1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 static std::string getTypeString(Type *T) {
56   std::string Result;
57   raw_string_ostream Tmp(Result);
58   Tmp << *T;
59   return Tmp.str();
60 }
61 
62 static void setContextOpaquePointers(LLLexer &L, LLVMContext &C) {
63   while (true) {
64     lltok::Kind K = L.Lex();
65     // LLLexer will set the opaque pointers option in LLVMContext if it sees an
66     // explicit "ptr".
67     if (K == lltok::star || K == lltok::Error || K == lltok::Eof ||
68         isa_and_nonnull<PointerType>(L.getTyVal())) {
69       if (K == lltok::star)
70         C.setOpaquePointers(false);
71       return;
72     }
73   }
74 }
75 
76 /// Run: module ::= toplevelentity*
77 bool LLParser::Run(bool UpgradeDebugInfo,
78                    DataLayoutCallbackTy DataLayoutCallback) {
79   // If we haven't decided on whether or not we're using opaque pointers, do a
80   // quick lex over the tokens to see if we explicitly construct any typed or
81   // opaque pointer types.
82   // Don't bail out on an error so we do the same work in the parsing below
83   // regardless of if --opaque-pointers is set.
84   if (!Context.hasSetOpaquePointersValue())
85     setContextOpaquePointers(OPLex, Context);
86 
87   // Prime the lexer.
88   Lex.Lex();
89 
90   if (Context.shouldDiscardValueNames())
91     return error(
92         Lex.getLoc(),
93         "Can't read textual IR with a Context that discards named Values");
94 
95   if (M) {
96     if (parseTargetDefinitions())
97       return true;
98 
99     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
100       M->setDataLayout(*LayoutOverride);
101   }
102 
103   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
104          validateEndOfIndex();
105 }
106 
107 bool LLParser::parseStandaloneConstantValue(Constant *&C,
108                                             const SlotMapping *Slots) {
109   restoreParsingState(Slots);
110   Lex.Lex();
111 
112   Type *Ty = nullptr;
113   if (parseType(Ty) || parseConstantValue(Ty, C))
114     return true;
115   if (Lex.getKind() != lltok::Eof)
116     return error(Lex.getLoc(), "expected end of string");
117   return false;
118 }
119 
120 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
121                                     const SlotMapping *Slots) {
122   restoreParsingState(Slots);
123   Lex.Lex();
124 
125   Read = 0;
126   SMLoc Start = Lex.getLoc();
127   Ty = nullptr;
128   if (parseType(Ty))
129     return true;
130   SMLoc End = Lex.getLoc();
131   Read = End.getPointer() - Start.getPointer();
132 
133   return false;
134 }
135 
136 void LLParser::restoreParsingState(const SlotMapping *Slots) {
137   if (!Slots)
138     return;
139   NumberedVals = Slots->GlobalValues;
140   NumberedMetadata = Slots->MetadataNodes;
141   for (const auto &I : Slots->NamedTypes)
142     NamedTypes.insert(
143         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
144   for (const auto &I : Slots->Types)
145     NumberedTypes.insert(
146         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
147 }
148 
149 /// validateEndOfModule - Do final validity and basic correctness checks at the
150 /// end of the module.
151 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
152   if (!M)
153     return false;
154   // Handle any function attribute group forward references.
155   for (const auto &RAG : ForwardRefAttrGroups) {
156     Value *V = RAG.first;
157     const std::vector<unsigned> &Attrs = RAG.second;
158     AttrBuilder B(Context);
159 
160     for (const auto &Attr : Attrs) {
161       auto R = NumberedAttrBuilders.find(Attr);
162       if (R != NumberedAttrBuilders.end())
163         B.merge(R->second);
164     }
165 
166     if (Function *Fn = dyn_cast<Function>(V)) {
167       AttributeList AS = Fn->getAttributes();
168       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
169       AS = AS.removeFnAttributes(Context);
170 
171       FnAttrs.merge(B);
172 
173       // If the alignment was parsed as an attribute, move to the alignment
174       // field.
175       if (FnAttrs.hasAlignmentAttr()) {
176         Fn->setAlignment(FnAttrs.getAlignment());
177         FnAttrs.removeAttribute(Attribute::Alignment);
178       }
179 
180       AS = AS.addFnAttributes(Context, FnAttrs);
181       Fn->setAttributes(AS);
182     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
183       AttributeList AS = CI->getAttributes();
184       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
185       AS = AS.removeFnAttributes(Context);
186       FnAttrs.merge(B);
187       AS = AS.addFnAttributes(Context, FnAttrs);
188       CI->setAttributes(AS);
189     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
190       AttributeList AS = II->getAttributes();
191       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
192       AS = AS.removeFnAttributes(Context);
193       FnAttrs.merge(B);
194       AS = AS.addFnAttributes(Context, FnAttrs);
195       II->setAttributes(AS);
196     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
197       AttributeList AS = CBI->getAttributes();
198       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
199       AS = AS.removeFnAttributes(Context);
200       FnAttrs.merge(B);
201       AS = AS.addFnAttributes(Context, FnAttrs);
202       CBI->setAttributes(AS);
203     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
204       AttrBuilder Attrs(M->getContext(), GV->getAttributes());
205       Attrs.merge(B);
206       GV->setAttributes(AttributeSet::get(Context,Attrs));
207     } else {
208       llvm_unreachable("invalid object with forward attribute group reference");
209     }
210   }
211 
212   // If there are entries in ForwardRefBlockAddresses at this point, the
213   // function was never defined.
214   if (!ForwardRefBlockAddresses.empty())
215     return error(ForwardRefBlockAddresses.begin()->first.Loc,
216                  "expected function name in blockaddress");
217 
218   for (const auto &NT : NumberedTypes)
219     if (NT.second.second.isValid())
220       return error(NT.second.second,
221                    "use of undefined type '%" + Twine(NT.first) + "'");
222 
223   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
224        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
225     if (I->second.second.isValid())
226       return error(I->second.second,
227                    "use of undefined type named '" + I->getKey() + "'");
228 
229   if (!ForwardRefComdats.empty())
230     return error(ForwardRefComdats.begin()->second,
231                  "use of undefined comdat '$" +
232                      ForwardRefComdats.begin()->first + "'");
233 
234   if (!ForwardRefVals.empty())
235     return error(ForwardRefVals.begin()->second.second,
236                  "use of undefined value '@" + ForwardRefVals.begin()->first +
237                      "'");
238 
239   if (!ForwardRefValIDs.empty())
240     return error(ForwardRefValIDs.begin()->second.second,
241                  "use of undefined value '@" +
242                      Twine(ForwardRefValIDs.begin()->first) + "'");
243 
244   if (!ForwardRefMDNodes.empty())
245     return error(ForwardRefMDNodes.begin()->second.second,
246                  "use of undefined metadata '!" +
247                      Twine(ForwardRefMDNodes.begin()->first) + "'");
248 
249   // Resolve metadata cycles.
250   for (auto &N : NumberedMetadata) {
251     if (N.second && !N.second->isResolved())
252       N.second->resolveCycles();
253   }
254 
255   for (auto *Inst : InstsWithTBAATag) {
256     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
257     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
258     auto *UpgradedMD = UpgradeTBAANode(*MD);
259     if (MD != UpgradedMD)
260       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
261   }
262 
263   // Look for intrinsic functions and CallInst that need to be upgraded.  We use
264   // make_early_inc_range here because we may remove some functions.
265   for (Function &F : llvm::make_early_inc_range(*M))
266     UpgradeCallsToIntrinsic(&F);
267 
268   // Some types could be renamed during loading if several modules are
269   // loaded in the same LLVMContext (LTO scenario). In this case we should
270   // remangle intrinsics names as well.
271   for (Function &F : llvm::make_early_inc_range(*M)) {
272     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) {
273       F.replaceAllUsesWith(Remangled.getValue());
274       F.eraseFromParent();
275     }
276   }
277 
278   if (UpgradeDebugInfo)
279     llvm::UpgradeDebugInfo(*M);
280 
281   UpgradeModuleFlags(*M);
282   UpgradeSectionAttributes(*M);
283 
284   if (!Slots)
285     return false;
286   // Initialize the slot mapping.
287   // Because by this point we've parsed and validated everything, we can "steal"
288   // the mapping from LLParser as it doesn't need it anymore.
289   Slots->GlobalValues = std::move(NumberedVals);
290   Slots->MetadataNodes = std::move(NumberedMetadata);
291   for (const auto &I : NamedTypes)
292     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
293   for (const auto &I : NumberedTypes)
294     Slots->Types.insert(std::make_pair(I.first, I.second.first));
295 
296   return false;
297 }
298 
299 /// Do final validity and basic correctness checks at the end of the index.
300 bool LLParser::validateEndOfIndex() {
301   if (!Index)
302     return false;
303 
304   if (!ForwardRefValueInfos.empty())
305     return error(ForwardRefValueInfos.begin()->second.front().second,
306                  "use of undefined summary '^" +
307                      Twine(ForwardRefValueInfos.begin()->first) + "'");
308 
309   if (!ForwardRefAliasees.empty())
310     return error(ForwardRefAliasees.begin()->second.front().second,
311                  "use of undefined summary '^" +
312                      Twine(ForwardRefAliasees.begin()->first) + "'");
313 
314   if (!ForwardRefTypeIds.empty())
315     return error(ForwardRefTypeIds.begin()->second.front().second,
316                  "use of undefined type id summary '^" +
317                      Twine(ForwardRefTypeIds.begin()->first) + "'");
318 
319   return false;
320 }
321 
322 //===----------------------------------------------------------------------===//
323 // Top-Level Entities
324 //===----------------------------------------------------------------------===//
325 
326 bool LLParser::parseTargetDefinitions() {
327   while (true) {
328     switch (Lex.getKind()) {
329     case lltok::kw_target:
330       if (parseTargetDefinition())
331         return true;
332       break;
333     case lltok::kw_source_filename:
334       if (parseSourceFileName())
335         return true;
336       break;
337     default:
338       return false;
339     }
340   }
341 }
342 
343 bool LLParser::parseTopLevelEntities() {
344   // If there is no Module, then parse just the summary index entries.
345   if (!M) {
346     while (true) {
347       switch (Lex.getKind()) {
348       case lltok::Eof:
349         return false;
350       case lltok::SummaryID:
351         if (parseSummaryEntry())
352           return true;
353         break;
354       case lltok::kw_source_filename:
355         if (parseSourceFileName())
356           return true;
357         break;
358       default:
359         // Skip everything else
360         Lex.Lex();
361       }
362     }
363   }
364   while (true) {
365     switch (Lex.getKind()) {
366     default:
367       return tokError("expected top-level entity");
368     case lltok::Eof: return false;
369     case lltok::kw_declare:
370       if (parseDeclare())
371         return true;
372       break;
373     case lltok::kw_define:
374       if (parseDefine())
375         return true;
376       break;
377     case lltok::kw_module:
378       if (parseModuleAsm())
379         return true;
380       break;
381     case lltok::LocalVarID:
382       if (parseUnnamedType())
383         return true;
384       break;
385     case lltok::LocalVar:
386       if (parseNamedType())
387         return true;
388       break;
389     case lltok::GlobalID:
390       if (parseUnnamedGlobal())
391         return true;
392       break;
393     case lltok::GlobalVar:
394       if (parseNamedGlobal())
395         return true;
396       break;
397     case lltok::ComdatVar:  if (parseComdat()) return true; break;
398     case lltok::exclaim:
399       if (parseStandaloneMetadata())
400         return true;
401       break;
402     case lltok::SummaryID:
403       if (parseSummaryEntry())
404         return true;
405       break;
406     case lltok::MetadataVar:
407       if (parseNamedMetadata())
408         return true;
409       break;
410     case lltok::kw_attributes:
411       if (parseUnnamedAttrGrp())
412         return true;
413       break;
414     case lltok::kw_uselistorder:
415       if (parseUseListOrder())
416         return true;
417       break;
418     case lltok::kw_uselistorder_bb:
419       if (parseUseListOrderBB())
420         return true;
421       break;
422     }
423   }
424 }
425 
426 /// toplevelentity
427 ///   ::= 'module' 'asm' STRINGCONSTANT
428 bool LLParser::parseModuleAsm() {
429   assert(Lex.getKind() == lltok::kw_module);
430   Lex.Lex();
431 
432   std::string AsmStr;
433   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
434       parseStringConstant(AsmStr))
435     return true;
436 
437   M->appendModuleInlineAsm(AsmStr);
438   return false;
439 }
440 
441 /// toplevelentity
442 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
443 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
444 bool LLParser::parseTargetDefinition() {
445   assert(Lex.getKind() == lltok::kw_target);
446   std::string Str;
447   switch (Lex.Lex()) {
448   default:
449     return tokError("unknown target property");
450   case lltok::kw_triple:
451     Lex.Lex();
452     if (parseToken(lltok::equal, "expected '=' after target triple") ||
453         parseStringConstant(Str))
454       return true;
455     M->setTargetTriple(Str);
456     return false;
457   case lltok::kw_datalayout:
458     Lex.Lex();
459     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
460         parseStringConstant(Str))
461       return true;
462     M->setDataLayout(Str);
463     return false;
464   }
465 }
466 
467 /// toplevelentity
468 ///   ::= 'source_filename' '=' STRINGCONSTANT
469 bool LLParser::parseSourceFileName() {
470   assert(Lex.getKind() == lltok::kw_source_filename);
471   Lex.Lex();
472   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
473       parseStringConstant(SourceFileName))
474     return true;
475   if (M)
476     M->setSourceFileName(SourceFileName);
477   return false;
478 }
479 
480 /// parseUnnamedType:
481 ///   ::= LocalVarID '=' 'type' type
482 bool LLParser::parseUnnamedType() {
483   LocTy TypeLoc = Lex.getLoc();
484   unsigned TypeID = Lex.getUIntVal();
485   Lex.Lex(); // eat LocalVarID;
486 
487   if (parseToken(lltok::equal, "expected '=' after name") ||
488       parseToken(lltok::kw_type, "expected 'type' after '='"))
489     return true;
490 
491   Type *Result = nullptr;
492   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
493     return true;
494 
495   if (!isa<StructType>(Result)) {
496     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
497     if (Entry.first)
498       return error(TypeLoc, "non-struct types may not be recursive");
499     Entry.first = Result;
500     Entry.second = SMLoc();
501   }
502 
503   return false;
504 }
505 
506 /// toplevelentity
507 ///   ::= LocalVar '=' 'type' type
508 bool LLParser::parseNamedType() {
509   std::string Name = Lex.getStrVal();
510   LocTy NameLoc = Lex.getLoc();
511   Lex.Lex();  // eat LocalVar.
512 
513   if (parseToken(lltok::equal, "expected '=' after name") ||
514       parseToken(lltok::kw_type, "expected 'type' after name"))
515     return true;
516 
517   Type *Result = nullptr;
518   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
519     return true;
520 
521   if (!isa<StructType>(Result)) {
522     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
523     if (Entry.first)
524       return error(NameLoc, "non-struct types may not be recursive");
525     Entry.first = Result;
526     Entry.second = SMLoc();
527   }
528 
529   return false;
530 }
531 
532 /// toplevelentity
533 ///   ::= 'declare' FunctionHeader
534 bool LLParser::parseDeclare() {
535   assert(Lex.getKind() == lltok::kw_declare);
536   Lex.Lex();
537 
538   std::vector<std::pair<unsigned, MDNode *>> MDs;
539   while (Lex.getKind() == lltok::MetadataVar) {
540     unsigned MDK;
541     MDNode *N;
542     if (parseMetadataAttachment(MDK, N))
543       return true;
544     MDs.push_back({MDK, N});
545   }
546 
547   Function *F;
548   if (parseFunctionHeader(F, false))
549     return true;
550   for (auto &MD : MDs)
551     F->addMetadata(MD.first, *MD.second);
552   return false;
553 }
554 
555 /// toplevelentity
556 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
557 bool LLParser::parseDefine() {
558   assert(Lex.getKind() == lltok::kw_define);
559   Lex.Lex();
560 
561   Function *F;
562   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
563          parseFunctionBody(*F);
564 }
565 
566 /// parseGlobalType
567 ///   ::= 'constant'
568 ///   ::= 'global'
569 bool LLParser::parseGlobalType(bool &IsConstant) {
570   if (Lex.getKind() == lltok::kw_constant)
571     IsConstant = true;
572   else if (Lex.getKind() == lltok::kw_global)
573     IsConstant = false;
574   else {
575     IsConstant = false;
576     return tokError("expected 'global' or 'constant'");
577   }
578   Lex.Lex();
579   return false;
580 }
581 
582 bool LLParser::parseOptionalUnnamedAddr(
583     GlobalVariable::UnnamedAddr &UnnamedAddr) {
584   if (EatIfPresent(lltok::kw_unnamed_addr))
585     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
586   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
587     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
588   else
589     UnnamedAddr = GlobalValue::UnnamedAddr::None;
590   return false;
591 }
592 
593 /// parseUnnamedGlobal:
594 ///   OptionalVisibility (ALIAS | IFUNC) ...
595 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
596 ///   OptionalDLLStorageClass
597 ///                                                     ...   -> global variable
598 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
599 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
600 ///   OptionalVisibility
601 ///                OptionalDLLStorageClass
602 ///                                                     ...   -> global variable
603 bool LLParser::parseUnnamedGlobal() {
604   unsigned VarID = NumberedVals.size();
605   std::string Name;
606   LocTy NameLoc = Lex.getLoc();
607 
608   // Handle the GlobalID form.
609   if (Lex.getKind() == lltok::GlobalID) {
610     if (Lex.getUIntVal() != VarID)
611       return error(Lex.getLoc(),
612                    "variable expected to be numbered '%" + Twine(VarID) + "'");
613     Lex.Lex(); // eat GlobalID;
614 
615     if (parseToken(lltok::equal, "expected '=' after name"))
616       return true;
617   }
618 
619   bool HasLinkage;
620   unsigned Linkage, Visibility, DLLStorageClass;
621   bool DSOLocal;
622   GlobalVariable::ThreadLocalMode TLM;
623   GlobalVariable::UnnamedAddr UnnamedAddr;
624   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
625                            DSOLocal) ||
626       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
627     return true;
628 
629   switch (Lex.getKind()) {
630   default:
631     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
632                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
633   case lltok::kw_alias:
634   case lltok::kw_ifunc:
635     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
636                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
637   }
638 }
639 
640 /// parseNamedGlobal:
641 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
642 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
643 ///                 OptionalVisibility OptionalDLLStorageClass
644 ///                                                     ...   -> global variable
645 bool LLParser::parseNamedGlobal() {
646   assert(Lex.getKind() == lltok::GlobalVar);
647   LocTy NameLoc = Lex.getLoc();
648   std::string Name = Lex.getStrVal();
649   Lex.Lex();
650 
651   bool HasLinkage;
652   unsigned Linkage, Visibility, DLLStorageClass;
653   bool DSOLocal;
654   GlobalVariable::ThreadLocalMode TLM;
655   GlobalVariable::UnnamedAddr UnnamedAddr;
656   if (parseToken(lltok::equal, "expected '=' in global variable") ||
657       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
658                            DSOLocal) ||
659       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
660     return true;
661 
662   switch (Lex.getKind()) {
663   default:
664     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
665                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
666   case lltok::kw_alias:
667   case lltok::kw_ifunc:
668     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
669                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
670   }
671 }
672 
673 bool LLParser::parseComdat() {
674   assert(Lex.getKind() == lltok::ComdatVar);
675   std::string Name = Lex.getStrVal();
676   LocTy NameLoc = Lex.getLoc();
677   Lex.Lex();
678 
679   if (parseToken(lltok::equal, "expected '=' here"))
680     return true;
681 
682   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
683     return tokError("expected comdat type");
684 
685   Comdat::SelectionKind SK;
686   switch (Lex.getKind()) {
687   default:
688     return tokError("unknown selection kind");
689   case lltok::kw_any:
690     SK = Comdat::Any;
691     break;
692   case lltok::kw_exactmatch:
693     SK = Comdat::ExactMatch;
694     break;
695   case lltok::kw_largest:
696     SK = Comdat::Largest;
697     break;
698   case lltok::kw_nodeduplicate:
699     SK = Comdat::NoDeduplicate;
700     break;
701   case lltok::kw_samesize:
702     SK = Comdat::SameSize;
703     break;
704   }
705   Lex.Lex();
706 
707   // See if the comdat was forward referenced, if so, use the comdat.
708   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
709   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
710   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
711     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
712 
713   Comdat *C;
714   if (I != ComdatSymTab.end())
715     C = &I->second;
716   else
717     C = M->getOrInsertComdat(Name);
718   C->setSelectionKind(SK);
719 
720   return false;
721 }
722 
723 // MDString:
724 //   ::= '!' STRINGCONSTANT
725 bool LLParser::parseMDString(MDString *&Result) {
726   std::string Str;
727   if (parseStringConstant(Str))
728     return true;
729   Result = MDString::get(Context, Str);
730   return false;
731 }
732 
733 // MDNode:
734 //   ::= '!' MDNodeNumber
735 bool LLParser::parseMDNodeID(MDNode *&Result) {
736   // !{ ..., !42, ... }
737   LocTy IDLoc = Lex.getLoc();
738   unsigned MID = 0;
739   if (parseUInt32(MID))
740     return true;
741 
742   // If not a forward reference, just return it now.
743   if (NumberedMetadata.count(MID)) {
744     Result = NumberedMetadata[MID];
745     return false;
746   }
747 
748   // Otherwise, create MDNode forward reference.
749   auto &FwdRef = ForwardRefMDNodes[MID];
750   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
751 
752   Result = FwdRef.first.get();
753   NumberedMetadata[MID].reset(Result);
754   return false;
755 }
756 
757 /// parseNamedMetadata:
758 ///   !foo = !{ !1, !2 }
759 bool LLParser::parseNamedMetadata() {
760   assert(Lex.getKind() == lltok::MetadataVar);
761   std::string Name = Lex.getStrVal();
762   Lex.Lex();
763 
764   if (parseToken(lltok::equal, "expected '=' here") ||
765       parseToken(lltok::exclaim, "Expected '!' here") ||
766       parseToken(lltok::lbrace, "Expected '{' here"))
767     return true;
768 
769   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
770   if (Lex.getKind() != lltok::rbrace)
771     do {
772       MDNode *N = nullptr;
773       // parse DIExpressions inline as a special case. They are still MDNodes,
774       // so they can still appear in named metadata. Remove this logic if they
775       // become plain Metadata.
776       if (Lex.getKind() == lltok::MetadataVar &&
777           Lex.getStrVal() == "DIExpression") {
778         if (parseDIExpression(N, /*IsDistinct=*/false))
779           return true;
780         // DIArgLists should only appear inline in a function, as they may
781         // contain LocalAsMetadata arguments which require a function context.
782       } else if (Lex.getKind() == lltok::MetadataVar &&
783                  Lex.getStrVal() == "DIArgList") {
784         return tokError("found DIArgList outside of function");
785       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
786                  parseMDNodeID(N)) {
787         return true;
788       }
789       NMD->addOperand(N);
790     } while (EatIfPresent(lltok::comma));
791 
792   return parseToken(lltok::rbrace, "expected end of metadata node");
793 }
794 
795 /// parseStandaloneMetadata:
796 ///   !42 = !{...}
797 bool LLParser::parseStandaloneMetadata() {
798   assert(Lex.getKind() == lltok::exclaim);
799   Lex.Lex();
800   unsigned MetadataID = 0;
801 
802   MDNode *Init;
803   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
804     return true;
805 
806   // Detect common error, from old metadata syntax.
807   if (Lex.getKind() == lltok::Type)
808     return tokError("unexpected type in metadata definition");
809 
810   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
811   if (Lex.getKind() == lltok::MetadataVar) {
812     if (parseSpecializedMDNode(Init, IsDistinct))
813       return true;
814   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
815              parseMDTuple(Init, IsDistinct))
816     return true;
817 
818   // See if this was forward referenced, if so, handle it.
819   auto FI = ForwardRefMDNodes.find(MetadataID);
820   if (FI != ForwardRefMDNodes.end()) {
821     FI->second.first->replaceAllUsesWith(Init);
822     ForwardRefMDNodes.erase(FI);
823 
824     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
825   } else {
826     if (NumberedMetadata.count(MetadataID))
827       return tokError("Metadata id is already used");
828     NumberedMetadata[MetadataID].reset(Init);
829   }
830 
831   return false;
832 }
833 
834 // Skips a single module summary entry.
835 bool LLParser::skipModuleSummaryEntry() {
836   // Each module summary entry consists of a tag for the entry
837   // type, followed by a colon, then the fields which may be surrounded by
838   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
839   // support is in place we will look for the tokens corresponding to the
840   // expected tags.
841   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
842       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
843       Lex.getKind() != lltok::kw_blockcount)
844     return tokError(
845         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
846         "start of summary entry");
847   if (Lex.getKind() == lltok::kw_flags)
848     return parseSummaryIndexFlags();
849   if (Lex.getKind() == lltok::kw_blockcount)
850     return parseBlockCount();
851   Lex.Lex();
852   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
853       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
854     return true;
855   // Now walk through the parenthesized entry, until the number of open
856   // parentheses goes back down to 0 (the first '(' was parsed above).
857   unsigned NumOpenParen = 1;
858   do {
859     switch (Lex.getKind()) {
860     case lltok::lparen:
861       NumOpenParen++;
862       break;
863     case lltok::rparen:
864       NumOpenParen--;
865       break;
866     case lltok::Eof:
867       return tokError("found end of file while parsing summary entry");
868     default:
869       // Skip everything in between parentheses.
870       break;
871     }
872     Lex.Lex();
873   } while (NumOpenParen > 0);
874   return false;
875 }
876 
877 /// SummaryEntry
878 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
879 bool LLParser::parseSummaryEntry() {
880   assert(Lex.getKind() == lltok::SummaryID);
881   unsigned SummaryID = Lex.getUIntVal();
882 
883   // For summary entries, colons should be treated as distinct tokens,
884   // not an indication of the end of a label token.
885   Lex.setIgnoreColonInIdentifiers(true);
886 
887   Lex.Lex();
888   if (parseToken(lltok::equal, "expected '=' here"))
889     return true;
890 
891   // If we don't have an index object, skip the summary entry.
892   if (!Index)
893     return skipModuleSummaryEntry();
894 
895   bool result = false;
896   switch (Lex.getKind()) {
897   case lltok::kw_gv:
898     result = parseGVEntry(SummaryID);
899     break;
900   case lltok::kw_module:
901     result = parseModuleEntry(SummaryID);
902     break;
903   case lltok::kw_typeid:
904     result = parseTypeIdEntry(SummaryID);
905     break;
906   case lltok::kw_typeidCompatibleVTable:
907     result = parseTypeIdCompatibleVtableEntry(SummaryID);
908     break;
909   case lltok::kw_flags:
910     result = parseSummaryIndexFlags();
911     break;
912   case lltok::kw_blockcount:
913     result = parseBlockCount();
914     break;
915   default:
916     result = error(Lex.getLoc(), "unexpected summary kind");
917     break;
918   }
919   Lex.setIgnoreColonInIdentifiers(false);
920   return result;
921 }
922 
923 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
924   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
925          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
926 }
927 
928 // If there was an explicit dso_local, update GV. In the absence of an explicit
929 // dso_local we keep the default value.
930 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
931   if (DSOLocal)
932     GV.setDSOLocal(true);
933 }
934 
935 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
936                                               Type *Ty2) {
937   std::string ErrString;
938   raw_string_ostream ErrOS(ErrString);
939   ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
940   return ErrOS.str();
941 }
942 
943 /// parseAliasOrIFunc:
944 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
945 ///                     OptionalVisibility OptionalDLLStorageClass
946 ///                     OptionalThreadLocal OptionalUnnamedAddr
947 ///                     'alias|ifunc' AliaseeOrResolver SymbolAttrs*
948 ///
949 /// AliaseeOrResolver
950 ///   ::= TypeAndValue
951 ///
952 /// SymbolAttrs
953 ///   ::= ',' 'partition' StringConstant
954 ///
955 /// Everything through OptionalUnnamedAddr has already been parsed.
956 ///
957 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc,
958                                  unsigned L, unsigned Visibility,
959                                  unsigned DLLStorageClass, bool DSOLocal,
960                                  GlobalVariable::ThreadLocalMode TLM,
961                                  GlobalVariable::UnnamedAddr UnnamedAddr) {
962   bool IsAlias;
963   if (Lex.getKind() == lltok::kw_alias)
964     IsAlias = true;
965   else if (Lex.getKind() == lltok::kw_ifunc)
966     IsAlias = false;
967   else
968     llvm_unreachable("Not an alias or ifunc!");
969   Lex.Lex();
970 
971   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
972 
973   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
974     return error(NameLoc, "invalid linkage type for alias");
975 
976   if (!isValidVisibilityForLinkage(Visibility, L))
977     return error(NameLoc,
978                  "symbol with local linkage must have default visibility");
979 
980   Type *Ty;
981   LocTy ExplicitTypeLoc = Lex.getLoc();
982   if (parseType(Ty) ||
983       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
984     return true;
985 
986   Constant *Aliasee;
987   LocTy AliaseeLoc = Lex.getLoc();
988   if (Lex.getKind() != lltok::kw_bitcast &&
989       Lex.getKind() != lltok::kw_getelementptr &&
990       Lex.getKind() != lltok::kw_addrspacecast &&
991       Lex.getKind() != lltok::kw_inttoptr) {
992     if (parseGlobalTypeAndValue(Aliasee))
993       return true;
994   } else {
995     // The bitcast dest type is not present, it is implied by the dest type.
996     ValID ID;
997     if (parseValID(ID, /*PFS=*/nullptr))
998       return true;
999     if (ID.Kind != ValID::t_Constant)
1000       return error(AliaseeLoc, "invalid aliasee");
1001     Aliasee = ID.ConstantVal;
1002   }
1003 
1004   Type *AliaseeType = Aliasee->getType();
1005   auto *PTy = dyn_cast<PointerType>(AliaseeType);
1006   if (!PTy)
1007     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
1008   unsigned AddrSpace = PTy->getAddressSpace();
1009 
1010   if (IsAlias) {
1011     if (!PTy->isOpaqueOrPointeeTypeMatches(Ty))
1012       return error(
1013           ExplicitTypeLoc,
1014           typeComparisonErrorMessage(
1015               "explicit pointee type doesn't match operand's pointee type", Ty,
1016               PTy->getNonOpaquePointerElementType()));
1017   } else {
1018     if (!PTy->isOpaque() &&
1019         !PTy->getNonOpaquePointerElementType()->isFunctionTy())
1020       return error(ExplicitTypeLoc,
1021                    "explicit pointee type should be a function type");
1022   }
1023 
1024   GlobalValue *GVal = nullptr;
1025 
1026   // See if the alias was forward referenced, if so, prepare to replace the
1027   // forward reference.
1028   if (!Name.empty()) {
1029     auto I = ForwardRefVals.find(Name);
1030     if (I != ForwardRefVals.end()) {
1031       GVal = I->second.first;
1032       ForwardRefVals.erase(Name);
1033     } else if (M->getNamedValue(Name)) {
1034       return error(NameLoc, "redefinition of global '@" + Name + "'");
1035     }
1036   } else {
1037     auto I = ForwardRefValIDs.find(NumberedVals.size());
1038     if (I != ForwardRefValIDs.end()) {
1039       GVal = I->second.first;
1040       ForwardRefValIDs.erase(I);
1041     }
1042   }
1043 
1044   // Okay, create the alias/ifunc but do not insert it into the module yet.
1045   std::unique_ptr<GlobalAlias> GA;
1046   std::unique_ptr<GlobalIFunc> GI;
1047   GlobalValue *GV;
1048   if (IsAlias) {
1049     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1050                                  (GlobalValue::LinkageTypes)Linkage, Name,
1051                                  Aliasee, /*Parent*/ nullptr));
1052     GV = GA.get();
1053   } else {
1054     GI.reset(GlobalIFunc::create(Ty, AddrSpace,
1055                                  (GlobalValue::LinkageTypes)Linkage, Name,
1056                                  Aliasee, /*Parent*/ nullptr));
1057     GV = GI.get();
1058   }
1059   GV->setThreadLocalMode(TLM);
1060   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1061   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1062   GV->setUnnamedAddr(UnnamedAddr);
1063   maybeSetDSOLocal(DSOLocal, *GV);
1064 
1065   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1066   // Now parse them if there are any.
1067   while (Lex.getKind() == lltok::comma) {
1068     Lex.Lex();
1069 
1070     if (Lex.getKind() == lltok::kw_partition) {
1071       Lex.Lex();
1072       GV->setPartition(Lex.getStrVal());
1073       if (parseToken(lltok::StringConstant, "expected partition string"))
1074         return true;
1075     } else {
1076       return tokError("unknown alias or ifunc property!");
1077     }
1078   }
1079 
1080   if (Name.empty())
1081     NumberedVals.push_back(GV);
1082 
1083   if (GVal) {
1084     // Verify that types agree.
1085     if (GVal->getType() != GV->getType())
1086       return error(
1087           ExplicitTypeLoc,
1088           "forward reference and definition of alias have different types");
1089 
1090     // If they agree, just RAUW the old value with the alias and remove the
1091     // forward ref info.
1092     GVal->replaceAllUsesWith(GV);
1093     GVal->eraseFromParent();
1094   }
1095 
1096   // Insert into the module, we know its name won't collide now.
1097   if (IsAlias)
1098     M->getAliasList().push_back(GA.release());
1099   else
1100     M->getIFuncList().push_back(GI.release());
1101   assert(GV->getName() == Name && "Should not be a name conflict!");
1102 
1103   return false;
1104 }
1105 
1106 static bool isSanitizer(lltok::Kind Kind) {
1107   switch (Kind) {
1108   case lltok::kw_no_sanitize_address:
1109   case lltok::kw_no_sanitize_hwaddress:
1110   case lltok::kw_no_sanitize_memtag:
1111   case lltok::kw_sanitize_address_dyninit:
1112     return true;
1113   default:
1114     return false;
1115   }
1116 }
1117 
1118 bool LLParser::parseSanitizer(GlobalVariable *GV) {
1119   using SanitizerMetadata = GlobalValue::SanitizerMetadata;
1120   SanitizerMetadata Meta;
1121   if (GV->hasSanitizerMetadata())
1122     Meta = GV->getSanitizerMetadata();
1123 
1124   switch (Lex.getKind()) {
1125   case lltok::kw_no_sanitize_address:
1126     Meta.NoAddress = true;
1127     break;
1128   case lltok::kw_no_sanitize_hwaddress:
1129     Meta.NoHWAddress = true;
1130     break;
1131   case lltok::kw_no_sanitize_memtag:
1132     Meta.NoMemtag = true;
1133     break;
1134   case lltok::kw_sanitize_address_dyninit:
1135     Meta.IsDynInit = true;
1136     break;
1137   default:
1138     return tokError("non-sanitizer token passed to LLParser::parseSanitizer()");
1139   }
1140   GV->setSanitizerMetadata(Meta);
1141   Lex.Lex();
1142   return false;
1143 }
1144 
1145 /// parseGlobal
1146 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1147 ///       OptionalVisibility OptionalDLLStorageClass
1148 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1149 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1150 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1151 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1152 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1153 ///       Const OptionalAttrs
1154 ///
1155 /// Everything up to and including OptionalUnnamedAddr has been parsed
1156 /// already.
1157 ///
1158 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1159                            unsigned Linkage, bool HasLinkage,
1160                            unsigned Visibility, unsigned DLLStorageClass,
1161                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1162                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1163   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1164     return error(NameLoc,
1165                  "symbol with local linkage must have default visibility");
1166 
1167   unsigned AddrSpace;
1168   bool IsConstant, IsExternallyInitialized;
1169   LocTy IsExternallyInitializedLoc;
1170   LocTy TyLoc;
1171 
1172   Type *Ty = nullptr;
1173   if (parseOptionalAddrSpace(AddrSpace) ||
1174       parseOptionalToken(lltok::kw_externally_initialized,
1175                          IsExternallyInitialized,
1176                          &IsExternallyInitializedLoc) ||
1177       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1178     return true;
1179 
1180   // If the linkage is specified and is external, then no initializer is
1181   // present.
1182   Constant *Init = nullptr;
1183   if (!HasLinkage ||
1184       !GlobalValue::isValidDeclarationLinkage(
1185           (GlobalValue::LinkageTypes)Linkage)) {
1186     if (parseGlobalValue(Ty, Init))
1187       return true;
1188   }
1189 
1190   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1191     return error(TyLoc, "invalid type for global variable");
1192 
1193   GlobalValue *GVal = nullptr;
1194 
1195   // See if the global was forward referenced, if so, use the global.
1196   if (!Name.empty()) {
1197     auto I = ForwardRefVals.find(Name);
1198     if (I != ForwardRefVals.end()) {
1199       GVal = I->second.first;
1200       ForwardRefVals.erase(I);
1201     } else if (M->getNamedValue(Name)) {
1202       return error(NameLoc, "redefinition of global '@" + Name + "'");
1203     }
1204   } else {
1205     auto I = ForwardRefValIDs.find(NumberedVals.size());
1206     if (I != ForwardRefValIDs.end()) {
1207       GVal = I->second.first;
1208       ForwardRefValIDs.erase(I);
1209     }
1210   }
1211 
1212   GlobalVariable *GV = new GlobalVariable(
1213       *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1214       GlobalVariable::NotThreadLocal, AddrSpace);
1215 
1216   if (Name.empty())
1217     NumberedVals.push_back(GV);
1218 
1219   // Set the parsed properties on the global.
1220   if (Init)
1221     GV->setInitializer(Init);
1222   GV->setConstant(IsConstant);
1223   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1224   maybeSetDSOLocal(DSOLocal, *GV);
1225   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1226   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1227   GV->setExternallyInitialized(IsExternallyInitialized);
1228   GV->setThreadLocalMode(TLM);
1229   GV->setUnnamedAddr(UnnamedAddr);
1230 
1231   if (GVal) {
1232     if (GVal->getType() != Ty->getPointerTo(AddrSpace))
1233       return error(
1234           TyLoc,
1235           "forward reference and definition of global have different types");
1236 
1237     GVal->replaceAllUsesWith(GV);
1238     GVal->eraseFromParent();
1239   }
1240 
1241   // parse attributes on the global.
