1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalIFunc.h"
32 #include "llvm/IR/GlobalObject.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/IR/ValueSymbolTable.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/SaveAndRestore.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstring>
52 #include <iterator>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 static std::string getTypeString(Type *T) {
58   std::string Result;
59   raw_string_ostream Tmp(Result);
60   Tmp << *T;
61   return Tmp.str();
62 }
63 
64 /// Run: module ::= toplevelentity*
65 bool LLParser::Run() {
66   // Prime the lexer.
67   Lex.Lex();
68 
69   if (Context.shouldDiscardValueNames())
70     return Error(
71         Lex.getLoc(),
72         "Can't read textual IR with a Context that discards named Values");
73 
74   return ParseTopLevelEntities() ||
75          ValidateEndOfModule();
76 }
77 
78 bool LLParser::parseStandaloneConstantValue(Constant *&C,
79                                             const SlotMapping *Slots) {
80   restoreParsingState(Slots);
81   Lex.Lex();
82 
83   Type *Ty = nullptr;
84   if (ParseType(Ty) || parseConstantValue(Ty, C))
85     return true;
86   if (Lex.getKind() != lltok::Eof)
87     return Error(Lex.getLoc(), "expected end of string");
88   return false;
89 }
90 
91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
92                                     const SlotMapping *Slots) {
93   restoreParsingState(Slots);
94   Lex.Lex();
95 
96   Read = 0;
97   SMLoc Start = Lex.getLoc();
98   Ty = nullptr;
99   if (ParseType(Ty))
100     return true;
101   SMLoc End = Lex.getLoc();
102   Read = End.getPointer() - Start.getPointer();
103 
104   return false;
105 }
106 
107 void LLParser::restoreParsingState(const SlotMapping *Slots) {
108   if (!Slots)
109     return;
110   NumberedVals = Slots->GlobalValues;
111   NumberedMetadata = Slots->MetadataNodes;
112   for (const auto &I : Slots->NamedTypes)
113     NamedTypes.insert(
114         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
115   for (const auto &I : Slots->Types)
116     NumberedTypes.insert(
117         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
118 }
119 
120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
121 /// module.
122 bool LLParser::ValidateEndOfModule() {
123   // Handle any function attribute group forward references.
124   for (const auto &RAG : ForwardRefAttrGroups) {
125     Value *V = RAG.first;
126     const std::vector<unsigned> &Attrs = RAG.second;
127     AttrBuilder B;
128 
129     for (const auto &Attr : Attrs)
130       B.merge(NumberedAttrBuilders[Attr]);
131 
132     if (Function *Fn = dyn_cast<Function>(V)) {
133       AttributeList AS = Fn->getAttributes();
134       AttrBuilder FnAttrs(AS.getFnAttributes());
135       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
136 
137       FnAttrs.merge(B);
138 
139       // If the alignment was parsed as an attribute, move to the alignment
140       // field.
141       if (FnAttrs.hasAlignmentAttr()) {
142         Fn->setAlignment(FnAttrs.getAlignment());
143         FnAttrs.removeAttribute(Attribute::Alignment);
144       }
145 
146       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
147                             AttributeSet::get(Context, FnAttrs));
148       Fn->setAttributes(AS);
149     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
150       AttributeList AS = CI->getAttributes();
151       AttrBuilder FnAttrs(AS.getFnAttributes());
152       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
153       FnAttrs.merge(B);
154       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
155                             AttributeSet::get(Context, FnAttrs));
156       CI->setAttributes(AS);
157     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
158       AttributeList AS = II->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttributes());
160       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
161       FnAttrs.merge(B);
162       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
163                             AttributeSet::get(Context, FnAttrs));
164       II->setAttributes(AS);
165     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
166       AttrBuilder Attrs(GV->getAttributes());
167       Attrs.merge(B);
168       GV->setAttributes(AttributeSet::get(Context,Attrs));
169     } else {
170       llvm_unreachable("invalid object with forward attribute group reference");
171     }
172   }
173 
174   // If there are entries in ForwardRefBlockAddresses at this point, the
175   // function was never defined.
176   if (!ForwardRefBlockAddresses.empty())
177     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
178                  "expected function name in blockaddress");
179 
180   for (const auto &NT : NumberedTypes)
181     if (NT.second.second.isValid())
182       return Error(NT.second.second,
183                    "use of undefined type '%" + Twine(NT.first) + "'");
184 
185   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
186        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
187     if (I->second.second.isValid())
188       return Error(I->second.second,
189                    "use of undefined type named '" + I->getKey() + "'");
190 
191   if (!ForwardRefComdats.empty())
192     return Error(ForwardRefComdats.begin()->second,
193                  "use of undefined comdat '$" +
194                      ForwardRefComdats.begin()->first + "'");
195 
196   if (!ForwardRefVals.empty())
197     return Error(ForwardRefVals.begin()->second.second,
198                  "use of undefined value '@" + ForwardRefVals.begin()->first +
199                  "'");
200 
201   if (!ForwardRefValIDs.empty())
202     return Error(ForwardRefValIDs.begin()->second.second,
203                  "use of undefined value '@" +
204                  Twine(ForwardRefValIDs.begin()->first) + "'");
205 
206   if (!ForwardRefMDNodes.empty())
207     return Error(ForwardRefMDNodes.begin()->second.second,
208                  "use of undefined metadata '!" +
209                  Twine(ForwardRefMDNodes.begin()->first) + "'");
210 
211   // Resolve metadata cycles.
212   for (auto &N : NumberedMetadata) {
213     if (N.second && !N.second->isResolved())
214       N.second->resolveCycles();
215   }
216 
217   for (auto *Inst : InstsWithTBAATag) {
218     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
219     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
220     auto *UpgradedMD = UpgradeTBAANode(*MD);
221     if (MD != UpgradedMD)
222       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
223   }
224 
225   // Look for intrinsic functions and CallInst that need to be upgraded
226   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
227     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
228 
229   // Some types could be renamed during loading if several modules are
230   // loaded in the same LLVMContext (LTO scenario). In this case we should
231   // remangle intrinsics names as well.
232   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
233     Function *F = &*FI++;
234     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
235       F->replaceAllUsesWith(Remangled.getValue());
236       F->eraseFromParent();
237     }
238   }
239 
240   if (UpgradeDebugInfo)
241     llvm::UpgradeDebugInfo(*M);
242 
243   UpgradeModuleFlags(*M);
244   UpgradeSectionAttributes(*M);
245 
246   if (!Slots)
247     return false;
248   // Initialize the slot mapping.
249   // Because by this point we've parsed and validated everything, we can "steal"
250   // the mapping from LLParser as it doesn't need it anymore.
251   Slots->GlobalValues = std::move(NumberedVals);
252   Slots->MetadataNodes = std::move(NumberedMetadata);
253   for (const auto &I : NamedTypes)
254     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
255   for (const auto &I : NumberedTypes)
256     Slots->Types.insert(std::make_pair(I.first, I.second.first));
257 
258   return false;
259 }
260 
261 //===----------------------------------------------------------------------===//
262 // Top-Level Entities
263 //===----------------------------------------------------------------------===//
264 
265 bool LLParser::ParseTopLevelEntities() {
266   while (true) {
267     switch (Lex.getKind()) {
268     default:         return TokError("expected top-level entity");
269     case lltok::Eof: return false;
270     case lltok::kw_declare: if (ParseDeclare()) return true; break;
271     case lltok::kw_define:  if (ParseDefine()) return true; break;
272     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
273     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
274     case lltok::kw_source_filename:
275       if (ParseSourceFileName())
276         return true;
277       break;
278     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
279     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
280     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
281     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
282     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
283     case lltok::ComdatVar:  if (parseComdat()) return true; break;
284     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
285     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
286     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
287     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
288     case lltok::kw_uselistorder_bb:
289       if (ParseUseListOrderBB())
290         return true;
291       break;
292     }
293   }
294 }
295 
296 /// toplevelentity
297 ///   ::= 'module' 'asm' STRINGCONSTANT
298 bool LLParser::ParseModuleAsm() {
299   assert(Lex.getKind() == lltok::kw_module);
300   Lex.Lex();
301 
302   std::string AsmStr;
303   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
304       ParseStringConstant(AsmStr)) return true;
305 
306   M->appendModuleInlineAsm(AsmStr);
307   return false;
308 }
309 
310 /// toplevelentity
311 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
312 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
313 bool LLParser::ParseTargetDefinition() {
314   assert(Lex.getKind() == lltok::kw_target);
315   std::string Str;
316   switch (Lex.Lex()) {
317   default: return TokError("unknown target property");
318   case lltok::kw_triple:
319     Lex.Lex();
320     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
321         ParseStringConstant(Str))
322       return true;
323     M->setTargetTriple(Str);
324     return false;
325   case lltok::kw_datalayout:
326     Lex.Lex();
327     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
328         ParseStringConstant(Str))
329       return true;
330     if (DataLayoutStr.empty())
331       M->setDataLayout(Str);
332     return false;
333   }
334 }
335 
336 /// toplevelentity
337 ///   ::= 'source_filename' '=' STRINGCONSTANT
338 bool LLParser::ParseSourceFileName() {
339   assert(Lex.getKind() == lltok::kw_source_filename);
340   std::string Str;
341   Lex.Lex();
342   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
343       ParseStringConstant(Str))
344     return true;
345   M->setSourceFileName(Str);
346   return false;
347 }
348 
349 /// toplevelentity
350 ///   ::= 'deplibs' '=' '[' ']'
351 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
352 /// FIXME: Remove in 4.0. Currently parse, but ignore.
353 bool LLParser::ParseDepLibs() {
354   assert(Lex.getKind() == lltok::kw_deplibs);
355   Lex.Lex();
356   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
357       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
358     return true;
359 
360   if (EatIfPresent(lltok::rsquare))
361     return false;
362 
363   do {
364     std::string Str;
365     if (ParseStringConstant(Str)) return true;
366   } while (EatIfPresent(lltok::comma));
367 
368   return ParseToken(lltok::rsquare, "expected ']' at end of list");
369 }
370 
371 /// ParseUnnamedType:
372 ///   ::= LocalVarID '=' 'type' type
373 bool LLParser::ParseUnnamedType() {
374   LocTy TypeLoc = Lex.getLoc();
375   unsigned TypeID = Lex.getUIntVal();
376   Lex.Lex(); // eat LocalVarID;
377 
378   if (ParseToken(lltok::equal, "expected '=' after name") ||
379       ParseToken(lltok::kw_type, "expected 'type' after '='"))
380     return true;
381 
382   Type *Result = nullptr;
383   if (ParseStructDefinition(TypeLoc, "",
384                             NumberedTypes[TypeID], Result)) return true;
385 
386   if (!isa<StructType>(Result)) {
387     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
388     if (Entry.first)
389       return Error(TypeLoc, "non-struct types may not be recursive");
390     Entry.first = Result;
391     Entry.second = SMLoc();
392   }
393 
394   return false;
395 }
396 
397 /// toplevelentity
398 ///   ::= LocalVar '=' 'type' type
399 bool LLParser::ParseNamedType() {
400   std::string Name = Lex.getStrVal();
401   LocTy NameLoc = Lex.getLoc();
402   Lex.Lex();  // eat LocalVar.
403 
404   if (ParseToken(lltok::equal, "expected '=' after name") ||
405       ParseToken(lltok::kw_type, "expected 'type' after name"))
406     return true;
407 
408   Type *Result = nullptr;
409   if (ParseStructDefinition(NameLoc, Name,
410                             NamedTypes[Name], Result)) return true;
411 
412   if (!isa<StructType>(Result)) {
413     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
414     if (Entry.first)
415       return Error(NameLoc, "non-struct types may not be recursive");
416     Entry.first = Result;
417     Entry.second = SMLoc();
418   }
419 
420   return false;
421 }
422 
423 /// toplevelentity
424 ///   ::= 'declare' FunctionHeader
425 bool LLParser::ParseDeclare() {
426   assert(Lex.getKind() == lltok::kw_declare);
427   Lex.Lex();
428 
429   std::vector<std::pair<unsigned, MDNode *>> MDs;
430   while (Lex.getKind() == lltok::MetadataVar) {
431     unsigned MDK;
432     MDNode *N;
433     if (ParseMetadataAttachment(MDK, N))
434       return true;
435     MDs.push_back({MDK, N});
436   }
437 
438   Function *F;
439   if (ParseFunctionHeader(F, false))
440     return true;
441   for (auto &MD : MDs)
442     F->addMetadata(MD.first, *MD.second);
443   return false;
444 }
445 
446 /// toplevelentity
447 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
448 bool LLParser::ParseDefine() {
449   assert(Lex.getKind() == lltok::kw_define);
450   Lex.Lex();
451 
452   Function *F;
453   return ParseFunctionHeader(F, true) ||
454          ParseOptionalFunctionMetadata(*F) ||
455          ParseFunctionBody(*F);
456 }
457 
458 /// ParseGlobalType
459 ///   ::= 'constant'
460 ///   ::= 'global'
461 bool LLParser::ParseGlobalType(bool &IsConstant) {
462   if (Lex.getKind() == lltok::kw_constant)
463     IsConstant = true;
464   else if (Lex.getKind() == lltok::kw_global)
465     IsConstant = false;
466   else {
467     IsConstant = false;
468     return TokError("expected 'global' or 'constant'");
469   }
470   Lex.Lex();
471   return false;
472 }
473 
474 bool LLParser::ParseOptionalUnnamedAddr(
475     GlobalVariable::UnnamedAddr &UnnamedAddr) {
476   if (EatIfPresent(lltok::kw_unnamed_addr))
477     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
478   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
479     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
480   else
481     UnnamedAddr = GlobalValue::UnnamedAddr::None;
482   return false;
483 }
484 
485 /// ParseUnnamedGlobal:
486 ///   OptionalVisibility (ALIAS | IFUNC) ...
487 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
488 ///   OptionalDLLStorageClass
489 ///                                                     ...   -> global variable
490 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
491 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
492 ///                OptionalDLLStorageClass
493 ///                                                     ...   -> global variable
494 bool LLParser::ParseUnnamedGlobal() {
495   unsigned VarID = NumberedVals.size();
496   std::string Name;
497   LocTy NameLoc = Lex.getLoc();
498 
499   // Handle the GlobalID form.
500   if (Lex.getKind() == lltok::GlobalID) {
501     if (Lex.getUIntVal() != VarID)
502       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
503                    Twine(VarID) + "'");
504     Lex.Lex(); // eat GlobalID;
505 
506     if (ParseToken(lltok::equal, "expected '=' after name"))
507       return true;
508   }
509 
510   bool HasLinkage;
511   unsigned Linkage, Visibility, DLLStorageClass;
512   bool DSOLocal;
513   GlobalVariable::ThreadLocalMode TLM;
514   GlobalVariable::UnnamedAddr UnnamedAddr;
515   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
516                            DSOLocal) ||
517       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
518     return true;
519 
520   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
521     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
522                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
523 
524   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
525                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
526 }
527 
528 /// ParseNamedGlobal:
529 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
530 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
531 ///                 OptionalVisibility OptionalDLLStorageClass
532 ///                                                     ...   -> global variable
533 bool LLParser::ParseNamedGlobal() {
534   assert(Lex.getKind() == lltok::GlobalVar);
535   LocTy NameLoc = Lex.getLoc();
536   std::string Name = Lex.getStrVal();
537   Lex.Lex();
538 
539   bool HasLinkage;
540   unsigned Linkage, Visibility, DLLStorageClass;
541   bool DSOLocal;
542   GlobalVariable::ThreadLocalMode TLM;
543   GlobalVariable::UnnamedAddr UnnamedAddr;
544   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
545       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
546                            DSOLocal) ||
547       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
548     return true;
549 
550   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
551     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
552                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
553 
554   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
555                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
556 }
557 
558 bool LLParser::parseComdat() {
559   assert(Lex.getKind() == lltok::ComdatVar);
560   std::string Name = Lex.getStrVal();
561   LocTy NameLoc = Lex.getLoc();
562   Lex.Lex();
563 
564   if (ParseToken(lltok::equal, "expected '=' here"))
565     return true;
566 
567   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
568     return TokError("expected comdat type");
569 
570   Comdat::SelectionKind SK;
571   switch (Lex.getKind()) {
572   default:
573     return TokError("unknown selection kind");
574   case lltok::kw_any:
575     SK = Comdat::Any;
576     break;
577   case lltok::kw_exactmatch:
578     SK = Comdat::ExactMatch;
579     break;
580   case lltok::kw_largest:
581     SK = Comdat::Largest;
582     break;
583   case lltok::kw_noduplicates:
584     SK = Comdat::NoDuplicates;
585     break;
586   case lltok::kw_samesize:
587     SK = Comdat::SameSize;
588     break;
589   }
590   Lex.Lex();
591 
592   // See if the comdat was forward referenced, if so, use the comdat.
593   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
594   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
595   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
596     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
597 
598   Comdat *C;
599   if (I != ComdatSymTab.end())
600     C = &I->second;
601   else
602     C = M->getOrInsertComdat(Name);
603   C->setSelectionKind(SK);
604 
605   return false;
606 }
607 
608 // MDString:
609 //   ::= '!' STRINGCONSTANT
610 bool LLParser::ParseMDString(MDString *&Result) {
611   std::string Str;
612   if (ParseStringConstant(Str)) return true;
613   Result = MDString::get(Context, Str);
614   return false;
615 }
616 
617 // MDNode:
618 //   ::= '!' MDNodeNumber
619 bool LLParser::ParseMDNodeID(MDNode *&Result) {
620   // !{ ..., !42, ... }
621   LocTy IDLoc = Lex.getLoc();
622   unsigned MID = 0;
623   if (ParseUInt32(MID))
624     return true;
625 
626   // If not a forward reference, just return it now.
627   if (NumberedMetadata.count(MID)) {
628     Result = NumberedMetadata[MID];
629     return false;
630   }
631 
632   // Otherwise, create MDNode forward reference.
633   auto &FwdRef = ForwardRefMDNodes[MID];
634   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
635 
636   Result = FwdRef.first.get();
637   NumberedMetadata[MID].reset(Result);
638   return false;
639 }
640 
641 /// ParseNamedMetadata:
642 ///   !foo = !{ !1, !2 }
643 bool LLParser::ParseNamedMetadata() {
644   assert(Lex.getKind() == lltok::MetadataVar);
645   std::string Name = Lex.getStrVal();
646   Lex.Lex();
647 
648   if (ParseToken(lltok::equal, "expected '=' here") ||
649       ParseToken(lltok::exclaim, "Expected '!' here") ||
650       ParseToken(lltok::lbrace, "Expected '{' here"))
651     return true;
652 
653   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
654   if (Lex.getKind() != lltok::rbrace)
655     do {
656       MDNode *N = nullptr;
657       // Parse DIExpressions inline as a special case. They are still MDNodes,
658       // so they can still appear in named metadata. Remove this logic if they
659       // become plain Metadata.
660       if (Lex.getKind() == lltok::MetadataVar &&
661           Lex.getStrVal() == "DIExpression") {
662         if (ParseDIExpression(N, /*IsDistinct=*/false))
663           return true;
664       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
665                  ParseMDNodeID(N)) {
666         return true;
667       }
668       NMD->addOperand(N);
669     } while (EatIfPresent(lltok::comma));
670 
671   return ParseToken(lltok::rbrace, "expected end of metadata node");
672 }
673 
674 /// ParseStandaloneMetadata:
675 ///   !42 = !{...}
676 bool LLParser::ParseStandaloneMetadata() {
677   assert(Lex.getKind() == lltok::exclaim);
678   Lex.Lex();
679   unsigned MetadataID = 0;
680 
681   MDNode *Init;
682   if (ParseUInt32(MetadataID) ||
683       ParseToken(lltok::equal, "expected '=' here"))
684     return true;
685 
686   // Detect common error, from old metadata syntax.
687   if (Lex.getKind() == lltok::Type)
688     return TokError("unexpected type in metadata definition");
689 
690   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
691   if (Lex.getKind() == lltok::MetadataVar) {
692     if (ParseSpecializedMDNode(Init, IsDistinct))
693       return true;
694   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
695              ParseMDTuple(Init, IsDistinct))
696     return true;
697 
698   // See if this was forward referenced, if so, handle it.
699   auto FI = ForwardRefMDNodes.find(MetadataID);
700   if (FI != ForwardRefMDNodes.end()) {
701     FI->second.first->replaceAllUsesWith(Init);
702     ForwardRefMDNodes.erase(FI);
703 
704     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
705   } else {
706     if (NumberedMetadata.count(MetadataID))
707       return TokError("Metadata id is already used");
708     NumberedMetadata[MetadataID].reset(Init);
709   }
710 
711   return false;
712 }
713 
714 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
715   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
716          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
717 }
718 
719 // If there was an explicit dso_local, update GV. In the absence of an explicit
720 // dso_local we keep the default value.
721 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
722   if (DSOLocal)
723     GV.setDSOLocal(true);
724 }
725 
726 /// parseIndirectSymbol:
727 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
728 ///                     OptionalVisibility OptionalDLLStorageClass
729 ///                     OptionalThreadLocal OptionalUnnamedAddr
730 //                      'alias|ifunc' IndirectSymbol
731 ///
732 /// IndirectSymbol
733 ///   ::= TypeAndValue
734 ///
735 /// Everything through OptionalUnnamedAddr has already been parsed.
736 ///
737 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
738                                    unsigned L, unsigned Visibility,
739                                    unsigned DLLStorageClass, bool DSOLocal,
740                                    GlobalVariable::ThreadLocalMode TLM,
741                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
742   bool IsAlias;
743   if (Lex.getKind() == lltok::kw_alias)
744     IsAlias = true;
745   else if (Lex.getKind() == lltok::kw_ifunc)
746     IsAlias = false;
747   else
748     llvm_unreachable("Not an alias or ifunc!");
749   Lex.Lex();
750 
751   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
752 
753   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
754     return Error(NameLoc, "invalid linkage type for alias");
755 
756   if (!isValidVisibilityForLinkage(Visibility, L))
757     return Error(NameLoc,
758                  "symbol with local linkage must have default visibility");
759 
760   Type *Ty;
761   LocTy ExplicitTypeLoc = Lex.getLoc();
762   if (ParseType(Ty) ||
763       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
764     return true;
765 
766   Constant *Aliasee;
767   LocTy AliaseeLoc = Lex.getLoc();
768   if (Lex.getKind() != lltok::kw_bitcast &&
769       Lex.getKind() != lltok::kw_getelementptr &&
770       Lex.getKind() != lltok::kw_addrspacecast &&
771       Lex.getKind() != lltok::kw_inttoptr) {
772     if (ParseGlobalTypeAndValue(Aliasee))
773       return true;
774   } else {
775     // The bitcast dest type is not present, it is implied by the dest type.
776     ValID ID;
777     if (ParseValID(ID))
778       return true;
779     if (ID.Kind != ValID::t_Constant)
780       return Error(AliaseeLoc, "invalid aliasee");
781     Aliasee = ID.ConstantVal;
782   }
783 
784   Type *AliaseeType = Aliasee->getType();
785   auto *PTy = dyn_cast<PointerType>(AliaseeType);
786   if (!PTy)
787     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
788   unsigned AddrSpace = PTy->getAddressSpace();
789 
790   if (IsAlias && Ty != PTy->getElementType())
791     return Error(
792         ExplicitTypeLoc,
793         "explicit pointee type doesn't match operand's pointee type");
794 
795   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
796     return Error(
797         ExplicitTypeLoc,
798         "explicit pointee type should be a function type");
799 
800   GlobalValue *GVal = nullptr;
801 
802   // See if the alias was forward referenced, if so, prepare to replace the
803   // forward reference.
804   if (!Name.empty()) {
805     GVal = M->getNamedValue(Name);
806     if (GVal) {
807       if (!ForwardRefVals.erase(Name))
808         return Error(NameLoc, "redefinition of global '@" + Name + "'");
809     }
810   } else {
811     auto I = ForwardRefValIDs.find(NumberedVals.size());
812     if (I != ForwardRefValIDs.end()) {
813       GVal = I->second.first;
814       ForwardRefValIDs.erase(I);
815     }
816   }
817 
818   // Okay, create the alias but do not insert it into the module yet.
819   std::unique_ptr<GlobalIndirectSymbol> GA;
820   if (IsAlias)
821     GA.reset(GlobalAlias::create(Ty, AddrSpace,
822                                  (GlobalValue::LinkageTypes)Linkage, Name,
823                                  Aliasee, /*Parent*/ nullptr));
824   else
825     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
826                                  (GlobalValue::LinkageTypes)Linkage, Name,
827                                  Aliasee, /*Parent*/ nullptr));
828   GA->setThreadLocalMode(TLM);
829   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
830   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
831   GA->setUnnamedAddr(UnnamedAddr);
832   maybeSetDSOLocal(DSOLocal, *GA);
833 
834   if (Name.empty())
835     NumberedVals.push_back(GA.get());
836 
837   if (GVal) {
838     // Verify that types agree.
839     if (GVal->getType() != GA->getType())
840       return Error(
841           ExplicitTypeLoc,
842           "forward reference and definition of alias have different types");
843 
844     // If they agree, just RAUW the old value with the alias and remove the
845     // forward ref info.
846     GVal->replaceAllUsesWith(GA.get());
847     GVal->eraseFromParent();
848   }
849 
850   // Insert into the module, we know its name won't collide now.
851   if (IsAlias)
852     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
853   else
854     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
855   assert(GA->getName() == Name && "Should not be a name conflict!");
856 
857   // The module owns this now
858   GA.release();
859 
860   return false;
861 }
862 
863 /// ParseGlobal
864 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
865 ///       OptionalVisibility OptionalDLLStorageClass
866 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
867 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
868 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
869 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
870 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
871 ///       Const OptionalAttrs
872 ///
873 /// Everything up to and including OptionalUnnamedAddr has been parsed
874 /// already.
875 ///
876 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
877                            unsigned Linkage, bool HasLinkage,
878                            unsigned Visibility, unsigned DLLStorageClass,
879                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
880                            GlobalVariable::UnnamedAddr UnnamedAddr) {
881   if (!isValidVisibilityForLinkage(Visibility, Linkage))
882     return Error(NameLoc,
883                  "symbol with local linkage must have default visibility");
884 
885   unsigned AddrSpace;
886   bool IsConstant, IsExternallyInitialized;
887   LocTy IsExternallyInitializedLoc;
888   LocTy TyLoc;
889 
890   Type *Ty = nullptr;
891   if (ParseOptionalAddrSpace(AddrSpace) ||
892       ParseOptionalToken(lltok::kw_externally_initialized,
893                          IsExternallyInitialized,
894                          &IsExternallyInitializedLoc) ||
895       ParseGlobalType(IsConstant) ||
896       ParseType(Ty, TyLoc))
897     return true;
898 
899   // If the linkage is specified and is external, then no initializer is
900   // present.
