handle ... at end of arg list. 1560 if (EatIfPresent(lltok::dotdotdot)) { 1561 isVarArg = true; 1562 break; 1563 } 1564 1565 // Otherwise must be an argument type. 1566 TypeLoc = Lex.getLoc(); 1567 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) || 1568 ParseOptionalAttrs(Attrs, 0)) return true; 1569 1570 if (ArgTy->isVoidTy()) 1571 return Error(TypeLoc, "argument can not have void type"); 1572 1573 if (Lex.getKind() == lltok::LocalVar || 1574 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0 1575 Name = Lex.getStrVal(); 1576 Lex.Lex(); 1577 } else { 1578 Name = ""; 1579 } 1580 1581 if (!ArgTy->isFirstClassType() && !ArgTy->isOpaqueTy()) 1582 return Error(TypeLoc, "invalid type for function argument"); 1583 1584 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); 1585 } 1586 } 1587 1588 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 1589 } 1590 1591 /// ParseFunctionType 1592 /// ::= Type ArgumentList OptionalAttrs 1593 bool LLParser::ParseFunctionType(PATypeHolder &Result) { 1594 assert(Lex.getKind() == lltok::lparen); 1595 1596 if (!FunctionType::isValidReturnType(Result)) 1597 return TokError("invalid function return type"); 1598 1599 std::vector<ArgInfo> ArgList; 1600 bool isVarArg; 1601 unsigned Attrs; 1602 if (ParseArgumentList(ArgList, isVarArg, true) || 1603 // FIXME: Allow, but ignore attributes on function types! 1604 // FIXME: Remove in LLVM 3.0 1605 ParseOptionalAttrs(Attrs, 2)) 1606 return true; 1607 1608 // Reject names on the arguments lists. 1609 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 1610 if (!ArgList[i].Name.empty()) 1611 return Error(ArgList[i].Loc, "argument name invalid in function type"); 1612 if (!ArgList[i].Attrs != 0) { 1613 // Allow but ignore attributes on function types; this permits 1614 // auto-upgrade. 1615 // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0 1616 } 1617 } 1618 1619 std::vector<const Type*> ArgListTy; 1620 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 1621 ArgListTy.push_back(ArgList[i].Type); 1622 1623 Result = HandleUpRefs(FunctionType::get(Result.get(), 1624 ArgListTy, isVarArg)); 1625 return false; 1626 } 1627 1628 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 1629 /// TypeRec 1630 /// ::= '{' '}' 1631 /// ::= '{' TypeRec (',' TypeRec)* '}' 1632 /// ::= '<' '{' '}' '>' 1633 /// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>' 1634 bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) { 1635 assert(Lex.getKind() == lltok::lbrace); 1636 Lex.Lex(); // Consume the '{' 1637 1638 if (EatIfPresent(lltok::rbrace)) { 1639 Result = StructType::get(Context, Packed); 1640 return false; 1641 } 1642 1643 std::vector<PATypeHolder> ParamsList; 1644 LocTy EltTyLoc = Lex.getLoc(); 1645 if (ParseTypeRec(Result)) return true; 1646 ParamsList.push_back(Result); 1647 1648 if (Result->isVoidTy()) 1649 return Error(EltTyLoc, "struct element can not have void type"); 1650 if (!StructType::isValidElementType(Result)) 1651 return Error(EltTyLoc, "invalid element type for struct"); 1652 1653 while (EatIfPresent(lltok::comma)) { 1654 EltTyLoc = Lex.getLoc(); 1655 if (ParseTypeRec(Result)) return true; 1656 1657 if (Result->isVoidTy()) 1658 return Error(EltTyLoc, "struct element can not have void type"); 1659 if (!StructType::isValidElementType(Result)) 1660 return Error(EltTyLoc, "invalid element type for struct"); 1661 1662 ParamsList.push_back(Result); 1663 } 1664 1665 if (ParseToken(lltok::rbrace, "expected '}' at end of struct")) 1666 return true; 1667 1668 std::vector<const Type*> ParamsListTy; 1669 for (unsigned i = 0, e = ParamsList.size(); i != e; ++i) 1670 ParamsListTy.push_back(ParamsList[i].get()); 1671 Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed)); 1672 return false; 1673 } 1674 1675 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 1676 /// token has already been consumed. 1677 /// TypeRec 1678 /// ::= '[' APSINTVAL 'x' Types ']' 1679 /// ::= '<' APSINTVAL 'x' Types '>' 1680 bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) { 1681 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 1682 Lex.getAPSIntVal().getBitWidth() > 64) 1683 return TokError("expected number in address space"); 1684 1685 LocTy SizeLoc = Lex.getLoc(); 1686 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 1687 Lex.Lex(); 1688 1689 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 1690 return true; 1691 1692 LocTy TypeLoc = Lex.getLoc(); 1693 PATypeHolder EltTy(Type::getVoidTy(Context)); 1694 if (ParseTypeRec(EltTy)) return true; 1695 1696 if (EltTy->isVoidTy()) 1697 return Error(TypeLoc, "array and vector element type cannot be void"); 1698 1699 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 1700 "expected end of sequential type")) 1701 return true; 1702 1703 if (isVector) { 1704 if (Size == 0) 1705 return Error(SizeLoc, "zero element vector is illegal"); 1706 if ((unsigned)Size != Size) 1707 return Error(SizeLoc, "size too large for vector"); 1708 if (!VectorType::isValidElementType(EltTy)) 1709 return Error(TypeLoc, "vector element type must be fp or integer"); 1710 Result = VectorType::get(EltTy, unsigned(Size)); 1711 } else { 1712 if (!ArrayType::isValidElementType(EltTy)) 1713 return Error(TypeLoc, "invalid array element type"); 1714 Result = HandleUpRefs(ArrayType::get(EltTy, Size)); 1715 } 1716 return false; 1717 } 1718 1719 //===----------------------------------------------------------------------===// 1720 // Function Semantic Analysis. 1721 //===----------------------------------------------------------------------===// 1722 1723 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 1724 int functionNumber) 1725 : P(p), F(f), FunctionNumber(functionNumber) { 1726 1727 // Insert unnamed arguments into the NumberedVals list. 1728 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); 1729 AI != E; ++AI) 1730 if (!AI->hasName()) 1731 NumberedVals.push_back(AI); 1732 } 1733 1734 LLParser::PerFunctionState::~PerFunctionState() { 1735 // If there were any forward referenced non-basicblock values, delete them. 1736 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator 1737 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I) 1738 if (!isa<BasicBlock>(I->second.first)) { 1739 I->second.first->replaceAllUsesWith( 1740 UndefValue::get(I->second.first->getType())); 1741 delete I->second.first; 1742 I->second.first = 0; 1743 } 1744 1745 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1746 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I) 1747 if (!isa<BasicBlock>(I->second.first)) { 1748 I->second.first->replaceAllUsesWith( 1749 UndefValue::get(I->second.first->getType())); 1750 delete I->second.first; 1751 I->second.first = 0; 1752 } 1753 } 1754 1755 bool LLParser::PerFunctionState::FinishFunction() { 1756 // Check to see if someone took the address of labels in this block. 1757 if (!P.ForwardRefBlockAddresses.empty()) { 1758 ValID FunctionID; 1759 if (!F.getName().empty()) { 1760 FunctionID.Kind = ValID::t_GlobalName; 1761 FunctionID.StrVal = F.getName(); 1762 } else { 1763 FunctionID.Kind = ValID::t_GlobalID; 1764 FunctionID.UIntVal = FunctionNumber; 1765 } 1766 1767 std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator 1768 FRBAI = P.ForwardRefBlockAddresses.find(FunctionID); 1769 if (FRBAI != P.ForwardRefBlockAddresses.end()) { 1770 // Resolve all these references. 1771 if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this)) 1772 return true; 1773 1774 P.ForwardRefBlockAddresses.erase(FRBAI); 1775 } 1776 } 1777 1778 if (!ForwardRefVals.empty()) 1779 return P.Error(ForwardRefVals.begin()->second.second, 1780 "use of undefined value '%" + ForwardRefVals.begin()->first + 1781 "'"); 1782 if (!ForwardRefValIDs.empty()) 1783 return P.Error(ForwardRefValIDs.begin()->second.second, 1784 "use of undefined value '%" + 1785 Twine(ForwardRefValIDs.begin()->first) + "'"); 1786 return false; 1787 } 1788 1789 1790 /// GetVal - Get a value with the specified name or ID, creating a 1791 /// forward reference record if needed. This can return null if the value 1792 /// exists but does not have the right type. 1793 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, 1794 const Type *Ty, LocTy Loc) { 1795 // Look this name up in the normal function symbol table. 1796 Value *Val = F.getValueSymbolTable().lookup(Name); 1797 1798 // If this is a forward reference for the value, see if we already created a 1799 // forward ref record. 1800 if (Val == 0) { 1801 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1802 I = ForwardRefVals.find(Name); 1803 if (I != ForwardRefVals.end()) 1804 Val = I->second.first; 1805 } 1806 1807 // If we have the value in the symbol table or fwd-ref table, return it. 1808 if (Val) { 1809 if (Val->getType() == Ty) return Val; 1810 if (Ty->isLabelTy()) 1811 P.Error(Loc, "'%" + Name + "' is not a basic block"); 1812 else 1813 P.Error(Loc, "'%" + Name + "' defined with type '" + 1814 Val->getType()->getDescription() + "'"); 1815 return 0; 1816 } 1817 1818 // Don't make placeholders with invalid type. 1819 if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) { 1820 P.Error(Loc, "invalid use of a non-first-class type"); 1821 return 0; 1822 } 1823 1824 // Otherwise, create a new forward reference for this value and remember it. 1825 Value *FwdVal; 1826 if (Ty->isLabelTy()) 1827 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 1828 else 1829 FwdVal = new Argument(Ty, Name); 1830 1831 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1832 return FwdVal; 1833 } 1834 1835 Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty, 1836 LocTy Loc) { 1837 // Look this name up in the normal function symbol table. 1838 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 1839 1840 // If this is a forward reference for the value, see if we already created a 1841 // forward ref record. 1842 if (Val == 0) { 1843 std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1844 I = ForwardRefValIDs.find(ID); 1845 if (I != ForwardRefValIDs.end()) 1846 Val = I->second.first; 1847 } 1848 1849 // If we have the value in the symbol table or fwd-ref table, return it. 1850 if (Val) { 1851 if (Val->getType() == Ty) return Val; 1852 if (Ty->isLabelTy()) 1853 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 1854 else 1855 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 1856 Val->getType()->getDescription() + "'"); 1857 return 0; 1858 } 1859 1860 if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) { 1861 P.Error(Loc, "invalid use of a non-first-class type"); 1862 return 0; 1863 } 1864 1865 // Otherwise, create a new forward reference for this value and remember it. 1866 Value *FwdVal; 1867 if (Ty->isLabelTy()) 1868 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 1869 else 1870 FwdVal = new Argument(Ty); 1871 1872 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1873 return FwdVal; 1874 } 1875 1876 /// SetInstName - After an instruction is parsed and inserted into its 1877 /// basic block, this installs its name. 1878 bool LLParser::PerFunctionState::SetInstName(int NameID, 1879 const std::string &NameStr, 1880 LocTy NameLoc, Instruction *Inst) { 1881 // If this instruction has void type, it cannot have a name or ID specified. 