1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/IR/ValueSymbolTable.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/SaveAndRestore.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstring>
50 #include <iterator>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 static std::string getTypeString(Type *T) {
56   std::string Result;
57   raw_string_ostream Tmp(Result);
58   Tmp << *T;
59   return Tmp.str();
60 }
61 
62 /// Run: module ::= toplevelentity*
63 bool LLParser::Run(bool UpgradeDebugInfo,
64                    DataLayoutCallbackTy DataLayoutCallback) {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   if (M) {
74     if (parseTargetDefinitions())
75       return true;
76 
77     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
78       M->setDataLayout(*LayoutOverride);
79   }
80 
81   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
82          validateEndOfIndex();
83 }
84 
85 bool LLParser::parseStandaloneConstantValue(Constant *&C,
86                                             const SlotMapping *Slots) {
87   restoreParsingState(Slots);
88   Lex.Lex();
89 
90   Type *Ty = nullptr;
91   if (parseType(Ty) || parseConstantValue(Ty, C))
92     return true;
93   if (Lex.getKind() != lltok::Eof)
94     return error(Lex.getLoc(), "expected end of string");
95   return false;
96 }
97 
98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
99                                     const SlotMapping *Slots) {
100   restoreParsingState(Slots);
101   Lex.Lex();
102 
103   Read = 0;
104   SMLoc Start = Lex.getLoc();
105   Ty = nullptr;
106   if (parseType(Ty))
107     return true;
108   SMLoc End = Lex.getLoc();
109   Read = End.getPointer() - Start.getPointer();
110 
111   return false;
112 }
113 
114 void LLParser::restoreParsingState(const SlotMapping *Slots) {
115   if (!Slots)
116     return;
117   NumberedVals = Slots->GlobalValues;
118   NumberedMetadata = Slots->MetadataNodes;
119   for (const auto &I : Slots->NamedTypes)
120     NamedTypes.insert(
121         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
122   for (const auto &I : Slots->Types)
123     NumberedTypes.insert(
124         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
125 }
126 
127 /// validateEndOfModule - Do final validity and sanity checks at the end of the
128 /// module.
129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
130   if (!M)
131     return false;
132   // Handle any function attribute group forward references.
133   for (const auto &RAG : ForwardRefAttrGroups) {
134     Value *V = RAG.first;
135     const std::vector<unsigned> &Attrs = RAG.second;
136     AttrBuilder B;
137 
138     for (const auto &Attr : Attrs)
139       B.merge(NumberedAttrBuilders[Attr]);
140 
141     if (Function *Fn = dyn_cast<Function>(V)) {
142       AttributeList AS = Fn->getAttributes();
143       AttrBuilder FnAttrs(AS.getFnAttrs());
144       AS = AS.removeFnAttributes(Context);
145 
146       FnAttrs.merge(B);
147 
148       // If the alignment was parsed as an attribute, move to the alignment
149       // field.
150       if (FnAttrs.hasAlignmentAttr()) {
151         Fn->setAlignment(FnAttrs.getAlignment());
152         FnAttrs.removeAttribute(Attribute::Alignment);
153       }
154 
155       AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs));
156       Fn->setAttributes(AS);
157     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
158       AttributeList AS = CI->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttrs());
160       AS = AS.removeFnAttributes(Context);
161       FnAttrs.merge(B);
162       AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs));
163       CI->setAttributes(AS);
164     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
165       AttributeList AS = II->getAttributes();
166       AttrBuilder FnAttrs(AS.getFnAttrs());
167       AS = AS.removeFnAttributes(Context);
168       FnAttrs.merge(B);
169       AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs));
170       II->setAttributes(AS);
171     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
172       AttributeList AS = CBI->getAttributes();
173       AttrBuilder FnAttrs(AS.getFnAttrs());
174       AS = AS.removeFnAttributes(Context);
175       FnAttrs.merge(B);
176       AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs));
177       CBI->setAttributes(AS);
178     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
179       AttrBuilder Attrs(GV->getAttributes());
180       Attrs.merge(B);
181       GV->setAttributes(AttributeSet::get(Context,Attrs));
182     } else {
183       llvm_unreachable("invalid object with forward attribute group reference");
184     }
185   }
186 
187   // If there are entries in ForwardRefBlockAddresses at this point, the
188   // function was never defined.
189   if (!ForwardRefBlockAddresses.empty())
190     return error(ForwardRefBlockAddresses.begin()->first.Loc,
191                  "expected function name in blockaddress");
192 
193   for (const auto &NT : NumberedTypes)
194     if (NT.second.second.isValid())
195       return error(NT.second.second,
196                    "use of undefined type '%" + Twine(NT.first) + "'");
197 
198   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
199        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
200     if (I->second.second.isValid())
201       return error(I->second.second,
202                    "use of undefined type named '" + I->getKey() + "'");
203 
204   if (!ForwardRefComdats.empty())
205     return error(ForwardRefComdats.begin()->second,
206                  "use of undefined comdat '$" +
207                      ForwardRefComdats.begin()->first + "'");
208 
209   if (!ForwardRefVals.empty())
210     return error(ForwardRefVals.begin()->second.second,
211                  "use of undefined value '@" + ForwardRefVals.begin()->first +
212                      "'");
213 
214   if (!ForwardRefValIDs.empty())
215     return error(ForwardRefValIDs.begin()->second.second,
216                  "use of undefined value '@" +
217                      Twine(ForwardRefValIDs.begin()->first) + "'");
218 
219   if (!ForwardRefMDNodes.empty())
220     return error(ForwardRefMDNodes.begin()->second.second,
221                  "use of undefined metadata '!" +
222                      Twine(ForwardRefMDNodes.begin()->first) + "'");
223 
224   // Resolve metadata cycles.
225   for (auto &N : NumberedMetadata) {
226     if (N.second && !N.second->isResolved())
227       N.second->resolveCycles();
228   }
229 
230   for (auto *Inst : InstsWithTBAATag) {
231     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
232     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
233     auto *UpgradedMD = UpgradeTBAANode(*MD);
234     if (MD != UpgradedMD)
235       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
236   }
237 
238   // Look for intrinsic functions and CallInst that need to be upgraded.  We use
239   // make_early_inc_range here because we may remove some functions.
240   for (Function &F : llvm::make_early_inc_range(*M))
241     UpgradeCallsToIntrinsic(&F);
242 
243   // Some types could be renamed during loading if several modules are
244   // loaded in the same LLVMContext (LTO scenario). In this case we should
245   // remangle intrinsics names as well.
246   for (Function &F : llvm::make_early_inc_range(*M)) {
247     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) {
248       F.replaceAllUsesWith(Remangled.getValue());
249       F.eraseFromParent();
250     }
251   }
252 
253   if (UpgradeDebugInfo)
254     llvm::UpgradeDebugInfo(*M);
255 
256   UpgradeModuleFlags(*M);
257   UpgradeSectionAttributes(*M);
258 
259   if (!Slots)
260     return false;
261   // Initialize the slot mapping.
262   // Because by this point we've parsed and validated everything, we can "steal"
263   // the mapping from LLParser as it doesn't need it anymore.
264   Slots->GlobalValues = std::move(NumberedVals);
265   Slots->MetadataNodes = std::move(NumberedMetadata);
266   for (const auto &I : NamedTypes)
267     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
268   for (const auto &I : NumberedTypes)
269     Slots->Types.insert(std::make_pair(I.first, I.second.first));
270 
271   return false;
272 }
273 
274 /// Do final validity and sanity checks at the end of the index.
275 bool LLParser::validateEndOfIndex() {
276   if (!Index)
277     return false;
278 
279   if (!ForwardRefValueInfos.empty())
280     return error(ForwardRefValueInfos.begin()->second.front().second,
281                  "use of undefined summary '^" +
282                      Twine(ForwardRefValueInfos.begin()->first) + "'");
283 
284   if (!ForwardRefAliasees.empty())
285     return error(ForwardRefAliasees.begin()->second.front().second,
286                  "use of undefined summary '^" +
287                      Twine(ForwardRefAliasees.begin()->first) + "'");
288 
289   if (!ForwardRefTypeIds.empty())
290     return error(ForwardRefTypeIds.begin()->second.front().second,
291                  "use of undefined type id summary '^" +
292                      Twine(ForwardRefTypeIds.begin()->first) + "'");
293 
294   return false;
295 }
296 
297 //===----------------------------------------------------------------------===//
298 // Top-Level Entities
299 //===----------------------------------------------------------------------===//
300 
301 bool LLParser::parseTargetDefinitions() {
302   while (true) {
303     switch (Lex.getKind()) {
304     case lltok::kw_target:
305       if (parseTargetDefinition())
306         return true;
307       break;
308     case lltok::kw_source_filename:
309       if (parseSourceFileName())
310         return true;
311       break;
312     default:
313       return false;
314     }
315   }
316 }
317 
318 bool LLParser::parseTopLevelEntities() {
319   // If there is no Module, then parse just the summary index entries.
320   if (!M) {
321     while (true) {
322       switch (Lex.getKind()) {
323       case lltok::Eof:
324         return false;
325       case lltok::SummaryID:
326         if (parseSummaryEntry())
327           return true;
328         break;
329       case lltok::kw_source_filename:
330         if (parseSourceFileName())
331           return true;
332         break;
333       default:
334         // Skip everything else
335         Lex.Lex();
336       }
337     }
338   }
339   while (true) {
340     switch (Lex.getKind()) {
341     default:
342       return tokError("expected top-level entity");
343     case lltok::Eof: return false;
344     case lltok::kw_declare:
345       if (parseDeclare())
346         return true;
347       break;
348     case lltok::kw_define:
349       if (parseDefine())
350         return true;
351       break;
352     case lltok::kw_module:
353       if (parseModuleAsm())
354         return true;
355       break;
356     case lltok::LocalVarID:
357       if (parseUnnamedType())
358         return true;
359       break;
360     case lltok::LocalVar:
361       if (parseNamedType())
362         return true;
363       break;
364     case lltok::GlobalID:
365       if (parseUnnamedGlobal())
366         return true;
367       break;
368     case lltok::GlobalVar:
369       if (parseNamedGlobal())
370         return true;
371       break;
372     case lltok::ComdatVar:  if (parseComdat()) return true; break;
373     case lltok::exclaim:
374       if (parseStandaloneMetadata())
375         return true;
376       break;
377     case lltok::SummaryID:
378       if (parseSummaryEntry())
379         return true;
380       break;
381     case lltok::MetadataVar:
382       if (parseNamedMetadata())
383         return true;
384       break;
385     case lltok::kw_attributes:
386       if (parseUnnamedAttrGrp())
387         return true;
388       break;
389     case lltok::kw_uselistorder:
390       if (parseUseListOrder())
391         return true;
392       break;
393     case lltok::kw_uselistorder_bb:
394       if (parseUseListOrderBB())
395         return true;
396       break;
397     }
398   }
399 }
400 
401 /// toplevelentity
402 ///   ::= 'module' 'asm' STRINGCONSTANT
403 bool LLParser::parseModuleAsm() {
404   assert(Lex.getKind() == lltok::kw_module);
405   Lex.Lex();
406 
407   std::string AsmStr;
408   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
409       parseStringConstant(AsmStr))
410     return true;
411 
412   M->appendModuleInlineAsm(AsmStr);
413   return false;
414 }
415 
416 /// toplevelentity
417 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
418 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
419 bool LLParser::parseTargetDefinition() {
420   assert(Lex.getKind() == lltok::kw_target);
421   std::string Str;
422   switch (Lex.Lex()) {
423   default:
424     return tokError("unknown target property");
425   case lltok::kw_triple:
426     Lex.Lex();
427     if (parseToken(lltok::equal, "expected '=' after target triple") ||
428         parseStringConstant(Str))
429       return true;
430     M->setTargetTriple(Str);
431     return false;
432   case lltok::kw_datalayout:
433     Lex.Lex();
434     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
435         parseStringConstant(Str))
436       return true;
437     M->setDataLayout(Str);
438     return false;
439   }
440 }
441 
442 /// toplevelentity
443 ///   ::= 'source_filename' '=' STRINGCONSTANT
444 bool LLParser::parseSourceFileName() {
445   assert(Lex.getKind() == lltok::kw_source_filename);
446   Lex.Lex();
447   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
448       parseStringConstant(SourceFileName))
449     return true;
450   if (M)
451     M->setSourceFileName(SourceFileName);
452   return false;
453 }
454 
455 /// parseUnnamedType:
456 ///   ::= LocalVarID '=' 'type' type
457 bool LLParser::parseUnnamedType() {
458   LocTy TypeLoc = Lex.getLoc();
459   unsigned TypeID = Lex.getUIntVal();
460   Lex.Lex(); // eat LocalVarID;
461 
462   if (parseToken(lltok::equal, "expected '=' after name") ||
463       parseToken(lltok::kw_type, "expected 'type' after '='"))
464     return true;
465 
466   Type *Result = nullptr;
467   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
468     return true;
469 
470   if (!isa<StructType>(Result)) {
471     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
472     if (Entry.first)
473       return error(TypeLoc, "non-struct types may not be recursive");
474     Entry.first = Result;
475     Entry.second = SMLoc();
476   }
477 
478   return false;
479 }
480 
481 /// toplevelentity
482 ///   ::= LocalVar '=' 'type' type
483 bool LLParser::parseNamedType() {
484   std::string Name = Lex.getStrVal();
485   LocTy NameLoc = Lex.getLoc();
486   Lex.Lex();  // eat LocalVar.
487 
488   if (parseToken(lltok::equal, "expected '=' after name") ||
489       parseToken(lltok::kw_type, "expected 'type' after name"))
490     return true;
491 
492   Type *Result = nullptr;
493   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
494     return true;
495 
496   if (!isa<StructType>(Result)) {
497     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
498     if (Entry.first)
499       return error(NameLoc, "non-struct types may not be recursive");
500     Entry.first = Result;
501     Entry.second = SMLoc();
502   }
503 
504   return false;
505 }
506 
507 /// toplevelentity
508 ///   ::= 'declare' FunctionHeader
509 bool LLParser::parseDeclare() {
510   assert(Lex.getKind() == lltok::kw_declare);
511   Lex.Lex();
512 
513   std::vector<std::pair<unsigned, MDNode *>> MDs;
514   while (Lex.getKind() == lltok::MetadataVar) {
515     unsigned MDK;
516     MDNode *N;
517     if (parseMetadataAttachment(MDK, N))
518       return true;
519     MDs.push_back({MDK, N});
520   }
521 
522   Function *F;
523   if (parseFunctionHeader(F, false))
524     return true;
525   for (auto &MD : MDs)
526     F->addMetadata(MD.first, *MD.second);
527   return false;
528 }
529 
530 /// toplevelentity
531 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
532 bool LLParser::parseDefine() {
533   assert(Lex.getKind() == lltok::kw_define);
534   Lex.Lex();
535 
536   Function *F;
537   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
538          parseFunctionBody(*F);
539 }
540 
541 /// parseGlobalType
542 ///   ::= 'constant'
543 ///   ::= 'global'
544 bool LLParser::parseGlobalType(bool &IsConstant) {
545   if (Lex.getKind() == lltok::kw_constant)
546     IsConstant = true;
547   else if (Lex.getKind() == lltok::kw_global)
548     IsConstant = false;
549   else {
550     IsConstant = false;
551     return tokError("expected 'global' or 'constant'");
552   }
553   Lex.Lex();
554   return false;
555 }
556 
557 bool LLParser::parseOptionalUnnamedAddr(
558     GlobalVariable::UnnamedAddr &UnnamedAddr) {
559   if (EatIfPresent(lltok::kw_unnamed_addr))
560     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
561   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
562     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
563   else
564     UnnamedAddr = GlobalValue::UnnamedAddr::None;
565   return false;
566 }
567 
568 /// parseUnnamedGlobal:
569 ///   OptionalVisibility (ALIAS | IFUNC) ...
570 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
571 ///   OptionalDLLStorageClass
572 ///                                                     ...   -> global variable
573 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
574 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
575 ///   OptionalVisibility
576 ///                OptionalDLLStorageClass
577 ///                                                     ...   -> global variable
578 bool LLParser::parseUnnamedGlobal() {
579   unsigned VarID = NumberedVals.size();
580   std::string Name;
581   LocTy NameLoc = Lex.getLoc();
582 
583   // Handle the GlobalID form.
584   if (Lex.getKind() == lltok::GlobalID) {
585     if (Lex.getUIntVal() != VarID)
586       return error(Lex.getLoc(),
587                    "variable expected to be numbered '%" + Twine(VarID) + "'");
588     Lex.Lex(); // eat GlobalID;
589 
590     if (parseToken(lltok::equal, "expected '=' after name"))
591       return true;
592   }
593 
594   bool HasLinkage;
595   unsigned Linkage, Visibility, DLLStorageClass;
596   bool DSOLocal;
597   GlobalVariable::ThreadLocalMode TLM;
598   GlobalVariable::UnnamedAddr UnnamedAddr;
599   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
600                            DSOLocal) ||
601       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
602     return true;
603 
604   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
605     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
606                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
607 
608   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
609                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
610 }
611 
612 /// parseNamedGlobal:
613 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
614 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
615 ///                 OptionalVisibility OptionalDLLStorageClass
616 ///                                                     ...   -> global variable
617 bool LLParser::parseNamedGlobal() {
618   assert(Lex.getKind() == lltok::GlobalVar);
619   LocTy NameLoc = Lex.getLoc();
620   std::string Name = Lex.getStrVal();
621   Lex.Lex();
622 
623   bool HasLinkage;
624   unsigned Linkage, Visibility, DLLStorageClass;
625   bool DSOLocal;
626   GlobalVariable::ThreadLocalMode TLM;
627   GlobalVariable::UnnamedAddr UnnamedAddr;
628   if (parseToken(lltok::equal, "expected '=' in global variable") ||
629       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
630                            DSOLocal) ||
631       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
632     return true;
633 
634   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
635     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
636                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
637 
638   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
639                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
640 }
641 
642 bool LLParser::parseComdat() {
643   assert(Lex.getKind() == lltok::ComdatVar);
644   std::string Name = Lex.getStrVal();
645   LocTy NameLoc = Lex.getLoc();
646   Lex.Lex();
647 
648   if (parseToken(lltok::equal, "expected '=' here"))
649     return true;
650 
651   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
652     return tokError("expected comdat type");
653 
654   Comdat::SelectionKind SK;
655   switch (Lex.getKind()) {
656   default:
657     return tokError("unknown selection kind");
658   case lltok::kw_any:
659     SK = Comdat::Any;
660     break;
661   case lltok::kw_exactmatch:
662     SK = Comdat::ExactMatch;
663     break;
664   case lltok::kw_largest:
665     SK = Comdat::Largest;
666     break;
667   case lltok::kw_nodeduplicate:
668     SK = Comdat::NoDeduplicate;
669     break;
670   case lltok::kw_samesize:
671     SK = Comdat::SameSize;
672     break;
673   }
674   Lex.Lex();
675 
676   // See if the comdat was forward referenced, if so, use the comdat.
677   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
678   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
679   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
680     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
681 
682   Comdat *C;
683   if (I != ComdatSymTab.end())
684     C = &I->second;
685   else
686     C = M->getOrInsertComdat(Name);
687   C->setSelectionKind(SK);
688 
689   return false;
690 }
691 
692 // MDString:
693 //   ::= '!' STRINGCONSTANT
694 bool LLParser::parseMDString(MDString *&Result) {
695   std::string Str;
696   if (parseStringConstant(Str))
697     return true;
698   Result = MDString::get(Context, Str);
699   return false;
700 }
701 
702 // MDNode:
703 //   ::= '!' MDNodeNumber
704 bool LLParser::parseMDNodeID(MDNode *&Result) {
705   // !{ ..., !42, ... }
706   LocTy IDLoc = Lex.getLoc();
707   unsigned MID = 0;
708   if (parseUInt32(MID))
709     return true;
710 
711   // If not a forward reference, just return it now.
712   if (NumberedMetadata.count(MID)) {
713     Result = NumberedMetadata[MID];
714     return false;
715   }
716 
717   // Otherwise, create MDNode forward reference.
718   auto &FwdRef = ForwardRefMDNodes[MID];
719   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
720 
721   Result = FwdRef.first.get();
722   NumberedMetadata[MID].reset(Result);
723   return false;
724 }
725 
726 /// parseNamedMetadata:
727 ///   !foo = !{ !1, !2 }
728 bool LLParser::parseNamedMetadata() {
729   assert(Lex.getKind() == lltok::MetadataVar);
730   std::string Name = Lex.getStrVal();
731   Lex.Lex();
732 
733   if (parseToken(lltok::equal, "expected '=' here") ||
734       parseToken(lltok::exclaim, "Expected '!' here") ||
735       parseToken(lltok::lbrace, "Expected '{' here"))
736     return true;
737 
738   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
739   if (Lex.getKind() != lltok::rbrace)
740     do {
741       MDNode *N = nullptr;
742       // parse DIExpressions inline as a special case. They are still MDNodes,
743       // so they can still appear in named metadata. Remove this logic if they
744       // become plain Metadata.
745       if (Lex.getKind() == lltok::MetadataVar &&
746           Lex.getStrVal() == "DIExpression") {
747         if (parseDIExpression(N, /*IsDistinct=*/false))
748           return true;
749         // DIArgLists should only appear inline in a function, as they may
750         // contain LocalAsMetadata arguments which require a function context.
751       } else if (Lex.getKind() == lltok::MetadataVar &&
752                  Lex.getStrVal() == "DIArgList") {
753         return tokError("found DIArgList outside of function");
754       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
755                  parseMDNodeID(N)) {
756         return true;
757       }
758       NMD->addOperand(N);
759     } while (EatIfPresent(lltok::comma));
760 
761   return parseToken(lltok::rbrace, "expected end of metadata node");
762 }
763 
764 /// parseStandaloneMetadata:
765 ///   !42 = !{...}
766 bool LLParser::parseStandaloneMetadata() {
767   assert(Lex.getKind() == lltok::exclaim);
768   Lex.Lex();
769   unsigned MetadataID = 0;
770 
771   MDNode *Init;
772   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
773     return true;
774 
775   // Detect common error, from old metadata syntax.
776   if (Lex.getKind() == lltok::Type)
777     return tokError("unexpected type in metadata definition");
778 
779   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
780   if (Lex.getKind() == lltok::MetadataVar) {
781     if (parseSpecializedMDNode(Init, IsDistinct))
782       return true;
783   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
784              parseMDTuple(Init, IsDistinct))
785     return true;
786 
787   // See if this was forward referenced, if so, handle it.
788   auto FI = ForwardRefMDNodes.find(MetadataID);
789   if (FI != ForwardRefMDNodes.end()) {
790     FI->second.first->replaceAllUsesWith(Init);
791     ForwardRefMDNodes.erase(FI);
792 
793     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
794   } else {
795     if (NumberedMetadata.count(MetadataID))
796       return tokError("Metadata id is already used");
797     NumberedMetadata[MetadataID].reset(Init);
798   }
799 
800   return false;
801 }
802 
803 // Skips a single module summary entry.
804 bool LLParser::skipModuleSummaryEntry() {
805   // Each module summary entry consists of a tag for the entry
806   // type, followed by a colon, then the fields which may be surrounded by
807   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
808   // support is in place we will look for the tokens corresponding to the
809   // expected tags.
810   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
811       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
812       Lex.getKind() != lltok::kw_blockcount)
813     return tokError(
814         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
815         "start of summary entry");
816   if (Lex.getKind() == lltok::kw_flags)
817     return parseSummaryIndexFlags();
818   if (Lex.getKind() == lltok::kw_blockcount)
819     return parseBlockCount();
820   Lex.Lex();
821   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
822       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
823     return true;
824   // Now walk through the parenthesized entry, until the number of open
825   // parentheses goes back down to 0 (the first '(' was parsed above).
826   unsigned NumOpenParen = 1;
827   do {
828     switch (Lex.getKind()) {
829     case lltok::lparen:
830       NumOpenParen++;
831       break;
832     case lltok::rparen:
833       NumOpenParen--;
834       break;
835     case lltok::Eof:
836       return tokError("found end of file while parsing summary entry");
837     default:
838       // Skip everything in between parentheses.
839       break;
840     }
841     Lex.Lex();
842   } while (NumOpenParen > 0);
843   return false;
844 }
845 
846 /// SummaryEntry
847 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
848 bool LLParser::parseSummaryEntry() {
849   assert(Lex.getKind() == lltok::SummaryID);
850   unsigned SummaryID = Lex.getUIntVal();
851 
852   // For summary entries, colons should be treated as distinct tokens,
853   // not an indication of the end of a label token.
854   Lex.setIgnoreColonInIdentifiers(true);
855 
856   Lex.Lex();
857   if (parseToken(lltok::equal, "expected '=' here"))
858     return true;
859 
860   // If we don't have an index object, skip the summary entry.
861   if (!Index)
862     return skipModuleSummaryEntry();
863 
864   bool result = false;
865   switch (Lex.getKind()) {
866   case lltok::kw_gv:
867     result = parseGVEntry(SummaryID);
868     break;
869   case lltok::kw_module:
870     result = parseModuleEntry(SummaryID);
871     break;
872   case lltok::kw_typeid:
873     result = parseTypeIdEntry(SummaryID);
874     break;
875   case lltok::kw_typeidCompatibleVTable:
876     result = parseTypeIdCompatibleVtableEntry(SummaryID);
877     break;
878   case lltok::kw_flags:
879     result = parseSummaryIndexFlags();
880     break;
881   case lltok::kw_blockcount:
882     result = parseBlockCount();
883     break;
884   default:
885     result = error(Lex.getLoc(), "unexpected summary kind");
886     break;
887   }
888   Lex.setIgnoreColonInIdentifiers(false);
889   return result;
890 }
891 
892 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
893   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
894          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
895 }
896 
897 // If there was an explicit dso_local, update GV. In the absence of an explicit
898 // dso_local we keep the default value.
899 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
900   if (DSOLocal)
901     GV.setDSOLocal(true);
902 }
903 
904 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
905                                               Type *Ty2) {
906   std::string ErrString;
907   raw_string_ostream ErrOS(ErrString);
908   ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
909   return ErrOS.str();
910 }
911 
912 /// parseIndirectSymbol:
913 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
914 ///                     OptionalVisibility OptionalDLLStorageClass
915 ///                     OptionalThreadLocal OptionalUnnamedAddr
916 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
917 ///
918 /// IndirectSymbol
919 ///   ::= TypeAndValue
920 ///
921 /// IndirectSymbolAttr
922 ///   ::= ',' 'partition' StringConstant
923 ///
924 /// Everything through OptionalUnnamedAddr has already been parsed.
925 ///
926 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
927                                    unsigned L, unsigned Visibility,
928                                    unsigned DLLStorageClass, bool DSOLocal,
929                                    GlobalVariable::ThreadLocalMode TLM,
930                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
931   bool IsAlias;
932   if (Lex.getKind() == lltok::kw_alias)
933     IsAlias = true;
934   else if (Lex.getKind() == lltok::kw_ifunc)
935     IsAlias = false;
936   else
937     llvm_unreachable("Not an alias or ifunc!");
938   Lex.Lex();
939 
940   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
941 
942   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
943     return error(NameLoc, "invalid linkage type for alias");
944 
945   if (!isValidVisibilityForLinkage(Visibility, L))
946     return error(NameLoc,
947                  "symbol with local linkage must have default visibility");
948 
949   Type *Ty;
950   LocTy ExplicitTypeLoc = Lex.getLoc();
951   if (parseType(Ty) ||
952       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
953     return true;
954 
955   Constant *Aliasee;
956   LocTy AliaseeLoc = Lex.getLoc();
957   if (Lex.getKind() != lltok::kw_bitcast &&
958       Lex.getKind() != lltok::kw_getelementptr &&
959       Lex.getKind() != lltok::kw_addrspacecast &&
960       Lex.getKind() != lltok::kw_inttoptr) {
961     if (parseGlobalTypeAndValue(Aliasee))
962       return true;
963   } else {
964     // The bitcast dest type is not present, it is implied by the dest type.
965     ValID ID;
966     if (parseValID(ID, /*PFS=*/nullptr))
967       return true;
968     if (ID.Kind != ValID::t_Constant)
969       return error(AliaseeLoc, "invalid aliasee");
970     Aliasee = ID.ConstantVal;
971   }
972 
973   Type *AliaseeType = Aliasee->getType();
974   auto *PTy = dyn_cast<PointerType>(AliaseeType);
975   if (!PTy)
976     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
977   unsigned AddrSpace = PTy->getAddressSpace();
978 
979   if (IsAlias && !PTy->isOpaqueOrPointeeTypeMatches(Ty)) {
980     return error(
981         ExplicitTypeLoc,
982         typeComparisonErrorMessage(
983             "explicit pointee type doesn't match operand's pointee type", Ty,
984             PTy->getElementType()));
985   }
986 
987   if (!IsAlias && !PTy->getElementType()->isFunctionTy()) {
988     return error(ExplicitTypeLoc,
989                  "explicit pointee type should be a function type");
990   }
991 
992   GlobalValue *GVal = nullptr;
993 
994   // See if the alias was forward referenced, if so, prepare to replace the
995   // forward reference.
996   if (!Name.empty()) {
997     auto I = ForwardRefVals.find(Name);
998     if (I != ForwardRefVals.end()) {
999       GVal = I->second.first;
1000       ForwardRefVals.erase(Name);
1001     } else if (M->getNamedValue(Name)) {
1002       return error(NameLoc, "redefinition of global '@" + Name + "'");
1003     }
1004   } else {
1005     auto I = ForwardRefValIDs.find(NumberedVals.size());
1006     if (I != ForwardRefValIDs.end()) {
1007       GVal = I->second.first;
1008       ForwardRefValIDs.erase(I);
1009     }
1010   }
1011 
1012   // Okay, create the alias but do not insert it into the module yet.
1013   std::unique_ptr<GlobalIndirectSymbol> GA;
1014   if (IsAlias)
1015     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1016                                  (GlobalValue::LinkageTypes)Linkage, Name,
1017                                  Aliasee, /*Parent*/ nullptr));
1018   else
1019     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
1020                                  (GlobalValue::LinkageTypes)Linkage, Name,
1021                                  Aliasee, /*Parent*/ nullptr));
1022   GA->setThreadLocalMode(TLM);
1023   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1024   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1025   GA->setUnnamedAddr(UnnamedAddr);
1026   maybeSetDSOLocal(DSOLocal, *GA);
1027 
1028   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1029   // Now parse them if there are any.
1030   while (Lex.getKind() == lltok::comma) {
1031     Lex.Lex();
1032 
1033     if (Lex.getKind() == lltok::kw_partition) {
1034       Lex.Lex();
1035       GA->setPartition(Lex.getStrVal());
1036       if (parseToken(lltok::StringConstant, "expected partition string"))
1037         return true;
1038     } else {
1039       return tokError("unknown alias or ifunc property!");
1040     }
1041   }
1042 
1043   if (Name.empty())
1044     NumberedVals.push_back(GA.get());
1045 
1046   if (GVal) {
1047     // Verify that types agree.
1048     if (GVal->getType() != GA->getType())
1049       return error(
1050           ExplicitTypeLoc,
1051           "forward reference and definition of alias have different types");
1052 
1053     // If they agree, just RAUW the old value with the alias and remove the
1054     // forward ref info.
1055     GVal->replaceAllUsesWith(GA.get());
1056     GVal->eraseFromParent();
1057   }
1058 
1059   // Insert into the module, we know its name won't collide now.
1060   if (IsAlias)
1061     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1062   else
1063     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1064   assert(GA->getName() == Name && "Should not be a name conflict!");
1065 
1066   // The module owns this now
1067   GA.release();
1068 
1069   return false;
1070 }
1071 
1072 /// parseGlobal
1073 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1074 ///       OptionalVisibility OptionalDLLStorageClass
1075 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1076 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1077 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1078 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1079 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1080 ///       Const OptionalAttrs
1081 ///
1082 /// Everything up to and including OptionalUnnamedAddr has been parsed
1083 /// already.
1084 ///
1085 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1086                            unsigned Linkage, bool HasLinkage,
1087                            unsigned Visibility, unsigned DLLStorageClass,
1088                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1089                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1090   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1091     return error(NameLoc,
1092                  "symbol with local linkage must have default visibility");
1093 
1094   unsigned AddrSpace;
1095   bool IsConstant, IsExternallyInitialized;
1096   LocTy IsExternallyInitializedLoc;
1097   LocTy TyLoc;
1098 
1099   Type *Ty = nullptr;
1100   if (parseOptionalAddrSpace(AddrSpace) ||
1101       parseOptionalToken(lltok::kw_externally_initialized,
1102                          IsExternallyInitialized,
1103                          &IsExternallyInitializedLoc) ||
1104       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1105     return true;
1106 
1107   // If the linkage is specified and is external, then no initializer is
1108   // present.
1109   Constant *Init = nullptr;
1110   if (!HasLinkage ||
1111       !GlobalValue::isValidDeclarationLinkage(
1112           (GlobalValue::LinkageTypes)Linkage)) {
1113     if (parseGlobalValue(Ty, Init))
1114       return true;
1115   }
1116 
1117   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1118     return error(TyLoc, "invalid type for global variable");
1119 
1120   GlobalValue *GVal = nullptr;
1121 
1122   // See if the global was forward referenced, if so, use the global.
1123   if (!Name.empty()) {
1124     auto I = ForwardRefVals.find(Name);
1125     if (I != ForwardRefVals.end()) {
1126       GVal = I->second.first;
1127       ForwardRefVals.erase(I);
1128     } else if (M->getNamedValue(Name)) {
1129       return error(NameLoc, "redefinition of global '@" + Name + "'");
1130     }
1131   } else {
1132     auto I = ForwardRefValIDs.find(NumberedVals.size());
1133     if (I != ForwardRefValIDs.end()) {
1134       GVal = I->second.first;
1135       ForwardRefValIDs.erase(I);
1136     }
1137   }
1138 
1139   GlobalVariable *GV = new GlobalVariable(
1140       *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1141       GlobalVariable::NotThreadLocal, AddrSpace);
1142 
1143   if (Name.empty())
1144     NumberedVals.push_back(GV);
1145 
1146   // Set the parsed properties on the global.
1147   if (Init)
1148     GV->setInitializer(Init);
1149   GV->setConstant(IsConstant);
1150   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1151   maybeSetDSOLocal(DSOLocal, *GV);
1152   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1153   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1154   GV->setExternallyInitialized(IsExternallyInitialized);
1155   GV->setThreadLocalMode(TLM);
1156   GV->setUnnamedAddr(UnnamedAddr);
1157 
1158   if (GVal) {
1159     if (!GVal->getType()->isOpaque() && GVal->getValueType() != Ty)
1160       return error(
1161           TyLoc,
1162           "forward reference and definition of global have different types");
1163 
1164     GVal->replaceAllUsesWith(GV);
1165     GVal->eraseFromParent();
1166   }
1167 
1168   // parse attributes on the global.