901   Constant *Init = nullptr;
902   if (!HasLinkage ||
903       !GlobalValue::isValidDeclarationLinkage(
904           (GlobalValue::LinkageTypes)Linkage)) {
905     if (ParseGlobalValue(Ty, Init))
906       return true;
907   }
908 
909   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
910     return Error(TyLoc, "invalid type for global variable");
911 
912   GlobalValue *GVal = nullptr;
913 
914   // See if the global was forward referenced, if so, use the global.
915   if (!Name.empty()) {
916     GVal = M->getNamedValue(Name);
917     if (GVal) {
918       if (!ForwardRefVals.erase(Name))
919         return Error(NameLoc, "redefinition of global '@" + Name + "'");
920     }
921   } else {
922     auto I = ForwardRefValIDs.find(NumberedVals.size());
923     if (I != ForwardRefValIDs.end()) {
924       GVal = I->second.first;
925       ForwardRefValIDs.erase(I);
926     }
927   }
928 
929   GlobalVariable *GV;
930   if (!GVal) {
931     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
932                             Name, nullptr, GlobalVariable::NotThreadLocal,
933                             AddrSpace);
934   } else {
935     if (GVal->getValueType() != Ty)
936       return Error(TyLoc,
937             "forward reference and definition of global have different types");
938 
939     GV = cast<GlobalVariable>(GVal);
940 
941     // Move the forward-reference to the correct spot in the module.
942     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
943   }
944 
945   if (Name.empty())
946     NumberedVals.push_back(GV);
947 
948   // Set the parsed properties on the global.
949   if (Init)
950     GV->setInitializer(Init);
951   GV->setConstant(IsConstant);
952   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
953   maybeSetDSOLocal(DSOLocal, *GV);
954   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
955   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
956   GV->setExternallyInitialized(IsExternallyInitialized);
957   GV->setThreadLocalMode(TLM);
958   GV->setUnnamedAddr(UnnamedAddr);
959 
960   // Parse attributes on the global.
961   while (Lex.getKind() == lltok::comma) {
962     Lex.Lex();
963 
964     if (Lex.getKind() == lltok::kw_section) {
965       Lex.Lex();
966       GV->setSection(Lex.getStrVal());
967       if (ParseToken(lltok::StringConstant, "expected global section string"))
968         return true;
969     } else if (Lex.getKind() == lltok::kw_align) {
970       unsigned Alignment;
971       if (ParseOptionalAlignment(Alignment)) return true;
972       GV->setAlignment(Alignment);
973     } else if (Lex.getKind() == lltok::MetadataVar) {
974       if (ParseGlobalObjectMetadataAttachment(*GV))
975         return true;
976     } else {
977       Comdat *C;
978       if (parseOptionalComdat(Name, C))
979         return true;
980       if (C)
981         GV->setComdat(C);
982       else
983         return TokError("unknown global variable property!");
984     }
985   }
986 
987   AttrBuilder Attrs;
988   LocTy BuiltinLoc;
989   std::vector<unsigned> FwdRefAttrGrps;
990   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
991     return true;
992   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
993     GV->setAttributes(AttributeSet::get(Context, Attrs));
994     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
995   }
996 
997   return false;
998 }
999 
1000 /// ParseUnnamedAttrGrp
1001 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1002 bool LLParser::ParseUnnamedAttrGrp() {
1003   assert(Lex.getKind() == lltok::kw_attributes);
1004   LocTy AttrGrpLoc = Lex.getLoc();
1005   Lex.Lex();
1006 
1007   if (Lex.getKind() != lltok::AttrGrpID)
1008     return TokError("expected attribute group id");
1009 
1010   unsigned VarID = Lex.getUIntVal();
1011   std::vector<unsigned> unused;
1012   LocTy BuiltinLoc;
1013   Lex.Lex();
1014 
1015   if (ParseToken(lltok::equal, "expected '=' here") ||
1016       ParseToken(lltok::lbrace, "expected '{' here") ||
1017       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1018                                  BuiltinLoc) ||
1019       ParseToken(lltok::rbrace, "expected end of attribute group"))
1020     return true;
1021 
1022   if (!NumberedAttrBuilders[VarID].hasAttributes())
1023     return Error(AttrGrpLoc, "attribute group has no attributes");
1024 
1025   return false;
1026 }
1027 
1028 /// ParseFnAttributeValuePairs
1029 ///   ::= <attr> | <attr> '=' <value>
1030 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1031                                           std::vector<unsigned> &FwdRefAttrGrps,
1032                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1033   bool HaveError = false;
1034 
1035   B.clear();
1036 
1037   while (true) {
1038     lltok::Kind Token = Lex.getKind();
1039     if (Token == lltok::kw_builtin)
1040       BuiltinLoc = Lex.getLoc();
1041     switch (Token) {
1042     default:
1043       if (!inAttrGrp) return HaveError;
1044       return Error(Lex.getLoc(), "unterminated attribute group");
1045     case lltok::rbrace:
1046       // Finished.
1047       return false;
1048 
1049     case lltok::AttrGrpID: {
1050       // Allow a function to reference an attribute group:
1051       //
1052       //   define void @foo() #1 { ... }
1053       if (inAttrGrp)
1054         HaveError |=
1055           Error(Lex.getLoc(),
1056               "cannot have an attribute group reference in an attribute group");
1057 
1058       unsigned AttrGrpNum = Lex.getUIntVal();
1059       if (inAttrGrp) break;
1060 
1061       // Save the reference to the attribute group. We'll fill it in later.
1062       FwdRefAttrGrps.push_back(AttrGrpNum);
1063       break;
1064     }
1065     // Target-dependent attributes:
1066     case lltok::StringConstant: {
1067       if (ParseStringAttribute(B))
1068         return true;
1069       continue;
1070     }
1071 
1072     // Target-independent attributes:
1073     case lltok::kw_align: {
1074       // As a hack, we allow function alignment to be initially parsed as an
1075       // attribute on a function declaration/definition or added to an attribute
1076       // group and later moved to the alignment field.
1077       unsigned Alignment;
1078       if (inAttrGrp) {
1079         Lex.Lex();
1080         if (ParseToken(lltok::equal, "expected '=' here") ||
1081             ParseUInt32(Alignment))
1082           return true;
1083       } else {
1084         if (ParseOptionalAlignment(Alignment))
1085           return true;
1086       }
1087       B.addAlignmentAttr(Alignment);
1088       continue;
1089     }
1090     case lltok::kw_alignstack: {
1091       unsigned Alignment;
1092       if (inAttrGrp) {
1093         Lex.Lex();
1094         if (ParseToken(lltok::equal, "expected '=' here") ||
1095             ParseUInt32(Alignment))
1096           return true;
1097       } else {
1098         if (ParseOptionalStackAlignment(Alignment))
1099           return true;
1100       }
1101       B.addStackAlignmentAttr(Alignment);
1102       continue;
1103     }
1104     case lltok::kw_allocsize: {
1105       unsigned ElemSizeArg;
1106       Optional<unsigned> NumElemsArg;
1107       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1108       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1109         return true;
1110       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1111       continue;
1112     }
1113     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1114     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1115     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1116     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1117     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1118     case lltok::kw_inaccessiblememonly:
1119       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1120     case lltok::kw_inaccessiblemem_or_argmemonly:
1121       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1122     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1123     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1124     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1125     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1126     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1127     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1128     case lltok::kw_noimplicitfloat:
1129       B.addAttribute(Attribute::NoImplicitFloat); break;
1130     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1131     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1132     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1133     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1134     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1135     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1136     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1137     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1138     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1139     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1140     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1141     case lltok::kw_returns_twice:
1142       B.addAttribute(Attribute::ReturnsTwice); break;
1143     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1144     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1145     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1146     case lltok::kw_sspstrong:
1147       B.addAttribute(Attribute::StackProtectStrong); break;
1148     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1149     case lltok::kw_sanitize_address:
1150       B.addAttribute(Attribute::SanitizeAddress); break;
1151     case lltok::kw_sanitize_hwaddress:
1152       B.addAttribute(Attribute::SanitizeHWAddress); break;
1153     case lltok::kw_sanitize_thread:
1154       B.addAttribute(Attribute::SanitizeThread); break;
1155     case lltok::kw_sanitize_memory:
1156       B.addAttribute(Attribute::SanitizeMemory); break;
1157     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1158     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1159     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1160 
1161     // Error handling.
1162     case lltok::kw_inreg:
1163     case lltok::kw_signext:
1164     case lltok::kw_zeroext:
1165       HaveError |=
1166         Error(Lex.getLoc(),
1167               "invalid use of attribute on a function");
1168       break;
1169     case lltok::kw_byval:
1170     case lltok::kw_dereferenceable:
1171     case lltok::kw_dereferenceable_or_null:
1172     case lltok::kw_inalloca:
1173     case lltok::kw_nest:
1174     case lltok::kw_noalias:
1175     case lltok::kw_nocapture:
1176     case lltok::kw_nonnull:
1177     case lltok::kw_returned:
1178     case lltok::kw_sret:
1179     case lltok::kw_swifterror:
1180     case lltok::kw_swiftself:
1181       HaveError |=
1182         Error(Lex.getLoc(),
1183               "invalid use of parameter-only attribute on a function");
1184       break;
1185     }
1186 
1187     Lex.Lex();
1188   }
1189 }
1190 
1191 //===----------------------------------------------------------------------===//
1192 // GlobalValue Reference/Resolution Routines.
1193 //===----------------------------------------------------------------------===//
1194 
1195 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1196                                               const std::string &Name) {
1197   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1198     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1199   else
1200     return new GlobalVariable(*M, PTy->getElementType(), false,
1201                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1202                               nullptr, GlobalVariable::NotThreadLocal,
1203                               PTy->getAddressSpace());
1204 }
1205 
1206 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1207 /// forward reference record if needed.  This can return null if the value
1208 /// exists but does not have the right type.
1209 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1210                                     LocTy Loc) {
1211   PointerType *PTy = dyn_cast<PointerType>(Ty);
1212   if (!PTy) {
1213     Error(Loc, "global variable reference must have pointer type");
1214     return nullptr;
1215   }
1216 
1217   // Look this name up in the normal function symbol table.
1218   GlobalValue *Val =
1219     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1220 
1221   // If this is a forward reference for the value, see if we already created a
1222   // forward ref record.
1223   if (!Val) {
1224     auto I = ForwardRefVals.find(Name);
1225     if (I != ForwardRefVals.end())
1226       Val = I->second.first;
1227   }
1228 
1229   // If we have the value in the symbol table or fwd-ref table, return it.
1230   if (Val) {
1231     if (Val->getType() == Ty) return Val;
1232     Error(Loc, "'@" + Name + "' defined with type '" +
1233           getTypeString(Val->getType()) + "'");
1234     return nullptr;
1235   }
1236 
1237   // Otherwise, create a new forward reference for this value and remember it.
1238   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1239   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1240   return FwdVal;
1241 }
1242 
1243 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1244   PointerType *PTy = dyn_cast<PointerType>(Ty);
1245   if (!PTy) {
1246     Error(Loc, "global variable reference must have pointer type");
1247     return nullptr;
1248   }
1249 
1250   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1251 
1252   // If this is a forward reference for the value, see if we already created a
1253   // forward ref record.
1254   if (!Val) {
1255     auto I = ForwardRefValIDs.find(ID);
1256     if (I != ForwardRefValIDs.end())
1257       Val = I->second.first;
1258   }
1259 
1260   // If we have the value in the symbol table or fwd-ref table, return it.
1261   if (Val) {
1262     if (Val->getType() == Ty) return Val;
1263     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1264           getTypeString(Val->getType()) + "'");
1265     return nullptr;
1266   }
1267 
1268   // Otherwise, create a new forward reference for this value and remember it.
1269   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1270   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1271   return FwdVal;
1272 }
1273 
1274 //===----------------------------------------------------------------------===//
1275 // Comdat Reference/Resolution Routines.
1276 //===----------------------------------------------------------------------===//
1277 
1278 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1279   // Look this name up in the comdat symbol table.
1280   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1281   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1282   if (I != ComdatSymTab.end())
1283     return &I->second;
1284 
1285   // Otherwise, create a new forward reference for this value and remember it.
1286   Comdat *C = M->getOrInsertComdat(Name);
1287   ForwardRefComdats[Name] = Loc;
1288   return C;
1289 }
1290 
1291 //===----------------------------------------------------------------------===//
1292 // Helper Routines.
1293 //===----------------------------------------------------------------------===//
1294 
1295 /// ParseToken - If the current token has the specified kind, eat it and return
1296 /// success.  Otherwise, emit the specified error and return failure.
1297 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1298   if (Lex.getKind() != T)
1299     return TokError(ErrMsg);
1300   Lex.Lex();
1301   return false;
1302 }
1303 
1304 /// ParseStringConstant
1305 ///   ::= StringConstant
1306 bool LLParser::ParseStringConstant(std::string &Result) {
1307   if (Lex.getKind() != lltok::StringConstant)
1308     return TokError("expected string constant");
1309   Result = Lex.getStrVal();
1310   Lex.Lex();
1311   return false;
1312 }
1313 
1314 /// ParseUInt32
1315 ///   ::= uint32
1316 bool LLParser::ParseUInt32(uint32_t &Val) {
1317   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1318     return TokError("expected integer");
1319   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1320   if (Val64 != unsigned(Val64))
1321     return TokError("expected 32-bit integer (too large)");
1322   Val = Val64;
1323   Lex.Lex();
1324   return false;
1325 }
1326 
1327 /// ParseUInt64
1328 ///   ::= uint64
1329 bool LLParser::ParseUInt64(uint64_t &Val) {
1330   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1331     return TokError("expected integer");
1332   Val = Lex.getAPSIntVal().getLimitedValue();
1333   Lex.Lex();
1334   return false;
1335 }
1336 
1337 /// ParseTLSModel
1338 ///   := 'localdynamic'
1339 ///   := 'initialexec'
1340 ///   := 'localexec'
1341 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1342   switch (Lex.getKind()) {
1343     default:
1344       return TokError("expected localdynamic, initialexec or localexec");
1345     case lltok::kw_localdynamic:
1346       TLM = GlobalVariable::LocalDynamicTLSModel;
1347       break;
1348     case lltok::kw_initialexec:
1349       TLM = GlobalVariable::InitialExecTLSModel;
1350       break;
1351     case lltok::kw_localexec:
1352       TLM = GlobalVariable::LocalExecTLSModel;
1353       break;
1354   }
1355 
1356   Lex.Lex();
1357   return false;
1358 }
1359 
1360 /// ParseOptionalThreadLocal
1361 ///   := /*empty*/
1362 ///   := 'thread_local'
1363 ///   := 'thread_local' '(' tlsmodel ')'
1364 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1365   TLM = GlobalVariable::NotThreadLocal;
1366   if (!EatIfPresent(lltok::kw_thread_local))
1367     return false;
1368 
1369   TLM = GlobalVariable::GeneralDynamicTLSModel;
1370   if (Lex.getKind() == lltok::lparen) {
1371     Lex.Lex();
1372     return ParseTLSModel(TLM) ||
1373       ParseToken(lltok::rparen, "expected ')' after thread local model");
1374   }
1375   return false;
1376 }
1377 
1378 /// ParseOptionalAddrSpace
1379 ///   := /*empty*/
1380 ///   := 'addrspace' '(' uint32 ')'
1381 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1382   AddrSpace = 0;
1383   if (!EatIfPresent(lltok::kw_addrspace))
1384     return false;
1385   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1386          ParseUInt32(AddrSpace) ||
1387          ParseToken(lltok::rparen, "expected ')' in address space");
1388 }
1389 
1390 /// ParseStringAttribute
1391 ///   := StringConstant
1392 ///   := StringConstant '=' StringConstant
1393 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1394   std::string Attr = Lex.getStrVal();
1395   Lex.Lex();
1396   std::string Val;
1397   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1398     return true;
1399   B.addAttribute(Attr, Val);
1400   return false;
1401 }
1402 
1403 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1404 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1405   bool HaveError = false;
1406 
1407   B.clear();
1408 
1409   while (true) {
1410     lltok::Kind Token = Lex.getKind();
1411     switch (Token) {
1412     default:  // End of attributes.
1413       return HaveError;
1414     case lltok::StringConstant: {
1415       if (ParseStringAttribute(B))
1416         return true;
1417       continue;
1418     }
1419     case lltok::kw_align: {
1420       unsigned Alignment;
1421       if (ParseOptionalAlignment(Alignment))
1422         return true;
1423       B.addAlignmentAttr(Alignment);
1424       continue;
1425     }
1426     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1427     case lltok::kw_dereferenceable: {
1428       uint64_t Bytes;
1429       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1430         return true;
1431       B.addDereferenceableAttr(Bytes);
1432       continue;
1433     }
1434     case lltok::kw_dereferenceable_or_null: {
1435       uint64_t Bytes;
1436       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1437         return true;
1438       B.addDereferenceableOrNullAttr(Bytes);
1439       continue;
1440     }
1441     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1442     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1443     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1444     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1445     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1446     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1447     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1448     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1449     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1450     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1451     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1452     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1453     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1454     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1455     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1456 
1457     case lltok::kw_alignstack:
1458     case lltok::kw_alwaysinline:
1459     case lltok::kw_argmemonly:
1460     case lltok::kw_builtin:
1461     case lltok::kw_inlinehint:
1462     case lltok::kw_jumptable:
1463     case lltok::kw_minsize:
1464     case lltok::kw_naked:
1465     case lltok::kw_nobuiltin:
1466     case lltok::kw_noduplicate:
1467     case lltok::kw_noimplicitfloat:
1468     case lltok::kw_noinline:
1469     case lltok::kw_nonlazybind:
1470     case lltok::kw_noredzone:
1471     case lltok::kw_noreturn:
1472     case lltok::kw_nocf_check:
1473     case lltok::kw_nounwind:
1474     case lltok::kw_optnone:
1475     case lltok::kw_optsize:
1476     case lltok::kw_returns_twice:
1477     case lltok::kw_sanitize_address:
1478     case lltok::kw_sanitize_hwaddress:
1479     case lltok::kw_sanitize_memory:
1480     case lltok::kw_sanitize_thread:
1481     case lltok::kw_ssp:
1482     case lltok::kw_sspreq:
1483     case lltok::kw_sspstrong:
1484     case lltok::kw_safestack:
1485     case lltok::kw_strictfp:
1486     case lltok::kw_uwtable:
1487       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1488       break;
1489     }
1490 
1491     Lex.Lex();
1492   }
1493 }
1494 
1495 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1496 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1497   bool HaveError = false;
1498 
1499   B.clear();
1500 
1501   while (true) {
1502     lltok::Kind Token = Lex.getKind();
1503     switch (Token) {
1504     default:  // End of attributes.
1505       return HaveError;
1506     case lltok::StringConstant: {
1507       if (ParseStringAttribute(B))
1508         return true;
1509       continue;
1510     }
1511     case lltok::kw_dereferenceable: {
1512       uint64_t Bytes;
1513       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1514         return true;
1515       B.addDereferenceableAttr(Bytes);
1516       continue;
1517     }
1518     case lltok::kw_dereferenceable_or_null: {
1519       uint64_t Bytes;
1520       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1521         return true;
1522       B.addDereferenceableOrNullAttr(Bytes);
1523       continue;
1524     }
1525     case lltok::kw_align: {
1526       unsigned Alignment;
1527       if (ParseOptionalAlignment(Alignment))
1528         return true;
1529       B.addAlignmentAttr(Alignment);
1530       continue;
1531     }
1532     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1533     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1534     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1535     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1536     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1537 
1538     // Error handling.
1539     case lltok::kw_byval:
1540     case lltok::kw_inalloca:
1541     case lltok::kw_nest:
1542     case lltok::kw_nocapture:
1543     case lltok::kw_returned:
1544     case lltok::kw_sret:
1545     case lltok::kw_swifterror:
1546     case lltok::kw_swiftself:
1547       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1548       break;
1549 
1550     case lltok::kw_alignstack:
1551     case lltok::kw_alwaysinline:
1552     case lltok::kw_argmemonly:
1553     case lltok::kw_builtin:
1554     case lltok::kw_cold:
1555     case lltok::kw_inlinehint:
1556     case lltok::kw_jumptable:
1557     case lltok::kw_minsize:
1558     case lltok::kw_naked:
1559     case lltok::kw_nobuiltin:
1560     case lltok::kw_noduplicate:
1561     case lltok::kw_noimplicitfloat:
1562     case lltok::kw_noinline:
1563     case lltok::kw_nonlazybind:
1564     case lltok::kw_noredzone:
1565     case lltok::kw_noreturn:
1566     case lltok::kw_nocf_check:
1567     case lltok::kw_nounwind:
1568     case lltok::kw_optnone:
1569     case lltok::kw_optsize:
1570     case lltok::kw_returns_twice:
1571     case lltok::kw_sanitize_address:
1572     case lltok::kw_sanitize_hwaddress:
1573     case lltok::kw_sanitize_memory:
1574     case lltok::kw_sanitize_thread:
1575     case lltok::kw_ssp:
1576     case lltok::kw_sspreq:
1577     case lltok::kw_sspstrong:
1578     case lltok::kw_safestack:
1579     case lltok::kw_strictfp:
1580     case lltok::kw_uwtable:
1581       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1582       break;
1583 
1584     case lltok::kw_readnone:
1585     case lltok::kw_readonly:
1586       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1587     }
1588 
1589     Lex.Lex();
1590   }
1591 }
1592 
1593 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1594   HasLinkage = true;
1595   switch (Kind) {
1596   default:
1597     HasLinkage = false;
1598     return GlobalValue::ExternalLinkage;
1599   case lltok::kw_private:
1600     return GlobalValue::PrivateLinkage;
1601   case lltok::kw_internal:
1602     return GlobalValue::InternalLinkage;
1603   case lltok::kw_weak:
1604     return GlobalValue::WeakAnyLinkage;
1605   case lltok::kw_weak_odr:
1606     return GlobalValue::WeakODRLinkage;
1607   case lltok::kw_linkonce:
1608     return GlobalValue::LinkOnceAnyLinkage;
1609   case lltok::kw_linkonce_odr:
1610     return GlobalValue::LinkOnceODRLinkage;
1611   case lltok::kw_available_externally:
1612     return GlobalValue::AvailableExternallyLinkage;
1613   case lltok::kw_appending:
1614     return GlobalValue::AppendingLinkage;
1615   case lltok::kw_common:
1616     return GlobalValue::CommonLinkage;
1617   case lltok::kw_extern_weak:
1618     return GlobalValue::ExternalWeakLinkage;
1619   case lltok::kw_external:
1620     return GlobalValue::ExternalLinkage;
1621   }
1622 }
1623 
1624 /// ParseOptionalLinkage
1625 ///   ::= /*empty*/
1626 ///   ::= 'private'
1627 ///   ::= 'internal'
1628 ///   ::= 'weak'
1629 ///   ::= 'weak_odr'
1630 ///   ::= 'linkonce'
1631 ///   ::= 'linkonce_odr'
1632 ///   ::= 'available_externally'
1633 ///   ::= 'appending'
1634 ///   ::= 'common'
1635 ///   ::= 'extern_weak'
1636 ///   ::= 'external'
1637 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1638                                     unsigned &Visibility,
1639                                     unsigned &DLLStorageClass,
1640                                     bool &DSOLocal) {
1641   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1642   if (HasLinkage)
1643     Lex.Lex();
1644   ParseOptionalDSOLocal(DSOLocal);
1645   ParseOptionalVisibility(Visibility);
1646   ParseOptionalDLLStorageClass(DLLStorageClass);
1647 
1648   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1649     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1650   }
1651 
1652   return false;
1653 }
1654 
1655 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1656   switch (Lex.getKind()) {
1657   default:
1658     DSOLocal = false;
1659     break;
1660   case lltok::kw_dso_local:
1661     DSOLocal = true;
1662     Lex.Lex();
1663     break;
1664   case lltok::kw_dso_preemptable:
1665     DSOLocal = false;
1666     Lex.Lex();
1667     break;
1668   }
1669 }
1670 
1671 /// ParseOptionalVisibility
1672 ///   ::= /*empty*/
1673 ///   ::= 'default'
1674 ///   ::= 'hidden'
1675 ///   ::= 'protected'
1676 ///
1677 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1678   switch (Lex.getKind()) {
1679   default:
1680     Res = GlobalValue::DefaultVisibility;
1681     return;
1682   case lltok::kw_default:
1683     Res = GlobalValue::DefaultVisibility;
1684     break;
1685   case lltok::kw_hidden:
1686     Res = GlobalValue::HiddenVisibility;
1687     break;
1688   case lltok::kw_protected:
1689     Res = GlobalValue::ProtectedVisibility;
1690     break;
1691   }
1692   Lex.Lex();
1693 }
1694 
1695 /// ParseOptionalDLLStorageClass
1696 ///   ::= /*empty*/
1697 ///   ::= 'dllimport'
1698 ///   ::= 'dllexport'
1699 ///
1700 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1701   switch (Lex.getKind()) {
1702   default:
1703     Res = GlobalValue::DefaultStorageClass;
1704     return;
1705   case lltok::kw_dllimport:
1706     Res = GlobalValue::DLLImportStorageClass;
1707     break;
1708   case lltok::kw_dllexport:
1709     Res = GlobalValue::DLLExportStorageClass;
1710     break;
1711   }
1712   Lex.Lex();
1713 }
1714 
1715 /// ParseOptionalCallingConv
1716 ///   ::= /*empty*/
1717 ///   ::= 'ccc'
1718 ///   ::= 'fastcc'
1719 ///   ::= 'intel_ocl_bicc'
1720 ///   ::= 'coldcc'
1721 ///   ::= 'x86_stdcallcc'
1722 ///   ::= 'x86_fastcallcc'
1723 ///   ::= 'x86_thiscallcc'
1724 ///   ::= 'x86_vectorcallcc'
1725 ///   ::= 'arm_apcscc'
1726 ///   ::= 'arm_aapcscc'
1727 ///   ::= 'arm_aapcs_vfpcc'
1728 ///   ::= 'msp430_intrcc'
1729 ///   ::= 'avr_intrcc'
1730 ///   ::= 'avr_signalcc'
1731 ///   ::= 'ptx_kernel'
1732 ///   ::= 'ptx_device'
1733 ///   ::= 'spir_func'
1734 ///   ::= 'spir_kernel'
1735 ///   ::= 'x86_64_sysvcc'
1736 ///   ::= 'win64cc'
1737 ///   ::= 'webkit_jscc'
1738 ///   ::= 'anyregcc'
1739 ///   ::= 'preserve_mostcc'
1740 ///   ::= 'preserve_allcc'
1741 ///   ::= 'ghccc'
1742 ///   ::= 'swiftcc'
1743 ///   ::= 'x86_intrcc'
1744 ///   ::= 'hhvmcc'
1745 ///   ::= 'hhvm_ccc'
1746 ///   ::= 'cxx_fast_tlscc'
1747 ///   ::= 'amdgpu_vs'
1748 ///   ::= 'amdgpu_ls'
1749 ///   ::= 'amdgpu_hs'
1750 ///   ::= 'amdgpu_es'
1751 ///   ::= 'amdgpu_gs'
1752 ///   ::= 'amdgpu_ps'
1753 ///   ::= 'amdgpu_cs'
1754 ///   ::= 'amdgpu_kernel'
1755 ///   ::= 'cc' UINT
1756 ///
1757 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1758   switch (Lex.getKind()) {
1759   default:                       CC = CallingConv::C; return false;
1760   case lltok::kw_ccc:            CC = CallingConv::C; break;
1761   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1762   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1763   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1764   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1765   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1766   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1767   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1768   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1769   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1770   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1771   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1772   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1773   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1774   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1775   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1776   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1777   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1778   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1779   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1780   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1781   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1782   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1783   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1784   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1785   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1786   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1787   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1788   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1789   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1790   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1791   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1792   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1793   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1794   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1795   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1796   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1797   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1798   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1799   case lltok::kw_cc: {
1800       Lex.Lex();
1801       return ParseUInt32(CC);
1802     }
1803   }
1804 
1805   Lex.Lex();
1806   return false;
1807 }
1808 
1809 /// ParseMetadataAttachment
1810 ///   ::= !dbg !42
1811 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1812   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1813 
1814   std::string Name = Lex.getStrVal();
1815   Kind = M->getMDKindID(Name);
1816   Lex.Lex();
1817 
1818   return ParseMDNode(MD);
1819 }
1820 
1821 /// ParseInstructionMetadata
1822 ///   ::= !dbg !42 (',' !dbg !57)*
1823 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1824   do {
1825     if (Lex.getKind() != lltok::MetadataVar)
1826       return TokError("expected metadata after comma");
1827 
1828     unsigned MDK;
1829     MDNode *N;
1830     if (ParseMetadataAttachment(MDK, N))
1831       return true;
1832 
1833     Inst.setMetadata(MDK, N);
1834     if (MDK == LLVMContext::MD_tbaa)
1835       InstsWithTBAATag.push_back(&Inst);
1836 
1837     // If this is the end of the list, we're done.
