1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 static std::string getTypeString(Type *T) {
57   std::string Result;
58   raw_string_ostream Tmp(Result);
59   Tmp << *T;
60   return Tmp.str();
61 }
62 
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return Error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   if (M) {
74     if (ParseTargetDefinitions())
75       return true;
76   }
77 
78   return ParseTopLevelEntities() || ValidateEndOfModule() ||
79          ValidateEndOfIndex();
80 }
81 
82 bool LLParser::parseStandaloneConstantValue(Constant *&C,
83                                             const SlotMapping *Slots) {
84   restoreParsingState(Slots);
85   Lex.Lex();
86 
87   Type *Ty = nullptr;
88   if (ParseType(Ty) || parseConstantValue(Ty, C))
89     return true;
90   if (Lex.getKind() != lltok::Eof)
91     return Error(Lex.getLoc(), "expected end of string");
92   return false;
93 }
94 
95 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
96                                     const SlotMapping *Slots) {
97   restoreParsingState(Slots);
98   Lex.Lex();
99 
100   Read = 0;
101   SMLoc Start = Lex.getLoc();
102   Ty = nullptr;
103   if (ParseType(Ty))
104     return true;
105   SMLoc End = Lex.getLoc();
106   Read = End.getPointer() - Start.getPointer();
107 
108   return false;
109 }
110 
111 void LLParser::restoreParsingState(const SlotMapping *Slots) {
112   if (!Slots)
113     return;
114   NumberedVals = Slots->GlobalValues;
115   NumberedMetadata = Slots->MetadataNodes;
116   for (const auto &I : Slots->NamedTypes)
117     NamedTypes.insert(
118         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
119   for (const auto &I : Slots->Types)
120     NumberedTypes.insert(
121         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
122 }
123 
124 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
125 /// module.
126 bool LLParser::ValidateEndOfModule() {
127   if (!M)
128     return false;
129   // Handle any function attribute group forward references.
130   for (const auto &RAG : ForwardRefAttrGroups) {
131     Value *V = RAG.first;
132     const std::vector<unsigned> &Attrs = RAG.second;
133     AttrBuilder B;
134 
135     for (const auto &Attr : Attrs)
136       B.merge(NumberedAttrBuilders[Attr]);
137 
138     if (Function *Fn = dyn_cast<Function>(V)) {
139       AttributeList AS = Fn->getAttributes();
140       AttrBuilder FnAttrs(AS.getFnAttributes());
141       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
142 
143       FnAttrs.merge(B);
144 
145       // If the alignment was parsed as an attribute, move to the alignment
146       // field.
147       if (FnAttrs.hasAlignmentAttr()) {
148         Fn->setAlignment(FnAttrs.getAlignment());
149         FnAttrs.removeAttribute(Attribute::Alignment);
150       }
151 
152       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
153                             AttributeSet::get(Context, FnAttrs));
154       Fn->setAttributes(AS);
155     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
156       AttributeList AS = CI->getAttributes();
157       AttrBuilder FnAttrs(AS.getFnAttributes());
158       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
159       FnAttrs.merge(B);
160       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
161                             AttributeSet::get(Context, FnAttrs));
162       CI->setAttributes(AS);
163     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
164       AttributeList AS = II->getAttributes();
165       AttrBuilder FnAttrs(AS.getFnAttributes());
166       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
167       FnAttrs.merge(B);
168       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
169                             AttributeSet::get(Context, FnAttrs));
170       II->setAttributes(AS);
171     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
172       AttributeList AS = CBI->getAttributes();
173       AttrBuilder FnAttrs(AS.getFnAttributes());
174       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
175       FnAttrs.merge(B);
176       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
177                             AttributeSet::get(Context, FnAttrs));
178       CBI->setAttributes(AS);
179     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
180       AttrBuilder Attrs(GV->getAttributes());
181       Attrs.merge(B);
182       GV->setAttributes(AttributeSet::get(Context,Attrs));
183     } else {
184       llvm_unreachable("invalid object with forward attribute group reference");
185     }
186   }
187 
188   // If there are entries in ForwardRefBlockAddresses at this point, the
189   // function was never defined.
190   if (!ForwardRefBlockAddresses.empty())
191     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
192                  "expected function name in blockaddress");
193 
194   for (const auto &NT : NumberedTypes)
195     if (NT.second.second.isValid())
196       return Error(NT.second.second,
197                    "use of undefined type '%" + Twine(NT.first) + "'");
198 
199   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
200        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
201     if (I->second.second.isValid())
202       return Error(I->second.second,
203                    "use of undefined type named '" + I->getKey() + "'");
204 
205   if (!ForwardRefComdats.empty())
206     return Error(ForwardRefComdats.begin()->second,
207                  "use of undefined comdat '$" +
208                      ForwardRefComdats.begin()->first + "'");
209 
210   if (!ForwardRefVals.empty())
211     return Error(ForwardRefVals.begin()->second.second,
212                  "use of undefined value '@" + ForwardRefVals.begin()->first +
213                  "'");
214 
215   if (!ForwardRefValIDs.empty())
216     return Error(ForwardRefValIDs.begin()->second.second,
217                  "use of undefined value '@" +
218                  Twine(ForwardRefValIDs.begin()->first) + "'");
219 
220   if (!ForwardRefMDNodes.empty())
221     return Error(ForwardRefMDNodes.begin()->second.second,
222                  "use of undefined metadata '!" +
223                  Twine(ForwardRefMDNodes.begin()->first) + "'");
224 
225   // Resolve metadata cycles.
226   for (auto &N : NumberedMetadata) {
227     if (N.second && !N.second->isResolved())
228       N.second->resolveCycles();
229   }
230 
231   for (auto *Inst : InstsWithTBAATag) {
232     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
233     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
234     auto *UpgradedMD = UpgradeTBAANode(*MD);
235     if (MD != UpgradedMD)
236       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
237   }
238 
239   // Look for intrinsic functions and CallInst that need to be upgraded
240   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
241     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
242 
243   // Some types could be renamed during loading if several modules are
244   // loaded in the same LLVMContext (LTO scenario). In this case we should
245   // remangle intrinsics names as well.
246   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
247     Function *F = &*FI++;
248     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
249       F->replaceAllUsesWith(Remangled.getValue());
250       F->eraseFromParent();
251     }
252   }
253 
254   if (UpgradeDebugInfo)
255     llvm::UpgradeDebugInfo(*M);
256 
257   UpgradeModuleFlags(*M);
258   UpgradeSectionAttributes(*M);
259 
260   if (!Slots)
261     return false;
262   // Initialize the slot mapping.
263   // Because by this point we've parsed and validated everything, we can "steal"
264   // the mapping from LLParser as it doesn't need it anymore.
265   Slots->GlobalValues = std::move(NumberedVals);
266   Slots->MetadataNodes = std::move(NumberedMetadata);
267   for (const auto &I : NamedTypes)
268     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
269   for (const auto &I : NumberedTypes)
270     Slots->Types.insert(std::make_pair(I.first, I.second.first));
271 
272   return false;
273 }
274 
275 /// Do final validity and sanity checks at the end of the index.
276 bool LLParser::ValidateEndOfIndex() {
277   if (!Index)
278     return false;
279 
280   if (!ForwardRefValueInfos.empty())
281     return Error(ForwardRefValueInfos.begin()->second.front().second,
282                  "use of undefined summary '^" +
283                      Twine(ForwardRefValueInfos.begin()->first) + "'");
284 
285   if (!ForwardRefAliasees.empty())
286     return Error(ForwardRefAliasees.begin()->second.front().second,
287                  "use of undefined summary '^" +
288                      Twine(ForwardRefAliasees.begin()->first) + "'");
289 
290   if (!ForwardRefTypeIds.empty())
291     return Error(ForwardRefTypeIds.begin()->second.front().second,
292                  "use of undefined type id summary '^" +
293                      Twine(ForwardRefTypeIds.begin()->first) + "'");
294 
295   return false;
296 }
297 
298 //===----------------------------------------------------------------------===//
299 // Top-Level Entities
300 //===----------------------------------------------------------------------===//
301 
302 bool LLParser::ParseTargetDefinitions() {
303   while (true) {
304     switch (Lex.getKind()) {
305     case lltok::kw_target:
306       if (ParseTargetDefinition())
307         return true;
308       break;
309     case lltok::kw_source_filename:
310       if (ParseSourceFileName())
311         return true;
312       break;
313     default:
314       return false;
315     }
316   }
317 }
318 
319 bool LLParser::ParseTopLevelEntities() {
320   // If there is no Module, then parse just the summary index entries.
321   if (!M) {
322     while (true) {
323       switch (Lex.getKind()) {
324       case lltok::Eof:
325         return false;
326       case lltok::SummaryID:
327         if (ParseSummaryEntry())
328           return true;
329         break;
330       case lltok::kw_source_filename:
331         if (ParseSourceFileName())
332           return true;
333         break;
334       default:
335         // Skip everything else
336         Lex.Lex();
337       }
338     }
339   }
340   while (true) {
341     switch (Lex.getKind()) {
342     default:         return TokError("expected top-level entity");
343     case lltok::Eof: return false;
344     case lltok::kw_declare: if (ParseDeclare()) return true; break;
345     case lltok::kw_define:  if (ParseDefine()) return true; break;
346     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
347     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
348     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
349     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
350     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
351     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
352     case lltok::ComdatVar:  if (parseComdat()) return true; break;
353     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
354     case lltok::SummaryID:
355       if (ParseSummaryEntry())
356         return true;
357       break;
358     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
359     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
360     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
361     case lltok::kw_uselistorder_bb:
362       if (ParseUseListOrderBB())
363         return true;
364       break;
365     }
366   }
367 }
368 
369 /// toplevelentity
370 ///   ::= 'module' 'asm' STRINGCONSTANT
371 bool LLParser::ParseModuleAsm() {
372   assert(Lex.getKind() == lltok::kw_module);
373   Lex.Lex();
374 
375   std::string AsmStr;
376   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
377       ParseStringConstant(AsmStr)) return true;
378 
379   M->appendModuleInlineAsm(AsmStr);
380   return false;
381 }
382 
383 /// toplevelentity
384 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
385 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
386 bool LLParser::ParseTargetDefinition() {
387   assert(Lex.getKind() == lltok::kw_target);
388   std::string Str;
389   switch (Lex.Lex()) {
390   default: return TokError("unknown target property");
391   case lltok::kw_triple:
392     Lex.Lex();
393     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
394         ParseStringConstant(Str))
395       return true;
396     M->setTargetTriple(Str);
397     return false;
398   case lltok::kw_datalayout:
399     Lex.Lex();
400     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
401         ParseStringConstant(Str))
402       return true;
403     if (DataLayoutStr.empty())
404       M->setDataLayout(Str);
405     return false;
406   }
407 }
408 
409 /// toplevelentity
410 ///   ::= 'source_filename' '=' STRINGCONSTANT
411 bool LLParser::ParseSourceFileName() {
412   assert(Lex.getKind() == lltok::kw_source_filename);
413   Lex.Lex();
414   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
415       ParseStringConstant(SourceFileName))
416     return true;
417   if (M)
418     M->setSourceFileName(SourceFileName);
419   return false;
420 }
421 
422 /// toplevelentity
423 ///   ::= 'deplibs' '=' '[' ']'
424 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
425 /// FIXME: Remove in 4.0. Currently parse, but ignore.
426 bool LLParser::ParseDepLibs() {
427   assert(Lex.getKind() == lltok::kw_deplibs);
428   Lex.Lex();
429   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
430       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
431     return true;
432 
433   if (EatIfPresent(lltok::rsquare))
434     return false;
435 
436   do {
437     std::string Str;
438     if (ParseStringConstant(Str)) return true;
439   } while (EatIfPresent(lltok::comma));
440 
441   return ParseToken(lltok::rsquare, "expected ']' at end of list");
442 }
443 
444 /// ParseUnnamedType:
445 ///   ::= LocalVarID '=' 'type' type
446 bool LLParser::ParseUnnamedType() {
447   LocTy TypeLoc = Lex.getLoc();
448   unsigned TypeID = Lex.getUIntVal();
449   Lex.Lex(); // eat LocalVarID;
450 
451   if (ParseToken(lltok::equal, "expected '=' after name") ||
452       ParseToken(lltok::kw_type, "expected 'type' after '='"))
453     return true;
454 
455   Type *Result = nullptr;
456   if (ParseStructDefinition(TypeLoc, "",
457                             NumberedTypes[TypeID], Result)) return true;
458 
459   if (!isa<StructType>(Result)) {
460     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
461     if (Entry.first)
462       return Error(TypeLoc, "non-struct types may not be recursive");
463     Entry.first = Result;
464     Entry.second = SMLoc();
465   }
466 
467   return false;
468 }
469 
470 /// toplevelentity
471 ///   ::= LocalVar '=' 'type' type
472 bool LLParser::ParseNamedType() {
473   std::string Name = Lex.getStrVal();
474   LocTy NameLoc = Lex.getLoc();
475   Lex.Lex();  // eat LocalVar.
476 
477   if (ParseToken(lltok::equal, "expected '=' after name") ||
478       ParseToken(lltok::kw_type, "expected 'type' after name"))
479     return true;
480 
481   Type *Result = nullptr;
482   if (ParseStructDefinition(NameLoc, Name,
483                             NamedTypes[Name], Result)) return true;
484 
485   if (!isa<StructType>(Result)) {
486     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
487     if (Entry.first)
488       return Error(NameLoc, "non-struct types may not be recursive");
489     Entry.first = Result;
490     Entry.second = SMLoc();
491   }
492 
493   return false;
494 }
495 
496 /// toplevelentity
497 ///   ::= 'declare' FunctionHeader
498 bool LLParser::ParseDeclare() {
499   assert(Lex.getKind() == lltok::kw_declare);
500   Lex.Lex();
501 
502   std::vector<std::pair<unsigned, MDNode *>> MDs;
503   while (Lex.getKind() == lltok::MetadataVar) {
504     unsigned MDK;
505     MDNode *N;
506     if (ParseMetadataAttachment(MDK, N))
507       return true;
508     MDs.push_back({MDK, N});
509   }
510 
511   Function *F;
512   if (ParseFunctionHeader(F, false))
513     return true;
514   for (auto &MD : MDs)
515     F->addMetadata(MD.first, *MD.second);
516   return false;
517 }
518 
519 /// toplevelentity
520 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
521 bool LLParser::ParseDefine() {
522   assert(Lex.getKind() == lltok::kw_define);
523   Lex.Lex();
524 
525   Function *F;
526   return ParseFunctionHeader(F, true) ||
527          ParseOptionalFunctionMetadata(*F) ||
528          ParseFunctionBody(*F);
529 }
530 
531 /// ParseGlobalType
532 ///   ::= 'constant'
533 ///   ::= 'global'
534 bool LLParser::ParseGlobalType(bool &IsConstant) {
535   if (Lex.getKind() == lltok::kw_constant)
536     IsConstant = true;
537   else if (Lex.getKind() == lltok::kw_global)
538     IsConstant = false;
539   else {
540     IsConstant = false;
541     return TokError("expected 'global' or 'constant'");
542   }
543   Lex.Lex();
544   return false;
545 }
546 
547 bool LLParser::ParseOptionalUnnamedAddr(
548     GlobalVariable::UnnamedAddr &UnnamedAddr) {
549   if (EatIfPresent(lltok::kw_unnamed_addr))
550     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
551   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
552     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
553   else
554     UnnamedAddr = GlobalValue::UnnamedAddr::None;
555   return false;
556 }
557 
558 /// ParseUnnamedGlobal:
559 ///   OptionalVisibility (ALIAS | IFUNC) ...
560 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
561 ///   OptionalDLLStorageClass
562 ///                                                     ...   -> global variable
563 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
564 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
565 ///                OptionalDLLStorageClass
566 ///                                                     ...   -> global variable
567 bool LLParser::ParseUnnamedGlobal() {
568   unsigned VarID = NumberedVals.size();
569   std::string Name;
570   LocTy NameLoc = Lex.getLoc();
571 
572   // Handle the GlobalID form.
573   if (Lex.getKind() == lltok::GlobalID) {
574     if (Lex.getUIntVal() != VarID)
575       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
576                    Twine(VarID) + "'");
577     Lex.Lex(); // eat GlobalID;
578 
579     if (ParseToken(lltok::equal, "expected '=' after name"))
580       return true;
581   }
582 
583   bool HasLinkage;
584   unsigned Linkage, Visibility, DLLStorageClass;
585   bool DSOLocal;
586   GlobalVariable::ThreadLocalMode TLM;
587   GlobalVariable::UnnamedAddr UnnamedAddr;
588   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
589                            DSOLocal) ||
590       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
591     return true;
592 
593   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
594     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
595                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
596 
597   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
598                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
599 }
600 
601 /// ParseNamedGlobal:
602 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
603 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
604 ///                 OptionalVisibility OptionalDLLStorageClass
605 ///                                                     ...   -> global variable
606 bool LLParser::ParseNamedGlobal() {
607   assert(Lex.getKind() == lltok::GlobalVar);
608   LocTy NameLoc = Lex.getLoc();
609   std::string Name = Lex.getStrVal();
610   Lex.Lex();
611 
612   bool HasLinkage;
613   unsigned Linkage, Visibility, DLLStorageClass;
614   bool DSOLocal;
615   GlobalVariable::ThreadLocalMode TLM;
616   GlobalVariable::UnnamedAddr UnnamedAddr;
617   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
618       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
619                            DSOLocal) ||
620       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
621     return true;
622 
623   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
624     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
625                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
626 
627   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
628                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
629 }
630 
631 bool LLParser::parseComdat() {
632   assert(Lex.getKind() == lltok::ComdatVar);
633   std::string Name = Lex.getStrVal();
634   LocTy NameLoc = Lex.getLoc();
635   Lex.Lex();
636 
637   if (ParseToken(lltok::equal, "expected '=' here"))
638     return true;
639 
640   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
641     return TokError("expected comdat type");
642 
643   Comdat::SelectionKind SK;
644   switch (Lex.getKind()) {
645   default:
646     return TokError("unknown selection kind");
647   case lltok::kw_any:
648     SK = Comdat::Any;
649     break;
650   case lltok::kw_exactmatch:
651     SK = Comdat::ExactMatch;
652     break;
653   case lltok::kw_largest:
654     SK = Comdat::Largest;
655     break;
656   case lltok::kw_noduplicates:
657     SK = Comdat::NoDuplicates;
658     break;
659   case lltok::kw_samesize:
660     SK = Comdat::SameSize;
661     break;
662   }
663   Lex.Lex();
664 
665   // See if the comdat was forward referenced, if so, use the comdat.
666   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
667   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
668   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
669     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
670 
671   Comdat *C;
672   if (I != ComdatSymTab.end())
673     C = &I->second;
674   else
675     C = M->getOrInsertComdat(Name);
676   C->setSelectionKind(SK);
677 
678   return false;
679 }
680 
681 // MDString:
682 //   ::= '!' STRINGCONSTANT
683 bool LLParser::ParseMDString(MDString *&Result) {
684   std::string Str;
685   if (ParseStringConstant(Str)) return true;
686   Result = MDString::get(Context, Str);
687   return false;
688 }
689 
690 // MDNode:
691 //   ::= '!' MDNodeNumber
692 bool LLParser::ParseMDNodeID(MDNode *&Result) {
693   // !{ ..., !42, ... }
694   LocTy IDLoc = Lex.getLoc();
695   unsigned MID = 0;
696   if (ParseUInt32(MID))
697     return true;
698 
699   // If not a forward reference, just return it now.
700   if (NumberedMetadata.count(MID)) {
701     Result = NumberedMetadata[MID];
702     return false;
703   }
704 
705   // Otherwise, create MDNode forward reference.
706   auto &FwdRef = ForwardRefMDNodes[MID];
707   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
708 
709   Result = FwdRef.first.get();
710   NumberedMetadata[MID].reset(Result);
711   return false;
712 }
713 
714 /// ParseNamedMetadata:
715 ///   !foo = !{ !1, !2 }
716 bool LLParser::ParseNamedMetadata() {
717   assert(Lex.getKind() == lltok::MetadataVar);
718   std::string Name = Lex.getStrVal();
719   Lex.Lex();
720 
721   if (ParseToken(lltok::equal, "expected '=' here") ||
722       ParseToken(lltok::exclaim, "Expected '!' here") ||
723       ParseToken(lltok::lbrace, "Expected '{' here"))
724     return true;
725 
726   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
727   if (Lex.getKind() != lltok::rbrace)
728     do {
729       MDNode *N = nullptr;
730       // Parse DIExpressions inline as a special case. They are still MDNodes,
731       // so they can still appear in named metadata. Remove this logic if they
732       // become plain Metadata.
733       if (Lex.getKind() == lltok::MetadataVar &&
734           Lex.getStrVal() == "DIExpression") {
735         if (ParseDIExpression(N, /*IsDistinct=*/false))
736           return true;
737       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
738                  ParseMDNodeID(N)) {
739         return true;
740       }
741       NMD->addOperand(N);
742     } while (EatIfPresent(lltok::comma));
743 
744   return ParseToken(lltok::rbrace, "expected end of metadata node");
745 }
746 
747 /// ParseStandaloneMetadata:
748 ///   !42 = !{...}
749 bool LLParser::ParseStandaloneMetadata() {
750   assert(Lex.getKind() == lltok::exclaim);
751   Lex.Lex();
752   unsigned MetadataID = 0;
753 
754   MDNode *Init;
755   if (ParseUInt32(MetadataID) ||
756       ParseToken(lltok::equal, "expected '=' here"))
757     return true;
758 
759   // Detect common error, from old metadata syntax.
760   if (Lex.getKind() == lltok::Type)
761     return TokError("unexpected type in metadata definition");
762 
763   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
764   if (Lex.getKind() == lltok::MetadataVar) {
765     if (ParseSpecializedMDNode(Init, IsDistinct))
766       return true;
767   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
768              ParseMDTuple(Init, IsDistinct))
769     return true;
770 
771   // See if this was forward referenced, if so, handle it.
772   auto FI = ForwardRefMDNodes.find(MetadataID);
773   if (FI != ForwardRefMDNodes.end()) {
774     FI->second.first->replaceAllUsesWith(Init);
775     ForwardRefMDNodes.erase(FI);
776 
777     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
778   } else {
779     if (NumberedMetadata.count(MetadataID))
780       return TokError("Metadata id is already used");
781     NumberedMetadata[MetadataID].reset(Init);
782   }
783 
784   return false;
785 }
786 
787 // Skips a single module summary entry.
788 bool LLParser::SkipModuleSummaryEntry() {
789   // Each module summary entry consists of a tag for the entry
790   // type, followed by a colon, then the fields surrounded by nested sets of
791   // parentheses. The "tag:" looks like a Label. Once parsing support is
792   // in place we will look for the tokens corresponding to the expected tags.
793   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
794       Lex.getKind() != lltok::kw_typeid)
795     return TokError(
796         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
797   Lex.Lex();
798   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
799       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
800     return true;
801   // Now walk through the parenthesized entry, until the number of open
802   // parentheses goes back down to 0 (the first '(' was parsed above).
803   unsigned NumOpenParen = 1;
804   do {
805     switch (Lex.getKind()) {
806     case lltok::lparen:
807       NumOpenParen++;
808       break;
809     case lltok::rparen:
810       NumOpenParen--;
811       break;
812     case lltok::Eof:
813       return TokError("found end of file while parsing summary entry");
814     default:
815       // Skip everything in between parentheses.
816       break;
817     }
818     Lex.Lex();
819   } while (NumOpenParen > 0);
820   return false;
821 }
822 
823 /// SummaryEntry
824 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
825 bool LLParser::ParseSummaryEntry() {
826   assert(Lex.getKind() == lltok::SummaryID);
827   unsigned SummaryID = Lex.getUIntVal();
828 
829   // For summary entries, colons should be treated as distinct tokens,
830   // not an indication of the end of a label token.
831   Lex.setIgnoreColonInIdentifiers(true);
832 
833   Lex.Lex();
834   if (ParseToken(lltok::equal, "expected '=' here"))
835     return true;
836 
837   // If we don't have an index object, skip the summary entry.
838   if (!Index)
839     return SkipModuleSummaryEntry();
840 
841   bool result = false;
842   switch (Lex.getKind()) {
843   case lltok::kw_gv:
844     result = ParseGVEntry(SummaryID);
845     break;
846   case lltok::kw_module:
847     result = ParseModuleEntry(SummaryID);
848     break;
849   case lltok::kw_typeid:
850     result = ParseTypeIdEntry(SummaryID);
851     break;
852   case lltok::kw_typeidCompatibleVTable:
853     result = ParseTypeIdCompatibleVtableEntry(SummaryID);
854     break;
855   case lltok::kw_flags:
856     result = ParseSummaryIndexFlags();
857     break;
858   default:
859     result = Error(Lex.getLoc(), "unexpected summary kind");
860     break;
861   }
862   Lex.setIgnoreColonInIdentifiers(false);
863   return result;
864 }
865 
866 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
867   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
868          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
869 }
870 
871 // If there was an explicit dso_local, update GV. In the absence of an explicit
872 // dso_local we keep the default value.
873 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
874   if (DSOLocal)
875     GV.setDSOLocal(true);
876 }
877 
878 /// parseIndirectSymbol:
879 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
880 ///                     OptionalVisibility OptionalDLLStorageClass
881 ///                     OptionalThreadLocal OptionalUnnamedAddr
882 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
883 ///
884 /// IndirectSymbol
885 ///   ::= TypeAndValue
886 ///
887 /// IndirectSymbolAttr
888 ///   ::= ',' 'partition' StringConstant
889 ///
890 /// Everything through OptionalUnnamedAddr has already been parsed.
891 ///
892 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
893                                    unsigned L, unsigned Visibility,
894                                    unsigned DLLStorageClass, bool DSOLocal,
895                                    GlobalVariable::ThreadLocalMode TLM,
896                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
897   bool IsAlias;
898   if (Lex.getKind() == lltok::kw_alias)
899     IsAlias = true;
900   else if (Lex.getKind() == lltok::kw_ifunc)
901     IsAlias = false;
902   else
903     llvm_unreachable("Not an alias or ifunc!");
904   Lex.Lex();
905 
906   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
907 
908   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
909     return Error(NameLoc, "invalid linkage type for alias");
910 
911   if (!isValidVisibilityForLinkage(Visibility, L))
912     return Error(NameLoc,
913                  "symbol with local linkage must have default visibility");
914 
915   Type *Ty;
916   LocTy ExplicitTypeLoc = Lex.getLoc();
917   if (ParseType(Ty) ||
918       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
919     return true;
920 
921   Constant *Aliasee;
922   LocTy AliaseeLoc = Lex.getLoc();
923   if (Lex.getKind() != lltok::kw_bitcast &&
924       Lex.getKind() != lltok::kw_getelementptr &&
925       Lex.getKind() != lltok::kw_addrspacecast &&
926       Lex.getKind() != lltok::kw_inttoptr) {
927     if (ParseGlobalTypeAndValue(Aliasee))
928       return true;
929   } else {
930     // The bitcast dest type is not present, it is implied by the dest type.
931     ValID ID;
932     if (ParseValID(ID))
933       return true;
934     if (ID.Kind != ValID::t_Constant)
935       return Error(AliaseeLoc, "invalid aliasee");
936     Aliasee = ID.ConstantVal;
937   }
938 
939   Type *AliaseeType = Aliasee->getType();
940   auto *PTy = dyn_cast<PointerType>(AliaseeType);
941   if (!PTy)
942     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
943   unsigned AddrSpace = PTy->getAddressSpace();
944 
945   if (IsAlias && Ty != PTy->getElementType())
946     return Error(
947         ExplicitTypeLoc,
948         "explicit pointee type doesn't match operand's pointee type");
949 
950   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
951     return Error(
952         ExplicitTypeLoc,
953         "explicit pointee type should be a function type");
954 
955   GlobalValue *GVal = nullptr;
956 
957   // See if the alias was forward referenced, if so, prepare to replace the
958   // forward reference.
959   if (!Name.empty()) {
960     GVal = M->getNamedValue(Name);
961     if (GVal) {
962       if (!ForwardRefVals.erase(Name))
963         return Error(NameLoc, "redefinition of global '@" + Name + "'");
964     }
965   } else {
966     auto I = ForwardRefValIDs.find(NumberedVals.size());
967     if (I != ForwardRefValIDs.end()) {
968       GVal = I->second.first;
969       ForwardRefValIDs.erase(I);
970     }
971   }
972 
973   // Okay, create the alias but do not insert it into the module yet.
974   std::unique_ptr<GlobalIndirectSymbol> GA;
975   if (IsAlias)
976     GA.reset(GlobalAlias::create(Ty, AddrSpace,
977                                  (GlobalValue::LinkageTypes)Linkage, Name,
978                                  Aliasee, /*Parent*/ nullptr));
979   else
980     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
981                                  (GlobalValue::LinkageTypes)Linkage, Name,
982                                  Aliasee, /*Parent*/ nullptr));
983   GA->setThreadLocalMode(TLM);
984   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
985   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
986   GA->setUnnamedAddr(UnnamedAddr);
987   maybeSetDSOLocal(DSOLocal, *GA);
988 
989   // At this point we've parsed everything except for the IndirectSymbolAttrs.
990   // Now parse them if there are any.
991   while (Lex.getKind() == lltok::comma) {
992     Lex.Lex();
993 
994     if (Lex.getKind() == lltok::kw_partition) {
995       Lex.Lex();
996       GA->setPartition(Lex.getStrVal());
997       if (ParseToken(lltok::StringConstant, "expected partition string"))
998         return true;
999     } else {
1000       return TokError("unknown alias or ifunc property!");
1001     }
1002   }
1003 
1004   if (Name.empty())
1005     NumberedVals.push_back(GA.get());
1006 
1007   if (GVal) {
1008     // Verify that types agree.
1009     if (GVal->getType() != GA->getType())
1010       return Error(
1011           ExplicitTypeLoc,
1012           "forward reference and definition of alias have different types");
1013 
1014     // If they agree, just RAUW the old value with the alias and remove the
1015     // forward ref info.
1016     GVal->replaceAllUsesWith(GA.get());
1017     GVal->eraseFromParent();
1018   }
1019 
1020   // Insert into the module, we know its name won't collide now.
1021   if (IsAlias)
1022     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1023   else
1024     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1025   assert(GA->getName() == Name && "Should not be a name conflict!");
1026 
1027   // The module owns this now
1028   GA.release();
1029 
1030   return false;
1031 }
1032 
1033 /// ParseGlobal
1034 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1035 ///       OptionalVisibility OptionalDLLStorageClass
1036 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1037 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1038 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1039 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1040 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1041 ///       Const OptionalAttrs
1042 ///
1043 /// Everything up to and including OptionalUnnamedAddr has been parsed
1044 /// already.
1045 ///
1046 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1047                            unsigned Linkage, bool HasLinkage,
1048                            unsigned Visibility, unsigned DLLStorageClass,
1049                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1050                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1051   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1052     return Error(NameLoc,
1053                  "symbol with local linkage must have default visibility");
1054 
1055   unsigned AddrSpace;
1056   bool IsConstant, IsExternallyInitialized;
1057   LocTy IsExternallyInitializedLoc;
1058   LocTy TyLoc;
1059 
1060   Type *Ty = nullptr;
1061   if (ParseOptionalAddrSpace(AddrSpace) ||
1062       ParseOptionalToken(lltok::kw_externally_initialized,
1063                          IsExternallyInitialized,
1064                          &IsExternallyInitializedLoc) ||
1065       ParseGlobalType(IsConstant) ||
1066       ParseType(Ty, TyLoc))
1067     return true;
1068 
1069   // If the linkage is specified and is external, then no initializer is
1070   // present.
1071   Constant *Init = nullptr;
1072   if (!HasLinkage ||
1073       !GlobalValue::isValidDeclarationLinkage(
1074           (GlobalValue::LinkageTypes)Linkage)) {
1075     if (ParseGlobalValue(Ty, Init))
1076       return true;
1077   }
1078 
1079   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1080     return Error(TyLoc, "invalid type for global variable");
1081 
1082   GlobalValue *GVal = nullptr;
1083 
1084   // See if the global was forward referenced, if so, use the global.
1085   if (!Name.empty()) {
1086     GVal = M->getNamedValue(Name);
1087     if (GVal) {
1088       if (!ForwardRefVals.erase(Name))
1089         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1090     }
1091   } else {
1092     auto I = ForwardRefValIDs.find(NumberedVals.size());
1093     if (I != ForwardRefValIDs.end()) {
1094       GVal = I->second.first;
1095       ForwardRefValIDs.erase(I);
1096     }
1097   }
1098 
1099   GlobalVariable *GV;
1100   if (!GVal) {
1101     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1102                             Name, nullptr, GlobalVariable::NotThreadLocal,
1103                             AddrSpace);
1104   } else {
1105     if (GVal->getValueType() != Ty)
1106       return Error(TyLoc,
1107             "forward reference and definition of global have different types");
1108 
1109     GV = cast<GlobalVariable>(GVal);
1110 
1111     // Move the forward-reference to the correct spot in the module.
1112     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1113   }
1114 
1115   if (Name.empty())
1116     NumberedVals.push_back(GV);
1117 
1118   // Set the parsed properties on the global.
1119   if (Init)
1120     GV->setInitializer(Init);
1121   GV->setConstant(IsConstant);
1122   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1123   maybeSetDSOLocal(DSOLocal, *GV);
1124   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1125   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1126   GV->setExternallyInitialized(IsExternallyInitialized);
1127   GV->setThreadLocalMode(TLM);
1128   GV->setUnnamedAddr(UnnamedAddr);
1129 
1130   // Parse attributes on the global.