1242   while (Lex.getKind() == lltok::comma) {
1243     Lex.Lex();
1244 
1245     if (Lex.getKind() == lltok::kw_section) {
1246       Lex.Lex();
1247       GV->setSection(Lex.getStrVal());
1248       if (parseToken(lltok::StringConstant, "expected global section string"))
1249         return true;
1250     } else if (Lex.getKind() == lltok::kw_partition) {
1251       Lex.Lex();
1252       GV->setPartition(Lex.getStrVal());
1253       if (parseToken(lltok::StringConstant, "expected partition string"))
1254         return true;
1255     } else if (Lex.getKind() == lltok::kw_align) {
1256       MaybeAlign Alignment;
1257       if (parseOptionalAlignment(Alignment))
1258         return true;
1259       GV->setAlignment(Alignment);
1260     } else if (Lex.getKind() == lltok::MetadataVar) {
1261       if (parseGlobalObjectMetadataAttachment(*GV))
1262         return true;
1263     } else if (isSanitizer(Lex.getKind())) {
1264       if (parseSanitizer(GV))
1265         return true;
1266     } else {
1267       Comdat *C;
1268       if (parseOptionalComdat(Name, C))
1269         return true;
1270       if (C)
1271         GV->setComdat(C);
1272       else
1273         return tokError("unknown global variable property!");
1274     }
1275   }
1276 
1277   AttrBuilder Attrs(M->getContext());
1278   LocTy BuiltinLoc;
1279   std::vector<unsigned> FwdRefAttrGrps;
1280   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1281     return true;
1282   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1283     GV->setAttributes(AttributeSet::get(Context, Attrs));
1284     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1285   }
1286 
1287   return false;
1288 }
1289 
1290 /// parseUnnamedAttrGrp
1291 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1292 bool LLParser::parseUnnamedAttrGrp() {
1293   assert(Lex.getKind() == lltok::kw_attributes);
1294   LocTy AttrGrpLoc = Lex.getLoc();
1295   Lex.Lex();
1296 
1297   if (Lex.getKind() != lltok::AttrGrpID)
1298     return tokError("expected attribute group id");
1299 
1300   unsigned VarID = Lex.getUIntVal();
1301   std::vector<unsigned> unused;
1302   LocTy BuiltinLoc;
1303   Lex.Lex();
1304 
1305   if (parseToken(lltok::equal, "expected '=' here") ||
1306       parseToken(lltok::lbrace, "expected '{' here"))
1307     return true;
1308 
1309   auto R = NumberedAttrBuilders.find(VarID);
1310   if (R == NumberedAttrBuilders.end())
1311     R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first;
1312 
1313   if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) ||
1314       parseToken(lltok::rbrace, "expected end of attribute group"))
1315     return true;
1316 
1317   if (!R->second.hasAttributes())
1318     return error(AttrGrpLoc, "attribute group has no attributes");
1319 
1320   return false;
1321 }
1322 
1323 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
1324   switch (Kind) {
1325 #define GET_ATTR_NAMES
1326 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
1327   case lltok::kw_##DISPLAY_NAME: \
1328     return Attribute::ENUM_NAME;
1329 #include "llvm/IR/Attributes.inc"
1330   default:
1331     return Attribute::None;
1332   }
1333 }
1334 
1335 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
1336                                   bool InAttrGroup) {
1337   if (Attribute::isTypeAttrKind(Attr))
1338     return parseRequiredTypeAttr(B, Lex.getKind(), Attr);
1339 
1340   switch (Attr) {
1341   case Attribute::Alignment: {
1342     MaybeAlign Alignment;
1343     if (InAttrGroup) {
1344       uint32_t Value = 0;
1345       Lex.Lex();
1346       if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1347         return true;
1348       Alignment = Align(Value);
1349     } else {
1350       if (parseOptionalAlignment(Alignment, true))
1351         return true;
1352     }
1353     B.addAlignmentAttr(Alignment);
1354     return false;
1355   }
1356   case Attribute::StackAlignment: {
1357     unsigned Alignment;
1358     if (InAttrGroup) {
1359       Lex.Lex();
1360       if (parseToken(lltok::equal, "expected '=' here") ||
1361           parseUInt32(Alignment))
1362         return true;
1363     } else {
1364       if (parseOptionalStackAlignment(Alignment))
1365         return true;
1366     }
1367     B.addStackAlignmentAttr(Alignment);
1368     return false;
1369   }
1370   case Attribute::AllocSize: {
1371     unsigned ElemSizeArg;
1372     Optional<unsigned> NumElemsArg;
1373     if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1374       return true;
1375     B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1376     return false;
1377   }
1378   case Attribute::VScaleRange: {
1379     unsigned MinValue, MaxValue;
1380     if (parseVScaleRangeArguments(MinValue, MaxValue))
1381       return true;
1382     B.addVScaleRangeAttr(MinValue,
1383                          MaxValue > 0 ? MaxValue : Optional<unsigned>());
1384     return false;
1385   }
1386   case Attribute::Dereferenceable: {
1387     uint64_t Bytes;
1388     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1389       return true;
1390     B.addDereferenceableAttr(Bytes);
1391     return false;
1392   }
1393   case Attribute::DereferenceableOrNull: {
1394     uint64_t Bytes;
1395     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1396       return true;
1397     B.addDereferenceableOrNullAttr(Bytes);
1398     return false;
1399   }
1400   case Attribute::UWTable: {
1401     UWTableKind Kind;
1402     if (parseOptionalUWTableKind(Kind))
1403       return true;
1404     B.addUWTableAttr(Kind);
1405     return false;
1406   }
1407   case Attribute::AllocKind: {
1408     AllocFnKind Kind = AllocFnKind::Unknown;
1409     if (parseAllocKind(Kind))
1410       return true;
1411     B.addAllocKindAttr(Kind);
1412     return false;
1413   }
1414   default:
1415     B.addAttribute(Attr);
1416     Lex.Lex();
1417     return false;
1418   }
1419 }
1420 
1421 /// parseFnAttributeValuePairs
1422 ///   ::= <attr> | <attr> '=' <value>
1423 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1424                                           std::vector<unsigned> &FwdRefAttrGrps,
1425                                           bool InAttrGrp, LocTy &BuiltinLoc) {
1426   bool HaveError = false;
1427 
1428   B.clear();
1429 
1430   while (true) {
1431     lltok::Kind Token = Lex.getKind();
1432     if (Token == lltok::rbrace)
1433       return HaveError; // Finished.
1434 
1435     if (Token == lltok::StringConstant) {
1436       if (parseStringAttribute(B))
1437         return true;
1438       continue;
1439     }
1440 
1441     if (Token == lltok::AttrGrpID) {
1442       // Allow a function to reference an attribute group:
1443       //
1444       //   define void @foo() #1 { ... }
1445       if (InAttrGrp) {
1446         HaveError |= error(
1447             Lex.getLoc(),
1448             "cannot have an attribute group reference in an attribute group");
1449       } else {
1450         // Save the reference to the attribute group. We'll fill it in later.
1451         FwdRefAttrGrps.push_back(Lex.getUIntVal());
1452       }
1453       Lex.Lex();
1454       continue;
1455     }
1456 
1457     SMLoc Loc = Lex.getLoc();
1458     if (Token == lltok::kw_builtin)
1459       BuiltinLoc = Loc;
1460 
1461     Attribute::AttrKind Attr = tokenToAttribute(Token);
1462     if (Attr == Attribute::None) {
1463       if (!InAttrGrp)
1464         return HaveError;
1465       return error(Lex.getLoc(), "unterminated attribute group");
1466     }
1467 
1468     if (parseEnumAttribute(Attr, B, InAttrGrp))
1469       return true;
1470 
1471     // As a hack, we allow function alignment to be initially parsed as an
1472     // attribute on a function declaration/definition or added to an attribute
1473     // group and later moved to the alignment field.
1474     if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment)
1475       HaveError |= error(Loc, "this attribute does not apply to functions");
1476   }
1477 }
1478 
1479 //===----------------------------------------------------------------------===//
1480 // GlobalValue Reference/Resolution Routines.
1481 //===----------------------------------------------------------------------===//
1482 
1483 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1484   // For opaque pointers, the used global type does not matter. We will later
1485   // RAUW it with a global/function of the correct type.
1486   if (PTy->isOpaque())
1487     return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1488                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1489                               nullptr, GlobalVariable::NotThreadLocal,
1490                               PTy->getAddressSpace());
1491 
1492   Type *ElemTy = PTy->getNonOpaquePointerElementType();
1493   if (auto *FT = dyn_cast<FunctionType>(ElemTy))
1494     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1495                             PTy->getAddressSpace(), "", M);
1496   else
1497     return new GlobalVariable(
1498         *M, ElemTy, false, GlobalValue::ExternalWeakLinkage, nullptr, "",
1499         nullptr, GlobalVariable::NotThreadLocal, PTy->getAddressSpace());
1500 }
1501 
1502 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1503                                         Value *Val) {
1504   Type *ValTy = Val->getType();
1505   if (ValTy == Ty)
1506     return Val;
1507   if (Ty->isLabelTy())
1508     error(Loc, "'" + Name + "' is not a basic block");
1509   else
1510     error(Loc, "'" + Name + "' defined with type '" +
1511                    getTypeString(Val->getType()) + "' but expected '" +
1512                    getTypeString(Ty) + "'");
1513   return nullptr;
1514 }
1515 
1516 /// getGlobalVal - Get a value with the specified name or ID, creating a
1517 /// forward reference record if needed.  This can return null if the value
1518 /// exists but does not have the right type.
1519 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1520                                     LocTy Loc) {
1521   PointerType *PTy = dyn_cast<PointerType>(Ty);
1522   if (!PTy) {
1523     error(Loc, "global variable reference must have pointer type");
1524     return nullptr;
1525   }
1526 
1527   // Look this name up in the normal function symbol table.
1528   GlobalValue *Val =
1529     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1530 
1531   // If this is a forward reference for the value, see if we already created a
1532   // forward ref record.
1533   if (!Val) {
1534     auto I = ForwardRefVals.find(Name);
1535     if (I != ForwardRefVals.end())
1536       Val = I->second.first;
1537   }
1538 
1539   // If we have the value in the symbol table or fwd-ref table, return it.
1540   if (Val)
1541     return cast_or_null<GlobalValue>(
1542         checkValidVariableType(Loc, "@" + Name, Ty, Val));
1543 
1544   // Otherwise, create a new forward reference for this value and remember it.
1545   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1546   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1547   return FwdVal;
1548 }
1549 
1550 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1551   PointerType *PTy = dyn_cast<PointerType>(Ty);
1552   if (!PTy) {
1553     error(Loc, "global variable reference must have pointer type");
1554     return nullptr;
1555   }
1556 
1557   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1558 
1559   // If this is a forward reference for the value, see if we already created a
1560   // forward ref record.
1561   if (!Val) {
1562     auto I = ForwardRefValIDs.find(ID);
1563     if (I != ForwardRefValIDs.end())
1564       Val = I->second.first;
1565   }
1566 
1567   // If we have the value in the symbol table or fwd-ref table, return it.
1568   if (Val)
1569     return cast_or_null<GlobalValue>(
1570         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val));
1571 
1572   // Otherwise, create a new forward reference for this value and remember it.
1573   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1574   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1575   return FwdVal;
1576 }
1577 
1578 //===----------------------------------------------------------------------===//
1579 // Comdat Reference/Resolution Routines.
1580 //===----------------------------------------------------------------------===//
1581 
1582 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1583   // Look this name up in the comdat symbol table.
1584   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1585   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1586   if (I != ComdatSymTab.end())
1587     return &I->second;
1588 
1589   // Otherwise, create a new forward reference for this value and remember it.
1590   Comdat *C = M->getOrInsertComdat(Name);
1591   ForwardRefComdats[Name] = Loc;
1592   return C;
1593 }
1594 
1595 //===----------------------------------------------------------------------===//
1596 // Helper Routines.
1597 //===----------------------------------------------------------------------===//
1598 
1599 /// parseToken - If the current token has the specified kind, eat it and return
1600 /// success.  Otherwise, emit the specified error and return failure.
1601 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1602   if (Lex.getKind() != T)
1603     return tokError(ErrMsg);
1604   Lex.Lex();
1605   return false;
1606 }
1607 
1608 /// parseStringConstant
1609 ///   ::= StringConstant
1610 bool LLParser::parseStringConstant(std::string &Result) {
1611   if (Lex.getKind() != lltok::StringConstant)
1612     return tokError("expected string constant");
1613   Result = Lex.getStrVal();
1614   Lex.Lex();
1615   return false;
1616 }
1617 
1618 /// parseUInt32
1619 ///   ::= uint32
1620 bool LLParser::parseUInt32(uint32_t &Val) {
1621   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1622     return tokError("expected integer");
1623   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1624   if (Val64 != unsigned(Val64))
1625     return tokError("expected 32-bit integer (too large)");
1626   Val = Val64;
1627   Lex.Lex();
1628   return false;
1629 }
1630 
1631 /// parseUInt64
1632 ///   ::= uint64
1633 bool LLParser::parseUInt64(uint64_t &Val) {
1634   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1635     return tokError("expected integer");
1636   Val = Lex.getAPSIntVal().getLimitedValue();
1637   Lex.Lex();
1638   return false;
1639 }
1640 
1641 /// parseTLSModel
1642 ///   := 'localdynamic'
1643 ///   := 'initialexec'
1644 ///   := 'localexec'
1645 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1646   switch (Lex.getKind()) {
1647     default:
1648       return tokError("expected localdynamic, initialexec or localexec");
1649     case lltok::kw_localdynamic:
1650       TLM = GlobalVariable::LocalDynamicTLSModel;
1651       break;
1652     case lltok::kw_initialexec:
1653       TLM = GlobalVariable::InitialExecTLSModel;
1654       break;
1655     case lltok::kw_localexec:
1656       TLM = GlobalVariable::LocalExecTLSModel;
1657       break;
1658   }
1659 
1660   Lex.Lex();
1661   return false;
1662 }
1663 
1664 /// parseOptionalThreadLocal
1665 ///   := /*empty*/
1666 ///   := 'thread_local'
1667 ///   := 'thread_local' '(' tlsmodel ')'
1668 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1669   TLM = GlobalVariable::NotThreadLocal;
1670   if (!EatIfPresent(lltok::kw_thread_local))
1671     return false;
1672 
1673   TLM = GlobalVariable::GeneralDynamicTLSModel;
1674   if (Lex.getKind() == lltok::lparen) {
1675     Lex.Lex();
1676     return parseTLSModel(TLM) ||
1677            parseToken(lltok::rparen, "expected ')' after thread local model");
1678   }
1679   return false;
1680 }
1681 
1682 /// parseOptionalAddrSpace
1683 ///   := /*empty*/
1684 ///   := 'addrspace' '(' uint32 ')'
1685 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1686   AddrSpace = DefaultAS;
1687   if (!EatIfPresent(lltok::kw_addrspace))
1688     return false;
1689   return parseToken(lltok::lparen, "expected '(' in address space") ||
1690          parseUInt32(AddrSpace) ||
1691          parseToken(lltok::rparen, "expected ')' in address space");
1692 }
1693 
1694 /// parseStringAttribute
1695 ///   := StringConstant
1696 ///   := StringConstant '=' StringConstant
1697 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1698   std::string Attr = Lex.getStrVal();
1699   Lex.Lex();
1700   std::string Val;
1701   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1702     return true;
1703   B.addAttribute(Attr, Val);
1704   return false;
1705 }
1706 
1707 /// Parse a potentially empty list of parameter or return attributes.
1708 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
1709   bool HaveError = false;
1710 
1711   B.clear();
1712 
1713   while (true) {
1714     lltok::Kind Token = Lex.getKind();
1715     if (Token == lltok::StringConstant) {
1716       if (parseStringAttribute(B))
1717         return true;
1718       continue;
1719     }
1720 
1721     SMLoc Loc = Lex.getLoc();
1722     Attribute::AttrKind Attr = tokenToAttribute(Token);
1723     if (Attr == Attribute::None)
1724       return HaveError;
1725 
1726     if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
1727       return true;
1728 
1729     if (IsParam && !Attribute::canUseAsParamAttr(Attr))
1730       HaveError |= error(Loc, "this attribute does not apply to parameters");
1731     if (!IsParam && !Attribute::canUseAsRetAttr(Attr))
1732       HaveError |= error(Loc, "this attribute does not apply to return values");
1733   }
1734 }
1735 
1736 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1737   HasLinkage = true;
1738   switch (Kind) {
1739   default:
1740     HasLinkage = false;
1741     return GlobalValue::ExternalLinkage;
1742   case lltok::kw_private:
1743     return GlobalValue::PrivateLinkage;
1744   case lltok::kw_internal:
1745     return GlobalValue::InternalLinkage;
1746   case lltok::kw_weak:
1747     return GlobalValue::WeakAnyLinkage;
1748   case lltok::kw_weak_odr:
1749     return GlobalValue::WeakODRLinkage;
1750   case lltok::kw_linkonce:
1751     return GlobalValue::LinkOnceAnyLinkage;
1752   case lltok::kw_linkonce_odr:
1753     return GlobalValue::LinkOnceODRLinkage;
1754   case lltok::kw_available_externally:
1755     return GlobalValue::AvailableExternallyLinkage;
1756   case lltok::kw_appending:
1757     return GlobalValue::AppendingLinkage;
1758   case lltok::kw_common:
1759     return GlobalValue::CommonLinkage;
1760   case lltok::kw_extern_weak:
1761     return GlobalValue::ExternalWeakLinkage;
1762   case lltok::kw_external:
1763     return GlobalValue::ExternalLinkage;
1764   }
1765 }
1766 
1767 /// parseOptionalLinkage
1768 ///   ::= /*empty*/
1769 ///   ::= 'private'
1770 ///   ::= 'internal'
1771 ///   ::= 'weak'
1772 ///   ::= 'weak_odr'
1773 ///   ::= 'linkonce'
1774 ///   ::= 'linkonce_odr'
1775 ///   ::= 'available_externally'
1776 ///   ::= 'appending'
1777 ///   ::= 'common'
1778 ///   ::= 'extern_weak'
1779 ///   ::= 'external'
1780 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1781                                     unsigned &Visibility,
1782                                     unsigned &DLLStorageClass, bool &DSOLocal) {
1783   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1784   if (HasLinkage)
1785     Lex.Lex();
1786   parseOptionalDSOLocal(DSOLocal);
1787   parseOptionalVisibility(Visibility);
1788   parseOptionalDLLStorageClass(DLLStorageClass);
1789 
1790   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1791     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1792   }
1793 
1794   return false;
1795 }
1796 
1797 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
1798   switch (Lex.getKind()) {
1799   default:
1800     DSOLocal = false;
1801     break;
1802   case lltok::kw_dso_local:
1803     DSOLocal = true;
1804     Lex.Lex();
1805     break;
1806   case lltok::kw_dso_preemptable:
1807     DSOLocal = false;
1808     Lex.Lex();
1809     break;
1810   }
1811 }
1812 
1813 /// parseOptionalVisibility
1814 ///   ::= /*empty*/
1815 ///   ::= 'default'
1816 ///   ::= 'hidden'
1817 ///   ::= 'protected'
1818 ///
1819 void LLParser::parseOptionalVisibility(unsigned &Res) {
1820   switch (Lex.getKind()) {
1821   default:
1822     Res = GlobalValue::DefaultVisibility;
1823     return;
1824   case lltok::kw_default:
1825     Res = GlobalValue::DefaultVisibility;
1826     break;
1827   case lltok::kw_hidden:
1828     Res = GlobalValue::HiddenVisibility;
1829     break;
1830   case lltok::kw_protected:
1831     Res = GlobalValue::ProtectedVisibility;
1832     break;
1833   }
1834   Lex.Lex();
1835 }
1836 
1837 /// parseOptionalDLLStorageClass
1838 ///   ::= /*empty*/
1839 ///   ::= 'dllimport'
1840 ///   ::= 'dllexport'
1841 ///
1842 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
1843   switch (Lex.getKind()) {
1844   default:
1845     Res = GlobalValue::DefaultStorageClass;
1846     return;
1847   case lltok::kw_dllimport:
1848     Res = GlobalValue::DLLImportStorageClass;
1849     break;
1850   case lltok::kw_dllexport:
1851     Res = GlobalValue::DLLExportStorageClass;
1852     break;
1853   }
1854   Lex.Lex();
1855 }
1856 
1857 /// parseOptionalCallingConv
1858 ///   ::= /*empty*/
1859 ///   ::= 'ccc'
1860 ///   ::= 'fastcc'
1861 ///   ::= 'intel_ocl_bicc'
1862 ///   ::= 'coldcc'
1863 ///   ::= 'cfguard_checkcc'
1864 ///   ::= 'x86_stdcallcc'
1865 ///   ::= 'x86_fastcallcc'
1866 ///   ::= 'x86_thiscallcc'
1867 ///   ::= 'x86_vectorcallcc'
1868 ///   ::= 'arm_apcscc'
1869 ///   ::= 'arm_aapcscc'
1870 ///   ::= 'arm_aapcs_vfpcc'
1871 ///   ::= 'aarch64_vector_pcs'
1872 ///   ::= 'aarch64_sve_vector_pcs'
1873 ///   ::= 'msp430_intrcc'
1874 ///   ::= 'avr_intrcc'
1875 ///   ::= 'avr_signalcc'
1876 ///   ::= 'ptx_kernel'
1877 ///   ::= 'ptx_device'
1878 ///   ::= 'spir_func'
1879 ///   ::= 'spir_kernel'
1880 ///   ::= 'x86_64_sysvcc'
1881 ///   ::= 'win64cc'
1882 ///   ::= 'webkit_jscc'
1883 ///   ::= 'anyregcc'
1884 ///   ::= 'preserve_mostcc'
1885 ///   ::= 'preserve_allcc'
1886 ///   ::= 'ghccc'
1887 ///   ::= 'swiftcc'
1888 ///   ::= 'swifttailcc'
1889 ///   ::= 'x86_intrcc'
1890 ///   ::= 'hhvmcc'
1891 ///   ::= 'hhvm_ccc'
1892 ///   ::= 'cxx_fast_tlscc'
1893 ///   ::= 'amdgpu_vs'
1894 ///   ::= 'amdgpu_ls'
1895 ///   ::= 'amdgpu_hs'
1896 ///   ::= 'amdgpu_es'
1897 ///   ::= 'amdgpu_gs'
1898 ///   ::= 'amdgpu_ps'
1899 ///   ::= 'amdgpu_cs'
1900 ///   ::= 'amdgpu_kernel'
1901 ///   ::= 'tailcc'
1902 ///   ::= 'cc' UINT
1903 ///
1904 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
1905   switch (Lex.getKind()) {
1906   default:                       CC = CallingConv::C; return false;
1907   case lltok::kw_ccc:            CC = CallingConv::C; break;
1908   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1909   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1910   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
1911   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1912   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1913   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1914   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1915   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1916   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1917   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1918   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1919   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1920   case lltok::kw_aarch64_sve_vector_pcs:
1921     CC = CallingConv::AArch64_SVE_VectorCall;
1922     break;
1923   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1924   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1925   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1926   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1927   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1928   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1929   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1930   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1931   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1932   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1933   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1934   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1935   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1936   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1937   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1938   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1939   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
1940   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1941   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1942   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1943   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1944   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1945   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
1946   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1947   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1948   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1949   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1950   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1951   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1952   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1953   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
1954   case lltok::kw_cc: {
1955       Lex.Lex();
1956       return parseUInt32(CC);
1957     }
1958   }
1959 
1960   Lex.Lex();
1961   return false;
1962 }
1963 
1964 /// parseMetadataAttachment
1965 ///   ::= !dbg !42
1966 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1967   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1968 
1969   std::string Name = Lex.getStrVal();
1970   Kind = M->getMDKindID(Name);
1971   Lex.Lex();
1972 
1973   return parseMDNode(MD);
1974 }
1975 
1976 /// parseInstructionMetadata
1977 ///   ::= !dbg !42 (',' !dbg !57)*
1978 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
1979   do {
1980     if (Lex.getKind() != lltok::MetadataVar)
1981       return tokError("expected metadata after comma");
1982 
1983     unsigned MDK;
1984     MDNode *N;
1985     if (parseMetadataAttachment(MDK, N))
1986       return true;
1987 
1988     Inst.setMetadata(MDK, N);
1989     if (MDK == LLVMContext::MD_tbaa)
1990       InstsWithTBAATag.push_back(&Inst);
1991 
1992     // If this is the end of the list, we're done.
1993   } while (EatIfPresent(lltok::comma));
1994   return false;
1995 }
1996 
1997 /// parseGlobalObjectMetadataAttachment
1998 ///   ::= !dbg !57
1999 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2000   unsigned MDK;
2001   MDNode *N;
2002   if (parseMetadataAttachment(MDK, N))
2003     return true;
2004 
2005   GO.addMetadata(MDK, *N);
2006   return false;
2007 }
2008 
2009 /// parseOptionalFunctionMetadata
2010 ///   ::= (!dbg !57)*
2011 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2012   while (Lex.getKind() == lltok::MetadataVar)
2013     if (parseGlobalObjectMetadataAttachment(F))
2014       return true;
2015   return false;
2016 }
2017 
2018 /// parseOptionalAlignment
2019 ///   ::= /* empty */
2020 ///   ::= 'align' 4
2021 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2022   Alignment = None;
2023   if (!EatIfPresent(lltok::kw_align))
2024     return false;
2025   LocTy AlignLoc = Lex.getLoc();
2026   uint64_t Value = 0;
2027 
2028   LocTy ParenLoc = Lex.getLoc();
2029   bool HaveParens = false;
2030   if (AllowParens) {
2031     if (EatIfPresent(lltok::lparen))
2032       HaveParens = true;
2033   }
2034 
2035   if (parseUInt64(Value))
2036     return true;
2037 
2038   if (HaveParens && !EatIfPresent(lltok::rparen))
2039     return error(ParenLoc, "expected ')'");
2040 
2041   if (!isPowerOf2_64(Value))
2042     return error(AlignLoc, "alignment is not a power of two");
2043   if (Value > Value::MaximumAlignment)
2044     return error(AlignLoc, "huge alignments are not supported yet");
2045   Alignment = Align(Value);
2046   return false;
2047 }
2048 
2049 /// parseOptionalDerefAttrBytes
2050 ///   ::= /* empty */
2051 ///   ::= AttrKind '(' 4 ')'
2052 ///
2053 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2054 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2055                                            uint64_t &Bytes) {
2056   assert((AttrKind == lltok::kw_dereferenceable ||
2057           AttrKind == lltok::kw_dereferenceable_or_null) &&
2058          "contract!");
2059 
2060   Bytes = 0;
2061   if (!EatIfPresent(AttrKind))
2062     return false;
2063   LocTy ParenLoc = Lex.getLoc();
2064   if (!EatIfPresent(lltok::lparen))
2065     return error(ParenLoc, "expected '('");
2066   LocTy DerefLoc = Lex.getLoc();
2067   if (parseUInt64(Bytes))
2068     return true;
2069   ParenLoc = Lex.getLoc();
2070   if (!EatIfPresent(lltok::rparen))
2071     return error(ParenLoc, "expected ')'");
2072   if (!Bytes)
2073     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2074   return false;
2075 }
2076 
2077 bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) {
2078   Lex.Lex();
2079   Kind = UWTableKind::Default;
2080   if (!EatIfPresent(lltok::lparen))
2081     return false;
2082   LocTy KindLoc = Lex.getLoc();
2083   if (Lex.getKind() == lltok::kw_sync)
2084     Kind = UWTableKind::Sync;
2085   else if (Lex.getKind() == lltok::kw_async)
2086     Kind = UWTableKind::Async;
2087   else
2088     return error(KindLoc, "expected unwind table kind");
2089   Lex.Lex();
2090   return parseToken(lltok::rparen, "expected ')'");
2091 }
2092 
2093 bool LLParser::parseAllocKind(AllocFnKind &Kind) {
2094   Lex.Lex();
2095   LocTy ParenLoc = Lex.getLoc();
2096   if (!EatIfPresent(lltok::lparen))
2097     return error(ParenLoc, "expected '('");
2098   LocTy KindLoc = Lex.getLoc();
2099   std::string Arg;
2100   if (parseStringConstant(Arg))
2101     return error(KindLoc, "expected allockind value");
2102   for (StringRef A : llvm::split(Arg, ",")) {
2103     if (A == "alloc") {
2104       Kind |= AllocFnKind::Alloc;
2105     } else if (A == "realloc") {
2106       Kind |= AllocFnKind::Realloc;
2107     } else if (A == "free") {
2108       Kind |= AllocFnKind::Free;
2109     } else if (A == "uninitialized") {
2110       Kind |= AllocFnKind::Uninitialized;
2111     } else if (A == "zeroed") {
2112       Kind |= AllocFnKind::Zeroed;
2113     } else if (A == "aligned") {
2114       Kind |= AllocFnKind::Aligned;
2115     } else {
2116       return error(KindLoc, Twine("unknown allockind ") + A);
2117     }
2118   }
2119   ParenLoc = Lex.getLoc();
2120   if (!EatIfPresent(lltok::rparen))
2121     return error(ParenLoc, "expected ')'");
2122   if (Kind == AllocFnKind::Unknown)
2123     return error(KindLoc, "expected allockind value");
2124   return false;
2125 }
2126 
2127 /// parseOptionalCommaAlign
2128 ///   ::=
2129 ///   ::= ',' align 4
2130 ///
2131 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2132 /// end.
2133 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2134                                        bool &AteExtraComma) {
2135   AteExtraComma = false;
2136   while (EatIfPresent(lltok::comma)) {
2137     // Metadata at the end is an early exit.
2138     if (Lex.getKind() == lltok::MetadataVar) {
2139       AteExtraComma = true;
2140       return false;
2141     }
2142 
2143     if (Lex.getKind() != lltok::kw_align)
2144       return error(Lex.getLoc(), "expected metadata or 'align'");
2145 
2146     if (parseOptionalAlignment(Alignment))
2147       return true;
2148   }
2149 
2150   return false;
2151 }
2152 
2153 /// parseOptionalCommaAddrSpace
2154 ///   ::=
2155 ///   ::= ',' addrspace(1)
2156 ///
2157 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2158 /// end.
2159 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2160                                            bool &AteExtraComma) {
2161   AteExtraComma = false;
2162   while (EatIfPresent(lltok::comma)) {
2163     // Metadata at the end is an early exit.
2164     if (Lex.getKind() == lltok::MetadataVar) {
2165       AteExtraComma = true;
2166       return false;
2167     }
2168 
2169     Loc = Lex.getLoc();
2170     if (Lex.getKind() != lltok::kw_addrspace)
2171       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2172 
2173     if (parseOptionalAddrSpace(AddrSpace))
2174       return true;
2175   }
2176 
2177   return false;
2178 }
2179 
2180 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2181                                        Optional<unsigned> &HowManyArg) {
2182   Lex.Lex();
2183 
2184   auto StartParen = Lex.getLoc();
2185   if (!EatIfPresent(lltok::lparen))
2186     return error(StartParen, "expected '('");
2187 
2188   if (parseUInt32(BaseSizeArg))
2189     return true;
2190 
2191   if (EatIfPresent(lltok::comma)) {
2192     auto HowManyAt = Lex.getLoc();
2193     unsigned HowMany;
2194     if (parseUInt32(HowMany))
2195       return true;
2196     if (HowMany == BaseSizeArg)
2197       return error(HowManyAt,
2198                    "'allocsize' indices can't refer to the same parameter");
2199     HowManyArg = HowMany;
2200   } else
2201     HowManyArg = None;
2202 
2203   auto EndParen = Lex.getLoc();
2204   if (!EatIfPresent(lltok::rparen))
2205     return error(EndParen, "expected ')'");
2206   return false;
2207 }
2208 
2209 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2210                                          unsigned &MaxValue) {
2211   Lex.Lex();
2212 
2213   auto StartParen = Lex.getLoc();
2214   if (!EatIfPresent(lltok::lparen))
2215     return error(StartParen, "expected '('");
2216 
2217   if (parseUInt32(MinValue))
2218     return true;
2219 
2220   if (EatIfPresent(lltok::comma)) {
2221     if (parseUInt32(MaxValue))
2222       return true;
2223   } else
2224     MaxValue = MinValue;
2225 
2226   auto EndParen = Lex.getLoc();
2227   if (!EatIfPresent(lltok::rparen))
2228     return error(EndParen, "expected ')'");
2229   return false;
2230 }
2231 
2232 /// parseScopeAndOrdering
2233 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2234 ///   else: ::=
2235 ///
2236 /// This sets Scope and Ordering to the parsed values.
2237 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2238                                      AtomicOrdering &Ordering) {
2239   if (!IsAtomic)
2240     return false;
2241 
2242   return parseScope(SSID) || parseOrdering(Ordering);
2243 }
2244 
2245 /// parseScope
2246 ///   ::= syncscope("singlethread" | "<target scope>")?
2247 ///
2248 /// This sets synchronization scope ID to the ID of the parsed value.
2249 bool LLParser::parseScope(SyncScope::ID &SSID) {
2250   SSID = SyncScope::System;
2251   if (EatIfPresent(lltok::kw_syncscope)) {
2252     auto StartParenAt = Lex.getLoc();
2253     if (!EatIfPresent(lltok::lparen))
2254       return error(StartParenAt, "Expected '(' in syncscope");
2255 
2256     std::string SSN;
2257     auto SSNAt = Lex.getLoc();
2258     if (parseStringConstant(SSN))
2259       return error(SSNAt, "Expected synchronization scope name");
2260 
2261     auto EndParenAt = Lex.getLoc();
2262     if (!EatIfPresent(lltok::rparen))
2263       return error(EndParenAt, "Expected ')' in syncscope");
2264 
2265     SSID = Context.getOrInsertSyncScopeID(SSN);
2266   }
2267 
2268   return false;
2269 }
2270 
2271 /// parseOrdering
2272 ///   ::= AtomicOrdering
2273 ///
2274 /// This sets Ordering to the parsed value.
2275 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2276   switch (Lex.getKind()) {
2277   default:
2278     return tokError("Expected ordering on atomic instruction");
2279   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2280   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2281   // Not specified yet:
2282   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2283   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2284   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2285   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2286   case lltok::kw_seq_cst:
2287     Ordering = AtomicOrdering::SequentiallyConsistent;
2288     break;
2289   }
2290   Lex.Lex();
2291   return false;
2292 }
2293 
2294 /// parseOptionalStackAlignment
2295 ///   ::= /* empty */
2296 ///   ::= 'alignstack' '(' 4 ')'
2297 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2298   Alignment = 0;
2299   if (!EatIfPresent(lltok::kw_alignstack))
2300     return false;
2301   LocTy ParenLoc = Lex.getLoc();
2302   if (!EatIfPresent(lltok::lparen))
2303     return error(ParenLoc, "expected '('");
2304   LocTy AlignLoc = Lex.getLoc();
2305   if (parseUInt32(Alignment))
2306     return true;
2307   ParenLoc = Lex.getLoc();
2308   if (!EatIfPresent(lltok::rparen))
2309     return error(ParenLoc, "expected ')'");
2310   if (!isPowerOf2_32(Alignment))
2311     return error(AlignLoc, "stack alignment is not a power of two");
2312   return false;
2313 }
2314 
2315 /// parseIndexList - This parses the index list for an insert/extractvalue
2316 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2317 /// comma at the end of the line and find that it is followed by metadata.
2318 /// Clients that don't allow metadata can call the version of this function that
2319 /// only takes one argument.
2320 ///
2321 /// parseIndexList
2322 ///    ::=  (',' uint32)+
2323 ///
2324 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2325                               bool &AteExtraComma) {
2326   AteExtraComma = false;
2327 
2328   if (Lex.getKind() != lltok::comma)
2329     return tokError("expected ',' as start of index list");
2330 
2331   while (EatIfPresent(lltok::comma)) {
2332     if (Lex.getKind() == lltok::MetadataVar) {
2333       if (Indices.empty())
2334         return tokError("expected index");
2335       AteExtraComma = true;
2336       return false;
2337     }
2338     unsigned Idx = 0;
2339     if (parseUInt32(Idx))
2340       return true;
2341     Indices.push_back(Idx);
2342   }
2343 
2344   return false;
2345 }
2346 
2347 //===----------------------------------------------------------------------===//
2348 // Type Parsing.
2349 //===----------------------------------------------------------------------===//
2350 
2351 /// parseType - parse a type.
2352 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2353   SMLoc TypeLoc = Lex.getLoc();
2354   switch (Lex.getKind()) {
2355   default:
2356     return tokError(Msg);
2357   case lltok::Type:
2358     // Type ::= 'float' | 'void' (etc)
2359     Result = Lex.getTyVal();
2360     Lex.Lex();
2361 
2362     // Handle "ptr" opaque pointer type.
2363     //
2364     // Type ::= ptr ('addrspace' '(' uint32 ')')?
2365     if (Result->isOpaquePointerTy()) {
2366       unsigned AddrSpace;
2367       if (parseOptionalAddrSpace(AddrSpace))
2368         return true;
2369       Result = PointerType::get(getContext(), AddrSpace);
2370 
2371       // Give a nice error for 'ptr*'.
2372       if (Lex.getKind() == lltok::star)
2373         return tokError("ptr* is invalid - use ptr instead");
2374 
2375       // Fall through to parsing the type suffixes only if this 'ptr' is a
2376       // function return. Otherwise, return success, implicitly rejecting other
2377       // suffixes.