1882 if (Inst->getType()->isVoidTy()) { 1883 if (NameID != -1 || !NameStr.empty()) 1884 return P.Error(NameLoc, "instructions returning void cannot have a name"); 1885 return false; 1886 } 1887 1888 // If this was a numbered instruction, verify that the instruction is the 1889 // expected value and resolve any forward references. 1890 if (NameStr.empty()) { 1891 // If neither a name nor an ID was specified, just use the next ID. 1892 if (NameID == -1) 1893 NameID = NumberedVals.size(); 1894 1895 if (unsigned(NameID) != NumberedVals.size()) 1896 return P.Error(NameLoc, "instruction expected to be numbered '%" + 1897 Twine(NumberedVals.size()) + "'"); 1898 1899 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI = 1900 ForwardRefValIDs.find(NameID); 1901 if (FI != ForwardRefValIDs.end()) { 1902 if (FI->second.first->getType() != Inst->getType()) 1903 return P.Error(NameLoc, "instruction forward referenced with type '" + 1904 FI->second.first->getType()->getDescription() + "'"); 1905 FI->second.first->replaceAllUsesWith(Inst); 1906 delete FI->second.first; 1907 ForwardRefValIDs.erase(FI); 1908 } 1909 1910 NumberedVals.push_back(Inst); 1911 return false; 1912 } 1913 1914 // Otherwise, the instruction had a name. Resolve forward refs and set it. 1915 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1916 FI = ForwardRefVals.find(NameStr); 1917 if (FI != ForwardRefVals.end()) { 1918 if (FI->second.first->getType() != Inst->getType()) 1919 return P.Error(NameLoc, "instruction forward referenced with type '" + 1920 FI->second.first->getType()->getDescription() + "'"); 1921 FI->second.first->replaceAllUsesWith(Inst); 1922 delete FI->second.first; 1923 ForwardRefVals.erase(FI); 1924 } 1925 1926 // Set the name on the instruction. 1927 Inst->setName(NameStr); 1928 1929 if (Inst->getName() != NameStr) 1930 return P.Error(NameLoc, "multiple definition of local value named '" + 1931 NameStr + "'"); 1932 return false; 1933 } 1934 1935 /// GetBB - Get a basic block with the specified name or ID, creating a 1936 /// forward reference record if needed. 1937 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 1938 LocTy Loc) { 1939 return cast_or_null<BasicBlock>(GetVal(Name, 1940 Type::getLabelTy(F.getContext()), Loc)); 1941 } 1942 1943 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 1944 return cast_or_null<BasicBlock>(GetVal(ID, 1945 Type::getLabelTy(F.getContext()), Loc)); 1946 } 1947 1948 /// DefineBB - Define the specified basic block, which is either named or 1949 /// unnamed. If there is an error, this returns null otherwise it returns 1950 /// the block being defined. 1951 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 1952 LocTy Loc) { 1953 BasicBlock *BB; 1954 if (Name.empty()) 1955 BB = GetBB(NumberedVals.size(), Loc); 1956 else 1957 BB = GetBB(Name, Loc); 1958 if (BB == 0) return 0; // Already diagnosed error. 1959 1960 // Move the block to the end of the function. Forward ref'd blocks are 1961 // inserted wherever they happen to be referenced. 1962 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 1963 1964 // Remove the block from forward ref sets. 1965 if (Name.empty()) { 1966 ForwardRefValIDs.erase(NumberedVals.size()); 1967 NumberedVals.push_back(BB); 1968 } else { 1969 // BB forward references are already in the function symbol table. 1970 ForwardRefVals.erase(Name); 1971 } 1972 1973 return BB; 1974 } 1975 1976 //===----------------------------------------------------------------------===// 1977 // Constants. 1978 //===----------------------------------------------------------------------===// 1979 1980 /// ParseValID - Parse an abstract value that doesn't necessarily have a 1981 /// type implied. For example, if we parse "4" we don't know what integer type 1982 /// it has. The value will later be combined with its type and checked for 1983 /// sanity. PFS is used to convert function-local operands of metadata (since 1984 /// metadata operands are not just parsed here but also converted to values). 1985 /// PFS can be null when we are not parsing metadata values inside a function. 1986 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 1987 ID.Loc = Lex.getLoc(); 1988 switch (Lex.getKind()) { 1989 default: return TokError("expected value token"); 1990 case lltok::GlobalID: // @42 1991 ID.UIntVal = Lex.getUIntVal(); 1992 ID.Kind = ValID::t_GlobalID; 1993 break; 1994 case lltok::GlobalVar: // @foo 1995 ID.StrVal = Lex.getStrVal(); 1996 ID.Kind = ValID::t_GlobalName; 1997 break; 1998 case lltok::LocalVarID: // %42 1999 ID.UIntVal = Lex.getUIntVal(); 2000 ID.Kind = ValID::t_LocalID; 2001 break; 2002 case lltok::LocalVar: // %foo 2003 case lltok::StringConstant: // "foo" - FIXME: REMOVE IN LLVM 3.0 2004 ID.StrVal = Lex.getStrVal(); 2005 ID.Kind = ValID::t_LocalName; 2006 break; 2007 case lltok::exclaim: // !42, !{...}, or !"foo" 2008 return ParseMetadataValue(ID, PFS); 2009 case lltok::APSInt: 2010 ID.APSIntVal = Lex.getAPSIntVal(); 2011 ID.Kind = ValID::t_APSInt; 2012 break; 2013 case lltok::APFloat: 2014 ID.APFloatVal = Lex.getAPFloatVal(); 2015 ID.Kind = ValID::t_APFloat; 2016 break; 2017 case lltok::kw_true: 2018 ID.ConstantVal = ConstantInt::getTrue(Context); 2019 ID.Kind = ValID::t_Constant; 2020 break; 2021 case lltok::kw_false: 2022 ID.ConstantVal = ConstantInt::getFalse(Context); 2023 ID.Kind = ValID::t_Constant; 2024 break; 2025 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2026 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2027 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2028 2029 case lltok::lbrace: { 2030 // ValID ::= '{' ConstVector '}' 2031 Lex.Lex(); 2032 SmallVector<Constant*, 16> Elts; 2033 if (ParseGlobalValueVector(Elts) || 2034 ParseToken(lltok::rbrace, "expected end of struct constant")) 2035 return true; 2036 2037 ID.ConstantVal = ConstantStruct::get(Context, Elts.data(), 2038 Elts.size(), false); 2039 ID.Kind = ValID::t_Constant; 2040 return false; 2041 } 2042 case lltok::less: { 2043 // ValID ::= '<' ConstVector '>' --> Vector. 2044 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2045 Lex.Lex(); 2046 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2047 2048 SmallVector<Constant*, 16> Elts; 2049 LocTy FirstEltLoc = Lex.getLoc(); 2050 if (ParseGlobalValueVector(Elts) || 2051 (isPackedStruct && 2052 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2053 ParseToken(lltok::greater, "expected end of constant")) 2054 return true; 2055 2056 if (isPackedStruct) { 2057 ID.ConstantVal = 2058 ConstantStruct::get(Context, Elts.data(), Elts.size(), true); 2059 ID.Kind = ValID::t_Constant; 2060 return false; 2061 } 2062 2063 if (Elts.empty()) 2064 return Error(ID.Loc, "constant vector must not be empty"); 2065 2066 if (!Elts[0]->getType()->isIntegerTy() && 2067 !Elts[0]->getType()->isFloatingPointTy()) 2068 return Error(FirstEltLoc, 2069 "vector elements must have integer or floating point type"); 2070 2071 // Verify that all the vector elements have the same type. 2072 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2073 if (Elts[i]->getType() != Elts[0]->getType()) 2074 return Error(FirstEltLoc, 2075 "vector element #" + Twine(i) + 2076 " is not of type '" + Elts[0]->getType()->getDescription()); 2077 2078 ID.ConstantVal = ConstantVector::get(Elts); 2079 ID.Kind = ValID::t_Constant; 2080 return false; 2081 } 2082 case lltok::lsquare: { // Array Constant 2083 Lex.Lex(); 2084 SmallVector<Constant*, 16> Elts; 2085 LocTy FirstEltLoc = Lex.getLoc(); 2086 if (ParseGlobalValueVector(Elts) || 2087 ParseToken(lltok::rsquare, "expected end of array constant")) 2088 return true; 2089 2090 // Handle empty element. 2091 if (Elts.empty()) { 2092 // Use undef instead of an array because it's inconvenient to determine 2093 // the element type at this point, there being no elements to examine. 2094 ID.Kind = ValID::t_EmptyArray; 2095 return false; 2096 } 2097 2098 if (!Elts[0]->getType()->isFirstClassType()) 2099 return Error(FirstEltLoc, "invalid array element type: " + 2100 Elts[0]->getType()->getDescription()); 2101 2102 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2103 2104 // Verify all elements are correct type! 2105 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2106 if (Elts[i]->getType() != Elts[0]->getType()) 2107 return Error(FirstEltLoc, 2108 "array element #" + Twine(i) + 2109 " is not of type '" +Elts[0]->getType()->getDescription()); 2110 } 2111 2112 ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size()); 2113 ID.Kind = ValID::t_Constant; 2114 return false; 2115 } 2116 case lltok::kw_c: // c "foo" 2117 Lex.Lex(); 2118 ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false); 2119 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2120 ID.Kind = ValID::t_Constant; 2121 return false; 2122 2123 case lltok::kw_asm: { 2124 // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT 2125 bool HasSideEffect, AlignStack; 2126 Lex.Lex(); 2127 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2128 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2129 ParseStringConstant(ID.StrVal) || 2130 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2131 ParseToken(lltok::StringConstant, "expected constraint string")) 2132 return true; 2133 ID.StrVal2 = Lex.getStrVal(); 2134 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1); 2135 ID.Kind = ValID::t_InlineAsm; 2136 return false; 2137 } 2138 2139 case lltok::kw_blockaddress: { 2140 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2141 Lex.Lex(); 2142 2143 ValID Fn, Label; 2144 LocTy FnLoc, LabelLoc; 2145 2146 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2147 ParseValID(Fn) || 2148 ParseToken(lltok::comma, "expected comma in block address expression")|| 2149 ParseValID(Label) || 2150 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2151 return true; 2152 2153 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2154 return Error(Fn.Loc, "expected function name in blockaddress"); 2155 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2156 return Error(Label.Loc, "expected basic block name in blockaddress"); 2157 2158 // Make a global variable as a placeholder for this reference. 