1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/AsmParser/LLParser.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/LLToken.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SaveAndRestore.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstring> 51 #include <vector> 52 53 using namespace llvm; 54 55 static std::string getTypeString(Type *T) { 56 std::string Result; 57 raw_string_ostream Tmp(Result); 58 Tmp << *T; 59 return Tmp.str(); 60 } 61 62 static void setContextOpaquePointers(LLLexer &L, LLVMContext &C) { 63 while (true) { 64 lltok::Kind K = L.Lex(); 65 // LLLexer will set the opaque pointers option in LLVMContext if it sees an 66 // explicit "ptr". 67 if (K == lltok::star || K == lltok::Error || K == lltok::Eof || 68 isa_and_nonnull<PointerType>(L.getTyVal())) { 69 if (K == lltok::star) 70 C.setOpaquePointers(false); 71 return; 72 } 73 } 74 } 75 76 /// Run: module ::= toplevelentity* 77 bool LLParser::Run(bool UpgradeDebugInfo, 78 DataLayoutCallbackTy DataLayoutCallback) { 79 // If we haven't decided on whether or not we're using opaque pointers, do a 80 // quick lex over the tokens to see if we explicitly construct any typed or 81 // opaque pointer types. 82 // Don't bail out on an error so we do the same work in the parsing below 83 // regardless of if --opaque-pointers is set. 84 if (!Context.hasSetOpaquePointersValue()) 85 setContextOpaquePointers(OPLex, Context); 86 87 // Prime the lexer. 88 Lex.Lex(); 89 90 if (Context.shouldDiscardValueNames()) 91 return error( 92 Lex.getLoc(), 93 "Can't read textual IR with a Context that discards named Values"); 94 95 if (M) { 96 if (parseTargetDefinitions()) 97 return true; 98 99 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 100 M->setDataLayout(*LayoutOverride); 101 } 102 103 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 104 validateEndOfIndex(); 105 } 106 107 bool LLParser::parseStandaloneConstantValue(Constant *&C, 108 const SlotMapping *Slots) { 109 restoreParsingState(Slots); 110 Lex.Lex(); 111 112 Type *Ty = nullptr; 113 if (parseType(Ty) || parseConstantValue(Ty, C)) 114 return true; 115 if (Lex.getKind() != lltok::Eof) 116 return error(Lex.getLoc(), "expected end of string"); 117 return false; 118 } 119 120 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 121 const SlotMapping *Slots) { 122 restoreParsingState(Slots); 123 Lex.Lex(); 124 125 Read = 0; 126 SMLoc Start = Lex.getLoc(); 127 Ty = nullptr; 128 if (parseType(Ty)) 129 return true; 130 SMLoc End = Lex.getLoc(); 131 Read = End.getPointer() - Start.getPointer(); 132 133 return false; 134 } 135 136 void LLParser::restoreParsingState(const SlotMapping *Slots) { 137 if (!Slots) 138 return; 139 NumberedVals = Slots->GlobalValues; 140 NumberedMetadata = Slots->MetadataNodes; 141 for (const auto &I : Slots->NamedTypes) 142 NamedTypes.insert( 143 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 144 for (const auto &I : Slots->Types) 145 NumberedTypes.insert( 146 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 147 } 148 149 /// validateEndOfModule - Do final validity and basic correctness checks at the 150 /// end of the module. 151 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 152 if (!M) 153 return false; 154 // Handle any function attribute group forward references. 155 for (const auto &RAG : ForwardRefAttrGroups) { 156 Value *V = RAG.first; 157 const std::vector<unsigned> &Attrs = RAG.second; 158 AttrBuilder B(Context); 159 160 for (const auto &Attr : Attrs) { 161 auto R = NumberedAttrBuilders.find(Attr); 162 if (R != NumberedAttrBuilders.end()) 163 B.merge(R->second); 164 } 165 166 if (Function *Fn = dyn_cast<Function>(V)) { 167 AttributeList AS = Fn->getAttributes(); 168 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 169 AS = AS.removeFnAttributes(Context); 170 171 FnAttrs.merge(B); 172 173 // If the alignment was parsed as an attribute, move to the alignment 174 // field. 175 if (FnAttrs.hasAlignmentAttr()) { 176 Fn->setAlignment(FnAttrs.getAlignment()); 177 FnAttrs.removeAttribute(Attribute::Alignment); 178 } 179 180 AS = AS.addFnAttributes(Context, FnAttrs); 181 Fn->setAttributes(AS); 182 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 183 AttributeList AS = CI->getAttributes(); 184 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 185 AS = AS.removeFnAttributes(Context); 186 FnAttrs.merge(B); 187 AS = AS.addFnAttributes(Context, FnAttrs); 188 CI->setAttributes(AS); 189 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 190 AttributeList AS = II->getAttributes(); 191 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 192 AS = AS.removeFnAttributes(Context); 193 FnAttrs.merge(B); 194 AS = AS.addFnAttributes(Context, FnAttrs); 195 II->setAttributes(AS); 196 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 197 AttributeList AS = CBI->getAttributes(); 198 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 199 AS = AS.removeFnAttributes(Context); 200 FnAttrs.merge(B); 201 AS = AS.addFnAttributes(Context, FnAttrs); 202 CBI->setAttributes(AS); 203 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 204 AttrBuilder Attrs(M->getContext(), GV->getAttributes()); 205 Attrs.merge(B); 206 GV->setAttributes(AttributeSet::get(Context,Attrs)); 207 } else { 208 llvm_unreachable("invalid object with forward attribute group reference"); 209 } 210 } 211 212 // If there are entries in ForwardRefBlockAddresses at this point, the 213 // function was never defined. 214 if (!ForwardRefBlockAddresses.empty()) 215 return error(ForwardRefBlockAddresses.begin()->first.Loc, 216 "expected function name in blockaddress"); 217 218 for (const auto &NT : NumberedTypes) 219 if (NT.second.second.isValid()) 220 return error(NT.second.second, 221 "use of undefined type '%" + Twine(NT.first) + "'"); 222 223 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 224 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 225 if (I->second.second.isValid()) 226 return error(I->second.second, 227 "use of undefined type named '" + I->getKey() + "'"); 228 229 if (!ForwardRefComdats.empty()) 230 return error(ForwardRefComdats.begin()->second, 231 "use of undefined comdat '$" + 232 ForwardRefComdats.begin()->first + "'"); 233 234 if (!ForwardRefVals.empty()) 235 return error(ForwardRefVals.begin()->second.second, 236 "use of undefined value '@" + ForwardRefVals.begin()->first + 237 "'"); 238 239 if (!ForwardRefValIDs.empty()) 240 return error(ForwardRefValIDs.begin()->second.second, 241 "use of undefined value '@" + 242 Twine(ForwardRefValIDs.begin()->first) + "'"); 243 244 if (!ForwardRefMDNodes.empty()) 245 return error(ForwardRefMDNodes.begin()->second.second, 246 "use of undefined metadata '!" + 247 Twine(ForwardRefMDNodes.begin()->first) + "'"); 248 249 // Resolve metadata cycles. 250 for (auto &N : NumberedMetadata) { 251 if (N.second && !N.second->isResolved()) 252 N.second->resolveCycles(); 253 } 254 255 for (auto *Inst : InstsWithTBAATag) { 256 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 257 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 258 auto *UpgradedMD = UpgradeTBAANode(*MD); 259 if (MD != UpgradedMD) 260 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 261 } 262 263 // Look for intrinsic functions and CallInst that need to be upgraded. We use 264 // make_early_inc_range here because we may remove some functions. 265 for (Function &F : llvm::make_early_inc_range(*M)) 266 UpgradeCallsToIntrinsic(&F); 267 268 // Some types could be renamed during loading if several modules are 269 // loaded in the same LLVMContext (LTO scenario). In this case we should 270 // remangle intrinsics names as well. 271 for (Function &F : llvm::make_early_inc_range(*M)) { 272 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) { 273 F.replaceAllUsesWith(*Remangled); 274 F.eraseFromParent(); 275 } 276 } 277 278 if (UpgradeDebugInfo) 279 llvm::UpgradeDebugInfo(*M); 280 281 UpgradeModuleFlags(*M); 282 UpgradeSectionAttributes(*M); 283 284 if (!Slots) 285 return false; 286 // Initialize the slot mapping. 