1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/BinaryFormat/Dwarf.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SaveAndRestore.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstring> 51 #include <iterator> 52 #include <vector> 53 54 using namespace llvm; 55 56 static std::string getTypeString(Type *T) { 57 std::string Result; 58 raw_string_ostream Tmp(Result); 59 Tmp << *T; 60 return Tmp.str(); 61 } 62 63 /// Run: module ::= toplevelentity* 64 bool LLParser::Run() { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return Error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 return ParseTopLevelEntities() || ValidateEndOfModule() || 74 ValidateEndOfIndex(); 75 } 76 77 bool LLParser::parseStandaloneConstantValue(Constant *&C, 78 const SlotMapping *Slots) { 79 restoreParsingState(Slots); 80 Lex.Lex(); 81 82 Type *Ty = nullptr; 83 if (ParseType(Ty) || parseConstantValue(Ty, C)) 84 return true; 85 if (Lex.getKind() != lltok::Eof) 86 return Error(Lex.getLoc(), "expected end of string"); 87 return false; 88 } 89 90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 91 const SlotMapping *Slots) { 92 restoreParsingState(Slots); 93 Lex.Lex(); 94 95 Read = 0; 96 SMLoc Start = Lex.getLoc(); 97 Ty = nullptr; 98 if (ParseType(Ty)) 99 return true; 100 SMLoc End = Lex.getLoc(); 101 Read = End.getPointer() - Start.getPointer(); 102 103 return false; 104 } 105 106 void LLParser::restoreParsingState(const SlotMapping *Slots) { 107 if (!Slots) 108 return; 109 NumberedVals = Slots->GlobalValues; 110 NumberedMetadata = Slots->MetadataNodes; 111 for (const auto &I : Slots->NamedTypes) 112 NamedTypes.insert( 113 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 114 for (const auto &I : Slots->Types) 115 NumberedTypes.insert( 116 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 117 } 118 119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 120 /// module. 121 bool LLParser::ValidateEndOfModule() { 122 if (!M) 123 return false; 124 // Handle any function attribute group forward references. 125 for (const auto &RAG : ForwardRefAttrGroups) { 126 Value *V = RAG.first; 127 const std::vector<unsigned> &Attrs = RAG.second; 128 AttrBuilder B; 129 130 for (const auto &Attr : Attrs) 131 B.merge(NumberedAttrBuilders[Attr]); 132 133 if (Function *Fn = dyn_cast<Function>(V)) { 134 AttributeList AS = Fn->getAttributes(); 135 AttrBuilder FnAttrs(AS.getFnAttributes()); 136 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 137 138 FnAttrs.merge(B); 139 140 // If the alignment was parsed as an attribute, move to the alignment 141 // field. 142 if (FnAttrs.hasAlignmentAttr()) { 143 Fn->setAlignment(FnAttrs.getAlignment()); 144 FnAttrs.removeAttribute(Attribute::Alignment); 145 } 146 147 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 148 AttributeSet::get(Context, FnAttrs)); 149 Fn->setAttributes(AS); 150 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 151 AttributeList AS = CI->getAttributes(); 152 AttrBuilder FnAttrs(AS.getFnAttributes()); 153 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 154 FnAttrs.merge(B); 155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 156 AttributeSet::get(Context, FnAttrs)); 157 CI->setAttributes(AS); 158 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 159 AttributeList AS = II->getAttributes(); 160 AttrBuilder FnAttrs(AS.getFnAttributes()); 161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 162 FnAttrs.merge(B); 163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 164 AttributeSet::get(Context, FnAttrs)); 165 II->setAttributes(AS); 166 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 167 AttributeList AS = CBI->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes()); 169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 170 FnAttrs.merge(B); 171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 172 AttributeSet::get(Context, FnAttrs)); 173 CBI->setAttributes(AS); 174 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 175 AttrBuilder Attrs(GV->getAttributes()); 176 Attrs.merge(B); 177 GV->setAttributes(AttributeSet::get(Context,Attrs)); 178 } else { 179 llvm_unreachable("invalid object with forward attribute group reference"); 180 } 181 } 182 183 // If there are entries in ForwardRefBlockAddresses at this point, the 184 // function was never defined. 185 if (!ForwardRefBlockAddresses.empty()) 186 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 187 "expected function name in blockaddress"); 188 189 for (const auto &NT : NumberedTypes) 190 if (NT.second.second.isValid()) 191 return Error(NT.second.second, 192 "use of undefined type '%" + Twine(NT.first) + "'"); 193 194 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 195 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 196 if (I->second.second.isValid()) 197 return Error(I->second.second, 198 "use of undefined type named '" + I->getKey() + "'"); 199 200 if (!ForwardRefComdats.empty()) 201 return Error(ForwardRefComdats.begin()->second, 202 "use of undefined comdat '$" + 203 ForwardRefComdats.begin()->first + "'"); 204 205 if (!ForwardRefVals.empty()) 206 return Error(ForwardRefVals.begin()->second.second, 207 "use of undefined value '@" + ForwardRefVals.begin()->first + 208 "'"); 209 210 if (!ForwardRefValIDs.empty()) 211 return Error(ForwardRefValIDs.begin()->second.second, 212 "use of undefined value '@" + 213 Twine(ForwardRefValIDs.begin()->first) + "'"); 214 215 if (!ForwardRefMDNodes.empty()) 216 return Error(ForwardRefMDNodes.begin()->second.second, 217 "use of undefined metadata '!" + 218 Twine(ForwardRefMDNodes.begin()->first) + "'"); 219 220 // Resolve metadata cycles. 221 for (auto &N : NumberedMetadata) { 222 if (N.second && !N.second->isResolved()) 223 N.second->resolveCycles(); 224 } 225 226 for (auto *Inst : InstsWithTBAATag) { 227 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 228 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 229 auto *UpgradedMD = UpgradeTBAANode(*MD); 230 if (MD != UpgradedMD) 231 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 232 } 233 234 // Look for intrinsic functions and CallInst that need to be upgraded 235 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 236 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 237 238 // Some types could be renamed during loading if several modules are 239 // loaded in the same LLVMContext (LTO scenario). In this case we should 240 // remangle intrinsics names as well. 241 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 242 Function *F = &*FI++; 243 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 244 F->replaceAllUsesWith(Remangled.getValue()); 245 F->eraseFromParent(); 246 } 247 } 248 249 if (UpgradeDebugInfo) 250 llvm::UpgradeDebugInfo(*M); 251 252 UpgradeModuleFlags(*M); 253 UpgradeSectionAttributes(*M); 254 255 if (!Slots) 256 return false; 257 // Initialize the slot mapping. 258 // Because by this point we've parsed and validated everything, we can "steal" 259 // the mapping from LLParser as it doesn't need it anymore. 260 Slots->GlobalValues = std::move(NumberedVals); 261 Slots->MetadataNodes = std::move(NumberedMetadata); 262 for (const auto &I : NamedTypes) 263 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 264 for (const auto &I : NumberedTypes) 265 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 266 267 return false; 268 } 269 270 /// Do final validity and sanity checks at the end of the index. 271 bool LLParser::ValidateEndOfIndex() { 272 if (!Index) 273 return false; 274 275 if (!ForwardRefValueInfos.empty()) 276 return Error(ForwardRefValueInfos.begin()->second.front().second, 277 "use of undefined summary '^" + 278 Twine(ForwardRefValueInfos.begin()->first) + "'"); 279 280 if (!ForwardRefAliasees.empty()) 281 return Error(ForwardRefAliasees.begin()->second.front().second, 282 "use of undefined summary '^" + 283 Twine(ForwardRefAliasees.begin()->first) + "'"); 284 285 if (!ForwardRefTypeIds.empty()) 286 return Error(ForwardRefTypeIds.begin()->second.front().second, 287 "use of undefined type id summary '^" + 288 Twine(ForwardRefTypeIds.begin()->first) + "'"); 289 290 return false; 291 } 292 293 //===----------------------------------------------------------------------===// 294 // Top-Level Entities 295 //===----------------------------------------------------------------------===// 296 297 bool LLParser::ParseTopLevelEntities() { 298 // If there is no Module, then parse just the summary index entries. 299 if (!M) { 300 while (true) { 301 switch (Lex.getKind()) { 302 case lltok::Eof: 303 return false; 304 case lltok::SummaryID: 305 if (ParseSummaryEntry()) 306 return true; 307 break; 308 case lltok::kw_source_filename: 309 if (ParseSourceFileName()) 310 return true; 311 break; 312 default: 313 // Skip everything else 314 Lex.Lex(); 315 } 316 } 317 } 318 while (true) { 319 switch (Lex.getKind()) { 320 default: return TokError("expected top-level entity"); 321 case lltok::Eof: return false; 322 case lltok::kw_declare: if (ParseDeclare()) return true; break; 323 case lltok::kw_define: if (ParseDefine()) return true; break; 324 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 325 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 326 case lltok::kw_source_filename: 327 if (ParseSourceFileName()) 328 return true; 329 break; 330 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 331 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 332 case lltok::LocalVar: if (ParseNamedType()) return true; break; 333 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 334 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 335 case lltok::ComdatVar: if (parseComdat()) return true; break; 336 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 337 case lltok::SummaryID: 338 if (ParseSummaryEntry()) 339 return true; 340 break; 341 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 342 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 343 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 344 case lltok::kw_uselistorder_bb: 345 if (ParseUseListOrderBB()) 346 return true; 347 break; 348 } 349 } 350 } 351 352 /// toplevelentity 353 /// ::= 'module' 'asm' STRINGCONSTANT 354 bool LLParser::ParseModuleAsm() { 355 assert(Lex.getKind() == lltok::kw_module); 356 Lex.Lex(); 357 358 std::string AsmStr; 359 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 360 ParseStringConstant(AsmStr)) return true; 361 362 M->appendModuleInlineAsm(AsmStr); 363 return false; 364 } 365 366 /// toplevelentity 367 /// ::= 'target' 'triple' '=' STRINGCONSTANT 368 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 369 bool LLParser::ParseTargetDefinition() { 370 assert(Lex.getKind() == lltok::kw_target); 371 std::string Str; 372 switch (Lex.Lex()) { 373 default: return TokError("unknown target property"); 374 case lltok::kw_triple: 375 Lex.Lex(); 376 if (ParseToken(lltok::equal, "expected '=' after target triple") || 377 ParseStringConstant(Str)) 378 return true; 379 M->setTargetTriple(Str); 380 return false; 381 case lltok::kw_datalayout: 382 Lex.Lex(); 383 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 384 ParseStringConstant(Str)) 385 return true; 386 if (DataLayoutStr.empty()) 387 M->setDataLayout(Str); 388 return false; 389 } 390 } 391 392 /// toplevelentity 393 /// ::= 'source_filename' '=' STRINGCONSTANT 394 bool LLParser::ParseSourceFileName() { 395 assert(Lex.getKind() == lltok::kw_source_filename); 396 Lex.Lex(); 397 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 398 ParseStringConstant(SourceFileName)) 399 return true; 400 if (M) 401 M->setSourceFileName(SourceFileName); 402 return false; 403 } 404 405 /// toplevelentity 406 /// ::= 'deplibs' '=' '[' ']' 407 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 408 /// FIXME: Remove in 4.0. Currently parse, but ignore. 409 bool LLParser::ParseDepLibs() { 410 assert(Lex.getKind() == lltok::kw_deplibs); 411 Lex.Lex(); 412 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 413 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 414 return true; 415 416 if (EatIfPresent(lltok::rsquare)) 417 return false; 418 419 do { 420 std::string Str; 421 if (ParseStringConstant(Str)) return true; 422 } while (EatIfPresent(lltok::comma)); 423 424 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 425 } 426 427 /// ParseUnnamedType: 428 /// ::= LocalVarID '=' 'type' type 429 bool LLParser::ParseUnnamedType() { 430 LocTy TypeLoc = Lex.getLoc(); 431 unsigned TypeID = Lex.getUIntVal(); 432 Lex.Lex(); // eat LocalVarID; 433 434 if (ParseToken(lltok::equal, "expected '=' after name") || 435 ParseToken(lltok::kw_type, "expected 'type' after '='")) 436 return true; 437 438 Type *Result = nullptr; 439 if (ParseStructDefinition(TypeLoc, "", 440 NumberedTypes[TypeID], Result)) return true; 441 442 if (!isa<StructType>(Result)) { 443 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 444 if (Entry.first) 445 return Error(TypeLoc, "non-struct types may not be recursive"); 446 Entry.first = Result; 447 Entry.second = SMLoc(); 448 } 449 450 return false; 451 } 452 453 /// toplevelentity 454 /// ::= LocalVar '=' 'type' type 455 bool LLParser::ParseNamedType() { 456 std::string Name = Lex.getStrVal(); 457 LocTy NameLoc = Lex.getLoc(); 458 Lex.Lex(); // eat LocalVar. 459 460 if (ParseToken(lltok::equal, "expected '=' after name") || 461 ParseToken(lltok::kw_type, "expected 'type' after name")) 462 return true; 463 464 Type *Result = nullptr; 465 if (ParseStructDefinition(NameLoc, Name, 466 NamedTypes[Name], Result)) return true; 467 468 if (!isa<StructType>(Result)) { 469 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 470 if (Entry.first) 471 return Error(NameLoc, "non-struct types may not be recursive"); 472 Entry.first = Result; 473 Entry.second = SMLoc(); 474 } 475 476 return false; 477 } 478 479 /// toplevelentity 480 /// ::= 'declare' FunctionHeader 481 bool LLParser::ParseDeclare() { 482 assert(Lex.getKind() == lltok::kw_declare); 483 Lex.Lex(); 484 485 std::vector<std::pair<unsigned, MDNode *>> MDs; 486 while (Lex.getKind() == lltok::MetadataVar) { 487 unsigned MDK; 488 MDNode *N; 489 if (ParseMetadataAttachment(MDK, N)) 490 return true; 491 MDs.push_back({MDK, N}); 492 } 493 494 Function *F; 495 if (ParseFunctionHeader(F, false)) 496 return true; 497 for (auto &MD : MDs) 498 F->addMetadata(MD.first, *MD.second); 499 return false; 500 } 501 502 /// toplevelentity 503 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 504 bool LLParser::ParseDefine() { 505 assert(Lex.getKind() == lltok::kw_define); 506 Lex.Lex(); 507 508 Function *F; 509 return ParseFunctionHeader(F, true) || 510 ParseOptionalFunctionMetadata(*F) || 511 ParseFunctionBody(*F); 512 } 513 514 /// ParseGlobalType 515 /// ::= 'constant' 516 /// ::= 'global' 517 bool LLParser::ParseGlobalType(bool &IsConstant) { 518 if (Lex.getKind() == lltok::kw_constant) 519 IsConstant = true; 520 else if (Lex.getKind() == lltok::kw_global) 521 IsConstant = false; 522 else { 523 IsConstant = false; 524 return TokError("expected 'global' or 'constant'"); 525 } 526 Lex.Lex(); 527 return false; 528 } 529 530 bool LLParser::ParseOptionalUnnamedAddr( 531 GlobalVariable::UnnamedAddr &UnnamedAddr) { 532 if (EatIfPresent(lltok::kw_unnamed_addr)) 533 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 534 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 535 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 536 else 537 UnnamedAddr = GlobalValue::UnnamedAddr::None; 538 return false; 539 } 540 541 /// ParseUnnamedGlobal: 542 /// OptionalVisibility (ALIAS | IFUNC) ... 543 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 544 /// OptionalDLLStorageClass 545 /// ... -> global variable 546 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 547 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 548 /// OptionalDLLStorageClass 549 /// ... -> global variable 550 bool LLParser::ParseUnnamedGlobal() { 551 unsigned VarID = NumberedVals.size(); 552 std::string Name; 553 LocTy NameLoc = Lex.getLoc(); 554 555 // Handle the GlobalID form. 556 if (Lex.getKind() == lltok::GlobalID) { 557 if (Lex.getUIntVal() != VarID) 558 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 559 Twine(VarID) + "'"); 560 Lex.Lex(); // eat GlobalID; 561 562 if (ParseToken(lltok::equal, "expected '=' after name")) 563 return true; 564 } 565 566 bool HasLinkage; 567 unsigned Linkage, Visibility, DLLStorageClass; 568 bool DSOLocal; 569 GlobalVariable::ThreadLocalMode TLM; 570 GlobalVariable::UnnamedAddr UnnamedAddr; 571 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 572 DSOLocal) || 573 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 574 return true; 575 576 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 577 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 578 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 579 580 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 581 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 582 } 583 584 /// ParseNamedGlobal: 585 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 586 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 587 /// OptionalVisibility OptionalDLLStorageClass 588 /// ... -> global variable 589 bool LLParser::ParseNamedGlobal() { 590 assert(Lex.getKind() == lltok::GlobalVar); 591 LocTy NameLoc = Lex.getLoc(); 592 std::string Name = Lex.getStrVal(); 593 Lex.Lex(); 594 595 bool HasLinkage; 596 unsigned Linkage, Visibility, DLLStorageClass; 597 bool DSOLocal; 598 GlobalVariable::ThreadLocalMode TLM; 599 GlobalVariable::UnnamedAddr UnnamedAddr; 600 if (ParseToken(lltok::equal, "expected '=' in global variable") || 601 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 602 DSOLocal) || 603 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 604 return true; 605 606 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 607 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 608 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 609 610 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 611 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 612 } 613 614 bool LLParser::parseComdat() { 615 assert(Lex.getKind() == lltok::ComdatVar); 616 std::string Name = Lex.getStrVal(); 617 LocTy NameLoc = Lex.getLoc(); 618 Lex.Lex(); 619 620 if (ParseToken(lltok::equal, "expected '=' here")) 621 return true; 622 623 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 624 return TokError("expected comdat type"); 625 626 Comdat::SelectionKind SK; 627 switch (Lex.getKind()) { 628 default: 629 return TokError("unknown selection kind"); 630 case lltok::kw_any: 631 SK = Comdat::Any; 632 break; 633 case lltok::kw_exactmatch: 634 SK = Comdat::ExactMatch; 635 break; 636 case lltok::kw_largest: 637 SK = Comdat::Largest; 638 break; 639 case lltok::kw_noduplicates: 640 SK = Comdat::NoDuplicates; 641 break; 642 case lltok::kw_samesize: 643 SK = Comdat::SameSize; 644 break; 645 } 646 Lex.Lex(); 647 648 // See if the comdat was forward referenced, if so, use the comdat. 649 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 650 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 651 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 652 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 653 654 Comdat *C; 655 if (I != ComdatSymTab.end()) 656 C = &I->second; 657 else 658 C = M->getOrInsertComdat(Name); 659 C->setSelectionKind(SK); 660 661 return false; 662 } 663 664 // MDString: 665 // ::= '!' STRINGCONSTANT 666 bool LLParser::ParseMDString(MDString *&Result) { 667 std::string Str; 668 if (ParseStringConstant(Str)) return true; 669 Result = MDString::get(Context, Str); 670 return false; 671 } 672 673 // MDNode: 674 // ::= '!' MDNodeNumber 675 bool LLParser::ParseMDNodeID(MDNode *&Result) { 676 // !{ ..., !42, ... } 677 LocTy IDLoc = Lex.getLoc(); 678 unsigned MID = 0; 679 if (ParseUInt32(MID)) 680 return true; 681 682 // If not a forward reference, just return it now. 683 if (NumberedMetadata.count(MID)) { 684 Result = NumberedMetadata[MID]; 685 return false; 686 } 687 688 // Otherwise, create MDNode forward reference. 689 auto &FwdRef = ForwardRefMDNodes[MID]; 690 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 691 692 Result = FwdRef.first.get(); 693 NumberedMetadata[MID].reset(Result); 694 return false; 695 } 696 697 /// ParseNamedMetadata: 698 /// !foo = !{ !1, !2 } 699 bool LLParser::ParseNamedMetadata() { 700 assert(Lex.getKind() == lltok::MetadataVar); 701 std::string Name = Lex.getStrVal(); 702 Lex.Lex(); 703 704 if (ParseToken(lltok::equal, "expected '=' here") || 705 ParseToken(lltok::exclaim, "Expected '!' here") || 706 ParseToken(lltok::lbrace, "Expected '{' here")) 707 return true; 708 709 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 710 if (Lex.getKind() != lltok::rbrace) 711 do { 712 MDNode *N = nullptr; 713 // Parse DIExpressions inline as a special case. They are still MDNodes, 714 // so they can still appear in named metadata. Remove this logic if they 715 // become plain Metadata. 716 if (Lex.getKind() == lltok::MetadataVar && 717 Lex.getStrVal() == "DIExpression") { 718 if (ParseDIExpression(N, /*IsDistinct=*/false)) 719 return true; 720 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 721 ParseMDNodeID(N)) { 722 return true; 723 } 724 NMD->addOperand(N); 725 } while (EatIfPresent(lltok::comma)); 726 727 return ParseToken(lltok::rbrace, "expected end of metadata node"); 728 } 729 730 /// ParseStandaloneMetadata: 731 /// !42 = !{...} 732 bool LLParser::ParseStandaloneMetadata() { 733 assert(Lex.getKind() == lltok::exclaim); 734 Lex.Lex(); 735 unsigned MetadataID = 0; 736 737 MDNode *Init; 738 if (ParseUInt32(MetadataID) || 739 ParseToken(lltok::equal, "expected '=' here")) 740 return true; 741 742 // Detect common error, from old metadata syntax. 743 if (Lex.getKind() == lltok::Type) 744 return TokError("unexpected type in metadata definition"); 745 746 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 747 if (Lex.getKind() == lltok::MetadataVar) { 748 if (ParseSpecializedMDNode(Init, IsDistinct)) 749 return true; 750 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 751 ParseMDTuple(Init, IsDistinct)) 752 return true; 753 754 // See if this was forward referenced, if so, handle it. 755 auto FI = ForwardRefMDNodes.find(MetadataID); 756 if (FI != ForwardRefMDNodes.end()) { 757 FI->second.first->replaceAllUsesWith(Init); 758 ForwardRefMDNodes.erase(FI); 759 760 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 761 } else { 762 if (NumberedMetadata.count(MetadataID)) 763 return TokError("Metadata id is already used"); 764 NumberedMetadata[MetadataID].reset(Init); 765 } 766 767 return false; 768 } 769 770 // Skips a single module summary entry. 771 bool LLParser::SkipModuleSummaryEntry() { 772 // Each module summary entry consists of a tag for the entry 773 // type, followed by a colon, then the fields surrounded by nested sets of 774 // parentheses. The "tag:" looks like a Label. Once parsing support is 775 // in place we will look for the tokens corresponding to the expected tags. 776 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 777 Lex.getKind() != lltok::kw_typeid) 778 return TokError( 779 "Expected 'gv', 'module', or 'typeid' at the start of summary entry"); 780 Lex.Lex(); 781 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 782 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 783 return true; 784 // Now walk through the parenthesized entry, until the number of open 785 // parentheses goes back down to 0 (the first '(' was parsed above). 786 unsigned NumOpenParen = 1; 787 do { 788 switch (Lex.getKind()) { 789 case lltok::lparen: 790 NumOpenParen++; 791 break; 792 case lltok::rparen: 793 NumOpenParen--; 794 break; 795 case lltok::Eof: 796 return TokError("found end of file while parsing summary entry"); 797 default: 798 // Skip everything in between parentheses. 799 break; 800 } 801 Lex.Lex(); 802 } while (NumOpenParen > 0); 803 return false; 804 } 805 806 /// SummaryEntry 807 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 808 bool LLParser::ParseSummaryEntry() { 809 assert(Lex.getKind() == lltok::SummaryID); 810 unsigned SummaryID = Lex.getUIntVal(); 811 812 // For summary entries, colons should be treated as distinct tokens, 813 // not an indication of the end of a label token. 814 Lex.setIgnoreColonInIdentifiers(true); 815 816 Lex.Lex(); 817 if (ParseToken(lltok::equal, "expected '=' here")) 818 return true; 819 820 // If we don't have an index object, skip the summary entry. 821 if (!Index) 822 return SkipModuleSummaryEntry(); 823 824 bool result = false; 825 switch (Lex.getKind()) { 826 case lltok::kw_gv: 827 result = ParseGVEntry(SummaryID); 828 break; 829 case lltok::kw_module: 830 result = ParseModuleEntry(SummaryID); 831 break; 832 case lltok::kw_typeid: 833 result = ParseTypeIdEntry(SummaryID); 834 break; 835 default: 836 result = Error(Lex.getLoc(), "unexpected summary kind"); 837 break; 838 } 839 Lex.setIgnoreColonInIdentifiers(false); 840 return result; 841 } 842 843 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 844 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 845 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 846 } 847 848 // If there was an explicit dso_local, update GV. In the absence of an explicit 849 // dso_local we keep the default value. 850 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 851 if (DSOLocal) 852 GV.setDSOLocal(true); 853 } 854 855 /// parseIndirectSymbol: 856 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 857 /// OptionalVisibility OptionalDLLStorageClass 858 /// OptionalThreadLocal OptionalUnnamedAddr 859 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 860 /// 861 /// IndirectSymbol 862 /// ::= TypeAndValue 863 /// 864 /// IndirectSymbolAttr 865 /// ::= ',' 'partition' StringConstant 866 /// 867 /// Everything through OptionalUnnamedAddr has already been parsed. 868 /// 869 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 870 unsigned L, unsigned Visibility, 871 unsigned DLLStorageClass, bool DSOLocal, 872 GlobalVariable::ThreadLocalMode TLM, 873 GlobalVariable::UnnamedAddr UnnamedAddr) { 874 bool IsAlias; 875 if (Lex.getKind() == lltok::kw_alias) 876 IsAlias = true; 877 else if (Lex.getKind() == lltok::kw_ifunc) 878 IsAlias = false; 879 else 880 llvm_unreachable("Not an alias or ifunc!"); 881 Lex.Lex(); 882 883 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 884 885 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 886 return Error(NameLoc, "invalid linkage type for alias"); 887 888 if (!isValidVisibilityForLinkage(Visibility, L)) 889 return Error(NameLoc, 890 "symbol with local linkage must have default visibility"); 891 892 Type *Ty; 893 LocTy ExplicitTypeLoc = Lex.getLoc(); 894 if (ParseType(Ty) || 895 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 896 return true; 897 898 Constant *Aliasee; 899 LocTy AliaseeLoc = Lex.getLoc(); 900 if (Lex.getKind() != lltok::kw_bitcast && 901 Lex.getKind() != lltok::kw_getelementptr && 902 Lex.getKind() != lltok::kw_addrspacecast && 903 Lex.getKind() != lltok::kw_inttoptr) { 904 if (ParseGlobalTypeAndValue(Aliasee)) 905 return true; 906 } else { 907 // The bitcast dest type is not present, it is implied by the dest type. 908 ValID ID; 909 if (ParseValID(ID)) 910 return true; 911 if (ID.Kind != ValID::t_Constant) 912 return Error(AliaseeLoc, "invalid aliasee"); 913 Aliasee = ID.ConstantVal; 914 } 915 916 Type *AliaseeType = Aliasee->getType(); 917 auto *PTy = dyn_cast<PointerType>(AliaseeType); 918 if (!PTy) 919 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 920 unsigned AddrSpace = PTy->getAddressSpace(); 921 922 if (IsAlias && Ty != PTy->getElementType()) 923 return Error( 924 ExplicitTypeLoc, 925 "explicit pointee type doesn't match operand's pointee type"); 926 927 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 928 return Error( 929 ExplicitTypeLoc, 930 "explicit pointee type should be a function type"); 931 932 GlobalValue *GVal = nullptr; 933 934 // See if the alias was forward referenced, if so, prepare to replace the 935 // forward reference. 936 if (!Name.empty()) { 937 GVal = M->getNamedValue(Name); 938 if (GVal) { 939 if (!ForwardRefVals.erase(Name)) 940 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 941 } 942 } else { 943 auto I = ForwardRefValIDs.find(NumberedVals.size()); 944 if (I != ForwardRefValIDs.end()) { 945 GVal = I->second.first; 946 ForwardRefValIDs.erase(I); 947 } 948 } 949 950 // Okay, create the alias but do not insert it into the module yet. 951 std::unique_ptr<GlobalIndirectSymbol> GA; 952 if (IsAlias) 953 GA.reset(GlobalAlias::create(Ty, AddrSpace, 954 (GlobalValue::LinkageTypes)Linkage, Name, 955 Aliasee, /*Parent*/ nullptr)); 956 else 957 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 958 (GlobalValue::LinkageTypes)Linkage, Name, 959 Aliasee, /*Parent*/ nullptr)); 960 GA->setThreadLocalMode(TLM); 961 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 962 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 963 GA->setUnnamedAddr(UnnamedAddr); 964 maybeSetDSOLocal(DSOLocal, *GA); 965 966 // At this point we've parsed everything except for the IndirectSymbolAttrs. 967 // Now parse them if there are any. 968 while (Lex.getKind() == lltok::comma) { 969 Lex.Lex(); 970 971 if (Lex.getKind() == lltok::kw_partition) { 972 Lex.Lex(); 973 GA->setPartition(Lex.getStrVal()); 974 if (ParseToken(lltok::StringConstant, "expected partition string")) 975 return true; 976 } else { 977 return TokError("unknown alias or ifunc property!"); 978 } 979 } 980 981 if (Name.empty()) 982 NumberedVals.push_back(GA.get()); 983 984 if (GVal) { 985 // Verify that types agree. 986 if (GVal->getType() != GA->getType()) 987 return Error( 988 ExplicitTypeLoc, 989 "forward reference and definition of alias have different types"); 990 991 // If they agree, just RAUW the old value with the alias and remove the 992 // forward ref info. 993 GVal->replaceAllUsesWith(GA.get()); 994 GVal->eraseFromParent(); 995 } 996 997 // Insert into the module, we know its name won't collide now. 998 if (IsAlias) 999 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1000 else 1001 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1002 assert(GA->getName() == Name && "Should not be a name conflict!"); 1003 1004 // The module owns this now 1005 GA.release(); 1006 1007 return false; 1008 } 1009 1010 /// ParseGlobal 1011 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1012 /// OptionalVisibility OptionalDLLStorageClass 1013 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1014 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1015 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1016 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1017 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1018 /// Const OptionalAttrs 1019 /// 1020 /// Everything up to and including OptionalUnnamedAddr has been parsed 1021 /// already. 1022 /// 1023 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 1024 unsigned Linkage, bool HasLinkage, 1025 unsigned Visibility, unsigned DLLStorageClass, 1026 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1027 GlobalVariable::UnnamedAddr UnnamedAddr) { 1028 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1029 return Error(NameLoc, 1030 "symbol with local linkage must have default visibility"); 1031 1032 unsigned AddrSpace; 1033 bool IsConstant, IsExternallyInitialized; 1034 LocTy IsExternallyInitializedLoc; 1035 LocTy TyLoc; 1036 1037 Type *Ty = nullptr; 1038 if (ParseOptionalAddrSpace(AddrSpace) || 1039 ParseOptionalToken(lltok::kw_externally_initialized, 1040 IsExternallyInitialized, 1041 &IsExternallyInitializedLoc) || 1042 ParseGlobalType(IsConstant) || 1043 ParseType(Ty, TyLoc)) 1044 return true; 1045 1046 // If the linkage is specified and is external, then no initializer is 1047 // present. 1048 Constant *Init = nullptr; 1049 if (!HasLinkage || 1050 !GlobalValue::isValidDeclarationLinkage( 1051 (GlobalValue::LinkageTypes)Linkage)) { 1052 if (ParseGlobalValue(Ty, Init)) 1053 return true; 1054 } 1055 1056 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1057 return Error(TyLoc, "invalid type for global variable"); 1058 1059 GlobalValue *GVal = nullptr; 1060 1061 // See if the global was forward referenced, if so, use the global. 1062 if (!Name.empty()) { 1063 GVal = M->getNamedValue(Name); 1064 if (GVal) { 1065 if (!ForwardRefVals.erase(Name)) 1066 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1067 } 1068 } else { 1069 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1070 if (I != ForwardRefValIDs.end()) { 1071 GVal = I->second.first; 1072 ForwardRefValIDs.erase(I); 1073 } 1074 } 1075 1076 GlobalVariable *GV; 1077 if (!GVal) { 1078 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1079 Name, nullptr, GlobalVariable::NotThreadLocal, 1080 AddrSpace); 1081 } else { 1082 if (GVal->getValueType() != Ty) 1083 return Error(TyLoc, 1084 "forward reference and definition of global have different types"); 1085 1086 GV = cast<GlobalVariable>(GVal); 1087 1088 // Move the forward-reference to the correct spot in the module. 1089 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1090 } 1091 1092 if (Name.empty()) 1093 NumberedVals.push_back(GV); 1094 1095 // Set the parsed properties on the global. 1096 if (Init) 1097 GV->setInitializer(Init); 1098 GV->setConstant(IsConstant); 1099 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1100 maybeSetDSOLocal(DSOLocal, *GV); 1101 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1102 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1103 GV->setExternallyInitialized(IsExternallyInitialized); 1104 GV->setThreadLocalMode(TLM); 1105 GV->setUnnamedAddr(UnnamedAddr); 1106 1107 // Parse attributes on the global. 1108 while (Lex.getKind() == lltok::comma) { 1109 Lex.Lex(); 1110 1111 if (Lex.getKind() == lltok::kw_section) { 1112 Lex.Lex(); 1113 GV->setSection(Lex.getStrVal()); 1114 if (ParseToken(lltok::StringConstant, "expected global section string")) 1115 return true; 1116 } else if (Lex.getKind() == lltok::kw_partition) { 1117 Lex.Lex(); 1118 GV->setPartition(Lex.getStrVal()); 1119 if (ParseToken(lltok::StringConstant, "expected partition string")) 1120 return true; 1121 } else if (Lex.getKind() == lltok::kw_align) { 1122 unsigned Alignment; 1123 if (ParseOptionalAlignment(Alignment)) return true; 1124 GV->setAlignment(Alignment); 1125 } else if (Lex.getKind() == lltok::MetadataVar) { 1126 if (ParseGlobalObjectMetadataAttachment(*GV)) 1127 return true; 1128 } else { 1129 Comdat *C; 1130 if (parseOptionalComdat(Name, C)) 1131 return true; 1132 if (C) 1133 GV->setComdat(C); 1134 else 1135 return TokError("unknown global variable property!"); 1136 } 1137 } 1138 1139 AttrBuilder Attrs; 1140 LocTy BuiltinLoc; 1141 std::vector<unsigned> FwdRefAttrGrps; 1142 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1143 return true; 1144 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1145 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1146 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1147 } 1148 1149 return false; 1150 } 1151 1152 /// ParseUnnamedAttrGrp 1153 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1154 bool LLParser::ParseUnnamedAttrGrp() { 1155 assert(Lex.getKind() == lltok::kw_attributes); 1156 LocTy AttrGrpLoc = Lex.getLoc(); 1157 Lex.Lex(); 1158 1159 if (Lex.getKind() != lltok::AttrGrpID) 1160 return TokError("expected attribute group id"); 1161 1162 unsigned VarID = Lex.getUIntVal(); 1163 std::vector<unsigned> unused; 1164 LocTy BuiltinLoc; 1165 Lex.Lex(); 1166 1167 if (ParseToken(lltok::equal, "expected '=' here") || 1168 ParseToken(lltok::lbrace, "expected '{' here") || 1169 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1170 BuiltinLoc) || 1171 ParseToken(lltok::rbrace, "expected end of attribute group")) 1172 return true; 1173 1174 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1175 return Error(AttrGrpLoc, "attribute group has no attributes"); 1176 1177 return false; 1178 } 1179 1180 /// ParseFnAttributeValuePairs 1181 /// ::= <attr> | <attr> '=' <value> 1182 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1183 std::vector<unsigned> &FwdRefAttrGrps, 1184 bool inAttrGrp, LocTy &BuiltinLoc) { 1185 bool HaveError = false; 1186 1187 B.clear(); 1188 1189 while (true) { 1190 lltok::Kind Token = Lex.getKind(); 1191 if (Token == lltok::kw_builtin) 1192 BuiltinLoc = Lex.getLoc(); 1193 switch (Token) { 1194 default: 1195 if (!inAttrGrp) return HaveError; 1196 return Error(Lex.getLoc(), "unterminated attribute group"); 1197 case lltok::rbrace: 1198 // Finished. 