2159 GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), 2160 false, GlobalValue::InternalLinkage, 2161 0, ""); 2162 ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef)); 2163 ID.ConstantVal = FwdRef; 2164 ID.Kind = ValID::t_Constant; 2165 return false; 2166 } 2167 2168 case lltok::kw_trunc: 2169 case lltok::kw_zext: 2170 case lltok::kw_sext: 2171 case lltok::kw_fptrunc: 2172 case lltok::kw_fpext: 2173 case lltok::kw_bitcast: 2174 case lltok::kw_uitofp: 2175 case lltok::kw_sitofp: 2176 case lltok::kw_fptoui: 2177 case lltok::kw_fptosi: 2178 case lltok::kw_inttoptr: 2179 case lltok::kw_ptrtoint: { 2180 unsigned Opc = Lex.getUIntVal(); 2181 PATypeHolder DestTy(Type::getVoidTy(Context)); 2182 Constant *SrcVal; 2183 Lex.Lex(); 2184 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2185 ParseGlobalTypeAndValue(SrcVal) || 2186 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2187 ParseType(DestTy) || 2188 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2189 return true; 2190 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2191 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2192 SrcVal->getType()->getDescription() + "' to '" + 2193 DestTy->getDescription() + "'"); 2194 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2195 SrcVal, DestTy); 2196 ID.Kind = ValID::t_Constant; 2197 return false; 2198 } 2199 case lltok::kw_extractvalue: { 2200 Lex.Lex(); 2201 Constant *Val; 2202 SmallVector<unsigned, 4> Indices; 2203 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2204 ParseGlobalTypeAndValue(Val) || 2205 ParseIndexList(Indices) || 2206 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2207 return true; 2208 2209 if (!Val->getType()->isAggregateType()) 2210 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2211 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(), 2212 Indices.end())) 2213 return Error(ID.Loc, "invalid indices for extractvalue"); 2214 ID.ConstantVal = 2215 ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size()); 2216 ID.Kind = ValID::t_Constant; 2217 return false; 2218 } 2219 case lltok::kw_insertvalue: { 2220 Lex.Lex(); 2221 Constant *Val0, *Val1; 2222 SmallVector<unsigned, 4> Indices; 2223 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2224 ParseGlobalTypeAndValue(Val0) || 2225 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2226 ParseGlobalTypeAndValue(Val1) || 2227 ParseIndexList(Indices) || 2228 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2229 return true; 2230 if (!Val0->getType()->isAggregateType()) 2231 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2232 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(), 2233 Indices.end())) 2234 return Error(ID.Loc, "invalid indices for insertvalue"); 2235 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, 2236 Indices.data(), Indices.size()); 2237 ID.Kind = ValID::t_Constant; 2238 return false; 2239 } 2240 case lltok::kw_icmp: 2241 case lltok::kw_fcmp: { 2242 unsigned PredVal, Opc = Lex.getUIntVal(); 2243 Constant *Val0, *Val1; 2244 Lex.Lex(); 2245 if (ParseCmpPredicate(PredVal, Opc) || 2246 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2247 ParseGlobalTypeAndValue(Val0) || 2248 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2249 ParseGlobalTypeAndValue(Val1) || 2250 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2251 return true; 2252 2253 if (Val0->getType() != Val1->getType()) 2254 return Error(ID.Loc, "compare operands must have the same type"); 2255 2256 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2257 2258 if (Opc == Instruction::FCmp) { 2259 if (!Val0->getType()->isFPOrFPVectorTy()) 2260 return Error(ID.Loc, "fcmp requires floating point operands"); 2261 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2262 } else { 2263 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2264 if (!Val0->getType()->isIntOrIntVectorTy() && 2265 !Val0->getType()->isPointerTy()) 2266 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2267 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2268 } 2269 ID.Kind = ValID::t_Constant; 2270 return false; 2271 } 2272 2273 // Binary Operators. 2274 case lltok::kw_add: 2275 case lltok::kw_fadd: 2276 case lltok::kw_sub: 2277 case lltok::kw_fsub: 2278 case lltok::kw_mul: 2279 case lltok::kw_fmul: 2280 case lltok::kw_udiv: 2281 case lltok::kw_sdiv: 2282 case lltok::kw_fdiv: 2283 case lltok::kw_urem: 2284 case lltok::kw_srem: 2285 case lltok::kw_frem: 2286 case lltok::kw_shl: 2287 case lltok::kw_lshr: 2288 case lltok::kw_ashr: { 2289 bool NUW = false; 2290 bool NSW = false; 2291 bool Exact = false; 2292 unsigned Opc = Lex.getUIntVal(); 2293 Constant *Val0, *Val1; 2294 Lex.Lex(); 2295 LocTy ModifierLoc = Lex.getLoc(); 2296 if (Opc == Instruction::Add || Opc == Instruction::Sub || 2297 Opc == Instruction::Mul || Opc == Instruction::Shl) { 2298 if (EatIfPresent(lltok::kw_nuw)) 2299 NUW = true; 2300 if (EatIfPresent(lltok::kw_nsw)) { 2301 NSW = true; 2302 if (EatIfPresent(lltok::kw_nuw)) 2303 NUW = true; 2304 } 2305 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 2306 Opc == Instruction::LShr || Opc == Instruction::AShr) { 2307 if (EatIfPresent(lltok::kw_exact)) 2308 Exact = true; 2309 } 2310 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 2311 ParseGlobalTypeAndValue(Val0) || 2312 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 2313 ParseGlobalTypeAndValue(Val1) || 2314 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 2315 return true; 2316 if (Val0->getType() != Val1->getType()) 2317 return Error(ID.Loc, "operands of constexpr must have same type"); 2318 if (!Val0->getType()->isIntOrIntVectorTy()) { 2319 if (NUW) 2320 return Error(ModifierLoc, "nuw only applies to integer operations"); 2321 if (NSW) 2322 return Error(ModifierLoc, "nsw only applies to integer operations"); 2323 } 2324 // Check that the type is valid for the operator. 2325 switch (Opc) { 2326 case Instruction::Add: 2327 case Instruction::Sub: 2328 case Instruction::Mul: 2329 case Instruction::UDiv: 2330 case Instruction::SDiv: 2331 case Instruction::URem: 2332 case Instruction::SRem: 2333 case Instruction::Shl: 2334 case Instruction::AShr: 2335 case Instruction::LShr: 2336 if (!Val0->getType()->isIntOrIntVectorTy()) 2337 return Error(ID.Loc, "constexpr requires integer operands"); 2338 break; 2339 case Instruction::FAdd: 2340 case Instruction::FSub: 2341 case Instruction::FMul: 2342 case Instruction::FDiv: 2343 case Instruction::FRem: 2344 if (!Val0->getType()->isFPOrFPVectorTy()) 2345 return Error(ID.Loc, "constexpr requires fp operands"); 2346 break; 2347 default: llvm_unreachable("Unknown binary operator!"); 2348 } 2349 unsigned Flags = 0; 2350 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2351 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 2352 if (Exact) Flags |= PossiblyExactOperator::IsExact; 2353 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 2354 ID.ConstantVal = C; 2355 ID.Kind = ValID::t_Constant; 2356 return false; 2357 } 2358 2359 // Logical Operations 2360 case lltok::kw_and: 2361 case lltok::kw_or: 2362 case lltok::kw_xor: { 2363 unsigned Opc = Lex.getUIntVal(); 2364 Constant *Val0, *Val1; 2365 Lex.Lex(); 2366 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 2367 ParseGlobalTypeAndValue(Val0) || 2368 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 2369 ParseGlobalTypeAndValue(Val1) || 2370 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 2371 return true; 2372 if (Val0->getType() != Val1->getType()) 2373 return Error(ID.Loc, "operands of constexpr must have same type"); 2374 if (!Val0->getType()->isIntOrIntVectorTy()) 2375 return Error(ID.Loc, 2376 "constexpr requires integer or integer vector operands"); 2377 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 2378 ID.Kind = ValID::t_Constant; 2379 return false; 2380 } 2381 2382 case lltok::kw_getelementptr: 2383 case lltok::kw_shufflevector: 2384 case lltok::kw_insertelement: 2385 case lltok::kw_extractelement: 2386 case lltok::kw_select: { 2387 unsigned Opc = Lex.getUIntVal(); 2388 SmallVector<Constant*, 16> Elts; 2389 bool InBounds = false; 2390 Lex.Lex(); 2391 if (Opc == Instruction::GetElementPtr) 2392 InBounds = EatIfPresent(lltok::kw_inbounds); 2393 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") || 2394 ParseGlobalValueVector(Elts) || 2395 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 2396 return true; 2397 2398 if (Opc == Instruction::GetElementPtr) { 2399 if (Elts.size() == 0 || !Elts[0]->getType()->isPointerTy()) 2400 return Error(ID.Loc, "getelementptr requires pointer operand"); 2401 2402 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), 2403 (Value**)(Elts.data() + 1), 2404 Elts.size() - 1)) 2405 return Error(ID.Loc, "invalid indices for getelementptr"); 2406 ID.ConstantVal = InBounds ? 2407 ConstantExpr::getInBoundsGetElementPtr(Elts[0], 2408 Elts.data() + 1, 2409 Elts.size() - 1) : 2410 ConstantExpr::getGetElementPtr(Elts[0], 2411 Elts.data() + 1, Elts.size() - 1); 2412 } else if (Opc == Instruction::Select) { 2413 if (Elts.size() != 3) 2414 return Error(ID.Loc, "expected three operands to select"); 2415 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 2416 Elts[2])) 2417 return Error(ID.Loc, Reason); 2418 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 2419 } else if (Opc == Instruction::ShuffleVector) { 2420 if (Elts.size() != 3) 2421 return Error(ID.Loc, "expected three operands to shufflevector"); 2422 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2423 return Error(ID.Loc, "invalid operands to shufflevector"); 2424 ID.ConstantVal = 2425 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 2426 } else if (Opc == Instruction::ExtractElement) { 2427 if (Elts.size() != 2) 2428 return Error(ID.Loc, "expected two operands to extractelement"); 2429 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 2430 return Error(ID.Loc, "invalid extractelement operands"); 2431 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 2432 } else { 2433 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 2434 if (Elts.size() != 3) 2435 return Error(ID.Loc, "expected three operands to insertelement"); 2436 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2437 return Error(ID.Loc, "invalid insertelement operands"); 2438 ID.ConstantVal = 2439 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 2440 } 2441 2442 ID.Kind = ValID::t_Constant; 2443 return false; 2444 } 2445 } 2446 2447 Lex.Lex(); 2448 return false; 2449 } 2450 2451 /// ParseGlobalValue - Parse a global value with the specified type. 2452 bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&C) { 2453 C = 0; 2454 ValID ID; 2455 Value *V = NULL; 2456 bool Parsed = ParseValID(ID) || 2457 ConvertValIDToValue(Ty, ID, V, NULL); 2458 if (V && !