2378       if (Lex.getKind() != lltok::lparen)
2379         return false;
2380     }
2381     break;
2382   case lltok::lbrace:
2383     // Type ::= StructType
2384     if (parseAnonStructType(Result, false))
2385       return true;
2386     break;
2387   case lltok::lsquare:
2388     // Type ::= '[' ... ']'
2389     Lex.Lex(); // eat the lsquare.
2390     if (parseArrayVectorType(Result, false))
2391       return true;
2392     break;
2393   case lltok::less: // Either vector or packed struct.
2394     // Type ::= '<' ... '>'
2395     Lex.Lex();
2396     if (Lex.getKind() == lltok::lbrace) {
2397       if (parseAnonStructType(Result, true) ||
2398           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2399         return true;
2400     } else if (parseArrayVectorType(Result, true))
2401       return true;
2402     break;
2403   case lltok::LocalVar: {
2404     // Type ::= %foo
2405     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2406 
2407     // If the type hasn't been defined yet, create a forward definition and
2408     // remember where that forward def'n was seen (in case it never is defined).
2409     if (!Entry.first) {
2410       Entry.first = StructType::create(Context, Lex.getStrVal());
2411       Entry.second = Lex.getLoc();
2412     }
2413     Result = Entry.first;
2414     Lex.Lex();
2415     break;
2416   }
2417 
2418   case lltok::LocalVarID: {
2419     // Type ::= %4
2420     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2421 
2422     // If the type hasn't been defined yet, create a forward definition and
2423     // remember where that forward def'n was seen (in case it never is defined).
2424     if (!Entry.first) {
2425       Entry.first = StructType::create(Context);
2426       Entry.second = Lex.getLoc();
2427     }
2428     Result = Entry.first;
2429     Lex.Lex();
2430     break;
2431   }
2432   }
2433 
2434   // parse the type suffixes.
2435   while (true) {
2436     switch (Lex.getKind()) {
2437     // End of type.
2438     default:
2439       if (!AllowVoid && Result->isVoidTy())
2440         return error(TypeLoc, "void type only allowed for function results");
2441       return false;
2442 
2443     // Type ::= Type '*'
2444     case lltok::star:
2445       if (Result->isLabelTy())
2446         return tokError("basic block pointers are invalid");
2447       if (Result->isVoidTy())
2448         return tokError("pointers to void are invalid - use i8* instead");
2449       if (!PointerType::isValidElementType(Result))
2450         return tokError("pointer to this type is invalid");
2451       Result = PointerType::getUnqual(Result);
2452       Lex.Lex();
2453       break;
2454 
2455     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2456     case lltok::kw_addrspace: {
2457       if (Result->isLabelTy())
2458         return tokError("basic block pointers are invalid");
2459       if (Result->isVoidTy())
2460         return tokError("pointers to void are invalid; use i8* instead");
2461       if (!PointerType::isValidElementType(Result))
2462         return tokError("pointer to this type is invalid");
2463       unsigned AddrSpace;
2464       if (parseOptionalAddrSpace(AddrSpace) ||
2465           parseToken(lltok::star, "expected '*' in address space"))
2466         return true;
2467 
2468       Result = PointerType::get(Result, AddrSpace);
2469       break;
2470     }
2471 
2472     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2473     case lltok::lparen:
2474       if (parseFunctionType(Result))
2475         return true;
2476       break;
2477     }
2478   }
2479 }
2480 
2481 /// parseParameterList
2482 ///    ::= '(' ')'
2483 ///    ::= '(' Arg (',' Arg)* ')'
2484 ///  Arg
2485 ///    ::= Type OptionalAttributes Value OptionalAttributes
2486 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2487                                   PerFunctionState &PFS, bool IsMustTailCall,
2488                                   bool InVarArgsFunc) {
2489   if (parseToken(lltok::lparen, "expected '(' in call"))
2490     return true;
2491 
2492   while (Lex.getKind() != lltok::rparen) {
2493     // If this isn't the first argument, we need a comma.
2494     if (!ArgList.empty() &&
2495         parseToken(lltok::comma, "expected ',' in argument list"))
2496       return true;
2497 
2498     // parse an ellipsis if this is a musttail call in a variadic function.
2499     if (Lex.getKind() == lltok::dotdotdot) {
2500       const char *Msg = "unexpected ellipsis in argument list for ";
2501       if (!IsMustTailCall)
2502         return tokError(Twine(Msg) + "non-musttail call");
2503       if (!InVarArgsFunc)
2504         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2505       Lex.Lex();  // Lex the '...', it is purely for readability.
2506       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2507     }
2508 
2509     // parse the argument.
2510     LocTy ArgLoc;
2511     Type *ArgTy = nullptr;
2512     Value *V;
2513     if (parseType(ArgTy, ArgLoc))
2514       return true;
2515 
2516     AttrBuilder ArgAttrs(M->getContext());
2517 
2518     if (ArgTy->isMetadataTy()) {
2519       if (parseMetadataAsValue(V, PFS))
2520         return true;
2521     } else {
2522       // Otherwise, handle normal operands.
2523       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2524         return true;
2525     }
2526     ArgList.push_back(ParamInfo(
2527         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2528   }
2529 
2530   if (IsMustTailCall && InVarArgsFunc)
2531     return tokError("expected '...' at end of argument list for musttail call "
2532                     "in varargs function");
2533 
2534   Lex.Lex();  // Lex the ')'.
2535   return false;
2536 }
2537 
2538 /// parseRequiredTypeAttr
2539 ///   ::= attrname(<ty>)
2540 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
2541                                      Attribute::AttrKind AttrKind) {
2542   Type *Ty = nullptr;
2543   if (!EatIfPresent(AttrToken))
2544     return true;
2545   if (!EatIfPresent(lltok::lparen))
2546     return error(Lex.getLoc(), "expected '('");
2547   if (parseType(Ty))
2548     return true;
2549   if (!EatIfPresent(lltok::rparen))
2550     return error(Lex.getLoc(), "expected ')'");
2551 
2552   B.addTypeAttr(AttrKind, Ty);
2553   return false;
2554 }
2555 
2556 /// parseOptionalOperandBundles
2557 ///    ::= /*empty*/
2558 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2559 ///
2560 /// OperandBundle
2561 ///    ::= bundle-tag '(' ')'
2562 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2563 ///
2564 /// bundle-tag ::= String Constant
2565 bool LLParser::parseOptionalOperandBundles(
2566     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2567   LocTy BeginLoc = Lex.getLoc();
2568   if (!EatIfPresent(lltok::lsquare))
2569     return false;
2570 
2571   while (Lex.getKind() != lltok::rsquare) {
2572     // If this isn't the first operand bundle, we need a comma.
2573     if (!BundleList.empty() &&
2574         parseToken(lltok::comma, "expected ',' in input list"))
2575       return true;
2576 
2577     std::string Tag;
2578     if (parseStringConstant(Tag))
2579       return true;
2580 
2581     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2582       return true;
2583 
2584     std::vector<Value *> Inputs;
2585     while (Lex.getKind() != lltok::rparen) {
2586       // If this isn't the first input, we need a comma.
2587       if (!Inputs.empty() &&
2588           parseToken(lltok::comma, "expected ',' in input list"))
2589         return true;
2590 
2591       Type *Ty = nullptr;
2592       Value *Input = nullptr;
2593       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2594         return true;
2595       Inputs.push_back(Input);
2596     }
2597 
2598     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2599 
2600     Lex.Lex(); // Lex the ')'.
2601   }
2602 
2603   if (BundleList.empty())
2604     return error(BeginLoc, "operand bundle set must not be empty");
2605 
2606   Lex.Lex(); // Lex the ']'.
2607   return false;
2608 }
2609 
2610 /// parseArgumentList - parse the argument list for a function type or function
2611 /// prototype.
2612 ///   ::= '(' ArgTypeListI ')'
2613 /// ArgTypeListI
2614 ///   ::= /*empty*/
2615 ///   ::= '...'
2616 ///   ::= ArgTypeList ',' '...'
2617 ///   ::= ArgType (',' ArgType)*
2618 ///
2619 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2620                                  bool &IsVarArg) {
2621   unsigned CurValID = 0;
2622   IsVarArg = false;
2623   assert(Lex.getKind() == lltok::lparen);
2624   Lex.Lex(); // eat the (.
2625 
2626   if (Lex.getKind() == lltok::rparen) {
2627     // empty
2628   } else if (Lex.getKind() == lltok::dotdotdot) {
2629     IsVarArg = true;
2630     Lex.Lex();
2631   } else {
2632     LocTy TypeLoc = Lex.getLoc();
2633     Type *ArgTy = nullptr;
2634     AttrBuilder Attrs(M->getContext());
2635     std::string Name;
2636 
2637     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2638       return true;
2639 
2640     if (ArgTy->isVoidTy())
2641       return error(TypeLoc, "argument can not have void type");
2642 
2643     if (Lex.getKind() == lltok::LocalVar) {
2644       Name = Lex.getStrVal();
2645       Lex.Lex();
2646     } else if (Lex.getKind() == lltok::LocalVarID) {
2647       if (Lex.getUIntVal() != CurValID)
2648         return error(TypeLoc, "argument expected to be numbered '%" +
2649                                   Twine(CurValID) + "'");
2650       ++CurValID;
2651       Lex.Lex();
2652     }
2653 
2654     if (!FunctionType::isValidArgumentType(ArgTy))
2655       return error(TypeLoc, "invalid type for function argument");
2656 
2657     ArgList.emplace_back(TypeLoc, ArgTy,
2658                          AttributeSet::get(ArgTy->getContext(), Attrs),
2659                          std::move(Name));
2660 
2661     while (EatIfPresent(lltok::comma)) {
2662       // Handle ... at end of arg list.
2663       if (EatIfPresent(lltok::dotdotdot)) {
2664         IsVarArg = true;
2665         break;
2666       }
2667 
2668       // Otherwise must be an argument type.
2669       TypeLoc = Lex.getLoc();
2670       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2671         return true;
2672 
2673       if (ArgTy->isVoidTy())
2674         return error(TypeLoc, "argument can not have void type");
2675 
2676       if (Lex.getKind() == lltok::LocalVar) {
2677         Name = Lex.getStrVal();
2678         Lex.Lex();
2679       } else {
2680         if (Lex.getKind() == lltok::LocalVarID) {
2681           if (Lex.getUIntVal() != CurValID)
2682             return error(TypeLoc, "argument expected to be numbered '%" +
2683                                       Twine(CurValID) + "'");
2684           Lex.Lex();
2685         }
2686         ++CurValID;
2687         Name = "";
2688       }
2689 
2690       if (!ArgTy->isFirstClassType())
2691         return error(TypeLoc, "invalid type for function argument");
2692 
2693       ArgList.emplace_back(TypeLoc, ArgTy,
2694                            AttributeSet::get(ArgTy->getContext(), Attrs),
2695                            std::move(Name));
2696     }
2697   }
2698 
2699   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2700 }
2701 
2702 /// parseFunctionType
2703 ///  ::= Type ArgumentList OptionalAttrs
2704 bool LLParser::parseFunctionType(Type *&Result) {
2705   assert(Lex.getKind() == lltok::lparen);
2706 
2707   if (!FunctionType::isValidReturnType(Result))
2708     return tokError("invalid function return type");
2709 
2710   SmallVector<ArgInfo, 8> ArgList;
2711   bool IsVarArg;
2712   if (parseArgumentList(ArgList, IsVarArg))
2713     return true;
2714 
2715   // Reject names on the arguments lists.
2716   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2717     if (!ArgList[i].Name.empty())
2718       return error(ArgList[i].Loc, "argument name invalid in function type");
2719     if (ArgList[i].Attrs.hasAttributes())
2720       return error(ArgList[i].Loc,
2721                    "argument attributes invalid in function type");
2722   }
2723 
2724   SmallVector<Type*, 16> ArgListTy;
2725   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2726     ArgListTy.push_back(ArgList[i].Ty);
2727 
2728   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2729   return false;
2730 }
2731 
2732 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2733 /// other structs.
2734 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2735   SmallVector<Type*, 8> Elts;
2736   if (parseStructBody(Elts))
2737     return true;
2738 
2739   Result = StructType::get(Context, Elts, Packed);
2740   return false;
2741 }
2742 
2743 /// parseStructDefinition - parse a struct in a 'type' definition.
2744 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2745                                      std::pair<Type *, LocTy> &Entry,
2746                                      Type *&ResultTy) {
2747   // If the type was already defined, diagnose the redefinition.
2748   if (Entry.first && !Entry.second.isValid())
2749     return error(TypeLoc, "redefinition of type");
2750 
2751   // If we have opaque, just return without filling in the definition for the
2752   // struct.  This counts as a definition as far as the .ll file goes.
2753   if (EatIfPresent(lltok::kw_opaque)) {
2754     // This type is being defined, so clear the location to indicate this.
2755     Entry.second = SMLoc();
2756 
2757     // If this type number has never been uttered, create it.
2758     if (!Entry.first)
2759       Entry.first = StructType::create(Context, Name);
2760     ResultTy = Entry.first;
2761     return false;
2762   }
2763 
2764   // If the type starts with '<', then it is either a packed struct or a vector.
2765   bool isPacked = EatIfPresent(lltok::less);
2766 
2767   // If we don't have a struct, then we have a random type alias, which we
2768   // accept for compatibility with old files.  These types are not allowed to be
2769   // forward referenced and not allowed to be recursive.
2770   if (Lex.getKind() != lltok::lbrace) {
2771     if (Entry.first)
2772       return error(TypeLoc, "forward references to non-struct type");
2773 
2774     ResultTy = nullptr;
2775     if (isPacked)
2776       return parseArrayVectorType(ResultTy, true);
2777     return parseType(ResultTy);
2778   }
2779 
2780   // This type is being defined, so clear the location to indicate this.
2781   Entry.second = SMLoc();
2782 
2783   // If this type number has never been uttered, create it.
2784   if (!Entry.first)
2785     Entry.first = StructType::create(Context, Name);
2786 
2787   StructType *STy = cast<StructType>(Entry.first);
2788 
2789   SmallVector<Type*, 8> Body;
2790   if (parseStructBody(Body) ||
2791       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2792     return true;
2793 
2794   STy->setBody(Body, isPacked);
2795   ResultTy = STy;
2796   return false;
2797 }
2798 
2799 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2800 ///   StructType
2801 ///     ::= '{' '}'
2802 ///     ::= '{' Type (',' Type)* '}'
2803 ///     ::= '<' '{' '}' '>'
2804 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2805 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2806   assert(Lex.getKind() == lltok::lbrace);
2807   Lex.Lex(); // Consume the '{'
2808 
2809   // Handle the empty struct.
2810   if (EatIfPresent(lltok::rbrace))
2811     return false;
2812 
2813   LocTy EltTyLoc = Lex.getLoc();
2814   Type *Ty = nullptr;
2815   if (parseType(Ty))
2816     return true;
2817   Body.push_back(Ty);
2818 
2819   if (!StructType::isValidElementType(Ty))
2820     return error(EltTyLoc, "invalid element type for struct");
2821 
2822   while (EatIfPresent(lltok::comma)) {
2823     EltTyLoc = Lex.getLoc();
2824     if (parseType(Ty))
2825       return true;
2826 
2827     if (!StructType::isValidElementType(Ty))
2828       return error(EltTyLoc, "invalid element type for struct");
2829 
2830     Body.push_back(Ty);
2831   }
2832 
2833   return parseToken(lltok::rbrace, "expected '}' at end of struct");
2834 }
2835 
2836 /// parseArrayVectorType - parse an array or vector type, assuming the first
2837 /// token has already been consumed.
2838 ///   Type
2839 ///     ::= '[' APSINTVAL 'x' Types ']'
2840 ///     ::= '<' APSINTVAL 'x' Types '>'
2841 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2842 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
2843   bool Scalable = false;
2844 
2845   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
2846     Lex.Lex(); // consume the 'vscale'
2847     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
2848       return true;
2849 
2850     Scalable = true;
2851   }
2852 
2853   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2854       Lex.getAPSIntVal().getBitWidth() > 64)
2855     return tokError("expected number in address space");
2856 
2857   LocTy SizeLoc = Lex.getLoc();
2858   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2859   Lex.Lex();
2860 
2861   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
2862     return true;
2863 
2864   LocTy TypeLoc = Lex.getLoc();
2865   Type *EltTy = nullptr;
2866   if (parseType(EltTy))
2867     return true;
2868 
2869   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
2870                  "expected end of sequential type"))
2871     return true;
2872 
2873   if (IsVector) {
2874     if (Size == 0)
2875       return error(SizeLoc, "zero element vector is illegal");
2876     if ((unsigned)Size != Size)
2877       return error(SizeLoc, "size too large for vector");
2878     if (!VectorType::isValidElementType(EltTy))
2879       return error(TypeLoc, "invalid vector element type");
2880     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2881   } else {
2882     if (!ArrayType::isValidElementType(EltTy))
2883       return error(TypeLoc, "invalid array element type");
2884     Result = ArrayType::get(EltTy, Size);
2885   }
2886   return false;
2887 }
2888 
2889 //===----------------------------------------------------------------------===//
2890 // Function Semantic Analysis.
2891 //===----------------------------------------------------------------------===//
2892 
2893 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2894                                              int functionNumber)
2895   : P(p), F(f), FunctionNumber(functionNumber) {
2896 
2897   // Insert unnamed arguments into the NumberedVals list.
2898   for (Argument &A : F.args())
2899     if (!A.hasName())
2900       NumberedVals.push_back(&A);
2901 }
2902 
2903 LLParser::PerFunctionState::~PerFunctionState() {
2904   // If there were any forward referenced non-basicblock values, delete them.
2905 
2906   for (const auto &P : ForwardRefVals) {
2907     if (isa<BasicBlock>(P.second.first))
2908       continue;
2909     P.second.first->replaceAllUsesWith(
2910         UndefValue::get(P.second.first->getType()));
2911     P.second.first->deleteValue();
2912   }
2913 
2914   for (const auto &P : ForwardRefValIDs) {
2915     if (isa<BasicBlock>(P.second.first))
2916       continue;
2917     P.second.first->replaceAllUsesWith(
2918         UndefValue::get(P.second.first->getType()));
2919     P.second.first->deleteValue();
2920   }
2921 }
2922 
2923 bool LLParser::PerFunctionState::finishFunction() {
2924   if (!ForwardRefVals.empty())
2925     return P.error(ForwardRefVals.begin()->second.second,
2926                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2927                        "'");
2928   if (!ForwardRefValIDs.empty())
2929     return P.error(ForwardRefValIDs.begin()->second.second,
2930                    "use of undefined value '%" +
2931                        Twine(ForwardRefValIDs.begin()->first) + "'");
2932   return false;
2933 }
2934 
2935 /// getVal - Get a value with the specified name or ID, creating a
2936 /// forward reference record if needed.  This can return null if the value
2937 /// exists but does not have the right type.
2938 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
2939                                           LocTy Loc) {
2940   // Look this name up in the normal function symbol table.
2941   Value *Val = F.getValueSymbolTable()->lookup(Name);
2942 
2943   // If this is a forward reference for the value, see if we already created a
2944   // forward ref record.
2945   if (!Val) {
2946     auto I = ForwardRefVals.find(Name);
2947     if (I != ForwardRefVals.end())
2948       Val = I->second.first;
2949   }
2950 
2951   // If we have the value in the symbol table or fwd-ref table, return it.
2952   if (Val)
2953     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val);
2954 
2955   // Don't make placeholders with invalid type.
2956   if (!Ty->isFirstClassType()) {
2957     P.error(Loc, "invalid use of a non-first-class type");
2958     return nullptr;
2959   }
2960 
2961   // Otherwise, create a new forward reference for this value and remember it.
2962   Value *FwdVal;
2963   if (Ty->isLabelTy()) {
2964     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2965   } else {
2966     FwdVal = new Argument(Ty, Name);
2967   }
2968 
2969   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2970   return FwdVal;
2971 }
2972 
2973 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) {
2974   // Look this name up in the normal function symbol table.
2975   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2976 
2977   // If this is a forward reference for the value, see if we already created a
2978   // forward ref record.
2979   if (!Val) {
2980     auto I = ForwardRefValIDs.find(ID);
2981     if (I != ForwardRefValIDs.end())
2982       Val = I->second.first;
2983   }
2984 
2985   // If we have the value in the symbol table or fwd-ref table, return it.
2986   if (Val)
2987     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val);
2988 
2989   if (!Ty->isFirstClassType()) {
2990     P.error(Loc, "invalid use of a non-first-class type");
2991     return nullptr;
2992   }
2993 
2994   // Otherwise, create a new forward reference for this value and remember it.
2995   Value *FwdVal;
2996   if (Ty->isLabelTy()) {
2997     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2998   } else {
2999     FwdVal = new Argument(Ty);
3000   }
3001 
3002   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3003   return FwdVal;
3004 }
3005 
3006 /// setInstName - After an instruction is parsed and inserted into its
3007 /// basic block, this installs its name.
3008 bool LLParser::PerFunctionState::setInstName(int NameID,
3009                                              const std::string &NameStr,
3010                                              LocTy NameLoc, Instruction *Inst) {
3011   // If this instruction has void type, it cannot have a name or ID specified.
3012   if (Inst->getType()->isVoidTy()) {
3013     if (NameID != -1 || !NameStr.empty())
3014       return P.error(NameLoc, "instructions returning void cannot have a name");
3015     return false;
3016   }
3017 
3018   // If this was a numbered instruction, verify that the instruction is the
3019   // expected value and resolve any forward references.
3020   if (NameStr.empty()) {
3021     // If neither a name nor an ID was specified, just use the next ID.
3022     if (NameID == -1)
3023       NameID = NumberedVals.size();
3024 
3025     if (unsigned(NameID) != NumberedVals.size())
3026       return P.error(NameLoc, "instruction expected to be numbered '%" +
3027                                   Twine(NumberedVals.size()) + "'");
3028 
3029     auto FI = ForwardRefValIDs.find(NameID);
3030     if (FI != ForwardRefValIDs.end()) {
3031       Value *Sentinel = FI->second.first;
3032       if (Sentinel->getType() != Inst->getType())
3033         return P.error(NameLoc, "instruction forward referenced with type '" +
3034                                     getTypeString(FI->second.first->getType()) +
3035                                     "'");
3036 
3037       Sentinel->replaceAllUsesWith(Inst);
3038       Sentinel->deleteValue();
3039       ForwardRefValIDs.erase(FI);
3040     }
3041 
3042     NumberedVals.push_back(Inst);
3043     return false;
3044   }
3045 
3046   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3047   auto FI = ForwardRefVals.find(NameStr);
3048   if (FI != ForwardRefVals.end()) {
3049     Value *Sentinel = FI->second.first;
3050     if (Sentinel->getType() != Inst->getType())
3051       return P.error(NameLoc, "instruction forward referenced with type '" +
3052                                   getTypeString(FI->second.first->getType()) +
3053                                   "'");
3054 
3055     Sentinel->replaceAllUsesWith(Inst);
3056     Sentinel->deleteValue();
3057     ForwardRefVals.erase(FI);
3058   }
3059 
3060   // Set the name on the instruction.
3061   Inst->setName(NameStr);
3062 
3063   if (Inst->getName() != NameStr)
3064     return P.error(NameLoc, "multiple definition of local value named '" +
3065                                 NameStr + "'");
3066   return false;
3067 }
3068 
3069 /// getBB - Get a basic block with the specified name or ID, creating a
3070 /// forward reference record if needed.
3071 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3072                                               LocTy Loc) {
3073   return dyn_cast_or_null<BasicBlock>(
3074       getVal(Name, Type::getLabelTy(F.getContext()), Loc));
3075 }
3076 
3077 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3078   return dyn_cast_or_null<BasicBlock>(
3079       getVal(ID, Type::getLabelTy(F.getContext()), Loc));
3080 }
3081 
3082 /// defineBB - Define the specified basic block, which is either named or
3083 /// unnamed.  If there is an error, this returns null otherwise it returns
3084 /// the block being defined.
3085 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3086                                                  int NameID, LocTy Loc) {
3087   BasicBlock *BB;
3088   if (Name.empty()) {
3089     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3090       P.error(Loc, "label expected to be numbered '" +
3091                        Twine(NumberedVals.size()) + "'");
3092       return nullptr;
3093     }
3094     BB = getBB(NumberedVals.size(), Loc);
3095     if (!BB) {
3096       P.error(Loc, "unable to create block numbered '" +
3097                        Twine(NumberedVals.size()) + "'");
3098       return nullptr;
3099     }
3100   } else {
3101     BB = getBB(Name, Loc);
3102     if (!BB) {
3103       P.error(Loc, "unable to create block named '" + Name + "'");
3104       return nullptr;
3105     }
3106   }
3107 
3108   // Move the block to the end of the function.  Forward ref'd blocks are
3109   // inserted wherever they happen to be referenced.
3110   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3111 
3112   // Remove the block from forward ref sets.
3113   if (Name.empty()) {
3114     ForwardRefValIDs.erase(NumberedVals.size());
3115     NumberedVals.push_back(BB);
3116   } else {
3117     // BB forward references are already in the function symbol table.
3118     ForwardRefVals.erase(Name);
3119   }
3120 
3121   return BB;
3122 }
3123 
3124 //===----------------------------------------------------------------------===//
3125 // Constants.
3126 //===----------------------------------------------------------------------===//
3127 
3128 /// parseValID - parse an abstract value that doesn't necessarily have a
3129 /// type implied.  For example, if we parse "4" we don't know what integer type
3130 /// it has.  The value will later be combined with its type and checked for
3131 /// basic correctness.  PFS is used to convert function-local operands of
3132 /// metadata (since metadata operands are not just parsed here but also
3133 /// converted to values). PFS can be null when we are not parsing metadata
3134 /// values inside a function.
3135 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
3136   ID.Loc = Lex.getLoc();
3137   switch (Lex.getKind()) {
3138   default:
3139     return tokError("expected value token");
3140   case lltok::GlobalID:  // @42
3141     ID.UIntVal = Lex.getUIntVal();
3142     ID.Kind = ValID::t_GlobalID;
3143     break;
3144   case lltok::GlobalVar:  // @foo
3145     ID.StrVal = Lex.getStrVal();
3146     ID.Kind = ValID::t_GlobalName;
3147     break;
3148   case lltok::LocalVarID:  // %42
3149     ID.UIntVal = Lex.getUIntVal();
3150     ID.Kind = ValID::t_LocalID;
3151     break;
3152   case lltok::LocalVar:  // %foo
3153     ID.StrVal = Lex.getStrVal();
3154     ID.Kind = ValID::t_LocalName;
3155     break;
3156   case lltok::APSInt:
3157     ID.APSIntVal = Lex.getAPSIntVal();
3158     ID.Kind = ValID::t_APSInt;
3159     break;
3160   case lltok::APFloat:
3161     ID.APFloatVal = Lex.getAPFloatVal();
3162     ID.Kind = ValID::t_APFloat;
3163     break;
3164   case lltok::kw_true:
3165     ID.ConstantVal = ConstantInt::getTrue(Context);
3166     ID.Kind = ValID::t_Constant;
3167     break;
3168   case lltok::kw_false:
3169     ID.ConstantVal = ConstantInt::getFalse(Context);
3170     ID.Kind = ValID::t_Constant;
3171     break;
3172   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3173   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3174   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3175   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3176   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3177 
3178   case lltok::lbrace: {
3179     // ValID ::= '{' ConstVector '}'
3180     Lex.Lex();
3181     SmallVector<Constant*, 16> Elts;
3182     if (parseGlobalValueVector(Elts) ||
3183         parseToken(lltok::rbrace, "expected end of struct constant"))
3184       return true;
3185 
3186     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3187     ID.UIntVal = Elts.size();
3188     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3189            Elts.size() * sizeof(Elts[0]));
3190     ID.Kind = ValID::t_ConstantStruct;
3191     return false;
3192   }
3193   case lltok::less: {
3194     // ValID ::= '<' ConstVector '>'         --> Vector.
3195     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3196     Lex.Lex();
3197     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3198 
3199     SmallVector<Constant*, 16> Elts;
3200     LocTy FirstEltLoc = Lex.getLoc();
3201     if (parseGlobalValueVector(Elts) ||
3202         (isPackedStruct &&
3203          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3204         parseToken(lltok::greater, "expected end of constant"))
3205       return true;
3206 
3207     if (isPackedStruct) {
3208       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3209       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3210              Elts.size() * sizeof(Elts[0]));
3211       ID.UIntVal = Elts.size();
3212       ID.Kind = ValID::t_PackedConstantStruct;
3213       return false;
3214     }
3215 
3216     if (Elts.empty())
3217       return error(ID.Loc, "constant vector must not be empty");
3218 
3219     if (!Elts[0]->getType()->isIntegerTy() &&
3220         !Elts[0]->getType()->isFloatingPointTy() &&
3221         !Elts[0]->getType()->isPointerTy())
3222       return error(
3223           FirstEltLoc,
3224           "vector elements must have integer, pointer or floating point type");
3225 
3226     // Verify that all the vector elements have the same type.
3227     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3228       if (Elts[i]->getType() != Elts[0]->getType())
3229         return error(FirstEltLoc, "vector element #" + Twine(i) +
3230                                       " is not of type '" +
3231                                       getTypeString(Elts[0]->getType()));
3232 
3233     ID.ConstantVal = ConstantVector::get(Elts);
3234     ID.Kind = ValID::t_Constant;
3235     return false;
3236   }
3237   case lltok::lsquare: {   // Array Constant
3238     Lex.Lex();
3239     SmallVector<Constant*, 16> Elts;
3240     LocTy FirstEltLoc = Lex.getLoc();
3241     if (parseGlobalValueVector(Elts) ||
3242         parseToken(lltok::rsquare, "expected end of array constant"))
3243       return true;
3244 
3245     // Handle empty element.
3246     if (Elts.empty()) {
3247       // Use undef instead of an array because it's inconvenient to determine
3248       // the element type at this point, there being no elements to examine.
3249       ID.Kind = ValID::t_EmptyArray;
3250       return false;
3251     }
3252 
3253     if (!Elts[0]->getType()->isFirstClassType())
3254       return error(FirstEltLoc, "invalid array element type: " +
3255                                     getTypeString(Elts[0]->getType()));
3256 
3257     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3258 
3259     // Verify all elements are correct type!
3260     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3261       if (Elts[i]->getType() != Elts[0]->getType())
3262         return error(FirstEltLoc, "array element #" + Twine(i) +
3263                                       " is not of type '" +
3264                                       getTypeString(Elts[0]->getType()));
3265     }
3266 
3267     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3268     ID.Kind = ValID::t_Constant;
3269     return false;
3270   }
3271   case lltok::kw_c:  // c "foo"
3272     Lex.Lex();
3273     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3274                                                   false);
3275     if (parseToken(lltok::StringConstant, "expected string"))
3276       return true;
3277     ID.Kind = ValID::t_Constant;
3278     return false;
3279 
3280   case lltok::kw_asm: {
3281     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3282     //             STRINGCONSTANT
3283     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3284     Lex.Lex();
3285     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3286         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3287         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3288         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3289         parseStringConstant(ID.StrVal) ||
3290         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3291         parseToken(lltok::StringConstant, "expected constraint string"))
3292       return true;
3293     ID.StrVal2 = Lex.getStrVal();
3294     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3295                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3296     ID.Kind = ValID::t_InlineAsm;
3297     return false;
3298   }
3299 
3300   case lltok::kw_blockaddress: {
3301     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3302     Lex.Lex();
3303 
3304     ValID Fn, Label;
3305 
3306     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3307         parseValID(Fn, PFS) ||
3308         parseToken(lltok::comma,
3309                    "expected comma in block address expression") ||
3310         parseValID(Label, PFS) ||
3311         parseToken(lltok::rparen, "expected ')' in block address expression"))
3312       return true;
3313 
3314     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3315       return error(Fn.Loc, "expected function name in blockaddress");
3316     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3317       return error(Label.Loc, "expected basic block name in blockaddress");
3318 
3319     // Try to find the function (but skip it if it's forward-referenced).
3320     GlobalValue *GV = nullptr;
3321     if (Fn.Kind == ValID::t_GlobalID) {
3322       if (Fn.UIntVal < NumberedVals.size())
3323         GV = NumberedVals[Fn.UIntVal];
3324     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3325       GV = M->getNamedValue(Fn.StrVal);
3326     }
3327     Function *F = nullptr;
3328     if (GV) {
3329       // Confirm that it's actually a function with a definition.
3330       if (!isa<Function>(GV))
3331         return error(Fn.Loc, "expected function name in blockaddress");
3332       F = cast<Function>(GV);
3333       if (F->isDeclaration())
3334         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3335     }
3336 
3337     if (!F) {
3338       // Make a global variable as a placeholder for this reference.
3339       GlobalValue *&FwdRef =
3340           ForwardRefBlockAddresses.insert(std::make_pair(
3341                                               std::move(Fn),
3342                                               std::map<ValID, GlobalValue *>()))
3343               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3344               .first->second;
3345       if (!FwdRef) {
3346         unsigned FwdDeclAS;
3347         if (ExpectedTy) {
3348           // If we know the type that the blockaddress is being assigned to,
3349           // we can use the address space of that type.
3350           if (!ExpectedTy->isPointerTy())
3351             return error(ID.Loc,
3352                          "type of blockaddress must be a pointer and not '" +
3353                              getTypeString(ExpectedTy) + "'");
3354           FwdDeclAS = ExpectedTy->getPointerAddressSpace();
3355         } else if (PFS) {
3356           // Otherwise, we default the address space of the current function.
3357           FwdDeclAS = PFS->getFunction().getAddressSpace();
3358         } else {
3359           llvm_unreachable("Unknown address space for blockaddress");
3360         }
3361         FwdRef = new GlobalVariable(
3362             *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
3363             nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
3364       }
3365 
3366       ID.ConstantVal = FwdRef;
3367       ID.Kind = ValID::t_Constant;
3368       return false;
3369     }
3370 
3371     // We found the function; now find the basic block.  Don't use PFS, since we
3372     // might be inside a constant expression.
3373     BasicBlock *BB;
3374     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3375       if (Label.Kind == ValID::t_LocalID)
3376         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3377       else
3378         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3379       if (!BB)
3380         return error(Label.Loc, "referenced value is not a basic block");
3381     } else {
3382       if (Label.Kind == ValID::t_LocalID)
3383         return error(Label.Loc, "cannot take address of numeric label after "
3384                                 "the function is defined");
3385       BB = dyn_cast_or_null<BasicBlock>(
3386           F->getValueSymbolTable()->lookup(Label.StrVal));
3387       if (!BB)
3388         return error(Label.Loc, "referenced value is not a basic block");
3389     }
3390 
3391     ID.ConstantVal = BlockAddress::get(F, BB);
3392     ID.Kind = ValID::t_Constant;
3393     return false;
3394   }
3395 
3396   case lltok::kw_dso_local_equivalent: {
3397     // ValID ::= 'dso_local_equivalent' @foo
3398     Lex.Lex();
3399 
3400     ValID Fn;
3401 
3402     if (parseValID(Fn, PFS))
3403       return true;
3404 
3405     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3406       return error(Fn.Loc,
3407                    "expected global value name in dso_local_equivalent");
3408 
3409     // Try to find the function (but skip it if it's forward-referenced).
3410     GlobalValue *GV = nullptr;
3411     if (Fn.Kind == ValID::t_GlobalID) {
3412       if (Fn.UIntVal < NumberedVals.size())
3413         GV = NumberedVals[Fn.UIntVal];
3414     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3415       GV = M->getNamedValue(Fn.StrVal);
3416     }
3417 
3418     assert(GV && "Could not find a corresponding global variable");
3419 
3420     if (!GV->getValueType()->isFunctionTy())
3421       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3422                            "in dso_local_equivalent");
3423 
3424     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3425     ID.Kind = ValID::t_Constant;
3426     return false;
3427   }
3428 
3429   case lltok::kw_no_cfi: {
3430     // ValID ::= 'no_cfi' @foo
3431     Lex.Lex();
3432 
3433     if (parseValID(ID, PFS))
3434       return true;
3435 
3436     if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName)
3437       return error(ID.Loc, "expected global value name in no_cfi");
3438 
3439     ID.NoCFI = true;
3440     return false;
3441   }
3442 
3443   case lltok::kw_trunc:
3444   case lltok::kw_zext:
3445   case lltok::kw_sext:
3446   case lltok::kw_fptrunc:
3447   case lltok::kw_fpext:
3448   case lltok::kw_bitcast:
3449   case lltok::kw_addrspacecast:
3450   case lltok::kw_uitofp:
3451   case lltok::kw_sitofp:
3452   case lltok::kw_fptoui:
3453   case lltok::kw_fptosi:
3454   case lltok::kw_inttoptr:
3455   case lltok::kw_ptrtoint: {
3456     unsigned Opc = Lex.getUIntVal();
3457     Type *DestTy = nullptr;
3458     Constant *SrcVal;
3459     Lex.Lex();
3460     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3461         parseGlobalTypeAndValue(SrcVal) ||
3462         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3463         parseType(DestTy) ||
3464         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3465       return true;
3466     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3467       return error(ID.Loc, "invalid cast opcode for cast from '" +
3468                                getTypeString(SrcVal->getType()) + "' to '" +
3469                                getTypeString(DestTy) + "'");
3470     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3471                                                  SrcVal, DestTy);
3472     ID.Kind = ValID::t_Constant;
3473     return false;
3474   }
3475   case lltok::kw_extractvalue: {
3476     Lex.Lex();
3477     Constant *Val;
3478     SmallVector<unsigned, 4> Indices;
3479     if (parseToken(lltok::lparen,
3480                    "expected '(' in extractvalue constantexpr") ||
3481         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3482         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3483       return true;
3484 
3485     if (!Val->getType()->isAggregateType())
3486       return error(ID.Loc, "extractvalue operand must be aggregate type");
3487     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3488       return error(ID.Loc, "invalid indices for extractvalue");
3489     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3490     ID.Kind = ValID::t_Constant;
3491     return false;
3492   }
3493   case lltok::kw_insertvalue: {
3494     Lex.Lex();
3495     Constant *Val0, *Val1;
3496     SmallVector<unsigned, 4> Indices;
3497     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3498         parseGlobalTypeAndValue(Val0) ||
3499         parseToken(lltok::comma,
3500                    "expected comma in insertvalue constantexpr") ||
3501         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3502         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3503       return true;
3504     if (!Val0->getType()->isAggregateType())
3505       return error(ID.Loc, "insertvalue operand must be aggregate type");
3506     Type *IndexedType =
3507         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3508     if (!IndexedType)
3509       return error(ID.Loc, "invalid indices for insertvalue");
3510     if (IndexedType != Val1->getType())
3511       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3512                                getTypeString(Val1->getType()) +
3513                                "' instead of '" + getTypeString(IndexedType) +
3514                                "'");
3515     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3516     ID.Kind = ValID::t_Constant;
3517     return false;
3518   }
3519   case lltok::kw_icmp:
3520   case lltok::kw_fcmp: {
3521     unsigned PredVal, Opc = Lex.getUIntVal();
3522     Constant *Val0, *Val1;
3523     Lex.Lex();
3524     if (parseCmpPredicate(PredVal, Opc) ||
3525         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3526         parseGlobalTypeAndValue(Val0) ||
3527         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3528         parseGlobalTypeAndValue(Val1) ||
3529         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3530       return true;
3531 
3532     if (Val0->getType() != Val1->getType())
3533       return error(ID.Loc, "compare operands must have the same type");
3534 
3535     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3536 
3537     if (Opc == Instruction::FCmp) {
3538       if (!Val0->getType()->isFPOrFPVectorTy())
3539         return error(ID.Loc, "fcmp requires floating point operands");
3540       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3541     } else {
3542       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3543       if (!Val0->getType()->isIntOrIntVectorTy() &&
3544           !Val0->getType()->isPtrOrPtrVectorTy())
3545         return error(ID.Loc, "icmp requires pointer or integer operands");
3546       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3547     }
3548     ID.Kind = ValID::t_Constant;
3549     return false;
3550   }
3551 
3552   // Unary Operators.