1199 return false; 1200 1201 case lltok::AttrGrpID: { 1202 // Allow a function to reference an attribute group: 1203 // 1204 // define void @foo() #1 { ... } 1205 if (inAttrGrp) 1206 HaveError |= 1207 Error(Lex.getLoc(), 1208 "cannot have an attribute group reference in an attribute group"); 1209 1210 unsigned AttrGrpNum = Lex.getUIntVal(); 1211 if (inAttrGrp) break; 1212 1213 // Save the reference to the attribute group. We'll fill it in later. 1214 FwdRefAttrGrps.push_back(AttrGrpNum); 1215 break; 1216 } 1217 // Target-dependent attributes: 1218 case lltok::StringConstant: { 1219 if (ParseStringAttribute(B)) 1220 return true; 1221 continue; 1222 } 1223 1224 // Target-independent attributes: 1225 case lltok::kw_align: { 1226 // As a hack, we allow function alignment to be initially parsed as an 1227 // attribute on a function declaration/definition or added to an attribute 1228 // group and later moved to the alignment field. 1229 unsigned Alignment; 1230 if (inAttrGrp) { 1231 Lex.Lex(); 1232 if (ParseToken(lltok::equal, "expected '=' here") || 1233 ParseUInt32(Alignment)) 1234 return true; 1235 } else { 1236 if (ParseOptionalAlignment(Alignment)) 1237 return true; 1238 } 1239 B.addAlignmentAttr(Alignment); 1240 continue; 1241 } 1242 case lltok::kw_alignstack: { 1243 unsigned Alignment; 1244 if (inAttrGrp) { 1245 Lex.Lex(); 1246 if (ParseToken(lltok::equal, "expected '=' here") || 1247 ParseUInt32(Alignment)) 1248 return true; 1249 } else { 1250 if (ParseOptionalStackAlignment(Alignment)) 1251 return true; 1252 } 1253 B.addStackAlignmentAttr(Alignment); 1254 continue; 1255 } 1256 case lltok::kw_allocsize: { 1257 unsigned ElemSizeArg; 1258 Optional<unsigned> NumElemsArg; 1259 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1260 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1261 return true; 1262 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1263 continue; 1264 } 1265 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1266 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1267 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1268 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1269 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1270 case lltok::kw_inaccessiblememonly: 1271 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1272 case lltok::kw_inaccessiblemem_or_argmemonly: 1273 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1274 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1275 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1276 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1277 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1278 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1279 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1280 case lltok::kw_noimplicitfloat: 1281 B.addAttribute(Attribute::NoImplicitFloat); break; 1282 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1283 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1284 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1285 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1286 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1287 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1288 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1289 case lltok::kw_optforfuzzing: 1290 B.addAttribute(Attribute::OptForFuzzing); break; 1291 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1292 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1293 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1294 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1295 case lltok::kw_returns_twice: 1296 B.addAttribute(Attribute::ReturnsTwice); break; 1297 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1298 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1299 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1300 case lltok::kw_sspstrong: 1301 B.addAttribute(Attribute::StackProtectStrong); break; 1302 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1303 case lltok::kw_shadowcallstack: 1304 B.addAttribute(Attribute::ShadowCallStack); break; 1305 case lltok::kw_sanitize_address: 1306 B.addAttribute(Attribute::SanitizeAddress); break; 1307 case lltok::kw_sanitize_hwaddress: 1308 B.addAttribute(Attribute::SanitizeHWAddress); break; 1309 case lltok::kw_sanitize_thread: 1310 B.addAttribute(Attribute::SanitizeThread); break; 1311 case lltok::kw_sanitize_memory: 1312 B.addAttribute(Attribute::SanitizeMemory); break; 1313 case lltok::kw_speculative_load_hardening: 1314 B.addAttribute(Attribute::SpeculativeLoadHardening); 1315 break; 1316 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1317 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1318 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1319 1320 // Error handling. 1321 case lltok::kw_inreg: 1322 case lltok::kw_signext: 1323 case lltok::kw_zeroext: 1324 HaveError |= 1325 Error(Lex.getLoc(), 1326 "invalid use of attribute on a function"); 1327 break; 1328 case lltok::kw_byval: 1329 case lltok::kw_dereferenceable: 1330 case lltok::kw_dereferenceable_or_null: 1331 case lltok::kw_inalloca: 1332 case lltok::kw_nest: 1333 case lltok::kw_noalias: 1334 case lltok::kw_nocapture: 1335 case lltok::kw_nonnull: 1336 case lltok::kw_returned: 1337 case lltok::kw_sret: 1338 case lltok::kw_swifterror: 1339 case lltok::kw_swiftself: 1340 case lltok::kw_immarg: 1341 HaveError |= 1342 Error(Lex.getLoc(), 1343 "invalid use of parameter-only attribute on a function"); 1344 break; 1345 } 1346 1347 Lex.Lex(); 1348 } 1349 } 1350 1351 //===----------------------------------------------------------------------===// 1352 // GlobalValue Reference/Resolution Routines. 1353 //===----------------------------------------------------------------------===// 1354 1355 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1356 const std::string &Name) { 1357 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1358 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1359 PTy->getAddressSpace(), Name, M); 1360 else 1361 return new GlobalVariable(*M, PTy->getElementType(), false, 1362 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1363 nullptr, GlobalVariable::NotThreadLocal, 1364 PTy->getAddressSpace()); 1365 } 1366 1367 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1368 Value *Val, bool IsCall) { 1369 if (Val->getType() == Ty) 1370 return Val; 1371 // For calls we also accept variables in the program address space. 1372 Type *SuggestedTy = Ty; 1373 if (IsCall && isa<PointerType>(Ty)) { 1374 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1375 M->getDataLayout().getProgramAddressSpace()); 1376 SuggestedTy = TyInProgAS; 1377 if (Val->getType() == TyInProgAS) 1378 return Val; 1379 } 1380 if (Ty->isLabelTy()) 1381 Error(Loc, "'" + Name + "' is not a basic block"); 1382 else 1383 Error(Loc, "'" + Name + "' defined with type '" + 1384 getTypeString(Val->getType()) + "' but expected '" + 1385 getTypeString(SuggestedTy) + "'"); 1386 return nullptr; 1387 } 1388 1389 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1390 /// forward reference record if needed. This can return null if the value 1391 /// exists but does not have the right type. 1392 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1393 LocTy Loc, bool IsCall) { 1394 PointerType *PTy = dyn_cast<PointerType>(Ty); 1395 if (!PTy) { 1396 Error(Loc, "global variable reference must have pointer type"); 1397 return nullptr; 1398 } 1399 1400 // Look this name up in the normal function symbol table. 1401 GlobalValue *Val = 1402 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1403 1404 // If this is a forward reference for the value, see if we already created a 1405 // forward ref record. 1406 if (!Val) { 1407 auto I = ForwardRefVals.find(Name); 1408 if (I != ForwardRefVals.end()) 1409 Val = I->second.first; 1410 } 1411 1412 // If we have the value in the symbol table or fwd-ref table, return it. 1413 if (Val) 1414 return cast_or_null<GlobalValue>( 1415 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1416 1417 // Otherwise, create a new forward reference for this value and remember it. 1418 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1419 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1420 return FwdVal; 1421 } 1422 1423 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1424 bool IsCall) { 1425 PointerType *PTy = dyn_cast<PointerType>(Ty); 1426 if (!PTy) { 1427 Error(Loc, "global variable reference must have pointer type"); 1428 return nullptr; 1429 } 1430 1431 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1432 1433 // If this is a forward reference for the value, see if we already created a 1434 // forward ref record. 1435 if (!Val) { 1436 auto I = ForwardRefValIDs.find(ID); 1437 if (I != ForwardRefValIDs.end()) 1438 Val = I->second.first; 1439 } 1440 1441 // If we have the value in the symbol table or fwd-ref table, return it. 1442 if (Val) 1443 return cast_or_null<GlobalValue>( 1444 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1445 1446 // Otherwise, create a new forward reference for this value and remember it. 1447 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1448 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1449 return FwdVal; 1450 } 1451 1452 //===----------------------------------------------------------------------===// 1453 // Comdat Reference/Resolution Routines. 1454 //===----------------------------------------------------------------------===// 1455 1456 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1457 // Look this name up in the comdat symbol table. 1458 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1459 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1460 if (I != ComdatSymTab.end()) 1461 return &I->second; 1462 1463 // Otherwise, create a new forward reference for this value and remember it. 1464 Comdat *C = M->getOrInsertComdat(Name); 1465 ForwardRefComdats[Name] = Loc; 1466 return C; 1467 } 1468 1469 //===----------------------------------------------------------------------===// 1470 // Helper Routines. 1471 //===----------------------------------------------------------------------===// 1472 1473 /// ParseToken - If the current token has the specified kind, eat it and return 1474 /// success. Otherwise, emit the specified error and return failure. 1475 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1476 if (Lex.getKind() != T) 1477 return TokError(ErrMsg); 1478 Lex.Lex(); 1479 return false; 1480 } 1481 1482 /// ParseStringConstant 1483 /// ::= StringConstant 1484 bool LLParser::ParseStringConstant(std::string &Result) { 1485 if (Lex.getKind() != lltok::StringConstant) 1486 return TokError("expected string constant"); 1487 Result = Lex.getStrVal(); 1488 Lex.Lex(); 1489 return false; 1490 } 1491 1492 /// ParseUInt32 1493 /// ::= uint32 1494 bool LLParser::ParseUInt32(uint32_t &Val) { 1495 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1496 return TokError("expected integer"); 1497 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1498 if (Val64 != unsigned(Val64)) 1499 return TokError("expected 32-bit integer (too large)"); 1500 Val = Val64; 1501 Lex.Lex(); 1502 return false; 1503 } 1504 1505 /// ParseUInt64 1506 /// ::= uint64 1507 bool LLParser::ParseUInt64(uint64_t &Val) { 1508 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1509 return TokError("expected integer"); 1510 Val = Lex.getAPSIntVal().getLimitedValue(); 1511 Lex.Lex(); 1512 return false; 1513 } 1514 1515 /// ParseTLSModel 1516 /// := 'localdynamic' 1517 /// := 'initialexec' 1518 /// := 'localexec' 1519 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1520 switch (Lex.getKind()) { 1521 default: 1522 return TokError("expected localdynamic, initialexec or localexec"); 1523 case lltok::kw_localdynamic: 1524 TLM = GlobalVariable::LocalDynamicTLSModel; 1525 break; 1526 case lltok::kw_initialexec: 1527 TLM = GlobalVariable::InitialExecTLSModel; 1528 break; 1529 case lltok::kw_localexec: 1530 TLM = GlobalVariable::LocalExecTLSModel; 1531 break; 1532 } 1533 1534 Lex.Lex(); 1535 return false; 1536 } 1537 1538 /// ParseOptionalThreadLocal 1539 /// := /*empty*/ 1540 /// := 'thread_local' 1541 /// := 'thread_local' '(' tlsmodel ')' 1542 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1543 TLM = GlobalVariable::NotThreadLocal; 1544 if (!EatIfPresent(lltok::kw_thread_local)) 1545 return false; 1546 1547 TLM = GlobalVariable::GeneralDynamicTLSModel; 1548 if (Lex.getKind() == lltok::lparen) { 1549 Lex.Lex(); 1550 return ParseTLSModel(TLM) || 1551 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1552 } 1553 return false; 1554 } 1555 1556 /// ParseOptionalAddrSpace 1557 /// := /*empty*/ 1558 /// := 'addrspace' '(' uint32 ')' 1559 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1560 AddrSpace = DefaultAS; 1561 if (!EatIfPresent(lltok::kw_addrspace)) 1562 return false; 1563 return ParseToken(lltok::lparen, "expected '(' in address space") || 1564 ParseUInt32(AddrSpace) || 1565 ParseToken(lltok::rparen, "expected ')' in address space"); 1566 } 1567 1568 /// ParseStringAttribute 1569 /// := StringConstant 1570 /// := StringConstant '=' StringConstant 1571 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1572 std::string Attr = Lex.getStrVal(); 1573 Lex.Lex(); 1574 std::string Val; 1575 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1576 return true; 1577 B.addAttribute(Attr, Val); 1578 return false; 1579 } 1580 1581 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1582 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1583 bool HaveError = false; 1584 1585 B.clear(); 1586 1587 while (true) { 1588 lltok::Kind Token = Lex.getKind(); 1589 switch (Token) { 1590 default: // End of attributes. 1591 return HaveError; 1592 case lltok::StringConstant: { 1593 if (ParseStringAttribute(B)) 1594 return true; 1595 continue; 1596 } 1597 case lltok::kw_align: { 1598 unsigned Alignment; 1599 if (ParseOptionalAlignment(Alignment)) 1600 return true; 1601 B.addAlignmentAttr(Alignment); 1602 continue; 1603 } 1604 case lltok::kw_byval: { 1605 Type *Ty; 1606 if (ParseByValWithOptionalType(Ty)) 1607 return true; 1608 B.addByValAttr(Ty); 1609 continue; 1610 } 1611 case lltok::kw_dereferenceable: { 1612 uint64_t Bytes; 1613 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1614 return true; 1615 B.addDereferenceableAttr(Bytes); 1616 continue; 1617 } 1618 case lltok::kw_dereferenceable_or_null: { 1619 uint64_t Bytes; 1620 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1621 return true; 1622 B.addDereferenceableOrNullAttr(Bytes); 1623 continue; 1624 } 1625 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1626 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1627 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1628 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1629 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1630 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1631 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1632 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1633 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1634 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1635 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1636 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1637 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1638 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1639 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1640 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1641 1642 case lltok::kw_alignstack: 1643 case lltok::kw_alwaysinline: 1644 case lltok::kw_argmemonly: 1645 case lltok::kw_builtin: 1646 case lltok::kw_inlinehint: 1647 case lltok::kw_jumptable: 1648 case lltok::kw_minsize: 1649 case lltok::kw_naked: 1650 case lltok::kw_nobuiltin: 1651 case lltok::kw_noduplicate: 1652 case lltok::kw_noimplicitfloat: 1653 case lltok::kw_noinline: 1654 case lltok::kw_nonlazybind: 1655 case lltok::kw_noredzone: 1656 case lltok::kw_noreturn: 1657 case lltok::kw_nocf_check: 1658 case lltok::kw_nounwind: 1659 case lltok::kw_optforfuzzing: 1660 case lltok::kw_optnone: 1661 case lltok::kw_optsize: 1662 case lltok::kw_returns_twice: 1663 case lltok::kw_sanitize_address: 1664 case lltok::kw_sanitize_hwaddress: 1665 case lltok::kw_sanitize_memory: 1666 case lltok::kw_sanitize_thread: 1667 case lltok::kw_speculative_load_hardening: 1668 case lltok::kw_ssp: 1669 case lltok::kw_sspreq: 1670 case lltok::kw_sspstrong: 1671 case lltok::kw_safestack: 1672 case lltok::kw_shadowcallstack: 1673 case lltok::kw_strictfp: 1674 case lltok::kw_uwtable: 1675 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1676 break; 1677 } 1678 1679 Lex.Lex(); 1680 } 1681 } 1682 1683 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1684 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1685 bool HaveError = false; 1686 1687 B.clear(); 1688 1689 while (true) { 1690 lltok::Kind Token = Lex.getKind(); 1691 switch (Token) { 1692 default: // End of attributes. 1693 return HaveError; 1694 case lltok::StringConstant: { 1695 if (ParseStringAttribute(B)) 1696 return true; 1697 continue; 1698 } 1699 case lltok::kw_dereferenceable: { 1700 uint64_t Bytes; 1701 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1702 return true; 1703 B.addDereferenceableAttr(Bytes); 1704 continue; 1705 } 1706 case lltok::kw_dereferenceable_or_null: { 1707 uint64_t Bytes; 1708 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1709 return true; 1710 B.addDereferenceableOrNullAttr(Bytes); 1711 continue; 1712 } 1713 case lltok::kw_align: { 1714 unsigned Alignment; 1715 if (ParseOptionalAlignment(Alignment)) 1716 return true; 1717 B.addAlignmentAttr(Alignment); 1718 continue; 1719 } 1720 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1721 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1722 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1723 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1724 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1725 1726 // Error handling. 1727 case lltok::kw_byval: 1728 case lltok::kw_inalloca: 1729 case lltok::kw_nest: 1730 case lltok::kw_nocapture: 1731 case lltok::kw_returned: 1732 case lltok::kw_sret: 1733 case lltok::kw_swifterror: 1734 case lltok::kw_swiftself: 1735 case lltok::kw_immarg: 1736 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1737 break; 1738 1739 case lltok::kw_alignstack: 1740 case lltok::kw_alwaysinline: 1741 case lltok::kw_argmemonly: 1742 case lltok::kw_builtin: 1743 case lltok::kw_cold: 1744 case lltok::kw_inlinehint: 1745 case lltok::kw_jumptable: 1746 case lltok::kw_minsize: 1747 case lltok::kw_naked: 1748 case lltok::kw_nobuiltin: 1749 case lltok::kw_noduplicate: 1750 case lltok::kw_noimplicitfloat: 1751 case lltok::kw_noinline: 1752 case lltok::kw_nonlazybind: 1753 case lltok::kw_noredzone: 1754 case lltok::kw_noreturn: 1755 case lltok::kw_nocf_check: 1756 case lltok::kw_nounwind: 1757 case lltok::kw_optforfuzzing: 1758 case lltok::kw_optnone: 1759 case lltok::kw_optsize: 1760 case lltok::kw_returns_twice: 1761 case lltok::kw_sanitize_address: 1762 case lltok::kw_sanitize_hwaddress: 1763 case lltok::kw_sanitize_memory: 1764 case lltok::kw_sanitize_thread: 1765 case lltok::kw_speculative_load_hardening: 1766 case lltok::kw_ssp: 1767 case lltok::kw_sspreq: 1768 case lltok::kw_sspstrong: 1769 case lltok::kw_safestack: 1770 case lltok::kw_shadowcallstack: 1771 case lltok::kw_strictfp: 1772 case lltok::kw_uwtable: 1773 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1774 break; 1775 1776 case lltok::kw_readnone: 1777 case lltok::kw_readonly: 1778 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1779 } 1780 1781 Lex.Lex(); 1782 } 1783 } 1784 1785 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1786 HasLinkage = true; 1787 switch (Kind) { 1788 default: 1789 HasLinkage = false; 1790 return GlobalValue::ExternalLinkage; 1791 case lltok::kw_private: 1792 return GlobalValue::PrivateLinkage; 1793 case lltok::kw_internal: 1794 return GlobalValue::InternalLinkage; 1795 case lltok::kw_weak: 1796 return GlobalValue::WeakAnyLinkage; 1797 case lltok::kw_weak_odr: 1798 return GlobalValue::WeakODRLinkage; 1799 case lltok::kw_linkonce: 1800 return GlobalValue::LinkOnceAnyLinkage; 1801 case lltok::kw_linkonce_odr: 1802 return GlobalValue::LinkOnceODRLinkage; 1803 case lltok::kw_available_externally: 1804 return GlobalValue::AvailableExternallyLinkage; 1805 case lltok::kw_appending: 1806 return GlobalValue::AppendingLinkage; 1807 case lltok::kw_common: 1808 return GlobalValue::CommonLinkage; 1809 case lltok::kw_extern_weak: 1810 return GlobalValue::ExternalWeakLinkage; 1811 case lltok::kw_external: 1812 return GlobalValue::ExternalLinkage; 1813 } 1814 } 1815 1816 /// ParseOptionalLinkage 1817 /// ::= /*empty*/ 1818 /// ::= 'private' 1819 /// ::= 'internal' 1820 /// ::= 'weak' 1821 /// ::= 'weak_odr' 1822 /// ::= 'linkonce' 1823 /// ::= 'linkonce_odr' 1824 /// ::= 'available_externally' 1825 /// ::= 'appending' 1826 /// ::= 'common' 1827 /// ::= 'extern_weak' 1828 /// ::= 'external' 1829 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1830 unsigned &Visibility, 1831 unsigned &DLLStorageClass, 1832 bool &DSOLocal) { 1833 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1834 if (HasLinkage) 1835 Lex.Lex(); 1836 ParseOptionalDSOLocal(DSOLocal); 1837 ParseOptionalVisibility(Visibility); 1838 ParseOptionalDLLStorageClass(DLLStorageClass); 1839 1840 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1841 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1842 } 1843 1844 return false; 1845 } 1846 1847 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1848 switch (Lex.getKind()) { 1849 default: 1850 DSOLocal = false; 1851 break; 1852 case lltok::kw_dso_local: 1853 DSOLocal = true; 1854 Lex.Lex(); 1855 break; 1856 case lltok::kw_dso_preemptable: 1857 DSOLocal = false; 1858 Lex.Lex(); 1859 break; 1860 } 1861 } 1862 1863 /// ParseOptionalVisibility 1864 /// ::= /*empty*/ 1865 /// ::= 'default' 1866 /// ::= 'hidden' 1867 /// ::= 'protected' 1868 /// 1869 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1870 switch (Lex.getKind()) { 1871 default: 1872 Res = GlobalValue::DefaultVisibility; 1873 return; 1874 case lltok::kw_default: 1875 Res = GlobalValue::DefaultVisibility; 1876 break; 1877 case lltok::kw_hidden: 1878 Res = GlobalValue::HiddenVisibility; 1879 break; 1880 case lltok::kw_protected: 1881 Res = GlobalValue::ProtectedVisibility; 1882 break; 1883 } 1884 Lex.Lex(); 1885 } 1886 1887 /// ParseOptionalDLLStorageClass 1888 /// ::= /*empty*/ 1889 /// ::= 'dllimport' 1890 /// ::= 'dllexport' 1891 /// 1892 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1893 switch (Lex.getKind()) { 1894 default: 1895 Res = GlobalValue::DefaultStorageClass; 1896 return; 1897 case lltok::kw_dllimport: 1898 Res = GlobalValue::DLLImportStorageClass; 1899 break; 1900 case lltok::kw_dllexport: 1901 Res = GlobalValue::DLLExportStorageClass; 1902 break; 1903 } 1904 Lex.Lex(); 1905 } 1906 1907 /// ParseOptionalCallingConv 1908 /// ::= /*empty*/ 1909 /// ::= 'ccc' 1910 /// ::= 'fastcc' 1911 /// ::= 'intel_ocl_bicc' 1912 /// ::= 'coldcc' 1913 /// ::= 'x86_stdcallcc' 1914 /// ::= 'x86_fastcallcc' 1915 /// ::= 'x86_thiscallcc' 1916 /// ::= 'x86_vectorcallcc' 1917 /// ::= 'arm_apcscc' 1918 /// ::= 'arm_aapcscc' 1919 /// ::= 'arm_aapcs_vfpcc' 1920 /// ::= 'aarch64_vector_pcs' 1921 /// ::= 'msp430_intrcc' 1922 /// ::= 'avr_intrcc' 1923 /// ::= 'avr_signalcc' 1924 /// ::= 'ptx_kernel' 1925 /// ::= 'ptx_device' 1926 /// ::= 'spir_func' 1927 /// ::= 'spir_kernel' 1928 /// ::= 'x86_64_sysvcc' 1929 /// ::= 'win64cc' 1930 /// ::= 'webkit_jscc' 1931 /// ::= 'anyregcc' 1932 /// ::= 'preserve_mostcc' 1933 /// ::= 'preserve_allcc' 1934 /// ::= 'ghccc' 1935 /// ::= 'swiftcc' 1936 /// ::= 'x86_intrcc' 1937 /// ::= 'hhvmcc' 1938 /// ::= 'hhvm_ccc' 1939 /// ::= 'cxx_fast_tlscc' 1940 /// ::= 'amdgpu_vs' 1941 /// ::= 'amdgpu_ls' 1942 /// ::= 'amdgpu_hs' 1943 /// ::= 'amdgpu_es' 1944 /// ::= 'amdgpu_gs' 1945 /// ::= 'amdgpu_ps' 1946 /// ::= 'amdgpu_cs' 1947 /// ::= 'amdgpu_kernel' 1948 /// ::= 'cc' UINT 1949 /// 1950 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1951 switch (Lex.getKind()) { 1952 default: CC = CallingConv::C; return false; 1953 case lltok::kw_ccc: CC = CallingConv::C; break; 1954 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1955 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1956 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1957 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1958 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1959 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1960 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1961 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1962 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1963 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1964 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1965 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1966 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1967 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1968 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1969 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1970 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1971 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1972 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1973 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1974 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1975 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1976 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1977 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1978 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1979 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1980 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1981 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1982 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1983 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1984 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1985 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1986 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1987 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1988 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1989 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1990 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1991 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1992 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1993 case lltok::kw_cc: { 1994 Lex.Lex(); 1995 return ParseUInt32(CC); 1996 } 1997 } 1998 1999 Lex.Lex(); 2000 return false; 2001 } 2002 2003 /// ParseMetadataAttachment 2004 /// ::= !dbg !42 2005 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2006 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2007 2008 std::string Name = Lex.getStrVal(); 2009 Kind = M->getMDKindID(Name); 2010 Lex.Lex(); 2011 2012 return ParseMDNode(MD); 2013 } 2014 2015 /// ParseInstructionMetadata 2016 /// ::= !dbg !42 (',' !dbg !57)* 2017 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 2018 do { 2019 if (Lex.getKind() != lltok::MetadataVar) 2020 return TokError("expected metadata after comma"); 2021 2022 unsigned MDK; 2023 MDNode *N; 2024 if (ParseMetadataAttachment(MDK, N)) 2025 return true; 2026 2027 Inst.setMetadata(MDK, N); 2028 if (MDK == LLVMContext::MD_tbaa) 2029 InstsWithTBAATag.push_back(&Inst); 2030 2031 // If this is the end of the list, we're done. 2032 } while (EatIfPresent(lltok::comma)); 2033 return false; 2034 } 2035 2036 /// ParseGlobalObjectMetadataAttachment 2037 /// ::= !dbg !57 2038 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2039 unsigned MDK; 2040 MDNode *N; 2041 if (ParseMetadataAttachment(MDK, N)) 2042 return true; 2043 2044 GO.addMetadata(MDK, *N); 2045 return false; 2046 } 2047 2048 /// ParseOptionalFunctionMetadata 2049 /// ::= (!dbg !57)* 2050 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 2051 while (Lex.getKind() == lltok::MetadataVar) 2052 if (ParseGlobalObjectMetadataAttachment(F)) 2053 return true; 2054 return false; 2055 } 2056 2057 /// ParseOptionalAlignment 2058 /// ::= /* empty */ 2059 /// ::= 'align' 4 2060 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 2061 Alignment = 0; 2062 if (!EatIfPresent(lltok::kw_align)) 2063 return false; 2064 LocTy AlignLoc = Lex.getLoc(); 2065 if (ParseUInt32(Alignment)) return true; 2066 if (!isPowerOf2_32(Alignment)) 2067 return Error(AlignLoc, "alignment is not a power of two"); 2068 if (Alignment > Value::MaximumAlignment) 2069 return Error(AlignLoc, "huge alignments are not supported yet"); 2070 return false; 2071 } 2072 2073 /// ParseOptionalDerefAttrBytes 2074 /// ::= /* empty */ 2075 /// ::= AttrKind '(' 4 ')' 2076 /// 2077 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2078 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2079 uint64_t &Bytes) { 2080 assert((AttrKind == lltok::kw_dereferenceable || 2081 AttrKind == lltok::kw_dereferenceable_or_null) && 2082 "contract!"); 2083 2084 Bytes = 0; 2085 if (!EatIfPresent(AttrKind)) 2086 return false; 2087 LocTy ParenLoc = Lex.getLoc(); 2088 if (!EatIfPresent(lltok::lparen)) 2089 return Error(ParenLoc, "expected '('"); 2090 LocTy DerefLoc = Lex.getLoc(); 2091 if (ParseUInt64(Bytes)) return true; 2092 ParenLoc = Lex.getLoc(); 2093 if (!EatIfPresent(lltok::rparen)) 2094 return Error(ParenLoc, "expected ')'"); 2095 if (!Bytes) 2096 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2097 return false; 2098 } 2099 2100 /// ParseOptionalCommaAlign 2101 /// ::= 2102 /// ::= ',' align 4 2103 /// 2104 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2105 /// end. 2106 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 2107 bool &AteExtraComma) { 2108 AteExtraComma = false; 2109 while (EatIfPresent(lltok::comma)) { 2110 // Metadata at the end is an early exit. 2111 if (Lex.getKind() == lltok::MetadataVar) { 2112 AteExtraComma = true; 2113 return false; 2114 } 2115 2116 if (Lex.getKind() != lltok::kw_align) 2117 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2118 2119 if (ParseOptionalAlignment(Alignment)) return true; 2120 } 2121 2122 return false; 2123 } 2124 2125 /// ParseOptionalCommaAddrSpace 2126 /// ::= 2127 /// ::= ',' addrspace(1) 2128 /// 2129 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2130 /// end. 2131 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2132 LocTy &Loc, 2133 bool &AteExtraComma) { 2134 AteExtraComma = false; 2135 while (EatIfPresent(lltok::comma)) { 2136 // Metadata at the end is an early exit. 2137 if (Lex.getKind() == lltok::MetadataVar) { 2138 AteExtraComma = true; 2139 return false; 2140 } 2141 2142 Loc = Lex.getLoc(); 2143 if (Lex.getKind() != lltok::kw_addrspace) 2144 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2145 2146 if (ParseOptionalAddrSpace(AddrSpace)) 2147 return true; 2148 } 2149 2150 return false; 2151 } 2152 2153 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2154 Optional<unsigned> &HowManyArg) { 2155 Lex.Lex(); 2156 2157 auto StartParen = Lex.getLoc(); 2158 if (!EatIfPresent(lltok::lparen)) 2159 return Error(StartParen, "expected '('"); 2160 2161 if (ParseUInt32(BaseSizeArg)) 2162 return true; 2163 2164 if (EatIfPresent(lltok::comma)) { 2165 auto HowManyAt = Lex.getLoc(); 2166 unsigned HowMany; 2167 if (ParseUInt32(HowMany)) 2168 return true; 2169 if (HowMany == BaseSizeArg) 2170 return Error(HowManyAt, 2171 "'allocsize' indices can't refer to the same parameter"); 2172 HowManyArg = HowMany; 2173 } else 2174 HowManyArg = None; 2175 2176 auto EndParen = Lex.getLoc(); 2177 if (!EatIfPresent(lltok::rparen)) 2178 return Error(EndParen, "expected ')'"); 2179 return false; 2180 } 2181 2182 /// ParseScopeAndOrdering 2183 /// if isAtomic: ::= SyncScope? AtomicOrdering 2184 /// else: ::= 2185 /// 2186 /// This sets Scope and Ordering to the parsed values. 2187 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2188 AtomicOrdering &Ordering) { 2189 if (!isAtomic) 2190 return false; 2191 2192 return ParseScope(SSID) || ParseOrdering(Ordering); 2193 } 2194 2195 /// ParseScope 2196 /// ::= syncscope("singlethread" | "<target scope>")? 2197 /// 2198 /// This sets synchronization scope ID to the ID of the parsed value. 2199 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2200 SSID = SyncScope::System; 2201 if (EatIfPresent(lltok::kw_syncscope)) { 2202 auto StartParenAt = Lex.getLoc(); 2203 if (!EatIfPresent(lltok::lparen)) 2204 return Error(StartParenAt, "Expected '(' in syncscope"); 2205 2206 std::string SSN; 2207 auto SSNAt = Lex.getLoc(); 2208 if (ParseStringConstant(SSN)) 2209 return Error(SSNAt, "Expected synchronization scope name"); 2210 2211 auto EndParenAt = Lex.getLoc(); 2212 if (!EatIfPresent(lltok::rparen)) 2213 return Error(EndParenAt, "Expected ')' in syncscope"); 2214 2215 SSID = Context.getOrInsertSyncScopeID(SSN); 2216 } 2217 2218 return false; 2219 } 2220 2221 /// ParseOrdering 2222 /// ::= AtomicOrdering 2223 /// 2224 /// This sets Ordering to the parsed value. 2225 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2226 switch (Lex.getKind()) { 2227 default: return TokError("Expected ordering on atomic instruction"); 2228 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2229 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2230 // Not specified yet: 2231 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2232 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2233 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2234 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2235 case lltok::kw_seq_cst: 2236 Ordering = AtomicOrdering::SequentiallyConsistent; 2237 break; 2238 } 2239 Lex.Lex(); 2240 return false; 2241 } 2242 2243 /// ParseOptionalStackAlignment 2244 /// ::= /* empty */ 2245 /// ::= 'alignstack' '(' 4 ')' 2246 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2247 Alignment = 0; 2248 if (!EatIfPresent(lltok::kw_alignstack)) 2249 return false; 2250 LocTy ParenLoc = Lex.getLoc(); 2251 if (!EatIfPresent(lltok::lparen)) 2252 return Error(ParenLoc, "expected '('"); 2253 LocTy AlignLoc = Lex.getLoc(); 2254 if (ParseUInt32(Alignment)) return true; 2255 ParenLoc = Lex.getLoc(); 2256 if (!EatIfPresent(lltok::rparen)) 2257 return Error(ParenLoc, "expected ')'"); 2258 if (!isPowerOf2_32(Alignment)) 2259 return Error(AlignLoc, "stack alignment is not a power of two"); 2260 return false; 2261 } 2262 2263 /// ParseIndexList - This parses the index list for an insert/extractvalue 2264 /// instruction. This sets AteExtraComma in the case where we eat an extra 2265 /// comma at the end of the line and find that it is followed by metadata. 2266 /// Clients that don't allow metadata can call the version of this function that 2267 /// only takes one argument. 