1838   } while (EatIfPresent(lltok::comma));
1839   return false;
1840 }
1841 
1842 /// ParseGlobalObjectMetadataAttachment
1843 ///   ::= !dbg !57
1844 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1845   unsigned MDK;
1846   MDNode *N;
1847   if (ParseMetadataAttachment(MDK, N))
1848     return true;
1849 
1850   GO.addMetadata(MDK, *N);
1851   return false;
1852 }
1853 
1854 /// ParseOptionalFunctionMetadata
1855 ///   ::= (!dbg !57)*
1856 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1857   while (Lex.getKind() == lltok::MetadataVar)
1858     if (ParseGlobalObjectMetadataAttachment(F))
1859       return true;
1860   return false;
1861 }
1862 
1863 /// ParseOptionalAlignment
1864 ///   ::= /* empty */
1865 ///   ::= 'align' 4
1866 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1867   Alignment = 0;
1868   if (!EatIfPresent(lltok::kw_align))
1869     return false;
1870   LocTy AlignLoc = Lex.getLoc();
1871   if (ParseUInt32(Alignment)) return true;
1872   if (!isPowerOf2_32(Alignment))
1873     return Error(AlignLoc, "alignment is not a power of two");
1874   if (Alignment > Value::MaximumAlignment)
1875     return Error(AlignLoc, "huge alignments are not supported yet");
1876   return false;
1877 }
1878 
1879 /// ParseOptionalDerefAttrBytes
1880 ///   ::= /* empty */
1881 ///   ::= AttrKind '(' 4 ')'
1882 ///
1883 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1884 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1885                                            uint64_t &Bytes) {
1886   assert((AttrKind == lltok::kw_dereferenceable ||
1887           AttrKind == lltok::kw_dereferenceable_or_null) &&
1888          "contract!");
1889 
1890   Bytes = 0;
1891   if (!EatIfPresent(AttrKind))
1892     return false;
1893   LocTy ParenLoc = Lex.getLoc();
1894   if (!EatIfPresent(lltok::lparen))
1895     return Error(ParenLoc, "expected '('");
1896   LocTy DerefLoc = Lex.getLoc();
1897   if (ParseUInt64(Bytes)) return true;
1898   ParenLoc = Lex.getLoc();
1899   if (!EatIfPresent(lltok::rparen))
1900     return Error(ParenLoc, "expected ')'");
1901   if (!Bytes)
1902     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1903   return false;
1904 }
1905 
1906 /// ParseOptionalCommaAlign
1907 ///   ::=
1908 ///   ::= ',' align 4
1909 ///
1910 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1911 /// end.
1912 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1913                                        bool &AteExtraComma) {
1914   AteExtraComma = false;
1915   while (EatIfPresent(lltok::comma)) {
1916     // Metadata at the end is an early exit.
1917     if (Lex.getKind() == lltok::MetadataVar) {
1918       AteExtraComma = true;
1919       return false;
1920     }
1921 
1922     if (Lex.getKind() != lltok::kw_align)
1923       return Error(Lex.getLoc(), "expected metadata or 'align'");
1924 
1925     if (ParseOptionalAlignment(Alignment)) return true;
1926   }
1927 
1928   return false;
1929 }
1930 
1931 /// ParseOptionalCommaAddrSpace
1932 ///   ::=
1933 ///   ::= ',' addrspace(1)
1934 ///
1935 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1936 /// end.
1937 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
1938                                            LocTy &Loc,
1939                                            bool &AteExtraComma) {
1940   AteExtraComma = false;
1941   while (EatIfPresent(lltok::comma)) {
1942     // Metadata at the end is an early exit.
1943     if (Lex.getKind() == lltok::MetadataVar) {
1944       AteExtraComma = true;
1945       return false;
1946     }
1947 
1948     Loc = Lex.getLoc();
1949     if (Lex.getKind() != lltok::kw_addrspace)
1950       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
1951 
1952     if (ParseOptionalAddrSpace(AddrSpace))
1953       return true;
1954   }
1955 
1956   return false;
1957 }
1958 
1959 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
1960                                        Optional<unsigned> &HowManyArg) {
1961   Lex.Lex();
1962 
1963   auto StartParen = Lex.getLoc();
1964   if (!EatIfPresent(lltok::lparen))
1965     return Error(StartParen, "expected '('");
1966 
1967   if (ParseUInt32(BaseSizeArg))
1968     return true;
1969 
1970   if (EatIfPresent(lltok::comma)) {
1971     auto HowManyAt = Lex.getLoc();
1972     unsigned HowMany;
1973     if (ParseUInt32(HowMany))
1974       return true;
1975     if (HowMany == BaseSizeArg)
1976       return Error(HowManyAt,
1977                    "'allocsize' indices can't refer to the same parameter");
1978     HowManyArg = HowMany;
1979   } else
1980     HowManyArg = None;
1981 
1982   auto EndParen = Lex.getLoc();
1983   if (!EatIfPresent(lltok::rparen))
1984     return Error(EndParen, "expected ')'");
1985   return false;
1986 }
1987 
1988 /// ParseScopeAndOrdering
1989 ///   if isAtomic: ::= SyncScope? AtomicOrdering
1990 ///   else: ::=
1991 ///
1992 /// This sets Scope and Ordering to the parsed values.
1993 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
1994                                      AtomicOrdering &Ordering) {
1995   if (!isAtomic)
1996     return false;
1997 
1998   return ParseScope(SSID) || ParseOrdering(Ordering);
1999 }
2000 
2001 /// ParseScope
2002 ///   ::= syncscope("singlethread" | "<target scope>")?
2003 ///
2004 /// This sets synchronization scope ID to the ID of the parsed value.
2005 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2006   SSID = SyncScope::System;
2007   if (EatIfPresent(lltok::kw_syncscope)) {
2008     auto StartParenAt = Lex.getLoc();
2009     if (!EatIfPresent(lltok::lparen))
2010       return Error(StartParenAt, "Expected '(' in syncscope");
2011 
2012     std::string SSN;
2013     auto SSNAt = Lex.getLoc();
2014     if (ParseStringConstant(SSN))
2015       return Error(SSNAt, "Expected synchronization scope name");
2016 
2017     auto EndParenAt = Lex.getLoc();
2018     if (!EatIfPresent(lltok::rparen))
2019       return Error(EndParenAt, "Expected ')' in syncscope");
2020 
2021     SSID = Context.getOrInsertSyncScopeID(SSN);
2022   }
2023 
2024   return false;
2025 }
2026 
2027 /// ParseOrdering
2028 ///   ::= AtomicOrdering
2029 ///
2030 /// This sets Ordering to the parsed value.
2031 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2032   switch (Lex.getKind()) {
2033   default: return TokError("Expected ordering on atomic instruction");
2034   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2035   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2036   // Not specified yet:
2037   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2038   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2039   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2040   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2041   case lltok::kw_seq_cst:
2042     Ordering = AtomicOrdering::SequentiallyConsistent;
2043     break;
2044   }
2045   Lex.Lex();
2046   return false;
2047 }
2048 
2049 /// ParseOptionalStackAlignment
2050 ///   ::= /* empty */
2051 ///   ::= 'alignstack' '(' 4 ')'
2052 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2053   Alignment = 0;
2054   if (!EatIfPresent(lltok::kw_alignstack))
2055     return false;
2056   LocTy ParenLoc = Lex.getLoc();
2057   if (!EatIfPresent(lltok::lparen))
2058     return Error(ParenLoc, "expected '('");
2059   LocTy AlignLoc = Lex.getLoc();
2060   if (ParseUInt32(Alignment)) return true;
2061   ParenLoc = Lex.getLoc();
2062   if (!EatIfPresent(lltok::rparen))
2063     return Error(ParenLoc, "expected ')'");
2064   if (!isPowerOf2_32(Alignment))
2065     return Error(AlignLoc, "stack alignment is not a power of two");
2066   return false;
2067 }
2068 
2069 /// ParseIndexList - This parses the index list for an insert/extractvalue
2070 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2071 /// comma at the end of the line and find that it is followed by metadata.
2072 /// Clients that don't allow metadata can call the version of this function that
2073 /// only takes one argument.
2074 ///
2075 /// ParseIndexList
2076 ///    ::=  (',' uint32)+
2077 ///
2078 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2079                               bool &AteExtraComma) {
2080   AteExtraComma = false;
2081 
2082   if (Lex.getKind() != lltok::comma)
2083     return TokError("expected ',' as start of index list");
2084 
2085   while (EatIfPresent(lltok::comma)) {
2086     if (Lex.getKind() == lltok::MetadataVar) {
2087       if (Indices.empty()) return TokError("expected index");
2088       AteExtraComma = true;
2089       return false;
2090     }
2091     unsigned Idx = 0;
2092     if (ParseUInt32(Idx)) return true;
2093     Indices.push_back(Idx);
2094   }
2095 
2096   return false;
2097 }
2098 
2099 //===----------------------------------------------------------------------===//
2100 // Type Parsing.
2101 //===----------------------------------------------------------------------===//
2102 
2103 /// ParseType - Parse a type.
2104 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2105   SMLoc TypeLoc = Lex.getLoc();
2106   switch (Lex.getKind()) {
2107   default:
2108     return TokError(Msg);
2109   case lltok::Type:
2110     // Type ::= 'float' | 'void' (etc)
2111     Result = Lex.getTyVal();
2112     Lex.Lex();
2113     break;
2114   case lltok::lbrace:
2115     // Type ::= StructType
2116     if (ParseAnonStructType(Result, false))
2117       return true;
2118     break;
2119   case lltok::lsquare:
2120     // Type ::= '[' ... ']'
2121     Lex.Lex(); // eat the lsquare.
2122     if (ParseArrayVectorType(Result, false))
2123       return true;
2124     break;
2125   case lltok::less: // Either vector or packed struct.
2126     // Type ::= '<' ... '>'
2127     Lex.Lex();
2128     if (Lex.getKind() == lltok::lbrace) {
2129       if (ParseAnonStructType(Result, true) ||
2130           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2131         return true;
2132     } else if (ParseArrayVectorType(Result, true))
2133       return true;
2134     break;
2135   case lltok::LocalVar: {
2136     // Type ::= %foo
2137     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2138 
2139     // If the type hasn't been defined yet, create a forward definition and
2140     // remember where that forward def'n was seen (in case it never is defined).
2141     if (!Entry.first) {
2142       Entry.first = StructType::create(Context, Lex.getStrVal());
2143       Entry.second = Lex.getLoc();
2144     }
2145     Result = Entry.first;
2146     Lex.Lex();
2147     break;
2148   }
2149 
2150   case lltok::LocalVarID: {
2151     // Type ::= %4
2152     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2153 
2154     // If the type hasn't been defined yet, create a forward definition and
2155     // remember where that forward def'n was seen (in case it never is defined).
2156     if (!Entry.first) {
2157       Entry.first = StructType::create(Context);
2158       Entry.second = Lex.getLoc();
2159     }
2160     Result = Entry.first;
2161     Lex.Lex();
2162     break;
2163   }
2164   }
2165 
2166   // Parse the type suffixes.
2167   while (true) {
2168     switch (Lex.getKind()) {
2169     // End of type.
2170     default:
2171       if (!AllowVoid && Result->isVoidTy())
2172         return Error(TypeLoc, "void type only allowed for function results");
2173       return false;
2174 
2175     // Type ::= Type '*'
2176     case lltok::star:
2177       if (Result->isLabelTy())
2178         return TokError("basic block pointers are invalid");
2179       if (Result->isVoidTy())
2180         return TokError("pointers to void are invalid - use i8* instead");
2181       if (!PointerType::isValidElementType(Result))
2182         return TokError("pointer to this type is invalid");
2183       Result = PointerType::getUnqual(Result);
2184       Lex.Lex();
2185       break;
2186 
2187     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2188     case lltok::kw_addrspace: {
2189       if (Result->isLabelTy())
2190         return TokError("basic block pointers are invalid");
2191       if (Result->isVoidTy())
2192         return TokError("pointers to void are invalid; use i8* instead");
2193       if (!PointerType::isValidElementType(Result))
2194         return TokError("pointer to this type is invalid");
2195       unsigned AddrSpace;
2196       if (ParseOptionalAddrSpace(AddrSpace) ||
2197           ParseToken(lltok::star, "expected '*' in address space"))
2198         return true;
2199 
2200       Result = PointerType::get(Result, AddrSpace);
2201       break;
2202     }
2203 
2204     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2205     case lltok::lparen:
2206       if (ParseFunctionType(Result))
2207         return true;
2208       break;
2209     }
2210   }
2211 }
2212 
2213 /// ParseParameterList
2214 ///    ::= '(' ')'
2215 ///    ::= '(' Arg (',' Arg)* ')'
2216 ///  Arg
2217 ///    ::= Type OptionalAttributes Value OptionalAttributes
2218 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2219                                   PerFunctionState &PFS, bool IsMustTailCall,
2220                                   bool InVarArgsFunc) {
2221   if (ParseToken(lltok::lparen, "expected '(' in call"))
2222     return true;
2223 
2224   while (Lex.getKind() != lltok::rparen) {
2225     // If this isn't the first argument, we need a comma.
2226     if (!ArgList.empty() &&
2227         ParseToken(lltok::comma, "expected ',' in argument list"))
2228       return true;
2229 
2230     // Parse an ellipsis if this is a musttail call in a variadic function.
2231     if (Lex.getKind() == lltok::dotdotdot) {
2232       const char *Msg = "unexpected ellipsis in argument list for ";
2233       if (!IsMustTailCall)
2234         return TokError(Twine(Msg) + "non-musttail call");
2235       if (!InVarArgsFunc)
2236         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2237       Lex.Lex();  // Lex the '...', it is purely for readability.
2238       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2239     }
2240 
2241     // Parse the argument.
2242     LocTy ArgLoc;
2243     Type *ArgTy = nullptr;
2244     AttrBuilder ArgAttrs;
2245     Value *V;
2246     if (ParseType(ArgTy, ArgLoc))
2247       return true;
2248 
2249     if (ArgTy->isMetadataTy()) {
2250       if (ParseMetadataAsValue(V, PFS))
2251         return true;
2252     } else {
2253       // Otherwise, handle normal operands.
2254       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2255         return true;
2256     }
2257     ArgList.push_back(ParamInfo(
2258         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2259   }
2260 
2261   if (IsMustTailCall && InVarArgsFunc)
2262     return TokError("expected '...' at end of argument list for musttail call "
2263                     "in varargs function");
2264 
2265   Lex.Lex();  // Lex the ')'.
2266   return false;
2267 }
2268 
2269 /// ParseOptionalOperandBundles
2270 ///    ::= /*empty*/
2271 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2272 ///
2273 /// OperandBundle
2274 ///    ::= bundle-tag '(' ')'
2275 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2276 ///
2277 /// bundle-tag ::= String Constant
2278 bool LLParser::ParseOptionalOperandBundles(
2279     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2280   LocTy BeginLoc = Lex.getLoc();
2281   if (!EatIfPresent(lltok::lsquare))
2282     return false;
2283 
2284   while (Lex.getKind() != lltok::rsquare) {
2285     // If this isn't the first operand bundle, we need a comma.
2286     if (!BundleList.empty() &&
2287         ParseToken(lltok::comma, "expected ',' in input list"))
2288       return true;
2289 
2290     std::string Tag;
2291     if (ParseStringConstant(Tag))
2292       return true;
2293 
2294     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2295       return true;
2296 
2297     std::vector<Value *> Inputs;
2298     while (Lex.getKind() != lltok::rparen) {
2299       // If this isn't the first input, we need a comma.
2300       if (!Inputs.empty() &&
2301           ParseToken(lltok::comma, "expected ',' in input list"))
2302         return true;
2303 
2304       Type *Ty = nullptr;
2305       Value *Input = nullptr;
2306       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2307         return true;
2308       Inputs.push_back(Input);
2309     }
2310 
2311     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2312 
2313     Lex.Lex(); // Lex the ')'.
2314   }
2315 
2316   if (BundleList.empty())
2317     return Error(BeginLoc, "operand bundle set must not be empty");
2318 
2319   Lex.Lex(); // Lex the ']'.
2320   return false;
2321 }
2322 
2323 /// ParseArgumentList - Parse the argument list for a function type or function
2324 /// prototype.
2325 ///   ::= '(' ArgTypeListI ')'
2326 /// ArgTypeListI
2327 ///   ::= /*empty*/
2328 ///   ::= '...'
2329 ///   ::= ArgTypeList ',' '...'
2330 ///   ::= ArgType (',' ArgType)*
2331 ///
2332 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2333                                  bool &isVarArg){
2334   isVarArg = false;
2335   assert(Lex.getKind() == lltok::lparen);
2336   Lex.Lex(); // eat the (.
2337 
2338   if (Lex.getKind() == lltok::rparen) {
2339     // empty
2340   } else if (Lex.getKind() == lltok::dotdotdot) {
2341     isVarArg = true;
2342     Lex.Lex();
2343   } else {
2344     LocTy TypeLoc = Lex.getLoc();
2345     Type *ArgTy = nullptr;
2346     AttrBuilder Attrs;
2347     std::string Name;
2348 
2349     if (ParseType(ArgTy) ||
2350         ParseOptionalParamAttrs(Attrs)) return true;
2351 
2352     if (ArgTy->isVoidTy())
2353       return Error(TypeLoc, "argument can not have void type");
2354 
2355     if (Lex.getKind() == lltok::LocalVar) {
2356       Name = Lex.getStrVal();
2357       Lex.Lex();
2358     }
2359 
2360     if (!FunctionType::isValidArgumentType(ArgTy))
2361       return Error(TypeLoc, "invalid type for function argument");
2362 
2363     ArgList.emplace_back(TypeLoc, ArgTy,
2364                          AttributeSet::get(ArgTy->getContext(), Attrs),
2365                          std::move(Name));
2366 
2367     while (EatIfPresent(lltok::comma)) {
2368       // Handle ... at end of arg list.
2369       if (EatIfPresent(lltok::dotdotdot)) {
2370         isVarArg = true;
2371         break;
2372       }
2373 
2374       // Otherwise must be an argument type.
2375       TypeLoc = Lex.getLoc();
2376       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2377 
2378       if (ArgTy->isVoidTy())
2379         return Error(TypeLoc, "argument can not have void type");
2380 
2381       if (Lex.getKind() == lltok::LocalVar) {
2382         Name = Lex.getStrVal();
2383         Lex.Lex();
2384       } else {
2385         Name = "";
2386       }
2387 
2388       if (!ArgTy->isFirstClassType())
2389         return Error(TypeLoc, "invalid type for function argument");
2390 
2391       ArgList.emplace_back(TypeLoc, ArgTy,
2392                            AttributeSet::get(ArgTy->getContext(), Attrs),
2393                            std::move(Name));
2394     }
2395   }
2396 
2397   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2398 }
2399 
2400 /// ParseFunctionType
2401 ///  ::= Type ArgumentList OptionalAttrs
2402 bool LLParser::ParseFunctionType(Type *&Result) {
2403   assert(Lex.getKind() == lltok::lparen);
2404 
2405   if (!FunctionType::isValidReturnType(Result))
2406     return TokError("invalid function return type");
2407 
2408   SmallVector<ArgInfo, 8> ArgList;
2409   bool isVarArg;
2410   if (ParseArgumentList(ArgList, isVarArg))
2411     return true;
2412 
2413   // Reject names on the arguments lists.
2414   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2415     if (!ArgList[i].Name.empty())
2416       return Error(ArgList[i].Loc, "argument name invalid in function type");
2417     if (ArgList[i].Attrs.hasAttributes())
2418       return Error(ArgList[i].Loc,
2419                    "argument attributes invalid in function type");
2420   }
2421 
2422   SmallVector<Type*, 16> ArgListTy;
2423   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2424     ArgListTy.push_back(ArgList[i].Ty);
2425 
2426   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2427   return false;
2428 }
2429 
2430 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2431 /// other structs.
2432 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2433   SmallVector<Type*, 8> Elts;
2434   if (ParseStructBody(Elts)) return true;
2435 
2436   Result = StructType::get(Context, Elts, Packed);
2437   return false;
2438 }
2439 
2440 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2441 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2442                                      std::pair<Type*, LocTy> &Entry,
2443                                      Type *&ResultTy) {
2444   // If the type was already defined, diagnose the redefinition.
2445   if (Entry.first && !Entry.second.isValid())
2446     return Error(TypeLoc, "redefinition of type");
2447 
2448   // If we have opaque, just return without filling in the definition for the
2449   // struct.  This counts as a definition as far as the .ll file goes.
2450   if (EatIfPresent(lltok::kw_opaque)) {
2451     // This type is being defined, so clear the location to indicate this.
2452     Entry.second = SMLoc();
2453 
2454     // If this type number has never been uttered, create it.
2455     if (!Entry.first)
2456       Entry.first = StructType::create(Context, Name);
2457     ResultTy = Entry.first;
2458     return false;
2459   }
2460 
2461   // If the type starts with '<', then it is either a packed struct or a vector.
2462   bool isPacked = EatIfPresent(lltok::less);
2463 
2464   // If we don't have a struct, then we have a random type alias, which we
2465   // accept for compatibility with old files.  These types are not allowed to be
2466   // forward referenced and not allowed to be recursive.
2467   if (Lex.getKind() != lltok::lbrace) {
2468     if (Entry.first)
2469       return Error(TypeLoc, "forward references to non-struct type");
2470 
2471     ResultTy = nullptr;
2472     if (isPacked)
2473       return ParseArrayVectorType(ResultTy, true);
2474     return ParseType(ResultTy);
2475   }
2476 
2477   // This type is being defined, so clear the location to indicate this.
2478   Entry.second = SMLoc();
2479 
2480   // If this type number has never been uttered, create it.
2481   if (!Entry.first)
2482     Entry.first = StructType::create(Context, Name);
2483 
2484   StructType *STy = cast<StructType>(Entry.first);
2485 
2486   SmallVector<Type*, 8> Body;
2487   if (ParseStructBody(Body) ||
2488       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2489     return true;
2490 
2491   STy->setBody(Body, isPacked);
2492   ResultTy = STy;
2493   return false;
2494 }
2495 
2496 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2497 ///   StructType
2498 ///     ::= '{' '}'
2499 ///     ::= '{' Type (',' Type)* '}'
2500 ///     ::= '<' '{' '}' '>'
2501 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2502 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2503   assert(Lex.getKind() == lltok::lbrace);
2504   Lex.Lex(); // Consume the '{'
2505 
2506   // Handle the empty struct.
2507   if (EatIfPresent(lltok::rbrace))
2508     return false;
2509 
2510   LocTy EltTyLoc = Lex.getLoc();
2511   Type *Ty = nullptr;
2512   if (ParseType(Ty)) return true;
2513   Body.push_back(Ty);
2514 
2515   if (!StructType::isValidElementType(Ty))
2516     return Error(EltTyLoc, "invalid element type for struct");
2517 
2518   while (EatIfPresent(lltok::comma)) {
2519     EltTyLoc = Lex.getLoc();
2520     if (ParseType(Ty)) return true;
2521 
2522     if (!StructType::isValidElementType(Ty))
2523       return Error(EltTyLoc, "invalid element type for struct");
2524 
2525     Body.push_back(Ty);
2526   }
2527 
2528   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2529 }
2530 
2531 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2532 /// token has already been consumed.
2533 ///   Type
2534 ///     ::= '[' APSINTVAL 'x' Types ']'
2535 ///     ::= '<' APSINTVAL 'x' Types '>'
2536 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2537   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2538       Lex.getAPSIntVal().getBitWidth() > 64)
2539     return TokError("expected number in address space");
2540 
2541   LocTy SizeLoc = Lex.getLoc();
2542   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2543   Lex.Lex();
2544 
2545   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2546       return true;
2547 
2548   LocTy TypeLoc = Lex.getLoc();
2549   Type *EltTy = nullptr;
2550   if (ParseType(EltTy)) return true;
2551 
2552   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2553                  "expected end of sequential type"))
2554     return true;
2555 
2556   if (isVector) {
2557     if (Size == 0)
2558       return Error(SizeLoc, "zero element vector is illegal");
2559     if ((unsigned)Size != Size)
2560       return Error(SizeLoc, "size too large for vector");
2561     if (!VectorType::isValidElementType(EltTy))
2562       return Error(TypeLoc, "invalid vector element type");
2563     Result = VectorType::get(EltTy, unsigned(Size));
2564   } else {
2565     if (!ArrayType::isValidElementType(EltTy))
2566       return Error(TypeLoc, "invalid array element type");
2567     Result = ArrayType::get(EltTy, Size);
2568   }
2569   return false;
2570 }
2571 
2572 //===----------------------------------------------------------------------===//
2573 // Function Semantic Analysis.