3553   case lltok::kw_fneg: {
3554     unsigned Opc = Lex.getUIntVal();
3555     Constant *Val;
3556     Lex.Lex();
3557     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3558         parseGlobalTypeAndValue(Val) ||
3559         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3560       return true;
3561 
3562     // Check that the type is valid for the operator.
3563     switch (Opc) {
3564     case Instruction::FNeg:
3565       if (!Val->getType()->isFPOrFPVectorTy())
3566         return error(ID.Loc, "constexpr requires fp operands");
3567       break;
3568     default: llvm_unreachable("Unknown unary operator!");
3569     }
3570     unsigned Flags = 0;
3571     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3572     ID.ConstantVal = C;
3573     ID.Kind = ValID::t_Constant;
3574     return false;
3575   }
3576   // Binary Operators.
3577   case lltok::kw_add:
3578   case lltok::kw_fadd:
3579   case lltok::kw_sub:
3580   case lltok::kw_fsub:
3581   case lltok::kw_mul:
3582   case lltok::kw_fmul:
3583   case lltok::kw_udiv:
3584   case lltok::kw_sdiv:
3585   case lltok::kw_fdiv:
3586   case lltok::kw_urem:
3587   case lltok::kw_srem:
3588   case lltok::kw_frem:
3589   case lltok::kw_shl:
3590   case lltok::kw_lshr:
3591   case lltok::kw_ashr: {
3592     bool NUW = false;
3593     bool NSW = false;
3594     bool Exact = false;
3595     unsigned Opc = Lex.getUIntVal();
3596     Constant *Val0, *Val1;
3597     Lex.Lex();
3598     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3599         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3600       if (EatIfPresent(lltok::kw_nuw))
3601         NUW = true;
3602       if (EatIfPresent(lltok::kw_nsw)) {
3603         NSW = true;
3604         if (EatIfPresent(lltok::kw_nuw))
3605           NUW = true;
3606       }
3607     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3608                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3609       if (EatIfPresent(lltok::kw_exact))
3610         Exact = true;
3611     }
3612     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3613         parseGlobalTypeAndValue(Val0) ||
3614         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3615         parseGlobalTypeAndValue(Val1) ||
3616         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3617       return true;
3618     if (Val0->getType() != Val1->getType())
3619       return error(ID.Loc, "operands of constexpr must have same type");
3620     // Check that the type is valid for the operator.
3621     switch (Opc) {
3622     case Instruction::Add:
3623     case Instruction::Sub:
3624     case Instruction::Mul:
3625     case Instruction::UDiv:
3626     case Instruction::SDiv:
3627     case Instruction::URem:
3628     case Instruction::SRem:
3629     case Instruction::Shl:
3630     case Instruction::AShr:
3631     case Instruction::LShr:
3632       if (!Val0->getType()->isIntOrIntVectorTy())
3633         return error(ID.Loc, "constexpr requires integer operands");
3634       break;
3635     case Instruction::FAdd:
3636     case Instruction::FSub:
3637     case Instruction::FMul:
3638     case Instruction::FDiv:
3639     case Instruction::FRem:
3640       if (!Val0->getType()->isFPOrFPVectorTy())
3641         return error(ID.Loc, "constexpr requires fp operands");
3642       break;
3643     default: llvm_unreachable("Unknown binary operator!");
3644     }
3645     unsigned Flags = 0;
3646     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3647     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3648     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3649     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3650     ID.ConstantVal = C;
3651     ID.Kind = ValID::t_Constant;
3652     return false;
3653   }
3654 
3655   // Logical Operations
3656   case lltok::kw_and:
3657   case lltok::kw_or:
3658   case lltok::kw_xor: {
3659     unsigned Opc = Lex.getUIntVal();
3660     Constant *Val0, *Val1;
3661     Lex.Lex();
3662     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3663         parseGlobalTypeAndValue(Val0) ||
3664         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3665         parseGlobalTypeAndValue(Val1) ||
3666         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3667       return true;
3668     if (Val0->getType() != Val1->getType())
3669       return error(ID.Loc, "operands of constexpr must have same type");
3670     if (!Val0->getType()->isIntOrIntVectorTy())
3671       return error(ID.Loc,
3672                    "constexpr requires integer or integer vector operands");
3673     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3674     ID.Kind = ValID::t_Constant;
3675     return false;
3676   }
3677 
3678   case lltok::kw_getelementptr:
3679   case lltok::kw_shufflevector:
3680   case lltok::kw_insertelement:
3681   case lltok::kw_extractelement:
3682   case lltok::kw_select: {
3683     unsigned Opc = Lex.getUIntVal();
3684     SmallVector<Constant*, 16> Elts;
3685     bool InBounds = false;
3686     Type *Ty;
3687     Lex.Lex();
3688 
3689     if (Opc == Instruction::GetElementPtr)
3690       InBounds = EatIfPresent(lltok::kw_inbounds);
3691 
3692     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3693       return true;
3694 
3695     LocTy ExplicitTypeLoc = Lex.getLoc();
3696     if (Opc == Instruction::GetElementPtr) {
3697       if (parseType(Ty) ||
3698           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3699         return true;
3700     }
3701 
3702     Optional<unsigned> InRangeOp;
3703     if (parseGlobalValueVector(
3704             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3705         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3706       return true;
3707 
3708     if (Opc == Instruction::GetElementPtr) {
3709       if (Elts.size() == 0 ||
3710           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3711         return error(ID.Loc, "base of getelementptr must be a pointer");
3712 
3713       Type *BaseType = Elts[0]->getType();
3714       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3715       if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
3716         return error(
3717             ExplicitTypeLoc,
3718             typeComparisonErrorMessage(
3719                 "explicit pointee type doesn't match operand's pointee type",
3720                 Ty, BasePointerType->getNonOpaquePointerElementType()));
3721       }
3722 
3723       unsigned GEPWidth =
3724           BaseType->isVectorTy()
3725               ? cast<FixedVectorType>(BaseType)->getNumElements()
3726               : 0;
3727 
3728       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3729       for (Constant *Val : Indices) {
3730         Type *ValTy = Val->getType();
3731         if (!ValTy->isIntOrIntVectorTy())
3732           return error(ID.Loc, "getelementptr index must be an integer");
3733         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3734           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3735           if (GEPWidth && (ValNumEl != GEPWidth))
3736             return error(
3737                 ID.Loc,
3738                 "getelementptr vector index has a wrong number of elements");
3739           // GEPWidth may have been unknown because the base is a scalar,
3740           // but it is known now.
3741           GEPWidth = ValNumEl;
3742         }
3743       }
3744 
3745       SmallPtrSet<Type*, 4> Visited;
3746       if (!Indices.empty() && !Ty->isSized(&Visited))
3747         return error(ID.Loc, "base element of getelementptr must be sized");
3748 
3749       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3750         return error(ID.Loc, "invalid getelementptr indices");
3751 
3752       if (InRangeOp) {
3753         if (*InRangeOp == 0)
3754           return error(ID.Loc,
3755                        "inrange keyword may not appear on pointer operand");
3756         --*InRangeOp;
3757       }
3758 
3759       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3760                                                       InBounds, InRangeOp);
3761     } else if (Opc == Instruction::Select) {
3762       if (Elts.size() != 3)
3763         return error(ID.Loc, "expected three operands to select");
3764       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3765                                                               Elts[2]))
3766         return error(ID.Loc, Reason);
3767       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3768     } else if (Opc == Instruction::ShuffleVector) {
3769       if (Elts.size() != 3)
3770         return error(ID.Loc, "expected three operands to shufflevector");
3771       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3772         return error(ID.Loc, "invalid operands to shufflevector");
3773       SmallVector<int, 16> Mask;
3774       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3775       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3776     } else if (Opc == Instruction::ExtractElement) {
3777       if (Elts.size() != 2)
3778         return error(ID.Loc, "expected two operands to extractelement");
3779       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3780         return error(ID.Loc, "invalid extractelement operands");
3781       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3782     } else {
3783       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3784       if (Elts.size() != 3)
3785         return error(ID.Loc, "expected three operands to insertelement");
3786       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3787         return error(ID.Loc, "invalid insertelement operands");
3788       ID.ConstantVal =
3789                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3790     }
3791 
3792     ID.Kind = ValID::t_Constant;
3793     return false;
3794   }
3795   }
3796 
3797   Lex.Lex();
3798   return false;
3799 }
3800 
3801 /// parseGlobalValue - parse a global value with the specified type.
3802 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3803   C = nullptr;
3804   ValID ID;
3805   Value *V = nullptr;
3806   bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
3807                 convertValIDToValue(Ty, ID, V, nullptr);
3808   if (V && !(C = dyn_cast<Constant>(V)))
3809     return error(ID.Loc, "global values must be constants");
3810   return Parsed;
3811 }
3812 
3813 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3814   Type *Ty = nullptr;
3815   return parseType(Ty) || parseGlobalValue(Ty, V);
3816 }
3817 
3818 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3819   C = nullptr;
3820 
3821   LocTy KwLoc = Lex.getLoc();
3822   if (!EatIfPresent(lltok::kw_comdat))
3823     return false;
3824 
3825   if (EatIfPresent(lltok::lparen)) {
3826     if (Lex.getKind() != lltok::ComdatVar)
3827       return tokError("expected comdat variable");
3828     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3829     Lex.Lex();
3830     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3831       return true;
3832   } else {
3833     if (GlobalName.empty())
3834       return tokError("comdat cannot be unnamed");
3835     C = getComdat(std::string(GlobalName), KwLoc);
3836   }
3837 
3838   return false;
3839 }
3840 
3841 /// parseGlobalValueVector
3842 ///   ::= /*empty*/
3843 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3844 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3845                                       Optional<unsigned> *InRangeOp) {
3846   // Empty list.
3847   if (Lex.getKind() == lltok::rbrace ||
3848       Lex.getKind() == lltok::rsquare ||
3849       Lex.getKind() == lltok::greater ||
3850       Lex.getKind() == lltok::rparen)
3851     return false;
3852 
3853   do {
3854     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3855       *InRangeOp = Elts.size();
3856 
3857     Constant *C;
3858     if (parseGlobalTypeAndValue(C))
3859       return true;
3860     Elts.push_back(C);
3861   } while (EatIfPresent(lltok::comma));
3862 
3863   return false;
3864 }
3865 
3866 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
3867   SmallVector<Metadata *, 16> Elts;
3868   if (parseMDNodeVector(Elts))
3869     return true;
3870 
3871   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3872   return false;
3873 }
3874 
3875 /// MDNode:
3876 ///  ::= !{ ... }
3877 ///  ::= !7
3878 ///  ::= !DILocation(...)
3879 bool LLParser::parseMDNode(MDNode *&N) {
3880   if (Lex.getKind() == lltok::MetadataVar)
3881     return parseSpecializedMDNode(N);
3882 
3883   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
3884 }
3885 
3886 bool LLParser::parseMDNodeTail(MDNode *&N) {
3887   // !{ ... }
3888   if (Lex.getKind() == lltok::lbrace)
3889     return parseMDTuple(N);
3890 
3891   // !42
3892   return parseMDNodeID(N);
3893 }
3894 
3895 namespace {
3896 
3897 /// Structure to represent an optional metadata field.
3898 template <class FieldTy> struct MDFieldImpl {
3899   typedef MDFieldImpl ImplTy;
3900   FieldTy Val;
3901   bool Seen;
3902 
3903   void assign(FieldTy Val) {
3904     Seen = true;
3905     this->Val = std::move(Val);
3906   }
3907 
3908   explicit MDFieldImpl(FieldTy Default)
3909       : Val(std::move(Default)), Seen(false) {}
3910 };
3911 
3912 /// Structure to represent an optional metadata field that
3913 /// can be of either type (A or B) and encapsulates the
3914 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3915 /// to reimplement the specifics for representing each Field.
3916 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3917   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3918   FieldTypeA A;
3919   FieldTypeB B;
3920   bool Seen;
3921 
3922   enum {
3923     IsInvalid = 0,
3924     IsTypeA = 1,
3925     IsTypeB = 2
3926   } WhatIs;
3927 
3928   void assign(FieldTypeA A) {
3929     Seen = true;
3930     this->A = std::move(A);
3931     WhatIs = IsTypeA;
3932   }
3933 
3934   void assign(FieldTypeB B) {
3935     Seen = true;
3936     this->B = std::move(B);
3937     WhatIs = IsTypeB;
3938   }
3939 
3940   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3941       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3942         WhatIs(IsInvalid) {}
3943 };
3944 
3945 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3946   uint64_t Max;
3947 
3948   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3949       : ImplTy(Default), Max(Max) {}
3950 };
3951 
3952 struct LineField : public MDUnsignedField {
3953   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3954 };
3955 
3956 struct ColumnField : public MDUnsignedField {
3957   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3958 };
3959 
3960 struct DwarfTagField : public MDUnsignedField {
3961   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3962   DwarfTagField(dwarf::Tag DefaultTag)
3963       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3964 };
3965 
3966 struct DwarfMacinfoTypeField : public MDUnsignedField {
3967   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3968   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3969     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3970 };
3971 
3972 struct DwarfAttEncodingField : public MDUnsignedField {
3973   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3974 };
3975 
3976 struct DwarfVirtualityField : public MDUnsignedField {
3977   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3978 };
3979 
3980 struct DwarfLangField : public MDUnsignedField {
3981   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3982 };
3983 
3984 struct DwarfCCField : public MDUnsignedField {
3985   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3986 };
3987 
3988 struct EmissionKindField : public MDUnsignedField {
3989   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3990 };
3991 
3992 struct NameTableKindField : public MDUnsignedField {
3993   NameTableKindField()
3994       : MDUnsignedField(
3995             0, (unsigned)
3996                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3997 };
3998 
3999 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
4000   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4001 };
4002 
4003 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
4004   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4005 };
4006 
4007 struct MDAPSIntField : public MDFieldImpl<APSInt> {
4008   MDAPSIntField() : ImplTy(APSInt()) {}
4009 };
4010 
4011 struct MDSignedField : public MDFieldImpl<int64_t> {
4012   int64_t Min = INT64_MIN;
4013   int64_t Max = INT64_MAX;
4014 
4015   MDSignedField(int64_t Default = 0)
4016       : ImplTy(Default) {}
4017   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4018       : ImplTy(Default), Min(Min), Max(Max) {}
4019 };
4020 
4021 struct MDBoolField : public MDFieldImpl<bool> {
4022   MDBoolField(bool Default = false) : ImplTy(Default) {}
4023 };
4024 
4025 struct MDField : public MDFieldImpl<Metadata *> {
4026   bool AllowNull;
4027 
4028   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4029 };
4030 
4031 struct MDStringField : public MDFieldImpl<MDString *> {
4032   bool AllowEmpty;
4033   MDStringField(bool AllowEmpty = true)
4034       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4035 };
4036 
4037 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4038   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4039 };
4040 
4041 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4042   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4043 };
4044 
4045 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4046   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4047       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4048 
4049   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4050                     bool AllowNull = true)
4051       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4052 
4053   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4054   bool isMDField() const { return WhatIs == IsTypeB; }
4055   int64_t getMDSignedValue() const {
4056     assert(isMDSignedField() && "Wrong field type");
4057     return A.Val;
4058   }
4059   Metadata *getMDFieldValue() const {
4060     assert(isMDField() && "Wrong field type");
4061     return B.Val;
4062   }
4063 };
4064 
4065 } // end anonymous namespace
4066 
4067 namespace llvm {
4068 
4069 template <>
4070 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4071   if (Lex.getKind() != lltok::APSInt)
4072     return tokError("expected integer");
4073 
4074   Result.assign(Lex.getAPSIntVal());
4075   Lex.Lex();
4076   return false;
4077 }
4078 
4079 template <>
4080 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4081                             MDUnsignedField &Result) {
4082   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4083     return tokError("expected unsigned integer");
4084 
4085   auto &U = Lex.getAPSIntVal();
4086   if (U.ugt(Result.Max))
4087     return tokError("value for '" + Name + "' too large, limit is " +
4088                     Twine(Result.Max));
4089   Result.assign(U.getZExtValue());
4090   assert(Result.Val <= Result.Max && "Expected value in range");
4091   Lex.Lex();
4092   return false;
4093 }
4094 
4095 template <>
4096 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4097   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4098 }
4099 template <>
4100 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4101   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4102 }
4103 
4104 template <>
4105 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4106   if (Lex.getKind() == lltok::APSInt)
4107     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4108 
4109   if (Lex.getKind() != lltok::DwarfTag)
4110     return tokError("expected DWARF tag");
4111 
4112   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4113   if (Tag == dwarf::DW_TAG_invalid)
4114     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4115   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4116 
4117   Result.assign(Tag);
4118   Lex.Lex();
4119   return false;
4120 }
4121 
4122 template <>
4123 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4124                             DwarfMacinfoTypeField &Result) {
4125   if (Lex.getKind() == lltok::APSInt)
4126     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4127 
4128   if (Lex.getKind() != lltok::DwarfMacinfo)
4129     return tokError("expected DWARF macinfo type");
4130 
4131   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4132   if (Macinfo == dwarf::DW_MACINFO_invalid)
4133     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4134                     Lex.getStrVal() + "'");
4135   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4136 
4137   Result.assign(Macinfo);
4138   Lex.Lex();
4139   return false;
4140 }
4141 
4142 template <>
4143 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4144                             DwarfVirtualityField &Result) {
4145   if (Lex.getKind() == lltok::APSInt)
4146     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4147 
4148   if (Lex.getKind() != lltok::DwarfVirtuality)
4149     return tokError("expected DWARF virtuality code");
4150 
4151   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4152   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4153     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4154                     Lex.getStrVal() + "'");
4155   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4156   Result.assign(Virtuality);
4157   Lex.Lex();
4158   return false;
4159 }
4160 
4161 template <>
4162 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4163   if (Lex.getKind() == lltok::APSInt)
4164     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4165 
4166   if (Lex.getKind() != lltok::DwarfLang)
4167     return tokError("expected DWARF language");
4168 
4169   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4170   if (!Lang)
4171     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4172                     "'");
4173   assert(Lang <= Result.Max && "Expected valid DWARF language");
4174   Result.assign(Lang);
4175   Lex.Lex();
4176   return false;
4177 }
4178 
4179 template <>
4180 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4181   if (Lex.getKind() == lltok::APSInt)
4182     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4183 
4184   if (Lex.getKind() != lltok::DwarfCC)
4185     return tokError("expected DWARF calling convention");
4186 
4187   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4188   if (!CC)
4189     return tokError("invalid DWARF calling convention" + Twine(" '") +
4190                     Lex.getStrVal() + "'");
4191   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4192   Result.assign(CC);
4193   Lex.Lex();
4194   return false;
4195 }
4196 
4197 template <>
4198 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4199                             EmissionKindField &Result) {
4200   if (Lex.getKind() == lltok::APSInt)
4201     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4202 
4203   if (Lex.getKind() != lltok::EmissionKind)
4204     return tokError("expected emission kind");
4205 
4206   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4207   if (!Kind)
4208     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4209                     "'");
4210   assert(*Kind <= Result.Max && "Expected valid emission kind");
4211   Result.assign(*Kind);
4212   Lex.Lex();
4213   return false;
4214 }
4215 
4216 template <>
4217 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4218                             NameTableKindField &Result) {
4219   if (Lex.getKind() == lltok::APSInt)
4220     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4221 
4222   if (Lex.getKind() != lltok::NameTableKind)
4223     return tokError("expected nameTable kind");
4224 
4225   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4226   if (!Kind)
4227     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4228                     "'");
4229   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4230   Result.assign((unsigned)*Kind);
4231   Lex.Lex();
4232   return false;
4233 }
4234 
4235 template <>
4236 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4237                             DwarfAttEncodingField &Result) {
4238   if (Lex.getKind() == lltok::APSInt)
4239     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4240 
4241   if (Lex.getKind() != lltok::DwarfAttEncoding)
4242     return tokError("expected DWARF type attribute encoding");
4243 
4244   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4245   if (!Encoding)
4246     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4247                     Lex.getStrVal() + "'");
4248   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4249   Result.assign(Encoding);
4250   Lex.Lex();
4251   return false;
4252 }
4253 
4254 /// DIFlagField
4255 ///  ::= uint32
4256 ///  ::= DIFlagVector
4257 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4258 template <>
4259 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4260 
4261   // parser for a single flag.
4262   auto parseFlag = [&](DINode::DIFlags &Val) {
4263     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4264       uint32_t TempVal = static_cast<uint32_t>(Val);
4265       bool Res = parseUInt32(TempVal);
4266       Val = static_cast<DINode::DIFlags>(TempVal);
4267       return Res;
4268     }
4269 
4270     if (Lex.getKind() != lltok::DIFlag)
4271       return tokError("expected debug info flag");
4272 
4273     Val = DINode::getFlag(Lex.getStrVal());
4274     if (!Val)
4275       return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() +
4276                       "'");
4277     Lex.Lex();
4278     return false;
4279   };
4280 
4281   // parse the flags and combine them together.
4282   DINode::DIFlags Combined = DINode::FlagZero;
4283   do {
4284     DINode::DIFlags Val;
4285     if (parseFlag(Val))
4286       return true;
4287     Combined |= Val;
4288   } while (EatIfPresent(lltok::bar));
4289 
4290   Result.assign(Combined);
4291   return false;
4292 }
4293 
4294 /// DISPFlagField
4295 ///  ::= uint32
4296 ///  ::= DISPFlagVector
4297 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4298 template <>
4299 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4300 
4301   // parser for a single flag.
4302   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4303     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4304       uint32_t TempVal = static_cast<uint32_t>(Val);
4305       bool Res = parseUInt32(TempVal);
4306       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4307       return Res;
4308     }
4309 
4310     if (Lex.getKind() != lltok::DISPFlag)
4311       return tokError("expected debug info flag");
4312 
4313     Val = DISubprogram::getFlag(Lex.getStrVal());
4314     if (!Val)
4315       return tokError(Twine("invalid subprogram debug info flag '") +
4316                       Lex.getStrVal() + "'");
4317     Lex.Lex();
4318     return false;
4319   };
4320 
4321   // parse the flags and combine them together.
4322   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4323   do {
4324     DISubprogram::DISPFlags Val;
4325     if (parseFlag(Val))
4326       return true;
4327     Combined |= Val;
4328   } while (EatIfPresent(lltok::bar));
4329 
4330   Result.assign(Combined);
4331   return false;
4332 }
4333 
4334 template <>
4335 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4336   if (Lex.getKind() != lltok::APSInt)
4337     return tokError("expected signed integer");
4338 
4339   auto &S = Lex.getAPSIntVal();
4340   if (S < Result.Min)
4341     return tokError("value for '" + Name + "' too small, limit is " +
4342                     Twine(Result.Min));
4343   if (S > Result.Max)
4344     return tokError("value for '" + Name + "' too large, limit is " +
4345                     Twine(Result.Max));
4346   Result.assign(S.getExtValue());
4347   assert(Result.Val >= Result.Min && "Expected value in range");
4348   assert(Result.Val <= Result.Max && "Expected value in range");
4349   Lex.Lex();
4350   return false;
4351 }
4352 
4353 template <>
4354 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4355   switch (Lex.getKind()) {
4356   default:
4357     return tokError("expected 'true' or 'false'");
4358   case lltok::kw_true:
4359     Result.assign(true);
4360     break;
4361   case lltok::kw_false:
4362     Result.assign(false);
4363     break;
4364   }
4365   Lex.Lex();
4366   return false;
4367 }
4368 
4369 template <>
4370 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4371   if (Lex.getKind() == lltok::kw_null) {
4372     if (!Result.AllowNull)
4373       return tokError("'" + Name + "' cannot be null");
4374     Lex.Lex();
4375     Result.assign(nullptr);
4376     return false;
4377   }
4378 
4379   Metadata *MD;
4380   if (parseMetadata(MD, nullptr))
4381     return true;
4382 
4383   Result.assign(MD);
4384   return false;
4385 }
4386 
4387 template <>
4388 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4389                             MDSignedOrMDField &Result) {
4390   // Try to parse a signed int.
4391   if (Lex.getKind() == lltok::APSInt) {
4392     MDSignedField Res = Result.A;
4393     if (!parseMDField(Loc, Name, Res)) {
4394       Result.assign(Res);
4395       return false;
4396     }
4397     return true;
4398   }
4399 
4400   // Otherwise, try to parse as an MDField.
4401   MDField Res = Result.B;
4402   if (!parseMDField(Loc, Name, Res)) {
4403     Result.assign(Res);
4404     return false;
4405   }
4406 
4407   return true;
4408 }
4409 
4410 template <>
4411 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4412   LocTy ValueLoc = Lex.getLoc();
4413   std::string S;
4414   if (parseStringConstant(S))
4415     return true;
4416 
4417   if (!Result.AllowEmpty && S.empty())
4418     return error(ValueLoc, "'" + Name + "' cannot be empty");
4419 
4420   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4421   return false;
4422 }
4423 
4424 template <>
4425 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4426   SmallVector<Metadata *, 4> MDs;
4427   if (parseMDNodeVector(MDs))
4428     return true;
4429 
4430   Result.assign(std::move(MDs));
4431   return false;
4432 }
4433 
4434 template <>
4435 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4436                             ChecksumKindField &Result) {
4437   Optional<DIFile::ChecksumKind> CSKind =
4438       DIFile::getChecksumKind(Lex.getStrVal());
4439 
4440   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4441     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4442                     "'");
4443 
4444   Result.assign(*CSKind);
4445   Lex.Lex();
4446   return false;
4447 }
4448 
4449 } // end namespace llvm
4450 
4451 template <class ParserTy>
4452 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4453   do {
4454     if (Lex.getKind() != lltok::LabelStr)
4455       return tokError("expected field label here");
4456 
4457     if (ParseField())
4458       return true;
4459   } while (EatIfPresent(lltok::comma));
4460 
4461   return false;
4462 }
4463 
4464 template <class ParserTy>
4465 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4466   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4467   Lex.Lex();
4468 
4469   if (parseToken(lltok::lparen, "expected '(' here"))
4470     return true;
4471   if (Lex.getKind() != lltok::rparen)
4472     if (parseMDFieldsImplBody(ParseField))
4473       return true;
4474 
4475   ClosingLoc = Lex.getLoc();
4476   return parseToken(lltok::rparen, "expected ')' here");
4477 }
4478 
4479 template <class FieldTy>
4480 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4481   if (Result.Seen)
4482     return tokError("field '" + Name + "' cannot be specified more than once");
4483 
4484   LocTy Loc = Lex.getLoc();
4485   Lex.Lex();
4486   return parseMDField(Loc, Name, Result);
4487 }
4488 
4489 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4490   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4491 
4492 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4493   if (Lex.getStrVal() == #CLASS)                                               \
4494     return parse##CLASS(N, IsDistinct);
4495 #include "llvm/IR/Metadata.def"
4496 
4497   return tokError("expected metadata type");
4498 }
4499 
4500 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4501 #define NOP_FIELD(NAME, TYPE, INIT)
4502 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4503   if (!NAME.Seen)                                                              \
4504     return error(ClosingLoc, "missing required field '" #NAME "'");
4505 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4506   if (Lex.getStrVal() == #NAME)                                                \
4507     return parseMDField(#NAME, NAME);
4508 #define PARSE_MD_FIELDS()                                                      \
4509   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4510   do {                                                                         \
4511     LocTy ClosingLoc;                                                          \
4512     if (parseMDFieldsImpl(                                                     \
4513             [&]() -> bool {                                                    \
4514               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4515               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4516                               "'");                                            \
4517             },                                                                 \
4518             ClosingLoc))                                                       \
4519       return true;                                                             \
4520     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4521   } while (false)
4522 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4523   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4524 
4525 /// parseDILocationFields:
4526 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4527 ///   isImplicitCode: true)
4528 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4529 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4530   OPTIONAL(line, LineField, );                                                 \
4531   OPTIONAL(column, ColumnField, );                                             \
4532   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4533   OPTIONAL(inlinedAt, MDField, );                                              \
4534   OPTIONAL(isImplicitCode, MDBoolField, (false));
4535   PARSE_MD_FIELDS();
4536 #undef VISIT_MD_FIELDS
4537 
4538   Result =
4539       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4540                                    inlinedAt.Val, isImplicitCode.Val));
4541   return false;
4542 }
4543 
4544 /// parseGenericDINode:
4545 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4546 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4547 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4548   REQUIRED(tag, DwarfTagField, );                                              \
4549   OPTIONAL(header, MDStringField, );                                           \
4550   OPTIONAL(operands, MDFieldList, );
4551   PARSE_MD_FIELDS();
4552 #undef VISIT_MD_FIELDS
4553 
4554   Result = GET_OR_DISTINCT(GenericDINode,
4555                            (Context, tag.Val, header.Val, operands.Val));
4556   return false;
4557 }
4558 
4559 /// parseDISubrange:
4560 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4561 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4562 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4563 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4564 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4565   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4566   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4567   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4568   OPTIONAL(stride, MDSignedOrMDField, );
4569   PARSE_MD_FIELDS();
4570 #undef VISIT_MD_FIELDS
4571 
4572   Metadata *Count = nullptr;
4573   Metadata *LowerBound = nullptr;
4574   Metadata *UpperBound = nullptr;
4575   Metadata *Stride = nullptr;
4576 
4577   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4578     if (Bound.isMDSignedField())
4579       return ConstantAsMetadata::get(ConstantInt::getSigned(
4580           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4581     if (Bound.isMDField())
4582       return Bound.getMDFieldValue();
4583     return nullptr;
4584   };
4585 
4586   Count = convToMetadata(count);
4587   LowerBound = convToMetadata(lowerBound);
4588   UpperBound = convToMetadata(upperBound);
4589   Stride = convToMetadata(stride);
4590 
4591   Result = GET_OR_DISTINCT(DISubrange,
4592                            (Context, Count, LowerBound, UpperBound, Stride));
4593 
4594   return false;
4595 }
4596 
4597 /// parseDIGenericSubrange:
4598 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4599 ///   !node3)
4600 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4601 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4602   OPTIONAL(count, MDSignedOrMDField, );                                        \
4603   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4604   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4605   OPTIONAL(stride, MDSignedOrMDField, );
4606   PARSE_MD_FIELDS();
4607 #undef VISIT_MD_FIELDS
4608 
4609   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4610     if (Bound.isMDSignedField())
4611       return DIExpression::get(
4612           Context, {dwarf::DW_OP_consts,
4613                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4614     if (Bound.isMDField())
4615       return Bound.getMDFieldValue();
4616     return nullptr;
4617   };
4618 
4619   Metadata *Count = ConvToMetadata(count);
4620   Metadata *LowerBound = ConvToMetadata(lowerBound);
4621   Metadata *UpperBound = ConvToMetadata(upperBound);
4622   Metadata *Stride = ConvToMetadata(stride);
4623 
4624   Result = GET_OR_DISTINCT(DIGenericSubrange,
4625                            (Context, Count, LowerBound, UpperBound, Stride));
4626 
4627   return false;
4628 }
4629 
4630 /// parseDIEnumerator:
4631 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4632 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4633 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4634   REQUIRED(name, MDStringField, );                                             \
4635   REQUIRED(value, MDAPSIntField, );                                            \
4636   OPTIONAL(isUnsigned, MDBoolField, (false));
4637   PARSE_MD_FIELDS();
4638 #undef VISIT_MD_FIELDS
4639 
4640   if (isUnsigned.Val && value.Val.isNegative())
4641     return tokError("unsigned enumerator with negative value");
4642 
4643   APSInt Value(value.Val);
4644   // Add a leading zero so that unsigned values with the msb set are not
4645   // mistaken for negative values when used for signed enumerators.
4646   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4647     Value = Value.zext(Value.getBitWidth() + 1);
4648 
4649   Result =
4650       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4651 
4652   return false;
4653 }
4654 
4655 /// parseDIBasicType:
4656 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4657 ///                    encoding: DW_ATE_encoding, flags: 0)
4658 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4659 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4660   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4661   OPTIONAL(name, MDStringField, );                                             \
4662   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4663   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4664   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4665   OPTIONAL(flags, DIFlagField, );
4666   PARSE_MD_FIELDS();
4667 #undef VISIT_MD_FIELDS
4668 
4669   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4670                                          align.Val, encoding.Val, flags.Val));
4671   return false;
4672 }
4673 
4674 /// parseDIStringType:
4675 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4676 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4677 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4678   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4679   OPTIONAL(name, MDStringField, );                                             \
4680   OPTIONAL(stringLength, MDField, );                                           \
4681   OPTIONAL(stringLengthExpression, MDField, );                                 \
4682   OPTIONAL(stringLocationExpression, MDField, );                               \
4683   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4684   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4685   OPTIONAL(encoding, DwarfAttEncodingField, );
4686   PARSE_MD_FIELDS();
4687 #undef VISIT_MD_FIELDS
4688 
4689   Result = GET_OR_DISTINCT(
4690       DIStringType,
4691       (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val,
4692        stringLocationExpression.Val, size.Val, align.Val, encoding.Val));
4693   return false;
4694 }
4695 
4696 /// parseDIDerivedType:
4697 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4698 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4699 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4700 ///                      dwarfAddressSpace: 3)
4701 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4702 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4703   REQUIRED(tag, DwarfTagField, );                                              \
4704   OPTIONAL(name, MDStringField, );                                             \
4705   OPTIONAL(file, MDField, );                                                   \
4706   OPTIONAL(line, LineField, );                                                 \
4707   OPTIONAL(scope, MDField, );                                                  \
4708   REQUIRED(baseType, MDField, );                                               \
4709   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4710   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4711   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4712   OPTIONAL(flags, DIFlagField, );                                              \
4713   OPTIONAL(extraData, MDField, );                                              \
4714   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));      \
4715   OPTIONAL(annotations, MDField, );
4716   PARSE_MD_FIELDS();
4717 #undef VISIT_MD_FIELDS
4718 
4719   Optional<unsigned> DWARFAddressSpace;
4720   if (dwarfAddressSpace.Val != UINT32_MAX)
4721     DWARFAddressSpace = dwarfAddressSpace.Val;
4722 
4723   Result = GET_OR_DISTINCT(DIDerivedType,
4724                            (Context, tag.Val, name.Val, file.Val, line.Val,
4725                             scope.Val, baseType.Val, size.Val, align.Val,
4726                             offset.Val, DWARFAddressSpace, flags.Val,
4727                             extraData.Val, annotations.Val));
4728   return false;
4729 }
4730 
4731 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4732 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4733   REQUIRED(tag, DwarfTagField, );                                              \
4734   OPTIONAL(name, MDStringField, );                                             \
4735   OPTIONAL(file, MDField, );                                                   \
4736   OPTIONAL(line, LineField, );                                                 \
4737   OPTIONAL(scope, MDField, );                                                  \
4738   OPTIONAL(baseType, MDField, );                                               \
4739   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4740   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4741   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4742   OPTIONAL(flags, DIFlagField, );                                              \
4743   OPTIONAL(elements, MDField, );                                               \
4744   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4745   OPTIONAL(vtableHolder, MDField, );                                           \
4746   OPTIONAL(templateParams, MDField, );                                         \
4747   OPTIONAL(identifier, MDStringField, );                                       \
4748   OPTIONAL(discriminator, MDField, );                                          \
4749   OPTIONAL(dataLocation, MDField, );                                           \
4750   OPTIONAL(associated, MDField, );                                             \
4751   OPTIONAL(allocated, MDField, );                                              \
4752   OPTIONAL(rank, MDSignedOrMDField, );                                         \
4753   OPTIONAL(annotations, MDField, );
4754   PARSE_MD_FIELDS();
4755 #undef VISIT_MD_FIELDS
4756 
4757   Metadata *Rank = nullptr;
4758   if (rank.isMDSignedField())
4759     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4760         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4761   else if (rank.isMDField())
4762     Rank = rank.getMDFieldValue();
4763 
4764   // If this has an identifier try to build an ODR type.