2268 /// 2269 /// ParseIndexList 2270 /// ::= (',' uint32)+ 2271 /// 2272 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2273 bool &AteExtraComma) { 2274 AteExtraComma = false; 2275 2276 if (Lex.getKind() != lltok::comma) 2277 return TokError("expected ',' as start of index list"); 2278 2279 while (EatIfPresent(lltok::comma)) { 2280 if (Lex.getKind() == lltok::MetadataVar) { 2281 if (Indices.empty()) return TokError("expected index"); 2282 AteExtraComma = true; 2283 return false; 2284 } 2285 unsigned Idx = 0; 2286 if (ParseUInt32(Idx)) return true; 2287 Indices.push_back(Idx); 2288 } 2289 2290 return false; 2291 } 2292 2293 //===----------------------------------------------------------------------===// 2294 // Type Parsing. 2295 //===----------------------------------------------------------------------===// 2296 2297 /// ParseType - Parse a type. 2298 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2299 SMLoc TypeLoc = Lex.getLoc(); 2300 switch (Lex.getKind()) { 2301 default: 2302 return TokError(Msg); 2303 case lltok::Type: 2304 // Type ::= 'float' | 'void' (etc) 2305 Result = Lex.getTyVal(); 2306 Lex.Lex(); 2307 break; 2308 case lltok::lbrace: 2309 // Type ::= StructType 2310 if (ParseAnonStructType(Result, false)) 2311 return true; 2312 break; 2313 case lltok::lsquare: 2314 // Type ::= '[' ... ']' 2315 Lex.Lex(); // eat the lsquare. 2316 if (ParseArrayVectorType(Result, false)) 2317 return true; 2318 break; 2319 case lltok::less: // Either vector or packed struct. 2320 // Type ::= '<' ... '>' 2321 Lex.Lex(); 2322 if (Lex.getKind() == lltok::lbrace) { 2323 if (ParseAnonStructType(Result, true) || 2324 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2325 return true; 2326 } else if (ParseArrayVectorType(Result, true)) 2327 return true; 2328 break; 2329 case lltok::LocalVar: { 2330 // Type ::= %foo 2331 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2332 2333 // If the type hasn't been defined yet, create a forward definition and 2334 // remember where that forward def'n was seen (in case it never is defined). 2335 if (!Entry.first) { 2336 Entry.first = StructType::create(Context, Lex.getStrVal()); 2337 Entry.second = Lex.getLoc(); 2338 } 2339 Result = Entry.first; 2340 Lex.Lex(); 2341 break; 2342 } 2343 2344 case lltok::LocalVarID: { 2345 // Type ::= %4 2346 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2347 2348 // If the type hasn't been defined yet, create a forward definition and 2349 // remember where that forward def'n was seen (in case it never is defined). 2350 if (!Entry.first) { 2351 Entry.first = StructType::create(Context); 2352 Entry.second = Lex.getLoc(); 2353 } 2354 Result = Entry.first; 2355 Lex.Lex(); 2356 break; 2357 } 2358 } 2359 2360 // Parse the type suffixes. 2361 while (true) { 2362 switch (Lex.getKind()) { 2363 // End of type. 2364 default: 2365 if (!AllowVoid && Result->isVoidTy()) 2366 return Error(TypeLoc, "void type only allowed for function results"); 2367 return false; 2368 2369 // Type ::= Type '*' 2370 case lltok::star: 2371 if (Result->isLabelTy()) 2372 return TokError("basic block pointers are invalid"); 2373 if (Result->isVoidTy()) 2374 return TokError("pointers to void are invalid - use i8* instead"); 2375 if (!PointerType::isValidElementType(Result)) 2376 return TokError("pointer to this type is invalid"); 2377 Result = PointerType::getUnqual(Result); 2378 Lex.Lex(); 2379 break; 2380 2381 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2382 case lltok::kw_addrspace: { 2383 if (Result->isLabelTy()) 2384 return TokError("basic block pointers are invalid"); 2385 if (Result->isVoidTy()) 2386 return TokError("pointers to void are invalid; use i8* instead"); 2387 if (!PointerType::isValidElementType(Result)) 2388 return TokError("pointer to this type is invalid"); 2389 unsigned AddrSpace; 2390 if (ParseOptionalAddrSpace(AddrSpace) || 2391 ParseToken(lltok::star, "expected '*' in address space")) 2392 return true; 2393 2394 Result = PointerType::get(Result, AddrSpace); 2395 break; 2396 } 2397 2398 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2399 case lltok::lparen: 2400 if (ParseFunctionType(Result)) 2401 return true; 2402 break; 2403 } 2404 } 2405 } 2406 2407 /// ParseParameterList 2408 /// ::= '(' ')' 2409 /// ::= '(' Arg (',' Arg)* ')' 2410 /// Arg 2411 /// ::= Type OptionalAttributes Value OptionalAttributes 2412 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2413 PerFunctionState &PFS, bool IsMustTailCall, 2414 bool InVarArgsFunc) { 2415 if (ParseToken(lltok::lparen, "expected '(' in call")) 2416 return true; 2417 2418 while (Lex.getKind() != lltok::rparen) { 2419 // If this isn't the first argument, we need a comma. 2420 if (!ArgList.empty() && 2421 ParseToken(lltok::comma, "expected ',' in argument list")) 2422 return true; 2423 2424 // Parse an ellipsis if this is a musttail call in a variadic function. 2425 if (Lex.getKind() == lltok::dotdotdot) { 2426 const char *Msg = "unexpected ellipsis in argument list for "; 2427 if (!IsMustTailCall) 2428 return TokError(Twine(Msg) + "non-musttail call"); 2429 if (!InVarArgsFunc) 2430 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2431 Lex.Lex(); // Lex the '...', it is purely for readability. 2432 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2433 } 2434 2435 // Parse the argument. 2436 LocTy ArgLoc; 2437 Type *ArgTy = nullptr; 2438 AttrBuilder ArgAttrs; 2439 Value *V; 2440 if (ParseType(ArgTy, ArgLoc)) 2441 return true; 2442 2443 if (ArgTy->isMetadataTy()) { 2444 if (ParseMetadataAsValue(V, PFS)) 2445 return true; 2446 } else { 2447 // Otherwise, handle normal operands. 2448 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2449 return true; 2450 } 2451 ArgList.push_back(ParamInfo( 2452 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2453 } 2454 2455 if (IsMustTailCall && InVarArgsFunc) 2456 return TokError("expected '...' at end of argument list for musttail call " 2457 "in varargs function"); 2458 2459 Lex.Lex(); // Lex the ')'. 2460 return false; 2461 } 2462 2463 /// ParseByValWithOptionalType 2464 /// ::= byval 2465 /// ::= byval(<ty>) 2466 bool LLParser::ParseByValWithOptionalType(Type *&Result) { 2467 Result = nullptr; 2468 if (!EatIfPresent(lltok::kw_byval)) 2469 return true; 2470 if (!EatIfPresent(lltok::lparen)) 2471 return false; 2472 if (ParseType(Result)) 2473 return true; 2474 if (!EatIfPresent(lltok::rparen)) 2475 return Error(Lex.getLoc(), "expected ')'"); 2476 return false; 2477 } 2478 2479 /// ParseOptionalOperandBundles 2480 /// ::= /*empty*/ 2481 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2482 /// 2483 /// OperandBundle 2484 /// ::= bundle-tag '(' ')' 2485 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2486 /// 2487 /// bundle-tag ::= String Constant 2488 bool LLParser::ParseOptionalOperandBundles( 2489 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2490 LocTy BeginLoc = Lex.getLoc(); 2491 if (!EatIfPresent(lltok::lsquare)) 2492 return false; 2493 2494 while (Lex.getKind() != lltok::rsquare) { 2495 // If this isn't the first operand bundle, we need a comma. 2496 if (!BundleList.empty() && 2497 ParseToken(lltok::comma, "expected ',' in input list")) 2498 return true; 2499 2500 std::string Tag; 2501 if (ParseStringConstant(Tag)) 2502 return true; 2503 2504 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2505 return true; 2506 2507 std::vector<Value *> Inputs; 2508 while (Lex.getKind() != lltok::rparen) { 2509 // If this isn't the first input, we need a comma. 2510 if (!Inputs.empty() && 2511 ParseToken(lltok::comma, "expected ',' in input list")) 2512 return true; 2513 2514 Type *Ty = nullptr; 2515 Value *Input = nullptr; 2516 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2517 return true; 2518 Inputs.push_back(Input); 2519 } 2520 2521 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2522 2523 Lex.Lex(); // Lex the ')'. 2524 } 2525 2526 if (BundleList.empty()) 2527 return Error(BeginLoc, "operand bundle set must not be empty"); 2528 2529 Lex.Lex(); // Lex the ']'. 2530 return false; 2531 } 2532 2533 /// ParseArgumentList - Parse the argument list for a function type or function 2534 /// prototype. 2535 /// ::= '(' ArgTypeListI ')' 2536 /// ArgTypeListI 2537 /// ::= /*empty*/ 2538 /// ::= '...' 2539 /// ::= ArgTypeList ',' '...' 2540 /// ::= ArgType (',' ArgType)* 2541 /// 2542 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2543 bool &isVarArg){ 2544 isVarArg = false; 2545 assert(Lex.getKind() == lltok::lparen); 2546 Lex.Lex(); // eat the (. 2547 2548 if (Lex.getKind() == lltok::rparen) { 2549 // empty 2550 } else if (Lex.getKind() == lltok::dotdotdot) { 2551 isVarArg = true; 2552 Lex.Lex(); 2553 } else { 2554 LocTy TypeLoc = Lex.getLoc(); 2555 Type *ArgTy = nullptr; 2556 AttrBuilder Attrs; 2557 std::string Name; 2558 2559 if (ParseType(ArgTy) || 2560 ParseOptionalParamAttrs(Attrs)) return true; 2561 2562 if (ArgTy->isVoidTy()) 2563 return Error(TypeLoc, "argument can not have void type"); 2564 2565 if (Lex.getKind() == lltok::LocalVar) { 2566 Name = Lex.getStrVal(); 2567 Lex.Lex(); 2568 } 2569 2570 if (!FunctionType::isValidArgumentType(ArgTy)) 2571 return Error(TypeLoc, "invalid type for function argument"); 2572 2573 ArgList.emplace_back(TypeLoc, ArgTy, 2574 AttributeSet::get(ArgTy->getContext(), Attrs), 2575 std::move(Name)); 2576 2577 while (EatIfPresent(lltok::comma)) { 2578 // Handle ... at end of arg list. 2579 if (EatIfPresent(lltok::dotdotdot)) { 2580 isVarArg = true; 2581 break; 2582 } 2583 2584 // Otherwise must be an argument type. 2585 TypeLoc = Lex.getLoc(); 2586 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2587 2588 if (ArgTy->isVoidTy()) 2589 return Error(TypeLoc, "argument can not have void type"); 2590 2591 if (Lex.getKind() == lltok::LocalVar) { 2592 Name = Lex.getStrVal(); 2593 Lex.Lex(); 2594 } else { 2595 Name = ""; 2596 } 2597 2598 if (!ArgTy->isFirstClassType()) 2599 return Error(TypeLoc, "invalid type for function argument"); 2600 2601 ArgList.emplace_back(TypeLoc, ArgTy, 2602 AttributeSet::get(ArgTy->getContext(), Attrs), 2603 std::move(Name)); 2604 } 2605 } 2606 2607 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2608 } 2609 2610 /// ParseFunctionType 2611 /// ::= Type ArgumentList OptionalAttrs 2612 bool LLParser::ParseFunctionType(Type *&Result) { 2613 assert(Lex.getKind() == lltok::lparen); 2614 2615 if (!FunctionType::isValidReturnType(Result)) 2616 return TokError("invalid function return type"); 2617 2618 SmallVector<ArgInfo, 8> ArgList; 2619 bool isVarArg; 2620 if (ParseArgumentList(ArgList, isVarArg)) 2621 return true; 2622 2623 // Reject names on the arguments lists. 2624 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2625 if (!ArgList[i].Name.empty()) 2626 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2627 if (ArgList[i].Attrs.hasAttributes()) 2628 return Error(ArgList[i].Loc, 2629 "argument attributes invalid in function type"); 2630 } 2631 2632 SmallVector<Type*, 16> ArgListTy; 2633 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2634 ArgListTy.push_back(ArgList[i].Ty); 2635 2636 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2637 return false; 2638 } 2639 2640 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2641 /// other structs. 2642 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2643 SmallVector<Type*, 8> Elts; 2644 if (ParseStructBody(Elts)) return true; 2645 2646 Result = StructType::get(Context, Elts, Packed); 2647 return false; 2648 } 2649 2650 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2651 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2652 std::pair<Type*, LocTy> &Entry, 2653 Type *&ResultTy) { 2654 // If the type was already defined, diagnose the redefinition. 2655 if (Entry.first && !Entry.second.isValid()) 2656 return Error(TypeLoc, "redefinition of type"); 2657 2658 // If we have opaque, just return without filling in the definition for the 2659 // struct. This counts as a definition as far as the .ll file goes. 2660 if (EatIfPresent(lltok::kw_opaque)) { 2661 // This type is being defined, so clear the location to indicate this. 2662 Entry.second = SMLoc(); 2663 2664 // If this type number has never been uttered, create it. 2665 if (!Entry.first) 2666 Entry.first = StructType::create(Context, Name); 2667 ResultTy = Entry.first; 2668 return false; 2669 } 2670 2671 // If the type starts with '<', then it is either a packed struct or a vector. 2672 bool isPacked = EatIfPresent(lltok::less); 2673 2674 // If we don't have a struct, then we have a random type alias, which we 2675 // accept for compatibility with old files. These types are not allowed to be 2676 // forward referenced and not allowed to be recursive. 2677 if (Lex.getKind() != lltok::lbrace) { 2678 if (Entry.first) 2679 return Error(TypeLoc, "forward references to non-struct type"); 2680 2681 ResultTy = nullptr; 2682 if (isPacked) 2683 return ParseArrayVectorType(ResultTy, true); 2684 return ParseType(ResultTy); 2685 } 2686 2687 // This type is being defined, so clear the location to indicate this. 2688 Entry.second = SMLoc(); 2689 2690 // If this type number has never been uttered, create it. 2691 if (!Entry.first) 2692 Entry.first = StructType::create(Context, Name); 2693 2694 StructType *STy = cast<StructType>(Entry.first); 2695 2696 SmallVector<Type*, 8> Body; 2697 if (ParseStructBody(Body) || 2698 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2699 return true; 2700 2701 STy->setBody(Body, isPacked); 2702 ResultTy = STy; 2703 return false; 2704 } 2705 2706 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2707 /// StructType 2708 /// ::= '{' '}' 2709 /// ::= '{' Type (',' Type)* '}' 2710 /// ::= '<' '{' '}' '>' 2711 /// ::= '<' '{' Type (',' Type)* '}' '>' 2712 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2713 assert(Lex.getKind() == lltok::lbrace); 2714 Lex.Lex(); // Consume the '{' 2715 2716 // Handle the empty struct. 2717 if (EatIfPresent(lltok::rbrace)) 2718 return false; 2719 2720 LocTy EltTyLoc = Lex.getLoc(); 2721 Type *Ty = nullptr; 2722 if (ParseType(Ty)) return true; 2723 Body.push_back(Ty); 2724 2725 if (!StructType::isValidElementType(Ty)) 2726 return Error(EltTyLoc, "invalid element type for struct"); 2727 2728 while (EatIfPresent(lltok::comma)) { 2729 EltTyLoc = Lex.getLoc(); 2730 if (ParseType(Ty)) return true; 2731 2732 if (!StructType::isValidElementType(Ty)) 2733 return Error(EltTyLoc, "invalid element type for struct"); 2734 2735 Body.push_back(Ty); 2736 } 2737 2738 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2739 } 2740 2741 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2742 /// token has already been consumed. 2743 /// Type 2744 /// ::= '[' APSINTVAL 'x' Types ']' 2745 /// ::= '<' APSINTVAL 'x' Types '>' 2746 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2747 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2748 bool Scalable = false; 2749 2750 if (isVector && Lex.getKind() == lltok::kw_vscale) { 2751 Lex.Lex(); // consume the 'vscale' 2752 if (ParseToken(lltok::kw_x, "expected 'x' after vscale")) 2753 return true; 2754 2755 Scalable = true; 2756 } 2757 2758 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2759 Lex.getAPSIntVal().getBitWidth() > 64) 2760 return TokError("expected number in address space"); 2761 2762 LocTy SizeLoc = Lex.getLoc(); 2763 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2764 Lex.Lex(); 2765 2766 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2767 return true; 2768 2769 LocTy TypeLoc = Lex.getLoc(); 2770 Type *EltTy = nullptr; 2771 if (ParseType(EltTy)) return true; 2772 2773 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2774 "expected end of sequential type")) 2775 return true; 2776 2777 if (isVector) { 2778 if (Size == 0) 2779 return Error(SizeLoc, "zero element vector is illegal"); 2780 if ((unsigned)Size != Size) 2781 return Error(SizeLoc, "size too large for vector"); 2782 if (!VectorType::isValidElementType(EltTy)) 2783 return Error(TypeLoc, "invalid vector element type"); 2784 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2785 } else { 2786 if (!ArrayType::isValidElementType(EltTy)) 2787 return Error(TypeLoc, "invalid array element type"); 2788 Result = ArrayType::get(EltTy, Size); 2789 } 2790 return false; 2791 } 2792 2793 //===----------------------------------------------------------------------===// 2794 // Function Semantic Analysis. 2795 //===----------------------------------------------------------------------===// 2796 2797 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2798 int functionNumber) 2799 : P(p), F(f), FunctionNumber(functionNumber) { 2800 2801 // Insert unnamed arguments into the NumberedVals list. 2802 for (Argument &A : F.args()) 2803 if (!A.hasName()) 2804 NumberedVals.push_back(&A); 2805 } 2806 2807 LLParser::PerFunctionState::~PerFunctionState() { 2808 // If there were any forward referenced non-basicblock values, delete them. 2809 2810 for (const auto &P : ForwardRefVals) { 2811 if (isa<BasicBlock>(P.second.first)) 2812 continue; 2813 P.second.first->replaceAllUsesWith( 2814 UndefValue::get(P.second.first->getType())); 2815 P.second.first->deleteValue(); 2816 } 2817 2818 for (const auto &P : ForwardRefValIDs) { 2819 if (isa<BasicBlock>(P.second.first)) 2820 continue; 2821 P.second.first->replaceAllUsesWith( 2822 UndefValue::get(P.second.first->getType())); 2823 P.second.first->deleteValue(); 2824 } 2825 } 2826 2827 bool LLParser::PerFunctionState::FinishFunction() { 2828 if (!ForwardRefVals.empty()) 2829 return P.Error(ForwardRefVals.begin()->second.second, 2830 "use of undefined value '%" + ForwardRefVals.begin()->first + 2831 "'"); 2832 if (!ForwardRefValIDs.empty()) 2833 return P.Error(ForwardRefValIDs.begin()->second.second, 2834 "use of undefined value '%" + 2835 Twine(ForwardRefValIDs.begin()->first) + "'"); 2836 return false; 2837 } 2838 2839 /// GetVal - Get a value with the specified name or ID, creating a 2840 /// forward reference record if needed. This can return null if the value 2841 /// exists but does not have the right type. 2842 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2843 LocTy Loc, bool IsCall) { 2844 // Look this name up in the normal function symbol table. 2845 Value *Val = F.getValueSymbolTable()->lookup(Name); 2846 2847 // If this is a forward reference for the value, see if we already created a 2848 // forward ref record. 2849 if (!Val) { 2850 auto I = ForwardRefVals.find(Name); 2851 if (I != ForwardRefVals.end()) 2852 Val = I->second.first; 2853 } 2854 2855 // If we have the value in the symbol table or fwd-ref table, return it. 2856 if (Val) 2857 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2858 2859 // Don't make placeholders with invalid type. 2860 if (!Ty->isFirstClassType()) { 2861 P.Error(Loc, "invalid use of a non-first-class type"); 2862 return nullptr; 2863 } 2864 2865 // Otherwise, create a new forward reference for this value and remember it. 2866 Value *FwdVal; 2867 if (Ty->isLabelTy()) { 2868 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2869 } else { 2870 FwdVal = new Argument(Ty, Name); 2871 } 2872 2873 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2874 return FwdVal; 2875 } 2876 2877 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2878 bool IsCall) { 2879 // Look this name up in the normal function symbol table. 2880 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2881 2882 // If this is a forward reference for the value, see if we already created a 2883 // forward ref record. 2884 if (!Val) { 2885 auto I = ForwardRefValIDs.find(ID); 2886 if (I != ForwardRefValIDs.end()) 2887 Val = I->second.first; 2888 } 2889 2890 // If we have the value in the symbol table or fwd-ref table, return it. 2891 if (Val) 2892 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 2893 2894 if (!Ty->isFirstClassType()) { 2895 P.Error(Loc, "invalid use of a non-first-class type"); 2896 return nullptr; 2897 } 2898 2899 // Otherwise, create a new forward reference for this value and remember it. 2900 Value *FwdVal; 2901 if (Ty->isLabelTy()) { 2902 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2903 } else { 2904 FwdVal = new Argument(Ty); 2905 } 2906 2907 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2908 return FwdVal; 2909 } 2910 2911 /// SetInstName - After an instruction is parsed and inserted into its 2912 /// basic block, this installs its name. 2913 bool LLParser::PerFunctionState::SetInstName(int NameID, 2914 const std::string &NameStr, 2915 LocTy NameLoc, Instruction *Inst) { 2916 // If this instruction has void type, it cannot have a name or ID specified. 2917 if (Inst->getType()->isVoidTy()) { 2918 if (NameID != -1 || !NameStr.empty()) 2919 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2920 return false; 2921 } 2922 2923 // If this was a numbered instruction, verify that the instruction is the 2924 // expected value and resolve any forward references. 2925 if (NameStr.empty()) { 2926 // If neither a name nor an ID was specified, just use the next ID. 2927 if (NameID == -1) 2928 NameID = NumberedVals.size(); 2929 2930 if (unsigned(NameID) != NumberedVals.size()) 2931 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2932 Twine(NumberedVals.size()) + "'"); 2933 2934 auto FI = ForwardRefValIDs.find(NameID); 2935 if (FI != ForwardRefValIDs.end()) { 2936 Value *Sentinel = FI->second.first; 2937 if (Sentinel->getType() != Inst->getType()) 2938 return P.Error(NameLoc, "instruction forward referenced with type '" + 2939 getTypeString(FI->second.first->getType()) + "'"); 2940 2941 Sentinel->replaceAllUsesWith(Inst); 2942 Sentinel->deleteValue(); 2943 ForwardRefValIDs.erase(FI); 2944 } 2945 2946 NumberedVals.push_back(Inst); 2947 return false; 2948 } 2949 2950 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2951 auto FI = ForwardRefVals.find(NameStr); 2952 if (FI != ForwardRefVals.end()) { 2953 Value *Sentinel = FI->second.first; 2954 if (Sentinel->getType() != Inst->getType()) 2955 return P.Error(NameLoc, "instruction forward referenced with type '" + 2956 getTypeString(FI->second.first->getType()) + "'"); 2957 2958 Sentinel->replaceAllUsesWith(Inst); 2959 Sentinel->deleteValue(); 2960 ForwardRefVals.erase(FI); 2961 } 2962 2963 // Set the name on the instruction. 2964 Inst->setName(NameStr); 2965 2966 if (Inst->getName() != NameStr) 2967 return P.Error(NameLoc, "multiple definition of local value named '" + 2968 NameStr + "'"); 2969 return false; 2970 } 2971 2972 /// GetBB - Get a basic block with the specified name or ID, creating a 2973 /// forward reference record if needed. 2974 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2975 LocTy Loc) { 2976 return dyn_cast_or_null<BasicBlock>( 2977 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2978 } 2979 2980 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2981 return dyn_cast_or_null<BasicBlock>( 2982 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2983 } 2984 2985 /// DefineBB - Define the specified basic block, which is either named or 2986 /// unnamed. If there is an error, this returns null otherwise it returns 2987 /// the block being defined. 2988 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2989 int NameID, LocTy Loc) { 2990 BasicBlock *BB; 2991 if (Name.empty()) { 2992 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 2993 P.Error(Loc, "label expected to be numbered '" + 2994 Twine(NumberedVals.size()) + "'"); 2995 return nullptr; 2996 } 2997 BB = GetBB(NumberedVals.size(), Loc); 2998 if (!BB) { 2999 P.Error(Loc, "unable to create block numbered '" + 3000 Twine(NumberedVals.size()) + "'"); 3001 return nullptr; 3002 } 3003 } else { 3004 BB = GetBB(Name, Loc); 3005 if (!BB) { 3006 P.Error(Loc, "unable to create block named '" + Name + "'"); 3007 return nullptr; 3008 } 3009 } 3010 3011 // Move the block to the end of the function. Forward ref'd blocks are 3012 // inserted wherever they happen to be referenced. 3013 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3014 3015 // Remove the block from forward ref sets. 3016 if (Name.empty()) { 3017 ForwardRefValIDs.erase(NumberedVals.size()); 3018 NumberedVals.push_back(BB); 3019 } else { 3020 // BB forward references are already in the function symbol table. 3021 ForwardRefVals.erase(Name); 3022 } 3023 3024 return BB; 3025 } 3026 3027 //===----------------------------------------------------------------------===// 3028 // Constants. 3029 //===----------------------------------------------------------------------===// 3030 3031 /// ParseValID - Parse an abstract value that doesn't necessarily have a 3032 /// type implied. For example, if we parse "4" we don't know what integer type 3033 /// it has. The value will later be combined with its type and checked for 3034 /// sanity. PFS is used to convert function-local operands of metadata (since 3035 /// metadata operands are not just parsed here but also converted to values). 3036 /// PFS can be null when we are not parsing metadata values inside a function. 3037 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 3038 ID.Loc = Lex.getLoc(); 3039 switch (Lex.getKind()) { 3040 default: return TokError("expected value token"); 3041 case lltok::GlobalID: // @42 3042 ID.UIntVal = Lex.getUIntVal(); 3043 ID.Kind = ValID::t_GlobalID; 3044 break; 3045 case lltok::GlobalVar: // @foo 3046 ID.StrVal = Lex.getStrVal(); 3047 ID.Kind = ValID::t_GlobalName; 3048 break; 3049 case lltok::LocalVarID: // %42 3050 ID.UIntVal = Lex.getUIntVal(); 3051 ID.Kind = ValID::t_LocalID; 3052 break; 3053 case lltok::LocalVar: // %foo 3054 ID.StrVal = Lex.getStrVal(); 3055 ID.Kind = ValID::t_LocalName; 3056 break; 3057 case lltok::APSInt: 3058 ID.APSIntVal = Lex.getAPSIntVal(); 3059 ID.Kind = ValID::t_APSInt; 3060 break; 3061 case lltok::APFloat: 3062 ID.APFloatVal = Lex.getAPFloatVal(); 3063 ID.Kind = ValID::t_APFloat; 3064 break; 3065 case lltok::kw_true: 3066 ID.ConstantVal = ConstantInt::getTrue(Context); 3067 ID.Kind = ValID::t_Constant; 3068 break; 3069 case lltok::kw_false: 3070 ID.ConstantVal = ConstantInt::getFalse(Context); 3071 ID.Kind = ValID::t_Constant; 3072 break; 3073 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3074 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3075 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3076 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3077 3078 case lltok::lbrace: { 3079 // ValID ::= '{' ConstVector '}' 3080 Lex.Lex(); 3081 SmallVector<Constant*, 16> Elts; 3082 if (ParseGlobalValueVector(Elts) || 3083 ParseToken(lltok::rbrace, "expected end of struct constant")) 3084 return true; 3085 3086 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3087 ID.UIntVal = Elts.size(); 3088 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3089 Elts.size() * sizeof(Elts[0])); 3090 ID.Kind = ValID::t_ConstantStruct; 3091 return false; 3092 } 3093 case lltok::less: { 3094 // ValID ::= '<' ConstVector '>' --> Vector. 3095 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3096 Lex.Lex(); 3097 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3098 3099 SmallVector<Constant*, 16> Elts; 3100 LocTy FirstEltLoc = Lex.getLoc(); 3101 if (ParseGlobalValueVector(Elts) || 3102 (isPackedStruct && 3103 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3104 ParseToken(lltok::greater, "expected end of constant")) 3105 return true; 3106 3107 if (isPackedStruct) { 3108 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3109 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3110 Elts.size() * sizeof(Elts[0])); 3111 ID.UIntVal = Elts.size(); 3112 ID.Kind = ValID::t_PackedConstantStruct; 3113 return false; 3114 } 3115 3116 if (Elts.empty()) 3117 return Error(ID.Loc, "constant vector must not be empty"); 3118 3119 if (!Elts[0]->getType()->isIntegerTy() && 3120 !Elts[0]->getType()->isFloatingPointTy() && 3121 !Elts[0]->getType()->isPointerTy()) 3122 return Error(FirstEltLoc, 3123 "vector elements must have integer, pointer or floating point type"); 3124 3125 // Verify that all the vector elements have the same type. 3126 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3127 if (Elts[i]->getType() != Elts[0]->getType()) 3128 return Error(FirstEltLoc, 3129 "vector element #" + Twine(i) + 3130 " is not of type '" + getTypeString(Elts[0]->getType())); 3131 3132 ID.ConstantVal = ConstantVector::get(Elts); 3133 ID.Kind = ValID::t_Constant; 3134 return false; 3135 } 3136 case lltok::lsquare: { // Array Constant 3137 Lex.Lex(); 3138 SmallVector<Constant*, 16> Elts; 3139 LocTy FirstEltLoc = Lex.getLoc(); 3140 if (ParseGlobalValueVector(Elts) || 3141 ParseToken(lltok::rsquare, "expected end of array constant")) 3142 return true; 3143 3144 // Handle empty element. 3145 if (Elts.empty()) { 3146 // Use undef instead of an array because it's inconvenient to determine 3147 // the element type at this point, there being no elements to examine. 3148 ID.Kind = ValID::t_EmptyArray; 3149 return false; 3150 } 3151 3152 if (!Elts[0]->getType()->isFirstClassType()) 3153 return Error(FirstEltLoc, "invalid array element type: " + 3154 getTypeString(Elts[0]->getType())); 3155 3156 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3157 3158 // Verify all elements are correct type! 3159 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3160 if (Elts[i]->getType() != Elts[0]->getType()) 3161 return Error(FirstEltLoc, 3162 "array element #" + Twine(i) + 3163 " is not of type '" + getTypeString(Elts[0]->getType())); 3164 } 3165 3166 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3167 ID.Kind = ValID::t_Constant; 3168 return false; 3169 } 3170 case lltok::kw_c: // c "foo" 3171 Lex.Lex(); 3172 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3173 false); 3174 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3175 ID.Kind = ValID::t_Constant; 3176 return false; 3177 3178 case lltok::kw_asm: { 3179 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3180 // STRINGCONSTANT 3181 bool HasSideEffect, AlignStack, AsmDialect; 3182 Lex.Lex(); 3183 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3184 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3185 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3186 ParseStringConstant(ID.StrVal) || 3187 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3188 ParseToken(lltok::StringConstant, "expected constraint string")) 3189 return true; 3190 ID.StrVal2 = Lex.getStrVal(); 3191 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3192 (unsigned(AsmDialect)<<2); 3193 ID.Kind = ValID::t_InlineAsm; 3194 return false; 3195 } 3196 3197 case lltok::kw_blockaddress: { 3198 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3199 Lex.Lex(); 3200 3201 ValID Fn, Label; 3202 3203 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3204 ParseValID(Fn) || 3205 ParseToken(lltok::comma, "expected comma in block address expression")|| 3206 ParseValID(Label) || 3207 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3208 return true; 3209 3210 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3211 return Error(Fn.Loc, "expected function name in blockaddress"); 3212 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3213 return Error(Label.Loc, "expected basic block name in blockaddress"); 3214 3215 // Try to find the function (but skip it if it's forward-referenced). 3216 GlobalValue *GV = nullptr; 3217 if (Fn.Kind == ValID::t_GlobalID) { 3218 if (Fn.UIntVal < NumberedVals.size()) 3219 GV = NumberedVals[Fn.UIntVal]; 3220 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3221 GV = M->getNamedValue(Fn.StrVal); 3222 } 3223 Function *F = nullptr; 3224 if (GV) { 3225 // Confirm that it's actually a function with a definition. 3226 if (!isa<Function>(GV)) 3227 return Error(Fn.Loc, "expected function name in blockaddress"); 3228 F = cast<Function>(GV); 3229 if (F->isDeclaration()) 3230 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3231 } 3232 3233 if (!F) { 3234 // Make a global variable as a placeholder for this reference. 3235 GlobalValue *&FwdRef = 3236 ForwardRefBlockAddresses.insert(std::make_pair( 3237 std::move(Fn), 3238 std::map<ValID, GlobalValue *>())) 3239 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3240 .first->second; 3241 if (!FwdRef) 3242 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3243 GlobalValue::InternalLinkage, nullptr, ""); 3244 ID.ConstantVal = FwdRef; 3245 ID.Kind = ValID::t_Constant; 3246 return false; 3247 } 3248 3249 // We found the function; now find the basic block. Don't use PFS, since we 3250 // might be inside a constant expression. 3251 BasicBlock *BB; 3252 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3253 if (Label.Kind == ValID::t_LocalID) 3254 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3255 else 3256 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3257 if (!BB) 3258 return Error(Label.Loc, "referenced value is not a basic block"); 3259 } else { 3260 if (Label.Kind == ValID::t_LocalID) 3261 return Error(Label.Loc, "cannot take address of numeric label after " 3262 "the function is defined"); 3263 BB = dyn_cast_or_null<BasicBlock>( 3264 F->getValueSymbolTable()->lookup(Label.StrVal)); 3265 if (!BB) 3266 return Error(Label.Loc, "referenced value is not a basic block"); 3267 } 3268 3269 ID.ConstantVal = BlockAddress::get(F, BB); 3270 ID.Kind = ValID::t_Constant; 3271 return false; 3272 } 3273 3274 case lltok::kw_trunc: 3275 case lltok::kw_zext: 3276 case lltok::kw_sext: 3277 case lltok::kw_fptrunc: 3278 case lltok::kw_fpext: 3279 case lltok::kw_bitcast: 3280 case lltok::kw_addrspacecast: 3281 case lltok::kw_uitofp: 3282 case lltok::kw_sitofp: 3283 case lltok::kw_fptoui: 3284 case lltok::kw_fptosi: 3285 case lltok::kw_inttoptr: 3286 case lltok::kw_ptrtoint: { 3287 unsigned Opc = Lex.getUIntVal(); 3288 Type *DestTy = nullptr; 3289 Constant *SrcVal; 3290 Lex.Lex(); 3291 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3292 ParseGlobalTypeAndValue(SrcVal) || 3293 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3294 ParseType(DestTy) || 3295 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3296 return true; 3297 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3298 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3299 getTypeString(SrcVal->getType()) + "' to '" + 3300 getTypeString(DestTy) + "'"); 3301 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3302 SrcVal, DestTy); 3303 ID.Kind = ValID::t_Constant; 3304 return false; 3305 } 3306 case lltok::kw_extractvalue: { 3307 Lex.Lex(); 3308 Constant *Val; 3309 SmallVector<unsigned, 4> Indices; 3310 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3311 ParseGlobalTypeAndValue(Val) || 3312 ParseIndexList(Indices) || 3313 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3314 return true; 3315 3316 if (!Val->getType()->isAggregateType()) 3317 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3318 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3319 return Error(ID.Loc, "invalid indices for extractvalue"); 3320 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3321 ID.Kind = ValID::t_Constant; 3322 return false; 3323 } 3324 case lltok::kw_insertvalue: { 3325 Lex.Lex(); 3326 Constant *Val0, *Val1; 3327 SmallVector<unsigned, 4> Indices; 3328 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3329 ParseGlobalTypeAndValue(Val0) || 3330 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3331 ParseGlobalTypeAndValue(Val1) || 3332 ParseIndexList(Indices) || 3333 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3334 return true; 3335 if (!Val0->getType()->isAggregateType()) 3336 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3337 Type *IndexedType = 3338 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3339 if (!IndexedType) 3340 return Error(ID.Loc, "invalid indices for insertvalue"); 3341 if (IndexedType != Val1->getType()) 3342 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3343 getTypeString(Val1->getType()) + 3344 "' instead of '" + getTypeString(IndexedType) + 3345 "'"); 3346 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3347 ID.Kind = ValID::t_Constant; 3348 return false; 3349 } 3350 case lltok::kw_icmp: 3351 case lltok::kw_fcmp: { 3352 unsigned PredVal, Opc = Lex.getUIntVal(); 3353 Constant *Val0, *Val1; 3354 Lex.Lex(); 3355 if (ParseCmpPredicate(PredVal, Opc) || 3356 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3357 ParseGlobalTypeAndValue(Val0) || 3358 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3359 ParseGlobalTypeAndValue(Val1) || 3360 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3361 return true; 3362 3363 if (Val0->getType() != Val1->getType()) 3364 return Error(ID.Loc, "compare operands must have the same type"); 3365 3366 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3367 3368 if (Opc == Instruction::FCmp) { 3369 if (!Val0->getType()->isFPOrFPVectorTy()) 3370 return Error(ID.Loc, "fcmp requires floating point operands"); 3371 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3372 } else { 3373 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3374 if (!Val0->getType()->isIntOrIntVectorTy() && 3375 !Val0->getType()->isPtrOrPtrVectorTy()) 3376 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3377 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3378 } 3379 ID.Kind = ValID::t_Constant; 3380 return false; 3381 } 3382 3383 // Unary Operators. 