2574 //===----------------------------------------------------------------------===//
2575 
2576 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2577                                              int functionNumber)
2578   : P(p), F(f), FunctionNumber(functionNumber) {
2579 
2580   // Insert unnamed arguments into the NumberedVals list.
2581   for (Argument &A : F.args())
2582     if (!A.hasName())
2583       NumberedVals.push_back(&A);
2584 }
2585 
2586 LLParser::PerFunctionState::~PerFunctionState() {
2587   // If there were any forward referenced non-basicblock values, delete them.
2588 
2589   for (const auto &P : ForwardRefVals) {
2590     if (isa<BasicBlock>(P.second.first))
2591       continue;
2592     P.second.first->replaceAllUsesWith(
2593         UndefValue::get(P.second.first->getType()));
2594     P.second.first->deleteValue();
2595   }
2596 
2597   for (const auto &P : ForwardRefValIDs) {
2598     if (isa<BasicBlock>(P.second.first))
2599       continue;
2600     P.second.first->replaceAllUsesWith(
2601         UndefValue::get(P.second.first->getType()));
2602     P.second.first->deleteValue();
2603   }
2604 }
2605 
2606 bool LLParser::PerFunctionState::FinishFunction() {
2607   if (!ForwardRefVals.empty())
2608     return P.Error(ForwardRefVals.begin()->second.second,
2609                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2610                    "'");
2611   if (!ForwardRefValIDs.empty())
2612     return P.Error(ForwardRefValIDs.begin()->second.second,
2613                    "use of undefined value '%" +
2614                    Twine(ForwardRefValIDs.begin()->first) + "'");
2615   return false;
2616 }
2617 
2618 static bool isValidVariableType(Module *M, Type *Ty, Value *Val, bool IsCall) {
2619   if (Val->getType() == Ty)
2620     return true;
2621   // For calls we also accept variables in the program address space
2622   if (IsCall && isa<PointerType>(Ty)) {
2623     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
2624         M->getDataLayout().getProgramAddressSpace());
2625     if (Val->getType() == TyInProgAS)
2626       return true;
2627   }
2628   return false;
2629 }
2630 
2631 /// GetVal - Get a value with the specified name or ID, creating a
2632 /// forward reference record if needed.  This can return null if the value
2633 /// exists but does not have the right type.
2634 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2635                                           LocTy Loc, bool IsCall) {
2636   // Look this name up in the normal function symbol table.
2637   Value *Val = F.getValueSymbolTable()->lookup(Name);
2638 
2639   // If this is a forward reference for the value, see if we already created a
2640   // forward ref record.
2641   if (!Val) {
2642     auto I = ForwardRefVals.find(Name);
2643     if (I != ForwardRefVals.end())
2644       Val = I->second.first;
2645   }
2646 
2647   // If we have the value in the symbol table or fwd-ref table, return it.
2648   if (Val) {
2649     if (isValidVariableType(P.M, Ty, Val, IsCall))
2650       return Val;
2651     if (Ty->isLabelTy())
2652       P.Error(Loc, "'%" + Name + "' is not a basic block");
2653     else
2654       P.Error(Loc, "'%" + Name + "' defined with type '" +
2655               getTypeString(Val->getType()) + "'");
2656     return nullptr;
2657   }
2658 
2659   // Don't make placeholders with invalid type.
2660   if (!Ty->isFirstClassType()) {
2661     P.Error(Loc, "invalid use of a non-first-class type");
2662     return nullptr;
2663   }
2664 
2665   // Otherwise, create a new forward reference for this value and remember it.
2666   Value *FwdVal;
2667   if (Ty->isLabelTy()) {
2668     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2669   } else {
2670     FwdVal = new Argument(Ty, Name);
2671   }
2672 
2673   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2674   return FwdVal;
2675 }
2676 
2677 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2678                                           bool IsCall) {
2679   // Look this name up in the normal function symbol table.
2680   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2681 
2682   // If this is a forward reference for the value, see if we already created a
2683   // forward ref record.
2684   if (!Val) {
2685     auto I = ForwardRefValIDs.find(ID);
2686     if (I != ForwardRefValIDs.end())
2687       Val = I->second.first;
2688   }
2689 
2690   // If we have the value in the symbol table or fwd-ref table, return it.
2691   if (Val) {
2692     if (isValidVariableType(P.M, Ty, Val, IsCall))
2693       return Val;
2694     if (Ty->isLabelTy())
2695       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2696     else
2697       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2698               getTypeString(Val->getType()) + "'");
2699     return nullptr;
2700   }
2701 
2702   if (!Ty->isFirstClassType()) {
2703     P.Error(Loc, "invalid use of a non-first-class type");
2704     return nullptr;
2705   }
2706 
2707   // Otherwise, create a new forward reference for this value and remember it.
2708   Value *FwdVal;
2709   if (Ty->isLabelTy()) {
2710     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2711   } else {
2712     FwdVal = new Argument(Ty);
2713   }
2714 
2715   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2716   return FwdVal;
2717 }
2718 
2719 /// SetInstName - After an instruction is parsed and inserted into its
2720 /// basic block, this installs its name.
2721 bool LLParser::PerFunctionState::SetInstName(int NameID,
2722                                              const std::string &NameStr,
2723                                              LocTy NameLoc, Instruction *Inst) {
2724   // If this instruction has void type, it cannot have a name or ID specified.
2725   if (Inst->getType()->isVoidTy()) {
2726     if (NameID != -1 || !NameStr.empty())
2727       return P.Error(NameLoc, "instructions returning void cannot have a name");
2728     return false;
2729   }
2730 
2731   // If this was a numbered instruction, verify that the instruction is the
2732   // expected value and resolve any forward references.
2733   if (NameStr.empty()) {
2734     // If neither a name nor an ID was specified, just use the next ID.
2735     if (NameID == -1)
2736       NameID = NumberedVals.size();
2737 
2738     if (unsigned(NameID) != NumberedVals.size())
2739       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2740                      Twine(NumberedVals.size()) + "'");
2741 
2742     auto FI = ForwardRefValIDs.find(NameID);
2743     if (FI != ForwardRefValIDs.end()) {
2744       Value *Sentinel = FI->second.first;
2745       if (Sentinel->getType() != Inst->getType())
2746         return P.Error(NameLoc, "instruction forward referenced with type '" +
2747                        getTypeString(FI->second.first->getType()) + "'");
2748 
2749       Sentinel->replaceAllUsesWith(Inst);
2750       Sentinel->deleteValue();
2751       ForwardRefValIDs.erase(FI);
2752     }
2753 
2754     NumberedVals.push_back(Inst);
2755     return false;
2756   }
2757 
2758   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2759   auto FI = ForwardRefVals.find(NameStr);
2760   if (FI != ForwardRefVals.end()) {
2761     Value *Sentinel = FI->second.first;
2762     if (Sentinel->getType() != Inst->getType())
2763       return P.Error(NameLoc, "instruction forward referenced with type '" +
2764                      getTypeString(FI->second.first->getType()) + "'");
2765 
2766     Sentinel->replaceAllUsesWith(Inst);
2767     Sentinel->deleteValue();
2768     ForwardRefVals.erase(FI);
2769   }
2770 
2771   // Set the name on the instruction.
2772   Inst->setName(NameStr);
2773 
2774   if (Inst->getName() != NameStr)
2775     return P.Error(NameLoc, "multiple definition of local value named '" +
2776                    NameStr + "'");
2777   return false;
2778 }
2779 
2780 /// GetBB - Get a basic block with the specified name or ID, creating a
2781 /// forward reference record if needed.
2782 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2783                                               LocTy Loc) {
2784   return dyn_cast_or_null<BasicBlock>(
2785       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2786 }
2787 
2788 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2789   return dyn_cast_or_null<BasicBlock>(
2790       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2791 }
2792 
2793 /// DefineBB - Define the specified basic block, which is either named or
2794 /// unnamed.  If there is an error, this returns null otherwise it returns
2795 /// the block being defined.
2796 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2797                                                  LocTy Loc) {
2798   BasicBlock *BB;
2799   if (Name.empty())
2800     BB = GetBB(NumberedVals.size(), Loc);
2801   else
2802     BB = GetBB(Name, Loc);
2803   if (!BB) return nullptr; // Already diagnosed error.
2804 
2805   // Move the block to the end of the function.  Forward ref'd blocks are
2806   // inserted wherever they happen to be referenced.
2807   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2808 
2809   // Remove the block from forward ref sets.
2810   if (Name.empty()) {
2811     ForwardRefValIDs.erase(NumberedVals.size());
2812     NumberedVals.push_back(BB);
2813   } else {
2814     // BB forward references are already in the function symbol table.
2815     ForwardRefVals.erase(Name);
2816   }
2817 
2818   return BB;
2819 }
2820 
2821 //===----------------------------------------------------------------------===//
2822 // Constants.
2823 //===----------------------------------------------------------------------===//
2824 
2825 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2826 /// type implied.  For example, if we parse "4" we don't know what integer type
2827 /// it has.  The value will later be combined with its type and checked for
2828 /// sanity.  PFS is used to convert function-local operands of metadata (since
2829 /// metadata operands are not just parsed here but also converted to values).
2830 /// PFS can be null when we are not parsing metadata values inside a function.
2831 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2832   ID.Loc = Lex.getLoc();
2833   switch (Lex.getKind()) {
2834   default: return TokError("expected value token");
2835   case lltok::GlobalID:  // @42
2836     ID.UIntVal = Lex.getUIntVal();
2837     ID.Kind = ValID::t_GlobalID;
2838     break;
2839   case lltok::GlobalVar:  // @foo
2840     ID.StrVal = Lex.getStrVal();
2841     ID.Kind = ValID::t_GlobalName;
2842     break;
2843   case lltok::LocalVarID:  // %42
2844     ID.UIntVal = Lex.getUIntVal();
2845     ID.Kind = ValID::t_LocalID;
2846     break;
2847   case lltok::LocalVar:  // %foo
2848     ID.StrVal = Lex.getStrVal();
2849     ID.Kind = ValID::t_LocalName;
2850     break;
2851   case lltok::APSInt:
2852     ID.APSIntVal = Lex.getAPSIntVal();
2853     ID.Kind = ValID::t_APSInt;
2854     break;
2855   case lltok::APFloat:
2856     ID.APFloatVal = Lex.getAPFloatVal();
2857     ID.Kind = ValID::t_APFloat;
2858     break;
2859   case lltok::kw_true:
2860     ID.ConstantVal = ConstantInt::getTrue(Context);
2861     ID.Kind = ValID::t_Constant;
2862     break;
2863   case lltok::kw_false:
2864     ID.ConstantVal = ConstantInt::getFalse(Context);
2865     ID.Kind = ValID::t_Constant;
2866     break;
2867   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2868   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2869   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2870   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2871 
2872   case lltok::lbrace: {
2873     // ValID ::= '{' ConstVector '}'
2874     Lex.Lex();
2875     SmallVector<Constant*, 16> Elts;
2876     if (ParseGlobalValueVector(Elts) ||
2877         ParseToken(lltok::rbrace, "expected end of struct constant"))
2878       return true;
2879 
2880     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2881     ID.UIntVal = Elts.size();
2882     memcpy(ID.ConstantStructElts.get(), Elts.data(),
2883            Elts.size() * sizeof(Elts[0]));
2884     ID.Kind = ValID::t_ConstantStruct;
2885     return false;
2886   }
2887   case lltok::less: {
2888     // ValID ::= '<' ConstVector '>'         --> Vector.
2889     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2890     Lex.Lex();
2891     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2892 
2893     SmallVector<Constant*, 16> Elts;
2894     LocTy FirstEltLoc = Lex.getLoc();
2895     if (ParseGlobalValueVector(Elts) ||
2896         (isPackedStruct &&
2897          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2898         ParseToken(lltok::greater, "expected end of constant"))
2899       return true;
2900 
2901     if (isPackedStruct) {
2902       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2903       memcpy(ID.ConstantStructElts.get(), Elts.data(),
2904              Elts.size() * sizeof(Elts[0]));
2905       ID.UIntVal = Elts.size();
2906       ID.Kind = ValID::t_PackedConstantStruct;
2907       return false;
2908     }
2909 
2910     if (Elts.empty())
2911       return Error(ID.Loc, "constant vector must not be empty");
2912 
2913     if (!Elts[0]->getType()->isIntegerTy() &&
2914         !Elts[0]->getType()->isFloatingPointTy() &&
2915         !Elts[0]->getType()->isPointerTy())
2916       return Error(FirstEltLoc,
2917             "vector elements must have integer, pointer or floating point type");
2918 
2919     // Verify that all the vector elements have the same type.
2920     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2921       if (Elts[i]->getType() != Elts[0]->getType())
2922         return Error(FirstEltLoc,
2923                      "vector element #" + Twine(i) +
2924                     " is not of type '" + getTypeString(Elts[0]->getType()));
2925 
2926     ID.ConstantVal = ConstantVector::get(Elts);
2927     ID.Kind = ValID::t_Constant;
2928     return false;
2929   }
2930   case lltok::lsquare: {   // Array Constant
2931     Lex.Lex();
2932     SmallVector<Constant*, 16> Elts;
2933     LocTy FirstEltLoc = Lex.getLoc();
2934     if (ParseGlobalValueVector(Elts) ||
2935         ParseToken(lltok::rsquare, "expected end of array constant"))
2936       return true;
2937 
2938     // Handle empty element.
2939     if (Elts.empty()) {
2940       // Use undef instead of an array because it's inconvenient to determine
2941       // the element type at this point, there being no elements to examine.
2942       ID.Kind = ValID::t_EmptyArray;
2943       return false;
2944     }
2945 
2946     if (!Elts[0]->getType()->isFirstClassType())
2947       return Error(FirstEltLoc, "invalid array element type: " +
2948                    getTypeString(Elts[0]->getType()));
2949 
2950     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2951 
2952     // Verify all elements are correct type!
2953     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2954       if (Elts[i]->getType() != Elts[0]->getType())
2955         return Error(FirstEltLoc,
2956                      "array element #" + Twine(i) +
2957                      " is not of type '" + getTypeString(Elts[0]->getType()));
2958     }
2959 
2960     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2961     ID.Kind = ValID::t_Constant;
2962     return false;
2963   }
2964   case lltok::kw_c:  // c "foo"
2965     Lex.Lex();
2966     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2967                                                   false);
2968     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2969     ID.Kind = ValID::t_Constant;
2970     return false;
2971 
2972   case lltok::kw_asm: {
2973     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2974     //             STRINGCONSTANT
2975     bool HasSideEffect, AlignStack, AsmDialect;
2976     Lex.Lex();
2977     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2978         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2979         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2980         ParseStringConstant(ID.StrVal) ||
2981         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2982         ParseToken(lltok::StringConstant, "expected constraint string"))
2983       return true;
2984     ID.StrVal2 = Lex.getStrVal();
2985     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2986       (unsigned(AsmDialect)<<2);
2987     ID.Kind = ValID::t_InlineAsm;
2988     return false;
2989   }
2990 
2991   case lltok::kw_blockaddress: {
2992     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2993     Lex.Lex();
2994 
2995     ValID Fn, Label;
2996 
2997     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2998         ParseValID(Fn) ||
2999         ParseToken(lltok::comma, "expected comma in block address expression")||
3000         ParseValID(Label) ||
3001         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3002       return true;
3003 
3004     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3005       return Error(Fn.Loc, "expected function name in blockaddress");
3006     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3007       return Error(Label.Loc, "expected basic block name in blockaddress");
3008 
3009     // Try to find the function (but skip it if it's forward-referenced).
3010     GlobalValue *GV = nullptr;
3011     if (Fn.Kind == ValID::t_GlobalID) {
3012       if (Fn.UIntVal < NumberedVals.size())
3013         GV = NumberedVals[Fn.UIntVal];
3014     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3015       GV = M->getNamedValue(Fn.StrVal);
3016     }
3017     Function *F = nullptr;
3018     if (GV) {
3019       // Confirm that it's actually a function with a definition.
3020       if (!isa<Function>(GV))
3021         return Error(Fn.Loc, "expected function name in blockaddress");
3022       F = cast<Function>(GV);
3023       if (F->isDeclaration())
3024         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3025     }
3026 
3027     if (!F) {
3028       // Make a global variable as a placeholder for this reference.
3029       GlobalValue *&FwdRef =
3030           ForwardRefBlockAddresses.insert(std::make_pair(
3031                                               std::move(Fn),
3032                                               std::map<ValID, GlobalValue *>()))
3033               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3034               .first->second;
3035       if (!FwdRef)
3036         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3037                                     GlobalValue::InternalLinkage, nullptr, "");
3038       ID.ConstantVal = FwdRef;
3039       ID.Kind = ValID::t_Constant;
3040       return false;
3041     }
3042 
3043     // We found the function; now find the basic block.  Don't use PFS, since we
3044     // might be inside a constant expression.
3045     BasicBlock *BB;
3046     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3047       if (Label.Kind == ValID::t_LocalID)
3048         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3049       else
3050         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3051       if (!BB)
3052         return Error(Label.Loc, "referenced value is not a basic block");
3053     } else {
3054       if (Label.Kind == ValID::t_LocalID)
3055         return Error(Label.Loc, "cannot take address of numeric label after "
3056                                 "the function is defined");
3057       BB = dyn_cast_or_null<BasicBlock>(
3058           F->getValueSymbolTable()->lookup(Label.StrVal));
3059       if (!BB)
3060         return Error(Label.Loc, "referenced value is not a basic block");
3061     }
3062 
3063     ID.ConstantVal = BlockAddress::get(F, BB);
3064     ID.Kind = ValID::t_Constant;
3065     return false;
3066   }
3067 
3068   case lltok::kw_trunc:
3069   case lltok::kw_zext:
3070   case lltok::kw_sext:
3071   case lltok::kw_fptrunc:
3072   case lltok::kw_fpext:
3073   case lltok::kw_bitcast:
3074   case lltok::kw_addrspacecast:
3075   case lltok::kw_uitofp:
3076   case lltok::kw_sitofp:
3077   case lltok::kw_fptoui:
3078   case lltok::kw_fptosi:
3079   case lltok::kw_inttoptr:
3080   case lltok::kw_ptrtoint: {
3081     unsigned Opc = Lex.getUIntVal();
3082     Type *DestTy = nullptr;
3083     Constant *SrcVal;
3084     Lex.Lex();
3085     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3086         ParseGlobalTypeAndValue(SrcVal) ||
3087         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3088         ParseType(DestTy) ||
3089         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3090       return true;
3091     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3092       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3093                    getTypeString(SrcVal->getType()) + "' to '" +
3094                    getTypeString(DestTy) + "'");
3095     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3096                                                  SrcVal, DestTy);
3097     ID.Kind = ValID::t_Constant;
3098     return false;
3099   }
3100   case lltok::kw_extractvalue: {
3101     Lex.Lex();
3102     Constant *Val;
3103     SmallVector<unsigned, 4> Indices;
3104     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3105         ParseGlobalTypeAndValue(Val) ||
3106         ParseIndexList(Indices) ||
3107         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3108       return true;
3109 
3110     if (!Val->getType()->isAggregateType())
3111       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3112     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3113       return Error(ID.Loc, "invalid indices for extractvalue");
3114     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3115     ID.Kind = ValID::t_Constant;
3116     return false;
3117   }
3118   case lltok::kw_insertvalue: {
3119     Lex.Lex();
3120     Constant *Val0, *Val1;
3121     SmallVector<unsigned, 4> Indices;
3122     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3123         ParseGlobalTypeAndValue(Val0) ||
3124         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3125         ParseGlobalTypeAndValue(Val1) ||
3126         ParseIndexList(Indices) ||
3127         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3128       return true;
3129     if (!Val0->getType()->isAggregateType())
3130       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3131     Type *IndexedType =
3132         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3133     if (!IndexedType)
3134       return Error(ID.Loc, "invalid indices for insertvalue");
3135     if (IndexedType != Val1->getType())
3136       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3137                                getTypeString(Val1->getType()) +
3138                                "' instead of '" + getTypeString(IndexedType) +
3139                                "'");
3140     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3141     ID.Kind = ValID::t_Constant;
3142     return false;
3143   }
3144   case lltok::kw_icmp:
3145   case lltok::kw_fcmp: {
3146     unsigned PredVal, Opc = Lex.getUIntVal();
3147     Constant *Val0, *Val1;
3148     Lex.Lex();
3149     if (ParseCmpPredicate(PredVal, Opc) ||
3150         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3151         ParseGlobalTypeAndValue(Val0) ||
3152         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3153         ParseGlobalTypeAndValue(Val1) ||
3154         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3155       return true;
3156 
3157     if (Val0->getType() != Val1->getType())
3158       return Error(ID.Loc, "compare operands must have the same type");
3159 
3160     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3161 
3162     if (Opc == Instruction::FCmp) {
3163       if (!Val0->getType()->isFPOrFPVectorTy())
3164         return Error(ID.Loc, "fcmp requires floating point operands");
3165       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3166     } else {
3167       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3168       if (!Val0->getType()->isIntOrIntVectorTy() &&
3169           !Val0->getType()->isPtrOrPtrVectorTy())
3170         return Error(ID.Loc, "icmp requires pointer or integer operands");
3171       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3172     }
3173     ID.Kind = ValID::t_Constant;
3174     return false;
3175   }
3176 
3177   // Binary Operators.
3178   case lltok::kw_add:
3179   case lltok::kw_fadd:
3180   case lltok::kw_sub:
3181   case lltok::kw_fsub:
3182   case lltok::kw_mul:
3183   case lltok::kw_fmul:
3184   case lltok::kw_udiv:
3185   case lltok::kw_sdiv:
3186   case lltok::kw_fdiv:
3187   case lltok::kw_urem:
3188   case lltok::kw_srem:
3189   case lltok::kw_frem:
3190   case lltok::kw_shl:
3191   case lltok::kw_lshr:
3192   case lltok::kw_ashr: {
3193     bool NUW = false;
3194     bool NSW = false;
3195     bool Exact = false;
3196     unsigned Opc = Lex.getUIntVal();
3197     Constant *Val0, *Val1;
3198     Lex.Lex();
3199     LocTy ModifierLoc = Lex.getLoc();
3200     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3201         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3202       if (EatIfPresent(lltok::kw_nuw))
3203         NUW = true;
3204       if (EatIfPresent(lltok::kw_nsw)) {
3205         NSW = true;
3206         if (EatIfPresent(lltok::kw_nuw))
3207           NUW = true;
3208       }
3209     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3210                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3211       if (EatIfPresent(lltok::kw_exact))
3212         Exact = true;
3213     }
3214     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3215         ParseGlobalTypeAndValue(Val0) ||
3216         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3217         ParseGlobalTypeAndValue(Val1) ||
3218         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3219       return true;
3220     if (Val0->getType() != Val1->getType())
3221       return Error(ID.Loc, "operands of constexpr must have same type");
3222     if (!Val0->getType()->isIntOrIntVectorTy()) {
3223       if (NUW)
3224         return Error(ModifierLoc, "nuw only applies to integer operations");
3225       if (NSW)
3226         return Error(ModifierLoc, "nsw only applies to integer operations");
3227     }
3228     // Check that the type is valid for the operator.
3229     switch (Opc) {
3230     case Instruction::Add:
3231     case Instruction::Sub:
3232     case Instruction::Mul:
3233     case Instruction::UDiv:
3234     case Instruction::SDiv:
3235     case Instruction::URem:
3236     case Instruction::SRem:
3237     case Instruction::Shl:
3238     case Instruction::AShr:
3239     case Instruction::LShr:
3240       if (!Val0->getType()->isIntOrIntVectorTy())
3241         return Error(ID.Loc, "constexpr requires integer operands");
3242       break;
3243     case Instruction::FAdd:
3244     case Instruction::FSub:
3245     case Instruction::FMul:
3246     case Instruction::FDiv:
3247     case Instruction::FRem:
3248       if (!Val0->getType()->isFPOrFPVectorTy())
3249         return Error(ID.Loc, "constexpr requires fp operands");
3250       break;
3251     default: llvm_unreachable("Unknown binary operator!");
3252     }
3253     unsigned Flags = 0;
3254     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3255     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3256     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3257     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3258     ID.ConstantVal = C;
3259     ID.Kind = ValID::t_Constant;
3260     return false;
3261   }
3262 
3263   // Logical Operations
3264   case lltok::kw_and:
3265   case lltok::kw_or:
3266   case lltok::kw_xor: {
3267     unsigned Opc = Lex.getUIntVal();
3268     Constant *Val0, *Val1;
3269     Lex.Lex();
3270     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3271         ParseGlobalTypeAndValue(Val0) ||
3272         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3273         ParseGlobalTypeAndValue(Val1) ||
3274         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3275       return true;
3276     if (Val0->getType() != Val1->getType())
3277       return Error(ID.Loc, "operands of constexpr must have same type");
3278     if (!Val0->getType()->isIntOrIntVectorTy())
3279       return Error(ID.Loc,
3280                    "constexpr requires integer or integer vector operands");
3281     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3282     ID.Kind = ValID::t_Constant;
3283     return false;
3284   }
3285 
3286   case lltok::kw_getelementptr:
3287   case lltok::kw_shufflevector:
3288   case lltok::kw_insertelement:
3289   case lltok::kw_extractelement:
3290   case lltok::kw_select: {
3291     unsigned Opc = Lex.getUIntVal();
3292     SmallVector<Constant*, 16> Elts;
3293     bool InBounds = false;
3294     Type *Ty;
3295     Lex.Lex();
3296 
3297     if (Opc == Instruction::GetElementPtr)
3298       InBounds = EatIfPresent(lltok::kw_inbounds);
3299 
3300     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3301       return true;
3302 
3303     LocTy ExplicitTypeLoc = Lex.getLoc();
3304     if (Opc == Instruction::GetElementPtr) {
3305       if (ParseType(Ty) ||
3306           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3307         return true;
3308     }
3309 
3310     Optional<unsigned> InRangeOp;
3311     if (ParseGlobalValueVector(
3312             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3313         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3314       return true;
3315 
3316     if (Opc == Instruction::GetElementPtr) {
3317       if (Elts.size() == 0 ||
3318           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3319         return Error(ID.Loc, "base of getelementptr must be a pointer");
3320 
3321       Type *BaseType = Elts[0]->getType();
3322       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3323       if (Ty != BasePointerType->getElementType())
3324         return Error(
3325             ExplicitTypeLoc,
3326             "explicit pointee type doesn't match operand's pointee type");
3327 
3328       unsigned GEPWidth =
3329           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3330 
3331       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3332       for (Constant *Val : Indices) {
3333         Type *ValTy = Val->getType();
3334         if (!ValTy->isIntOrIntVectorTy())
3335           return Error(ID.Loc, "getelementptr index must be an integer");
3336         if (ValTy->isVectorTy()) {
3337           unsigned ValNumEl = ValTy->getVectorNumElements();
3338           if (GEPWidth && (ValNumEl != GEPWidth))
3339             return Error(
3340                 ID.Loc,
3341                 "getelementptr vector index has a wrong number of elements");
3342           // GEPWidth may have been unknown because the base is a scalar,
3343           // but it is known now.