1169   while (Lex.getKind() == lltok::comma) {
1170     Lex.Lex();
1171 
1172     if (Lex.getKind() == lltok::kw_section) {
1173       Lex.Lex();
1174       GV->setSection(Lex.getStrVal());
1175       if (parseToken(lltok::StringConstant, "expected global section string"))
1176         return true;
1177     } else if (Lex.getKind() == lltok::kw_partition) {
1178       Lex.Lex();
1179       GV->setPartition(Lex.getStrVal());
1180       if (parseToken(lltok::StringConstant, "expected partition string"))
1181         return true;
1182     } else if (Lex.getKind() == lltok::kw_align) {
1183       MaybeAlign Alignment;
1184       if (parseOptionalAlignment(Alignment))
1185         return true;
1186       GV->setAlignment(Alignment);
1187     } else if (Lex.getKind() == lltok::MetadataVar) {
1188       if (parseGlobalObjectMetadataAttachment(*GV))
1189         return true;
1190     } else {
1191       Comdat *C;
1192       if (parseOptionalComdat(Name, C))
1193         return true;
1194       if (C)
1195         GV->setComdat(C);
1196       else
1197         return tokError("unknown global variable property!");
1198     }
1199   }
1200 
1201   AttrBuilder Attrs;
1202   LocTy BuiltinLoc;
1203   std::vector<unsigned> FwdRefAttrGrps;
1204   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1205     return true;
1206   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1207     GV->setAttributes(AttributeSet::get(Context, Attrs));
1208     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1209   }
1210 
1211   return false;
1212 }
1213 
1214 /// parseUnnamedAttrGrp
1215 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1216 bool LLParser::parseUnnamedAttrGrp() {
1217   assert(Lex.getKind() == lltok::kw_attributes);
1218   LocTy AttrGrpLoc = Lex.getLoc();
1219   Lex.Lex();
1220 
1221   if (Lex.getKind() != lltok::AttrGrpID)
1222     return tokError("expected attribute group id");
1223 
1224   unsigned VarID = Lex.getUIntVal();
1225   std::vector<unsigned> unused;
1226   LocTy BuiltinLoc;
1227   Lex.Lex();
1228 
1229   if (parseToken(lltok::equal, "expected '=' here") ||
1230       parseToken(lltok::lbrace, "expected '{' here") ||
1231       parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1232                                  BuiltinLoc) ||
1233       parseToken(lltok::rbrace, "expected end of attribute group"))
1234     return true;
1235 
1236   if (!NumberedAttrBuilders[VarID].hasAttributes())
1237     return error(AttrGrpLoc, "attribute group has no attributes");
1238 
1239   return false;
1240 }
1241 
1242 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
1243   switch (Kind) {
1244 #define GET_ATTR_NAMES
1245 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
1246   case lltok::kw_##DISPLAY_NAME: \
1247     return Attribute::ENUM_NAME;
1248 #include "llvm/IR/Attributes.inc"
1249   default:
1250     return Attribute::None;
1251   }
1252 }
1253 
1254 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
1255                                   bool InAttrGroup) {
1256   if (Attribute::isTypeAttrKind(Attr))
1257     return parseRequiredTypeAttr(B, Lex.getKind(), Attr);
1258 
1259   switch (Attr) {
1260   case Attribute::Alignment: {
1261     MaybeAlign Alignment;
1262     if (InAttrGroup) {
1263       uint32_t Value = 0;
1264       Lex.Lex();
1265       if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1266         return true;
1267       Alignment = Align(Value);
1268     } else {
1269       if (parseOptionalAlignment(Alignment, true))
1270         return true;
1271     }
1272     B.addAlignmentAttr(Alignment);
1273     return false;
1274   }
1275   case Attribute::StackAlignment: {
1276     unsigned Alignment;
1277     if (InAttrGroup) {
1278       Lex.Lex();
1279       if (parseToken(lltok::equal, "expected '=' here") ||
1280           parseUInt32(Alignment))
1281         return true;
1282     } else {
1283       if (parseOptionalStackAlignment(Alignment))
1284         return true;
1285     }
1286     B.addStackAlignmentAttr(Alignment);
1287     return false;
1288   }
1289   case Attribute::AllocSize: {
1290     unsigned ElemSizeArg;
1291     Optional<unsigned> NumElemsArg;
1292     if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1293       return true;
1294     B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1295     return false;
1296   }
1297   case Attribute::VScaleRange: {
1298     unsigned MinValue, MaxValue;
1299     if (parseVScaleRangeArguments(MinValue, MaxValue))
1300       return true;
1301     B.addVScaleRangeAttr(MinValue, MaxValue);
1302     return false;
1303   }
1304   case Attribute::Dereferenceable: {
1305     uint64_t Bytes;
1306     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1307       return true;
1308     B.addDereferenceableAttr(Bytes);
1309     return false;
1310   }
1311   case Attribute::DereferenceableOrNull: {
1312     uint64_t Bytes;
1313     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1314       return true;
1315     B.addDereferenceableOrNullAttr(Bytes);
1316     return false;
1317   }
1318   default:
1319     B.addAttribute(Attr);
1320     Lex.Lex();
1321     return false;
1322   }
1323 }
1324 
1325 /// parseFnAttributeValuePairs
1326 ///   ::= <attr> | <attr> '=' <value>
1327 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1328                                           std::vector<unsigned> &FwdRefAttrGrps,
1329                                           bool InAttrGrp, LocTy &BuiltinLoc) {
1330   bool HaveError = false;
1331 
1332   B.clear();
1333 
1334   while (true) {
1335     lltok::Kind Token = Lex.getKind();
1336     if (Token == lltok::rbrace)
1337       return HaveError; // Finished.
1338 
1339     if (Token == lltok::StringConstant) {
1340       if (parseStringAttribute(B))
1341         return true;
1342       continue;
1343     }
1344 
1345     if (Token == lltok::AttrGrpID) {
1346       // Allow a function to reference an attribute group:
1347       //
1348       //   define void @foo() #1 { ... }
1349       if (InAttrGrp) {
1350         HaveError |= error(
1351             Lex.getLoc(),
1352             "cannot have an attribute group reference in an attribute group");
1353       } else {
1354         // Save the reference to the attribute group. We'll fill it in later.
1355         FwdRefAttrGrps.push_back(Lex.getUIntVal());
1356       }
1357       Lex.Lex();
1358       continue;
1359     }
1360 
1361     SMLoc Loc = Lex.getLoc();
1362     if (Token == lltok::kw_builtin)
1363       BuiltinLoc = Loc;
1364 
1365     Attribute::AttrKind Attr = tokenToAttribute(Token);
1366     if (Attr == Attribute::None) {
1367       if (!InAttrGrp)
1368         return HaveError;
1369       return error(Lex.getLoc(), "unterminated attribute group");
1370     }
1371 
1372     if (parseEnumAttribute(Attr, B, InAttrGrp))
1373       return true;
1374 
1375     // As a hack, we allow function alignment to be initially parsed as an
1376     // attribute on a function declaration/definition or added to an attribute
1377     // group and later moved to the alignment field.
1378     if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment)
1379       HaveError |= error(Loc, "this attribute does not apply to functions");
1380   }
1381 }
1382 
1383 //===----------------------------------------------------------------------===//
1384 // GlobalValue Reference/Resolution Routines.
1385 //===----------------------------------------------------------------------===//
1386 
1387 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1388   // For opaque pointers, the used global type does not matter. We will later
1389   // RAUW it with a global/function of the correct type.
1390   if (PTy->isOpaque())
1391     return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1392                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1393                               nullptr, GlobalVariable::NotThreadLocal,
1394                               PTy->getAddressSpace());
1395 
1396   if (auto *FT = dyn_cast<FunctionType>(PTy->getPointerElementType()))
1397     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1398                             PTy->getAddressSpace(), "", M);
1399   else
1400     return new GlobalVariable(*M, PTy->getPointerElementType(), false,
1401                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1402                               nullptr, GlobalVariable::NotThreadLocal,
1403                               PTy->getAddressSpace());
1404 }
1405 
1406 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1407                                         Value *Val) {
1408   Type *ValTy = Val->getType();
1409   if (ValTy == Ty)
1410     return Val;
1411   if (Ty->isLabelTy())
1412     error(Loc, "'" + Name + "' is not a basic block");
1413   else
1414     error(Loc, "'" + Name + "' defined with type '" +
1415                    getTypeString(Val->getType()) + "' but expected '" +
1416                    getTypeString(Ty) + "'");
1417   return nullptr;
1418 }
1419 
1420 /// getGlobalVal - Get a value with the specified name or ID, creating a
1421 /// forward reference record if needed.  This can return null if the value
1422 /// exists but does not have the right type.
1423 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1424                                     LocTy Loc) {
1425   PointerType *PTy = dyn_cast<PointerType>(Ty);
1426   if (!PTy) {
1427     error(Loc, "global variable reference must have pointer type");
1428     return nullptr;
1429   }
1430 
1431   // Look this name up in the normal function symbol table.
1432   GlobalValue *Val =
1433     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1434 
1435   // If this is a forward reference for the value, see if we already created a
1436   // forward ref record.
1437   if (!Val) {
1438     auto I = ForwardRefVals.find(Name);
1439     if (I != ForwardRefVals.end())
1440       Val = I->second.first;
1441   }
1442 
1443   // If we have the value in the symbol table or fwd-ref table, return it.
1444   if (Val)
1445     return cast_or_null<GlobalValue>(
1446         checkValidVariableType(Loc, "@" + Name, Ty, Val));
1447 
1448   // Otherwise, create a new forward reference for this value and remember it.
1449   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1450   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1451   return FwdVal;
1452 }
1453 
1454 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1455   PointerType *PTy = dyn_cast<PointerType>(Ty);
1456   if (!PTy) {
1457     error(Loc, "global variable reference must have pointer type");
1458     return nullptr;
1459   }
1460 
1461   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1462 
1463   // If this is a forward reference for the value, see if we already created a
1464   // forward ref record.
1465   if (!Val) {
1466     auto I = ForwardRefValIDs.find(ID);
1467     if (I != ForwardRefValIDs.end())
1468       Val = I->second.first;
1469   }
1470 
1471   // If we have the value in the symbol table or fwd-ref table, return it.
1472   if (Val)
1473     return cast_or_null<GlobalValue>(
1474         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val));
1475 
1476   // Otherwise, create a new forward reference for this value and remember it.
1477   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1478   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1479   return FwdVal;
1480 }
1481 
1482 //===----------------------------------------------------------------------===//
1483 // Comdat Reference/Resolution Routines.
1484 //===----------------------------------------------------------------------===//
1485 
1486 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1487   // Look this name up in the comdat symbol table.
1488   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1489   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1490   if (I != ComdatSymTab.end())
1491     return &I->second;
1492 
1493   // Otherwise, create a new forward reference for this value and remember it.
1494   Comdat *C = M->getOrInsertComdat(Name);
1495   ForwardRefComdats[Name] = Loc;
1496   return C;
1497 }
1498 
1499 //===----------------------------------------------------------------------===//
1500 // Helper Routines.
1501 //===----------------------------------------------------------------------===//
1502 
1503 /// parseToken - If the current token has the specified kind, eat it and return
1504 /// success.  Otherwise, emit the specified error and return failure.
1505 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1506   if (Lex.getKind() != T)
1507     return tokError(ErrMsg);
1508   Lex.Lex();
1509   return false;
1510 }
1511 
1512 /// parseStringConstant
1513 ///   ::= StringConstant
1514 bool LLParser::parseStringConstant(std::string &Result) {
1515   if (Lex.getKind() != lltok::StringConstant)
1516     return tokError("expected string constant");
1517   Result = Lex.getStrVal();
1518   Lex.Lex();
1519   return false;
1520 }
1521 
1522 /// parseUInt32
1523 ///   ::= uint32
1524 bool LLParser::parseUInt32(uint32_t &Val) {
1525   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1526     return tokError("expected integer");
1527   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1528   if (Val64 != unsigned(Val64))
1529     return tokError("expected 32-bit integer (too large)");
1530   Val = Val64;
1531   Lex.Lex();
1532   return false;
1533 }
1534 
1535 /// parseUInt64
1536 ///   ::= uint64
1537 bool LLParser::parseUInt64(uint64_t &Val) {
1538   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1539     return tokError("expected integer");
1540   Val = Lex.getAPSIntVal().getLimitedValue();
1541   Lex.Lex();
1542   return false;
1543 }
1544 
1545 /// parseTLSModel
1546 ///   := 'localdynamic'
1547 ///   := 'initialexec'
1548 ///   := 'localexec'
1549 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1550   switch (Lex.getKind()) {
1551     default:
1552       return tokError("expected localdynamic, initialexec or localexec");
1553     case lltok::kw_localdynamic:
1554       TLM = GlobalVariable::LocalDynamicTLSModel;
1555       break;
1556     case lltok::kw_initialexec:
1557       TLM = GlobalVariable::InitialExecTLSModel;
1558       break;
1559     case lltok::kw_localexec:
1560       TLM = GlobalVariable::LocalExecTLSModel;
1561       break;
1562   }
1563 
1564   Lex.Lex();
1565   return false;
1566 }
1567 
1568 /// parseOptionalThreadLocal
1569 ///   := /*empty*/
1570 ///   := 'thread_local'
1571 ///   := 'thread_local' '(' tlsmodel ')'
1572 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1573   TLM = GlobalVariable::NotThreadLocal;
1574   if (!EatIfPresent(lltok::kw_thread_local))
1575     return false;
1576 
1577   TLM = GlobalVariable::GeneralDynamicTLSModel;
1578   if (Lex.getKind() == lltok::lparen) {
1579     Lex.Lex();
1580     return parseTLSModel(TLM) ||
1581            parseToken(lltok::rparen, "expected ')' after thread local model");
1582   }
1583   return false;
1584 }
1585 
1586 /// parseOptionalAddrSpace
1587 ///   := /*empty*/
1588 ///   := 'addrspace' '(' uint32 ')'
1589 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1590   AddrSpace = DefaultAS;
1591   if (!EatIfPresent(lltok::kw_addrspace))
1592     return false;
1593   return parseToken(lltok::lparen, "expected '(' in address space") ||
1594          parseUInt32(AddrSpace) ||
1595          parseToken(lltok::rparen, "expected ')' in address space");
1596 }
1597 
1598 /// parseStringAttribute
1599 ///   := StringConstant
1600 ///   := StringConstant '=' StringConstant
1601 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1602   std::string Attr = Lex.getStrVal();
1603   Lex.Lex();
1604   std::string Val;
1605   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1606     return true;
1607   B.addAttribute(Attr, Val);
1608   return false;
1609 }
1610 
1611 /// Parse a potentially empty list of parameter or return attributes.
1612 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
1613   bool HaveError = false;
1614 
1615   B.clear();
1616 
1617   while (true) {
1618     lltok::Kind Token = Lex.getKind();
1619     if (Token == lltok::StringConstant) {
1620       if (parseStringAttribute(B))
1621         return true;
1622       continue;
1623     }
1624 
1625     SMLoc Loc = Lex.getLoc();
1626     Attribute::AttrKind Attr = tokenToAttribute(Token);
1627     if (Attr == Attribute::None)
1628       return HaveError;
1629 
1630     if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
1631       return true;
1632 
1633     if (IsParam && !Attribute::canUseAsParamAttr(Attr))
1634       HaveError |= error(Loc, "this attribute does not apply to parameters");
1635     if (!IsParam && !Attribute::canUseAsRetAttr(Attr))
1636       HaveError |= error(Loc, "this attribute does not apply to return values");
1637   }
1638 }
1639 
1640 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1641   HasLinkage = true;
1642   switch (Kind) {
1643   default:
1644     HasLinkage = false;
1645     return GlobalValue::ExternalLinkage;
1646   case lltok::kw_private:
1647     return GlobalValue::PrivateLinkage;
1648   case lltok::kw_internal:
1649     return GlobalValue::InternalLinkage;
1650   case lltok::kw_weak:
1651     return GlobalValue::WeakAnyLinkage;
1652   case lltok::kw_weak_odr:
1653     return GlobalValue::WeakODRLinkage;
1654   case lltok::kw_linkonce:
1655     return GlobalValue::LinkOnceAnyLinkage;
1656   case lltok::kw_linkonce_odr:
1657     return GlobalValue::LinkOnceODRLinkage;
1658   case lltok::kw_available_externally:
1659     return GlobalValue::AvailableExternallyLinkage;
1660   case lltok::kw_appending:
1661     return GlobalValue::AppendingLinkage;
1662   case lltok::kw_common:
1663     return GlobalValue::CommonLinkage;
1664   case lltok::kw_extern_weak:
1665     return GlobalValue::ExternalWeakLinkage;
1666   case lltok::kw_external:
1667     return GlobalValue::ExternalLinkage;
1668   }
1669 }
1670 
1671 /// parseOptionalLinkage
1672 ///   ::= /*empty*/
1673 ///   ::= 'private'
1674 ///   ::= 'internal'
1675 ///   ::= 'weak'
1676 ///   ::= 'weak_odr'
1677 ///   ::= 'linkonce'
1678 ///   ::= 'linkonce_odr'
1679 ///   ::= 'available_externally'
1680 ///   ::= 'appending'
1681 ///   ::= 'common'
1682 ///   ::= 'extern_weak'
1683 ///   ::= 'external'
1684 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1685                                     unsigned &Visibility,
1686                                     unsigned &DLLStorageClass, bool &DSOLocal) {
1687   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1688   if (HasLinkage)
1689     Lex.Lex();
1690   parseOptionalDSOLocal(DSOLocal);
1691   parseOptionalVisibility(Visibility);
1692   parseOptionalDLLStorageClass(DLLStorageClass);
1693 
1694   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1695     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1696   }
1697 
1698   return false;
1699 }
1700 
1701 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
1702   switch (Lex.getKind()) {
1703   default:
1704     DSOLocal = false;
1705     break;
1706   case lltok::kw_dso_local:
1707     DSOLocal = true;
1708     Lex.Lex();
1709     break;
1710   case lltok::kw_dso_preemptable:
1711     DSOLocal = false;
1712     Lex.Lex();
1713     break;
1714   }
1715 }
1716 
1717 /// parseOptionalVisibility
1718 ///   ::= /*empty*/
1719 ///   ::= 'default'
1720 ///   ::= 'hidden'
1721 ///   ::= 'protected'
1722 ///
1723 void LLParser::parseOptionalVisibility(unsigned &Res) {
1724   switch (Lex.getKind()) {
1725   default:
1726     Res = GlobalValue::DefaultVisibility;
1727     return;
1728   case lltok::kw_default:
1729     Res = GlobalValue::DefaultVisibility;
1730     break;
1731   case lltok::kw_hidden:
1732     Res = GlobalValue::HiddenVisibility;
1733     break;
1734   case lltok::kw_protected:
1735     Res = GlobalValue::ProtectedVisibility;
1736     break;
1737   }
1738   Lex.Lex();
1739 }
1740 
1741 /// parseOptionalDLLStorageClass
1742 ///   ::= /*empty*/
1743 ///   ::= 'dllimport'
1744 ///   ::= 'dllexport'
1745 ///
1746 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
1747   switch (Lex.getKind()) {
1748   default:
1749     Res = GlobalValue::DefaultStorageClass;
1750     return;
1751   case lltok::kw_dllimport:
1752     Res = GlobalValue::DLLImportStorageClass;
1753     break;
1754   case lltok::kw_dllexport:
1755     Res = GlobalValue::DLLExportStorageClass;
1756     break;
1757   }
1758   Lex.Lex();
1759 }
1760 
1761 /// parseOptionalCallingConv
1762 ///   ::= /*empty*/
1763 ///   ::= 'ccc'
1764 ///   ::= 'fastcc'
1765 ///   ::= 'intel_ocl_bicc'
1766 ///   ::= 'coldcc'
1767 ///   ::= 'cfguard_checkcc'
1768 ///   ::= 'x86_stdcallcc'
1769 ///   ::= 'x86_fastcallcc'
1770 ///   ::= 'x86_thiscallcc'
1771 ///   ::= 'x86_vectorcallcc'
1772 ///   ::= 'arm_apcscc'
1773 ///   ::= 'arm_aapcscc'
1774 ///   ::= 'arm_aapcs_vfpcc'
1775 ///   ::= 'aarch64_vector_pcs'
1776 ///   ::= 'aarch64_sve_vector_pcs'
1777 ///   ::= 'msp430_intrcc'
1778 ///   ::= 'avr_intrcc'
1779 ///   ::= 'avr_signalcc'
1780 ///   ::= 'ptx_kernel'
1781 ///   ::= 'ptx_device'
1782 ///   ::= 'spir_func'
1783 ///   ::= 'spir_kernel'
1784 ///   ::= 'x86_64_sysvcc'
1785 ///   ::= 'win64cc'
1786 ///   ::= 'webkit_jscc'
1787 ///   ::= 'anyregcc'
1788 ///   ::= 'preserve_mostcc'
1789 ///   ::= 'preserve_allcc'
1790 ///   ::= 'ghccc'
1791 ///   ::= 'swiftcc'
1792 ///   ::= 'swifttailcc'
1793 ///   ::= 'x86_intrcc'
1794 ///   ::= 'hhvmcc'
1795 ///   ::= 'hhvm_ccc'
1796 ///   ::= 'cxx_fast_tlscc'
1797 ///   ::= 'amdgpu_vs'
1798 ///   ::= 'amdgpu_ls'
1799 ///   ::= 'amdgpu_hs'
1800 ///   ::= 'amdgpu_es'
1801 ///   ::= 'amdgpu_gs'
1802 ///   ::= 'amdgpu_ps'
1803 ///   ::= 'amdgpu_cs'
1804 ///   ::= 'amdgpu_kernel'
1805 ///   ::= 'tailcc'
1806 ///   ::= 'cc' UINT
1807 ///
1808 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
1809   switch (Lex.getKind()) {
1810   default:                       CC = CallingConv::C; return false;
1811   case lltok::kw_ccc:            CC = CallingConv::C; break;
1812   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1813   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1814   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
1815   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1816   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1817   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1818   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1819   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1820   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1821   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1822   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1823   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1824   case lltok::kw_aarch64_sve_vector_pcs:
1825     CC = CallingConv::AArch64_SVE_VectorCall;
1826     break;
1827   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1828   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1829   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1830   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1831   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1832   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1833   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1834   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1835   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1836   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1837   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1838   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1839   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1840   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1841   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1842   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1843   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
1844   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1845   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1846   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1847   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1848   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1849   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
1850   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1851   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1852   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1853   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1854   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1855   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1856   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1857   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
1858   case lltok::kw_cc: {
1859       Lex.Lex();
1860       return parseUInt32(CC);
1861     }
1862   }
1863 
1864   Lex.Lex();
1865   return false;
1866 }
1867 
1868 /// parseMetadataAttachment
1869 ///   ::= !dbg !42
1870 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1871   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1872 
1873   std::string Name = Lex.getStrVal();
1874   Kind = M->getMDKindID(Name);
1875   Lex.Lex();
1876 
1877   return parseMDNode(MD);
1878 }
1879 
1880 /// parseInstructionMetadata
1881 ///   ::= !dbg !42 (',' !dbg !57)*
1882 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
1883   do {
1884     if (Lex.getKind() != lltok::MetadataVar)
1885       return tokError("expected metadata after comma");
1886 
1887     unsigned MDK;
1888     MDNode *N;
1889     if (parseMetadataAttachment(MDK, N))
1890       return true;
1891 
1892     Inst.setMetadata(MDK, N);
1893     if (MDK == LLVMContext::MD_tbaa)
1894       InstsWithTBAATag.push_back(&Inst);
1895 
1896     // If this is the end of the list, we're done.
1897   } while (EatIfPresent(lltok::comma));
1898   return false;
1899 }
1900 
1901 /// parseGlobalObjectMetadataAttachment
1902 ///   ::= !dbg !57
1903 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1904   unsigned MDK;
1905   MDNode *N;
1906   if (parseMetadataAttachment(MDK, N))
1907     return true;
1908 
1909   GO.addMetadata(MDK, *N);
1910   return false;
1911 }
1912 
1913 /// parseOptionalFunctionMetadata
1914 ///   ::= (!dbg !57)*
1915 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
1916   while (Lex.getKind() == lltok::MetadataVar)
1917     if (parseGlobalObjectMetadataAttachment(F))
1918       return true;
1919   return false;
1920 }
1921 
1922 /// parseOptionalAlignment
1923 ///   ::= /* empty */
1924 ///   ::= 'align' 4
1925 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
1926   Alignment = None;
1927   if (!EatIfPresent(lltok::kw_align))
1928     return false;
1929   LocTy AlignLoc = Lex.getLoc();
1930   uint32_t Value = 0;
1931 
1932   LocTy ParenLoc = Lex.getLoc();
1933   bool HaveParens = false;
1934   if (AllowParens) {
1935     if (EatIfPresent(lltok::lparen))
1936       HaveParens = true;
1937   }
1938 
1939   if (parseUInt32(Value))
1940     return true;
1941 
1942   if (HaveParens && !EatIfPresent(lltok::rparen))
1943     return error(ParenLoc, "expected ')'");
1944 
1945   if (!isPowerOf2_32(Value))
1946     return error(AlignLoc, "alignment is not a power of two");
1947   if (Value > Value::MaximumAlignment)
1948     return error(AlignLoc, "huge alignments are not supported yet");
1949   Alignment = Align(Value);
1950   return false;
1951 }
1952 
1953 /// parseOptionalDerefAttrBytes
1954 ///   ::= /* empty */
1955 ///   ::= AttrKind '(' 4 ')'
1956 ///
1957 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1958 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1959                                            uint64_t &Bytes) {
1960   assert((AttrKind == lltok::kw_dereferenceable ||
1961           AttrKind == lltok::kw_dereferenceable_or_null) &&
1962          "contract!");
1963 
1964   Bytes = 0;
1965   if (!EatIfPresent(AttrKind))
1966     return false;
1967   LocTy ParenLoc = Lex.getLoc();
1968   if (!EatIfPresent(lltok::lparen))
1969     return error(ParenLoc, "expected '('");
1970   LocTy DerefLoc = Lex.getLoc();
1971   if (parseUInt64(Bytes))
1972     return true;
1973   ParenLoc = Lex.getLoc();
1974   if (!EatIfPresent(lltok::rparen))
1975     return error(ParenLoc, "expected ')'");
1976   if (!Bytes)
1977     return error(DerefLoc, "dereferenceable bytes must be non-zero");
1978   return false;
1979 }
1980 
1981 /// parseOptionalCommaAlign
1982 ///   ::=
1983 ///   ::= ',' align 4
1984 ///
1985 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1986 /// end.
1987 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
1988                                        bool &AteExtraComma) {
1989   AteExtraComma = false;
1990   while (EatIfPresent(lltok::comma)) {
1991     // Metadata at the end is an early exit.
1992     if (Lex.getKind() == lltok::MetadataVar) {
1993       AteExtraComma = true;
1994       return false;
1995     }
1996 
1997     if (Lex.getKind() != lltok::kw_align)
1998       return error(Lex.getLoc(), "expected metadata or 'align'");
1999 
2000     if (parseOptionalAlignment(Alignment))
2001       return true;
2002   }
2003 
2004   return false;
2005 }
2006 
2007 /// parseOptionalCommaAddrSpace
2008 ///   ::=
2009 ///   ::= ',' addrspace(1)
2010 ///
2011 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2012 /// end.
2013 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2014                                            bool &AteExtraComma) {
2015   AteExtraComma = false;
2016   while (EatIfPresent(lltok::comma)) {
2017     // Metadata at the end is an early exit.
2018     if (Lex.getKind() == lltok::MetadataVar) {
2019       AteExtraComma = true;
2020       return false;
2021     }
2022 
2023     Loc = Lex.getLoc();
2024     if (Lex.getKind() != lltok::kw_addrspace)
2025       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2026 
2027     if (parseOptionalAddrSpace(AddrSpace))
2028       return true;
2029   }
2030 
2031   return false;
2032 }
2033 
2034 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2035                                        Optional<unsigned> &HowManyArg) {
2036   Lex.Lex();
2037 
2038   auto StartParen = Lex.getLoc();
2039   if (!EatIfPresent(lltok::lparen))
2040     return error(StartParen, "expected '('");
2041 
2042   if (parseUInt32(BaseSizeArg))
2043     return true;
2044 
2045   if (EatIfPresent(lltok::comma)) {
2046     auto HowManyAt = Lex.getLoc();
2047     unsigned HowMany;
2048     if (parseUInt32(HowMany))
2049       return true;
2050     if (HowMany == BaseSizeArg)
2051       return error(HowManyAt,
2052                    "'allocsize' indices can't refer to the same parameter");
2053     HowManyArg = HowMany;
2054   } else
2055     HowManyArg = None;
2056 
2057   auto EndParen = Lex.getLoc();
2058   if (!EatIfPresent(lltok::rparen))
2059     return error(EndParen, "expected ')'");
2060   return false;
2061 }
2062 
2063 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2064                                          unsigned &MaxValue) {
2065   Lex.Lex();
2066 
2067   auto StartParen = Lex.getLoc();
2068   if (!EatIfPresent(lltok::lparen))
2069     return error(StartParen, "expected '('");
2070 
2071   if (parseUInt32(MinValue))
2072     return true;
2073 
2074   if (EatIfPresent(lltok::comma)) {
2075     if (parseUInt32(MaxValue))
2076       return true;
2077   } else
2078     MaxValue = MinValue;
2079 
2080   auto EndParen = Lex.getLoc();
2081   if (!EatIfPresent(lltok::rparen))
2082     return error(EndParen, "expected ')'");
2083   return false;
2084 }
2085 
2086 /// parseScopeAndOrdering
2087 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2088 ///   else: ::=
2089 ///
2090 /// This sets Scope and Ordering to the parsed values.
2091 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2092                                      AtomicOrdering &Ordering) {
2093   if (!IsAtomic)
2094     return false;
2095 
2096   return parseScope(SSID) || parseOrdering(Ordering);
2097 }
2098 
2099 /// parseScope
2100 ///   ::= syncscope("singlethread" | "<target scope>")?
2101 ///
2102 /// This sets synchronization scope ID to the ID of the parsed value.
2103 bool LLParser::parseScope(SyncScope::ID &SSID) {
2104   SSID = SyncScope::System;
2105   if (EatIfPresent(lltok::kw_syncscope)) {
2106     auto StartParenAt = Lex.getLoc();
2107     if (!EatIfPresent(lltok::lparen))
2108       return error(StartParenAt, "Expected '(' in syncscope");
2109 
2110     std::string SSN;
2111     auto SSNAt = Lex.getLoc();
2112     if (parseStringConstant(SSN))
2113       return error(SSNAt, "Expected synchronization scope name");
2114 
2115     auto EndParenAt = Lex.getLoc();
2116     if (!EatIfPresent(lltok::rparen))
2117       return error(EndParenAt, "Expected ')' in syncscope");
2118 
2119     SSID = Context.getOrInsertSyncScopeID(SSN);
2120   }
2121 
2122   return false;
2123 }
2124 
2125 /// parseOrdering
2126 ///   ::= AtomicOrdering
2127 ///
2128 /// This sets Ordering to the parsed value.
2129 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2130   switch (Lex.getKind()) {
2131   default:
2132     return tokError("Expected ordering on atomic instruction");
2133   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2134   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2135   // Not specified yet:
2136   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2137   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2138   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2139   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2140   case lltok::kw_seq_cst:
2141     Ordering = AtomicOrdering::SequentiallyConsistent;
2142     break;
2143   }
2144   Lex.Lex();
2145   return false;
2146 }
2147 
2148 /// parseOptionalStackAlignment
2149 ///   ::= /* empty */
2150 ///   ::= 'alignstack' '(' 4 ')'
2151 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2152   Alignment = 0;
2153   if (!EatIfPresent(lltok::kw_alignstack))
2154     return false;
2155   LocTy ParenLoc = Lex.getLoc();
2156   if (!EatIfPresent(lltok::lparen))
2157     return error(ParenLoc, "expected '('");
2158   LocTy AlignLoc = Lex.getLoc();
2159   if (parseUInt32(Alignment))
2160     return true;
2161   ParenLoc = Lex.getLoc();
2162   if (!EatIfPresent(lltok::rparen))
2163     return error(ParenLoc, "expected ')'");
2164   if (!isPowerOf2_32(Alignment))
2165     return error(AlignLoc, "stack alignment is not a power of two");
2166   return false;
2167 }
2168 
2169 /// parseIndexList - This parses the index list for an insert/extractvalue
2170 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2171 /// comma at the end of the line and find that it is followed by metadata.
2172 /// Clients that don't allow metadata can call the version of this function that
2173 /// only takes one argument.
2174 ///
2175 /// parseIndexList
2176 ///    ::=  (',' uint32)+
2177 ///
2178 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2179                               bool &AteExtraComma) {
2180   AteExtraComma = false;
2181 
2182   if (Lex.getKind() != lltok::comma)
2183     return tokError("expected ',' as start of index list");
2184 
2185   while (EatIfPresent(lltok::comma)) {
2186     if (Lex.getKind() == lltok::MetadataVar) {
2187       if (Indices.empty())
2188         return tokError("expected index");
2189       AteExtraComma = true;
2190       return false;
2191     }
2192     unsigned Idx = 0;
2193     if (parseUInt32(Idx))
2194       return true;
2195     Indices.push_back(Idx);
2196   }
2197 
2198   return false;
2199 }
2200 
2201 //===----------------------------------------------------------------------===//
2202 // Type Parsing.
2203 //===----------------------------------------------------------------------===//
2204 
2205 /// parseType - parse a type.
2206 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2207   SMLoc TypeLoc = Lex.getLoc();
2208   switch (Lex.getKind()) {
2209   default:
2210     return tokError(Msg);
2211   case lltok::Type:
2212     // Type ::= 'float' | 'void' (etc)
2213     Result = Lex.getTyVal();
2214     Lex.Lex();
2215 
2216     // Handle "ptr" opaque pointer type.
2217     //
2218     // Type ::= ptr ('addrspace' '(' uint32 ')')?
2219     if (Result->isOpaquePointerTy()) {
2220       unsigned AddrSpace;
2221       if (parseOptionalAddrSpace(AddrSpace))
2222         return true;
2223       Result = PointerType::get(getContext(), AddrSpace);
2224 
2225       // Give a nice error for 'ptr*'.
2226       if (Lex.getKind() == lltok::star)
2227         return tokError("ptr* is invalid - use ptr instead");
2228 
2229       // Fall through to parsing the type suffixes only if this 'ptr' is a
2230       // function return. Otherwise, return success, implicitly rejecting other
2231       // suffixes.
2232       if (Lex.getKind() != lltok::lparen)
2233         return false;
2234     }
2235     break;
2236   case lltok::lbrace:
2237     // Type ::= StructType
2238     if (parseAnonStructType(Result, false))
2239       return true;
2240     break;
2241   case lltok::lsquare:
2242     // Type ::= '[' ... ']'
2243     Lex.Lex(); // eat the lsquare.
2244     if (parseArrayVectorType(Result, false))
2245       return true;
2246     break;
2247   case lltok::less: // Either vector or packed struct.
2248     // Type ::= '<' ... '>'
2249     Lex.Lex();
2250     if (Lex.getKind() == lltok::lbrace) {
2251       if (parseAnonStructType(Result, true) ||
2252           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2253         return true;
2254     } else if (parseArrayVectorType(Result, true))
2255       return true;
2256     break;
2257   case lltok::LocalVar: {
2258     // Type ::= %foo
2259     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2260 
2261     // If the type hasn't been defined yet, create a forward definition and
2262     // remember where that forward def'n was seen (in case it never is defined).
2263     if (!Entry.first) {
2264       Entry.first = StructType::create(Context, Lex.getStrVal());
2265       Entry.second = Lex.getLoc();
2266     }
2267     Result = Entry.first;
2268     Lex.Lex();
2269     break;
2270   }
2271 
2272   case lltok::LocalVarID: {
2273     // Type ::= %4
2274     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2275 
2276     // If the type hasn't been defined yet, create a forward definition and
2277     // remember where that forward def'n was seen (in case it never is defined).
2278     if (!Entry.first) {
2279       Entry.first = StructType::create(Context);
2280       Entry.second = Lex.getLoc();
2281     }
2282     Result = Entry.first;
2283     Lex.Lex();
2284     break;
2285   }
2286   }
2287 
2288   // parse the type suffixes.
2289   while (true) {
2290     switch (Lex.getKind()) {
2291     // End of type.
2292     default:
2293       if (!AllowVoid && Result->isVoidTy())
2294         return error(TypeLoc, "void type only allowed for function results");
2295       return false;
2296 
2297     // Type ::= Type '*'
2298     case lltok::star:
2299       if (Result->isLabelTy())
2300         return tokError("basic block pointers are invalid");
2301       if (Result->isVoidTy())
2302         return tokError("pointers to void are invalid - use i8* instead");
2303       if (!PointerType::isValidElementType(Result))
2304         return tokError("pointer to this type is invalid");
2305       Result = PointerType::getUnqual(Result);
2306       Lex.Lex();
2307       break;
2308 
2309     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2310     case lltok::kw_addrspace: {
2311       if (Result->isLabelTy())
2312         return tokError("basic block pointers are invalid");
2313       if (Result->isVoidTy())
2314         return tokError("pointers to void are invalid; use i8* instead");
2315       if (!PointerType::isValidElementType(Result))
2316         return tokError("pointer to this type is invalid");
2317       unsigned AddrSpace;
2318       if (parseOptionalAddrSpace(AddrSpace) ||
2319           parseToken(lltok::star, "expected '*' in address space"))
2320         return true;
2321 
2322       Result = PointerType::get(Result, AddrSpace);
2323       break;
2324     }
2325 
2326     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2327     case lltok::lparen:
2328       if (parseFunctionType(Result))
2329         return true;
2330       break;
2331     }
2332   }
2333 }
2334 
2335 /// parseParameterList
2336 ///    ::= '(' ')'
2337 ///    ::= '(' Arg (',' Arg)* ')'
2338 ///  Arg
2339 ///    ::= Type OptionalAttributes Value OptionalAttributes
2340 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2341                                   PerFunctionState &PFS, bool IsMustTailCall,
2342                                   bool InVarArgsFunc) {
2343   if (parseToken(lltok::lparen, "expected '(' in call"))
2344     return true;
2345 
2346   while (Lex.getKind() != lltok::rparen) {
2347     // If this isn't the first argument, we need a comma.
2348     if (!ArgList.empty() &&
2349         parseToken(lltok::comma, "expected ',' in argument list"))
2350       return true;
2351 
2352     // parse an ellipsis if this is a musttail call in a variadic function.
2353     if (Lex.getKind() == lltok::dotdotdot) {
2354       const char *Msg = "unexpected ellipsis in argument list for ";
2355       if (!IsMustTailCall)
2356         return tokError(Twine(Msg) + "non-musttail call");
2357       if (!InVarArgsFunc)
2358         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2359       Lex.Lex();  // Lex the '...', it is purely for readability.
2360       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2361     }
2362 
2363     // parse the argument.