(C = dyn_cast<Constant>(V))) 2459 return Error(ID.Loc, "global values must be constants"); 2460 return Parsed; 2461 } 2462 2463 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 2464 PATypeHolder Type(Type::getVoidTy(Context)); 2465 return ParseType(Type) || 2466 ParseGlobalValue(Type, V); 2467 } 2468 2469 /// ParseGlobalValueVector 2470 /// ::= /*empty*/ 2471 /// ::= TypeAndValue (',' TypeAndValue)* 2472 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) { 2473 // Empty list. 2474 if (Lex.getKind() == lltok::rbrace || 2475 Lex.getKind() == lltok::rsquare || 2476 Lex.getKind() == lltok::greater || 2477 Lex.getKind() == lltok::rparen) 2478 return false; 2479 2480 Constant *C; 2481 if (ParseGlobalTypeAndValue(C)) return true; 2482 Elts.push_back(C); 2483 2484 while (EatIfPresent(lltok::comma)) { 2485 if (ParseGlobalTypeAndValue(C)) return true; 2486 Elts.push_back(C); 2487 } 2488 2489 return false; 2490 } 2491 2492 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) { 2493 assert(Lex.getKind() == lltok::lbrace); 2494 Lex.Lex(); 2495 2496 SmallVector<Value*, 16> Elts; 2497 if (ParseMDNodeVector(Elts, PFS) || 2498 ParseToken(lltok::rbrace, "expected end of metadata node")) 2499 return true; 2500 2501 ID.MDNodeVal = MDNode::get(Context, Elts); 2502 ID.Kind = ValID::t_MDNode; 2503 return false; 2504 } 2505 2506 /// ParseMetadataValue 2507 /// ::= !42 2508 /// ::= !{...} 2509 /// ::= !"string" 2510 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) { 2511 assert(Lex.getKind() == lltok::exclaim); 2512 Lex.Lex(); 2513 2514 // MDNode: 2515 // !{ ... } 2516 if (Lex.getKind() == lltok::lbrace) 2517 return ParseMetadataListValue(ID, PFS); 2518 2519 // Standalone metadata reference 2520 // !42 2521 if (Lex.getKind() == lltok::APSInt) { 2522 if (ParseMDNodeID(ID.MDNodeVal)) return true; 2523 ID.Kind = ValID::t_MDNode; 2524 return false; 2525 } 2526 2527 // MDString: 2528 // ::= '!' STRINGCONSTANT 2529 if (ParseMDString(ID.MDStringVal)) return true; 2530 ID.Kind = ValID::t_MDString; 2531 return false; 2532 } 2533 2534 2535 //===----------------------------------------------------------------------===// 2536 // Function Parsing. 2537 //===----------------------------------------------------------------------===// 2538 2539 bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V, 2540 PerFunctionState *PFS) { 2541 if (Ty->isFunctionTy()) 2542 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 2543 2544 switch (ID.Kind) { 2545 default: llvm_unreachable("Unknown ValID!"); 2546 case ValID::t_LocalID: 2547 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2548 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 2549 return (V == 0); 2550 case ValID::t_LocalName: 2551 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2552 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 2553 return (V == 0); 2554 case ValID::t_InlineAsm: { 2555 const PointerType *PTy = dyn_cast<PointerType>(Ty); 2556 const FunctionType *FTy = 2557 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; 2558 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2)) 2559 return Error(ID.Loc, "invalid type for inline asm constraint string"); 2560 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1); 2561 return false; 2562 } 2563 case ValID::t_MDNode: 2564 if (!Ty->isMetadataTy()) 2565 return Error(ID.Loc, "metadata value must have metadata type"); 2566 V = ID.MDNodeVal; 2567 return false; 2568 case ValID::t_MDString: 2569 if (!Ty->isMetadataTy()) 2570 return Error(ID.Loc, "metadata value must have metadata type"); 2571 V = ID.MDStringVal; 2572 return false; 2573 case ValID::t_GlobalName: 2574 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 2575 return V == 0; 2576 case ValID::t_GlobalID: 2577 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 2578 return V == 0; 2579 case ValID::t_APSInt: 2580 if (!Ty->isIntegerTy()) 2581 return Error(ID.Loc, "integer constant must have integer type"); 2582 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 2583 V = ConstantInt::get(Context, ID.APSIntVal); 2584 return false; 2585 case ValID::t_APFloat: 2586 if (!Ty->isFloatingPointTy() || 2587 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 2588 return Error(ID.Loc, "floating point constant invalid for type"); 2589 2590 // The lexer has no type info, so builds all float and double FP constants 2591 // as double. Fix this here. Long double does not need this. 2592 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble && 2593 Ty->isFloatTy()) { 2594 bool Ignored; 2595 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 2596 &Ignored); 2597 } 2598 V = ConstantFP::get(Context, ID.APFloatVal); 2599 2600 if (V->getType() != Ty) 2601 return Error(ID.Loc, "floating point constant does not have type '" + 2602 Ty->getDescription() + "'"); 2603 2604 return false; 2605 case ValID::t_Null: 2606 if (!Ty->isPointerTy()) 2607 return Error(ID.Loc, "null must be a pointer type"); 2608 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 2609 return false; 2610 case ValID::t_Undef: 2611 // FIXME: LabelTy should not be a first-class type. 2612 if ((!Ty->isFirstClassType() || Ty->isLabelTy()) && 2613 !Ty->isOpaqueTy()) 2614 return Error(ID.Loc, "invalid type for undef constant"); 2615 V = UndefValue::get(Ty); 2616 return false; 2617 case ValID::t_EmptyArray: 2618 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 2619 return Error(ID.Loc, "invalid empty array initializer"); 2620 V = UndefValue::get(Ty); 2621 return false; 2622 case ValID::t_Zero: 2623 // FIXME: LabelTy should not be a first-class type. 2624 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2625 return Error(ID.Loc, "invalid type for null constant"); 2626 V = Constant::getNullValue(Ty); 2627 return false; 2628 case ValID::t_Constant: 2629 if (ID.ConstantVal->getType() != Ty) 2630 return Error(ID.Loc, "constant expression type mismatch"); 2631 2632 V = ID.ConstantVal; 2633 return false; 2634 } 2635 } 2636 2637 bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) { 2638 V = 0; 2639 ValID ID; 2640 return ParseValID(ID, &PFS) || 2641 ConvertValIDToValue(Ty, ID, V, &PFS); 2642 } 2643 2644 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) { 2645 PATypeHolder T(Type::getVoidTy(Context)); 2646 return ParseType(T) || 2647 ParseValue(T, V, PFS); 2648 } 2649 2650 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 2651 PerFunctionState &PFS) { 2652 Value *V; 2653 Loc = Lex.getLoc(); 2654 if (ParseTypeAndValue(V, PFS)) return true; 2655 if (!isa<BasicBlock>(V)) 2656 return Error(Loc, "expected a basic block"); 2657 BB = cast<BasicBlock>(V); 2658 return false; 2659 } 2660 2661 2662 /// FunctionHeader 2663 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 2664 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 2665 /// OptionalAlign OptGC 2666 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 2667 // Parse the linkage. 2668 LocTy LinkageLoc = Lex.getLoc(); 2669 unsigned Linkage; 2670 2671 unsigned Visibility, RetAttrs; 2672 CallingConv::ID CC; 2673 PATypeHolder RetType(Type::getVoidTy(Context)); 2674 LocTy RetTypeLoc = Lex.getLoc(); 2675 if (ParseOptionalLinkage(Linkage) || 2676 ParseOptionalVisibility(Visibility) || 2677 ParseOptionalCallingConv(CC) || 2678 ParseOptionalAttrs(RetAttrs, 1) || 2679 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 2680 return true; 2681 2682 // Verify that the linkage is ok. 2683 switch ((GlobalValue::LinkageTypes)Linkage) { 2684 case GlobalValue::ExternalLinkage: 2685 break; // always ok. 2686 case GlobalValue::DLLImportLinkage: 2687 case GlobalValue::ExternalWeakLinkage: 2688 if (isDefine) 2689 return Error(LinkageLoc, "invalid linkage for function definition"); 2690 break; 2691 case GlobalValue::PrivateLinkage: 2692 case GlobalValue::LinkerPrivateLinkage: 2693 case GlobalValue::LinkerPrivateWeakLinkage: 2694 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: 2695 case GlobalValue::InternalLinkage: 2696 case GlobalValue::AvailableExternallyLinkage: 2697 case GlobalValue::LinkOnceAnyLinkage: 2698 case GlobalValue::LinkOnceODRLinkage: 2699 case GlobalValue::WeakAnyLinkage: 2700 case GlobalValue::WeakODRLinkage: 2701 case GlobalValue::DLLExportLinkage: 2702 if (!isDefine) 2703 return Error(LinkageLoc, "invalid linkage for function declaration"); 2704 break; 2705 case GlobalValue::AppendingLinkage: 2706 case GlobalValue::CommonLinkage: 2707 return Error(LinkageLoc, "invalid function linkage type"); 2708 } 2709 2710 if (!FunctionType::isValidReturnType(RetType) || 2711 RetType->isOpaqueTy()) 2712 return Error(RetTypeLoc, "invalid function return type"); 2713 2714 LocTy NameLoc = Lex.getLoc(); 2715 2716 std::string FunctionName; 2717 if (Lex.getKind() == lltok::GlobalVar) { 2718 FunctionName = Lex.getStrVal(); 2719 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 2720 unsigned NameID = Lex.getUIntVal(); 2721 2722 if (NameID != NumberedVals.size()) 2723 return TokError("function expected to be numbered '%" + 2724 Twine(NumberedVals.size()) + "'"); 2725 } else { 2726 return TokError("expected function name"); 2727 } 2728 2729 Lex.Lex(); 2730 2731 if (Lex.getKind() != lltok::lparen) 2732 return TokError("expected '(' in function argument list"); 2733 2734 std::vector<ArgInfo> ArgList; 2735 bool isVarArg; 2736 unsigned FuncAttrs; 2737 std::string Section; 2738 unsigned Alignment; 2739 std::string GC; 2740 bool UnnamedAddr; 2741 LocTy UnnamedAddrLoc; 2742 2743 if (ParseArgumentList(ArgList, isVarArg, false) || 2744 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 2745 &UnnamedAddrLoc) || 2746 ParseOptionalAttrs(FuncAttrs, 2) || 2747 (EatIfPresent(lltok::kw_section) && 2748 ParseStringConstant(Section)) || 2749 ParseOptionalAlignment(Alignment) || 2750 (EatIfPresent(lltok::kw_gc) && 2751 ParseStringConstant(GC))) 2752 return true; 2753 2754 // If the alignment was parsed as an attribute, move to the alignment field. 2755 if (FuncAttrs & Attribute::Alignment) { 2756 Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs); 2757 FuncAttrs &= ~Attribute::Alignment; 2758 } 2759 2760 // Okay, if we got here, the function is syntactically valid. Convert types 2761 // and do semantic checks. 2762 std::vector<const Type*> ParamTypeList; 2763 SmallVector<AttributeWithIndex, 8> Attrs; 2764 // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function 2765 // attributes. 