287 // Because by this point we've parsed and validated everything, we can "steal" 288 // the mapping from LLParser as it doesn't need it anymore. 289 Slots->GlobalValues = std::move(NumberedVals); 290 Slots->MetadataNodes = std::move(NumberedMetadata); 291 for (const auto &I : NamedTypes) 292 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 293 for (const auto &I : NumberedTypes) 294 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 295 296 return false; 297 } 298 299 /// Do final validity and basic correctness checks at the end of the index. 300 bool LLParser::validateEndOfIndex() { 301 if (!Index) 302 return false; 303 304 if (!ForwardRefValueInfos.empty()) 305 return error(ForwardRefValueInfos.begin()->second.front().second, 306 "use of undefined summary '^" + 307 Twine(ForwardRefValueInfos.begin()->first) + "'"); 308 309 if (!ForwardRefAliasees.empty()) 310 return error(ForwardRefAliasees.begin()->second.front().second, 311 "use of undefined summary '^" + 312 Twine(ForwardRefAliasees.begin()->first) + "'"); 313 314 if (!ForwardRefTypeIds.empty()) 315 return error(ForwardRefTypeIds.begin()->second.front().second, 316 "use of undefined type id summary '^" + 317 Twine(ForwardRefTypeIds.begin()->first) + "'"); 318 319 return false; 320 } 321 322 //===----------------------------------------------------------------------===// 323 // Top-Level Entities 324 //===----------------------------------------------------------------------===// 325 326 bool LLParser::parseTargetDefinitions() { 327 while (true) { 328 switch (Lex.getKind()) { 329 case lltok::kw_target: 330 if (parseTargetDefinition()) 331 return true; 332 break; 333 case lltok::kw_source_filename: 334 if (parseSourceFileName()) 335 return true; 336 break; 337 default: 338 return false; 339 } 340 } 341 } 342 343 bool LLParser::parseTopLevelEntities() { 344 // If there is no Module, then parse just the summary index entries. 345 if (!M) { 346 while (true) { 347 switch (Lex.getKind()) { 348 case lltok::Eof: 349 return false; 350 case lltok::SummaryID: 351 if (parseSummaryEntry()) 352 return true; 353 break; 354 case lltok::kw_source_filename: 355 if (parseSourceFileName()) 356 return true; 357 break; 358 default: 359 // Skip everything else 360 Lex.Lex(); 361 } 362 } 363 } 364 while (true) { 365 switch (Lex.getKind()) { 366 default: 367 return tokError("expected top-level entity"); 368 case lltok::Eof: return false; 369 case lltok::kw_declare: 370 if (parseDeclare()) 371 return true; 372 break; 373 case lltok::kw_define: 374 if (parseDefine()) 375 return true; 376 break; 377 case lltok::kw_module: 378 if (parseModuleAsm()) 379 return true; 380 break; 381 case lltok::LocalVarID: 382 if (parseUnnamedType()) 383 return true; 384 break; 385 case lltok::LocalVar: 386 if (parseNamedType()) 387 return true; 388 break; 389 case lltok::GlobalID: 390 if (parseUnnamedGlobal()) 391 return true; 392 break; 393 case lltok::GlobalVar: 394 if (parseNamedGlobal()) 395 return true; 396 break; 397 case lltok::ComdatVar: if (parseComdat()) return true; break; 398 case lltok::exclaim: 399 if (parseStandaloneMetadata()) 400 return true; 401 break; 402 case lltok::SummaryID: 403 if (parseSummaryEntry()) 404 return true; 405 break; 406 case lltok::MetadataVar: 407 if (parseNamedMetadata()) 408 return true; 409 break; 410 case lltok::kw_attributes: 411 if (parseUnnamedAttrGrp()) 412 return true; 413 break; 414 case lltok::kw_uselistorder: 415 if (parseUseListOrder()) 416 return true; 417 break; 418 case lltok::kw_uselistorder_bb: 419 if (parseUseListOrderBB()) 420 return true; 421 break; 422 } 423 } 424 } 425 426 /// toplevelentity 427 /// ::= 'module' 'asm' STRINGCONSTANT 428 bool LLParser::parseModuleAsm() { 429 assert(Lex.getKind() == lltok::kw_module); 430 Lex.Lex(); 431 432 std::string AsmStr; 433 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 434 parseStringConstant(AsmStr)) 435 return true; 436 437 M->appendModuleInlineAsm(AsmStr); 438 return false; 439 } 440 441 /// toplevelentity 442 /// ::= 'target' 'triple' '=' STRINGCONSTANT 443 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 444 bool LLParser::parseTargetDefinition() { 445 assert(Lex.getKind() == lltok::kw_target); 446 std::string Str; 447 switch (Lex.Lex()) { 448 default: 449 return tokError("unknown target property"); 450 case lltok::kw_triple: 451 Lex.Lex(); 452 if (parseToken(lltok::equal, "expected '=' after target triple") || 453 parseStringConstant(Str)) 454 return true; 455 M->setTargetTriple(Str); 456 return false; 457 case lltok::kw_datalayout: 458 Lex.Lex(); 459 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 460 parseStringConstant(Str)) 461 return true; 462 M->setDataLayout(Str); 463 return false; 464 } 465 } 466 467 /// toplevelentity 468 /// ::= 'source_filename' '=' STRINGCONSTANT 469 bool LLParser::parseSourceFileName() { 470 assert(Lex.getKind() == lltok::kw_source_filename); 471 Lex.Lex(); 472 if (parseToken(lltok::equal, "expected '=' after source_filename") || 473 parseStringConstant(SourceFileName)) 474 return true; 475 if (M) 476 M->setSourceFileName(SourceFileName); 477 return false; 478 } 479 480 /// parseUnnamedType: 481 /// ::= LocalVarID '=' 'type' type 482 bool LLParser::parseUnnamedType() { 483 LocTy TypeLoc = Lex.getLoc(); 484 unsigned TypeID = Lex.getUIntVal(); 485 Lex.Lex(); // eat LocalVarID; 486 487 if (parseToken(lltok::equal, "expected '=' after name") || 488 parseToken(lltok::kw_type, "expected 'type' after '='")) 489 return true; 490 491 Type *Result = nullptr; 492 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 493 return true; 494 495 if (!isa<StructType>(Result)) { 496 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 497 if (Entry.first) 498 return error(TypeLoc, "non-struct types may not be recursive"); 499 Entry.first = Result; 500 Entry.second = SMLoc(); 501 } 502 503 return false; 504 } 505 506 /// toplevelentity 507 /// ::= LocalVar '=' 'type' type 508 bool LLParser::parseNamedType() { 509 std::string Name = Lex.getStrVal(); 510 LocTy NameLoc = Lex.getLoc(); 511 Lex.Lex(); // eat LocalVar. 512 513 if (parseToken(lltok::equal, "expected '=' after name") || 514 parseToken(lltok::kw_type, "expected 'type' after name")) 515 return true; 516 517 Type *Result = nullptr; 518 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 519 return true; 520 521 if (!isa<StructType>(Result)) { 522 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 523 if (Entry.first) 524 return error(NameLoc, "non-struct types may not be recursive"); 525 Entry.first = Result; 526 Entry.second = SMLoc(); 527 } 528 529 return false; 530 } 531 532 /// toplevelentity 533 /// ::= 'declare' FunctionHeader 534 bool LLParser::parseDeclare() { 535 assert(Lex.getKind() == lltok::kw_declare); 536 Lex.Lex(); 537 538 std::vector<std::pair<unsigned, MDNode *>> MDs; 539 while (Lex.getKind() == lltok::MetadataVar) { 540 unsigned MDK; 541 MDNode *N; 542 if (parseMetadataAttachment(MDK, N)) 543 return true; 544 MDs.push_back({MDK, N}); 545 } 546 547 Function *F; 548 if (parseFunctionHeader(F, false)) 549 return true; 550 for (auto &MD : MDs) 551 F->addMetadata(MD.first, *MD.second); 552 return false; 553 } 554 555 /// toplevelentity 556 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 557 bool LLParser::parseDefine() { 558 assert(Lex.getKind() == lltok::kw_define); 559 Lex.Lex(); 560 561 Function *F; 562 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 563 parseFunctionBody(*F); 564 } 565 566 /// parseGlobalType 567 /// ::= 'constant' 568 /// ::= 'global' 569 bool LLParser::parseGlobalType(bool &IsConstant) { 570 if (Lex.getKind() == lltok::kw_constant) 571 IsConstant = true; 572 else if (Lex.getKind() == lltok::kw_global) 573 IsConstant = false; 574 else { 575 IsConstant = false; 576 return tokError("expected 'global' or 'constant'"); 577 } 578 Lex.Lex(); 579 return false; 580 } 581 582 bool LLParser::parseOptionalUnnamedAddr( 583 GlobalVariable::UnnamedAddr &UnnamedAddr) { 584 if (EatIfPresent(lltok::kw_unnamed_addr)) 585 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 586 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 587 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 588 else 589 UnnamedAddr = GlobalValue::UnnamedAddr::None; 590 return false; 591 } 592 593 /// parseUnnamedGlobal: 594 /// OptionalVisibility (ALIAS | IFUNC) ... 