1131   while (Lex.getKind() == lltok::comma) {
1132     Lex.Lex();
1133 
1134     if (Lex.getKind() == lltok::kw_section) {
1135       Lex.Lex();
1136       GV->setSection(Lex.getStrVal());
1137       if (ParseToken(lltok::StringConstant, "expected global section string"))
1138         return true;
1139     } else if (Lex.getKind() == lltok::kw_partition) {
1140       Lex.Lex();
1141       GV->setPartition(Lex.getStrVal());
1142       if (ParseToken(lltok::StringConstant, "expected partition string"))
1143         return true;
1144     } else if (Lex.getKind() == lltok::kw_align) {
1145       MaybeAlign Alignment;
1146       if (ParseOptionalAlignment(Alignment)) return true;
1147       GV->setAlignment(Alignment);
1148     } else if (Lex.getKind() == lltok::MetadataVar) {
1149       if (ParseGlobalObjectMetadataAttachment(*GV))
1150         return true;
1151     } else {
1152       Comdat *C;
1153       if (parseOptionalComdat(Name, C))
1154         return true;
1155       if (C)
1156         GV->setComdat(C);
1157       else
1158         return TokError("unknown global variable property!");
1159     }
1160   }
1161 
1162   AttrBuilder Attrs;
1163   LocTy BuiltinLoc;
1164   std::vector<unsigned> FwdRefAttrGrps;
1165   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1166     return true;
1167   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1168     GV->setAttributes(AttributeSet::get(Context, Attrs));
1169     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1170   }
1171 
1172   return false;
1173 }
1174 
1175 /// ParseUnnamedAttrGrp
1176 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1177 bool LLParser::ParseUnnamedAttrGrp() {
1178   assert(Lex.getKind() == lltok::kw_attributes);
1179   LocTy AttrGrpLoc = Lex.getLoc();
1180   Lex.Lex();
1181 
1182   if (Lex.getKind() != lltok::AttrGrpID)
1183     return TokError("expected attribute group id");
1184 
1185   unsigned VarID = Lex.getUIntVal();
1186   std::vector<unsigned> unused;
1187   LocTy BuiltinLoc;
1188   Lex.Lex();
1189 
1190   if (ParseToken(lltok::equal, "expected '=' here") ||
1191       ParseToken(lltok::lbrace, "expected '{' here") ||
1192       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1193                                  BuiltinLoc) ||
1194       ParseToken(lltok::rbrace, "expected end of attribute group"))
1195     return true;
1196 
1197   if (!NumberedAttrBuilders[VarID].hasAttributes())
1198     return Error(AttrGrpLoc, "attribute group has no attributes");
1199 
1200   return false;
1201 }
1202 
1203 /// ParseFnAttributeValuePairs
1204 ///   ::= <attr> | <attr> '=' <value>
1205 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1206                                           std::vector<unsigned> &FwdRefAttrGrps,
1207                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1208   bool HaveError = false;
1209 
1210   B.clear();
1211 
1212   while (true) {
1213     lltok::Kind Token = Lex.getKind();
1214     if (Token == lltok::kw_builtin)
1215       BuiltinLoc = Lex.getLoc();
1216     switch (Token) {
1217     default:
1218       if (!inAttrGrp) return HaveError;
1219       return Error(Lex.getLoc(), "unterminated attribute group");
1220     case lltok::rbrace:
1221       // Finished.
1222       return false;
1223 
1224     case lltok::AttrGrpID: {
1225       // Allow a function to reference an attribute group:
1226       //
1227       //   define void @foo() #1 { ... }
1228       if (inAttrGrp)
1229         HaveError |=
1230           Error(Lex.getLoc(),
1231               "cannot have an attribute group reference in an attribute group");
1232 
1233       unsigned AttrGrpNum = Lex.getUIntVal();
1234       if (inAttrGrp) break;
1235 
1236       // Save the reference to the attribute group. We'll fill it in later.
1237       FwdRefAttrGrps.push_back(AttrGrpNum);
1238       break;
1239     }
1240     // Target-dependent attributes:
1241     case lltok::StringConstant: {
1242       if (ParseStringAttribute(B))
1243         return true;
1244       continue;
1245     }
1246 
1247     // Target-independent attributes:
1248     case lltok::kw_align: {
1249       // As a hack, we allow function alignment to be initially parsed as an
1250       // attribute on a function declaration/definition or added to an attribute
1251       // group and later moved to the alignment field.
1252       MaybeAlign Alignment;
1253       if (inAttrGrp) {
1254         Lex.Lex();
1255         uint32_t Value = 0;
1256         if (ParseToken(lltok::equal, "expected '=' here") || ParseUInt32(Value))
1257           return true;
1258         Alignment = Align(Value);
1259       } else {
1260         if (ParseOptionalAlignment(Alignment))
1261           return true;
1262       }
1263       B.addAlignmentAttr(Alignment);
1264       continue;
1265     }
1266     case lltok::kw_alignstack: {
1267       unsigned Alignment;
1268       if (inAttrGrp) {
1269         Lex.Lex();
1270         if (ParseToken(lltok::equal, "expected '=' here") ||
1271             ParseUInt32(Alignment))
1272           return true;
1273       } else {
1274         if (ParseOptionalStackAlignment(Alignment))
1275           return true;
1276       }
1277       B.addStackAlignmentAttr(Alignment);
1278       continue;
1279     }
1280     case lltok::kw_allocsize: {
1281       unsigned ElemSizeArg;
1282       Optional<unsigned> NumElemsArg;
1283       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1284       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1285         return true;
1286       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1287       continue;
1288     }
1289     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1290     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1291     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1292     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1293     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1294     case lltok::kw_inaccessiblememonly:
1295       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1296     case lltok::kw_inaccessiblemem_or_argmemonly:
1297       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1298     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1299     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1300     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1301     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1302     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1303     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1304     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1305     case lltok::kw_noimplicitfloat:
1306       B.addAttribute(Attribute::NoImplicitFloat); break;
1307     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1308     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1309     case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break;
1310     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1311     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1312     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1313     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1314     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1315     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1316     case lltok::kw_optforfuzzing:
1317       B.addAttribute(Attribute::OptForFuzzing); break;
1318     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1319     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1320     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1321     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1322     case lltok::kw_returns_twice:
1323       B.addAttribute(Attribute::ReturnsTwice); break;
1324     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1325     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1326     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1327     case lltok::kw_sspstrong:
1328       B.addAttribute(Attribute::StackProtectStrong); break;
1329     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1330     case lltok::kw_shadowcallstack:
1331       B.addAttribute(Attribute::ShadowCallStack); break;
1332     case lltok::kw_sanitize_address:
1333       B.addAttribute(Attribute::SanitizeAddress); break;
1334     case lltok::kw_sanitize_hwaddress:
1335       B.addAttribute(Attribute::SanitizeHWAddress); break;
1336     case lltok::kw_sanitize_memtag:
1337       B.addAttribute(Attribute::SanitizeMemTag); break;
1338     case lltok::kw_sanitize_thread:
1339       B.addAttribute(Attribute::SanitizeThread); break;
1340     case lltok::kw_sanitize_memory:
1341       B.addAttribute(Attribute::SanitizeMemory); break;
1342     case lltok::kw_speculative_load_hardening:
1343       B.addAttribute(Attribute::SpeculativeLoadHardening);
1344       break;
1345     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1346     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1347     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1348     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1349     case lltok::kw_preallocated: {
1350       Type *Ty;
1351       if (ParsePreallocated(Ty))
1352         return true;
1353       B.addPreallocatedAttr(Ty);
1354       break;
1355     }
1356 
1357     // Error handling.
1358     case lltok::kw_inreg:
1359     case lltok::kw_signext:
1360     case lltok::kw_zeroext:
1361       HaveError |=
1362         Error(Lex.getLoc(),
1363               "invalid use of attribute on a function");
1364       break;
1365     case lltok::kw_byval:
1366     case lltok::kw_dereferenceable:
1367     case lltok::kw_dereferenceable_or_null:
1368     case lltok::kw_inalloca:
1369     case lltok::kw_nest:
1370     case lltok::kw_noalias:
1371     case lltok::kw_nocapture:
1372     case lltok::kw_nonnull:
1373     case lltok::kw_returned:
1374     case lltok::kw_sret:
1375     case lltok::kw_swifterror:
1376     case lltok::kw_swiftself:
1377     case lltok::kw_immarg:
1378       HaveError |=
1379         Error(Lex.getLoc(),
1380               "invalid use of parameter-only attribute on a function");
1381       break;
1382     }
1383 
1384     // ParsePreallocated() consumes token
1385     if (Token != lltok::kw_preallocated)
1386       Lex.Lex();
1387   }
1388 }
1389 
1390 //===----------------------------------------------------------------------===//
1391 // GlobalValue Reference/Resolution Routines.
1392 //===----------------------------------------------------------------------===//
1393 
1394 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1395                                               const std::string &Name) {
1396   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1397     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1398                             PTy->getAddressSpace(), Name, M);
1399   else
1400     return new GlobalVariable(*M, PTy->getElementType(), false,
1401                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1402                               nullptr, GlobalVariable::NotThreadLocal,
1403                               PTy->getAddressSpace());
1404 }
1405 
1406 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1407                                         Value *Val, bool IsCall) {
1408   if (Val->getType() == Ty)
1409     return Val;
1410   // For calls we also accept variables in the program address space.
1411   Type *SuggestedTy = Ty;
1412   if (IsCall && isa<PointerType>(Ty)) {
1413     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1414         M->getDataLayout().getProgramAddressSpace());
1415     SuggestedTy = TyInProgAS;
1416     if (Val->getType() == TyInProgAS)
1417       return Val;
1418   }
1419   if (Ty->isLabelTy())
1420     Error(Loc, "'" + Name + "' is not a basic block");
1421   else
1422     Error(Loc, "'" + Name + "' defined with type '" +
1423                    getTypeString(Val->getType()) + "' but expected '" +
1424                    getTypeString(SuggestedTy) + "'");
1425   return nullptr;
1426 }
1427 
1428 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1429 /// forward reference record if needed.  This can return null if the value
1430 /// exists but does not have the right type.
1431 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1432                                     LocTy Loc, bool IsCall) {
1433   PointerType *PTy = dyn_cast<PointerType>(Ty);
1434   if (!PTy) {
1435     Error(Loc, "global variable reference must have pointer type");
1436     return nullptr;
1437   }
1438 
1439   // Look this name up in the normal function symbol table.
1440   GlobalValue *Val =
1441     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1442 
1443   // If this is a forward reference for the value, see if we already created a
1444   // forward ref record.
1445   if (!Val) {
1446     auto I = ForwardRefVals.find(Name);
1447     if (I != ForwardRefVals.end())
1448       Val = I->second.first;
1449   }
1450 
1451   // If we have the value in the symbol table or fwd-ref table, return it.
1452   if (Val)
1453     return cast_or_null<GlobalValue>(
1454         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1455 
1456   // Otherwise, create a new forward reference for this value and remember it.
1457   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1458   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1459   return FwdVal;
1460 }
1461 
1462 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1463                                     bool IsCall) {
1464   PointerType *PTy = dyn_cast<PointerType>(Ty);
1465   if (!PTy) {
1466     Error(Loc, "global variable reference must have pointer type");
1467     return nullptr;
1468   }
1469 
1470   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1471 
1472   // If this is a forward reference for the value, see if we already created a
1473   // forward ref record.
1474   if (!Val) {
1475     auto I = ForwardRefValIDs.find(ID);
1476     if (I != ForwardRefValIDs.end())
1477       Val = I->second.first;
1478   }
1479 
1480   // If we have the value in the symbol table or fwd-ref table, return it.
1481   if (Val)
1482     return cast_or_null<GlobalValue>(
1483         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1484 
1485   // Otherwise, create a new forward reference for this value and remember it.
1486   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1487   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1488   return FwdVal;
1489 }
1490 
1491 //===----------------------------------------------------------------------===//
1492 // Comdat Reference/Resolution Routines.
1493 //===----------------------------------------------------------------------===//
1494 
1495 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1496   // Look this name up in the comdat symbol table.
1497   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1498   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1499   if (I != ComdatSymTab.end())
1500     return &I->second;
1501 
1502   // Otherwise, create a new forward reference for this value and remember it.
1503   Comdat *C = M->getOrInsertComdat(Name);
1504   ForwardRefComdats[Name] = Loc;
1505   return C;
1506 }
1507 
1508 //===----------------------------------------------------------------------===//
1509 // Helper Routines.
1510 //===----------------------------------------------------------------------===//
1511 
1512 /// ParseToken - If the current token has the specified kind, eat it and return
1513 /// success.  Otherwise, emit the specified error and return failure.
1514 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1515   if (Lex.getKind() != T)
1516     return TokError(ErrMsg);
1517   Lex.Lex();
1518   return false;
1519 }
1520 
1521 /// ParseStringConstant
1522 ///   ::= StringConstant
1523 bool LLParser::ParseStringConstant(std::string &Result) {
1524   if (Lex.getKind() != lltok::StringConstant)
1525     return TokError("expected string constant");
1526   Result = Lex.getStrVal();
1527   Lex.Lex();
1528   return false;
1529 }
1530 
1531 /// ParseUInt32
1532 ///   ::= uint32
1533 bool LLParser::ParseUInt32(uint32_t &Val) {
1534   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1535     return TokError("expected integer");
1536   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1537   if (Val64 != unsigned(Val64))
1538     return TokError("expected 32-bit integer (too large)");
1539   Val = Val64;
1540   Lex.Lex();
1541   return false;
1542 }
1543 
1544 /// ParseUInt64
1545 ///   ::= uint64
1546 bool LLParser::ParseUInt64(uint64_t &Val) {
1547   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1548     return TokError("expected integer");
1549   Val = Lex.getAPSIntVal().getLimitedValue();
1550   Lex.Lex();
1551   return false;
1552 }
1553 
1554 /// ParseTLSModel
1555 ///   := 'localdynamic'
1556 ///   := 'initialexec'
1557 ///   := 'localexec'
1558 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1559   switch (Lex.getKind()) {
1560     default:
1561       return TokError("expected localdynamic, initialexec or localexec");
1562     case lltok::kw_localdynamic:
1563       TLM = GlobalVariable::LocalDynamicTLSModel;
1564       break;
1565     case lltok::kw_initialexec:
1566       TLM = GlobalVariable::InitialExecTLSModel;
1567       break;
1568     case lltok::kw_localexec:
1569       TLM = GlobalVariable::LocalExecTLSModel;
1570       break;
1571   }
1572 
1573   Lex.Lex();
1574   return false;
1575 }
1576 
1577 /// ParseOptionalThreadLocal
1578 ///   := /*empty*/
1579 ///   := 'thread_local'
1580 ///   := 'thread_local' '(' tlsmodel ')'
1581 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1582   TLM = GlobalVariable::NotThreadLocal;
1583   if (!EatIfPresent(lltok::kw_thread_local))
1584     return false;
1585 
1586   TLM = GlobalVariable::GeneralDynamicTLSModel;
1587   if (Lex.getKind() == lltok::lparen) {
1588     Lex.Lex();
1589     return ParseTLSModel(TLM) ||
1590       ParseToken(lltok::rparen, "expected ')' after thread local model");
1591   }
1592   return false;
1593 }
1594 
1595 /// ParseOptionalAddrSpace
1596 ///   := /*empty*/
1597 ///   := 'addrspace' '(' uint32 ')'
1598 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1599   AddrSpace = DefaultAS;
1600   if (!EatIfPresent(lltok::kw_addrspace))
1601     return false;
1602   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1603          ParseUInt32(AddrSpace) ||
1604          ParseToken(lltok::rparen, "expected ')' in address space");
1605 }
1606 
1607 /// ParseStringAttribute
1608 ///   := StringConstant
1609 ///   := StringConstant '=' StringConstant
1610 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1611   std::string Attr = Lex.getStrVal();
1612   Lex.Lex();
1613   std::string Val;
1614   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1615     return true;
1616   B.addAttribute(Attr, Val);
1617   return false;
1618 }
1619 
1620 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1621 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1622   bool HaveError = false;
1623 
1624   B.clear();
1625 
1626   while (true) {
1627     lltok::Kind Token = Lex.getKind();
1628     switch (Token) {
1629     default:  // End of attributes.
1630       return HaveError;
1631     case lltok::StringConstant: {
1632       if (ParseStringAttribute(B))
1633         return true;
1634       continue;
1635     }
1636     case lltok::kw_align: {
1637       MaybeAlign Alignment;
1638       if (ParseOptionalAlignment(Alignment))
1639         return true;
1640       B.addAlignmentAttr(Alignment);
1641       continue;
1642     }
1643     case lltok::kw_byval: {
1644       Type *Ty;
1645       if (ParseByValWithOptionalType(Ty))
1646         return true;
1647       B.addByValAttr(Ty);
1648       continue;
1649     }
1650     case lltok::kw_preallocated: {
1651       Type *Ty;
1652       if (ParsePreallocated(Ty))
1653         return true;
1654       B.addPreallocatedAttr(Ty);
1655       continue;
1656     }
1657     case lltok::kw_dereferenceable: {
1658       uint64_t Bytes;
1659       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1660         return true;
1661       B.addDereferenceableAttr(Bytes);
1662       continue;
1663     }
1664     case lltok::kw_dereferenceable_or_null: {
1665       uint64_t Bytes;
1666       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1667         return true;
1668       B.addDereferenceableOrNullAttr(Bytes);
1669       continue;
1670     }
1671     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1672     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1673     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1674     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1675     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1676     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1677     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1678     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1679     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1680     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1681     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1682     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1683     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1684     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1685     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1686     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1687     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1688 
1689     case lltok::kw_alignstack:
1690     case lltok::kw_alwaysinline:
1691     case lltok::kw_argmemonly:
1692     case lltok::kw_builtin:
1693     case lltok::kw_inlinehint:
1694     case lltok::kw_jumptable:
1695     case lltok::kw_minsize:
1696     case lltok::kw_naked:
1697     case lltok::kw_nobuiltin:
1698     case lltok::kw_noduplicate:
1699     case lltok::kw_noimplicitfloat:
1700     case lltok::kw_noinline:
1701     case lltok::kw_nonlazybind:
1702     case lltok::kw_nomerge:
1703     case lltok::kw_noredzone:
1704     case lltok::kw_noreturn:
1705     case lltok::kw_nocf_check:
1706     case lltok::kw_nounwind:
1707     case lltok::kw_optforfuzzing:
1708     case lltok::kw_optnone:
1709     case lltok::kw_optsize:
1710     case lltok::kw_returns_twice:
1711     case lltok::kw_sanitize_address:
1712     case lltok::kw_sanitize_hwaddress:
1713     case lltok::kw_sanitize_memtag:
1714     case lltok::kw_sanitize_memory:
1715     case lltok::kw_sanitize_thread:
1716     case lltok::kw_speculative_load_hardening:
1717     case lltok::kw_ssp:
1718     case lltok::kw_sspreq:
1719     case lltok::kw_sspstrong:
1720     case lltok::kw_safestack:
1721     case lltok::kw_shadowcallstack:
1722     case lltok::kw_strictfp:
1723     case lltok::kw_uwtable:
1724       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1725       break;
1726     }
1727 
1728     Lex.Lex();
1729   }
1730 }
1731 
1732 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1733 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1734   bool HaveError = false;
1735 
1736   B.clear();
1737 
1738   while (true) {
1739     lltok::Kind Token = Lex.getKind();
1740     switch (Token) {
1741     default:  // End of attributes.
1742       return HaveError;
1743     case lltok::StringConstant: {
1744       if (ParseStringAttribute(B))
1745         return true;
1746       continue;
1747     }
1748     case lltok::kw_dereferenceable: {
1749       uint64_t Bytes;
1750       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1751         return true;
1752       B.addDereferenceableAttr(Bytes);
1753       continue;
1754     }
1755     case lltok::kw_dereferenceable_or_null: {
1756       uint64_t Bytes;
1757       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1758         return true;
1759       B.addDereferenceableOrNullAttr(Bytes);
1760       continue;
1761     }
1762     case lltok::kw_align: {
1763       MaybeAlign Alignment;
1764       if (ParseOptionalAlignment(Alignment))
1765         return true;
1766       B.addAlignmentAttr(Alignment);
1767       continue;
1768     }
1769     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1770     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1771     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1772     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1773     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1774 
1775     // Error handling.
1776     case lltok::kw_byval:
1777     case lltok::kw_inalloca:
1778     case lltok::kw_nest:
1779     case lltok::kw_nocapture:
1780     case lltok::kw_returned:
1781     case lltok::kw_sret:
1782     case lltok::kw_swifterror:
1783     case lltok::kw_swiftself:
1784     case lltok::kw_immarg:
1785       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1786       break;
1787 
1788     case lltok::kw_alignstack:
1789     case lltok::kw_alwaysinline:
1790     case lltok::kw_argmemonly:
1791     case lltok::kw_builtin:
1792     case lltok::kw_cold:
1793     case lltok::kw_inlinehint:
1794     case lltok::kw_jumptable:
1795     case lltok::kw_minsize:
1796     case lltok::kw_naked:
1797     case lltok::kw_nobuiltin:
1798     case lltok::kw_noduplicate:
1799     case lltok::kw_noimplicitfloat:
1800     case lltok::kw_noinline:
1801     case lltok::kw_nonlazybind:
1802     case lltok::kw_nomerge:
1803     case lltok::kw_noredzone:
1804     case lltok::kw_noreturn:
1805     case lltok::kw_nocf_check:
1806     case lltok::kw_nounwind:
1807     case lltok::kw_optforfuzzing:
1808     case lltok::kw_optnone:
1809     case lltok::kw_optsize:
1810     case lltok::kw_returns_twice:
1811     case lltok::kw_sanitize_address:
1812     case lltok::kw_sanitize_hwaddress:
1813     case lltok::kw_sanitize_memtag:
1814     case lltok::kw_sanitize_memory:
1815     case lltok::kw_sanitize_thread:
1816     case lltok::kw_speculative_load_hardening:
1817     case lltok::kw_ssp:
1818     case lltok::kw_sspreq:
1819     case lltok::kw_sspstrong:
1820     case lltok::kw_safestack:
1821     case lltok::kw_shadowcallstack:
1822     case lltok::kw_strictfp:
1823     case lltok::kw_uwtable:
1824       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1825       break;
1826     case lltok::kw_readnone:
1827     case lltok::kw_readonly:
1828       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1829       break;
1830     case lltok::kw_preallocated:
1831       HaveError |=
1832           Error(Lex.getLoc(),
1833                 "invalid use of parameter-only/call site-only attribute");
1834       break;
1835     }
1836 
1837     Lex.Lex();
1838   }
1839 }
1840 
1841 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1842   HasLinkage = true;
1843   switch (Kind) {
1844   default:
1845     HasLinkage = false;
1846     return GlobalValue::ExternalLinkage;
1847   case lltok::kw_private:
1848     return GlobalValue::PrivateLinkage;
1849   case lltok::kw_internal:
1850     return GlobalValue::InternalLinkage;
1851   case lltok::kw_weak:
1852     return GlobalValue::WeakAnyLinkage;
1853   case lltok::kw_weak_odr:
1854     return GlobalValue::WeakODRLinkage;
1855   case lltok::kw_linkonce:
1856     return GlobalValue::LinkOnceAnyLinkage;
1857   case lltok::kw_linkonce_odr:
1858     return GlobalValue::LinkOnceODRLinkage;
1859   case lltok::kw_available_externally:
1860     return GlobalValue::AvailableExternallyLinkage;
1861   case lltok::kw_appending:
1862     return GlobalValue::AppendingLinkage;
1863   case lltok::kw_common:
1864     return GlobalValue::CommonLinkage;
1865   case lltok::kw_extern_weak:
1866     return GlobalValue::ExternalWeakLinkage;
1867   case lltok::kw_external:
1868     return GlobalValue::ExternalLinkage;
1869   }
1870 }
1871 
1872 /// ParseOptionalLinkage
1873 ///   ::= /*empty*/
1874 ///   ::= 'private'
1875 ///   ::= 'internal'
1876 ///   ::= 'weak'
1877 ///   ::= 'weak_odr'
1878 ///   ::= 'linkonce'
1879 ///   ::= 'linkonce_odr'
1880 ///   ::= 'available_externally'
1881 ///   ::= 'appending'
1882 ///   ::= 'common'
1883 ///   ::= 'extern_weak'
1884 ///   ::= 'external'
1885 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1886                                     unsigned &Visibility,
1887                                     unsigned &DLLStorageClass,
1888                                     bool &DSOLocal) {
1889   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1890   if (HasLinkage)
1891     Lex.Lex();
1892   ParseOptionalDSOLocal(DSOLocal);
1893   ParseOptionalVisibility(Visibility);
1894   ParseOptionalDLLStorageClass(DLLStorageClass);
1895 
1896   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1897     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1898   }
1899 
1900   return false;
1901 }
1902 
1903 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1904   switch (Lex.getKind()) {
1905   default:
1906     DSOLocal = false;
1907     break;
1908   case lltok::kw_dso_local:
1909     DSOLocal = true;
1910     Lex.Lex();
1911     break;
1912   case lltok::kw_dso_preemptable:
1913     DSOLocal = false;
1914     Lex.Lex();
1915     break;
1916   }
1917 }
1918 
1919 /// ParseOptionalVisibility
1920 ///   ::= /*empty*/
1921 ///   ::= 'default'
1922 ///   ::= 'hidden'
1923 ///   ::= 'protected'
1924 ///
1925 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1926   switch (Lex.getKind()) {
1927   default:
1928     Res = GlobalValue::DefaultVisibility;
1929     return;
1930   case lltok::kw_default:
1931     Res = GlobalValue::DefaultVisibility;
1932     break;
1933   case lltok::kw_hidden:
1934     Res = GlobalValue::HiddenVisibility;
1935     break;
1936   case lltok::kw_protected:
1937     Res = GlobalValue::ProtectedVisibility;
1938     break;
1939   }
1940   Lex.Lex();
1941 }
1942 
1943 /// ParseOptionalDLLStorageClass
1944 ///   ::= /*empty*/
1945 ///   ::= 'dllimport'
1946 ///   ::= 'dllexport'
1947 ///
1948 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1949   switch (Lex.getKind()) {
1950   default:
1951     Res = GlobalValue::DefaultStorageClass;
1952     return;
1953   case lltok::kw_dllimport:
1954     Res = GlobalValue::DLLImportStorageClass;
1955     break;
1956   case lltok::kw_dllexport:
1957     Res = GlobalValue::DLLExportStorageClass;
1958     break;
1959   }
1960   Lex.Lex();
1961 }
1962 
1963 /// ParseOptionalCallingConv
1964 ///   ::= /*empty*/
1965 ///   ::= 'ccc'
1966 ///   ::= 'fastcc'
1967 ///   ::= 'intel_ocl_bicc'
1968 ///   ::= 'coldcc'
1969 ///   ::= 'cfguard_checkcc'
1970 ///   ::= 'x86_stdcallcc'
1971 ///   ::= 'x86_fastcallcc'
1972 ///   ::= 'x86_thiscallcc'
1973 ///   ::= 'x86_vectorcallcc'
1974 ///   ::= 'arm_apcscc'
1975 ///   ::= 'arm_aapcscc'
1976 ///   ::= 'arm_aapcs_vfpcc'
1977 ///   ::= 'aarch64_vector_pcs'
1978 ///   ::= 'aarch64_sve_vector_pcs'
1979 ///   ::= 'msp430_intrcc'
1980 ///   ::= 'avr_intrcc'
1981 ///   ::= 'avr_signalcc'
1982 ///   ::= 'ptx_kernel'
1983 ///   ::= 'ptx_device'
1984 ///   ::= 'spir_func'
1985 ///   ::= 'spir_kernel'
1986 ///   ::= 'x86_64_sysvcc'
1987 ///   ::= 'win64cc'
1988 ///   ::= 'webkit_jscc'
1989 ///   ::= 'anyregcc'
1990 ///   ::= 'preserve_mostcc'
1991 ///   ::= 'preserve_allcc'
1992 ///   ::= 'ghccc'
1993 ///   ::= 'swiftcc'
1994 ///   ::= 'x86_intrcc'
1995 ///   ::= 'hhvmcc'
1996 ///   ::= 'hhvm_ccc'
1997 ///   ::= 'cxx_fast_tlscc'
1998 ///   ::= 'amdgpu_vs'
1999 ///   ::= 'amdgpu_ls'
2000 ///   ::= 'amdgpu_hs'
2001 ///   ::= 'amdgpu_es'
2002 ///   ::= 'amdgpu_gs'
2003 ///   ::= 'amdgpu_ps'
2004 ///   ::= 'amdgpu_cs'
2005 ///   ::= 'amdgpu_kernel'
2006 ///   ::= 'tailcc'
2007 ///   ::= 'cc' UINT
2008 ///
2009 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
2010   switch (Lex.getKind()) {
2011   default:                       CC = CallingConv::C; return false;
2012   case lltok::kw_ccc:            CC = CallingConv::C; break;
2013   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2014   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2015   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2016   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2017   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2018   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2019   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2020   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2021   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2022   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2023   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2024   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2025   case lltok::kw_aarch64_sve_vector_pcs:
2026     CC = CallingConv::AArch64_SVE_VectorCall;
2027     break;
2028   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2029   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2030   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2031   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2032   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2033   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2034   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2035   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2036   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2037   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2038   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2039   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2040   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2041   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2042   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2043   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2044   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2045   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2046   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2047   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2048   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2049   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2050   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2051   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2052   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2053   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2054   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2055   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2056   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2057   case lltok::kw_cc: {
2058       Lex.Lex();
2059       return ParseUInt32(CC);
2060     }
2061   }
2062 
2063   Lex.Lex();
2064   return false;
2065 }
2066 
2067 /// ParseMetadataAttachment
2068 ///   ::= !dbg !42
2069 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2070   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2071 
2072   std::string Name = Lex.getStrVal();
2073   Kind = M->getMDKindID(Name);
2074   Lex.Lex();
2075 
2076   return ParseMDNode(MD);
2077 }
2078 
2079 /// ParseInstructionMetadata
2080 ///   ::= !dbg !42 (',' !dbg !57)*
2081 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
2082   do {
2083     if (Lex.getKind() != lltok::MetadataVar)
2084       return TokError("expected metadata after comma");
2085 
2086     unsigned MDK;
2087     MDNode *N;
2088     if (ParseMetadataAttachment(MDK, N))
2089       return true;
2090 
2091     Inst.setMetadata(MDK, N);
2092     if (MDK == LLVMContext::MD_tbaa)
2093       InstsWithTBAATag.push_back(&Inst);
2094 
2095     // If this is the end of the list, we're done.
2096   } while (EatIfPresent(lltok::comma));
2097   return false;
2098 }
2099 
2100 /// ParseGlobalObjectMetadataAttachment
2101 ///   ::= !dbg !57
2102 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2103   unsigned MDK;
2104   MDNode *N;
2105   if (ParseMetadataAttachment(MDK, N))
2106     return true;
2107 
2108   GO.addMetadata(MDK, *N);
2109   return false;
2110 }
2111 
2112 /// ParseOptionalFunctionMetadata
2113 ///   ::= (!dbg !57)*
2114 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2115   while (Lex.getKind() == lltok::MetadataVar)
2116     if (ParseGlobalObjectMetadataAttachment(F))
2117       return true;
2118   return false;
2119 }
2120 
2121 /// ParseOptionalAlignment
2122 ///   ::= /* empty */
2123 ///   ::= 'align' 4
2124 bool LLParser::ParseOptionalAlignment(MaybeAlign &Alignment) {
2125   Alignment = None;
2126   if (!EatIfPresent(lltok::kw_align))
2127     return false;
2128   LocTy AlignLoc = Lex.getLoc();
2129   uint32_t Value = 0;
2130   if (ParseUInt32(Value))
2131     return true;
2132   if (!isPowerOf2_32(Value))
2133     return Error(AlignLoc, "alignment is not a power of two");
2134   if (Value > Value::MaximumAlignment)
2135     return Error(AlignLoc, "huge alignments are not supported yet");
2136   Alignment = Align(Value);
2137   return false;
2138 }
2139 
2140 /// ParseOptionalDerefAttrBytes
2141 ///   ::= /* empty */
2142 ///   ::= AttrKind '(' 4 ')'
2143 ///
2144 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2145 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2146                                            uint64_t &Bytes) {
2147   assert((AttrKind == lltok::kw_dereferenceable ||
2148           AttrKind == lltok::kw_dereferenceable_or_null) &&
2149          "contract!");
2150 
2151   Bytes = 0;
2152   if (!EatIfPresent(AttrKind))
2153     return false;
2154   LocTy ParenLoc = Lex.getLoc();
2155   if (!EatIfPresent(lltok::lparen))
2156     return Error(ParenLoc, "expected '('");
2157   LocTy DerefLoc = Lex.getLoc();
2158   if (ParseUInt64(Bytes)) return true;
2159   ParenLoc = Lex.getLoc();
2160   if (!EatIfPresent(lltok::rparen))
2161     return Error(ParenLoc, "expected ')'");
2162   if (!Bytes)
2163     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2164   return false;
2165 }
2166 
2167 /// ParseOptionalCommaAlign
2168 ///   ::=
2169 ///   ::= ',' align 4
2170 ///
2171 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2172 /// end.
2173 bool LLParser::ParseOptionalCommaAlign(MaybeAlign &Alignment,
2174                                        bool &AteExtraComma) {
2175   AteExtraComma = false;
2176   while (EatIfPresent(lltok::comma)) {
2177     // Metadata at the end is an early exit.
2178     if (Lex.getKind() == lltok::MetadataVar) {
2179       AteExtraComma = true;
2180       return false;
2181     }
2182 
2183     if (Lex.getKind() != lltok::kw_align)
2184       return Error(Lex.getLoc(), "expected metadata or 'align'");
2185 
2186     if (ParseOptionalAlignment(Alignment)) return true;
2187   }
2188 
2189   return false;
2190 }
2191 
2192 /// ParseOptionalCommaAddrSpace
2193 ///   ::=
2194 ///   ::= ',' addrspace(1)
2195 ///
2196 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2197 /// end.
2198 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2199                                            LocTy &Loc,
2200                                            bool &AteExtraComma) {
2201   AteExtraComma = false;
2202   while (EatIfPresent(lltok::comma)) {
2203     // Metadata at the end is an early exit.
2204     if (Lex.getKind() == lltok::MetadataVar) {
2205       AteExtraComma = true;
2206       return false;
2207     }
2208 
2209     Loc = Lex.getLoc();
2210     if (Lex.getKind() != lltok::kw_addrspace)
2211       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2212 
2213     if (ParseOptionalAddrSpace(AddrSpace))
2214       return true;
2215   }
2216 
2217   return false;
2218 }
2219 
2220 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2221                                        Optional<unsigned> &HowManyArg) {
2222   Lex.Lex();
2223 
2224   auto StartParen = Lex.getLoc();
2225   if (!EatIfPresent(lltok::lparen))
2226     return Error(StartParen, "expected '('");
2227 
2228   if (ParseUInt32(BaseSizeArg))
2229     return true;
2230 
2231   if (EatIfPresent(lltok::comma)) {
2232     auto HowManyAt = Lex.getLoc();
2233     unsigned HowMany;
2234     if (ParseUInt32(HowMany))
2235       return true;
2236     if (HowMany == BaseSizeArg)
2237       return Error(HowManyAt,
2238                    "'allocsize' indices can't refer to the same parameter");
2239     HowManyArg = HowMany;
2240   } else
2241     HowManyArg = None;
2242 
2243   auto EndParen = Lex.getLoc();
2244   if (!EatIfPresent(lltok::rparen))
2245     return Error(EndParen, "expected ')'");
2246   return false;
2247 }
2248 
2249 /// ParseScopeAndOrdering
2250 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2251 ///   else: ::=
2252 ///
2253 /// This sets Scope and Ordering to the parsed values.
2254 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2255                                      AtomicOrdering &Ordering) {
2256   if (!isAtomic)
2257     return false;
2258 
2259   return ParseScope(SSID) || ParseOrdering(Ordering);
2260 }
2261 
2262 /// ParseScope
2263 ///   ::= syncscope("singlethread" | "<target scope>")?
2264 ///
2265 /// This sets synchronization scope ID to the ID of the parsed value.