4765   if (identifier.Val)
4766     if (auto *CT = DICompositeType::buildODRType(
4767             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4768             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4769             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4770             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4771             Rank, annotations.Val)) {
4772       Result = CT;
4773       return false;
4774     }
4775 
4776   // Create a new node, and save it in the context if it belongs in the type
4777   // map.
4778   Result = GET_OR_DISTINCT(
4779       DICompositeType,
4780       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4781        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4782        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4783        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank,
4784        annotations.Val));
4785   return false;
4786 }
4787 
4788 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4789 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4790   OPTIONAL(flags, DIFlagField, );                                              \
4791   OPTIONAL(cc, DwarfCCField, );                                                \
4792   REQUIRED(types, MDField, );
4793   PARSE_MD_FIELDS();
4794 #undef VISIT_MD_FIELDS
4795 
4796   Result = GET_OR_DISTINCT(DISubroutineType,
4797                            (Context, flags.Val, cc.Val, types.Val));
4798   return false;
4799 }
4800 
4801 /// parseDIFileType:
4802 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4803 ///                   checksumkind: CSK_MD5,
4804 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4805 ///                   source: "source file contents")
4806 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4807   // The default constructed value for checksumkind is required, but will never
4808   // be used, as the parser checks if the field was actually Seen before using
4809   // the Val.
4810 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4811   REQUIRED(filename, MDStringField, );                                         \
4812   REQUIRED(directory, MDStringField, );                                        \
4813   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4814   OPTIONAL(checksum, MDStringField, );                                         \
4815   OPTIONAL(source, MDStringField, );
4816   PARSE_MD_FIELDS();
4817 #undef VISIT_MD_FIELDS
4818 
4819   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4820   if (checksumkind.Seen && checksum.Seen)
4821     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4822   else if (checksumkind.Seen || checksum.Seen)
4823     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4824 
4825   Optional<MDString *> OptSource;
4826   if (source.Seen)
4827     OptSource = source.Val;
4828   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4829                                     OptChecksum, OptSource));
4830   return false;
4831 }
4832 
4833 /// parseDICompileUnit:
4834 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4835 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4836 ///                      splitDebugFilename: "abc.debug",
4837 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4838 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4839 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4840 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4841   if (!IsDistinct)
4842     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4843 
4844 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4845   REQUIRED(language, DwarfLangField, );                                        \
4846   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4847   OPTIONAL(producer, MDStringField, );                                         \
4848   OPTIONAL(isOptimized, MDBoolField, );                                        \
4849   OPTIONAL(flags, MDStringField, );                                            \
4850   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4851   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4852   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4853   OPTIONAL(enums, MDField, );                                                  \
4854   OPTIONAL(retainedTypes, MDField, );                                          \
4855   OPTIONAL(globals, MDField, );                                                \
4856   OPTIONAL(imports, MDField, );                                                \
4857   OPTIONAL(macros, MDField, );                                                 \
4858   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4859   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4860   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4861   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4862   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4863   OPTIONAL(sysroot, MDStringField, );                                          \
4864   OPTIONAL(sdk, MDStringField, );
4865   PARSE_MD_FIELDS();
4866 #undef VISIT_MD_FIELDS
4867 
4868   Result = DICompileUnit::getDistinct(
4869       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4870       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4871       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4872       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4873       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4874   return false;
4875 }
4876 
4877 /// parseDISubprogram:
4878 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4879 ///                     file: !1, line: 7, type: !2, isLocal: false,
4880 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4881 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4882 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4883 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4884 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7,
4885 ///                     annotations: !8)
4886 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
4887   auto Loc = Lex.getLoc();
4888 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4889   OPTIONAL(scope, MDField, );                                                  \
4890   OPTIONAL(name, MDStringField, );                                             \
4891   OPTIONAL(linkageName, MDStringField, );                                      \
4892   OPTIONAL(file, MDField, );                                                   \
4893   OPTIONAL(line, LineField, );                                                 \
4894   OPTIONAL(type, MDField, );                                                   \
4895   OPTIONAL(isLocal, MDBoolField, );                                            \
4896   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4897   OPTIONAL(scopeLine, LineField, );                                            \
4898   OPTIONAL(containingType, MDField, );                                         \
4899   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4900   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4901   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4902   OPTIONAL(flags, DIFlagField, );                                              \
4903   OPTIONAL(spFlags, DISPFlagField, );                                          \
4904   OPTIONAL(isOptimized, MDBoolField, );                                        \
4905   OPTIONAL(unit, MDField, );                                                   \
4906   OPTIONAL(templateParams, MDField, );                                         \
4907   OPTIONAL(declaration, MDField, );                                            \
4908   OPTIONAL(retainedNodes, MDField, );                                          \
4909   OPTIONAL(thrownTypes, MDField, );                                            \
4910   OPTIONAL(annotations, MDField, );                                            \
4911   OPTIONAL(targetFuncName, MDStringField, );
4912   PARSE_MD_FIELDS();
4913 #undef VISIT_MD_FIELDS
4914 
4915   // An explicit spFlags field takes precedence over individual fields in
4916   // older IR versions.
4917   DISubprogram::DISPFlags SPFlags =
4918       spFlags.Seen ? spFlags.Val
4919                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4920                                              isOptimized.Val, virtuality.Val);
4921   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4922     return Lex.Error(
4923         Loc,
4924         "missing 'distinct', required for !DISubprogram that is a Definition");
4925   Result = GET_OR_DISTINCT(
4926       DISubprogram,
4927       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4928        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4929        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4930        declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val,
4931        targetFuncName.Val));
4932   return false;
4933 }
4934 
4935 /// parseDILexicalBlock:
4936 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4937 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4938 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4939   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4940   OPTIONAL(file, MDField, );                                                   \
4941   OPTIONAL(line, LineField, );                                                 \
4942   OPTIONAL(column, ColumnField, );
4943   PARSE_MD_FIELDS();
4944 #undef VISIT_MD_FIELDS
4945 
4946   Result = GET_OR_DISTINCT(
4947       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4948   return false;
4949 }
4950 
4951 /// parseDILexicalBlockFile:
4952 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4953 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4954 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4955   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4956   OPTIONAL(file, MDField, );                                                   \
4957   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4958   PARSE_MD_FIELDS();
4959 #undef VISIT_MD_FIELDS
4960 
4961   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4962                            (Context, scope.Val, file.Val, discriminator.Val));
4963   return false;
4964 }
4965 
4966 /// parseDICommonBlock:
4967 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4968 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4969 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4970   REQUIRED(scope, MDField, );                                                  \
4971   OPTIONAL(declaration, MDField, );                                            \
4972   OPTIONAL(name, MDStringField, );                                             \
4973   OPTIONAL(file, MDField, );                                                   \
4974   OPTIONAL(line, LineField, );
4975   PARSE_MD_FIELDS();
4976 #undef VISIT_MD_FIELDS
4977 
4978   Result = GET_OR_DISTINCT(DICommonBlock,
4979                            (Context, scope.Val, declaration.Val, name.Val,
4980                             file.Val, line.Val));
4981   return false;
4982 }
4983 
4984 /// parseDINamespace:
4985 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4986 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
4987 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4988   REQUIRED(scope, MDField, );                                                  \
4989   OPTIONAL(name, MDStringField, );                                             \
4990   OPTIONAL(exportSymbols, MDBoolField, );
4991   PARSE_MD_FIELDS();
4992 #undef VISIT_MD_FIELDS
4993 
4994   Result = GET_OR_DISTINCT(DINamespace,
4995                            (Context, scope.Val, name.Val, exportSymbols.Val));
4996   return false;
4997 }
4998 
4999 /// parseDIMacro:
5000 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5001 ///   "SomeValue")
5002 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5003 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5004   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
5005   OPTIONAL(line, LineField, );                                                 \
5006   REQUIRED(name, MDStringField, );                                             \
5007   OPTIONAL(value, MDStringField, );
5008   PARSE_MD_FIELDS();
5009 #undef VISIT_MD_FIELDS
5010 
5011   Result = GET_OR_DISTINCT(DIMacro,
5012                            (Context, type.Val, line.Val, name.Val, value.Val));
5013   return false;
5014 }
5015 
5016 /// parseDIMacroFile:
5017 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
5018 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5019 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5020   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
5021   OPTIONAL(line, LineField, );                                                 \
5022   REQUIRED(file, MDField, );                                                   \
5023   OPTIONAL(nodes, MDField, );
5024   PARSE_MD_FIELDS();
5025 #undef VISIT_MD_FIELDS
5026 
5027   Result = GET_OR_DISTINCT(DIMacroFile,
5028                            (Context, type.Val, line.Val, file.Val, nodes.Val));
5029   return false;
5030 }
5031 
5032 /// parseDIModule:
5033 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5034 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5035 ///   file: !1, line: 4, isDecl: false)
5036 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5037 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5038   REQUIRED(scope, MDField, );                                                  \
5039   REQUIRED(name, MDStringField, );                                             \
5040   OPTIONAL(configMacros, MDStringField, );                                     \
5041   OPTIONAL(includePath, MDStringField, );                                      \
5042   OPTIONAL(apinotes, MDStringField, );                                         \
5043   OPTIONAL(file, MDField, );                                                   \
5044   OPTIONAL(line, LineField, );                                                 \
5045   OPTIONAL(isDecl, MDBoolField, );
5046   PARSE_MD_FIELDS();
5047 #undef VISIT_MD_FIELDS
5048 
5049   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5050                                       configMacros.Val, includePath.Val,
5051                                       apinotes.Val, line.Val, isDecl.Val));
5052   return false;
5053 }
5054 
5055 /// parseDITemplateTypeParameter:
5056 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5057 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5058 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5059   OPTIONAL(name, MDStringField, );                                             \
5060   REQUIRED(type, MDField, );                                                   \
5061   OPTIONAL(defaulted, MDBoolField, );
5062   PARSE_MD_FIELDS();
5063 #undef VISIT_MD_FIELDS
5064 
5065   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5066                            (Context, name.Val, type.Val, defaulted.Val));
5067   return false;
5068 }
5069 
5070 /// parseDITemplateValueParameter:
5071 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5072 ///                                 name: "V", type: !1, defaulted: false,
5073 ///                                 value: i32 7)
5074 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5075 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5076   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5077   OPTIONAL(name, MDStringField, );                                             \
5078   OPTIONAL(type, MDField, );                                                   \
5079   OPTIONAL(defaulted, MDBoolField, );                                          \
5080   REQUIRED(value, MDField, );
5081 
5082   PARSE_MD_FIELDS();
5083 #undef VISIT_MD_FIELDS
5084 
5085   Result = GET_OR_DISTINCT(
5086       DITemplateValueParameter,
5087       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5088   return false;
5089 }
5090 
5091 /// parseDIGlobalVariable:
5092 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5093 ///                         file: !1, line: 7, type: !2, isLocal: false,
5094 ///                         isDefinition: true, templateParams: !3,
5095 ///                         declaration: !4, align: 8)
5096 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5097 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5098   OPTIONAL(name, MDStringField, (/* AllowEmpty */ false));                     \
5099   OPTIONAL(scope, MDField, );                                                  \
5100   OPTIONAL(linkageName, MDStringField, );                                      \
5101   OPTIONAL(file, MDField, );                                                   \
5102   OPTIONAL(line, LineField, );                                                 \
5103   OPTIONAL(type, MDField, );                                                   \
5104   OPTIONAL(isLocal, MDBoolField, );                                            \
5105   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5106   OPTIONAL(templateParams, MDField, );                                         \
5107   OPTIONAL(declaration, MDField, );                                            \
5108   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5109   OPTIONAL(annotations, MDField, );
5110   PARSE_MD_FIELDS();
5111 #undef VISIT_MD_FIELDS
5112 
5113   Result =
5114       GET_OR_DISTINCT(DIGlobalVariable,
5115                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5116                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5117                        declaration.Val, templateParams.Val, align.Val,
5118                        annotations.Val));
5119   return false;
5120 }
5121 
5122 /// parseDILocalVariable:
5123 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5124 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5125 ///                        align: 8)
5126 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5127 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5128 ///                        align: 8)
5129 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5130 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5131   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5132   OPTIONAL(name, MDStringField, );                                             \
5133   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5134   OPTIONAL(file, MDField, );                                                   \
5135   OPTIONAL(line, LineField, );                                                 \
5136   OPTIONAL(type, MDField, );                                                   \
5137   OPTIONAL(flags, DIFlagField, );                                              \
5138   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5139   OPTIONAL(annotations, MDField, );
5140   PARSE_MD_FIELDS();
5141 #undef VISIT_MD_FIELDS
5142 
5143   Result = GET_OR_DISTINCT(DILocalVariable,
5144                            (Context, scope.Val, name.Val, file.Val, line.Val,
5145                             type.Val, arg.Val, flags.Val, align.Val,
5146                             annotations.Val));
5147   return false;
5148 }
5149 
5150 /// parseDILabel:
5151 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5152 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5153 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5154   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5155   REQUIRED(name, MDStringField, );                                             \
5156   REQUIRED(file, MDField, );                                                   \
5157   REQUIRED(line, LineField, );
5158   PARSE_MD_FIELDS();
5159 #undef VISIT_MD_FIELDS
5160 
5161   Result = GET_OR_DISTINCT(DILabel,
5162                            (Context, scope.Val, name.Val, file.Val, line.Val));
5163   return false;
5164 }
5165 
5166 /// parseDIExpression:
5167 ///   ::= !DIExpression(0, 7, -1)
5168 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5169   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5170   Lex.Lex();
5171 
5172   if (parseToken(lltok::lparen, "expected '(' here"))
5173     return true;
5174 
5175   SmallVector<uint64_t, 8> Elements;
5176   if (Lex.getKind() != lltok::rparen)
5177     do {
5178       if (Lex.getKind() == lltok::DwarfOp) {
5179         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5180           Lex.Lex();
5181           Elements.push_back(Op);
5182           continue;
5183         }
5184         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5185       }
5186 
5187       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5188         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5189           Lex.Lex();
5190           Elements.push_back(Op);
5191           continue;
5192         }
5193         return tokError(Twine("invalid DWARF attribute encoding '") +
5194                         Lex.getStrVal() + "'");
5195       }
5196 
5197       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5198         return tokError("expected unsigned integer");
5199 
5200       auto &U = Lex.getAPSIntVal();
5201       if (U.ugt(UINT64_MAX))
5202         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5203       Elements.push_back(U.getZExtValue());
5204       Lex.Lex();
5205     } while (EatIfPresent(lltok::comma));
5206 
5207   if (parseToken(lltok::rparen, "expected ')' here"))
5208     return true;
5209 
5210   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5211   return false;
5212 }
5213 
5214 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5215   return parseDIArgList(Result, IsDistinct, nullptr);
5216 }
5217 /// ParseDIArgList:
5218 ///   ::= !DIArgList(i32 7, i64 %0)
5219 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5220                               PerFunctionState *PFS) {
5221   assert(PFS && "Expected valid function state");
5222   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5223   Lex.Lex();
5224 
5225   if (parseToken(lltok::lparen, "expected '(' here"))
5226     return true;
5227 
5228   SmallVector<ValueAsMetadata *, 4> Args;
5229   if (Lex.getKind() != lltok::rparen)
5230     do {
5231       Metadata *MD;
5232       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5233         return true;
5234       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5235     } while (EatIfPresent(lltok::comma));
5236 
5237   if (parseToken(lltok::rparen, "expected ')' here"))
5238     return true;
5239 
5240   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5241   return false;
5242 }
5243 
5244 /// parseDIGlobalVariableExpression:
5245 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5246 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5247                                                bool IsDistinct) {
5248 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5249   REQUIRED(var, MDField, );                                                    \
5250   REQUIRED(expr, MDField, );
5251   PARSE_MD_FIELDS();
5252 #undef VISIT_MD_FIELDS
5253 
5254   Result =
5255       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5256   return false;
5257 }
5258 
5259 /// parseDIObjCProperty:
5260 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5261 ///                       getter: "getFoo", attributes: 7, type: !2)
5262 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5263 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5264   OPTIONAL(name, MDStringField, );                                             \
5265   OPTIONAL(file, MDField, );                                                   \
5266   OPTIONAL(line, LineField, );                                                 \
5267   OPTIONAL(setter, MDStringField, );                                           \
5268   OPTIONAL(getter, MDStringField, );                                           \
5269   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5270   OPTIONAL(type, MDField, );
5271   PARSE_MD_FIELDS();
5272 #undef VISIT_MD_FIELDS
5273 
5274   Result = GET_OR_DISTINCT(DIObjCProperty,
5275                            (Context, name.Val, file.Val, line.Val, setter.Val,
5276                             getter.Val, attributes.Val, type.Val));
5277   return false;
5278 }
5279 
5280 /// parseDIImportedEntity:
5281 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5282 ///                         line: 7, name: "foo", elements: !2)
5283 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5284 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5285   REQUIRED(tag, DwarfTagField, );                                              \
5286   REQUIRED(scope, MDField, );                                                  \
5287   OPTIONAL(entity, MDField, );                                                 \
5288   OPTIONAL(file, MDField, );                                                   \
5289   OPTIONAL(line, LineField, );                                                 \
5290   OPTIONAL(name, MDStringField, );                                             \
5291   OPTIONAL(elements, MDField, );
5292   PARSE_MD_FIELDS();
5293 #undef VISIT_MD_FIELDS
5294 
5295   Result = GET_OR_DISTINCT(DIImportedEntity,
5296                            (Context, tag.Val, scope.Val, entity.Val, file.Val,
5297                             line.Val, name.Val, elements.Val));
5298   return false;
5299 }
5300 
5301 #undef PARSE_MD_FIELD
5302 #undef NOP_FIELD
5303 #undef REQUIRE_FIELD
5304 #undef DECLARE_FIELD
5305 
5306 /// parseMetadataAsValue
5307 ///  ::= metadata i32 %local
5308 ///  ::= metadata i32 @global
5309 ///  ::= metadata i32 7
5310 ///  ::= metadata !0
5311 ///  ::= metadata !{...}
5312 ///  ::= metadata !"string"
5313 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5314   // Note: the type 'metadata' has already been parsed.
5315   Metadata *MD;
5316   if (parseMetadata(MD, &PFS))
5317     return true;
5318 
5319   V = MetadataAsValue::get(Context, MD);
5320   return false;
5321 }
5322 
5323 /// parseValueAsMetadata
5324 ///  ::= i32 %local
5325 ///  ::= i32 @global
5326 ///  ::= i32 7
5327 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5328                                     PerFunctionState *PFS) {
5329   Type *Ty;
5330   LocTy Loc;
5331   if (parseType(Ty, TypeMsg, Loc))
5332     return true;
5333   if (Ty->isMetadataTy())
5334     return error(Loc, "invalid metadata-value-metadata roundtrip");
5335 
5336   Value *V;
5337   if (parseValue(Ty, V, PFS))
5338     return true;
5339 
5340   MD = ValueAsMetadata::get(V);
5341   return false;
5342 }
5343 
5344 /// parseMetadata
5345 ///  ::= i32 %local
5346 ///  ::= i32 @global
5347 ///  ::= i32 7
5348 ///  ::= !42
5349 ///  ::= !{...}
5350 ///  ::= !"string"
5351 ///  ::= !DILocation(...)
5352 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5353   if (Lex.getKind() == lltok::MetadataVar) {
5354     MDNode *N;
5355     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5356     // so parsing this requires a Function State.
5357     if (Lex.getStrVal() == "DIArgList") {
5358       if (parseDIArgList(N, false, PFS))
5359         return true;
5360     } else if (parseSpecializedMDNode(N)) {
5361       return true;
5362     }
5363     MD = N;
5364     return false;
5365   }
5366 
5367   // ValueAsMetadata:
5368   // <type> <value>
5369   if (Lex.getKind() != lltok::exclaim)
5370     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5371 
5372   // '!'.
5373   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5374   Lex.Lex();
5375 
5376   // MDString:
5377   //   ::= '!' STRINGCONSTANT
5378   if (Lex.getKind() == lltok::StringConstant) {
5379     MDString *S;
5380     if (parseMDString(S))
5381       return true;
5382     MD = S;
5383     return false;
5384   }
5385 
5386   // MDNode:
5387   // !{ ... }
5388   // !7
5389   MDNode *N;
5390   if (parseMDNodeTail(N))
5391     return true;
5392   MD = N;
5393   return false;
5394 }
5395 
5396 //===----------------------------------------------------------------------===//
5397 // Function Parsing.
5398 //===----------------------------------------------------------------------===//
5399 
5400 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5401                                    PerFunctionState *PFS) {
5402   if (Ty->isFunctionTy())
5403     return error(ID.Loc, "functions are not values, refer to them as pointers");
5404 
5405   switch (ID.Kind) {
5406   case ValID::t_LocalID:
5407     if (!PFS)
5408       return error(ID.Loc, "invalid use of function-local name");
5409     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc);
5410     return V == nullptr;
5411   case ValID::t_LocalName:
5412     if (!PFS)
5413       return error(ID.Loc, "invalid use of function-local name");
5414     V = PFS->getVal(ID.StrVal, Ty, ID.Loc);
5415     return V == nullptr;
5416   case ValID::t_InlineAsm: {
5417     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5418       return error(ID.Loc, "invalid type for inline asm constraint string");
5419     V = InlineAsm::get(
5420         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5421         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5422     return false;
5423   }
5424   case ValID::t_GlobalName:
5425     V = getGlobalVal(ID.StrVal, Ty, ID.Loc);
5426     if (V && ID.NoCFI)
5427       V = NoCFIValue::get(cast<GlobalValue>(V));
5428     return V == nullptr;
5429   case ValID::t_GlobalID:
5430     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc);
5431     if (V && ID.NoCFI)
5432       V = NoCFIValue::get(cast<GlobalValue>(V));
5433     return V == nullptr;
5434   case ValID::t_APSInt:
5435     if (!Ty->isIntegerTy())
5436       return error(ID.Loc, "integer constant must have integer type");
5437     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5438     V = ConstantInt::get(Context, ID.APSIntVal);
5439     return false;
5440   case ValID::t_APFloat:
5441     if (!Ty->isFloatingPointTy() ||
5442         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5443       return error(ID.Loc, "floating point constant invalid for type");
5444 
5445     // The lexer has no type info, so builds all half, bfloat, float, and double
5446     // FP constants as double.  Fix this here.  Long double does not need this.
5447     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5448       // Check for signaling before potentially converting and losing that info.
5449       bool IsSNAN = ID.APFloatVal.isSignaling();
5450       bool Ignored;
5451       if (Ty->isHalfTy())
5452         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5453                               &Ignored);
5454       else if (Ty->isBFloatTy())
5455         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5456                               &Ignored);
5457       else if (Ty->isFloatTy())
5458         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5459                               &Ignored);
5460       if (IsSNAN) {
5461         // The convert call above may quiet an SNaN, so manufacture another
5462         // SNaN. The bitcast works because the payload (significand) parameter
5463         // is truncated to fit.
5464         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5465         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5466                                          ID.APFloatVal.isNegative(), &Payload);
5467       }
5468     }
5469     V = ConstantFP::get(Context, ID.APFloatVal);
5470 
5471     if (V->getType() != Ty)
5472       return error(ID.Loc, "floating point constant does not have type '" +
5473                                getTypeString(Ty) + "'");
5474 
5475     return false;
5476   case ValID::t_Null:
5477     if (!Ty->isPointerTy())
5478       return error(ID.Loc, "null must be a pointer type");
5479     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5480     return false;
5481   case ValID::t_Undef:
5482     // FIXME: LabelTy should not be a first-class type.
5483     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5484       return error(ID.Loc, "invalid type for undef constant");
5485     V = UndefValue::get(Ty);
5486     return false;
5487   case ValID::t_EmptyArray:
5488     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5489       return error(ID.Loc, "invalid empty array initializer");
5490     V = UndefValue::get(Ty);
5491     return false;
5492   case ValID::t_Zero:
5493     // FIXME: LabelTy should not be a first-class type.
5494     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5495       return error(ID.Loc, "invalid type for null constant");
5496     V = Constant::getNullValue(Ty);
5497     return false;
5498   case ValID::t_None:
5499     if (!Ty->isTokenTy())
5500       return error(ID.Loc, "invalid type for none constant");
5501     V = Constant::getNullValue(Ty);
5502     return false;
5503   case ValID::t_Poison:
5504     // FIXME: LabelTy should not be a first-class type.
5505     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5506       return error(ID.Loc, "invalid type for poison constant");
5507     V = PoisonValue::get(Ty);
5508     return false;
5509   case ValID::t_Constant:
5510     if (ID.ConstantVal->getType() != Ty)
5511       return error(ID.Loc, "constant expression type mismatch: got type '" +
5512                                getTypeString(ID.ConstantVal->getType()) +
5513                                "' but expected '" + getTypeString(Ty) + "'");
5514     V = ID.ConstantVal;
5515     return false;
5516   case ValID::t_ConstantStruct:
5517   case ValID::t_PackedConstantStruct:
5518     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5519       if (ST->getNumElements() != ID.UIntVal)
5520         return error(ID.Loc,
5521                      "initializer with struct type has wrong # elements");
5522       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5523         return error(ID.Loc, "packed'ness of initializer and type don't match");
5524 
5525       // Verify that the elements are compatible with the structtype.
5526       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5527         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5528           return error(
5529               ID.Loc,
5530               "element " + Twine(i) +
5531                   " of struct initializer doesn't match struct element type");
5532 
5533       V = ConstantStruct::get(
5534           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5535     } else
5536       return error(ID.Loc, "constant expression type mismatch");
5537     return false;
5538   }
5539   llvm_unreachable("Invalid ValID");
5540 }
5541 
5542 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5543   C = nullptr;
5544   ValID ID;
5545   auto Loc = Lex.getLoc();
5546   if (parseValID(ID, /*PFS=*/nullptr))
5547     return true;
5548   switch (ID.Kind) {
5549   case ValID::t_APSInt:
5550   case ValID::t_APFloat:
5551   case ValID::t_Undef:
5552   case ValID::t_Constant:
5553   case ValID::t_ConstantStruct:
5554   case ValID::t_PackedConstantStruct: {
5555     Value *V;
5556     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
5557       return true;
5558     assert(isa<Constant>(V) && "Expected a constant value");
5559     C = cast<Constant>(V);
5560     return false;
5561   }
5562   case ValID::t_Null:
5563     C = Constant::getNullValue(Ty);
5564     return false;
5565   default:
5566     return error(Loc, "expected a constant value");
5567   }
5568 }
5569 
5570 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5571   V = nullptr;
5572   ValID ID;
5573   return parseValID(ID, PFS, Ty) ||
5574          convertValIDToValue(Ty, ID, V, PFS);
5575 }
5576 
5577 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5578   Type *Ty = nullptr;
5579   return parseType(Ty) || parseValue(Ty, V, PFS);
5580 }
5581 
5582 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5583                                       PerFunctionState &PFS) {
5584   Value *V;
5585   Loc = Lex.getLoc();
5586   if (parseTypeAndValue(V, PFS))
5587     return true;
5588   if (!isa<BasicBlock>(V))
5589     return error(Loc, "expected a basic block");
5590   BB = cast<BasicBlock>(V);
5591   return false;
5592 }
5593 
5594 /// FunctionHeader
5595 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5596 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5597 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5598 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5599 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5600   // parse the linkage.
5601   LocTy LinkageLoc = Lex.getLoc();
5602   unsigned Linkage;
5603   unsigned Visibility;
5604   unsigned DLLStorageClass;
5605   bool DSOLocal;
5606   AttrBuilder RetAttrs(M->getContext());
5607   unsigned CC;
5608   bool HasLinkage;
5609   Type *RetType = nullptr;
5610   LocTy RetTypeLoc = Lex.getLoc();
5611   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5612                            DSOLocal) ||
5613       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5614       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5615     return true;
5616 
5617   // Verify that the linkage is ok.
5618   switch ((GlobalValue::LinkageTypes)Linkage) {
5619   case GlobalValue::ExternalLinkage:
5620     break; // always ok.
5621   case GlobalValue::ExternalWeakLinkage:
5622     if (IsDefine)
5623       return error(LinkageLoc, "invalid linkage for function definition");
5624     break;
5625   case GlobalValue::PrivateLinkage:
5626   case GlobalValue::InternalLinkage:
5627   case GlobalValue::AvailableExternallyLinkage:
5628   case GlobalValue::LinkOnceAnyLinkage:
5629   case GlobalValue::LinkOnceODRLinkage:
5630   case GlobalValue::WeakAnyLinkage:
5631   case GlobalValue::WeakODRLinkage:
5632     if (!IsDefine)
5633       return error(LinkageLoc, "invalid linkage for function declaration");
5634     break;
5635   case GlobalValue::AppendingLinkage:
5636   case GlobalValue::CommonLinkage:
5637     return error(LinkageLoc, "invalid function linkage type");
5638   }
5639 
5640   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5641     return error(LinkageLoc,
5642                  "symbol with local linkage must have default visibility");
5643 
5644   if (!FunctionType::isValidReturnType(RetType))
5645     return error(RetTypeLoc, "invalid function return type");
5646 
5647   LocTy NameLoc = Lex.getLoc();
5648 
5649   std::string FunctionName;
5650   if (Lex.getKind() == lltok::GlobalVar) {
5651     FunctionName = Lex.getStrVal();
5652   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5653     unsigned NameID = Lex.getUIntVal();
5654 
5655     if (NameID != NumberedVals.size())
5656       return tokError("function expected to be numbered '%" +
5657                       Twine(NumberedVals.size()) + "'");
5658   } else {
5659     return tokError("expected function name");
5660   }
5661 
5662   Lex.Lex();
5663 
5664   if (Lex.getKind() != lltok::lparen)
5665     return tokError("expected '(' in function argument list");
5666 
5667   SmallVector<ArgInfo, 8> ArgList;
5668   bool IsVarArg;
5669   AttrBuilder FuncAttrs(M->getContext());
5670   std::vector<unsigned> FwdRefAttrGrps;
5671   LocTy BuiltinLoc;
5672   std::string Section;
5673   std::string Partition;
5674   MaybeAlign Alignment;
5675   std::string GC;
5676   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5677   unsigned AddrSpace = 0;
5678   Constant *Prefix = nullptr;
5679   Constant *Prologue = nullptr;
5680   Constant *PersonalityFn = nullptr;
5681   Comdat *C;
5682 
5683   if (parseArgumentList(ArgList, IsVarArg) ||
5684       parseOptionalUnnamedAddr(UnnamedAddr) ||
5685       parseOptionalProgramAddrSpace(AddrSpace) ||
5686       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5687                                  BuiltinLoc) ||
5688       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5689       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5690       parseOptionalComdat(FunctionName, C) ||
5691       parseOptionalAlignment(Alignment) ||
5692       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5693       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5694       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5695       (EatIfPresent(lltok::kw_personality) &&
5696        parseGlobalTypeAndValue(PersonalityFn)))
5697     return true;
5698 
5699   if (FuncAttrs.contains(Attribute::Builtin))
5700     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5701 
5702   // If the alignment was parsed as an attribute, move to the alignment field.
5703   if (FuncAttrs.hasAlignmentAttr()) {
5704     Alignment = FuncAttrs.getAlignment();
5705     FuncAttrs.removeAttribute(Attribute::Alignment);
5706   }
5707 
5708   // Okay, if we got here, the function is syntactically valid.  Convert types
5709   // and do semantic checks.
5710   std::vector<Type*> ParamTypeList;
5711   SmallVector<AttributeSet, 8> Attrs;
5712 
5713   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5714     ParamTypeList.push_back(ArgList[i].Ty);
5715     Attrs.push_back(ArgList[i].Attrs);
5716   }
5717 
5718   AttributeList PAL =
5719       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5720                          AttributeSet::get(Context, RetAttrs), Attrs);
5721 
5722   if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy())
5723     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5724 
5725   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5726   PointerType *PFT = PointerType::get(FT, AddrSpace);
5727 
5728   Fn = nullptr;
5729   GlobalValue *FwdFn = nullptr;
5730   if (!FunctionName.empty()) {
5731     // If this was a definition of a forward reference, remove the definition
5732     // from the forward reference table and fill in the forward ref.
5733     auto FRVI = ForwardRefVals.find(FunctionName);
5734     if (FRVI != ForwardRefVals.end()) {
5735       FwdFn = FRVI->second.first;
5736       if (!FwdFn->getType()->isOpaque() &&
5737           !FwdFn->getType()->getNonOpaquePointerElementType()->isFunctionTy())
5738         return error(FRVI->second.second, "invalid forward reference to "
5739                                           "function as global value!");
5740       if (FwdFn->getType() != PFT)
5741         return error(FRVI->second.second,
5742                      "invalid forward reference to "
5743                      "function '" +
5744                          FunctionName +
5745                          "' with wrong type: "
5746                          "expected '" +
5747                          getTypeString(PFT) + "' but was '" +
5748                          getTypeString(FwdFn->getType()) + "'");
5749       ForwardRefVals.erase(FRVI);
5750     } else if ((Fn = M->getFunction(FunctionName))) {
5751       // Reject redefinitions.
5752       return error(NameLoc,
5753                    "invalid redefinition of function '" + FunctionName + "'");
5754     } else if (M->getNamedValue(FunctionName)) {
5755       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5756     }
5757 
5758   } else {
5759     // If this is a definition of a forward referenced function, make sure the
5760     // types agree.
5761     auto I = ForwardRefValIDs.find(NumberedVals.size());
5762     if (I != ForwardRefValIDs.end()) {
5763       FwdFn = I->second.first;
5764       if (FwdFn->getType() != PFT)
5765         return error(NameLoc, "type of definition and forward reference of '@" +
5766                                   Twine(NumberedVals.size()) +
5767                                   "' disagree: "
5768                                   "expected '" +
5769                                   getTypeString(PFT) + "' but was '" +
5770                                   getTypeString(FwdFn->getType()) + "'");
5771       ForwardRefValIDs.erase(I);
5772     }
5773   }
5774 
5775   Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5776                         FunctionName, M);
5777 
5778   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5779 
5780   if (FunctionName.empty())
5781     NumberedVals.push_back(Fn);
5782 
5783   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5784   maybeSetDSOLocal(DSOLocal, *Fn);
5785   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5786   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5787   Fn->setCallingConv(CC);
5788   Fn->setAttributes(PAL);
5789   Fn->setUnnamedAddr(UnnamedAddr);
5790   Fn->setAlignment(MaybeAlign(Alignment));
5791   Fn->setSection(Section);
5792   Fn->setPartition(Partition);
5793   Fn->setComdat(C);
5794   Fn->setPersonalityFn(PersonalityFn);
5795   if (!GC.empty()) Fn->setGC(GC);
5796   Fn->setPrefixData(Prefix);
5797   Fn->setPrologueData(Prologue);
5798   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5799 
5800   // Add all of the arguments we parsed to the function.
5801   Function::arg_iterator ArgIt = Fn->arg_begin();
5802   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5803     // If the argument has a name, insert it into the argument symbol table.
5804     if (ArgList[i].Name.empty()) continue;
5805 
5806     // Set the name, if it conflicted, it will be auto-renamed.
5807     ArgIt->setName(ArgList[i].Name);
5808 
5809     if (ArgIt->getName() != ArgList[i].Name)
5810       return error(ArgList[i].Loc,
5811                    "redefinition of argument '%" + ArgList[i].Name + "'");
5812   }
5813 
5814   if (FwdFn) {
5815     FwdFn->replaceAllUsesWith(Fn);
5816     FwdFn->eraseFromParent();
5817   }
5818 
5819   if (IsDefine)
5820     return false;
5821 
5822   // Check the declaration has no block address forward references.
5823   ValID ID;
5824   if (FunctionName.empty()) {
5825     ID.Kind = ValID::t_GlobalID;
5826     ID.UIntVal = NumberedVals.size() - 1;
5827   } else {
5828     ID.Kind = ValID::t_GlobalName;
5829     ID.StrVal = FunctionName;
5830   }
5831   auto Blocks = ForwardRefBlockAddresses.find(ID);
5832   if (Blocks != ForwardRefBlockAddresses.end())
5833     return error(Blocks->first.Loc,
5834                  "cannot take blockaddress inside a declaration");
5835   return false;
5836 }
5837 
5838 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5839   ValID ID;
5840   if (FunctionNumber == -1) {
5841     ID.Kind = ValID::t_GlobalName;
5842     ID.StrVal = std::string(F.getName());
5843   } else {
5844     ID.Kind = ValID::t_GlobalID;
5845     ID.UIntVal = FunctionNumber;
5846   }
5847 
5848   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5849   if (Blocks == P.ForwardRefBlockAddresses.end())
5850     return false;
5851 
5852   for (const auto &I : Blocks->second) {
5853     const ValID &BBID = I.first;
5854     GlobalValue *GV = I.second;
5855 
5856     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5857            "Expected local id or name");
5858     BasicBlock *BB;
5859     if (BBID.Kind == ValID::t_LocalName)
5860       BB = getBB(BBID.StrVal, BBID.Loc);
5861     else
5862       BB = getBB(BBID.UIntVal, BBID.Loc);
5863     if (!BB)
5864       return P.error(BBID.Loc, "referenced value is not a basic block");
5865 
5866     Value *ResolvedVal = BlockAddress::get(&F, BB);
5867     ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
5868                                            ResolvedVal);
5869     if (!ResolvedVal)
5870       return true;
5871     GV->replaceAllUsesWith(ResolvedVal);
5872     GV->eraseFromParent();
5873   }
5874 
5875   P.ForwardRefBlockAddresses.erase(Blocks);
5876   return false;
5877 }
5878 
5879 /// parseFunctionBody
5880 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5881 bool LLParser::parseFunctionBody(Function &Fn) {
5882   if (Lex.getKind() != lltok::lbrace)
5883     return tokError("expected '{' in function body");
5884   Lex.Lex();  // eat the {.
5885 
5886   int FunctionNumber = -1;
5887   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5888 
5889   PerFunctionState PFS(*this, Fn, FunctionNumber);
5890 
5891   // Resolve block addresses and allow basic blocks to be forward-declared
5892   // within this function.