3384 case lltok::kw_fneg: { 3385 unsigned Opc = Lex.getUIntVal(); 3386 Constant *Val; 3387 Lex.Lex(); 3388 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3389 ParseGlobalTypeAndValue(Val) || 3390 ParseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3391 return true; 3392 3393 // Check that the type is valid for the operator. 3394 switch (Opc) { 3395 case Instruction::FNeg: 3396 if (!Val->getType()->isFPOrFPVectorTy()) 3397 return Error(ID.Loc, "constexpr requires fp operands"); 3398 break; 3399 default: llvm_unreachable("Unknown unary operator!"); 3400 } 3401 unsigned Flags = 0; 3402 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3403 ID.ConstantVal = C; 3404 ID.Kind = ValID::t_Constant; 3405 return false; 3406 } 3407 // Binary Operators. 3408 case lltok::kw_add: 3409 case lltok::kw_fadd: 3410 case lltok::kw_sub: 3411 case lltok::kw_fsub: 3412 case lltok::kw_mul: 3413 case lltok::kw_fmul: 3414 case lltok::kw_udiv: 3415 case lltok::kw_sdiv: 3416 case lltok::kw_fdiv: 3417 case lltok::kw_urem: 3418 case lltok::kw_srem: 3419 case lltok::kw_frem: 3420 case lltok::kw_shl: 3421 case lltok::kw_lshr: 3422 case lltok::kw_ashr: { 3423 bool NUW = false; 3424 bool NSW = false; 3425 bool Exact = false; 3426 unsigned Opc = Lex.getUIntVal(); 3427 Constant *Val0, *Val1; 3428 Lex.Lex(); 3429 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3430 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3431 if (EatIfPresent(lltok::kw_nuw)) 3432 NUW = true; 3433 if (EatIfPresent(lltok::kw_nsw)) { 3434 NSW = true; 3435 if (EatIfPresent(lltok::kw_nuw)) 3436 NUW = true; 3437 } 3438 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3439 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3440 if (EatIfPresent(lltok::kw_exact)) 3441 Exact = true; 3442 } 3443 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3444 ParseGlobalTypeAndValue(Val0) || 3445 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3446 ParseGlobalTypeAndValue(Val1) || 3447 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3448 return true; 3449 if (Val0->getType() != Val1->getType()) 3450 return Error(ID.Loc, "operands of constexpr must have same type"); 3451 // Check that the type is valid for the operator. 3452 switch (Opc) { 3453 case Instruction::Add: 3454 case Instruction::Sub: 3455 case Instruction::Mul: 3456 case Instruction::UDiv: 3457 case Instruction::SDiv: 3458 case Instruction::URem: 3459 case Instruction::SRem: 3460 case Instruction::Shl: 3461 case Instruction::AShr: 3462 case Instruction::LShr: 3463 if (!Val0->getType()->isIntOrIntVectorTy()) 3464 return Error(ID.Loc, "constexpr requires integer operands"); 3465 break; 3466 case Instruction::FAdd: 3467 case Instruction::FSub: 3468 case Instruction::FMul: 3469 case Instruction::FDiv: 3470 case Instruction::FRem: 3471 if (!Val0->getType()->isFPOrFPVectorTy()) 3472 return Error(ID.Loc, "constexpr requires fp operands"); 3473 break; 3474 default: llvm_unreachable("Unknown binary operator!"); 3475 } 3476 unsigned Flags = 0; 3477 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3478 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3479 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3480 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3481 ID.ConstantVal = C; 3482 ID.Kind = ValID::t_Constant; 3483 return false; 3484 } 3485 3486 // Logical Operations 3487 case lltok::kw_and: 3488 case lltok::kw_or: 3489 case lltok::kw_xor: { 3490 unsigned Opc = Lex.getUIntVal(); 3491 Constant *Val0, *Val1; 3492 Lex.Lex(); 3493 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3494 ParseGlobalTypeAndValue(Val0) || 3495 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3496 ParseGlobalTypeAndValue(Val1) || 3497 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3498 return true; 3499 if (Val0->getType() != Val1->getType()) 3500 return Error(ID.Loc, "operands of constexpr must have same type"); 3501 if (!Val0->getType()->isIntOrIntVectorTy()) 3502 return Error(ID.Loc, 3503 "constexpr requires integer or integer vector operands"); 3504 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3505 ID.Kind = ValID::t_Constant; 3506 return false; 3507 } 3508 3509 case lltok::kw_getelementptr: 3510 case lltok::kw_shufflevector: 3511 case lltok::kw_insertelement: 3512 case lltok::kw_extractelement: 3513 case lltok::kw_select: { 3514 unsigned Opc = Lex.getUIntVal(); 3515 SmallVector<Constant*, 16> Elts; 3516 bool InBounds = false; 3517 Type *Ty; 3518 Lex.Lex(); 3519 3520 if (Opc == Instruction::GetElementPtr) 3521 InBounds = EatIfPresent(lltok::kw_inbounds); 3522 3523 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3524 return true; 3525 3526 LocTy ExplicitTypeLoc = Lex.getLoc(); 3527 if (Opc == Instruction::GetElementPtr) { 3528 if (ParseType(Ty) || 3529 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3530 return true; 3531 } 3532 3533 Optional<unsigned> InRangeOp; 3534 if (ParseGlobalValueVector( 3535 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3536 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3537 return true; 3538 3539 if (Opc == Instruction::GetElementPtr) { 3540 if (Elts.size() == 0 || 3541 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3542 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3543 3544 Type *BaseType = Elts[0]->getType(); 3545 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3546 if (Ty != BasePointerType->getElementType()) 3547 return Error( 3548 ExplicitTypeLoc, 3549 "explicit pointee type doesn't match operand's pointee type"); 3550 3551 unsigned GEPWidth = 3552 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3553 3554 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3555 for (Constant *Val : Indices) { 3556 Type *ValTy = Val->getType(); 3557 if (!ValTy->isIntOrIntVectorTy()) 3558 return Error(ID.Loc, "getelementptr index must be an integer"); 3559 if (ValTy->isVectorTy()) { 3560 unsigned ValNumEl = ValTy->getVectorNumElements(); 3561 if (GEPWidth && (ValNumEl != GEPWidth)) 3562 return Error( 3563 ID.Loc, 3564 "getelementptr vector index has a wrong number of elements"); 3565 // GEPWidth may have been unknown because the base is a scalar, 3566 // but it is known now. 3567 GEPWidth = ValNumEl; 3568 } 3569 } 3570 3571 SmallPtrSet<Type*, 4> Visited; 3572 if (!Indices.empty() && !Ty->isSized(&Visited)) 3573 return Error(ID.Loc, "base element of getelementptr must be sized"); 3574 3575 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3576 return Error(ID.Loc, "invalid getelementptr indices"); 3577 3578 if (InRangeOp) { 3579 if (*InRangeOp == 0) 3580 return Error(ID.Loc, 3581 "inrange keyword may not appear on pointer operand"); 3582 --*InRangeOp; 3583 } 3584 3585 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3586 InBounds, InRangeOp); 3587 } else if (Opc == Instruction::Select) { 3588 if (Elts.size() != 3) 3589 return Error(ID.Loc, "expected three operands to select"); 3590 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3591 Elts[2])) 3592 return Error(ID.Loc, Reason); 3593 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3594 } else if (Opc == Instruction::ShuffleVector) { 3595 if (Elts.size() != 3) 3596 return Error(ID.Loc, "expected three operands to shufflevector"); 3597 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3598 return Error(ID.Loc, "invalid operands to shufflevector"); 3599 ID.ConstantVal = 3600 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3601 } else if (Opc == Instruction::ExtractElement) { 3602 if (Elts.size() != 2) 3603 return Error(ID.Loc, "expected two operands to extractelement"); 3604 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3605 return Error(ID.Loc, "invalid extractelement operands"); 3606 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3607 } else { 3608 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3609 if (Elts.size() != 3) 3610 return Error(ID.Loc, "expected three operands to insertelement"); 3611 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3612 return Error(ID.Loc, "invalid insertelement operands"); 3613 ID.ConstantVal = 3614 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3615 } 3616 3617 ID.Kind = ValID::t_Constant; 3618 return false; 3619 } 3620 } 3621 3622 Lex.Lex(); 3623 return false; 3624 } 3625 3626 /// ParseGlobalValue - Parse a global value with the specified type. 3627 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3628 C = nullptr; 3629 ValID ID; 3630 Value *V = nullptr; 3631 bool Parsed = ParseValID(ID) || 3632 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3633 if (V && !(C = dyn_cast<Constant>(V))) 3634 return Error(ID.Loc, "global values must be constants"); 3635 return Parsed; 3636 } 3637 3638 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3639 Type *Ty = nullptr; 3640 return ParseType(Ty) || 3641 ParseGlobalValue(Ty, V); 3642 } 3643 3644 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3645 C = nullptr; 3646 3647 LocTy KwLoc = Lex.getLoc(); 3648 if (!EatIfPresent(lltok::kw_comdat)) 3649 return false; 3650 3651 if (EatIfPresent(lltok::lparen)) { 3652 if (Lex.getKind() != lltok::ComdatVar) 3653 return TokError("expected comdat variable"); 3654 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3655 Lex.Lex(); 3656 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3657 return true; 3658 } else { 3659 if (GlobalName.empty()) 3660 return TokError("comdat cannot be unnamed"); 3661 C = getComdat(GlobalName, KwLoc); 3662 } 3663 3664 return false; 3665 } 3666 3667 /// ParseGlobalValueVector 3668 /// ::= /*empty*/ 3669 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3670 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3671 Optional<unsigned> *InRangeOp) { 3672 // Empty list. 3673 if (Lex.getKind() == lltok::rbrace || 3674 Lex.getKind() == lltok::rsquare || 3675 Lex.getKind() == lltok::greater || 3676 Lex.getKind() == lltok::rparen) 3677 return false; 3678 3679 do { 3680 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3681 *InRangeOp = Elts.size(); 3682 3683 Constant *C; 3684 if (ParseGlobalTypeAndValue(C)) return true; 3685 Elts.push_back(C); 3686 } while (EatIfPresent(lltok::comma)); 3687 3688 return false; 3689 } 3690 3691 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3692 SmallVector<Metadata *, 16> Elts; 3693 if (ParseMDNodeVector(Elts)) 3694 return true; 3695 3696 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3697 return false; 3698 } 3699 3700 /// MDNode: 3701 /// ::= !{ ... } 3702 /// ::= !7 3703 /// ::= !DILocation(...) 3704 bool LLParser::ParseMDNode(MDNode *&N) { 3705 if (Lex.getKind() == lltok::MetadataVar) 3706 return ParseSpecializedMDNode(N); 3707 3708 return ParseToken(lltok::exclaim, "expected '!' here") || 3709 ParseMDNodeTail(N); 3710 } 3711 3712 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3713 // !{ ... } 3714 if (Lex.getKind() == lltok::lbrace) 3715 return ParseMDTuple(N); 3716 3717 // !42 3718 return ParseMDNodeID(N); 3719 } 3720 3721 namespace { 3722 3723 /// Structure to represent an optional metadata field. 3724 template <class FieldTy> struct MDFieldImpl { 3725 typedef MDFieldImpl ImplTy; 3726 FieldTy Val; 3727 bool Seen; 3728 3729 void assign(FieldTy Val) { 3730 Seen = true; 3731 this->Val = std::move(Val); 3732 } 3733 3734 explicit MDFieldImpl(FieldTy Default) 3735 : Val(std::move(Default)), Seen(false) {} 3736 }; 3737 3738 /// Structure to represent an optional metadata field that 3739 /// can be of either type (A or B) and encapsulates the 3740 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3741 /// to reimplement the specifics for representing each Field. 3742 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3743 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3744 FieldTypeA A; 3745 FieldTypeB B; 3746 bool Seen; 3747 3748 enum { 3749 IsInvalid = 0, 3750 IsTypeA = 1, 3751 IsTypeB = 2 3752 } WhatIs; 3753 3754 void assign(FieldTypeA A) { 3755 Seen = true; 3756 this->A = std::move(A); 3757 WhatIs = IsTypeA; 3758 } 3759 3760 void assign(FieldTypeB B) { 3761 Seen = true; 3762 this->B = std::move(B); 3763 WhatIs = IsTypeB; 3764 } 3765 3766 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3767 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3768 WhatIs(IsInvalid) {} 3769 }; 3770 3771 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3772 uint64_t Max; 3773 3774 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3775 : ImplTy(Default), Max(Max) {} 3776 }; 3777 3778 struct LineField : public MDUnsignedField { 3779 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3780 }; 3781 3782 struct ColumnField : public MDUnsignedField { 3783 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3784 }; 3785 3786 struct DwarfTagField : public MDUnsignedField { 3787 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3788 DwarfTagField(dwarf::Tag DefaultTag) 3789 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3790 }; 3791 3792 struct DwarfMacinfoTypeField : public MDUnsignedField { 3793 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3794 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3795 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3796 }; 3797 3798 struct DwarfAttEncodingField : public MDUnsignedField { 3799 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3800 }; 3801 3802 struct DwarfVirtualityField : public MDUnsignedField { 3803 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3804 }; 3805 3806 struct DwarfLangField : public MDUnsignedField { 3807 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3808 }; 3809 3810 struct DwarfCCField : public MDUnsignedField { 3811 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3812 }; 3813 3814 struct EmissionKindField : public MDUnsignedField { 3815 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3816 }; 3817 3818 struct NameTableKindField : public MDUnsignedField { 3819 NameTableKindField() 3820 : MDUnsignedField( 3821 0, (unsigned) 3822 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3823 }; 3824 3825 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3826 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3827 }; 3828 3829 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3830 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3831 }; 3832 3833 struct MDSignedField : public MDFieldImpl<int64_t> { 3834 int64_t Min; 3835 int64_t Max; 3836 3837 MDSignedField(int64_t Default = 0) 3838 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3839 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3840 : ImplTy(Default), Min(Min), Max(Max) {} 3841 }; 3842 3843 struct MDBoolField : public MDFieldImpl<bool> { 3844 MDBoolField(bool Default = false) : ImplTy(Default) {} 3845 }; 3846 3847 struct MDField : public MDFieldImpl<Metadata *> { 3848 bool AllowNull; 3849 3850 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3851 }; 3852 3853 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3854 MDConstant() : ImplTy(nullptr) {} 3855 }; 3856 3857 struct MDStringField : public MDFieldImpl<MDString *> { 3858 bool AllowEmpty; 3859 MDStringField(bool AllowEmpty = true) 3860 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3861 }; 3862 3863 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3864 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3865 }; 3866 3867 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3868 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3869 }; 3870 3871 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3872 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3873 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3874 3875 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3876 bool AllowNull = true) 3877 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3878 3879 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3880 bool isMDField() const { return WhatIs == IsTypeB; } 3881 int64_t getMDSignedValue() const { 3882 assert(isMDSignedField() && "Wrong field type"); 3883 return A.Val; 3884 } 3885 Metadata *getMDFieldValue() const { 3886 assert(isMDField() && "Wrong field type"); 3887 return B.Val; 3888 } 3889 }; 3890 3891 struct MDSignedOrUnsignedField 3892 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3893 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3894 3895 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3896 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3897 int64_t getMDSignedValue() const { 3898 assert(isMDSignedField() && "Wrong field type"); 3899 return A.Val; 3900 } 3901 uint64_t getMDUnsignedValue() const { 3902 assert(isMDUnsignedField() && "Wrong field type"); 3903 return B.Val; 3904 } 3905 }; 3906 3907 } // end anonymous namespace 3908 3909 namespace llvm { 3910 3911 template <> 3912 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3913 MDUnsignedField &Result) { 3914 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3915 return TokError("expected unsigned integer"); 3916 3917 auto &U = Lex.getAPSIntVal(); 3918 if (U.ugt(Result.Max)) 3919 return TokError("value for '" + Name + "' too large, limit is " + 3920 Twine(Result.Max)); 3921 Result.assign(U.getZExtValue()); 3922 assert(Result.Val <= Result.Max && "Expected value in range"); 3923 Lex.Lex(); 3924 return false; 3925 } 3926 3927 template <> 3928 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3929 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3930 } 3931 template <> 3932 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3933 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3934 } 3935 3936 template <> 3937 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3938 if (Lex.getKind() == lltok::APSInt) 3939 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3940 3941 if (Lex.getKind() != lltok::DwarfTag) 3942 return TokError("expected DWARF tag"); 3943 3944 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3945 if (Tag == dwarf::DW_TAG_invalid) 3946 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3947 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3948 3949 Result.assign(Tag); 3950 Lex.Lex(); 3951 return false; 3952 } 3953 3954 template <> 3955 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3956 DwarfMacinfoTypeField &Result) { 3957 if (Lex.getKind() == lltok::APSInt) 3958 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3959 3960 if (Lex.getKind() != lltok::DwarfMacinfo) 3961 return TokError("expected DWARF macinfo type"); 3962 3963 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3964 if (Macinfo == dwarf::DW_MACINFO_invalid) 3965 return TokError( 3966 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3967 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3968 3969 Result.assign(Macinfo); 3970 Lex.Lex(); 3971 return false; 3972 } 3973 3974 template <> 3975 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3976 DwarfVirtualityField &Result) { 3977 if (Lex.getKind() == lltok::APSInt) 3978 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3979 3980 if (Lex.getKind() != lltok::DwarfVirtuality) 3981 return TokError("expected DWARF virtuality code"); 3982 3983 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3984 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3985 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3986 Lex.getStrVal() + "'"); 3987 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3988 Result.assign(Virtuality); 3989 Lex.Lex(); 3990 return false; 3991 } 3992 3993 template <> 3994 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3995 if (Lex.getKind() == lltok::APSInt) 3996 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3997 3998 if (Lex.getKind() != lltok::DwarfLang) 3999 return TokError("expected DWARF language"); 4000 4001 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4002 if (!Lang) 4003 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4004 "'"); 4005 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4006 Result.assign(Lang); 4007 Lex.Lex(); 4008 return false; 4009 } 4010 4011 template <> 4012 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4013 if (Lex.getKind() == lltok::APSInt) 4014 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4015 4016 if (Lex.getKind() != lltok::DwarfCC) 4017 return TokError("expected DWARF calling convention"); 4018 4019 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4020 if (!CC) 4021 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 4022 "'"); 4023 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4024 Result.assign(CC); 4025 Lex.Lex(); 4026 return false; 4027 } 4028 4029 template <> 4030 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 4031 if (Lex.getKind() == lltok::APSInt) 4032 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4033 4034 if (Lex.getKind() != lltok::EmissionKind) 4035 return TokError("expected emission kind"); 4036 4037 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4038 if (!Kind) 4039 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4040 "'"); 4041 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4042 Result.assign(*Kind); 4043 Lex.Lex(); 4044 return false; 4045 } 4046 4047 template <> 4048 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4049 NameTableKindField &Result) { 4050 if (Lex.getKind() == lltok::APSInt) 4051 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4052 4053 if (Lex.getKind() != lltok::NameTableKind) 4054 return TokError("expected nameTable kind"); 4055 4056 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4057 if (!Kind) 4058 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4059 "'"); 4060 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4061 Result.assign((unsigned)*Kind); 4062 Lex.Lex(); 4063 return false; 4064 } 4065 4066 template <> 4067 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4068 DwarfAttEncodingField &Result) { 4069 if (Lex.getKind() == lltok::APSInt) 4070 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4071 4072 if (Lex.getKind() != lltok::DwarfAttEncoding) 4073 return TokError("expected DWARF type attribute encoding"); 4074 4075 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4076 if (!Encoding) 4077 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 4078 Lex.getStrVal() + "'"); 4079 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4080 Result.assign(Encoding); 4081 Lex.Lex(); 4082 return false; 4083 } 4084 4085 /// DIFlagField 4086 /// ::= uint32 4087 /// ::= DIFlagVector 4088 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4089 template <> 4090 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4091 4092 // Parser for a single flag. 4093 auto parseFlag = [&](DINode::DIFlags &Val) { 4094 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4095 uint32_t TempVal = static_cast<uint32_t>(Val); 4096 bool Res = ParseUInt32(TempVal); 4097 Val = static_cast<DINode::DIFlags>(TempVal); 4098 return Res; 4099 } 4100 4101 if (Lex.getKind() != lltok::DIFlag) 4102 return TokError("expected debug info flag"); 4103 4104 Val = DINode::getFlag(Lex.getStrVal()); 4105 if (!Val) 4106 return TokError(Twine("invalid debug info flag flag '") + 4107 Lex.getStrVal() + "'"); 4108 Lex.Lex(); 4109 return false; 4110 }; 4111 4112 // Parse the flags and combine them together. 4113 DINode::DIFlags Combined = DINode::FlagZero; 4114 do { 4115 DINode::DIFlags Val; 4116 if (parseFlag(Val)) 4117 return true; 4118 Combined |= Val; 4119 } while (EatIfPresent(lltok::bar)); 4120 4121 Result.assign(Combined); 4122 return false; 4123 } 4124 4125 /// DISPFlagField 4126 /// ::= uint32 4127 /// ::= DISPFlagVector 4128 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4129 template <> 4130 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4131 4132 // Parser for a single flag. 4133 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4134 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4135 uint32_t TempVal = static_cast<uint32_t>(Val); 4136 bool Res = ParseUInt32(TempVal); 4137 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4138 return Res; 4139 } 4140 4141 if (Lex.getKind() != lltok::DISPFlag) 4142 return TokError("expected debug info flag"); 4143 4144 Val = DISubprogram::getFlag(Lex.getStrVal()); 4145 if (!Val) 4146 return TokError(Twine("invalid subprogram debug info flag '") + 4147 Lex.getStrVal() + "'"); 4148 Lex.Lex(); 4149 return false; 4150 }; 4151 4152 // Parse the flags and combine them together. 4153 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4154 do { 4155 DISubprogram::DISPFlags Val; 4156 if (parseFlag(Val)) 4157 return true; 4158 Combined |= Val; 4159 } while (EatIfPresent(lltok::bar)); 4160 4161 Result.assign(Combined); 4162 return false; 4163 } 4164 4165 template <> 4166 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4167 MDSignedField &Result) { 4168 if (Lex.getKind() != lltok::APSInt) 4169 return TokError("expected signed integer"); 4170 4171 auto &S = Lex.getAPSIntVal(); 4172 if (S < Result.Min) 4173 return TokError("value for '" + Name + "' too small, limit is " + 4174 Twine(Result.Min)); 4175 if (S > Result.Max) 4176 return TokError("value for '" + Name + "' too large, limit is " + 4177 Twine(Result.Max)); 4178 Result.assign(S.getExtValue()); 4179 assert(Result.Val >= Result.Min && "Expected value in range"); 4180 assert(Result.Val <= Result.Max && "Expected value in range"); 4181 Lex.Lex(); 4182 return false; 4183 } 4184 4185 template <> 4186 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4187 switch (Lex.getKind()) { 4188 default: 4189 return TokError("expected 'true' or 'false'"); 4190 case lltok::kw_true: 4191 Result.assign(true); 4192 break; 4193 case lltok::kw_false: 4194 Result.assign(false); 4195 break; 4196 } 4197 Lex.Lex(); 4198 return false; 4199 } 4200 4201 template <> 4202 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4203 if (Lex.getKind() == lltok::kw_null) { 4204 if (!Result.AllowNull) 4205 return TokError("'" + Name + "' cannot be null"); 4206 Lex.Lex(); 4207 Result.assign(nullptr); 4208 return false; 4209 } 4210 4211 Metadata *MD; 4212 if (ParseMetadata(MD, nullptr)) 4213 return true; 4214 4215 Result.assign(MD); 4216 return false; 4217 } 4218 4219 template <> 4220 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4221 MDSignedOrMDField &Result) { 4222 // Try to parse a signed int. 4223 if (Lex.getKind() == lltok::APSInt) { 4224 MDSignedField Res = Result.A; 4225 if (!ParseMDField(Loc, Name, Res)) { 4226 Result.assign(Res); 4227 return false; 4228 } 4229 return true; 4230 } 4231 4232 // Otherwise, try to parse as an MDField. 4233 MDField Res = Result.B; 4234 if (!ParseMDField(Loc, Name, Res)) { 4235 Result.assign(Res); 4236 return false; 4237 } 4238 4239 return true; 4240 } 4241 4242 template <> 4243 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4244 MDSignedOrUnsignedField &Result) { 4245 if (Lex.getKind() != lltok::APSInt) 4246 return false; 4247 4248 if (Lex.getAPSIntVal().isSigned()) { 4249 MDSignedField Res = Result.A; 4250 if (ParseMDField(Loc, Name, Res)) 4251 return true; 4252 Result.assign(Res); 4253 return false; 4254 } 4255 4256 MDUnsignedField Res = Result.B; 4257 if (ParseMDField(Loc, Name, Res)) 4258 return true; 4259 Result.assign(Res); 4260 return false; 4261 } 4262 4263 template <> 4264 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4265 LocTy ValueLoc = Lex.getLoc(); 4266 std::string S; 4267 if (ParseStringConstant(S)) 4268 return true; 4269 4270 if (!Result.AllowEmpty && S.empty()) 4271 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4272 4273 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4274 return false; 4275 } 4276 4277 template <> 4278 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4279 SmallVector<Metadata *, 4> MDs; 4280 if (ParseMDNodeVector(MDs)) 4281 return true; 4282 4283 Result.assign(std::move(MDs)); 4284 return false; 4285 } 4286 4287 template <> 4288 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4289 ChecksumKindField &Result) { 4290 Optional<DIFile::ChecksumKind> CSKind = 4291 DIFile::getChecksumKind(Lex.getStrVal()); 4292 4293 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4294 return TokError( 4295 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4296 4297 Result.assign(*CSKind); 4298 Lex.Lex(); 4299 return false; 4300 } 4301 4302 } // end namespace llvm 4303 4304 template <class ParserTy> 4305 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4306 do { 4307 if (Lex.getKind() != lltok::LabelStr) 4308 return TokError("expected field label here"); 4309 4310 if (parseField()) 4311 return true; 4312 } while (EatIfPresent(lltok::comma)); 4313 4314 return false; 4315 } 4316 4317 template <class ParserTy> 4318 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4319 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4320 Lex.Lex(); 4321 4322 if (ParseToken(lltok::lparen, "expected '(' here")) 4323 return true; 4324 if (Lex.getKind() != lltok::rparen) 4325 if (ParseMDFieldsImplBody(parseField)) 4326 return true; 4327 4328 ClosingLoc = Lex.getLoc(); 4329 return ParseToken(lltok::rparen, "expected ')' here"); 4330 } 4331 4332 template <class FieldTy> 4333 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4334 if (Result.Seen) 4335 return TokError("field '" + Name + "' cannot be specified more than once"); 4336 4337 LocTy Loc = Lex.getLoc(); 4338 Lex.Lex(); 4339 return ParseMDField(Loc, Name, Result); 4340 } 4341 4342 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4343 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4344 4345 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4346 if (Lex.getStrVal() == #CLASS) \ 4347 return Parse##CLASS(N, IsDistinct); 4348 #include "llvm/IR/Metadata.def" 4349 4350 return TokError("expected metadata type"); 4351 } 4352 4353 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4354 #define NOP_FIELD(NAME, TYPE, INIT) 4355 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4356 if (!NAME.Seen) \ 4357 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4358 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4359 if (Lex.getStrVal() == #NAME) \ 4360 return ParseMDField(#NAME, NAME); 4361 #define PARSE_MD_FIELDS() \ 4362 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4363 do { \ 4364 LocTy ClosingLoc; \ 4365 if (ParseMDFieldsImpl([&]() -> bool { \ 4366 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4367 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4368 }, ClosingLoc)) \ 4369 return true; \ 4370 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4371 } while (false) 4372 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4373 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4374 4375 /// ParseDILocationFields: 4376 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4377 /// isImplicitCode: true) 4378 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4379 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4380 OPTIONAL(line, LineField, ); \ 4381 OPTIONAL(column, ColumnField, ); \ 4382 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4383 OPTIONAL(inlinedAt, MDField, ); \ 4384 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4385 PARSE_MD_FIELDS(); 4386 #undef VISIT_MD_FIELDS 4387 4388 Result = 4389 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4390 inlinedAt.Val, isImplicitCode.Val)); 4391 return false; 4392 } 4393 4394 /// ParseGenericDINode: 4395 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4396 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4397 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4398 REQUIRED(tag, DwarfTagField, ); \ 4399 OPTIONAL(header, MDStringField, ); \ 4400 OPTIONAL(operands, MDFieldList, ); 4401 PARSE_MD_FIELDS(); 4402 #undef VISIT_MD_FIELDS 4403 4404 Result = GET_OR_DISTINCT(GenericDINode, 4405 (Context, tag.Val, header.Val, operands.Val)); 4406 return false; 4407 } 4408 4409 /// ParseDISubrange: 4410 /// ::= !DISubrange(count: 30, lowerBound: 2) 4411 /// ::= !DISubrange(count: !node, lowerBound: 2) 4412 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4413 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4414 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4415 OPTIONAL(lowerBound, MDSignedField, ); 4416 PARSE_MD_FIELDS(); 4417 #undef VISIT_MD_FIELDS 4418 4419 if (count.isMDSignedField()) 4420 Result = GET_OR_DISTINCT( 4421 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4422 else if (count.isMDField()) 4423 Result = GET_OR_DISTINCT( 4424 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4425 else 4426 return true; 4427 4428 return false; 4429 } 4430 4431 /// ParseDIEnumerator: 4432 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4433 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4434 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4435 REQUIRED(name, MDStringField, ); \ 4436 REQUIRED(value, MDSignedOrUnsignedField, ); \ 4437 OPTIONAL(isUnsigned, MDBoolField, (false)); 4438 PARSE_MD_FIELDS(); 4439 #undef VISIT_MD_FIELDS 4440 4441 if (isUnsigned.Val && value.isMDSignedField()) 4442 return TokError("unsigned enumerator with negative value"); 4443 4444 int64_t Value = value.isMDSignedField() 4445 ? value.getMDSignedValue() 4446 : static_cast<int64_t>(value.getMDUnsignedValue()); 4447 Result = 4448 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4449 4450 return false; 4451 } 4452 4453 /// ParseDIBasicType: 4454 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4455 /// encoding: DW_ATE_encoding, flags: 0) 4456 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4457 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4458 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4459 OPTIONAL(name, MDStringField, ); \ 4460 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4461 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4462 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4463 OPTIONAL(flags, DIFlagField, ); 4464 PARSE_MD_FIELDS(); 4465 #undef VISIT_MD_FIELDS 4466 4467 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4468 align.Val, encoding.Val, flags.Val)); 4469 return false; 4470 } 4471 4472 /// ParseDIDerivedType: 4473 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4474 /// line: 7, scope: !1, baseType: !2, size: 32, 4475 /// align: 32, offset: 0, flags: 0, extraData: !3, 4476 /// dwarfAddressSpace: 3) 4477 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4478 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4479 