2266 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2267   SSID = SyncScope::System;
2268   if (EatIfPresent(lltok::kw_syncscope)) {
2269     auto StartParenAt = Lex.getLoc();
2270     if (!EatIfPresent(lltok::lparen))
2271       return Error(StartParenAt, "Expected '(' in syncscope");
2272 
2273     std::string SSN;
2274     auto SSNAt = Lex.getLoc();
2275     if (ParseStringConstant(SSN))
2276       return Error(SSNAt, "Expected synchronization scope name");
2277 
2278     auto EndParenAt = Lex.getLoc();
2279     if (!EatIfPresent(lltok::rparen))
2280       return Error(EndParenAt, "Expected ')' in syncscope");
2281 
2282     SSID = Context.getOrInsertSyncScopeID(SSN);
2283   }
2284 
2285   return false;
2286 }
2287 
2288 /// ParseOrdering
2289 ///   ::= AtomicOrdering
2290 ///
2291 /// This sets Ordering to the parsed value.
2292 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2293   switch (Lex.getKind()) {
2294   default: return TokError("Expected ordering on atomic instruction");
2295   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2296   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2297   // Not specified yet:
2298   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2299   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2300   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2301   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2302   case lltok::kw_seq_cst:
2303     Ordering = AtomicOrdering::SequentiallyConsistent;
2304     break;
2305   }
2306   Lex.Lex();
2307   return false;
2308 }
2309 
2310 /// ParseOptionalStackAlignment
2311 ///   ::= /* empty */
2312 ///   ::= 'alignstack' '(' 4 ')'
2313 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2314   Alignment = 0;
2315   if (!EatIfPresent(lltok::kw_alignstack))
2316     return false;
2317   LocTy ParenLoc = Lex.getLoc();
2318   if (!EatIfPresent(lltok::lparen))
2319     return Error(ParenLoc, "expected '('");
2320   LocTy AlignLoc = Lex.getLoc();
2321   if (ParseUInt32(Alignment)) return true;
2322   ParenLoc = Lex.getLoc();
2323   if (!EatIfPresent(lltok::rparen))
2324     return Error(ParenLoc, "expected ')'");
2325   if (!isPowerOf2_32(Alignment))
2326     return Error(AlignLoc, "stack alignment is not a power of two");
2327   return false;
2328 }
2329 
2330 /// ParseIndexList - This parses the index list for an insert/extractvalue
2331 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2332 /// comma at the end of the line and find that it is followed by metadata.
2333 /// Clients that don't allow metadata can call the version of this function that
2334 /// only takes one argument.
2335 ///
2336 /// ParseIndexList
2337 ///    ::=  (',' uint32)+
2338 ///
2339 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2340                               bool &AteExtraComma) {
2341   AteExtraComma = false;
2342 
2343   if (Lex.getKind() != lltok::comma)
2344     return TokError("expected ',' as start of index list");
2345 
2346   while (EatIfPresent(lltok::comma)) {
2347     if (Lex.getKind() == lltok::MetadataVar) {
2348       if (Indices.empty()) return TokError("expected index");
2349       AteExtraComma = true;
2350       return false;
2351     }
2352     unsigned Idx = 0;
2353     if (ParseUInt32(Idx)) return true;
2354     Indices.push_back(Idx);
2355   }
2356 
2357   return false;
2358 }
2359 
2360 //===----------------------------------------------------------------------===//
2361 // Type Parsing.
2362 //===----------------------------------------------------------------------===//
2363 
2364 /// ParseType - Parse a type.
2365 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2366   SMLoc TypeLoc = Lex.getLoc();
2367   switch (Lex.getKind()) {
2368   default:
2369     return TokError(Msg);
2370   case lltok::Type:
2371     // Type ::= 'float' | 'void' (etc)
2372     Result = Lex.getTyVal();
2373     Lex.Lex();
2374     break;
2375   case lltok::lbrace:
2376     // Type ::= StructType
2377     if (ParseAnonStructType(Result, false))
2378       return true;
2379     break;
2380   case lltok::lsquare:
2381     // Type ::= '[' ... ']'
2382     Lex.Lex(); // eat the lsquare.
2383     if (ParseArrayVectorType(Result, false))
2384       return true;
2385     break;
2386   case lltok::less: // Either vector or packed struct.
2387     // Type ::= '<' ... '>'
2388     Lex.Lex();
2389     if (Lex.getKind() == lltok::lbrace) {
2390       if (ParseAnonStructType(Result, true) ||
2391           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2392         return true;
2393     } else if (ParseArrayVectorType(Result, true))
2394       return true;
2395     break;
2396   case lltok::LocalVar: {
2397     // Type ::= %foo
2398     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2399 
2400     // If the type hasn't been defined yet, create a forward definition and
2401     // remember where that forward def'n was seen (in case it never is defined).
2402     if (!Entry.first) {
2403       Entry.first = StructType::create(Context, Lex.getStrVal());
2404       Entry.second = Lex.getLoc();
2405     }
2406     Result = Entry.first;
2407     Lex.Lex();
2408     break;
2409   }
2410 
2411   case lltok::LocalVarID: {
2412     // Type ::= %4
2413     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2414 
2415     // If the type hasn't been defined yet, create a forward definition and
2416     // remember where that forward def'n was seen (in case it never is defined).
2417     if (!Entry.first) {
2418       Entry.first = StructType::create(Context);
2419       Entry.second = Lex.getLoc();
2420     }
2421     Result = Entry.first;
2422     Lex.Lex();
2423     break;
2424   }
2425   }
2426 
2427   // Parse the type suffixes.
2428   while (true) {
2429     switch (Lex.getKind()) {
2430     // End of type.
2431     default:
2432       if (!AllowVoid && Result->isVoidTy())
2433         return Error(TypeLoc, "void type only allowed for function results");
2434       return false;
2435 
2436     // Type ::= Type '*'
2437     case lltok::star:
2438       if (Result->isLabelTy())
2439         return TokError("basic block pointers are invalid");
2440       if (Result->isVoidTy())
2441         return TokError("pointers to void are invalid - use i8* instead");
2442       if (!PointerType::isValidElementType(Result))
2443         return TokError("pointer to this type is invalid");
2444       Result = PointerType::getUnqual(Result);
2445       Lex.Lex();
2446       break;
2447 
2448     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2449     case lltok::kw_addrspace: {
2450       if (Result->isLabelTy())
2451         return TokError("basic block pointers are invalid");
2452       if (Result->isVoidTy())
2453         return TokError("pointers to void are invalid; use i8* instead");
2454       if (!PointerType::isValidElementType(Result))
2455         return TokError("pointer to this type is invalid");
2456       unsigned AddrSpace;
2457       if (ParseOptionalAddrSpace(AddrSpace) ||
2458           ParseToken(lltok::star, "expected '*' in address space"))
2459         return true;
2460 
2461       Result = PointerType::get(Result, AddrSpace);
2462       break;
2463     }
2464 
2465     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2466     case lltok::lparen:
2467       if (ParseFunctionType(Result))
2468         return true;
2469       break;
2470     }
2471   }
2472 }
2473 
2474 /// ParseParameterList
2475 ///    ::= '(' ')'
2476 ///    ::= '(' Arg (',' Arg)* ')'
2477 ///  Arg
2478 ///    ::= Type OptionalAttributes Value OptionalAttributes
2479 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2480                                   PerFunctionState &PFS, bool IsMustTailCall,
2481                                   bool InVarArgsFunc) {
2482   if (ParseToken(lltok::lparen, "expected '(' in call"))
2483     return true;
2484 
2485   while (Lex.getKind() != lltok::rparen) {
2486     // If this isn't the first argument, we need a comma.
2487     if (!ArgList.empty() &&
2488         ParseToken(lltok::comma, "expected ',' in argument list"))
2489       return true;
2490 
2491     // Parse an ellipsis if this is a musttail call in a variadic function.
2492     if (Lex.getKind() == lltok::dotdotdot) {
2493       const char *Msg = "unexpected ellipsis in argument list for ";
2494       if (!IsMustTailCall)
2495         return TokError(Twine(Msg) + "non-musttail call");
2496       if (!InVarArgsFunc)
2497         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2498       Lex.Lex();  // Lex the '...', it is purely for readability.
2499       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2500     }
2501 
2502     // Parse the argument.
2503     LocTy ArgLoc;
2504     Type *ArgTy = nullptr;
2505     AttrBuilder ArgAttrs;
2506     Value *V;
2507     if (ParseType(ArgTy, ArgLoc))
2508       return true;
2509 
2510     if (ArgTy->isMetadataTy()) {
2511       if (ParseMetadataAsValue(V, PFS))
2512         return true;
2513     } else {
2514       // Otherwise, handle normal operands.
2515       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2516         return true;
2517     }
2518     ArgList.push_back(ParamInfo(
2519         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2520   }
2521 
2522   if (IsMustTailCall && InVarArgsFunc)
2523     return TokError("expected '...' at end of argument list for musttail call "
2524                     "in varargs function");
2525 
2526   Lex.Lex();  // Lex the ')'.
2527   return false;
2528 }
2529 
2530 /// ParseByValWithOptionalType
2531 ///   ::= byval
2532 ///   ::= byval(<ty>)
2533 bool LLParser::ParseByValWithOptionalType(Type *&Result) {
2534   Result = nullptr;
2535   if (!EatIfPresent(lltok::kw_byval))
2536     return true;
2537   if (!EatIfPresent(lltok::lparen))
2538     return false;
2539   if (ParseType(Result))
2540     return true;
2541   if (!EatIfPresent(lltok::rparen))
2542     return Error(Lex.getLoc(), "expected ')'");
2543   return false;
2544 }
2545 
2546 /// ParsePreallocated
2547 ///   ::= preallocated(<ty>)
2548 bool LLParser::ParsePreallocated(Type *&Result) {
2549   Result = nullptr;
2550   if (!EatIfPresent(lltok::kw_preallocated))
2551     return true;
2552   if (!EatIfPresent(lltok::lparen))
2553     return Error(Lex.getLoc(), "expected '('");
2554   if (ParseType(Result))
2555     return true;
2556   if (!EatIfPresent(lltok::rparen))
2557     return Error(Lex.getLoc(), "expected ')'");
2558   return false;
2559 }
2560 
2561 /// ParseOptionalOperandBundles
2562 ///    ::= /*empty*/
2563 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2564 ///
2565 /// OperandBundle
2566 ///    ::= bundle-tag '(' ')'
2567 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2568 ///
2569 /// bundle-tag ::= String Constant
2570 bool LLParser::ParseOptionalOperandBundles(
2571     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2572   LocTy BeginLoc = Lex.getLoc();
2573   if (!EatIfPresent(lltok::lsquare))
2574     return false;
2575 
2576   while (Lex.getKind() != lltok::rsquare) {
2577     // If this isn't the first operand bundle, we need a comma.
2578     if (!BundleList.empty() &&
2579         ParseToken(lltok::comma, "expected ',' in input list"))
2580       return true;
2581 
2582     std::string Tag;
2583     if (ParseStringConstant(Tag))
2584       return true;
2585 
2586     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2587       return true;
2588 
2589     std::vector<Value *> Inputs;
2590     while (Lex.getKind() != lltok::rparen) {
2591       // If this isn't the first input, we need a comma.
2592       if (!Inputs.empty() &&
2593           ParseToken(lltok::comma, "expected ',' in input list"))
2594         return true;
2595 
2596       Type *Ty = nullptr;
2597       Value *Input = nullptr;
2598       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2599         return true;
2600       Inputs.push_back(Input);
2601     }
2602 
2603     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2604 
2605     Lex.Lex(); // Lex the ')'.
2606   }
2607 
2608   if (BundleList.empty())
2609     return Error(BeginLoc, "operand bundle set must not be empty");
2610 
2611   Lex.Lex(); // Lex the ']'.
2612   return false;
2613 }
2614 
2615 /// ParseArgumentList - Parse the argument list for a function type or function
2616 /// prototype.
2617 ///   ::= '(' ArgTypeListI ')'
2618 /// ArgTypeListI
2619 ///   ::= /*empty*/
2620 ///   ::= '...'
2621 ///   ::= ArgTypeList ',' '...'
2622 ///   ::= ArgType (',' ArgType)*
2623 ///
2624 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2625                                  bool &isVarArg){
2626   unsigned CurValID = 0;
2627   isVarArg = false;
2628   assert(Lex.getKind() == lltok::lparen);
2629   Lex.Lex(); // eat the (.
2630 
2631   if (Lex.getKind() == lltok::rparen) {
2632     // empty
2633   } else if (Lex.getKind() == lltok::dotdotdot) {
2634     isVarArg = true;
2635     Lex.Lex();
2636   } else {
2637     LocTy TypeLoc = Lex.getLoc();
2638     Type *ArgTy = nullptr;
2639     AttrBuilder Attrs;
2640     std::string Name;
2641 
2642     if (ParseType(ArgTy) ||
2643         ParseOptionalParamAttrs(Attrs)) return true;
2644 
2645     if (ArgTy->isVoidTy())
2646       return Error(TypeLoc, "argument can not have void type");
2647 
2648     if (Lex.getKind() == lltok::LocalVar) {
2649       Name = Lex.getStrVal();
2650       Lex.Lex();
2651     } else if (Lex.getKind() == lltok::LocalVarID) {
2652       if (Lex.getUIntVal() != CurValID)
2653         return Error(TypeLoc, "argument expected to be numbered '%" +
2654                                   Twine(CurValID) + "'");
2655       ++CurValID;
2656       Lex.Lex();
2657     }
2658 
2659     if (!FunctionType::isValidArgumentType(ArgTy))
2660       return Error(TypeLoc, "invalid type for function argument");
2661 
2662     ArgList.emplace_back(TypeLoc, ArgTy,
2663                          AttributeSet::get(ArgTy->getContext(), Attrs),
2664                          std::move(Name));
2665 
2666     while (EatIfPresent(lltok::comma)) {
2667       // Handle ... at end of arg list.
2668       if (EatIfPresent(lltok::dotdotdot)) {
2669         isVarArg = true;
2670         break;
2671       }
2672 
2673       // Otherwise must be an argument type.
2674       TypeLoc = Lex.getLoc();
2675       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2676 
2677       if (ArgTy->isVoidTy())
2678         return Error(TypeLoc, "argument can not have void type");
2679 
2680       if (Lex.getKind() == lltok::LocalVar) {
2681         Name = Lex.getStrVal();
2682         Lex.Lex();
2683       } else {
2684         if (Lex.getKind() == lltok::LocalVarID) {
2685           if (Lex.getUIntVal() != CurValID)
2686             return Error(TypeLoc, "argument expected to be numbered '%" +
2687                                       Twine(CurValID) + "'");
2688           Lex.Lex();
2689         }
2690         ++CurValID;
2691         Name = "";
2692       }
2693 
2694       if (!ArgTy->isFirstClassType())
2695         return Error(TypeLoc, "invalid type for function argument");
2696 
2697       ArgList.emplace_back(TypeLoc, ArgTy,
2698                            AttributeSet::get(ArgTy->getContext(), Attrs),
2699                            std::move(Name));
2700     }
2701   }
2702 
2703   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2704 }
2705 
2706 /// ParseFunctionType
2707 ///  ::= Type ArgumentList OptionalAttrs
2708 bool LLParser::ParseFunctionType(Type *&Result) {
2709   assert(Lex.getKind() == lltok::lparen);
2710 
2711   if (!FunctionType::isValidReturnType(Result))
2712     return TokError("invalid function return type");
2713 
2714   SmallVector<ArgInfo, 8> ArgList;
2715   bool isVarArg;
2716   if (ParseArgumentList(ArgList, isVarArg))
2717     return true;
2718 
2719   // Reject names on the arguments lists.
2720   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2721     if (!ArgList[i].Name.empty())
2722       return Error(ArgList[i].Loc, "argument name invalid in function type");
2723     if (ArgList[i].Attrs.hasAttributes())
2724       return Error(ArgList[i].Loc,
2725                    "argument attributes invalid in function type");
2726   }
2727 
2728   SmallVector<Type*, 16> ArgListTy;
2729   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2730     ArgListTy.push_back(ArgList[i].Ty);
2731 
2732   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2733   return false;
2734 }
2735 
2736 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2737 /// other structs.
2738 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2739   SmallVector<Type*, 8> Elts;
2740   if (ParseStructBody(Elts)) return true;
2741 
2742   Result = StructType::get(Context, Elts, Packed);
2743   return false;
2744 }
2745 
2746 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2747 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2748                                      std::pair<Type*, LocTy> &Entry,
2749                                      Type *&ResultTy) {
2750   // If the type was already defined, diagnose the redefinition.
2751   if (Entry.first && !Entry.second.isValid())
2752     return Error(TypeLoc, "redefinition of type");
2753 
2754   // If we have opaque, just return without filling in the definition for the
2755   // struct.  This counts as a definition as far as the .ll file goes.
2756   if (EatIfPresent(lltok::kw_opaque)) {
2757     // This type is being defined, so clear the location to indicate this.
2758     Entry.second = SMLoc();
2759 
2760     // If this type number has never been uttered, create it.
2761     if (!Entry.first)
2762       Entry.first = StructType::create(Context, Name);
2763     ResultTy = Entry.first;
2764     return false;
2765   }
2766 
2767   // If the type starts with '<', then it is either a packed struct or a vector.
2768   bool isPacked = EatIfPresent(lltok::less);
2769 
2770   // If we don't have a struct, then we have a random type alias, which we
2771   // accept for compatibility with old files.  These types are not allowed to be
2772   // forward referenced and not allowed to be recursive.
2773   if (Lex.getKind() != lltok::lbrace) {
2774     if (Entry.first)
2775       return Error(TypeLoc, "forward references to non-struct type");
2776 
2777     ResultTy = nullptr;
2778     if (isPacked)
2779       return ParseArrayVectorType(ResultTy, true);
2780     return ParseType(ResultTy);
2781   }
2782 
2783   // This type is being defined, so clear the location to indicate this.
2784   Entry.second = SMLoc();
2785 
2786   // If this type number has never been uttered, create it.
2787   if (!Entry.first)
2788     Entry.first = StructType::create(Context, Name);
2789 
2790   StructType *STy = cast<StructType>(Entry.first);
2791 
2792   SmallVector<Type*, 8> Body;
2793   if (ParseStructBody(Body) ||
2794       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2795     return true;
2796 
2797   STy->setBody(Body, isPacked);
2798   ResultTy = STy;
2799   return false;
2800 }
2801 
2802 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2803 ///   StructType
2804 ///     ::= '{' '}'
2805 ///     ::= '{' Type (',' Type)* '}'
2806 ///     ::= '<' '{' '}' '>'
2807 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2808 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2809   assert(Lex.getKind() == lltok::lbrace);
2810   Lex.Lex(); // Consume the '{'
2811 
2812   // Handle the empty struct.
2813   if (EatIfPresent(lltok::rbrace))
2814     return false;
2815 
2816   LocTy EltTyLoc = Lex.getLoc();
2817   Type *Ty = nullptr;
2818   if (ParseType(Ty)) return true;
2819   Body.push_back(Ty);
2820 
2821   if (!StructType::isValidElementType(Ty))
2822     return Error(EltTyLoc, "invalid element type for struct");
2823 
2824   while (EatIfPresent(lltok::comma)) {
2825     EltTyLoc = Lex.getLoc();
2826     if (ParseType(Ty)) return true;
2827 
2828     if (!StructType::isValidElementType(Ty))
2829       return Error(EltTyLoc, "invalid element type for struct");
2830 
2831     Body.push_back(Ty);
2832   }
2833 
2834   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2835 }
2836 
2837 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2838 /// token has already been consumed.
2839 ///   Type
2840 ///     ::= '[' APSINTVAL 'x' Types ']'
2841 ///     ::= '<' APSINTVAL 'x' Types '>'
2842 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2843 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2844   bool Scalable = false;
2845 
2846   if (isVector && Lex.getKind() == lltok::kw_vscale) {
2847     Lex.Lex(); // consume the 'vscale'
2848     if (ParseToken(lltok::kw_x, "expected 'x' after vscale"))
2849       return true;
2850 
2851     Scalable = true;
2852   }
2853 
2854   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2855       Lex.getAPSIntVal().getBitWidth() > 64)
2856     return TokError("expected number in address space");
2857 
2858   LocTy SizeLoc = Lex.getLoc();
2859   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2860   Lex.Lex();
2861 
2862   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2863       return true;
2864 
2865   LocTy TypeLoc = Lex.getLoc();
2866   Type *EltTy = nullptr;
2867   if (ParseType(EltTy)) return true;
2868 
2869   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2870                  "expected end of sequential type"))
2871     return true;
2872 
2873   if (isVector) {
2874     if (Size == 0)
2875       return Error(SizeLoc, "zero element vector is illegal");
2876     if ((unsigned)Size != Size)
2877       return Error(SizeLoc, "size too large for vector");
2878     if (!VectorType::isValidElementType(EltTy))
2879       return Error(TypeLoc, "invalid vector element type");
2880     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2881   } else {
2882     if (!ArrayType::isValidElementType(EltTy))
2883       return Error(TypeLoc, "invalid array element type");
2884     Result = ArrayType::get(EltTy, Size);
2885   }
2886   return false;
2887 }
2888 
2889 //===----------------------------------------------------------------------===//
2890 // Function Semantic Analysis.
2891 //===----------------------------------------------------------------------===//
2892 
2893 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2894                                              int functionNumber)
2895   : P(p), F(f), FunctionNumber(functionNumber) {
2896 
2897   // Insert unnamed arguments into the NumberedVals list.
2898   for (Argument &A : F.args())
2899     if (!A.hasName())
2900       NumberedVals.push_back(&A);
2901 }
2902 
2903 LLParser::PerFunctionState::~PerFunctionState() {
2904   // If there were any forward referenced non-basicblock values, delete them.
2905 
2906   for (const auto &P : ForwardRefVals) {
2907     if (isa<BasicBlock>(P.second.first))
2908       continue;
2909     P.second.first->replaceAllUsesWith(
2910         UndefValue::get(P.second.first->getType()));
2911     P.second.first->deleteValue();
2912   }
2913 
2914   for (const auto &P : ForwardRefValIDs) {
2915     if (isa<BasicBlock>(P.second.first))
2916       continue;
2917     P.second.first->replaceAllUsesWith(
2918         UndefValue::get(P.second.first->getType()));
2919     P.second.first->deleteValue();
2920   }
2921 }
2922 
2923 bool LLParser::PerFunctionState::FinishFunction() {
2924   if (!ForwardRefVals.empty())
2925     return P.Error(ForwardRefVals.begin()->second.second,
2926                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2927                    "'");
2928   if (!ForwardRefValIDs.empty())
2929     return P.Error(ForwardRefValIDs.begin()->second.second,
2930                    "use of undefined value '%" +
2931                    Twine(ForwardRefValIDs.begin()->first) + "'");
2932   return false;
2933 }
2934 
2935 /// GetVal - Get a value with the specified name or ID, creating a
2936 /// forward reference record if needed.  This can return null if the value
2937 /// exists but does not have the right type.
2938 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2939                                           LocTy Loc, bool IsCall) {
2940   // Look this name up in the normal function symbol table.
2941   Value *Val = F.getValueSymbolTable()->lookup(Name);
2942 
2943   // If this is a forward reference for the value, see if we already created a
2944   // forward ref record.
2945   if (!Val) {
2946     auto I = ForwardRefVals.find(Name);
2947     if (I != ForwardRefVals.end())
2948       Val = I->second.first;
2949   }
2950 
2951   // If we have the value in the symbol table or fwd-ref table, return it.
2952   if (Val)
2953     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2954 
2955   // Don't make placeholders with invalid type.
2956   if (!Ty->isFirstClassType()) {
2957     P.Error(Loc, "invalid use of a non-first-class type");
2958     return nullptr;
2959   }
2960 
2961   // Otherwise, create a new forward reference for this value and remember it.
2962   Value *FwdVal;
2963   if (Ty->isLabelTy()) {
2964     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2965   } else {
2966     FwdVal = new Argument(Ty, Name);
2967   }
2968 
2969   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2970   return FwdVal;
2971 }
2972 
2973 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2974                                           bool IsCall) {
2975   // Look this name up in the normal function symbol table.
2976   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2977 
2978   // If this is a forward reference for the value, see if we already created a
2979   // forward ref record.
2980   if (!Val) {
2981     auto I = ForwardRefValIDs.find(ID);
2982     if (I != ForwardRefValIDs.end())
2983       Val = I->second.first;
2984   }
2985 
2986   // If we have the value in the symbol table or fwd-ref table, return it.
2987   if (Val)
2988     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2989 
2990   if (!Ty->isFirstClassType()) {
2991     P.Error(Loc, "invalid use of a non-first-class type");
2992     return nullptr;
2993   }
2994 
2995   // Otherwise, create a new forward reference for this value and remember it.
2996   Value *FwdVal;
2997   if (Ty->isLabelTy()) {
2998     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2999   } else {
3000     FwdVal = new Argument(Ty);
3001   }
3002 
3003   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3004   return FwdVal;
3005 }
3006 
3007 /// SetInstName - After an instruction is parsed and inserted into its
3008 /// basic block, this installs its name.
3009 bool LLParser::PerFunctionState::SetInstName(int NameID,
3010                                              const std::string &NameStr,
3011                                              LocTy NameLoc, Instruction *Inst) {
3012   // If this instruction has void type, it cannot have a name or ID specified.
3013   if (Inst->getType()->isVoidTy()) {
3014     if (NameID != -1 || !NameStr.empty())
3015       return P.Error(NameLoc, "instructions returning void cannot have a name");
3016     return false;
3017   }
3018 
3019   // If this was a numbered instruction, verify that the instruction is the
3020   // expected value and resolve any forward references.
3021   if (NameStr.empty()) {
3022     // If neither a name nor an ID was specified, just use the next ID.
3023     if (NameID == -1)
3024       NameID = NumberedVals.size();
3025 
3026     if (unsigned(NameID) != NumberedVals.size())
3027       return P.Error(NameLoc, "instruction expected to be numbered '%" +
3028                      Twine(NumberedVals.size()) + "'");
3029 
3030     auto FI = ForwardRefValIDs.find(NameID);
3031     if (FI != ForwardRefValIDs.end()) {
3032       Value *Sentinel = FI->second.first;
3033       if (Sentinel->getType() != Inst->getType())
3034         return P.Error(NameLoc, "instruction forward referenced with type '" +
3035                        getTypeString(FI->second.first->getType()) + "'");
3036 
3037       Sentinel->replaceAllUsesWith(Inst);
3038       Sentinel->deleteValue();
3039       ForwardRefValIDs.erase(FI);
3040     }
3041 
3042     NumberedVals.push_back(Inst);
3043     return false;
3044   }
3045 
3046   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3047   auto FI = ForwardRefVals.find(NameStr);
3048   if (FI != ForwardRefVals.end()) {
3049     Value *Sentinel = FI->second.first;
3050     if (Sentinel->getType() != Inst->getType())
3051       return P.Error(NameLoc, "instruction forward referenced with type '" +
3052                      getTypeString(FI->second.first->getType()) + "'");
3053 
3054     Sentinel->replaceAllUsesWith(Inst);
3055     Sentinel->deleteValue();
3056     ForwardRefVals.erase(FI);
3057   }
3058 
3059   // Set the name on the instruction.
3060   Inst->setName(NameStr);
3061 
3062   if (Inst->getName() != NameStr)
3063     return P.Error(NameLoc, "multiple definition of local value named '" +
3064                    NameStr + "'");
3065   return false;
3066 }
3067 
3068 /// GetBB - Get a basic block with the specified name or ID, creating a
3069 /// forward reference record if needed.
3070 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
3071                                               LocTy Loc) {
3072   return dyn_cast_or_null<BasicBlock>(
3073       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3074 }
3075 
3076 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
3077   return dyn_cast_or_null<BasicBlock>(
3078       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3079 }
3080 
3081 /// DefineBB - Define the specified basic block, which is either named or
3082 /// unnamed.  If there is an error, this returns null otherwise it returns
3083 /// the block being defined.
3084 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
3085                                                  int NameID, LocTy Loc) {
3086   BasicBlock *BB;
3087   if (Name.empty()) {
3088     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3089       P.Error(Loc, "label expected to be numbered '" +
3090                        Twine(NumberedVals.size()) + "'");
3091       return nullptr;
3092     }
3093     BB = GetBB(NumberedVals.size(), Loc);
3094     if (!BB) {
3095       P.Error(Loc, "unable to create block numbered '" +
3096                        Twine(NumberedVals.size()) + "'");
3097       return nullptr;
3098     }
3099   } else {
3100     BB = GetBB(Name, Loc);
3101     if (!BB) {
3102       P.Error(Loc, "unable to create block named '" + Name + "'");
3103       return nullptr;
3104     }
3105   }
3106 
3107   // Move the block to the end of the function.  Forward ref'd blocks are
3108   // inserted wherever they happen to be referenced.
3109   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3110 
3111   // Remove the block from forward ref sets.
3112   if (Name.empty()) {
3113     ForwardRefValIDs.erase(NumberedVals.size());
3114     NumberedVals.push_back(BB);
3115   } else {
3116     // BB forward references are already in the function symbol table.
3117     ForwardRefVals.erase(Name);
3118   }
3119 
3120   return BB;
3121 }
3122 
3123 //===----------------------------------------------------------------------===//
3124 // Constants.
3125 //===----------------------------------------------------------------------===//
3126 
3127 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3128 /// type implied.  For example, if we parse "4" we don't know what integer type
3129 /// it has.  The value will later be combined with its type and checked for
3130 /// sanity.  PFS is used to convert function-local operands of metadata (since
3131 /// metadata operands are not just parsed here but also converted to values).
3132 /// PFS can be null when we are not parsing metadata values inside a function.
3133 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
3134   ID.Loc = Lex.getLoc();
3135   switch (Lex.getKind()) {
3136   default: return TokError("expected value token");
3137   case lltok::GlobalID:  // @42
3138     ID.UIntVal = Lex.getUIntVal();
3139     ID.Kind = ValID::t_GlobalID;
3140     break;
3141   case lltok::GlobalVar:  // @foo
3142     ID.StrVal = Lex.getStrVal();
3143     ID.Kind = ValID::t_GlobalName;
3144     break;
3145   case lltok::LocalVarID:  // %42
3146     ID.UIntVal = Lex.getUIntVal();
3147     ID.Kind = ValID::t_LocalID;
3148     break;
3149   case lltok::LocalVar:  // %foo
3150     ID.StrVal = Lex.getStrVal();
3151     ID.Kind = ValID::t_LocalName;
3152     break;
3153   case lltok::APSInt:
3154     ID.APSIntVal = Lex.getAPSIntVal();
3155     ID.Kind = ValID::t_APSInt;
3156     break;
3157   case lltok::APFloat:
3158     ID.APFloatVal = Lex.getAPFloatVal();
3159     ID.Kind = ValID::t_APFloat;
3160     break;
3161   case lltok::kw_true:
3162     ID.ConstantVal = ConstantInt::getTrue(Context);
3163     ID.Kind = ValID::t_Constant;
3164     break;
3165   case lltok::kw_false:
3166     ID.ConstantVal = ConstantInt::getFalse(Context);
3167     ID.Kind = ValID::t_Constant;
3168     break;
3169   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3170   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3171   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3172   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3173 
3174   case lltok::lbrace: {
3175     // ValID ::= '{' ConstVector '}'
3176     Lex.Lex();
3177     SmallVector<Constant*, 16> Elts;
3178     if (ParseGlobalValueVector(Elts) ||
3179         ParseToken(lltok::rbrace, "expected end of struct constant"))
3180       return true;
3181 
3182     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3183     ID.UIntVal = Elts.size();
3184     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3185            Elts.size() * sizeof(Elts[0]));
3186     ID.Kind = ValID::t_ConstantStruct;
3187     return false;
3188   }
3189   case lltok::less: {
3190     // ValID ::= '<' ConstVector '>'         --> Vector.
3191     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3192     Lex.Lex();
3193     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3194 
3195     SmallVector<Constant*, 16> Elts;
3196     LocTy FirstEltLoc = Lex.getLoc();
3197     if (ParseGlobalValueVector(Elts) ||
3198         (isPackedStruct &&
3199          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3200         ParseToken(lltok::greater, "expected end of constant"))
3201       return true;
3202 
3203     if (isPackedStruct) {
3204       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3205       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3206              Elts.size() * sizeof(Elts[0]));
3207       ID.UIntVal = Elts.size();
3208       ID.Kind = ValID::t_PackedConstantStruct;
3209       return false;
3210     }
3211 
3212     if (Elts.empty())
3213       return Error(ID.Loc, "constant vector must not be empty");
3214 
3215     if (!Elts[0]->getType()->isIntegerTy() &&
3216         !Elts[0]->getType()->isFloatingPointTy() &&
3217         !Elts[0]->getType()->isPointerTy())
3218       return Error(FirstEltLoc,
3219             "vector elements must have integer, pointer or floating point type");
3220 
3221     // Verify that all the vector elements have the same type.
3222     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3223       if (Elts[i]->getType() != Elts[0]->getType())
3224         return Error(FirstEltLoc,
3225                      "vector element #" + Twine(i) +
3226                     " is not of type '" + getTypeString(Elts[0]->getType()));
3227 
3228     ID.ConstantVal = ConstantVector::get(Elts);
3229     ID.Kind = ValID::t_Constant;
3230     return false;
3231   }
3232   case lltok::lsquare: {   // Array Constant
3233     Lex.Lex();
3234     SmallVector<Constant*, 16> Elts;
3235     LocTy FirstEltLoc = Lex.getLoc();
3236     if (ParseGlobalValueVector(Elts) ||
3237         ParseToken(lltok::rsquare, "expected end of array constant"))
3238       return true;
3239 
3240     // Handle empty element.
3241     if (Elts.empty()) {
3242       // Use undef instead of an array because it's inconvenient to determine
3243       // the element type at this point, there being no elements to examine.
3244       ID.Kind = ValID::t_EmptyArray;
3245       return false;
3246     }
3247 
3248     if (!Elts[0]->getType()->isFirstClassType())
3249       return Error(FirstEltLoc, "invalid array element type: " +
3250                    getTypeString(Elts[0]->getType()));
3251 
3252     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3253 
3254     // Verify all elements are correct type!
3255     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3256       if (Elts[i]->getType() != Elts[0]->getType())
3257         return Error(FirstEltLoc,
3258                      "array element #" + Twine(i) +
3259                      " is not of type '" + getTypeString(Elts[0]->getType()));
3260     }
3261 
3262     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3263     ID.Kind = ValID::t_Constant;
3264     return false;
3265   }
3266   case lltok::kw_c:  // c "foo"
3267     Lex.Lex();
3268     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3269                                                   false);
3270     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3271     ID.Kind = ValID::t_Constant;
3272     return false;
3273 
3274   case lltok::kw_asm: {
3275     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3276     //             STRINGCONSTANT
3277     bool HasSideEffect, AlignStack, AsmDialect;
3278     Lex.Lex();
3279     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3280         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3281         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3282         ParseStringConstant(ID.StrVal) ||
3283         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3284         ParseToken(lltok::StringConstant, "expected constraint string"))
3285       return true;
3286     ID.StrVal2 = Lex.getStrVal();
3287     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3288       (unsigned(AsmDialect)<<2);
3289     ID.Kind = ValID::t_InlineAsm;
3290     return false;
3291   }
3292 
3293   case lltok::kw_blockaddress: {
3294     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3295     Lex.Lex();
3296 
3297     ValID Fn, Label;
3298 
3299     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3300         ParseValID(Fn) ||
3301         ParseToken(lltok::comma, "expected comma in block address expression")||
3302         ParseValID(Label) ||
3303         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3304       return true;
3305 
3306     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3307       return Error(Fn.Loc, "expected function name in blockaddress");
3308     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3309       return Error(Label.Loc, "expected basic block name in blockaddress");
3310 
3311     // Try to find the function (but skip it if it's forward-referenced).