3344           GEPWidth = ValNumEl;
3345         }
3346       }
3347 
3348       SmallPtrSet<Type*, 4> Visited;
3349       if (!Indices.empty() && !Ty->isSized(&Visited))
3350         return Error(ID.Loc, "base element of getelementptr must be sized");
3351 
3352       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3353         return Error(ID.Loc, "invalid getelementptr indices");
3354 
3355       if (InRangeOp) {
3356         if (*InRangeOp == 0)
3357           return Error(ID.Loc,
3358                        "inrange keyword may not appear on pointer operand");
3359         --*InRangeOp;
3360       }
3361 
3362       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3363                                                       InBounds, InRangeOp);
3364     } else if (Opc == Instruction::Select) {
3365       if (Elts.size() != 3)
3366         return Error(ID.Loc, "expected three operands to select");
3367       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3368                                                               Elts[2]))
3369         return Error(ID.Loc, Reason);
3370       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3371     } else if (Opc == Instruction::ShuffleVector) {
3372       if (Elts.size() != 3)
3373         return Error(ID.Loc, "expected three operands to shufflevector");
3374       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3375         return Error(ID.Loc, "invalid operands to shufflevector");
3376       ID.ConstantVal =
3377                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3378     } else if (Opc == Instruction::ExtractElement) {
3379       if (Elts.size() != 2)
3380         return Error(ID.Loc, "expected two operands to extractelement");
3381       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3382         return Error(ID.Loc, "invalid extractelement operands");
3383       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3384     } else {
3385       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3386       if (Elts.size() != 3)
3387       return Error(ID.Loc, "expected three operands to insertelement");
3388       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3389         return Error(ID.Loc, "invalid insertelement operands");
3390       ID.ConstantVal =
3391                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3392     }
3393 
3394     ID.Kind = ValID::t_Constant;
3395     return false;
3396   }
3397   }
3398 
3399   Lex.Lex();
3400   return false;
3401 }
3402 
3403 /// ParseGlobalValue - Parse a global value with the specified type.
3404 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3405   C = nullptr;
3406   ValID ID;
3407   Value *V = nullptr;
3408   bool Parsed = ParseValID(ID) ||
3409                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3410   if (V && !(C = dyn_cast<Constant>(V)))
3411     return Error(ID.Loc, "global values must be constants");
3412   return Parsed;
3413 }
3414 
3415 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3416   Type *Ty = nullptr;
3417   return ParseType(Ty) ||
3418          ParseGlobalValue(Ty, V);
3419 }
3420 
3421 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3422   C = nullptr;
3423 
3424   LocTy KwLoc = Lex.getLoc();
3425   if (!EatIfPresent(lltok::kw_comdat))
3426     return false;
3427 
3428   if (EatIfPresent(lltok::lparen)) {
3429     if (Lex.getKind() != lltok::ComdatVar)
3430       return TokError("expected comdat variable");
3431     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3432     Lex.Lex();
3433     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3434       return true;
3435   } else {
3436     if (GlobalName.empty())
3437       return TokError("comdat cannot be unnamed");
3438     C = getComdat(GlobalName, KwLoc);
3439   }
3440 
3441   return false;
3442 }
3443 
3444 /// ParseGlobalValueVector
3445 ///   ::= /*empty*/
3446 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3447 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3448                                       Optional<unsigned> *InRangeOp) {
3449   // Empty list.
3450   if (Lex.getKind() == lltok::rbrace ||
3451       Lex.getKind() == lltok::rsquare ||
3452       Lex.getKind() == lltok::greater ||
3453       Lex.getKind() == lltok::rparen)
3454     return false;
3455 
3456   do {
3457     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3458       *InRangeOp = Elts.size();
3459 
3460     Constant *C;
3461     if (ParseGlobalTypeAndValue(C)) return true;
3462     Elts.push_back(C);
3463   } while (EatIfPresent(lltok::comma));
3464 
3465   return false;
3466 }
3467 
3468 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3469   SmallVector<Metadata *, 16> Elts;
3470   if (ParseMDNodeVector(Elts))
3471     return true;
3472 
3473   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3474   return false;
3475 }
3476 
3477 /// MDNode:
3478 ///  ::= !{ ... }
3479 ///  ::= !7
3480 ///  ::= !DILocation(...)
3481 bool LLParser::ParseMDNode(MDNode *&N) {
3482   if (Lex.getKind() == lltok::MetadataVar)
3483     return ParseSpecializedMDNode(N);
3484 
3485   return ParseToken(lltok::exclaim, "expected '!' here") ||
3486          ParseMDNodeTail(N);
3487 }
3488 
3489 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3490   // !{ ... }
3491   if (Lex.getKind() == lltok::lbrace)
3492     return ParseMDTuple(N);
3493 
3494   // !42
3495   return ParseMDNodeID(N);
3496 }
3497 
3498 namespace {
3499 
3500 /// Structure to represent an optional metadata field.
3501 template <class FieldTy> struct MDFieldImpl {
3502   typedef MDFieldImpl ImplTy;
3503   FieldTy Val;
3504   bool Seen;
3505 
3506   void assign(FieldTy Val) {
3507     Seen = true;
3508     this->Val = std::move(Val);
3509   }
3510 
3511   explicit MDFieldImpl(FieldTy Default)
3512       : Val(std::move(Default)), Seen(false) {}
3513 };
3514 
3515 /// Structure to represent an optional metadata field that
3516 /// can be of either type (A or B) and encapsulates the
3517 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3518 /// to reimplement the specifics for representing each Field.
3519 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3520   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3521   FieldTypeA A;
3522   FieldTypeB B;
3523   bool Seen;
3524 
3525   enum {
3526     IsInvalid = 0,
3527     IsTypeA = 1,
3528     IsTypeB = 2
3529   } WhatIs;
3530 
3531   void assign(FieldTypeA A) {
3532     Seen = true;
3533     this->A = std::move(A);
3534     WhatIs = IsTypeA;
3535   }
3536 
3537   void assign(FieldTypeB B) {
3538     Seen = true;
3539     this->B = std::move(B);
3540     WhatIs = IsTypeB;
3541   }
3542 
3543   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3544       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3545         WhatIs(IsInvalid) {}
3546 };
3547 
3548 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3549   uint64_t Max;
3550 
3551   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3552       : ImplTy(Default), Max(Max) {}
3553 };
3554 
3555 struct LineField : public MDUnsignedField {
3556   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3557 };
3558 
3559 struct ColumnField : public MDUnsignedField {
3560   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3561 };
3562 
3563 struct DwarfTagField : public MDUnsignedField {
3564   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3565   DwarfTagField(dwarf::Tag DefaultTag)
3566       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3567 };
3568 
3569 struct DwarfMacinfoTypeField : public MDUnsignedField {
3570   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3571   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3572     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3573 };
3574 
3575 struct DwarfAttEncodingField : public MDUnsignedField {
3576   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3577 };
3578 
3579 struct DwarfVirtualityField : public MDUnsignedField {
3580   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3581 };
3582 
3583 struct DwarfLangField : public MDUnsignedField {
3584   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3585 };
3586 
3587 struct DwarfCCField : public MDUnsignedField {
3588   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3589 };
3590 
3591 struct EmissionKindField : public MDUnsignedField {
3592   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3593 };
3594 
3595 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3596   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3597 };
3598 
3599 struct MDSignedField : public MDFieldImpl<int64_t> {
3600   int64_t Min;
3601   int64_t Max;
3602 
3603   MDSignedField(int64_t Default = 0)
3604       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3605   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3606       : ImplTy(Default), Min(Min), Max(Max) {}
3607 };
3608 
3609 struct MDBoolField : public MDFieldImpl<bool> {
3610   MDBoolField(bool Default = false) : ImplTy(Default) {}
3611 };
3612 
3613 struct MDField : public MDFieldImpl<Metadata *> {
3614   bool AllowNull;
3615 
3616   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3617 };
3618 
3619 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3620   MDConstant() : ImplTy(nullptr) {}
3621 };
3622 
3623 struct MDStringField : public MDFieldImpl<MDString *> {
3624   bool AllowEmpty;
3625   MDStringField(bool AllowEmpty = true)
3626       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3627 };
3628 
3629 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3630   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3631 };
3632 
3633 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3634   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3635 };
3636 
3637 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3638   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3639       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3640 
3641   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3642                     bool AllowNull = true)
3643       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3644 
3645   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3646   bool isMDField() const { return WhatIs == IsTypeB; }
3647   int64_t getMDSignedValue() const {
3648     assert(isMDSignedField() && "Wrong field type");
3649     return A.Val;
3650   }
3651   Metadata *getMDFieldValue() const {
3652     assert(isMDField() && "Wrong field type");
3653     return B.Val;
3654   }
3655 };
3656 
3657 struct MDSignedOrUnsignedField
3658     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3659   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3660 
3661   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3662   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3663   int64_t getMDSignedValue() const {
3664     assert(isMDSignedField() && "Wrong field type");
3665     return A.Val;
3666   }
3667   uint64_t getMDUnsignedValue() const {
3668     assert(isMDUnsignedField() && "Wrong field type");
3669     return B.Val;
3670   }
3671 };
3672 
3673 } // end anonymous namespace
3674 
3675 namespace llvm {
3676 
3677 template <>
3678 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3679                             MDUnsignedField &Result) {
3680   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3681     return TokError("expected unsigned integer");
3682 
3683   auto &U = Lex.getAPSIntVal();
3684   if (U.ugt(Result.Max))
3685     return TokError("value for '" + Name + "' too large, limit is " +
3686                     Twine(Result.Max));
3687   Result.assign(U.getZExtValue());
3688   assert(Result.Val <= Result.Max && "Expected value in range");
3689   Lex.Lex();
3690   return false;
3691 }
3692 
3693 template <>
3694 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3695   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3696 }
3697 template <>
3698 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3699   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3700 }
3701 
3702 template <>
3703 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3704   if (Lex.getKind() == lltok::APSInt)
3705     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3706 
3707   if (Lex.getKind() != lltok::DwarfTag)
3708     return TokError("expected DWARF tag");
3709 
3710   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3711   if (Tag == dwarf::DW_TAG_invalid)
3712     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3713   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3714 
3715   Result.assign(Tag);
3716   Lex.Lex();
3717   return false;
3718 }
3719 
3720 template <>
3721 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3722                             DwarfMacinfoTypeField &Result) {
3723   if (Lex.getKind() == lltok::APSInt)
3724     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3725 
3726   if (Lex.getKind() != lltok::DwarfMacinfo)
3727     return TokError("expected DWARF macinfo type");
3728 
3729   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3730   if (Macinfo == dwarf::DW_MACINFO_invalid)
3731     return TokError(
3732         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3733   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3734 
3735   Result.assign(Macinfo);
3736   Lex.Lex();
3737   return false;
3738 }
3739 
3740 template <>
3741 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3742                             DwarfVirtualityField &Result) {
3743   if (Lex.getKind() == lltok::APSInt)
3744     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3745 
3746   if (Lex.getKind() != lltok::DwarfVirtuality)
3747     return TokError("expected DWARF virtuality code");
3748 
3749   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3750   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3751     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3752                     Lex.getStrVal() + "'");
3753   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3754   Result.assign(Virtuality);
3755   Lex.Lex();
3756   return false;
3757 }
3758 
3759 template <>
3760 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3761   if (Lex.getKind() == lltok::APSInt)
3762     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3763 
3764   if (Lex.getKind() != lltok::DwarfLang)
3765     return TokError("expected DWARF language");
3766 
3767   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3768   if (!Lang)
3769     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3770                     "'");
3771   assert(Lang <= Result.Max && "Expected valid DWARF language");
3772   Result.assign(Lang);
3773   Lex.Lex();
3774   return false;
3775 }
3776 
3777 template <>
3778 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3779   if (Lex.getKind() == lltok::APSInt)
3780     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3781 
3782   if (Lex.getKind() != lltok::DwarfCC)
3783     return TokError("expected DWARF calling convention");
3784 
3785   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3786   if (!CC)
3787     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3788                     "'");
3789   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3790   Result.assign(CC);
3791   Lex.Lex();
3792   return false;
3793 }
3794 
3795 template <>
3796 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3797   if (Lex.getKind() == lltok::APSInt)
3798     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3799 
3800   if (Lex.getKind() != lltok::EmissionKind)
3801     return TokError("expected emission kind");
3802 
3803   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3804   if (!Kind)
3805     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3806                     "'");
3807   assert(*Kind <= Result.Max && "Expected valid emission kind");
3808   Result.assign(*Kind);
3809   Lex.Lex();
3810   return false;
3811 }
3812 
3813 template <>
3814 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3815                             DwarfAttEncodingField &Result) {
3816   if (Lex.getKind() == lltok::APSInt)
3817     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3818 
3819   if (Lex.getKind() != lltok::DwarfAttEncoding)
3820     return TokError("expected DWARF type attribute encoding");
3821 
3822   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3823   if (!Encoding)
3824     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3825                     Lex.getStrVal() + "'");
3826   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3827   Result.assign(Encoding);
3828   Lex.Lex();
3829   return false;
3830 }
3831 
3832 /// DIFlagField
3833 ///  ::= uint32
3834 ///  ::= DIFlagVector
3835 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3836 template <>
3837 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3838 
3839   // Parser for a single flag.
3840   auto parseFlag = [&](DINode::DIFlags &Val) {
3841     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
3842       uint32_t TempVal = static_cast<uint32_t>(Val);
3843       bool Res = ParseUInt32(TempVal);
3844       Val = static_cast<DINode::DIFlags>(TempVal);
3845       return Res;
3846     }
3847 
3848     if (Lex.getKind() != lltok::DIFlag)
3849       return TokError("expected debug info flag");
3850 
3851     Val = DINode::getFlag(Lex.getStrVal());
3852     if (!Val)
3853       return TokError(Twine("invalid debug info flag flag '") +
3854                       Lex.getStrVal() + "'");
3855     Lex.Lex();
3856     return false;
3857   };
3858 
3859   // Parse the flags and combine them together.
3860   DINode::DIFlags Combined = DINode::FlagZero;
3861   do {
3862     DINode::DIFlags Val;
3863     if (parseFlag(Val))
3864       return true;
3865     Combined |= Val;
3866   } while (EatIfPresent(lltok::bar));
3867 
3868   Result.assign(Combined);
3869   return false;
3870 }
3871 
3872 template <>
3873 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3874                             MDSignedField &Result) {
3875   if (Lex.getKind() != lltok::APSInt)
3876     return TokError("expected signed integer");
3877 
3878   auto &S = Lex.getAPSIntVal();
3879   if (S < Result.Min)
3880     return TokError("value for '" + Name + "' too small, limit is " +
3881                     Twine(Result.Min));
3882   if (S > Result.Max)
3883     return TokError("value for '" + Name + "' too large, limit is " +
3884                     Twine(Result.Max));
3885   Result.assign(S.getExtValue());
3886   assert(Result.Val >= Result.Min && "Expected value in range");
3887   assert(Result.Val <= Result.Max && "Expected value in range");
3888   Lex.Lex();
3889   return false;
3890 }
3891 
3892 template <>
3893 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3894   switch (Lex.getKind()) {
3895   default:
3896     return TokError("expected 'true' or 'false'");
3897   case lltok::kw_true:
3898     Result.assign(true);
3899     break;
3900   case lltok::kw_false:
3901     Result.assign(false);
3902     break;
3903   }
3904   Lex.Lex();
3905   return false;
3906 }
3907 
3908 template <>
3909 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3910   if (Lex.getKind() == lltok::kw_null) {
3911     if (!Result.AllowNull)
3912       return TokError("'" + Name + "' cannot be null");
3913     Lex.Lex();
3914     Result.assign(nullptr);
3915     return false;
3916   }
3917 
3918   Metadata *MD;
3919   if (ParseMetadata(MD, nullptr))
3920     return true;
3921 
3922   Result.assign(MD);
3923   return false;
3924 }
3925 
3926 template <>
3927 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3928                             MDSignedOrMDField &Result) {
3929   // Try to parse a signed int.
3930   if (Lex.getKind() == lltok::APSInt) {
3931     MDSignedField Res = Result.A;
3932     if (!ParseMDField(Loc, Name, Res)) {
3933       Result.assign(Res);
3934       return false;
3935     }
3936     return true;
3937   }
3938 
3939   // Otherwise, try to parse as an MDField.
3940   MDField Res = Result.B;
3941   if (!ParseMDField(Loc, Name, Res)) {
3942     Result.assign(Res);
3943     return false;
3944   }
3945 
3946   return true;
3947 }
3948 
3949 template <>
3950 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3951                             MDSignedOrUnsignedField &Result) {
3952   if (Lex.getKind() != lltok::APSInt)
3953     return false;
3954 
3955   if (Lex.getAPSIntVal().isSigned()) {
3956     MDSignedField Res = Result.A;
3957     if (ParseMDField(Loc, Name, Res))
3958       return true;
3959     Result.assign(Res);
3960     return false;
3961   }
3962 
3963   MDUnsignedField Res = Result.B;
3964   if (ParseMDField(Loc, Name, Res))
3965     return true;
3966   Result.assign(Res);
3967   return false;
3968 }
3969 
3970 template <>
3971 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3972   LocTy ValueLoc = Lex.getLoc();
3973   std::string S;
3974   if (ParseStringConstant(S))
3975     return true;
3976 
3977   if (!Result.AllowEmpty && S.empty())
3978     return Error(ValueLoc, "'" + Name + "' cannot be empty");
3979 
3980   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3981   return false;
3982 }
3983 
3984 template <>
3985 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3986   SmallVector<Metadata *, 4> MDs;
3987   if (ParseMDNodeVector(MDs))
3988     return true;
3989 
3990   Result.assign(std::move(MDs));
3991   return false;
3992 }
3993 
3994 template <>
3995 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3996                             ChecksumKindField &Result) {
3997   Optional<DIFile::ChecksumKind> CSKind =
3998       DIFile::getChecksumKind(Lex.getStrVal());
3999 
4000   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4001     return TokError(
4002         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4003 
4004   Result.assign(*CSKind);
4005   Lex.Lex();
4006   return false;
4007 }
4008 
4009 } // end namespace llvm
4010 
4011 template <class ParserTy>
4012 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4013   do {
4014     if (Lex.getKind() != lltok::LabelStr)
4015       return TokError("expected field label here");
4016 
4017     if (parseField())
4018       return true;
4019   } while (EatIfPresent(lltok::comma));
4020 
4021   return false;
4022 }
4023 
4024 template <class ParserTy>
4025 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4026   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4027   Lex.Lex();
4028 
4029   if (ParseToken(lltok::lparen, "expected '(' here"))
4030     return true;
4031   if (Lex.getKind() != lltok::rparen)
4032     if (ParseMDFieldsImplBody(parseField))
4033       return true;
4034 
4035   ClosingLoc = Lex.getLoc();
4036   return ParseToken(lltok::rparen, "expected ')' here");
4037 }
4038 
4039 template <class FieldTy>
4040 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4041   if (Result.Seen)
4042     return TokError("field '" + Name + "' cannot be specified more than once");
4043 
4044   LocTy Loc = Lex.getLoc();
4045   Lex.Lex();
4046   return ParseMDField(Loc, Name, Result);
4047 }
4048 
4049 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4050   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4051 
4052 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4053   if (Lex.getStrVal() == #CLASS)                                               \
4054     return Parse##CLASS(N, IsDistinct);
4055 #include "llvm/IR/Metadata.def"
4056 
4057   return TokError("expected metadata type");
4058 }
4059 
4060 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4061 #define NOP_FIELD(NAME, TYPE, INIT)
4062 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4063   if (!NAME.Seen)                                                              \
4064     return Error(ClosingLoc, "missing required field '" #NAME "'");
4065 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4066   if (Lex.getStrVal() == #NAME)                                                \
4067     return ParseMDField(#NAME, NAME);
4068 #define PARSE_MD_FIELDS()                                                      \
4069   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4070   do {                                                                         \
4071     LocTy ClosingLoc;                                                          \
4072     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4073       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4074       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4075     }, ClosingLoc))                                                            \
4076       return true;                                                             \
4077     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4078   } while (false)
4079 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4080   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4081 
4082 /// ParseDILocationFields:
4083 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
4084 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4085 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4086   OPTIONAL(line, LineField, );                                                 \
4087   OPTIONAL(column, ColumnField, );                                             \
4088   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4089   OPTIONAL(inlinedAt, MDField, );
4090   PARSE_MD_FIELDS();
4091 #undef VISIT_MD_FIELDS
4092 
4093   Result = GET_OR_DISTINCT(
4094       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
4095   return false;
4096 }
4097 
4098 /// ParseGenericDINode:
4099 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4100 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4101 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4102   REQUIRED(tag, DwarfTagField, );                                              \
4103   OPTIONAL(header, MDStringField, );                                           \
4104   OPTIONAL(operands, MDFieldList, );
4105   PARSE_MD_FIELDS();
4106 #undef VISIT_MD_FIELDS
4107 
4108   Result = GET_OR_DISTINCT(GenericDINode,
4109                            (Context, tag.Val, header.Val, operands.Val));
4110   return false;
4111 }
4112 
4113 /// ParseDISubrange:
4114 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4115 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4116 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4117 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4118   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4119   OPTIONAL(lowerBound, MDSignedField, );
4120   PARSE_MD_FIELDS();
4121 #undef VISIT_MD_FIELDS
4122 
4123   if (count.isMDSignedField())
4124     Result = GET_OR_DISTINCT(
4125         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4126   else if (count.isMDField())
4127     Result = GET_OR_DISTINCT(
4128         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4129   else
4130     return true;
4131 
4132   return false;
4133 }
4134 
4135 /// ParseDIEnumerator:
4136 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4137 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4138 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4139   REQUIRED(name, MDStringField, );                                             \
4140   REQUIRED(value, MDSignedOrUnsignedField, );                                  \
4141   OPTIONAL(isUnsigned, MDBoolField, (false));
4142   PARSE_MD_FIELDS();
4143 #undef VISIT_MD_FIELDS
4144 
4145   if (isUnsigned.Val && value.isMDSignedField())
4146     return TokError("unsigned enumerator with negative value");
4147 
4148   int64_t Value = value.isMDSignedField()
4149                       ? value.getMDSignedValue()
4150                       : static_cast<int64_t>(value.getMDUnsignedValue());
4151   Result =
4152       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4153 
4154   return false;
4155 }
4156 
4157 /// ParseDIBasicType:
4158 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
4159 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4160 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4161   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4162   OPTIONAL(name, MDStringField, );                                             \
4163   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4164   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4165   OPTIONAL(encoding, DwarfAttEncodingField, );
4166   PARSE_MD_FIELDS();
4167 #undef VISIT_MD_FIELDS
4168 
4169   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4170                                          align.Val, encoding.Val));
4171   return false;
4172 }
4173 
4174 /// ParseDIDerivedType:
4175 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4176 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4177 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4178 ///                      dwarfAddressSpace: 3)
4179 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4180 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4181   REQUIRED(tag, DwarfTagField, );                                              \
4182   OPTIONAL(name, MDStringField, );                                             \
4183   OPTIONAL(file, MDField, );                                                   \
4184   OPTIONAL(line, LineField, );                                                 \
4185   OPTIONAL(scope, MDField, );                                                  \
4186   REQUIRED(baseType, MDField, );                                               \
4187   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4188   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4189   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4190   OPTIONAL(flags, DIFlagField, );                                              \
4191   OPTIONAL(extraData, MDField, );                                              \
4192   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4193   PARSE_MD_FIELDS();
4194 #undef VISIT_MD_FIELDS
4195 
4196   Optional<unsigned> DWARFAddressSpace;
4197   if (dwarfAddressSpace.Val != UINT32_MAX)
4198     DWARFAddressSpace = dwarfAddressSpace.Val;
4199 
4200   Result = GET_OR_DISTINCT(DIDerivedType,
4201                            (Context, tag.Val, name.Val, file.Val, line.Val,
4202                             scope.Val, baseType.Val, size.Val, align.Val,
4203                             offset.Val, DWARFAddressSpace, flags.Val,
4204                             extraData.Val));
4205   return false;
4206 }
4207 
4208 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4209 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4210   REQUIRED(tag, DwarfTagField, );                                              \
4211   OPTIONAL(name, MDStringField, );                                             \
4212   OPTIONAL(file, MDField, );                                                   \
4213   OPTIONAL(line, LineField, );                                                 \
4214   OPTIONAL(scope, MDField, );                                                  \
4215   OPTIONAL(baseType, MDField, );                                               \
4216   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4217   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4218   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4219   OPTIONAL(flags, DIFlagField, );                                              \
4220   OPTIONAL(elements, MDField, );                                               \
4221   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4222   OPTIONAL(vtableHolder, MDField, );                                           \
4223   OPTIONAL(templateParams, MDField, );                                         \
4224   OPTIONAL(identifier, MDStringField, );                                       \
4225   OPTIONAL(discriminator, MDField, );
4226   PARSE_MD_FIELDS();
4227 #undef VISIT_MD_FIELDS
4228 
4229   // If this has an identifier try to build an ODR type.
4230   if (identifier.Val)
4231     if (auto *CT = DICompositeType::buildODRType(
4232             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4233             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4234             elements.Val, runtimeLang.Val, vtableHolder.Val,
4235             templateParams.Val, discriminator.Val)) {
4236       Result = CT;
4237       return false;
4238     }
4239 
4240   // Create a new node, and save it in the context if it belongs in the type
4241   // map.
4242   Result = GET_OR_DISTINCT(
4243       DICompositeType,
4244       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4245        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4246        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4247        discriminator.Val));
4248   return false;
4249 }
4250 
4251 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4252 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4253   OPTIONAL(flags, DIFlagField, );                                              \
4254   OPTIONAL(cc, DwarfCCField, );                                                \
4255   REQUIRED(types, MDField, );
4256   PARSE_MD_FIELDS();
4257 #undef VISIT_MD_FIELDS
4258 
4259   Result = GET_OR_DISTINCT(DISubroutineType,
4260                            (Context, flags.Val, cc.Val, types.Val));
4261   return false;
4262 }
4263 
4264 /// ParseDIFileType:
4265 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4266 ///                   checksumkind: CSK_MD5,
4267 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4268 ///                   source: "source file contents")
4269 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4270   // The default constructed value for checksumkind is required, but will never
4271   // be used, as the parser checks if the field was actually Seen before using
4272   // the Val.