2766 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg; 2767 if (FuncAttrs & ObsoleteFuncAttrs) { 2768 RetAttrs |= FuncAttrs & ObsoleteFuncAttrs; 2769 FuncAttrs &= ~ObsoleteFuncAttrs; 2770 } 2771 2772 if (RetAttrs != Attribute::None) 2773 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); 2774 2775 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2776 ParamTypeList.push_back(ArgList[i].Type); 2777 if (ArgList[i].Attrs != Attribute::None) 2778 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 2779 } 2780 2781 if (FuncAttrs != Attribute::None) 2782 Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs)); 2783 2784 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); 2785 2786 if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy()) 2787 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 2788 2789 const FunctionType *FT = 2790 FunctionType::get(RetType, ParamTypeList, isVarArg); 2791 const PointerType *PFT = PointerType::getUnqual(FT); 2792 2793 Fn = 0; 2794 if (!FunctionName.empty()) { 2795 // If this was a definition of a forward reference, remove the definition 2796 // from the forward reference table and fill in the forward ref. 2797 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI = 2798 ForwardRefVals.find(FunctionName); 2799 if (FRVI != ForwardRefVals.end()) { 2800 Fn = M->getFunction(FunctionName); 2801 if (Fn->getType() != PFT) 2802 return Error(FRVI->second.second, "invalid forward reference to " 2803 "function '" + FunctionName + "' with wrong type!"); 2804 2805 ForwardRefVals.erase(FRVI); 2806 } else if ((Fn = M->getFunction(FunctionName))) { 2807 // If this function already exists in the symbol table, then it is 2808 // multiply defined. We accept a few cases for old backwards compat. 2809 // FIXME: Remove this stuff for LLVM 3.0. 2810 if (Fn->getType() != PFT || Fn->getAttributes() != PAL || 2811 (!Fn->isDeclaration() && isDefine)) { 2812 // If the redefinition has different type or different attributes, 2813 // reject it. If both have bodies, reject it. 2814 return Error(NameLoc, "invalid redefinition of function '" + 2815 FunctionName + "'"); 2816 } else if (Fn->isDeclaration()) { 2817 // Make sure to strip off any argument names so we can't get conflicts. 2818 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end(); 2819 AI != AE; ++AI) 2820 AI->setName(""); 2821 } 2822 } else if (M->getNamedValue(FunctionName)) { 2823 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 2824 } 2825 2826 } else { 2827 // If this is a definition of a forward referenced function, make sure the 2828 // types agree. 2829 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I 2830 = ForwardRefValIDs.find(NumberedVals.size()); 2831 if (I != ForwardRefValIDs.end()) { 2832 Fn = cast<Function>(I->second.first); 2833 if (Fn->getType() != PFT) 2834 return Error(NameLoc, "type of definition and forward reference of '@" + 2835 Twine(NumberedVals.size()) + "' disagree"); 2836 ForwardRefValIDs.erase(I); 2837 } 2838 } 2839 2840 if (Fn == 0) 2841 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 2842 else // Move the forward-reference to the correct spot in the module. 2843 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 2844 2845 if (FunctionName.empty()) 2846 NumberedVals.push_back(Fn); 2847 2848 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 2849 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 2850 Fn->setCallingConv(CC); 2851 Fn->setAttributes(PAL); 2852 Fn->setUnnamedAddr(UnnamedAddr); 2853 Fn->setAlignment(Alignment); 2854 Fn->setSection(Section); 2855 if (!GC.empty()) Fn->setGC(GC.c_str()); 2856 2857 // Add all of the arguments we parsed to the function. 2858 Function::arg_iterator ArgIt = Fn->arg_begin(); 2859 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 2860 // If we run out of arguments in the Function prototype, exit early. 2861 // FIXME: REMOVE THIS IN LLVM 3.0, this is just for the mismatch case above. 2862 if (ArgIt == Fn->arg_end()) break; 2863 2864 // If the argument has a name, insert it into the argument symbol table. 2865 if (ArgList[i].Name.empty()) continue; 2866 2867 // Set the name, if it conflicted, it will be auto-renamed. 2868 ArgIt->setName(ArgList[i].Name); 2869 2870 if (ArgIt->getName() != ArgList[i].Name) 2871 return Error(ArgList[i].Loc, "redefinition of argument '%" + 2872 ArgList[i].Name + "'"); 2873 } 2874 2875 return false; 2876 } 2877 2878 2879 /// ParseFunctionBody 2880 /// ::= '{' BasicBlock+ '}' 2881 /// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0 2882 /// 2883 bool LLParser::ParseFunctionBody(Function &Fn) { 2884 if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin) 2885 return TokError("expected '{' in function body"); 2886 Lex.Lex(); // eat the {. 2887 2888 int FunctionNumber = -1; 2889 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 2890 2891 PerFunctionState PFS(*this, Fn, FunctionNumber); 2892 2893 // We need at least one basic block. 2894 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_end) 2895 return TokError("function body requires at least one basic block"); 2896 2897 while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end) 2898 if (ParseBasicBlock(PFS)) return true; 2899 2900 // Eat the }. 2901 Lex.Lex(); 2902 2903 // Verify function is ok. 2904 return PFS.FinishFunction(); 2905 } 2906 2907 /// ParseBasicBlock 2908 /// ::= LabelStr? Instruction* 2909 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 2910 // If this basic block starts out with a name, remember it. 2911 std::string Name; 2912 LocTy NameLoc = Lex.getLoc(); 2913 if (Lex.getKind() == lltok::LabelStr) { 2914 Name = Lex.getStrVal(); 2915 Lex.Lex(); 2916 } 2917 2918 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 2919 if (BB == 0) return true; 2920 2921 std::string NameStr; 2922 2923 // Parse the instructions in this block until we get a terminator. 2924 Instruction *Inst; 2925 SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst; 2926 do { 2927 // This instruction may have three possibilities for a name: a) none 2928 // specified, b) name specified "%foo =", c) number specified: "%4 =". 2929 LocTy NameLoc = Lex.getLoc(); 2930 int NameID = -1; 2931 NameStr = ""; 2932 2933 if (Lex.getKind() == lltok::LocalVarID) { 2934 NameID = Lex.getUIntVal(); 2935 Lex.Lex(); 2936 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 2937 return true; 2938 } else if (Lex.getKind() == lltok::LocalVar || 2939 // FIXME: REMOVE IN LLVM 3.0 2940 Lex.getKind() == lltok::StringConstant) { 2941 NameStr = Lex.getStrVal(); 2942 Lex.Lex(); 2943 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 2944 return true; 2945 } 2946 2947 switch (ParseInstruction(Inst, BB, PFS)) { 2948 default: assert(0 && "Unknown ParseInstruction result!"); 2949 case InstError: return true; 2950 case InstNormal: 2951 BB->getInstList().push_back(Inst); 2952 2953 // With a normal result, we check to see if the instruction is followed by 2954 // a comma and metadata. 2955 if (EatIfPresent(lltok::comma)) 2956 if (ParseInstructionMetadata(Inst, &PFS)) 2957 return true; 2958 break; 2959 case InstExtraComma: 2960 BB->getInstList().push_back(Inst); 2961 2962 // If the instruction parser ate an extra comma at the end of it, it 2963 // *must* be followed by metadata. 2964 if (ParseInstructionMetadata(Inst, &PFS)) 2965 return true; 2966 break; 2967 } 2968 2969 // Set the name on the instruction. 2970 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 2971 } while (!isa<TerminatorInst>(Inst)); 2972 2973 return false; 2974 } 2975 2976 //===----------------------------------------------------------------------===// 2977 // Instruction Parsing. 2978 //===----------------------------------------------------------------------===// 2979 2980 /// ParseInstruction - Parse one of the many different instructions. 2981 /// 2982 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 2983 PerFunctionState &PFS) { 2984 lltok::Kind Token = Lex.getKind(); 2985 if (Token == lltok::Eof) 2986 return TokError("found end of file when expecting more instructions"); 2987 LocTy Loc = Lex.getLoc(); 2988 unsigned KeywordVal = Lex.getUIntVal(); 2989 Lex.Lex(); // Eat the keyword. 2990 2991 switch (Token) { 2992 default: return Error(Loc, "expected instruction opcode"); 2993 // Terminator Instructions. 2994 case lltok::kw_unwind: Inst = new UnwindInst(Context); return false; 2995 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 2996 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 2997 case lltok::kw_br: return ParseBr(Inst, PFS); 2998 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 2999 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 3000 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 3001 // Binary Operators. 3002 case lltok::kw_add: 3003 case lltok::kw_sub: 3004 case lltok::kw_mul: 3005 case lltok::kw_shl: { 3006 bool NUW = EatIfPresent(lltok::kw_nuw); 3007 bool NSW = EatIfPresent(lltok::kw_nsw); 3008 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 3009 3010 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 3011 3012 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 3013 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 3014 return false; 3015 } 3016 case lltok::kw_fadd: 3017 case lltok::kw_fsub: 3018 case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2); 3019 3020 case lltok::kw_sdiv: 3021 case lltok::kw_udiv: 3022 case lltok::kw_lshr: 3023 case lltok::kw_ashr: { 3024 bool Exact = EatIfPresent(lltok::kw_exact); 3025 3026 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 3027 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 3028 return false; 3029 } 3030 3031 case lltok::kw_urem: 3032 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 3033 case lltok::kw_fdiv: 3034 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2); 3035 case lltok::kw_and: 3036 case lltok::kw_or: 3037 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 3038 case lltok::kw_icmp: 3039 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal); 3040 // Casts. 3041 case lltok::kw_trunc: 3042 case lltok::kw_zext: 3043 case lltok::kw_sext: 3044 case lltok::kw_fptrunc: 3045 case lltok::kw_fpext: 3046 case lltok::kw_bitcast: 3047 case lltok::kw_uitofp: 3048 case lltok::kw_sitofp: 3049 case lltok::kw_fptoui: 3050 case lltok::kw_fptosi: 3051 case lltok::kw_inttoptr: 3052 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 3053 // Other. 3054 case lltok::kw_select: return ParseSelect(Inst, PFS); 3055 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 3056 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 3057 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 3058 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 3059 case lltok::kw_phi: return ParsePHI(Inst, PFS); 3060 case lltok::kw_call: return ParseCall(Inst, PFS, false); 3061 case lltok::kw_tail: return ParseCall(Inst, PFS, true); 3062 // Memory. 3063 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 3064 case lltok::kw_malloc: return ParseAlloc(Inst, PFS, BB, false); 3065 case lltok::kw_free: return ParseFree(Inst, PFS, BB); 3066 case lltok::kw_load: return ParseLoad(Inst, PFS, false); 3067 case lltok::kw_store: return ParseStore(Inst, PFS, false); 3068 case lltok::kw_volatile: 3069 if (EatIfPresent(lltok::kw_load)) 3070 return ParseLoad(Inst, PFS, true); 3071 else if (EatIfPresent(lltok::kw_store)) 3072 return ParseStore(Inst, PFS, true); 3073 else 3074 return TokError("expected 'load' or 'store'"); 3075 case lltok::kw_getresult: return ParseGetResult(Inst, PFS); 3076 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 3077 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 3078 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 3079 } 3080 } 3081 3082 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 3083 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 3084 if (Opc == Instruction::FCmp) { 3085 switch (Lex.getKind()) { 3086 default: TokError("expected fcmp predicate (e.g. 