3312     GlobalValue *GV = nullptr;
3313     if (Fn.Kind == ValID::t_GlobalID) {
3314       if (Fn.UIntVal < NumberedVals.size())
3315         GV = NumberedVals[Fn.UIntVal];
3316     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3317       GV = M->getNamedValue(Fn.StrVal);
3318     }
3319     Function *F = nullptr;
3320     if (GV) {
3321       // Confirm that it's actually a function with a definition.
3322       if (!isa<Function>(GV))
3323         return Error(Fn.Loc, "expected function name in blockaddress");
3324       F = cast<Function>(GV);
3325       if (F->isDeclaration())
3326         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3327     }
3328 
3329     if (!F) {
3330       // Make a global variable as a placeholder for this reference.
3331       GlobalValue *&FwdRef =
3332           ForwardRefBlockAddresses.insert(std::make_pair(
3333                                               std::move(Fn),
3334                                               std::map<ValID, GlobalValue *>()))
3335               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3336               .first->second;
3337       if (!FwdRef)
3338         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3339                                     GlobalValue::InternalLinkage, nullptr, "");
3340       ID.ConstantVal = FwdRef;
3341       ID.Kind = ValID::t_Constant;
3342       return false;
3343     }
3344 
3345     // We found the function; now find the basic block.  Don't use PFS, since we
3346     // might be inside a constant expression.
3347     BasicBlock *BB;
3348     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3349       if (Label.Kind == ValID::t_LocalID)
3350         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3351       else
3352         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3353       if (!BB)
3354         return Error(Label.Loc, "referenced value is not a basic block");
3355     } else {
3356       if (Label.Kind == ValID::t_LocalID)
3357         return Error(Label.Loc, "cannot take address of numeric label after "
3358                                 "the function is defined");
3359       BB = dyn_cast_or_null<BasicBlock>(
3360           F->getValueSymbolTable()->lookup(Label.StrVal));
3361       if (!BB)
3362         return Error(Label.Loc, "referenced value is not a basic block");
3363     }
3364 
3365     ID.ConstantVal = BlockAddress::get(F, BB);
3366     ID.Kind = ValID::t_Constant;
3367     return false;
3368   }
3369 
3370   case lltok::kw_trunc:
3371   case lltok::kw_zext:
3372   case lltok::kw_sext:
3373   case lltok::kw_fptrunc:
3374   case lltok::kw_fpext:
3375   case lltok::kw_bitcast:
3376   case lltok::kw_addrspacecast:
3377   case lltok::kw_uitofp:
3378   case lltok::kw_sitofp:
3379   case lltok::kw_fptoui:
3380   case lltok::kw_fptosi:
3381   case lltok::kw_inttoptr:
3382   case lltok::kw_ptrtoint: {
3383     unsigned Opc = Lex.getUIntVal();
3384     Type *DestTy = nullptr;
3385     Constant *SrcVal;
3386     Lex.Lex();
3387     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3388         ParseGlobalTypeAndValue(SrcVal) ||
3389         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3390         ParseType(DestTy) ||
3391         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3392       return true;
3393     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3394       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3395                    getTypeString(SrcVal->getType()) + "' to '" +
3396                    getTypeString(DestTy) + "'");
3397     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3398                                                  SrcVal, DestTy);
3399     ID.Kind = ValID::t_Constant;
3400     return false;
3401   }
3402   case lltok::kw_extractvalue: {
3403     Lex.Lex();
3404     Constant *Val;
3405     SmallVector<unsigned, 4> Indices;
3406     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3407         ParseGlobalTypeAndValue(Val) ||
3408         ParseIndexList(Indices) ||
3409         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3410       return true;
3411 
3412     if (!Val->getType()->isAggregateType())
3413       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3414     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3415       return Error(ID.Loc, "invalid indices for extractvalue");
3416     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3417     ID.Kind = ValID::t_Constant;
3418     return false;
3419   }
3420   case lltok::kw_insertvalue: {
3421     Lex.Lex();
3422     Constant *Val0, *Val1;
3423     SmallVector<unsigned, 4> Indices;
3424     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3425         ParseGlobalTypeAndValue(Val0) ||
3426         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3427         ParseGlobalTypeAndValue(Val1) ||
3428         ParseIndexList(Indices) ||
3429         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3430       return true;
3431     if (!Val0->getType()->isAggregateType())
3432       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3433     Type *IndexedType =
3434         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3435     if (!IndexedType)
3436       return Error(ID.Loc, "invalid indices for insertvalue");
3437     if (IndexedType != Val1->getType())
3438       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3439                                getTypeString(Val1->getType()) +
3440                                "' instead of '" + getTypeString(IndexedType) +
3441                                "'");
3442     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3443     ID.Kind = ValID::t_Constant;
3444     return false;
3445   }
3446   case lltok::kw_icmp:
3447   case lltok::kw_fcmp: {
3448     unsigned PredVal, Opc = Lex.getUIntVal();
3449     Constant *Val0, *Val1;
3450     Lex.Lex();
3451     if (ParseCmpPredicate(PredVal, Opc) ||
3452         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3453         ParseGlobalTypeAndValue(Val0) ||
3454         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3455         ParseGlobalTypeAndValue(Val1) ||
3456         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3457       return true;
3458 
3459     if (Val0->getType() != Val1->getType())
3460       return Error(ID.Loc, "compare operands must have the same type");
3461 
3462     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3463 
3464     if (Opc == Instruction::FCmp) {
3465       if (!Val0->getType()->isFPOrFPVectorTy())
3466         return Error(ID.Loc, "fcmp requires floating point operands");
3467       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3468     } else {
3469       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3470       if (!Val0->getType()->isIntOrIntVectorTy() &&
3471           !Val0->getType()->isPtrOrPtrVectorTy())
3472         return Error(ID.Loc, "icmp requires pointer or integer operands");
3473       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3474     }
3475     ID.Kind = ValID::t_Constant;
3476     return false;
3477   }
3478 
3479   // Unary Operators.
3480   case lltok::kw_fneg: {
3481     unsigned Opc = Lex.getUIntVal();
3482     Constant *Val;
3483     Lex.Lex();
3484     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3485         ParseGlobalTypeAndValue(Val) ||
3486         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3487       return true;
3488 
3489     // Check that the type is valid for the operator.
3490     switch (Opc) {
3491     case Instruction::FNeg:
3492       if (!Val->getType()->isFPOrFPVectorTy())
3493         return Error(ID.Loc, "constexpr requires fp operands");
3494       break;
3495     default: llvm_unreachable("Unknown unary operator!");
3496     }
3497     unsigned Flags = 0;
3498     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3499     ID.ConstantVal = C;
3500     ID.Kind = ValID::t_Constant;
3501     return false;
3502   }
3503   // Binary Operators.
3504   case lltok::kw_add:
3505   case lltok::kw_fadd:
3506   case lltok::kw_sub:
3507   case lltok::kw_fsub:
3508   case lltok::kw_mul:
3509   case lltok::kw_fmul:
3510   case lltok::kw_udiv:
3511   case lltok::kw_sdiv:
3512   case lltok::kw_fdiv:
3513   case lltok::kw_urem:
3514   case lltok::kw_srem:
3515   case lltok::kw_frem:
3516   case lltok::kw_shl:
3517   case lltok::kw_lshr:
3518   case lltok::kw_ashr: {
3519     bool NUW = false;
3520     bool NSW = false;
3521     bool Exact = false;
3522     unsigned Opc = Lex.getUIntVal();
3523     Constant *Val0, *Val1;
3524     Lex.Lex();
3525     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3526         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3527       if (EatIfPresent(lltok::kw_nuw))
3528         NUW = true;
3529       if (EatIfPresent(lltok::kw_nsw)) {
3530         NSW = true;
3531         if (EatIfPresent(lltok::kw_nuw))
3532           NUW = true;
3533       }
3534     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3535                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3536       if (EatIfPresent(lltok::kw_exact))
3537         Exact = true;
3538     }
3539     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3540         ParseGlobalTypeAndValue(Val0) ||
3541         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3542         ParseGlobalTypeAndValue(Val1) ||
3543         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3544       return true;
3545     if (Val0->getType() != Val1->getType())
3546       return Error(ID.Loc, "operands of constexpr must have same type");
3547     // Check that the type is valid for the operator.
3548     switch (Opc) {
3549     case Instruction::Add:
3550     case Instruction::Sub:
3551     case Instruction::Mul:
3552     case Instruction::UDiv:
3553     case Instruction::SDiv:
3554     case Instruction::URem:
3555     case Instruction::SRem:
3556     case Instruction::Shl:
3557     case Instruction::AShr:
3558     case Instruction::LShr:
3559       if (!Val0->getType()->isIntOrIntVectorTy())
3560         return Error(ID.Loc, "constexpr requires integer operands");
3561       break;
3562     case Instruction::FAdd:
3563     case Instruction::FSub:
3564     case Instruction::FMul:
3565     case Instruction::FDiv:
3566     case Instruction::FRem:
3567       if (!Val0->getType()->isFPOrFPVectorTy())
3568         return Error(ID.Loc, "constexpr requires fp operands");
3569       break;
3570     default: llvm_unreachable("Unknown binary operator!");
3571     }
3572     unsigned Flags = 0;
3573     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3574     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3575     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3576     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3577     ID.ConstantVal = C;
3578     ID.Kind = ValID::t_Constant;
3579     return false;
3580   }
3581 
3582   // Logical Operations
3583   case lltok::kw_and:
3584   case lltok::kw_or:
3585   case lltok::kw_xor: {
3586     unsigned Opc = Lex.getUIntVal();
3587     Constant *Val0, *Val1;
3588     Lex.Lex();
3589     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3590         ParseGlobalTypeAndValue(Val0) ||
3591         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3592         ParseGlobalTypeAndValue(Val1) ||
3593         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3594       return true;
3595     if (Val0->getType() != Val1->getType())
3596       return Error(ID.Loc, "operands of constexpr must have same type");
3597     if (!Val0->getType()->isIntOrIntVectorTy())
3598       return Error(ID.Loc,
3599                    "constexpr requires integer or integer vector operands");
3600     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3601     ID.Kind = ValID::t_Constant;
3602     return false;
3603   }
3604 
3605   case lltok::kw_getelementptr:
3606   case lltok::kw_shufflevector:
3607   case lltok::kw_insertelement:
3608   case lltok::kw_extractelement:
3609   case lltok::kw_select: {
3610     unsigned Opc = Lex.getUIntVal();
3611     SmallVector<Constant*, 16> Elts;
3612     bool InBounds = false;
3613     Type *Ty;
3614     Lex.Lex();
3615 
3616     if (Opc == Instruction::GetElementPtr)
3617       InBounds = EatIfPresent(lltok::kw_inbounds);
3618 
3619     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3620       return true;
3621 
3622     LocTy ExplicitTypeLoc = Lex.getLoc();
3623     if (Opc == Instruction::GetElementPtr) {
3624       if (ParseType(Ty) ||
3625           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3626         return true;
3627     }
3628 
3629     Optional<unsigned> InRangeOp;
3630     if (ParseGlobalValueVector(
3631             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3632         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3633       return true;
3634 
3635     if (Opc == Instruction::GetElementPtr) {
3636       if (Elts.size() == 0 ||
3637           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3638         return Error(ID.Loc, "base of getelementptr must be a pointer");
3639 
3640       Type *BaseType = Elts[0]->getType();
3641       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3642       if (Ty != BasePointerType->getElementType())
3643         return Error(
3644             ExplicitTypeLoc,
3645             "explicit pointee type doesn't match operand's pointee type");
3646 
3647       unsigned GEPWidth = BaseType->isVectorTy()
3648                               ? cast<VectorType>(BaseType)->getNumElements()
3649                               : 0;
3650 
3651       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3652       for (Constant *Val : Indices) {
3653         Type *ValTy = Val->getType();
3654         if (!ValTy->isIntOrIntVectorTy())
3655           return Error(ID.Loc, "getelementptr index must be an integer");
3656         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3657           unsigned ValNumEl = ValVTy->getNumElements();
3658           if (GEPWidth && (ValNumEl != GEPWidth))
3659             return Error(
3660                 ID.Loc,
3661                 "getelementptr vector index has a wrong number of elements");
3662           // GEPWidth may have been unknown because the base is a scalar,
3663           // but it is known now.
3664           GEPWidth = ValNumEl;
3665         }
3666       }
3667 
3668       SmallPtrSet<Type*, 4> Visited;
3669       if (!Indices.empty() && !Ty->isSized(&Visited))
3670         return Error(ID.Loc, "base element of getelementptr must be sized");
3671 
3672       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3673         return Error(ID.Loc, "invalid getelementptr indices");
3674 
3675       if (InRangeOp) {
3676         if (*InRangeOp == 0)
3677           return Error(ID.Loc,
3678                        "inrange keyword may not appear on pointer operand");
3679         --*InRangeOp;
3680       }
3681 
3682       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3683                                                       InBounds, InRangeOp);
3684     } else if (Opc == Instruction::Select) {
3685       if (Elts.size() != 3)
3686         return Error(ID.Loc, "expected three operands to select");
3687       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3688                                                               Elts[2]))
3689         return Error(ID.Loc, Reason);
3690       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3691     } else if (Opc == Instruction::ShuffleVector) {
3692       if (Elts.size() != 3)
3693         return Error(ID.Loc, "expected three operands to shufflevector");
3694       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3695         return Error(ID.Loc, "invalid operands to shufflevector");
3696       SmallVector<int, 16> Mask;
3697       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3698       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3699     } else if (Opc == Instruction::ExtractElement) {
3700       if (Elts.size() != 2)
3701         return Error(ID.Loc, "expected two operands to extractelement");
3702       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3703         return Error(ID.Loc, "invalid extractelement operands");
3704       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3705     } else {
3706       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3707       if (Elts.size() != 3)
3708       return Error(ID.Loc, "expected three operands to insertelement");
3709       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3710         return Error(ID.Loc, "invalid insertelement operands");
3711       ID.ConstantVal =
3712                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3713     }
3714 
3715     ID.Kind = ValID::t_Constant;
3716     return false;
3717   }
3718   }
3719 
3720   Lex.Lex();
3721   return false;
3722 }
3723 
3724 /// ParseGlobalValue - Parse a global value with the specified type.
3725 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3726   C = nullptr;
3727   ValID ID;
3728   Value *V = nullptr;
3729   bool Parsed = ParseValID(ID) ||
3730                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3731   if (V && !(C = dyn_cast<Constant>(V)))
3732     return Error(ID.Loc, "global values must be constants");
3733   return Parsed;
3734 }
3735 
3736 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3737   Type *Ty = nullptr;
3738   return ParseType(Ty) ||
3739          ParseGlobalValue(Ty, V);
3740 }
3741 
3742 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3743   C = nullptr;
3744 
3745   LocTy KwLoc = Lex.getLoc();
3746   if (!EatIfPresent(lltok::kw_comdat))
3747     return false;
3748 
3749   if (EatIfPresent(lltok::lparen)) {
3750     if (Lex.getKind() != lltok::ComdatVar)
3751       return TokError("expected comdat variable");
3752     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3753     Lex.Lex();
3754     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3755       return true;
3756   } else {
3757     if (GlobalName.empty())
3758       return TokError("comdat cannot be unnamed");
3759     C = getComdat(std::string(GlobalName), KwLoc);
3760   }
3761 
3762   return false;
3763 }
3764 
3765 /// ParseGlobalValueVector
3766 ///   ::= /*empty*/
3767 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3768 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3769                                       Optional<unsigned> *InRangeOp) {
3770   // Empty list.
3771   if (Lex.getKind() == lltok::rbrace ||
3772       Lex.getKind() == lltok::rsquare ||
3773       Lex.getKind() == lltok::greater ||
3774       Lex.getKind() == lltok::rparen)
3775     return false;
3776 
3777   do {
3778     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3779       *InRangeOp = Elts.size();
3780 
3781     Constant *C;
3782     if (ParseGlobalTypeAndValue(C)) return true;
3783     Elts.push_back(C);
3784   } while (EatIfPresent(lltok::comma));
3785 
3786   return false;
3787 }
3788 
3789 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3790   SmallVector<Metadata *, 16> Elts;
3791   if (ParseMDNodeVector(Elts))
3792     return true;
3793 
3794   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3795   return false;
3796 }
3797 
3798 /// MDNode:
3799 ///  ::= !{ ... }
3800 ///  ::= !7
3801 ///  ::= !DILocation(...)
3802 bool LLParser::ParseMDNode(MDNode *&N) {
3803   if (Lex.getKind() == lltok::MetadataVar)
3804     return ParseSpecializedMDNode(N);
3805 
3806   return ParseToken(lltok::exclaim, "expected '!' here") ||
3807          ParseMDNodeTail(N);
3808 }
3809 
3810 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3811   // !{ ... }
3812   if (Lex.getKind() == lltok::lbrace)
3813     return ParseMDTuple(N);
3814 
3815   // !42
3816   return ParseMDNodeID(N);
3817 }
3818 
3819 namespace {
3820 
3821 /// Structure to represent an optional metadata field.
3822 template <class FieldTy> struct MDFieldImpl {
3823   typedef MDFieldImpl ImplTy;
3824   FieldTy Val;
3825   bool Seen;
3826 
3827   void assign(FieldTy Val) {
3828     Seen = true;
3829     this->Val = std::move(Val);
3830   }
3831 
3832   explicit MDFieldImpl(FieldTy Default)
3833       : Val(std::move(Default)), Seen(false) {}
3834 };
3835 
3836 /// Structure to represent an optional metadata field that
3837 /// can be of either type (A or B) and encapsulates the
3838 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3839 /// to reimplement the specifics for representing each Field.
3840 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3841   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3842   FieldTypeA A;
3843   FieldTypeB B;
3844   bool Seen;
3845 
3846   enum {
3847     IsInvalid = 0,
3848     IsTypeA = 1,
3849     IsTypeB = 2
3850   } WhatIs;
3851 
3852   void assign(FieldTypeA A) {
3853     Seen = true;
3854     this->A = std::move(A);
3855     WhatIs = IsTypeA;
3856   }
3857 
3858   void assign(FieldTypeB B) {
3859     Seen = true;
3860     this->B = std::move(B);
3861     WhatIs = IsTypeB;
3862   }
3863 
3864   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3865       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3866         WhatIs(IsInvalid) {}
3867 };
3868 
3869 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3870   uint64_t Max;
3871 
3872   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3873       : ImplTy(Default), Max(Max) {}
3874 };
3875 
3876 struct LineField : public MDUnsignedField {
3877   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3878 };
3879 
3880 struct ColumnField : public MDUnsignedField {
3881   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3882 };
3883 
3884 struct DwarfTagField : public MDUnsignedField {
3885   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3886   DwarfTagField(dwarf::Tag DefaultTag)
3887       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3888 };
3889 
3890 struct DwarfMacinfoTypeField : public MDUnsignedField {
3891   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3892   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3893     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3894 };
3895 
3896 struct DwarfAttEncodingField : public MDUnsignedField {
3897   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3898 };
3899 
3900 struct DwarfVirtualityField : public MDUnsignedField {
3901   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3902 };
3903 
3904 struct DwarfLangField : public MDUnsignedField {
3905   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3906 };
3907 
3908 struct DwarfCCField : public MDUnsignedField {
3909   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3910 };
3911 
3912 struct EmissionKindField : public MDUnsignedField {
3913   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3914 };
3915 
3916 struct NameTableKindField : public MDUnsignedField {
3917   NameTableKindField()
3918       : MDUnsignedField(
3919             0, (unsigned)
3920                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3921 };
3922 
3923 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3924   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3925 };
3926 
3927 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3928   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3929 };
3930 
3931 struct MDAPSIntField : public MDFieldImpl<APSInt> {
3932   MDAPSIntField() : ImplTy(APSInt()) {}
3933 };
3934 
3935 struct MDSignedField : public MDFieldImpl<int64_t> {
3936   int64_t Min;
3937   int64_t Max;
3938 
3939   MDSignedField(int64_t Default = 0)
3940       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3941   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3942       : ImplTy(Default), Min(Min), Max(Max) {}
3943 };
3944 
3945 struct MDBoolField : public MDFieldImpl<bool> {
3946   MDBoolField(bool Default = false) : ImplTy(Default) {}
3947 };
3948 
3949 struct MDField : public MDFieldImpl<Metadata *> {
3950   bool AllowNull;
3951 
3952   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3953 };
3954 
3955 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3956   MDConstant() : ImplTy(nullptr) {}
3957 };
3958 
3959 struct MDStringField : public MDFieldImpl<MDString *> {
3960   bool AllowEmpty;
3961   MDStringField(bool AllowEmpty = true)
3962       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3963 };
3964 
3965 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3966   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3967 };
3968 
3969 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3970   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3971 };
3972 
3973 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3974   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3975       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3976 
3977   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3978                     bool AllowNull = true)
3979       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3980 
3981   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3982   bool isMDField() const { return WhatIs == IsTypeB; }
3983   int64_t getMDSignedValue() const {
3984     assert(isMDSignedField() && "Wrong field type");
3985     return A.Val;
3986   }
3987   Metadata *getMDFieldValue() const {
3988     assert(isMDField() && "Wrong field type");
3989     return B.Val;
3990   }
3991 };
3992 
3993 struct MDSignedOrUnsignedField
3994     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3995   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3996 
3997   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3998   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3999   int64_t getMDSignedValue() const {
4000     assert(isMDSignedField() && "Wrong field type");
4001     return A.Val;
4002   }
4003   uint64_t getMDUnsignedValue() const {
4004     assert(isMDUnsignedField() && "Wrong field type");
4005     return B.Val;
4006   }
4007 };
4008 
4009 } // end anonymous namespace
4010 
4011 namespace llvm {
4012 
4013 template <>
4014 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4015   if (Lex.getKind() != lltok::APSInt)
4016     return TokError("expected integer");
4017 
4018   Result.assign(Lex.getAPSIntVal());
4019   Lex.Lex();
4020   return false;
4021 }
4022 
4023 template <>
4024 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4025                             MDUnsignedField &Result) {
4026   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4027     return TokError("expected unsigned integer");
4028 
4029   auto &U = Lex.getAPSIntVal();
4030   if (U.ugt(Result.Max))
4031     return TokError("value for '" + Name + "' too large, limit is " +
4032                     Twine(Result.Max));
4033   Result.assign(U.getZExtValue());
4034   assert(Result.Val <= Result.Max && "Expected value in range");
4035   Lex.Lex();
4036   return false;
4037 }
4038 
4039 template <>
4040 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4041   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4042 }
4043 template <>
4044 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4045   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4046 }
4047 
4048 template <>
4049 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4050   if (Lex.getKind() == lltok::APSInt)
4051     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4052 
4053   if (Lex.getKind() != lltok::DwarfTag)
4054     return TokError("expected DWARF tag");
4055 
4056   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4057   if (Tag == dwarf::DW_TAG_invalid)
4058     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4059   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4060 
4061   Result.assign(Tag);
4062   Lex.Lex();
4063   return false;
4064 }
4065 
4066 template <>
4067 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4068                             DwarfMacinfoTypeField &Result) {
4069   if (Lex.getKind() == lltok::APSInt)
4070     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4071 
4072   if (Lex.getKind() != lltok::DwarfMacinfo)
4073     return TokError("expected DWARF macinfo type");
4074 
4075   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4076   if (Macinfo == dwarf::DW_MACINFO_invalid)
4077     return TokError(
4078         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
4079   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4080 
4081   Result.assign(Macinfo);
4082   Lex.Lex();
4083   return false;
4084 }
4085 
4086 template <>
4087 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4088                             DwarfVirtualityField &Result) {
4089   if (Lex.getKind() == lltok::APSInt)
4090     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4091 
4092   if (Lex.getKind() != lltok::DwarfVirtuality)
4093     return TokError("expected DWARF virtuality code");
4094 
4095   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4096   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4097     return TokError("invalid DWARF virtuality code" + Twine(" '") +
4098                     Lex.getStrVal() + "'");
4099   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4100   Result.assign(Virtuality);
4101   Lex.Lex();
4102   return false;
4103 }
4104 
4105 template <>
4106 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4107   if (Lex.getKind() == lltok::APSInt)
4108     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4109 
4110   if (Lex.getKind() != lltok::DwarfLang)
4111     return TokError("expected DWARF language");
4112 
4113   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4114   if (!Lang)
4115     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4116                     "'");
4117   assert(Lang <= Result.Max && "Expected valid DWARF language");
4118   Result.assign(Lang);
4119   Lex.Lex();
4120   return false;
4121 }
4122 
4123 template <>
4124 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4125   if (Lex.getKind() == lltok::APSInt)
4126     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4127 
4128   if (Lex.getKind() != lltok::DwarfCC)
4129     return TokError("expected DWARF calling convention");
4130 
4131   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4132   if (!CC)
4133     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
4134                     "'");
4135   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4136   Result.assign(CC);
4137   Lex.Lex();
4138   return false;
4139 }
4140 
4141 template <>
4142 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
4143   if (Lex.getKind() == lltok::APSInt)
4144     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4145 
4146   if (Lex.getKind() != lltok::EmissionKind)
4147     return TokError("expected emission kind");
4148 
4149   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4150   if (!Kind)
4151     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4152                     "'");
4153   assert(*Kind <= Result.Max && "Expected valid emission kind");
4154   Result.assign(*Kind);
4155   Lex.Lex();
4156   return false;
4157 }
4158 
4159 template <>
4160 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4161                             NameTableKindField &Result) {
4162   if (Lex.getKind() == lltok::APSInt)
4163     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4164 
4165   if (Lex.getKind() != lltok::NameTableKind)
4166     return TokError("expected nameTable kind");
4167 
4168   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4169   if (!Kind)
4170     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4171                     "'");
4172   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4173   Result.assign((unsigned)*Kind);
4174   Lex.Lex();
4175   return false;
4176 }
4177 
4178 template <>
4179 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4180                             DwarfAttEncodingField &Result) {
4181   if (Lex.getKind() == lltok::APSInt)
4182     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4183 
4184   if (Lex.getKind() != lltok::DwarfAttEncoding)
4185     return TokError("expected DWARF type attribute encoding");
4186 
4187   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4188   if (!Encoding)
4189     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4190                     Lex.getStrVal() + "'");
4191   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4192   Result.assign(Encoding);
4193   Lex.Lex();
4194   return false;
4195 }
4196 
4197 /// DIFlagField
4198 ///  ::= uint32
4199 ///  ::= DIFlagVector
4200 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4201 template <>
4202 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4203 
4204   // Parser for a single flag.
4205   auto parseFlag = [&](DINode::DIFlags &Val) {
4206     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4207       uint32_t TempVal = static_cast<uint32_t>(Val);
4208       bool Res = ParseUInt32(TempVal);
4209       Val = static_cast<DINode::DIFlags>(TempVal);
4210       return Res;
4211     }
4212 
4213     if (Lex.getKind() != lltok::DIFlag)
4214       return TokError("expected debug info flag");
4215 
4216     Val = DINode::getFlag(Lex.getStrVal());
4217     if (!Val)
4218       return TokError(Twine("invalid debug info flag flag '") +
4219                       Lex.getStrVal() + "'");
4220     Lex.Lex();
4221     return false;
4222   };
4223 
4224   // Parse the flags and combine them together.
4225   DINode::DIFlags Combined = DINode::FlagZero;
4226   do {
4227     DINode::DIFlags Val;
4228     if (parseFlag(Val))
4229       return true;
4230     Combined |= Val;
4231   } while (EatIfPresent(lltok::bar));
4232 
4233   Result.assign(Combined);
4234   return false;
4235 }
4236 
4237 /// DISPFlagField
4238 ///  ::= uint32
4239 ///  ::= DISPFlagVector
4240 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4241 template <>
4242 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4243 
4244   // Parser for a single flag.
4245   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4246     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4247       uint32_t TempVal = static_cast<uint32_t>(Val);
4248       bool Res = ParseUInt32(TempVal);
4249       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4250       return Res;
4251     }
4252 
4253     if (Lex.getKind() != lltok::DISPFlag)
4254       return TokError("expected debug info flag");
4255 
4256     Val = DISubprogram::getFlag(Lex.getStrVal());
4257     if (!Val)
4258       return TokError(Twine("invalid subprogram debug info flag '") +
4259                       Lex.getStrVal() + "'");
4260     Lex.Lex();
4261     return false;
4262   };
4263 
4264   // Parse the flags and combine them together.
4265   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4266   do {
4267     DISubprogram::DISPFlags Val;
4268     if (parseFlag(Val))
4269       return true;
4270     Combined |= Val;
4271   } while (EatIfPresent(lltok::bar));
4272 
4273   Result.assign(Combined);
4274   return false;
4275 }
4276 
4277 template <>
4278 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4279                             MDSignedField &Result) {
4280   if (Lex.getKind() != lltok::APSInt)
4281     return TokError("expected signed integer");
4282 
4283   auto &S = Lex.getAPSIntVal();
4284   if (S < Result.Min)
4285     return TokError("value for '" + Name + "' too small, limit is " +
4286                     Twine(Result.Min));
4287   if (S > Result.Max)
4288     return TokError("value for '" + Name + "' too large, limit is " +
4289                     Twine(Result.Max));
4290   Result.assign(S.getExtValue());
4291   assert(Result.Val >= Result.Min && "Expected value in range");
4292   assert(Result.Val <= Result.Max && "Expected value in range");
4293   Lex.Lex();
4294   return false;
4295 }
4296 
4297 template <>
4298 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4299   switch (Lex.getKind()) {
4300   default:
4301     return TokError("expected 'true' or 'false'");
4302   case lltok::kw_true:
4303     Result.assign(true);
4304     break;
4305   case lltok::kw_false:
4306     Result.assign(false);
4307     break;
4308   }
4309   Lex.Lex();
4310   return false;
4311 }
4312 
4313 template <>
4314 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4315   if (Lex.getKind() == lltok::kw_null) {
4316     if (!Result.AllowNull)
4317       return TokError("'" + Name + "' cannot be null");
4318     Lex.Lex();
4319     Result.assign(nullptr);
4320     return false;
4321   }
4322 
4323   Metadata *MD;
4324   if (ParseMetadata(MD, nullptr))
4325     return true;
4326 
4327   Result.assign(MD);
4328   return false;
4329 }
4330 
4331 template <>
4332 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4333                             MDSignedOrMDField &Result) {
4334   // Try to parse a signed int.
4335   if (Lex.getKind() == lltok::APSInt) {
4336     MDSignedField Res = Result.A;
4337     if (!ParseMDField(Loc, Name, Res)) {
4338       Result.assign(Res);
4339       return false;
4340     }
4341     return true;
4342   }
4343 
4344   // Otherwise, try to parse as an MDField.
4345   MDField Res = Result.B;
4346   if (!ParseMDField(Loc, Name, Res)) {
4347     Result.assign(Res);
4348     return false;
4349   }
4350 
4351   return true;
4352 }
4353 
4354 template <>
4355 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4356   LocTy ValueLoc = Lex.getLoc();
4357   std::string S;
4358   if (ParseStringConstant(S))
4359     return true;
4360 
4361   if (!Result.AllowEmpty && S.empty())
4362     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4363 
4364   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4365   return false;
4366 }
4367 
4368 template <>
4369 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4370   SmallVector<Metadata *, 4> MDs;
4371   if (ParseMDNodeVector(MDs))
4372     return true;
4373 
4374   Result.assign(std::move(MDs));
4375   return false;
4376 }
4377 
4378 template <>
4379 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4380                             ChecksumKindField &Result) {
4381   Optional<DIFile::ChecksumKind> CSKind =
4382       DIFile::getChecksumKind(Lex.getStrVal());
4383 
4384   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4385     return TokError(
4386         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4387 
4388   Result.assign(*CSKind);
4389   Lex.Lex();
4390   return false;
4391 }
4392 
4393 } // end namespace llvm
4394 
4395 template <class ParserTy>
4396 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4397   do {
4398     if (Lex.getKind() != lltok::LabelStr)
4399       return TokError("expected field label here");
4400 
4401     if (parseField())
4402       return true;
4403   } while (EatIfPresent(lltok::comma));
4404 
4405   return false;
4406 }
4407 
4408 template <class ParserTy>
4409 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4410   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4411   Lex.Lex();
4412 
4413   if (ParseToken(lltok::lparen, "expected '(' here"))
4414     return true;
4415   if (Lex.getKind() != lltok::rparen)
4416     if (ParseMDFieldsImplBody(parseField))
4417       return true;
4418 
4419   ClosingLoc = Lex.getLoc();
4420   return ParseToken(lltok::rparen, "expected ')' here");
4421 }
4422 
4423 template <class FieldTy>
4424 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4425   if (Result.Seen)
4426     return TokError("field '" + Name + "' cannot be specified more than once");
4427 
4428   LocTy Loc = Lex.getLoc();
4429   Lex.Lex();
4430   return ParseMDField(Loc, Name, Result);
4431 }
4432 
4433 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4434   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4435 
4436 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4437   if (Lex.getStrVal() == #CLASS)                                               \
4438     return Parse##CLASS(N, IsDistinct);
4439 #include "llvm/IR/Metadata.def"
4440 
4441   return TokError("expected metadata type");
4442 }
4443 
4444 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4445 #define NOP_FIELD(NAME, TYPE, INIT)
4446 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4447   if (!NAME.Seen)                                                              \
4448     return Error(ClosingLoc, "missing required field '" #NAME "'");
4449 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4450   if (Lex.getStrVal() == #NAME)                                                \
4451     return ParseMDField(#NAME, NAME);
4452 #define PARSE_MD_FIELDS()                                                      \
4453   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4454   do {                                                                         \
4455     LocTy ClosingLoc;                                                          \
4456     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4457       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4458       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4459     }, ClosingLoc))                                                            \
4460       return true;                                                             \
4461     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4462   } while (false)
4463 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4464   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4465 
4466 /// ParseDILocationFields:
4467 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4468 ///   isImplicitCode: true)
4469 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4470 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4471   OPTIONAL(line, LineField, );                                                 \
4472   OPTIONAL(column, ColumnField, );                                             \
4473   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4474   OPTIONAL(inlinedAt, MDField, );                                              \
4475   OPTIONAL(isImplicitCode, MDBoolField, (false));
4476   PARSE_MD_FIELDS();
4477 #undef VISIT_MD_FIELDS
4478 
4479   Result =
4480       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4481                                    inlinedAt.Val, isImplicitCode.Val));
4482   return false;
4483 }
4484 
4485 /// ParseGenericDINode:
4486 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4487 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4488 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4489   REQUIRED(tag, DwarfTagField, );                                              \
4490   OPTIONAL(header, MDStringField, );                                           \
4491   OPTIONAL(operands, MDFieldList, );
4492   PARSE_MD_FIELDS();
4493 #undef VISIT_MD_FIELDS
4494 
4495   Result = GET_OR_DISTINCT(GenericDINode,
4496                            (Context, tag.Val, header.Val, operands.Val));
4497   return false;
4498 }
4499 
4500 /// ParseDISubrange:
4501 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4502 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4503 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4504 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4505   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4506   OPTIONAL(lowerBound, MDSignedField, );
4507   PARSE_MD_FIELDS();
4508 #undef VISIT_MD_FIELDS
4509 
4510   if (count.isMDSignedField())
4511     Result = GET_OR_DISTINCT(
4512         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4513   else if (count.isMDField())
4514     Result = GET_OR_DISTINCT(
4515         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4516   else
4517     return true;
4518 
4519   return false;
4520 }
4521 
4522 /// ParseDIEnumerator:
4523 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4524 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4525 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4526   REQUIRED(name, MDStringField, );                                             \
4527   REQUIRED(value, MDAPSIntField, );                                            \
4528   OPTIONAL(isUnsigned, MDBoolField, (false));
4529   PARSE_MD_FIELDS();
4530 #undef VISIT_MD_FIELDS
4531 
4532   if (isUnsigned.Val && value.Val.isNegative())
4533     return TokError("unsigned enumerator with negative value");
4534 
4535   APSInt Value(value.Val);
4536   // Add a leading zero so that unsigned values with the msb set are not
4537   // mistaken for negative values when used for signed enumerators.