REQUIRED(tag, DwarfTagField, ); \ 4480 OPTIONAL(name, MDStringField, ); \ 4481 OPTIONAL(file, MDField, ); \ 4482 OPTIONAL(line, LineField, ); \ 4483 OPTIONAL(scope, MDField, ); \ 4484 REQUIRED(baseType, MDField, ); \ 4485 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4486 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4487 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4488 OPTIONAL(flags, DIFlagField, ); \ 4489 OPTIONAL(extraData, MDField, ); \ 4490 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4491 PARSE_MD_FIELDS(); 4492 #undef VISIT_MD_FIELDS 4493 4494 Optional<unsigned> DWARFAddressSpace; 4495 if (dwarfAddressSpace.Val != UINT32_MAX) 4496 DWARFAddressSpace = dwarfAddressSpace.Val; 4497 4498 Result = GET_OR_DISTINCT(DIDerivedType, 4499 (Context, tag.Val, name.Val, file.Val, line.Val, 4500 scope.Val, baseType.Val, size.Val, align.Val, 4501 offset.Val, DWARFAddressSpace, flags.Val, 4502 extraData.Val)); 4503 return false; 4504 } 4505 4506 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4507 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4508 REQUIRED(tag, DwarfTagField, ); \ 4509 OPTIONAL(name, MDStringField, ); \ 4510 OPTIONAL(file, MDField, ); \ 4511 OPTIONAL(line, LineField, ); \ 4512 OPTIONAL(scope, MDField, ); \ 4513 OPTIONAL(baseType, MDField, ); \ 4514 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4515 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4516 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4517 OPTIONAL(flags, DIFlagField, ); \ 4518 OPTIONAL(elements, MDField, ); \ 4519 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4520 OPTIONAL(vtableHolder, MDField, ); \ 4521 OPTIONAL(templateParams, MDField, ); \ 4522 OPTIONAL(identifier, MDStringField, ); \ 4523 OPTIONAL(discriminator, MDField, ); 4524 PARSE_MD_FIELDS(); 4525 #undef VISIT_MD_FIELDS 4526 4527 // If this has an identifier try to build an ODR type. 4528 if (identifier.Val) 4529 if (auto *CT = DICompositeType::buildODRType( 4530 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4531 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4532 elements.Val, runtimeLang.Val, vtableHolder.Val, 4533 templateParams.Val, discriminator.Val)) { 4534 Result = CT; 4535 return false; 4536 } 4537 4538 // Create a new node, and save it in the context if it belongs in the type 4539 // map. 4540 Result = GET_OR_DISTINCT( 4541 DICompositeType, 4542 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4543 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4544 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4545 discriminator.Val)); 4546 return false; 4547 } 4548 4549 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4550 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4551 OPTIONAL(flags, DIFlagField, ); \ 4552 OPTIONAL(cc, DwarfCCField, ); \ 4553 REQUIRED(types, MDField, ); 4554 PARSE_MD_FIELDS(); 4555 #undef VISIT_MD_FIELDS 4556 4557 Result = GET_OR_DISTINCT(DISubroutineType, 4558 (Context, flags.Val, cc.Val, types.Val)); 4559 return false; 4560 } 4561 4562 /// ParseDIFileType: 4563 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4564 /// checksumkind: CSK_MD5, 4565 /// checksum: "000102030405060708090a0b0c0d0e0f", 4566 /// source: "source file contents") 4567 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4568 // The default constructed value for checksumkind is required, but will never 4569 // be used, as the parser checks if the field was actually Seen before using 4570 // the Val. 4571 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4572 REQUIRED(filename, MDStringField, ); \ 4573 REQUIRED(directory, MDStringField, ); \ 4574 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4575 OPTIONAL(checksum, MDStringField, ); \ 4576 OPTIONAL(source, MDStringField, ); 4577 PARSE_MD_FIELDS(); 4578 #undef VISIT_MD_FIELDS 4579 4580 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4581 if (checksumkind.Seen && checksum.Seen) 4582 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4583 else if (checksumkind.Seen || checksum.Seen) 4584 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4585 4586 Optional<MDString *> OptSource; 4587 if (source.Seen) 4588 OptSource = source.Val; 4589 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4590 OptChecksum, OptSource)); 4591 return false; 4592 } 4593 4594 /// ParseDICompileUnit: 4595 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4596 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4597 /// splitDebugFilename: "abc.debug", 4598 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4599 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4600 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4601 if (!IsDistinct) 4602 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4603 4604 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4605 REQUIRED(language, DwarfLangField, ); \ 4606 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4607 OPTIONAL(producer, MDStringField, ); \ 4608 OPTIONAL(isOptimized, MDBoolField, ); \ 4609 OPTIONAL(flags, MDStringField, ); \ 4610 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4611 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4612 OPTIONAL(emissionKind, EmissionKindField, ); \ 4613 OPTIONAL(enums, MDField, ); \ 4614 OPTIONAL(retainedTypes, MDField, ); \ 4615 OPTIONAL(globals, MDField, ); \ 4616 OPTIONAL(imports, MDField, ); \ 4617 OPTIONAL(macros, MDField, ); \ 4618 OPTIONAL(dwoId, MDUnsignedField, ); \ 4619 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4620 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4621 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4622 OPTIONAL(debugBaseAddress, MDBoolField, = false); 4623 PARSE_MD_FIELDS(); 4624 #undef VISIT_MD_FIELDS 4625 4626 Result = DICompileUnit::getDistinct( 4627 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4628 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4629 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4630 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4631 debugBaseAddress.Val); 4632 return false; 4633 } 4634 4635 /// ParseDISubprogram: 4636 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4637 /// file: !1, line: 7, type: !2, isLocal: false, 4638 /// isDefinition: true, scopeLine: 8, containingType: !3, 4639 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4640 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4641 /// spFlags: 10, isOptimized: false, templateParams: !4, 4642 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4643 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4644 auto Loc = Lex.getLoc(); 4645 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4646 OPTIONAL(scope, MDField, ); \ 4647 OPTIONAL(name, MDStringField, ); \ 4648 OPTIONAL(linkageName, MDStringField, ); \ 4649 OPTIONAL(file, MDField, ); \ 4650 OPTIONAL(line, LineField, ); \ 4651 OPTIONAL(type, MDField, ); \ 4652 OPTIONAL(isLocal, MDBoolField, ); \ 4653 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4654 OPTIONAL(scopeLine, LineField, ); \ 4655 OPTIONAL(containingType, MDField, ); \ 4656 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4657 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4658 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4659 OPTIONAL(flags, DIFlagField, ); \ 4660 OPTIONAL(spFlags, DISPFlagField, ); \ 4661 OPTIONAL(isOptimized, MDBoolField, ); \ 4662 OPTIONAL(unit, MDField, ); \ 4663 OPTIONAL(templateParams, MDField, ); \ 4664 OPTIONAL(declaration, MDField, ); \ 4665 OPTIONAL(retainedNodes, MDField, ); \ 4666 OPTIONAL(thrownTypes, MDField, ); 4667 PARSE_MD_FIELDS(); 4668 #undef VISIT_MD_FIELDS 4669 4670 // An explicit spFlags field takes precedence over individual fields in 4671 // older IR versions. 4672 DISubprogram::DISPFlags SPFlags = 4673 spFlags.Seen ? spFlags.Val 4674 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4675 isOptimized.Val, virtuality.Val); 4676 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4677 return Lex.Error( 4678 Loc, 4679 "missing 'distinct', required for !DISubprogram that is a Definition"); 4680 Result = GET_OR_DISTINCT( 4681 DISubprogram, 4682 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4683 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4684 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4685 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4686 return false; 4687 } 4688 4689 /// ParseDILexicalBlock: 4690 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4691 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4692 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4693 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4694 OPTIONAL(file, MDField, ); \ 4695 OPTIONAL(line, LineField, ); \ 4696 OPTIONAL(column, ColumnField, ); 4697 PARSE_MD_FIELDS(); 4698 #undef VISIT_MD_FIELDS 4699 4700 Result = GET_OR_DISTINCT( 4701 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4702 return false; 4703 } 4704 4705 /// ParseDILexicalBlockFile: 4706 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4707 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4708 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4709 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4710 OPTIONAL(file, MDField, ); \ 4711 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4712 PARSE_MD_FIELDS(); 4713 #undef VISIT_MD_FIELDS 4714 4715 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4716 (Context, scope.Val, file.Val, discriminator.Val)); 4717 return false; 4718 } 4719 4720 /// ParseDICommonBlock: 4721 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4722 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4723 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4724 REQUIRED(scope, MDField, ); \ 4725 OPTIONAL(declaration, MDField, ); \ 4726 OPTIONAL(name, MDStringField, ); \ 4727 OPTIONAL(file, MDField, ); \ 4728 OPTIONAL(line, LineField, ); 4729 PARSE_MD_FIELDS(); 4730 #undef VISIT_MD_FIELDS 4731 4732 Result = GET_OR_DISTINCT(DICommonBlock, 4733 (Context, scope.Val, declaration.Val, name.Val, 4734 file.Val, line.Val)); 4735 return false; 4736 } 4737 4738 /// ParseDINamespace: 4739 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4740 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4741 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4742 REQUIRED(scope, MDField, ); \ 4743 OPTIONAL(name, MDStringField, ); \ 4744 OPTIONAL(exportSymbols, MDBoolField, ); 4745 PARSE_MD_FIELDS(); 4746 #undef VISIT_MD_FIELDS 4747 4748 Result = GET_OR_DISTINCT(DINamespace, 4749 (Context, scope.Val, name.Val, exportSymbols.Val)); 4750 return false; 4751 } 4752 4753 /// ParseDIMacro: 4754 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4755 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4756 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4757 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4758 OPTIONAL(line, LineField, ); \ 4759 REQUIRED(name, MDStringField, ); \ 4760 OPTIONAL(value, MDStringField, ); 4761 PARSE_MD_FIELDS(); 4762 #undef VISIT_MD_FIELDS 4763 4764 Result = GET_OR_DISTINCT(DIMacro, 4765 (Context, type.Val, line.Val, name.Val, value.Val)); 4766 return false; 4767 } 4768 4769 /// ParseDIMacroFile: 4770 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4771 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4772 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4773 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4774 OPTIONAL(line, LineField, ); \ 4775 REQUIRED(file, MDField, ); \ 4776 OPTIONAL(nodes, MDField, ); 4777 PARSE_MD_FIELDS(); 4778 #undef VISIT_MD_FIELDS 4779 4780 Result = GET_OR_DISTINCT(DIMacroFile, 4781 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4782 return false; 4783 } 4784 4785 /// ParseDIModule: 4786 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4787 /// includePath: "/usr/include", isysroot: "/") 4788 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4789 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4790 REQUIRED(scope, MDField, ); \ 4791 REQUIRED(name, MDStringField, ); \ 4792 OPTIONAL(configMacros, MDStringField, ); \ 4793 OPTIONAL(includePath, MDStringField, ); \ 4794 OPTIONAL(isysroot, MDStringField, ); 4795 PARSE_MD_FIELDS(); 4796 #undef VISIT_MD_FIELDS 4797 4798 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4799 configMacros.Val, includePath.Val, isysroot.Val)); 4800 return false; 4801 } 4802 4803 /// ParseDITemplateTypeParameter: 4804 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4805 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4806 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4807 OPTIONAL(name, MDStringField, ); \ 4808 REQUIRED(type, MDField, ); 4809 PARSE_MD_FIELDS(); 4810 #undef VISIT_MD_FIELDS 4811 4812 Result = 4813 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4814 return false; 4815 } 4816 4817 /// ParseDITemplateValueParameter: 4818 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4819 /// name: "V", type: !1, value: i32 7) 4820 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4821 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4822 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4823 OPTIONAL(name, MDStringField, ); \ 4824 OPTIONAL(type, MDField, ); \ 4825 REQUIRED(value, MDField, ); 4826 PARSE_MD_FIELDS(); 4827 #undef VISIT_MD_FIELDS 4828 4829 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4830 (Context, tag.Val, name.Val, type.Val, value.Val)); 4831 return false; 4832 } 4833 4834 /// ParseDIGlobalVariable: 4835 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4836 /// file: !1, line: 7, type: !2, isLocal: false, 4837 /// isDefinition: true, templateParams: !3, 4838 /// declaration: !4, align: 8) 4839 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4840 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4841 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4842 OPTIONAL(scope, MDField, ); \ 4843 OPTIONAL(linkageName, MDStringField, ); \ 4844 OPTIONAL(file, MDField, ); \ 4845 OPTIONAL(line, LineField, ); \ 4846 OPTIONAL(type, MDField, ); \ 4847 OPTIONAL(isLocal, MDBoolField, ); \ 4848 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4849 OPTIONAL(templateParams, MDField, ); \ 4850 OPTIONAL(declaration, MDField, ); \ 4851 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4852 PARSE_MD_FIELDS(); 4853 #undef VISIT_MD_FIELDS 4854 4855 Result = 4856 GET_OR_DISTINCT(DIGlobalVariable, 4857 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4858 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4859 declaration.Val, templateParams.Val, align.Val)); 4860 return false; 4861 } 4862 4863 /// ParseDILocalVariable: 4864 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4865 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4866 /// align: 8) 4867 /// ::= !DILocalVariable(scope: !0, name: "foo", 4868 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4869 /// align: 8) 4870 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4871 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4872 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4873 OPTIONAL(name, MDStringField, ); \ 4874 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4875 OPTIONAL(file, MDField, ); \ 4876 OPTIONAL(line, LineField, ); \ 4877 OPTIONAL(type, MDField, ); \ 4878 OPTIONAL(flags, DIFlagField, ); \ 4879 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4880 PARSE_MD_FIELDS(); 4881 #undef VISIT_MD_FIELDS 4882 4883 Result = GET_OR_DISTINCT(DILocalVariable, 4884 (Context, scope.Val, name.Val, file.Val, line.Val, 4885 type.Val, arg.Val, flags.Val, align.Val)); 4886 return false; 4887 } 4888 4889 /// ParseDILabel: 4890 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4891 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 4892 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4893 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4894 REQUIRED(name, MDStringField, ); \ 4895 REQUIRED(file, MDField, ); \ 4896 REQUIRED(line, LineField, ); 4897 PARSE_MD_FIELDS(); 4898 #undef VISIT_MD_FIELDS 4899 4900 Result = GET_OR_DISTINCT(DILabel, 4901 (Context, scope.Val, name.Val, file.Val, line.Val)); 4902 return false; 4903 } 4904 4905 /// ParseDIExpression: 4906 /// ::= !DIExpression(0, 7, -1) 4907 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4908 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4909 Lex.Lex(); 4910 4911 if (ParseToken(lltok::lparen, "expected '(' here")) 4912 return true; 4913 4914 SmallVector<uint64_t, 8> Elements; 4915 if (Lex.getKind() != lltok::rparen) 4916 do { 4917 if (Lex.getKind() == lltok::DwarfOp) { 4918 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4919 Lex.Lex(); 4920 Elements.push_back(Op); 4921 continue; 4922 } 4923 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4924 } 4925 4926 if (Lex.getKind() == lltok::DwarfAttEncoding) { 4927 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 4928 Lex.Lex(); 4929 Elements.push_back(Op); 4930 continue; 4931 } 4932 return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'"); 4933 } 4934 4935 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4936 return TokError("expected unsigned integer"); 4937 4938 auto &U = Lex.getAPSIntVal(); 4939 if (U.ugt(UINT64_MAX)) 4940 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4941 Elements.push_back(U.getZExtValue()); 4942 Lex.Lex(); 4943 } while (EatIfPresent(lltok::comma)); 4944 4945 if (ParseToken(lltok::rparen, "expected ')' here")) 4946 return true; 4947 4948 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4949 return false; 4950 } 4951 4952 /// ParseDIGlobalVariableExpression: 4953 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4954 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4955 bool IsDistinct) { 4956 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4957 REQUIRED(var, MDField, ); \ 4958 REQUIRED(expr, MDField, ); 4959 PARSE_MD_FIELDS(); 4960 #undef VISIT_MD_FIELDS 4961 4962 Result = 4963 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4964 return false; 4965 } 4966 4967 /// ParseDIObjCProperty: 4968 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4969 /// getter: "getFoo", attributes: 7, type: !2) 4970 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4971 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4972 OPTIONAL(name, MDStringField, ); \ 4973 OPTIONAL(file, MDField, ); \ 4974 OPTIONAL(line, LineField, ); \ 4975 OPTIONAL(setter, MDStringField, ); \ 4976 OPTIONAL(getter, MDStringField, ); \ 4977 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4978 OPTIONAL(type, MDField, ); 4979 PARSE_MD_FIELDS(); 4980 #undef VISIT_MD_FIELDS 4981 4982 Result = GET_OR_DISTINCT(DIObjCProperty, 4983 (Context, name.Val, file.Val, line.Val, setter.Val, 4984 getter.Val, attributes.Val, type.Val)); 4985 return false; 4986 } 4987 4988 /// ParseDIImportedEntity: 4989 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4990 /// line: 7, name: "foo") 4991 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4992 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4993 REQUIRED(tag, DwarfTagField, ); \ 4994 REQUIRED(scope, MDField, ); \ 4995 OPTIONAL(entity, MDField, ); \ 4996 OPTIONAL(file, MDField, ); \ 4997 OPTIONAL(line, LineField, ); \ 4998 OPTIONAL(name, MDStringField, ); 4999 PARSE_MD_FIELDS(); 5000 #undef VISIT_MD_FIELDS 5001 5002 Result = GET_OR_DISTINCT( 5003 DIImportedEntity, 5004 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5005 return false; 5006 } 5007 5008 #undef PARSE_MD_FIELD 5009 #undef NOP_FIELD 5010 #undef REQUIRE_FIELD 5011 #undef DECLARE_FIELD 5012 5013 /// ParseMetadataAsValue 5014 /// ::= metadata i32 %local 5015 /// ::= metadata i32 @global 5016 /// ::= metadata i32 7 5017 /// ::= metadata !0 5018 /// ::= metadata !{...} 5019 /// ::= metadata !"string" 5020 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5021 // Note: the type 'metadata' has already been parsed. 5022 Metadata *MD; 5023 if (ParseMetadata(MD, &PFS)) 5024 return true; 5025 5026 V = MetadataAsValue::get(Context, MD); 5027 return false; 5028 } 5029 5030 /// ParseValueAsMetadata 5031 /// ::= i32 %local 5032 /// ::= i32 @global 5033 /// ::= i32 7 5034 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5035 PerFunctionState *PFS) { 5036 Type *Ty; 5037 LocTy Loc; 5038 if (ParseType(Ty, TypeMsg, Loc)) 5039 return true; 5040 if (Ty->isMetadataTy()) 5041 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 5042 5043 Value *V; 5044 if (ParseValue(Ty, V, PFS)) 5045 return true; 5046 5047 MD = ValueAsMetadata::get(V); 5048 return false; 5049 } 5050 5051 /// ParseMetadata 5052 /// ::= i32 %local 5053 /// ::= i32 @global 5054 /// ::= i32 7 5055 /// ::= !42 5056 /// ::= !{...} 5057 /// ::= !"string" 5058 /// ::= !DILocation(...) 5059 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5060 if (Lex.getKind() == lltok::MetadataVar) { 5061 MDNode *N; 5062 if (ParseSpecializedMDNode(N)) 5063 return true; 5064 MD = N; 5065 return false; 5066 } 5067 5068 // ValueAsMetadata: 5069 // <type> <value> 5070 if (Lex.getKind() != lltok::exclaim) 5071 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 5072 5073 // '!'. 5074 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5075 Lex.Lex(); 5076 5077 // MDString: 5078 // ::= '!' STRINGCONSTANT 5079 if (Lex.getKind() == lltok::StringConstant) { 5080 MDString *S; 5081 if (ParseMDString(S)) 5082 return true; 5083 MD = S; 5084 return false; 5085 } 5086 5087 // MDNode: 5088 // !{ ... } 5089 // !7 5090 MDNode *N; 5091 if (ParseMDNodeTail(N)) 5092 return true; 5093 MD = N; 5094 return false; 5095 } 5096 5097 //===----------------------------------------------------------------------===// 5098 // Function Parsing. 5099 //===----------------------------------------------------------------------===// 5100 5101 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5102 PerFunctionState *PFS, bool IsCall) { 5103 if (Ty->isFunctionTy()) 5104 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 5105 5106 switch (ID.Kind) { 5107 case ValID::t_LocalID: 5108 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5109 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5110 return V == nullptr; 5111 case ValID::t_LocalName: 5112 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5113 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 5114 return V == nullptr; 5115 case ValID::t_InlineAsm: { 5116 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5117 return Error(ID.Loc, "invalid type for inline asm constraint string"); 5118 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5119 (ID.UIntVal >> 1) & 1, 5120 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5121 return false; 5122 } 5123 case ValID::t_GlobalName: 5124 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5125 return V == nullptr; 5126 case ValID::t_GlobalID: 5127 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5128 return V == nullptr; 5129 case ValID::t_APSInt: 5130 if (!Ty->isIntegerTy()) 5131 return Error(ID.Loc, "integer constant must have integer type"); 5132 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5133 V = ConstantInt::get(Context, ID.APSIntVal); 5134 return false; 5135 case ValID::t_APFloat: 5136 if (!Ty->isFloatingPointTy() || 5137 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5138 return Error(ID.Loc, "floating point constant invalid for type"); 5139 5140 // The lexer has no type info, so builds all half, float, and double FP 5141 // constants as double. Fix this here. Long double does not need this. 5142 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5143 bool Ignored; 5144 if (Ty->isHalfTy()) 5145 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5146 &Ignored); 5147 else if (Ty->isFloatTy()) 5148 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5149 &Ignored); 5150 } 5151 V = ConstantFP::get(Context, ID.APFloatVal); 5152 5153 if (V->getType() != Ty) 5154 return Error(ID.Loc, "floating point constant does not have type '" + 5155 getTypeString(Ty) + "'"); 5156 5157 return false; 5158 case ValID::t_Null: 5159 if (!Ty->isPointerTy()) 5160 return Error(ID.Loc, "null must be a pointer type"); 5161 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5162 return false; 5163 case ValID::t_Undef: 5164 // FIXME: LabelTy should not be a first-class type. 5165 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5166 return Error(ID.Loc, "invalid type for undef constant"); 5167 V = UndefValue::get(Ty); 5168 return false; 5169 case ValID::t_EmptyArray: 5170 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5171 return Error(ID.Loc, "invalid empty array initializer"); 5172 V = UndefValue::get(Ty); 5173 return false; 5174 case ValID::t_Zero: 5175 // FIXME: LabelTy should not be a first-class type. 5176 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5177 return Error(ID.Loc, "invalid type for null constant"); 5178 V = Constant::getNullValue(Ty); 5179 return false; 5180 case ValID::t_None: 5181 if (!Ty->isTokenTy()) 5182 return Error(ID.Loc, "invalid type for none constant"); 5183 V = Constant::getNullValue(Ty); 5184 return false; 5185 case ValID::t_Constant: 5186 if (ID.ConstantVal->getType() != Ty) 5187 return Error(ID.Loc, "constant expression type mismatch"); 5188 5189 V = ID.ConstantVal; 5190 return false; 5191 case ValID::t_ConstantStruct: 5192 case ValID::t_PackedConstantStruct: 5193 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5194 if (ST->getNumElements() != ID.UIntVal) 5195 return Error(ID.Loc, 5196 "initializer with struct type has wrong # elements"); 5197 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5198 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 5199 5200 // Verify that the elements are compatible with the structtype. 5201 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5202 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5203 return Error(ID.Loc, "element " + Twine(i) + 5204 " of struct initializer doesn't match struct element type"); 5205 5206 V = ConstantStruct::get( 5207 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5208 } else 5209 return Error(ID.Loc, "constant expression type mismatch"); 5210 return false; 5211 } 5212 llvm_unreachable("Invalid ValID"); 5213 } 5214 5215 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5216 C = nullptr; 5217 ValID ID; 5218 auto Loc = Lex.getLoc(); 5219 if (ParseValID(ID, /*PFS=*/nullptr)) 5220 return true; 5221 switch (ID.Kind) { 5222 case ValID::t_APSInt: 5223 case ValID::t_APFloat: 5224 case ValID::t_Undef: 5225 case ValID::t_Constant: 5226 case ValID::t_ConstantStruct: 5227 case ValID::t_PackedConstantStruct: { 5228 Value *V; 5229 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5230 return true; 5231 assert(isa<Constant>(V) && "Expected a constant value"); 5232 C = cast<Constant>(V); 5233 return false; 5234 } 5235 case ValID::t_Null: 5236 C = Constant::getNullValue(Ty); 5237 return false; 5238 default: 5239 return Error(Loc, "expected a constant value"); 5240 } 5241 } 5242 5243 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5244 V = nullptr; 5245 ValID ID; 5246 return ParseValID(ID, PFS) || 5247 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5248 } 5249 5250 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5251 Type *Ty = nullptr; 5252 return ParseType(Ty) || 5253 ParseValue(Ty, V, PFS); 5254 } 5255 5256 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5257 PerFunctionState &PFS) { 5258 Value *V; 5259 Loc = Lex.getLoc(); 5260 if (ParseTypeAndValue(V, PFS)) return true; 5261 if (!isa<BasicBlock>(V)) 5262 return Error(Loc, "expected a basic block"); 5263 BB = cast<BasicBlock>(V); 5264 return false; 5265 } 5266 5267 /// FunctionHeader 5268 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5269 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5270 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5271 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5272 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5273 // Parse the linkage. 5274 LocTy LinkageLoc = Lex.getLoc(); 5275 unsigned Linkage; 5276 unsigned Visibility; 5277 unsigned DLLStorageClass; 5278 bool DSOLocal; 5279 AttrBuilder RetAttrs; 5280 unsigned CC; 5281 bool HasLinkage; 5282 Type *RetType = nullptr; 5283 LocTy RetTypeLoc = Lex.getLoc(); 5284 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5285 DSOLocal) || 5286 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5287 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5288 return true; 5289 5290 // Verify that the linkage is ok. 5291 switch ((GlobalValue::LinkageTypes)Linkage) { 5292 case GlobalValue::ExternalLinkage: 5293 break; // always ok. 5294 case GlobalValue::ExternalWeakLinkage: 5295 if (isDefine) 5296 return Error(LinkageLoc, "invalid linkage for function definition"); 5297 break; 5298 case GlobalValue::PrivateLinkage: 5299 case GlobalValue::InternalLinkage: 5300 case GlobalValue::AvailableExternallyLinkage: 5301 case GlobalValue::LinkOnceAnyLinkage: 5302 case GlobalValue::LinkOnceODRLinkage: 5303 case GlobalValue::WeakAnyLinkage: 5304 case GlobalValue::WeakODRLinkage: 5305 if (!isDefine) 5306 return Error(LinkageLoc, "invalid linkage for function declaration"); 5307 break; 5308 case GlobalValue::AppendingLinkage: 5309 case GlobalValue::CommonLinkage: 5310 return Error(LinkageLoc, "invalid function linkage type"); 5311 } 5312 5313 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5314 return Error(LinkageLoc, 5315 "symbol with local linkage must have default visibility"); 5316 5317 if (!FunctionType::isValidReturnType(RetType)) 5318 return Error(RetTypeLoc, "invalid function return type"); 5319 5320 LocTy NameLoc = Lex.getLoc(); 5321 5322 std::string FunctionName; 5323 if (Lex.getKind() == lltok::GlobalVar) { 5324 FunctionName = Lex.getStrVal(); 5325 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5326 unsigned NameID = Lex.getUIntVal(); 5327 5328 if (NameID != NumberedVals.size()) 5329 return TokError("function expected to be numbered '%" + 5330 Twine(NumberedVals.size()) + "'"); 5331 } else { 5332 return TokError("expected function name"); 5333 } 5334 5335 Lex.Lex(); 5336 5337 if (Lex.getKind() != lltok::lparen) 5338 return TokError("expected '(' in function argument list"); 5339 5340 SmallVector<ArgInfo, 8> ArgList; 5341 bool isVarArg; 5342 AttrBuilder FuncAttrs; 5343 std::vector<unsigned> FwdRefAttrGrps; 5344 LocTy BuiltinLoc; 5345 std::string Section; 5346 std::string Partition; 5347 unsigned Alignment; 5348 std::string GC; 5349 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5350 unsigned AddrSpace = 0; 5351 Constant *Prefix = nullptr; 5352 Constant *Prologue = nullptr; 5353 Constant *PersonalityFn = nullptr; 5354 Comdat *C; 5355 5356 if (ParseArgumentList(ArgList, isVarArg) || 5357 ParseOptionalUnnamedAddr(UnnamedAddr) || 5358 ParseOptionalProgramAddrSpace(AddrSpace) || 5359 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5360 BuiltinLoc) || 5361 (EatIfPresent(lltok::kw_section) && 5362 ParseStringConstant(Section)) || 5363 (EatIfPresent(lltok::kw_partition) && 5364 ParseStringConstant(Partition)) || 5365 parseOptionalComdat(FunctionName, C) || 5366 ParseOptionalAlignment(Alignment) || 5367 (EatIfPresent(lltok::kw_gc) && 5368 ParseStringConstant(GC)) || 5369 (EatIfPresent(lltok::kw_prefix) && 5370 ParseGlobalTypeAndValue(Prefix)) || 5371 (EatIfPresent(lltok::kw_prologue) && 5372 ParseGlobalTypeAndValue(Prologue)) || 5373 (EatIfPresent(lltok::kw_personality) && 5374 ParseGlobalTypeAndValue(PersonalityFn))) 5375 return true; 5376 5377 if (FuncAttrs.contains(Attribute::Builtin)) 5378 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5379 5380 // If the alignment was parsed as an attribute, move to the alignment field. 5381 if (FuncAttrs.hasAlignmentAttr()) { 5382 Alignment = FuncAttrs.getAlignment(); 5383 FuncAttrs.removeAttribute(Attribute::Alignment); 5384 } 5385 5386 // Okay, if we got here, the function is syntactically valid. Convert types 5387 // and do semantic checks. 5388 std::vector<Type*> ParamTypeList; 5389 SmallVector<AttributeSet, 8> Attrs; 5390 5391 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5392 ParamTypeList.push_back(ArgList[i].Ty); 5393 Attrs.push_back(ArgList[i].Attrs); 5394 } 5395 5396 AttributeList PAL = 5397 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5398 AttributeSet::get(Context, RetAttrs), Attrs); 5399 5400 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5401 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5402 5403 FunctionType *FT = 5404 FunctionType::get(RetType, ParamTypeList, isVarArg); 5405 PointerType *PFT = PointerType::get(FT, AddrSpace); 5406 5407 Fn = nullptr; 5408 if (!FunctionName.empty()) { 5409 // If this was a definition of a forward reference, remove the definition 5410 // from the forward reference table and fill in the forward ref. 5411 auto FRVI = ForwardRefVals.find(FunctionName); 5412 if (FRVI != ForwardRefVals.end()) { 5413 Fn = M->getFunction(FunctionName); 5414 if (!Fn) 5415 return Error(FRVI->second.second, "invalid forward reference to " 5416 "function as global value!"); 5417 if (Fn->getType() != PFT) 5418 return Error(FRVI->second.second, "invalid forward reference to " 5419 "function '" + FunctionName + "' with wrong type: " 5420 "expected '" + getTypeString(PFT) + "' but was '" + 5421 getTypeString(Fn->getType()) + "'"); 5422 ForwardRefVals.erase(FRVI); 5423 } else if ((Fn = M->getFunction(FunctionName))) { 5424 // Reject redefinitions. 5425 return Error(NameLoc, "invalid redefinition of function '" + 5426 FunctionName + "'"); 5427 } else if (M->getNamedValue(FunctionName)) { 5428 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5429 } 5430 5431 } else { 5432 // If this is a definition of a forward referenced function, make sure the 5433 // types agree. 5434 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5435 if (I != ForwardRefValIDs.end()) { 5436 Fn = cast<Function>(I->second.first); 5437 if (Fn->getType() != PFT) 5438 return Error(NameLoc, "type of definition and forward reference of '@" + 5439 Twine(NumberedVals.size()) + "' disagree: " 5440 "expected '" + getTypeString(PFT) + "' but was '" + 5441 getTypeString(Fn->getType()) + "'"); 5442 ForwardRefValIDs.erase(I); 5443 } 5444 } 5445 5446 if (!Fn) 5447 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5448 FunctionName, M); 5449 else // Move the forward-reference to the correct spot in the module. 5450 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5451 5452 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5453 5454 if (FunctionName.empty()) 5455 NumberedVals.push_back(Fn); 5456 5457 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5458 maybeSetDSOLocal(DSOLocal, *Fn); 5459 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5460 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5461 Fn->setCallingConv(CC); 5462 Fn->setAttributes(PAL); 5463 Fn->setUnnamedAddr(UnnamedAddr); 5464 Fn->setAlignment(Alignment); 5465 Fn->setSection(Section); 5466 Fn->setPartition(Partition); 5467 Fn->setComdat(C); 5468 Fn->setPersonalityFn(PersonalityFn); 5469 if (!GC.empty()) Fn->setGC(GC); 5470 Fn->setPrefixData(Prefix); 5471 Fn->setPrologueData(Prologue); 5472 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5473 5474 // Add all of the arguments we parsed to the function. 5475 Function::arg_iterator ArgIt = Fn->arg_begin(); 5476 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5477 // If the argument has a name, insert it into the argument symbol table. 5478 if (ArgList[i].Name.empty()) continue; 5479 5480 // Set the name, if it conflicted, it will be auto-renamed. 5481 ArgIt->setName(ArgList[i].Name); 5482 5483 if (ArgIt->getName() != ArgList[i].Name) 5484 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5485 ArgList[i].Name + "'"); 5486 } 5487 5488 if (isDefine) 5489 return false; 5490 5491 // Check the declaration has no block address forward references. 