595 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 596 /// OptionalDLLStorageClass 597 /// ... -> global variable 598 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 599 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 600 /// OptionalVisibility 601 /// OptionalDLLStorageClass 602 /// ... -> global variable 603 bool LLParser::parseUnnamedGlobal() { 604 unsigned VarID = NumberedVals.size(); 605 std::string Name; 606 LocTy NameLoc = Lex.getLoc(); 607 608 // Handle the GlobalID form. 609 if (Lex.getKind() == lltok::GlobalID) { 610 if (Lex.getUIntVal() != VarID) 611 return error(Lex.getLoc(), 612 "variable expected to be numbered '%" + Twine(VarID) + "'"); 613 Lex.Lex(); // eat GlobalID; 614 615 if (parseToken(lltok::equal, "expected '=' after name")) 616 return true; 617 } 618 619 bool HasLinkage; 620 unsigned Linkage, Visibility, DLLStorageClass; 621 bool DSOLocal; 622 GlobalVariable::ThreadLocalMode TLM; 623 GlobalVariable::UnnamedAddr UnnamedAddr; 624 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 625 DSOLocal) || 626 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 627 return true; 628 629 switch (Lex.getKind()) { 630 default: 631 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 632 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 633 case lltok::kw_alias: 634 case lltok::kw_ifunc: 635 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, 636 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 637 } 638 } 639 640 /// parseNamedGlobal: 641 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 642 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 643 /// OptionalVisibility OptionalDLLStorageClass 644 /// ... -> global variable 645 bool LLParser::parseNamedGlobal() { 646 assert(Lex.getKind() == lltok::GlobalVar); 647 LocTy NameLoc = Lex.getLoc(); 648 std::string Name = Lex.getStrVal(); 649 Lex.Lex(); 650 651 bool HasLinkage; 652 unsigned Linkage, Visibility, DLLStorageClass; 653 bool DSOLocal; 654 GlobalVariable::ThreadLocalMode TLM; 655 GlobalVariable::UnnamedAddr UnnamedAddr; 656 if (parseToken(lltok::equal, "expected '=' in global variable") || 657 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 658 DSOLocal) || 659 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 660 return true; 661 662 switch (Lex.getKind()) { 663 default: 664 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 665 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 666 case lltok::kw_alias: 667 case lltok::kw_ifunc: 668 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, 669 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 670 } 671 } 672 673 bool LLParser::parseComdat() { 674 assert(Lex.getKind() == lltok::ComdatVar); 675 std::string Name = Lex.getStrVal(); 676 LocTy NameLoc = Lex.getLoc(); 677 Lex.Lex(); 678 679 if (parseToken(lltok::equal, "expected '=' here")) 680 return true; 681 682 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 683 return tokError("expected comdat type"); 684 685 Comdat::SelectionKind SK; 686 switch (Lex.getKind()) { 687 default: 688 return tokError("unknown selection kind"); 689 case lltok::kw_any: 690 SK = Comdat::Any; 691 break; 692 case lltok::kw_exactmatch: 693 SK = Comdat::ExactMatch; 694 break; 695 case lltok::kw_largest: 696 SK = Comdat::Largest; 697 break; 698 case lltok::kw_nodeduplicate: 699 SK = Comdat::NoDeduplicate; 700 break; 701 case lltok::kw_samesize: 702 SK = Comdat::SameSize; 703 break; 704 } 705 Lex.Lex(); 706 707 // See if the comdat was forward referenced, if so, use the comdat. 708 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 709 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 710 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 711 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 712 713 Comdat *C; 714 if (I != ComdatSymTab.end()) 715 C = &I->second; 716 else 717 C = M->getOrInsertComdat(Name); 718 C->setSelectionKind(SK); 719 720 return false; 721 } 722 723 // MDString: 724 // ::= '!' STRINGCONSTANT 725 bool LLParser::parseMDString(MDString *&Result) { 726 std::string Str; 727 if (parseStringConstant(Str)) 728 return true; 729 Result = MDString::get(Context, Str); 730 return false; 731 } 732 733 // MDNode: 734 // ::= '!' MDNodeNumber 735 bool LLParser::parseMDNodeID(MDNode *&Result) { 736 // !{ ..., !42, ... } 737 LocTy IDLoc = Lex.getLoc(); 738 unsigned MID = 0; 739 if (parseUInt32(MID)) 740 return true; 741 742 // If not a forward reference, just return it now. 743 if (NumberedMetadata.count(MID)) { 744 Result = NumberedMetadata[MID]; 745 return false; 746 } 747 748 // Otherwise, create MDNode forward reference. 749 auto &FwdRef = ForwardRefMDNodes[MID]; 750 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 751 752 Result = FwdRef.first.get(); 753 NumberedMetadata[MID].reset(Result); 754 return false; 755 } 756 757 /// parseNamedMetadata: 758 /// !foo = !{ !1, !2 } 759 bool LLParser::parseNamedMetadata() { 760 assert(Lex.getKind() == lltok::MetadataVar); 761 std::string Name = Lex.getStrVal(); 762 Lex.Lex(); 763 764 if (parseToken(lltok::equal, "expected '=' here") || 765 parseToken(lltok::exclaim, "Expected '!' here") || 766 parseToken(lltok::lbrace, "Expected '{' here")) 767 return true; 768 769 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 770 if (Lex.getKind() != lltok::rbrace) 771 do { 772 MDNode *N = nullptr; 773 // parse DIExpressions inline as a special case. They are still MDNodes, 774 // so they can still appear in named metadata. Remove this logic if they 775 // become plain Metadata. 776 if (Lex.getKind() == lltok::MetadataVar && 777 Lex.getStrVal() == "DIExpression") { 778 if (parseDIExpression(N, /*IsDistinct=*/false)) 779 return true; 780 // DIArgLists should only appear inline in a function, as they may 781 // contain LocalAsMetadata arguments which require a function context. 782 } else if (Lex.getKind() == lltok::MetadataVar && 783 Lex.getStrVal() == "DIArgList") { 784 return tokError("found DIArgList outside of function"); 785 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 786 parseMDNodeID(N)) { 787 return true; 788 } 789 NMD->addOperand(N); 790 } while (EatIfPresent(lltok::comma)); 791 792 return parseToken(lltok::rbrace, "expected end of metadata node"); 793 } 794 795 /// parseStandaloneMetadata: 796 /// !42 = !{...} 797 bool LLParser::parseStandaloneMetadata() { 798 assert(Lex.getKind() == lltok::exclaim); 799 Lex.Lex(); 800 unsigned MetadataID = 0; 801 802 MDNode *Init; 803 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 804 return true; 805 806 // Detect common error, from old metadata syntax. 