4538   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4539     Value = Value.zext(Value.getBitWidth() + 1);
4540 
4541   Result =
4542       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4543 
4544   return false;
4545 }
4546 
4547 /// ParseDIBasicType:
4548 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4549 ///                    encoding: DW_ATE_encoding, flags: 0)
4550 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4551 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4552   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4553   OPTIONAL(name, MDStringField, );                                             \
4554   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4555   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4556   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4557   OPTIONAL(flags, DIFlagField, );
4558   PARSE_MD_FIELDS();
4559 #undef VISIT_MD_FIELDS
4560 
4561   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4562                                          align.Val, encoding.Val, flags.Val));
4563   return false;
4564 }
4565 
4566 /// ParseDIDerivedType:
4567 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4568 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4569 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4570 ///                      dwarfAddressSpace: 3)
4571 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4572 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4573   REQUIRED(tag, DwarfTagField, );                                              \
4574   OPTIONAL(name, MDStringField, );                                             \
4575   OPTIONAL(file, MDField, );                                                   \
4576   OPTIONAL(line, LineField, );                                                 \
4577   OPTIONAL(scope, MDField, );                                                  \
4578   REQUIRED(baseType, MDField, );                                               \
4579   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4580   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4581   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4582   OPTIONAL(flags, DIFlagField, );                                              \
4583   OPTIONAL(extraData, MDField, );                                              \
4584   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4585   PARSE_MD_FIELDS();
4586 #undef VISIT_MD_FIELDS
4587 
4588   Optional<unsigned> DWARFAddressSpace;
4589   if (dwarfAddressSpace.Val != UINT32_MAX)
4590     DWARFAddressSpace = dwarfAddressSpace.Val;
4591 
4592   Result = GET_OR_DISTINCT(DIDerivedType,
4593                            (Context, tag.Val, name.Val, file.Val, line.Val,
4594                             scope.Val, baseType.Val, size.Val, align.Val,
4595                             offset.Val, DWARFAddressSpace, flags.Val,
4596                             extraData.Val));
4597   return false;
4598 }
4599 
4600 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4601 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4602   REQUIRED(tag, DwarfTagField, );                                              \
4603   OPTIONAL(name, MDStringField, );                                             \
4604   OPTIONAL(file, MDField, );                                                   \
4605   OPTIONAL(line, LineField, );                                                 \
4606   OPTIONAL(scope, MDField, );                                                  \
4607   OPTIONAL(baseType, MDField, );                                               \
4608   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4609   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4610   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4611   OPTIONAL(flags, DIFlagField, );                                              \
4612   OPTIONAL(elements, MDField, );                                               \
4613   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4614   OPTIONAL(vtableHolder, MDField, );                                           \
4615   OPTIONAL(templateParams, MDField, );                                         \
4616   OPTIONAL(identifier, MDStringField, );                                       \
4617   OPTIONAL(discriminator, MDField, );
4618   PARSE_MD_FIELDS();
4619 #undef VISIT_MD_FIELDS
4620 
4621   // If this has an identifier try to build an ODR type.
4622   if (identifier.Val)
4623     if (auto *CT = DICompositeType::buildODRType(
4624             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4625             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4626             elements.Val, runtimeLang.Val, vtableHolder.Val,
4627             templateParams.Val, discriminator.Val)) {
4628       Result = CT;
4629       return false;
4630     }
4631 
4632   // Create a new node, and save it in the context if it belongs in the type
4633   // map.
4634   Result = GET_OR_DISTINCT(
4635       DICompositeType,
4636       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4637        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4638        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4639        discriminator.Val));
4640   return false;
4641 }
4642 
4643 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4644 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4645   OPTIONAL(flags, DIFlagField, );                                              \
4646   OPTIONAL(cc, DwarfCCField, );                                                \
4647   REQUIRED(types, MDField, );
4648   PARSE_MD_FIELDS();
4649 #undef VISIT_MD_FIELDS
4650 
4651   Result = GET_OR_DISTINCT(DISubroutineType,
4652                            (Context, flags.Val, cc.Val, types.Val));
4653   return false;
4654 }
4655 
4656 /// ParseDIFileType:
4657 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4658 ///                   checksumkind: CSK_MD5,
4659 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4660 ///                   source: "source file contents")
4661 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4662   // The default constructed value for checksumkind is required, but will never
4663   // be used, as the parser checks if the field was actually Seen before using
4664   // the Val.
4665 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4666   REQUIRED(filename, MDStringField, );                                         \
4667   REQUIRED(directory, MDStringField, );                                        \
4668   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4669   OPTIONAL(checksum, MDStringField, );                                         \
4670   OPTIONAL(source, MDStringField, );
4671   PARSE_MD_FIELDS();
4672 #undef VISIT_MD_FIELDS
4673 
4674   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4675   if (checksumkind.Seen && checksum.Seen)
4676     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4677   else if (checksumkind.Seen || checksum.Seen)
4678     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4679 
4680   Optional<MDString *> OptSource;
4681   if (source.Seen)
4682     OptSource = source.Val;
4683   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4684                                     OptChecksum, OptSource));
4685   return false;
4686 }
4687 
4688 /// ParseDICompileUnit:
4689 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4690 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4691 ///                      splitDebugFilename: "abc.debug",
4692 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4693 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4694 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4695 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4696   if (!IsDistinct)
4697     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4698 
4699 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4700   REQUIRED(language, DwarfLangField, );                                        \
4701   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4702   OPTIONAL(producer, MDStringField, );                                         \
4703   OPTIONAL(isOptimized, MDBoolField, );                                        \
4704   OPTIONAL(flags, MDStringField, );                                            \
4705   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4706   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4707   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4708   OPTIONAL(enums, MDField, );                                                  \
4709   OPTIONAL(retainedTypes, MDField, );                                          \
4710   OPTIONAL(globals, MDField, );                                                \
4711   OPTIONAL(imports, MDField, );                                                \
4712   OPTIONAL(macros, MDField, );                                                 \
4713   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4714   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4715   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4716   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4717   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4718   OPTIONAL(sysroot, MDStringField, );                                          \
4719   OPTIONAL(sdk, MDStringField, );
4720   PARSE_MD_FIELDS();
4721 #undef VISIT_MD_FIELDS
4722 
4723   Result = DICompileUnit::getDistinct(
4724       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4725       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4726       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4727       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4728       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4729   return false;
4730 }
4731 
4732 /// ParseDISubprogram:
4733 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4734 ///                     file: !1, line: 7, type: !2, isLocal: false,
4735 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4736 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4737 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4738 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4739 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4740 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4741   auto Loc = Lex.getLoc();
4742 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4743   OPTIONAL(scope, MDField, );                                                  \
4744   OPTIONAL(name, MDStringField, );                                             \
4745   OPTIONAL(linkageName, MDStringField, );                                      \
4746   OPTIONAL(file, MDField, );                                                   \
4747   OPTIONAL(line, LineField, );                                                 \
4748   OPTIONAL(type, MDField, );                                                   \
4749   OPTIONAL(isLocal, MDBoolField, );                                            \
4750   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4751   OPTIONAL(scopeLine, LineField, );                                            \
4752   OPTIONAL(containingType, MDField, );                                         \
4753   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4754   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4755   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4756   OPTIONAL(flags, DIFlagField, );                                              \
4757   OPTIONAL(spFlags, DISPFlagField, );                                          \
4758   OPTIONAL(isOptimized, MDBoolField, );                                        \
4759   OPTIONAL(unit, MDField, );                                                   \
4760   OPTIONAL(templateParams, MDField, );                                         \
4761   OPTIONAL(declaration, MDField, );                                            \
4762   OPTIONAL(retainedNodes, MDField, );                                          \
4763   OPTIONAL(thrownTypes, MDField, );
4764   PARSE_MD_FIELDS();
4765 #undef VISIT_MD_FIELDS
4766 
4767   // An explicit spFlags field takes precedence over individual fields in
4768   // older IR versions.
4769   DISubprogram::DISPFlags SPFlags =
4770       spFlags.Seen ? spFlags.Val
4771                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4772                                              isOptimized.Val, virtuality.Val);
4773   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4774     return Lex.Error(
4775         Loc,
4776         "missing 'distinct', required for !DISubprogram that is a Definition");
4777   Result = GET_OR_DISTINCT(
4778       DISubprogram,
4779       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4780        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4781        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4782        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4783   return false;
4784 }
4785 
4786 /// ParseDILexicalBlock:
4787 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4788 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4789 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4790   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4791   OPTIONAL(file, MDField, );                                                   \
4792   OPTIONAL(line, LineField, );                                                 \
4793   OPTIONAL(column, ColumnField, );
4794   PARSE_MD_FIELDS();
4795 #undef VISIT_MD_FIELDS
4796 
4797   Result = GET_OR_DISTINCT(
4798       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4799   return false;
4800 }
4801 
4802 /// ParseDILexicalBlockFile:
4803 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4804 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4805 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4806   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4807   OPTIONAL(file, MDField, );                                                   \
4808   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4809   PARSE_MD_FIELDS();
4810 #undef VISIT_MD_FIELDS
4811 
4812   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4813                            (Context, scope.Val, file.Val, discriminator.Val));
4814   return false;
4815 }
4816 
4817 /// ParseDICommonBlock:
4818 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4819 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4820 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4821   REQUIRED(scope, MDField, );                                                  \
4822   OPTIONAL(declaration, MDField, );                                            \
4823   OPTIONAL(name, MDStringField, );                                             \
4824   OPTIONAL(file, MDField, );                                                   \
4825   OPTIONAL(line, LineField, );
4826   PARSE_MD_FIELDS();
4827 #undef VISIT_MD_FIELDS
4828 
4829   Result = GET_OR_DISTINCT(DICommonBlock,
4830                            (Context, scope.Val, declaration.Val, name.Val,
4831                             file.Val, line.Val));
4832   return false;
4833 }
4834 
4835 /// ParseDINamespace:
4836 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4837 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4838 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4839   REQUIRED(scope, MDField, );                                                  \
4840   OPTIONAL(name, MDStringField, );                                             \
4841   OPTIONAL(exportSymbols, MDBoolField, );
4842   PARSE_MD_FIELDS();
4843 #undef VISIT_MD_FIELDS
4844 
4845   Result = GET_OR_DISTINCT(DINamespace,
4846                            (Context, scope.Val, name.Val, exportSymbols.Val));
4847   return false;
4848 }
4849 
4850 /// ParseDIMacro:
4851 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4852 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4853 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4854   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4855   OPTIONAL(line, LineField, );                                                 \
4856   REQUIRED(name, MDStringField, );                                             \
4857   OPTIONAL(value, MDStringField, );
4858   PARSE_MD_FIELDS();
4859 #undef VISIT_MD_FIELDS
4860 
4861   Result = GET_OR_DISTINCT(DIMacro,
4862                            (Context, type.Val, line.Val, name.Val, value.Val));
4863   return false;
4864 }
4865 
4866 /// ParseDIMacroFile:
4867 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4868 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4869 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4870   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4871   OPTIONAL(line, LineField, );                                                 \
4872   REQUIRED(file, MDField, );                                                   \
4873   OPTIONAL(nodes, MDField, );
4874   PARSE_MD_FIELDS();
4875 #undef VISIT_MD_FIELDS
4876 
4877   Result = GET_OR_DISTINCT(DIMacroFile,
4878                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4879   return false;
4880 }
4881 
4882 /// ParseDIModule:
4883 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
4884 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
4885 ///   file: !1, line: 4)
4886 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4887 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4888   REQUIRED(scope, MDField, );                                                  \
4889   REQUIRED(name, MDStringField, );                                             \
4890   OPTIONAL(configMacros, MDStringField, );                                     \
4891   OPTIONAL(includePath, MDStringField, );                                      \
4892   OPTIONAL(apinotes, MDStringField, );                                         \
4893   OPTIONAL(file, MDField, );                                                   \
4894   OPTIONAL(line, LineField, );
4895   PARSE_MD_FIELDS();
4896 #undef VISIT_MD_FIELDS
4897 
4898   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
4899                                       configMacros.Val, includePath.Val,
4900                                       apinotes.Val, line.Val));
4901   return false;
4902 }
4903 
4904 /// ParseDITemplateTypeParameter:
4905 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
4906 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4907 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4908   OPTIONAL(name, MDStringField, );                                             \
4909   REQUIRED(type, MDField, );                                                   \
4910   OPTIONAL(defaulted, MDBoolField, );
4911   PARSE_MD_FIELDS();
4912 #undef VISIT_MD_FIELDS
4913 
4914   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
4915                            (Context, name.Val, type.Val, defaulted.Val));
4916   return false;
4917 }
4918 
4919 /// ParseDITemplateValueParameter:
4920 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4921 ///                                 name: "V", type: !1, defaulted: false,
4922 ///                                 value: i32 7)
4923 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4924 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4925   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4926   OPTIONAL(name, MDStringField, );                                             \
4927   OPTIONAL(type, MDField, );                                                   \
4928   OPTIONAL(defaulted, MDBoolField, );                                          \
4929   REQUIRED(value, MDField, );
4930 
4931   PARSE_MD_FIELDS();
4932 #undef VISIT_MD_FIELDS
4933 
4934   Result = GET_OR_DISTINCT(
4935       DITemplateValueParameter,
4936       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
4937   return false;
4938 }
4939 
4940 /// ParseDIGlobalVariable:
4941 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4942 ///                         file: !1, line: 7, type: !2, isLocal: false,
4943 ///                         isDefinition: true, templateParams: !3,
4944 ///                         declaration: !4, align: 8)
4945 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4946 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4947   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4948   OPTIONAL(scope, MDField, );                                                  \
4949   OPTIONAL(linkageName, MDStringField, );                                      \
4950   OPTIONAL(file, MDField, );                                                   \
4951   OPTIONAL(line, LineField, );                                                 \
4952   OPTIONAL(type, MDField, );                                                   \
4953   OPTIONAL(isLocal, MDBoolField, );                                            \
4954   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4955   OPTIONAL(templateParams, MDField, );                                         \
4956   OPTIONAL(declaration, MDField, );                                            \
4957   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4958   PARSE_MD_FIELDS();
4959 #undef VISIT_MD_FIELDS
4960 
4961   Result =
4962       GET_OR_DISTINCT(DIGlobalVariable,
4963                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4964                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4965                        declaration.Val, templateParams.Val, align.Val));
4966   return false;
4967 }
4968 
4969 /// ParseDILocalVariable:
4970 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4971 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4972 ///                        align: 8)
4973 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4974 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4975 ///                        align: 8)
4976 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4977 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4978   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4979   OPTIONAL(name, MDStringField, );                                             \
4980   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4981   OPTIONAL(file, MDField, );                                                   \
4982   OPTIONAL(line, LineField, );                                                 \
4983   OPTIONAL(type, MDField, );                                                   \
4984   OPTIONAL(flags, DIFlagField, );                                              \
4985   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4986   PARSE_MD_FIELDS();
4987 #undef VISIT_MD_FIELDS
4988 
4989   Result = GET_OR_DISTINCT(DILocalVariable,
4990                            (Context, scope.Val, name.Val, file.Val, line.Val,
4991                             type.Val, arg.Val, flags.Val, align.Val));
4992   return false;
4993 }
4994 
4995 /// ParseDILabel:
4996 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4997 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4998 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4999   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5000   REQUIRED(name, MDStringField, );                                             \
5001   REQUIRED(file, MDField, );                                                   \
5002   REQUIRED(line, LineField, );
5003   PARSE_MD_FIELDS();
5004 #undef VISIT_MD_FIELDS
5005 
5006   Result = GET_OR_DISTINCT(DILabel,
5007                            (Context, scope.Val, name.Val, file.Val, line.Val));
5008   return false;
5009 }
5010 
5011 /// ParseDIExpression:
5012 ///   ::= !DIExpression(0, 7, -1)
5013 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
5014   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5015   Lex.Lex();
5016 
5017   if (ParseToken(lltok::lparen, "expected '(' here"))
5018     return true;
5019 
5020   SmallVector<uint64_t, 8> Elements;
5021   if (Lex.getKind() != lltok::rparen)
5022     do {
5023       if (Lex.getKind() == lltok::DwarfOp) {
5024         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5025           Lex.Lex();
5026           Elements.push_back(Op);
5027           continue;
5028         }
5029         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5030       }
5031 
5032       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5033         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5034           Lex.Lex();
5035           Elements.push_back(Op);
5036           continue;
5037         }
5038         return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
5039       }
5040 
5041       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5042         return TokError("expected unsigned integer");
5043 
5044       auto &U = Lex.getAPSIntVal();
5045       if (U.ugt(UINT64_MAX))
5046         return TokError("element too large, limit is " + Twine(UINT64_MAX));
5047       Elements.push_back(U.getZExtValue());
5048       Lex.Lex();
5049     } while (EatIfPresent(lltok::comma));
5050 
5051   if (ParseToken(lltok::rparen, "expected ')' here"))
5052     return true;
5053 
5054   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5055   return false;
5056 }
5057 
5058 /// ParseDIGlobalVariableExpression:
5059 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5060 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
5061                                                bool IsDistinct) {
5062 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5063   REQUIRED(var, MDField, );                                                    \
5064   REQUIRED(expr, MDField, );
5065   PARSE_MD_FIELDS();
5066 #undef VISIT_MD_FIELDS
5067 
5068   Result =
5069       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5070   return false;
5071 }
5072 
5073 /// ParseDIObjCProperty:
5074 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5075 ///                       getter: "getFoo", attributes: 7, type: !2)
5076 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5077 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5078   OPTIONAL(name, MDStringField, );                                             \
5079   OPTIONAL(file, MDField, );                                                   \
5080   OPTIONAL(line, LineField, );                                                 \
5081   OPTIONAL(setter, MDStringField, );                                           \
5082   OPTIONAL(getter, MDStringField, );                                           \
5083   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5084   OPTIONAL(type, MDField, );
5085   PARSE_MD_FIELDS();
5086 #undef VISIT_MD_FIELDS
5087 
5088   Result = GET_OR_DISTINCT(DIObjCProperty,
5089                            (Context, name.Val, file.Val, line.Val, setter.Val,
5090                             getter.Val, attributes.Val, type.Val));
5091   return false;
5092 }
5093 
5094 /// ParseDIImportedEntity:
5095 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5096 ///                         line: 7, name: "foo")
5097 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5098 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5099   REQUIRED(tag, DwarfTagField, );                                              \
5100   REQUIRED(scope, MDField, );                                                  \
5101   OPTIONAL(entity, MDField, );                                                 \
5102   OPTIONAL(file, MDField, );                                                   \
5103   OPTIONAL(line, LineField, );                                                 \
5104   OPTIONAL(name, MDStringField, );
5105   PARSE_MD_FIELDS();
5106 #undef VISIT_MD_FIELDS
5107 
5108   Result = GET_OR_DISTINCT(
5109       DIImportedEntity,
5110       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5111   return false;
5112 }
5113 
5114 #undef PARSE_MD_FIELD
5115 #undef NOP_FIELD
5116 #undef REQUIRE_FIELD
5117 #undef DECLARE_FIELD
5118 
5119 /// ParseMetadataAsValue
5120 ///  ::= metadata i32 %local
5121 ///  ::= metadata i32 @global
5122 ///  ::= metadata i32 7
5123 ///  ::= metadata !0
5124 ///  ::= metadata !{...}
5125 ///  ::= metadata !"string"
5126 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5127   // Note: the type 'metadata' has already been parsed.
5128   Metadata *MD;
5129   if (ParseMetadata(MD, &PFS))
5130     return true;
5131 
5132   V = MetadataAsValue::get(Context, MD);
5133   return false;
5134 }
5135 
5136 /// ParseValueAsMetadata
5137 ///  ::= i32 %local
5138 ///  ::= i32 @global
5139 ///  ::= i32 7
5140 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5141                                     PerFunctionState *PFS) {
5142   Type *Ty;
5143   LocTy Loc;
5144   if (ParseType(Ty, TypeMsg, Loc))
5145     return true;
5146   if (Ty->isMetadataTy())
5147     return Error(Loc, "invalid metadata-value-metadata roundtrip");
5148 
5149   Value *V;
5150   if (ParseValue(Ty, V, PFS))
5151     return true;
5152 
5153   MD = ValueAsMetadata::get(V);
5154   return false;
5155 }
5156 
5157 /// ParseMetadata
5158 ///  ::= i32 %local
5159 ///  ::= i32 @global
5160 ///  ::= i32 7
5161 ///  ::= !42
5162 ///  ::= !{...}
5163 ///  ::= !"string"
5164 ///  ::= !DILocation(...)
5165 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5166   if (Lex.getKind() == lltok::MetadataVar) {
5167     MDNode *N;
5168     if (ParseSpecializedMDNode(N))
5169       return true;
5170     MD = N;
5171     return false;
5172   }
5173 
5174   // ValueAsMetadata:
5175   // <type> <value>
5176   if (Lex.getKind() != lltok::exclaim)
5177     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5178 
5179   // '!'.
5180   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5181   Lex.Lex();
5182 
5183   // MDString:
5184   //   ::= '!' STRINGCONSTANT
5185   if (Lex.getKind() == lltok::StringConstant) {
5186     MDString *S;
5187     if (ParseMDString(S))
5188       return true;
5189     MD = S;
5190     return false;
5191   }
5192 
5193   // MDNode:
5194   // !{ ... }
5195   // !7
5196   MDNode *N;
5197   if (ParseMDNodeTail(N))
5198     return true;
5199   MD = N;
5200   return false;
5201 }
5202 
5203 //===----------------------------------------------------------------------===//
5204 // Function Parsing.
5205 //===----------------------------------------------------------------------===//
5206 
5207 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5208                                    PerFunctionState *PFS, bool IsCall) {
5209   if (Ty->isFunctionTy())
5210     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5211 
5212   switch (ID.Kind) {
5213   case ValID::t_LocalID:
5214     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5215     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5216     return V == nullptr;
5217   case ValID::t_LocalName:
5218     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5219     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5220     return V == nullptr;
5221   case ValID::t_InlineAsm: {
5222     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5223       return Error(ID.Loc, "invalid type for inline asm constraint string");
5224     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5225                        (ID.UIntVal >> 1) & 1,
5226                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5227     return false;
5228   }
5229   case ValID::t_GlobalName:
5230     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5231     return V == nullptr;
5232   case ValID::t_GlobalID:
5233     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5234     return V == nullptr;
5235   case ValID::t_APSInt:
5236     if (!Ty->isIntegerTy())
5237       return Error(ID.Loc, "integer constant must have integer type");
5238     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5239     V = ConstantInt::get(Context, ID.APSIntVal);
5240     return false;
5241   case ValID::t_APFloat:
5242     if (!Ty->isFloatingPointTy() ||
5243         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5244       return Error(ID.Loc, "floating point constant invalid for type");
5245 
5246     // The lexer has no type info, so builds all half, float, and double FP
5247     // constants as double.  Fix this here.  Long double does not need this.
5248     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5249       bool Ignored;
5250       if (Ty->isHalfTy())
5251         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5252                               &Ignored);
5253       else if (Ty->isFloatTy())
5254         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5255                               &Ignored);
5256     }
5257     V = ConstantFP::get(Context, ID.APFloatVal);
5258 
5259     if (V->getType() != Ty)
5260       return Error(ID.Loc, "floating point constant does not have type '" +
5261                    getTypeString(Ty) + "'");
5262 
5263     return false;
5264   case ValID::t_Null:
5265     if (!Ty->isPointerTy())
5266       return Error(ID.Loc, "null must be a pointer type");
5267     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5268     return false;
5269   case ValID::t_Undef:
5270     // FIXME: LabelTy should not be a first-class type.
5271     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5272       return Error(ID.Loc, "invalid type for undef constant");
5273     V = UndefValue::get(Ty);
5274     return false;
5275   case ValID::t_EmptyArray:
5276     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5277       return Error(ID.Loc, "invalid empty array initializer");
5278     V = UndefValue::get(Ty);
5279     return false;
5280   case ValID::t_Zero:
5281     // FIXME: LabelTy should not be a first-class type.
5282     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5283       return Error(ID.Loc, "invalid type for null constant");
5284     V = Constant::getNullValue(Ty);
5285     return false;
5286   case ValID::t_None:
5287     if (!Ty->isTokenTy())
5288       return Error(ID.Loc, "invalid type for none constant");
5289     V = Constant::getNullValue(Ty);
5290     return false;
5291   case ValID::t_Constant:
5292     if (ID.ConstantVal->getType() != Ty)
5293       return Error(ID.Loc, "constant expression type mismatch");
5294 
5295     V = ID.ConstantVal;
5296     return false;
5297   case ValID::t_ConstantStruct:
5298   case ValID::t_PackedConstantStruct:
5299     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5300       if (ST->getNumElements() != ID.UIntVal)
5301         return Error(ID.Loc,
5302                      "initializer with struct type has wrong # elements");
5303       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5304         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5305 
5306       // Verify that the elements are compatible with the structtype.
5307       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5308         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5309           return Error(ID.Loc, "element " + Twine(i) +
5310                     " of struct initializer doesn't match struct element type");
5311 
5312       V = ConstantStruct::get(
5313           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5314     } else
5315       return Error(ID.Loc, "constant expression type mismatch");
5316     return false;
5317   }
5318   llvm_unreachable("Invalid ValID");
5319 }
5320 
5321 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5322   C = nullptr;
5323   ValID ID;
5324   auto Loc = Lex.getLoc();
5325   if (ParseValID(ID, /*PFS=*/nullptr))
5326     return true;
5327   switch (ID.Kind) {
5328   case ValID::t_APSInt:
5329   case ValID::t_APFloat:
5330   case ValID::t_Undef:
5331   case ValID::t_Constant:
5332   case ValID::t_ConstantStruct:
5333   case ValID::t_PackedConstantStruct: {
5334     Value *V;
5335     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5336       return true;
5337     assert(isa<Constant>(V) && "Expected a constant value");
5338     C = cast<Constant>(V);
5339     return false;
5340   }
5341   case ValID::t_Null:
5342     C = Constant::getNullValue(Ty);
5343     return false;
5344   default:
5345     return Error(Loc, "expected a constant value");
5346   }
5347 }
5348 
5349 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5350   V = nullptr;
5351   ValID ID;
5352   return ParseValID(ID, PFS) ||
5353          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5354 }
5355 
5356 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5357   Type *Ty = nullptr;
5358   return ParseType(Ty) ||
5359          ParseValue(Ty, V, PFS);
5360 }
5361 
5362 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5363                                       PerFunctionState &PFS) {
5364   Value *V;
5365   Loc = Lex.getLoc();
5366   if (ParseTypeAndValue(V, PFS)) return true;
5367   if (!isa<BasicBlock>(V))
5368     return Error(Loc, "expected a basic block");
5369   BB = cast<BasicBlock>(V);
5370   return false;
5371 }
5372 
5373 /// FunctionHeader
5374 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5375 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5376 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5377 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5378 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5379   // Parse the linkage.
5380   LocTy LinkageLoc = Lex.getLoc();
5381   unsigned Linkage;
5382   unsigned Visibility;
5383   unsigned DLLStorageClass;
5384   bool DSOLocal;
5385   AttrBuilder RetAttrs;
5386   unsigned CC;
5387   bool HasLinkage;
5388   Type *RetType = nullptr;
5389   LocTy RetTypeLoc = Lex.getLoc();
5390   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5391                            DSOLocal) ||
5392       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5393       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5394     return true;
5395 
5396   // Verify that the linkage is ok.
5397   switch ((GlobalValue::LinkageTypes)Linkage) {
5398   case GlobalValue::ExternalLinkage:
5399     break; // always ok.
5400   case GlobalValue::ExternalWeakLinkage:
5401     if (isDefine)
5402       return Error(LinkageLoc, "invalid linkage for function definition");
5403     break;
5404   case GlobalValue::PrivateLinkage:
5405   case GlobalValue::InternalLinkage:
5406   case GlobalValue::AvailableExternallyLinkage:
5407   case GlobalValue::LinkOnceAnyLinkage:
5408   case GlobalValue::LinkOnceODRLinkage:
5409   case GlobalValue::WeakAnyLinkage:
5410   case GlobalValue::WeakODRLinkage:
5411     if (!isDefine)
5412       return Error(LinkageLoc, "invalid linkage for function declaration");
5413     break;
5414   case GlobalValue::AppendingLinkage:
5415   case GlobalValue::CommonLinkage:
5416     return Error(LinkageLoc, "invalid function linkage type");
5417   }
5418 
5419   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5420     return Error(LinkageLoc,
5421                  "symbol with local linkage must have default visibility");
5422 
5423   if (!FunctionType::isValidReturnType(RetType))
5424     return Error(RetTypeLoc, "invalid function return type");
5425 
5426   LocTy NameLoc = Lex.getLoc();
5427 
5428   std::string FunctionName;
5429   if (Lex.getKind() == lltok::GlobalVar) {
5430     FunctionName = Lex.getStrVal();
5431   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5432     unsigned NameID = Lex.getUIntVal();
5433 
5434     if (NameID != NumberedVals.size())
5435       return TokError("function expected to be numbered '%" +
5436                       Twine(NumberedVals.size()) + "'");
5437   } else {
5438     return TokError("expected function name");
5439   }
5440 
5441   Lex.Lex();
5442 
5443   if (Lex.getKind() != lltok::lparen)
5444     return TokError("expected '(' in function argument list");
5445 
5446   SmallVector<ArgInfo, 8> ArgList;
5447   bool isVarArg;
5448   AttrBuilder FuncAttrs;
5449   std::vector<unsigned> FwdRefAttrGrps;
5450   LocTy BuiltinLoc;
5451   std::string Section;
5452   std::string Partition;
5453   MaybeAlign Alignment;
5454   std::string GC;
5455   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5456   unsigned AddrSpace = 0;
5457   Constant *Prefix = nullptr;
5458   Constant *Prologue = nullptr;
5459   Constant *PersonalityFn = nullptr;
5460   Comdat *C;
5461 
5462   if (ParseArgumentList(ArgList, isVarArg) ||
5463       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5464       ParseOptionalProgramAddrSpace(AddrSpace) ||
5465       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5466                                  BuiltinLoc) ||
5467       (EatIfPresent(lltok::kw_section) &&
5468        ParseStringConstant(Section)) ||
5469       (EatIfPresent(lltok::kw_partition) &&
5470        ParseStringConstant(Partition)) ||
5471       parseOptionalComdat(FunctionName, C) ||
5472       ParseOptionalAlignment(Alignment) ||
5473       (EatIfPresent(lltok::kw_gc) &&
5474        ParseStringConstant(GC)) ||
5475       (EatIfPresent(lltok::kw_prefix) &&
5476        ParseGlobalTypeAndValue(Prefix)) ||
5477       (EatIfPresent(lltok::kw_prologue) &&
5478        ParseGlobalTypeAndValue(Prologue)) ||
5479       (EatIfPresent(lltok::kw_personality) &&
5480        ParseGlobalTypeAndValue(PersonalityFn)))
5481     return true;
5482 
5483   if (FuncAttrs.contains(Attribute::Builtin))
5484     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5485 
5486   // If the alignment was parsed as an attribute, move to the alignment field.
5487   if (FuncAttrs.hasAlignmentAttr()) {
5488     Alignment = FuncAttrs.getAlignment();
5489     FuncAttrs.removeAttribute(Attribute::Alignment);
5490   }
5491 
5492   // Okay, if we got here, the function is syntactically valid.  Convert types
5493   // and do semantic checks.
5494   std::vector<Type*> ParamTypeList;
5495   SmallVector<AttributeSet, 8> Attrs;
5496 
5497   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5498     ParamTypeList.push_back(ArgList[i].Ty);
5499     Attrs.push_back(ArgList[i].Attrs);
5500   }
5501 
5502   AttributeList PAL =
5503       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5504                          AttributeSet::get(Context, RetAttrs), Attrs);
5505 
5506   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5507     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5508 
5509   FunctionType *FT =
5510     FunctionType::get(RetType, ParamTypeList, isVarArg);
5511   PointerType *PFT = PointerType::get(FT, AddrSpace);
5512 
5513   Fn = nullptr;
5514   if (!FunctionName.empty()) {
5515     // If this was a definition of a forward reference, remove the definition
5516     // from the forward reference table and fill in the forward ref.
5517     auto FRVI = ForwardRefVals.find(FunctionName);
5518     if (FRVI != ForwardRefVals.end()) {
5519       Fn = M->getFunction(FunctionName);
5520       if (!Fn)
5521         return Error(FRVI->second.second, "invalid forward reference to "
5522                      "function as global value!");
5523       if (Fn->getType() != PFT)
5524         return Error(FRVI->second.second, "invalid forward reference to "
5525                      "function '" + FunctionName + "' with wrong type: "
5526                      "expected '" + getTypeString(PFT) + "' but was '" +
5527                      getTypeString(Fn->getType()) + "'");
5528       ForwardRefVals.erase(FRVI);
5529     } else if ((Fn = M->getFunction(FunctionName))) {
5530       // Reject redefinitions.
5531       return Error(NameLoc, "invalid redefinition of function '" +
5532                    FunctionName + "'");
5533     } else if (M->getNamedValue(FunctionName)) {
5534       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5535     }
5536 
5537   } else {
5538     // If this is a definition of a forward referenced function, make sure the
5539     // types agree.
5540     auto I = ForwardRefValIDs.find(NumberedVals.size());
5541     if (I != ForwardRefValIDs.end()) {
5542       Fn = cast<Function>(I->second.first);
5543       if (Fn->getType() != PFT)
5544         return Error(NameLoc, "type of definition and forward reference of '@" +
5545                      Twine(NumberedVals.size()) + "' disagree: "
5546                      "expected '" + getTypeString(PFT) + "' but was '" +
5547                      getTypeString(Fn->getType()) + "'");
5548       ForwardRefValIDs.erase(I);
5549     }
5550   }
5551 
5552   if (!Fn)
5553     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5554                           FunctionName, M);
5555   else // Move the forward-reference to the correct spot in the module.