'oeq')"); 3087 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 3088 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 3089 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 3090 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 3091 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 3092 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 3093 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 3094 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 3095 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 3096 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 3097 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 3098 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 3099 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 3100 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 3101 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 3102 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 3103 } 3104 } else { 3105 switch (Lex.getKind()) { 3106 default: TokError("expected icmp predicate (e.g. 'eq')"); 3107 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 3108 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 3109 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 3110 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 3111 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 3112 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 3113 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 3114 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 3115 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 3116 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 3117 } 3118 } 3119 Lex.Lex(); 3120 return false; 3121 } 3122 3123 //===----------------------------------------------------------------------===// 3124 // Terminator Instructions. 3125 //===----------------------------------------------------------------------===// 3126 3127 /// ParseRet - Parse a return instruction. 3128 /// ::= 'ret' void (',' !dbg, !1)* 3129 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 3130 /// ::= 'ret' TypeAndValue (',' TypeAndValue)+ (',' !dbg, !1)* 3131 /// [[obsolete: LLVM 3.0]] 3132 int LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 3133 PerFunctionState &PFS) { 3134 PATypeHolder Ty(Type::getVoidTy(Context)); 3135 if (ParseType(Ty, true /*void allowed*/)) return true; 3136 3137 if (Ty->isVoidTy()) { 3138 Inst = ReturnInst::Create(Context); 3139 return false; 3140 } 3141 3142 Value *RV; 3143 if (ParseValue(Ty, RV, PFS)) return true; 3144 3145 bool ExtraComma = false; 3146 if (EatIfPresent(lltok::comma)) { 3147 // Parse optional custom metadata, e.g. !dbg 3148 if (Lex.getKind() == lltok::MetadataVar) { 3149 ExtraComma = true; 3150 } else { 3151 // The normal case is one return value. 3152 // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring 3153 // use of 'ret {i32,i32} {i32 1, i32 2}' 3154 SmallVector<Value*, 8> RVs; 3155 RVs.push_back(RV); 3156 3157 do { 3158 // If optional custom metadata, e.g. !dbg is seen then this is the 3159 // end of MRV. 3160 if (Lex.getKind() == lltok::MetadataVar) 3161 break; 3162 if (ParseTypeAndValue(RV, PFS)) return true; 3163 RVs.push_back(RV); 3164 } while (EatIfPresent(lltok::comma)); 3165 3166 RV = UndefValue::get(PFS.getFunction().getReturnType()); 3167 for (unsigned i = 0, e = RVs.size(); i != e; ++i) { 3168 Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv"); 3169 BB->getInstList().push_back(I); 3170 RV = I; 3171 } 3172 } 3173 } 3174 3175 Inst = ReturnInst::Create(Context, RV); 3176 return ExtraComma ? InstExtraComma : InstNormal; 3177 } 3178 3179 3180 /// ParseBr 3181 /// ::= 'br' TypeAndValue 3182 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3183 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 3184 LocTy Loc, Loc2; 3185 Value *Op0; 3186 BasicBlock *Op1, *Op2; 3187 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 3188 3189 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 3190 Inst = BranchInst::Create(BB); 3191 return false; 3192 } 3193 3194 if (Op0->getType() != Type::getInt1Ty(Context)) 3195 return Error(Loc, "branch condition must have 'i1' type"); 3196 3197 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 3198 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 3199 ParseToken(lltok::comma, "expected ',' after true destination") || 3200 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 3201 return true; 3202 3203 Inst = BranchInst::Create(Op1, Op2, Op0); 3204 return false; 3205 } 3206 3207 /// ParseSwitch 3208 /// Instruction 3209 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 3210 /// JumpTable 3211 /// ::= (TypeAndValue ',' TypeAndValue)* 3212 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 3213 LocTy CondLoc, BBLoc; 3214 Value *Cond; 3215 BasicBlock *DefaultBB; 3216 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 3217 ParseToken(lltok::comma, "expected ',' after switch condition") || 3218 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 3219 ParseToken(lltok::lsquare, "expected '[' with switch table")) 3220 return true; 3221 3222 if (!Cond->getType()->isIntegerTy()) 3223 return Error(CondLoc, "switch condition must have integer type"); 3224 3225 // Parse the jump table pairs. 3226 SmallPtrSet<Value*, 32> SeenCases; 3227 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 3228 while (Lex.getKind() != lltok::rsquare) { 3229 Value *Constant; 3230 BasicBlock *DestBB; 3231 3232 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 3233 ParseToken(lltok::comma, "expected ',' after case value") || 3234 ParseTypeAndBasicBlock(DestBB, PFS)) 3235 return true; 3236 3237 if (!SeenCases.insert(Constant)) 3238 return Error(CondLoc, "duplicate case value in switch"); 3239 if (!isa<ConstantInt>(Constant)) 3240 return Error(CondLoc, "case value is not a constant integer"); 3241 3242 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 3243 } 3244 3245 Lex.Lex(); // Eat the ']'. 3246 3247 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 3248 for (unsigned i = 0, e = Table.size(); i != e; ++i) 3249 SI->addCase(Table[i].first, Table[i].second); 3250 Inst = SI; 3251 return false; 3252 } 3253 3254 /// ParseIndirectBr 3255 /// Instruction 3256 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 3257 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 3258 LocTy AddrLoc; 3259 Value *Address; 3260 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 3261 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 3262 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 3263 return true; 3264 3265 if (!Address->getType()->isPointerTy()) 3266 return Error(AddrLoc, "indirectbr address must have pointer type"); 3267 3268 // Parse the destination list. 3269 SmallVector<BasicBlock*, 16> DestList; 3270 3271 if (Lex.getKind() != lltok::rsquare) { 3272 BasicBlock *DestBB; 3273 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3274 return true; 3275 DestList.push_back(DestBB); 3276 3277 while (EatIfPresent(lltok::comma)) { 3278 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3279 return true; 3280 DestList.push_back(DestBB); 3281 } 3282 } 3283 3284 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 3285 return true; 3286 3287 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 3288 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 3289 IBI->addDestination(DestList[i]); 3290 Inst = IBI; 3291 return false; 3292 } 3293 3294 3295 /// ParseInvoke 3296 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 3297 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 3298 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 3299 LocTy CallLoc = Lex.getLoc(); 3300 unsigned RetAttrs, FnAttrs; 3301 CallingConv::ID CC; 3302 PATypeHolder RetType(Type::getVoidTy(Context)); 3303 LocTy RetTypeLoc; 3304 ValID CalleeID; 3305 SmallVector<ParamInfo, 16> ArgList; 3306 3307 BasicBlock *NormalBB, *UnwindBB; 3308 if (ParseOptionalCallingConv(CC) || 3309 ParseOptionalAttrs(RetAttrs, 1) || 3310 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3311 ParseValID(CalleeID) || 3312 ParseParameterList(ArgList, PFS) || 3313 ParseOptionalAttrs(FnAttrs, 2) || 3314 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 3315 ParseTypeAndBasicBlock(NormalBB, PFS) || 3316 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 3317 ParseTypeAndBasicBlock(UnwindBB, PFS)) 3318 return true; 3319 3320 // If RetType is a non-function pointer type, then this is the short syntax 3321 // for the call, which means that RetType is just the return type. Infer the 3322 // rest of the function argument types from the arguments that are present. 3323 const PointerType *PFTy = 0; 3324 const FunctionType *Ty = 0; 3325 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3326 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3327 // Pull out the types of all of the arguments... 3328 std::vector<const Type*> ParamTypes; 3329 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3330 ParamTypes.push_back(ArgList[i].V->getType()); 3331 3332 if (!FunctionType::isValidReturnType(RetType)) 3333 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3334 3335 Ty = FunctionType::get(RetType, ParamTypes, false); 3336 PFTy = PointerType::getUnqual(Ty); 3337 } 3338 3339 // Look up the callee. 3340 Value *Callee; 3341 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3342 3343 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional 3344 // function attributes. 3345 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg; 3346 if (FnAttrs & ObsoleteFuncAttrs) { 3347 RetAttrs |= FnAttrs & ObsoleteFuncAttrs; 3348 FnAttrs &= ~ObsoleteFuncAttrs; 3349 } 3350 3351 // Set up the Attributes for the function. 3352 SmallVector<AttributeWithIndex, 8> Attrs; 3353 if (RetAttrs != Attribute::None) 3354 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); 3355 3356 SmallVector<Value*, 8> Args; 3357 3358 // Loop through FunctionType's arguments and ensure they are specified 3359 // correctly. Also, gather any parameter attributes. 