807 if (Lex.getKind() == lltok::Type) 808 return tokError("unexpected type in metadata definition"); 809 810 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 811 if (Lex.getKind() == lltok::MetadataVar) { 812 if (parseSpecializedMDNode(Init, IsDistinct)) 813 return true; 814 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 815 parseMDTuple(Init, IsDistinct)) 816 return true; 817 818 // See if this was forward referenced, if so, handle it. 819 auto FI = ForwardRefMDNodes.find(MetadataID); 820 if (FI != ForwardRefMDNodes.end()) { 821 FI->second.first->replaceAllUsesWith(Init); 822 ForwardRefMDNodes.erase(FI); 823 824 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 825 } else { 826 if (NumberedMetadata.count(MetadataID)) 827 return tokError("Metadata id is already used"); 828 NumberedMetadata[MetadataID].reset(Init); 829 } 830 831 return false; 832 } 833 834 // Skips a single module summary entry. 835 bool LLParser::skipModuleSummaryEntry() { 836 // Each module summary entry consists of a tag for the entry 837 // type, followed by a colon, then the fields which may be surrounded by 838 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 839 // support is in place we will look for the tokens corresponding to the 840 // expected tags. 841 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 842 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 843 Lex.getKind() != lltok::kw_blockcount) 844 return tokError( 845 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 846 "start of summary entry"); 847 if (Lex.getKind() == lltok::kw_flags) 848 return parseSummaryIndexFlags(); 849 if (Lex.getKind() == lltok::kw_blockcount) 850 return parseBlockCount(); 851 Lex.Lex(); 852 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 853 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 854 return true; 855 // Now walk through the parenthesized entry, until the number of open 856 // parentheses goes back down to 0 (the first '(' was parsed above). 857 unsigned NumOpenParen = 1; 858 do { 859 switch (Lex.getKind()) { 860 case lltok::lparen: 861 NumOpenParen++; 862 break; 863 case lltok::rparen: 864 NumOpenParen--; 865 break; 866 case lltok::Eof: 867 return tokError("found end of file while parsing summary entry"); 868 default: 869 // Skip everything in between parentheses. 870 break; 871 } 872 Lex.Lex(); 873 } while (NumOpenParen > 0); 874 return false; 875 } 876 877 /// SummaryEntry 878 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 879 bool LLParser::parseSummaryEntry() { 880 assert(Lex.getKind() == lltok::SummaryID); 881 unsigned SummaryID = Lex.getUIntVal(); 882 883 // For summary entries, colons should be treated as distinct tokens, 884 // not an indication of the end of a label token. 885 Lex.setIgnoreColonInIdentifiers(true); 886 887 Lex.Lex(); 888 if (parseToken(lltok::equal, "expected '=' here")) 889 return true; 890 891 // If we don't have an index object, skip the summary entry. 892 if (!Index) 893 return skipModuleSummaryEntry(); 894 895 bool result = false; 896 switch (Lex.getKind()) { 897 case lltok::kw_gv: 898 result = parseGVEntry(SummaryID); 899 break; 900 case lltok::kw_module: 901 result = parseModuleEntry(SummaryID); 902 break; 903 case lltok::kw_typeid: 904 result = parseTypeIdEntry(SummaryID); 905 break; 906 case lltok::kw_typeidCompatibleVTable: 907 result = parseTypeIdCompatibleVtableEntry(SummaryID); 908 break; 909 case lltok::kw_flags: 910 result = parseSummaryIndexFlags(); 911 break; 912 case lltok::kw_blockcount: 913 result = parseBlockCount(); 914 break; 915 default: 916 result = error(Lex.getLoc(), "unexpected summary kind"); 917 break; 918 } 919 Lex.setIgnoreColonInIdentifiers(false); 920 return result; 921 } 922 923 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 924 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 925 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 926 } 927 928 // If there was an explicit dso_local, update GV. In the absence of an explicit 929 // dso_local we keep the default value. 930 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 931 if (DSOLocal) 932 GV.setDSOLocal(true); 933 } 934 935 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1, 936 Type *Ty2) { 937 std::string ErrString; 938 raw_string_ostream ErrOS(ErrString); 939 ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")"; 940 return ErrOS.str(); 941 } 942 943 /// parseAliasOrIFunc: 944 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 945 /// OptionalVisibility OptionalDLLStorageClass 946 /// OptionalThreadLocal OptionalUnnamedAddr 947 /// 'alias|ifunc' AliaseeOrResolver SymbolAttrs* 948 /// 949 /// AliaseeOrResolver 950 /// ::= TypeAndValue 951 /// 952 /// SymbolAttrs 953 /// ::= ',' 'partition' StringConstant 954 /// 955 /// Everything through OptionalUnnamedAddr has already been parsed. 956 /// 957 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc, 958 unsigned L, unsigned Visibility, 959 unsigned DLLStorageClass, bool DSOLocal, 960 GlobalVariable::ThreadLocalMode TLM, 961 GlobalVariable::UnnamedAddr UnnamedAddr) { 962 bool IsAlias; 963 if (Lex.getKind() == lltok::kw_alias) 964 IsAlias = true; 965 else if (Lex.getKind() == lltok::kw_ifunc) 966 IsAlias = false; 967 else 968 llvm_unreachable("Not an alias or ifunc!"); 969 Lex.Lex(); 970 971 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 972 973 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 974 return error(NameLoc, "invalid linkage type for alias"); 975 976 if (!isValidVisibilityForLinkage(Visibility, L)) 977 return error(NameLoc, 978 "symbol with local linkage must have default visibility"); 979 980 Type *Ty; 981 LocTy ExplicitTypeLoc = Lex.getLoc(); 982 if (parseType(Ty) || 983 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 984 return true; 985 986 Constant *Aliasee; 987 LocTy AliaseeLoc = Lex.getLoc(); 988 if (Lex.getKind() != lltok::kw_bitcast && 989 Lex.getKind() != lltok::kw_getelementptr && 990 Lex.getKind() != lltok::kw_addrspacecast && 991 Lex.getKind() != lltok::kw_inttoptr) { 992 if (parseGlobalTypeAndValue(Aliasee)) 993 return true; 994 } else { 995 // The bitcast dest type is not present, it is implied by the dest type. 996 ValID ID; 997 if (parseValID(ID, /*PFS=*/nullptr)) 998 return true; 999 if (ID.Kind != ValID::t_Constant) 1000 return error(AliaseeLoc, "invalid aliasee"); 1001 Aliasee = ID.ConstantVal; 1002 } 1003 1004 Type *AliaseeType = Aliasee->getType(); 1005 auto *PTy = dyn_cast<PointerType>(AliaseeType); 1006 if (!PTy) 1007 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 1008 unsigned AddrSpace = PTy->getAddressSpace(); 1009 1010 if (IsAlias) { 1011 if (!PTy->isOpaqueOrPointeeTypeMatches(Ty)) 1012 return error( 1013 ExplicitTypeLoc, 1014 typeComparisonErrorMessage( 1015 "explicit pointee type doesn't match operand's pointee type", Ty, 1016 PTy->getNonOpaquePointerElementType())); 1017 } else { 1018 if (!PTy->isOpaque() && 1019 !PTy->getNonOpaquePointerElementType()->isFunctionTy()) 1020 return error(ExplicitTypeLoc, 1021 "explicit pointee type should be a function type"); 1022 } 1023 1024 GlobalValue *GVal = nullptr; 1025 1026 // See if the alias was forward referenced, if so, prepare to replace the 1027 // forward reference. 