5893   if (PFS.resolveForwardRefBlockAddresses())
5894     return true;
5895   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5896 
5897   // We need at least one basic block.
5898   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5899     return tokError("function body requires at least one basic block");
5900 
5901   while (Lex.getKind() != lltok::rbrace &&
5902          Lex.getKind() != lltok::kw_uselistorder)
5903     if (parseBasicBlock(PFS))
5904       return true;
5905 
5906   while (Lex.getKind() != lltok::rbrace)
5907     if (parseUseListOrder(&PFS))
5908       return true;
5909 
5910   // Eat the }.
5911   Lex.Lex();
5912 
5913   // Verify function is ok.
5914   return PFS.finishFunction();
5915 }
5916 
5917 /// parseBasicBlock
5918 ///   ::= (LabelStr|LabelID)? Instruction*
5919 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
5920   // If this basic block starts out with a name, remember it.
5921   std::string Name;
5922   int NameID = -1;
5923   LocTy NameLoc = Lex.getLoc();
5924   if (Lex.getKind() == lltok::LabelStr) {
5925     Name = Lex.getStrVal();
5926     Lex.Lex();
5927   } else if (Lex.getKind() == lltok::LabelID) {
5928     NameID = Lex.getUIntVal();
5929     Lex.Lex();
5930   }
5931 
5932   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
5933   if (!BB)
5934     return true;
5935 
5936   std::string NameStr;
5937 
5938   // parse the instructions in this block until we get a terminator.
5939   Instruction *Inst;
5940   do {
5941     // This instruction may have three possibilities for a name: a) none
5942     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5943     LocTy NameLoc = Lex.getLoc();
5944     int NameID = -1;
5945     NameStr = "";
5946 
5947     if (Lex.getKind() == lltok::LocalVarID) {
5948       NameID = Lex.getUIntVal();
5949       Lex.Lex();
5950       if (parseToken(lltok::equal, "expected '=' after instruction id"))
5951         return true;
5952     } else if (Lex.getKind() == lltok::LocalVar) {
5953       NameStr = Lex.getStrVal();
5954       Lex.Lex();
5955       if (parseToken(lltok::equal, "expected '=' after instruction name"))
5956         return true;
5957     }
5958 
5959     switch (parseInstruction(Inst, BB, PFS)) {
5960     default:
5961       llvm_unreachable("Unknown parseInstruction result!");
5962     case InstError: return true;
5963     case InstNormal:
5964       BB->getInstList().push_back(Inst);
5965 
5966       // With a normal result, we check to see if the instruction is followed by
5967       // a comma and metadata.
5968       if (EatIfPresent(lltok::comma))
5969         if (parseInstructionMetadata(*Inst))
5970           return true;
5971       break;
5972     case InstExtraComma:
5973       BB->getInstList().push_back(Inst);
5974 
5975       // If the instruction parser ate an extra comma at the end of it, it
5976       // *must* be followed by metadata.
5977       if (parseInstructionMetadata(*Inst))
5978         return true;
5979       break;
5980     }
5981 
5982     // Set the name on the instruction.
5983     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
5984       return true;
5985   } while (!Inst->isTerminator());
5986 
5987   return false;
5988 }
5989 
5990 //===----------------------------------------------------------------------===//
5991 // Instruction Parsing.
5992 //===----------------------------------------------------------------------===//
5993 
5994 /// parseInstruction - parse one of the many different instructions.
5995 ///
5996 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
5997                                PerFunctionState &PFS) {
5998   lltok::Kind Token = Lex.getKind();
5999   if (Token == lltok::Eof)
6000     return tokError("found end of file when expecting more instructions");
6001   LocTy Loc = Lex.getLoc();
6002   unsigned KeywordVal = Lex.getUIntVal();
6003   Lex.Lex();  // Eat the keyword.
6004 
6005   switch (Token) {
6006   default:
6007     return error(Loc, "expected instruction opcode");
6008   // Terminator Instructions.
6009   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6010   case lltok::kw_ret:
6011     return parseRet(Inst, BB, PFS);
6012   case lltok::kw_br:
6013     return parseBr(Inst, PFS);
6014   case lltok::kw_switch:
6015     return parseSwitch(Inst, PFS);
6016   case lltok::kw_indirectbr:
6017     return parseIndirectBr(Inst, PFS);
6018   case lltok::kw_invoke:
6019     return parseInvoke(Inst, PFS);
6020   case lltok::kw_resume:
6021     return parseResume(Inst, PFS);
6022   case lltok::kw_cleanupret:
6023     return parseCleanupRet(Inst, PFS);
6024   case lltok::kw_catchret:
6025     return parseCatchRet(Inst, PFS);
6026   case lltok::kw_catchswitch:
6027     return parseCatchSwitch(Inst, PFS);
6028   case lltok::kw_catchpad:
6029     return parseCatchPad(Inst, PFS);
6030   case lltok::kw_cleanuppad:
6031     return parseCleanupPad(Inst, PFS);
6032   case lltok::kw_callbr:
6033     return parseCallBr(Inst, PFS);
6034   // Unary Operators.
6035   case lltok::kw_fneg: {
6036     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6037     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6038     if (Res != 0)
6039       return Res;
6040     if (FMF.any())
6041       Inst->setFastMathFlags(FMF);
6042     return false;
6043   }
6044   // Binary Operators.
6045   case lltok::kw_add:
6046   case lltok::kw_sub:
6047   case lltok::kw_mul:
6048   case lltok::kw_shl: {
6049     bool NUW = EatIfPresent(lltok::kw_nuw);
6050     bool NSW = EatIfPresent(lltok::kw_nsw);
6051     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6052 
6053     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6054       return true;
6055 
6056     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6057     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6058     return false;
6059   }
6060   case lltok::kw_fadd:
6061   case lltok::kw_fsub:
6062   case lltok::kw_fmul:
6063   case lltok::kw_fdiv:
6064   case lltok::kw_frem: {
6065     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6066     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6067     if (Res != 0)
6068       return Res;
6069     if (FMF.any())
6070       Inst->setFastMathFlags(FMF);
6071     return 0;
6072   }
6073 
6074   case lltok::kw_sdiv:
6075   case lltok::kw_udiv:
6076   case lltok::kw_lshr:
6077   case lltok::kw_ashr: {
6078     bool Exact = EatIfPresent(lltok::kw_exact);
6079 
6080     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6081       return true;
6082     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6083     return false;
6084   }
6085 
6086   case lltok::kw_urem:
6087   case lltok::kw_srem:
6088     return parseArithmetic(Inst, PFS, KeywordVal,
6089                            /*IsFP*/ false);
6090   case lltok::kw_and:
6091   case lltok::kw_or:
6092   case lltok::kw_xor:
6093     return parseLogical(Inst, PFS, KeywordVal);
6094   case lltok::kw_icmp:
6095     return parseCompare(Inst, PFS, KeywordVal);
6096   case lltok::kw_fcmp: {
6097     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6098     int Res = parseCompare(Inst, PFS, KeywordVal);
6099     if (Res != 0)
6100       return Res;
6101     if (FMF.any())
6102       Inst->setFastMathFlags(FMF);
6103     return 0;
6104   }
6105 
6106   // Casts.
6107   case lltok::kw_trunc:
6108   case lltok::kw_zext:
6109   case lltok::kw_sext:
6110   case lltok::kw_fptrunc:
6111   case lltok::kw_fpext:
6112   case lltok::kw_bitcast:
6113   case lltok::kw_addrspacecast:
6114   case lltok::kw_uitofp:
6115   case lltok::kw_sitofp:
6116   case lltok::kw_fptoui:
6117   case lltok::kw_fptosi:
6118   case lltok::kw_inttoptr:
6119   case lltok::kw_ptrtoint:
6120     return parseCast(Inst, PFS, KeywordVal);
6121   // Other.
6122   case lltok::kw_select: {
6123     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6124     int Res = parseSelect(Inst, PFS);
6125     if (Res != 0)
6126       return Res;
6127     if (FMF.any()) {
6128       if (!isa<FPMathOperator>(Inst))
6129         return error(Loc, "fast-math-flags specified for select without "
6130                           "floating-point scalar or vector return type");
6131       Inst->setFastMathFlags(FMF);
6132     }
6133     return 0;
6134   }
6135   case lltok::kw_va_arg:
6136     return parseVAArg(Inst, PFS);
6137   case lltok::kw_extractelement:
6138     return parseExtractElement(Inst, PFS);
6139   case lltok::kw_insertelement:
6140     return parseInsertElement(Inst, PFS);
6141   case lltok::kw_shufflevector:
6142     return parseShuffleVector(Inst, PFS);
6143   case lltok::kw_phi: {
6144     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6145     int Res = parsePHI(Inst, PFS);
6146     if (Res != 0)
6147       return Res;
6148     if (FMF.any()) {
6149       if (!isa<FPMathOperator>(Inst))
6150         return error(Loc, "fast-math-flags specified for phi without "
6151                           "floating-point scalar or vector return type");
6152       Inst->setFastMathFlags(FMF);
6153     }
6154     return 0;
6155   }
6156   case lltok::kw_landingpad:
6157     return parseLandingPad(Inst, PFS);
6158   case lltok::kw_freeze:
6159     return parseFreeze(Inst, PFS);
6160   // Call.
6161   case lltok::kw_call:
6162     return parseCall(Inst, PFS, CallInst::TCK_None);
6163   case lltok::kw_tail:
6164     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6165   case lltok::kw_musttail:
6166     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6167   case lltok::kw_notail:
6168     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6169   // Memory.
6170   case lltok::kw_alloca:
6171     return parseAlloc(Inst, PFS);
6172   case lltok::kw_load:
6173     return parseLoad(Inst, PFS);
6174   case lltok::kw_store:
6175     return parseStore(Inst, PFS);
6176   case lltok::kw_cmpxchg:
6177     return parseCmpXchg(Inst, PFS);
6178   case lltok::kw_atomicrmw:
6179     return parseAtomicRMW(Inst, PFS);
6180   case lltok::kw_fence:
6181     return parseFence(Inst, PFS);
6182   case lltok::kw_getelementptr:
6183     return parseGetElementPtr(Inst, PFS);
6184   case lltok::kw_extractvalue:
6185     return parseExtractValue(Inst, PFS);
6186   case lltok::kw_insertvalue:
6187     return parseInsertValue(Inst, PFS);
6188   }
6189 }
6190 
6191 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6192 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6193   if (Opc == Instruction::FCmp) {
6194     switch (Lex.getKind()) {
6195     default:
6196       return tokError("expected fcmp predicate (e.g. 'oeq')");
6197     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6198     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6199     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6200     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6201     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6202     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6203     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6204     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6205     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6206     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6207     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6208     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6209     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6210     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6211     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6212     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6213     }
6214   } else {
6215     switch (Lex.getKind()) {
6216     default:
6217       return tokError("expected icmp predicate (e.g. 'eq')");
6218     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6219     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6220     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6221     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6222     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6223     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6224     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6225     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6226     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6227     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6228     }
6229   }
6230   Lex.Lex();
6231   return false;
6232 }
6233 
6234 //===----------------------------------------------------------------------===//
6235 // Terminator Instructions.
6236 //===----------------------------------------------------------------------===//
6237 
6238 /// parseRet - parse a return instruction.
6239 ///   ::= 'ret' void (',' !dbg, !1)*
6240 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6241 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6242                         PerFunctionState &PFS) {
6243   SMLoc TypeLoc = Lex.getLoc();
6244   Type *Ty = nullptr;
6245   if (parseType(Ty, true /*void allowed*/))
6246     return true;
6247 
6248   Type *ResType = PFS.getFunction().getReturnType();
6249 
6250   if (Ty->isVoidTy()) {
6251     if (!ResType->isVoidTy())
6252       return error(TypeLoc, "value doesn't match function result type '" +
6253                                 getTypeString(ResType) + "'");
6254 
6255     Inst = ReturnInst::Create(Context);
6256     return false;
6257   }
6258 
6259   Value *RV;
6260   if (parseValue(Ty, RV, PFS))
6261     return true;
6262 
6263   if (ResType != RV->getType())
6264     return error(TypeLoc, "value doesn't match function result type '" +
6265                               getTypeString(ResType) + "'");
6266 
6267   Inst = ReturnInst::Create(Context, RV);
6268   return false;
6269 }
6270 
6271 /// parseBr
6272 ///   ::= 'br' TypeAndValue
6273 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6274 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6275   LocTy Loc, Loc2;
6276   Value *Op0;
6277   BasicBlock *Op1, *Op2;
6278   if (parseTypeAndValue(Op0, Loc, PFS))
6279     return true;
6280 
6281   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6282     Inst = BranchInst::Create(BB);
6283     return false;
6284   }
6285 
6286   if (Op0->getType() != Type::getInt1Ty(Context))
6287     return error(Loc, "branch condition must have 'i1' type");
6288 
6289   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6290       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6291       parseToken(lltok::comma, "expected ',' after true destination") ||
6292       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6293     return true;
6294 
6295   Inst = BranchInst::Create(Op1, Op2, Op0);
6296   return false;
6297 }
6298 
6299 /// parseSwitch
6300 ///  Instruction
6301 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6302 ///  JumpTable
6303 ///    ::= (TypeAndValue ',' TypeAndValue)*
6304 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6305   LocTy CondLoc, BBLoc;
6306   Value *Cond;
6307   BasicBlock *DefaultBB;
6308   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6309       parseToken(lltok::comma, "expected ',' after switch condition") ||
6310       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6311       parseToken(lltok::lsquare, "expected '[' with switch table"))
6312     return true;
6313 
6314   if (!Cond->getType()->isIntegerTy())
6315     return error(CondLoc, "switch condition must have integer type");
6316 
6317   // parse the jump table pairs.
6318   SmallPtrSet<Value*, 32> SeenCases;
6319   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6320   while (Lex.getKind() != lltok::rsquare) {
6321     Value *Constant;
6322     BasicBlock *DestBB;
6323 
6324     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6325         parseToken(lltok::comma, "expected ',' after case value") ||
6326         parseTypeAndBasicBlock(DestBB, PFS))
6327       return true;
6328 
6329     if (!SeenCases.insert(Constant).second)
6330       return error(CondLoc, "duplicate case value in switch");
6331     if (!isa<ConstantInt>(Constant))
6332       return error(CondLoc, "case value is not a constant integer");
6333 
6334     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6335   }
6336 
6337   Lex.Lex();  // Eat the ']'.
6338 
6339   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6340   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6341     SI->addCase(Table[i].first, Table[i].second);
6342   Inst = SI;
6343   return false;
6344 }
6345 
6346 /// parseIndirectBr
6347 ///  Instruction
6348 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6349 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6350   LocTy AddrLoc;
6351   Value *Address;
6352   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6353       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6354       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6355     return true;
6356 
6357   if (!Address->getType()->isPointerTy())
6358     return error(AddrLoc, "indirectbr address must have pointer type");
6359 
6360   // parse the destination list.
6361   SmallVector<BasicBlock*, 16> DestList;
6362 
6363   if (Lex.getKind() != lltok::rsquare) {
6364     BasicBlock *DestBB;
6365     if (parseTypeAndBasicBlock(DestBB, PFS))
6366       return true;
6367     DestList.push_back(DestBB);
6368 
6369     while (EatIfPresent(lltok::comma)) {
6370       if (parseTypeAndBasicBlock(DestBB, PFS))
6371         return true;
6372       DestList.push_back(DestBB);
6373     }
6374   }
6375 
6376   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6377     return true;
6378 
6379   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6380   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6381     IBI->addDestination(DestList[i]);
6382   Inst = IBI;
6383   return false;
6384 }
6385 
6386 /// parseInvoke
6387 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6388 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6389 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6390   LocTy CallLoc = Lex.getLoc();
6391   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
6392   std::vector<unsigned> FwdRefAttrGrps;
6393   LocTy NoBuiltinLoc;
6394   unsigned CC;
6395   unsigned InvokeAddrSpace;
6396   Type *RetType = nullptr;
6397   LocTy RetTypeLoc;
6398   ValID CalleeID;
6399   SmallVector<ParamInfo, 16> ArgList;
6400   SmallVector<OperandBundleDef, 2> BundleList;
6401 
6402   BasicBlock *NormalBB, *UnwindBB;
6403   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6404       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6405       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6406       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6407       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6408                                  NoBuiltinLoc) ||
6409       parseOptionalOperandBundles(BundleList, PFS) ||
6410       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6411       parseTypeAndBasicBlock(NormalBB, PFS) ||
6412       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6413       parseTypeAndBasicBlock(UnwindBB, PFS))
6414     return true;
6415 
6416   // If RetType is a non-function pointer type, then this is the short syntax
6417   // for the call, which means that RetType is just the return type.  Infer the
6418   // rest of the function argument types from the arguments that are present.
6419   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6420   if (!Ty) {
6421     // Pull out the types of all of the arguments...
6422     std::vector<Type*> ParamTypes;
6423     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6424       ParamTypes.push_back(ArgList[i].V->getType());
6425 
6426     if (!FunctionType::isValidReturnType(RetType))
6427       return error(RetTypeLoc, "Invalid result type for LLVM function");
6428 
6429     Ty = FunctionType::get(RetType, ParamTypes, false);
6430   }
6431 
6432   CalleeID.FTy = Ty;
6433 
6434   // Look up the callee.
6435   Value *Callee;
6436   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6437                           Callee, &PFS))
6438     return true;
6439 
6440   // Set up the Attribute for the function.
6441   SmallVector<Value *, 8> Args;
6442   SmallVector<AttributeSet, 8> ArgAttrs;
6443 
6444   // Loop through FunctionType's arguments and ensure they are specified
6445   // correctly.  Also, gather any parameter attributes.
6446   FunctionType::param_iterator I = Ty->param_begin();
6447   FunctionType::param_iterator E = Ty->param_end();
6448   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6449     Type *ExpectedTy = nullptr;
6450     if (I != E) {
6451       ExpectedTy = *I++;
6452     } else if (!Ty->isVarArg()) {
6453       return error(ArgList[i].Loc, "too many arguments specified");
6454     }
6455 
6456     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6457       return error(ArgList[i].Loc, "argument is not of expected type '" +
6458                                        getTypeString(ExpectedTy) + "'");
6459     Args.push_back(ArgList[i].V);
6460     ArgAttrs.push_back(ArgList[i].Attrs);
6461   }
6462 
6463   if (I != E)
6464     return error(CallLoc, "not enough parameters specified for call");
6465 
6466   if (FnAttrs.hasAlignmentAttr())
6467     return error(CallLoc, "invoke instructions may not have an alignment");
6468 
6469   // Finish off the Attribute and check them
6470   AttributeList PAL =
6471       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6472                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6473 
6474   InvokeInst *II =
6475       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6476   II->setCallingConv(CC);
6477   II->setAttributes(PAL);
6478   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6479   Inst = II;
6480   return false;
6481 }
6482 
6483 /// parseResume
6484 ///   ::= 'resume' TypeAndValue
6485 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6486   Value *Exn; LocTy ExnLoc;
6487   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6488     return true;
6489 
6490   ResumeInst *RI = ResumeInst::Create(Exn);
6491   Inst = RI;
6492   return false;
6493 }
6494 
6495 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6496                                   PerFunctionState &PFS) {
6497   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6498     return true;
6499 
6500   while (Lex.getKind() != lltok::rsquare) {
6501     // If this isn't the first argument, we need a comma.
6502     if (!Args.empty() &&
6503         parseToken(lltok::comma, "expected ',' in argument list"))
6504       return true;
6505 
6506     // parse the argument.
6507     LocTy ArgLoc;
6508     Type *ArgTy = nullptr;
6509     if (parseType(ArgTy, ArgLoc))
6510       return true;
6511 
6512     Value *V;
6513     if (ArgTy->isMetadataTy()) {
6514       if (parseMetadataAsValue(V, PFS))
6515         return true;
6516     } else {
6517       if (parseValue(ArgTy, V, PFS))
6518         return true;
6519     }
6520     Args.push_back(V);
6521   }
6522 
6523   Lex.Lex();  // Lex the ']'.
6524   return false;
6525 }
6526 
6527 /// parseCleanupRet
6528 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6529 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6530   Value *CleanupPad = nullptr;
6531 
6532   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6533     return true;
6534 
6535   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6536     return true;
6537 
6538   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6539     return true;
6540 
6541   BasicBlock *UnwindBB = nullptr;
6542   if (Lex.getKind() == lltok::kw_to) {
6543     Lex.Lex();
6544     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6545       return true;
6546   } else {
6547     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6548       return true;
6549     }
6550   }
6551 
6552   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6553   return false;
6554 }
6555 
6556 /// parseCatchRet
6557 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6558 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6559   Value *CatchPad = nullptr;
6560 
6561   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6562     return true;
6563 
6564   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6565     return true;
6566 
6567   BasicBlock *BB;
6568   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6569       parseTypeAndBasicBlock(BB, PFS))
6570     return true;
6571 
6572   Inst = CatchReturnInst::Create(CatchPad, BB);
6573   return false;
6574 }
6575 
6576 /// parseCatchSwitch
6577 ///   ::= 'catchswitch' within Parent
6578 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6579   Value *ParentPad;
6580 
6581   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6582     return true;
6583 
6584   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6585       Lex.getKind() != lltok::LocalVarID)
6586     return tokError("expected scope value for catchswitch");
6587 
6588   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6589     return true;
6590 
6591   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6592     return true;
6593 
6594   SmallVector<BasicBlock *, 32> Table;
6595   do {
6596     BasicBlock *DestBB;
6597     if (parseTypeAndBasicBlock(DestBB, PFS))
6598       return true;
6599     Table.push_back(DestBB);
6600   } while (EatIfPresent(lltok::comma));
6601 
6602   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6603     return true;
6604 
6605   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6606     return true;
6607 
6608   BasicBlock *UnwindBB = nullptr;
6609   if (EatIfPresent(lltok::kw_to)) {
6610     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6611       return true;
6612   } else {
6613     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6614       return true;
6615   }
6616 
6617   auto *CatchSwitch =
6618       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6619   for (BasicBlock *DestBB : Table)
6620     CatchSwitch->addHandler(DestBB);
6621   Inst = CatchSwitch;
6622   return false;
6623 }
6624 
6625 /// parseCatchPad
6626 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6627 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6628   Value *CatchSwitch = nullptr;
6629 
6630   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6631     return true;
6632 
6633   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6634     return tokError("expected scope value for catchpad");
6635 
6636   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6637     return true;
6638 
6639   SmallVector<Value *, 8> Args;
6640   if (parseExceptionArgs(Args, PFS))
6641     return true;
6642 
6643   Inst = CatchPadInst::Create(CatchSwitch, Args);
6644   return false;
6645 }
6646 
6647 /// parseCleanupPad
6648 ///   ::= 'cleanuppad' within Parent ParamList
6649 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6650   Value *ParentPad = nullptr;
6651 
6652   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6653     return true;
6654 
6655   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6656       Lex.getKind() != lltok::LocalVarID)
6657     return tokError("expected scope value for cleanuppad");
6658 
6659   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6660     return true;
6661 
6662   SmallVector<Value *, 8> Args;
6663   if (parseExceptionArgs(Args, PFS))
6664     return true;
6665 
6666   Inst = CleanupPadInst::Create(ParentPad, Args);
6667   return false;
6668 }
6669 
6670 //===----------------------------------------------------------------------===//
6671 // Unary Operators.
6672 //===----------------------------------------------------------------------===//
6673 
6674 /// parseUnaryOp
6675 ///  ::= UnaryOp TypeAndValue ',' Value
6676 ///
6677 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6678 /// operand is allowed.
6679 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6680                             unsigned Opc, bool IsFP) {
6681   LocTy Loc; Value *LHS;
6682   if (parseTypeAndValue(LHS, Loc, PFS))
6683     return true;
6684 
6685   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6686                     : LHS->getType()->isIntOrIntVectorTy();
6687 
6688   if (!Valid)
6689     return error(Loc, "invalid operand type for instruction");
6690 
6691   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6692   return false;
6693 }
6694 
6695 /// parseCallBr
6696 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6697 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6698 ///       '[' LabelList ']'
6699 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6700   LocTy CallLoc = Lex.getLoc();
6701   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
6702   std::vector<unsigned> FwdRefAttrGrps;
6703   LocTy NoBuiltinLoc;
6704   unsigned CC;
6705   Type *RetType = nullptr;
6706   LocTy RetTypeLoc;
6707   ValID CalleeID;
6708   SmallVector<ParamInfo, 16> ArgList;
6709   SmallVector<OperandBundleDef, 2> BundleList;
6710 
6711   BasicBlock *DefaultDest;
6712   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6713       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6714       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6715       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6716                                  NoBuiltinLoc) ||
6717       parseOptionalOperandBundles(BundleList, PFS) ||
6718       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6719       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6720       parseToken(lltok::lsquare, "expected '[' in callbr"))
6721     return true;
6722 
6723   // parse the destination list.
6724   SmallVector<BasicBlock *, 16> IndirectDests;
6725 
6726   if (Lex.getKind() != lltok::rsquare) {
6727     BasicBlock *DestBB;
6728     if (parseTypeAndBasicBlock(DestBB, PFS))
6729       return true;
6730     IndirectDests.push_back(DestBB);
6731 
6732     while (EatIfPresent(lltok::comma)) {
6733       if (parseTypeAndBasicBlock(DestBB, PFS))
6734         return true;
6735       IndirectDests.push_back(DestBB);
6736     }
6737   }
6738 
6739   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6740     return true;
6741 
6742   // If RetType is a non-function pointer type, then this is the short syntax
6743   // for the call, which means that RetType is just the return type.  Infer the
6744   // rest of the function argument types from the arguments that are present.
6745   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6746   if (!Ty) {
6747     // Pull out the types of all of the arguments...
6748     std::vector<Type *> ParamTypes;
6749     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6750       ParamTypes.push_back(ArgList[i].V->getType());
6751 
6752     if (!FunctionType::isValidReturnType(RetType))
6753       return error(RetTypeLoc, "Invalid result type for LLVM function");
6754 
6755     Ty = FunctionType::get(RetType, ParamTypes, false);
6756   }
6757 
6758   CalleeID.FTy = Ty;
6759 
6760   // Look up the callee.
6761   Value *Callee;
6762   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
6763     return true;
6764 
6765   // Set up the Attribute for the function.
6766   SmallVector<Value *, 8> Args;
6767   SmallVector<AttributeSet, 8> ArgAttrs;
6768 
6769   // Loop through FunctionType's arguments and ensure they are specified
6770   // correctly.  Also, gather any parameter attributes.
6771   FunctionType::param_iterator I = Ty->param_begin();
6772   FunctionType::param_iterator E = Ty->param_end();
6773   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6774     Type *ExpectedTy = nullptr;
6775     if (I != E) {
6776       ExpectedTy = *I++;
6777     } else if (!Ty->isVarArg()) {
6778       return error(ArgList[i].Loc, "too many arguments specified");
6779     }
6780 
6781     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6782       return error(ArgList[i].Loc, "argument is not of expected type '" +
6783                                        getTypeString(ExpectedTy) + "'");
6784     Args.push_back(ArgList[i].V);
6785     ArgAttrs.push_back(ArgList[i].Attrs);
6786   }
6787 
6788   if (I != E)
6789     return error(CallLoc, "not enough parameters specified for call");
6790 
6791   if (FnAttrs.hasAlignmentAttr())
6792     return error(CallLoc, "callbr instructions may not have an alignment");
6793 
6794   // Finish off the Attribute and check them
6795   AttributeList PAL =
6796       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6797                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6798 
6799   CallBrInst *CBI =
6800       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6801                          BundleList);
6802   CBI->setCallingConv(CC);
6803   CBI->setAttributes(PAL);
6804   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6805   Inst = CBI;
6806   return false;
6807 }
6808 
6809 //===----------------------------------------------------------------------===//
6810 // Binary Operators.
6811 //===----------------------------------------------------------------------===//
6812 
6813 /// parseArithmetic
6814 ///  ::= ArithmeticOps TypeAndValue ',' Value
6815 ///
6816 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6817 /// operand is allowed.
6818 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6819                                unsigned Opc, bool IsFP) {
6820   LocTy Loc; Value *LHS, *RHS;
6821   if (parseTypeAndValue(LHS, Loc, PFS) ||
6822       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6823       parseValue(LHS->getType(), RHS, PFS))
6824     return true;
6825 
6826   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6827                     : LHS->getType()->isIntOrIntVectorTy();
6828 
6829   if (!Valid)
6830     return error(Loc, "invalid operand type for instruction");
6831 
6832   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6833   return false;
6834 }
6835 
6836 /// parseLogical
6837 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6838 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6839                             unsigned Opc) {
6840   LocTy Loc; Value *LHS, *RHS;
6841   if (parseTypeAndValue(LHS, Loc, PFS) ||
6842       parseToken(lltok::comma, "expected ',' in logical operation") ||
6843       parseValue(LHS->getType(), RHS, PFS))
6844     return true;
6845 
6846   if (!LHS->getType()->isIntOrIntVectorTy())
6847     return error(Loc,
6848                  "instruction requires integer or integer vector operands");
6849 
6850   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6851   return false;
6852 }
6853 
6854 /// parseCompare
6855 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6856 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6857 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
6858                             unsigned Opc) {
6859   // parse the integer/fp comparison predicate.
6860   LocTy Loc;
6861   unsigned Pred;
6862   Value *LHS, *RHS;
6863   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
6864       parseToken(lltok::comma, "expected ',' after compare value") ||
6865       parseValue(LHS->getType(), RHS, PFS))
6866     return true;
6867 
6868   if (Opc == Instruction::FCmp) {
6869     if (!LHS->getType()->isFPOrFPVectorTy())
6870       return error(Loc, "fcmp requires floating point operands");
6871     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6872   } else {
6873     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6874     if (!LHS->getType()->isIntOrIntVectorTy() &&
6875         !LHS->getType()->isPtrOrPtrVectorTy())
6876       return error(Loc, "icmp requires integer operands");
6877     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6878   }
6879   return false;
6880 }
6881 
6882 //===----------------------------------------------------------------------===//
6883 // Other Instructions.
6884 //===----------------------------------------------------------------------===//
6885 
6886 /// parseCast
6887 ///   ::= CastOpc TypeAndValue 'to' Type
6888 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
6889                          unsigned Opc) {
6890   LocTy Loc;
6891   Value *Op;
6892   Type *DestTy = nullptr;
6893   if (parseTypeAndValue(Op, Loc, PFS) ||
6894       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
6895       parseType(DestTy))
6896     return true;
6897 
6898   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6899     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6900     return error(Loc, "invalid cast opcode for cast from '" +
6901                           getTypeString(Op->getType()) + "' to '" +
6902                           getTypeString(DestTy) + "'");
6903   }
6904   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6905   return false;
6906 }
6907 
6908 /// parseSelect
6909 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6910 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6911   LocTy Loc;
6912   Value *Op0, *Op1, *Op2;
6913   if (parseTypeAndValue(Op0, Loc, PFS) ||
6914       parseToken(lltok::comma, "expected ',' after select condition") ||
6915       parseTypeAndValue(Op1, PFS) ||
6916       parseToken(lltok::comma, "expected ',' after select value") ||
6917       parseTypeAndValue(Op2, PFS))
6918     return true;
6919 
6920   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6921     return error(Loc, Reason);
6922 
6923   Inst = SelectInst::Create(Op0, Op1, Op2);
6924   return false;
6925 }
6926 
6927 /// parseVAArg
6928 ///   ::= 'va_arg' TypeAndValue ',' Type
6929 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
6930   Value *Op;
6931   Type *EltTy = nullptr;
6932   LocTy TypeLoc;
6933   if (parseTypeAndValue(Op, PFS) ||
6934       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
6935       parseType(EltTy, TypeLoc))
6936     return true;
6937 
6938   if (!EltTy->isFirstClassType())
6939     return error(TypeLoc, "va_arg requires operand with first class type");
6940 
6941   Inst = new VAArgInst(Op, EltTy);
6942   return false;
6943 }
6944 
6945 /// parseExtractElement
6946 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6947 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6948   LocTy Loc;
6949   Value *Op0, *Op1;
6950   if (parseTypeAndValue(Op0, Loc, PFS) ||
6951       parseToken(lltok::comma, "expected ',' after extract value") ||
6952       parseTypeAndValue(Op1, PFS))
6953     return true;
6954 
6955   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6956     return error(Loc, "invalid extractelement operands");
6957 
6958   Inst = ExtractElementInst::Create(Op0, Op1);
6959   return false;
6960 }
6961 
6962 /// parseInsertElement
6963 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6964 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6965   LocTy Loc;
6966   Value *Op0, *Op1, *Op2;
6967   if (parseTypeAndValue(Op0, Loc, PFS) ||
6968       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6969       parseTypeAndValue(Op1, PFS) ||
6970       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6971       parseTypeAndValue(Op2, PFS))
6972     return true;
6973 
6974   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6975     return error(Loc, "invalid insertelement operands");
6976 
6977   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6978   return false;
6979 }
6980 
6981 /// parseShuffleVector
6982 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6983 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6984   LocTy Loc;
6985   Value *Op0, *Op1, *Op2;
6986   if (parseTypeAndValue(Op0, Loc, PFS) ||
6987       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
6988       parseTypeAndValue(Op1, PFS) ||
6989       parseToken(lltok::comma, "expected ',' after shuffle value") ||
6990       parseTypeAndValue(Op2, PFS))
6991     return true;
6992 
6993   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6994     return error(Loc, "invalid shufflevector operands");
6995 
6996   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6997   return false;
6998 }
6999 
7000 /// parsePHI
7001 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
7002 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7003   Type *Ty = nullptr;  LocTy TypeLoc;
7004   Value *Op0, *Op1;
7005 
7006   if (parseType(Ty, TypeLoc) ||
7007       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7008       parseValue(Ty, Op0, PFS) ||
7009       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7010       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7011       parseToken(lltok::rsquare, "expected ']' in phi value list"))
7012     return true;
7013 
7014   bool AteExtraComma = false;
7015   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7016 
7017   while (true) {
7018     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
7019 
7020     if (!EatIfPresent(lltok::comma))
7021       break;
7022 
7023     if (Lex.getKind() == lltok::MetadataVar) {
7024       AteExtraComma = true;
7025       break;
7026     }
7027 
7028     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7029         parseValue(Ty, Op0, PFS) ||
7030         parseToken(lltok::comma, "expected ',' after insertelement value") ||
7031         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7032         parseToken(lltok::rsquare, "expected ']' in phi value list"))
7033       return true;
7034   }
7035 
7036   if (!Ty->isFirstClassType())
7037     return error(TypeLoc, "phi node must have first class type");
7038 
7039   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7040   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7041     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7042   Inst = PN;
7043   return AteExtraComma ? InstExtraComma : InstNormal;
7044 }
7045 
7046 /// parseLandingPad
7047 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7048 /// Clause
7049 ///   ::= 'catch' TypeAndValue
7050 ///   ::= 'filter'
7051 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
7052 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7053   Type *Ty = nullptr; LocTy TyLoc;
7054 
7055   if (parseType(Ty, TyLoc))
7056     return true;
7057 
7058   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7059   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7060 
7061   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7062     LandingPadInst::ClauseType CT;
7063     if (EatIfPresent(lltok::kw_catch))
7064       CT = LandingPadInst::Catch;
7065     else if (EatIfPresent(lltok::kw_filter))
7066       CT = LandingPadInst::Filter;
7067     else
7068       return tokError("expected 'catch' or 'filter' clause type");
7069 
7070     Value *V;
7071     LocTy VLoc;
7072     if (parseTypeAndValue(V, VLoc, PFS))
7073       return true;
7074 
7075     // A 'catch' type expects a non-array constant. A filter clause expects an
7076     // array constant.
7077     if (CT == LandingPadInst::Catch) {
7078       if (isa<ArrayType>(V->getType()))
7079         error(VLoc, "'catch' clause has an invalid type");
7080     } else {
7081       if (!isa<ArrayType>(V->getType()))
7082         error(VLoc, "'filter' clause has an invalid type");
7083     }
7084 
7085     Constant *CV = dyn_cast<Constant>(V);
7086     if (!CV)
7087       return error(VLoc, "clause argument must be a constant");
7088     LP->addClause(CV);
7089   }
7090 
7091   Inst = LP.release();
7092   return false;
7093 }
7094 
7095 /// parseFreeze
7096 ///   ::= 'freeze' Type Value
7097 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7098   LocTy Loc;
7099   Value *Op;
7100   if (parseTypeAndValue(Op, Loc, PFS))
7101     return true;
7102 
7103   Inst = new FreezeInst(Op);
7104   return false;
7105 }
7106 
7107 /// parseCall
7108 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7109 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7110 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7111 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7112 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7113 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7114 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7115 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7116 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7117                          CallInst::TailCallKind TCK) {
7118   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7119   std::vector<unsigned> FwdRefAttrGrps;
7120   LocTy BuiltinLoc;
7121   unsigned CallAddrSpace;
7122   unsigned CC;
7123   Type *RetType = nullptr;
7124   LocTy RetTypeLoc;
7125   ValID CalleeID;
7126   SmallVector<ParamInfo, 16> ArgList;
7127   SmallVector<OperandBundleDef, 2> BundleList;
7128   LocTy CallLoc = Lex.getLoc();
7129 
7130   if (TCK != CallInst::TCK_None &&
7131       parseToken(lltok::kw_call,
7132                  "expected 'tail call', 'musttail call', or 'notail call'"))
7133     return true;
7134 
7135   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7136 
7137   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7138       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7139       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7140       parseValID(CalleeID, &PFS) ||
7141       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7142                          PFS.getFunction().isVarArg()) ||
7143       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7144       parseOptionalOperandBundles(BundleList, PFS))
7145     return true;
7146 
7147   // If RetType is a non-function pointer type, then this is the short syntax
7148   // for the call, which means that RetType is just the return type.  Infer the
7149   // rest of the function argument types from the arguments that are present.
7150   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7151   if (!Ty) {
7152     // Pull out the types of all of the arguments...