3360 FunctionType::param_iterator I = Ty->param_begin(); 3361 FunctionType::param_iterator E = Ty->param_end(); 3362 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3363 const Type *ExpectedTy = 0; 3364 if (I != E) { 3365 ExpectedTy = *I++; 3366 } else if (!Ty->isVarArg()) { 3367 return Error(ArgList[i].Loc, "too many arguments specified"); 3368 } 3369 3370 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3371 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3372 ExpectedTy->getDescription() + "'"); 3373 Args.push_back(ArgList[i].V); 3374 if (ArgList[i].Attrs != Attribute::None) 3375 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3376 } 3377 3378 if (I != E) 3379 return Error(CallLoc, "not enough parameters specified for call"); 3380 3381 if (FnAttrs != Attribute::None) 3382 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); 3383 3384 // Finish off the Attributes and check them 3385 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); 3386 3387 InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, 3388 Args.begin(), Args.end()); 3389 II->setCallingConv(CC); 3390 II->setAttributes(PAL); 3391 Inst = II; 3392 return false; 3393 } 3394 3395 3396 3397 //===----------------------------------------------------------------------===// 3398 // Binary Operators. 3399 //===----------------------------------------------------------------------===// 3400 3401 /// ParseArithmetic 3402 /// ::= ArithmeticOps TypeAndValue ',' Value 3403 /// 3404 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 3405 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 3406 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 3407 unsigned Opc, unsigned OperandType) { 3408 LocTy Loc; Value *LHS, *RHS; 3409 if (ParseTypeAndValue(LHS, Loc, PFS) || 3410 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 3411 ParseValue(LHS->getType(), RHS, PFS)) 3412 return true; 3413 3414 bool Valid; 3415 switch (OperandType) { 3416 default: llvm_unreachable("Unknown operand type!"); 3417 case 0: // int or FP. 3418 Valid = LHS->getType()->isIntOrIntVectorTy() || 3419 LHS->getType()->isFPOrFPVectorTy(); 3420 break; 3421 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 3422 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 3423 } 3424 3425 if (!Valid) 3426 return Error(Loc, "invalid operand type for instruction"); 3427 3428 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3429 return false; 3430 } 3431 3432 /// ParseLogical 3433 /// ::= ArithmeticOps TypeAndValue ',' Value { 3434 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 3435 unsigned Opc) { 3436 LocTy Loc; Value *LHS, *RHS; 3437 if (ParseTypeAndValue(LHS, Loc, PFS) || 3438 ParseToken(lltok::comma, "expected ',' in logical operation") || 3439 ParseValue(LHS->getType(), RHS, PFS)) 3440 return true; 3441 3442 if (!LHS->getType()->isIntOrIntVectorTy()) 3443 return Error(Loc,"instruction requires integer or integer vector operands"); 3444 3445 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3446 return false; 3447 } 3448 3449 3450 /// ParseCompare 3451 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 3452 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 3453 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 3454 unsigned Opc) { 3455 // Parse the integer/fp comparison predicate. 3456 LocTy Loc; 3457 unsigned Pred; 3458 Value *LHS, *RHS; 3459 if (ParseCmpPredicate(Pred, Opc) || 3460 ParseTypeAndValue(LHS, Loc, PFS) || 3461 ParseToken(lltok::comma, "expected ',' after compare value") || 3462 ParseValue(LHS->getType(), RHS, PFS)) 3463 return true; 3464 3465 if (Opc == Instruction::FCmp) { 3466 if (!LHS->getType()->isFPOrFPVectorTy()) 3467 return Error(Loc, "fcmp requires floating point operands"); 3468 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3469 } else { 3470 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 3471 if (!LHS->getType()->isIntOrIntVectorTy() && 3472 !LHS->getType()->isPointerTy()) 3473 return Error(Loc, "icmp requires integer operands"); 3474 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3475 } 3476 return false; 3477 } 3478 3479 //===----------------------------------------------------------------------===// 3480 // Other Instructions. 3481 //===----------------------------------------------------------------------===// 3482 3483 3484 /// ParseCast 3485 /// ::= CastOpc TypeAndValue 'to' Type 3486 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 3487 unsigned Opc) { 3488 LocTy Loc; Value *Op; 3489 PATypeHolder DestTy(Type::getVoidTy(Context)); 3490 if (ParseTypeAndValue(Op, Loc, PFS) || 3491 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 3492 ParseType(DestTy)) 3493 return true; 3494 3495 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 3496 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 3497 return Error(Loc, "invalid cast opcode for cast from '" + 3498 Op->getType()->getDescription() + "' to '" + 3499 DestTy->getDescription() + "'"); 3500 } 3501 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 3502 return false; 3503 } 3504 3505 /// ParseSelect 3506 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3507 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 3508 LocTy Loc; 3509 Value *Op0, *Op1, *Op2; 3510 if (ParseTypeAndValue(Op0, Loc, PFS) || 3511 ParseToken(lltok::comma, "expected ',' after select condition") || 3512 ParseTypeAndValue(Op1, PFS) || 3513 ParseToken(lltok::comma, "expected ',' after select value") || 3514 ParseTypeAndValue(Op2, PFS)) 3515 return true; 3516 3517 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 3518 return Error(Loc, Reason); 3519 3520 Inst = SelectInst::Create(Op0, Op1, Op2); 3521 return false; 3522 } 3523 3524 /// ParseVA_Arg 3525 /// ::= 'va_arg' TypeAndValue ',' Type 3526 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 3527 Value *Op; 3528 PATypeHolder EltTy(Type::getVoidTy(Context)); 3529 LocTy TypeLoc; 3530 if (ParseTypeAndValue(Op, PFS) || 3531 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 3532 ParseType(EltTy, TypeLoc)) 3533 return true; 3534 3535 if (!EltTy->isFirstClassType()) 3536 return Error(TypeLoc, "va_arg requires operand with first class type"); 3537 3538 Inst = new VAArgInst(Op, EltTy); 3539 return false; 3540 } 3541 3542 /// ParseExtractElement 3543 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 3544 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 3545 LocTy Loc; 3546 Value *Op0, *Op1; 3547 if (ParseTypeAndValue(Op0, Loc, PFS) || 3548 ParseToken(lltok::comma, "expected ',' after extract value") || 3549 ParseTypeAndValue(Op1, PFS)) 3550 return true; 3551 3552 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 3553 return Error(Loc, "invalid extractelement operands"); 3554 3555 Inst = ExtractElementInst::Create(Op0, Op1); 3556 return false; 3557 } 3558 3559 /// ParseInsertElement 3560 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3561 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 3562 LocTy Loc; 3563 Value *Op0, *Op1, *Op2; 3564 if (ParseTypeAndValue(Op0, Loc, PFS) || 3565 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3566 ParseTypeAndValue(Op1, PFS) || 3567 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3568 ParseTypeAndValue(Op2, PFS)) 3569 return true; 3570 3571 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 3572 return Error(Loc, "invalid insertelement operands"); 3573 3574 Inst = InsertElementInst::Create(Op0, Op1, Op2); 3575 return false; 3576 } 3577 3578 /// ParseShuffleVector 3579 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3580 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 3581 LocTy Loc; 3582 Value *Op0, *Op1, *Op2; 3583 if (ParseTypeAndValue(Op0, Loc, PFS) || 3584 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 3585 ParseTypeAndValue(Op1, PFS) || 3586 ParseToken(lltok::comma, "expected ',' after shuffle value") || 3587 ParseTypeAndValue(Op2, PFS)) 3588 return true; 3589 3590 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 3591 return Error(Loc, "invalid extractelement operands"); 3592 3593 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 3594 return false; 3595 } 3596 3597 /// ParsePHI 3598 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 3599 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 3600 PATypeHolder Ty(Type::getVoidTy(Context)); 3601 Value *Op0, *Op1; 3602 LocTy TypeLoc = Lex.getLoc(); 3603 3604 if (ParseType(Ty) || 3605 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3606 ParseValue(Ty, Op0, PFS) || 3607 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3608 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3609 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3610 return true; 3611 3612 bool AteExtraComma = false; 3613 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 3614 while (1) { 3615 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 3616 3617 if (!EatIfPresent(lltok::comma)) 3618 break; 3619 3620 if (Lex.getKind() == lltok::MetadataVar) { 3621 AteExtraComma = true; 3622 break; 3623 } 3624 3625 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3626 ParseValue(Ty, Op0, PFS) || 3627 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3628 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3629 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3630 return true; 3631 } 3632 3633 if (!Ty->isFirstClassType()) 3634 return Error(TypeLoc, "phi node must have first class type"); 3635 3636 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 3637 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 3638 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 3639 Inst = PN; 3640 return AteExtraComma ? InstExtraComma : InstNormal; 3641 } 3642 3643 /// ParseCall 3644 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value 3645 /// ParameterList OptionalAttrs 3646 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 3647 bool isTail) { 3648 unsigned RetAttrs, FnAttrs; 3649 CallingConv::ID CC; 3650 PATypeHolder RetType(Type::getVoidTy(Context)); 3651 LocTy RetTypeLoc; 3652 ValID CalleeID; 3653 SmallVector<ParamInfo, 16> ArgList; 3654 LocTy CallLoc = Lex.getLoc(); 3655 3656 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) || 3657 ParseOptionalCallingConv(CC) || 3658 ParseOptionalAttrs(RetAttrs, 1) || 3659 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3660 ParseValID(CalleeID) || 3661 ParseParameterList(ArgList, PFS) || 3662 ParseOptionalAttrs(FnAttrs, 2)) 3663 return true; 3664 3665 // If RetType is a non-function pointer type, then this is the short syntax 3666 // for the call, which means that RetType is just the return type. Infer the 3667 // rest of the function argument types from the arguments that are present. 3668 const PointerType *PFTy = 0; 3669 const FunctionType *Ty = 0; 3670 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3671 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3672 // Pull out the types of all of the arguments... 3673 std::vector<const Type*> ParamTypes; 3674 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3675 ParamTypes.push_back(ArgList[i].V->getType()); 3676 3677 if (!FunctionType::isValidReturnType(RetType)) 3678 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3679 3680 Ty = FunctionType::get(RetType, ParamTypes, false); 3681 PFTy = PointerType::getUnqual(Ty); 3682 } 3683 3684 // Look up the callee. 