1028 if (!Name.empty()) { 1029 auto I = ForwardRefVals.find(Name); 1030 if (I != ForwardRefVals.end()) { 1031 GVal = I->second.first; 1032 ForwardRefVals.erase(Name); 1033 } else if (M->getNamedValue(Name)) { 1034 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1035 } 1036 } else { 1037 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1038 if (I != ForwardRefValIDs.end()) { 1039 GVal = I->second.first; 1040 ForwardRefValIDs.erase(I); 1041 } 1042 } 1043 1044 // Okay, create the alias/ifunc but do not insert it into the module yet. 1045 std::unique_ptr<GlobalAlias> GA; 1046 std::unique_ptr<GlobalIFunc> GI; 1047 GlobalValue *GV; 1048 if (IsAlias) { 1049 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1050 (GlobalValue::LinkageTypes)Linkage, Name, 1051 Aliasee, /*Parent*/ nullptr)); 1052 GV = GA.get(); 1053 } else { 1054 GI.reset(GlobalIFunc::create(Ty, AddrSpace, 1055 (GlobalValue::LinkageTypes)Linkage, Name, 1056 Aliasee, /*Parent*/ nullptr)); 1057 GV = GI.get(); 1058 } 1059 GV->setThreadLocalMode(TLM); 1060 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1061 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1062 GV->setUnnamedAddr(UnnamedAddr); 1063 maybeSetDSOLocal(DSOLocal, *GV); 1064 1065 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1066 // Now parse them if there are any. 1067 while (Lex.getKind() == lltok::comma) { 1068 Lex.Lex(); 1069 1070 if (Lex.getKind() == lltok::kw_partition) { 1071 Lex.Lex(); 1072 GV->setPartition(Lex.getStrVal()); 1073 if (parseToken(lltok::StringConstant, "expected partition string")) 1074 return true; 1075 } else { 1076 return tokError("unknown alias or ifunc property!"); 1077 } 1078 } 1079 1080 if (Name.empty()) 1081 NumberedVals.push_back(GV); 1082 1083 if (GVal) { 1084 // Verify that types agree. 1085 if (GVal->getType() != GV->getType()) 1086 return error( 1087 ExplicitTypeLoc, 1088 "forward reference and definition of alias have different types"); 1089 1090 // If they agree, just RAUW the old value with the alias and remove the 1091 // forward ref info. 1092 GVal->replaceAllUsesWith(GV); 1093 GVal->eraseFromParent(); 1094 } 1095 1096 // Insert into the module, we know its name won't collide now. 1097 if (IsAlias) 1098 M->getAliasList().push_back(GA.release()); 1099 else 1100 M->getIFuncList().push_back(GI.release()); 1101 assert(GV->getName() == Name && "Should not be a name conflict!"); 1102 1103 return false; 1104 } 1105 1106 static bool isSanitizer(lltok::Kind Kind) { 1107 switch (Kind) { 1108 case lltok::kw_no_sanitize_address: 1109 case lltok::kw_no_sanitize_hwaddress: 1110 case lltok::kw_no_sanitize_memtag: 1111 case lltok::kw_sanitize_address_dyninit: 1112 return true; 1113 default: 1114 return false; 1115 } 1116 } 1117 1118 bool LLParser::parseSanitizer(GlobalVariable *GV) { 1119 using SanitizerMetadata = GlobalValue::SanitizerMetadata; 1120 SanitizerMetadata Meta; 1121 if (GV->hasSanitizerMetadata()) 1122 Meta = GV->getSanitizerMetadata(); 1123 1124 switch (Lex.getKind()) { 1125 case lltok::kw_no_sanitize_address: 1126 Meta.NoAddress = true; 1127 break; 1128 case lltok::kw_no_sanitize_hwaddress: 1129 Meta.NoHWAddress = true; 1130 break; 1131 case lltok::kw_no_sanitize_memtag: 1132 Meta.NoMemtag = true; 1133 break; 1134 case lltok::kw_sanitize_address_dyninit: 1135 Meta.IsDynInit = true; 1136 break; 1137 default: 1138 return tokError("non-sanitizer token passed to LLParser::parseSanitizer()"); 1139 } 1140 GV->setSanitizerMetadata(Meta); 1141 Lex.Lex(); 1142 return false; 1143 } 1144 1145 /// parseGlobal 1146 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1147 /// OptionalVisibility OptionalDLLStorageClass 1148 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1149 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1150 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1151 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1152 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1153 /// Const OptionalAttrs 1154 /// 1155 /// Everything up to and including OptionalUnnamedAddr has been parsed 1156 /// already. 1157 /// 1158 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1159 unsigned Linkage, bool HasLinkage, 1160 unsigned Visibility, unsigned DLLStorageClass, 1161 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1162 GlobalVariable::UnnamedAddr UnnamedAddr) { 1163 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1164 return error(NameLoc, 1165 "symbol with local linkage must have default visibility"); 1166 1167 unsigned AddrSpace; 1168 bool IsConstant, IsExternallyInitialized; 1169 LocTy IsExternallyInitializedLoc; 1170 LocTy TyLoc; 1171 1172 Type *Ty = nullptr; 1173 if (parseOptionalAddrSpace(AddrSpace) || 1174 parseOptionalToken(lltok::kw_externally_initialized, 1175 IsExternallyInitialized, 1176 &IsExternallyInitializedLoc) || 1177 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1178 return true; 1179 1180 // If the linkage is specified and is external, then no initializer is 1181 // present. 1182 Constant *Init = nullptr; 1183 if (!HasLinkage || 1184 !GlobalValue::isValidDeclarationLinkage( 1185 (GlobalValue::LinkageTypes)Linkage)) { 1186 if (parseGlobalValue(Ty, Init)) 1187 return true; 1188 } 1189 1190 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1191 return error(TyLoc, "invalid type for global variable"); 1192 1193 GlobalValue *GVal = nullptr; 1194 1195 // See if the global was forward referenced, if so, use the global. 1196 if (!Name.empty()) { 1197 auto I = ForwardRefVals.find(Name); 1198 if (I != ForwardRefVals.end()) { 1199 GVal = I->second.first; 1200 ForwardRefVals.erase(I); 1201 } else if (M->getNamedValue(Name)) { 1202 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1203 } 1204 } else { 1205 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1206 if (I != ForwardRefValIDs.end()) { 1207 GVal = I->second.first; 1208 ForwardRefValIDs.erase(I); 1209 } 1210 } 1211 1212 GlobalVariable *GV = new GlobalVariable( 1213 *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr, 1214 GlobalVariable::NotThreadLocal, AddrSpace); 1215 1216 if (Name.empty()) 1217 NumberedVals.push_back(GV); 1218 1219 // Set the parsed properties on the global. 1220 if (Init) 1221 GV->setInitializer(Init); 1222 GV->setConstant(IsConstant); 1223 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1224 maybeSetDSOLocal(DSOLocal, *GV); 1225 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1226 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1227 GV->setExternallyInitialized(IsExternallyInitialized); 1228 GV->setThreadLocalMode(TLM); 1229 GV->setUnnamedAddr(UnnamedAddr); 1230 1231 if (GVal) { 1232 if (GVal->getType() != Ty->getPointerTo(AddrSpace)) 1233 return error( 1234 TyLoc, 1235 "forward reference and definition of global have different types"); 1236 1237 GVal->replaceAllUsesWith(GV); 1238 GVal->eraseFromParent(); 1239 } 1240 1241 // parse attributes on the global. 1242 while (Lex.getKind() == lltok::comma) { 1243 Lex.Lex(); 1244 1245 if (Lex.getKind() == lltok::kw_section) { 1246 Lex.Lex(); 1247 GV->setSection(Lex.getStrVal()); 1248 if (parseToken(lltok::StringConstant, "expected global section string")) 1249 return true; 1250 } else if (Lex.getKind() == lltok::kw_partition) { 1251 Lex.Lex(); 1252 GV->setPartition(Lex.getStrVal()); 1253 if (parseToken(lltok::StringConstant, "expected partition string")) 1254 return true; 1255 } else if (Lex.getKind() == lltok::kw_align) { 1256 MaybeAlign Alignment; 1257 if (parseOptionalAlignment(Alignment)) 1258 return true; 1259 GV->setAlignment(Alignment); 1260 } else if (Lex.getKind() == lltok::MetadataVar) { 1261 if (parseGlobalObjectMetadataAttachment(*GV)) 1262 return true; 1263 } else if (isSanitizer(Lex.getKind())) { 1264 if (parseSanitizer(GV)) 1265 return true; 1266 } else { 1267 Comdat *C; 1268 if (parseOptionalComdat(Name, C)) 1269 return true; 1270 if (C) 1271 GV->setComdat(C); 1272 else 1273 return tokError("unknown global variable property!"); 1274 } 1275 } 1276 1277 AttrBuilder Attrs(M->getContext()); 1278 LocTy BuiltinLoc; 1279 std::vector<unsigned> FwdRefAttrGrps; 1280 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1281 return true; 1282 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1283 