2364     LocTy ArgLoc;
2365     Type *ArgTy = nullptr;
2366     AttrBuilder ArgAttrs;
2367     Value *V;
2368     if (parseType(ArgTy, ArgLoc))
2369       return true;
2370 
2371     if (ArgTy->isMetadataTy()) {
2372       if (parseMetadataAsValue(V, PFS))
2373         return true;
2374     } else {
2375       // Otherwise, handle normal operands.
2376       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2377         return true;
2378     }
2379     ArgList.push_back(ParamInfo(
2380         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2381   }
2382 
2383   if (IsMustTailCall && InVarArgsFunc)
2384     return tokError("expected '...' at end of argument list for musttail call "
2385                     "in varargs function");
2386 
2387   Lex.Lex();  // Lex the ')'.
2388   return false;
2389 }
2390 
2391 /// parseRequiredTypeAttr
2392 ///   ::= attrname(<ty>)
2393 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
2394                                      Attribute::AttrKind AttrKind) {
2395   Type *Ty = nullptr;
2396   if (!EatIfPresent(AttrToken))
2397     return true;
2398   if (!EatIfPresent(lltok::lparen))
2399     return error(Lex.getLoc(), "expected '('");
2400   if (parseType(Ty))
2401     return true;
2402   if (!EatIfPresent(lltok::rparen))
2403     return error(Lex.getLoc(), "expected ')'");
2404 
2405   B.addTypeAttr(AttrKind, Ty);
2406   return false;
2407 }
2408 
2409 /// parseOptionalOperandBundles
2410 ///    ::= /*empty*/
2411 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2412 ///
2413 /// OperandBundle
2414 ///    ::= bundle-tag '(' ')'
2415 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2416 ///
2417 /// bundle-tag ::= String Constant
2418 bool LLParser::parseOptionalOperandBundles(
2419     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2420   LocTy BeginLoc = Lex.getLoc();
2421   if (!EatIfPresent(lltok::lsquare))
2422     return false;
2423 
2424   while (Lex.getKind() != lltok::rsquare) {
2425     // If this isn't the first operand bundle, we need a comma.
2426     if (!BundleList.empty() &&
2427         parseToken(lltok::comma, "expected ',' in input list"))
2428       return true;
2429 
2430     std::string Tag;
2431     if (parseStringConstant(Tag))
2432       return true;
2433 
2434     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2435       return true;
2436 
2437     std::vector<Value *> Inputs;
2438     while (Lex.getKind() != lltok::rparen) {
2439       // If this isn't the first input, we need a comma.
2440       if (!Inputs.empty() &&
2441           parseToken(lltok::comma, "expected ',' in input list"))
2442         return true;
2443 
2444       Type *Ty = nullptr;
2445       Value *Input = nullptr;
2446       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2447         return true;
2448       Inputs.push_back(Input);
2449     }
2450 
2451     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2452 
2453     Lex.Lex(); // Lex the ')'.
2454   }
2455 
2456   if (BundleList.empty())
2457     return error(BeginLoc, "operand bundle set must not be empty");
2458 
2459   Lex.Lex(); // Lex the ']'.
2460   return false;
2461 }
2462 
2463 /// parseArgumentList - parse the argument list for a function type or function
2464 /// prototype.
2465 ///   ::= '(' ArgTypeListI ')'
2466 /// ArgTypeListI
2467 ///   ::= /*empty*/
2468 ///   ::= '...'
2469 ///   ::= ArgTypeList ',' '...'
2470 ///   ::= ArgType (',' ArgType)*
2471 ///
2472 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2473                                  bool &IsVarArg) {
2474   unsigned CurValID = 0;
2475   IsVarArg = false;
2476   assert(Lex.getKind() == lltok::lparen);
2477   Lex.Lex(); // eat the (.
2478 
2479   if (Lex.getKind() == lltok::rparen) {
2480     // empty
2481   } else if (Lex.getKind() == lltok::dotdotdot) {
2482     IsVarArg = true;
2483     Lex.Lex();
2484   } else {
2485     LocTy TypeLoc = Lex.getLoc();
2486     Type *ArgTy = nullptr;
2487     AttrBuilder Attrs;
2488     std::string Name;
2489 
2490     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2491       return true;
2492 
2493     if (ArgTy->isVoidTy())
2494       return error(TypeLoc, "argument can not have void type");
2495 
2496     if (Lex.getKind() == lltok::LocalVar) {
2497       Name = Lex.getStrVal();
2498       Lex.Lex();
2499     } else if (Lex.getKind() == lltok::LocalVarID) {
2500       if (Lex.getUIntVal() != CurValID)
2501         return error(TypeLoc, "argument expected to be numbered '%" +
2502                                   Twine(CurValID) + "'");
2503       ++CurValID;
2504       Lex.Lex();
2505     }
2506 
2507     if (!FunctionType::isValidArgumentType(ArgTy))
2508       return error(TypeLoc, "invalid type for function argument");
2509 
2510     ArgList.emplace_back(TypeLoc, ArgTy,
2511                          AttributeSet::get(ArgTy->getContext(), Attrs),
2512                          std::move(Name));
2513 
2514     while (EatIfPresent(lltok::comma)) {
2515       // Handle ... at end of arg list.
2516       if (EatIfPresent(lltok::dotdotdot)) {
2517         IsVarArg = true;
2518         break;
2519       }
2520 
2521       // Otherwise must be an argument type.
2522       TypeLoc = Lex.getLoc();
2523       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2524         return true;
2525 
2526       if (ArgTy->isVoidTy())
2527         return error(TypeLoc, "argument can not have void type");
2528 
2529       if (Lex.getKind() == lltok::LocalVar) {
2530         Name = Lex.getStrVal();
2531         Lex.Lex();
2532       } else {
2533         if (Lex.getKind() == lltok::LocalVarID) {
2534           if (Lex.getUIntVal() != CurValID)
2535             return error(TypeLoc, "argument expected to be numbered '%" +
2536                                       Twine(CurValID) + "'");
2537           Lex.Lex();
2538         }
2539         ++CurValID;
2540         Name = "";
2541       }
2542 
2543       if (!ArgTy->isFirstClassType())
2544         return error(TypeLoc, "invalid type for function argument");
2545 
2546       ArgList.emplace_back(TypeLoc, ArgTy,
2547                            AttributeSet::get(ArgTy->getContext(), Attrs),
2548                            std::move(Name));
2549     }
2550   }
2551 
2552   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2553 }
2554 
2555 /// parseFunctionType
2556 ///  ::= Type ArgumentList OptionalAttrs
2557 bool LLParser::parseFunctionType(Type *&Result) {
2558   assert(Lex.getKind() == lltok::lparen);
2559 
2560   if (!FunctionType::isValidReturnType(Result))
2561     return tokError("invalid function return type");
2562 
2563   SmallVector<ArgInfo, 8> ArgList;
2564   bool IsVarArg;
2565   if (parseArgumentList(ArgList, IsVarArg))
2566     return true;
2567 
2568   // Reject names on the arguments lists.
2569   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2570     if (!ArgList[i].Name.empty())
2571       return error(ArgList[i].Loc, "argument name invalid in function type");
2572     if (ArgList[i].Attrs.hasAttributes())
2573       return error(ArgList[i].Loc,
2574                    "argument attributes invalid in function type");
2575   }
2576 
2577   SmallVector<Type*, 16> ArgListTy;
2578   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2579     ArgListTy.push_back(ArgList[i].Ty);
2580 
2581   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2582   return false;
2583 }
2584 
2585 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2586 /// other structs.
2587 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2588   SmallVector<Type*, 8> Elts;
2589   if (parseStructBody(Elts))
2590     return true;
2591 
2592   Result = StructType::get(Context, Elts, Packed);
2593   return false;
2594 }
2595 
2596 /// parseStructDefinition - parse a struct in a 'type' definition.
2597 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2598                                      std::pair<Type *, LocTy> &Entry,
2599                                      Type *&ResultTy) {
2600   // If the type was already defined, diagnose the redefinition.
2601   if (Entry.first && !Entry.second.isValid())
2602     return error(TypeLoc, "redefinition of type");
2603 
2604   // If we have opaque, just return without filling in the definition for the
2605   // struct.  This counts as a definition as far as the .ll file goes.
2606   if (EatIfPresent(lltok::kw_opaque)) {
2607     // This type is being defined, so clear the location to indicate this.
2608     Entry.second = SMLoc();
2609 
2610     // If this type number has never been uttered, create it.
2611     if (!Entry.first)
2612       Entry.first = StructType::create(Context, Name);
2613     ResultTy = Entry.first;
2614     return false;
2615   }
2616 
2617   // If the type starts with '<', then it is either a packed struct or a vector.
2618   bool isPacked = EatIfPresent(lltok::less);
2619 
2620   // If we don't have a struct, then we have a random type alias, which we
2621   // accept for compatibility with old files.  These types are not allowed to be
2622   // forward referenced and not allowed to be recursive.
2623   if (Lex.getKind() != lltok::lbrace) {
2624     if (Entry.first)
2625       return error(TypeLoc, "forward references to non-struct type");
2626 
2627     ResultTy = nullptr;
2628     if (isPacked)
2629       return parseArrayVectorType(ResultTy, true);
2630     return parseType(ResultTy);
2631   }
2632 
2633   // This type is being defined, so clear the location to indicate this.
2634   Entry.second = SMLoc();
2635 
2636   // If this type number has never been uttered, create it.
2637   if (!Entry.first)
2638     Entry.first = StructType::create(Context, Name);
2639 
2640   StructType *STy = cast<StructType>(Entry.first);
2641 
2642   SmallVector<Type*, 8> Body;
2643   if (parseStructBody(Body) ||
2644       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2645     return true;
2646 
2647   STy->setBody(Body, isPacked);
2648   ResultTy = STy;
2649   return false;
2650 }
2651 
2652 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2653 ///   StructType
2654 ///     ::= '{' '}'
2655 ///     ::= '{' Type (',' Type)* '}'
2656 ///     ::= '<' '{' '}' '>'
2657 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2658 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2659   assert(Lex.getKind() == lltok::lbrace);
2660   Lex.Lex(); // Consume the '{'
2661 
2662   // Handle the empty struct.
2663   if (EatIfPresent(lltok::rbrace))
2664     return false;
2665 
2666   LocTy EltTyLoc = Lex.getLoc();
2667   Type *Ty = nullptr;
2668   if (parseType(Ty))
2669     return true;
2670   Body.push_back(Ty);
2671 
2672   if (!StructType::isValidElementType(Ty))
2673     return error(EltTyLoc, "invalid element type for struct");
2674 
2675   while (EatIfPresent(lltok::comma)) {
2676     EltTyLoc = Lex.getLoc();
2677     if (parseType(Ty))
2678       return true;
2679 
2680     if (!StructType::isValidElementType(Ty))
2681       return error(EltTyLoc, "invalid element type for struct");
2682 
2683     Body.push_back(Ty);
2684   }
2685 
2686   return parseToken(lltok::rbrace, "expected '}' at end of struct");
2687 }
2688 
2689 /// parseArrayVectorType - parse an array or vector type, assuming the first
2690 /// token has already been consumed.
2691 ///   Type
2692 ///     ::= '[' APSINTVAL 'x' Types ']'
2693 ///     ::= '<' APSINTVAL 'x' Types '>'
2694 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2695 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
2696   bool Scalable = false;
2697 
2698   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
2699     Lex.Lex(); // consume the 'vscale'
2700     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
2701       return true;
2702 
2703     Scalable = true;
2704   }
2705 
2706   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2707       Lex.getAPSIntVal().getBitWidth() > 64)
2708     return tokError("expected number in address space");
2709 
2710   LocTy SizeLoc = Lex.getLoc();
2711   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2712   Lex.Lex();
2713 
2714   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
2715     return true;
2716 
2717   LocTy TypeLoc = Lex.getLoc();
2718   Type *EltTy = nullptr;
2719   if (parseType(EltTy))
2720     return true;
2721 
2722   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
2723                  "expected end of sequential type"))
2724     return true;
2725 
2726   if (IsVector) {
2727     if (Size == 0)
2728       return error(SizeLoc, "zero element vector is illegal");
2729     if ((unsigned)Size != Size)
2730       return error(SizeLoc, "size too large for vector");
2731     if (!VectorType::isValidElementType(EltTy))
2732       return error(TypeLoc, "invalid vector element type");
2733     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2734   } else {
2735     if (!ArrayType::isValidElementType(EltTy))
2736       return error(TypeLoc, "invalid array element type");
2737     Result = ArrayType::get(EltTy, Size);
2738   }
2739   return false;
2740 }
2741 
2742 //===----------------------------------------------------------------------===//
2743 // Function Semantic Analysis.
2744 //===----------------------------------------------------------------------===//
2745 
2746 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2747                                              int functionNumber)
2748   : P(p), F(f), FunctionNumber(functionNumber) {
2749 
2750   // Insert unnamed arguments into the NumberedVals list.
2751   for (Argument &A : F.args())
2752     if (!A.hasName())
2753       NumberedVals.push_back(&A);
2754 }
2755 
2756 LLParser::PerFunctionState::~PerFunctionState() {
2757   // If there were any forward referenced non-basicblock values, delete them.
2758 
2759   for (const auto &P : ForwardRefVals) {
2760     if (isa<BasicBlock>(P.second.first))
2761       continue;
2762     P.second.first->replaceAllUsesWith(
2763         UndefValue::get(P.second.first->getType()));
2764     P.second.first->deleteValue();
2765   }
2766 
2767   for (const auto &P : ForwardRefValIDs) {
2768     if (isa<BasicBlock>(P.second.first))
2769       continue;
2770     P.second.first->replaceAllUsesWith(
2771         UndefValue::get(P.second.first->getType()));
2772     P.second.first->deleteValue();
2773   }
2774 }
2775 
2776 bool LLParser::PerFunctionState::finishFunction() {
2777   if (!ForwardRefVals.empty())
2778     return P.error(ForwardRefVals.begin()->second.second,
2779                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2780                        "'");
2781   if (!ForwardRefValIDs.empty())
2782     return P.error(ForwardRefValIDs.begin()->second.second,
2783                    "use of undefined value '%" +
2784                        Twine(ForwardRefValIDs.begin()->first) + "'");
2785   return false;
2786 }
2787 
2788 /// getVal - Get a value with the specified name or ID, creating a
2789 /// forward reference record if needed.  This can return null if the value
2790 /// exists but does not have the right type.
2791 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
2792                                           LocTy Loc) {
2793   // Look this name up in the normal function symbol table.
2794   Value *Val = F.getValueSymbolTable()->lookup(Name);
2795 
2796   // If this is a forward reference for the value, see if we already created a
2797   // forward ref record.
2798   if (!Val) {
2799     auto I = ForwardRefVals.find(Name);
2800     if (I != ForwardRefVals.end())
2801       Val = I->second.first;
2802   }
2803 
2804   // If we have the value in the symbol table or fwd-ref table, return it.
2805   if (Val)
2806     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val);
2807 
2808   // Don't make placeholders with invalid type.
2809   if (!Ty->isFirstClassType()) {
2810     P.error(Loc, "invalid use of a non-first-class type");
2811     return nullptr;
2812   }
2813 
2814   // Otherwise, create a new forward reference for this value and remember it.
2815   Value *FwdVal;
2816   if (Ty->isLabelTy()) {
2817     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2818   } else {
2819     FwdVal = new Argument(Ty, Name);
2820   }
2821 
2822   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2823   return FwdVal;
2824 }
2825 
2826 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) {
2827   // Look this name up in the normal function symbol table.
2828   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2829 
2830   // If this is a forward reference for the value, see if we already created a
2831   // forward ref record.
2832   if (!Val) {
2833     auto I = ForwardRefValIDs.find(ID);
2834     if (I != ForwardRefValIDs.end())
2835       Val = I->second.first;
2836   }
2837 
2838   // If we have the value in the symbol table or fwd-ref table, return it.
2839   if (Val)
2840     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val);
2841 
2842   if (!Ty->isFirstClassType()) {
2843     P.error(Loc, "invalid use of a non-first-class type");
2844     return nullptr;
2845   }
2846 
2847   // Otherwise, create a new forward reference for this value and remember it.
2848   Value *FwdVal;
2849   if (Ty->isLabelTy()) {
2850     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2851   } else {
2852     FwdVal = new Argument(Ty);
2853   }
2854 
2855   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2856   return FwdVal;
2857 }
2858 
2859 /// setInstName - After an instruction is parsed and inserted into its
2860 /// basic block, this installs its name.
2861 bool LLParser::PerFunctionState::setInstName(int NameID,
2862                                              const std::string &NameStr,
2863                                              LocTy NameLoc, Instruction *Inst) {
2864   // If this instruction has void type, it cannot have a name or ID specified.
2865   if (Inst->getType()->isVoidTy()) {
2866     if (NameID != -1 || !NameStr.empty())
2867       return P.error(NameLoc, "instructions returning void cannot have a name");
2868     return false;
2869   }
2870 
2871   // If this was a numbered instruction, verify that the instruction is the
2872   // expected value and resolve any forward references.
2873   if (NameStr.empty()) {
2874     // If neither a name nor an ID was specified, just use the next ID.
2875     if (NameID == -1)
2876       NameID = NumberedVals.size();
2877 
2878     if (unsigned(NameID) != NumberedVals.size())
2879       return P.error(NameLoc, "instruction expected to be numbered '%" +
2880                                   Twine(NumberedVals.size()) + "'");
2881 
2882     auto FI = ForwardRefValIDs.find(NameID);
2883     if (FI != ForwardRefValIDs.end()) {
2884       Value *Sentinel = FI->second.first;
2885       if (Sentinel->getType() != Inst->getType())
2886         return P.error(NameLoc, "instruction forward referenced with type '" +
2887                                     getTypeString(FI->second.first->getType()) +
2888                                     "'");
2889 
2890       Sentinel->replaceAllUsesWith(Inst);
2891       Sentinel->deleteValue();
2892       ForwardRefValIDs.erase(FI);
2893     }
2894 
2895     NumberedVals.push_back(Inst);
2896     return false;
2897   }
2898 
2899   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2900   auto FI = ForwardRefVals.find(NameStr);
2901   if (FI != ForwardRefVals.end()) {
2902     Value *Sentinel = FI->second.first;
2903     if (Sentinel->getType() != Inst->getType())
2904       return P.error(NameLoc, "instruction forward referenced with type '" +
2905                                   getTypeString(FI->second.first->getType()) +
2906                                   "'");
2907 
2908     Sentinel->replaceAllUsesWith(Inst);
2909     Sentinel->deleteValue();
2910     ForwardRefVals.erase(FI);
2911   }
2912 
2913   // Set the name on the instruction.
2914   Inst->setName(NameStr);
2915 
2916   if (Inst->getName() != NameStr)
2917     return P.error(NameLoc, "multiple definition of local value named '" +
2918                                 NameStr + "'");
2919   return false;
2920 }
2921 
2922 /// getBB - Get a basic block with the specified name or ID, creating a
2923 /// forward reference record if needed.
2924 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
2925                                               LocTy Loc) {
2926   return dyn_cast_or_null<BasicBlock>(
2927       getVal(Name, Type::getLabelTy(F.getContext()), Loc));
2928 }
2929 
2930 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
2931   return dyn_cast_or_null<BasicBlock>(
2932       getVal(ID, Type::getLabelTy(F.getContext()), Loc));
2933 }
2934 
2935 /// defineBB - Define the specified basic block, which is either named or
2936 /// unnamed.  If there is an error, this returns null otherwise it returns
2937 /// the block being defined.
2938 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
2939                                                  int NameID, LocTy Loc) {
2940   BasicBlock *BB;
2941   if (Name.empty()) {
2942     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
2943       P.error(Loc, "label expected to be numbered '" +
2944                        Twine(NumberedVals.size()) + "'");
2945       return nullptr;
2946     }
2947     BB = getBB(NumberedVals.size(), Loc);
2948     if (!BB) {
2949       P.error(Loc, "unable to create block numbered '" +
2950                        Twine(NumberedVals.size()) + "'");
2951       return nullptr;
2952     }
2953   } else {
2954     BB = getBB(Name, Loc);
2955     if (!BB) {
2956       P.error(Loc, "unable to create block named '" + Name + "'");
2957       return nullptr;
2958     }
2959   }
2960 
2961   // Move the block to the end of the function.  Forward ref'd blocks are
2962   // inserted wherever they happen to be referenced.
2963   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2964 
2965   // Remove the block from forward ref sets.
2966   if (Name.empty()) {
2967     ForwardRefValIDs.erase(NumberedVals.size());
2968     NumberedVals.push_back(BB);
2969   } else {
2970     // BB forward references are already in the function symbol table.
2971     ForwardRefVals.erase(Name);
2972   }
2973 
2974   return BB;
2975 }
2976 
2977 //===----------------------------------------------------------------------===//
2978 // Constants.
2979 //===----------------------------------------------------------------------===//
2980 
2981 /// parseValID - parse an abstract value that doesn't necessarily have a
2982 /// type implied.  For example, if we parse "4" we don't know what integer type
2983 /// it has.  The value will later be combined with its type and checked for
2984 /// sanity.  PFS is used to convert function-local operands of metadata (since
2985 /// metadata operands are not just parsed here but also converted to values).
2986 /// PFS can be null when we are not parsing metadata values inside a function.
2987 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
2988   ID.Loc = Lex.getLoc();
2989   switch (Lex.getKind()) {
2990   default:
2991     return tokError("expected value token");
2992   case lltok::GlobalID:  // @42
2993     ID.UIntVal = Lex.getUIntVal();
2994     ID.Kind = ValID::t_GlobalID;
2995     break;
2996   case lltok::GlobalVar:  // @foo
2997     ID.StrVal = Lex.getStrVal();
2998     ID.Kind = ValID::t_GlobalName;
2999     break;
3000   case lltok::LocalVarID:  // %42
3001     ID.UIntVal = Lex.getUIntVal();
3002     ID.Kind = ValID::t_LocalID;
3003     break;
3004   case lltok::LocalVar:  // %foo
3005     ID.StrVal = Lex.getStrVal();
3006     ID.Kind = ValID::t_LocalName;
3007     break;
3008   case lltok::APSInt:
3009     ID.APSIntVal = Lex.getAPSIntVal();
3010     ID.Kind = ValID::t_APSInt;
3011     break;
3012   case lltok::APFloat:
3013     ID.APFloatVal = Lex.getAPFloatVal();
3014     ID.Kind = ValID::t_APFloat;
3015     break;
3016   case lltok::kw_true:
3017     ID.ConstantVal = ConstantInt::getTrue(Context);
3018     ID.Kind = ValID::t_Constant;
3019     break;
3020   case lltok::kw_false:
3021     ID.ConstantVal = ConstantInt::getFalse(Context);
3022     ID.Kind = ValID::t_Constant;
3023     break;
3024   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3025   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3026   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3027   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3028   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3029 
3030   case lltok::lbrace: {
3031     // ValID ::= '{' ConstVector '}'
3032     Lex.Lex();
3033     SmallVector<Constant*, 16> Elts;
3034     if (parseGlobalValueVector(Elts) ||
3035         parseToken(lltok::rbrace, "expected end of struct constant"))
3036       return true;
3037 
3038     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3039     ID.UIntVal = Elts.size();
3040     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3041            Elts.size() * sizeof(Elts[0]));
3042     ID.Kind = ValID::t_ConstantStruct;
3043     return false;
3044   }
3045   case lltok::less: {
3046     // ValID ::= '<' ConstVector '>'         --> Vector.
3047     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3048     Lex.Lex();
3049     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3050 
3051     SmallVector<Constant*, 16> Elts;
3052     LocTy FirstEltLoc = Lex.getLoc();
3053     if (parseGlobalValueVector(Elts) ||
3054         (isPackedStruct &&
3055          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3056         parseToken(lltok::greater, "expected end of constant"))
3057       return true;
3058 
3059     if (isPackedStruct) {
3060       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3061       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3062              Elts.size() * sizeof(Elts[0]));
3063       ID.UIntVal = Elts.size();
3064       ID.Kind = ValID::t_PackedConstantStruct;
3065       return false;
3066     }
3067 
3068     if (Elts.empty())
3069       return error(ID.Loc, "constant vector must not be empty");
3070 
3071     if (!Elts[0]->getType()->isIntegerTy() &&
3072         !Elts[0]->getType()->isFloatingPointTy() &&
3073         !Elts[0]->getType()->isPointerTy())
3074       return error(
3075           FirstEltLoc,
3076           "vector elements must have integer, pointer or floating point type");
3077 
3078     // Verify that all the vector elements have the same type.
3079     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3080       if (Elts[i]->getType() != Elts[0]->getType())
3081         return error(FirstEltLoc, "vector element #" + Twine(i) +
3082                                       " is not of type '" +
3083                                       getTypeString(Elts[0]->getType()));
3084 
3085     ID.ConstantVal = ConstantVector::get(Elts);
3086     ID.Kind = ValID::t_Constant;
3087     return false;
3088   }
3089   case lltok::lsquare: {   // Array Constant
3090     Lex.Lex();
3091     SmallVector<Constant*, 16> Elts;
3092     LocTy FirstEltLoc = Lex.getLoc();
3093     if (parseGlobalValueVector(Elts) ||
3094         parseToken(lltok::rsquare, "expected end of array constant"))
3095       return true;
3096 
3097     // Handle empty element.
3098     if (Elts.empty()) {
3099       // Use undef instead of an array because it's inconvenient to determine
3100       // the element type at this point, there being no elements to examine.
3101       ID.Kind = ValID::t_EmptyArray;
3102       return false;
3103     }
3104 
3105     if (!Elts[0]->getType()->isFirstClassType())
3106       return error(FirstEltLoc, "invalid array element type: " +
3107                                     getTypeString(Elts[0]->getType()));
3108 
3109     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3110 
3111     // Verify all elements are correct type!
3112     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3113       if (Elts[i]->getType() != Elts[0]->getType())
3114         return error(FirstEltLoc, "array element #" + Twine(i) +
3115                                       " is not of type '" +
3116                                       getTypeString(Elts[0]->getType()));
3117     }
3118 
3119     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3120     ID.Kind = ValID::t_Constant;
3121     return false;
3122   }
3123   case lltok::kw_c:  // c "foo"
3124     Lex.Lex();
3125     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3126                                                   false);
3127     if (parseToken(lltok::StringConstant, "expected string"))
3128       return true;
3129     ID.Kind = ValID::t_Constant;
3130     return false;
3131 
3132   case lltok::kw_asm: {
3133     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3134     //             STRINGCONSTANT
3135     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3136     Lex.Lex();
3137     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3138         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3139         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3140         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3141         parseStringConstant(ID.StrVal) ||
3142         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3143         parseToken(lltok::StringConstant, "expected constraint string"))
3144       return true;
3145     ID.StrVal2 = Lex.getStrVal();
3146     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3147                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3148     ID.Kind = ValID::t_InlineAsm;
3149     return false;
3150   }
3151 
3152   case lltok::kw_blockaddress: {
3153     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3154     Lex.Lex();
3155 
3156     ValID Fn, Label;
3157 
3158     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3159         parseValID(Fn, PFS) ||
3160         parseToken(lltok::comma,
3161                    "expected comma in block address expression") ||
3162         parseValID(Label, PFS) ||
3163         parseToken(lltok::rparen, "expected ')' in block address expression"))
3164       return true;
3165 
3166     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3167       return error(Fn.Loc, "expected function name in blockaddress");
3168     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3169       return error(Label.Loc, "expected basic block name in blockaddress");
3170 
3171     // Try to find the function (but skip it if it's forward-referenced).
3172     GlobalValue *GV = nullptr;
3173     if (Fn.Kind == ValID::t_GlobalID) {
3174       if (Fn.UIntVal < NumberedVals.size())
3175         GV = NumberedVals[Fn.UIntVal];
3176     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3177       GV = M->getNamedValue(Fn.StrVal);
3178     }
3179     Function *F = nullptr;
3180     if (GV) {
3181       // Confirm that it's actually a function with a definition.
3182       if (!isa<Function>(GV))
3183         return error(Fn.Loc, "expected function name in blockaddress");
3184       F = cast<Function>(GV);
3185       if (F->isDeclaration())
3186         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3187     }
3188 
3189     if (!F) {
3190       // Make a global variable as a placeholder for this reference.
3191       GlobalValue *&FwdRef =
3192           ForwardRefBlockAddresses.insert(std::make_pair(
3193                                               std::move(Fn),
3194                                               std::map<ValID, GlobalValue *>()))
3195               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3196               .first->second;
3197       if (!FwdRef) {
3198         unsigned FwdDeclAS;
3199         if (ExpectedTy) {
3200           // If we know the type that the blockaddress is being assigned to,
3201           // we can use the address space of that type.
3202           if (!ExpectedTy->isPointerTy())
3203             return error(ID.Loc,
3204                          "type of blockaddress must be a pointer and not '" +
3205                              getTypeString(ExpectedTy) + "'");
3206           FwdDeclAS = ExpectedTy->getPointerAddressSpace();
3207         } else if (PFS) {
3208           // Otherwise, we default the address space of the current function.
3209           FwdDeclAS = PFS->getFunction().getAddressSpace();
3210         } else {
3211           llvm_unreachable("Unknown address space for blockaddress");
3212         }
3213         FwdRef = new GlobalVariable(
3214             *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
3215             nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
3216       }
3217 
3218       ID.ConstantVal = FwdRef;
3219       ID.Kind = ValID::t_Constant;
3220       return false;
3221     }
3222 
3223     // We found the function; now find the basic block.  Don't use PFS, since we
3224     // might be inside a constant expression.
3225     BasicBlock *BB;
3226     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3227       if (Label.Kind == ValID::t_LocalID)
3228         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3229       else
3230         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3231       if (!BB)
3232         return error(Label.Loc, "referenced value is not a basic block");
3233     } else {
3234       if (Label.Kind == ValID::t_LocalID)
3235         return error(Label.Loc, "cannot take address of numeric label after "
3236                                 "the function is defined");
3237       BB = dyn_cast_or_null<BasicBlock>(
3238           F->getValueSymbolTable()->lookup(Label.StrVal));
3239       if (!BB)
3240         return error(Label.Loc, "referenced value is not a basic block");
3241     }
3242 
3243     ID.ConstantVal = BlockAddress::get(F, BB);
3244     ID.Kind = ValID::t_Constant;
3245     return false;
3246   }
3247 
3248   case lltok::kw_dso_local_equivalent: {
3249     // ValID ::= 'dso_local_equivalent' @foo
3250     Lex.Lex();
3251 
3252     ValID Fn;
3253 
3254     if (parseValID(Fn, PFS))
3255       return true;
3256 
3257     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3258       return error(Fn.Loc,
3259                    "expected global value name in dso_local_equivalent");
3260 
3261     // Try to find the function (but skip it if it's forward-referenced).
3262     GlobalValue *GV = nullptr;
3263     if (Fn.Kind == ValID::t_GlobalID) {
3264       if (Fn.UIntVal < NumberedVals.size())
3265         GV = NumberedVals[Fn.UIntVal];
3266     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3267       GV = M->getNamedValue(Fn.StrVal);
3268     }
3269 
3270     assert(GV && "Could not find a corresponding global variable");
3271 
3272     if (!GV->getValueType()->isFunctionTy())
3273       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3274                            "in dso_local_equivalent");
3275 
3276     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3277     ID.Kind = ValID::t_Constant;
3278     return false;
3279   }
3280 
3281   case lltok::kw_trunc:
3282   case lltok::kw_zext:
3283   case lltok::kw_sext:
3284   case lltok::kw_fptrunc:
3285   case lltok::kw_fpext:
3286   case lltok::kw_bitcast:
3287   case lltok::kw_addrspacecast:
3288   case lltok::kw_uitofp:
3289   case lltok::kw_sitofp:
3290   case lltok::kw_fptoui:
3291   case lltok::kw_fptosi:
3292   case lltok::kw_inttoptr:
3293   case lltok::kw_ptrtoint: {
3294     unsigned Opc = Lex.getUIntVal();
3295     Type *DestTy = nullptr;
3296     Constant *SrcVal;
3297     Lex.Lex();
3298     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3299         parseGlobalTypeAndValue(SrcVal) ||
3300         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3301         parseType(DestTy) ||
3302         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3303       return true;
3304     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3305       return error(ID.Loc, "invalid cast opcode for cast from '" +
3306                                getTypeString(SrcVal->getType()) + "' to '" +
3307                                getTypeString(DestTy) + "'");
3308     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3309                                                  SrcVal, DestTy);
3310     ID.Kind = ValID::t_Constant;
3311     return false;
3312   }
3313   case lltok::kw_extractvalue: {
3314     Lex.Lex();
3315     Constant *Val;
3316     SmallVector<unsigned, 4> Indices;
3317     if (parseToken(lltok::lparen,
3318                    "expected '(' in extractvalue constantexpr") ||
3319         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3320         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3321       return true;
3322 
3323     if (!Val->getType()->isAggregateType())
3324       return error(ID.Loc, "extractvalue operand must be aggregate type");
3325     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3326       return error(ID.Loc, "invalid indices for extractvalue");
3327     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3328     ID.Kind = ValID::t_Constant;
3329     return false;
3330   }
3331   case lltok::kw_insertvalue: {
3332     Lex.Lex();
3333     Constant *Val0, *Val1;
3334     SmallVector<unsigned, 4> Indices;
3335     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3336         parseGlobalTypeAndValue(Val0) ||
3337         parseToken(lltok::comma,
3338                    "expected comma in insertvalue constantexpr") ||
3339         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3340         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3341       return true;
3342     if (!Val0->getType()->isAggregateType())
3343       return error(ID.Loc, "insertvalue operand must be aggregate type");
3344     Type *IndexedType =
3345         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3346     if (!IndexedType)
3347       return error(ID.Loc, "invalid indices for insertvalue");
3348     if (IndexedType != Val1->getType())
3349       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3350                                getTypeString(Val1->getType()) +
3351                                "' instead of '" + getTypeString(IndexedType) +
3352                                "'");
3353     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3354     ID.Kind = ValID::t_Constant;
3355     return false;
3356   }
3357   case lltok::kw_icmp:
3358   case lltok::kw_fcmp: {
3359     unsigned PredVal, Opc = Lex.getUIntVal();
3360     Constant *Val0, *Val1;
3361     Lex.Lex();
3362     if (parseCmpPredicate(PredVal, Opc) ||
3363         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3364         parseGlobalTypeAndValue(Val0) ||
3365         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3366         parseGlobalTypeAndValue(Val1) ||
3367         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3368       return true;
3369 
3370     if (Val0->getType() != Val1->getType())
3371       return error(ID.Loc, "compare operands must have the same type");
3372 
3373     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3374 
3375     if (Opc == Instruction::FCmp) {
3376       if (!Val0->getType()->isFPOrFPVectorTy())
3377         return error(ID.Loc, "fcmp requires floating point operands");
3378       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3379     } else {
3380       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3381       if (!Val0->getType()->isIntOrIntVectorTy() &&
3382           !Val0->getType()->isPtrOrPtrVectorTy())
3383         return error(ID.Loc, "icmp requires pointer or integer operands");
3384       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3385     }
3386     ID.Kind = ValID::t_Constant;
3387     return false;
3388   }
3389 
3390   // Unary Operators.
3391   case lltok::kw_fneg: {
3392     unsigned Opc = Lex.getUIntVal();
3393     Constant *Val;
3394     Lex.Lex();
3395     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3396         parseGlobalTypeAndValue(Val) ||
3397         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3398       return true;
3399 
3400     // Check that the type is valid for the operator.
3401     switch (Opc) {
3402     case Instruction::FNeg:
3403       if (!Val->getType()->isFPOrFPVectorTy())
3404         return error(ID.Loc, "constexpr requires fp operands");
3405       break;
3406     default: llvm_unreachable("Unknown unary operator!");
3407     }
3408     unsigned Flags = 0;
3409     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3410     ID.ConstantVal = C;
3411     ID.Kind = ValID::t_Constant;
3412     return false;
3413   }
3414   // Binary Operators.
3415   case lltok::kw_add:
3416   case lltok::kw_fadd:
3417   case lltok::kw_sub:
3418   case lltok::kw_fsub:
3419   case lltok::kw_mul:
3420   case lltok::kw_fmul:
3421   case lltok::kw_udiv:
3422   case lltok::kw_sdiv:
3423   case lltok::kw_fdiv:
3424   case lltok::kw_urem:
3425   case lltok::kw_srem:
3426   case lltok::kw_frem:
3427   case lltok::kw_shl:
3428   case lltok::kw_lshr:
3429   case lltok::kw_ashr: {
3430     bool NUW = false;
3431     bool NSW = false;
3432     bool Exact = false;
3433     unsigned Opc = Lex.getUIntVal();
3434     Constant *Val0, *Val1;
3435     Lex.Lex();
3436     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3437         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3438       if (EatIfPresent(lltok::kw_nuw))
3439         NUW = true;
3440       if (EatIfPresent(lltok::kw_nsw)) {
3441         NSW = true;
3442         if (EatIfPresent(lltok::kw_nuw))
3443           NUW = true;
3444       }
3445     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3446                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3447       if (EatIfPresent(lltok::kw_exact))
3448         Exact = true;
3449     }
3450     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3451         parseGlobalTypeAndValue(Val0) ||
3452         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3453         parseGlobalTypeAndValue(Val1) ||
3454         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3455       return true;
3456     if (Val0->getType() != Val1->getType())
3457       return error(ID.Loc, "operands of constexpr must have same type");
3458     // Check that the type is valid for the operator.