5556     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5557 
5558   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5559 
5560   if (FunctionName.empty())
5561     NumberedVals.push_back(Fn);
5562 
5563   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5564   maybeSetDSOLocal(DSOLocal, *Fn);
5565   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5566   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5567   Fn->setCallingConv(CC);
5568   Fn->setAttributes(PAL);
5569   Fn->setUnnamedAddr(UnnamedAddr);
5570   Fn->setAlignment(MaybeAlign(Alignment));
5571   Fn->setSection(Section);
5572   Fn->setPartition(Partition);
5573   Fn->setComdat(C);
5574   Fn->setPersonalityFn(PersonalityFn);
5575   if (!GC.empty()) Fn->setGC(GC);
5576   Fn->setPrefixData(Prefix);
5577   Fn->setPrologueData(Prologue);
5578   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5579 
5580   // Add all of the arguments we parsed to the function.
5581   Function::arg_iterator ArgIt = Fn->arg_begin();
5582   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5583     // If the argument has a name, insert it into the argument symbol table.
5584     if (ArgList[i].Name.empty()) continue;
5585 
5586     // Set the name, if it conflicted, it will be auto-renamed.
5587     ArgIt->setName(ArgList[i].Name);
5588 
5589     if (ArgIt->getName() != ArgList[i].Name)
5590       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5591                    ArgList[i].Name + "'");
5592   }
5593 
5594   if (isDefine)
5595     return false;
5596 
5597   // Check the declaration has no block address forward references.
5598   ValID ID;
5599   if (FunctionName.empty()) {
5600     ID.Kind = ValID::t_GlobalID;
5601     ID.UIntVal = NumberedVals.size() - 1;
5602   } else {
5603     ID.Kind = ValID::t_GlobalName;
5604     ID.StrVal = FunctionName;
5605   }
5606   auto Blocks = ForwardRefBlockAddresses.find(ID);
5607   if (Blocks != ForwardRefBlockAddresses.end())
5608     return Error(Blocks->first.Loc,
5609                  "cannot take blockaddress inside a declaration");
5610   return false;
5611 }
5612 
5613 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5614   ValID ID;
5615   if (FunctionNumber == -1) {
5616     ID.Kind = ValID::t_GlobalName;
5617     ID.StrVal = std::string(F.getName());
5618   } else {
5619     ID.Kind = ValID::t_GlobalID;
5620     ID.UIntVal = FunctionNumber;
5621   }
5622 
5623   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5624   if (Blocks == P.ForwardRefBlockAddresses.end())
5625     return false;
5626 
5627   for (const auto &I : Blocks->second) {
5628     const ValID &BBID = I.first;
5629     GlobalValue *GV = I.second;
5630 
5631     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5632            "Expected local id or name");
5633     BasicBlock *BB;
5634     if (BBID.Kind == ValID::t_LocalName)
5635       BB = GetBB(BBID.StrVal, BBID.Loc);
5636     else
5637       BB = GetBB(BBID.UIntVal, BBID.Loc);
5638     if (!BB)
5639       return P.Error(BBID.Loc, "referenced value is not a basic block");
5640 
5641     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5642     GV->eraseFromParent();
5643   }
5644 
5645   P.ForwardRefBlockAddresses.erase(Blocks);
5646   return false;
5647 }
5648 
5649 /// ParseFunctionBody
5650 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5651 bool LLParser::ParseFunctionBody(Function &Fn) {
5652   if (Lex.getKind() != lltok::lbrace)
5653     return TokError("expected '{' in function body");
5654   Lex.Lex();  // eat the {.
5655 
5656   int FunctionNumber = -1;
5657   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5658 
5659   PerFunctionState PFS(*this, Fn, FunctionNumber);
5660 
5661   // Resolve block addresses and allow basic blocks to be forward-declared
5662   // within this function.
5663   if (PFS.resolveForwardRefBlockAddresses())
5664     return true;
5665   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5666 
5667   // We need at least one basic block.
5668   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5669     return TokError("function body requires at least one basic block");
5670 
5671   while (Lex.getKind() != lltok::rbrace &&
5672          Lex.getKind() != lltok::kw_uselistorder)
5673     if (ParseBasicBlock(PFS)) return true;
5674 
5675   while (Lex.getKind() != lltok::rbrace)
5676     if (ParseUseListOrder(&PFS))
5677       return true;
5678 
5679   // Eat the }.
5680   Lex.Lex();
5681 
5682   // Verify function is ok.
5683   return PFS.FinishFunction();
5684 }
5685 
5686 /// ParseBasicBlock
5687 ///   ::= (LabelStr|LabelID)? Instruction*
5688 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5689   // If this basic block starts out with a name, remember it.
5690   std::string Name;
5691   int NameID = -1;
5692   LocTy NameLoc = Lex.getLoc();
5693   if (Lex.getKind() == lltok::LabelStr) {
5694     Name = Lex.getStrVal();
5695     Lex.Lex();
5696   } else if (Lex.getKind() == lltok::LabelID) {
5697     NameID = Lex.getUIntVal();
5698     Lex.Lex();
5699   }
5700 
5701   BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5702   if (!BB)
5703     return true;
5704 
5705   std::string NameStr;
5706 
5707   // Parse the instructions in this block until we get a terminator.
5708   Instruction *Inst;
5709   do {
5710     // This instruction may have three possibilities for a name: a) none
5711     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5712     LocTy NameLoc = Lex.getLoc();
5713     int NameID = -1;
5714     NameStr = "";
5715 
5716     if (Lex.getKind() == lltok::LocalVarID) {
5717       NameID = Lex.getUIntVal();
5718       Lex.Lex();
5719       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5720         return true;
5721     } else if (Lex.getKind() == lltok::LocalVar) {
5722       NameStr = Lex.getStrVal();
5723       Lex.Lex();
5724       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5725         return true;
5726     }
5727 
5728     switch (ParseInstruction(Inst, BB, PFS)) {
5729     default: llvm_unreachable("Unknown ParseInstruction result!");
5730     case InstError: return true;
5731     case InstNormal:
5732       BB->getInstList().push_back(Inst);
5733 
5734       // With a normal result, we check to see if the instruction is followed by
5735       // a comma and metadata.
5736       if (EatIfPresent(lltok::comma))
5737         if (ParseInstructionMetadata(*Inst))
5738           return true;
5739       break;
5740     case InstExtraComma:
5741       BB->getInstList().push_back(Inst);
5742 
5743       // If the instruction parser ate an extra comma at the end of it, it
5744       // *must* be followed by metadata.
5745       if (ParseInstructionMetadata(*Inst))
5746         return true;
5747       break;
5748     }
5749 
5750     // Set the name on the instruction.
5751     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5752   } while (!Inst->isTerminator());
5753 
5754   return false;
5755 }
5756 
5757 //===----------------------------------------------------------------------===//
5758 // Instruction Parsing.
5759 //===----------------------------------------------------------------------===//
5760 
5761 /// ParseInstruction - Parse one of the many different instructions.
5762 ///
5763 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5764                                PerFunctionState &PFS) {
5765   lltok::Kind Token = Lex.getKind();
5766   if (Token == lltok::Eof)
5767     return TokError("found end of file when expecting more instructions");
5768   LocTy Loc = Lex.getLoc();
5769   unsigned KeywordVal = Lex.getUIntVal();
5770   Lex.Lex();  // Eat the keyword.
5771 
5772   switch (Token) {
5773   default:                    return Error(Loc, "expected instruction opcode");
5774   // Terminator Instructions.
5775   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5776   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5777   case lltok::kw_br:          return ParseBr(Inst, PFS);
5778   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5779   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5780   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5781   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5782   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5783   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5784   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5785   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5786   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5787   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5788   // Unary Operators.
5789   case lltok::kw_fneg: {
5790     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5791     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
5792     if (Res != 0)
5793       return Res;
5794     if (FMF.any())
5795       Inst->setFastMathFlags(FMF);
5796     return false;
5797   }
5798   // Binary Operators.
5799   case lltok::kw_add:
5800   case lltok::kw_sub:
5801   case lltok::kw_mul:
5802   case lltok::kw_shl: {
5803     bool NUW = EatIfPresent(lltok::kw_nuw);
5804     bool NSW = EatIfPresent(lltok::kw_nsw);
5805     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5806 
5807     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5808 
5809     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5810     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5811     return false;
5812   }
5813   case lltok::kw_fadd:
5814   case lltok::kw_fsub:
5815   case lltok::kw_fmul:
5816   case lltok::kw_fdiv:
5817   case lltok::kw_frem: {
5818     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5819     int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
5820     if (Res != 0)
5821       return Res;
5822     if (FMF.any())
5823       Inst->setFastMathFlags(FMF);
5824     return 0;
5825   }
5826 
5827   case lltok::kw_sdiv:
5828   case lltok::kw_udiv:
5829   case lltok::kw_lshr:
5830   case lltok::kw_ashr: {
5831     bool Exact = EatIfPresent(lltok::kw_exact);
5832 
5833     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5834     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5835     return false;
5836   }
5837 
5838   case lltok::kw_urem:
5839   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal,
5840                                                 /*IsFP*/false);
5841   case lltok::kw_and:
5842   case lltok::kw_or:
5843   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5844   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5845   case lltok::kw_fcmp: {
5846     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5847     int Res = ParseCompare(Inst, PFS, KeywordVal);
5848     if (Res != 0)
5849       return Res;
5850     if (FMF.any())
5851       Inst->setFastMathFlags(FMF);
5852     return 0;
5853   }
5854 
5855   // Casts.
5856   case lltok::kw_trunc:
5857   case lltok::kw_zext:
5858   case lltok::kw_sext:
5859   case lltok::kw_fptrunc:
5860   case lltok::kw_fpext:
5861   case lltok::kw_bitcast:
5862   case lltok::kw_addrspacecast:
5863   case lltok::kw_uitofp:
5864   case lltok::kw_sitofp:
5865   case lltok::kw_fptoui:
5866   case lltok::kw_fptosi:
5867   case lltok::kw_inttoptr:
5868   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5869   // Other.
5870   case lltok::kw_select: {
5871     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5872     int Res = ParseSelect(Inst, PFS);
5873     if (Res != 0)
5874       return Res;
5875     if (FMF.any()) {
5876       if (!isa<FPMathOperator>(Inst))
5877         return Error(Loc, "fast-math-flags specified for select without "
5878                           "floating-point scalar or vector return type");
5879       Inst->setFastMathFlags(FMF);
5880     }
5881     return 0;
5882   }
5883   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5884   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5885   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5886   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5887   case lltok::kw_phi: {
5888     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5889     int Res = ParsePHI(Inst, PFS);
5890     if (Res != 0)
5891       return Res;
5892     if (FMF.any()) {
5893       if (!isa<FPMathOperator>(Inst))
5894         return Error(Loc, "fast-math-flags specified for phi without "
5895                           "floating-point scalar or vector return type");
5896       Inst->setFastMathFlags(FMF);
5897     }
5898     return 0;
5899   }
5900   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5901   case lltok::kw_freeze:         return ParseFreeze(Inst, PFS);
5902   // Call.
5903   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5904   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5905   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5906   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5907   // Memory.
5908   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5909   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5910   case lltok::kw_store:          return ParseStore(Inst, PFS);
5911   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5912   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5913   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5914   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5915   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5916   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5917   }
5918 }
5919 
5920 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5921 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5922   if (Opc == Instruction::FCmp) {
5923     switch (Lex.getKind()) {
5924     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5925     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5926     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5927     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5928     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5929     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5930     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5931     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5932     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5933     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5934     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5935     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5936     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5937     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5938     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5939     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5940     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5941     }
5942   } else {
5943     switch (Lex.getKind()) {
5944     default: return TokError("expected icmp predicate (e.g. 'eq')");
5945     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5946     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5947     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5948     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5949     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5950     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5951     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5952     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5953     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5954     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5955     }
5956   }
5957   Lex.Lex();
5958   return false;
5959 }
5960 
5961 //===----------------------------------------------------------------------===//
5962 // Terminator Instructions.
5963 //===----------------------------------------------------------------------===//
5964 
5965 /// ParseRet - Parse a return instruction.
5966 ///   ::= 'ret' void (',' !dbg, !1)*
5967 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5968 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5969                         PerFunctionState &PFS) {
5970   SMLoc TypeLoc = Lex.getLoc();
5971   Type *Ty = nullptr;
5972   if (ParseType(Ty, true /*void allowed*/)) return true;
5973 
5974   Type *ResType = PFS.getFunction().getReturnType();
5975 
5976   if (Ty->isVoidTy()) {
5977     if (!ResType->isVoidTy())
5978       return Error(TypeLoc, "value doesn't match function result type '" +
5979                    getTypeString(ResType) + "'");
5980 
5981     Inst = ReturnInst::Create(Context);
5982     return false;
5983   }
5984 
5985   Value *RV;
5986   if (ParseValue(Ty, RV, PFS)) return true;
5987 
5988   if (ResType != RV->getType())
5989     return Error(TypeLoc, "value doesn't match function result type '" +
5990                  getTypeString(ResType) + "'");
5991 
5992   Inst = ReturnInst::Create(Context, RV);
5993   return false;
5994 }
5995 
5996 /// ParseBr
5997 ///   ::= 'br' TypeAndValue
5998 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5999 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
6000   LocTy Loc, Loc2;
6001   Value *Op0;
6002   BasicBlock *Op1, *Op2;
6003   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
6004 
6005   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6006     Inst = BranchInst::Create(BB);
6007     return false;
6008   }
6009 
6010   if (Op0->getType() != Type::getInt1Ty(Context))
6011     return Error(Loc, "branch condition must have 'i1' type");
6012 
6013   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
6014       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
6015       ParseToken(lltok::comma, "expected ',' after true destination") ||
6016       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
6017     return true;
6018 
6019   Inst = BranchInst::Create(Op1, Op2, Op0);
6020   return false;
6021 }
6022 
6023 /// ParseSwitch
6024 ///  Instruction
6025 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6026 ///  JumpTable
6027 ///    ::= (TypeAndValue ',' TypeAndValue)*
6028 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6029   LocTy CondLoc, BBLoc;
6030   Value *Cond;
6031   BasicBlock *DefaultBB;
6032   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
6033       ParseToken(lltok::comma, "expected ',' after switch condition") ||
6034       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6035       ParseToken(lltok::lsquare, "expected '[' with switch table"))
6036     return true;
6037 
6038   if (!Cond->getType()->isIntegerTy())
6039     return Error(CondLoc, "switch condition must have integer type");
6040 
6041   // Parse the jump table pairs.
6042   SmallPtrSet<Value*, 32> SeenCases;
6043   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6044   while (Lex.getKind() != lltok::rsquare) {
6045     Value *Constant;
6046     BasicBlock *DestBB;
6047 
6048     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
6049         ParseToken(lltok::comma, "expected ',' after case value") ||
6050         ParseTypeAndBasicBlock(DestBB, PFS))
6051       return true;
6052 
6053     if (!SeenCases.insert(Constant).second)
6054       return Error(CondLoc, "duplicate case value in switch");
6055     if (!isa<ConstantInt>(Constant))
6056       return Error(CondLoc, "case value is not a constant integer");
6057 
6058     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6059   }
6060 
6061   Lex.Lex();  // Eat the ']'.
6062 
6063   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6064   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6065     SI->addCase(Table[i].first, Table[i].second);
6066   Inst = SI;
6067   return false;
6068 }
6069 
6070 /// ParseIndirectBr
6071 ///  Instruction
6072 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6073 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6074   LocTy AddrLoc;
6075   Value *Address;
6076   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
6077       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
6078       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
6079     return true;
6080 
6081   if (!Address->getType()->isPointerTy())
6082     return Error(AddrLoc, "indirectbr address must have pointer type");
6083 
6084   // Parse the destination list.
6085   SmallVector<BasicBlock*, 16> DestList;
6086 
6087   if (Lex.getKind() != lltok::rsquare) {
6088     BasicBlock *DestBB;
6089     if (ParseTypeAndBasicBlock(DestBB, PFS))
6090       return true;
6091     DestList.push_back(DestBB);
6092 
6093     while (EatIfPresent(lltok::comma)) {
6094       if (ParseTypeAndBasicBlock(DestBB, PFS))
6095         return true;
6096       DestList.push_back(DestBB);
6097     }
6098   }
6099 
6100   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6101     return true;
6102 
6103   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6104   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6105     IBI->addDestination(DestList[i]);
6106   Inst = IBI;
6107   return false;
6108 }
6109 
6110 /// ParseInvoke
6111 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6112 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6113 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6114   LocTy CallLoc = Lex.getLoc();
6115   AttrBuilder RetAttrs, FnAttrs;
6116   std::vector<unsigned> FwdRefAttrGrps;
6117   LocTy NoBuiltinLoc;
6118   unsigned CC;
6119   unsigned InvokeAddrSpace;
6120   Type *RetType = nullptr;
6121   LocTy RetTypeLoc;
6122   ValID CalleeID;
6123   SmallVector<ParamInfo, 16> ArgList;
6124   SmallVector<OperandBundleDef, 2> BundleList;
6125 
6126   BasicBlock *NormalBB, *UnwindBB;
6127   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6128       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6129       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6130       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6131       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6132                                  NoBuiltinLoc) ||
6133       ParseOptionalOperandBundles(BundleList, PFS) ||
6134       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
6135       ParseTypeAndBasicBlock(NormalBB, PFS) ||
6136       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6137       ParseTypeAndBasicBlock(UnwindBB, PFS))
6138     return true;
6139 
6140   // If RetType is a non-function pointer type, then this is the short syntax
6141   // for the call, which means that RetType is just the return type.  Infer the
6142   // rest of the function argument types from the arguments that are present.
6143   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6144   if (!Ty) {
6145     // Pull out the types of all of the arguments...
6146     std::vector<Type*> ParamTypes;
6147     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6148       ParamTypes.push_back(ArgList[i].V->getType());
6149 
6150     if (!FunctionType::isValidReturnType(RetType))
6151       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6152 
6153     Ty = FunctionType::get(RetType, ParamTypes, false);
6154   }
6155 
6156   CalleeID.FTy = Ty;
6157 
6158   // Look up the callee.
6159   Value *Callee;
6160   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6161                           Callee, &PFS, /*IsCall=*/true))
6162     return true;
6163 
6164   // Set up the Attribute for the function.
6165   SmallVector<Value *, 8> Args;
6166   SmallVector<AttributeSet, 8> ArgAttrs;
6167 
6168   // Loop through FunctionType's arguments and ensure they are specified
6169   // correctly.  Also, gather any parameter attributes.
6170   FunctionType::param_iterator I = Ty->param_begin();
6171   FunctionType::param_iterator E = Ty->param_end();
6172   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6173     Type *ExpectedTy = nullptr;
6174     if (I != E) {
6175       ExpectedTy = *I++;
6176     } else if (!Ty->isVarArg()) {
6177       return Error(ArgList[i].Loc, "too many arguments specified");
6178     }
6179 
6180     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6181       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6182                    getTypeString(ExpectedTy) + "'");
6183     Args.push_back(ArgList[i].V);
6184     ArgAttrs.push_back(ArgList[i].Attrs);
6185   }
6186 
6187   if (I != E)
6188     return Error(CallLoc, "not enough parameters specified for call");
6189 
6190   if (FnAttrs.hasAlignmentAttr())
6191     return Error(CallLoc, "invoke instructions may not have an alignment");
6192 
6193   // Finish off the Attribute and check them
6194   AttributeList PAL =
6195       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6196                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6197 
6198   InvokeInst *II =
6199       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6200   II->setCallingConv(CC);
6201   II->setAttributes(PAL);
6202   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6203   Inst = II;
6204   return false;
6205 }
6206 
6207 /// ParseResume
6208 ///   ::= 'resume' TypeAndValue
6209 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6210   Value *Exn; LocTy ExnLoc;
6211   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6212     return true;
6213 
6214   ResumeInst *RI = ResumeInst::Create(Exn);
6215   Inst = RI;
6216   return false;
6217 }
6218 
6219 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6220                                   PerFunctionState &PFS) {
6221   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6222     return true;
6223 
6224   while (Lex.getKind() != lltok::rsquare) {
6225     // If this isn't the first argument, we need a comma.
6226     if (!Args.empty() &&
6227         ParseToken(lltok::comma, "expected ',' in argument list"))
6228       return true;
6229 
6230     // Parse the argument.
6231     LocTy ArgLoc;
6232     Type *ArgTy = nullptr;
6233     if (ParseType(ArgTy, ArgLoc))
6234       return true;
6235 
6236     Value *V;
6237     if (ArgTy->isMetadataTy()) {
6238       if (ParseMetadataAsValue(V, PFS))
6239         return true;
6240     } else {
6241       if (ParseValue(ArgTy, V, PFS))
6242         return true;
6243     }
6244     Args.push_back(V);
6245   }
6246 
6247   Lex.Lex();  // Lex the ']'.
6248   return false;
6249 }
6250 
6251 /// ParseCleanupRet
6252 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6253 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6254   Value *CleanupPad = nullptr;
6255 
6256   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6257     return true;
6258 
6259   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6260     return true;
6261 
6262   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6263     return true;
6264 
6265   BasicBlock *UnwindBB = nullptr;
6266   if (Lex.getKind() == lltok::kw_to) {
6267     Lex.Lex();
6268     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6269       return true;
6270   } else {
6271     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6272       return true;
6273     }
6274   }
6275 
6276   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6277   return false;
6278 }
6279 
6280 /// ParseCatchRet
6281 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6282 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6283   Value *CatchPad = nullptr;
6284 
6285   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6286     return true;
6287 
6288   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6289     return true;
6290 
6291   BasicBlock *BB;
6292   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6293       ParseTypeAndBasicBlock(BB, PFS))
6294       return true;
6295 
6296   Inst = CatchReturnInst::Create(CatchPad, BB);
6297   return false;
6298 }
6299 
6300 /// ParseCatchSwitch
6301 ///   ::= 'catchswitch' within Parent
6302 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6303   Value *ParentPad;
6304 
6305   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6306     return true;
6307 
6308   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6309       Lex.getKind() != lltok::LocalVarID)
6310     return TokError("expected scope value for catchswitch");
6311 
6312   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6313     return true;
6314 
6315   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6316     return true;
6317 
6318   SmallVector<BasicBlock *, 32> Table;
6319   do {
6320     BasicBlock *DestBB;
6321     if (ParseTypeAndBasicBlock(DestBB, PFS))
6322       return true;
6323     Table.push_back(DestBB);
6324   } while (EatIfPresent(lltok::comma));
6325 
6326   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6327     return true;
6328 
6329   if (ParseToken(lltok::kw_unwind,
6330                  "expected 'unwind' after catchswitch scope"))
6331     return true;
6332 
6333   BasicBlock *UnwindBB = nullptr;
6334   if (EatIfPresent(lltok::kw_to)) {
6335     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6336       return true;
6337   } else {
6338     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6339       return true;
6340   }
6341 
6342   auto *CatchSwitch =
6343       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6344   for (BasicBlock *DestBB : Table)
6345     CatchSwitch->addHandler(DestBB);
6346   Inst = CatchSwitch;
6347   return false;
6348 }
6349 
6350 /// ParseCatchPad
6351 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6352 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6353   Value *CatchSwitch = nullptr;
6354 
6355   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6356     return true;
6357 
6358   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6359     return TokError("expected scope value for catchpad");
6360 
6361   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6362     return true;
6363 
6364   SmallVector<Value *, 8> Args;
6365   if (ParseExceptionArgs(Args, PFS))
6366     return true;
6367 
6368   Inst = CatchPadInst::Create(CatchSwitch, Args);
6369   return false;
6370 }
6371 
6372 /// ParseCleanupPad
6373 ///   ::= 'cleanuppad' within Parent ParamList
6374 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6375   Value *ParentPad = nullptr;
6376 
6377   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6378     return true;
6379 
6380   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6381       Lex.getKind() != lltok::LocalVarID)
6382     return TokError("expected scope value for cleanuppad");
6383 
6384   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6385     return true;
6386 
6387   SmallVector<Value *, 8> Args;
6388   if (ParseExceptionArgs(Args, PFS))
6389     return true;
6390 
6391   Inst = CleanupPadInst::Create(ParentPad, Args);
6392   return false;
6393 }
6394 
6395 //===----------------------------------------------------------------------===//
6396 // Unary Operators.
6397 //===----------------------------------------------------------------------===//
6398 
6399 /// ParseUnaryOp
6400 ///  ::= UnaryOp TypeAndValue ',' Value
6401 ///
6402 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6403 /// operand is allowed.
6404 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6405                             unsigned Opc, bool IsFP) {
6406   LocTy Loc; Value *LHS;
6407   if (ParseTypeAndValue(LHS, Loc, PFS))
6408     return true;
6409 
6410   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6411                     : LHS->getType()->isIntOrIntVectorTy();
6412 
6413   if (!Valid)
6414     return Error(Loc, "invalid operand type for instruction");
6415 
6416   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6417   return false;
6418 }
6419 
6420 /// ParseCallBr
6421 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6422 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6423 ///       '[' LabelList ']'
6424 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6425   LocTy CallLoc = Lex.getLoc();
6426   AttrBuilder RetAttrs, FnAttrs;
6427   std::vector<unsigned> FwdRefAttrGrps;
6428   LocTy NoBuiltinLoc;
6429   unsigned CC;
6430   Type *RetType = nullptr;
6431   LocTy RetTypeLoc;
6432   ValID CalleeID;
6433   SmallVector<ParamInfo, 16> ArgList;
6434   SmallVector<OperandBundleDef, 2> BundleList;
6435 
6436   BasicBlock *DefaultDest;
6437   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6438       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6439       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6440       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6441                                  NoBuiltinLoc) ||
6442       ParseOptionalOperandBundles(BundleList, PFS) ||
6443       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6444       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6445       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6446     return true;
6447 
6448   // Parse the destination list.
6449   SmallVector<BasicBlock *, 16> IndirectDests;
6450 
6451   if (Lex.getKind() != lltok::rsquare) {
6452     BasicBlock *DestBB;
6453     if (ParseTypeAndBasicBlock(DestBB, PFS))
6454       return true;
6455     IndirectDests.push_back(DestBB);
6456 
6457     while (EatIfPresent(lltok::comma)) {
6458       if (ParseTypeAndBasicBlock(DestBB, PFS))
6459         return true;
6460       IndirectDests.push_back(DestBB);
6461     }
6462   }
6463 
6464   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6465     return true;
6466 
6467   // If RetType is a non-function pointer type, then this is the short syntax
6468   // for the call, which means that RetType is just the return type.  Infer the
6469   // rest of the function argument types from the arguments that are present.
6470   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6471   if (!Ty) {
6472     // Pull out the types of all of the arguments...
6473     std::vector<Type *> ParamTypes;
6474     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6475       ParamTypes.push_back(ArgList[i].V->getType());
6476 
6477     if (!FunctionType::isValidReturnType(RetType))
6478       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6479 
6480     Ty = FunctionType::get(RetType, ParamTypes, false);
6481   }
6482 
6483   CalleeID.FTy = Ty;
6484 
6485   // Look up the callee.
6486   Value *Callee;
6487   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6488                           /*IsCall=*/true))
6489     return true;
6490 
6491   // Set up the Attribute for the function.
6492   SmallVector<Value *, 8> Args;
6493   SmallVector<AttributeSet, 8> ArgAttrs;
6494 
6495   // Loop through FunctionType's arguments and ensure they are specified
6496   // correctly.  Also, gather any parameter attributes.
6497   FunctionType::param_iterator I = Ty->param_begin();
6498   FunctionType::param_iterator E = Ty->param_end();
6499   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6500     Type *ExpectedTy = nullptr;
6501     if (I != E) {
6502       ExpectedTy = *I++;
6503     } else if (!Ty->isVarArg()) {
6504       return Error(ArgList[i].Loc, "too many arguments specified");
6505     }
6506 
6507     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6508       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6509                                        getTypeString(ExpectedTy) + "'");
6510     Args.push_back(ArgList[i].V);
6511     ArgAttrs.push_back(ArgList[i].Attrs);
6512   }
6513 
6514   if (I != E)
6515     return Error(CallLoc, "not enough parameters specified for call");
6516 
6517   if (FnAttrs.hasAlignmentAttr())
6518     return Error(CallLoc, "callbr instructions may not have an alignment");
6519 
6520   // Finish off the Attribute and check them
6521   AttributeList PAL =
6522       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6523                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6524 
6525   CallBrInst *CBI =
6526       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6527                          BundleList);
6528   CBI->setCallingConv(CC);
6529   CBI->setAttributes(PAL);
6530   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6531   Inst = CBI;
6532   return false;
6533 }
6534 
6535 //===----------------------------------------------------------------------===//
6536 // Binary Operators.
6537 //===----------------------------------------------------------------------===//
6538 
6539 /// ParseArithmetic
6540 ///  ::= ArithmeticOps TypeAndValue ',' Value
6541 ///
6542 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6543 /// operand is allowed.
6544 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6545                                unsigned Opc, bool IsFP) {
6546   LocTy Loc; Value *LHS, *RHS;
6547   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6548       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6549       ParseValue(LHS->getType(), RHS, PFS))
6550     return true;
6551 
6552   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6553                     : LHS->getType()->isIntOrIntVectorTy();
6554 
6555   if (!Valid)
6556     return Error(Loc, "invalid operand type for instruction");
6557 
6558   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6559   return false;
6560 }
6561 
6562 /// ParseLogical
6563 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6564 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6565                             unsigned Opc) {
6566   LocTy Loc; Value *LHS, *RHS;
6567   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6568       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6569       ParseValue(LHS->getType(), RHS, PFS))
6570     return true;
6571 
6572   if (!LHS->getType()->isIntOrIntVectorTy())
6573     return Error(Loc,"instruction requires integer or integer vector operands");
6574 
6575   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6576   return false;
6577 }
6578 
6579 /// ParseCompare
6580 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6581 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6582 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6583                             unsigned Opc) {
6584   // Parse the integer/fp comparison predicate.
6585   LocTy Loc;
6586   unsigned Pred;
6587   Value *LHS, *RHS;
6588   if (ParseCmpPredicate(Pred, Opc) ||
6589       ParseTypeAndValue(LHS, Loc, PFS) ||
6590       ParseToken(lltok::comma, "expected ',' after compare value") ||
6591       ParseValue(LHS->getType(), RHS, PFS))
6592     return true;
6593 
6594   if (Opc == Instruction::FCmp) {
6595     if (!LHS->getType()->isFPOrFPVectorTy())
6596       return Error(Loc, "fcmp requires floating point operands");
6597     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6598   } else {
6599     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6600     if (!LHS->getType()->isIntOrIntVectorTy() &&
6601         !LHS->getType()->isPtrOrPtrVectorTy())
6602       return Error(Loc, "icmp requires integer operands");
6603     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6604   }
6605   return false;
6606 }
6607 
6608 //===----------------------------------------------------------------------===//
6609 // Other Instructions.
6610 //===----------------------------------------------------------------------===//
6611 
6612 
6613 /// ParseCast
6614 ///   ::= CastOpc TypeAndValue 'to' Type
6615 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6616                          unsigned Opc) {
6617   LocTy Loc;
6618   Value *Op;
6619   Type *DestTy = nullptr;
6620   if (ParseTypeAndValue(Op, Loc, PFS) ||
6621       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6622       ParseType(DestTy))
6623     return true;
6624 
6625   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6626     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6627     return Error(Loc, "invalid cast opcode for cast from '" +
6628                  getTypeString(Op->getType()) + "' to '" +
6629                  getTypeString(DestTy) + "'");
6630   }
6631   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6632   return false;
6633 }
6634 
6635 /// ParseSelect
6636 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6637 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6638   LocTy Loc;
6639   Value *Op0, *Op1, *Op2;
6640   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6641       ParseToken(lltok::comma, "expected ',' after select condition") ||
6642       ParseTypeAndValue(Op1, PFS) ||
6643       ParseToken(lltok::comma, "expected ',' after select value") ||
6644       ParseTypeAndValue(Op2, PFS))
6645     return true;
6646 
6647   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6648     return Error(Loc, Reason);
6649 
6650   Inst = SelectInst::Create(Op0, Op1, Op2);
6651   return false;
6652 }
6653 
6654 /// ParseVA_Arg
6655 ///   ::= 'va_arg' TypeAndValue ',' Type
6656 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6657   Value *Op;
6658   Type *EltTy = nullptr;
6659   LocTy TypeLoc;
6660   if (ParseTypeAndValue(Op, PFS) ||
6661       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6662       ParseType(EltTy, TypeLoc))
6663     return true;
6664 
6665   if (!EltTy->isFirstClassType())
6666     return Error(TypeLoc, "va_arg requires operand with first class type");
6667 
6668   Inst = new VAArgInst(Op, EltTy);
6669   return false;
6670 }
6671 
6672 /// ParseExtractElement
6673 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6674 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6675   LocTy Loc;
6676   Value *Op0, *Op1;
6677   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6678       ParseToken(lltok::comma, "expected ',' after extract value") ||
6679       ParseTypeAndValue(Op1, PFS))
6680     return true;
6681 
6682   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6683     return Error(Loc, "invalid extractelement operands");
6684 
6685   Inst = ExtractElementInst::Create(Op0, Op1);
6686   return false;
6687 }
6688 
6689 /// ParseInsertElement
6690 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6691 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6692   LocTy Loc;
6693   Value *Op0, *Op1, *Op2;
6694   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6695       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6696       ParseTypeAndValue(Op1, PFS) ||
6697       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6698       ParseTypeAndValue(Op2, PFS))
6699     return true;
6700 
6701   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6702     return Error(Loc, "invalid insertelement operands");
6703 
6704   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6705   return false;
6706 }
6707 
6708 /// ParseShuffleVector
6709 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6710 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6711   LocTy Loc;
6712   Value *Op0, *Op1, *Op2;
6713   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6714       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6715       ParseTypeAndValue(Op1, PFS) ||
6716       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6717       ParseTypeAndValue(Op2, PFS))
6718     return true;
6719 
6720   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6721     return Error(Loc, "invalid shufflevector operands");
6722 
6723   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6724   return false;
6725 }
6726 
6727 /// ParsePHI
6728 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6729 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6730   Type *Ty = nullptr;  LocTy TypeLoc;
6731   Value *Op0, *Op1;
6732 
6733   if (ParseType(Ty, TypeLoc) ||
6734       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6735       ParseValue(Ty, Op0, PFS) ||
6736       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6737       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6738       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6739     return true;
6740 
6741   bool AteExtraComma = false;
6742   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6743 
6744   while (true) {
6745     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6746 
6747     if (!EatIfPresent(lltok::comma))
6748       break;
6749 
6750     if (Lex.getKind() == lltok::MetadataVar) {
6751       AteExtraComma = true;
6752       break;
6753     }
6754 
6755     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6756         ParseValue(Ty, Op0, PFS) ||
6757         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6758         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6759         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6760       return true;
6761   }
6762 
6763   if (!Ty->isFirstClassType())
6764     return Error(TypeLoc, "phi node must have first class type");
6765 
6766   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6767   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6768     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6769   Inst = PN;
6770   return AteExtraComma ? InstExtraComma : InstNormal;
6771 }
6772 
6773 /// ParseLandingPad
6774 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6775 /// Clause
6776 ///   ::= 'catch' TypeAndValue
6777 ///   ::= 'filter'
6778 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6779 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6780   Type *Ty = nullptr; LocTy TyLoc;
6781 
6782   if (ParseType(Ty, TyLoc))
6783     return true;
6784 
6785   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6786   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6787 
6788   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6789     LandingPadInst::ClauseType CT;
6790     if (EatIfPresent(lltok::kw_catch))
6791       CT = LandingPadInst::Catch;
6792     else if (EatIfPresent(lltok::kw_filter))
6793       CT = LandingPadInst::Filter;
6794     else
6795       return TokError("expected 'catch' or 'filter' clause type");
6796 
6797     Value *V;
6798     LocTy VLoc;
6799     if (ParseTypeAndValue(V, VLoc, PFS))
6800       return true;
6801 
6802     // A 'catch' type expects a non-array constant. A filter clause expects an
6803     // array constant.