4273 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4274   REQUIRED(filename, MDStringField, );                                         \
4275   REQUIRED(directory, MDStringField, );                                        \
4276   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4277   OPTIONAL(checksum, MDStringField, );                                         \
4278   OPTIONAL(source, MDStringField, );
4279   PARSE_MD_FIELDS();
4280 #undef VISIT_MD_FIELDS
4281 
4282   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4283   if (checksumkind.Seen && checksum.Seen)
4284     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4285   else if (checksumkind.Seen || checksum.Seen)
4286     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4287 
4288   Optional<MDString *> OptSource;
4289   if (source.Seen)
4290     OptSource = source.Val;
4291   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4292                                     OptChecksum, OptSource));
4293   return false;
4294 }
4295 
4296 /// ParseDICompileUnit:
4297 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4298 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4299 ///                      splitDebugFilename: "abc.debug",
4300 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4301 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4302 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4303   if (!IsDistinct)
4304     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4305 
4306 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4307   REQUIRED(language, DwarfLangField, );                                        \
4308   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4309   OPTIONAL(producer, MDStringField, );                                         \
4310   OPTIONAL(isOptimized, MDBoolField, );                                        \
4311   OPTIONAL(flags, MDStringField, );                                            \
4312   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4313   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4314   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4315   OPTIONAL(enums, MDField, );                                                  \
4316   OPTIONAL(retainedTypes, MDField, );                                          \
4317   OPTIONAL(globals, MDField, );                                                \
4318   OPTIONAL(imports, MDField, );                                                \
4319   OPTIONAL(macros, MDField, );                                                 \
4320   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4321   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4322   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4323   OPTIONAL(gnuPubnames, MDBoolField, = false);
4324   PARSE_MD_FIELDS();
4325 #undef VISIT_MD_FIELDS
4326 
4327   Result = DICompileUnit::getDistinct(
4328       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4329       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4330       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4331       splitDebugInlining.Val, debugInfoForProfiling.Val, gnuPubnames.Val);
4332   return false;
4333 }
4334 
4335 /// ParseDISubprogram:
4336 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4337 ///                     file: !1, line: 7, type: !2, isLocal: false,
4338 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4339 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4340 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4341 ///                     isOptimized: false, templateParams: !4, declaration: !5,
4342 ///                     variables: !6, thrownTypes: !7)
4343 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4344   auto Loc = Lex.getLoc();
4345 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4346   OPTIONAL(scope, MDField, );                                                  \
4347   OPTIONAL(name, MDStringField, );                                             \
4348   OPTIONAL(linkageName, MDStringField, );                                      \
4349   OPTIONAL(file, MDField, );                                                   \
4350   OPTIONAL(line, LineField, );                                                 \
4351   OPTIONAL(type, MDField, );                                                   \
4352   OPTIONAL(isLocal, MDBoolField, );                                            \
4353   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4354   OPTIONAL(scopeLine, LineField, );                                            \
4355   OPTIONAL(containingType, MDField, );                                         \
4356   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4357   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4358   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4359   OPTIONAL(flags, DIFlagField, );                                              \
4360   OPTIONAL(isOptimized, MDBoolField, );                                        \
4361   OPTIONAL(unit, MDField, );                                                   \
4362   OPTIONAL(templateParams, MDField, );                                         \
4363   OPTIONAL(declaration, MDField, );                                            \
4364   OPTIONAL(variables, MDField, );                                              \
4365   OPTIONAL(thrownTypes, MDField, );
4366   PARSE_MD_FIELDS();
4367 #undef VISIT_MD_FIELDS
4368 
4369   if (isDefinition.Val && !IsDistinct)
4370     return Lex.Error(
4371         Loc,
4372         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
4373 
4374   Result = GET_OR_DISTINCT(
4375       DISubprogram,
4376       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4377        type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val,
4378        containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val,
4379        flags.Val, isOptimized.Val, unit.Val, templateParams.Val,
4380        declaration.Val, variables.Val, thrownTypes.Val));
4381   return false;
4382 }
4383 
4384 /// ParseDILexicalBlock:
4385 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4386 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4387 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4388   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4389   OPTIONAL(file, MDField, );                                                   \
4390   OPTIONAL(line, LineField, );                                                 \
4391   OPTIONAL(column, ColumnField, );
4392   PARSE_MD_FIELDS();
4393 #undef VISIT_MD_FIELDS
4394 
4395   Result = GET_OR_DISTINCT(
4396       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4397   return false;
4398 }
4399 
4400 /// ParseDILexicalBlockFile:
4401 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4402 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4403 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4404   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4405   OPTIONAL(file, MDField, );                                                   \
4406   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4407   PARSE_MD_FIELDS();
4408 #undef VISIT_MD_FIELDS
4409 
4410   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4411                            (Context, scope.Val, file.Val, discriminator.Val));
4412   return false;
4413 }
4414 
4415 /// ParseDINamespace:
4416 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4417 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4418 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4419   REQUIRED(scope, MDField, );                                                  \
4420   OPTIONAL(name, MDStringField, );                                             \
4421   OPTIONAL(exportSymbols, MDBoolField, );
4422   PARSE_MD_FIELDS();
4423 #undef VISIT_MD_FIELDS
4424 
4425   Result = GET_OR_DISTINCT(DINamespace,
4426                            (Context, scope.Val, name.Val, exportSymbols.Val));
4427   return false;
4428 }
4429 
4430 /// ParseDIMacro:
4431 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4432 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4433 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4434   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4435   OPTIONAL(line, LineField, );                                                 \
4436   REQUIRED(name, MDStringField, );                                             \
4437   OPTIONAL(value, MDStringField, );
4438   PARSE_MD_FIELDS();
4439 #undef VISIT_MD_FIELDS
4440 
4441   Result = GET_OR_DISTINCT(DIMacro,
4442                            (Context, type.Val, line.Val, name.Val, value.Val));
4443   return false;
4444 }
4445 
4446 /// ParseDIMacroFile:
4447 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4448 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4449 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4450   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4451   OPTIONAL(line, LineField, );                                                 \
4452   REQUIRED(file, MDField, );                                                   \
4453   OPTIONAL(nodes, MDField, );
4454   PARSE_MD_FIELDS();
4455 #undef VISIT_MD_FIELDS
4456 
4457   Result = GET_OR_DISTINCT(DIMacroFile,
4458                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4459   return false;
4460 }
4461 
4462 /// ParseDIModule:
4463 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4464 ///                 includePath: "/usr/include", isysroot: "/")
4465 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4466 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4467   REQUIRED(scope, MDField, );                                                  \
4468   REQUIRED(name, MDStringField, );                                             \
4469   OPTIONAL(configMacros, MDStringField, );                                     \
4470   OPTIONAL(includePath, MDStringField, );                                      \
4471   OPTIONAL(isysroot, MDStringField, );
4472   PARSE_MD_FIELDS();
4473 #undef VISIT_MD_FIELDS
4474 
4475   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4476                            configMacros.Val, includePath.Val, isysroot.Val));
4477   return false;
4478 }
4479 
4480 /// ParseDITemplateTypeParameter:
4481 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4482 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4483 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4484   OPTIONAL(name, MDStringField, );                                             \
4485   REQUIRED(type, MDField, );
4486   PARSE_MD_FIELDS();
4487 #undef VISIT_MD_FIELDS
4488 
4489   Result =
4490       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4491   return false;
4492 }
4493 
4494 /// ParseDITemplateValueParameter:
4495 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4496 ///                                 name: "V", type: !1, value: i32 7)
4497 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4498 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4499   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4500   OPTIONAL(name, MDStringField, );                                             \
4501   OPTIONAL(type, MDField, );                                                   \
4502   REQUIRED(value, MDField, );
4503   PARSE_MD_FIELDS();
4504 #undef VISIT_MD_FIELDS
4505 
4506   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4507                            (Context, tag.Val, name.Val, type.Val, value.Val));
4508   return false;
4509 }
4510 
4511 /// ParseDIGlobalVariable:
4512 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4513 ///                         file: !1, line: 7, type: !2, isLocal: false,
4514 ///                         isDefinition: true, declaration: !3, align: 8)
4515 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4516 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4517   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4518   OPTIONAL(scope, MDField, );                                                  \
4519   OPTIONAL(linkageName, MDStringField, );                                      \
4520   OPTIONAL(file, MDField, );                                                   \
4521   OPTIONAL(line, LineField, );                                                 \
4522   OPTIONAL(type, MDField, );                                                   \
4523   OPTIONAL(isLocal, MDBoolField, );                                            \
4524   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4525   OPTIONAL(declaration, MDField, );                                            \
4526   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4527   PARSE_MD_FIELDS();
4528 #undef VISIT_MD_FIELDS
4529 
4530   Result = GET_OR_DISTINCT(DIGlobalVariable,
4531                            (Context, scope.Val, name.Val, linkageName.Val,
4532                             file.Val, line.Val, type.Val, isLocal.Val,
4533                             isDefinition.Val, declaration.Val, align.Val));
4534   return false;
4535 }
4536 
4537 /// ParseDILocalVariable:
4538 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4539 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4540 ///                        align: 8)
4541 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4542 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4543 ///                        align: 8)
4544 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4545 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4546   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4547   OPTIONAL(name, MDStringField, );                                             \
4548   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4549   OPTIONAL(file, MDField, );                                                   \
4550   OPTIONAL(line, LineField, );                                                 \
4551   OPTIONAL(type, MDField, );                                                   \
4552   OPTIONAL(flags, DIFlagField, );                                              \
4553   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4554   PARSE_MD_FIELDS();
4555 #undef VISIT_MD_FIELDS
4556 
4557   Result = GET_OR_DISTINCT(DILocalVariable,
4558                            (Context, scope.Val, name.Val, file.Val, line.Val,
4559                             type.Val, arg.Val, flags.Val, align.Val));
4560   return false;
4561 }
4562 
4563 /// ParseDIExpression:
4564 ///   ::= !DIExpression(0, 7, -1)
4565 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4566   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4567   Lex.Lex();
4568 
4569   if (ParseToken(lltok::lparen, "expected '(' here"))
4570     return true;
4571 
4572   SmallVector<uint64_t, 8> Elements;
4573   if (Lex.getKind() != lltok::rparen)
4574     do {
4575       if (Lex.getKind() == lltok::DwarfOp) {
4576         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4577           Lex.Lex();
4578           Elements.push_back(Op);
4579           continue;
4580         }
4581         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4582       }
4583 
4584       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4585         return TokError("expected unsigned integer");
4586 
4587       auto &U = Lex.getAPSIntVal();
4588       if (U.ugt(UINT64_MAX))
4589         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4590       Elements.push_back(U.getZExtValue());
4591       Lex.Lex();
4592     } while (EatIfPresent(lltok::comma));
4593 
4594   if (ParseToken(lltok::rparen, "expected ')' here"))
4595     return true;
4596 
4597   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4598   return false;
4599 }
4600 
4601 /// ParseDIGlobalVariableExpression:
4602 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4603 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4604                                                bool IsDistinct) {
4605 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4606   REQUIRED(var, MDField, );                                                    \
4607   REQUIRED(expr, MDField, );
4608   PARSE_MD_FIELDS();
4609 #undef VISIT_MD_FIELDS
4610 
4611   Result =
4612       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4613   return false;
4614 }
4615 
4616 /// ParseDIObjCProperty:
4617 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4618 ///                       getter: "getFoo", attributes: 7, type: !2)
4619 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4620 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4621   OPTIONAL(name, MDStringField, );                                             \
4622   OPTIONAL(file, MDField, );                                                   \
4623   OPTIONAL(line, LineField, );                                                 \
4624   OPTIONAL(setter, MDStringField, );                                           \
4625   OPTIONAL(getter, MDStringField, );                                           \
4626   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4627   OPTIONAL(type, MDField, );
4628   PARSE_MD_FIELDS();
4629 #undef VISIT_MD_FIELDS
4630 
4631   Result = GET_OR_DISTINCT(DIObjCProperty,
4632                            (Context, name.Val, file.Val, line.Val, setter.Val,
4633                             getter.Val, attributes.Val, type.Val));
4634   return false;
4635 }
4636 
4637 /// ParseDIImportedEntity:
4638 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4639 ///                         line: 7, name: "foo")
4640 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4641 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4642   REQUIRED(tag, DwarfTagField, );                                              \
4643   REQUIRED(scope, MDField, );                                                  \
4644   OPTIONAL(entity, MDField, );                                                 \
4645   OPTIONAL(file, MDField, );                                                   \
4646   OPTIONAL(line, LineField, );                                                 \
4647   OPTIONAL(name, MDStringField, );
4648   PARSE_MD_FIELDS();
4649 #undef VISIT_MD_FIELDS
4650 
4651   Result = GET_OR_DISTINCT(
4652       DIImportedEntity,
4653       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4654   return false;
4655 }
4656 
4657 #undef PARSE_MD_FIELD
4658 #undef NOP_FIELD
4659 #undef REQUIRE_FIELD
4660 #undef DECLARE_FIELD
4661 
4662 /// ParseMetadataAsValue
4663 ///  ::= metadata i32 %local
4664 ///  ::= metadata i32 @global
4665 ///  ::= metadata i32 7
4666 ///  ::= metadata !0
4667 ///  ::= metadata !{...}
4668 ///  ::= metadata !"string"
4669 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4670   // Note: the type 'metadata' has already been parsed.
4671   Metadata *MD;
4672   if (ParseMetadata(MD, &PFS))
4673     return true;
4674 
4675   V = MetadataAsValue::get(Context, MD);
4676   return false;
4677 }
4678 
4679 /// ParseValueAsMetadata
4680 ///  ::= i32 %local
4681 ///  ::= i32 @global
4682 ///  ::= i32 7
4683 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4684                                     PerFunctionState *PFS) {
4685   Type *Ty;
4686   LocTy Loc;
4687   if (ParseType(Ty, TypeMsg, Loc))
4688     return true;
4689   if (Ty->isMetadataTy())
4690     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4691 
4692   Value *V;
4693   if (ParseValue(Ty, V, PFS))
4694     return true;
4695 
4696   MD = ValueAsMetadata::get(V);
4697   return false;
4698 }
4699 
4700 /// ParseMetadata
4701 ///  ::= i32 %local
4702 ///  ::= i32 @global
4703 ///  ::= i32 7
4704 ///  ::= !42
4705 ///  ::= !{...}
4706 ///  ::= !"string"
4707 ///  ::= !DILocation(...)
4708 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4709   if (Lex.getKind() == lltok::MetadataVar) {
4710     MDNode *N;
4711     if (ParseSpecializedMDNode(N))
4712       return true;
4713     MD = N;
4714     return false;
4715   }
4716 
4717   // ValueAsMetadata:
4718   // <type> <value>
4719   if (Lex.getKind() != lltok::exclaim)
4720     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4721 
4722   // '!'.
4723   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4724   Lex.Lex();
4725 
4726   // MDString:
4727   //   ::= '!' STRINGCONSTANT
4728   if (Lex.getKind() == lltok::StringConstant) {
4729     MDString *S;
4730     if (ParseMDString(S))
4731       return true;
4732     MD = S;
4733     return false;
4734   }
4735 
4736   // MDNode:
4737   // !{ ... }
4738   // !7
4739   MDNode *N;
4740   if (ParseMDNodeTail(N))
4741     return true;
4742   MD = N;
4743   return false;
4744 }
4745 
4746 //===----------------------------------------------------------------------===//
4747 // Function Parsing.
4748 //===----------------------------------------------------------------------===//
4749 
4750 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4751                                    PerFunctionState *PFS, bool IsCall) {
4752   if (Ty->isFunctionTy())
4753     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4754 
4755   switch (ID.Kind) {
4756   case ValID::t_LocalID:
4757     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4758     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
4759     return V == nullptr;
4760   case ValID::t_LocalName:
4761     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4762     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
4763     return V == nullptr;
4764   case ValID::t_InlineAsm: {
4765     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4766       return Error(ID.Loc, "invalid type for inline asm constraint string");
4767     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4768                        (ID.UIntVal >> 1) & 1,
4769                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4770     return false;
4771   }
4772   case ValID::t_GlobalName:
4773     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4774     return V == nullptr;
4775   case ValID::t_GlobalID:
4776     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4777     return V == nullptr;
4778   case ValID::t_APSInt:
4779     if (!Ty->isIntegerTy())
4780       return Error(ID.Loc, "integer constant must have integer type");
4781     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4782     V = ConstantInt::get(Context, ID.APSIntVal);
4783     return false;
4784   case ValID::t_APFloat:
4785     if (!Ty->isFloatingPointTy() ||
4786         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4787       return Error(ID.Loc, "floating point constant invalid for type");
4788 
4789     // The lexer has no type info, so builds all half, float, and double FP
4790     // constants as double.  Fix this here.  Long double does not need this.
4791     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
4792       bool Ignored;
4793       if (Ty->isHalfTy())
4794         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
4795                               &Ignored);
4796       else if (Ty->isFloatTy())
4797         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
4798                               &Ignored);
4799     }
4800     V = ConstantFP::get(Context, ID.APFloatVal);
4801 
4802     if (V->getType() != Ty)
4803       return Error(ID.Loc, "floating point constant does not have type '" +
4804                    getTypeString(Ty) + "'");
4805 
4806     return false;
4807   case ValID::t_Null:
4808     if (!Ty->isPointerTy())
4809       return Error(ID.Loc, "null must be a pointer type");
4810     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4811     return false;
4812   case ValID::t_Undef:
4813     // FIXME: LabelTy should not be a first-class type.
4814     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4815       return Error(ID.Loc, "invalid type for undef constant");
4816     V = UndefValue::get(Ty);
4817     return false;
4818   case ValID::t_EmptyArray:
4819     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4820       return Error(ID.Loc, "invalid empty array initializer");
4821     V = UndefValue::get(Ty);
4822     return false;
4823   case ValID::t_Zero:
4824     // FIXME: LabelTy should not be a first-class type.
4825     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4826       return Error(ID.Loc, "invalid type for null constant");
4827     V = Constant::getNullValue(Ty);
4828     return false;
4829   case ValID::t_None:
4830     if (!Ty->isTokenTy())
4831       return Error(ID.Loc, "invalid type for none constant");
4832     V = Constant::getNullValue(Ty);
4833     return false;
4834   case ValID::t_Constant:
4835     if (ID.ConstantVal->getType() != Ty)
4836       return Error(ID.Loc, "constant expression type mismatch");
4837 
4838     V = ID.ConstantVal;
4839     return false;
4840   case ValID::t_ConstantStruct:
4841   case ValID::t_PackedConstantStruct:
4842     if (StructType *ST = dyn_cast<StructType>(Ty)) {
4843       if (ST->getNumElements() != ID.UIntVal)
4844         return Error(ID.Loc,
4845                      "initializer with struct type has wrong # elements");
4846       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4847         return Error(ID.Loc, "packed'ness of initializer and type don't match");
4848 
4849       // Verify that the elements are compatible with the structtype.
4850       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4851         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4852           return Error(ID.Loc, "element " + Twine(i) +
4853                     " of struct initializer doesn't match struct element type");
4854 
4855       V = ConstantStruct::get(
4856           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4857     } else
4858       return Error(ID.Loc, "constant expression type mismatch");
4859     return false;
4860   }
4861   llvm_unreachable("Invalid ValID");
4862 }
4863 
4864 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4865   C = nullptr;
4866   ValID ID;
4867   auto Loc = Lex.getLoc();
4868   if (ParseValID(ID, /*PFS=*/nullptr))
4869     return true;
4870   switch (ID.Kind) {
4871   case ValID::t_APSInt:
4872   case ValID::t_APFloat:
4873   case ValID::t_Undef:
4874   case ValID::t_Constant:
4875   case ValID::t_ConstantStruct:
4876   case ValID::t_PackedConstantStruct: {
4877     Value *V;
4878     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
4879       return true;
4880     assert(isa<Constant>(V) && "Expected a constant value");
4881     C = cast<Constant>(V);
4882     return false;
4883   }
4884   case ValID::t_Null:
4885     C = Constant::getNullValue(Ty);
4886     return false;
4887   default:
4888     return Error(Loc, "expected a constant value");
4889   }
4890 }
4891 
4892 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4893   V = nullptr;
4894   ValID ID;
4895   return ParseValID(ID, PFS) ||
4896          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
4897 }
4898 
4899 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4900   Type *Ty = nullptr;
4901   return ParseType(Ty) ||
4902          ParseValue(Ty, V, PFS);
4903 }
4904 
4905 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4906                                       PerFunctionState &PFS) {
4907   Value *V;
4908   Loc = Lex.getLoc();
4909   if (ParseTypeAndValue(V, PFS)) return true;
4910   if (!isa<BasicBlock>(V))
4911     return Error(Loc, "expected a basic block");
4912   BB = cast<BasicBlock>(V);
4913   return false;
4914 }
4915 
4916 /// FunctionHeader
4917 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
4918 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
4919 ///       '(' ArgList ')' OptFuncAttrs OptSection OptionalAlign OptGC
4920 ///       OptionalPrefix OptionalPrologue OptPersonalityFn
4921 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4922   // Parse the linkage.
4923   LocTy LinkageLoc = Lex.getLoc();
4924   unsigned Linkage;
4925   unsigned Visibility;
4926   unsigned DLLStorageClass;
4927   bool DSOLocal;
4928   AttrBuilder RetAttrs;
4929   unsigned CC;
4930   bool HasLinkage;
4931   Type *RetType = nullptr;
4932   LocTy RetTypeLoc = Lex.getLoc();
4933   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
4934                            DSOLocal) ||
4935       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
4936       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4937     return true;
4938 
4939   // Verify that the linkage is ok.
4940   switch ((GlobalValue::LinkageTypes)Linkage) {
4941   case GlobalValue::ExternalLinkage:
4942     break; // always ok.
4943   case GlobalValue::ExternalWeakLinkage:
4944     if (isDefine)
4945       return Error(LinkageLoc, "invalid linkage for function definition");
4946     break;
4947   case GlobalValue::PrivateLinkage:
4948   case GlobalValue::InternalLinkage:
4949   case GlobalValue::AvailableExternallyLinkage:
4950   case GlobalValue::LinkOnceAnyLinkage:
4951   case GlobalValue::LinkOnceODRLinkage:
4952   case GlobalValue::WeakAnyLinkage:
4953   case GlobalValue::WeakODRLinkage:
4954     if (!isDefine)
4955       return Error(LinkageLoc, "invalid linkage for function declaration");
4956     break;
4957   case GlobalValue::AppendingLinkage:
4958   case GlobalValue::CommonLinkage:
4959     return Error(LinkageLoc, "invalid function linkage type");
4960   }
4961 
4962   if (!isValidVisibilityForLinkage(Visibility, Linkage))
4963     return Error(LinkageLoc,
4964                  "symbol with local linkage must have default visibility");
4965 
4966   if (!FunctionType::isValidReturnType(RetType))
4967     return Error(RetTypeLoc, "invalid function return type");
4968 
4969   LocTy NameLoc = Lex.getLoc();
4970 
4971   std::string FunctionName;
4972   if (Lex.getKind() == lltok::GlobalVar) {
4973     FunctionName = Lex.getStrVal();
4974   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
4975     unsigned NameID = Lex.getUIntVal();
4976 
4977     if (NameID != NumberedVals.size())
4978       return TokError("function expected to be numbered '%" +
4979                       Twine(NumberedVals.size()) + "'");
4980   } else {
4981     return TokError("expected function name");
4982   }
4983 
4984   Lex.Lex();
4985 
4986   if (Lex.getKind() != lltok::lparen)
4987     return TokError("expected '(' in function argument list");
4988 
4989   SmallVector<ArgInfo, 8> ArgList;
4990   bool isVarArg;
4991   AttrBuilder FuncAttrs;
4992   std::vector<unsigned> FwdRefAttrGrps;
4993   LocTy BuiltinLoc;
4994   std::string Section;
4995   unsigned Alignment;
4996   std::string GC;
4997   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4998   Constant *Prefix = nullptr;
4999   Constant *Prologue = nullptr;
5000   Constant *PersonalityFn = nullptr;
5001   Comdat *C;
5002 
5003   if (ParseArgumentList(ArgList, isVarArg) ||
5004       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5005       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5006                                  BuiltinLoc) ||
5007       (EatIfPresent(lltok::kw_section) &&
5008        ParseStringConstant(Section)) ||
5009       parseOptionalComdat(FunctionName, C) ||
5010       ParseOptionalAlignment(Alignment) ||
5011       (EatIfPresent(lltok::kw_gc) &&
5012        ParseStringConstant(GC)) ||
5013       (EatIfPresent(lltok::kw_prefix) &&
5014        ParseGlobalTypeAndValue(Prefix)) ||
5015       (EatIfPresent(lltok::kw_prologue) &&
5016        ParseGlobalTypeAndValue(Prologue)) ||
5017       (EatIfPresent(lltok::kw_personality) &&
5018        ParseGlobalTypeAndValue(PersonalityFn)))
5019     return true;
5020 
5021   if (FuncAttrs.contains(Attribute::Builtin))
5022     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5023 
5024   // If the alignment was parsed as an attribute, move to the alignment field.
5025   if (FuncAttrs.hasAlignmentAttr()) {
5026     Alignment = FuncAttrs.getAlignment();
5027     FuncAttrs.removeAttribute(Attribute::Alignment);
5028   }
5029 
5030   // Okay, if we got here, the function is syntactically valid.  Convert types
5031   // and do semantic checks.
5032   std::vector<Type*> ParamTypeList;
5033   SmallVector<AttributeSet, 8> Attrs;
5034 
5035   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5036     ParamTypeList.push_back(ArgList[i].Ty);
5037     Attrs.push_back(ArgList[i].Attrs);
5038   }
5039 
5040   AttributeList PAL =
5041       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5042                          AttributeSet::get(Context, RetAttrs), Attrs);
5043 
5044   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5045     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5046 
5047   FunctionType *FT =
5048     FunctionType::get(RetType, ParamTypeList, isVarArg);
5049   PointerType *PFT = PointerType::getUnqual(FT);
5050 
5051   Fn = nullptr;
5052   if (!FunctionName.empty()) {
5053     // If this was a definition of a forward reference, remove the definition
5054     // from the forward reference table and fill in the forward ref.
5055     auto FRVI = ForwardRefVals.find(FunctionName);
5056     if (FRVI != ForwardRefVals.end()) {
5057       Fn = M->getFunction(FunctionName);
5058       if (!Fn)
5059         return Error(FRVI->second.second, "invalid forward reference to "
5060                      "function as global value!");
5061       if (Fn->getType() != PFT)
5062         return Error(FRVI->second.second, "invalid forward reference to "
5063                      "function '" + FunctionName + "' with wrong type!");
5064 
5065       ForwardRefVals.erase(FRVI);
5066     } else if ((Fn = M->getFunction(FunctionName))) {
5067       // Reject redefinitions.