3459     switch (Opc) {
3460     case Instruction::Add:
3461     case Instruction::Sub:
3462     case Instruction::Mul:
3463     case Instruction::UDiv:
3464     case Instruction::SDiv:
3465     case Instruction::URem:
3466     case Instruction::SRem:
3467     case Instruction::Shl:
3468     case Instruction::AShr:
3469     case Instruction::LShr:
3470       if (!Val0->getType()->isIntOrIntVectorTy())
3471         return error(ID.Loc, "constexpr requires integer operands");
3472       break;
3473     case Instruction::FAdd:
3474     case Instruction::FSub:
3475     case Instruction::FMul:
3476     case Instruction::FDiv:
3477     case Instruction::FRem:
3478       if (!Val0->getType()->isFPOrFPVectorTy())
3479         return error(ID.Loc, "constexpr requires fp operands");
3480       break;
3481     default: llvm_unreachable("Unknown binary operator!");
3482     }
3483     unsigned Flags = 0;
3484     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3485     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3486     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3487     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3488     ID.ConstantVal = C;
3489     ID.Kind = ValID::t_Constant;
3490     return false;
3491   }
3492 
3493   // Logical Operations
3494   case lltok::kw_and:
3495   case lltok::kw_or:
3496   case lltok::kw_xor: {
3497     unsigned Opc = Lex.getUIntVal();
3498     Constant *Val0, *Val1;
3499     Lex.Lex();
3500     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3501         parseGlobalTypeAndValue(Val0) ||
3502         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3503         parseGlobalTypeAndValue(Val1) ||
3504         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3505       return true;
3506     if (Val0->getType() != Val1->getType())
3507       return error(ID.Loc, "operands of constexpr must have same type");
3508     if (!Val0->getType()->isIntOrIntVectorTy())
3509       return error(ID.Loc,
3510                    "constexpr requires integer or integer vector operands");
3511     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3512     ID.Kind = ValID::t_Constant;
3513     return false;
3514   }
3515 
3516   case lltok::kw_getelementptr:
3517   case lltok::kw_shufflevector:
3518   case lltok::kw_insertelement:
3519   case lltok::kw_extractelement:
3520   case lltok::kw_select: {
3521     unsigned Opc = Lex.getUIntVal();
3522     SmallVector<Constant*, 16> Elts;
3523     bool InBounds = false;
3524     Type *Ty;
3525     Lex.Lex();
3526 
3527     if (Opc == Instruction::GetElementPtr)
3528       InBounds = EatIfPresent(lltok::kw_inbounds);
3529 
3530     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3531       return true;
3532 
3533     LocTy ExplicitTypeLoc = Lex.getLoc();
3534     if (Opc == Instruction::GetElementPtr) {
3535       if (parseType(Ty) ||
3536           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3537         return true;
3538     }
3539 
3540     Optional<unsigned> InRangeOp;
3541     if (parseGlobalValueVector(
3542             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3543         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3544       return true;
3545 
3546     if (Opc == Instruction::GetElementPtr) {
3547       if (Elts.size() == 0 ||
3548           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3549         return error(ID.Loc, "base of getelementptr must be a pointer");
3550 
3551       Type *BaseType = Elts[0]->getType();
3552       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3553       if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
3554         return error(
3555             ExplicitTypeLoc,
3556             typeComparisonErrorMessage(
3557                 "explicit pointee type doesn't match operand's pointee type",
3558                 Ty, BasePointerType->getElementType()));
3559       }
3560 
3561       unsigned GEPWidth =
3562           BaseType->isVectorTy()
3563               ? cast<FixedVectorType>(BaseType)->getNumElements()
3564               : 0;
3565 
3566       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3567       for (Constant *Val : Indices) {
3568         Type *ValTy = Val->getType();
3569         if (!ValTy->isIntOrIntVectorTy())
3570           return error(ID.Loc, "getelementptr index must be an integer");
3571         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3572           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3573           if (GEPWidth && (ValNumEl != GEPWidth))
3574             return error(
3575                 ID.Loc,
3576                 "getelementptr vector index has a wrong number of elements");
3577           // GEPWidth may have been unknown because the base is a scalar,
3578           // but it is known now.
3579           GEPWidth = ValNumEl;
3580         }
3581       }
3582 
3583       SmallPtrSet<Type*, 4> Visited;
3584       if (!Indices.empty() && !Ty->isSized(&Visited))
3585         return error(ID.Loc, "base element of getelementptr must be sized");
3586 
3587       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3588         return error(ID.Loc, "invalid getelementptr indices");
3589 
3590       if (InRangeOp) {
3591         if (*InRangeOp == 0)
3592           return error(ID.Loc,
3593                        "inrange keyword may not appear on pointer operand");
3594         --*InRangeOp;
3595       }
3596 
3597       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3598                                                       InBounds, InRangeOp);
3599     } else if (Opc == Instruction::Select) {
3600       if (Elts.size() != 3)
3601         return error(ID.Loc, "expected three operands to select");
3602       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3603                                                               Elts[2]))
3604         return error(ID.Loc, Reason);
3605       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3606     } else if (Opc == Instruction::ShuffleVector) {
3607       if (Elts.size() != 3)
3608         return error(ID.Loc, "expected three operands to shufflevector");
3609       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3610         return error(ID.Loc, "invalid operands to shufflevector");
3611       SmallVector<int, 16> Mask;
3612       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3613       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3614     } else if (Opc == Instruction::ExtractElement) {
3615       if (Elts.size() != 2)
3616         return error(ID.Loc, "expected two operands to extractelement");
3617       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3618         return error(ID.Loc, "invalid extractelement operands");
3619       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3620     } else {
3621       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3622       if (Elts.size() != 3)
3623         return error(ID.Loc, "expected three operands to insertelement");
3624       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3625         return error(ID.Loc, "invalid insertelement operands");
3626       ID.ConstantVal =
3627                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3628     }
3629 
3630     ID.Kind = ValID::t_Constant;
3631     return false;
3632   }
3633   }
3634 
3635   Lex.Lex();
3636   return false;
3637 }
3638 
3639 /// parseGlobalValue - parse a global value with the specified type.
3640 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3641   C = nullptr;
3642   ValID ID;
3643   Value *V = nullptr;
3644   bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
3645                 convertValIDToValue(Ty, ID, V, nullptr);
3646   if (V && !(C = dyn_cast<Constant>(V)))
3647     return error(ID.Loc, "global values must be constants");
3648   return Parsed;
3649 }
3650 
3651 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3652   Type *Ty = nullptr;
3653   return parseType(Ty) || parseGlobalValue(Ty, V);
3654 }
3655 
3656 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3657   C = nullptr;
3658 
3659   LocTy KwLoc = Lex.getLoc();
3660   if (!EatIfPresent(lltok::kw_comdat))
3661     return false;
3662 
3663   if (EatIfPresent(lltok::lparen)) {
3664     if (Lex.getKind() != lltok::ComdatVar)
3665       return tokError("expected comdat variable");
3666     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3667     Lex.Lex();
3668     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3669       return true;
3670   } else {
3671     if (GlobalName.empty())
3672       return tokError("comdat cannot be unnamed");
3673     C = getComdat(std::string(GlobalName), KwLoc);
3674   }
3675 
3676   return false;
3677 }
3678 
3679 /// parseGlobalValueVector
3680 ///   ::= /*empty*/
3681 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3682 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3683                                       Optional<unsigned> *InRangeOp) {
3684   // Empty list.
3685   if (Lex.getKind() == lltok::rbrace ||
3686       Lex.getKind() == lltok::rsquare ||
3687       Lex.getKind() == lltok::greater ||
3688       Lex.getKind() == lltok::rparen)
3689     return false;
3690 
3691   do {
3692     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3693       *InRangeOp = Elts.size();
3694 
3695     Constant *C;
3696     if (parseGlobalTypeAndValue(C))
3697       return true;
3698     Elts.push_back(C);
3699   } while (EatIfPresent(lltok::comma));
3700 
3701   return false;
3702 }
3703 
3704 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
3705   SmallVector<Metadata *, 16> Elts;
3706   if (parseMDNodeVector(Elts))
3707     return true;
3708 
3709   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3710   return false;
3711 }
3712 
3713 /// MDNode:
3714 ///  ::= !{ ... }
3715 ///  ::= !7
3716 ///  ::= !DILocation(...)
3717 bool LLParser::parseMDNode(MDNode *&N) {
3718   if (Lex.getKind() == lltok::MetadataVar)
3719     return parseSpecializedMDNode(N);
3720 
3721   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
3722 }
3723 
3724 bool LLParser::parseMDNodeTail(MDNode *&N) {
3725   // !{ ... }
3726   if (Lex.getKind() == lltok::lbrace)
3727     return parseMDTuple(N);
3728 
3729   // !42
3730   return parseMDNodeID(N);
3731 }
3732 
3733 namespace {
3734 
3735 /// Structure to represent an optional metadata field.
3736 template <class FieldTy> struct MDFieldImpl {
3737   typedef MDFieldImpl ImplTy;
3738   FieldTy Val;
3739   bool Seen;
3740 
3741   void assign(FieldTy Val) {
3742     Seen = true;
3743     this->Val = std::move(Val);
3744   }
3745 
3746   explicit MDFieldImpl(FieldTy Default)
3747       : Val(std::move(Default)), Seen(false) {}
3748 };
3749 
3750 /// Structure to represent an optional metadata field that
3751 /// can be of either type (A or B) and encapsulates the
3752 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3753 /// to reimplement the specifics for representing each Field.
3754 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3755   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3756   FieldTypeA A;
3757   FieldTypeB B;
3758   bool Seen;
3759 
3760   enum {
3761     IsInvalid = 0,
3762     IsTypeA = 1,
3763     IsTypeB = 2
3764   } WhatIs;
3765 
3766   void assign(FieldTypeA A) {
3767     Seen = true;
3768     this->A = std::move(A);
3769     WhatIs = IsTypeA;
3770   }
3771 
3772   void assign(FieldTypeB B) {
3773     Seen = true;
3774     this->B = std::move(B);
3775     WhatIs = IsTypeB;
3776   }
3777 
3778   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3779       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3780         WhatIs(IsInvalid) {}
3781 };
3782 
3783 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3784   uint64_t Max;
3785 
3786   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3787       : ImplTy(Default), Max(Max) {}
3788 };
3789 
3790 struct LineField : public MDUnsignedField {
3791   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3792 };
3793 
3794 struct ColumnField : public MDUnsignedField {
3795   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3796 };
3797 
3798 struct DwarfTagField : public MDUnsignedField {
3799   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3800   DwarfTagField(dwarf::Tag DefaultTag)
3801       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3802 };
3803 
3804 struct DwarfMacinfoTypeField : public MDUnsignedField {
3805   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3806   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3807     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3808 };
3809 
3810 struct DwarfAttEncodingField : public MDUnsignedField {
3811   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3812 };
3813 
3814 struct DwarfVirtualityField : public MDUnsignedField {
3815   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3816 };
3817 
3818 struct DwarfLangField : public MDUnsignedField {
3819   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3820 };
3821 
3822 struct DwarfCCField : public MDUnsignedField {
3823   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3824 };
3825 
3826 struct EmissionKindField : public MDUnsignedField {
3827   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3828 };
3829 
3830 struct NameTableKindField : public MDUnsignedField {
3831   NameTableKindField()
3832       : MDUnsignedField(
3833             0, (unsigned)
3834                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3835 };
3836 
3837 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3838   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3839 };
3840 
3841 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3842   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3843 };
3844 
3845 struct MDAPSIntField : public MDFieldImpl<APSInt> {
3846   MDAPSIntField() : ImplTy(APSInt()) {}
3847 };
3848 
3849 struct MDSignedField : public MDFieldImpl<int64_t> {
3850   int64_t Min;
3851   int64_t Max;
3852 
3853   MDSignedField(int64_t Default = 0)
3854       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3855   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3856       : ImplTy(Default), Min(Min), Max(Max) {}
3857 };
3858 
3859 struct MDBoolField : public MDFieldImpl<bool> {
3860   MDBoolField(bool Default = false) : ImplTy(Default) {}
3861 };
3862 
3863 struct MDField : public MDFieldImpl<Metadata *> {
3864   bool AllowNull;
3865 
3866   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3867 };
3868 
3869 struct MDStringField : public MDFieldImpl<MDString *> {
3870   bool AllowEmpty;
3871   MDStringField(bool AllowEmpty = true)
3872       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3873 };
3874 
3875 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3876   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3877 };
3878 
3879 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3880   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3881 };
3882 
3883 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3884   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3885       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3886 
3887   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3888                     bool AllowNull = true)
3889       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3890 
3891   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3892   bool isMDField() const { return WhatIs == IsTypeB; }
3893   int64_t getMDSignedValue() const {
3894     assert(isMDSignedField() && "Wrong field type");
3895     return A.Val;
3896   }
3897   Metadata *getMDFieldValue() const {
3898     assert(isMDField() && "Wrong field type");
3899     return B.Val;
3900   }
3901 };
3902 
3903 } // end anonymous namespace
3904 
3905 namespace llvm {
3906 
3907 template <>
3908 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
3909   if (Lex.getKind() != lltok::APSInt)
3910     return tokError("expected integer");
3911 
3912   Result.assign(Lex.getAPSIntVal());
3913   Lex.Lex();
3914   return false;
3915 }
3916 
3917 template <>
3918 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
3919                             MDUnsignedField &Result) {
3920   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3921     return tokError("expected unsigned integer");
3922 
3923   auto &U = Lex.getAPSIntVal();
3924   if (U.ugt(Result.Max))
3925     return tokError("value for '" + Name + "' too large, limit is " +
3926                     Twine(Result.Max));
3927   Result.assign(U.getZExtValue());
3928   assert(Result.Val <= Result.Max && "Expected value in range");
3929   Lex.Lex();
3930   return false;
3931 }
3932 
3933 template <>
3934 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3935   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3936 }
3937 template <>
3938 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3939   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3940 }
3941 
3942 template <>
3943 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3944   if (Lex.getKind() == lltok::APSInt)
3945     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3946 
3947   if (Lex.getKind() != lltok::DwarfTag)
3948     return tokError("expected DWARF tag");
3949 
3950   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3951   if (Tag == dwarf::DW_TAG_invalid)
3952     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3953   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3954 
3955   Result.assign(Tag);
3956   Lex.Lex();
3957   return false;
3958 }
3959 
3960 template <>
3961 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
3962                             DwarfMacinfoTypeField &Result) {
3963   if (Lex.getKind() == lltok::APSInt)
3964     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3965 
3966   if (Lex.getKind() != lltok::DwarfMacinfo)
3967     return tokError("expected DWARF macinfo type");
3968 
3969   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3970   if (Macinfo == dwarf::DW_MACINFO_invalid)
3971     return tokError("invalid DWARF macinfo type" + Twine(" '") +
3972                     Lex.getStrVal() + "'");
3973   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3974 
3975   Result.assign(Macinfo);
3976   Lex.Lex();
3977   return false;
3978 }
3979 
3980 template <>
3981 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
3982                             DwarfVirtualityField &Result) {
3983   if (Lex.getKind() == lltok::APSInt)
3984     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3985 
3986   if (Lex.getKind() != lltok::DwarfVirtuality)
3987     return tokError("expected DWARF virtuality code");
3988 
3989   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3990   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3991     return tokError("invalid DWARF virtuality code" + Twine(" '") +
3992                     Lex.getStrVal() + "'");
3993   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3994   Result.assign(Virtuality);
3995   Lex.Lex();
3996   return false;
3997 }
3998 
3999 template <>
4000 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4001   if (Lex.getKind() == lltok::APSInt)
4002     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4003 
4004   if (Lex.getKind() != lltok::DwarfLang)
4005     return tokError("expected DWARF language");
4006 
4007   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4008   if (!Lang)
4009     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4010                     "'");
4011   assert(Lang <= Result.Max && "Expected valid DWARF language");
4012   Result.assign(Lang);
4013   Lex.Lex();
4014   return false;
4015 }
4016 
4017 template <>
4018 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4019   if (Lex.getKind() == lltok::APSInt)
4020     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4021 
4022   if (Lex.getKind() != lltok::DwarfCC)
4023     return tokError("expected DWARF calling convention");
4024 
4025   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4026   if (!CC)
4027     return tokError("invalid DWARF calling convention" + Twine(" '") +
4028                     Lex.getStrVal() + "'");
4029   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4030   Result.assign(CC);
4031   Lex.Lex();
4032   return false;
4033 }
4034 
4035 template <>
4036 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4037                             EmissionKindField &Result) {
4038   if (Lex.getKind() == lltok::APSInt)
4039     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4040 
4041   if (Lex.getKind() != lltok::EmissionKind)
4042     return tokError("expected emission kind");
4043 
4044   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4045   if (!Kind)
4046     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4047                     "'");
4048   assert(*Kind <= Result.Max && "Expected valid emission kind");
4049   Result.assign(*Kind);
4050   Lex.Lex();
4051   return false;
4052 }
4053 
4054 template <>
4055 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4056                             NameTableKindField &Result) {
4057   if (Lex.getKind() == lltok::APSInt)
4058     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4059 
4060   if (Lex.getKind() != lltok::NameTableKind)
4061     return tokError("expected nameTable kind");
4062 
4063   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4064   if (!Kind)
4065     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4066                     "'");
4067   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4068   Result.assign((unsigned)*Kind);
4069   Lex.Lex();
4070   return false;
4071 }
4072 
4073 template <>
4074 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4075                             DwarfAttEncodingField &Result) {
4076   if (Lex.getKind() == lltok::APSInt)
4077     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4078 
4079   if (Lex.getKind() != lltok::DwarfAttEncoding)
4080     return tokError("expected DWARF type attribute encoding");
4081 
4082   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4083   if (!Encoding)
4084     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4085                     Lex.getStrVal() + "'");
4086   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4087   Result.assign(Encoding);
4088   Lex.Lex();
4089   return false;
4090 }
4091 
4092 /// DIFlagField
4093 ///  ::= uint32
4094 ///  ::= DIFlagVector
4095 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4096 template <>
4097 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4098 
4099   // parser for a single flag.
4100   auto parseFlag = [&](DINode::DIFlags &Val) {
4101     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4102       uint32_t TempVal = static_cast<uint32_t>(Val);
4103       bool Res = parseUInt32(TempVal);
4104       Val = static_cast<DINode::DIFlags>(TempVal);
4105       return Res;
4106     }
4107 
4108     if (Lex.getKind() != lltok::DIFlag)
4109       return tokError("expected debug info flag");
4110 
4111     Val = DINode::getFlag(Lex.getStrVal());
4112     if (!Val)
4113       return tokError(Twine("invalid debug info flag flag '") +
4114                       Lex.getStrVal() + "'");
4115     Lex.Lex();
4116     return false;
4117   };
4118 
4119   // parse the flags and combine them together.
4120   DINode::DIFlags Combined = DINode::FlagZero;
4121   do {
4122     DINode::DIFlags Val;
4123     if (parseFlag(Val))
4124       return true;
4125     Combined |= Val;
4126   } while (EatIfPresent(lltok::bar));
4127 
4128   Result.assign(Combined);
4129   return false;
4130 }
4131 
4132 /// DISPFlagField
4133 ///  ::= uint32
4134 ///  ::= DISPFlagVector
4135 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4136 template <>
4137 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4138 
4139   // parser for a single flag.
4140   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4141     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4142       uint32_t TempVal = static_cast<uint32_t>(Val);
4143       bool Res = parseUInt32(TempVal);
4144       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4145       return Res;
4146     }
4147 
4148     if (Lex.getKind() != lltok::DISPFlag)
4149       return tokError("expected debug info flag");
4150 
4151     Val = DISubprogram::getFlag(Lex.getStrVal());
4152     if (!Val)
4153       return tokError(Twine("invalid subprogram debug info flag '") +
4154                       Lex.getStrVal() + "'");
4155     Lex.Lex();
4156     return false;
4157   };
4158 
4159   // parse the flags and combine them together.
4160   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4161   do {
4162     DISubprogram::DISPFlags Val;
4163     if (parseFlag(Val))
4164       return true;
4165     Combined |= Val;
4166   } while (EatIfPresent(lltok::bar));
4167 
4168   Result.assign(Combined);
4169   return false;
4170 }
4171 
4172 template <>
4173 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4174   if (Lex.getKind() != lltok::APSInt)
4175     return tokError("expected signed integer");
4176 
4177   auto &S = Lex.getAPSIntVal();
4178   if (S < Result.Min)
4179     return tokError("value for '" + Name + "' too small, limit is " +
4180                     Twine(Result.Min));
4181   if (S > Result.Max)
4182     return tokError("value for '" + Name + "' too large, limit is " +
4183                     Twine(Result.Max));
4184   Result.assign(S.getExtValue());
4185   assert(Result.Val >= Result.Min && "Expected value in range");
4186   assert(Result.Val <= Result.Max && "Expected value in range");
4187   Lex.Lex();
4188   return false;
4189 }
4190 
4191 template <>
4192 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4193   switch (Lex.getKind()) {
4194   default:
4195     return tokError("expected 'true' or 'false'");
4196   case lltok::kw_true:
4197     Result.assign(true);
4198     break;
4199   case lltok::kw_false:
4200     Result.assign(false);
4201     break;
4202   }
4203   Lex.Lex();
4204   return false;
4205 }
4206 
4207 template <>
4208 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4209   if (Lex.getKind() == lltok::kw_null) {
4210     if (!Result.AllowNull)
4211       return tokError("'" + Name + "' cannot be null");
4212     Lex.Lex();
4213     Result.assign(nullptr);
4214     return false;
4215   }
4216 
4217   Metadata *MD;
4218   if (parseMetadata(MD, nullptr))
4219     return true;
4220 
4221   Result.assign(MD);
4222   return false;
4223 }
4224 
4225 template <>
4226 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4227                             MDSignedOrMDField &Result) {
4228   // Try to parse a signed int.
4229   if (Lex.getKind() == lltok::APSInt) {
4230     MDSignedField Res = Result.A;
4231     if (!parseMDField(Loc, Name, Res)) {
4232       Result.assign(Res);
4233       return false;
4234     }
4235     return true;
4236   }
4237 
4238   // Otherwise, try to parse as an MDField.
4239   MDField Res = Result.B;
4240   if (!parseMDField(Loc, Name, Res)) {
4241     Result.assign(Res);
4242     return false;
4243   }
4244 
4245   return true;
4246 }
4247 
4248 template <>
4249 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4250   LocTy ValueLoc = Lex.getLoc();
4251   std::string S;
4252   if (parseStringConstant(S))
4253     return true;
4254 
4255   if (!Result.AllowEmpty && S.empty())
4256     return error(ValueLoc, "'" + Name + "' cannot be empty");
4257 
4258   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4259   return false;
4260 }
4261 
4262 template <>
4263 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4264   SmallVector<Metadata *, 4> MDs;
4265   if (parseMDNodeVector(MDs))
4266     return true;
4267 
4268   Result.assign(std::move(MDs));
4269   return false;
4270 }
4271 
4272 template <>
4273 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4274                             ChecksumKindField &Result) {
4275   Optional<DIFile::ChecksumKind> CSKind =
4276       DIFile::getChecksumKind(Lex.getStrVal());
4277 
4278   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4279     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4280                     "'");
4281 
4282   Result.assign(*CSKind);
4283   Lex.Lex();
4284   return false;
4285 }
4286 
4287 } // end namespace llvm
4288 
4289 template <class ParserTy>
4290 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4291   do {
4292     if (Lex.getKind() != lltok::LabelStr)
4293       return tokError("expected field label here");
4294 
4295     if (ParseField())
4296       return true;
4297   } while (EatIfPresent(lltok::comma));
4298 
4299   return false;
4300 }
4301 
4302 template <class ParserTy>
4303 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4304   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4305   Lex.Lex();
4306 
4307   if (parseToken(lltok::lparen, "expected '(' here"))
4308     return true;
4309   if (Lex.getKind() != lltok::rparen)
4310     if (parseMDFieldsImplBody(ParseField))
4311       return true;
4312 
4313   ClosingLoc = Lex.getLoc();
4314   return parseToken(lltok::rparen, "expected ')' here");
4315 }
4316 
4317 template <class FieldTy>
4318 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4319   if (Result.Seen)
4320     return tokError("field '" + Name + "' cannot be specified more than once");
4321 
4322   LocTy Loc = Lex.getLoc();
4323   Lex.Lex();
4324   return parseMDField(Loc, Name, Result);
4325 }
4326 
4327 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4328   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4329 
4330 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4331   if (Lex.getStrVal() == #CLASS)                                               \
4332     return parse##CLASS(N, IsDistinct);
4333 #include "llvm/IR/Metadata.def"
4334 
4335   return tokError("expected metadata type");
4336 }
4337 
4338 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4339 #define NOP_FIELD(NAME, TYPE, INIT)
4340 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4341   if (!NAME.Seen)                                                              \
4342     return error(ClosingLoc, "missing required field '" #NAME "'");
4343 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4344   if (Lex.getStrVal() == #NAME)                                                \
4345     return parseMDField(#NAME, NAME);
4346 #define PARSE_MD_FIELDS()                                                      \
4347   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4348   do {                                                                         \
4349     LocTy ClosingLoc;                                                          \
4350     if (parseMDFieldsImpl(                                                     \
4351             [&]() -> bool {                                                    \
4352               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4353               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4354                               "'");                                            \
4355             },                                                                 \
4356             ClosingLoc))                                                       \
4357       return true;                                                             \
4358     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4359   } while (false)
4360 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4361   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4362 
4363 /// parseDILocationFields:
4364 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4365 ///   isImplicitCode: true)
4366 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4367 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4368   OPTIONAL(line, LineField, );                                                 \
4369   OPTIONAL(column, ColumnField, );                                             \
4370   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4371   OPTIONAL(inlinedAt, MDField, );                                              \
4372   OPTIONAL(isImplicitCode, MDBoolField, (false));
4373   PARSE_MD_FIELDS();
4374 #undef VISIT_MD_FIELDS
4375 
4376   Result =
4377       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4378                                    inlinedAt.Val, isImplicitCode.Val));
4379   return false;
4380 }
4381 
4382 /// parseGenericDINode:
4383 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4384 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4385 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4386   REQUIRED(tag, DwarfTagField, );                                              \
4387   OPTIONAL(header, MDStringField, );                                           \
4388   OPTIONAL(operands, MDFieldList, );
4389   PARSE_MD_FIELDS();
4390 #undef VISIT_MD_FIELDS
4391 
4392   Result = GET_OR_DISTINCT(GenericDINode,
4393                            (Context, tag.Val, header.Val, operands.Val));
4394   return false;
4395 }
4396 
4397 /// parseDISubrange:
4398 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4399 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4400 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4401 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4402 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4403   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4404   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4405   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4406   OPTIONAL(stride, MDSignedOrMDField, );
4407   PARSE_MD_FIELDS();
4408 #undef VISIT_MD_FIELDS
4409 
4410   Metadata *Count = nullptr;
4411   Metadata *LowerBound = nullptr;
4412   Metadata *UpperBound = nullptr;
4413   Metadata *Stride = nullptr;
4414 
4415   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4416     if (Bound.isMDSignedField())
4417       return ConstantAsMetadata::get(ConstantInt::getSigned(
4418           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4419     if (Bound.isMDField())
4420       return Bound.getMDFieldValue();
4421     return nullptr;
4422   };
4423 
4424   Count = convToMetadata(count);
4425   LowerBound = convToMetadata(lowerBound);
4426   UpperBound = convToMetadata(upperBound);
4427   Stride = convToMetadata(stride);
4428 
4429   Result = GET_OR_DISTINCT(DISubrange,
4430                            (Context, Count, LowerBound, UpperBound, Stride));
4431 
4432   return false;
4433 }
4434 
4435 /// parseDIGenericSubrange:
4436 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4437 ///   !node3)
4438 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4439 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4440   OPTIONAL(count, MDSignedOrMDField, );                                        \
4441   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4442   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4443   OPTIONAL(stride, MDSignedOrMDField, );
4444   PARSE_MD_FIELDS();
4445 #undef VISIT_MD_FIELDS
4446 
4447   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4448     if (Bound.isMDSignedField())
4449       return DIExpression::get(
4450           Context, {dwarf::DW_OP_consts,
4451                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4452     if (Bound.isMDField())
4453       return Bound.getMDFieldValue();
4454     return nullptr;
4455   };
4456 
4457   Metadata *Count = ConvToMetadata(count);
4458   Metadata *LowerBound = ConvToMetadata(lowerBound);
4459   Metadata *UpperBound = ConvToMetadata(upperBound);
4460   Metadata *Stride = ConvToMetadata(stride);
4461 
4462   Result = GET_OR_DISTINCT(DIGenericSubrange,
4463                            (Context, Count, LowerBound, UpperBound, Stride));
4464 
4465   return false;
4466 }
4467 
4468 /// parseDIEnumerator:
4469 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4470 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4471 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4472   REQUIRED(name, MDStringField, );                                             \
4473   REQUIRED(value, MDAPSIntField, );                                            \
4474   OPTIONAL(isUnsigned, MDBoolField, (false));
4475   PARSE_MD_FIELDS();
4476 #undef VISIT_MD_FIELDS
4477 
4478   if (isUnsigned.Val && value.Val.isNegative())
4479     return tokError("unsigned enumerator with negative value");
4480 
4481   APSInt Value(value.Val);
4482   // Add a leading zero so that unsigned values with the msb set are not
4483   // mistaken for negative values when used for signed enumerators.
4484   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4485     Value = Value.zext(Value.getBitWidth() + 1);
4486 
4487   Result =
4488       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4489 
4490   return false;
4491 }
4492 
4493 /// parseDIBasicType:
4494 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4495 ///                    encoding: DW_ATE_encoding, flags: 0)
4496 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4497 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4498   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4499   OPTIONAL(name, MDStringField, );                                             \
4500   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4501   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4502   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4503   OPTIONAL(flags, DIFlagField, );
4504   PARSE_MD_FIELDS();
4505 #undef VISIT_MD_FIELDS
4506 
4507   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4508                                          align.Val, encoding.Val, flags.Val));
4509   return false;
4510 }
4511 
4512 /// parseDIStringType:
4513 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4514 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4515 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4516   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4517   OPTIONAL(name, MDStringField, );                                             \
4518   OPTIONAL(stringLength, MDField, );                                           \
4519   OPTIONAL(stringLengthExpression, MDField, );                                 \
4520   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4521   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4522   OPTIONAL(encoding, DwarfAttEncodingField, );
4523   PARSE_MD_FIELDS();
4524 #undef VISIT_MD_FIELDS
4525 
4526   Result = GET_OR_DISTINCT(DIStringType,
4527                            (Context, tag.Val, name.Val, stringLength.Val,
4528                             stringLengthExpression.Val, size.Val, align.Val,
4529                             encoding.Val));
4530   return false;
4531 }
4532 
4533 /// parseDIDerivedType:
4534 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4535 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4536 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4537 ///                      dwarfAddressSpace: 3)
4538 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4539 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4540   REQUIRED(tag, DwarfTagField, );                                              \
4541   OPTIONAL(name, MDStringField, );                                             \
4542   OPTIONAL(file, MDField, );                                                   \
4543   OPTIONAL(line, LineField, );                                                 \
4544   OPTIONAL(scope, MDField, );                                                  \
4545   REQUIRED(baseType, MDField, );                                               \
4546   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4547   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4548   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4549   OPTIONAL(flags, DIFlagField, );                                              \
4550   OPTIONAL(extraData, MDField, );                                              \
4551   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));      \
4552   OPTIONAL(annotations, MDField, );
4553   PARSE_MD_FIELDS();
4554 #undef VISIT_MD_FIELDS
4555 
4556   Optional<unsigned> DWARFAddressSpace;
4557   if (dwarfAddressSpace.Val != UINT32_MAX)
4558     DWARFAddressSpace = dwarfAddressSpace.Val;
4559 
4560   Result = GET_OR_DISTINCT(DIDerivedType,
4561                            (Context, tag.Val, name.Val, file.Val, line.Val,
4562                             scope.Val, baseType.Val, size.Val, align.Val,
4563                             offset.Val, DWARFAddressSpace, flags.Val,
4564                             extraData.Val, annotations.Val));
4565   return false;
4566 }
4567 
4568 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4569 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4570   REQUIRED(tag, DwarfTagField, );                                              \
4571   OPTIONAL(name, MDStringField, );                                             \
4572   OPTIONAL(file, MDField, );                                                   \
4573   OPTIONAL(line, LineField, );                                                 \
4574   OPTIONAL(scope, MDField, );                                                  \
4575   OPTIONAL(baseType, MDField, );                                               \
4576   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4577   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4578   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4579   OPTIONAL(flags, DIFlagField, );                                              \
4580   OPTIONAL(elements, MDField, );                                               \
4581   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4582   OPTIONAL(vtableHolder, MDField, );                                           \
4583   OPTIONAL(templateParams, MDField, );                                         \
4584   OPTIONAL(identifier, MDStringField, );                                       \
4585   OPTIONAL(discriminator, MDField, );                                          \
4586   OPTIONAL(dataLocation, MDField, );                                           \
4587   OPTIONAL(associated, MDField, );                                             \
4588   OPTIONAL(allocated, MDField, );                                              \
4589   OPTIONAL(rank, MDSignedOrMDField, );                                         \
4590   OPTIONAL(annotations, MDField, );
4591   PARSE_MD_FIELDS();
4592 #undef VISIT_MD_FIELDS
4593 
4594   Metadata *Rank = nullptr;
4595   if (rank.isMDSignedField())
4596     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4597         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4598   else if (rank.isMDField())
4599     Rank = rank.getMDFieldValue();
4600 
4601   // If this has an identifier try to build an ODR type.
4602   if (identifier.Val)
4603     if (auto *CT = DICompositeType::buildODRType(
4604             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4605             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4606             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4607             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4608             Rank, annotations.Val)) {
4609       Result = CT;
4610       return false;
4611     }
4612 
4613   // Create a new node, and save it in the context if it belongs in the type
4614   // map.
4615   Result = GET_OR_DISTINCT(
4616       DICompositeType,
4617       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4618        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4619        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4620        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank,
4621        annotations.Val));
4622   return false;
4623 }
4624 
4625 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4626 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4627   OPTIONAL(flags, DIFlagField, );                                              \
4628   OPTIONAL(cc, DwarfCCField, );                                                \
4629   REQUIRED(types, MDField, );
4630   PARSE_MD_FIELDS();
4631 #undef VISIT_MD_FIELDS
4632 
4633   Result = GET_OR_DISTINCT(DISubroutineType,
4634                            (Context, flags.Val, cc.Val, types.Val));
4635   return false;
4636 }
4637 
4638 /// parseDIFileType:
4639 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4640 ///                   checksumkind: CSK_MD5,
4641 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4642 ///                   source: "source file contents")
4643 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4644   // The default constructed value for checksumkind is required, but will never
4645   // be used, as the parser checks if the field was actually Seen before using
4646   // the Val.