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1284 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1285 } 1286 1287 return false; 1288 } 1289 1290 /// parseUnnamedAttrGrp 1291 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1292 bool LLParser::parseUnnamedAttrGrp() { 1293 assert(Lex.getKind() == lltok::kw_attributes); 1294 LocTy AttrGrpLoc = Lex.getLoc(); 1295 Lex.Lex(); 1296 1297 if (Lex.getKind() != lltok::AttrGrpID) 1298 return tokError("expected attribute group id"); 1299 1300 unsigned VarID = Lex.getUIntVal(); 1301 std::vector<unsigned> unused; 1302 LocTy BuiltinLoc; 1303 Lex.Lex(); 1304 1305 if (parseToken(lltok::equal, "expected '=' here") || 1306 parseToken(lltok::lbrace, "expected '{' here")) 1307 return true; 1308 1309 auto R = NumberedAttrBuilders.find(VarID); 1310 if (R == NumberedAttrBuilders.end()) 1311 R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first; 1312 1313 if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) || 1314 parseToken(lltok::rbrace, "expected end of attribute group")) 1315 return true; 1316 1317 if (!R->second.hasAttributes()) 1318 return error(AttrGrpLoc, "attribute group has no attributes"); 1319 1320 return false; 1321 } 1322 1323 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) { 1324 switch (Kind) { 1325 #define GET_ATTR_NAMES 1326 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ 1327 case lltok::kw_##DISPLAY_NAME: \ 1328 return Attribute::ENUM_NAME; 1329 #include "llvm/IR/Attributes.inc" 1330 default: 1331 return Attribute::None; 1332 } 1333 } 1334 1335 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B, 1336 bool InAttrGroup) { 1337 if (Attribute::isTypeAttrKind(Attr)) 1338 return parseRequiredTypeAttr(B, Lex.getKind(), Attr); 1339 1340 switch (Attr) { 1341 case Attribute::Alignment: { 1342 MaybeAlign Alignment; 1343 if (InAttrGroup) { 1344 uint32_t Value = 0; 1345 Lex.Lex(); 1346 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1347 return true; 1348 Alignment = Align(Value); 1349 } else { 1350 if (parseOptionalAlignment(Alignment, true)) 1351 return true; 1352 } 1353 B.addAlignmentAttr(Alignment); 1354 return false; 1355 } 1356 case Attribute::StackAlignment: { 1357 unsigned Alignment; 1358 if (InAttrGroup) { 1359 Lex.Lex(); 1360 if (parseToken(lltok::equal, "expected '=' here") || 1361 parseUInt32(Alignment)) 1362 return true; 1363 } else { 1364 if (parseOptionalStackAlignment(Alignment)) 1365 return true; 1366 } 1367 B.addStackAlignmentAttr(Alignment); 1368 return false; 1369 } 1370 case Attribute::AllocSize: { 1371 unsigned ElemSizeArg; 1372 Optional<unsigned> NumElemsArg; 1373 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1374 return true; 1375 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1376 return false; 1377 } 1378 case Attribute::VScaleRange: { 1379 unsigned MinValue, MaxValue; 1380 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1381 return true; 1382 B.addVScaleRangeAttr(MinValue, 1383 MaxValue > 0 ? MaxValue : Optional<unsigned>()); 1384 return false; 1385 } 1386 case Attribute::Dereferenceable: { 1387 uint64_t Bytes; 1388 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1389 return true; 1390 B.addDereferenceableAttr(Bytes); 1391 return false; 1392 } 1393 case Attribute::DereferenceableOrNull: { 1394 uint64_t Bytes; 1395 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1396 return true; 1397 B.addDereferenceableOrNullAttr(Bytes); 1398 return false; 1399 } 1400 case Attribute::UWTable: { 1401 UWTableKind Kind; 1402 if (parseOptionalUWTableKind(Kind)) 1403 return true; 1404 B.addUWTableAttr(Kind); 1405 return false; 1406 } 1407 case Attribute::AllocKind: { 1408 AllocFnKind Kind = AllocFnKind::Unknown; 1409 if (parseAllocKind(Kind)) 1410 return true; 1411 B.addAllocKindAttr(Kind); 1412 return false; 1413 } 1414 default: 1415 B.addAttribute(Attr); 1416 Lex.Lex(); 1417 return false; 1418 } 1419 } 1420 1421 /// parseFnAttributeValuePairs 1422 /// ::= <attr> | <attr> '=' <value> 1423 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1424 std::vector<unsigned> &FwdRefAttrGrps, 1425 bool InAttrGrp, LocTy &BuiltinLoc) { 1426 bool HaveError = false; 1427 1428 B.clear(); 1429 1430 while (true) { 1431 lltok::Kind Token = Lex.getKind(); 1432 if (Token == lltok::rbrace) 1433 return HaveError; // Finished. 1434 1435 if (Token == lltok::StringConstant) { 1436 if (parseStringAttribute(B)) 1437 return true; 1438 continue; 1439 } 1440 1441 if (Token == lltok::AttrGrpID) { 1442 // Allow a function to reference an attribute group: 1443 // 1444 // define void @foo() #1 { ... } 1445 if (InAttrGrp) { 1446 HaveError |= error( 1447 Lex.getLoc(), 1448 "cannot have an attribute group reference in an attribute group"); 1449 } else { 1450 // Save the reference to the attribute group. We'll fill it in later. 1451 FwdRefAttrGrps.push_back(Lex.getUIntVal()); 1452 } 1453 Lex.Lex(); 1454 continue; 1455 } 1456 1457 SMLoc Loc = Lex.getLoc(); 1458 if (Token == lltok::kw_builtin) 1459 BuiltinLoc = Loc; 1460 1461 Attribute::AttrKind Attr = tokenToAttribute(Token); 1462 if (Attr == Attribute::None) { 1463 if (!InAttrGrp) 1464 return HaveError; 1465 return error(Lex.getLoc(), "unterminated attribute group"); 1466 } 1467 1468 if (parseEnumAttribute(Attr, B, InAttrGrp)) 1469 return true; 1470 1471 // As a hack, we allow function alignment to be initially parsed as an 1472 // attribute on a function declaration/definition or added to an attribute 1473 // group and later moved to the alignment field. 1474 if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment) 1475 HaveError |= error(Loc, "this attribute does not apply to functions"); 1476 } 1477 } 1478 1479 //===----------------------------------------------------------------------===// 1480 // GlobalValue Reference/Resolution Routines. 1481 //===----------------------------------------------------------------------===// 1482 1483 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) { 1484 // For opaque pointers, the used global type does not matter. We will later 1485 // RAUW it with a global/function of the correct type. 1486 if (PTy->isOpaque()) 1487 return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false, 1488 GlobalValue::ExternalWeakLinkage, nullptr, "", 1489 nullptr, GlobalVariable::NotThreadLocal, 1490 PTy->getAddressSpace()); 1491 1492 Type *ElemTy = PTy->getNonOpaquePointerElementType(); 1493 if (auto *FT = dyn_cast<FunctionType>(ElemTy)) 1494 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1495 PTy->getAddressSpace(), "", M); 1496 else 1497 return new GlobalVariable( 1498 *M, ElemTy, false, GlobalValue::ExternalWeakLinkage, nullptr, "", 1499 nullptr, GlobalVariable::NotThreadLocal, PTy->getAddressSpace()); 1500 } 1501 1502 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1503 Value *Val) { 1504 Type *ValTy = Val->getType(); 1505 if (ValTy == Ty) 1506 return Val; 1507 if (Ty->isLabelTy()) 1508 error(Loc, "'" + Name + "' is not a basic block"); 1509 else 1510 error(Loc, "'" + Name + "' defined with type '" + 1511 getTypeString(Val->getType()) + "' but expected '" + 1512 getTypeString(Ty) + "'"); 1513 return nullptr; 1514 } 1515 1516 /// getGlobalVal - Get a value with the specified name or ID, creating a 1517 /// forward reference record if needed. This can return null if the value 1518 /// exists but does not have the right type. 1519 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1520 LocTy Loc) { 1521 PointerType *PTy = dyn_cast<PointerType>(Ty); 1522 if (!PTy) { 1523 error(Loc, "global variable reference must have pointer type"); 1524 return nullptr; 1525 } 1526 1527 // Look this name up in the normal function symbol table. 