7153     std::vector<Type*> ParamTypes;
7154     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7155       ParamTypes.push_back(ArgList[i].V->getType());
7156 
7157     if (!FunctionType::isValidReturnType(RetType))
7158       return error(RetTypeLoc, "Invalid result type for LLVM function");
7159 
7160     Ty = FunctionType::get(RetType, ParamTypes, false);
7161   }
7162 
7163   CalleeID.FTy = Ty;
7164 
7165   // Look up the callee.
7166   Value *Callee;
7167   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7168                           &PFS))
7169     return true;
7170 
7171   // Set up the Attribute for the function.
7172   SmallVector<AttributeSet, 8> Attrs;
7173 
7174   SmallVector<Value*, 8> Args;
7175 
7176   // Loop through FunctionType's arguments and ensure they are specified
7177   // correctly.  Also, gather any parameter attributes.
7178   FunctionType::param_iterator I = Ty->param_begin();
7179   FunctionType::param_iterator E = Ty->param_end();
7180   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7181     Type *ExpectedTy = nullptr;
7182     if (I != E) {
7183       ExpectedTy = *I++;
7184     } else if (!Ty->isVarArg()) {
7185       return error(ArgList[i].Loc, "too many arguments specified");
7186     }
7187 
7188     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7189       return error(ArgList[i].Loc, "argument is not of expected type '" +
7190                                        getTypeString(ExpectedTy) + "'");
7191     Args.push_back(ArgList[i].V);
7192     Attrs.push_back(ArgList[i].Attrs);
7193   }
7194 
7195   if (I != E)
7196     return error(CallLoc, "not enough parameters specified for call");
7197 
7198   if (FnAttrs.hasAlignmentAttr())
7199     return error(CallLoc, "call instructions may not have an alignment");
7200 
7201   // Finish off the Attribute and check them
7202   AttributeList PAL =
7203       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7204                          AttributeSet::get(Context, RetAttrs), Attrs);
7205 
7206   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7207   CI->setTailCallKind(TCK);
7208   CI->setCallingConv(CC);
7209   if (FMF.any()) {
7210     if (!isa<FPMathOperator>(CI)) {
7211       CI->deleteValue();
7212       return error(CallLoc, "fast-math-flags specified for call without "
7213                             "floating-point scalar or vector return type");
7214     }
7215     CI->setFastMathFlags(FMF);
7216   }
7217   CI->setAttributes(PAL);
7218   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7219   Inst = CI;
7220   return false;
7221 }
7222 
7223 //===----------------------------------------------------------------------===//
7224 // Memory Instructions.
7225 //===----------------------------------------------------------------------===//
7226 
7227 /// parseAlloc
7228 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7229 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7230 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7231   Value *Size = nullptr;
7232   LocTy SizeLoc, TyLoc, ASLoc;
7233   MaybeAlign Alignment;
7234   unsigned AddrSpace = 0;
7235   Type *Ty = nullptr;
7236 
7237   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7238   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7239 
7240   if (parseType(Ty, TyLoc))
7241     return true;
7242 
7243   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7244     return error(TyLoc, "invalid type for alloca");
7245 
7246   bool AteExtraComma = false;
7247   if (EatIfPresent(lltok::comma)) {
7248     if (Lex.getKind() == lltok::kw_align) {
7249       if (parseOptionalAlignment(Alignment))
7250         return true;
7251       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7252         return true;
7253     } else if (Lex.getKind() == lltok::kw_addrspace) {
7254       ASLoc = Lex.getLoc();
7255       if (parseOptionalAddrSpace(AddrSpace))
7256         return true;
7257     } else if (Lex.getKind() == lltok::MetadataVar) {
7258       AteExtraComma = true;
7259     } else {
7260       if (parseTypeAndValue(Size, SizeLoc, PFS))
7261         return true;
7262       if (EatIfPresent(lltok::comma)) {
7263         if (Lex.getKind() == lltok::kw_align) {
7264           if (parseOptionalAlignment(Alignment))
7265             return true;
7266           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7267             return true;
7268         } else if (Lex.getKind() == lltok::kw_addrspace) {
7269           ASLoc = Lex.getLoc();
7270           if (parseOptionalAddrSpace(AddrSpace))
7271             return true;
7272         } else if (Lex.getKind() == lltok::MetadataVar) {
7273           AteExtraComma = true;
7274         }
7275       }
7276     }
7277   }
7278 
7279   if (Size && !Size->getType()->isIntegerTy())
7280     return error(SizeLoc, "element count must have integer type");
7281 
7282   SmallPtrSet<Type *, 4> Visited;
7283   if (!Alignment && !Ty->isSized(&Visited))
7284     return error(TyLoc, "Cannot allocate unsized type");
7285   if (!Alignment)
7286     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7287   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7288   AI->setUsedWithInAlloca(IsInAlloca);
7289   AI->setSwiftError(IsSwiftError);
7290   Inst = AI;
7291   return AteExtraComma ? InstExtraComma : InstNormal;
7292 }
7293 
7294 /// parseLoad
7295 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7296 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7297 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7298 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7299   Value *Val; LocTy Loc;
7300   MaybeAlign Alignment;
7301   bool AteExtraComma = false;
7302   bool isAtomic = false;
7303   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7304   SyncScope::ID SSID = SyncScope::System;
7305 
7306   if (Lex.getKind() == lltok::kw_atomic) {
7307     isAtomic = true;
7308     Lex.Lex();
7309   }
7310 
7311   bool isVolatile = false;
7312   if (Lex.getKind() == lltok::kw_volatile) {
7313     isVolatile = true;
7314     Lex.Lex();
7315   }
7316 
7317   Type *Ty;
7318   LocTy ExplicitTypeLoc = Lex.getLoc();
7319   if (parseType(Ty) ||
7320       parseToken(lltok::comma, "expected comma after load's type") ||
7321       parseTypeAndValue(Val, Loc, PFS) ||
7322       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7323       parseOptionalCommaAlign(Alignment, AteExtraComma))
7324     return true;
7325 
7326   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7327     return error(Loc, "load operand must be a pointer to a first class type");
7328   if (isAtomic && !Alignment)
7329     return error(Loc, "atomic load must have explicit non-zero alignment");
7330   if (Ordering == AtomicOrdering::Release ||
7331       Ordering == AtomicOrdering::AcquireRelease)
7332     return error(Loc, "atomic load cannot use Release ordering");
7333 
7334   if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
7335     return error(
7336         ExplicitTypeLoc,
7337         typeComparisonErrorMessage(
7338             "explicit pointee type doesn't match operand's pointee type", Ty,
7339             Val->getType()->getNonOpaquePointerElementType()));
7340   }
7341   SmallPtrSet<Type *, 4> Visited;
7342   if (!Alignment && !Ty->isSized(&Visited))
7343     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7344   if (!Alignment)
7345     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7346   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7347   return AteExtraComma ? InstExtraComma : InstNormal;
7348 }
7349 
7350 /// parseStore
7351 
7352 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7353 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7354 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7355 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7356   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7357   MaybeAlign Alignment;
7358   bool AteExtraComma = false;
7359   bool isAtomic = false;
7360   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7361   SyncScope::ID SSID = SyncScope::System;
7362 
7363   if (Lex.getKind() == lltok::kw_atomic) {
7364     isAtomic = true;
7365     Lex.Lex();
7366   }
7367 
7368   bool isVolatile = false;
7369   if (Lex.getKind() == lltok::kw_volatile) {
7370     isVolatile = true;
7371     Lex.Lex();
7372   }
7373 
7374   if (parseTypeAndValue(Val, Loc, PFS) ||
7375       parseToken(lltok::comma, "expected ',' after store operand") ||
7376       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7377       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7378       parseOptionalCommaAlign(Alignment, AteExtraComma))
7379     return true;
7380 
7381   if (!Ptr->getType()->isPointerTy())
7382     return error(PtrLoc, "store operand must be a pointer");
7383   if (!Val->getType()->isFirstClassType())
7384     return error(Loc, "store operand must be a first class value");
7385   if (!cast<PointerType>(Ptr->getType())
7386            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7387     return error(Loc, "stored value and pointer type do not match");
7388   if (isAtomic && !Alignment)
7389     return error(Loc, "atomic store must have explicit non-zero alignment");
7390   if (Ordering == AtomicOrdering::Acquire ||
7391       Ordering == AtomicOrdering::AcquireRelease)
7392     return error(Loc, "atomic store cannot use Acquire ordering");
7393   SmallPtrSet<Type *, 4> Visited;
7394   if (!Alignment && !Val->getType()->isSized(&Visited))
7395     return error(Loc, "storing unsized types is not allowed");
7396   if (!Alignment)
7397     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7398 
7399   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7400   return AteExtraComma ? InstExtraComma : InstNormal;
7401 }
7402 
7403 /// parseCmpXchg
7404 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7405 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7406 ///       'Align'?
7407 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7408   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7409   bool AteExtraComma = false;
7410   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7411   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7412   SyncScope::ID SSID = SyncScope::System;
7413   bool isVolatile = false;
7414   bool isWeak = false;
7415   MaybeAlign Alignment;
7416 
7417   if (EatIfPresent(lltok::kw_weak))
7418     isWeak = true;
7419 
7420   if (EatIfPresent(lltok::kw_volatile))
7421     isVolatile = true;
7422 
7423   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7424       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7425       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7426       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7427       parseTypeAndValue(New, NewLoc, PFS) ||
7428       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7429       parseOrdering(FailureOrdering) ||
7430       parseOptionalCommaAlign(Alignment, AteExtraComma))
7431     return true;
7432 
7433   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7434     return tokError("invalid cmpxchg success ordering");
7435   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7436     return tokError("invalid cmpxchg failure ordering");
7437   if (!Ptr->getType()->isPointerTy())
7438     return error(PtrLoc, "cmpxchg operand must be a pointer");
7439   if (!cast<PointerType>(Ptr->getType())
7440            ->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
7441     return error(CmpLoc, "compare value and pointer type do not match");
7442   if (!cast<PointerType>(Ptr->getType())
7443            ->isOpaqueOrPointeeTypeMatches(New->getType()))
7444     return error(NewLoc, "new value and pointer type do not match");
7445   if (Cmp->getType() != New->getType())
7446     return error(NewLoc, "compare value and new value type do not match");
7447   if (!New->getType()->isFirstClassType())
7448     return error(NewLoc, "cmpxchg operand must be a first class value");
7449 
7450   const Align DefaultAlignment(
7451       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7452           Cmp->getType()));
7453 
7454   AtomicCmpXchgInst *CXI =
7455       new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment.value_or(DefaultAlignment),
7456                             SuccessOrdering, FailureOrdering, SSID);
7457   CXI->setVolatile(isVolatile);
7458   CXI->setWeak(isWeak);
7459 
7460   Inst = CXI;
7461   return AteExtraComma ? InstExtraComma : InstNormal;
7462 }
7463 
7464 /// parseAtomicRMW
7465 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7466 ///       'singlethread'? AtomicOrdering
7467 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7468   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7469   bool AteExtraComma = false;
7470   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7471   SyncScope::ID SSID = SyncScope::System;
7472   bool isVolatile = false;
7473   bool IsFP = false;
7474   AtomicRMWInst::BinOp Operation;
7475   MaybeAlign Alignment;
7476 
7477   if (EatIfPresent(lltok::kw_volatile))
7478     isVolatile = true;
7479 
7480   switch (Lex.getKind()) {
7481   default:
7482     return tokError("expected binary operation in atomicrmw");
7483   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7484   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7485   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7486   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7487   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7488   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7489   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7490   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7491   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7492   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7493   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7494   case lltok::kw_fadd:
7495     Operation = AtomicRMWInst::FAdd;
7496     IsFP = true;
7497     break;
7498   case lltok::kw_fsub:
7499     Operation = AtomicRMWInst::FSub;
7500     IsFP = true;
7501     break;
7502   }
7503   Lex.Lex();  // Eat the operation.
7504 
7505   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7506       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7507       parseTypeAndValue(Val, ValLoc, PFS) ||
7508       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7509       parseOptionalCommaAlign(Alignment, AteExtraComma))
7510     return true;
7511 
7512   if (Ordering == AtomicOrdering::Unordered)
7513     return tokError("atomicrmw cannot be unordered");
7514   if (!Ptr->getType()->isPointerTy())
7515     return error(PtrLoc, "atomicrmw operand must be a pointer");
7516   if (!cast<PointerType>(Ptr->getType())
7517            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7518     return error(ValLoc, "atomicrmw value and pointer type do not match");
7519 
7520   if (Operation == AtomicRMWInst::Xchg) {
7521     if (!Val->getType()->isIntegerTy() &&
7522         !Val->getType()->isFloatingPointTy() &&
7523         !Val->getType()->isPointerTy()) {
7524       return error(
7525           ValLoc,
7526           "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7527               " operand must be an integer, floating point, or pointer type");
7528     }
7529   } else if (IsFP) {
7530     if (!Val->getType()->isFloatingPointTy()) {
7531       return error(ValLoc, "atomicrmw " +
7532                                AtomicRMWInst::getOperationName(Operation) +
7533                                " operand must be a floating point type");
7534     }
7535   } else {
7536     if (!Val->getType()->isIntegerTy()) {
7537       return error(ValLoc, "atomicrmw " +
7538                                AtomicRMWInst::getOperationName(Operation) +
7539                                " operand must be an integer");
7540     }
7541   }
7542 
7543   unsigned Size =
7544       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSizeInBits(
7545           Val->getType());
7546   if (Size < 8 || (Size & (Size - 1)))
7547     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7548                          " integer");
7549   const Align DefaultAlignment(
7550       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7551           Val->getType()));
7552   AtomicRMWInst *RMWI =
7553       new AtomicRMWInst(Operation, Ptr, Val,
7554                         Alignment.value_or(DefaultAlignment), Ordering, SSID);
7555   RMWI->setVolatile(isVolatile);
7556   Inst = RMWI;
7557   return AteExtraComma ? InstExtraComma : InstNormal;
7558 }
7559 
7560 /// parseFence
7561 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7562 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7563   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7564   SyncScope::ID SSID = SyncScope::System;
7565   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7566     return true;
7567 
7568   if (Ordering == AtomicOrdering::Unordered)
7569     return tokError("fence cannot be unordered");
7570   if (Ordering == AtomicOrdering::Monotonic)
7571     return tokError("fence cannot be monotonic");
7572 
7573   Inst = new FenceInst(Context, Ordering, SSID);
7574   return InstNormal;
7575 }
7576 
7577 /// parseGetElementPtr
7578 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7579 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7580   Value *Ptr = nullptr;
7581   Value *Val = nullptr;
7582   LocTy Loc, EltLoc;
7583 
7584   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7585 
7586   Type *Ty = nullptr;
7587   LocTy ExplicitTypeLoc = Lex.getLoc();
7588   if (parseType(Ty) ||
7589       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7590       parseTypeAndValue(Ptr, Loc, PFS))
7591     return true;
7592 
7593   Type *BaseType = Ptr->getType();
7594   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7595   if (!BasePointerType)
7596     return error(Loc, "base of getelementptr must be a pointer");
7597 
7598   if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
7599     return error(
7600         ExplicitTypeLoc,
7601         typeComparisonErrorMessage(
7602             "explicit pointee type doesn't match operand's pointee type", Ty,
7603             BasePointerType->getNonOpaquePointerElementType()));
7604   }
7605 
7606   SmallVector<Value*, 16> Indices;
7607   bool AteExtraComma = false;
7608   // GEP returns a vector of pointers if at least one of parameters is a vector.
7609   // All vector parameters should have the same vector width.
7610   ElementCount GEPWidth = BaseType->isVectorTy()
7611                               ? cast<VectorType>(BaseType)->getElementCount()
7612                               : ElementCount::getFixed(0);
7613 
7614   while (EatIfPresent(lltok::comma)) {
7615     if (Lex.getKind() == lltok::MetadataVar) {
7616       AteExtraComma = true;
7617       break;
7618     }
7619     if (parseTypeAndValue(Val, EltLoc, PFS))
7620       return true;
7621     if (!Val->getType()->isIntOrIntVectorTy())
7622       return error(EltLoc, "getelementptr index must be an integer");
7623 
7624     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7625       ElementCount ValNumEl = ValVTy->getElementCount();
7626       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7627         return error(
7628             EltLoc,
7629             "getelementptr vector index has a wrong number of elements");
7630       GEPWidth = ValNumEl;
7631     }
7632     Indices.push_back(Val);
7633   }
7634 
7635   SmallPtrSet<Type*, 4> Visited;
7636   if (!Indices.empty() && !Ty->isSized(&Visited))
7637     return error(Loc, "base element of getelementptr must be sized");
7638 
7639   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7640     return error(Loc, "invalid getelementptr indices");
7641   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7642   if (InBounds)
7643     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7644   return AteExtraComma ? InstExtraComma : InstNormal;
7645 }
7646 
7647 /// parseExtractValue
7648 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7649 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7650   Value *Val; LocTy Loc;
7651   SmallVector<unsigned, 4> Indices;
7652   bool AteExtraComma;
7653   if (parseTypeAndValue(Val, Loc, PFS) ||
7654       parseIndexList(Indices, AteExtraComma))
7655     return true;
7656 
7657   if (!Val->getType()->isAggregateType())
7658     return error(Loc, "extractvalue operand must be aggregate type");
7659 
7660   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7661     return error(Loc, "invalid indices for extractvalue");
7662   Inst = ExtractValueInst::Create(Val, Indices);
7663   return AteExtraComma ? InstExtraComma : InstNormal;
7664 }
7665 
7666 /// parseInsertValue
7667 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7668 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7669   Value *Val0, *Val1; LocTy Loc0, Loc1;
7670   SmallVector<unsigned, 4> Indices;
7671   bool AteExtraComma;
7672   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7673       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7674       parseTypeAndValue(Val1, Loc1, PFS) ||
7675       parseIndexList(Indices, AteExtraComma))
7676     return true;
7677 
7678   if (!Val0->getType()->isAggregateType())
7679     return error(Loc0, "insertvalue operand must be aggregate type");
7680 
7681   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7682   if (!IndexedType)
7683     return error(Loc0, "invalid indices for insertvalue");
7684   if (IndexedType != Val1->getType())
7685     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7686                            getTypeString(Val1->getType()) + "' instead of '" +
7687                            getTypeString(IndexedType) + "'");
7688   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7689   return AteExtraComma ? InstExtraComma : InstNormal;
7690 }
7691 
7692 //===----------------------------------------------------------------------===//
7693 // Embedded metadata.
7694 //===----------------------------------------------------------------------===//
7695 
7696 /// parseMDNodeVector
7697 ///   ::= { Element (',' Element)* }
7698 /// Element
7699 ///   ::= 'null' | TypeAndValue
7700 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7701   if (parseToken(lltok::lbrace, "expected '{' here"))
7702     return true;
7703 
7704   // Check for an empty list.
7705   if (EatIfPresent(lltok::rbrace))
7706     return false;
7707 
7708   do {
7709     // Null is a special case since it is typeless.
7710     if (EatIfPresent(lltok::kw_null)) {
7711       Elts.push_back(nullptr);
7712       continue;
7713     }
7714 
7715     Metadata *MD;
7716     if (parseMetadata(MD, nullptr))
7717       return true;
7718     Elts.push_back(MD);
7719   } while (EatIfPresent(lltok::comma));
7720 
7721   return parseToken(lltok::rbrace, "expected end of metadata node");
7722 }
7723 
7724 //===----------------------------------------------------------------------===//
7725 // Use-list order directives.
7726 //===----------------------------------------------------------------------===//
7727 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7728                                 SMLoc Loc) {
7729   if (V->use_empty())
7730     return error(Loc, "value has no uses");
7731 
7732   unsigned NumUses = 0;
7733   SmallDenseMap<const Use *, unsigned, 16> Order;
7734   for (const Use &U : V->uses()) {
7735     if (++NumUses > Indexes.size())
7736       break;
7737     Order[&U] = Indexes[NumUses - 1];
7738   }
7739   if (NumUses < 2)
7740     return error(Loc, "value only has one use");
7741   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7742     return error(Loc,
7743                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7744 
7745   V->sortUseList([&](const Use &L, const Use &R) {
7746     return Order.lookup(&L) < Order.lookup(&R);
7747   });
7748   return false;
7749 }
7750 
7751 /// parseUseListOrderIndexes
7752 ///   ::= '{' uint32 (',' uint32)+ '}'
7753 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7754   SMLoc Loc = Lex.getLoc();
7755   if (parseToken(lltok::lbrace, "expected '{' here"))
7756     return true;
7757   if (Lex.getKind() == lltok::rbrace)
7758     return Lex.Error("expected non-empty list of uselistorder indexes");
7759 
7760   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7761   // indexes should be distinct numbers in the range [0, size-1], and should
7762   // not be in order.
7763   unsigned Offset = 0;
7764   unsigned Max = 0;
7765   bool IsOrdered = true;
7766   assert(Indexes.empty() && "Expected empty order vector");
7767   do {
7768     unsigned Index;
7769     if (parseUInt32(Index))
7770       return true;
7771 
7772     // Update consistency checks.
7773     Offset += Index - Indexes.size();
7774     Max = std::max(Max, Index);
7775     IsOrdered &= Index == Indexes.size();
7776 
7777     Indexes.push_back(Index);
7778   } while (EatIfPresent(lltok::comma));
7779 
7780   if (parseToken(lltok::rbrace, "expected '}' here"))
7781     return true;
7782 
7783   if (Indexes.size() < 2)
7784     return error(Loc, "expected >= 2 uselistorder indexes");
7785   if (Offset != 0 || Max >= Indexes.size())
7786     return error(Loc,
7787                  "expected distinct uselistorder indexes in range [0, size)");
7788   if (IsOrdered)
7789     return error(Loc, "expected uselistorder indexes to change the order");
7790 
7791   return false;
7792 }
7793 
7794 /// parseUseListOrder
7795 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7796 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7797   SMLoc Loc = Lex.getLoc();
7798   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7799     return true;
7800 
7801   Value *V;
7802   SmallVector<unsigned, 16> Indexes;
7803   if (parseTypeAndValue(V, PFS) ||
7804       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7805       parseUseListOrderIndexes(Indexes))
7806     return true;
7807 
7808   return sortUseListOrder(V, Indexes, Loc);
7809 }
7810 
7811 /// parseUseListOrderBB
7812 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7813 bool LLParser::parseUseListOrderBB() {
7814   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7815   SMLoc Loc = Lex.getLoc();
7816   Lex.Lex();
7817 
7818   ValID Fn, Label;
7819   SmallVector<unsigned, 16> Indexes;
7820   if (parseValID(Fn, /*PFS=*/nullptr) ||
7821       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7822       parseValID(Label, /*PFS=*/nullptr) ||
7823       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7824       parseUseListOrderIndexes(Indexes))
7825     return true;
7826 
7827   // Check the function.
7828   GlobalValue *GV;
7829   if (Fn.Kind == ValID::t_GlobalName)
7830     GV = M->getNamedValue(Fn.StrVal);
7831   else if (Fn.Kind == ValID::t_GlobalID)
7832     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7833   else
7834     return error(Fn.Loc, "expected function name in uselistorder_bb");
7835   if (!GV)
7836     return error(Fn.Loc,
7837                  "invalid function forward reference in uselistorder_bb");
7838   auto *F = dyn_cast<Function>(GV);
7839   if (!F)
7840     return error(Fn.Loc, "expected function name in uselistorder_bb");
7841   if (F->isDeclaration())
7842     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7843 
7844   // Check the basic block.
7845   if (Label.Kind == ValID::t_LocalID)
7846     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7847   if (Label.Kind != ValID::t_LocalName)
7848     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7849   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7850   if (!V)
7851     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7852   if (!isa<BasicBlock>(V))
7853     return error(Label.Loc, "expected basic block in uselistorder_bb");
7854 
7855   return sortUseListOrder(V, Indexes, Loc);
7856 }
7857 
7858 /// ModuleEntry
7859 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7860 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7861 bool LLParser::parseModuleEntry(unsigned ID) {
7862   assert(Lex.getKind() == lltok::kw_module);
7863   Lex.Lex();
7864 
7865   std::string Path;
7866   if (parseToken(lltok::colon, "expected ':' here") ||
7867       parseToken(lltok::lparen, "expected '(' here") ||
7868       parseToken(lltok::kw_path, "expected 'path' here") ||
7869       parseToken(lltok::colon, "expected ':' here") ||
7870       parseStringConstant(Path) ||
7871       parseToken(lltok::comma, "expected ',' here") ||
7872       parseToken(lltok::kw_hash, "expected 'hash' here") ||
7873       parseToken(lltok::colon, "expected ':' here") ||
7874       parseToken(lltok::lparen, "expected '(' here"))
7875     return true;
7876 
7877   ModuleHash Hash;
7878   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
7879       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
7880       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
7881       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
7882       parseUInt32(Hash[4]))
7883     return true;
7884 
7885   if (parseToken(lltok::rparen, "expected ')' here") ||
7886       parseToken(lltok::rparen, "expected ')' here"))
7887     return true;
7888 
7889   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7890   ModuleIdMap[ID] = ModuleEntry->first();
7891 
7892   return false;
7893 }
7894 
7895 /// TypeIdEntry
7896 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7897 bool LLParser::parseTypeIdEntry(unsigned ID) {
7898   assert(Lex.getKind() == lltok::kw_typeid);
7899   Lex.Lex();
7900 
7901   std::string Name;
7902   if (parseToken(lltok::colon, "expected ':' here") ||
7903       parseToken(lltok::lparen, "expected '(' here") ||
7904       parseToken(lltok::kw_name, "expected 'name' here") ||
7905       parseToken(lltok::colon, "expected ':' here") ||
7906       parseStringConstant(Name))
7907     return true;
7908 
7909   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7910   if (parseToken(lltok::comma, "expected ',' here") ||
7911       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
7912     return true;
7913 
7914   // Check if this ID was forward referenced, and if so, update the
7915   // corresponding GUIDs.
7916   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7917   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7918     for (auto TIDRef : FwdRefTIDs->second) {
7919       assert(!*TIDRef.first &&
7920              "Forward referenced type id GUID expected to be 0");
7921       *TIDRef.first = GlobalValue::getGUID(Name);
7922     }
7923     ForwardRefTypeIds.erase(FwdRefTIDs);
7924   }
7925 
7926   return false;
7927 }
7928 
7929 /// TypeIdSummary
7930 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7931 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
7932   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
7933       parseToken(lltok::colon, "expected ':' here") ||
7934       parseToken(lltok::lparen, "expected '(' here") ||
7935       parseTypeTestResolution(TIS.TTRes))
7936     return true;
7937 
7938   if (EatIfPresent(lltok::comma)) {
7939     // Expect optional wpdResolutions field
7940     if (parseOptionalWpdResolutions(TIS.WPDRes))
7941       return true;
7942   }
7943 
7944   if (parseToken(lltok::rparen, "expected ')' here"))
7945     return true;
7946 
7947   return false;
7948 }
7949 
7950 static ValueInfo EmptyVI =
7951     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7952 
7953 /// TypeIdCompatibleVtableEntry
7954 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7955 ///   TypeIdCompatibleVtableInfo
7956 ///   ')'
7957 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
7958   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7959   Lex.Lex();
7960 
7961   std::string Name;
7962   if (parseToken(lltok::colon, "expected ':' here") ||
7963       parseToken(lltok::lparen, "expected '(' here") ||
7964       parseToken(lltok::kw_name, "expected 'name' here") ||
7965       parseToken(lltok::colon, "expected ':' here") ||
7966       parseStringConstant(Name))
7967     return true;
7968 
7969   TypeIdCompatibleVtableInfo &TI =
7970       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7971   if (parseToken(lltok::comma, "expected ',' here") ||
7972       parseToken(lltok::kw_summary, "expected 'summary' here") ||
7973       parseToken(lltok::colon, "expected ':' here") ||
7974       parseToken(lltok::lparen, "expected '(' here"))
7975     return true;
7976 
7977   IdToIndexMapType IdToIndexMap;
7978   // parse each call edge
7979   do {
7980     uint64_t Offset;
7981     if (parseToken(lltok::lparen, "expected '(' here") ||
7982         parseToken(lltok::kw_offset, "expected 'offset' here") ||
7983         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7984         parseToken(lltok::comma, "expected ',' here"))
7985       return true;
7986 
7987     LocTy Loc = Lex.getLoc();
7988     unsigned GVId;
7989     ValueInfo VI;
7990     if (parseGVReference(VI, GVId))
7991       return true;
7992 
7993     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7994     // forward reference. We will save the location of the ValueInfo needing an
7995     // update, but can only do so once the std::vector is finalized.
7996     if (VI == EmptyVI)
7997       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7998     TI.push_back({Offset, VI});
7999 
8000     if (parseToken(lltok::rparen, "expected ')' in call"))
8001       return true;
8002   } while (EatIfPresent(lltok::comma));
8003 
8004   // Now that the TI vector is finalized, it is safe to save the locations
8005   // of any forward GV references that need updating later.
8006   for (auto I : IdToIndexMap) {
8007     auto &Infos = ForwardRefValueInfos[I.first];
8008     for (auto P : I.second) {
8009       assert(TI[P.first].VTableVI == EmptyVI &&
8010              "Forward referenced ValueInfo expected to be empty");
8011       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
8012     }
8013   }
8014 
8015   if (parseToken(lltok::rparen, "expected ')' here") ||
8016       parseToken(lltok::rparen, "expected ')' here"))
8017     return true;
8018 
8019   // Check if this ID was forward referenced, and if so, update the
8020   // corresponding GUIDs.
8021   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8022   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8023     for (auto TIDRef : FwdRefTIDs->second) {
8024       assert(!*TIDRef.first &&
8025              "Forward referenced type id GUID expected to be 0");
8026       *TIDRef.first = GlobalValue::getGUID(Name);
8027     }
8028     ForwardRefTypeIds.erase(FwdRefTIDs);
8029   }
8030 
8031   return false;
8032 }
8033 
8034 /// TypeTestResolution
8035 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
8036 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8037 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8038 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8039 ///         [',' 'inlinesBits' ':' UInt64]? ')'
8040 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8041   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8042       parseToken(lltok::colon, "expected ':' here") ||
8043       parseToken(lltok::lparen, "expected '(' here") ||
8044       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8045       parseToken(lltok::colon, "expected ':' here"))
8046     return true;
8047 
8048   switch (Lex.getKind()) {
8049   case lltok::kw_unknown:
8050     TTRes.TheKind = TypeTestResolution::Unknown;
8051     break;
8052   case lltok::kw_unsat:
8053     TTRes.TheKind = TypeTestResolution::Unsat;
8054     break;
8055   case lltok::kw_byteArray:
8056     TTRes.TheKind = TypeTestResolution::ByteArray;
8057     break;
8058   case lltok::kw_inline:
8059     TTRes.TheKind = TypeTestResolution::Inline;
8060     break;
8061   case lltok::kw_single:
8062     TTRes.TheKind = TypeTestResolution::Single;
8063     break;
8064   case lltok::kw_allOnes:
8065     TTRes.TheKind = TypeTestResolution::AllOnes;
8066     break;
8067   default:
8068     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8069   }
8070   Lex.Lex();
8071 
8072   if (parseToken(lltok::comma, "expected ',' here") ||
8073       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8074       parseToken(lltok::colon, "expected ':' here") ||
8075       parseUInt32(TTRes.SizeM1BitWidth))
8076     return true;
8077 
8078   // parse optional fields
8079   while (EatIfPresent(lltok::comma)) {
8080     switch (Lex.getKind()) {
8081     case lltok::kw_alignLog2:
8082       Lex.Lex();
8083       if (parseToken(lltok::colon, "expected ':'") ||
8084           parseUInt64(TTRes.AlignLog2))
8085         return true;
8086       break;
8087     case lltok::kw_sizeM1:
8088       Lex.Lex();
8089       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8090         return true;
8091       break;
8092     case lltok::kw_bitMask: {
8093       unsigned Val;
8094       Lex.Lex();
8095       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8096         return true;
8097       assert(Val <= 0xff);
8098       TTRes.BitMask = (uint8_t)Val;
8099       break;
8100     }
8101     case lltok::kw_inlineBits:
8102       Lex.Lex();
8103       if (parseToken(lltok::colon, "expected ':'") ||
8104           parseUInt64(TTRes.InlineBits))
8105         return true;
8106       break;
8107     default:
8108       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8109     }
8110   }
8111 
8112   if (parseToken(lltok::rparen, "expected ')' here"))
8113     return true;
8114 
8115   return false;
8116 }
8117 
8118 /// OptionalWpdResolutions
8119 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8120 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8121 bool LLParser::parseOptionalWpdResolutions(
8122     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8123   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8124       parseToken(lltok::colon, "expected ':' here") ||
8125       parseToken(lltok::lparen, "expected '(' here"))
8126     return true;
8127 
8128   do {
8129     uint64_t Offset;
8130     WholeProgramDevirtResolution WPDRes;
8131     if (parseToken(lltok::lparen, "expected '(' here") ||
8132         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8133         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8134         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8135         parseToken(lltok::rparen, "expected ')' here"))
8136       return true;
8137     WPDResMap[Offset] = WPDRes;
8138   } while (EatIfPresent(lltok::comma));
8139 
8140   if (parseToken(lltok::rparen, "expected ')' here"))
8141     return true;
8142 
8143   return false;
8144 }
8145 
8146 /// WpdRes
8147 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8148 ///         [',' OptionalResByArg]? ')'
8149 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8150 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8151 ///         [',' OptionalResByArg]? ')'
8152 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8153 ///         [',' OptionalResByArg]? ')'
8154 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8155   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8156       parseToken(lltok::colon, "expected ':' here") ||
8157       parseToken(lltok::lparen, "expected '(' here") ||
8158       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8159       parseToken(lltok::colon, "expected ':' here"))
8160     return true;
8161 
8162   switch (Lex.getKind()) {
8163   case lltok::kw_indir:
8164     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8165     break;
8166   case lltok::kw_singleImpl:
8167     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8168     break;
8169   case lltok::kw_branchFunnel:
8170     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8171     break;
8172   default:
8173     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8174   }
8175   Lex.Lex();
8176 
8177   // parse optional fields
8178   while (EatIfPresent(lltok::comma)) {
8179     switch (Lex.getKind()) {
8180     case lltok::kw_singleImplName:
8181       Lex.Lex();
8182       if (parseToken(lltok::colon, "expected ':' here") ||
8183           parseStringConstant(WPDRes.SingleImplName))
8184         return true;
8185       break;
8186     case lltok::kw_resByArg:
8187       if (parseOptionalResByArg(WPDRes.ResByArg))
8188         return true;
8189       break;
8190     default:
8191       return error(Lex.getLoc(),
8192                    "expected optional WholeProgramDevirtResolution field");
8193     }
8194   }
8195 
8196   if (parseToken(lltok::rparen, "expected ')' here"))
8197     return true;
8198 
8199   return false;
8200 }
8201 
8202 /// OptionalResByArg
8203 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8204 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8205 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8206 ///                  'virtualConstProp' )
8207 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8208 ///                [',' 'bit' ':' UInt32]? ')'
8209 bool LLParser::parseOptionalResByArg(
8210     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8211         &ResByArg) {
8212   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8213       parseToken(lltok::colon, "expected ':' here") ||
8214       parseToken(lltok::lparen, "expected '(' here"))
8215     return true;
8216 
8217   do {
8218     std::vector<uint64_t> Args;
8219     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8220         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8221         parseToken(lltok::colon, "expected ':' here") ||
8222         parseToken(lltok::lparen, "expected '(' here") ||
8223         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8224         parseToken(lltok::colon, "expected ':' here"))
8225       return true;
8226 
8227     WholeProgramDevirtResolution::ByArg ByArg;
8228     switch (Lex.getKind()) {
8229     case lltok::kw_indir:
8230       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8231       break;
8232     case lltok::kw_uniformRetVal:
8233       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8234       break;
8235     case lltok::kw_uniqueRetVal:
8236       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8237       break;
8238     case lltok::kw_virtualConstProp:
8239       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8240       break;
8241     default:
8242       return error(Lex.getLoc(),
8243                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8244     }
8245     Lex.Lex();
8246 
8247     // parse optional fields
8248     while (EatIfPresent(lltok::comma)) {
8249       switch (Lex.getKind()) {
8250       case lltok::kw_info:
8251         Lex.Lex();
8252         if (parseToken(lltok::colon, "expected ':' here") ||
8253             parseUInt64(ByArg.Info))
8254           return true;
8255         break;
8256       case lltok::kw_byte:
8257         Lex.Lex();
8258         if (parseToken(lltok::colon, "expected ':' here") ||
8259             parseUInt32(ByArg.Byte))
8260           return true;
8261         break;
8262       case lltok::kw_bit:
8263         Lex.Lex();
8264         if (parseToken(lltok::colon, "expected ':' here") ||
8265             parseUInt32(ByArg.Bit))
8266           return true;
8267         break;
8268       default:
8269         return error(Lex.getLoc(),
8270                      "expected optional whole program devirt field");
8271       }
8272     }
8273 
8274     if (parseToken(lltok::rparen, "expected ')' here"))
8275       return true;
8276 
8277     ResByArg[Args] = ByArg;
8278   } while (EatIfPresent(lltok::comma));
8279 
8280   if (parseToken(lltok::rparen, "expected ')' here"))
8281     return true;
8282 
8283   return false;
8284 }
8285 
8286 /// OptionalResByArg
8287 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8288 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8289   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8290       parseToken(lltok::colon, "expected ':' here") ||
8291       parseToken(lltok::lparen, "expected '(' here"))
8292     return true;
8293 
8294   do {
8295     uint64_t Val;
8296     if (parseUInt64(Val))
8297       return true;
8298     Args.push_back(Val);
8299   } while (EatIfPresent(lltok::comma));
8300 
8301   if (parseToken(lltok::rparen, "expected ')' here"))
8302     return true;
8303 
8304   return false;
8305 }
8306 
8307 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8308 
8309 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8310   bool ReadOnly = Fwd->isReadOnly();
8311   bool WriteOnly = Fwd->isWriteOnly();
8312   assert(!(ReadOnly && WriteOnly));
8313   *Fwd = Resolved;
8314   if (ReadOnly)
8315     Fwd->setReadOnly();
8316   if (WriteOnly)
8317     Fwd->setWriteOnly();
8318 }
8319 
8320 /// Stores the given Name/GUID and associated summary into the Index.