5068       return Error(NameLoc, "invalid redefinition of function '" +
5069                    FunctionName + "'");
5070     } else if (M->getNamedValue(FunctionName)) {
5071       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5072     }
5073 
5074   } else {
5075     // If this is a definition of a forward referenced function, make sure the
5076     // types agree.
5077     auto I = ForwardRefValIDs.find(NumberedVals.size());
5078     if (I != ForwardRefValIDs.end()) {
5079       Fn = cast<Function>(I->second.first);
5080       if (Fn->getType() != PFT)
5081         return Error(NameLoc, "type of definition and forward reference of '@" +
5082                      Twine(NumberedVals.size()) + "' disagree");
5083       ForwardRefValIDs.erase(I);
5084     }
5085   }
5086 
5087   if (!Fn)
5088     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
5089   else // Move the forward-reference to the correct spot in the module.
5090     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5091 
5092   if (FunctionName.empty())
5093     NumberedVals.push_back(Fn);
5094 
5095   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5096   maybeSetDSOLocal(DSOLocal, *Fn);
5097   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5098   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5099   Fn->setCallingConv(CC);
5100   Fn->setAttributes(PAL);
5101   Fn->setUnnamedAddr(UnnamedAddr);
5102   Fn->setAlignment(Alignment);
5103   Fn->setSection(Section);
5104   Fn->setComdat(C);
5105   Fn->setPersonalityFn(PersonalityFn);
5106   if (!GC.empty()) Fn->setGC(GC);
5107   Fn->setPrefixData(Prefix);
5108   Fn->setPrologueData(Prologue);
5109   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5110 
5111   // Add all of the arguments we parsed to the function.
5112   Function::arg_iterator ArgIt = Fn->arg_begin();
5113   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5114     // If the argument has a name, insert it into the argument symbol table.
5115     if (ArgList[i].Name.empty()) continue;
5116 
5117     // Set the name, if it conflicted, it will be auto-renamed.
5118     ArgIt->setName(ArgList[i].Name);
5119 
5120     if (ArgIt->getName() != ArgList[i].Name)
5121       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5122                    ArgList[i].Name + "'");
5123   }
5124 
5125   if (isDefine)
5126     return false;
5127 
5128   // Check the declaration has no block address forward references.
5129   ValID ID;
5130   if (FunctionName.empty()) {
5131     ID.Kind = ValID::t_GlobalID;
5132     ID.UIntVal = NumberedVals.size() - 1;
5133   } else {
5134     ID.Kind = ValID::t_GlobalName;
5135     ID.StrVal = FunctionName;
5136   }
5137   auto Blocks = ForwardRefBlockAddresses.find(ID);
5138   if (Blocks != ForwardRefBlockAddresses.end())
5139     return Error(Blocks->first.Loc,
5140                  "cannot take blockaddress inside a declaration");
5141   return false;
5142 }
5143 
5144 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5145   ValID ID;
5146   if (FunctionNumber == -1) {
5147     ID.Kind = ValID::t_GlobalName;
5148     ID.StrVal = F.getName();
5149   } else {
5150     ID.Kind = ValID::t_GlobalID;
5151     ID.UIntVal = FunctionNumber;
5152   }
5153 
5154   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5155   if (Blocks == P.ForwardRefBlockAddresses.end())
5156     return false;
5157 
5158   for (const auto &I : Blocks->second) {
5159     const ValID &BBID = I.first;
5160     GlobalValue *GV = I.second;
5161 
5162     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5163            "Expected local id or name");
5164     BasicBlock *BB;
5165     if (BBID.Kind == ValID::t_LocalName)
5166       BB = GetBB(BBID.StrVal, BBID.Loc);
5167     else
5168       BB = GetBB(BBID.UIntVal, BBID.Loc);
5169     if (!BB)
5170       return P.Error(BBID.Loc, "referenced value is not a basic block");
5171 
5172     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5173     GV->eraseFromParent();
5174   }
5175 
5176   P.ForwardRefBlockAddresses.erase(Blocks);
5177   return false;
5178 }
5179 
5180 /// ParseFunctionBody
5181 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5182 bool LLParser::ParseFunctionBody(Function &Fn) {
5183   if (Lex.getKind() != lltok::lbrace)
5184     return TokError("expected '{' in function body");
5185   Lex.Lex();  // eat the {.
5186 
5187   int FunctionNumber = -1;
5188   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5189 
5190   PerFunctionState PFS(*this, Fn, FunctionNumber);
5191 
5192   // Resolve block addresses and allow basic blocks to be forward-declared
5193   // within this function.
5194   if (PFS.resolveForwardRefBlockAddresses())
5195     return true;
5196   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5197 
5198   // We need at least one basic block.
5199   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5200     return TokError("function body requires at least one basic block");
5201 
5202   while (Lex.getKind() != lltok::rbrace &&
5203          Lex.getKind() != lltok::kw_uselistorder)
5204     if (ParseBasicBlock(PFS)) return true;
5205 
5206   while (Lex.getKind() != lltok::rbrace)
5207     if (ParseUseListOrder(&PFS))
5208       return true;
5209 
5210   // Eat the }.
5211   Lex.Lex();
5212 
5213   // Verify function is ok.
5214   return PFS.FinishFunction();
5215 }
5216 
5217 /// ParseBasicBlock
5218 ///   ::= LabelStr? Instruction*
5219 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5220   // If this basic block starts out with a name, remember it.
5221   std::string Name;
5222   LocTy NameLoc = Lex.getLoc();
5223   if (Lex.getKind() == lltok::LabelStr) {
5224     Name = Lex.getStrVal();
5225     Lex.Lex();
5226   }
5227 
5228   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
5229   if (!BB)
5230     return Error(NameLoc,
5231                  "unable to create block named '" + Name + "'");
5232 
5233   std::string NameStr;
5234 
5235   // Parse the instructions in this block until we get a terminator.
5236   Instruction *Inst;
5237   do {
5238     // This instruction may have three possibilities for a name: a) none
5239     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5240     LocTy NameLoc = Lex.getLoc();
5241     int NameID = -1;
5242     NameStr = "";
5243 
5244     if (Lex.getKind() == lltok::LocalVarID) {
5245       NameID = Lex.getUIntVal();
5246       Lex.Lex();
5247       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5248         return true;
5249     } else if (Lex.getKind() == lltok::LocalVar) {
5250       NameStr = Lex.getStrVal();
5251       Lex.Lex();
5252       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5253         return true;
5254     }
5255 
5256     switch (ParseInstruction(Inst, BB, PFS)) {
5257     default: llvm_unreachable("Unknown ParseInstruction result!");
5258     case InstError: return true;
5259     case InstNormal:
5260       BB->getInstList().push_back(Inst);
5261 
5262       // With a normal result, we check to see if the instruction is followed by
5263       // a comma and metadata.
5264       if (EatIfPresent(lltok::comma))
5265         if (ParseInstructionMetadata(*Inst))
5266           return true;
5267       break;
5268     case InstExtraComma:
5269       BB->getInstList().push_back(Inst);
5270 
5271       // If the instruction parser ate an extra comma at the end of it, it
5272       // *must* be followed by metadata.
5273       if (ParseInstructionMetadata(*Inst))
5274         return true;
5275       break;
5276     }
5277 
5278     // Set the name on the instruction.
5279     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5280   } while (!isa<TerminatorInst>(Inst));
5281 
5282   return false;
5283 }
5284 
5285 //===----------------------------------------------------------------------===//
5286 // Instruction Parsing.
5287 //===----------------------------------------------------------------------===//
5288 
5289 /// ParseInstruction - Parse one of the many different instructions.
5290 ///
5291 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5292                                PerFunctionState &PFS) {
5293   lltok::Kind Token = Lex.getKind();
5294   if (Token == lltok::Eof)
5295     return TokError("found end of file when expecting more instructions");
5296   LocTy Loc = Lex.getLoc();
5297   unsigned KeywordVal = Lex.getUIntVal();
5298   Lex.Lex();  // Eat the keyword.
5299 
5300   switch (Token) {
5301   default:                    return Error(Loc, "expected instruction opcode");
5302   // Terminator Instructions.
5303   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5304   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5305   case lltok::kw_br:          return ParseBr(Inst, PFS);
5306   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5307   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5308   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5309   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5310   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5311   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5312   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5313   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5314   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5315   // Binary Operators.
5316   case lltok::kw_add:
5317   case lltok::kw_sub:
5318   case lltok::kw_mul:
5319   case lltok::kw_shl: {
5320     bool NUW = EatIfPresent(lltok::kw_nuw);
5321     bool NSW = EatIfPresent(lltok::kw_nsw);
5322     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5323 
5324     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5325 
5326     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5327     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5328     return false;
5329   }
5330   case lltok::kw_fadd:
5331   case lltok::kw_fsub:
5332   case lltok::kw_fmul:
5333   case lltok::kw_fdiv:
5334   case lltok::kw_frem: {
5335     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5336     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5337     if (Res != 0)
5338       return Res;
5339     if (FMF.any())
5340       Inst->setFastMathFlags(FMF);
5341     return 0;
5342   }
5343 
5344   case lltok::kw_sdiv:
5345   case lltok::kw_udiv:
5346   case lltok::kw_lshr:
5347   case lltok::kw_ashr: {
5348     bool Exact = EatIfPresent(lltok::kw_exact);
5349 
5350     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5351     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5352     return false;
5353   }
5354 
5355   case lltok::kw_urem:
5356   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5357   case lltok::kw_and:
5358   case lltok::kw_or:
5359   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5360   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5361   case lltok::kw_fcmp: {
5362     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5363     int Res = ParseCompare(Inst, PFS, KeywordVal);
5364     if (Res != 0)
5365       return Res;
5366     if (FMF.any())
5367       Inst->setFastMathFlags(FMF);
5368     return 0;
5369   }
5370 
5371   // Casts.
5372   case lltok::kw_trunc:
5373   case lltok::kw_zext:
5374   case lltok::kw_sext:
5375   case lltok::kw_fptrunc:
5376   case lltok::kw_fpext:
5377   case lltok::kw_bitcast:
5378   case lltok::kw_addrspacecast:
5379   case lltok::kw_uitofp:
5380   case lltok::kw_sitofp:
5381   case lltok::kw_fptoui:
5382   case lltok::kw_fptosi:
5383   case lltok::kw_inttoptr:
5384   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5385   // Other.
5386   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5387   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5388   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5389   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5390   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5391   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5392   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5393   // Call.
5394   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5395   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5396   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5397   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5398   // Memory.
5399   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5400   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5401   case lltok::kw_store:          return ParseStore(Inst, PFS);
5402   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5403   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5404   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5405   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5406   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5407   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5408   }
5409 }
5410 
5411 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5412 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5413   if (Opc == Instruction::FCmp) {
5414     switch (Lex.getKind()) {
5415     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5416     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5417     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5418     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5419     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5420     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5421     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5422     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5423     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5424     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5425     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5426     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5427     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5428     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5429     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5430     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5431     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5432     }
5433   } else {
5434     switch (Lex.getKind()) {
5435     default: return TokError("expected icmp predicate (e.g. 'eq')");
5436     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5437     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5438     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5439     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5440     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5441     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5442     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5443     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5444     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5445     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5446     }
5447   }
5448   Lex.Lex();
5449   return false;
5450 }
5451 
5452 //===----------------------------------------------------------------------===//
5453 // Terminator Instructions.
5454 //===----------------------------------------------------------------------===//
5455 
5456 /// ParseRet - Parse a return instruction.
5457 ///   ::= 'ret' void (',' !dbg, !1)*
5458 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5459 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5460                         PerFunctionState &PFS) {
5461   SMLoc TypeLoc = Lex.getLoc();
5462   Type *Ty = nullptr;
5463   if (ParseType(Ty, true /*void allowed*/)) return true;
5464 
5465   Type *ResType = PFS.getFunction().getReturnType();
5466 
5467   if (Ty->isVoidTy()) {
5468     if (!ResType->isVoidTy())
5469       return Error(TypeLoc, "value doesn't match function result type '" +
5470                    getTypeString(ResType) + "'");
5471 
5472     Inst = ReturnInst::Create(Context);
5473     return false;
5474   }
5475 
5476   Value *RV;
5477   if (ParseValue(Ty, RV, PFS)) return true;
5478 
5479   if (ResType != RV->getType())
5480     return Error(TypeLoc, "value doesn't match function result type '" +
5481                  getTypeString(ResType) + "'");
5482 
5483   Inst = ReturnInst::Create(Context, RV);
5484   return false;
5485 }
5486 
5487 /// ParseBr
5488 ///   ::= 'br' TypeAndValue
5489 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5490 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5491   LocTy Loc, Loc2;
5492   Value *Op0;
5493   BasicBlock *Op1, *Op2;
5494   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5495 
5496   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5497     Inst = BranchInst::Create(BB);
5498     return false;
5499   }
5500 
5501   if (Op0->getType() != Type::getInt1Ty(Context))
5502     return Error(Loc, "branch condition must have 'i1' type");
5503 
5504   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5505       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5506       ParseToken(lltok::comma, "expected ',' after true destination") ||
5507       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5508     return true;
5509 
5510   Inst = BranchInst::Create(Op1, Op2, Op0);
5511   return false;
5512 }
5513 
5514 /// ParseSwitch
5515 ///  Instruction
5516 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5517 ///  JumpTable
5518 ///    ::= (TypeAndValue ',' TypeAndValue)*
5519 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5520   LocTy CondLoc, BBLoc;
5521   Value *Cond;
5522   BasicBlock *DefaultBB;
5523   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5524       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5525       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5526       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5527     return true;
5528 
5529   if (!Cond->getType()->isIntegerTy())
5530     return Error(CondLoc, "switch condition must have integer type");
5531 
5532   // Parse the jump table pairs.
5533   SmallPtrSet<Value*, 32> SeenCases;
5534   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5535   while (Lex.getKind() != lltok::rsquare) {
5536     Value *Constant;
5537     BasicBlock *DestBB;
5538 
5539     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5540         ParseToken(lltok::comma, "expected ',' after case value") ||
5541         ParseTypeAndBasicBlock(DestBB, PFS))
5542       return true;
5543 
5544     if (!SeenCases.insert(Constant).second)
5545       return Error(CondLoc, "duplicate case value in switch");
5546     if (!isa<ConstantInt>(Constant))
5547       return Error(CondLoc, "case value is not a constant integer");
5548 
5549     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5550   }
5551 
5552   Lex.Lex();  // Eat the ']'.
5553 
5554   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5555   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5556     SI->addCase(Table[i].first, Table[i].second);
5557   Inst = SI;
5558   return false;
5559 }
5560 
5561 /// ParseIndirectBr
5562 ///  Instruction
5563 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5564 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5565   LocTy AddrLoc;
5566   Value *Address;
5567   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5568       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5569       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5570     return true;
5571 
5572   if (!Address->getType()->isPointerTy())
5573     return Error(AddrLoc, "indirectbr address must have pointer type");
5574 
5575   // Parse the destination list.
5576   SmallVector<BasicBlock*, 16> DestList;
5577 
5578   if (Lex.getKind() != lltok::rsquare) {
5579     BasicBlock *DestBB;
5580     if (ParseTypeAndBasicBlock(DestBB, PFS))
5581       return true;
5582     DestList.push_back(DestBB);
5583 
5584     while (EatIfPresent(lltok::comma)) {
5585       if (ParseTypeAndBasicBlock(DestBB, PFS))
5586         return true;
5587       DestList.push_back(DestBB);
5588     }
5589   }
5590 
5591   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5592     return true;
5593 
5594   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5595   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5596     IBI->addDestination(DestList[i]);
5597   Inst = IBI;
5598   return false;
5599 }
5600 
5601 /// ParseInvoke
5602 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5603 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5604 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5605   LocTy CallLoc = Lex.getLoc();
5606   AttrBuilder RetAttrs, FnAttrs;
5607   std::vector<unsigned> FwdRefAttrGrps;
5608   LocTy NoBuiltinLoc;
5609   unsigned CC;
5610   Type *RetType = nullptr;
5611   LocTy RetTypeLoc;
5612   ValID CalleeID;
5613   SmallVector<ParamInfo, 16> ArgList;
5614   SmallVector<OperandBundleDef, 2> BundleList;
5615 
5616   BasicBlock *NormalBB, *UnwindBB;
5617   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5618       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5619       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5620       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5621                                  NoBuiltinLoc) ||
5622       ParseOptionalOperandBundles(BundleList, PFS) ||
5623       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5624       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5625       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5626       ParseTypeAndBasicBlock(UnwindBB, PFS))
5627     return true;
5628 
5629   // If RetType is a non-function pointer type, then this is the short syntax
5630   // for the call, which means that RetType is just the return type.  Infer the
5631   // rest of the function argument types from the arguments that are present.
5632   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5633   if (!Ty) {
5634     // Pull out the types of all of the arguments...
5635     std::vector<Type*> ParamTypes;
5636     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5637       ParamTypes.push_back(ArgList[i].V->getType());
5638 
5639     if (!FunctionType::isValidReturnType(RetType))
5640       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5641 
5642     Ty = FunctionType::get(RetType, ParamTypes, false);
5643   }
5644 
5645   CalleeID.FTy = Ty;
5646 
5647   // Look up the callee.
5648   Value *Callee;
5649   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
5650                           /*IsCall=*/true))
5651     return true;
5652 
5653   // Set up the Attribute for the function.
5654   SmallVector<Value *, 8> Args;
5655   SmallVector<AttributeSet, 8> ArgAttrs;
5656 
5657   // Loop through FunctionType's arguments and ensure they are specified
5658   // correctly.  Also, gather any parameter attributes.
5659   FunctionType::param_iterator I = Ty->param_begin();
5660   FunctionType::param_iterator E = Ty->param_end();
5661   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5662     Type *ExpectedTy = nullptr;
5663     if (I != E) {
5664       ExpectedTy = *I++;
5665     } else if (!Ty->isVarArg()) {
5666       return Error(ArgList[i].Loc, "too many arguments specified");
5667     }
5668 
5669     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5670       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5671                    getTypeString(ExpectedTy) + "'");
5672     Args.push_back(ArgList[i].V);
5673     ArgAttrs.push_back(ArgList[i].Attrs);
5674   }
5675 
5676   if (I != E)
5677     return Error(CallLoc, "not enough parameters specified for call");
5678 
5679   if (FnAttrs.hasAlignmentAttr())
5680     return Error(CallLoc, "invoke instructions may not have an alignment");
5681 
5682   // Finish off the Attribute and check them
5683   AttributeList PAL =
5684       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
5685                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
5686 
5687   InvokeInst *II =
5688       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5689   II->setCallingConv(CC);
5690   II->setAttributes(PAL);
5691   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5692   Inst = II;
5693   return false;
5694 }
5695 
5696 /// ParseResume
5697 ///   ::= 'resume' TypeAndValue
5698 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5699   Value *Exn; LocTy ExnLoc;
5700   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5701     return true;
5702 
5703   ResumeInst *RI = ResumeInst::Create(Exn);
5704   Inst = RI;
5705   return false;
5706 }
5707 
5708 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5709                                   PerFunctionState &PFS) {
5710   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5711     return true;
5712 
5713   while (Lex.getKind() != lltok::rsquare) {
5714     // If this isn't the first argument, we need a comma.
5715     if (!Args.empty() &&
5716         ParseToken(lltok::comma, "expected ',' in argument list"))
5717       return true;
5718 
5719     // Parse the argument.
5720     LocTy ArgLoc;
5721     Type *ArgTy = nullptr;
5722     if (ParseType(ArgTy, ArgLoc))
5723       return true;
5724 
5725     Value *V;
5726     if (ArgTy->isMetadataTy()) {
5727       if (ParseMetadataAsValue(V, PFS))
5728         return true;
5729     } else {
5730       if (ParseValue(ArgTy, V, PFS))
5731         return true;
5732     }
5733     Args.push_back(V);
5734   }
5735 
5736   Lex.Lex();  // Lex the ']'.
5737   return false;
5738 }
5739 
5740 /// ParseCleanupRet
5741 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
5742 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5743   Value *CleanupPad = nullptr;
5744 
5745   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5746     return true;
5747 
5748   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5749     return true;
5750 
5751   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5752     return true;
5753 
5754   BasicBlock *UnwindBB = nullptr;
5755   if (Lex.getKind() == lltok::kw_to) {
5756     Lex.Lex();
5757     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5758       return true;
5759   } else {
5760     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5761       return true;
5762     }
5763   }
5764 
5765   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5766   return false;
5767 }
5768 
5769 /// ParseCatchRet
5770 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
5771 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5772   Value *CatchPad = nullptr;
5773 
5774   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5775     return true;
5776 
5777   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5778     return true;
5779 
5780   BasicBlock *BB;
5781   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5782       ParseTypeAndBasicBlock(BB, PFS))
5783       return true;
5784 
5785   Inst = CatchReturnInst::Create(CatchPad, BB);
5786   return false;
5787 }
5788 
5789 /// ParseCatchSwitch
5790 ///   ::= 'catchswitch' within Parent
5791 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5792   Value *ParentPad;
5793 
5794   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5795     return true;
5796 
5797   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5798       Lex.getKind() != lltok::LocalVarID)
5799     return TokError("expected scope value for catchswitch");
5800 
5801   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5802     return true;
5803 
5804   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5805     return true;
5806 
5807   SmallVector<BasicBlock *, 32> Table;
5808   do {
5809     BasicBlock *DestBB;
5810     if (ParseTypeAndBasicBlock(DestBB, PFS))
5811       return true;
5812     Table.push_back(DestBB);
5813   } while (EatIfPresent(lltok::comma));
5814 
5815   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5816     return true;
5817 
5818   if (ParseToken(lltok::kw_unwind,
5819                  "expected 'unwind' after catchswitch scope"))
5820     return true;
5821 
5822   BasicBlock *UnwindBB = nullptr;
5823   if (EatIfPresent(lltok::kw_to)) {
5824     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5825       return true;
5826   } else {
5827     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5828       return true;
5829   }
5830 
5831   auto *CatchSwitch =
5832       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5833   for (BasicBlock *DestBB : Table)
5834     CatchSwitch->addHandler(DestBB);
5835   Inst = CatchSwitch;
5836   return false;
5837 }
5838 
5839 /// ParseCatchPad
5840 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
5841 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5842   Value *CatchSwitch = nullptr;
5843 
5844   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5845     return true;
5846 
5847   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5848     return TokError("expected scope value for catchpad");
5849 
5850   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5851     return true;
5852 
5853   SmallVector<Value *, 8> Args;
5854   if (ParseExceptionArgs(Args, PFS))
5855     return true;
5856 
5857   Inst = CatchPadInst::Create(CatchSwitch, Args);
5858   return false;
5859 }
5860 
5861 /// ParseCleanupPad
5862 ///   ::= 'cleanuppad' within Parent ParamList
5863 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
5864   Value *ParentPad = nullptr;
5865 
5866   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
5867     return true;
5868 
5869   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5870       Lex.getKind() != lltok::LocalVarID)
5871     return TokError("expected scope value for cleanuppad");
5872 
5873   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5874     return true;
5875 
5876   SmallVector<Value *, 8> Args;
5877   if (ParseExceptionArgs(Args, PFS))
5878     return true;
5879 
5880   Inst = CleanupPadInst::Create(ParentPad, Args);
5881   return false;
5882 }
5883 
5884 //===----------------------------------------------------------------------===//
5885 // Binary Operators.
5886 //===----------------------------------------------------------------------===//
5887 
5888 /// ParseArithmetic
5889 ///  ::= ArithmeticOps TypeAndValue ',' Value
5890 ///
5891 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
5892 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
5893 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
5894                                unsigned Opc, unsigned OperandType) {
5895   LocTy Loc; Value *LHS, *RHS;
5896   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5897       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
5898       ParseValue(LHS->getType(), RHS, PFS))
5899     return true;
5900 
5901   bool Valid;
5902   switch (OperandType) {
5903   default: llvm_unreachable("Unknown operand type!");
5904   case 0: // int or FP.
5905     Valid = LHS->getType()->isIntOrIntVectorTy() ||
5906             LHS->getType()->isFPOrFPVectorTy();
5907     break;
5908   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
5909   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
5910   }
5911 
5912   if (!Valid)
5913     return Error(Loc, "invalid operand type for instruction");
5914 
5915   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5916   return false;
5917 }
5918 
5919 /// ParseLogical
5920 ///  ::= ArithmeticOps TypeAndValue ',' Value {
5921 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
5922                             unsigned Opc) {
5923   LocTy Loc; Value *LHS, *RHS;
5924   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5925       ParseToken(lltok::comma, "expected ',' in logical operation") ||
5926       ParseValue(LHS->getType(), RHS, PFS))
5927     return true;
5928 
5929   if (!LHS->getType()->isIntOrIntVectorTy())
5930     return Error(Loc,"instruction requires integer or integer vector operands");
5931 
5932   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5933   return false;
5934 }
5935 
5936 /// ParseCompare
5937 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
5938 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
5939 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
5940                             unsigned Opc) {
5941   // Parse the integer/fp comparison predicate.
5942   LocTy Loc;
5943   unsigned Pred;
5944   Value *LHS, *RHS;
5945   if (ParseCmpPredicate(Pred, Opc) ||
5946       ParseTypeAndValue(LHS, Loc, PFS) ||
5947       ParseToken(lltok::comma, "expected ',' after compare value") ||
5948       ParseValue(LHS->getType(), RHS, PFS))
5949     return true;
5950 
5951   if (Opc == Instruction::FCmp) {
5952     if (!LHS->getType()->isFPOrFPVectorTy())
5953       return Error(Loc, "fcmp requires floating point operands");
5954     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5955   } else {
5956     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
5957     if (!LHS->getType()->isIntOrIntVectorTy() &&
5958         !LHS->getType()->isPtrOrPtrVectorTy())
5959       return Error(Loc, "icmp requires integer operands");
5960     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5961   }
5962   return false;
5963 }
5964 
5965 //===----------------------------------------------------------------------===//
5966 // Other Instructions.