1528 GlobalValue *Val = 1529 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1530 1531 // If this is a forward reference for the value, see if we already created a 1532 // forward ref record. 1533 if (!Val) { 1534 auto I = ForwardRefVals.find(Name); 1535 if (I != ForwardRefVals.end()) 1536 Val = I->second.first; 1537 } 1538 1539 // If we have the value in the symbol table or fwd-ref table, return it. 1540 if (Val) 1541 return cast_or_null<GlobalValue>( 1542 checkValidVariableType(Loc, "@" + Name, Ty, Val)); 1543 1544 // Otherwise, create a new forward reference for this value and remember it. 1545 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1546 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1547 return FwdVal; 1548 } 1549 1550 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1551 PointerType *PTy = dyn_cast<PointerType>(Ty); 1552 if (!PTy) { 1553 error(Loc, "global variable reference must have pointer type"); 1554 return nullptr; 1555 } 1556 1557 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1558 1559 // If this is a forward reference for the value, see if we already created a 1560 // forward ref record. 1561 if (!Val) { 1562 auto I = ForwardRefValIDs.find(ID); 1563 if (I != ForwardRefValIDs.end()) 1564 Val = I->second.first; 1565 } 1566 1567 // If we have the value in the symbol table or fwd-ref table, return it. 1568 if (Val) 1569 return cast_or_null<GlobalValue>( 1570 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val)); 1571 1572 // Otherwise, create a new forward reference for this value and remember it. 1573 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1574 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1575 return FwdVal; 1576 } 1577 1578 //===----------------------------------------------------------------------===// 1579 // Comdat Reference/Resolution Routines. 1580 //===----------------------------------------------------------------------===// 1581 1582 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1583 // Look this name up in the comdat symbol table. 1584 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1585 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1586 if (I != ComdatSymTab.end()) 1587 return &I->second; 1588 1589 // Otherwise, create a new forward reference for this value and remember it. 1590 Comdat *C = M->getOrInsertComdat(Name); 1591 ForwardRefComdats[Name] = Loc; 1592 return C; 1593 } 1594 1595 //===----------------------------------------------------------------------===// 1596 // Helper Routines. 1597 //===----------------------------------------------------------------------===// 1598 1599 /// parseToken - If the current token has the specified kind, eat it and return 1600 /// success. Otherwise, emit the specified error and return failure. 1601 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1602 if (Lex.getKind() != T) 1603 return tokError(ErrMsg); 1604 Lex.Lex(); 1605 return false; 1606 } 1607 1608 /// parseStringConstant 1609 /// ::= StringConstant 1610 bool LLParser::parseStringConstant(std::string &Result) { 1611 if (Lex.getKind() != lltok::StringConstant) 1612 return tokError("expected string constant"); 1613 Result = Lex.getStrVal(); 1614 Lex.Lex(); 1615 return false; 1616 } 1617 1618 /// parseUInt32 1619 /// ::= uint32 1620 bool LLParser::parseUInt32(uint32_t &Val) { 1621 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1622 return tokError("expected integer"); 1623 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1624 if (Val64 != unsigned(Val64)) 1625 return tokError("expected 32-bit integer (too large)"); 1626 Val = Val64; 1627 Lex.Lex(); 1628 return false; 1629 } 1630 1631 /// parseUInt64 1632 /// ::= uint64 1633 bool LLParser::parseUInt64(uint64_t &Val) { 1634 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1635 return tokError("expected integer"); 1636 Val = Lex.getAPSIntVal().getLimitedValue(); 1637 Lex.Lex(); 1638 return false; 1639 } 1640 1641 /// parseTLSModel 1642 /// := 'localdynamic' 1643 /// := 'initialexec' 1644 /// := 'localexec' 1645 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1646 switch (Lex.getKind()) { 1647 default: 1648 return tokError("expected localdynamic, initialexec or localexec"); 1649 case lltok::kw_localdynamic: 1650 TLM = GlobalVariable::LocalDynamicTLSModel; 1651 break; 1652 case lltok::kw_initialexec: 1653 TLM = GlobalVariable::InitialExecTLSModel; 1654 break; 1655 case lltok::kw_localexec: 1656 TLM = GlobalVariable::LocalExecTLSModel; 1657 break; 1658 } 1659 1660 Lex.Lex(); 1661 return false; 1662 } 1663 1664 /// parseOptionalThreadLocal 1665 /// := /*empty*/ 1666 /// := 'thread_local' 1667 /// := 'thread_local' '(' tlsmodel ')' 1668 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1669 TLM = GlobalVariable::NotThreadLocal; 1670 if (!EatIfPresent(lltok::kw_thread_local)) 1671 return false; 1672 1673 TLM = GlobalVariable::GeneralDynamicTLSModel; 1674 if (Lex.getKind() == lltok::lparen) { 1675 Lex.Lex(); 1676 return parseTLSModel(TLM) || 1677 parseToken(lltok::rparen, "expected ')' after thread local model"); 1678 } 1679 return false; 1680 } 1681 1682 /// parseOptionalAddrSpace 1683 /// := /*empty*/ 1684 /// := 'addrspace' '(' uint32 ')' 1685 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1686 AddrSpace = DefaultAS; 1687 if (!EatIfPresent(lltok::kw_addrspace)) 1688 return false; 1689 return parseToken(lltok::lparen, "expected '(' in address space") || 1690 parseUInt32(AddrSpace) || 1691 parseToken(lltok::rparen, "expected ')' in address space"); 1692 } 1693 1694 /// parseStringAttribute 1695 /// := StringConstant 1696 /// := StringConstant '=' StringConstant 1697 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1698 std::string Attr = Lex.getStrVal(); 1699 Lex.Lex(); 1700 std::string Val; 1701 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1702 return true; 1703 B.addAttribute(Attr, Val); 1704 return false; 1705 } 1706 1707 /// Parse a potentially empty list of parameter or return attributes. 1708 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) { 1709 bool HaveError = false; 1710 1711 B.clear(); 1712 1713 while (true) { 1714 lltok::Kind Token = Lex.getKind(); 1715 if (Token == lltok::StringConstant) { 1716 if (parseStringAttribute(B)) 1717 return true; 1718 continue; 1719 } 1720 1721 SMLoc Loc = Lex.getLoc(); 1722 Attribute::AttrKind Attr = tokenToAttribute(Token); 1723 if (Attr == Attribute::None) 1724 return HaveError; 1725 1726 if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false)) 1727 return true; 1728 1729 if (IsParam && !Attribute::canUseAsParamAttr(Attr)) 1730 HaveError |= error(Loc, "this attribute does not apply to parameters"); 1731 if (!IsParam && !Attribute::canUseAsRetAttr(Attr)) 1732 HaveError |= error(Loc, "this attribute does not apply to return values"); 1733 } 1734 } 1735 1736 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1737 HasLinkage = true; 1738 switch (Kind) { 1739 default: 1740 HasLinkage = false; 1741 return GlobalValue::ExternalLinkage; 1742 case lltok::kw_private: 1743 return GlobalValue::PrivateLinkage; 1744 case lltok::kw_internal: 1745 return GlobalValue::InternalLinkage; 1746 case lltok::kw_weak: 1747 return GlobalValue::WeakAnyLinkage; 1748 case lltok::kw_weak_odr: 1749 return GlobalValue::WeakODRLinkage; 1750 case lltok::kw_linkonce: 1751 return GlobalValue::LinkOnceAnyLinkage; 1752 case lltok::kw_linkonce_odr: 1753 return GlobalValue::LinkOnceODRLinkage; 1754 case lltok::kw_available_externally: 1755 return GlobalValue::AvailableExternallyLinkage; 1756 case lltok::kw_appending: 1757 return GlobalValue::AppendingLinkage; 1758 case lltok::kw_common: 1759 return GlobalValue::CommonLinkage; 1760 case lltok::kw_extern_weak: 1761 return