5492 ValID ID; 5493 if (FunctionName.empty()) { 5494 ID.Kind = ValID::t_GlobalID; 5495 ID.UIntVal = NumberedVals.size() - 1; 5496 } else { 5497 ID.Kind = ValID::t_GlobalName; 5498 ID.StrVal = FunctionName; 5499 } 5500 auto Blocks = ForwardRefBlockAddresses.find(ID); 5501 if (Blocks != ForwardRefBlockAddresses.end()) 5502 return Error(Blocks->first.Loc, 5503 "cannot take blockaddress inside a declaration"); 5504 return false; 5505 } 5506 5507 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5508 ValID ID; 5509 if (FunctionNumber == -1) { 5510 ID.Kind = ValID::t_GlobalName; 5511 ID.StrVal = F.getName(); 5512 } else { 5513 ID.Kind = ValID::t_GlobalID; 5514 ID.UIntVal = FunctionNumber; 5515 } 5516 5517 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5518 if (Blocks == P.ForwardRefBlockAddresses.end()) 5519 return false; 5520 5521 for (const auto &I : Blocks->second) { 5522 const ValID &BBID = I.first; 5523 GlobalValue *GV = I.second; 5524 5525 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5526 "Expected local id or name"); 5527 BasicBlock *BB; 5528 if (BBID.Kind == ValID::t_LocalName) 5529 BB = GetBB(BBID.StrVal, BBID.Loc); 5530 else 5531 BB = GetBB(BBID.UIntVal, BBID.Loc); 5532 if (!BB) 5533 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5534 5535 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5536 GV->eraseFromParent(); 5537 } 5538 5539 P.ForwardRefBlockAddresses.erase(Blocks); 5540 return false; 5541 } 5542 5543 /// ParseFunctionBody 5544 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5545 bool LLParser::ParseFunctionBody(Function &Fn) { 5546 if (Lex.getKind() != lltok::lbrace) 5547 return TokError("expected '{' in function body"); 5548 Lex.Lex(); // eat the {. 5549 5550 int FunctionNumber = -1; 5551 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5552 5553 PerFunctionState PFS(*this, Fn, FunctionNumber); 5554 5555 // Resolve block addresses and allow basic blocks to be forward-declared 5556 // within this function. 5557 if (PFS.resolveForwardRefBlockAddresses()) 5558 return true; 5559 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5560 5561 // We need at least one basic block. 5562 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5563 return TokError("function body requires at least one basic block"); 5564 5565 while (Lex.getKind() != lltok::rbrace && 5566 Lex.getKind() != lltok::kw_uselistorder) 5567 if (ParseBasicBlock(PFS)) return true; 5568 5569 while (Lex.getKind() != lltok::rbrace) 5570 if (ParseUseListOrder(&PFS)) 5571 return true; 5572 5573 // Eat the }. 5574 Lex.Lex(); 5575 5576 // Verify function is ok. 5577 return PFS.FinishFunction(); 5578 } 5579 5580 /// ParseBasicBlock 5581 /// ::= (LabelStr|LabelID)? Instruction* 5582 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5583 // If this basic block starts out with a name, remember it. 5584 std::string Name; 5585 int NameID = -1; 5586 LocTy NameLoc = Lex.getLoc(); 5587 if (Lex.getKind() == lltok::LabelStr) { 5588 Name = Lex.getStrVal(); 5589 Lex.Lex(); 5590 } else if (Lex.getKind() == lltok::LabelID) { 5591 NameID = Lex.getUIntVal(); 5592 Lex.Lex(); 5593 } 5594 5595 BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc); 5596 if (!BB) 5597 return true; 5598 5599 std::string NameStr; 5600 5601 // Parse the instructions in this block until we get a terminator. 5602 Instruction *Inst; 5603 do { 5604 // This instruction may have three possibilities for a name: a) none 5605 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5606 LocTy NameLoc = Lex.getLoc(); 5607 int NameID = -1; 5608 NameStr = ""; 5609 5610 if (Lex.getKind() == lltok::LocalVarID) { 5611 NameID = Lex.getUIntVal(); 5612 Lex.Lex(); 5613 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5614 return true; 5615 } else if (Lex.getKind() == lltok::LocalVar) { 5616 NameStr = Lex.getStrVal(); 5617 Lex.Lex(); 5618 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5619 return true; 5620 } 5621 5622 switch (ParseInstruction(Inst, BB, PFS)) { 5623 default: llvm_unreachable("Unknown ParseInstruction result!"); 5624 case InstError: return true; 5625 case InstNormal: 5626 BB->getInstList().push_back(Inst); 5627 5628 // With a normal result, we check to see if the instruction is followed by 5629 // a comma and metadata. 5630 if (EatIfPresent(lltok::comma)) 5631 if (ParseInstructionMetadata(*Inst)) 5632 return true; 5633 break; 5634 case InstExtraComma: 5635 BB->getInstList().push_back(Inst); 5636 5637 // If the instruction parser ate an extra comma at the end of it, it 5638 // *must* be followed by metadata. 5639 if (ParseInstructionMetadata(*Inst)) 5640 return true; 5641 break; 5642 } 5643 5644 // Set the name on the instruction. 5645 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5646 } while (!Inst->isTerminator()); 5647 5648 return false; 5649 } 5650 5651 //===----------------------------------------------------------------------===// 5652 // Instruction Parsing. 5653 //===----------------------------------------------------------------------===// 5654 5655 /// ParseInstruction - Parse one of the many different instructions. 5656 /// 5657 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5658 PerFunctionState &PFS) { 5659 lltok::Kind Token = Lex.getKind(); 5660 if (Token == lltok::Eof) 5661 return TokError("found end of file when expecting more instructions"); 5662 LocTy Loc = Lex.getLoc(); 5663 unsigned KeywordVal = Lex.getUIntVal(); 5664 Lex.Lex(); // Eat the keyword. 5665 5666 switch (Token) { 5667 default: return Error(Loc, "expected instruction opcode"); 5668 // Terminator Instructions. 5669 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5670 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5671 case lltok::kw_br: return ParseBr(Inst, PFS); 5672 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5673 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5674 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5675 case lltok::kw_resume: return ParseResume(Inst, PFS); 5676 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5677 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5678 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5679 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5680 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5681 case lltok::kw_callbr: return ParseCallBr(Inst, PFS); 5682 // Unary Operators. 5683 case lltok::kw_fneg: { 5684 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5685 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true); 5686 if (Res != 0) 5687 return Res; 5688 if (FMF.any()) 5689 Inst->setFastMathFlags(FMF); 5690 return false; 5691 } 5692 // Binary Operators. 5693 case lltok::kw_add: 5694 case lltok::kw_sub: 5695 case lltok::kw_mul: 5696 case lltok::kw_shl: { 5697 bool NUW = EatIfPresent(lltok::kw_nuw); 5698 bool NSW = EatIfPresent(lltok::kw_nsw); 5699 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5700 5701 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5702 5703 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5704 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5705 return false; 5706 } 5707 case lltok::kw_fadd: 5708 case lltok::kw_fsub: 5709 case lltok::kw_fmul: 5710 case lltok::kw_fdiv: 5711 case lltok::kw_frem: { 5712 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5713 int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true); 5714 if (Res != 0) 5715 return Res; 5716 if (FMF.any()) 5717 Inst->setFastMathFlags(FMF); 5718 return 0; 5719 } 5720 5721 case lltok::kw_sdiv: 5722 case lltok::kw_udiv: 5723 case lltok::kw_lshr: 5724 case lltok::kw_ashr: { 5725 bool Exact = EatIfPresent(lltok::kw_exact); 5726 5727 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5728 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5729 return false; 5730 } 5731 5732 case lltok::kw_urem: 5733 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 5734 /*IsFP*/false); 5735 case lltok::kw_and: 5736 case lltok::kw_or: 5737 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5738 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5739 case lltok::kw_fcmp: { 5740 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5741 int Res = ParseCompare(Inst, PFS, KeywordVal); 5742 if (Res != 0) 5743 return Res; 5744 if (FMF.any()) 5745 Inst->setFastMathFlags(FMF); 5746 return 0; 5747 } 5748 5749 // Casts. 5750 case lltok::kw_trunc: 5751 case lltok::kw_zext: 5752 case lltok::kw_sext: 5753 case lltok::kw_fptrunc: 5754 case lltok::kw_fpext: 5755 case lltok::kw_bitcast: 5756 case lltok::kw_addrspacecast: 5757 case lltok::kw_uitofp: 5758 case lltok::kw_sitofp: 5759 case lltok::kw_fptoui: 5760 case lltok::kw_fptosi: 5761 case lltok::kw_inttoptr: 5762 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5763 // Other. 5764 case lltok::kw_select: { 5765 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5766 int Res = ParseSelect(Inst, PFS); 5767 if (Res != 0) 5768 return Res; 5769 if (FMF.any()) { 5770 if (!Inst->getType()->isFPOrFPVectorTy()) 5771 return Error(Loc, "fast-math-flags specified for select without " 5772 "floating-point scalar or vector return type"); 5773 Inst->setFastMathFlags(FMF); 5774 } 5775 return 0; 5776 } 5777 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5778 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5779 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5780 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5781 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5782 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5783 // Call. 5784 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5785 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5786 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5787 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5788 // Memory. 5789 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5790 case lltok::kw_load: return ParseLoad(Inst, PFS); 5791 case lltok::kw_store: return ParseStore(Inst, PFS); 5792 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5793 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5794 case lltok::kw_fence: return ParseFence(Inst, PFS); 5795 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5796 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5797 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5798 } 5799 } 5800 5801 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5802 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5803 if (Opc == Instruction::FCmp) { 5804 switch (Lex.getKind()) { 5805 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5806 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5807 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5808 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5809 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5810 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5811 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5812 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5813 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5814 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5815 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5816 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5817 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5818 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5819 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5820 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5821 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5822 } 5823 } else { 5824 switch (Lex.getKind()) { 5825 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5826 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5827 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5828 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5829 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5830 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5831 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5832 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5833 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5834 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5835 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5836 } 5837 } 5838 Lex.Lex(); 5839 return false; 5840 } 5841 5842 //===----------------------------------------------------------------------===// 5843 // Terminator Instructions. 5844 //===----------------------------------------------------------------------===// 5845 5846 /// ParseRet - Parse a return instruction. 5847 /// ::= 'ret' void (',' !dbg, !1)* 5848 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5849 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5850 PerFunctionState &PFS) { 5851 SMLoc TypeLoc = Lex.getLoc(); 5852 Type *Ty = nullptr; 5853 if (ParseType(Ty, true /*void allowed*/)) return true; 5854 5855 Type *ResType = PFS.getFunction().getReturnType(); 5856 5857 if (Ty->isVoidTy()) { 5858 if (!ResType->isVoidTy()) 5859 return Error(TypeLoc, "value doesn't match function result type '" + 5860 getTypeString(ResType) + "'"); 5861 5862 Inst = ReturnInst::Create(Context); 5863 return false; 5864 } 5865 5866 Value *RV; 5867 if (ParseValue(Ty, RV, PFS)) return true; 5868 5869 if (ResType != RV->getType()) 5870 return Error(TypeLoc, "value doesn't match function result type '" + 5871 getTypeString(ResType) + "'"); 5872 5873 Inst = ReturnInst::Create(Context, RV); 5874 return false; 5875 } 5876 5877 /// ParseBr 5878 /// ::= 'br' TypeAndValue 5879 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5880 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5881 LocTy Loc, Loc2; 5882 Value *Op0; 5883 BasicBlock *Op1, *Op2; 5884 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5885 5886 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5887 Inst = BranchInst::Create(BB); 5888 return false; 5889 } 5890 5891 if (Op0->getType() != Type::getInt1Ty(Context)) 5892 return Error(Loc, "branch condition must have 'i1' type"); 5893 5894 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5895 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5896 ParseToken(lltok::comma, "expected ',' after true destination") || 5897 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5898 return true; 5899 5900 Inst = BranchInst::Create(Op1, Op2, Op0); 5901 return false; 5902 } 5903 5904 /// ParseSwitch 5905 /// Instruction 5906 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5907 /// JumpTable 5908 /// ::= (TypeAndValue ',' TypeAndValue)* 5909 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5910 LocTy CondLoc, BBLoc; 5911 Value *Cond; 5912 BasicBlock *DefaultBB; 5913 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5914 ParseToken(lltok::comma, "expected ',' after switch condition") || 5915 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5916 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5917 return true; 5918 5919 if (!Cond->getType()->isIntegerTy()) 5920 return Error(CondLoc, "switch condition must have integer type"); 5921 5922 // Parse the jump table pairs. 5923 SmallPtrSet<Value*, 32> SeenCases; 5924 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5925 while (Lex.getKind() != lltok::rsquare) { 5926 Value *Constant; 5927 BasicBlock *DestBB; 5928 5929 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5930 ParseToken(lltok::comma, "expected ',' after case value") || 5931 ParseTypeAndBasicBlock(DestBB, PFS)) 5932 return true; 5933 5934 if (!SeenCases.insert(Constant).second) 5935 return Error(CondLoc, "duplicate case value in switch"); 5936 if (!isa<ConstantInt>(Constant)) 5937 return Error(CondLoc, "case value is not a constant integer"); 5938 5939 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5940 } 5941 5942 Lex.Lex(); // Eat the ']'. 5943 5944 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5945 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5946 SI->addCase(Table[i].first, Table[i].second); 5947 Inst = SI; 5948 return false; 5949 } 5950 5951 /// ParseIndirectBr 5952 /// Instruction 5953 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5954 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5955 LocTy AddrLoc; 5956 Value *Address; 5957 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5958 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5959 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5960 return true; 5961 5962 if (!Address->getType()->isPointerTy()) 5963 return Error(AddrLoc, "indirectbr address must have pointer type"); 5964 5965 // Parse the destination list. 5966 SmallVector<BasicBlock*, 16> DestList; 5967 5968 if (Lex.getKind() != lltok::rsquare) { 5969 BasicBlock *DestBB; 5970 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5971 return true; 5972 DestList.push_back(DestBB); 5973 5974 while (EatIfPresent(lltok::comma)) { 5975 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5976 return true; 5977 DestList.push_back(DestBB); 5978 } 5979 } 5980 5981 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5982 return true; 5983 5984 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5985 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5986 IBI->addDestination(DestList[i]); 5987 Inst = IBI; 5988 return false; 5989 } 5990 5991 /// ParseInvoke 5992 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5993 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5994 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5995 LocTy CallLoc = Lex.getLoc(); 5996 AttrBuilder RetAttrs, FnAttrs; 5997 std::vector<unsigned> FwdRefAttrGrps; 5998 LocTy NoBuiltinLoc; 5999 unsigned CC; 6000 unsigned InvokeAddrSpace; 6001 Type *RetType = nullptr; 6002 LocTy RetTypeLoc; 6003 ValID CalleeID; 6004 SmallVector<ParamInfo, 16> ArgList; 6005 SmallVector<OperandBundleDef, 2> BundleList; 6006 6007 BasicBlock *NormalBB, *UnwindBB; 6008 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6009 ParseOptionalProgramAddrSpace(InvokeAddrSpace) || 6010 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6011 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6012 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6013 NoBuiltinLoc) || 6014 ParseOptionalOperandBundles(BundleList, PFS) || 6015 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 6016 ParseTypeAndBasicBlock(NormalBB, PFS) || 6017 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6018 ParseTypeAndBasicBlock(UnwindBB, PFS)) 6019 return true; 6020 6021 // If RetType is a non-function pointer type, then this is the short syntax 6022 // for the call, which means that RetType is just the return type. Infer the 6023 // rest of the function argument types from the arguments that are present. 6024 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6025 if (!Ty) { 6026 // Pull out the types of all of the arguments... 6027 std::vector<Type*> ParamTypes; 6028 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6029 ParamTypes.push_back(ArgList[i].V->getType()); 6030 6031 if (!FunctionType::isValidReturnType(RetType)) 6032 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6033 6034 Ty = FunctionType::get(RetType, ParamTypes, false); 6035 } 6036 6037 CalleeID.FTy = Ty; 6038 6039 // Look up the callee. 6040 Value *Callee; 6041 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6042 Callee, &PFS, /*IsCall=*/true)) 6043 return true; 6044 6045 // Set up the Attribute for the function. 6046 SmallVector<Value *, 8> Args; 6047 SmallVector<AttributeSet, 8> ArgAttrs; 6048 6049 // Loop through FunctionType's arguments and ensure they are specified 6050 // correctly. Also, gather any parameter attributes. 6051 FunctionType::param_iterator I = Ty->param_begin(); 6052 FunctionType::param_iterator E = Ty->param_end(); 6053 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6054 Type *ExpectedTy = nullptr; 6055 if (I != E) { 6056 ExpectedTy = *I++; 6057 } else if (!Ty->isVarArg()) { 6058 return Error(ArgList[i].Loc, "too many arguments specified"); 6059 } 6060 6061 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6062 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6063 getTypeString(ExpectedTy) + "'"); 6064 Args.push_back(ArgList[i].V); 6065 ArgAttrs.push_back(ArgList[i].Attrs); 6066 } 6067 6068 if (I != E) 6069 return Error(CallLoc, "not enough parameters specified for call"); 6070 6071 if (FnAttrs.hasAlignmentAttr()) 6072 return Error(CallLoc, "invoke instructions may not have an alignment"); 6073 6074 // Finish off the Attribute and check them 6075 AttributeList PAL = 6076 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6077 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6078 6079 InvokeInst *II = 6080 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6081 II->setCallingConv(CC); 6082 II->setAttributes(PAL); 6083 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6084 Inst = II; 6085 return false; 6086 } 6087 6088 /// ParseResume 6089 /// ::= 'resume' TypeAndValue 6090 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 6091 Value *Exn; LocTy ExnLoc; 6092 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 6093 return true; 6094 6095 ResumeInst *RI = ResumeInst::Create(Exn); 6096 Inst = RI; 6097 return false; 6098 } 6099 6100 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 6101 PerFunctionState &PFS) { 6102 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6103 return true; 6104 6105 while (Lex.getKind() != lltok::rsquare) { 6106 // If this isn't the first argument, we need a comma. 6107 if (!Args.empty() && 6108 ParseToken(lltok::comma, "expected ',' in argument list")) 6109 return true; 6110 6111 // Parse the argument. 6112 LocTy ArgLoc; 6113 Type *ArgTy = nullptr; 6114 if (ParseType(ArgTy, ArgLoc)) 6115 return true; 6116 6117 Value *V; 6118 if (ArgTy->isMetadataTy()) { 6119 if (ParseMetadataAsValue(V, PFS)) 6120 return true; 6121 } else { 6122 if (ParseValue(ArgTy, V, PFS)) 6123 return true; 6124 } 6125 Args.push_back(V); 6126 } 6127 6128 Lex.Lex(); // Lex the ']'. 6129 return false; 6130 } 6131 6132 /// ParseCleanupRet 6133 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6134 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6135 Value *CleanupPad = nullptr; 6136 6137 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6138 return true; 6139 6140 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6141 return true; 6142 6143 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6144 return true; 6145 6146 BasicBlock *UnwindBB = nullptr; 6147 if (Lex.getKind() == lltok::kw_to) { 6148 Lex.Lex(); 6149 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6150 return true; 6151 } else { 6152 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 6153 return true; 6154 } 6155 } 6156 6157 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6158 return false; 6159 } 6160 6161 /// ParseCatchRet 6162 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6163 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6164 Value *CatchPad = nullptr; 6165 6166 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 6167 return true; 6168 6169 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6170 return true; 6171 6172 BasicBlock *BB; 6173 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 6174 ParseTypeAndBasicBlock(BB, PFS)) 6175 return true; 6176 6177 Inst = CatchReturnInst::Create(CatchPad, BB); 6178 return false; 6179 } 6180 6181 /// ParseCatchSwitch 6182 /// ::= 'catchswitch' within Parent 6183 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6184 Value *ParentPad; 6185 6186 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6187 return true; 6188 6189 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6190 Lex.getKind() != lltok::LocalVarID) 6191 return TokError("expected scope value for catchswitch"); 6192 6193 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6194 return true; 6195 6196 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6197 return true; 6198 6199 SmallVector<BasicBlock *, 32> Table; 6200 do { 6201 BasicBlock *DestBB; 6202 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6203 return true; 6204 Table.push_back(DestBB); 6205 } while (EatIfPresent(lltok::comma)); 6206 6207 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6208 return true; 6209 6210 if (ParseToken(lltok::kw_unwind, 6211 "expected 'unwind' after catchswitch scope")) 6212 return true; 6213 6214 BasicBlock *UnwindBB = nullptr; 6215 if (EatIfPresent(lltok::kw_to)) { 6216 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6217 return true; 6218 } else { 6219 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 6220 return true; 6221 } 6222 6223 auto *CatchSwitch = 6224 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6225 for (BasicBlock *DestBB : Table) 6226 CatchSwitch->addHandler(DestBB); 6227 Inst = CatchSwitch; 6228 return false; 6229 } 6230 6231 /// ParseCatchPad 6232 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6233 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6234 Value *CatchSwitch = nullptr; 6235 6236 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 6237 return true; 6238 6239 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6240 return TokError("expected scope value for catchpad"); 6241 6242 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6243 return true; 6244 6245 SmallVector<Value *, 8> Args; 6246 if (ParseExceptionArgs(Args, PFS)) 6247 return true; 6248 6249 Inst = CatchPadInst::Create(CatchSwitch, Args); 6250 return false; 6251 } 6252 6253 /// ParseCleanupPad 6254 /// ::= 'cleanuppad' within Parent ParamList 6255 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6256 Value *ParentPad = nullptr; 6257 6258 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6259 return true; 6260 6261 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6262 Lex.getKind() != lltok::LocalVarID) 6263 return TokError("expected scope value for cleanuppad"); 6264 6265 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6266 return true; 6267 6268 SmallVector<Value *, 8> Args; 6269 if (ParseExceptionArgs(Args, PFS)) 6270 return true; 6271 6272 Inst = CleanupPadInst::Create(ParentPad, Args); 6273 return false; 6274 } 6275 6276 //===----------------------------------------------------------------------===// 6277 // Unary Operators. 6278 //===----------------------------------------------------------------------===// 6279 6280 /// ParseUnaryOp 6281 /// ::= UnaryOp TypeAndValue ',' Value 6282 /// 6283 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6284 /// operand is allowed. 6285 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6286 unsigned Opc, bool IsFP) { 6287 LocTy Loc; Value *LHS; 6288 if (ParseTypeAndValue(LHS, Loc, PFS)) 6289 return true; 6290 6291 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6292 : LHS->getType()->isIntOrIntVectorTy(); 6293 6294 if (!Valid) 6295 return Error(Loc, "invalid operand type for instruction"); 6296 6297 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6298 return false; 6299 } 6300 6301 /// ParseCallBr 6302 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6303 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6304 /// '[' LabelList ']' 6305 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6306 LocTy CallLoc = Lex.getLoc(); 6307 AttrBuilder RetAttrs, FnAttrs; 6308 std::vector<unsigned> FwdRefAttrGrps; 6309 LocTy NoBuiltinLoc; 6310 unsigned CC; 6311 Type *RetType = nullptr; 6312 LocTy RetTypeLoc; 6313 ValID CalleeID; 6314 SmallVector<ParamInfo, 16> ArgList; 6315 SmallVector<OperandBundleDef, 2> BundleList; 6316 6317 BasicBlock *DefaultDest; 6318 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6319 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6320 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6321 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6322 NoBuiltinLoc) || 6323 ParseOptionalOperandBundles(BundleList, PFS) || 6324 ParseToken(lltok::kw_to, "expected 'to' in callbr") || 6325 ParseTypeAndBasicBlock(DefaultDest, PFS) || 6326 ParseToken(lltok::lsquare, "expected '[' in callbr")) 6327 return true; 6328 6329 // Parse the destination list. 6330 SmallVector<BasicBlock *, 16> IndirectDests; 6331 6332 if (Lex.getKind() != lltok::rsquare) { 6333 BasicBlock *DestBB; 6334 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6335 return true; 6336 IndirectDests.push_back(DestBB); 6337 6338 while (EatIfPresent(lltok::comma)) { 6339 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6340 return true; 6341 IndirectDests.push_back(DestBB); 6342 } 6343 } 6344 6345 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6346 return true; 6347 6348 // If RetType is a non-function pointer type, then this is the short syntax 6349 // for the call, which means that RetType is just the return type. Infer the 6350 // rest of the function argument types from the arguments that are present. 6351 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6352 if (!Ty) { 6353 // Pull out the types of all of the arguments... 6354 std::vector<Type *> ParamTypes; 6355 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6356 ParamTypes.push_back(ArgList[i].V->getType()); 6357 6358 if (!FunctionType::isValidReturnType(RetType)) 6359 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6360 6361 Ty = FunctionType::get(RetType, ParamTypes, false); 6362 } 6363 6364 CalleeID.FTy = Ty; 6365 6366 // Look up the callee. 6367 Value *Callee; 6368 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6369 /*IsCall=*/true)) 6370 return true; 6371 6372 if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy()) 6373 return Error(RetTypeLoc, "asm-goto outputs not supported"); 6374 6375 // Set up the Attribute for the function. 6376 SmallVector<Value *, 8> Args; 6377 SmallVector<AttributeSet, 8> ArgAttrs; 6378 6379 // Loop through FunctionType's arguments and ensure they are specified 6380 // correctly. Also, gather any parameter attributes. 6381 FunctionType::param_iterator I = Ty->param_begin(); 6382 FunctionType::param_iterator E = Ty->param_end(); 6383 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6384 Type *ExpectedTy = nullptr; 6385 if (I != E) { 6386 ExpectedTy = *I++; 6387 } else if (!Ty->isVarArg()) { 6388 return Error(ArgList[i].Loc, "too many arguments specified"); 6389 } 6390 6391 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6392 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6393 getTypeString(ExpectedTy) + "'"); 6394 Args.push_back(ArgList[i].V); 6395 ArgAttrs.push_back(ArgList[i].Attrs); 6396 } 6397 6398 if (I != E) 6399 return Error(CallLoc, "not enough parameters specified for call"); 6400 6401 if (FnAttrs.hasAlignmentAttr()) 6402 return Error(CallLoc, "callbr instructions may not have an alignment"); 6403 6404 // Finish off the Attribute and check them 6405 AttributeList PAL = 6406 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6407 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6408 6409 CallBrInst *CBI = 6410 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6411 BundleList); 6412 CBI->setCallingConv(CC); 6413 CBI->setAttributes(PAL); 6414 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6415 Inst = CBI; 6416 return false; 6417 } 6418 6419 //===----------------------------------------------------------------------===// 6420 // Binary Operators. 6421 //===----------------------------------------------------------------------===// 6422 6423 /// ParseArithmetic 6424 /// ::= ArithmeticOps TypeAndValue ',' Value 6425 /// 6426 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6427 /// operand is allowed. 6428 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6429 unsigned Opc, bool IsFP) { 6430 LocTy Loc; Value *LHS, *RHS; 6431 if (ParseTypeAndValue(LHS, Loc, PFS) || 6432 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6433 ParseValue(LHS->getType(), RHS, PFS)) 6434 return true; 6435 6436 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6437 : LHS->getType()->isIntOrIntVectorTy(); 6438 6439 if (!Valid) 6440 return Error(Loc, "invalid operand type for instruction"); 6441 6442 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6443 return false; 6444 } 6445 6446 /// ParseLogical 6447 /// ::= ArithmeticOps TypeAndValue ',' Value { 6448 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6449 unsigned Opc) { 6450 LocTy Loc; Value *LHS, *RHS; 6451 if (ParseTypeAndValue(LHS, Loc, PFS) || 6452 ParseToken(lltok::comma, "expected ',' in logical operation") || 6453 ParseValue(LHS->getType(), RHS, PFS)) 6454 return true; 6455 6456 if (!LHS->getType()->isIntOrIntVectorTy()) 6457 return Error(Loc,"instruction requires integer or integer vector operands"); 6458 6459 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6460 return false; 6461 } 6462 6463 /// ParseCompare 6464 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6465 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6466 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6467 unsigned Opc) { 6468 // Parse the integer/fp comparison predicate. 6469 LocTy Loc; 6470 unsigned Pred; 6471 Value *LHS, *RHS; 6472 if (ParseCmpPredicate(Pred, Opc) || 6473 ParseTypeAndValue(LHS, Loc, PFS) || 6474 ParseToken(lltok::comma, "expected ',' after compare value") || 6475 ParseValue(LHS->getType(), RHS, PFS)) 6476 return true; 6477 6478 if (Opc == Instruction::FCmp) { 6479 if (!LHS->getType()->isFPOrFPVectorTy()) 6480 return Error(Loc, "fcmp requires floating point operands"); 6481 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6482 } else { 6483 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6484 if (!LHS->getType()->isIntOrIntVectorTy() && 6485 !LHS->getType()->isPtrOrPtrVectorTy()) 6486 return Error(Loc, "icmp requires integer operands"); 6487 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6488 } 6489 return false; 6490 } 6491 6492 //===----------------------------------------------------------------------===// 6493 // Other Instructions. 