6804     if (CT == LandingPadInst::Catch) {
6805       if (isa<ArrayType>(V->getType()))
6806         Error(VLoc, "'catch' clause has an invalid type");
6807     } else {
6808       if (!isa<ArrayType>(V->getType()))
6809         Error(VLoc, "'filter' clause has an invalid type");
6810     }
6811 
6812     Constant *CV = dyn_cast<Constant>(V);
6813     if (!CV)
6814       return Error(VLoc, "clause argument must be a constant");
6815     LP->addClause(CV);
6816   }
6817 
6818   Inst = LP.release();
6819   return false;
6820 }
6821 
6822 /// ParseFreeze
6823 ///   ::= 'freeze' Type Value
6824 bool LLParser::ParseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
6825   LocTy Loc;
6826   Value *Op;
6827   if (ParseTypeAndValue(Op, Loc, PFS))
6828     return true;
6829 
6830   Inst = new FreezeInst(Op);
6831   return false;
6832 }
6833 
6834 /// ParseCall
6835 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6836 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6837 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6838 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6839 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6840 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6841 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6842 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6843 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6844                          CallInst::TailCallKind TCK) {
6845   AttrBuilder RetAttrs, FnAttrs;
6846   std::vector<unsigned> FwdRefAttrGrps;
6847   LocTy BuiltinLoc;
6848   unsigned CallAddrSpace;
6849   unsigned CC;
6850   Type *RetType = nullptr;
6851   LocTy RetTypeLoc;
6852   ValID CalleeID;
6853   SmallVector<ParamInfo, 16> ArgList;
6854   SmallVector<OperandBundleDef, 2> BundleList;
6855   LocTy CallLoc = Lex.getLoc();
6856 
6857   if (TCK != CallInst::TCK_None &&
6858       ParseToken(lltok::kw_call,
6859                  "expected 'tail call', 'musttail call', or 'notail call'"))
6860     return true;
6861 
6862   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6863 
6864   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6865       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6866       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6867       ParseValID(CalleeID) ||
6868       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6869                          PFS.getFunction().isVarArg()) ||
6870       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6871       ParseOptionalOperandBundles(BundleList, PFS))
6872     return true;
6873 
6874   // If RetType is a non-function pointer type, then this is the short syntax
6875   // for the call, which means that RetType is just the return type.  Infer the
6876   // rest of the function argument types from the arguments that are present.
6877   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6878   if (!Ty) {
6879     // Pull out the types of all of the arguments...
6880     std::vector<Type*> ParamTypes;
6881     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6882       ParamTypes.push_back(ArgList[i].V->getType());
6883 
6884     if (!FunctionType::isValidReturnType(RetType))
6885       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6886 
6887     Ty = FunctionType::get(RetType, ParamTypes, false);
6888   }
6889 
6890   CalleeID.FTy = Ty;
6891 
6892   // Look up the callee.
6893   Value *Callee;
6894   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6895                           &PFS, /*IsCall=*/true))
6896     return true;
6897 
6898   // Set up the Attribute for the function.
6899   SmallVector<AttributeSet, 8> Attrs;
6900 
6901   SmallVector<Value*, 8> Args;
6902 
6903   // Loop through FunctionType's arguments and ensure they are specified
6904   // correctly.  Also, gather any parameter attributes.
6905   FunctionType::param_iterator I = Ty->param_begin();
6906   FunctionType::param_iterator E = Ty->param_end();
6907   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6908     Type *ExpectedTy = nullptr;
6909     if (I != E) {
6910       ExpectedTy = *I++;
6911     } else if (!Ty->isVarArg()) {
6912       return Error(ArgList[i].Loc, "too many arguments specified");
6913     }
6914 
6915     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6916       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6917                    getTypeString(ExpectedTy) + "'");
6918     Args.push_back(ArgList[i].V);
6919     Attrs.push_back(ArgList[i].Attrs);
6920   }
6921 
6922   if (I != E)
6923     return Error(CallLoc, "not enough parameters specified for call");
6924 
6925   if (FnAttrs.hasAlignmentAttr())
6926     return Error(CallLoc, "call instructions may not have an alignment");
6927 
6928   // Finish off the Attribute and check them
6929   AttributeList PAL =
6930       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6931                          AttributeSet::get(Context, RetAttrs), Attrs);
6932 
6933   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6934   CI->setTailCallKind(TCK);
6935   CI->setCallingConv(CC);
6936   if (FMF.any()) {
6937     if (!isa<FPMathOperator>(CI))
6938       return Error(CallLoc, "fast-math-flags specified for call without "
6939                    "floating-point scalar or vector return type");
6940     CI->setFastMathFlags(FMF);
6941   }
6942   CI->setAttributes(PAL);
6943   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6944   Inst = CI;
6945   return false;
6946 }
6947 
6948 //===----------------------------------------------------------------------===//
6949 // Memory Instructions.
6950 //===----------------------------------------------------------------------===//
6951 
6952 /// ParseAlloc
6953 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6954 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6955 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6956   Value *Size = nullptr;
6957   LocTy SizeLoc, TyLoc, ASLoc;
6958   MaybeAlign Alignment;
6959   unsigned AddrSpace = 0;
6960   Type *Ty = nullptr;
6961 
6962   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6963   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6964 
6965   if (ParseType(Ty, TyLoc)) return true;
6966 
6967   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6968     return Error(TyLoc, "invalid type for alloca");
6969 
6970   bool AteExtraComma = false;
6971   if (EatIfPresent(lltok::comma)) {
6972     if (Lex.getKind() == lltok::kw_align) {
6973       if (ParseOptionalAlignment(Alignment))
6974         return true;
6975       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6976         return true;
6977     } else if (Lex.getKind() == lltok::kw_addrspace) {
6978       ASLoc = Lex.getLoc();
6979       if (ParseOptionalAddrSpace(AddrSpace))
6980         return true;
6981     } else if (Lex.getKind() == lltok::MetadataVar) {
6982       AteExtraComma = true;
6983     } else {
6984       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6985         return true;
6986       if (EatIfPresent(lltok::comma)) {
6987         if (Lex.getKind() == lltok::kw_align) {
6988           if (ParseOptionalAlignment(Alignment))
6989             return true;
6990           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6991             return true;
6992         } else if (Lex.getKind() == lltok::kw_addrspace) {
6993           ASLoc = Lex.getLoc();
6994           if (ParseOptionalAddrSpace(AddrSpace))
6995             return true;
6996         } else if (Lex.getKind() == lltok::MetadataVar) {
6997           AteExtraComma = true;
6998         }
6999       }
7000     }
7001   }
7002 
7003   if (Size && !Size->getType()->isIntegerTy())
7004     return Error(SizeLoc, "element count must have integer type");
7005 
7006   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
7007   AI->setUsedWithInAlloca(IsInAlloca);
7008   AI->setSwiftError(IsSwiftError);
7009   Inst = AI;
7010   return AteExtraComma ? InstExtraComma : InstNormal;
7011 }
7012 
7013 /// ParseLoad
7014 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7015 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7016 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7017 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7018   Value *Val; LocTy Loc;
7019   MaybeAlign Alignment;
7020   bool AteExtraComma = false;
7021   bool isAtomic = false;
7022   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7023   SyncScope::ID SSID = SyncScope::System;
7024 
7025   if (Lex.getKind() == lltok::kw_atomic) {
7026     isAtomic = true;
7027     Lex.Lex();
7028   }
7029 
7030   bool isVolatile = false;
7031   if (Lex.getKind() == lltok::kw_volatile) {
7032     isVolatile = true;
7033     Lex.Lex();
7034   }
7035 
7036   Type *Ty;
7037   LocTy ExplicitTypeLoc = Lex.getLoc();
7038   if (ParseType(Ty) ||
7039       ParseToken(lltok::comma, "expected comma after load's type") ||
7040       ParseTypeAndValue(Val, Loc, PFS) ||
7041       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7042       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7043     return true;
7044 
7045   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7046     return Error(Loc, "load operand must be a pointer to a first class type");
7047   if (isAtomic && !Alignment)
7048     return Error(Loc, "atomic load must have explicit non-zero alignment");
7049   if (Ordering == AtomicOrdering::Release ||
7050       Ordering == AtomicOrdering::AcquireRelease)
7051     return Error(Loc, "atomic load cannot use Release ordering");
7052 
7053   if (Ty != cast<PointerType>(Val->getType())->getElementType())
7054     return Error(ExplicitTypeLoc,
7055                  "explicit pointee type doesn't match operand's pointee type");
7056 
7057   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
7058   return AteExtraComma ? InstExtraComma : InstNormal;
7059 }
7060 
7061 /// ParseStore
7062 
7063 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7064 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7065 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7066 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
7067   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7068   MaybeAlign Alignment;
7069   bool AteExtraComma = false;
7070   bool isAtomic = false;
7071   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7072   SyncScope::ID SSID = SyncScope::System;
7073 
7074   if (Lex.getKind() == lltok::kw_atomic) {
7075     isAtomic = true;
7076     Lex.Lex();
7077   }
7078 
7079   bool isVolatile = false;
7080   if (Lex.getKind() == lltok::kw_volatile) {
7081     isVolatile = true;
7082     Lex.Lex();
7083   }
7084 
7085   if (ParseTypeAndValue(Val, Loc, PFS) ||
7086       ParseToken(lltok::comma, "expected ',' after store operand") ||
7087       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7088       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7089       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7090     return true;
7091 
7092   if (!Ptr->getType()->isPointerTy())
7093     return Error(PtrLoc, "store operand must be a pointer");
7094   if (!Val->getType()->isFirstClassType())
7095     return Error(Loc, "store operand must be a first class value");
7096   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7097     return Error(Loc, "stored value and pointer type do not match");
7098   if (isAtomic && !Alignment)
7099     return Error(Loc, "atomic store must have explicit non-zero alignment");
7100   if (Ordering == AtomicOrdering::Acquire ||
7101       Ordering == AtomicOrdering::AcquireRelease)
7102     return Error(Loc, "atomic store cannot use Acquire ordering");
7103 
7104   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
7105   return AteExtraComma ? InstExtraComma : InstNormal;
7106 }
7107 
7108 /// ParseCmpXchg
7109 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7110 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
7111 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7112   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7113   bool AteExtraComma = false;
7114   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7115   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7116   SyncScope::ID SSID = SyncScope::System;
7117   bool isVolatile = false;
7118   bool isWeak = false;
7119 
7120   if (EatIfPresent(lltok::kw_weak))
7121     isWeak = true;
7122 
7123   if (EatIfPresent(lltok::kw_volatile))
7124     isVolatile = true;
7125 
7126   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7127       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7128       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
7129       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7130       ParseTypeAndValue(New, NewLoc, PFS) ||
7131       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7132       ParseOrdering(FailureOrdering))
7133     return true;
7134 
7135   if (SuccessOrdering == AtomicOrdering::Unordered ||
7136       FailureOrdering == AtomicOrdering::Unordered)
7137     return TokError("cmpxchg cannot be unordered");
7138   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7139     return TokError("cmpxchg failure argument shall be no stronger than the "
7140                     "success argument");
7141   if (FailureOrdering == AtomicOrdering::Release ||
7142       FailureOrdering == AtomicOrdering::AcquireRelease)
7143     return TokError(
7144         "cmpxchg failure ordering cannot include release semantics");
7145   if (!Ptr->getType()->isPointerTy())
7146     return Error(PtrLoc, "cmpxchg operand must be a pointer");
7147   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7148     return Error(CmpLoc, "compare value and pointer type do not match");
7149   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7150     return Error(NewLoc, "new value and pointer type do not match");
7151   if (!New->getType()->isFirstClassType())
7152     return Error(NewLoc, "cmpxchg operand must be a first class value");
7153   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7154       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
7155   CXI->setVolatile(isVolatile);
7156   CXI->setWeak(isWeak);
7157   Inst = CXI;
7158   return AteExtraComma ? InstExtraComma : InstNormal;
7159 }
7160 
7161 /// ParseAtomicRMW
7162 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7163 ///       'singlethread'? AtomicOrdering
7164 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7165   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7166   bool AteExtraComma = false;
7167   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7168   SyncScope::ID SSID = SyncScope::System;
7169   bool isVolatile = false;
7170   bool IsFP = false;
7171   AtomicRMWInst::BinOp Operation;
7172 
7173   if (EatIfPresent(lltok::kw_volatile))
7174     isVolatile = true;
7175 
7176   switch (Lex.getKind()) {
7177   default: return TokError("expected binary operation in atomicrmw");
7178   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7179   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7180   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7181   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7182   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7183   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7184   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7185   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7186   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7187   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7188   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7189   case lltok::kw_fadd:
7190     Operation = AtomicRMWInst::FAdd;
7191     IsFP = true;
7192     break;
7193   case lltok::kw_fsub:
7194     Operation = AtomicRMWInst::FSub;
7195     IsFP = true;
7196     break;
7197   }
7198   Lex.Lex();  // Eat the operation.
7199 
7200   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7201       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7202       ParseTypeAndValue(Val, ValLoc, PFS) ||
7203       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7204     return true;
7205 
7206   if (Ordering == AtomicOrdering::Unordered)
7207     return TokError("atomicrmw cannot be unordered");
7208   if (!Ptr->getType()->isPointerTy())
7209     return Error(PtrLoc, "atomicrmw operand must be a pointer");
7210   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7211     return Error(ValLoc, "atomicrmw value and pointer type do not match");
7212 
7213   if (Operation == AtomicRMWInst::Xchg) {
7214     if (!Val->getType()->isIntegerTy() &&
7215         !Val->getType()->isFloatingPointTy()) {
7216       return Error(ValLoc, "atomicrmw " +
7217                    AtomicRMWInst::getOperationName(Operation) +
7218                    " operand must be an integer or floating point type");
7219     }
7220   } else if (IsFP) {
7221     if (!Val->getType()->isFloatingPointTy()) {
7222       return Error(ValLoc, "atomicrmw " +
7223                    AtomicRMWInst::getOperationName(Operation) +
7224                    " operand must be a floating point type");
7225     }
7226   } else {
7227     if (!Val->getType()->isIntegerTy()) {
7228       return Error(ValLoc, "atomicrmw " +
7229                    AtomicRMWInst::getOperationName(Operation) +
7230                    " operand must be an integer");
7231     }
7232   }
7233 
7234   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7235   if (Size < 8 || (Size & (Size - 1)))
7236     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7237                          " integer");
7238 
7239   AtomicRMWInst *RMWI =
7240     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7241   RMWI->setVolatile(isVolatile);
7242   Inst = RMWI;
7243   return AteExtraComma ? InstExtraComma : InstNormal;
7244 }
7245 
7246 /// ParseFence
7247 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7248 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7249   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7250   SyncScope::ID SSID = SyncScope::System;
7251   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7252     return true;
7253 
7254   if (Ordering == AtomicOrdering::Unordered)
7255     return TokError("fence cannot be unordered");
7256   if (Ordering == AtomicOrdering::Monotonic)
7257     return TokError("fence cannot be monotonic");
7258 
7259   Inst = new FenceInst(Context, Ordering, SSID);
7260   return InstNormal;
7261 }
7262 
7263 /// ParseGetElementPtr
7264 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7265 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7266   Value *Ptr = nullptr;
7267   Value *Val = nullptr;
7268   LocTy Loc, EltLoc;
7269 
7270   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7271 
7272   Type *Ty = nullptr;
7273   LocTy ExplicitTypeLoc = Lex.getLoc();
7274   if (ParseType(Ty) ||
7275       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7276       ParseTypeAndValue(Ptr, Loc, PFS))
7277     return true;
7278 
7279   Type *BaseType = Ptr->getType();
7280   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7281   if (!BasePointerType)
7282     return Error(Loc, "base of getelementptr must be a pointer");
7283 
7284   if (Ty != BasePointerType->getElementType())
7285     return Error(ExplicitTypeLoc,
7286                  "explicit pointee type doesn't match operand's pointee type");
7287 
7288   SmallVector<Value*, 16> Indices;
7289   bool AteExtraComma = false;
7290   // GEP returns a vector of pointers if at least one of parameters is a vector.
7291   // All vector parameters should have the same vector width.
7292   ElementCount GEPWidth = BaseType->isVectorTy()
7293                               ? cast<VectorType>(BaseType)->getElementCount()
7294                               : ElementCount(0, false);
7295 
7296   while (EatIfPresent(lltok::comma)) {
7297     if (Lex.getKind() == lltok::MetadataVar) {
7298       AteExtraComma = true;
7299       break;
7300     }
7301     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7302     if (!Val->getType()->isIntOrIntVectorTy())
7303       return Error(EltLoc, "getelementptr index must be an integer");
7304 
7305     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7306       ElementCount ValNumEl = ValVTy->getElementCount();
7307       if (GEPWidth != ElementCount(0, false) && GEPWidth != ValNumEl)
7308         return Error(EltLoc,
7309           "getelementptr vector index has a wrong number of elements");
7310       GEPWidth = ValNumEl;
7311     }
7312     Indices.push_back(Val);
7313   }
7314 
7315   SmallPtrSet<Type*, 4> Visited;
7316   if (!Indices.empty() && !Ty->isSized(&Visited))
7317     return Error(Loc, "base element of getelementptr must be sized");
7318 
7319   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7320     return Error(Loc, "invalid getelementptr indices");
7321   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7322   if (InBounds)
7323     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7324   return AteExtraComma ? InstExtraComma : InstNormal;
7325 }
7326 
7327 /// ParseExtractValue
7328 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7329 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7330   Value *Val; LocTy Loc;
7331   SmallVector<unsigned, 4> Indices;
7332   bool AteExtraComma;
7333   if (ParseTypeAndValue(Val, Loc, PFS) ||
7334       ParseIndexList(Indices, AteExtraComma))
7335     return true;
7336 
7337   if (!Val->getType()->isAggregateType())
7338     return Error(Loc, "extractvalue operand must be aggregate type");
7339 
7340   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7341     return Error(Loc, "invalid indices for extractvalue");
7342   Inst = ExtractValueInst::Create(Val, Indices);
7343   return AteExtraComma ? InstExtraComma : InstNormal;
7344 }
7345 
7346 /// ParseInsertValue
7347 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7348 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7349   Value *Val0, *Val1; LocTy Loc0, Loc1;
7350   SmallVector<unsigned, 4> Indices;
7351   bool AteExtraComma;
7352   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7353       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7354       ParseTypeAndValue(Val1, Loc1, PFS) ||
7355       ParseIndexList(Indices, AteExtraComma))
7356     return true;
7357 
7358   if (!Val0->getType()->isAggregateType())
7359     return Error(Loc0, "insertvalue operand must be aggregate type");
7360 
7361   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7362   if (!IndexedType)
7363     return Error(Loc0, "invalid indices for insertvalue");
7364   if (IndexedType != Val1->getType())
7365     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7366                            getTypeString(Val1->getType()) + "' instead of '" +
7367                            getTypeString(IndexedType) + "'");
7368   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7369   return AteExtraComma ? InstExtraComma : InstNormal;
7370 }
7371 
7372 //===----------------------------------------------------------------------===//
7373 // Embedded metadata.
7374 //===----------------------------------------------------------------------===//
7375 
7376 /// ParseMDNodeVector
7377 ///   ::= { Element (',' Element)* }
7378 /// Element
7379 ///   ::= 'null' | TypeAndValue
7380 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7381   if (ParseToken(lltok::lbrace, "expected '{' here"))
7382     return true;
7383 
7384   // Check for an empty list.
7385   if (EatIfPresent(lltok::rbrace))
7386     return false;
7387 
7388   do {
7389     // Null is a special case since it is typeless.
7390     if (EatIfPresent(lltok::kw_null)) {
7391       Elts.push_back(nullptr);
7392       continue;
7393     }
7394 
7395     Metadata *MD;
7396     if (ParseMetadata(MD, nullptr))
7397       return true;
7398     Elts.push_back(MD);
7399   } while (EatIfPresent(lltok::comma));
7400 
7401   return ParseToken(lltok::rbrace, "expected end of metadata node");
7402 }
7403 
7404 //===----------------------------------------------------------------------===//
7405 // Use-list order directives.
7406 //===----------------------------------------------------------------------===//
7407 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7408                                 SMLoc Loc) {
7409   if (V->use_empty())
7410     return Error(Loc, "value has no uses");
7411 
7412   unsigned NumUses = 0;
7413   SmallDenseMap<const Use *, unsigned, 16> Order;
7414   for (const Use &U : V->uses()) {
7415     if (++NumUses > Indexes.size())
7416       break;
7417     Order[&U] = Indexes[NumUses - 1];
7418   }
7419   if (NumUses < 2)
7420     return Error(Loc, "value only has one use");
7421   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7422     return Error(Loc,
7423                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7424 
7425   V->sortUseList([&](const Use &L, const Use &R) {
7426     return Order.lookup(&L) < Order.lookup(&R);
7427   });
7428   return false;
7429 }
7430 
7431 /// ParseUseListOrderIndexes
7432 ///   ::= '{' uint32 (',' uint32)+ '}'
7433 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7434   SMLoc Loc = Lex.getLoc();
7435   if (ParseToken(lltok::lbrace, "expected '{' here"))
7436     return true;
7437   if (Lex.getKind() == lltok::rbrace)
7438     return Lex.Error("expected non-empty list of uselistorder indexes");
7439 
7440   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7441   // indexes should be distinct numbers in the range [0, size-1], and should
7442   // not be in order.
7443   unsigned Offset = 0;
7444   unsigned Max = 0;
7445   bool IsOrdered = true;
7446   assert(Indexes.empty() && "Expected empty order vector");
7447   do {
7448     unsigned Index;
7449     if (ParseUInt32(Index))
7450       return true;
7451 
7452     // Update consistency checks.
7453     Offset += Index - Indexes.size();
7454     Max = std::max(Max, Index);
7455     IsOrdered &= Index == Indexes.size();
7456 
7457     Indexes.push_back(Index);
7458   } while (EatIfPresent(lltok::comma));
7459 
7460   if (ParseToken(lltok::rbrace, "expected '}' here"))
7461     return true;
7462 
7463   if (Indexes.size() < 2)
7464     return Error(Loc, "expected >= 2 uselistorder indexes");
7465   if (Offset != 0 || Max >= Indexes.size())
7466     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7467   if (IsOrdered)
7468     return Error(Loc, "expected uselistorder indexes to change the order");
7469 
7470   return false;
7471 }
7472 
7473 /// ParseUseListOrder
7474 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7475 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7476   SMLoc Loc = Lex.getLoc();
7477   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7478     return true;
7479 
7480   Value *V;
7481   SmallVector<unsigned, 16> Indexes;
7482   if (ParseTypeAndValue(V, PFS) ||
7483       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7484       ParseUseListOrderIndexes(Indexes))
7485     return true;
7486 
7487   return sortUseListOrder(V, Indexes, Loc);
7488 }
7489 
7490 /// ParseUseListOrderBB
7491 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7492 bool LLParser::ParseUseListOrderBB() {
7493   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7494   SMLoc Loc = Lex.getLoc();
7495   Lex.Lex();
7496 
7497   ValID Fn, Label;
7498   SmallVector<unsigned, 16> Indexes;
7499   if (ParseValID(Fn) ||
7500       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7501       ParseValID(Label) ||
7502       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7503       ParseUseListOrderIndexes(Indexes))
7504     return true;
7505 
7506   // Check the function.
7507   GlobalValue *GV;
7508   if (Fn.Kind == ValID::t_GlobalName)
7509     GV = M->getNamedValue(Fn.StrVal);
7510   else if (Fn.Kind == ValID::t_GlobalID)
7511     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7512   else
7513     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7514   if (!GV)
7515     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7516   auto *F = dyn_cast<Function>(GV);
7517   if (!F)
7518     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7519   if (F->isDeclaration())
7520     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7521 
7522   // Check the basic block.
7523   if (Label.Kind == ValID::t_LocalID)
7524     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7525   if (Label.Kind != ValID::t_LocalName)
7526     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7527   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7528   if (!V)
7529     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7530   if (!isa<BasicBlock>(V))
7531     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7532 
7533   return sortUseListOrder(V, Indexes, Loc);
7534 }
7535 
7536 /// ModuleEntry
7537 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7538 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7539 bool LLParser::ParseModuleEntry(unsigned ID) {
7540   assert(Lex.getKind() == lltok::kw_module);
7541   Lex.Lex();
7542 
7543   std::string Path;
7544   if (ParseToken(lltok::colon, "expected ':' here") ||
7545       ParseToken(lltok::lparen, "expected '(' here") ||
7546       ParseToken(lltok::kw_path, "expected 'path' here") ||
7547       ParseToken(lltok::colon, "expected ':' here") ||
7548       ParseStringConstant(Path) ||
7549       ParseToken(lltok::comma, "expected ',' here") ||
7550       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7551       ParseToken(lltok::colon, "expected ':' here") ||
7552       ParseToken(lltok::lparen, "expected '(' here"))
7553     return true;
7554 
7555   ModuleHash Hash;
7556   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7557       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7558       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7559       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7560       ParseUInt32(Hash[4]))
7561     return true;
7562 
7563   if (ParseToken(lltok::rparen, "expected ')' here") ||
7564       ParseToken(lltok::rparen, "expected ')' here"))
7565     return true;
7566 
7567   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7568   ModuleIdMap[ID] = ModuleEntry->first();
7569 
7570   return false;
7571 }
7572 
7573 /// TypeIdEntry
7574 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7575 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7576   assert(Lex.getKind() == lltok::kw_typeid);
7577   Lex.Lex();
7578 
7579   std::string Name;
7580   if (ParseToken(lltok::colon, "expected ':' here") ||
7581       ParseToken(lltok::lparen, "expected '(' here") ||
7582       ParseToken(lltok::kw_name, "expected 'name' here") ||
7583       ParseToken(lltok::colon, "expected ':' here") ||
7584       ParseStringConstant(Name))
7585     return true;
7586 
7587   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7588   if (ParseToken(lltok::comma, "expected ',' here") ||
7589       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7590     return true;
7591 
7592   // Check if this ID was forward referenced, and if so, update the
7593   // corresponding GUIDs.
7594   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7595   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7596     for (auto TIDRef : FwdRefTIDs->second) {
7597       assert(!*TIDRef.first &&
7598              "Forward referenced type id GUID expected to be 0");
7599       *TIDRef.first = GlobalValue::getGUID(Name);
7600     }
7601     ForwardRefTypeIds.erase(FwdRefTIDs);
7602   }
7603 
7604   return false;
7605 }
7606 
7607 /// TypeIdSummary
7608 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7609 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7610   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7611       ParseToken(lltok::colon, "expected ':' here") ||
7612       ParseToken(lltok::lparen, "expected '(' here") ||
7613       ParseTypeTestResolution(TIS.TTRes))
7614     return true;
7615 
7616   if (EatIfPresent(lltok::comma)) {
7617     // Expect optional wpdResolutions field
7618     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7619       return true;
7620   }
7621 
7622   if (ParseToken(lltok::rparen, "expected ')' here"))
7623     return true;
7624 
7625   return false;
7626 }
7627 
7628 static ValueInfo EmptyVI =
7629     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7630 
7631 /// TypeIdCompatibleVtableEntry
7632 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7633 ///   TypeIdCompatibleVtableInfo
7634 ///   ')'
7635 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) {
7636   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7637   Lex.Lex();
7638 
7639   std::string Name;
7640   if (ParseToken(lltok::colon, "expected ':' here") ||
7641       ParseToken(lltok::lparen, "expected '(' here") ||
7642       ParseToken(lltok::kw_name, "expected 'name' here") ||
7643       ParseToken(lltok::colon, "expected ':' here") ||
7644       ParseStringConstant(Name))
7645     return true;
7646 
7647   TypeIdCompatibleVtableInfo &TI =
7648       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7649   if (ParseToken(lltok::comma, "expected ',' here") ||
7650       ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7651       ParseToken(lltok::colon, "expected ':' here") ||
7652       ParseToken(lltok::lparen, "expected '(' here"))
7653     return true;
7654 
7655   IdToIndexMapType IdToIndexMap;
7656   // Parse each call edge
7657   do {
7658     uint64_t Offset;
7659     if (ParseToken(lltok::lparen, "expected '(' here") ||
7660         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7661         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7662         ParseToken(lltok::comma, "expected ',' here"))
7663       return true;
7664 
7665     LocTy Loc = Lex.getLoc();
7666     unsigned GVId;
7667     ValueInfo VI;
7668     if (ParseGVReference(VI, GVId))
7669       return true;
7670 
7671     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7672     // forward reference. We will save the location of the ValueInfo needing an
7673     // update, but can only do so once the std::vector is finalized.
7674     if (VI == EmptyVI)
7675       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7676     TI.push_back({Offset, VI});
7677 
7678     if (ParseToken(lltok::rparen, "expected ')' in call"))
7679       return true;
7680   } while (EatIfPresent(lltok::comma));
7681 
7682   // Now that the TI vector is finalized, it is safe to save the locations
7683   // of any forward GV references that need updating later.
7684   for (auto I : IdToIndexMap) {
7685     for (auto P : I.second) {
7686       assert(TI[P.first].VTableVI == EmptyVI &&
7687              "Forward referenced ValueInfo expected to be empty");
7688       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7689           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7690       FwdRef.first->second.push_back(
7691           std::make_pair(&TI[P.first].VTableVI, P.second));
7692     }
7693   }
7694 
7695   if (ParseToken(lltok::rparen, "expected ')' here") ||
7696       ParseToken(lltok::rparen, "expected ')' here"))
7697     return true;
7698 
7699   // Check if this ID was forward referenced, and if so, update the
7700   // corresponding GUIDs.
7701   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7702   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7703     for (auto TIDRef : FwdRefTIDs->second) {
7704       assert(!*TIDRef.first &&
7705              "Forward referenced type id GUID expected to be 0");
7706       *TIDRef.first = GlobalValue::getGUID(Name);
7707     }
7708     ForwardRefTypeIds.erase(FwdRefTIDs);
7709   }
7710 
7711   return false;
7712 }
7713 
7714 /// TypeTestResolution
7715 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7716 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7717 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7718 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7719 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7720 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7721   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7722       ParseToken(lltok::colon, "expected ':' here") ||
7723       ParseToken(lltok::lparen, "expected '(' here") ||
7724       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7725       ParseToken(lltok::colon, "expected ':' here"))
7726     return true;
7727 
7728   switch (Lex.getKind()) {
7729   case lltok::kw_unsat:
7730     TTRes.TheKind = TypeTestResolution::Unsat;
7731     break;
7732   case lltok::kw_byteArray:
7733     TTRes.TheKind = TypeTestResolution::ByteArray;
7734     break;
7735   case lltok::kw_inline:
7736     TTRes.TheKind = TypeTestResolution::Inline;
7737     break;
7738   case lltok::kw_single:
7739     TTRes.TheKind = TypeTestResolution::Single;
7740     break;
7741   case lltok::kw_allOnes:
7742     TTRes.TheKind = TypeTestResolution::AllOnes;
7743     break;
7744   default:
7745     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7746   }
7747   Lex.Lex();
7748 
7749   if (ParseToken(lltok::comma, "expected ',' here") ||
7750       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7751       ParseToken(lltok::colon, "expected ':' here") ||
7752       ParseUInt32(TTRes.SizeM1BitWidth))
7753     return true;
7754 
7755   // Parse optional fields
7756   while (EatIfPresent(lltok::comma)) {
7757     switch (Lex.getKind()) {
7758     case lltok::kw_alignLog2:
7759       Lex.Lex();
7760       if (ParseToken(lltok::colon, "expected ':'") ||
7761           ParseUInt64(TTRes.AlignLog2))
7762         return true;
7763       break;
7764     case lltok::kw_sizeM1:
7765       Lex.Lex();
7766       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7767         return true;
7768       break;
7769     case lltok::kw_bitMask: {
7770       unsigned Val;
7771       Lex.Lex();
7772       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7773         return true;
7774       assert(Val <= 0xff);
7775       TTRes.BitMask = (uint8_t)Val;
7776       break;
7777     }
7778     case lltok::kw_inlineBits:
7779       Lex.Lex();
7780       if (ParseToken(lltok::colon, "expected ':'") ||
7781           ParseUInt64(TTRes.InlineBits))
7782         return true;
7783       break;
7784     default:
7785       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7786     }
7787   }
7788 
7789   if (ParseToken(lltok::rparen, "expected ')' here"))
7790     return true;
7791 
7792   return false;
7793 }
7794 
7795 /// OptionalWpdResolutions
7796 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7797 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7798 bool LLParser::ParseOptionalWpdResolutions(
7799     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7800   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7801       ParseToken(lltok::colon, "expected ':' here") ||
7802       ParseToken(lltok::lparen, "expected '(' here"))
7803     return true;
7804 
7805   do {
7806     uint64_t Offset;
7807     WholeProgramDevirtResolution WPDRes;
7808     if (ParseToken(lltok::lparen, "expected '(' here") ||
7809         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7810         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7811         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7812         ParseToken(lltok::rparen, "expected ')' here"))
7813       return true;
7814     WPDResMap[Offset] = WPDRes;
7815   } while (EatIfPresent(lltok::comma));
7816 
7817   if (ParseToken(lltok::rparen, "expected ')' here"))
7818     return true;
7819 
7820   return false;
7821 }
7822 
7823 /// WpdRes
7824 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7825 ///         [',' OptionalResByArg]? ')'
7826 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7827 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7828 ///         [',' OptionalResByArg]? ')'
7829 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7830 ///         [',' OptionalResByArg]? ')'
7831 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7832   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7833       ParseToken(lltok::colon, "expected ':' here") ||
7834       ParseToken(lltok::lparen, "expected '(' here") ||
7835       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7836       ParseToken(lltok::colon, "expected ':' here"))
7837     return true;
7838 
7839   switch (Lex.getKind()) {
7840   case lltok::kw_indir:
7841     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7842     break;
7843   case lltok::kw_singleImpl:
7844     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7845     break;
7846   case lltok::kw_branchFunnel:
7847     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7848     break;
7849   default:
7850     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7851   }
7852   Lex.Lex();
7853 
7854   // Parse optional fields
7855   while (EatIfPresent(lltok::comma)) {
7856     switch (Lex.getKind()) {
7857     case lltok::kw_singleImplName:
7858       Lex.Lex();
7859       if (ParseToken(lltok::colon, "expected ':' here") ||
7860           ParseStringConstant(WPDRes.SingleImplName))
7861         return true;
7862       break;
7863     case lltok::kw_resByArg:
7864       if (ParseOptionalResByArg(WPDRes.ResByArg))
7865         return true;
7866       break;
7867     default:
7868       return Error(Lex.getLoc(),
7869                    "expected optional WholeProgramDevirtResolution field");
7870     }
7871   }
7872 
7873   if (ParseToken(lltok::rparen, "expected ')' here"))
7874     return true;
7875 
7876   return false;
7877 }
7878 
7879 /// OptionalResByArg
7880 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7881 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7882 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7883 ///                  'virtualConstProp' )
7884 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7885 ///                [',' 'bit' ':' UInt32]? ')'
7886 bool LLParser::ParseOptionalResByArg(
7887     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7888         &ResByArg) {
7889   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7890       ParseToken(lltok::colon, "expected ':' here") ||
7891       ParseToken(lltok::lparen, "expected '(' here"))
7892     return true;
7893 
7894   do {
7895     std::vector<uint64_t> Args;
7896     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7897         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7898         ParseToken(lltok::colon, "expected ':' here") ||
7899         ParseToken(lltok::lparen, "expected '(' here") ||
7900         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7901         ParseToken(lltok::colon, "expected ':' here"))
7902       return true;
7903 
7904     WholeProgramDevirtResolution::ByArg ByArg;
7905     switch (Lex.getKind()) {
7906     case lltok::kw_indir:
7907       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7908       break;
7909     case lltok::kw_uniformRetVal:
7910       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7911       break;
7912     case lltok::kw_uniqueRetVal:
7913       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7914       break;
7915     case lltok::kw_virtualConstProp:
7916       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7917       break;
7918     default:
7919       return Error(Lex.getLoc(),
7920                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7921     }
7922     Lex.Lex();
7923 
7924     // Parse optional fields
7925     while (EatIfPresent(lltok::comma)) {
7926       switch (Lex.getKind()) {
7927       case lltok::kw_info:
7928         Lex.Lex();
7929         if (ParseToken(lltok::colon, "expected ':' here") ||
7930             ParseUInt64(ByArg.Info))
7931           return true;
7932         break;
7933       case lltok::kw_byte:
7934         Lex.Lex();
7935         if (ParseToken(lltok::colon, "expected ':' here") ||
7936             ParseUInt32(ByArg.Byte))
7937           return true;
7938         break;
7939       case lltok::kw_bit:
7940         Lex.Lex();
7941         if (ParseToken(lltok::colon, "expected ':' here") ||
7942             ParseUInt32(ByArg.Bit))
7943           return true;
7944         break;
7945       default:
7946         return Error(Lex.getLoc(),
7947                      "expected optional whole program devirt field");
7948       }
7949     }
7950 
7951     if (ParseToken(lltok::rparen, "expected ')' here"))
7952       return true;
7953 
7954     ResByArg[Args] = ByArg;
7955   } while (EatIfPresent(lltok::comma));
7956 
7957   if (ParseToken(lltok::rparen, "expected ')' here"))
7958     return true;
7959 
7960   return false;
7961 }
7962 
7963 /// OptionalResByArg
7964 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7965 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7966   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7967       ParseToken(lltok::colon, "expected ':' here") ||
7968       ParseToken(lltok::lparen, "expected '(' here"))
7969     return true;
7970 
7971   do {
7972     uint64_t Val;
7973     if (ParseUInt64(Val))
7974       return true;
7975     Args.push_back(Val);
7976   } while (EatIfPresent(lltok::comma));
7977 
7978   if (ParseToken(lltok::rparen, "expected ')' here"))
7979     return true;
7980 
7981   return false;
7982 }
7983 
7984 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7985 
7986 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7987   bool ReadOnly = Fwd->isReadOnly();
7988   bool WriteOnly = Fwd->isWriteOnly();
7989   assert(!(ReadOnly && WriteOnly));
7990   *Fwd = Resolved;
7991   if (ReadOnly)
7992     Fwd->setReadOnly();
7993   if (WriteOnly)
7994     Fwd->setWriteOnly();
7995 }
7996 
7997 /// Stores the given Name/GUID and associated summary into the Index.