3685 Value *Callee; 3686 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3687 3688 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional 3689 // function attributes. 3690 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg; 3691 if (FnAttrs & ObsoleteFuncAttrs) { 3692 RetAttrs |= FnAttrs & ObsoleteFuncAttrs; 3693 FnAttrs &= ~ObsoleteFuncAttrs; 3694 } 3695 3696 // Set up the Attributes for the function. 3697 SmallVector<AttributeWithIndex, 8> Attrs; 3698 if (RetAttrs != Attribute::None) 3699 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); 3700 3701 SmallVector<Value*, 8> Args; 3702 3703 // Loop through FunctionType's arguments and ensure they are specified 3704 // correctly. Also, gather any parameter attributes. 3705 FunctionType::param_iterator I = Ty->param_begin(); 3706 FunctionType::param_iterator E = Ty->param_end(); 3707 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3708 const Type *ExpectedTy = 0; 3709 if (I != E) { 3710 ExpectedTy = *I++; 3711 } else if (!Ty->isVarArg()) { 3712 return Error(ArgList[i].Loc, "too many arguments specified"); 3713 } 3714 3715 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3716 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3717 ExpectedTy->getDescription() + "'"); 3718 Args.push_back(ArgList[i].V); 3719 if (ArgList[i].Attrs != Attribute::None) 3720 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3721 } 3722 3723 if (I != E) 3724 return Error(CallLoc, "not enough parameters specified for call"); 3725 3726 if (FnAttrs != Attribute::None) 3727 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); 3728 3729 // Finish off the Attributes and check them 3730 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); 3731 3732 CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end()); 3733 CI->setTailCall(isTail); 3734 CI->setCallingConv(CC); 3735 CI->setAttributes(PAL); 3736 Inst = CI; 3737 return false; 3738 } 3739 3740 //===----------------------------------------------------------------------===// 3741 // Memory Instructions. 3742 //===----------------------------------------------------------------------===// 3743 3744 /// ParseAlloc 3745 /// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)? 3746 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)? 3747 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS, 3748 BasicBlock* BB, bool isAlloca) { 3749 PATypeHolder Ty(Type::getVoidTy(Context)); 3750 Value *Size = 0; 3751 LocTy SizeLoc; 3752 unsigned Alignment = 0; 3753 if (ParseType(Ty)) return true; 3754 3755 bool AteExtraComma = false; 3756 if (EatIfPresent(lltok::comma)) { 3757 if (Lex.getKind() == lltok::kw_align) { 3758 if (ParseOptionalAlignment(Alignment)) return true; 3759 } else if (Lex.getKind() == lltok::MetadataVar) { 3760 AteExtraComma = true; 3761 } else { 3762 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 3763 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3764 return true; 3765 } 3766 } 3767 3768 if (Size && !Size->getType()->isIntegerTy()) 3769 return Error(SizeLoc, "element count must have integer type"); 3770 3771 if (isAlloca) { 3772 Inst = new AllocaInst(Ty, Size, Alignment); 3773 return AteExtraComma ? InstExtraComma : InstNormal; 3774 } 3775 3776 // Autoupgrade old malloc instruction to malloc call. 3777 // FIXME: Remove in LLVM 3.0. 3778 if (Size && !Size->getType()->isIntegerTy(32)) 3779 return Error(SizeLoc, "element count must be i32"); 3780 const Type *IntPtrTy = Type::getInt32Ty(Context); 3781 Constant *AllocSize = ConstantExpr::getSizeOf(Ty); 3782 AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, IntPtrTy); 3783 if (!MallocF) 3784 // Prototype malloc as "void *(int32)". 3785 // This function is renamed as "malloc" in ValidateEndOfModule(). 3786 MallocF = cast<Function>( 3787 M->getOrInsertFunction("", Type::getInt8PtrTy(Context), IntPtrTy, NULL)); 3788 Inst = CallInst::CreateMalloc(BB, IntPtrTy, Ty, AllocSize, Size, MallocF); 3789 return AteExtraComma ? InstExtraComma : InstNormal; 3790 } 3791 3792 /// ParseFree 3793 /// ::= 'free' TypeAndValue 3794 bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS, 3795 BasicBlock* BB) { 3796 Value *Val; LocTy Loc; 3797 if (ParseTypeAndValue(Val, Loc, PFS)) return true; 3798 if (!Val->getType()->isPointerTy()) 3799 return Error(Loc, "operand to free must be a pointer"); 3800 Inst = CallInst::CreateFree(Val, BB); 3801 return false; 3802 } 3803 3804 /// ParseLoad 3805 /// ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)? 3806 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS, 3807 bool isVolatile) { 3808 Value *Val; LocTy Loc; 3809 unsigned Alignment = 0; 3810 bool AteExtraComma = false; 3811 if (ParseTypeAndValue(Val, Loc, PFS) || 3812 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3813 return true; 3814 3815 if (!Val->getType()->isPointerTy() || 3816 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType()) 3817 return Error(Loc, "load operand must be a pointer to a first class type"); 3818 3819 Inst = new LoadInst(Val, "", isVolatile, Alignment); 3820 return AteExtraComma ? InstExtraComma : InstNormal; 3821 } 3822 3823 /// ParseStore 3824 /// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)? 3825 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS, 3826 bool isVolatile) { 3827 Value *Val, *Ptr; LocTy Loc, PtrLoc; 3828 unsigned Alignment = 0; 3829 bool AteExtraComma = false; 3830 if (ParseTypeAndValue(Val, Loc, PFS) || 3831 ParseToken(lltok::comma, "expected ',' after store operand") || 3832 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3833 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3834 return true; 3835 3836 if (!Ptr->getType()->isPointerTy()) 3837 return Error(PtrLoc, "store operand must be a pointer"); 3838 if (!Val->getType()->isFirstClassType()) 3839 return Error(Loc, "store operand must be a first class value"); 3840 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 3841 return Error(Loc, "stored value and pointer type do not match"); 3842 3843 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment); 3844 return AteExtraComma ? InstExtraComma : InstNormal; 3845 } 3846 3847 /// ParseGetResult 3848 /// ::= 'getresult' TypeAndValue ',' i32 3849 /// FIXME: Remove support for getresult in LLVM 3.0 3850 bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) { 3851 Value *Val; LocTy ValLoc, EltLoc; 3852 unsigned Element; 3853 if (ParseTypeAndValue(Val, ValLoc, PFS) || 3854 ParseToken(lltok::comma, "expected ',' after getresult operand") || 3855 ParseUInt32(Element, EltLoc)) 3856 return true; 3857 3858 if (!Val->getType()->isStructTy() && !Val->getType()->isArrayTy()) 3859 return Error(ValLoc, "getresult inst requires an aggregate operand"); 3860 if (!ExtractValueInst::getIndexedType(Val->getType(), Element)) 3861 return Error(EltLoc, "invalid getresult index for value"); 3862 Inst = ExtractValueInst::Create(Val, Element); 3863 return false; 3864 } 3865 3866 /// ParseGetElementPtr 3867 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 3868 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 3869 Value *Ptr, *Val; LocTy Loc, EltLoc; 3870 3871 bool InBounds = EatIfPresent(lltok::kw_inbounds); 3872 3873 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true; 3874 3875 if (!Ptr->getType()->isPointerTy()) 3876 return Error(Loc, "base of getelementptr must be a pointer"); 3877 3878 SmallVector<Value*, 16> Indices; 3879 bool AteExtraComma = false; 3880 while (EatIfPresent(lltok::comma)) { 3881 if (Lex.getKind() == lltok::MetadataVar) { 3882 AteExtraComma = true; 3883 break; 3884 } 3885 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 3886 if (!Val->getType()->isIntegerTy()) 3887 return Error(EltLoc, "getelementptr index must be an integer"); 3888 Indices.push_back(Val); 3889 } 3890 3891 if (!GetElementPtrInst::getIndexedType(Ptr->getType(), 3892 Indices.begin(), Indices.end())) 3893 return Error(Loc, "invalid getelementptr indices"); 3894 Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end()); 3895 if (InBounds) 3896 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 3897 return AteExtraComma ? InstExtraComma : InstNormal; 3898 } 3899 3900 /// ParseExtractValue 3901 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 3902 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 3903 Value *Val; LocTy Loc; 3904 SmallVector<unsigned, 4> Indices; 3905 bool AteExtraComma; 3906 if (ParseTypeAndValue(Val, Loc, PFS) || 3907 ParseIndexList(Indices, AteExtraComma)) 3908 return true; 3909 3910 if (!Val->getType()->isAggregateType()) 3911 return Error(Loc, "extractvalue operand must be aggregate type"); 3912 3913 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(), 3914 Indices.end())) 3915 return Error(Loc, "invalid indices for extractvalue"); 3916 Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end()); 3917 return AteExtraComma ? InstExtraComma : InstNormal; 3918 } 3919 3920 /// ParseInsertValue 3921 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 3922 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 3923 Value *Val0, *Val1; LocTy Loc0, Loc1; 3924 SmallVector<unsigned, 4> Indices; 3925 bool AteExtraComma; 3926 if (ParseTypeAndValue(Val0, Loc0, PFS) || 3927 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 3928 ParseTypeAndValue(Val1, Loc1, PFS) || 3929 ParseIndexList(Indices, AteExtraComma)) 3930 return true; 3931 3932 if (!Val0->getType()->isAggregateType()) 3933 return Error(Loc0, "insertvalue operand must be aggregate type"); 3934 3935 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(), 3936 Indices.end())) 3937 return Error(Loc0, "invalid indices for insertvalue"); 3938 Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end()); 3939 return AteExtraComma ? InstExtraComma : InstNormal; 3940 } 3941 3942 //===----------------------------------------------------------------------===// 3943 // Embedded metadata. 3944 //===----------------------------------------------------------------------===// 3945 3946 /// ParseMDNodeVector 3947 /// ::= Element (',' Element)* 3948 /// Element 3949 /// ::= 'null' | TypeAndValue 3950 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts, 3951 PerFunctionState *PFS) { 3952 // Check for an empty list. 3953 if (Lex.getKind() == lltok::rbrace) 3954 return false; 3955 3956 do { 3957 // Null is a special case since it is typeless. 3958 if (EatIfPresent(lltok::kw_null)) { 3959 Elts.push_back(0); 3960 continue; 3961 } 3962 3963 Value *V = 0; 3964 PATypeHolder Ty(Type::getVoidTy(Context)); 3965 ValID ID; 3966 if (ParseType(Ty) || ParseValID(ID, PFS) || 3967 ConvertValIDToValue(Ty, ID, V, PFS)) 3968 return true; 3969 3970 Elts.push_back(V); 3971 } while (EatIfPresent(lltok::comma)); 3972 3973 return false; 3974 } 3975