6494 //===----------------------------------------------------------------------===// 6495 6496 6497 /// ParseCast 6498 /// ::= CastOpc TypeAndValue 'to' Type 6499 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6500 unsigned Opc) { 6501 LocTy Loc; 6502 Value *Op; 6503 Type *DestTy = nullptr; 6504 if (ParseTypeAndValue(Op, Loc, PFS) || 6505 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6506 ParseType(DestTy)) 6507 return true; 6508 6509 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6510 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6511 return Error(Loc, "invalid cast opcode for cast from '" + 6512 getTypeString(Op->getType()) + "' to '" + 6513 getTypeString(DestTy) + "'"); 6514 } 6515 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6516 return false; 6517 } 6518 6519 /// ParseSelect 6520 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6521 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6522 LocTy Loc; 6523 Value *Op0, *Op1, *Op2; 6524 if (ParseTypeAndValue(Op0, Loc, PFS) || 6525 ParseToken(lltok::comma, "expected ',' after select condition") || 6526 ParseTypeAndValue(Op1, PFS) || 6527 ParseToken(lltok::comma, "expected ',' after select value") || 6528 ParseTypeAndValue(Op2, PFS)) 6529 return true; 6530 6531 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6532 return Error(Loc, Reason); 6533 6534 Inst = SelectInst::Create(Op0, Op1, Op2); 6535 return false; 6536 } 6537 6538 /// ParseVA_Arg 6539 /// ::= 'va_arg' TypeAndValue ',' Type 6540 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6541 Value *Op; 6542 Type *EltTy = nullptr; 6543 LocTy TypeLoc; 6544 if (ParseTypeAndValue(Op, PFS) || 6545 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6546 ParseType(EltTy, TypeLoc)) 6547 return true; 6548 6549 if (!EltTy->isFirstClassType()) 6550 return Error(TypeLoc, "va_arg requires operand with first class type"); 6551 6552 Inst = new VAArgInst(Op, EltTy); 6553 return false; 6554 } 6555 6556 /// ParseExtractElement 6557 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6558 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6559 LocTy Loc; 6560 Value *Op0, *Op1; 6561 if (ParseTypeAndValue(Op0, Loc, PFS) || 6562 ParseToken(lltok::comma, "expected ',' after extract value") || 6563 ParseTypeAndValue(Op1, PFS)) 6564 return true; 6565 6566 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6567 return Error(Loc, "invalid extractelement operands"); 6568 6569 Inst = ExtractElementInst::Create(Op0, Op1); 6570 return false; 6571 } 6572 6573 /// ParseInsertElement 6574 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6575 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6576 LocTy Loc; 6577 Value *Op0, *Op1, *Op2; 6578 if (ParseTypeAndValue(Op0, Loc, PFS) || 6579 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6580 ParseTypeAndValue(Op1, PFS) || 6581 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6582 ParseTypeAndValue(Op2, PFS)) 6583 return true; 6584 6585 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6586 return Error(Loc, "invalid insertelement operands"); 6587 6588 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6589 return false; 6590 } 6591 6592 /// ParseShuffleVector 6593 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6594 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6595 LocTy Loc; 6596 Value *Op0, *Op1, *Op2; 6597 if (ParseTypeAndValue(Op0, Loc, PFS) || 6598 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6599 ParseTypeAndValue(Op1, PFS) || 6600 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6601 ParseTypeAndValue(Op2, PFS)) 6602 return true; 6603 6604 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6605 return Error(Loc, "invalid shufflevector operands"); 6606 6607 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6608 return false; 6609 } 6610 6611 /// ParsePHI 6612 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6613 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6614 Type *Ty = nullptr; LocTy TypeLoc; 6615 Value *Op0, *Op1; 6616 6617 if (ParseType(Ty, TypeLoc) || 6618 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6619 ParseValue(Ty, Op0, PFS) || 6620 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6621 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6622 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6623 return true; 6624 6625 bool AteExtraComma = false; 6626 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6627 6628 while (true) { 6629 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6630 6631 if (!EatIfPresent(lltok::comma)) 6632 break; 6633 6634 if (Lex.getKind() == lltok::MetadataVar) { 6635 AteExtraComma = true; 6636 break; 6637 } 6638 6639 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6640 ParseValue(Ty, Op0, PFS) || 6641 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6642 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6643 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6644 return true; 6645 } 6646 6647 if (!Ty->isFirstClassType()) 6648 return Error(TypeLoc, "phi node must have first class type"); 6649 6650 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6651 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6652 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6653 Inst = PN; 6654 return AteExtraComma ? InstExtraComma : InstNormal; 6655 } 6656 6657 /// ParseLandingPad 6658 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6659 /// Clause 6660 /// ::= 'catch' TypeAndValue 6661 /// ::= 'filter' 6662 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6663 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6664 Type *Ty = nullptr; LocTy TyLoc; 6665 6666 if (ParseType(Ty, TyLoc)) 6667 return true; 6668 6669 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6670 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6671 6672 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6673 LandingPadInst::ClauseType CT; 6674 if (EatIfPresent(lltok::kw_catch)) 6675 CT = LandingPadInst::Catch; 6676 else if (EatIfPresent(lltok::kw_filter)) 6677 CT = LandingPadInst::Filter; 6678 else 6679 return TokError("expected 'catch' or 'filter' clause type"); 6680 6681 Value *V; 6682 LocTy VLoc; 6683 if (ParseTypeAndValue(V, VLoc, PFS)) 6684 return true; 6685 6686 // A 'catch' type expects a non-array constant. A filter clause expects an 6687 // array constant. 6688 if (CT == LandingPadInst::Catch) { 6689 if (isa<ArrayType>(V->getType())) 6690 Error(VLoc, "'catch' clause has an invalid type"); 6691 } else { 6692 if (!isa<ArrayType>(V->getType())) 6693 Error(VLoc, "'filter' clause has an invalid type"); 6694 } 6695 6696 Constant *CV = dyn_cast<Constant>(V); 6697 if (!CV) 6698 return Error(VLoc, "clause argument must be a constant"); 6699 LP->addClause(CV); 6700 } 6701 6702 Inst = LP.release(); 6703 return false; 6704 } 6705 6706 /// ParseCall 6707 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6708 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6709 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6710 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6711 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6712 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6713 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6714 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6715 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6716 CallInst::TailCallKind TCK) { 6717 AttrBuilder RetAttrs, FnAttrs; 6718 std::vector<unsigned> FwdRefAttrGrps; 6719 LocTy BuiltinLoc; 6720 unsigned CallAddrSpace; 6721 unsigned CC; 6722 Type *RetType = nullptr; 6723 LocTy RetTypeLoc; 6724 ValID CalleeID; 6725 SmallVector<ParamInfo, 16> ArgList; 6726 SmallVector<OperandBundleDef, 2> BundleList; 6727 LocTy CallLoc = Lex.getLoc(); 6728 6729 if (TCK != CallInst::TCK_None && 6730 ParseToken(lltok::kw_call, 6731 "expected 'tail call', 'musttail call', or 'notail call'")) 6732 return true; 6733 6734 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6735 6736 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6737 ParseOptionalProgramAddrSpace(CallAddrSpace) || 6738 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6739 ParseValID(CalleeID) || 6740 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6741 PFS.getFunction().isVarArg()) || 6742 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6743 ParseOptionalOperandBundles(BundleList, PFS)) 6744 return true; 6745 6746 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 6747 return Error(CallLoc, "fast-math-flags specified for call without " 6748 "floating-point scalar or vector return type"); 6749 6750 // If RetType is a non-function pointer type, then this is the short syntax 6751 // for the call, which means that RetType is just the return type. Infer the 6752 // rest of the function argument types from the arguments that are present. 6753 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6754 if (!Ty) { 6755 // Pull out the types of all of the arguments... 6756 std::vector<Type*> ParamTypes; 6757 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6758 ParamTypes.push_back(ArgList[i].V->getType()); 6759 6760 if (!FunctionType::isValidReturnType(RetType)) 6761 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6762 6763 Ty = FunctionType::get(RetType, ParamTypes, false); 6764 } 6765 6766 CalleeID.FTy = Ty; 6767 6768 // Look up the callee. 6769 Value *Callee; 6770 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 6771 &PFS, /*IsCall=*/true)) 6772 return true; 6773 6774 // Set up the Attribute for the function. 6775 SmallVector<AttributeSet, 8> Attrs; 6776 6777 SmallVector<Value*, 8> Args; 6778 6779 // Loop through FunctionType's arguments and ensure they are specified 6780 // correctly. Also, gather any parameter attributes. 6781 FunctionType::param_iterator I = Ty->param_begin(); 6782 FunctionType::param_iterator E = Ty->param_end(); 6783 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6784 Type *ExpectedTy = nullptr; 6785 if (I != E) { 6786 ExpectedTy = *I++; 6787 } else if (!Ty->isVarArg()) { 6788 return Error(ArgList[i].Loc, "too many arguments specified"); 6789 } 6790 6791 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6792 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6793 getTypeString(ExpectedTy) + "'"); 6794 Args.push_back(ArgList[i].V); 6795 Attrs.push_back(ArgList[i].Attrs); 6796 } 6797 6798 if (I != E) 6799 return Error(CallLoc, "not enough parameters specified for call"); 6800 6801 if (FnAttrs.hasAlignmentAttr()) 6802 return Error(CallLoc, "call instructions may not have an alignment"); 6803 6804 // Finish off the Attribute and check them 6805 AttributeList PAL = 6806 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6807 AttributeSet::get(Context, RetAttrs), Attrs); 6808 6809 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6810 CI->setTailCallKind(TCK); 6811 CI->setCallingConv(CC); 6812 if (FMF.any()) 6813 CI->setFastMathFlags(FMF); 6814 CI->setAttributes(PAL); 6815 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6816 Inst = CI; 6817 return false; 6818 } 6819 6820 //===----------------------------------------------------------------------===// 6821 // Memory Instructions. 6822 //===----------------------------------------------------------------------===// 6823 6824 /// ParseAlloc 6825 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6826 /// (',' 'align' i32)? (',', 'addrspace(n))? 6827 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6828 Value *Size = nullptr; 6829 LocTy SizeLoc, TyLoc, ASLoc; 6830 unsigned Alignment = 0; 6831 unsigned AddrSpace = 0; 6832 Type *Ty = nullptr; 6833 6834 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6835 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6836 6837 if (ParseType(Ty, TyLoc)) return true; 6838 6839 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6840 return Error(TyLoc, "invalid type for alloca"); 6841 6842 bool AteExtraComma = false; 6843 if (EatIfPresent(lltok::comma)) { 6844 if (Lex.getKind() == lltok::kw_align) { 6845 if (ParseOptionalAlignment(Alignment)) 6846 return true; 6847 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6848 return true; 6849 } else if (Lex.getKind() == lltok::kw_addrspace) { 6850 ASLoc = Lex.getLoc(); 6851 if (ParseOptionalAddrSpace(AddrSpace)) 6852 return true; 6853 } else if (Lex.getKind() == lltok::MetadataVar) { 6854 AteExtraComma = true; 6855 } else { 6856 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6857 return true; 6858 if (EatIfPresent(lltok::comma)) { 6859 if (Lex.getKind() == lltok::kw_align) { 6860 if (ParseOptionalAlignment(Alignment)) 6861 return true; 6862 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6863 return true; 6864 } else if (Lex.getKind() == lltok::kw_addrspace) { 6865 ASLoc = Lex.getLoc(); 6866 if (ParseOptionalAddrSpace(AddrSpace)) 6867 return true; 6868 } else if (Lex.getKind() == lltok::MetadataVar) { 6869 AteExtraComma = true; 6870 } 6871 } 6872 } 6873 } 6874 6875 if (Size && !Size->getType()->isIntegerTy()) 6876 return Error(SizeLoc, "element count must have integer type"); 6877 6878 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6879 AI->setUsedWithInAlloca(IsInAlloca); 6880 AI->setSwiftError(IsSwiftError); 6881 Inst = AI; 6882 return AteExtraComma ? InstExtraComma : InstNormal; 6883 } 6884 6885 /// ParseLoad 6886 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6887 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6888 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6889 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6890 Value *Val; LocTy Loc; 6891 unsigned Alignment = 0; 6892 bool AteExtraComma = false; 6893 bool isAtomic = false; 6894 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6895 SyncScope::ID SSID = SyncScope::System; 6896 6897 if (Lex.getKind() == lltok::kw_atomic) { 6898 isAtomic = true; 6899 Lex.Lex(); 6900 } 6901 6902 bool isVolatile = false; 6903 if (Lex.getKind() == lltok::kw_volatile) { 6904 isVolatile = true; 6905 Lex.Lex(); 6906 } 6907 6908 Type *Ty; 6909 LocTy ExplicitTypeLoc = Lex.getLoc(); 6910 if (ParseType(Ty) || 6911 ParseToken(lltok::comma, "expected comma after load's type") || 6912 ParseTypeAndValue(Val, Loc, PFS) || 6913 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6914 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6915 return true; 6916 6917 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6918 return Error(Loc, "load operand must be a pointer to a first class type"); 6919 if (isAtomic && !Alignment) 6920 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6921 if (Ordering == AtomicOrdering::Release || 6922 Ordering == AtomicOrdering::AcquireRelease) 6923 return Error(Loc, "atomic load cannot use Release ordering"); 6924 6925 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6926 return Error(ExplicitTypeLoc, 6927 "explicit pointee type doesn't match operand's pointee type"); 6928 6929 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6930 return AteExtraComma ? InstExtraComma : InstNormal; 6931 } 6932 6933 /// ParseStore 6934 6935 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6936 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6937 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6938 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6939 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6940 unsigned Alignment = 0; 6941 bool AteExtraComma = false; 6942 bool isAtomic = false; 6943 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6944 SyncScope::ID SSID = SyncScope::System; 6945 6946 if (Lex.getKind() == lltok::kw_atomic) { 6947 isAtomic = true; 6948 Lex.Lex(); 6949 } 6950 6951 bool isVolatile = false; 6952 if (Lex.getKind() == lltok::kw_volatile) { 6953 isVolatile = true; 6954 Lex.Lex(); 6955 } 6956 6957 if (ParseTypeAndValue(Val, Loc, PFS) || 6958 ParseToken(lltok::comma, "expected ',' after store operand") || 6959 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6960 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6961 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6962 return true; 6963 6964 if (!Ptr->getType()->isPointerTy()) 6965 return Error(PtrLoc, "store operand must be a pointer"); 6966 if (!Val->getType()->isFirstClassType()) 6967 return Error(Loc, "store operand must be a first class value"); 6968 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6969 return Error(Loc, "stored value and pointer type do not match"); 6970 if (isAtomic && !Alignment) 6971 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6972 if (Ordering == AtomicOrdering::Acquire || 6973 Ordering == AtomicOrdering::AcquireRelease) 6974 return Error(Loc, "atomic store cannot use Acquire ordering"); 6975 6976 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 6977 return AteExtraComma ? InstExtraComma : InstNormal; 6978 } 6979 6980 /// ParseCmpXchg 6981 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6982 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6983 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6984 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6985 bool AteExtraComma = false; 6986 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6987 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6988 SyncScope::ID SSID = SyncScope::System; 6989 bool isVolatile = false; 6990 bool isWeak = false; 6991 6992 if (EatIfPresent(lltok::kw_weak)) 6993 isWeak = true; 6994 6995 if (EatIfPresent(lltok::kw_volatile)) 6996 isVolatile = true; 6997 6998 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6999 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 7000 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 7001 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7002 ParseTypeAndValue(New, NewLoc, PFS) || 7003 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7004 ParseOrdering(FailureOrdering)) 7005 return true; 7006 7007 if (SuccessOrdering == AtomicOrdering::Unordered || 7008 FailureOrdering == AtomicOrdering::Unordered) 7009 return TokError("cmpxchg cannot be unordered"); 7010 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 7011 return TokError("cmpxchg failure argument shall be no stronger than the " 7012 "success argument"); 7013 if (FailureOrdering == AtomicOrdering::Release || 7014 FailureOrdering == AtomicOrdering::AcquireRelease) 7015 return TokError( 7016 "cmpxchg failure ordering cannot include release semantics"); 7017 if (!Ptr->getType()->isPointerTy()) 7018 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 7019 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 7020 return Error(CmpLoc, "compare value and pointer type do not match"); 7021 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 7022 return Error(NewLoc, "new value and pointer type do not match"); 7023 if (!New->getType()->isFirstClassType()) 7024 return Error(NewLoc, "cmpxchg operand must be a first class value"); 7025 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7026 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 7027 CXI->setVolatile(isVolatile); 7028 CXI->setWeak(isWeak); 7029 Inst = CXI; 7030 return AteExtraComma ? InstExtraComma : InstNormal; 7031 } 7032 7033 /// ParseAtomicRMW 7034 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7035 /// 'singlethread'? AtomicOrdering 7036 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7037 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7038 bool AteExtraComma = false; 7039 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7040 SyncScope::ID SSID = SyncScope::System; 7041 bool isVolatile = false; 7042 bool IsFP = false; 7043 AtomicRMWInst::BinOp Operation; 7044 7045 if (EatIfPresent(lltok::kw_volatile)) 7046 isVolatile = true; 7047 7048 switch (Lex.getKind()) { 7049 default: return TokError("expected binary operation in atomicrmw"); 7050 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7051 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7052 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7053 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7054 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7055 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7056 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7057 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7058 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7059 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7060 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7061 case lltok::kw_fadd: 7062 Operation = AtomicRMWInst::FAdd; 7063 IsFP = true; 7064 break; 7065 case lltok::kw_fsub: 7066 Operation = AtomicRMWInst::FSub; 7067 IsFP = true; 7068 break; 7069 } 7070 Lex.Lex(); // Eat the operation. 7071 7072 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7073 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 7074 ParseTypeAndValue(Val, ValLoc, PFS) || 7075 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7076 return true; 7077 7078 if (Ordering == AtomicOrdering::Unordered) 7079 return TokError("atomicrmw cannot be unordered"); 7080 if (!Ptr->getType()->isPointerTy()) 7081 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 7082 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7083 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 7084 7085 if (Operation == AtomicRMWInst::Xchg) { 7086 if (!Val->getType()->isIntegerTy() && 7087 !Val->getType()->isFloatingPointTy()) { 7088 return Error(ValLoc, "atomicrmw " + 7089 AtomicRMWInst::getOperationName(Operation) + 7090 " operand must be an integer or floating point type"); 7091 } 7092 } else if (IsFP) { 7093 if (!Val->getType()->isFloatingPointTy()) { 7094 return Error(ValLoc, "atomicrmw " + 7095 AtomicRMWInst::getOperationName(Operation) + 7096 " operand must be a floating point type"); 7097 } 7098 } else { 7099 if (!Val->getType()->isIntegerTy()) { 7100 return Error(ValLoc, "atomicrmw " + 7101 AtomicRMWInst::getOperationName(Operation) + 7102 " operand must be an integer"); 7103 } 7104 } 7105 7106 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7107 if (Size < 8 || (Size & (Size - 1))) 7108 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7109 " integer"); 7110 7111 AtomicRMWInst *RMWI = 7112 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 7113 RMWI->setVolatile(isVolatile); 7114 Inst = RMWI; 7115 return AteExtraComma ? InstExtraComma : InstNormal; 7116 } 7117 7118 /// ParseFence 7119 /// ::= 'fence' 'singlethread'? AtomicOrdering 7120 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 7121 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7122 SyncScope::ID SSID = SyncScope::System; 7123 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7124 return true; 7125 7126 if (Ordering == AtomicOrdering::Unordered) 7127 return TokError("fence cannot be unordered"); 7128 if (Ordering == AtomicOrdering::Monotonic) 7129 return TokError("fence cannot be monotonic"); 7130 7131 Inst = new FenceInst(Context, Ordering, SSID); 7132 return InstNormal; 7133 } 7134 7135 /// ParseGetElementPtr 7136 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7137 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7138 Value *Ptr = nullptr; 7139 Value *Val = nullptr; 7140 LocTy Loc, EltLoc; 7141 7142 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7143 7144 Type *Ty = nullptr; 7145 LocTy ExplicitTypeLoc = Lex.getLoc(); 7146 if (ParseType(Ty) || 7147 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 7148 ParseTypeAndValue(Ptr, Loc, PFS)) 7149 return true; 7150 7151 Type *BaseType = Ptr->getType(); 7152 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7153 if (!BasePointerType) 7154 return Error(Loc, "base of getelementptr must be a pointer"); 7155 7156 if (Ty != BasePointerType->getElementType()) 7157 return Error(ExplicitTypeLoc, 7158 "explicit pointee type doesn't match operand's pointee type"); 7159 7160 SmallVector<Value*, 16> Indices; 7161 bool AteExtraComma = false; 7162 // GEP returns a vector of pointers if at least one of parameters is a vector. 7163 // All vector parameters should have the same vector width. 7164 unsigned GEPWidth = BaseType->isVectorTy() ? 7165 BaseType->getVectorNumElements() : 0; 7166 7167 while (EatIfPresent(lltok::comma)) { 7168 if (Lex.getKind() == lltok::MetadataVar) { 7169 AteExtraComma = true; 7170 break; 7171 } 7172 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 7173 if (!Val->getType()->isIntOrIntVectorTy()) 7174 return Error(EltLoc, "getelementptr index must be an integer"); 7175 7176 if (Val->getType()->isVectorTy()) { 7177 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 7178 if (GEPWidth && GEPWidth != ValNumEl) 7179 return Error(EltLoc, 7180 "getelementptr vector index has a wrong number of elements"); 7181 GEPWidth = ValNumEl; 7182 } 7183 Indices.push_back(Val); 7184 } 7185 7186 SmallPtrSet<Type*, 4> Visited; 7187 if (!Indices.empty() && !Ty->isSized(&Visited)) 7188 return Error(Loc, "base element of getelementptr must be sized"); 7189 7190 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7191 return Error(Loc, "invalid getelementptr indices"); 7192 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7193 if (InBounds) 7194 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7195 return AteExtraComma ? InstExtraComma : InstNormal; 7196 } 7197 7198 /// ParseExtractValue 7199 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7200 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7201 Value *Val; LocTy Loc; 7202 SmallVector<unsigned, 4> Indices; 7203 bool AteExtraComma; 7204 if (ParseTypeAndValue(Val, Loc, PFS) || 7205 ParseIndexList(Indices, AteExtraComma)) 7206 return true; 7207 7208 if (!Val->getType()->isAggregateType()) 7209 return Error(Loc, "extractvalue operand must be aggregate type"); 7210 7211 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7212 return Error(Loc, "invalid indices for extractvalue"); 7213 Inst = ExtractValueInst::Create(Val, Indices); 7214 return AteExtraComma ? InstExtraComma : InstNormal; 7215 } 7216 7217 /// ParseInsertValue 7218 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7219 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7220 Value *Val0, *Val1; LocTy Loc0, Loc1; 7221 SmallVector<unsigned, 4> Indices; 7222 bool AteExtraComma; 7223 if (ParseTypeAndValue(Val0, Loc0, PFS) || 7224 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 7225 ParseTypeAndValue(Val1, Loc1, PFS) || 7226 ParseIndexList(Indices, AteExtraComma)) 7227 return true; 7228 7229 if (!Val0->getType()->isAggregateType()) 7230 return Error(Loc0, "insertvalue operand must be aggregate type"); 7231 7232 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7233 if (!IndexedType) 7234 return Error(Loc0, "invalid indices for insertvalue"); 7235 if (IndexedType != Val1->getType()) 7236 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 7237 getTypeString(Val1->getType()) + "' instead of '" + 7238 getTypeString(IndexedType) + "'"); 7239 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7240 return AteExtraComma ? InstExtraComma : InstNormal; 7241 } 7242 7243 //===----------------------------------------------------------------------===// 7244 // Embedded metadata. 7245 //===----------------------------------------------------------------------===// 7246 7247 /// ParseMDNodeVector 7248 /// ::= { Element (',' Element)* } 7249 /// Element 7250 /// ::= 'null' | TypeAndValue 7251 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7252 if (ParseToken(lltok::lbrace, "expected '{' here")) 7253 return true; 7254 7255 // Check for an empty list. 7256 if (EatIfPresent(lltok::rbrace)) 7257 return false; 7258 7259 do { 7260 // Null is a special case since it is typeless. 7261 if (EatIfPresent(lltok::kw_null)) { 7262 Elts.push_back(nullptr); 7263 continue; 7264 } 7265 7266 Metadata *MD; 7267 if (ParseMetadata(MD, nullptr)) 7268 return true; 7269 Elts.push_back(MD); 7270 } while (EatIfPresent(lltok::comma)); 7271 7272 return ParseToken(lltok::rbrace, "expected end of metadata node"); 7273 } 7274 7275 //===----------------------------------------------------------------------===// 7276 // Use-list order directives. 7277 //===----------------------------------------------------------------------===// 7278 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7279 SMLoc Loc) { 7280 if (V->use_empty()) 7281 return Error(Loc, "value has no uses"); 7282 7283 unsigned NumUses = 0; 7284 SmallDenseMap<const Use *, unsigned, 16> Order; 7285 for (const Use &U : V->uses()) { 7286 if (++NumUses > Indexes.size()) 7287 break; 7288 Order[&U] = Indexes[NumUses - 1]; 7289 } 7290 if (NumUses < 2) 7291 return Error(Loc, "value only has one use"); 7292 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7293 return Error(Loc, 7294 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7295 7296 V->sortUseList([&](const Use &L, const Use &R) { 7297 return Order.lookup(&L) < Order.lookup(&R); 7298 }); 7299 return false; 7300 } 7301 7302 /// ParseUseListOrderIndexes 7303 /// ::= '{' uint32 (',' uint32)+ '}' 7304 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7305 SMLoc Loc = Lex.getLoc(); 7306 if (ParseToken(lltok::lbrace, "expected '{' here")) 7307 return true; 7308 if (Lex.getKind() == lltok::rbrace) 7309 return Lex.Error("expected non-empty list of uselistorder indexes"); 7310 7311 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7312 // indexes should be distinct numbers in the range [0, size-1], and should 7313 // not be in order. 7314 unsigned Offset = 0; 7315 unsigned Max = 0; 7316 bool IsOrdered = true; 7317 assert(Indexes.empty() && "Expected empty order vector"); 7318 do { 7319 unsigned Index; 7320 if (ParseUInt32(Index)) 7321 return true; 7322 7323 // Update consistency checks. 7324 Offset += Index - Indexes.size(); 7325 Max = std::max(Max, Index); 7326 IsOrdered &= Index == Indexes.size(); 7327 7328 Indexes.push_back(Index); 7329 } while (EatIfPresent(lltok::comma)); 7330 7331 if (ParseToken(lltok::rbrace, "expected '}' here")) 7332 return true; 7333 7334 if (Indexes.size() < 2) 7335 return Error(Loc, "expected >= 2 uselistorder indexes"); 7336 if (Offset != 0 || Max >= Indexes.size()) 7337 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 7338 if (IsOrdered) 7339 return Error(Loc, "expected uselistorder indexes to change the order"); 7340 7341 return false; 7342 } 7343 7344 /// ParseUseListOrder 7345 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7346 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 7347 SMLoc Loc = Lex.getLoc(); 7348 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7349 return true; 7350 7351 Value *V; 7352 SmallVector<unsigned, 16> Indexes; 7353 if (ParseTypeAndValue(V, PFS) || 7354 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 7355 ParseUseListOrderIndexes(Indexes)) 7356 return true; 7357 7358 return sortUseListOrder(V, Indexes, Loc); 7359 } 7360 7361 /// ParseUseListOrderBB 7362 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7363 bool LLParser::ParseUseListOrderBB() { 7364 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7365 SMLoc Loc = Lex.getLoc(); 7366 Lex.Lex(); 7367 7368 ValID Fn, Label; 7369 SmallVector<unsigned, 16> Indexes; 7370 if (ParseValID(Fn) || 7371 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7372 ParseValID(Label) || 7373 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7374 ParseUseListOrderIndexes(Indexes)) 7375 return true; 7376 7377 // Check the function. 7378 GlobalValue *GV; 7379 if (Fn.Kind == ValID::t_GlobalName) 7380 GV = M->getNamedValue(Fn.StrVal); 7381 else if (Fn.Kind == ValID::t_GlobalID) 7382 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7383 else 7384 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7385 if (!GV) 7386 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 7387 auto *F = dyn_cast<Function>(GV); 7388 if (!F) 7389 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7390 if (F->isDeclaration()) 7391 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7392 7393 // Check the basic block. 7394 if (Label.Kind == ValID::t_LocalID) 7395 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7396 if (Label.Kind != ValID::t_LocalName) 7397 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 7398 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7399 if (!V) 7400 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 7401 if (!isa<BasicBlock>(V)) 7402 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 7403 7404 return sortUseListOrder(V, Indexes, Loc); 7405 } 7406 7407 /// ModuleEntry 7408 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7409 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7410 bool LLParser::ParseModuleEntry(unsigned ID) { 7411 assert(Lex.getKind() == lltok::kw_module); 7412 Lex.Lex(); 7413 7414 std::string Path; 7415 if (ParseToken(lltok::colon, "expected ':' here") || 7416 ParseToken(lltok::lparen, "expected '(' here") || 7417 ParseToken(lltok::kw_path, "expected 'path' here") || 7418 ParseToken(lltok::colon, "expected ':' here") || 7419 ParseStringConstant(Path) || 7420 ParseToken(lltok::comma, "expected ',' here") || 7421 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7422 ParseToken(lltok::colon, "expected ':' here") || 7423 ParseToken(lltok::lparen, "expected '(' here")) 7424 return true; 7425 7426 ModuleHash Hash; 7427 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7428 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7429 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7430 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7431 ParseUInt32(Hash[4])) 7432 return true; 7433 7434 if (ParseToken(lltok::rparen, "expected ')' here") || 7435 ParseToken(lltok::rparen, "expected ')' here")) 7436 return true; 7437 7438 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7439 ModuleIdMap[ID] = ModuleEntry->first(); 7440 7441 return false; 7442 } 7443 7444 /// TypeIdEntry 7445 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7446 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7447 assert(Lex.getKind() == lltok::kw_typeid); 7448 Lex.Lex(); 7449 7450 std::string Name; 7451 if (ParseToken(lltok::colon, "expected ':' here") || 7452 ParseToken(lltok::lparen, "expected '(' here") || 7453 ParseToken(lltok::kw_name, "expected 'name' here") || 7454 ParseToken(lltok::colon, "expected ':' here") || 7455 ParseStringConstant(Name)) 7456 return true; 7457 7458 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7459 if (ParseToken(lltok::comma, "expected ',' here") || 7460 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7461 return true; 7462 7463 // Check if this ID was forward referenced, and if so, update the 7464 // corresponding GUIDs. 7465 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7466 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7467 for (auto TIDRef : FwdRefTIDs->second) { 7468 assert(!