7998 /// Also updates any forward references to the associated entry ID.
7999 void LLParser::AddGlobalValueToIndex(
8000     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8001     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8002   // First create the ValueInfo utilizing the Name or GUID.
8003   ValueInfo VI;
8004   if (GUID != 0) {
8005     assert(Name.empty());
8006     VI = Index->getOrInsertValueInfo(GUID);
8007   } else {
8008     assert(!Name.empty());
8009     if (M) {
8010       auto *GV = M->getNamedValue(Name);
8011       assert(GV);
8012       VI = Index->getOrInsertValueInfo(GV);
8013     } else {
8014       assert(
8015           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8016           "Need a source_filename to compute GUID for local");
8017       GUID = GlobalValue::getGUID(
8018           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8019       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8020     }
8021   }
8022 
8023   // Resolve forward references from calls/refs
8024   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8025   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8026     for (auto VIRef : FwdRefVIs->second) {
8027       assert(VIRef.first->getRef() == FwdVIRef &&
8028              "Forward referenced ValueInfo expected to be empty");
8029       resolveFwdRef(VIRef.first, VI);
8030     }
8031     ForwardRefValueInfos.erase(FwdRefVIs);
8032   }
8033 
8034   // Resolve forward references from aliases
8035   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8036   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8037     for (auto AliaseeRef : FwdRefAliasees->second) {
8038       assert(!AliaseeRef.first->hasAliasee() &&
8039              "Forward referencing alias already has aliasee");
8040       assert(Summary && "Aliasee must be a definition");
8041       AliaseeRef.first->setAliasee(VI, Summary.get());
8042     }
8043     ForwardRefAliasees.erase(FwdRefAliasees);
8044   }
8045 
8046   // Add the summary if one was provided.
8047   if (Summary)
8048     Index->addGlobalValueSummary(VI, std::move(Summary));
8049 
8050   // Save the associated ValueInfo for use in later references by ID.
8051   if (ID == NumberedValueInfos.size())
8052     NumberedValueInfos.push_back(VI);
8053   else {
8054     // Handle non-continuous numbers (to make test simplification easier).
8055     if (ID > NumberedValueInfos.size())
8056       NumberedValueInfos.resize(ID + 1);
8057     NumberedValueInfos[ID] = VI;
8058   }
8059 }
8060 
8061 /// ParseSummaryIndexFlags
8062 ///   ::= 'flags' ':' UInt64
8063 bool LLParser::ParseSummaryIndexFlags() {
8064   assert(Lex.getKind() == lltok::kw_flags);
8065   Lex.Lex();
8066 
8067   if (ParseToken(lltok::colon, "expected ':' here"))
8068     return true;
8069   uint64_t Flags;
8070   if (ParseUInt64(Flags))
8071     return true;
8072   Index->setFlags(Flags);
8073   return false;
8074 }
8075 
8076 /// ParseGVEntry
8077 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8078 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8079 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8080 bool LLParser::ParseGVEntry(unsigned ID) {
8081   assert(Lex.getKind() == lltok::kw_gv);
8082   Lex.Lex();
8083 
8084   if (ParseToken(lltok::colon, "expected ':' here") ||
8085       ParseToken(lltok::lparen, "expected '(' here"))
8086     return true;
8087 
8088   std::string Name;
8089   GlobalValue::GUID GUID = 0;
8090   switch (Lex.getKind()) {
8091   case lltok::kw_name:
8092     Lex.Lex();
8093     if (ParseToken(lltok::colon, "expected ':' here") ||
8094         ParseStringConstant(Name))
8095       return true;
8096     // Can't create GUID/ValueInfo until we have the linkage.
8097     break;
8098   case lltok::kw_guid:
8099     Lex.Lex();
8100     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
8101       return true;
8102     break;
8103   default:
8104     return Error(Lex.getLoc(), "expected name or guid tag");
8105   }
8106 
8107   if (!EatIfPresent(lltok::comma)) {
8108     // No summaries. Wrap up.
8109     if (ParseToken(lltok::rparen, "expected ')' here"))
8110       return true;
8111     // This was created for a call to an external or indirect target.
8112     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8113     // created for indirect calls with VP. A Name with no GUID came from
8114     // an external definition. We pass ExternalLinkage since that is only
8115     // used when the GUID must be computed from Name, and in that case
8116     // the symbol must have external linkage.
8117     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8118                           nullptr);
8119     return false;
8120   }
8121 
8122   // Have a list of summaries
8123   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8124       ParseToken(lltok::colon, "expected ':' here") ||
8125       ParseToken(lltok::lparen, "expected '(' here"))
8126     return true;
8127   do {
8128     switch (Lex.getKind()) {
8129     case lltok::kw_function:
8130       if (ParseFunctionSummary(Name, GUID, ID))
8131         return true;
8132       break;
8133     case lltok::kw_variable:
8134       if (ParseVariableSummary(Name, GUID, ID))
8135         return true;
8136       break;
8137     case lltok::kw_alias:
8138       if (ParseAliasSummary(Name, GUID, ID))
8139         return true;
8140       break;
8141     default:
8142       return Error(Lex.getLoc(), "expected summary type");
8143     }
8144   } while (EatIfPresent(lltok::comma));
8145 
8146   if (ParseToken(lltok::rparen, "expected ')' here") ||
8147       ParseToken(lltok::rparen, "expected ')' here"))
8148     return true;
8149 
8150   return false;
8151 }
8152 
8153 /// FunctionSummary
8154 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8155 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8156 ///         [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
8157 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8158                                     unsigned ID) {
8159   assert(Lex.getKind() == lltok::kw_function);
8160   Lex.Lex();
8161 
8162   StringRef ModulePath;
8163   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8164       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8165       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8166   unsigned InstCount;
8167   std::vector<FunctionSummary::EdgeTy> Calls;
8168   FunctionSummary::TypeIdInfo TypeIdInfo;
8169   std::vector<ValueInfo> Refs;
8170   // Default is all-zeros (conservative values).
8171   FunctionSummary::FFlags FFlags = {};
8172   if (ParseToken(lltok::colon, "expected ':' here") ||
8173       ParseToken(lltok::lparen, "expected '(' here") ||
8174       ParseModuleReference(ModulePath) ||
8175       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8176       ParseToken(lltok::comma, "expected ',' here") ||
8177       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
8178       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
8179     return true;
8180 
8181   // Parse optional fields
8182   while (EatIfPresent(lltok::comma)) {
8183     switch (Lex.getKind()) {
8184     case lltok::kw_funcFlags:
8185       if (ParseOptionalFFlags(FFlags))
8186         return true;
8187       break;
8188     case lltok::kw_calls:
8189       if (ParseOptionalCalls(Calls))
8190         return true;
8191       break;
8192     case lltok::kw_typeIdInfo:
8193       if (ParseOptionalTypeIdInfo(TypeIdInfo))
8194         return true;
8195       break;
8196     case lltok::kw_refs:
8197       if (ParseOptionalRefs(Refs))
8198         return true;
8199       break;
8200     default:
8201       return Error(Lex.getLoc(), "expected optional function summary field");
8202     }
8203   }
8204 
8205   if (ParseToken(lltok::rparen, "expected ')' here"))
8206     return true;
8207 
8208   auto FS = std::make_unique<FunctionSummary>(
8209       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8210       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8211       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8212       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8213       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8214       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
8215 
8216   FS->setModulePath(ModulePath);
8217 
8218   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8219                         ID, std::move(FS));
8220 
8221   return false;
8222 }
8223 
8224 /// VariableSummary
8225 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8226 ///         [',' OptionalRefs]? ')'
8227 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8228                                     unsigned ID) {
8229   assert(Lex.getKind() == lltok::kw_variable);
8230   Lex.Lex();
8231 
8232   StringRef ModulePath;
8233   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8234       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8235       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8236   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8237                                         /* WriteOnly */ false,
8238                                         /* Constant */ false,
8239                                         GlobalObject::VCallVisibilityPublic);
8240   std::vector<ValueInfo> Refs;
8241   VTableFuncList VTableFuncs;
8242   if (ParseToken(lltok::colon, "expected ':' here") ||
8243       ParseToken(lltok::lparen, "expected '(' here") ||
8244       ParseModuleReference(ModulePath) ||
8245       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8246       ParseToken(lltok::comma, "expected ',' here") ||
8247       ParseGVarFlags(GVarFlags))
8248     return true;
8249 
8250   // Parse optional fields
8251   while (EatIfPresent(lltok::comma)) {
8252     switch (Lex.getKind()) {
8253     case lltok::kw_vTableFuncs:
8254       if (ParseOptionalVTableFuncs(VTableFuncs))
8255         return true;
8256       break;
8257     case lltok::kw_refs:
8258       if (ParseOptionalRefs(Refs))
8259         return true;
8260       break;
8261     default:
8262       return Error(Lex.getLoc(), "expected optional variable summary field");
8263     }
8264   }
8265 
8266   if (ParseToken(lltok::rparen, "expected ')' here"))
8267     return true;
8268 
8269   auto GS =
8270       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8271 
8272   GS->setModulePath(ModulePath);
8273   GS->setVTableFuncs(std::move(VTableFuncs));
8274 
8275   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8276                         ID, std::move(GS));
8277 
8278   return false;
8279 }
8280 
8281 /// AliasSummary
8282 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8283 ///         'aliasee' ':' GVReference ')'
8284 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8285                                  unsigned ID) {
8286   assert(Lex.getKind() == lltok::kw_alias);
8287   LocTy Loc = Lex.getLoc();
8288   Lex.Lex();
8289 
8290   StringRef ModulePath;
8291   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8292       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8293       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8294   if (ParseToken(lltok::colon, "expected ':' here") ||
8295       ParseToken(lltok::lparen, "expected '(' here") ||
8296       ParseModuleReference(ModulePath) ||
8297       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8298       ParseToken(lltok::comma, "expected ',' here") ||
8299       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8300       ParseToken(lltok::colon, "expected ':' here"))
8301     return true;
8302 
8303   ValueInfo AliaseeVI;
8304   unsigned GVId;
8305   if (ParseGVReference(AliaseeVI, GVId))
8306     return true;
8307 
8308   if (ParseToken(lltok::rparen, "expected ')' here"))
8309     return true;
8310 
8311   auto AS = std::make_unique<AliasSummary>(GVFlags);
8312 
8313   AS->setModulePath(ModulePath);
8314 
8315   // Record forward reference if the aliasee is not parsed yet.
8316   if (AliaseeVI.getRef() == FwdVIRef) {
8317     auto FwdRef = ForwardRefAliasees.insert(
8318         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8319     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8320   } else {
8321     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8322     assert(Summary && "Aliasee must be a definition");
8323     AS->setAliasee(AliaseeVI, Summary);
8324   }
8325 
8326   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8327                         ID, std::move(AS));
8328 
8329   return false;
8330 }
8331 
8332 /// Flag
8333 ///   ::= [0|1]
8334 bool LLParser::ParseFlag(unsigned &Val) {
8335   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8336     return TokError("expected integer");
8337   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8338   Lex.Lex();
8339   return false;
8340 }
8341 
8342 /// OptionalFFlags
8343 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8344 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8345 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8346 ///        [',' 'noInline' ':' Flag]? ')'
8347 ///        [',' 'alwaysInline' ':' Flag]? ')'
8348 
8349 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8350   assert(Lex.getKind() == lltok::kw_funcFlags);
8351   Lex.Lex();
8352 
8353   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8354       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8355     return true;
8356 
8357   do {
8358     unsigned Val = 0;
8359     switch (Lex.getKind()) {
8360     case lltok::kw_readNone:
8361       Lex.Lex();
8362       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8363         return true;
8364       FFlags.ReadNone = Val;
8365       break;
8366     case lltok::kw_readOnly:
8367       Lex.Lex();
8368       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8369         return true;
8370       FFlags.ReadOnly = Val;
8371       break;
8372     case lltok::kw_noRecurse:
8373       Lex.Lex();
8374       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8375         return true;
8376       FFlags.NoRecurse = Val;
8377       break;
8378     case lltok::kw_returnDoesNotAlias:
8379       Lex.Lex();
8380       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8381         return true;
8382       FFlags.ReturnDoesNotAlias = Val;
8383       break;
8384     case lltok::kw_noInline:
8385       Lex.Lex();
8386       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8387         return true;
8388       FFlags.NoInline = Val;
8389       break;
8390     case lltok::kw_alwaysInline:
8391       Lex.Lex();
8392       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8393         return true;
8394       FFlags.AlwaysInline = Val;
8395       break;
8396     default:
8397       return Error(Lex.getLoc(), "expected function flag type");
8398     }
8399   } while (EatIfPresent(lltok::comma));
8400 
8401   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8402     return true;
8403 
8404   return false;
8405 }
8406 
8407 /// OptionalCalls
8408 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8409 /// Call ::= '(' 'callee' ':' GVReference
8410 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8411 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8412   assert(Lex.getKind() == lltok::kw_calls);
8413   Lex.Lex();
8414 
8415   if (ParseToken(lltok::colon, "expected ':' in calls") |
8416       ParseToken(lltok::lparen, "expected '(' in calls"))
8417     return true;
8418 
8419   IdToIndexMapType IdToIndexMap;
8420   // Parse each call edge
8421   do {
8422     ValueInfo VI;
8423     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8424         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8425         ParseToken(lltok::colon, "expected ':'"))
8426       return true;
8427 
8428     LocTy Loc = Lex.getLoc();
8429     unsigned GVId;
8430     if (ParseGVReference(VI, GVId))
8431       return true;
8432 
8433     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8434     unsigned RelBF = 0;
8435     if (EatIfPresent(lltok::comma)) {
8436       // Expect either hotness or relbf
8437       if (EatIfPresent(lltok::kw_hotness)) {
8438         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8439           return true;
8440       } else {
8441         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8442             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8443           return true;
8444       }
8445     }
8446     // Keep track of the Call array index needing a forward reference.
8447     // We will save the location of the ValueInfo needing an update, but
8448     // can only do so once the std::vector is finalized.
8449     if (VI.getRef() == FwdVIRef)
8450       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8451     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8452 
8453     if (ParseToken(lltok::rparen, "expected ')' in call"))
8454       return true;
8455   } while (EatIfPresent(lltok::comma));
8456 
8457   // Now that the Calls vector is finalized, it is safe to save the locations
8458   // of any forward GV references that need updating later.
8459   for (auto I : IdToIndexMap) {
8460     for (auto P : I.second) {
8461       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8462              "Forward referenced ValueInfo expected to be empty");
8463       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8464           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8465       FwdRef.first->second.push_back(
8466           std::make_pair(&Calls[P.first].first, P.second));
8467     }
8468   }
8469 
8470   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8471     return true;
8472 
8473   return false;
8474 }
8475 
8476 /// Hotness
8477 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8478 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8479   switch (Lex.getKind()) {
8480   case lltok::kw_unknown:
8481     Hotness = CalleeInfo::HotnessType::Unknown;
8482     break;
8483   case lltok::kw_cold:
8484     Hotness = CalleeInfo::HotnessType::Cold;
8485     break;
8486   case lltok::kw_none:
8487     Hotness = CalleeInfo::HotnessType::None;
8488     break;
8489   case lltok::kw_hot:
8490     Hotness = CalleeInfo::HotnessType::Hot;
8491     break;
8492   case lltok::kw_critical:
8493     Hotness = CalleeInfo::HotnessType::Critical;
8494     break;
8495   default:
8496     return Error(Lex.getLoc(), "invalid call edge hotness");
8497   }
8498   Lex.Lex();
8499   return false;
8500 }
8501 
8502 /// OptionalVTableFuncs
8503 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8504 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8505 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8506   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8507   Lex.Lex();
8508 
8509   if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") |
8510       ParseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8511     return true;
8512 
8513   IdToIndexMapType IdToIndexMap;
8514   // Parse each virtual function pair
8515   do {
8516     ValueInfo VI;
8517     if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8518         ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8519         ParseToken(lltok::colon, "expected ':'"))
8520       return true;
8521 
8522     LocTy Loc = Lex.getLoc();
8523     unsigned GVId;
8524     if (ParseGVReference(VI, GVId))
8525       return true;
8526 
8527     uint64_t Offset;
8528     if (ParseToken(lltok::comma, "expected comma") ||
8529         ParseToken(lltok::kw_offset, "expected offset") ||
8530         ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset))
8531       return true;
8532 
8533     // Keep track of the VTableFuncs array index needing a forward reference.
8534     // We will save the location of the ValueInfo needing an update, but
8535     // can only do so once the std::vector is finalized.
8536     if (VI == EmptyVI)
8537       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8538     VTableFuncs.push_back({VI, Offset});
8539 
8540     if (ParseToken(lltok::rparen, "expected ')' in vTableFunc"))
8541       return true;
8542   } while (EatIfPresent(lltok::comma));
8543 
8544   // Now that the VTableFuncs vector is finalized, it is safe to save the
8545   // locations of any forward GV references that need updating later.
8546   for (auto I : IdToIndexMap) {
8547     for (auto P : I.second) {
8548       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8549              "Forward referenced ValueInfo expected to be empty");
8550       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8551           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8552       FwdRef.first->second.push_back(
8553           std::make_pair(&VTableFuncs[P.first].FuncVI, P.second));
8554     }
8555   }
8556 
8557   if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8558     return true;
8559 
8560   return false;
8561 }
8562 
8563 /// OptionalRefs
8564 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8565 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8566   assert(Lex.getKind() == lltok::kw_refs);
8567   Lex.Lex();
8568 
8569   if (ParseToken(lltok::colon, "expected ':' in refs") |
8570       ParseToken(lltok::lparen, "expected '(' in refs"))
8571     return true;
8572 
8573   struct ValueContext {
8574     ValueInfo VI;
8575     unsigned GVId;
8576     LocTy Loc;
8577   };
8578   std::vector<ValueContext> VContexts;
8579   // Parse each ref edge
8580   do {
8581     ValueContext VC;
8582     VC.Loc = Lex.getLoc();
8583     if (ParseGVReference(VC.VI, VC.GVId))
8584       return true;
8585     VContexts.push_back(VC);
8586   } while (EatIfPresent(lltok::comma));
8587 
8588   // Sort value contexts so that ones with writeonly
8589   // and readonly ValueInfo  are at the end of VContexts vector.
8590   // See FunctionSummary::specialRefCounts()
8591   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8592     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8593   });
8594 
8595   IdToIndexMapType IdToIndexMap;
8596   for (auto &VC : VContexts) {
8597     // Keep track of the Refs array index needing a forward reference.
8598     // We will save the location of the ValueInfo needing an update, but
8599     // can only do so once the std::vector is finalized.
8600     if (VC.VI.getRef() == FwdVIRef)
8601       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8602     Refs.push_back(VC.VI);
8603   }
8604 
8605   // Now that the Refs vector is finalized, it is safe to save the locations
8606   // of any forward GV references that need updating later.
8607   for (auto I : IdToIndexMap) {
8608     for (auto P : I.second) {
8609       assert(Refs[P.first].getRef() == FwdVIRef &&
8610              "Forward referenced ValueInfo expected to be empty");
8611       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8612           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8613       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8614     }
8615   }
8616 
8617   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8618     return true;
8619 
8620   return false;
8621 }
8622 
8623 /// OptionalTypeIdInfo
8624 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8625 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8626 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8627 bool LLParser::ParseOptionalTypeIdInfo(
8628     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8629   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8630   Lex.Lex();
8631 
8632   if (ParseToken(lltok::colon, "expected ':' here") ||
8633       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8634     return true;
8635 
8636   do {
8637     switch (Lex.getKind()) {
8638     case lltok::kw_typeTests:
8639       if (ParseTypeTests(TypeIdInfo.TypeTests))
8640         return true;
8641       break;
8642     case lltok::kw_typeTestAssumeVCalls:
8643       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8644                            TypeIdInfo.TypeTestAssumeVCalls))
8645         return true;
8646       break;
8647     case lltok::kw_typeCheckedLoadVCalls:
8648       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8649                            TypeIdInfo.TypeCheckedLoadVCalls))
8650         return true;
8651       break;
8652     case lltok::kw_typeTestAssumeConstVCalls:
8653       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8654                               TypeIdInfo.TypeTestAssumeConstVCalls))
8655         return true;
8656       break;
8657     case lltok::kw_typeCheckedLoadConstVCalls:
8658       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8659                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8660         return true;
8661       break;
8662     default:
8663       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8664     }
8665   } while (EatIfPresent(lltok::comma));
8666 
8667   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8668     return true;
8669 
8670   return false;
8671 }
8672 
8673 /// TypeTests
8674 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8675 ///         [',' (SummaryID | UInt64)]* ')'
8676 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8677   assert(Lex.getKind() == lltok::kw_typeTests);
8678   Lex.Lex();
8679 
8680   if (ParseToken(lltok::colon, "expected ':' here") ||
8681       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8682     return true;
8683 
8684   IdToIndexMapType IdToIndexMap;
8685   do {
8686     GlobalValue::GUID GUID = 0;
8687     if (Lex.getKind() == lltok::SummaryID) {
8688       unsigned ID = Lex.getUIntVal();
8689       LocTy Loc = Lex.getLoc();
8690       // Keep track of the TypeTests array index needing a forward reference.
8691       // We will save the location of the GUID needing an update, but
8692       // can only do so once the std::vector is finalized.
8693       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8694       Lex.Lex();
8695     } else if (ParseUInt64(GUID))
8696       return true;
8697     TypeTests.push_back(GUID);
8698   } while (EatIfPresent(lltok::comma));
8699 
8700   // Now that the TypeTests vector is finalized, it is safe to save the
8701   // locations of any forward GV references that need updating later.
8702   for (auto I : IdToIndexMap) {
8703     for (auto P : I.second) {
8704       assert(TypeTests[P.first] == 0 &&
8705              "Forward referenced type id GUID expected to be 0");
8706       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8707           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8708       FwdRef.first->second.push_back(
8709           std::make_pair(&TypeTests[P.first], P.second));
8710     }
8711   }
8712 
8713   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8714     return true;
8715 
8716   return false;
8717 }
8718 
8719 /// VFuncIdList
8720 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8721 bool LLParser::ParseVFuncIdList(
8722     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8723   assert(Lex.getKind() == Kind);
8724   Lex.Lex();
8725 
8726   if (ParseToken(lltok::colon, "expected ':' here") ||
8727       ParseToken(lltok::lparen, "expected '(' here"))
8728     return true;
8729 
8730   IdToIndexMapType IdToIndexMap;
8731   do {
8732     FunctionSummary::VFuncId VFuncId;
8733     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8734       return true;
8735     VFuncIdList.push_back(VFuncId);
8736   } while (EatIfPresent(lltok::comma));
8737 
8738   if (ParseToken(lltok::rparen, "expected ')' here"))
8739     return true;
8740 
8741   // Now that the VFuncIdList vector is finalized, it is safe to save the
8742   // locations of any forward GV references that need updating later.
8743   for (auto I : IdToIndexMap) {
8744     for (auto P : I.second) {
8745       assert(VFuncIdList[P.first].GUID == 0 &&
8746              "Forward referenced type id GUID expected to be 0");
8747       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8748           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8749       FwdRef.first->second.push_back(
8750           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8751     }
8752   }
8753 
8754   return false;
8755 }
8756 
8757 /// ConstVCallList
8758 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8759 bool LLParser::ParseConstVCallList(
8760     lltok::Kind Kind,
8761     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8762   assert(Lex.getKind() == Kind);
8763   Lex.Lex();
8764 
8765   if (ParseToken(lltok::colon, "expected ':' here") ||
8766       ParseToken(lltok::lparen, "expected '(' here"))
8767     return true;
8768 
8769   IdToIndexMapType IdToIndexMap;
8770   do {
8771     FunctionSummary::ConstVCall ConstVCall;
8772     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8773       return true;
8774     ConstVCallList.push_back(ConstVCall);
8775   } while (EatIfPresent(lltok::comma));
8776 
8777   if (ParseToken(lltok::rparen, "expected ')' here"))
8778     return true;
8779 
8780   // Now that the ConstVCallList vector is finalized, it is safe to save the
8781   // locations of any forward GV references that need updating later.
8782   for (auto I : IdToIndexMap) {
8783     for (auto P : I.second) {
8784       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8785              "Forward referenced type id GUID expected to be 0");
8786       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8787           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8788       FwdRef.first->second.push_back(
8789           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8790     }
8791   }
8792 
8793   return false;
8794 }
8795 
8796 /// ConstVCall
8797 ///   ::= '(' VFuncId ',' Args ')'
8798 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8799                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8800   if (ParseToken(lltok::lparen, "expected '(' here") ||
8801       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8802     return true;
8803 
8804   if (EatIfPresent(lltok::comma))
8805     if (ParseArgs(ConstVCall.Args))
8806       return true;
8807 
8808   if (ParseToken(lltok::rparen, "expected ')' here"))
8809     return true;
8810 
8811   return false;
8812 }
8813 
8814 /// VFuncId
8815 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8816 ///         'offset' ':' UInt64 ')'
8817 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8818                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
8819   assert(Lex.getKind() == lltok::kw_vFuncId);
8820   Lex.Lex();
8821 
8822   if (ParseToken(lltok::colon, "expected ':' here") ||
8823       ParseToken(lltok::lparen, "expected '(' here"))
8824     return true;
8825 
8826   if (Lex.getKind() == lltok::SummaryID) {
8827     VFuncId.GUID = 0;
8828     unsigned ID = Lex.getUIntVal();
8829     LocTy Loc = Lex.getLoc();
8830     // Keep track of the array index needing a forward reference.
8831     // We will save the location of the GUID needing an update, but
8832     // can only do so once the caller's std::vector is finalized.
8833     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8834     Lex.Lex();
8835   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8836              ParseToken(lltok::colon, "expected ':' here") ||
8837              ParseUInt64(VFuncId.GUID))
8838     return true;
8839 
8840   if (ParseToken(lltok::comma, "expected ',' here") ||
8841       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8842       ParseToken(lltok::colon, "expected ':' here") ||
8843       ParseUInt64(VFuncId.Offset) ||
8844       ParseToken(lltok::rparen, "expected ')' here"))
8845     return true;
8846 
8847   return false;
8848 }
8849 
8850 /// GVFlags
8851 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8852 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8853 ///         'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
8854 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8855   assert(Lex.getKind() == lltok::kw_flags);
8856   Lex.Lex();
8857 
8858   if (ParseToken(lltok::colon, "expected ':' here") ||
8859       ParseToken(lltok::lparen, "expected '(' here"))
8860     return true;
8861 
8862   do {
8863     unsigned Flag = 0;
8864     switch (Lex.getKind()) {
8865     case lltok::kw_linkage:
8866       Lex.Lex();
8867       if (ParseToken(lltok::colon, "expected ':'"))
8868         return true;
8869       bool HasLinkage;
8870       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8871       assert(HasLinkage && "Linkage not optional in summary entry");
8872       Lex.Lex();
8873       break;
8874     case lltok::kw_notEligibleToImport:
8875       Lex.Lex();
8876       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8877         return true;
8878       GVFlags.NotEligibleToImport = Flag;
8879       break;
8880     case lltok::kw_live:
8881       Lex.Lex();
8882       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8883         return true;
8884       GVFlags.Live = Flag;
8885       break;
8886     case lltok::kw_dsoLocal:
8887       Lex.Lex();
8888       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8889         return true;
8890       GVFlags.DSOLocal = Flag;
8891       break;
8892     case lltok::kw_canAutoHide:
8893       Lex.Lex();
8894       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8895         return true;
8896       GVFlags.CanAutoHide = Flag;
8897       break;
8898     default:
8899       return Error(Lex.getLoc(), "expected gv flag type");
8900     }
8901   } while (EatIfPresent(lltok::comma));
8902 
8903   if (ParseToken(lltok::rparen, "expected ')' here"))
8904     return true;
8905 
8906   return false;
8907 }
8908 
8909 /// GVarFlags
8910 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
8911 ///                      ',' 'writeonly' ':' Flag
8912 ///                      ',' 'constant' ':' Flag ')'
8913 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8914   assert(Lex.getKind() == lltok::kw_varFlags);
8915   Lex.Lex();
8916 
8917   if (ParseToken(lltok::colon, "expected ':' here") ||
8918       ParseToken(lltok::lparen, "expected '(' here"))
8919     return true;
8920 
8921   auto ParseRest = [this](unsigned int &Val) {
8922     Lex.Lex();
8923     if (ParseToken(lltok::colon, "expected ':'"))
8924       return true;
8925     return ParseFlag(Val);
8926   };
8927 
8928   do {
8929     unsigned Flag = 0;
8930     switch (Lex.getKind()) {
8931     case lltok::kw_readonly:
8932       if (ParseRest(Flag))
8933         return true;
8934       GVarFlags.MaybeReadOnly = Flag;
8935       break;
8936     case lltok::kw_writeonly:
8937       if (ParseRest(Flag))
8938         return true;
8939       GVarFlags.MaybeWriteOnly = Flag;
8940       break;
8941     case lltok::kw_constant:
8942       if (ParseRest(Flag))
8943         return true;
8944       GVarFlags.Constant = Flag;
8945       break;
8946     case lltok::kw_vcall_visibility:
8947       if (ParseRest(Flag))
8948         return true;
8949       GVarFlags.VCallVisibility = Flag;
8950       break;
8951     default:
8952       return Error(Lex.getLoc(), "expected gvar flag type");
8953     }
8954   } while (EatIfPresent(lltok::comma));
8955   return ParseToken(lltok::rparen, "expected ')' here");
8956 }
8957 
8958 /// ModuleReference
8959 ///   ::= 'module' ':' UInt
8960 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8961   // Parse module id.
8962   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8963       ParseToken(lltok::colon, "expected ':' here") ||
8964       ParseToken(lltok::SummaryID, "expected module ID"))
8965     return true;
8966 
8967   unsigned ModuleID = Lex.getUIntVal();
8968   auto I = ModuleIdMap.find(ModuleID);
8969   // We should have already parsed all module IDs
8970   assert(I != ModuleIdMap.end());
8971   ModulePath = I->second;
8972   return false;
8973 }
8974 
8975 /// GVReference
8976 ///   ::= SummaryID
8977 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8978   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
8979   if (!ReadOnly)
8980     WriteOnly = EatIfPresent(lltok::kw_writeonly);
8981   if (ParseToken(lltok::SummaryID, "expected GV ID"))
8982     return true;
8983 
8984   GVId = Lex.getUIntVal();
8985   // Check if we already have a VI for this GV
8986   if (GVId < NumberedValueInfos.size()) {
8987     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8988     VI = NumberedValueInfos[GVId];
8989   } else
8990     // We will create a forward reference to the stored location.
8991     VI = ValueInfo(false, FwdVIRef);
8992 
8993   if (ReadOnly)
8994     VI.setReadOnly();
8995   if (WriteOnly)
8996     VI.setWriteOnly();
8997   return false;
8998 }
8999