4647 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4648   REQUIRED(filename, MDStringField, );                                         \
4649   REQUIRED(directory, MDStringField, );                                        \
4650   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4651   OPTIONAL(checksum, MDStringField, );                                         \
4652   OPTIONAL(source, MDStringField, );
4653   PARSE_MD_FIELDS();
4654 #undef VISIT_MD_FIELDS
4655 
4656   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4657   if (checksumkind.Seen && checksum.Seen)
4658     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4659   else if (checksumkind.Seen || checksum.Seen)
4660     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4661 
4662   Optional<MDString *> OptSource;
4663   if (source.Seen)
4664     OptSource = source.Val;
4665   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4666                                     OptChecksum, OptSource));
4667   return false;
4668 }
4669 
4670 /// parseDICompileUnit:
4671 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4672 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4673 ///                      splitDebugFilename: "abc.debug",
4674 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4675 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4676 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4677 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4678   if (!IsDistinct)
4679     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4680 
4681 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4682   REQUIRED(language, DwarfLangField, );                                        \
4683   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4684   OPTIONAL(producer, MDStringField, );                                         \
4685   OPTIONAL(isOptimized, MDBoolField, );                                        \
4686   OPTIONAL(flags, MDStringField, );                                            \
4687   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4688   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4689   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4690   OPTIONAL(enums, MDField, );                                                  \
4691   OPTIONAL(retainedTypes, MDField, );                                          \
4692   OPTIONAL(globals, MDField, );                                                \
4693   OPTIONAL(imports, MDField, );                                                \
4694   OPTIONAL(macros, MDField, );                                                 \
4695   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4696   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4697   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4698   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4699   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4700   OPTIONAL(sysroot, MDStringField, );                                          \
4701   OPTIONAL(sdk, MDStringField, );
4702   PARSE_MD_FIELDS();
4703 #undef VISIT_MD_FIELDS
4704 
4705   Result = DICompileUnit::getDistinct(
4706       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4707       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4708       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4709       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4710       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4711   return false;
4712 }
4713 
4714 /// parseDISubprogram:
4715 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4716 ///                     file: !1, line: 7, type: !2, isLocal: false,
4717 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4718 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4719 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4720 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4721 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7,
4722 ///                     annotations: !8)
4723 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
4724   auto Loc = Lex.getLoc();
4725 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4726   OPTIONAL(scope, MDField, );                                                  \
4727   OPTIONAL(name, MDStringField, );                                             \
4728   OPTIONAL(linkageName, MDStringField, );                                      \
4729   OPTIONAL(file, MDField, );                                                   \
4730   OPTIONAL(line, LineField, );                                                 \
4731   OPTIONAL(type, MDField, );                                                   \
4732   OPTIONAL(isLocal, MDBoolField, );                                            \
4733   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4734   OPTIONAL(scopeLine, LineField, );                                            \
4735   OPTIONAL(containingType, MDField, );                                         \
4736   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4737   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4738   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4739   OPTIONAL(flags, DIFlagField, );                                              \
4740   OPTIONAL(spFlags, DISPFlagField, );                                          \
4741   OPTIONAL(isOptimized, MDBoolField, );                                        \
4742   OPTIONAL(unit, MDField, );                                                   \
4743   OPTIONAL(templateParams, MDField, );                                         \
4744   OPTIONAL(declaration, MDField, );                                            \
4745   OPTIONAL(retainedNodes, MDField, );                                          \
4746   OPTIONAL(thrownTypes, MDField, );                                            \
4747   OPTIONAL(annotations, MDField, );
4748   PARSE_MD_FIELDS();
4749 #undef VISIT_MD_FIELDS
4750 
4751   // An explicit spFlags field takes precedence over individual fields in
4752   // older IR versions.
4753   DISubprogram::DISPFlags SPFlags =
4754       spFlags.Seen ? spFlags.Val
4755                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4756                                              isOptimized.Val, virtuality.Val);
4757   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4758     return Lex.Error(
4759         Loc,
4760         "missing 'distinct', required for !DISubprogram that is a Definition");
4761   Result = GET_OR_DISTINCT(
4762       DISubprogram,
4763       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4764        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4765        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4766        declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val));
4767   return false;
4768 }
4769 
4770 /// parseDILexicalBlock:
4771 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4772 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4773 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4774   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4775   OPTIONAL(file, MDField, );                                                   \
4776   OPTIONAL(line, LineField, );                                                 \
4777   OPTIONAL(column, ColumnField, );
4778   PARSE_MD_FIELDS();
4779 #undef VISIT_MD_FIELDS
4780 
4781   Result = GET_OR_DISTINCT(
4782       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4783   return false;
4784 }
4785 
4786 /// parseDILexicalBlockFile:
4787 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4788 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4789 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4790   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4791   OPTIONAL(file, MDField, );                                                   \
4792   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4793   PARSE_MD_FIELDS();
4794 #undef VISIT_MD_FIELDS
4795 
4796   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4797                            (Context, scope.Val, file.Val, discriminator.Val));
4798   return false;
4799 }
4800 
4801 /// parseDICommonBlock:
4802 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4803 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4804 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4805   REQUIRED(scope, MDField, );                                                  \
4806   OPTIONAL(declaration, MDField, );                                            \
4807   OPTIONAL(name, MDStringField, );                                             \
4808   OPTIONAL(file, MDField, );                                                   \
4809   OPTIONAL(line, LineField, );
4810   PARSE_MD_FIELDS();
4811 #undef VISIT_MD_FIELDS
4812 
4813   Result = GET_OR_DISTINCT(DICommonBlock,
4814                            (Context, scope.Val, declaration.Val, name.Val,
4815                             file.Val, line.Val));
4816   return false;
4817 }
4818 
4819 /// parseDINamespace:
4820 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4821 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
4822 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4823   REQUIRED(scope, MDField, );                                                  \
4824   OPTIONAL(name, MDStringField, );                                             \
4825   OPTIONAL(exportSymbols, MDBoolField, );
4826   PARSE_MD_FIELDS();
4827 #undef VISIT_MD_FIELDS
4828 
4829   Result = GET_OR_DISTINCT(DINamespace,
4830                            (Context, scope.Val, name.Val, exportSymbols.Val));
4831   return false;
4832 }
4833 
4834 /// parseDIMacro:
4835 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
4836 ///   "SomeValue")
4837 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
4838 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4839   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4840   OPTIONAL(line, LineField, );                                                 \
4841   REQUIRED(name, MDStringField, );                                             \
4842   OPTIONAL(value, MDStringField, );
4843   PARSE_MD_FIELDS();
4844 #undef VISIT_MD_FIELDS
4845 
4846   Result = GET_OR_DISTINCT(DIMacro,
4847                            (Context, type.Val, line.Val, name.Val, value.Val));
4848   return false;
4849 }
4850 
4851 /// parseDIMacroFile:
4852 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4853 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4854 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4855   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4856   OPTIONAL(line, LineField, );                                                 \
4857   REQUIRED(file, MDField, );                                                   \
4858   OPTIONAL(nodes, MDField, );
4859   PARSE_MD_FIELDS();
4860 #undef VISIT_MD_FIELDS
4861 
4862   Result = GET_OR_DISTINCT(DIMacroFile,
4863                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4864   return false;
4865 }
4866 
4867 /// parseDIModule:
4868 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
4869 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
4870 ///   file: !1, line: 4, isDecl: false)
4871 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
4872 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4873   REQUIRED(scope, MDField, );                                                  \
4874   REQUIRED(name, MDStringField, );                                             \
4875   OPTIONAL(configMacros, MDStringField, );                                     \
4876   OPTIONAL(includePath, MDStringField, );                                      \
4877   OPTIONAL(apinotes, MDStringField, );                                         \
4878   OPTIONAL(file, MDField, );                                                   \
4879   OPTIONAL(line, LineField, );                                                 \
4880   OPTIONAL(isDecl, MDBoolField, );
4881   PARSE_MD_FIELDS();
4882 #undef VISIT_MD_FIELDS
4883 
4884   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
4885                                       configMacros.Val, includePath.Val,
4886                                       apinotes.Val, line.Val, isDecl.Val));
4887   return false;
4888 }
4889 
4890 /// parseDITemplateTypeParameter:
4891 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
4892 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4893 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4894   OPTIONAL(name, MDStringField, );                                             \
4895   REQUIRED(type, MDField, );                                                   \
4896   OPTIONAL(defaulted, MDBoolField, );
4897   PARSE_MD_FIELDS();
4898 #undef VISIT_MD_FIELDS
4899 
4900   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
4901                            (Context, name.Val, type.Val, defaulted.Val));
4902   return false;
4903 }
4904 
4905 /// parseDITemplateValueParameter:
4906 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4907 ///                                 name: "V", type: !1, defaulted: false,
4908 ///                                 value: i32 7)
4909 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4910 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4911   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4912   OPTIONAL(name, MDStringField, );                                             \
4913   OPTIONAL(type, MDField, );                                                   \
4914   OPTIONAL(defaulted, MDBoolField, );                                          \
4915   REQUIRED(value, MDField, );
4916 
4917   PARSE_MD_FIELDS();
4918 #undef VISIT_MD_FIELDS
4919 
4920   Result = GET_OR_DISTINCT(
4921       DITemplateValueParameter,
4922       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
4923   return false;
4924 }
4925 
4926 /// parseDIGlobalVariable:
4927 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4928 ///                         file: !1, line: 7, type: !2, isLocal: false,
4929 ///                         isDefinition: true, templateParams: !3,
4930 ///                         declaration: !4, align: 8)
4931 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4932 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4933   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4934   OPTIONAL(scope, MDField, );                                                  \
4935   OPTIONAL(linkageName, MDStringField, );                                      \
4936   OPTIONAL(file, MDField, );                                                   \
4937   OPTIONAL(line, LineField, );                                                 \
4938   OPTIONAL(type, MDField, );                                                   \
4939   OPTIONAL(isLocal, MDBoolField, );                                            \
4940   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4941   OPTIONAL(templateParams, MDField, );                                         \
4942   OPTIONAL(declaration, MDField, );                                            \
4943   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4944   OPTIONAL(annotations, MDField, );
4945   PARSE_MD_FIELDS();
4946 #undef VISIT_MD_FIELDS
4947 
4948   Result =
4949       GET_OR_DISTINCT(DIGlobalVariable,
4950                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4951                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4952                        declaration.Val, templateParams.Val, align.Val,
4953                        annotations.Val));
4954   return false;
4955 }
4956 
4957 /// parseDILocalVariable:
4958 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4959 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4960 ///                        align: 8)
4961 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4962 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4963 ///                        align: 8)
4964 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4965 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4966   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4967   OPTIONAL(name, MDStringField, );                                             \
4968   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4969   OPTIONAL(file, MDField, );                                                   \
4970   OPTIONAL(line, LineField, );                                                 \
4971   OPTIONAL(type, MDField, );                                                   \
4972   OPTIONAL(flags, DIFlagField, );                                              \
4973   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4974   OPTIONAL(annotations, MDField, );
4975   PARSE_MD_FIELDS();
4976 #undef VISIT_MD_FIELDS
4977 
4978   Result = GET_OR_DISTINCT(DILocalVariable,
4979                            (Context, scope.Val, name.Val, file.Val, line.Val,
4980                             type.Val, arg.Val, flags.Val, align.Val,
4981                             annotations.Val));
4982   return false;
4983 }
4984 
4985 /// parseDILabel:
4986 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4987 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
4988 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4989   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4990   REQUIRED(name, MDStringField, );                                             \
4991   REQUIRED(file, MDField, );                                                   \
4992   REQUIRED(line, LineField, );
4993   PARSE_MD_FIELDS();
4994 #undef VISIT_MD_FIELDS
4995 
4996   Result = GET_OR_DISTINCT(DILabel,
4997                            (Context, scope.Val, name.Val, file.Val, line.Val));
4998   return false;
4999 }
5000 
5001 /// parseDIExpression:
5002 ///   ::= !DIExpression(0, 7, -1)
5003 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5004   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5005   Lex.Lex();
5006 
5007   if (parseToken(lltok::lparen, "expected '(' here"))
5008     return true;
5009 
5010   SmallVector<uint64_t, 8> Elements;
5011   if (Lex.getKind() != lltok::rparen)
5012     do {
5013       if (Lex.getKind() == lltok::DwarfOp) {
5014         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5015           Lex.Lex();
5016           Elements.push_back(Op);
5017           continue;
5018         }
5019         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5020       }
5021 
5022       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5023         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5024           Lex.Lex();
5025           Elements.push_back(Op);
5026           continue;
5027         }
5028         return tokError(Twine("invalid DWARF attribute encoding '") +
5029                         Lex.getStrVal() + "'");
5030       }
5031 
5032       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5033         return tokError("expected unsigned integer");
5034 
5035       auto &U = Lex.getAPSIntVal();
5036       if (U.ugt(UINT64_MAX))
5037         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5038       Elements.push_back(U.getZExtValue());
5039       Lex.Lex();
5040     } while (EatIfPresent(lltok::comma));
5041 
5042   if (parseToken(lltok::rparen, "expected ')' here"))
5043     return true;
5044 
5045   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5046   return false;
5047 }
5048 
5049 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5050   return parseDIArgList(Result, IsDistinct, nullptr);
5051 }
5052 /// ParseDIArgList:
5053 ///   ::= !DIArgList(i32 7, i64 %0)
5054 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5055                               PerFunctionState *PFS) {
5056   assert(PFS && "Expected valid function state");
5057   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5058   Lex.Lex();
5059 
5060   if (parseToken(lltok::lparen, "expected '(' here"))
5061     return true;
5062 
5063   SmallVector<ValueAsMetadata *, 4> Args;
5064   if (Lex.getKind() != lltok::rparen)
5065     do {
5066       Metadata *MD;
5067       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5068         return true;
5069       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5070     } while (EatIfPresent(lltok::comma));
5071 
5072   if (parseToken(lltok::rparen, "expected ')' here"))
5073     return true;
5074 
5075   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5076   return false;
5077 }
5078 
5079 /// parseDIGlobalVariableExpression:
5080 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5081 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5082                                                bool IsDistinct) {
5083 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5084   REQUIRED(var, MDField, );                                                    \
5085   REQUIRED(expr, MDField, );
5086   PARSE_MD_FIELDS();
5087 #undef VISIT_MD_FIELDS
5088 
5089   Result =
5090       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5091   return false;
5092 }
5093 
5094 /// parseDIObjCProperty:
5095 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5096 ///                       getter: "getFoo", attributes: 7, type: !2)
5097 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5098 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5099   OPTIONAL(name, MDStringField, );                                             \
5100   OPTIONAL(file, MDField, );                                                   \
5101   OPTIONAL(line, LineField, );                                                 \
5102   OPTIONAL(setter, MDStringField, );                                           \
5103   OPTIONAL(getter, MDStringField, );                                           \
5104   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5105   OPTIONAL(type, MDField, );
5106   PARSE_MD_FIELDS();
5107 #undef VISIT_MD_FIELDS
5108 
5109   Result = GET_OR_DISTINCT(DIObjCProperty,
5110                            (Context, name.Val, file.Val, line.Val, setter.Val,
5111                             getter.Val, attributes.Val, type.Val));
5112   return false;
5113 }
5114 
5115 /// parseDIImportedEntity:
5116 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5117 ///                         line: 7, name: "foo", elements: !2)
5118 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5119 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5120   REQUIRED(tag, DwarfTagField, );                                              \
5121   REQUIRED(scope, MDField, );                                                  \
5122   OPTIONAL(entity, MDField, );                                                 \
5123   OPTIONAL(file, MDField, );                                                   \
5124   OPTIONAL(line, LineField, );                                                 \
5125   OPTIONAL(name, MDStringField, );                                             \
5126   OPTIONAL(elements, MDField, );
5127   PARSE_MD_FIELDS();
5128 #undef VISIT_MD_FIELDS
5129 
5130   Result = GET_OR_DISTINCT(DIImportedEntity,
5131                            (Context, tag.Val, scope.Val, entity.Val, file.Val,
5132                             line.Val, name.Val, elements.Val));
5133   return false;
5134 }
5135 
5136 #undef PARSE_MD_FIELD
5137 #undef NOP_FIELD
5138 #undef REQUIRE_FIELD
5139 #undef DECLARE_FIELD
5140 
5141 /// parseMetadataAsValue
5142 ///  ::= metadata i32 %local
5143 ///  ::= metadata i32 @global
5144 ///  ::= metadata i32 7
5145 ///  ::= metadata !0
5146 ///  ::= metadata !{...}
5147 ///  ::= metadata !"string"
5148 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5149   // Note: the type 'metadata' has already been parsed.
5150   Metadata *MD;
5151   if (parseMetadata(MD, &PFS))
5152     return true;
5153 
5154   V = MetadataAsValue::get(Context, MD);
5155   return false;
5156 }
5157 
5158 /// parseValueAsMetadata
5159 ///  ::= i32 %local
5160 ///  ::= i32 @global
5161 ///  ::= i32 7
5162 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5163                                     PerFunctionState *PFS) {
5164   Type *Ty;
5165   LocTy Loc;
5166   if (parseType(Ty, TypeMsg, Loc))
5167     return true;
5168   if (Ty->isMetadataTy())
5169     return error(Loc, "invalid metadata-value-metadata roundtrip");
5170 
5171   Value *V;
5172   if (parseValue(Ty, V, PFS))
5173     return true;
5174 
5175   MD = ValueAsMetadata::get(V);
5176   return false;
5177 }
5178 
5179 /// parseMetadata
5180 ///  ::= i32 %local
5181 ///  ::= i32 @global
5182 ///  ::= i32 7
5183 ///  ::= !42
5184 ///  ::= !{...}
5185 ///  ::= !"string"
5186 ///  ::= !DILocation(...)
5187 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5188   if (Lex.getKind() == lltok::MetadataVar) {
5189     MDNode *N;
5190     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5191     // so parsing this requires a Function State.
5192     if (Lex.getStrVal() == "DIArgList") {
5193       if (parseDIArgList(N, false, PFS))
5194         return true;
5195     } else if (parseSpecializedMDNode(N)) {
5196       return true;
5197     }
5198     MD = N;
5199     return false;
5200   }
5201 
5202   // ValueAsMetadata:
5203   // <type> <value>
5204   if (Lex.getKind() != lltok::exclaim)
5205     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5206 
5207   // '!'.
5208   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5209   Lex.Lex();
5210 
5211   // MDString:
5212   //   ::= '!' STRINGCONSTANT
5213   if (Lex.getKind() == lltok::StringConstant) {
5214     MDString *S;
5215     if (parseMDString(S))
5216       return true;
5217     MD = S;
5218     return false;
5219   }
5220 
5221   // MDNode:
5222   // !{ ... }
5223   // !7
5224   MDNode *N;
5225   if (parseMDNodeTail(N))
5226     return true;
5227   MD = N;
5228   return false;
5229 }
5230 
5231 //===----------------------------------------------------------------------===//
5232 // Function Parsing.
5233 //===----------------------------------------------------------------------===//
5234 
5235 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5236                                    PerFunctionState *PFS) {
5237   if (Ty->isFunctionTy())
5238     return error(ID.Loc, "functions are not values, refer to them as pointers");
5239 
5240   switch (ID.Kind) {
5241   case ValID::t_LocalID:
5242     if (!PFS)
5243       return error(ID.Loc, "invalid use of function-local name");
5244     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc);
5245     return V == nullptr;
5246   case ValID::t_LocalName:
5247     if (!PFS)
5248       return error(ID.Loc, "invalid use of function-local name");
5249     V = PFS->getVal(ID.StrVal, Ty, ID.Loc);
5250     return V == nullptr;
5251   case ValID::t_InlineAsm: {
5252     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5253       return error(ID.Loc, "invalid type for inline asm constraint string");
5254     V = InlineAsm::get(
5255         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5256         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5257     return false;
5258   }
5259   case ValID::t_GlobalName:
5260     V = getGlobalVal(ID.StrVal, Ty, ID.Loc);
5261     return V == nullptr;
5262   case ValID::t_GlobalID:
5263     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc);
5264     return V == nullptr;
5265   case ValID::t_APSInt:
5266     if (!Ty->isIntegerTy())
5267       return error(ID.Loc, "integer constant must have integer type");
5268     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5269     V = ConstantInt::get(Context, ID.APSIntVal);
5270     return false;
5271   case ValID::t_APFloat:
5272     if (!Ty->isFloatingPointTy() ||
5273         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5274       return error(ID.Loc, "floating point constant invalid for type");
5275 
5276     // The lexer has no type info, so builds all half, bfloat, float, and double
5277     // FP constants as double.  Fix this here.  Long double does not need this.
5278     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5279       // Check for signaling before potentially converting and losing that info.
5280       bool IsSNAN = ID.APFloatVal.isSignaling();
5281       bool Ignored;
5282       if (Ty->isHalfTy())
5283         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5284                               &Ignored);
5285       else if (Ty->isBFloatTy())
5286         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5287                               &Ignored);
5288       else if (Ty->isFloatTy())
5289         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5290                               &Ignored);
5291       if (IsSNAN) {
5292         // The convert call above may quiet an SNaN, so manufacture another
5293         // SNaN. The bitcast works because the payload (significand) parameter
5294         // is truncated to fit.
5295         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5296         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5297                                          ID.APFloatVal.isNegative(), &Payload);
5298       }
5299     }
5300     V = ConstantFP::get(Context, ID.APFloatVal);
5301 
5302     if (V->getType() != Ty)
5303       return error(ID.Loc, "floating point constant does not have type '" +
5304                                getTypeString(Ty) + "'");
5305 
5306     return false;
5307   case ValID::t_Null:
5308     if (!Ty->isPointerTy())
5309       return error(ID.Loc, "null must be a pointer type");
5310     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5311     return false;
5312   case ValID::t_Undef:
5313     // FIXME: LabelTy should not be a first-class type.
5314     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5315       return error(ID.Loc, "invalid type for undef constant");
5316     V = UndefValue::get(Ty);
5317     return false;
5318   case ValID::t_EmptyArray:
5319     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5320       return error(ID.Loc, "invalid empty array initializer");
5321     V = UndefValue::get(Ty);
5322     return false;
5323   case ValID::t_Zero:
5324     // FIXME: LabelTy should not be a first-class type.
5325     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5326       return error(ID.Loc, "invalid type for null constant");
5327     V = Constant::getNullValue(Ty);
5328     return false;
5329   case ValID::t_None:
5330     if (!Ty->isTokenTy())
5331       return error(ID.Loc, "invalid type for none constant");
5332     V = Constant::getNullValue(Ty);
5333     return false;
5334   case ValID::t_Poison:
5335     // FIXME: LabelTy should not be a first-class type.
5336     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5337       return error(ID.Loc, "invalid type for poison constant");
5338     V = PoisonValue::get(Ty);
5339     return false;
5340   case ValID::t_Constant:
5341     if (ID.ConstantVal->getType() != Ty)
5342       return error(ID.Loc, "constant expression type mismatch: got type '" +
5343                                getTypeString(ID.ConstantVal->getType()) +
5344                                "' but expected '" + getTypeString(Ty) + "'");
5345     V = ID.ConstantVal;
5346     return false;
5347   case ValID::t_ConstantStruct:
5348   case ValID::t_PackedConstantStruct:
5349     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5350       if (ST->getNumElements() != ID.UIntVal)
5351         return error(ID.Loc,
5352                      "initializer with struct type has wrong # elements");
5353       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5354         return error(ID.Loc, "packed'ness of initializer and type don't match");
5355 
5356       // Verify that the elements are compatible with the structtype.
5357       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5358         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5359           return error(
5360               ID.Loc,
5361               "element " + Twine(i) +
5362                   " of struct initializer doesn't match struct element type");
5363 
5364       V = ConstantStruct::get(
5365           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5366     } else
5367       return error(ID.Loc, "constant expression type mismatch");
5368     return false;
5369   }
5370   llvm_unreachable("Invalid ValID");
5371 }
5372 
5373 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5374   C = nullptr;
5375   ValID ID;
5376   auto Loc = Lex.getLoc();
5377   if (parseValID(ID, /*PFS=*/nullptr))
5378     return true;
5379   switch (ID.Kind) {
5380   case ValID::t_APSInt:
5381   case ValID::t_APFloat:
5382   case ValID::t_Undef:
5383   case ValID::t_Constant:
5384   case ValID::t_ConstantStruct:
5385   case ValID::t_PackedConstantStruct: {
5386     Value *V;
5387     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
5388       return true;
5389     assert(isa<Constant>(V) && "Expected a constant value");
5390     C = cast<Constant>(V);
5391     return false;
5392   }
5393   case ValID::t_Null:
5394     C = Constant::getNullValue(Ty);
5395     return false;
5396   default:
5397     return error(Loc, "expected a constant value");
5398   }
5399 }
5400 
5401 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5402   V = nullptr;
5403   ValID ID;
5404   return parseValID(ID, PFS, Ty) ||
5405          convertValIDToValue(Ty, ID, V, PFS);
5406 }
5407 
5408 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5409   Type *Ty = nullptr;
5410   return parseType(Ty) || parseValue(Ty, V, PFS);
5411 }
5412 
5413 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5414                                       PerFunctionState &PFS) {
5415   Value *V;
5416   Loc = Lex.getLoc();
5417   if (parseTypeAndValue(V, PFS))
5418     return true;
5419   if (!isa<BasicBlock>(V))
5420     return error(Loc, "expected a basic block");
5421   BB = cast<BasicBlock>(V);
5422   return false;
5423 }
5424 
5425 /// FunctionHeader
5426 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5427 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5428 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5429 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5430 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5431   // parse the linkage.
5432   LocTy LinkageLoc = Lex.getLoc();
5433   unsigned Linkage;
5434   unsigned Visibility;
5435   unsigned DLLStorageClass;
5436   bool DSOLocal;
5437   AttrBuilder RetAttrs;
5438   unsigned CC;
5439   bool HasLinkage;
5440   Type *RetType = nullptr;
5441   LocTy RetTypeLoc = Lex.getLoc();
5442   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5443                            DSOLocal) ||
5444       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5445       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5446     return true;
5447 
5448   // Verify that the linkage is ok.
5449   switch ((GlobalValue::LinkageTypes)Linkage) {
5450   case GlobalValue::ExternalLinkage:
5451     break; // always ok.
5452   case GlobalValue::ExternalWeakLinkage:
5453     if (IsDefine)
5454       return error(LinkageLoc, "invalid linkage for function definition");
5455     break;
5456   case GlobalValue::PrivateLinkage:
5457   case GlobalValue::InternalLinkage:
5458   case GlobalValue::AvailableExternallyLinkage:
5459   case GlobalValue::LinkOnceAnyLinkage:
5460   case GlobalValue::LinkOnceODRLinkage:
5461   case GlobalValue::WeakAnyLinkage:
5462   case GlobalValue::WeakODRLinkage:
5463     if (!IsDefine)
5464       return error(LinkageLoc, "invalid linkage for function declaration");
5465     break;
5466   case GlobalValue::AppendingLinkage:
5467   case GlobalValue::CommonLinkage:
5468     return error(LinkageLoc, "invalid function linkage type");
5469   }
5470 
5471   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5472     return error(LinkageLoc,
5473                  "symbol with local linkage must have default visibility");
5474 
5475   if (!FunctionType::isValidReturnType(RetType))
5476     return error(RetTypeLoc, "invalid function return type");
5477 
5478   LocTy NameLoc = Lex.getLoc();
5479 
5480   std::string FunctionName;
5481   if (Lex.getKind() == lltok::GlobalVar) {
5482     FunctionName = Lex.getStrVal();
5483   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5484     unsigned NameID = Lex.getUIntVal();
5485 
5486     if (NameID != NumberedVals.size())
5487       return tokError("function expected to be numbered '%" +
5488                       Twine(NumberedVals.size()) + "'");
5489   } else {
5490     return tokError("expected function name");
5491   }
5492 
5493   Lex.Lex();
5494 
5495   if (Lex.getKind() != lltok::lparen)
5496     return tokError("expected '(' in function argument list");
5497 
5498   SmallVector<ArgInfo, 8> ArgList;
5499   bool IsVarArg;
5500   AttrBuilder FuncAttrs;
5501   std::vector<unsigned> FwdRefAttrGrps;
5502   LocTy BuiltinLoc;
5503   std::string Section;
5504   std::string Partition;
5505   MaybeAlign Alignment;
5506   std::string GC;
5507   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5508   unsigned AddrSpace = 0;
5509   Constant *Prefix = nullptr;
5510   Constant *Prologue = nullptr;
5511   Constant *PersonalityFn = nullptr;
5512   Comdat *C;
5513 
5514   if (parseArgumentList(ArgList, IsVarArg) ||
5515       parseOptionalUnnamedAddr(UnnamedAddr) ||
5516       parseOptionalProgramAddrSpace(AddrSpace) ||
5517       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5518                                  BuiltinLoc) ||
5519       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5520       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5521       parseOptionalComdat(FunctionName, C) ||
5522       parseOptionalAlignment(Alignment) ||
5523       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5524       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5525       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5526       (EatIfPresent(lltok::kw_personality) &&
5527        parseGlobalTypeAndValue(PersonalityFn)))
5528     return true;
5529 
5530   if (FuncAttrs.contains(Attribute::Builtin))
5531     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5532 
5533   // If the alignment was parsed as an attribute, move to the alignment field.
5534   if (FuncAttrs.hasAlignmentAttr()) {
5535     Alignment = FuncAttrs.getAlignment();
5536     FuncAttrs.removeAttribute(Attribute::Alignment);
5537   }
5538 
5539   // Okay, if we got here, the function is syntactically valid.  Convert types
5540   // and do semantic checks.
5541   std::vector<Type*> ParamTypeList;
5542   SmallVector<AttributeSet, 8> Attrs;
5543 
5544   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5545     ParamTypeList.push_back(ArgList[i].Ty);
5546     Attrs.push_back(ArgList[i].Attrs);
5547   }
5548 
5549   AttributeList PAL =
5550       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5551                          AttributeSet::get(Context, RetAttrs), Attrs);
5552 
5553   if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy())
5554     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5555 
5556   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5557   PointerType *PFT = PointerType::get(FT, AddrSpace);
5558 
5559   Fn = nullptr;
5560   GlobalValue *FwdFn = nullptr;
5561   if (!FunctionName.empty()) {
5562     // If this was a definition of a forward reference, remove the definition
5563     // from the forward reference table and fill in the forward ref.
5564     auto FRVI = ForwardRefVals.find(FunctionName);
5565     if (FRVI != ForwardRefVals.end()) {
5566       FwdFn = FRVI->second.first;
5567       if (!FwdFn->getType()->isOpaque()) {
5568         if (!FwdFn->getType()->getPointerElementType()->isFunctionTy())
5569           return error(FRVI->second.second, "invalid forward reference to "
5570                                             "function as global value!");
5571         if (FwdFn->getType() != PFT)
5572           return error(FRVI->second.second,
5573                        "invalid forward reference to "
5574                        "function '" +
5575                            FunctionName +
5576                            "' with wrong type: "
5577                            "expected '" +
5578                            getTypeString(PFT) + "' but was '" +
5579                            getTypeString(FwdFn->getType()) + "'");
5580       }
5581       ForwardRefVals.erase(FRVI);
5582     } else if ((Fn = M->getFunction(FunctionName))) {
5583       // Reject redefinitions.
5584       return error(NameLoc,
5585                    "invalid redefinition of function '" + FunctionName + "'");
5586     } else if (M->getNamedValue(FunctionName)) {
5587       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5588     }
5589 
5590   } else {
5591     // If this is a definition of a forward referenced function, make sure the
5592     // types agree.
5593     auto I = ForwardRefValIDs.find(NumberedVals.size());
5594     if (I != ForwardRefValIDs.end()) {
5595       FwdFn = cast<Function>(I->second.first);
5596       if (!FwdFn->getType()->isOpaque() && FwdFn->getType() != PFT)
5597         return error(NameLoc, "type of definition and forward reference of '@" +
5598                                   Twine(NumberedVals.size()) +
5599                                   "' disagree: "
5600                                   "expected '" +
5601                                   getTypeString(PFT) + "' but was '" +
5602                                   getTypeString(FwdFn->getType()) + "'");
5603       ForwardRefValIDs.erase(I);
5604     }
5605   }
5606 
5607   Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5608                         FunctionName, M);
5609 
5610   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5611 
5612   if (FunctionName.empty())
5613     NumberedVals.push_back(Fn);
5614 
5615   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5616   maybeSetDSOLocal(DSOLocal, *Fn);
5617   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5618   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5619   Fn->setCallingConv(CC);
5620   Fn->setAttributes(PAL);
5621   Fn->setUnnamedAddr(UnnamedAddr);
5622   Fn->setAlignment(MaybeAlign(Alignment));
5623   Fn->setSection(Section);
5624   Fn->setPartition(Partition);
5625   Fn->setComdat(C);
5626   Fn->setPersonalityFn(PersonalityFn);
5627   if (!GC.empty()) Fn->setGC(GC);
5628   Fn->setPrefixData(Prefix);
5629   Fn->setPrologueData(Prologue);
5630   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5631 
5632   // Add all of the arguments we parsed to the function.
5633   Function::arg_iterator ArgIt = Fn->arg_begin();
5634   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5635     // If the argument has a name, insert it into the argument symbol table.
5636     if (ArgList[i].Name.empty()) continue;
5637 
5638     // Set the name, if it conflicted, it will be auto-renamed.
5639     ArgIt->setName(ArgList[i].Name);
5640 
5641     if (ArgIt->getName() != ArgList[i].Name)
5642       return error(ArgList[i].Loc,
5643                    "redefinition of argument '%" + ArgList[i].Name + "'");
5644   }
5645 
5646   if (FwdFn) {
5647     FwdFn->replaceAllUsesWith(Fn);
5648     FwdFn->eraseFromParent();
5649   }
5650 
5651   if (IsDefine)
5652     return false;
5653 
5654   // Check the declaration has no block address forward references.
5655   ValID ID;
5656   if (FunctionName.empty()) {
5657     ID.Kind = ValID::t_GlobalID;
5658     ID.UIntVal = NumberedVals.size() - 1;
5659   } else {
5660     ID.Kind = ValID::t_GlobalName;
5661     ID.StrVal = FunctionName;
5662   }
5663   auto Blocks = ForwardRefBlockAddresses.find(ID);
5664   if (Blocks != ForwardRefBlockAddresses.end())
5665     return error(Blocks->first.Loc,
5666                  "cannot take blockaddress inside a declaration");
5667   return false;
5668 }
5669 
5670 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5671   ValID ID;
5672   if (FunctionNumber == -1) {
5673     ID.Kind = ValID::t_GlobalName;
5674     ID.StrVal = std::string(F.getName());
5675   } else {
5676     ID.Kind = ValID::t_GlobalID;
5677     ID.UIntVal = FunctionNumber;
5678   }
5679 
5680   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5681   if (Blocks == P.ForwardRefBlockAddresses.end())
5682     return false;
5683 
5684   for (const auto &I : Blocks->second) {
5685     const ValID &BBID = I.first;
5686     GlobalValue *GV = I.second;
5687 
5688     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5689            "Expected local id or name");
5690     BasicBlock *BB;
5691     if (BBID.Kind == ValID::t_LocalName)
5692       BB = getBB(BBID.StrVal, BBID.Loc);
5693     else
5694       BB = getBB(BBID.UIntVal, BBID.Loc);
5695     if (!BB)
5696       return P.error(BBID.Loc, "referenced value is not a basic block");
5697 
5698     Value *ResolvedVal = BlockAddress::get(&F, BB);
5699     ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
5700                                            ResolvedVal);
5701     if (!ResolvedVal)
5702       return true;
5703     GV->replaceAllUsesWith(ResolvedVal);
5704     GV->eraseFromParent();
5705   }
5706 
5707   P.ForwardRefBlockAddresses.erase(Blocks);
5708   return false;
5709 }
5710 
5711 /// parseFunctionBody
5712 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5713 bool LLParser::parseFunctionBody(Function &Fn) {
5714   if (Lex.getKind() != lltok::lbrace)
5715     return tokError("expected '{' in function body");
5716   Lex.Lex();  // eat the {.
5717 
5718   int FunctionNumber = -1;
5719   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5720 
5721   PerFunctionState PFS(*this, Fn, FunctionNumber);
5722 
5723   // Resolve block addresses and allow basic blocks to be forward-declared
5724   // within this function.
5725   if (PFS.resolveForwardRefBlockAddresses())
5726     return true;
5727   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5728 
5729   // We need at least one basic block.
5730   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5731     return tokError("function body requires at least one basic block");
5732 
5733   while (Lex.getKind() != lltok::rbrace &&
5734          Lex.getKind() != lltok::kw_uselistorder)
5735     if (parseBasicBlock(PFS))
5736       return true;
5737 
5738   while (Lex.getKind() != lltok::rbrace)
5739     if (parseUseListOrder(&PFS))
5740       return true;
5741 
5742   // Eat the }.
5743   Lex.Lex();
5744 
5745   // Verify function is ok.
5746   return PFS.finishFunction();
5747 }
5748 
5749 /// parseBasicBlock
5750 ///   ::= (LabelStr|LabelID)? Instruction*
5751 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
5752   // If this basic block starts out with a name, remember it.
5753   std::string Name;
5754   int NameID = -1;
5755   LocTy NameLoc = Lex.getLoc();
5756   if (Lex.getKind() == lltok::LabelStr) {
5757     Name = Lex.getStrVal();
5758     Lex.Lex();
5759   } else if (Lex.getKind() == lltok::LabelID) {
5760     NameID = Lex.getUIntVal();
5761     Lex.Lex();
5762   }
5763 
5764   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
5765   if (!BB)
5766     return true;
5767 
5768   std::string NameStr;
5769 
5770   // parse the instructions in this block until we get a terminator.
5771   Instruction *Inst;
5772   do {
5773     // This instruction may have three possibilities for a name: a) none
5774     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5775     LocTy NameLoc = Lex.getLoc();
5776     int NameID = -1;
5777     NameStr = "";
5778 
5779     if (Lex.getKind() == lltok::LocalVarID) {
5780       NameID = Lex.getUIntVal();
5781       Lex.Lex();
5782       if (parseToken(lltok::equal, "expected '=' after instruction id"))
5783         return true;
5784     } else if (Lex.getKind() == lltok::LocalVar) {
5785       NameStr = Lex.getStrVal();
5786       Lex.Lex();
5787       if (parseToken(lltok::equal, "expected '=' after instruction name"))
5788         return true;
5789     }
5790 
5791     switch (parseInstruction(Inst, BB, PFS)) {
5792     default:
5793       llvm_unreachable("Unknown parseInstruction result!");
5794     case InstError: return true;
5795     case InstNormal:
5796       BB->getInstList().push_back(Inst);
5797 
5798       // With a normal result, we check to see if the instruction is followed by
5799       // a comma and metadata.