*TIDRef.first && 7469 "Forward referenced type id GUID expected to be 0"); 7470 *TIDRef.first = GlobalValue::getGUID(Name); 7471 } 7472 ForwardRefTypeIds.erase(FwdRefTIDs); 7473 } 7474 7475 return false; 7476 } 7477 7478 /// TypeIdSummary 7479 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7480 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7481 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7482 ParseToken(lltok::colon, "expected ':' here") || 7483 ParseToken(lltok::lparen, "expected '(' here") || 7484 ParseTypeTestResolution(TIS.TTRes)) 7485 return true; 7486 7487 if (EatIfPresent(lltok::comma)) { 7488 // Expect optional wpdResolutions field 7489 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7490 return true; 7491 } 7492 7493 if (ParseToken(lltok::rparen, "expected ')' here")) 7494 return true; 7495 7496 return false; 7497 } 7498 7499 /// TypeTestResolution 7500 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7501 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7502 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7503 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7504 /// [',' 'inlinesBits' ':' UInt64]? ')' 7505 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7506 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7507 ParseToken(lltok::colon, "expected ':' here") || 7508 ParseToken(lltok::lparen, "expected '(' here") || 7509 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7510 ParseToken(lltok::colon, "expected ':' here")) 7511 return true; 7512 7513 switch (Lex.getKind()) { 7514 case lltok::kw_unsat: 7515 TTRes.TheKind = TypeTestResolution::Unsat; 7516 break; 7517 case lltok::kw_byteArray: 7518 TTRes.TheKind = TypeTestResolution::ByteArray; 7519 break; 7520 case lltok::kw_inline: 7521 TTRes.TheKind = TypeTestResolution::Inline; 7522 break; 7523 case lltok::kw_single: 7524 TTRes.TheKind = TypeTestResolution::Single; 7525 break; 7526 case lltok::kw_allOnes: 7527 TTRes.TheKind = TypeTestResolution::AllOnes; 7528 break; 7529 default: 7530 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7531 } 7532 Lex.Lex(); 7533 7534 if (ParseToken(lltok::comma, "expected ',' here") || 7535 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7536 ParseToken(lltok::colon, "expected ':' here") || 7537 ParseUInt32(TTRes.SizeM1BitWidth)) 7538 return true; 7539 7540 // Parse optional fields 7541 while (EatIfPresent(lltok::comma)) { 7542 switch (Lex.getKind()) { 7543 case lltok::kw_alignLog2: 7544 Lex.Lex(); 7545 if (ParseToken(lltok::colon, "expected ':'") || 7546 ParseUInt64(TTRes.AlignLog2)) 7547 return true; 7548 break; 7549 case lltok::kw_sizeM1: 7550 Lex.Lex(); 7551 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7552 return true; 7553 break; 7554 case lltok::kw_bitMask: { 7555 unsigned Val; 7556 Lex.Lex(); 7557 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7558 return true; 7559 assert(Val <= 0xff); 7560 TTRes.BitMask = (uint8_t)Val; 7561 break; 7562 } 7563 case lltok::kw_inlineBits: 7564 Lex.Lex(); 7565 if (ParseToken(lltok::colon, "expected ':'") || 7566 ParseUInt64(TTRes.InlineBits)) 7567 return true; 7568 break; 7569 default: 7570 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7571 } 7572 } 7573 7574 if (ParseToken(lltok::rparen, "expected ')' here")) 7575 return true; 7576 7577 return false; 7578 } 7579 7580 /// OptionalWpdResolutions 7581 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7582 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7583 bool LLParser::ParseOptionalWpdResolutions( 7584 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7585 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7586 ParseToken(lltok::colon, "expected ':' here") || 7587 ParseToken(lltok::lparen, "expected '(' here")) 7588 return true; 7589 7590 do { 7591 uint64_t Offset; 7592 WholeProgramDevirtResolution WPDRes; 7593 if (ParseToken(lltok::lparen, "expected '(' here") || 7594 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7595 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7596 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7597 ParseToken(lltok::rparen, "expected ')' here")) 7598 return true; 7599 WPDResMap[Offset] = WPDRes; 7600 } while (EatIfPresent(lltok::comma)); 7601 7602 if (ParseToken(lltok::rparen, "expected ')' here")) 7603 return true; 7604 7605 return false; 7606 } 7607 7608 /// WpdRes 7609 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7610 /// [',' OptionalResByArg]? ')' 7611 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7612 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7613 /// [',' OptionalResByArg]? ')' 7614 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7615 /// [',' OptionalResByArg]? ')' 7616 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7617 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7618 ParseToken(lltok::colon, "expected ':' here") || 7619 ParseToken(lltok::lparen, "expected '(' here") || 7620 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7621 ParseToken(lltok::colon, "expected ':' here")) 7622 return true; 7623 7624 switch (Lex.getKind()) { 7625 case lltok::kw_indir: 7626 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7627 break; 7628 case lltok::kw_singleImpl: 7629 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7630 break; 7631 case lltok::kw_branchFunnel: 7632 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7633 break; 7634 default: 7635 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 7636 } 7637 Lex.Lex(); 7638 7639 // Parse optional fields 7640 while (EatIfPresent(lltok::comma)) { 7641 switch (Lex.getKind()) { 7642 case lltok::kw_singleImplName: 7643 Lex.Lex(); 7644 if (ParseToken(lltok::colon, "expected ':' here") || 7645 ParseStringConstant(WPDRes.SingleImplName)) 7646 return true; 7647 break; 7648 case lltok::kw_resByArg: 7649 if (ParseOptionalResByArg(WPDRes.ResByArg)) 7650 return true; 7651 break; 7652 default: 7653 return Error(Lex.getLoc(), 7654 "expected optional WholeProgramDevirtResolution field"); 7655 } 7656 } 7657 7658 if (ParseToken(lltok::rparen, "expected ')' here")) 7659 return true; 7660 7661 return false; 7662 } 7663 7664 /// OptionalResByArg 7665 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 7666 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 7667 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 7668 /// 'virtualConstProp' ) 7669 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 7670 /// [',' 'bit' ':' UInt32]? ')' 7671 bool LLParser::ParseOptionalResByArg( 7672 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 7673 &ResByArg) { 7674 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 7675 ParseToken(lltok::colon, "expected ':' here") || 7676 ParseToken(lltok::lparen, "expected '(' here")) 7677 return true; 7678 7679 do { 7680 std::vector<uint64_t> Args; 7681 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 7682 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 7683 ParseToken(lltok::colon, "expected ':' here") || 7684 ParseToken(lltok::lparen, "expected '(' here") || 7685 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7686 ParseToken(lltok::colon, "expected ':' here")) 7687 return true; 7688 7689 WholeProgramDevirtResolution::ByArg ByArg; 7690 switch (Lex.getKind()) { 7691 case lltok::kw_indir: 7692 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 7693 break; 7694 case lltok::kw_uniformRetVal: 7695 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 7696 break; 7697 case lltok::kw_uniqueRetVal: 7698 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 7699 break; 7700 case lltok::kw_virtualConstProp: 7701 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 7702 break; 7703 default: 7704 return Error(Lex.getLoc(), 7705 "unexpected WholeProgramDevirtResolution::ByArg kind"); 7706 } 7707 Lex.Lex(); 7708 7709 // Parse optional fields 7710 while (EatIfPresent(lltok::comma)) { 7711 switch (Lex.getKind()) { 7712 case lltok::kw_info: 7713 Lex.Lex(); 7714 if (ParseToken(lltok::colon, "expected ':' here") || 7715 ParseUInt64(ByArg.Info)) 7716 return true; 7717 break; 7718 case lltok::kw_byte: 7719 Lex.Lex(); 7720 if (ParseToken(lltok::colon, "expected ':' here") || 7721 ParseUInt32(ByArg.Byte)) 7722 return true; 7723 break; 7724 case lltok::kw_bit: 7725 Lex.Lex(); 7726 if (ParseToken(lltok::colon, "expected ':' here") || 7727 ParseUInt32(ByArg.Bit)) 7728 return true; 7729 break; 7730 default: 7731 return Error(Lex.getLoc(), 7732 "expected optional whole program devirt field"); 7733 } 7734 } 7735 7736 if (ParseToken(lltok::rparen, "expected ')' here")) 7737 return true; 7738 7739 ResByArg[Args] = ByArg; 7740 } while (EatIfPresent(lltok::comma)); 7741 7742 if (ParseToken(lltok::rparen, "expected ')' here")) 7743 return true; 7744 7745 return false; 7746 } 7747 7748 /// OptionalResByArg 7749 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 7750 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 7751 if (ParseToken(lltok::kw_args, "expected 'args' here") || 7752 ParseToken(lltok::colon, "expected ':' here") || 7753 ParseToken(lltok::lparen, "expected '(' here")) 7754 return true; 7755 7756 do { 7757 uint64_t Val; 7758 if (ParseUInt64(Val)) 7759 return true; 7760 Args.push_back(Val); 7761 } while (EatIfPresent(lltok::comma)); 7762 7763 if (ParseToken(lltok::rparen, "expected ')' here")) 7764 return true; 7765 7766 return false; 7767 } 7768 7769 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 7770 7771 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 7772 bool ReadOnly = Fwd->isReadOnly(); 7773 *Fwd = Resolved; 7774 if (ReadOnly) 7775 Fwd->setReadOnly(); 7776 } 7777 7778 /// Stores the given Name/GUID and associated summary into the Index. 7779 /// Also updates any forward references to the associated entry ID. 7780 void LLParser::AddGlobalValueToIndex( 7781 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 7782 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 7783 // First create the ValueInfo utilizing the Name or GUID. 7784 ValueInfo VI; 7785 if (GUID != 0) { 7786 assert(Name.empty()); 7787 VI = Index->getOrInsertValueInfo(GUID); 7788 } else { 7789 assert(!Name.empty()); 7790 if (M) { 7791 auto *GV = M->getNamedValue(Name); 7792 assert(GV); 7793 VI = Index->getOrInsertValueInfo(GV); 7794 } else { 7795 assert( 7796 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 7797 "Need a source_filename to compute GUID for local"); 7798 GUID = GlobalValue::getGUID( 7799 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 7800 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 7801 } 7802 } 7803 7804 // Resolve forward references from calls/refs 7805 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 7806 if (FwdRefVIs != ForwardRefValueInfos.end()) { 7807 for (auto VIRef : FwdRefVIs->second) { 7808 assert(VIRef.first->getRef() == FwdVIRef && 7809 "Forward referenced ValueInfo expected to be empty"); 7810 resolveFwdRef(VIRef.first, VI); 7811 } 7812 ForwardRefValueInfos.erase(FwdRefVIs); 7813 } 7814 7815 // Resolve forward references from aliases 7816 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 7817 if (FwdRefAliasees != ForwardRefAliasees.end()) { 7818 for (auto AliaseeRef : FwdRefAliasees->second) { 7819 assert(!AliaseeRef.first->hasAliasee() && 7820 "Forward referencing alias already has aliasee"); 7821 assert(Summary && "Aliasee must be a definition"); 7822 AliaseeRef.first->setAliasee(VI, Summary.get()); 7823 } 7824 ForwardRefAliasees.erase(FwdRefAliasees); 7825 } 7826 7827 // Add the summary if one was provided. 7828 if (Summary) 7829 Index->addGlobalValueSummary(VI, std::move(Summary)); 7830 7831 // Save the associated ValueInfo for use in later references by ID. 7832 if (ID == NumberedValueInfos.size()) 7833 NumberedValueInfos.push_back(VI); 7834 else { 7835 // Handle non-continuous numbers (to make test simplification easier). 7836 if (ID > NumberedValueInfos.size()) 7837 NumberedValueInfos.resize(ID + 1); 7838 NumberedValueInfos[ID] = VI; 7839 } 7840 } 7841 7842 /// ParseGVEntry 7843 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 7844 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 7845 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 7846 bool LLParser::ParseGVEntry(unsigned ID) { 7847 assert(Lex.getKind() == lltok::kw_gv); 7848 Lex.Lex(); 7849 7850 if (ParseToken(lltok::colon, "expected ':' here") || 7851 ParseToken(lltok::lparen, "expected '(' here")) 7852 return true; 7853 7854 std::string Name; 7855 GlobalValue::GUID GUID = 0; 7856 switch (Lex.getKind()) { 7857 case lltok::kw_name: 7858 Lex.Lex(); 7859 if (ParseToken(lltok::colon, "expected ':' here") || 7860 ParseStringConstant(Name)) 7861 return true; 7862 // Can't create GUID/ValueInfo until we have the linkage. 7863 break; 7864 case lltok::kw_guid: 7865 Lex.Lex(); 7866 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 7867 return true; 7868 break; 7869 default: 7870 return Error(Lex.getLoc(), "expected name or guid tag"); 7871 } 7872 7873 if (!EatIfPresent(lltok::comma)) { 7874 // No summaries. Wrap up. 7875 if (ParseToken(lltok::rparen, "expected ')' here")) 7876 return true; 7877 // This was created for a call to an external or indirect target. 7878 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 7879 // created for indirect calls with VP. A Name with no GUID came from 7880 // an external definition. We pass ExternalLinkage since that is only 7881 // used when the GUID must be computed from Name, and in that case 7882 // the symbol must have external linkage. 7883 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 7884 nullptr); 7885 return false; 7886 } 7887 7888 // Have a list of summaries 7889 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 7890 ParseToken(lltok::colon, "expected ':' here")) 7891 return true; 7892 7893 do { 7894 if (ParseToken(lltok::lparen, "expected '(' here")) 7895 return true; 7896 switch (Lex.getKind()) { 7897 case lltok::kw_function: 7898 if (ParseFunctionSummary(Name, GUID, ID)) 7899 return true; 7900 break; 7901 case lltok::kw_variable: 7902 if (ParseVariableSummary(Name, GUID, ID)) 7903 return true; 7904 break; 7905 case lltok::kw_alias: 7906 if (ParseAliasSummary(Name, GUID, ID)) 7907 return true; 7908 break; 7909 default: 7910 return Error(Lex.getLoc(), "expected summary type"); 7911 } 7912 if (ParseToken(lltok::rparen, "expected ')' here")) 7913 return true; 7914 } while (EatIfPresent(lltok::comma)); 7915 7916 if (ParseToken(lltok::rparen, "expected ')' here")) 7917 return true; 7918 7919 return false; 7920 } 7921 7922 /// FunctionSummary 7923 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7924 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 7925 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')' 7926 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 7927 unsigned ID) { 7928 assert(Lex.getKind() == lltok::kw_function); 7929 Lex.Lex(); 7930 7931 StringRef ModulePath; 7932 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7933 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7934 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 7935 unsigned InstCount; 7936 std::vector<FunctionSummary::EdgeTy> Calls; 7937 FunctionSummary::TypeIdInfo TypeIdInfo; 7938 std::vector<ValueInfo> Refs; 7939 // Default is all-zeros (conservative values). 7940 FunctionSummary::FFlags FFlags = {}; 7941 if (ParseToken(lltok::colon, "expected ':' here") || 7942 ParseToken(lltok::lparen, "expected '(' here") || 7943 ParseModuleReference(ModulePath) || 7944 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7945 ParseToken(lltok::comma, "expected ',' here") || 7946 ParseToken(lltok::kw_insts, "expected 'insts' here") || 7947 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 7948 return true; 7949 7950 // Parse optional fields 7951 while (EatIfPresent(lltok::comma)) { 7952 switch (Lex.getKind()) { 7953 case lltok::kw_funcFlags: 7954 if (ParseOptionalFFlags(FFlags)) 7955 return true; 7956 break; 7957 case lltok::kw_calls: 7958 if (ParseOptionalCalls(Calls)) 7959 return true; 7960 break; 7961 case lltok::kw_typeIdInfo: 7962 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 7963 return true; 7964 break; 7965 case lltok::kw_refs: 7966 if (ParseOptionalRefs(Refs)) 7967 return true; 7968 break; 7969 default: 7970 return Error(Lex.getLoc(), "expected optional function summary field"); 7971 } 7972 } 7973 7974 if (ParseToken(lltok::rparen, "expected ')' here")) 7975 return true; 7976 7977 auto FS = llvm::make_unique<FunctionSummary>( 7978 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 7979 std::move(Calls), std::move(TypeIdInfo.TypeTests), 7980 std::move(TypeIdInfo.TypeTestAssumeVCalls), 7981 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 7982 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 7983 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls)); 7984 7985 FS->setModulePath(ModulePath); 7986 7987 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7988 ID, std::move(FS)); 7989 7990 return false; 7991 } 7992 7993 /// VariableSummary 7994 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7995 /// [',' OptionalRefs]? ')' 7996 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 7997 unsigned ID) { 7998 assert(Lex.getKind() == lltok::kw_variable); 7999 Lex.Lex(); 8000 8001 StringRef ModulePath; 8002 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8003 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8004 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8005 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false); 8006 std::vector<ValueInfo> Refs; 8007 if (ParseToken(lltok::colon, "expected ':' here") || 8008 ParseToken(lltok::lparen, "expected '(' here") || 8009 ParseModuleReference(ModulePath) || 8010 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8011 ParseToken(lltok::comma, "expected ',' here") || 8012 ParseGVarFlags(GVarFlags)) 8013 return true; 8014 8015 // Parse optional refs field 8016 if (EatIfPresent(lltok::comma)) { 8017 if (ParseOptionalRefs(Refs)) 8018 return true; 8019 } 8020 8021 if (ParseToken(lltok::rparen, "expected ')' here")) 8022 return true; 8023 8024 auto GS = 8025 llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8026 8027 GS->setModulePath(ModulePath); 8028 8029 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8030 ID, std::move(GS)); 8031 8032 return false; 8033 } 8034 8035 /// AliasSummary 8036 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8037 /// 'aliasee' ':' GVReference ')' 8038 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8039 unsigned ID) { 8040 assert(Lex.getKind() == lltok::kw_alias); 8041 LocTy Loc = Lex.getLoc(); 8042 Lex.Lex(); 8043 8044 StringRef ModulePath; 8045 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8046 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8047 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8048 if (ParseToken(lltok::colon, "expected ':' here") || 8049 ParseToken(lltok::lparen, "expected '(' here") || 8050 ParseModuleReference(ModulePath) || 8051 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8052 ParseToken(lltok::comma, "expected ',' here") || 8053 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8054 ParseToken(lltok::colon, "expected ':' here")) 8055 return true; 8056 8057 ValueInfo AliaseeVI; 8058 unsigned GVId; 8059 if (ParseGVReference(AliaseeVI, GVId)) 8060 return true; 8061 8062 if (ParseToken(lltok::rparen, "expected ')' here")) 8063 return true; 8064 8065 auto AS = llvm::make_unique<AliasSummary>(GVFlags); 8066 8067 AS->setModulePath(ModulePath); 8068 8069 // Record forward reference if the aliasee is not parsed yet. 8070 if (AliaseeVI.getRef() == FwdVIRef) { 8071 auto FwdRef = ForwardRefAliasees.insert( 8072 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>())); 8073 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc)); 8074 } else { 8075 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8076 assert(Summary && "Aliasee must be a definition"); 8077 AS->setAliasee(AliaseeVI, Summary); 8078 } 8079 8080 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8081 ID, std::move(AS)); 8082 8083 return false; 8084 } 8085 8086 /// Flag 8087 /// ::= [0|1] 8088 bool LLParser::ParseFlag(unsigned &Val) { 8089 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8090 return TokError("expected integer"); 8091 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8092 Lex.Lex(); 8093 return false; 8094 } 8095 8096 /// OptionalFFlags 8097 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8098 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8099 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8100 /// [',' 'noInline' ':' Flag]? ')' 8101 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8102 assert(Lex.getKind() == lltok::kw_funcFlags); 8103 Lex.Lex(); 8104 8105 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 8106 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 8107 return true; 8108 8109 do { 8110 unsigned Val = 0; 8111 switch (Lex.getKind()) { 8112 case lltok::kw_readNone: 8113 Lex.Lex(); 8114 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8115 return true; 8116 FFlags.ReadNone = Val; 8117 break; 8118 case lltok::kw_readOnly: 8119 Lex.Lex(); 8120 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8121 return true; 8122 FFlags.ReadOnly = Val; 8123 break; 8124 case lltok::kw_noRecurse: 8125 Lex.Lex(); 8126 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8127 return true; 8128 FFlags.NoRecurse = Val; 8129 break; 8130 case lltok::kw_returnDoesNotAlias: 8131 Lex.Lex(); 8132 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8133 return true; 8134 FFlags.ReturnDoesNotAlias = Val; 8135 break; 8136 case lltok::kw_noInline: 8137 Lex.Lex(); 8138 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8139 return true; 8140 FFlags.NoInline = Val; 8141 break; 8142 default: 8143 return Error(Lex.getLoc(), "expected function flag type"); 8144 } 8145 } while (EatIfPresent(lltok::comma)); 8146 8147 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 8148 return true; 8149 8150 return false; 8151 } 8152 8153 /// OptionalCalls 8154 /// := 'calls' ':' '(' Call [',' Call]* ')' 8155 /// Call ::= '(' 'callee' ':' GVReference 8156 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8157 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8158 assert(Lex.getKind() == lltok::kw_calls); 8159 Lex.Lex(); 8160 8161 if (ParseToken(lltok::colon, "expected ':' in calls") | 8162 ParseToken(lltok::lparen, "expected '(' in calls")) 8163 return true; 8164 8165 IdToIndexMapType IdToIndexMap; 8166 // Parse each call edge 8167 do { 8168 ValueInfo VI; 8169 if (ParseToken(lltok::lparen, "expected '(' in call") || 8170 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 8171 ParseToken(lltok::colon, "expected ':'")) 8172 return true; 8173 8174 LocTy Loc = Lex.getLoc(); 8175 unsigned GVId; 8176 if (ParseGVReference(VI, GVId)) 8177 return true; 8178 8179 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8180 unsigned RelBF = 0; 8181 if (EatIfPresent(lltok::comma)) { 8182 // Expect either hotness or relbf 8183 if (EatIfPresent(lltok::kw_hotness)) { 8184 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 8185 return true; 8186 } else { 8187 if (ParseToken(lltok::kw_relbf, "expected relbf") || 8188 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 8189 return true; 8190 } 8191 } 8192 // Keep track of the Call array index needing a forward reference. 8193 // We will save the location of the ValueInfo needing an update, but 8194 // can only do so once the std::vector is finalized. 8195 if (VI.getRef() == FwdVIRef) 8196 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8197 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8198 8199 if (ParseToken(lltok::rparen, "expected ')' in call")) 8200 return true; 8201 } while (EatIfPresent(lltok::comma)); 8202 8203 // Now that the Calls vector is finalized, it is safe to save the locations 8204 // of any forward GV references that need updating later. 8205 for (auto I : IdToIndexMap) { 8206 for (auto P : I.second) { 8207 assert(Calls[P.first].first.getRef() == FwdVIRef && 8208 "Forward referenced ValueInfo expected to be empty"); 8209 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8210 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8211 FwdRef.first->second.push_back( 8212 std::make_pair(&Calls[P.first].first, P.second)); 8213 } 8214 } 8215 8216 if (ParseToken(lltok::rparen, "expected ')' in calls")) 8217 return true; 8218 8219 return false; 8220 } 8221 8222 /// Hotness 8223 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8224 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 8225 switch (Lex.getKind()) { 8226 case lltok::kw_unknown: 8227 Hotness = CalleeInfo::HotnessType::Unknown; 8228 break; 8229 case lltok::kw_cold: 8230 Hotness = CalleeInfo::HotnessType::Cold; 8231 break; 8232 case lltok::kw_none: 8233 Hotness = CalleeInfo::HotnessType::None; 8234 break; 8235 case lltok::kw_hot: 8236 Hotness = CalleeInfo::HotnessType::Hot; 8237 break; 8238 case lltok::kw_critical: 8239 Hotness = CalleeInfo::HotnessType::Critical; 8240 break; 8241 default: 8242 return Error(Lex.getLoc(), "invalid call edge hotness"); 8243 } 8244 Lex.Lex(); 8245 return false; 8246 } 8247 8248 /// OptionalRefs 8249 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8250 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 8251 assert(Lex.getKind() == lltok::kw_refs); 8252 Lex.Lex(); 8253 8254 if (ParseToken(lltok::colon, "expected ':' in refs") | 8255 ParseToken(lltok::lparen, "expected '(' in refs")) 8256 return true; 8257 8258 struct ValueContext { 8259 ValueInfo VI; 8260 unsigned GVId; 8261 LocTy Loc; 8262 }; 8263 std::vector<ValueContext> VContexts; 8264 // Parse each ref edge 8265 do { 8266 ValueContext VC; 8267 VC.Loc = Lex.getLoc(); 8268 if (ParseGVReference(VC.VI, VC.GVId)) 8269 return true; 8270 VContexts.push_back(VC); 8271 } while (EatIfPresent(lltok::comma)); 8272 8273 // Sort value contexts so that ones with readonly ValueInfo are at the end 8274 // of VContexts vector. This is needed to match immutableRefCount() behavior. 8275 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8276 return VC1.VI.isReadOnly() < VC2.VI.isReadOnly(); 8277 }); 8278 8279 IdToIndexMapType IdToIndexMap; 8280 for (auto &VC : VContexts) { 8281 // Keep track of the Refs array index needing a forward reference. 8282 // We will save the location of the ValueInfo needing an update, but 8283 // can only do so once the std::vector is finalized. 8284 if (VC.VI.getRef() == FwdVIRef) 8285 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8286 Refs.push_back(VC.VI); 8287 } 8288 8289 // Now that the Refs vector is finalized, it is safe to save the locations 8290 // of any forward GV references that need updating later. 8291 for (auto I : IdToIndexMap) { 8292 for (auto P : I.second) { 8293 assert(Refs[P.first].getRef() == FwdVIRef && 8294 "Forward referenced ValueInfo expected to be empty"); 8295 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8296 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8297 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second)); 8298 } 8299 } 8300 8301 if (ParseToken(lltok::rparen, "expected ')' in refs")) 8302 return true; 8303 8304 return false; 8305 } 8306 8307 /// OptionalTypeIdInfo 8308 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8309 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8310 /// [',' TypeCheckedLoadConstVCalls]? ')' 8311 bool LLParser::ParseOptionalTypeIdInfo( 8312 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8313 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8314 Lex.Lex(); 8315 8316 if (ParseToken(lltok::colon, "expected ':' here") || 8317 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8318 return true; 8319 8320 do { 8321 switch (Lex.getKind()) { 8322 case lltok::kw_typeTests: 8323 if (ParseTypeTests(TypeIdInfo.TypeTests)) 8324 return true; 8325 break; 8326 case lltok::kw_typeTestAssumeVCalls: 8327 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8328 TypeIdInfo.TypeTestAssumeVCalls)) 8329 return true; 8330 break; 8331 case lltok::kw_typeCheckedLoadVCalls: 8332 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8333 TypeIdInfo.TypeCheckedLoadVCalls)) 8334 return true; 8335 break; 8336 case lltok::kw_typeTestAssumeConstVCalls: 8337 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8338 TypeIdInfo.TypeTestAssumeConstVCalls)) 8339 return true; 8340 break; 8341 case lltok::kw_typeCheckedLoadConstVCalls: 8342 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8343 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8344 return true; 8345 break; 8346 default: 8347 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 8348 } 8349 } while (EatIfPresent(lltok::comma)); 8350 8351 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8352 return true; 8353 8354 return false; 8355 } 8356 8357 /// TypeTests 8358 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 8359 /// [',' (SummaryID | UInt64)]* ')' 8360 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 8361 assert(Lex.getKind() == lltok::kw_typeTests); 8362 Lex.Lex(); 8363 8364 if (ParseToken(lltok::colon, "expected ':' here") || 8365 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8366 return true; 8367 8368 IdToIndexMapType IdToIndexMap; 8369 do { 8370 GlobalValue::GUID GUID = 0; 8371 if (Lex.getKind() == lltok::SummaryID) { 8372 unsigned ID = Lex.getUIntVal(); 8373 LocTy Loc = Lex.getLoc(); 8374 // Keep track of the TypeTests array index needing a forward reference. 8375 // We will save the location of the GUID needing an update, but 8376 // can only do so once the std::vector is finalized. 8377 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 8378 Lex.Lex(); 8379 } else if (ParseUInt64(GUID)) 8380 return true; 8381 TypeTests.push_back(GUID); 8382 } while (EatIfPresent(lltok::comma)); 8383 8384 // Now that the TypeTests vector is finalized, it is safe to save the 8385 // locations of any forward GV references that need updating later. 8386 for (auto I : IdToIndexMap) { 8387 for (auto P : I.second) { 8388 assert(TypeTests[P.first] == 0 && 8389 "Forward referenced type id GUID expected to be 0"); 8390 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8391 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8392 FwdRef.first->second.push_back( 8393 std::make_pair(&TypeTests[P.first], P.second)); 8394 } 8395 } 8396 8397 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8398 return true; 8399 8400 return false; 8401 } 8402 8403 /// VFuncIdList 8404 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 8405 bool LLParser::ParseVFuncIdList( 8406 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 8407 assert(Lex.getKind() == Kind); 8408 Lex.Lex(); 8409 8410 if (ParseToken(lltok::colon, "expected ':' here") || 8411 ParseToken(lltok::lparen, "expected '(' here")) 8412 return true; 8413 8414 IdToIndexMapType IdToIndexMap; 8415 do { 8416 FunctionSummary::VFuncId VFuncId; 8417 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 8418 return true; 8419 VFuncIdList.push_back(VFuncId); 8420 } while (EatIfPresent(lltok::comma)); 8421 8422 if (ParseToken(lltok::rparen, "expected ')' here")) 8423 return true; 8424 8425 // Now that the VFuncIdList vector is finalized, it is safe to save the 8426 // locations of any forward GV references that need updating later. 8427 for (auto I : IdToIndexMap) { 8428 for (auto P : I.second) { 8429 assert(VFuncIdList[P.first].GUID == 0 && 8430 "Forward referenced type id GUID expected to be 0"); 8431 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8432 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8433 FwdRef.first->second.push_back( 8434 std::make_pair(&VFuncIdList[P.first].GUID, P.second)); 8435 } 8436 } 8437 8438 return false; 8439 } 8440 8441 /// ConstVCallList 8442 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 8443 bool LLParser::ParseConstVCallList( 8444 lltok::Kind Kind, 8445 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 8446 assert(Lex.getKind() == Kind); 8447 Lex.Lex(); 8448 8449 if (ParseToken(lltok::colon, "expected ':' here") || 8450 ParseToken(lltok::lparen, "expected '(' here")) 8451 return true; 8452 8453 IdToIndexMapType IdToIndexMap; 8454 do { 8455 FunctionSummary::ConstVCall ConstVCall; 8456 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 8457 return true; 8458 ConstVCallList.push_back(ConstVCall); 8459 } while (EatIfPresent(lltok::comma)); 8460 8461 if (ParseToken(lltok::rparen, "expected ')' here")) 8462 return true; 8463 8464 // Now that the ConstVCallList vector is finalized, it is safe to save the 8465 // locations of any forward GV references that need updating later. 8466 for (auto I : IdToIndexMap) { 8467 for (auto P : I.second) { 8468 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 8469 "Forward referenced type id GUID expected to be 0"); 8470 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8471 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8472 FwdRef.first->second.push_back( 8473 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second)); 8474 } 8475 } 8476 8477 return false; 8478 } 8479 8480 /// ConstVCall 8481 /// ::= '(' VFuncId ',' Args ')' 8482 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 8483 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8484 if (ParseToken(lltok::lparen, "expected '(' here") || 8485 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 8486 return true; 8487 8488 if (EatIfPresent(lltok::comma)) 8489 if (ParseArgs(ConstVCall.Args)) 8490 return true; 8491 8492 if (ParseToken(lltok::rparen, "expected ')' here")) 8493 return true; 8494 8495 return false; 8496 } 8497 8498 /// VFuncId 8499 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 8500 /// 'offset' ':' UInt64 ')' 8501 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 8502 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8503 assert(Lex.getKind() == lltok::kw_vFuncId); 8504 Lex.Lex(); 8505 8506 if (ParseToken(lltok::colon, "expected ':' here") || 8507 ParseToken(lltok::lparen, "expected '(' here")) 8508 return true; 8509 8510 if (Lex.getKind() == lltok::SummaryID) { 8511 VFuncId.GUID = 0; 8512 unsigned ID = Lex.getUIntVal(); 8513 LocTy Loc = Lex.getLoc(); 8514 // Keep track of the array index needing a forward reference. 8515 // We will save the location of the GUID needing an update, but 8516 // can only do so once the caller's std::vector is finalized. 8517 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 8518 Lex.Lex(); 8519 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 8520 ParseToken(lltok::colon, "expected ':' here") || 8521 ParseUInt64(VFuncId.GUID)) 8522 return true; 8523 8524 if (ParseToken(lltok::comma, "expected ',' here") || 8525 ParseToken(lltok::kw_offset, "expected 'offset' here") || 8526 ParseToken(lltok::colon, "expected ':' here") || 8527 ParseUInt64(VFuncId.Offset) || 8528 ParseToken(lltok::rparen, "expected ')' here")) 8529 return true; 8530 8531 return false; 8532 } 8533 8534 /// GVFlags 8535 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 8536 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 8537 /// 'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')' 8538 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 8539 assert(Lex.getKind() == lltok::kw_flags); 8540 Lex.Lex(); 8541 8542 if (ParseToken(lltok::colon, "expected ':' here") || 8543 ParseToken(lltok::lparen, "expected '(' here")) 8544 return true; 8545 8546 do { 8547 unsigned Flag = 0; 8548 switch (Lex.getKind()) { 8549 case lltok::kw_linkage: 8550 Lex.Lex(); 8551 if (ParseToken(lltok::colon, "expected ':'")) 8552 return true; 8553 bool HasLinkage; 8554 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 8555 assert(HasLinkage && "Linkage not optional in summary entry"); 8556 Lex.Lex(); 8557 break; 8558 case lltok::kw_notEligibleToImport: 8559 Lex.Lex(); 8560 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8561 return true; 8562 GVFlags.NotEligibleToImport = Flag; 8563 break; 8564 case lltok::kw_live: 8565 Lex.Lex(); 8566 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8567 return true; 8568 GVFlags.Live = Flag; 8569 break; 8570 case lltok::kw_dsoLocal: 8571 Lex.Lex(); 8572 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8573 return true; 8574 GVFlags.DSOLocal = Flag; 8575 break; 8576 case lltok::kw_canAutoHide: 8577 Lex.Lex(); 8578 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8579 return true; 8580 GVFlags.CanAutoHide = Flag; 8581 break; 8582 default: 8583 return Error(Lex.getLoc(), "expected gv flag type"); 8584 } 8585 } while (EatIfPresent(lltok::comma)); 8586 8587 if (ParseToken(lltok::rparen, "expected ')' here")) 8588 return true; 8589 8590 return false; 8591 } 8592 8593 /// GVarFlags 8594 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag ')' 8595 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 8596 assert(Lex.getKind() == lltok::kw_varFlags); 8597 Lex.Lex(); 8598 8599 unsigned Flag = 0; 8600 if (ParseToken(lltok::colon, "expected ':' here") || 8601 ParseToken(lltok::lparen, "expected '(' here") || 8602 ParseToken(lltok::kw_readonly, "expected 'readonly' here") || 8603 ParseToken(lltok::colon, "expected ':' here")) 8604 return true; 8605 8606 ParseFlag(Flag); 8607 GVarFlags.ReadOnly = Flag; 8608 8609 if (ParseToken(lltok::rparen, "expected ')' here")) 8610 return true; 8611 return false; 8612 } 8613 8614 /// ModuleReference 8615 /// ::= 'module' ':' UInt 8616 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 8617 // Parse module id. 8618 if (ParseToken(lltok::kw_module, "expected 'module' here") || 8619 ParseToken(lltok::colon, "expected ':' here") || 8620 ParseToken(lltok::SummaryID, "expected module ID")) 8621 return true; 8622 8623 unsigned ModuleID = Lex.getUIntVal(); 8624 auto I = ModuleIdMap.find(ModuleID); 8625 // We should have already parsed all module IDs 8626 assert(I != ModuleIdMap.end()); 8627 ModulePath = I->second; 8628 return false; 8629 } 8630 8631 /// GVReference 8632 /// ::= SummaryID 8633 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 8634 bool ReadOnly = EatIfPresent(lltok::kw_readonly); 8635 if (ParseToken(lltok::SummaryID, "expected GV ID")) 8636 return true; 8637 8638 GVId = Lex.getUIntVal(); 8639 // Check if we already have a VI for this GV 8640 if (GVId < NumberedValueInfos.size()) { 8641 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 8642 VI = NumberedValueInfos[GVId]; 8643 } else 8644 // We will create a forward reference to the stored location. 8645 VI = ValueInfo(false, FwdVIRef); 8646 8647 if (ReadOnly) 8648 VI.setReadOnly(); 8649 return false; 8650 } 8651