8321 /// Also updates any forward references to the associated entry ID.
8322 void LLParser::addGlobalValueToIndex(
8323     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8324     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8325   // First create the ValueInfo utilizing the Name or GUID.
8326   ValueInfo VI;
8327   if (GUID != 0) {
8328     assert(Name.empty());
8329     VI = Index->getOrInsertValueInfo(GUID);
8330   } else {
8331     assert(!Name.empty());
8332     if (M) {
8333       auto *GV = M->getNamedValue(Name);
8334       assert(GV);
8335       VI = Index->getOrInsertValueInfo(GV);
8336     } else {
8337       assert(
8338           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8339           "Need a source_filename to compute GUID for local");
8340       GUID = GlobalValue::getGUID(
8341           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8342       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8343     }
8344   }
8345 
8346   // Resolve forward references from calls/refs
8347   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8348   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8349     for (auto VIRef : FwdRefVIs->second) {
8350       assert(VIRef.first->getRef() == FwdVIRef &&
8351              "Forward referenced ValueInfo expected to be empty");
8352       resolveFwdRef(VIRef.first, VI);
8353     }
8354     ForwardRefValueInfos.erase(FwdRefVIs);
8355   }
8356 
8357   // Resolve forward references from aliases
8358   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8359   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8360     for (auto AliaseeRef : FwdRefAliasees->second) {
8361       assert(!AliaseeRef.first->hasAliasee() &&
8362              "Forward referencing alias already has aliasee");
8363       assert(Summary && "Aliasee must be a definition");
8364       AliaseeRef.first->setAliasee(VI, Summary.get());
8365     }
8366     ForwardRefAliasees.erase(FwdRefAliasees);
8367   }
8368 
8369   // Add the summary if one was provided.
8370   if (Summary)
8371     Index->addGlobalValueSummary(VI, std::move(Summary));
8372 
8373   // Save the associated ValueInfo for use in later references by ID.
8374   if (ID == NumberedValueInfos.size())
8375     NumberedValueInfos.push_back(VI);
8376   else {
8377     // Handle non-continuous numbers (to make test simplification easier).
8378     if (ID > NumberedValueInfos.size())
8379       NumberedValueInfos.resize(ID + 1);
8380     NumberedValueInfos[ID] = VI;
8381   }
8382 }
8383 
8384 /// parseSummaryIndexFlags
8385 ///   ::= 'flags' ':' UInt64
8386 bool LLParser::parseSummaryIndexFlags() {
8387   assert(Lex.getKind() == lltok::kw_flags);
8388   Lex.Lex();
8389 
8390   if (parseToken(lltok::colon, "expected ':' here"))
8391     return true;
8392   uint64_t Flags;
8393   if (parseUInt64(Flags))
8394     return true;
8395   if (Index)
8396     Index->setFlags(Flags);
8397   return false;
8398 }
8399 
8400 /// parseBlockCount
8401 ///   ::= 'blockcount' ':' UInt64
8402 bool LLParser::parseBlockCount() {
8403   assert(Lex.getKind() == lltok::kw_blockcount);
8404   Lex.Lex();
8405 
8406   if (parseToken(lltok::colon, "expected ':' here"))
8407     return true;
8408   uint64_t BlockCount;
8409   if (parseUInt64(BlockCount))
8410     return true;
8411   if (Index)
8412     Index->setBlockCount(BlockCount);
8413   return false;
8414 }
8415 
8416 /// parseGVEntry
8417 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8418 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8419 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8420 bool LLParser::parseGVEntry(unsigned ID) {
8421   assert(Lex.getKind() == lltok::kw_gv);
8422   Lex.Lex();
8423 
8424   if (parseToken(lltok::colon, "expected ':' here") ||
8425       parseToken(lltok::lparen, "expected '(' here"))
8426     return true;
8427 
8428   std::string Name;
8429   GlobalValue::GUID GUID = 0;
8430   switch (Lex.getKind()) {
8431   case lltok::kw_name:
8432     Lex.Lex();
8433     if (parseToken(lltok::colon, "expected ':' here") ||
8434         parseStringConstant(Name))
8435       return true;
8436     // Can't create GUID/ValueInfo until we have the linkage.
8437     break;
8438   case lltok::kw_guid:
8439     Lex.Lex();
8440     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8441       return true;
8442     break;
8443   default:
8444     return error(Lex.getLoc(), "expected name or guid tag");
8445   }
8446 
8447   if (!EatIfPresent(lltok::comma)) {
8448     // No summaries. Wrap up.
8449     if (parseToken(lltok::rparen, "expected ')' here"))
8450       return true;
8451     // This was created for a call to an external or indirect target.
8452     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8453     // created for indirect calls with VP. A Name with no GUID came from
8454     // an external definition. We pass ExternalLinkage since that is only
8455     // used when the GUID must be computed from Name, and in that case
8456     // the symbol must have external linkage.
8457     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8458                           nullptr);
8459     return false;
8460   }
8461 
8462   // Have a list of summaries
8463   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8464       parseToken(lltok::colon, "expected ':' here") ||
8465       parseToken(lltok::lparen, "expected '(' here"))
8466     return true;
8467   do {
8468     switch (Lex.getKind()) {
8469     case lltok::kw_function:
8470       if (parseFunctionSummary(Name, GUID, ID))
8471         return true;
8472       break;
8473     case lltok::kw_variable:
8474       if (parseVariableSummary(Name, GUID, ID))
8475         return true;
8476       break;
8477     case lltok::kw_alias:
8478       if (parseAliasSummary(Name, GUID, ID))
8479         return true;
8480       break;
8481     default:
8482       return error(Lex.getLoc(), "expected summary type");
8483     }
8484   } while (EatIfPresent(lltok::comma));
8485 
8486   if (parseToken(lltok::rparen, "expected ')' here") ||
8487       parseToken(lltok::rparen, "expected ')' here"))
8488     return true;
8489 
8490   return false;
8491 }
8492 
8493 /// FunctionSummary
8494 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8495 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8496 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8497 ///         [',' OptionalRefs]? ')'
8498 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8499                                     unsigned ID) {
8500   assert(Lex.getKind() == lltok::kw_function);
8501   Lex.Lex();
8502 
8503   StringRef ModulePath;
8504   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8505       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8506       /*NotEligibleToImport=*/false,
8507       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8508   unsigned InstCount;
8509   std::vector<FunctionSummary::EdgeTy> Calls;
8510   FunctionSummary::TypeIdInfo TypeIdInfo;
8511   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8512   std::vector<ValueInfo> Refs;
8513   // Default is all-zeros (conservative values).
8514   FunctionSummary::FFlags FFlags = {};
8515   if (parseToken(lltok::colon, "expected ':' here") ||
8516       parseToken(lltok::lparen, "expected '(' here") ||
8517       parseModuleReference(ModulePath) ||
8518       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8519       parseToken(lltok::comma, "expected ',' here") ||
8520       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8521       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8522     return true;
8523 
8524   // parse optional fields
8525   while (EatIfPresent(lltok::comma)) {
8526     switch (Lex.getKind()) {
8527     case lltok::kw_funcFlags:
8528       if (parseOptionalFFlags(FFlags))
8529         return true;
8530       break;
8531     case lltok::kw_calls:
8532       if (parseOptionalCalls(Calls))
8533         return true;
8534       break;
8535     case lltok::kw_typeIdInfo:
8536       if (parseOptionalTypeIdInfo(TypeIdInfo))
8537         return true;
8538       break;
8539     case lltok::kw_refs:
8540       if (parseOptionalRefs(Refs))
8541         return true;
8542       break;
8543     case lltok::kw_params:
8544       if (parseOptionalParamAccesses(ParamAccesses))
8545         return true;
8546       break;
8547     default:
8548       return error(Lex.getLoc(), "expected optional function summary field");
8549     }
8550   }
8551 
8552   if (parseToken(lltok::rparen, "expected ')' here"))
8553     return true;
8554 
8555   auto FS = std::make_unique<FunctionSummary>(
8556       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8557       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8558       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8559       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8560       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8561       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8562       std::move(ParamAccesses));
8563 
8564   FS->setModulePath(ModulePath);
8565 
8566   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8567                         ID, std::move(FS));
8568 
8569   return false;
8570 }
8571 
8572 /// VariableSummary
8573 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8574 ///         [',' OptionalRefs]? ')'
8575 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8576                                     unsigned ID) {
8577   assert(Lex.getKind() == lltok::kw_variable);
8578   Lex.Lex();
8579 
8580   StringRef ModulePath;
8581   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8582       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8583       /*NotEligibleToImport=*/false,
8584       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8585   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8586                                         /* WriteOnly */ false,
8587                                         /* Constant */ false,
8588                                         GlobalObject::VCallVisibilityPublic);
8589   std::vector<ValueInfo> Refs;
8590   VTableFuncList VTableFuncs;
8591   if (parseToken(lltok::colon, "expected ':' here") ||
8592       parseToken(lltok::lparen, "expected '(' here") ||
8593       parseModuleReference(ModulePath) ||
8594       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8595       parseToken(lltok::comma, "expected ',' here") ||
8596       parseGVarFlags(GVarFlags))
8597     return true;
8598 
8599   // parse optional fields
8600   while (EatIfPresent(lltok::comma)) {
8601     switch (Lex.getKind()) {
8602     case lltok::kw_vTableFuncs:
8603       if (parseOptionalVTableFuncs(VTableFuncs))
8604         return true;
8605       break;
8606     case lltok::kw_refs:
8607       if (parseOptionalRefs(Refs))
8608         return true;
8609       break;
8610     default:
8611       return error(Lex.getLoc(), "expected optional variable summary field");
8612     }
8613   }
8614 
8615   if (parseToken(lltok::rparen, "expected ')' here"))
8616     return true;
8617 
8618   auto GS =
8619       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8620 
8621   GS->setModulePath(ModulePath);
8622   GS->setVTableFuncs(std::move(VTableFuncs));
8623 
8624   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8625                         ID, std::move(GS));
8626 
8627   return false;
8628 }
8629 
8630 /// AliasSummary
8631 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8632 ///         'aliasee' ':' GVReference ')'
8633 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8634                                  unsigned ID) {
8635   assert(Lex.getKind() == lltok::kw_alias);
8636   LocTy Loc = Lex.getLoc();
8637   Lex.Lex();
8638 
8639   StringRef ModulePath;
8640   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8641       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8642       /*NotEligibleToImport=*/false,
8643       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8644   if (parseToken(lltok::colon, "expected ':' here") ||
8645       parseToken(lltok::lparen, "expected '(' here") ||
8646       parseModuleReference(ModulePath) ||
8647       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8648       parseToken(lltok::comma, "expected ',' here") ||
8649       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8650       parseToken(lltok::colon, "expected ':' here"))
8651     return true;
8652 
8653   ValueInfo AliaseeVI;
8654   unsigned GVId;
8655   if (parseGVReference(AliaseeVI, GVId))
8656     return true;
8657 
8658   if (parseToken(lltok::rparen, "expected ')' here"))
8659     return true;
8660 
8661   auto AS = std::make_unique<AliasSummary>(GVFlags);
8662 
8663   AS->setModulePath(ModulePath);
8664 
8665   // Record forward reference if the aliasee is not parsed yet.
8666   if (AliaseeVI.getRef() == FwdVIRef) {
8667     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8668   } else {
8669     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8670     assert(Summary && "Aliasee must be a definition");
8671     AS->setAliasee(AliaseeVI, Summary);
8672   }
8673 
8674   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8675                         ID, std::move(AS));
8676 
8677   return false;
8678 }
8679 
8680 /// Flag
8681 ///   ::= [0|1]
8682 bool LLParser::parseFlag(unsigned &Val) {
8683   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8684     return tokError("expected integer");
8685   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8686   Lex.Lex();
8687   return false;
8688 }
8689 
8690 /// OptionalFFlags
8691 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8692 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8693 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8694 ///        [',' 'noInline' ':' Flag]? ')'
8695 ///        [',' 'alwaysInline' ':' Flag]? ')'
8696 ///        [',' 'noUnwind' ':' Flag]? ')'
8697 ///        [',' 'mayThrow' ':' Flag]? ')'
8698 ///        [',' 'hasUnknownCall' ':' Flag]? ')'
8699 ///        [',' 'mustBeUnreachable' ':' Flag]? ')'
8700 
8701 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8702   assert(Lex.getKind() == lltok::kw_funcFlags);
8703   Lex.Lex();
8704 
8705   if (parseToken(lltok::colon, "expected ':' in funcFlags") ||
8706       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8707     return true;
8708 
8709   do {
8710     unsigned Val = 0;
8711     switch (Lex.getKind()) {
8712     case lltok::kw_readNone:
8713       Lex.Lex();
8714       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8715         return true;
8716       FFlags.ReadNone = Val;
8717       break;
8718     case lltok::kw_readOnly:
8719       Lex.Lex();
8720       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8721         return true;
8722       FFlags.ReadOnly = Val;
8723       break;
8724     case lltok::kw_noRecurse:
8725       Lex.Lex();
8726       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8727         return true;
8728       FFlags.NoRecurse = Val;
8729       break;
8730     case lltok::kw_returnDoesNotAlias:
8731       Lex.Lex();
8732       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8733         return true;
8734       FFlags.ReturnDoesNotAlias = Val;
8735       break;
8736     case lltok::kw_noInline:
8737       Lex.Lex();
8738       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8739         return true;
8740       FFlags.NoInline = Val;
8741       break;
8742     case lltok::kw_alwaysInline:
8743       Lex.Lex();
8744       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8745         return true;
8746       FFlags.AlwaysInline = Val;
8747       break;
8748     case lltok::kw_noUnwind:
8749       Lex.Lex();
8750       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8751         return true;
8752       FFlags.NoUnwind = Val;
8753       break;
8754     case lltok::kw_mayThrow:
8755       Lex.Lex();
8756       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8757         return true;
8758       FFlags.MayThrow = Val;
8759       break;
8760     case lltok::kw_hasUnknownCall:
8761       Lex.Lex();
8762       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8763         return true;
8764       FFlags.HasUnknownCall = Val;
8765       break;
8766     case lltok::kw_mustBeUnreachable:
8767       Lex.Lex();
8768       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8769         return true;
8770       FFlags.MustBeUnreachable = Val;
8771       break;
8772     default:
8773       return error(Lex.getLoc(), "expected function flag type");
8774     }
8775   } while (EatIfPresent(lltok::comma));
8776 
8777   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8778     return true;
8779 
8780   return false;
8781 }
8782 
8783 /// OptionalCalls
8784 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8785 /// Call ::= '(' 'callee' ':' GVReference
8786 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8787 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8788   assert(Lex.getKind() == lltok::kw_calls);
8789   Lex.Lex();
8790 
8791   if (parseToken(lltok::colon, "expected ':' in calls") ||
8792       parseToken(lltok::lparen, "expected '(' in calls"))
8793     return true;
8794 
8795   IdToIndexMapType IdToIndexMap;
8796   // parse each call edge
8797   do {
8798     ValueInfo VI;
8799     if (parseToken(lltok::lparen, "expected '(' in call") ||
8800         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8801         parseToken(lltok::colon, "expected ':'"))
8802       return true;
8803 
8804     LocTy Loc = Lex.getLoc();
8805     unsigned GVId;
8806     if (parseGVReference(VI, GVId))
8807       return true;
8808 
8809     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8810     unsigned RelBF = 0;
8811     if (EatIfPresent(lltok::comma)) {
8812       // Expect either hotness or relbf
8813       if (EatIfPresent(lltok::kw_hotness)) {
8814         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8815           return true;
8816       } else {
8817         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8818             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8819           return true;
8820       }
8821     }
8822     // Keep track of the Call array index needing a forward reference.
8823     // We will save the location of the ValueInfo needing an update, but
8824     // can only do so once the std::vector is finalized.
8825     if (VI.getRef() == FwdVIRef)
8826       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8827     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8828 
8829     if (parseToken(lltok::rparen, "expected ')' in call"))
8830       return true;
8831   } while (EatIfPresent(lltok::comma));
8832 
8833   // Now that the Calls vector is finalized, it is safe to save the locations
8834   // of any forward GV references that need updating later.
8835   for (auto I : IdToIndexMap) {
8836     auto &Infos = ForwardRefValueInfos[I.first];
8837     for (auto P : I.second) {
8838       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8839              "Forward referenced ValueInfo expected to be empty");
8840       Infos.emplace_back(&Calls[P.first].first, P.second);
8841     }
8842   }
8843 
8844   if (parseToken(lltok::rparen, "expected ')' in calls"))
8845     return true;
8846 
8847   return false;
8848 }
8849 
8850 /// Hotness
8851 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8852 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8853   switch (Lex.getKind()) {
8854   case lltok::kw_unknown:
8855     Hotness = CalleeInfo::HotnessType::Unknown;
8856     break;
8857   case lltok::kw_cold:
8858     Hotness = CalleeInfo::HotnessType::Cold;
8859     break;
8860   case lltok::kw_none:
8861     Hotness = CalleeInfo::HotnessType::None;
8862     break;
8863   case lltok::kw_hot:
8864     Hotness = CalleeInfo::HotnessType::Hot;
8865     break;
8866   case lltok::kw_critical:
8867     Hotness = CalleeInfo::HotnessType::Critical;
8868     break;
8869   default:
8870     return error(Lex.getLoc(), "invalid call edge hotness");
8871   }
8872   Lex.Lex();
8873   return false;
8874 }
8875 
8876 /// OptionalVTableFuncs
8877 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8878 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8879 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8880   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8881   Lex.Lex();
8882 
8883   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") ||
8884       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8885     return true;
8886 
8887   IdToIndexMapType IdToIndexMap;
8888   // parse each virtual function pair
8889   do {
8890     ValueInfo VI;
8891     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8892         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8893         parseToken(lltok::colon, "expected ':'"))
8894       return true;
8895 
8896     LocTy Loc = Lex.getLoc();
8897     unsigned GVId;
8898     if (parseGVReference(VI, GVId))
8899       return true;
8900 
8901     uint64_t Offset;
8902     if (parseToken(lltok::comma, "expected comma") ||
8903         parseToken(lltok::kw_offset, "expected offset") ||
8904         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
8905       return true;
8906 
8907     // Keep track of the VTableFuncs array index needing a forward reference.
8908     // We will save the location of the ValueInfo needing an update, but
8909     // can only do so once the std::vector is finalized.
8910     if (VI == EmptyVI)
8911       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8912     VTableFuncs.push_back({VI, Offset});
8913 
8914     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
8915       return true;
8916   } while (EatIfPresent(lltok::comma));
8917 
8918   // Now that the VTableFuncs vector is finalized, it is safe to save the
8919   // locations of any forward GV references that need updating later.
8920   for (auto I : IdToIndexMap) {
8921     auto &Infos = ForwardRefValueInfos[I.first];
8922     for (auto P : I.second) {
8923       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8924              "Forward referenced ValueInfo expected to be empty");
8925       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
8926     }
8927   }
8928 
8929   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8930     return true;
8931 
8932   return false;
8933 }
8934 
8935 /// ParamNo := 'param' ':' UInt64
8936 bool LLParser::parseParamNo(uint64_t &ParamNo) {
8937   if (parseToken(lltok::kw_param, "expected 'param' here") ||
8938       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
8939     return true;
8940   return false;
8941 }
8942 
8943 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
8944 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
8945   APSInt Lower;
8946   APSInt Upper;
8947   auto ParseAPSInt = [&](APSInt &Val) {
8948     if (Lex.getKind() != lltok::APSInt)
8949       return tokError("expected integer");
8950     Val = Lex.getAPSIntVal();
8951     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
8952     Val.setIsSigned(true);
8953     Lex.Lex();
8954     return false;
8955   };
8956   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
8957       parseToken(lltok::colon, "expected ':' here") ||
8958       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
8959       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
8960       parseToken(lltok::rsquare, "expected ']' here"))
8961     return true;
8962 
8963   ++Upper;
8964   Range =
8965       (Lower == Upper && !Lower.isMaxValue())
8966           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
8967           : ConstantRange(Lower, Upper);
8968 
8969   return false;
8970 }
8971 
8972 /// ParamAccessCall
8973 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
8974 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
8975                                     IdLocListType &IdLocList) {
8976   if (parseToken(lltok::lparen, "expected '(' here") ||
8977       parseToken(lltok::kw_callee, "expected 'callee' here") ||
8978       parseToken(lltok::colon, "expected ':' here"))
8979     return true;
8980 
8981   unsigned GVId;
8982   ValueInfo VI;
8983   LocTy Loc = Lex.getLoc();
8984   if (parseGVReference(VI, GVId))
8985     return true;
8986 
8987   Call.Callee = VI;
8988   IdLocList.emplace_back(GVId, Loc);
8989 
8990   if (parseToken(lltok::comma, "expected ',' here") ||
8991       parseParamNo(Call.ParamNo) ||
8992       parseToken(lltok::comma, "expected ',' here") ||
8993       parseParamAccessOffset(Call.Offsets))
8994     return true;
8995 
8996   if (parseToken(lltok::rparen, "expected ')' here"))
8997     return true;
8998 
8999   return false;
9000 }
9001 
9002 /// ParamAccess
9003 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
9004 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
9005 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
9006                                 IdLocListType &IdLocList) {
9007   if (parseToken(lltok::lparen, "expected '(' here") ||
9008       parseParamNo(Param.ParamNo) ||
9009       parseToken(lltok::comma, "expected ',' here") ||
9010       parseParamAccessOffset(Param.Use))
9011     return true;
9012 
9013   if (EatIfPresent(lltok::comma)) {
9014     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
9015         parseToken(lltok::colon, "expected ':' here") ||
9016         parseToken(lltok::lparen, "expected '(' here"))
9017       return true;
9018     do {
9019       FunctionSummary::ParamAccess::Call Call;
9020       if (parseParamAccessCall(Call, IdLocList))
9021         return true;
9022       Param.Calls.push_back(Call);
9023     } while (EatIfPresent(lltok::comma));
9024 
9025     if (parseToken(lltok::rparen, "expected ')' here"))
9026       return true;
9027   }
9028 
9029   if (parseToken(lltok::rparen, "expected ')' here"))
9030     return true;
9031 
9032   return false;
9033 }
9034 
9035 /// OptionalParamAccesses
9036 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
9037 bool LLParser::parseOptionalParamAccesses(
9038     std::vector<FunctionSummary::ParamAccess> &Params) {
9039   assert(Lex.getKind() == lltok::kw_params);
9040   Lex.Lex();
9041 
9042   if (parseToken(lltok::colon, "expected ':' here") ||
9043       parseToken(lltok::lparen, "expected '(' here"))
9044     return true;
9045 
9046   IdLocListType VContexts;
9047   size_t CallsNum = 0;
9048   do {
9049     FunctionSummary::ParamAccess ParamAccess;
9050     if (parseParamAccess(ParamAccess, VContexts))
9051       return true;
9052     CallsNum += ParamAccess.Calls.size();
9053     assert(VContexts.size() == CallsNum);
9054     (void)CallsNum;
9055     Params.emplace_back(std::move(ParamAccess));
9056   } while (EatIfPresent(lltok::comma));
9057 
9058   if (parseToken(lltok::rparen, "expected ')' here"))
9059     return true;
9060 
9061   // Now that the Params is finalized, it is safe to save the locations
9062   // of any forward GV references that need updating later.
9063   IdLocListType::const_iterator ItContext = VContexts.begin();
9064   for (auto &PA : Params) {
9065     for (auto &C : PA.Calls) {
9066       if (C.Callee.getRef() == FwdVIRef)
9067         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9068                                                             ItContext->second);
9069       ++ItContext;
9070     }
9071   }
9072   assert(ItContext == VContexts.end());
9073 
9074   return false;
9075 }
9076 
9077 /// OptionalRefs
9078 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
9079 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9080   assert(Lex.getKind() == lltok::kw_refs);
9081   Lex.Lex();
9082 
9083   if (parseToken(lltok::colon, "expected ':' in refs") ||
9084       parseToken(lltok::lparen, "expected '(' in refs"))
9085     return true;
9086 
9087   struct ValueContext {
9088     ValueInfo VI;
9089     unsigned GVId;
9090     LocTy Loc;
9091   };
9092   std::vector<ValueContext> VContexts;
9093   // parse each ref edge
9094   do {
9095     ValueContext VC;
9096     VC.Loc = Lex.getLoc();
9097     if (parseGVReference(VC.VI, VC.GVId))
9098       return true;
9099     VContexts.push_back(VC);
9100   } while (EatIfPresent(lltok::comma));
9101 
9102   // Sort value contexts so that ones with writeonly
9103   // and readonly ValueInfo  are at the end of VContexts vector.
9104   // See FunctionSummary::specialRefCounts()
9105   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
9106     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9107   });
9108 
9109   IdToIndexMapType IdToIndexMap;
9110   for (auto &VC : VContexts) {
9111     // Keep track of the Refs array index needing a forward reference.
9112     // We will save the location of the ValueInfo needing an update, but
9113     // can only do so once the std::vector is finalized.
9114     if (VC.VI.getRef() == FwdVIRef)
9115       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9116     Refs.push_back(VC.VI);
9117   }
9118 
9119   // Now that the Refs vector is finalized, it is safe to save the locations
9120   // of any forward GV references that need updating later.
9121   for (auto I : IdToIndexMap) {
9122     auto &Infos = ForwardRefValueInfos[I.first];
9123     for (auto P : I.second) {
9124       assert(Refs[P.first].getRef() == FwdVIRef &&
9125              "Forward referenced ValueInfo expected to be empty");
9126       Infos.emplace_back(&Refs[P.first], P.second);
9127     }
9128   }
9129 
9130   if (parseToken(lltok::rparen, "expected ')' in refs"))
9131     return true;
9132 
9133   return false;
9134 }
9135 
9136 /// OptionalTypeIdInfo
9137 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9138 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9139 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9140 bool LLParser::parseOptionalTypeIdInfo(
9141     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9142   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9143   Lex.Lex();
9144 
9145   if (parseToken(lltok::colon, "expected ':' here") ||
9146       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9147     return true;
9148 
9149   do {
9150     switch (Lex.getKind()) {
9151     case lltok::kw_typeTests:
9152       if (parseTypeTests(TypeIdInfo.TypeTests))
9153         return true;
9154       break;
9155     case lltok::kw_typeTestAssumeVCalls:
9156       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9157                            TypeIdInfo.TypeTestAssumeVCalls))
9158         return true;
9159       break;
9160     case lltok::kw_typeCheckedLoadVCalls:
9161       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9162                            TypeIdInfo.TypeCheckedLoadVCalls))
9163         return true;
9164       break;
9165     case lltok::kw_typeTestAssumeConstVCalls:
9166       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9167                               TypeIdInfo.TypeTestAssumeConstVCalls))
9168         return true;
9169       break;
9170     case lltok::kw_typeCheckedLoadConstVCalls:
9171       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9172                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9173         return true;
9174       break;
9175     default:
9176       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9177     }
9178   } while (EatIfPresent(lltok::comma));
9179 
9180   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9181     return true;
9182 
9183   return false;
9184 }
9185 
9186 /// TypeTests
9187 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9188 ///         [',' (SummaryID | UInt64)]* ')'
9189 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9190   assert(Lex.getKind() == lltok::kw_typeTests);
9191   Lex.Lex();
9192 
9193   if (parseToken(lltok::colon, "expected ':' here") ||
9194       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9195     return true;
9196 
9197   IdToIndexMapType IdToIndexMap;
9198   do {
9199     GlobalValue::GUID GUID = 0;
9200     if (Lex.getKind() == lltok::SummaryID) {
9201       unsigned ID = Lex.getUIntVal();
9202       LocTy Loc = Lex.getLoc();
9203       // Keep track of the TypeTests array index needing a forward reference.
9204       // We will save the location of the GUID needing an update, but
9205       // can only do so once the std::vector is finalized.
9206       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9207       Lex.Lex();
9208     } else if (parseUInt64(GUID))
9209       return true;
9210     TypeTests.push_back(GUID);
9211   } while (EatIfPresent(lltok::comma));
9212 
9213   // Now that the TypeTests vector is finalized, it is safe to save the
9214   // locations of any forward GV references that need updating later.
9215   for (auto I : IdToIndexMap) {
9216     auto &Ids = ForwardRefTypeIds[I.first];
9217     for (auto P : I.second) {
9218       assert(TypeTests[P.first] == 0 &&
9219              "Forward referenced type id GUID expected to be 0");
9220       Ids.emplace_back(&TypeTests[P.first], P.second);
9221     }
9222   }
9223 
9224   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9225     return true;
9226 
9227   return false;
9228 }
9229 
9230 /// VFuncIdList
9231 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9232 bool LLParser::parseVFuncIdList(
9233     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9234   assert(Lex.getKind() == Kind);
9235   Lex.Lex();
9236 
9237   if (parseToken(lltok::colon, "expected ':' here") ||
9238       parseToken(lltok::lparen, "expected '(' here"))
9239     return true;
9240 
9241   IdToIndexMapType IdToIndexMap;
9242   do {
9243     FunctionSummary::VFuncId VFuncId;
9244     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9245       return true;
9246     VFuncIdList.push_back(VFuncId);
9247   } while (EatIfPresent(lltok::comma));
9248 
9249   if (parseToken(lltok::rparen, "expected ')' here"))
9250     return true;
9251 
9252   // Now that the VFuncIdList vector is finalized, it is safe to save the
9253   // locations of any forward GV references that need updating later.
9254   for (auto I : IdToIndexMap) {
9255     auto &Ids = ForwardRefTypeIds[I.first];
9256     for (auto P : I.second) {
9257       assert(VFuncIdList[P.first].GUID == 0 &&
9258              "Forward referenced type id GUID expected to be 0");
9259       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9260     }
9261   }
9262 
9263   return false;
9264 }
9265 
9266 /// ConstVCallList
9267 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9268 bool LLParser::parseConstVCallList(
9269     lltok::Kind Kind,
9270     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9271   assert(Lex.getKind() == Kind);
9272   Lex.Lex();
9273 
9274   if (parseToken(lltok::colon, "expected ':' here") ||
9275       parseToken(lltok::lparen, "expected '(' here"))
9276     return true;
9277 
9278   IdToIndexMapType IdToIndexMap;
9279   do {
9280     FunctionSummary::ConstVCall ConstVCall;
9281     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9282       return true;
9283     ConstVCallList.push_back(ConstVCall);
9284   } while (EatIfPresent(lltok::comma));
9285 
9286   if (parseToken(lltok::rparen, "expected ')' here"))
9287     return true;
9288 
9289   // Now that the ConstVCallList vector is finalized, it is safe to save the
9290   // locations of any forward GV references that need updating later.
9291   for (auto I : IdToIndexMap) {
9292     auto &Ids = ForwardRefTypeIds[I.first];
9293     for (auto P : I.second) {
9294       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9295              "Forward referenced type id GUID expected to be 0");
9296       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9297     }
9298   }
9299 
9300   return false;
9301 }
9302 
9303 /// ConstVCall
9304 ///   ::= '(' VFuncId ',' Args ')'
9305 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9306                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9307   if (parseToken(lltok::lparen, "expected '(' here") ||
9308       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9309     return true;
9310 
9311   if (EatIfPresent(lltok::comma))
9312     if (parseArgs(ConstVCall.Args))
9313       return true;
9314 
9315   if (parseToken(lltok::rparen, "expected ')' here"))
9316     return true;
9317 
9318   return false;
9319 }
9320 
9321 /// VFuncId
9322 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9323 ///         'offset' ':' UInt64 ')'
9324 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9325                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9326   assert(Lex.getKind() == lltok::kw_vFuncId);
9327   Lex.Lex();
9328 
9329   if (parseToken(lltok::colon, "expected ':' here") ||
9330       parseToken(lltok::lparen, "expected '(' here"))
9331     return true;
9332 
9333   if (Lex.getKind() == lltok::SummaryID) {
9334     VFuncId.GUID = 0;
9335     unsigned ID = Lex.getUIntVal();
9336     LocTy Loc = Lex.getLoc();
9337     // Keep track of the array index needing a forward reference.
9338     // We will save the location of the GUID needing an update, but
9339     // can only do so once the caller's std::vector is finalized.
9340     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9341     Lex.Lex();
9342   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9343              parseToken(lltok::colon, "expected ':' here") ||
9344              parseUInt64(VFuncId.GUID))
9345     return true;
9346 
9347   if (parseToken(lltok::comma, "expected ',' here") ||
9348       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9349       parseToken(lltok::colon, "expected ':' here") ||
9350       parseUInt64(VFuncId.Offset) ||
9351       parseToken(lltok::rparen, "expected ')' here"))
9352     return true;
9353 
9354   return false;
9355 }
9356 
9357 /// GVFlags
9358 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9359 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9360 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9361 ///         'canAutoHide' ':' Flag ',' ')'
9362 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9363   assert(Lex.getKind() == lltok::kw_flags);
9364   Lex.Lex();
9365 
9366   if (parseToken(lltok::colon, "expected ':' here") ||
9367       parseToken(lltok::lparen, "expected '(' here"))
9368     return true;
9369 
9370   do {
9371     unsigned Flag = 0;
9372     switch (Lex.getKind()) {
9373     case lltok::kw_linkage:
9374       Lex.Lex();
9375       if (parseToken(lltok::colon, "expected ':'"))
9376         return true;
9377       bool HasLinkage;
9378       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9379       assert(HasLinkage && "Linkage not optional in summary entry");
9380       Lex.Lex();
9381       break;
9382     case lltok::kw_visibility:
9383       Lex.Lex();
9384       if (parseToken(lltok::colon, "expected ':'"))
9385         return true;
9386       parseOptionalVisibility(Flag);
9387       GVFlags.Visibility = Flag;
9388       break;
9389     case lltok::kw_notEligibleToImport:
9390       Lex.Lex();
9391       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9392         return true;
9393       GVFlags.NotEligibleToImport = Flag;
9394       break;
9395     case lltok::kw_live:
9396       Lex.Lex();
9397       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9398         return true;
9399       GVFlags.Live = Flag;
9400       break;
9401     case lltok::kw_dsoLocal:
9402       Lex.Lex();
9403       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9404         return true;
9405       GVFlags.DSOLocal = Flag;
9406       break;
9407     case lltok::kw_canAutoHide:
9408       Lex.Lex();
9409       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9410         return true;
9411       GVFlags.CanAutoHide = Flag;
9412       break;
9413     default:
9414       return error(Lex.getLoc(), "expected gv flag type");
9415     }
9416   } while (EatIfPresent(lltok::comma));
9417 
9418   if (parseToken(lltok::rparen, "expected ')' here"))
9419     return true;
9420 
9421   return false;
9422 }
9423 
9424 /// GVarFlags
9425 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9426 ///                      ',' 'writeonly' ':' Flag
9427 ///                      ',' 'constant' ':' Flag ')'
9428 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9429   assert(Lex.getKind() == lltok::kw_varFlags);
9430   Lex.Lex();
9431 
9432   if (parseToken(lltok::colon, "expected ':' here") ||
9433       parseToken(lltok::lparen, "expected '(' here"))
9434     return true;
9435 
9436   auto ParseRest = [this](unsigned int &Val) {
9437     Lex.Lex();
9438     if (parseToken(lltok::colon, "expected ':'"))
9439       return true;
9440     return parseFlag(Val);
9441   };
9442 
9443   do {
9444     unsigned Flag = 0;
9445     switch (Lex.getKind()) {
9446     case lltok::kw_readonly:
9447       if (ParseRest(Flag))
9448         return true;
9449       GVarFlags.MaybeReadOnly = Flag;
9450       break;
9451     case lltok::kw_writeonly:
9452       if (ParseRest(Flag))
9453         return true;
9454       GVarFlags.MaybeWriteOnly = Flag;
9455       break;
9456     case lltok::kw_constant:
9457       if (ParseRest(Flag))
9458         return true;
9459       GVarFlags.Constant = Flag;
9460       break;
9461     case lltok::kw_vcall_visibility:
9462       if (ParseRest(Flag))
9463         return true;
9464       GVarFlags.VCallVisibility = Flag;
9465       break;
9466     default:
9467       return error(Lex.getLoc(), "expected gvar flag type");
9468     }
9469   } while (EatIfPresent(lltok::comma));
9470   return parseToken(lltok::rparen, "expected ')' here");
9471 }
9472 
9473 /// ModuleReference
9474 ///   ::= 'module' ':' UInt
9475 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9476   // parse module id.
9477   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9478       parseToken(lltok::colon, "expected ':' here") ||
9479       parseToken(lltok::SummaryID, "expected module ID"))
9480     return true;
9481 
9482   unsigned ModuleID = Lex.getUIntVal();
9483   auto I = ModuleIdMap.find(ModuleID);
9484   // We should have already parsed all module IDs
9485   assert(I != ModuleIdMap.end());
9486   ModulePath = I->second;
9487   return false;
9488 }
9489 
9490 /// GVReference
9491 ///   ::= SummaryID
9492 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9493   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9494   if (!ReadOnly)
9495     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9496   if (parseToken(lltok::SummaryID, "expected GV ID"))
9497     return true;
9498 
9499   GVId = Lex.getUIntVal();
9500   // Check if we already have a VI for this GV
9501   if (GVId < NumberedValueInfos.size()) {
9502     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9503     VI = NumberedValueInfos[GVId];
9504   } else
9505     // We will create a forward reference to the stored location.
9506     VI = ValueInfo(false, FwdVIRef);
9507 
9508   if (ReadOnly)
9509     VI.setReadOnly();
9510   if (WriteOnly)
9511     VI.setWriteOnly();
9512   return false;
9513 }
9514