5800       if (EatIfPresent(lltok::comma))
5801         if (parseInstructionMetadata(*Inst))
5802           return true;
5803       break;
5804     case InstExtraComma:
5805       BB->getInstList().push_back(Inst);
5806 
5807       // If the instruction parser ate an extra comma at the end of it, it
5808       // *must* be followed by metadata.
5809       if (parseInstructionMetadata(*Inst))
5810         return true;
5811       break;
5812     }
5813 
5814     // Set the name on the instruction.
5815     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
5816       return true;
5817   } while (!Inst->isTerminator());
5818 
5819   return false;
5820 }
5821 
5822 //===----------------------------------------------------------------------===//
5823 // Instruction Parsing.
5824 //===----------------------------------------------------------------------===//
5825 
5826 /// parseInstruction - parse one of the many different instructions.
5827 ///
5828 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
5829                                PerFunctionState &PFS) {
5830   lltok::Kind Token = Lex.getKind();
5831   if (Token == lltok::Eof)
5832     return tokError("found end of file when expecting more instructions");
5833   LocTy Loc = Lex.getLoc();
5834   unsigned KeywordVal = Lex.getUIntVal();
5835   Lex.Lex();  // Eat the keyword.
5836 
5837   switch (Token) {
5838   default:
5839     return error(Loc, "expected instruction opcode");
5840   // Terminator Instructions.
5841   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5842   case lltok::kw_ret:
5843     return parseRet(Inst, BB, PFS);
5844   case lltok::kw_br:
5845     return parseBr(Inst, PFS);
5846   case lltok::kw_switch:
5847     return parseSwitch(Inst, PFS);
5848   case lltok::kw_indirectbr:
5849     return parseIndirectBr(Inst, PFS);
5850   case lltok::kw_invoke:
5851     return parseInvoke(Inst, PFS);
5852   case lltok::kw_resume:
5853     return parseResume(Inst, PFS);
5854   case lltok::kw_cleanupret:
5855     return parseCleanupRet(Inst, PFS);
5856   case lltok::kw_catchret:
5857     return parseCatchRet(Inst, PFS);
5858   case lltok::kw_catchswitch:
5859     return parseCatchSwitch(Inst, PFS);
5860   case lltok::kw_catchpad:
5861     return parseCatchPad(Inst, PFS);
5862   case lltok::kw_cleanuppad:
5863     return parseCleanupPad(Inst, PFS);
5864   case lltok::kw_callbr:
5865     return parseCallBr(Inst, PFS);
5866   // Unary Operators.
5867   case lltok::kw_fneg: {
5868     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5869     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
5870     if (Res != 0)
5871       return Res;
5872     if (FMF.any())
5873       Inst->setFastMathFlags(FMF);
5874     return false;
5875   }
5876   // Binary Operators.
5877   case lltok::kw_add:
5878   case lltok::kw_sub:
5879   case lltok::kw_mul:
5880   case lltok::kw_shl: {
5881     bool NUW = EatIfPresent(lltok::kw_nuw);
5882     bool NSW = EatIfPresent(lltok::kw_nsw);
5883     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5884 
5885     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
5886       return true;
5887 
5888     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5889     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5890     return false;
5891   }
5892   case lltok::kw_fadd:
5893   case lltok::kw_fsub:
5894   case lltok::kw_fmul:
5895   case lltok::kw_fdiv:
5896   case lltok::kw_frem: {
5897     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5898     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
5899     if (Res != 0)
5900       return Res;
5901     if (FMF.any())
5902       Inst->setFastMathFlags(FMF);
5903     return 0;
5904   }
5905 
5906   case lltok::kw_sdiv:
5907   case lltok::kw_udiv:
5908   case lltok::kw_lshr:
5909   case lltok::kw_ashr: {
5910     bool Exact = EatIfPresent(lltok::kw_exact);
5911 
5912     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
5913       return true;
5914     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5915     return false;
5916   }
5917 
5918   case lltok::kw_urem:
5919   case lltok::kw_srem:
5920     return parseArithmetic(Inst, PFS, KeywordVal,
5921                            /*IsFP*/ false);
5922   case lltok::kw_and:
5923   case lltok::kw_or:
5924   case lltok::kw_xor:
5925     return parseLogical(Inst, PFS, KeywordVal);
5926   case lltok::kw_icmp:
5927     return parseCompare(Inst, PFS, KeywordVal);
5928   case lltok::kw_fcmp: {
5929     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5930     int Res = parseCompare(Inst, PFS, KeywordVal);
5931     if (Res != 0)
5932       return Res;
5933     if (FMF.any())
5934       Inst->setFastMathFlags(FMF);
5935     return 0;
5936   }
5937 
5938   // Casts.
5939   case lltok::kw_trunc:
5940   case lltok::kw_zext:
5941   case lltok::kw_sext:
5942   case lltok::kw_fptrunc:
5943   case lltok::kw_fpext:
5944   case lltok::kw_bitcast:
5945   case lltok::kw_addrspacecast:
5946   case lltok::kw_uitofp:
5947   case lltok::kw_sitofp:
5948   case lltok::kw_fptoui:
5949   case lltok::kw_fptosi:
5950   case lltok::kw_inttoptr:
5951   case lltok::kw_ptrtoint:
5952     return parseCast(Inst, PFS, KeywordVal);
5953   // Other.
5954   case lltok::kw_select: {
5955     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5956     int Res = parseSelect(Inst, PFS);
5957     if (Res != 0)
5958       return Res;
5959     if (FMF.any()) {
5960       if (!isa<FPMathOperator>(Inst))
5961         return error(Loc, "fast-math-flags specified for select without "
5962                           "floating-point scalar or vector return type");
5963       Inst->setFastMathFlags(FMF);
5964     }
5965     return 0;
5966   }
5967   case lltok::kw_va_arg:
5968     return parseVAArg(Inst, PFS);
5969   case lltok::kw_extractelement:
5970     return parseExtractElement(Inst, PFS);
5971   case lltok::kw_insertelement:
5972     return parseInsertElement(Inst, PFS);
5973   case lltok::kw_shufflevector:
5974     return parseShuffleVector(Inst, PFS);
5975   case lltok::kw_phi: {
5976     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5977     int Res = parsePHI(Inst, PFS);
5978     if (Res != 0)
5979       return Res;
5980     if (FMF.any()) {
5981       if (!isa<FPMathOperator>(Inst))
5982         return error(Loc, "fast-math-flags specified for phi without "
5983                           "floating-point scalar or vector return type");
5984       Inst->setFastMathFlags(FMF);
5985     }
5986     return 0;
5987   }
5988   case lltok::kw_landingpad:
5989     return parseLandingPad(Inst, PFS);
5990   case lltok::kw_freeze:
5991     return parseFreeze(Inst, PFS);
5992   // Call.
5993   case lltok::kw_call:
5994     return parseCall(Inst, PFS, CallInst::TCK_None);
5995   case lltok::kw_tail:
5996     return parseCall(Inst, PFS, CallInst::TCK_Tail);
5997   case lltok::kw_musttail:
5998     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
5999   case lltok::kw_notail:
6000     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6001   // Memory.
6002   case lltok::kw_alloca:
6003     return parseAlloc(Inst, PFS);
6004   case lltok::kw_load:
6005     return parseLoad(Inst, PFS);
6006   case lltok::kw_store:
6007     return parseStore(Inst, PFS);
6008   case lltok::kw_cmpxchg:
6009     return parseCmpXchg(Inst, PFS);
6010   case lltok::kw_atomicrmw:
6011     return parseAtomicRMW(Inst, PFS);
6012   case lltok::kw_fence:
6013     return parseFence(Inst, PFS);
6014   case lltok::kw_getelementptr:
6015     return parseGetElementPtr(Inst, PFS);
6016   case lltok::kw_extractvalue:
6017     return parseExtractValue(Inst, PFS);
6018   case lltok::kw_insertvalue:
6019     return parseInsertValue(Inst, PFS);
6020   }
6021 }
6022 
6023 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6024 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6025   if (Opc == Instruction::FCmp) {
6026     switch (Lex.getKind()) {
6027     default:
6028       return tokError("expected fcmp predicate (e.g. 'oeq')");
6029     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6030     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6031     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6032     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6033     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6034     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6035     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6036     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6037     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6038     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6039     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6040     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6041     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6042     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6043     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6044     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6045     }
6046   } else {
6047     switch (Lex.getKind()) {
6048     default:
6049       return tokError("expected icmp predicate (e.g. 'eq')");
6050     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6051     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6052     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6053     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6054     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6055     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6056     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6057     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6058     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6059     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6060     }
6061   }
6062   Lex.Lex();
6063   return false;
6064 }
6065 
6066 //===----------------------------------------------------------------------===//
6067 // Terminator Instructions.
6068 //===----------------------------------------------------------------------===//
6069 
6070 /// parseRet - parse a return instruction.
6071 ///   ::= 'ret' void (',' !dbg, !1)*
6072 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6073 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6074                         PerFunctionState &PFS) {
6075   SMLoc TypeLoc = Lex.getLoc();
6076   Type *Ty = nullptr;
6077   if (parseType(Ty, true /*void allowed*/))
6078     return true;
6079 
6080   Type *ResType = PFS.getFunction().getReturnType();
6081 
6082   if (Ty->isVoidTy()) {
6083     if (!ResType->isVoidTy())
6084       return error(TypeLoc, "value doesn't match function result type '" +
6085                                 getTypeString(ResType) + "'");
6086 
6087     Inst = ReturnInst::Create(Context);
6088     return false;
6089   }
6090 
6091   Value *RV;
6092   if (parseValue(Ty, RV, PFS))
6093     return true;
6094 
6095   if (ResType != RV->getType())
6096     return error(TypeLoc, "value doesn't match function result type '" +
6097                               getTypeString(ResType) + "'");
6098 
6099   Inst = ReturnInst::Create(Context, RV);
6100   return false;
6101 }
6102 
6103 /// parseBr
6104 ///   ::= 'br' TypeAndValue
6105 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6106 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6107   LocTy Loc, Loc2;
6108   Value *Op0;
6109   BasicBlock *Op1, *Op2;
6110   if (parseTypeAndValue(Op0, Loc, PFS))
6111     return true;
6112 
6113   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6114     Inst = BranchInst::Create(BB);
6115     return false;
6116   }
6117 
6118   if (Op0->getType() != Type::getInt1Ty(Context))
6119     return error(Loc, "branch condition must have 'i1' type");
6120 
6121   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6122       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6123       parseToken(lltok::comma, "expected ',' after true destination") ||
6124       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6125     return true;
6126 
6127   Inst = BranchInst::Create(Op1, Op2, Op0);
6128   return false;
6129 }
6130 
6131 /// parseSwitch
6132 ///  Instruction
6133 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6134 ///  JumpTable
6135 ///    ::= (TypeAndValue ',' TypeAndValue)*
6136 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6137   LocTy CondLoc, BBLoc;
6138   Value *Cond;
6139   BasicBlock *DefaultBB;
6140   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6141       parseToken(lltok::comma, "expected ',' after switch condition") ||
6142       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6143       parseToken(lltok::lsquare, "expected '[' with switch table"))
6144     return true;
6145 
6146   if (!Cond->getType()->isIntegerTy())
6147     return error(CondLoc, "switch condition must have integer type");
6148 
6149   // parse the jump table pairs.
6150   SmallPtrSet<Value*, 32> SeenCases;
6151   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6152   while (Lex.getKind() != lltok::rsquare) {
6153     Value *Constant;
6154     BasicBlock *DestBB;
6155 
6156     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6157         parseToken(lltok::comma, "expected ',' after case value") ||
6158         parseTypeAndBasicBlock(DestBB, PFS))
6159       return true;
6160 
6161     if (!SeenCases.insert(Constant).second)
6162       return error(CondLoc, "duplicate case value in switch");
6163     if (!isa<ConstantInt>(Constant))
6164       return error(CondLoc, "case value is not a constant integer");
6165 
6166     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6167   }
6168 
6169   Lex.Lex();  // Eat the ']'.
6170 
6171   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6172   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6173     SI->addCase(Table[i].first, Table[i].second);
6174   Inst = SI;
6175   return false;
6176 }
6177 
6178 /// parseIndirectBr
6179 ///  Instruction
6180 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6181 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6182   LocTy AddrLoc;
6183   Value *Address;
6184   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6185       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6186       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6187     return true;
6188 
6189   if (!Address->getType()->isPointerTy())
6190     return error(AddrLoc, "indirectbr address must have pointer type");
6191 
6192   // parse the destination list.
6193   SmallVector<BasicBlock*, 16> DestList;
6194 
6195   if (Lex.getKind() != lltok::rsquare) {
6196     BasicBlock *DestBB;
6197     if (parseTypeAndBasicBlock(DestBB, PFS))
6198       return true;
6199     DestList.push_back(DestBB);
6200 
6201     while (EatIfPresent(lltok::comma)) {
6202       if (parseTypeAndBasicBlock(DestBB, PFS))
6203         return true;
6204       DestList.push_back(DestBB);
6205     }
6206   }
6207 
6208   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6209     return true;
6210 
6211   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6212   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6213     IBI->addDestination(DestList[i]);
6214   Inst = IBI;
6215   return false;
6216 }
6217 
6218 /// parseInvoke
6219 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6220 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6221 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6222   LocTy CallLoc = Lex.getLoc();
6223   AttrBuilder RetAttrs, FnAttrs;
6224   std::vector<unsigned> FwdRefAttrGrps;
6225   LocTy NoBuiltinLoc;
6226   unsigned CC;
6227   unsigned InvokeAddrSpace;
6228   Type *RetType = nullptr;
6229   LocTy RetTypeLoc;
6230   ValID CalleeID;
6231   SmallVector<ParamInfo, 16> ArgList;
6232   SmallVector<OperandBundleDef, 2> BundleList;
6233 
6234   BasicBlock *NormalBB, *UnwindBB;
6235   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6236       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6237       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6238       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6239       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6240                                  NoBuiltinLoc) ||
6241       parseOptionalOperandBundles(BundleList, PFS) ||
6242       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6243       parseTypeAndBasicBlock(NormalBB, PFS) ||
6244       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6245       parseTypeAndBasicBlock(UnwindBB, PFS))
6246     return true;
6247 
6248   // If RetType is a non-function pointer type, then this is the short syntax
6249   // for the call, which means that RetType is just the return type.  Infer the
6250   // rest of the function argument types from the arguments that are present.
6251   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6252   if (!Ty) {
6253     // Pull out the types of all of the arguments...
6254     std::vector<Type*> ParamTypes;
6255     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6256       ParamTypes.push_back(ArgList[i].V->getType());
6257 
6258     if (!FunctionType::isValidReturnType(RetType))
6259       return error(RetTypeLoc, "Invalid result type for LLVM function");
6260 
6261     Ty = FunctionType::get(RetType, ParamTypes, false);
6262   }
6263 
6264   CalleeID.FTy = Ty;
6265 
6266   // Look up the callee.
6267   Value *Callee;
6268   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6269                           Callee, &PFS))
6270     return true;
6271 
6272   // Set up the Attribute for the function.
6273   SmallVector<Value *, 8> Args;
6274   SmallVector<AttributeSet, 8> ArgAttrs;
6275 
6276   // Loop through FunctionType's arguments and ensure they are specified
6277   // correctly.  Also, gather any parameter attributes.
6278   FunctionType::param_iterator I = Ty->param_begin();
6279   FunctionType::param_iterator E = Ty->param_end();
6280   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6281     Type *ExpectedTy = nullptr;
6282     if (I != E) {
6283       ExpectedTy = *I++;
6284     } else if (!Ty->isVarArg()) {
6285       return error(ArgList[i].Loc, "too many arguments specified");
6286     }
6287 
6288     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6289       return error(ArgList[i].Loc, "argument is not of expected type '" +
6290                                        getTypeString(ExpectedTy) + "'");
6291     Args.push_back(ArgList[i].V);
6292     ArgAttrs.push_back(ArgList[i].Attrs);
6293   }
6294 
6295   if (I != E)
6296     return error(CallLoc, "not enough parameters specified for call");
6297 
6298   if (FnAttrs.hasAlignmentAttr())
6299     return error(CallLoc, "invoke instructions may not have an alignment");
6300 
6301   // Finish off the Attribute and check them
6302   AttributeList PAL =
6303       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6304                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6305 
6306   InvokeInst *II =
6307       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6308   II->setCallingConv(CC);
6309   II->setAttributes(PAL);
6310   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6311   Inst = II;
6312   return false;
6313 }
6314 
6315 /// parseResume
6316 ///   ::= 'resume' TypeAndValue
6317 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6318   Value *Exn; LocTy ExnLoc;
6319   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6320     return true;
6321 
6322   ResumeInst *RI = ResumeInst::Create(Exn);
6323   Inst = RI;
6324   return false;
6325 }
6326 
6327 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6328                                   PerFunctionState &PFS) {
6329   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6330     return true;
6331 
6332   while (Lex.getKind() != lltok::rsquare) {
6333     // If this isn't the first argument, we need a comma.
6334     if (!Args.empty() &&
6335         parseToken(lltok::comma, "expected ',' in argument list"))
6336       return true;
6337 
6338     // parse the argument.
6339     LocTy ArgLoc;
6340     Type *ArgTy = nullptr;
6341     if (parseType(ArgTy, ArgLoc))
6342       return true;
6343 
6344     Value *V;
6345     if (ArgTy->isMetadataTy()) {
6346       if (parseMetadataAsValue(V, PFS))
6347         return true;
6348     } else {
6349       if (parseValue(ArgTy, V, PFS))
6350         return true;
6351     }
6352     Args.push_back(V);
6353   }
6354 
6355   Lex.Lex();  // Lex the ']'.
6356   return false;
6357 }
6358 
6359 /// parseCleanupRet
6360 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6361 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6362   Value *CleanupPad = nullptr;
6363 
6364   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6365     return true;
6366 
6367   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6368     return true;
6369 
6370   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6371     return true;
6372 
6373   BasicBlock *UnwindBB = nullptr;
6374   if (Lex.getKind() == lltok::kw_to) {
6375     Lex.Lex();
6376     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6377       return true;
6378   } else {
6379     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6380       return true;
6381     }
6382   }
6383 
6384   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6385   return false;
6386 }
6387 
6388 /// parseCatchRet
6389 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6390 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6391   Value *CatchPad = nullptr;
6392 
6393   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6394     return true;
6395 
6396   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6397     return true;
6398 
6399   BasicBlock *BB;
6400   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6401       parseTypeAndBasicBlock(BB, PFS))
6402     return true;
6403 
6404   Inst = CatchReturnInst::Create(CatchPad, BB);
6405   return false;
6406 }
6407 
6408 /// parseCatchSwitch
6409 ///   ::= 'catchswitch' within Parent
6410 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6411   Value *ParentPad;
6412 
6413   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6414     return true;
6415 
6416   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6417       Lex.getKind() != lltok::LocalVarID)
6418     return tokError("expected scope value for catchswitch");
6419 
6420   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6421     return true;
6422 
6423   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6424     return true;
6425 
6426   SmallVector<BasicBlock *, 32> Table;
6427   do {
6428     BasicBlock *DestBB;
6429     if (parseTypeAndBasicBlock(DestBB, PFS))
6430       return true;
6431     Table.push_back(DestBB);
6432   } while (EatIfPresent(lltok::comma));
6433 
6434   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6435     return true;
6436 
6437   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6438     return true;
6439 
6440   BasicBlock *UnwindBB = nullptr;
6441   if (EatIfPresent(lltok::kw_to)) {
6442     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6443       return true;
6444   } else {
6445     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6446       return true;
6447   }
6448 
6449   auto *CatchSwitch =
6450       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6451   for (BasicBlock *DestBB : Table)
6452     CatchSwitch->addHandler(DestBB);
6453   Inst = CatchSwitch;
6454   return false;
6455 }
6456 
6457 /// parseCatchPad
6458 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6459 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6460   Value *CatchSwitch = nullptr;
6461 
6462   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6463     return true;
6464 
6465   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6466     return tokError("expected scope value for catchpad");
6467 
6468   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6469     return true;
6470 
6471   SmallVector<Value *, 8> Args;
6472   if (parseExceptionArgs(Args, PFS))
6473     return true;
6474 
6475   Inst = CatchPadInst::Create(CatchSwitch, Args);
6476   return false;
6477 }
6478 
6479 /// parseCleanupPad
6480 ///   ::= 'cleanuppad' within Parent ParamList
6481 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6482   Value *ParentPad = nullptr;
6483 
6484   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6485     return true;
6486 
6487   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6488       Lex.getKind() != lltok::LocalVarID)
6489     return tokError("expected scope value for cleanuppad");
6490 
6491   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6492     return true;
6493 
6494   SmallVector<Value *, 8> Args;
6495   if (parseExceptionArgs(Args, PFS))
6496     return true;
6497 
6498   Inst = CleanupPadInst::Create(ParentPad, Args);
6499   return false;
6500 }
6501 
6502 //===----------------------------------------------------------------------===//
6503 // Unary Operators.
6504 //===----------------------------------------------------------------------===//
6505 
6506 /// parseUnaryOp
6507 ///  ::= UnaryOp TypeAndValue ',' Value
6508 ///
6509 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6510 /// operand is allowed.
6511 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6512                             unsigned Opc, bool IsFP) {
6513   LocTy Loc; Value *LHS;
6514   if (parseTypeAndValue(LHS, Loc, PFS))
6515     return true;
6516 
6517   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6518                     : LHS->getType()->isIntOrIntVectorTy();
6519 
6520   if (!Valid)
6521     return error(Loc, "invalid operand type for instruction");
6522 
6523   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6524   return false;
6525 }
6526 
6527 /// parseCallBr
6528 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6529 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6530 ///       '[' LabelList ']'
6531 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6532   LocTy CallLoc = Lex.getLoc();
6533   AttrBuilder RetAttrs, FnAttrs;
6534   std::vector<unsigned> FwdRefAttrGrps;
6535   LocTy NoBuiltinLoc;
6536   unsigned CC;
6537   Type *RetType = nullptr;
6538   LocTy RetTypeLoc;
6539   ValID CalleeID;
6540   SmallVector<ParamInfo, 16> ArgList;
6541   SmallVector<OperandBundleDef, 2> BundleList;
6542 
6543   BasicBlock *DefaultDest;
6544   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6545       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6546       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6547       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6548                                  NoBuiltinLoc) ||
6549       parseOptionalOperandBundles(BundleList, PFS) ||
6550       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6551       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6552       parseToken(lltok::lsquare, "expected '[' in callbr"))
6553     return true;
6554 
6555   // parse the destination list.
6556   SmallVector<BasicBlock *, 16> IndirectDests;
6557 
6558   if (Lex.getKind() != lltok::rsquare) {
6559     BasicBlock *DestBB;
6560     if (parseTypeAndBasicBlock(DestBB, PFS))
6561       return true;
6562     IndirectDests.push_back(DestBB);
6563 
6564     while (EatIfPresent(lltok::comma)) {
6565       if (parseTypeAndBasicBlock(DestBB, PFS))
6566         return true;
6567       IndirectDests.push_back(DestBB);
6568     }
6569   }
6570 
6571   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6572     return true;
6573 
6574   // If RetType is a non-function pointer type, then this is the short syntax
6575   // for the call, which means that RetType is just the return type.  Infer the
6576   // rest of the function argument types from the arguments that are present.
6577   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6578   if (!Ty) {
6579     // Pull out the types of all of the arguments...
6580     std::vector<Type *> ParamTypes;
6581     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6582       ParamTypes.push_back(ArgList[i].V->getType());
6583 
6584     if (!FunctionType::isValidReturnType(RetType))
6585       return error(RetTypeLoc, "Invalid result type for LLVM function");
6586 
6587     Ty = FunctionType::get(RetType, ParamTypes, false);
6588   }
6589 
6590   CalleeID.FTy = Ty;
6591 
6592   // Look up the callee.
6593   Value *Callee;
6594   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
6595     return true;
6596 
6597   // Set up the Attribute for the function.
6598   SmallVector<Value *, 8> Args;
6599   SmallVector<AttributeSet, 8> ArgAttrs;
6600 
6601   // Loop through FunctionType's arguments and ensure they are specified
6602   // correctly.  Also, gather any parameter attributes.
6603   FunctionType::param_iterator I = Ty->param_begin();
6604   FunctionType::param_iterator E = Ty->param_end();
6605   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6606     Type *ExpectedTy = nullptr;
6607     if (I != E) {
6608       ExpectedTy = *I++;
6609     } else if (!Ty->isVarArg()) {
6610       return error(ArgList[i].Loc, "too many arguments specified");
6611     }
6612 
6613     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6614       return error(ArgList[i].Loc, "argument is not of expected type '" +
6615                                        getTypeString(ExpectedTy) + "'");
6616     Args.push_back(ArgList[i].V);
6617     ArgAttrs.push_back(ArgList[i].Attrs);
6618   }
6619 
6620   if (I != E)
6621     return error(CallLoc, "not enough parameters specified for call");
6622 
6623   if (FnAttrs.hasAlignmentAttr())
6624     return error(CallLoc, "callbr instructions may not have an alignment");
6625 
6626   // Finish off the Attribute and check them
6627   AttributeList PAL =
6628       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6629                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6630 
6631   CallBrInst *CBI =
6632       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6633                          BundleList);
6634   CBI->setCallingConv(CC);
6635   CBI->setAttributes(PAL);
6636   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6637   Inst = CBI;
6638   return false;
6639 }
6640 
6641 //===----------------------------------------------------------------------===//
6642 // Binary Operators.
6643 //===----------------------------------------------------------------------===//
6644 
6645 /// parseArithmetic
6646 ///  ::= ArithmeticOps TypeAndValue ',' Value
6647 ///
6648 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6649 /// operand is allowed.
6650 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6651                                unsigned Opc, bool IsFP) {
6652   LocTy Loc; Value *LHS, *RHS;
6653   if (parseTypeAndValue(LHS, Loc, PFS) ||
6654       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6655       parseValue(LHS->getType(), RHS, PFS))
6656     return true;
6657 
6658   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6659                     : LHS->getType()->isIntOrIntVectorTy();
6660 
6661   if (!Valid)
6662     return error(Loc, "invalid operand type for instruction");
6663 
6664   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6665   return false;
6666 }
6667 
6668 /// parseLogical
6669 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6670 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6671                             unsigned Opc) {
6672   LocTy Loc; Value *LHS, *RHS;
6673   if (parseTypeAndValue(LHS, Loc, PFS) ||
6674       parseToken(lltok::comma, "expected ',' in logical operation") ||
6675       parseValue(LHS->getType(), RHS, PFS))
6676     return true;
6677 
6678   if (!LHS->getType()->isIntOrIntVectorTy())
6679     return error(Loc,
6680                  "instruction requires integer or integer vector operands");
6681 
6682   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6683   return false;
6684 }
6685 
6686 /// parseCompare
6687 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6688 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6689 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
6690                             unsigned Opc) {
6691   // parse the integer/fp comparison predicate.
6692   LocTy Loc;
6693   unsigned Pred;
6694   Value *LHS, *RHS;
6695   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
6696       parseToken(lltok::comma, "expected ',' after compare value") ||
6697       parseValue(LHS->getType(), RHS, PFS))
6698     return true;
6699 
6700   if (Opc == Instruction::FCmp) {
6701     if (!LHS->getType()->isFPOrFPVectorTy())
6702       return error(Loc, "fcmp requires floating point operands");
6703     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6704   } else {
6705     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6706     if (!LHS->getType()->isIntOrIntVectorTy() &&
6707         !LHS->getType()->isPtrOrPtrVectorTy())
6708       return error(Loc, "icmp requires integer operands");
6709     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6710   }
6711   return false;
6712 }
6713 
6714 //===----------------------------------------------------------------------===//
6715 // Other Instructions.
6716 //===----------------------------------------------------------------------===//
6717 
6718 /// parseCast
6719 ///   ::= CastOpc TypeAndValue 'to' Type
6720 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
6721                          unsigned Opc) {
6722   LocTy Loc;
6723   Value *Op;
6724   Type *DestTy = nullptr;
6725   if (parseTypeAndValue(Op, Loc, PFS) ||
6726       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
6727       parseType(DestTy))
6728     return true;
6729 
6730   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6731     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6732     return error(Loc, "invalid cast opcode for cast from '" +
6733                           getTypeString(Op->getType()) + "' to '" +
6734                           getTypeString(DestTy) + "'");
6735   }
6736   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6737   return false;
6738 }
6739 
6740 /// parseSelect
6741 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6742 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6743   LocTy Loc;
6744   Value *Op0, *Op1, *Op2;
6745   if (parseTypeAndValue(Op0, Loc, PFS) ||
6746       parseToken(lltok::comma, "expected ',' after select condition") ||
6747       parseTypeAndValue(Op1, PFS) ||
6748       parseToken(lltok::comma, "expected ',' after select value") ||
6749       parseTypeAndValue(Op2, PFS))
6750     return true;
6751 
6752   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6753     return error(Loc, Reason);
6754 
6755   Inst = SelectInst::Create(Op0, Op1, Op2);
6756   return false;
6757 }
6758 
6759 /// parseVAArg
6760 ///   ::= 'va_arg' TypeAndValue ',' Type
6761 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
6762   Value *Op;
6763   Type *EltTy = nullptr;
6764   LocTy TypeLoc;
6765   if (parseTypeAndValue(Op, PFS) ||
6766       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
6767       parseType(EltTy, TypeLoc))
6768     return true;
6769 
6770   if (!EltTy->isFirstClassType())
6771     return error(TypeLoc, "va_arg requires operand with first class type");
6772 
6773   Inst = new VAArgInst(Op, EltTy);
6774   return false;
6775 }
6776 
6777 /// parseExtractElement
6778 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6779 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6780   LocTy Loc;
6781   Value *Op0, *Op1;
6782   if (parseTypeAndValue(Op0, Loc, PFS) ||
6783       parseToken(lltok::comma, "expected ',' after extract value") ||
6784       parseTypeAndValue(Op1, PFS))
6785     return true;
6786 
6787   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6788     return error(Loc, "invalid extractelement operands");
6789 
6790   Inst = ExtractElementInst::Create(Op0, Op1);
6791   return false;
6792 }
6793 
6794 /// parseInsertElement
6795 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6796 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6797   LocTy Loc;
6798   Value *Op0, *Op1, *Op2;
6799   if (parseTypeAndValue(Op0, Loc, PFS) ||
6800       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6801       parseTypeAndValue(Op1, PFS) ||
6802       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6803       parseTypeAndValue(Op2, PFS))
6804     return true;
6805 
6806   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6807     return error(Loc, "invalid insertelement operands");
6808 
6809   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6810   return false;
6811 }
6812 
6813 /// parseShuffleVector
6814 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6815 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6816   LocTy Loc;
6817   Value *Op0, *Op1, *Op2;
6818   if (parseTypeAndValue(Op0, Loc, PFS) ||
6819       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
6820       parseTypeAndValue(Op1, PFS) ||
6821       parseToken(lltok::comma, "expected ',' after shuffle value") ||
6822       parseTypeAndValue(Op2, PFS))
6823     return true;
6824 
6825   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6826     return error(Loc, "invalid shufflevector operands");
6827 
6828   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6829   return false;
6830 }
6831 
6832 /// parsePHI
6833 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6834 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6835   Type *Ty = nullptr;  LocTy TypeLoc;
6836   Value *Op0, *Op1;
6837 
6838   if (parseType(Ty, TypeLoc) ||
6839       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6840       parseValue(Ty, Op0, PFS) ||
6841       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6842       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6843       parseToken(lltok::rsquare, "expected ']' in phi value list"))
6844     return true;
6845 
6846   bool AteExtraComma = false;
6847   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6848 
6849   while (true) {
6850     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6851 
6852     if (!EatIfPresent(lltok::comma))
6853       break;
6854 
6855     if (Lex.getKind() == lltok::MetadataVar) {
6856       AteExtraComma = true;
6857       break;
6858     }
6859 
6860     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6861         parseValue(Ty, Op0, PFS) ||
6862         parseToken(lltok::comma, "expected ',' after insertelement value") ||
6863         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6864         parseToken(lltok::rsquare, "expected ']' in phi value list"))
6865       return true;
6866   }
6867 
6868   if (!Ty->isFirstClassType())
6869     return error(TypeLoc, "phi node must have first class type");
6870 
6871   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6872   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6873     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6874   Inst = PN;
6875   return AteExtraComma ? InstExtraComma : InstNormal;
6876 }
6877 
6878 /// parseLandingPad
6879 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6880 /// Clause
6881 ///   ::= 'catch' TypeAndValue
6882 ///   ::= 'filter'
6883 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6884 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6885   Type *Ty = nullptr; LocTy TyLoc;
6886 
6887   if (parseType(Ty, TyLoc))
6888     return true;
6889 
6890   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6891   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6892 
6893   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6894     LandingPadInst::ClauseType CT;
6895     if (EatIfPresent(lltok::kw_catch))
6896       CT = LandingPadInst::Catch;
6897     else if (EatIfPresent(lltok::kw_filter))
6898       CT = LandingPadInst::Filter;
6899     else
6900       return tokError("expected 'catch' or 'filter' clause type");
6901 
6902     Value *V;
6903     LocTy VLoc;
6904     if (parseTypeAndValue(V, VLoc, PFS))
6905       return true;
6906 
6907     // A 'catch' type expects a non-array constant. A filter clause expects an
6908     // array constant.
6909     if (CT == LandingPadInst::Catch) {
6910       if (isa<ArrayType>(V->getType()))
6911         error(VLoc, "'catch' clause has an invalid type");
6912     } else {
6913       if (!isa<ArrayType>(V->getType()))
6914         error(VLoc, "'filter' clause has an invalid type");
6915     }
6916 
6917     Constant *CV = dyn_cast<Constant>(V);
6918     if (!CV)
6919       return error(VLoc, "clause argument must be a constant");
6920     LP->addClause(CV);
6921   }
6922 
6923   Inst = LP.release();
6924   return false;
6925 }
6926 
6927 /// parseFreeze
6928 ///   ::= 'freeze' Type Value
6929 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
6930   LocTy Loc;
6931   Value *Op;
6932   if (parseTypeAndValue(Op, Loc, PFS))
6933     return true;
6934 
6935   Inst = new FreezeInst(Op);
6936   return false;
6937 }
6938 
6939 /// parseCall
6940 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6941 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6942 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6943 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6944 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6945 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6946 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6947 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6948 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
6949                          CallInst::TailCallKind TCK) {
6950   AttrBuilder RetAttrs, FnAttrs;
6951   std::vector<unsigned> FwdRefAttrGrps;
6952   LocTy BuiltinLoc;
6953   unsigned CallAddrSpace;
6954   unsigned CC;
6955   Type *RetType = nullptr;
6956   LocTy RetTypeLoc;
6957   ValID CalleeID;
6958   SmallVector<ParamInfo, 16> ArgList;
6959   SmallVector<OperandBundleDef, 2> BundleList;
6960   LocTy CallLoc = Lex.getLoc();
6961 
6962   if (TCK != CallInst::TCK_None &&
6963       parseToken(lltok::kw_call,
6964                  "expected 'tail call', 'musttail call', or 'notail call'"))
6965     return true;
6966 
6967   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6968 
6969   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6970       parseOptionalProgramAddrSpace(CallAddrSpace) ||
6971       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6972       parseValID(CalleeID, &PFS) ||
6973       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6974                          PFS.getFunction().isVarArg()) ||
6975       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6976       parseOptionalOperandBundles(BundleList, PFS))
6977     return true;
6978 
6979   // If RetType is a non-function pointer type, then this is the short syntax
6980   // for the call, which means that RetType is just the return type.  Infer the
6981   // rest of the function argument types from the arguments that are present.
6982   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6983   if (!Ty) {
6984     // Pull out the types of all of the arguments...
6985     std::vector<Type*> ParamTypes;
6986     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6987       ParamTypes.push_back(ArgList[i].V->getType());
6988 
6989     if (!FunctionType::isValidReturnType(RetType))
6990       return error(RetTypeLoc, "Invalid result type for LLVM function");
6991 
6992     Ty = FunctionType::get(RetType, ParamTypes, false);
6993   }
6994 
6995   CalleeID.FTy = Ty;
6996 
6997   // Look up the callee.
6998   Value *Callee;
6999   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7000                           &PFS))
7001     return true;
7002 
7003   // Set up the Attribute for the function.
7004   SmallVector<AttributeSet, 8> Attrs;
7005 
7006   SmallVector<Value*, 8> Args;
7007 
7008   // Loop through FunctionType's arguments and ensure they are specified
7009   // correctly.  Also, gather any parameter attributes.