5967 //===----------------------------------------------------------------------===//
5968 
5969 
5970 /// ParseCast
5971 ///   ::= CastOpc TypeAndValue 'to' Type
5972 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
5973                          unsigned Opc) {
5974   LocTy Loc;
5975   Value *Op;
5976   Type *DestTy = nullptr;
5977   if (ParseTypeAndValue(Op, Loc, PFS) ||
5978       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
5979       ParseType(DestTy))
5980     return true;
5981 
5982   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
5983     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
5984     return Error(Loc, "invalid cast opcode for cast from '" +
5985                  getTypeString(Op->getType()) + "' to '" +
5986                  getTypeString(DestTy) + "'");
5987   }
5988   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
5989   return false;
5990 }
5991 
5992 /// ParseSelect
5993 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5994 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
5995   LocTy Loc;
5996   Value *Op0, *Op1, *Op2;
5997   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5998       ParseToken(lltok::comma, "expected ',' after select condition") ||
5999       ParseTypeAndValue(Op1, PFS) ||
6000       ParseToken(lltok::comma, "expected ',' after select value") ||
6001       ParseTypeAndValue(Op2, PFS))
6002     return true;
6003 
6004   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6005     return Error(Loc, Reason);
6006 
6007   Inst = SelectInst::Create(Op0, Op1, Op2);
6008   return false;
6009 }
6010 
6011 /// ParseVA_Arg
6012 ///   ::= 'va_arg' TypeAndValue ',' Type
6013 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6014   Value *Op;
6015   Type *EltTy = nullptr;
6016   LocTy TypeLoc;
6017   if (ParseTypeAndValue(Op, PFS) ||
6018       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6019       ParseType(EltTy, TypeLoc))
6020     return true;
6021 
6022   if (!EltTy->isFirstClassType())
6023     return Error(TypeLoc, "va_arg requires operand with first class type");
6024 
6025   Inst = new VAArgInst(Op, EltTy);
6026   return false;
6027 }
6028 
6029 /// ParseExtractElement
6030 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6031 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6032   LocTy Loc;
6033   Value *Op0, *Op1;
6034   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6035       ParseToken(lltok::comma, "expected ',' after extract value") ||
6036       ParseTypeAndValue(Op1, PFS))
6037     return true;
6038 
6039   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6040     return Error(Loc, "invalid extractelement operands");
6041 
6042   Inst = ExtractElementInst::Create(Op0, Op1);
6043   return false;
6044 }
6045 
6046 /// ParseInsertElement
6047 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6048 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6049   LocTy Loc;
6050   Value *Op0, *Op1, *Op2;
6051   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6052       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6053       ParseTypeAndValue(Op1, PFS) ||
6054       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6055       ParseTypeAndValue(Op2, PFS))
6056     return true;
6057 
6058   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6059     return Error(Loc, "invalid insertelement operands");
6060 
6061   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6062   return false;
6063 }
6064 
6065 /// ParseShuffleVector
6066 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6067 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6068   LocTy Loc;
6069   Value *Op0, *Op1, *Op2;
6070   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6071       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6072       ParseTypeAndValue(Op1, PFS) ||
6073       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6074       ParseTypeAndValue(Op2, PFS))
6075     return true;
6076 
6077   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6078     return Error(Loc, "invalid shufflevector operands");
6079 
6080   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6081   return false;
6082 }
6083 
6084 /// ParsePHI
6085 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6086 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6087   Type *Ty = nullptr;  LocTy TypeLoc;
6088   Value *Op0, *Op1;
6089 
6090   if (ParseType(Ty, TypeLoc) ||
6091       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6092       ParseValue(Ty, Op0, PFS) ||
6093       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6094       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6095       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6096     return true;
6097 
6098   bool AteExtraComma = false;
6099   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6100 
6101   while (true) {
6102     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6103 
6104     if (!EatIfPresent(lltok::comma))
6105       break;
6106 
6107     if (Lex.getKind() == lltok::MetadataVar) {
6108       AteExtraComma = true;
6109       break;
6110     }
6111 
6112     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6113         ParseValue(Ty, Op0, PFS) ||
6114         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6115         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6116         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6117       return true;
6118   }
6119 
6120   if (!Ty->isFirstClassType())
6121     return Error(TypeLoc, "phi node must have first class type");
6122 
6123   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6124   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6125     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6126   Inst = PN;
6127   return AteExtraComma ? InstExtraComma : InstNormal;
6128 }
6129 
6130 /// ParseLandingPad
6131 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6132 /// Clause
6133 ///   ::= 'catch' TypeAndValue
6134 ///   ::= 'filter'
6135 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6136 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6137   Type *Ty = nullptr; LocTy TyLoc;
6138 
6139   if (ParseType(Ty, TyLoc))
6140     return true;
6141 
6142   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6143   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6144 
6145   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6146     LandingPadInst::ClauseType CT;
6147     if (EatIfPresent(lltok::kw_catch))
6148       CT = LandingPadInst::Catch;
6149     else if (EatIfPresent(lltok::kw_filter))
6150       CT = LandingPadInst::Filter;
6151     else
6152       return TokError("expected 'catch' or 'filter' clause type");
6153 
6154     Value *V;
6155     LocTy VLoc;
6156     if (ParseTypeAndValue(V, VLoc, PFS))
6157       return true;
6158 
6159     // A 'catch' type expects a non-array constant. A filter clause expects an
6160     // array constant.
6161     if (CT == LandingPadInst::Catch) {
6162       if (isa<ArrayType>(V->getType()))
6163         Error(VLoc, "'catch' clause has an invalid type");
6164     } else {
6165       if (!isa<ArrayType>(V->getType()))
6166         Error(VLoc, "'filter' clause has an invalid type");
6167     }
6168 
6169     Constant *CV = dyn_cast<Constant>(V);
6170     if (!CV)
6171       return Error(VLoc, "clause argument must be a constant");
6172     LP->addClause(CV);
6173   }
6174 
6175   Inst = LP.release();
6176   return false;
6177 }
6178 
6179 /// ParseCall
6180 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6181 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6182 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6183 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6184 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6185 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6186 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6187 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6188 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6189                          CallInst::TailCallKind TCK) {
6190   AttrBuilder RetAttrs, FnAttrs;
6191   std::vector<unsigned> FwdRefAttrGrps;
6192   LocTy BuiltinLoc;
6193   unsigned CC;
6194   Type *RetType = nullptr;
6195   LocTy RetTypeLoc;
6196   ValID CalleeID;
6197   SmallVector<ParamInfo, 16> ArgList;
6198   SmallVector<OperandBundleDef, 2> BundleList;
6199   LocTy CallLoc = Lex.getLoc();
6200 
6201   if (TCK != CallInst::TCK_None &&
6202       ParseToken(lltok::kw_call,
6203                  "expected 'tail call', 'musttail call', or 'notail call'"))
6204     return true;
6205 
6206   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6207 
6208   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6209       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6210       ParseValID(CalleeID) ||
6211       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6212                          PFS.getFunction().isVarArg()) ||
6213       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6214       ParseOptionalOperandBundles(BundleList, PFS))
6215     return true;
6216 
6217   if (FMF.any() && !RetType->isFPOrFPVectorTy())
6218     return Error(CallLoc, "fast-math-flags specified for call without "
6219                           "floating-point scalar or vector return type");
6220 
6221   // If RetType is a non-function pointer type, then this is the short syntax
6222   // for the call, which means that RetType is just the return type.  Infer the
6223   // rest of the function argument types from the arguments that are present.
6224   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6225   if (!Ty) {
6226     // Pull out the types of all of the arguments...
6227     std::vector<Type*> ParamTypes;
6228     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6229       ParamTypes.push_back(ArgList[i].V->getType());
6230 
6231     if (!FunctionType::isValidReturnType(RetType))
6232       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6233 
6234     Ty = FunctionType::get(RetType, ParamTypes, false);
6235   }
6236 
6237   CalleeID.FTy = Ty;
6238 
6239   // Look up the callee.
6240   Value *Callee;
6241   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6242                           /*IsCall=*/true))
6243     return true;
6244 
6245   // Set up the Attribute for the function.
6246   SmallVector<AttributeSet, 8> Attrs;
6247 
6248   SmallVector<Value*, 8> Args;
6249 
6250   // Loop through FunctionType's arguments and ensure they are specified
6251   // correctly.  Also, gather any parameter attributes.
6252   FunctionType::param_iterator I = Ty->param_begin();
6253   FunctionType::param_iterator E = Ty->param_end();
6254   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6255     Type *ExpectedTy = nullptr;
6256     if (I != E) {
6257       ExpectedTy = *I++;
6258     } else if (!Ty->isVarArg()) {
6259       return Error(ArgList[i].Loc, "too many arguments specified");
6260     }
6261 
6262     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6263       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6264                    getTypeString(ExpectedTy) + "'");
6265     Args.push_back(ArgList[i].V);
6266     Attrs.push_back(ArgList[i].Attrs);
6267   }
6268 
6269   if (I != E)
6270     return Error(CallLoc, "not enough parameters specified for call");
6271 
6272   if (FnAttrs.hasAlignmentAttr())
6273     return Error(CallLoc, "call instructions may not have an alignment");
6274 
6275   // Finish off the Attribute and check them
6276   AttributeList PAL =
6277       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6278                          AttributeSet::get(Context, RetAttrs), Attrs);
6279 
6280   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6281   CI->setTailCallKind(TCK);
6282   CI->setCallingConv(CC);
6283   if (FMF.any())
6284     CI->setFastMathFlags(FMF);
6285   CI->setAttributes(PAL);
6286   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6287   Inst = CI;
6288   return false;
6289 }
6290 
6291 //===----------------------------------------------------------------------===//
6292 // Memory Instructions.
6293 //===----------------------------------------------------------------------===//
6294 
6295 /// ParseAlloc
6296 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6297 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6298 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6299   Value *Size = nullptr;
6300   LocTy SizeLoc, TyLoc, ASLoc;
6301   unsigned Alignment = 0;
6302   unsigned AddrSpace = 0;
6303   Type *Ty = nullptr;
6304 
6305   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6306   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6307 
6308   if (ParseType(Ty, TyLoc)) return true;
6309 
6310   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6311     return Error(TyLoc, "invalid type for alloca");
6312 
6313   bool AteExtraComma = false;
6314   if (EatIfPresent(lltok::comma)) {
6315     if (Lex.getKind() == lltok::kw_align) {
6316       if (ParseOptionalAlignment(Alignment))
6317         return true;
6318       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6319         return true;
6320     } else if (Lex.getKind() == lltok::kw_addrspace) {
6321       ASLoc = Lex.getLoc();
6322       if (ParseOptionalAddrSpace(AddrSpace))
6323         return true;
6324     } else if (Lex.getKind() == lltok::MetadataVar) {
6325       AteExtraComma = true;
6326     } else {
6327       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6328         return true;
6329       if (EatIfPresent(lltok::comma)) {
6330         if (Lex.getKind() == lltok::kw_align) {
6331           if (ParseOptionalAlignment(Alignment))
6332             return true;
6333           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6334             return true;
6335         } else if (Lex.getKind() == lltok::kw_addrspace) {
6336           ASLoc = Lex.getLoc();
6337           if (ParseOptionalAddrSpace(AddrSpace))
6338             return true;
6339         } else if (Lex.getKind() == lltok::MetadataVar) {
6340           AteExtraComma = true;
6341         }
6342       }
6343     }
6344   }
6345 
6346   if (Size && !Size->getType()->isIntegerTy())
6347     return Error(SizeLoc, "element count must have integer type");
6348 
6349   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6350   AI->setUsedWithInAlloca(IsInAlloca);
6351   AI->setSwiftError(IsSwiftError);
6352   Inst = AI;
6353   return AteExtraComma ? InstExtraComma : InstNormal;
6354 }
6355 
6356 /// ParseLoad
6357 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6358 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6359 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6360 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6361   Value *Val; LocTy Loc;
6362   unsigned Alignment = 0;
6363   bool AteExtraComma = false;
6364   bool isAtomic = false;
6365   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6366   SyncScope::ID SSID = SyncScope::System;
6367 
6368   if (Lex.getKind() == lltok::kw_atomic) {
6369     isAtomic = true;
6370     Lex.Lex();
6371   }
6372 
6373   bool isVolatile = false;
6374   if (Lex.getKind() == lltok::kw_volatile) {
6375     isVolatile = true;
6376     Lex.Lex();
6377   }
6378 
6379   Type *Ty;
6380   LocTy ExplicitTypeLoc = Lex.getLoc();
6381   if (ParseType(Ty) ||
6382       ParseToken(lltok::comma, "expected comma after load's type") ||
6383       ParseTypeAndValue(Val, Loc, PFS) ||
6384       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6385       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6386     return true;
6387 
6388   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6389     return Error(Loc, "load operand must be a pointer to a first class type");
6390   if (isAtomic && !Alignment)
6391     return Error(Loc, "atomic load must have explicit non-zero alignment");
6392   if (Ordering == AtomicOrdering::Release ||
6393       Ordering == AtomicOrdering::AcquireRelease)
6394     return Error(Loc, "atomic load cannot use Release ordering");
6395 
6396   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6397     return Error(ExplicitTypeLoc,
6398                  "explicit pointee type doesn't match operand's pointee type");
6399 
6400   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6401   return AteExtraComma ? InstExtraComma : InstNormal;
6402 }
6403 
6404 /// ParseStore
6405 
6406 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6407 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6408 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6409 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6410   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6411   unsigned Alignment = 0;
6412   bool AteExtraComma = false;
6413   bool isAtomic = false;
6414   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6415   SyncScope::ID SSID = SyncScope::System;
6416 
6417   if (Lex.getKind() == lltok::kw_atomic) {
6418     isAtomic = true;
6419     Lex.Lex();
6420   }
6421 
6422   bool isVolatile = false;
6423   if (Lex.getKind() == lltok::kw_volatile) {
6424     isVolatile = true;
6425     Lex.Lex();
6426   }
6427 
6428   if (ParseTypeAndValue(Val, Loc, PFS) ||
6429       ParseToken(lltok::comma, "expected ',' after store operand") ||
6430       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6431       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6432       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6433     return true;
6434 
6435   if (!Ptr->getType()->isPointerTy())
6436     return Error(PtrLoc, "store operand must be a pointer");
6437   if (!Val->getType()->isFirstClassType())
6438     return Error(Loc, "store operand must be a first class value");
6439   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6440     return Error(Loc, "stored value and pointer type do not match");
6441   if (isAtomic && !Alignment)
6442     return Error(Loc, "atomic store must have explicit non-zero alignment");
6443   if (Ordering == AtomicOrdering::Acquire ||
6444       Ordering == AtomicOrdering::AcquireRelease)
6445     return Error(Loc, "atomic store cannot use Acquire ordering");
6446 
6447   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6448   return AteExtraComma ? InstExtraComma : InstNormal;
6449 }
6450 
6451 /// ParseCmpXchg
6452 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6453 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6454 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6455   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6456   bool AteExtraComma = false;
6457   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6458   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6459   SyncScope::ID SSID = SyncScope::System;
6460   bool isVolatile = false;
6461   bool isWeak = false;
6462 
6463   if (EatIfPresent(lltok::kw_weak))
6464     isWeak = true;
6465 
6466   if (EatIfPresent(lltok::kw_volatile))
6467     isVolatile = true;
6468 
6469   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6470       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6471       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6472       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6473       ParseTypeAndValue(New, NewLoc, PFS) ||
6474       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6475       ParseOrdering(FailureOrdering))
6476     return true;
6477 
6478   if (SuccessOrdering == AtomicOrdering::Unordered ||
6479       FailureOrdering == AtomicOrdering::Unordered)
6480     return TokError("cmpxchg cannot be unordered");
6481   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6482     return TokError("cmpxchg failure argument shall be no stronger than the "
6483                     "success argument");
6484   if (FailureOrdering == AtomicOrdering::Release ||
6485       FailureOrdering == AtomicOrdering::AcquireRelease)
6486     return TokError(
6487         "cmpxchg failure ordering cannot include release semantics");
6488   if (!Ptr->getType()->isPointerTy())
6489     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6490   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6491     return Error(CmpLoc, "compare value and pointer type do not match");
6492   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6493     return Error(NewLoc, "new value and pointer type do not match");
6494   if (!New->getType()->isFirstClassType())
6495     return Error(NewLoc, "cmpxchg operand must be a first class value");
6496   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6497       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
6498   CXI->setVolatile(isVolatile);
6499   CXI->setWeak(isWeak);
6500   Inst = CXI;
6501   return AteExtraComma ? InstExtraComma : InstNormal;
6502 }
6503 
6504 /// ParseAtomicRMW
6505 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6506 ///       'singlethread'? AtomicOrdering
6507 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6508   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6509   bool AteExtraComma = false;
6510   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6511   SyncScope::ID SSID = SyncScope::System;
6512   bool isVolatile = false;
6513   AtomicRMWInst::BinOp Operation;
6514 
6515   if (EatIfPresent(lltok::kw_volatile))
6516     isVolatile = true;
6517 
6518   switch (Lex.getKind()) {
6519   default: return TokError("expected binary operation in atomicrmw");
6520   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6521   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6522   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6523   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6524   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6525   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6526   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6527   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6528   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6529   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6530   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6531   }
6532   Lex.Lex();  // Eat the operation.
6533 
6534   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6535       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6536       ParseTypeAndValue(Val, ValLoc, PFS) ||
6537       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6538     return true;
6539 
6540   if (Ordering == AtomicOrdering::Unordered)
6541     return TokError("atomicrmw cannot be unordered");
6542   if (!Ptr->getType()->isPointerTy())
6543     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6544   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6545     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6546   if (!Val->getType()->isIntegerTy())
6547     return Error(ValLoc, "atomicrmw operand must be an integer");
6548   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6549   if (Size < 8 || (Size & (Size - 1)))
6550     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6551                          " integer");
6552 
6553   AtomicRMWInst *RMWI =
6554     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
6555   RMWI->setVolatile(isVolatile);
6556   Inst = RMWI;
6557   return AteExtraComma ? InstExtraComma : InstNormal;
6558 }
6559 
6560 /// ParseFence
6561 ///   ::= 'fence' 'singlethread'? AtomicOrdering
6562 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6563   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6564   SyncScope::ID SSID = SyncScope::System;
6565   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6566     return true;
6567 
6568   if (Ordering == AtomicOrdering::Unordered)
6569     return TokError("fence cannot be unordered");
6570   if (Ordering == AtomicOrdering::Monotonic)
6571     return TokError("fence cannot be monotonic");
6572 
6573   Inst = new FenceInst(Context, Ordering, SSID);
6574   return InstNormal;
6575 }
6576 
6577 /// ParseGetElementPtr
6578 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
6579 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6580   Value *Ptr = nullptr;
6581   Value *Val = nullptr;
6582   LocTy Loc, EltLoc;
6583 
6584   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6585 
6586   Type *Ty = nullptr;
6587   LocTy ExplicitTypeLoc = Lex.getLoc();
6588   if (ParseType(Ty) ||
6589       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6590       ParseTypeAndValue(Ptr, Loc, PFS))
6591     return true;
6592 
6593   Type *BaseType = Ptr->getType();
6594   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6595   if (!BasePointerType)
6596     return Error(Loc, "base of getelementptr must be a pointer");
6597 
6598   if (Ty != BasePointerType->getElementType())
6599     return Error(ExplicitTypeLoc,
6600                  "explicit pointee type doesn't match operand's pointee type");
6601 
6602   SmallVector<Value*, 16> Indices;
6603   bool AteExtraComma = false;
6604   // GEP returns a vector of pointers if at least one of parameters is a vector.
6605   // All vector parameters should have the same vector width.
6606   unsigned GEPWidth = BaseType->isVectorTy() ?
6607     BaseType->getVectorNumElements() : 0;
6608 
6609   while (EatIfPresent(lltok::comma)) {
6610     if (Lex.getKind() == lltok::MetadataVar) {
6611       AteExtraComma = true;
6612       break;
6613     }
6614     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6615     if (!Val->getType()->isIntOrIntVectorTy())
6616       return Error(EltLoc, "getelementptr index must be an integer");
6617 
6618     if (Val->getType()->isVectorTy()) {
6619       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6620       if (GEPWidth && GEPWidth != ValNumEl)
6621         return Error(EltLoc,
6622           "getelementptr vector index has a wrong number of elements");
6623       GEPWidth = ValNumEl;
6624     }
6625     Indices.push_back(Val);
6626   }
6627 
6628   SmallPtrSet<Type*, 4> Visited;
6629   if (!Indices.empty() && !Ty->isSized(&Visited))
6630     return Error(Loc, "base element of getelementptr must be sized");
6631 
6632   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6633     return Error(Loc, "invalid getelementptr indices");
6634   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6635   if (InBounds)
6636     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6637   return AteExtraComma ? InstExtraComma : InstNormal;
6638 }
6639 
6640 /// ParseExtractValue
6641 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6642 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6643   Value *Val; LocTy Loc;
6644   SmallVector<unsigned, 4> Indices;
6645   bool AteExtraComma;
6646   if (ParseTypeAndValue(Val, Loc, PFS) ||
6647       ParseIndexList(Indices, AteExtraComma))
6648     return true;
6649 
6650   if (!Val->getType()->isAggregateType())
6651     return Error(Loc, "extractvalue operand must be aggregate type");
6652 
6653   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6654     return Error(Loc, "invalid indices for extractvalue");
6655   Inst = ExtractValueInst::Create(Val, Indices);
6656   return AteExtraComma ? InstExtraComma : InstNormal;
6657 }
6658 
6659 /// ParseInsertValue
6660 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6661 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6662   Value *Val0, *Val1; LocTy Loc0, Loc1;
6663   SmallVector<unsigned, 4> Indices;
6664   bool AteExtraComma;
6665   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6666       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6667       ParseTypeAndValue(Val1, Loc1, PFS) ||
6668       ParseIndexList(Indices, AteExtraComma))
6669     return true;
6670 
6671   if (!Val0->getType()->isAggregateType())
6672     return Error(Loc0, "insertvalue operand must be aggregate type");
6673 
6674   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6675   if (!IndexedType)
6676     return Error(Loc0, "invalid indices for insertvalue");
6677   if (IndexedType != Val1->getType())
6678     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6679                            getTypeString(Val1->getType()) + "' instead of '" +
6680                            getTypeString(IndexedType) + "'");
6681   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6682   return AteExtraComma ? InstExtraComma : InstNormal;
6683 }
6684 
6685 //===----------------------------------------------------------------------===//
6686 // Embedded metadata.
6687 //===----------------------------------------------------------------------===//
6688 
6689 /// ParseMDNodeVector
6690 ///   ::= { Element (',' Element)* }
6691 /// Element
6692 ///   ::= 'null' | TypeAndValue
6693 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6694   if (ParseToken(lltok::lbrace, "expected '{' here"))
6695     return true;
6696 
6697   // Check for an empty list.
6698   if (EatIfPresent(lltok::rbrace))
6699     return false;
6700 
6701   do {
6702     // Null is a special case since it is typeless.
6703     if (EatIfPresent(lltok::kw_null)) {
6704       Elts.push_back(nullptr);
6705       continue;
6706     }
6707 
6708     Metadata *MD;
6709     if (ParseMetadata(MD, nullptr))
6710       return true;
6711     Elts.push_back(MD);
6712   } while (EatIfPresent(lltok::comma));
6713 
6714   return ParseToken(lltok::rbrace, "expected end of metadata node");
6715 }
6716 
6717 //===----------------------------------------------------------------------===//
6718 // Use-list order directives.
6719 //===----------------------------------------------------------------------===//
6720 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6721                                 SMLoc Loc) {
6722   if (V->use_empty())
6723     return Error(Loc, "value has no uses");
6724 
6725   unsigned NumUses = 0;
6726   SmallDenseMap<const Use *, unsigned, 16> Order;
6727   for (const Use &U : V->uses()) {
6728     if (++NumUses > Indexes.size())
6729       break;
6730     Order[&U] = Indexes[NumUses - 1];
6731   }
6732   if (NumUses < 2)
6733     return Error(Loc, "value only has one use");
6734   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6735     return Error(Loc, "wrong number of indexes, expected " +
6736                           Twine(std::distance(V->use_begin(), V->use_end())));
6737 
6738   V->sortUseList([&](const Use &L, const Use &R) {
6739     return Order.lookup(&L) < Order.lookup(&R);
6740   });
6741   return false;
6742 }
6743 
6744 /// ParseUseListOrderIndexes
6745 ///   ::= '{' uint32 (',' uint32)+ '}'
6746 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6747   SMLoc Loc = Lex.getLoc();
6748   if (ParseToken(lltok::lbrace, "expected '{' here"))
6749     return true;
6750   if (Lex.getKind() == lltok::rbrace)
6751     return Lex.Error("expected non-empty list of uselistorder indexes");
6752 
6753   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6754   // indexes should be distinct numbers in the range [0, size-1], and should
6755   // not be in order.
6756   unsigned Offset = 0;
6757   unsigned Max = 0;
6758   bool IsOrdered = true;
6759   assert(Indexes.empty() && "Expected empty order vector");
6760   do {
6761     unsigned Index;
6762     if (ParseUInt32(Index))
6763       return true;
6764 
6765     // Update consistency checks.
6766     Offset += Index - Indexes.size();
6767     Max = std::max(Max, Index);
6768     IsOrdered &= Index == Indexes.size();
6769 
6770     Indexes.push_back(Index);
6771   } while (EatIfPresent(lltok::comma));
6772 
6773   if (ParseToken(lltok::rbrace, "expected '}' here"))
6774     return true;
6775 
6776   if (Indexes.size() < 2)
6777     return Error(Loc, "expected >= 2 uselistorder indexes");
6778   if (Offset != 0 || Max >= Indexes.size())
6779     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6780   if (IsOrdered)
6781     return Error(Loc, "expected uselistorder indexes to change the order");
6782 
6783   return false;
6784 }
6785 
6786 /// ParseUseListOrder
6787 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
6788 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6789   SMLoc Loc = Lex.getLoc();
6790   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6791     return true;
6792 
6793   Value *V;
6794   SmallVector<unsigned, 16> Indexes;
6795   if (ParseTypeAndValue(V, PFS) ||
6796       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6797       ParseUseListOrderIndexes(Indexes))
6798     return true;
6799 
6800   return sortUseListOrder(V, Indexes, Loc);
6801 }
6802 
6803 /// ParseUseListOrderBB
6804 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
6805 bool LLParser::ParseUseListOrderBB() {
6806   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6807   SMLoc Loc = Lex.getLoc();
6808   Lex.Lex();
6809 
6810   ValID Fn, Label;
6811   SmallVector<unsigned, 16> Indexes;
6812   if (ParseValID(Fn) ||
6813       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6814       ParseValID(Label) ||
6815       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6816       ParseUseListOrderIndexes(Indexes))
6817     return true;
6818 
6819   // Check the function.
6820   GlobalValue *GV;
6821   if (Fn.Kind == ValID::t_GlobalName)
6822     GV = M->getNamedValue(Fn.StrVal);
6823   else if (Fn.Kind == ValID::t_GlobalID)
6824     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6825   else
6826     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6827   if (!GV)
6828     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6829   auto *F = dyn_cast<Function>(GV);
6830   if (!F)
6831     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6832   if (F->isDeclaration())
6833     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6834 
6835   // Check the basic block.
6836   if (Label.Kind == ValID::t_LocalID)
6837     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6838   if (Label.Kind != ValID::t_LocalName)
6839     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6840   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
6841   if (!V)
6842     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6843   if (!isa<BasicBlock>(V))
6844     return Error(Label.Loc, "expected basic block in uselistorder_bb");
6845 
6846   return sortUseListOrder(V, Indexes, Loc);
6847 }
6848