7010   FunctionType::param_iterator I = Ty->param_begin();
7011   FunctionType::param_iterator E = Ty->param_end();
7012   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7013     Type *ExpectedTy = nullptr;
7014     if (I != E) {
7015       ExpectedTy = *I++;
7016     } else if (!Ty->isVarArg()) {
7017       return error(ArgList[i].Loc, "too many arguments specified");
7018     }
7019 
7020     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7021       return error(ArgList[i].Loc, "argument is not of expected type '" +
7022                                        getTypeString(ExpectedTy) + "'");
7023     Args.push_back(ArgList[i].V);
7024     Attrs.push_back(ArgList[i].Attrs);
7025   }
7026 
7027   if (I != E)
7028     return error(CallLoc, "not enough parameters specified for call");
7029 
7030   if (FnAttrs.hasAlignmentAttr())
7031     return error(CallLoc, "call instructions may not have an alignment");
7032 
7033   // Finish off the Attribute and check them
7034   AttributeList PAL =
7035       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7036                          AttributeSet::get(Context, RetAttrs), Attrs);
7037 
7038   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7039   CI->setTailCallKind(TCK);
7040   CI->setCallingConv(CC);
7041   if (FMF.any()) {
7042     if (!isa<FPMathOperator>(CI)) {
7043       CI->deleteValue();
7044       return error(CallLoc, "fast-math-flags specified for call without "
7045                             "floating-point scalar or vector return type");
7046     }
7047     CI->setFastMathFlags(FMF);
7048   }
7049   CI->setAttributes(PAL);
7050   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7051   Inst = CI;
7052   return false;
7053 }
7054 
7055 //===----------------------------------------------------------------------===//
7056 // Memory Instructions.
7057 //===----------------------------------------------------------------------===//
7058 
7059 /// parseAlloc
7060 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7061 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7062 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7063   Value *Size = nullptr;
7064   LocTy SizeLoc, TyLoc, ASLoc;
7065   MaybeAlign Alignment;
7066   unsigned AddrSpace = 0;
7067   Type *Ty = nullptr;
7068 
7069   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7070   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7071 
7072   if (parseType(Ty, TyLoc))
7073     return true;
7074 
7075   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7076     return error(TyLoc, "invalid type for alloca");
7077 
7078   bool AteExtraComma = false;
7079   if (EatIfPresent(lltok::comma)) {
7080     if (Lex.getKind() == lltok::kw_align) {
7081       if (parseOptionalAlignment(Alignment))
7082         return true;
7083       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7084         return true;
7085     } else if (Lex.getKind() == lltok::kw_addrspace) {
7086       ASLoc = Lex.getLoc();
7087       if (parseOptionalAddrSpace(AddrSpace))
7088         return true;
7089     } else if (Lex.getKind() == lltok::MetadataVar) {
7090       AteExtraComma = true;
7091     } else {
7092       if (parseTypeAndValue(Size, SizeLoc, PFS))
7093         return true;
7094       if (EatIfPresent(lltok::comma)) {
7095         if (Lex.getKind() == lltok::kw_align) {
7096           if (parseOptionalAlignment(Alignment))
7097             return true;
7098           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7099             return true;
7100         } else if (Lex.getKind() == lltok::kw_addrspace) {
7101           ASLoc = Lex.getLoc();
7102           if (parseOptionalAddrSpace(AddrSpace))
7103             return true;
7104         } else if (Lex.getKind() == lltok::MetadataVar) {
7105           AteExtraComma = true;
7106         }
7107       }
7108     }
7109   }
7110 
7111   if (Size && !Size->getType()->isIntegerTy())
7112     return error(SizeLoc, "element count must have integer type");
7113 
7114   SmallPtrSet<Type *, 4> Visited;
7115   if (!Alignment && !Ty->isSized(&Visited))
7116     return error(TyLoc, "Cannot allocate unsized type");
7117   if (!Alignment)
7118     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7119   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7120   AI->setUsedWithInAlloca(IsInAlloca);
7121   AI->setSwiftError(IsSwiftError);
7122   Inst = AI;
7123   return AteExtraComma ? InstExtraComma : InstNormal;
7124 }
7125 
7126 /// parseLoad
7127 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7128 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7129 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7130 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7131   Value *Val; LocTy Loc;
7132   MaybeAlign Alignment;
7133   bool AteExtraComma = false;
7134   bool isAtomic = false;
7135   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7136   SyncScope::ID SSID = SyncScope::System;
7137 
7138   if (Lex.getKind() == lltok::kw_atomic) {
7139     isAtomic = true;
7140     Lex.Lex();
7141   }
7142 
7143   bool isVolatile = false;
7144   if (Lex.getKind() == lltok::kw_volatile) {
7145     isVolatile = true;
7146     Lex.Lex();
7147   }
7148 
7149   Type *Ty;
7150   LocTy ExplicitTypeLoc = Lex.getLoc();
7151   if (parseType(Ty) ||
7152       parseToken(lltok::comma, "expected comma after load's type") ||
7153       parseTypeAndValue(Val, Loc, PFS) ||
7154       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7155       parseOptionalCommaAlign(Alignment, AteExtraComma))
7156     return true;
7157 
7158   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7159     return error(Loc, "load operand must be a pointer to a first class type");
7160   if (isAtomic && !Alignment)
7161     return error(Loc, "atomic load must have explicit non-zero alignment");
7162   if (Ordering == AtomicOrdering::Release ||
7163       Ordering == AtomicOrdering::AcquireRelease)
7164     return error(Loc, "atomic load cannot use Release ordering");
7165 
7166   if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
7167     return error(
7168         ExplicitTypeLoc,
7169         typeComparisonErrorMessage(
7170             "explicit pointee type doesn't match operand's pointee type", Ty,
7171             cast<PointerType>(Val->getType())->getElementType()));
7172   }
7173   SmallPtrSet<Type *, 4> Visited;
7174   if (!Alignment && !Ty->isSized(&Visited))
7175     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7176   if (!Alignment)
7177     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7178   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7179   return AteExtraComma ? InstExtraComma : InstNormal;
7180 }
7181 
7182 /// parseStore
7183 
7184 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7185 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7186 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7187 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7188   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7189   MaybeAlign Alignment;
7190   bool AteExtraComma = false;
7191   bool isAtomic = false;
7192   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7193   SyncScope::ID SSID = SyncScope::System;
7194 
7195   if (Lex.getKind() == lltok::kw_atomic) {
7196     isAtomic = true;
7197     Lex.Lex();
7198   }
7199 
7200   bool isVolatile = false;
7201   if (Lex.getKind() == lltok::kw_volatile) {
7202     isVolatile = true;
7203     Lex.Lex();
7204   }
7205 
7206   if (parseTypeAndValue(Val, Loc, PFS) ||
7207       parseToken(lltok::comma, "expected ',' after store operand") ||
7208       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7209       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7210       parseOptionalCommaAlign(Alignment, AteExtraComma))
7211     return true;
7212 
7213   if (!Ptr->getType()->isPointerTy())
7214     return error(PtrLoc, "store operand must be a pointer");
7215   if (!Val->getType()->isFirstClassType())
7216     return error(Loc, "store operand must be a first class value");
7217   if (!cast<PointerType>(Ptr->getType())
7218            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7219     return error(Loc, "stored value and pointer type do not match");
7220   if (isAtomic && !Alignment)
7221     return error(Loc, "atomic store must have explicit non-zero alignment");
7222   if (Ordering == AtomicOrdering::Acquire ||
7223       Ordering == AtomicOrdering::AcquireRelease)
7224     return error(Loc, "atomic store cannot use Acquire ordering");
7225   SmallPtrSet<Type *, 4> Visited;
7226   if (!Alignment && !Val->getType()->isSized(&Visited))
7227     return error(Loc, "storing unsized types is not allowed");
7228   if (!Alignment)
7229     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7230 
7231   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7232   return AteExtraComma ? InstExtraComma : InstNormal;
7233 }
7234 
7235 /// parseCmpXchg
7236 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7237 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7238 ///       'Align'?
7239 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7240   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7241   bool AteExtraComma = false;
7242   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7243   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7244   SyncScope::ID SSID = SyncScope::System;
7245   bool isVolatile = false;
7246   bool isWeak = false;
7247   MaybeAlign Alignment;
7248 
7249   if (EatIfPresent(lltok::kw_weak))
7250     isWeak = true;
7251 
7252   if (EatIfPresent(lltok::kw_volatile))
7253     isVolatile = true;
7254 
7255   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7256       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7257       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7258       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7259       parseTypeAndValue(New, NewLoc, PFS) ||
7260       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7261       parseOrdering(FailureOrdering) ||
7262       parseOptionalCommaAlign(Alignment, AteExtraComma))
7263     return true;
7264 
7265   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7266     return tokError("invalid cmpxchg success ordering");
7267   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7268     return tokError("invalid cmpxchg failure ordering");
7269   if (!Ptr->getType()->isPointerTy())
7270     return error(PtrLoc, "cmpxchg operand must be a pointer");
7271   if (!cast<PointerType>(Ptr->getType())
7272            ->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
7273     return error(CmpLoc, "compare value and pointer type do not match");
7274   if (!cast<PointerType>(Ptr->getType())
7275            ->isOpaqueOrPointeeTypeMatches(New->getType()))
7276     return error(NewLoc, "new value and pointer type do not match");
7277   if (Cmp->getType() != New->getType())
7278     return error(NewLoc, "compare value and new value type do not match");
7279   if (!New->getType()->isFirstClassType())
7280     return error(NewLoc, "cmpxchg operand must be a first class value");
7281 
7282   const Align DefaultAlignment(
7283       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7284           Cmp->getType()));
7285 
7286   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7287       Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
7288       FailureOrdering, SSID);
7289   CXI->setVolatile(isVolatile);
7290   CXI->setWeak(isWeak);
7291 
7292   Inst = CXI;
7293   return AteExtraComma ? InstExtraComma : InstNormal;
7294 }
7295 
7296 /// parseAtomicRMW
7297 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7298 ///       'singlethread'? AtomicOrdering
7299 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7300   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7301   bool AteExtraComma = false;
7302   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7303   SyncScope::ID SSID = SyncScope::System;
7304   bool isVolatile = false;
7305   bool IsFP = false;
7306   AtomicRMWInst::BinOp Operation;
7307   MaybeAlign Alignment;
7308 
7309   if (EatIfPresent(lltok::kw_volatile))
7310     isVolatile = true;
7311 
7312   switch (Lex.getKind()) {
7313   default:
7314     return tokError("expected binary operation in atomicrmw");
7315   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7316   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7317   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7318   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7319   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7320   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7321   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7322   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7323   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7324   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7325   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7326   case lltok::kw_fadd:
7327     Operation = AtomicRMWInst::FAdd;
7328     IsFP = true;
7329     break;
7330   case lltok::kw_fsub:
7331     Operation = AtomicRMWInst::FSub;
7332     IsFP = true;
7333     break;
7334   }
7335   Lex.Lex();  // Eat the operation.
7336 
7337   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7338       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7339       parseTypeAndValue(Val, ValLoc, PFS) ||
7340       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7341       parseOptionalCommaAlign(Alignment, AteExtraComma))
7342     return true;
7343 
7344   if (Ordering == AtomicOrdering::Unordered)
7345     return tokError("atomicrmw cannot be unordered");
7346   if (!Ptr->getType()->isPointerTy())
7347     return error(PtrLoc, "atomicrmw operand must be a pointer");
7348   if (!cast<PointerType>(Ptr->getType())
7349            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7350     return error(ValLoc, "atomicrmw value and pointer type do not match");
7351 
7352   if (Operation == AtomicRMWInst::Xchg) {
7353     if (!Val->getType()->isIntegerTy() &&
7354         !Val->getType()->isFloatingPointTy()) {
7355       return error(ValLoc,
7356                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7357                        " operand must be an integer or floating point type");
7358     }
7359   } else if (IsFP) {
7360     if (!Val->getType()->isFloatingPointTy()) {
7361       return error(ValLoc, "atomicrmw " +
7362                                AtomicRMWInst::getOperationName(Operation) +
7363                                " operand must be a floating point type");
7364     }
7365   } else {
7366     if (!Val->getType()->isIntegerTy()) {
7367       return error(ValLoc, "atomicrmw " +
7368                                AtomicRMWInst::getOperationName(Operation) +
7369                                " operand must be an integer");
7370     }
7371   }
7372 
7373   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7374   if (Size < 8 || (Size & (Size - 1)))
7375     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7376                          " integer");
7377   const Align DefaultAlignment(
7378       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7379           Val->getType()));
7380   AtomicRMWInst *RMWI =
7381       new AtomicRMWInst(Operation, Ptr, Val,
7382                         Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
7383   RMWI->setVolatile(isVolatile);
7384   Inst = RMWI;
7385   return AteExtraComma ? InstExtraComma : InstNormal;
7386 }
7387 
7388 /// parseFence
7389 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7390 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7391   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7392   SyncScope::ID SSID = SyncScope::System;
7393   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7394     return true;
7395 
7396   if (Ordering == AtomicOrdering::Unordered)
7397     return tokError("fence cannot be unordered");
7398   if (Ordering == AtomicOrdering::Monotonic)
7399     return tokError("fence cannot be monotonic");
7400 
7401   Inst = new FenceInst(Context, Ordering, SSID);
7402   return InstNormal;
7403 }
7404 
7405 /// parseGetElementPtr
7406 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7407 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7408   Value *Ptr = nullptr;
7409   Value *Val = nullptr;
7410   LocTy Loc, EltLoc;
7411 
7412   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7413 
7414   Type *Ty = nullptr;
7415   LocTy ExplicitTypeLoc = Lex.getLoc();
7416   if (parseType(Ty) ||
7417       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7418       parseTypeAndValue(Ptr, Loc, PFS))
7419     return true;
7420 
7421   Type *BaseType = Ptr->getType();
7422   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7423   if (!BasePointerType)
7424     return error(Loc, "base of getelementptr must be a pointer");
7425 
7426   if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
7427     return error(
7428         ExplicitTypeLoc,
7429         typeComparisonErrorMessage(
7430             "explicit pointee type doesn't match operand's pointee type", Ty,
7431             BasePointerType->getElementType()));
7432   }
7433 
7434   SmallVector<Value*, 16> Indices;
7435   bool AteExtraComma = false;
7436   // GEP returns a vector of pointers if at least one of parameters is a vector.
7437   // All vector parameters should have the same vector width.
7438   ElementCount GEPWidth = BaseType->isVectorTy()
7439                               ? cast<VectorType>(BaseType)->getElementCount()
7440                               : ElementCount::getFixed(0);
7441 
7442   while (EatIfPresent(lltok::comma)) {
7443     if (Lex.getKind() == lltok::MetadataVar) {
7444       AteExtraComma = true;
7445       break;
7446     }
7447     if (parseTypeAndValue(Val, EltLoc, PFS))
7448       return true;
7449     if (!Val->getType()->isIntOrIntVectorTy())
7450       return error(EltLoc, "getelementptr index must be an integer");
7451 
7452     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7453       ElementCount ValNumEl = ValVTy->getElementCount();
7454       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7455         return error(
7456             EltLoc,
7457             "getelementptr vector index has a wrong number of elements");
7458       GEPWidth = ValNumEl;
7459     }
7460     Indices.push_back(Val);
7461   }
7462 
7463   SmallPtrSet<Type*, 4> Visited;
7464   if (!Indices.empty() && !Ty->isSized(&Visited))
7465     return error(Loc, "base element of getelementptr must be sized");
7466 
7467   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7468     return error(Loc, "invalid getelementptr indices");
7469   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7470   if (InBounds)
7471     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7472   return AteExtraComma ? InstExtraComma : InstNormal;
7473 }
7474 
7475 /// parseExtractValue
7476 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7477 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7478   Value *Val; LocTy Loc;
7479   SmallVector<unsigned, 4> Indices;
7480   bool AteExtraComma;
7481   if (parseTypeAndValue(Val, Loc, PFS) ||
7482       parseIndexList(Indices, AteExtraComma))
7483     return true;
7484 
7485   if (!Val->getType()->isAggregateType())
7486     return error(Loc, "extractvalue operand must be aggregate type");
7487 
7488   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7489     return error(Loc, "invalid indices for extractvalue");
7490   Inst = ExtractValueInst::Create(Val, Indices);
7491   return AteExtraComma ? InstExtraComma : InstNormal;
7492 }
7493 
7494 /// parseInsertValue
7495 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7496 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7497   Value *Val0, *Val1; LocTy Loc0, Loc1;
7498   SmallVector<unsigned, 4> Indices;
7499   bool AteExtraComma;
7500   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7501       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7502       parseTypeAndValue(Val1, Loc1, PFS) ||
7503       parseIndexList(Indices, AteExtraComma))
7504     return true;
7505 
7506   if (!Val0->getType()->isAggregateType())
7507     return error(Loc0, "insertvalue operand must be aggregate type");
7508 
7509   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7510   if (!IndexedType)
7511     return error(Loc0, "invalid indices for insertvalue");
7512   if (IndexedType != Val1->getType())
7513     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7514                            getTypeString(Val1->getType()) + "' instead of '" +
7515                            getTypeString(IndexedType) + "'");
7516   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7517   return AteExtraComma ? InstExtraComma : InstNormal;
7518 }
7519 
7520 //===----------------------------------------------------------------------===//
7521 // Embedded metadata.
7522 //===----------------------------------------------------------------------===//
7523 
7524 /// parseMDNodeVector
7525 ///   ::= { Element (',' Element)* }
7526 /// Element
7527 ///   ::= 'null' | TypeAndValue
7528 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7529   if (parseToken(lltok::lbrace, "expected '{' here"))
7530     return true;
7531 
7532   // Check for an empty list.
7533   if (EatIfPresent(lltok::rbrace))
7534     return false;
7535 
7536   do {
7537     // Null is a special case since it is typeless.
7538     if (EatIfPresent(lltok::kw_null)) {
7539       Elts.push_back(nullptr);
7540       continue;
7541     }
7542 
7543     Metadata *MD;
7544     if (parseMetadata(MD, nullptr))
7545       return true;
7546     Elts.push_back(MD);
7547   } while (EatIfPresent(lltok::comma));
7548 
7549   return parseToken(lltok::rbrace, "expected end of metadata node");
7550 }
7551 
7552 //===----------------------------------------------------------------------===//
7553 // Use-list order directives.
7554 //===----------------------------------------------------------------------===//
7555 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7556                                 SMLoc Loc) {
7557   if (V->use_empty())
7558     return error(Loc, "value has no uses");
7559 
7560   unsigned NumUses = 0;
7561   SmallDenseMap<const Use *, unsigned, 16> Order;
7562   for (const Use &U : V->uses()) {
7563     if (++NumUses > Indexes.size())
7564       break;
7565     Order[&U] = Indexes[NumUses - 1];
7566   }
7567   if (NumUses < 2)
7568     return error(Loc, "value only has one use");
7569   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7570     return error(Loc,
7571                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7572 
7573   V->sortUseList([&](const Use &L, const Use &R) {
7574     return Order.lookup(&L) < Order.lookup(&R);
7575   });
7576   return false;
7577 }
7578 
7579 /// parseUseListOrderIndexes
7580 ///   ::= '{' uint32 (',' uint32)+ '}'
7581 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7582   SMLoc Loc = Lex.getLoc();
7583   if (parseToken(lltok::lbrace, "expected '{' here"))
7584     return true;
7585   if (Lex.getKind() == lltok::rbrace)
7586     return Lex.Error("expected non-empty list of uselistorder indexes");
7587 
7588   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7589   // indexes should be distinct numbers in the range [0, size-1], and should
7590   // not be in order.
7591   unsigned Offset = 0;
7592   unsigned Max = 0;
7593   bool IsOrdered = true;
7594   assert(Indexes.empty() && "Expected empty order vector");
7595   do {
7596     unsigned Index;
7597     if (parseUInt32(Index))
7598       return true;
7599 
7600     // Update consistency checks.
7601     Offset += Index - Indexes.size();
7602     Max = std::max(Max, Index);
7603     IsOrdered &= Index == Indexes.size();
7604 
7605     Indexes.push_back(Index);
7606   } while (EatIfPresent(lltok::comma));
7607 
7608   if (parseToken(lltok::rbrace, "expected '}' here"))
7609     return true;
7610 
7611   if (Indexes.size() < 2)
7612     return error(Loc, "expected >= 2 uselistorder indexes");
7613   if (Offset != 0 || Max >= Indexes.size())
7614     return error(Loc,
7615                  "expected distinct uselistorder indexes in range [0, size)");
7616   if (IsOrdered)
7617     return error(Loc, "expected uselistorder indexes to change the order");
7618 
7619   return false;
7620 }
7621 
7622 /// parseUseListOrder
7623 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7624 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7625   SMLoc Loc = Lex.getLoc();
7626   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7627     return true;
7628 
7629   Value *V;
7630   SmallVector<unsigned, 16> Indexes;
7631   if (parseTypeAndValue(V, PFS) ||
7632       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7633       parseUseListOrderIndexes(Indexes))
7634     return true;
7635 
7636   return sortUseListOrder(V, Indexes, Loc);
7637 }
7638 
7639 /// parseUseListOrderBB
7640 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7641 bool LLParser::parseUseListOrderBB() {
7642   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7643   SMLoc Loc = Lex.getLoc();
7644   Lex.Lex();
7645 
7646   ValID Fn, Label;
7647   SmallVector<unsigned, 16> Indexes;
7648   if (parseValID(Fn, /*PFS=*/nullptr) ||
7649       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7650       parseValID(Label, /*PFS=*/nullptr) ||
7651       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7652       parseUseListOrderIndexes(Indexes))
7653     return true;
7654 
7655   // Check the function.
7656   GlobalValue *GV;
7657   if (Fn.Kind == ValID::t_GlobalName)
7658     GV = M->getNamedValue(Fn.StrVal);
7659   else if (Fn.Kind == ValID::t_GlobalID)
7660     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7661   else
7662     return error(Fn.Loc, "expected function name in uselistorder_bb");
7663   if (!GV)
7664     return error(Fn.Loc,
7665                  "invalid function forward reference in uselistorder_bb");
7666   auto *F = dyn_cast<Function>(GV);
7667   if (!F)
7668     return error(Fn.Loc, "expected function name in uselistorder_bb");
7669   if (F->isDeclaration())
7670     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7671 
7672   // Check the basic block.
7673   if (Label.Kind == ValID::t_LocalID)
7674     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7675   if (Label.Kind != ValID::t_LocalName)
7676     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7677   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7678   if (!V)
7679     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7680   if (!isa<BasicBlock>(V))
7681     return error(Label.Loc, "expected basic block in uselistorder_bb");
7682 
7683   return sortUseListOrder(V, Indexes, Loc);
7684 }
7685 
7686 /// ModuleEntry
7687 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7688 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7689 bool LLParser::parseModuleEntry(unsigned ID) {
7690   assert(Lex.getKind() == lltok::kw_module);
7691   Lex.Lex();
7692 
7693   std::string Path;
7694   if (parseToken(lltok::colon, "expected ':' here") ||
7695       parseToken(lltok::lparen, "expected '(' here") ||
7696       parseToken(lltok::kw_path, "expected 'path' here") ||
7697       parseToken(lltok::colon, "expected ':' here") ||
7698       parseStringConstant(Path) ||
7699       parseToken(lltok::comma, "expected ',' here") ||
7700       parseToken(lltok::kw_hash, "expected 'hash' here") ||
7701       parseToken(lltok::colon, "expected ':' here") ||
7702       parseToken(lltok::lparen, "expected '(' here"))
7703     return true;
7704 
7705   ModuleHash Hash;
7706   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
7707       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
7708       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
7709       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
7710       parseUInt32(Hash[4]))
7711     return true;
7712 
7713   if (parseToken(lltok::rparen, "expected ')' here") ||
7714       parseToken(lltok::rparen, "expected ')' here"))
7715     return true;
7716 
7717   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7718   ModuleIdMap[ID] = ModuleEntry->first();
7719 
7720   return false;
7721 }
7722 
7723 /// TypeIdEntry
7724 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7725 bool LLParser::parseTypeIdEntry(unsigned ID) {
7726   assert(Lex.getKind() == lltok::kw_typeid);
7727   Lex.Lex();
7728 
7729   std::string Name;
7730   if (parseToken(lltok::colon, "expected ':' here") ||
7731       parseToken(lltok::lparen, "expected '(' here") ||
7732       parseToken(lltok::kw_name, "expected 'name' here") ||
7733       parseToken(lltok::colon, "expected ':' here") ||
7734       parseStringConstant(Name))
7735     return true;
7736 
7737   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7738   if (parseToken(lltok::comma, "expected ',' here") ||
7739       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
7740     return true;
7741 
7742   // Check if this ID was forward referenced, and if so, update the
7743   // corresponding GUIDs.
7744   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7745   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7746     for (auto TIDRef : FwdRefTIDs->second) {
7747       assert(!*TIDRef.first &&
7748              "Forward referenced type id GUID expected to be 0");
7749       *TIDRef.first = GlobalValue::getGUID(Name);
7750     }
7751     ForwardRefTypeIds.erase(FwdRefTIDs);
7752   }
7753 
7754   return false;
7755 }
7756 
7757 /// TypeIdSummary
7758 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7759 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
7760   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
7761       parseToken(lltok::colon, "expected ':' here") ||
7762       parseToken(lltok::lparen, "expected '(' here") ||
7763       parseTypeTestResolution(TIS.TTRes))
7764     return true;
7765 
7766   if (EatIfPresent(lltok::comma)) {
7767     // Expect optional wpdResolutions field
7768     if (parseOptionalWpdResolutions(TIS.WPDRes))
7769       return true;
7770   }
7771 
7772   if (parseToken(lltok::rparen, "expected ')' here"))
7773     return true;
7774 
7775   return false;
7776 }
7777 
7778 static ValueInfo EmptyVI =
7779     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7780 
7781 /// TypeIdCompatibleVtableEntry
7782 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7783 ///   TypeIdCompatibleVtableInfo
7784 ///   ')'
7785 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
7786   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7787   Lex.Lex();
7788 
7789   std::string Name;
7790   if (parseToken(lltok::colon, "expected ':' here") ||
7791       parseToken(lltok::lparen, "expected '(' here") ||
7792       parseToken(lltok::kw_name, "expected 'name' here") ||
7793       parseToken(lltok::colon, "expected ':' here") ||
7794       parseStringConstant(Name))
7795     return true;
7796 
7797   TypeIdCompatibleVtableInfo &TI =
7798       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7799   if (parseToken(lltok::comma, "expected ',' here") ||
7800       parseToken(lltok::kw_summary, "expected 'summary' here") ||
7801       parseToken(lltok::colon, "expected ':' here") ||
7802       parseToken(lltok::lparen, "expected '(' here"))
7803     return true;
7804 
7805   IdToIndexMapType IdToIndexMap;
7806   // parse each call edge
7807   do {
7808     uint64_t Offset;
7809     if (parseToken(lltok::lparen, "expected '(' here") ||
7810         parseToken(lltok::kw_offset, "expected 'offset' here") ||
7811         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7812         parseToken(lltok::comma, "expected ',' here"))
7813       return true;
7814 
7815     LocTy Loc = Lex.getLoc();
7816     unsigned GVId;
7817     ValueInfo VI;
7818     if (parseGVReference(VI, GVId))
7819       return true;
7820 
7821     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7822     // forward reference. We will save the location of the ValueInfo needing an
7823     // update, but can only do so once the std::vector is finalized.
7824     if (VI == EmptyVI)
7825       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7826     TI.push_back({Offset, VI});
7827 
7828     if (parseToken(lltok::rparen, "expected ')' in call"))
7829       return true;
7830   } while (EatIfPresent(lltok::comma));
7831 
7832   // Now that the TI vector is finalized, it is safe to save the locations
7833   // of any forward GV references that need updating later.
7834   for (auto I : IdToIndexMap) {
7835     auto &Infos = ForwardRefValueInfos[I.first];
7836     for (auto P : I.second) {
7837       assert(TI[P.first].VTableVI == EmptyVI &&
7838              "Forward referenced ValueInfo expected to be empty");
7839       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
7840     }
7841   }
7842 
7843   if (parseToken(lltok::rparen, "expected ')' here") ||
7844       parseToken(lltok::rparen, "expected ')' here"))
7845     return true;
7846 
7847   // Check if this ID was forward referenced, and if so, update the
7848   // corresponding GUIDs.
7849   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7850   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7851     for (auto TIDRef : FwdRefTIDs->second) {
7852       assert(!*TIDRef.first &&
7853              "Forward referenced type id GUID expected to be 0");
7854       *TIDRef.first = GlobalValue::getGUID(Name);
7855     }
7856     ForwardRefTypeIds.erase(FwdRefTIDs);
7857   }
7858 
7859   return false;
7860 }
7861 
7862 /// TypeTestResolution
7863 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7864 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7865 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7866 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7867 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7868 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
7869   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7870       parseToken(lltok::colon, "expected ':' here") ||
7871       parseToken(lltok::lparen, "expected '(' here") ||
7872       parseToken(lltok::kw_kind, "expected 'kind' here") ||
7873       parseToken(lltok::colon, "expected ':' here"))
7874     return true;
7875 
7876   switch (Lex.getKind()) {
7877   case lltok::kw_unknown:
7878     TTRes.TheKind = TypeTestResolution::Unknown;
7879     break;
7880   case lltok::kw_unsat:
7881     TTRes.TheKind = TypeTestResolution::Unsat;
7882     break;
7883   case lltok::kw_byteArray:
7884     TTRes.TheKind = TypeTestResolution::ByteArray;
7885     break;
7886   case lltok::kw_inline:
7887     TTRes.TheKind = TypeTestResolution::Inline;
7888     break;
7889   case lltok::kw_single:
7890     TTRes.TheKind = TypeTestResolution::Single;
7891     break;
7892   case lltok::kw_allOnes:
7893     TTRes.TheKind = TypeTestResolution::AllOnes;
7894     break;
7895   default:
7896     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7897   }
7898   Lex.Lex();
7899 
7900   if (parseToken(lltok::comma, "expected ',' here") ||
7901       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7902       parseToken(lltok::colon, "expected ':' here") ||
7903       parseUInt32(TTRes.SizeM1BitWidth))
7904     return true;
7905 
7906   // parse optional fields
7907   while (EatIfPresent(lltok::comma)) {
7908     switch (Lex.getKind()) {
7909     case lltok::kw_alignLog2:
7910       Lex.Lex();
7911       if (parseToken(lltok::colon, "expected ':'") ||
7912           parseUInt64(TTRes.AlignLog2))
7913         return true;
7914       break;
7915     case lltok::kw_sizeM1:
7916       Lex.Lex();
7917       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
7918         return true;
7919       break;
7920     case lltok::kw_bitMask: {
7921       unsigned Val;
7922       Lex.Lex();
7923       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
7924         return true;
7925       assert(Val <= 0xff);
7926       TTRes.BitMask = (uint8_t)Val;
7927       break;
7928     }
7929     case lltok::kw_inlineBits:
7930       Lex.Lex();
7931       if (parseToken(lltok::colon, "expected ':'") ||
7932           parseUInt64(TTRes.InlineBits))
7933         return true;
7934       break;
7935     default:
7936       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
7937     }
7938   }
7939 
7940   if (parseToken(lltok::rparen, "expected ')' here"))
7941     return true;
7942 
7943   return false;
7944 }
7945 
7946 /// OptionalWpdResolutions
7947 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7948 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7949 bool LLParser::parseOptionalWpdResolutions(
7950     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7951   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7952       parseToken(lltok::colon, "expected ':' here") ||
7953       parseToken(lltok::lparen, "expected '(' here"))
7954     return true;
7955 
7956   do {
7957     uint64_t Offset;
7958     WholeProgramDevirtResolution WPDRes;
7959     if (parseToken(lltok::lparen, "expected '(' here") ||
7960         parseToken(lltok::kw_offset, "expected 'offset' here") ||
7961         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7962         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
7963         parseToken(lltok::rparen, "expected ')' here"))
7964       return true;
7965     WPDResMap[Offset] = WPDRes;
7966   } while (EatIfPresent(lltok::comma));
7967 
7968   if (parseToken(lltok::rparen, "expected ')' here"))
7969     return true;
7970 
7971   return false;
7972 }
7973 
7974 /// WpdRes
7975 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7976 ///         [',' OptionalResByArg]? ')'
7977 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7978 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7979 ///         [',' OptionalResByArg]? ')'
7980 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7981 ///         [',' OptionalResByArg]? ')'
7982 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7983   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7984       parseToken(lltok::colon, "expected ':' here") ||
7985       parseToken(lltok::lparen, "expected '(' here") ||
7986       parseToken(lltok::kw_kind, "expected 'kind' here") ||
7987       parseToken(lltok::colon, "expected ':' here"))
7988     return true;
7989 
7990   switch (Lex.getKind()) {
7991   case lltok::kw_indir:
7992     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7993     break;
7994   case lltok::kw_singleImpl:
7995     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7996     break;
7997   case lltok::kw_branchFunnel:
7998     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7999     break;
8000   default:
8001     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8002   }
8003   Lex.Lex();
8004 
8005   // parse optional fields
8006   while (EatIfPresent(lltok::comma)) {
8007     switch (Lex.getKind()) {
8008     case lltok::kw_singleImplName:
8009       Lex.Lex();
8010       if (parseToken(lltok::colon, "expected ':' here") ||
8011           parseStringConstant(WPDRes.SingleImplName))
8012         return true;
8013       break;
8014     case lltok::kw_resByArg:
8015       if (parseOptionalResByArg(WPDRes.ResByArg))
8016         return true;
8017       break;
8018     default:
8019       return error(Lex.getLoc(),
8020                    "expected optional WholeProgramDevirtResolution field");
8021     }
8022   }
8023 
8024   if (parseToken(lltok::rparen, "expected ')' here"))
8025     return true;
8026 
8027   return false;
8028 }
8029 
8030 /// OptionalResByArg
8031 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8032 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8033 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8034 ///                  'virtualConstProp' )
8035 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8036 ///                [',' 'bit' ':' UInt32]? ')'
8037 bool LLParser::parseOptionalResByArg(
8038     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8039         &ResByArg) {
8040   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8041       parseToken(lltok::colon, "expected ':' here") ||
8042       parseToken(lltok::lparen, "expected '(' here"))
8043     return true;
8044 
8045   do {
8046     std::vector<uint64_t> Args;
8047     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8048         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8049         parseToken(lltok::colon, "expected ':' here") ||
8050         parseToken(lltok::lparen, "expected '(' here") ||
8051         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8052         parseToken(lltok::colon, "expected ':' here"))
8053       return true;
8054 
8055     WholeProgramDevirtResolution::ByArg ByArg;
8056     switch (Lex.getKind()) {
8057     case lltok::kw_indir:
8058       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8059       break;
8060     case lltok::kw_uniformRetVal:
8061       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8062       break;
8063     case lltok::kw_uniqueRetVal:
8064       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8065       break;
8066     case lltok::kw_virtualConstProp:
8067       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8068       break;
8069     default:
8070       return error(Lex.getLoc(),
8071                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8072     }
8073     Lex.Lex();
8074 
8075     // parse optional fields
8076     while (EatIfPresent(lltok::comma)) {
8077       switch (Lex.getKind()) {
8078       case lltok::kw_info:
8079         Lex.Lex();
8080         if (parseToken(lltok::colon, "expected ':' here") ||
8081             parseUInt64(ByArg.Info))
8082           return true;
8083         break;
8084       case lltok::kw_byte:
8085         Lex.Lex();
8086         if (parseToken(lltok::colon, "expected ':' here") ||
8087             parseUInt32(ByArg.Byte))
8088           return true;
8089         break;
8090       case lltok::kw_bit:
8091         Lex.Lex();
8092         if (parseToken(lltok::colon, "expected ':' here") ||
8093             parseUInt32(ByArg.Bit))
8094           return true;
8095         break;
8096       default:
8097         return error(Lex.getLoc(),
8098                      "expected optional whole program devirt field");
8099       }
8100     }
8101 
8102     if (parseToken(lltok::rparen, "expected ')' here"))
8103       return true;
8104 
8105     ResByArg[Args] = ByArg;
8106   } while (EatIfPresent(lltok::comma));
8107 
8108   if (parseToken(lltok::rparen, "expected ')' here"))
8109     return true;
8110 
8111   return false;
8112 }
8113 
8114 /// OptionalResByArg
8115 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8116 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8117   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8118       parseToken(lltok::colon, "expected ':' here") ||
8119       parseToken(lltok::lparen, "expected '(' here"))
8120     return true;
8121 
8122   do {
8123     uint64_t Val;
8124     if (parseUInt64(Val))
8125       return true;
8126     Args.push_back(Val);
8127   } while (EatIfPresent(lltok::comma));
8128 
8129   if (parseToken(lltok::rparen, "expected ')' here"))
8130     return true;
8131 
8132   return false;
8133 }
8134 
8135 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8136 
8137 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8138   bool ReadOnly = Fwd->isReadOnly();
8139   bool WriteOnly = Fwd->isWriteOnly();
8140   assert(!(ReadOnly && WriteOnly));
8141   *Fwd = Resolved;
8142   if (ReadOnly)
8143     Fwd->setReadOnly();
8144   if (WriteOnly)
8145     Fwd->setWriteOnly();
8146 }
8147 
8148 /// Stores the given Name/GUID and associated summary into the Index.
8149 /// Also updates any forward references to the associated entry ID.
8150 void LLParser::addGlobalValueToIndex(
8151     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8152     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8153   // First create the ValueInfo utilizing the Name or GUID.
8154   ValueInfo VI;
8155   if (GUID != 0) {
8156     assert(Name.empty());
8157     VI = Index->getOrInsertValueInfo(GUID);
8158   } else {
8159     assert(!Name.empty());
8160     if (M) {
8161       auto *GV = M->getNamedValue(Name);
8162       assert(GV);
8163       VI = Index->getOrInsertValueInfo(GV);
8164     } else {
8165       assert(
8166           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8167           "Need a source_filename to compute GUID for local");
8168       GUID = GlobalValue::getGUID(
8169           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8170       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8171     }
8172   }
8173 
8174   // Resolve forward references from calls/refs
8175   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8176   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8177     for (auto VIRef : FwdRefVIs->second) {
8178       assert(VIRef.first->getRef() == FwdVIRef &&
8179              "Forward referenced ValueInfo expected to be empty");
8180       resolveFwdRef(VIRef.first, VI);
8181     }
8182     ForwardRefValueInfos.erase(FwdRefVIs);
8183   }
8184 
8185   // Resolve forward references from aliases
8186   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8187   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8188     for (auto AliaseeRef : FwdRefAliasees->second) {
8189       assert(!AliaseeRef.first->hasAliasee() &&
8190              "Forward referencing alias already has aliasee");
8191       assert(Summary && "Aliasee must be a definition");
8192       AliaseeRef.first->setAliasee(VI, Summary.get());
8193     }
8194     ForwardRefAliasees.erase(FwdRefAliasees);
8195   }
8196 
8197   // Add the summary if one was provided.
8198   if (Summary)
8199     Index->addGlobalValueSummary(VI, std::move(Summary));
8200 
8201   // Save the associated ValueInfo for use in later references by ID.
8202   if (ID == NumberedValueInfos.size())
8203     NumberedValueInfos.push_back(VI);
8204   else {
8205     // Handle non-continuous numbers (to make test simplification easier).
8206     if (ID > NumberedValueInfos.size())
8207       NumberedValueInfos.resize(ID + 1);
8208     NumberedValueInfos[ID] = VI;
8209   }
8210 }
8211 
8212 /// parseSummaryIndexFlags
8213 ///   ::= 'flags' ':' UInt64
8214 bool LLParser::parseSummaryIndexFlags() {
8215   assert(Lex.getKind() == lltok::kw_flags);
8216   Lex.Lex();
8217 
8218   if (parseToken(lltok::colon, "expected ':' here"))
8219     return true;
8220   uint64_t Flags;
8221   if (parseUInt64(Flags))
8222     return true;
8223   if (Index)
8224     Index->setFlags(Flags);
8225   return false;
8226 }
8227 
8228 /// parseBlockCount
8229 ///   ::= 'blockcount' ':' UInt64
8230 bool LLParser::parseBlockCount() {
8231   assert(Lex.getKind() == lltok::kw_blockcount);
8232   Lex.Lex();
8233 
8234   if (parseToken(lltok::colon, "expected ':' here"))
8235     return true;
8236   uint64_t BlockCount;
8237   if (parseUInt64(BlockCount))
8238     return true;
8239   if (Index)
8240     Index->setBlockCount(BlockCount);
8241   return false;
8242 }
8243 
8244 /// parseGVEntry
8245 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8246 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8247 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8248 bool LLParser::parseGVEntry(unsigned ID) {
8249   assert(Lex.getKind() == lltok::kw_gv);
8250   Lex.Lex();
8251 
8252   if (parseToken(lltok::colon, "expected ':' here") ||
8253       parseToken(lltok::lparen, "expected '(' here"))
8254     return true;
8255 
8256   std::string Name;
8257   GlobalValue::GUID GUID = 0;
8258   switch (Lex.getKind()) {
8259   case lltok::kw_name:
8260     Lex.Lex();
8261     if (parseToken(lltok::colon, "expected ':' here") ||
8262         parseStringConstant(Name))
8263       return true;
8264     // Can't create GUID/ValueInfo until we have the linkage.
8265     break;
8266   case lltok::kw_guid:
8267     Lex.Lex();
8268     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8269       return true;
8270     break;
8271   default:
8272     return error(Lex.getLoc(), "expected name or guid tag");
8273   }
8274 
8275   if (!EatIfPresent(lltok::comma)) {
8276     // No summaries. Wrap up.
8277     if (parseToken(lltok::rparen, "expected ')' here"))
8278       return true;
8279     // This was created for a call to an external or indirect target.
8280     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8281     // created for indirect calls with VP. A Name with no GUID came from
8282     // an external definition. We pass ExternalLinkage since that is only
8283     // used when the GUID must be computed from Name, and in that case
8284     // the symbol must have external linkage.
8285     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8286                           nullptr);
8287     return false;
8288   }
8289 
8290   // Have a list of summaries
8291   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8292       parseToken(lltok::colon, "expected ':' here") ||
8293       parseToken(lltok::lparen, "expected '(' here"))
8294     return true;
8295   do {
8296     switch (Lex.getKind()) {
8297     case lltok::kw_function:
8298       if (parseFunctionSummary(Name, GUID, ID))
8299         return true;
8300       break;
8301     case lltok::kw_variable:
8302       if (parseVariableSummary(Name, GUID, ID))
8303         return true;
8304       break;
8305     case lltok::kw_alias:
8306       if (parseAliasSummary(Name, GUID, ID))
8307         return true;
8308       break;
8309     default:
8310       return error(Lex.getLoc(), "expected summary type");
8311     }
8312   } while (EatIfPresent(lltok::comma));
8313 
8314   if (parseToken(lltok::rparen, "expected ')' here") ||
8315       parseToken(lltok::rparen, "expected ')' here"))
8316     return true;
8317 
8318   return false;
8319 }
8320 
8321 /// FunctionSummary
8322 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8323 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8324 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8325 ///         [',' OptionalRefs]? ')'
8326 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8327                                     unsigned ID) {
8328   assert(Lex.getKind() == lltok::kw_function);
8329   Lex.Lex();
8330 
8331   StringRef ModulePath;
8332   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8333       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8334       /*NotEligibleToImport=*/false,
8335       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8336   unsigned InstCount;
8337   std::vector<FunctionSummary::EdgeTy> Calls;
8338   FunctionSummary::TypeIdInfo TypeIdInfo;
8339   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8340   std::vector<ValueInfo> Refs;
8341   // Default is all-zeros (conservative values).
8342   FunctionSummary::FFlags FFlags = {};
8343   if (parseToken(lltok::colon, "expected ':' here") ||
8344       parseToken(lltok::lparen, "expected '(' here") ||
8345       parseModuleReference(ModulePath) ||
8346       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8347       parseToken(lltok::comma, "expected ',' here") ||
8348       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8349       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8350     return true;
8351 
8352   // parse optional fields
8353   while (EatIfPresent(lltok::comma)) {
8354     switch (Lex.getKind()) {
8355     case lltok::kw_funcFlags:
8356       if (parseOptionalFFlags(FFlags))
8357         return true;
8358       break;
8359     case lltok::kw_calls:
8360       if (parseOptionalCalls(Calls))
8361         return true;
8362       break;
8363     case lltok::kw_typeIdInfo:
8364       if (parseOptionalTypeIdInfo(TypeIdInfo))
8365         return true;
8366       break;
8367     case lltok::kw_refs:
8368       if (parseOptionalRefs(Refs))
8369         return true;
8370       break;
8371     case lltok::kw_params:
8372       if (parseOptionalParamAccesses(ParamAccesses))
8373         return true;
8374       break;
8375     default:
8376       return error(Lex.getLoc(), "expected optional function summary field");
8377     }
8378   }
8379 
8380   if (parseToken(lltok::rparen, "expected ')' here"))
8381     return true;
8382 
8383   auto FS = std::make_unique<FunctionSummary>(
8384       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8385       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8386       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8387       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8388       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8389       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8390       std::move(ParamAccesses));
8391 
8392   FS->setModulePath(ModulePath);
8393 
8394   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8395                         ID, std::move(FS));
8396 
8397   return false;
8398 }
8399 
8400 /// VariableSummary
8401 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8402 ///         [',' OptionalRefs]? ')'
8403 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8404                                     unsigned ID) {
8405   assert(Lex.getKind() == lltok::kw_variable);
8406   Lex.Lex();
8407 
8408   StringRef ModulePath;
8409   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8410       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8411       /*NotEligibleToImport=*/false,
8412       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8413   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8414                                         /* WriteOnly */ false,
8415                                         /* Constant */ false,
8416                                         GlobalObject::VCallVisibilityPublic);
8417   std::vector<ValueInfo> Refs;
8418   VTableFuncList VTableFuncs;
8419   if (parseToken(lltok::colon, "expected ':' here") ||
8420       parseToken(lltok::lparen, "expected '(' here") ||
8421       parseModuleReference(ModulePath) ||
8422       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8423       parseToken(lltok::comma, "expected ',' here") ||
8424       parseGVarFlags(GVarFlags))
8425     return true;
8426 
8427   // parse optional fields
8428   while (EatIfPresent(lltok::comma)) {
8429     switch (Lex.getKind()) {
8430     case lltok::kw_vTableFuncs:
8431       if (parseOptionalVTableFuncs(VTableFuncs))
8432         return true;
8433       break;
8434     case lltok::kw_refs:
8435       if (parseOptionalRefs(Refs))
8436         return true;
8437       break;
8438     default:
8439       return error(Lex.getLoc(), "expected optional variable summary field");
8440     }
8441   }
8442 
8443   if (parseToken(lltok::rparen, "expected ')' here"))
8444     return true;
8445 
8446   auto GS =
8447       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8448 
8449   GS->setModulePath(ModulePath);
8450   GS->setVTableFuncs(std::move(VTableFuncs));
8451 
8452   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8453                         ID, std::move(GS));
8454 
8455   return false;
8456 }
8457 
8458 /// AliasSummary
8459 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8460 ///         'aliasee' ':' GVReference ')'
8461 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8462                                  unsigned ID) {
8463   assert(Lex.getKind() == lltok::kw_alias);
8464   LocTy Loc = Lex.getLoc();
8465   Lex.Lex();
8466 
8467   StringRef ModulePath;
8468   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8469       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8470       /*NotEligibleToImport=*/false,
8471       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8472   if (parseToken(lltok::colon, "expected ':' here") ||
8473       parseToken(lltok::lparen, "expected '(' here") ||
8474       parseModuleReference(ModulePath) ||
8475       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8476       parseToken(lltok::comma, "expected ',' here") ||
8477       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8478       parseToken(lltok::colon, "expected ':' here"))
8479     return true;
8480 
8481   ValueInfo AliaseeVI;
8482   unsigned GVId;
8483   if (parseGVReference(AliaseeVI, GVId))
8484     return true;
8485 
8486   if (parseToken(lltok::rparen, "expected ')' here"))
8487     return true;
8488 
8489   auto AS = std::make_unique<AliasSummary>(GVFlags);
8490 
8491   AS->setModulePath(ModulePath);
8492 
8493   // Record forward reference if the aliasee is not parsed yet.
8494   if (AliaseeVI.getRef() == FwdVIRef) {
8495     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8496   } else {
8497     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8498     assert(Summary && "Aliasee must be a definition");
8499     AS->setAliasee(AliaseeVI, Summary);
8500   }
8501 
8502   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8503                         ID, std::move(AS));
8504 
8505   return false;
8506 }
8507 
8508 /// Flag
8509 ///   ::= [0|1]
8510 bool LLParser::parseFlag(unsigned &Val) {
8511   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8512     return tokError("expected integer");
8513   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8514   Lex.Lex();
8515   return false;
8516 }
8517 
8518 /// OptionalFFlags
8519 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8520 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8521 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8522 ///        [',' 'noInline' ':' Flag]? ')'
8523 ///        [',' 'alwaysInline' ':' Flag]? ')'
8524 
8525 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8526   assert(Lex.getKind() == lltok::kw_funcFlags);
8527   Lex.Lex();
8528 
8529   if (parseToken(lltok::colon, "expected ':' in funcFlags") |
8530       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8531     return true;
8532 
8533   do {
8534     unsigned Val = 0;
8535     switch (Lex.getKind()) {
8536     case lltok::kw_readNone:
8537       Lex.Lex();
8538       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8539         return true;
8540       FFlags.ReadNone = Val;
8541       break;
8542     case lltok::kw_readOnly:
8543       Lex.Lex();
8544       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8545         return true;
8546       FFlags.ReadOnly = Val;
8547       break;
8548     case lltok::kw_noRecurse:
8549       Lex.Lex();
8550       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8551         return true;
8552       FFlags.NoRecurse = Val;
8553       break;
8554     case lltok::kw_returnDoesNotAlias:
8555       Lex.Lex();
8556       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8557         return true;
8558       FFlags.ReturnDoesNotAlias = Val;
8559       break;
8560     case lltok::kw_noInline:
8561       Lex.Lex();
8562       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8563         return true;
8564       FFlags.NoInline = Val;
8565       break;
8566     case lltok::kw_alwaysInline:
8567       Lex.Lex();
8568       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8569         return true;
8570       FFlags.AlwaysInline = Val;
8571       break;
8572     default:
8573       return error(Lex.getLoc(), "expected function flag type");
8574     }
8575   } while (EatIfPresent(lltok::comma));
8576 
8577   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8578     return true;
8579 
8580   return false;
8581 }
8582 
8583 /// OptionalCalls
8584 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8585 /// Call ::= '(' 'callee' ':' GVReference
8586 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8587 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8588   assert(Lex.getKind() == lltok::kw_calls);
8589   Lex.Lex();
8590 
8591   if (parseToken(lltok::colon, "expected ':' in calls") |
8592       parseToken(lltok::lparen, "expected '(' in calls"))
8593     return true;
8594 
8595   IdToIndexMapType IdToIndexMap;
8596   // parse each call edge
8597   do {
8598     ValueInfo VI;
8599     if (parseToken(lltok::lparen, "expected '(' in call") ||
8600         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8601         parseToken(lltok::colon, "expected ':'"))
8602       return true;
8603 
8604     LocTy Loc = Lex.getLoc();
8605     unsigned GVId;
8606     if (parseGVReference(VI, GVId))
8607       return true;
8608 
8609     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8610     unsigned RelBF = 0;
8611     if (EatIfPresent(lltok::comma)) {
8612       // Expect either hotness or relbf
8613       if (EatIfPresent(lltok::kw_hotness)) {
8614         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8615           return true;
8616       } else {
8617         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8618             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8619           return true;
8620       }
8621     }
8622     // Keep track of the Call array index needing a forward reference.
8623     // We will save the location of the ValueInfo needing an update, but
8624     // can only do so once the std::vector is finalized.
8625     if (VI.getRef() == FwdVIRef)
8626       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8627     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8628 
8629     if (parseToken(lltok::rparen, "expected ')' in call"))
8630       return true;
8631   } while (EatIfPresent(lltok::comma));
8632 
8633   // Now that the Calls vector is finalized, it is safe to save the locations
8634   // of any forward GV references that need updating later.
8635   for (auto I : IdToIndexMap) {
8636     auto &Infos = ForwardRefValueInfos[I.first];
8637     for (auto P : I.second) {
8638       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8639              "Forward referenced ValueInfo expected to be empty");
8640       Infos.emplace_back(&Calls[P.first].first, P.second);
8641     }
8642   }
8643 
8644   if (parseToken(lltok::rparen, "expected ')' in calls"))
8645     return true;
8646 
8647   return false;
8648 }
8649 
8650 /// Hotness
8651 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8652 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8653   switch (Lex.getKind()) {
8654   case lltok::kw_unknown:
8655     Hotness = CalleeInfo::HotnessType::Unknown;
8656     break;
8657   case lltok::kw_cold:
8658     Hotness = CalleeInfo::HotnessType::Cold;
8659     break;
8660   case lltok::kw_none:
8661     Hotness = CalleeInfo::HotnessType::None;
8662     break;
8663   case lltok::kw_hot:
8664     Hotness = CalleeInfo::HotnessType::Hot;
8665     break;
8666   case lltok::kw_critical:
8667     Hotness = CalleeInfo::HotnessType::Critical;
8668     break;
8669   default:
8670     return error(Lex.getLoc(), "invalid call edge hotness");
8671   }
8672   Lex.Lex();
8673   return false;
8674 }
8675 
8676 /// OptionalVTableFuncs
8677 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8678 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8679 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8680   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8681   Lex.Lex();
8682 
8683   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") |
8684       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8685     return true;
8686 
8687   IdToIndexMapType IdToIndexMap;
8688   // parse each virtual function pair
8689   do {
8690     ValueInfo VI;
8691     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8692         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8693         parseToken(lltok::colon, "expected ':'"))
8694       return true;
8695 
8696     LocTy Loc = Lex.getLoc();
8697     unsigned GVId;
8698     if (parseGVReference(VI, GVId))
8699       return true;
8700 
8701     uint64_t Offset;
8702     if (parseToken(lltok::comma, "expected comma") ||
8703         parseToken(lltok::kw_offset, "expected offset") ||
8704         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
8705       return true;
8706 
8707     // Keep track of the VTableFuncs array index needing a forward reference.
8708     // We will save the location of the ValueInfo needing an update, but
8709     // can only do so once the std::vector is finalized.
8710     if (VI == EmptyVI)
8711       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8712     VTableFuncs.push_back({VI, Offset});
8713 
8714     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
8715       return true;
8716   } while (EatIfPresent(lltok::comma));
8717 
8718   // Now that the VTableFuncs vector is finalized, it is safe to save the
8719   // locations of any forward GV references that need updating later.
8720   for (auto I : IdToIndexMap) {
8721     auto &Infos = ForwardRefValueInfos[I.first];
8722     for (auto P : I.second) {
8723       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8724              "Forward referenced ValueInfo expected to be empty");
8725       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
8726     }
8727   }
8728 
8729   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8730     return true;
8731 
8732   return false;
8733 }
8734 
8735 /// ParamNo := 'param' ':' UInt64
8736 bool LLParser::parseParamNo(uint64_t &ParamNo) {
8737   if (parseToken(lltok::kw_param, "expected 'param' here") ||
8738       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
8739     return true;
8740   return false;
8741 }
8742 
8743 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
8744 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
8745   APSInt Lower;
8746   APSInt Upper;
8747   auto ParseAPSInt = [&](APSInt &Val) {
8748     if (Lex.getKind() != lltok::APSInt)
8749       return tokError("expected integer");
8750     Val = Lex.getAPSIntVal();
8751     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
8752     Val.setIsSigned(true);
8753     Lex.Lex();
8754     return false;
8755   };
8756   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
8757       parseToken(lltok::colon, "expected ':' here") ||
8758       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
8759       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
8760       parseToken(lltok::rsquare, "expected ']' here"))
8761     return true;
8762 
8763   ++Upper;
8764   Range =
8765       (Lower == Upper && !Lower.isMaxValue())
8766           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
8767           : ConstantRange(Lower, Upper);
8768 
8769   return false;
8770 }
8771 
8772 /// ParamAccessCall
8773 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
8774 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
8775                                     IdLocListType &IdLocList) {
8776   if (parseToken(lltok::lparen, "expected '(' here") ||
8777       parseToken(lltok::kw_callee, "expected 'callee' here") ||
8778       parseToken(lltok::colon, "expected ':' here"))
8779     return true;
8780 
8781   unsigned GVId;
8782   ValueInfo VI;
8783   LocTy Loc = Lex.getLoc();
8784   if (parseGVReference(VI, GVId))
8785     return true;
8786 
8787   Call.Callee = VI;
8788   IdLocList.emplace_back(GVId, Loc);
8789 
8790   if (parseToken(lltok::comma, "expected ',' here") ||
8791       parseParamNo(Call.ParamNo) ||
8792       parseToken(lltok::comma, "expected ',' here") ||
8793       parseParamAccessOffset(Call.Offsets))
8794     return true;
8795 
8796   if (parseToken(lltok::rparen, "expected ')' here"))
8797     return true;
8798 
8799   return false;
8800 }
8801 
8802 /// ParamAccess
8803 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
8804 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
8805 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
8806                                 IdLocListType &IdLocList) {
8807   if (parseToken(lltok::lparen, "expected '(' here") ||
8808       parseParamNo(Param.ParamNo) ||
8809       parseToken(lltok::comma, "expected ',' here") ||
8810       parseParamAccessOffset(Param.Use))
8811     return true;
8812 
8813   if (EatIfPresent(lltok::comma)) {
8814     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
8815         parseToken(lltok::colon, "expected ':' here") ||
8816         parseToken(lltok::lparen, "expected '(' here"))
8817       return true;
8818     do {
8819       FunctionSummary::ParamAccess::Call Call;
8820       if (parseParamAccessCall(Call, IdLocList))
8821         return true;
8822       Param.Calls.push_back(Call);
8823     } while (EatIfPresent(lltok::comma));
8824 
8825     if (parseToken(lltok::rparen, "expected ')' here"))
8826       return true;
8827   }
8828 
8829   if (parseToken(lltok::rparen, "expected ')' here"))
8830     return true;
8831 
8832   return false;
8833 }
8834 
8835 /// OptionalParamAccesses
8836 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
8837 bool LLParser::parseOptionalParamAccesses(
8838     std::vector<FunctionSummary::ParamAccess> &Params) {
8839   assert(Lex.getKind() == lltok::kw_params);
8840   Lex.Lex();
8841 
8842   if (parseToken(lltok::colon, "expected ':' here") ||
8843       parseToken(lltok::lparen, "expected '(' here"))
8844     return true;
8845 
8846   IdLocListType VContexts;
8847   size_t CallsNum = 0;
8848   do {
8849     FunctionSummary::ParamAccess ParamAccess;
8850     if (parseParamAccess(ParamAccess, VContexts))
8851       return true;
8852     CallsNum += ParamAccess.Calls.size();
8853     assert(VContexts.size() == CallsNum);
8854     (void)CallsNum;
8855     Params.emplace_back(std::move(ParamAccess));
8856   } while (EatIfPresent(lltok::comma));
8857 
8858   if (parseToken(lltok::rparen, "expected ')' here"))
8859     return true;
8860 
8861   // Now that the Params is finalized, it is safe to save the locations
8862   // of any forward GV references that need updating later.
8863   IdLocListType::const_iterator ItContext = VContexts.begin();
8864   for (auto &PA : Params) {
8865     for (auto &C : PA.Calls) {
8866       if (C.Callee.getRef() == FwdVIRef)
8867         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
8868                                                             ItContext->second);
8869       ++ItContext;
8870     }
8871   }
8872   assert(ItContext == VContexts.end());
8873 
8874   return false;
8875 }
8876 
8877 /// OptionalRefs
8878 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8879 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
8880   assert(Lex.getKind() == lltok::kw_refs);
8881   Lex.Lex();
8882 
8883   if (parseToken(lltok::colon, "expected ':' in refs") ||
8884       parseToken(lltok::lparen, "expected '(' in refs"))
8885     return true;
8886 
8887   struct ValueContext {
8888     ValueInfo VI;
8889     unsigned GVId;
8890     LocTy Loc;
8891   };
8892   std::vector<ValueContext> VContexts;
8893   // parse each ref edge
8894   do {
8895     ValueContext VC;
8896     VC.Loc = Lex.getLoc();
8897     if (parseGVReference(VC.VI, VC.GVId))
8898       return true;
8899     VContexts.push_back(VC);
8900   } while (EatIfPresent(lltok::comma));
8901 
8902   // Sort value contexts so that ones with writeonly
8903   // and readonly ValueInfo  are at the end of VContexts vector.
8904   // See FunctionSummary::specialRefCounts()
8905   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8906     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8907   });
8908 
8909   IdToIndexMapType IdToIndexMap;
8910   for (auto &VC : VContexts) {
8911     // Keep track of the Refs array index needing a forward reference.
8912     // We will save the location of the ValueInfo needing an update, but
8913     // can only do so once the std::vector is finalized.
8914     if (VC.VI.getRef() == FwdVIRef)
8915       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8916     Refs.push_back(VC.VI);
8917   }
8918 
8919   // Now that the Refs vector is finalized, it is safe to save the locations
8920   // of any forward GV references that need updating later.
8921   for (auto I : IdToIndexMap) {
8922     auto &Infos = ForwardRefValueInfos[I.first];
8923     for (auto P : I.second) {
8924       assert(Refs[P.first].getRef() == FwdVIRef &&
8925              "Forward referenced ValueInfo expected to be empty");
8926       Infos.emplace_back(&Refs[P.first], P.second);
8927     }
8928   }
8929 
8930   if (parseToken(lltok::rparen, "expected ')' in refs"))
8931     return true;
8932 
8933   return false;
8934 }
8935 
8936 /// OptionalTypeIdInfo
8937 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8938 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8939 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8940 bool LLParser::parseOptionalTypeIdInfo(
8941     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8942   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8943   Lex.Lex();
8944 
8945   if (parseToken(lltok::colon, "expected ':' here") ||
8946       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8947     return true;
8948 
8949   do {
8950     switch (Lex.getKind()) {
8951     case lltok::kw_typeTests:
8952       if (parseTypeTests(TypeIdInfo.TypeTests))
8953         return true;
8954       break;
8955     case lltok::kw_typeTestAssumeVCalls:
8956       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8957                            TypeIdInfo.TypeTestAssumeVCalls))
8958         return true;
8959       break;
8960     case lltok::kw_typeCheckedLoadVCalls:
8961       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8962                            TypeIdInfo.TypeCheckedLoadVCalls))
8963         return true;
8964       break;
8965     case lltok::kw_typeTestAssumeConstVCalls:
8966       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8967                               TypeIdInfo.TypeTestAssumeConstVCalls))
8968         return true;
8969       break;
8970     case lltok::kw_typeCheckedLoadConstVCalls:
8971       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8972                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8973         return true;
8974       break;
8975     default:
8976       return error(Lex.getLoc(), "invalid typeIdInfo list type");
8977     }
8978   } while (EatIfPresent(lltok::comma));
8979 
8980   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8981     return true;
8982 
8983   return false;
8984 }
8985 
8986 /// TypeTests
8987 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8988 ///         [',' (SummaryID | UInt64)]* ')'
8989 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8990   assert(Lex.getKind() == lltok::kw_typeTests);
8991   Lex.Lex();
8992 
8993   if (parseToken(lltok::colon, "expected ':' here") ||
8994       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8995     return true;
8996 
8997   IdToIndexMapType IdToIndexMap;
8998   do {
8999     GlobalValue::GUID GUID = 0;
9000     if (Lex.getKind() == lltok::SummaryID) {
9001       unsigned ID = Lex.getUIntVal();
9002       LocTy Loc = Lex.getLoc();
9003       // Keep track of the TypeTests array index needing a forward reference.
9004       // We will save the location of the GUID needing an update, but
9005       // can only do so once the std::vector is finalized.
9006       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9007       Lex.Lex();
9008     } else if (parseUInt64(GUID))
9009       return true;
9010     TypeTests.push_back(GUID);
9011   } while (EatIfPresent(lltok::comma));
9012 
9013   // Now that the TypeTests vector is finalized, it is safe to save the
9014   // locations of any forward GV references that need updating later.
9015   for (auto I : IdToIndexMap) {
9016     auto &Ids = ForwardRefTypeIds[I.first];
9017     for (auto P : I.second) {
9018       assert(TypeTests[P.first] == 0 &&
9019              "Forward referenced type id GUID expected to be 0");
9020       Ids.emplace_back(&TypeTests[P.first], P.second);
9021     }
9022   }
9023 
9024   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9025     return true;
9026 
9027   return false;
9028 }
9029 
9030 /// VFuncIdList
9031 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9032 bool LLParser::parseVFuncIdList(
9033     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9034   assert(Lex.getKind() == Kind);
9035   Lex.Lex();
9036 
9037   if (parseToken(lltok::colon, "expected ':' here") ||
9038       parseToken(lltok::lparen, "expected '(' here"))
9039     return true;
9040 
9041   IdToIndexMapType IdToIndexMap;
9042   do {
9043     FunctionSummary::VFuncId VFuncId;
9044     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9045       return true;
9046     VFuncIdList.push_back(VFuncId);
9047   } while (EatIfPresent(lltok::comma));
9048 
9049   if (parseToken(lltok::rparen, "expected ')' here"))
9050     return true;
9051 
9052   // Now that the VFuncIdList vector is finalized, it is safe to save the
9053   // locations of any forward GV references that need updating later.
9054   for (auto I : IdToIndexMap) {
9055     auto &Ids = ForwardRefTypeIds[I.first];
9056     for (auto P : I.second) {
9057       assert(VFuncIdList[P.first].GUID == 0 &&
9058              "Forward referenced type id GUID expected to be 0");
9059       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9060     }
9061   }
9062 
9063   return false;
9064 }
9065 
9066 /// ConstVCallList
9067 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9068 bool LLParser::parseConstVCallList(
9069     lltok::Kind Kind,
9070     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9071   assert(Lex.getKind() == Kind);
9072   Lex.Lex();
9073 
9074   if (parseToken(lltok::colon, "expected ':' here") ||
9075       parseToken(lltok::lparen, "expected '(' here"))
9076     return true;
9077 
9078   IdToIndexMapType IdToIndexMap;
9079   do {
9080     FunctionSummary::ConstVCall ConstVCall;
9081     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9082       return true;
9083     ConstVCallList.push_back(ConstVCall);
9084   } while (EatIfPresent(lltok::comma));
9085 
9086   if (parseToken(lltok::rparen, "expected ')' here"))
9087     return true;
9088 
9089   // Now that the ConstVCallList vector is finalized, it is safe to save the
9090   // locations of any forward GV references that need updating later.
9091   for (auto I : IdToIndexMap) {
9092     auto &Ids = ForwardRefTypeIds[I.first];
9093     for (auto P : I.second) {
9094       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9095              "Forward referenced type id GUID expected to be 0");
9096       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9097     }
9098   }
9099 
9100   return false;
9101 }
9102 
9103 /// ConstVCall
9104 ///   ::= '(' VFuncId ',' Args ')'
9105 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9106                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9107   if (parseToken(lltok::lparen, "expected '(' here") ||
9108       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9109     return true;
9110 
9111   if (EatIfPresent(lltok::comma))
9112     if (parseArgs(ConstVCall.Args))
9113       return true;
9114 
9115   if (parseToken(lltok::rparen, "expected ')' here"))
9116     return true;
9117 
9118   return false;
9119 }
9120 
9121 /// VFuncId
9122 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9123 ///         'offset' ':' UInt64 ')'
9124 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9125                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9126   assert(Lex.getKind() == lltok::kw_vFuncId);
9127   Lex.Lex();
9128 
9129   if (parseToken(lltok::colon, "expected ':' here") ||
9130       parseToken(lltok::lparen, "expected '(' here"))
9131     return true;
9132 
9133   if (Lex.getKind() == lltok::SummaryID) {
9134     VFuncId.GUID = 0;
9135     unsigned ID = Lex.getUIntVal();
9136     LocTy Loc = Lex.getLoc();
9137     // Keep track of the array index needing a forward reference.
9138     // We will save the location of the GUID needing an update, but
9139     // can only do so once the caller's std::vector is finalized.
9140     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9141     Lex.Lex();
9142   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9143              parseToken(lltok::colon, "expected ':' here") ||
9144              parseUInt64(VFuncId.GUID))
9145     return true;
9146 
9147   if (parseToken(lltok::comma, "expected ',' here") ||
9148       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9149       parseToken(lltok::colon, "expected ':' here") ||
9150       parseUInt64(VFuncId.Offset) ||
9151       parseToken(lltok::rparen, "expected ')' here"))
9152     return true;
9153 
9154   return false;
9155 }
9156 
9157 /// GVFlags
9158 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9159 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9160 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9161 ///         'canAutoHide' ':' Flag ',' ')'
9162 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9163   assert(Lex.getKind() == lltok::kw_flags);
9164   Lex.Lex();
9165 
9166   if (parseToken(lltok::colon, "expected ':' here") ||
9167       parseToken(lltok::lparen, "expected '(' here"))
9168     return true;
9169 
9170   do {
9171     unsigned Flag = 0;
9172     switch (Lex.getKind()) {
9173     case lltok::kw_linkage:
9174       Lex.Lex();
9175       if (parseToken(lltok::colon, "expected ':'"))
9176         return true;
9177       bool HasLinkage;
9178       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9179       assert(HasLinkage && "Linkage not optional in summary entry");
9180       Lex.Lex();
9181       break;
9182     case lltok::kw_visibility:
9183       Lex.Lex();
9184       if (parseToken(lltok::colon, "expected ':'"))
9185         return true;
9186       parseOptionalVisibility(Flag);
9187       GVFlags.Visibility = Flag;
9188       break;
9189     case lltok::kw_notEligibleToImport:
9190       Lex.Lex();
9191       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9192         return true;
9193       GVFlags.NotEligibleToImport = Flag;
9194       break;
9195     case lltok::kw_live:
9196       Lex.Lex();
9197       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9198         return true;
9199       GVFlags.Live = Flag;
9200       break;
9201     case lltok::kw_dsoLocal:
9202       Lex.Lex();
9203       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9204         return true;
9205       GVFlags.DSOLocal = Flag;
9206       break;
9207     case lltok::kw_canAutoHide:
9208       Lex.Lex();
9209       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9210         return true;
9211       GVFlags.CanAutoHide = Flag;
9212       break;
9213     default:
9214       return error(Lex.getLoc(), "expected gv flag type");
9215     }
9216   } while (EatIfPresent(lltok::comma));
9217 
9218   if (parseToken(lltok::rparen, "expected ')' here"))
9219     return true;
9220 
9221   return false;
9222 }
9223 
9224 /// GVarFlags
9225 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9226 ///                      ',' 'writeonly' ':' Flag
9227 ///                      ',' 'constant' ':' Flag ')'
9228 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9229   assert(Lex.getKind() == lltok::kw_varFlags);
9230   Lex.Lex();
9231 
9232   if (parseToken(lltok::colon, "expected ':' here") ||
9233       parseToken(lltok::lparen, "expected '(' here"))
9234     return true;
9235 
9236   auto ParseRest = [this](unsigned int &Val) {
9237     Lex.Lex();
9238     if (parseToken(lltok::colon, "expected ':'"))
9239       return true;
9240     return parseFlag(Val);
9241   };
9242 
9243   do {
9244     unsigned Flag = 0;
9245     switch (Lex.getKind()) {
9246     case lltok::kw_readonly:
9247       if (ParseRest(Flag))
9248         return true;
9249       GVarFlags.MaybeReadOnly = Flag;
9250       break;
9251     case lltok::kw_writeonly:
9252       if (ParseRest(Flag))
9253         return true;
9254       GVarFlags.MaybeWriteOnly = Flag;
9255       break;
9256     case lltok::kw_constant:
9257       if (ParseRest(Flag))
9258         return true;
9259       GVarFlags.Constant = Flag;
9260       break;
9261     case lltok::kw_vcall_visibility:
9262       if (ParseRest(Flag))
9263         return true;
9264       GVarFlags.VCallVisibility = Flag;
9265       break;
9266     default:
9267       return error(Lex.getLoc(), "expected gvar flag type");
9268     }
9269   } while (EatIfPresent(lltok::comma));
9270   return parseToken(lltok::rparen, "expected ')' here");
9271 }
9272 
9273 /// ModuleReference
9274 ///   ::= 'module' ':' UInt
9275 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9276   // parse module id.
9277   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9278       parseToken(lltok::colon, "expected ':' here") ||
9279       parseToken(lltok::SummaryID, "expected module ID"))
9280     return true;
9281 
9282   unsigned ModuleID = Lex.getUIntVal();
9283   auto I = ModuleIdMap.find(ModuleID);
9284   // We should have already parsed all module IDs
9285   assert(I != ModuleIdMap.end());
9286   ModulePath = I->second;
9287   return false;
9288 }
9289 
9290 /// GVReference
9291 ///   ::= SummaryID
9292 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9293   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9294   if (!ReadOnly)
9295     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9296   if (parseToken(lltok::SummaryID, "expected GV ID"))
9297     return true;
9298 
9299   GVId = Lex.getUIntVal();
9300   // Check if we already have a VI for this GV
9301   if (GVId < NumberedValueInfos.size()) {
9302     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9303     VI = NumberedValueInfos[GVId];
9304   } else
9305     // We will create a forward reference to the stored location.
9306     VI = ValueInfo(false, FwdVIRef);
9307 
9308   if (ReadOnly)
9309     VI.setReadOnly();
9310   if (WriteOnly)
9311     VI.setWriteOnly();
9312   return false;
9313 }
9314