GlobalValue::ExternalWeakLinkage; 1762 case lltok::kw_external: 1763 return GlobalValue::ExternalLinkage; 1764 } 1765 } 1766 1767 /// parseOptionalLinkage 1768 /// ::= /*empty*/ 1769 /// ::= 'private' 1770 /// ::= 'internal' 1771 /// ::= 'weak' 1772 /// ::= 'weak_odr' 1773 /// ::= 'linkonce' 1774 /// ::= 'linkonce_odr' 1775 /// ::= 'available_externally' 1776 /// ::= 'appending' 1777 /// ::= 'common' 1778 /// ::= 'extern_weak' 1779 /// ::= 'external' 1780 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1781 unsigned &Visibility, 1782 unsigned &DLLStorageClass, bool &DSOLocal) { 1783 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1784 if (HasLinkage) 1785 Lex.Lex(); 1786 parseOptionalDSOLocal(DSOLocal); 1787 parseOptionalVisibility(Visibility); 1788 parseOptionalDLLStorageClass(DLLStorageClass); 1789 1790 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1791 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1792 } 1793 1794 return false; 1795 } 1796 1797 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 1798 switch (Lex.getKind()) { 1799 default: 1800 DSOLocal = false; 1801 break; 1802 case lltok::kw_dso_local: 1803 DSOLocal = true; 1804 Lex.Lex(); 1805 break; 1806 case lltok::kw_dso_preemptable: 1807 DSOLocal = false; 1808 Lex.Lex(); 1809 break; 1810 } 1811 } 1812 1813 /// parseOptionalVisibility 1814 /// ::= /*empty*/ 1815 /// ::= 'default' 1816 /// ::= 'hidden' 1817 /// ::= 'protected' 1818 /// 1819 void LLParser::parseOptionalVisibility(unsigned &Res) { 1820 switch (Lex.getKind()) { 1821 default: 1822 Res = GlobalValue::DefaultVisibility; 1823 return; 1824 case lltok::kw_default: 1825 Res = GlobalValue::DefaultVisibility; 1826 break; 1827 case lltok::kw_hidden: 1828 Res = GlobalValue::HiddenVisibility; 1829 break; 1830 case lltok::kw_protected: 1831 Res = GlobalValue::ProtectedVisibility; 1832 break; 1833 } 1834 Lex.Lex(); 1835 } 1836 1837 /// parseOptionalDLLStorageClass 1838 /// ::= /*empty*/ 1839 /// ::= 'dllimport' 1840 /// ::= 'dllexport' 1841 /// 1842 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 1843 switch (Lex.getKind()) { 1844 default: 1845 Res = GlobalValue::DefaultStorageClass; 1846 return; 1847 case lltok::kw_dllimport: 1848 Res = GlobalValue::DLLImportStorageClass; 1849 break; 1850 case lltok::kw_dllexport: 1851 Res = GlobalValue::DLLExportStorageClass; 1852 break; 1853 } 1854 Lex.Lex(); 1855 } 1856 1857 /// parseOptionalCallingConv 1858 /// ::= /*empty*/ 1859 /// ::= 'ccc' 1860 /// ::= 'fastcc' 1861 /// ::= 'intel_ocl_bicc' 1862 /// ::= 'coldcc' 1863 /// ::= 'cfguard_checkcc' 1864 /// ::= 'x86_stdcallcc' 1865 /// ::= 'x86_fastcallcc' 1866 /// ::= 'x86_thiscallcc' 1867 /// ::= 'x86_vectorcallcc' 1868 /// ::= 'arm_apcscc' 1869 /// ::= 'arm_aapcscc' 1870 /// ::= 'arm_aapcs_vfpcc' 1871 /// ::= 'aarch64_vector_pcs' 1872 /// ::= 'aarch64_sve_vector_pcs' 1873 /// ::= 'msp430_intrcc' 1874 /// ::= 'avr_intrcc' 1875 /// ::= 'avr_signalcc' 1876 /// ::= 'ptx_kernel' 1877 /// ::= 'ptx_device' 1878 /// ::= 'spir_func' 1879 /// ::= 'spir_kernel' 1880 /// ::= 'x86_64_sysvcc' 1881 /// ::= 'win64cc' 1882 /// ::= 'webkit_jscc' 1883 /// ::= 'anyregcc' 1884 /// ::= 'preserve_mostcc' 1885 /// ::= 'preserve_allcc' 1886 /// ::= 'ghccc' 1887 /// ::= 'swiftcc' 1888 /// ::= 'swifttailcc' 1889 /// ::= 'x86_intrcc' 1890 /// ::= 'hhvmcc' 1891 /// ::= 'hhvm_ccc' 1892 /// ::= 'cxx_fast_tlscc' 1893 /// ::= 'amdgpu_vs' 1894 /// ::= 'amdgpu_ls' 1895 /// ::= 'amdgpu_hs' 1896 /// ::= 'amdgpu_es' 1897 /// ::= 'amdgpu_gs' 1898 /// ::= 'amdgpu_ps' 1899 /// ::= 'amdgpu_cs' 1900 /// ::= 'amdgpu_kernel' 1901 /// ::= 'tailcc' 1902 /// ::= 'cc' UINT 1903 /// 1904 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 1905 switch (Lex.getKind()) { 1906 default: CC = CallingConv::C; return false; 1907 case lltok::kw_ccc: CC = CallingConv::C; break; 1908 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1909 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1910 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 1911 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1912 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1913 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1914 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1915 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1916 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1917 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1918 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1919 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1920 case lltok::kw_aarch64_sve_vector_pcs: 1921 CC = CallingConv::AArch64_SVE_VectorCall; 1922 break; 1923 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1924 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1925 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1926 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1927 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1928 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1929 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1930 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1931 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1932 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1933 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1934 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1935 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1936 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1937 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1938 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1939 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; 1940 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1941 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1942 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1943 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1944 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1945 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 1946 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1947 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1948 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1949 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1950 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1951 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1952 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1953 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 1954 case lltok::kw_cc: { 1955 Lex.Lex(); 1956 return parseUInt32(CC); 1957 } 1958 } 1959 1960 Lex.Lex(); 1961 return false; 1962 } 1963 1964 /// parseMetadataAttachment 1965 /// ::= !dbg !42 1966 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1967 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1968 1969 std::string Name = Lex.getStrVal(); 1970 Kind = M->getMDKindID(Name); 1971 Lex.Lex(); 1972 1973 return parseMDNode(MD); 1974 } 1975 1976 /// parseInstructionMetadata 1977 /// ::= !dbg !42 (',' !dbg !57)* 1978 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 1979 do { 1980 if (Lex.getKind() != lltok::MetadataVar) 1981 return tokError("expected metadata after comma"); 1982 1983 unsigned MDK; 1984 MDNode *N; 1985 if (parseMetadataAttachment(MDK, N)) 1986 return true; 1987 1988 Inst.setMetadata(MDK, N); 1989 if (MDK == LLVMContext::MD_tbaa) 1990 InstsWithTBAATag.push_back(&Inst); 1991 1992 // If this is the end of the list, we're done. 1993 } while (EatIfPresent(lltok::comma)); 1994 return false; 1995 } 1996 1997 /// parseGlobalObjectMetadataAttachment 1998 /// ::= !dbg !57 1999 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2000 unsigned MDK; 2001 MDNode *N; 2002 if (parseMetadataAttachment(MDK, N)) 2003 return true; 2004 2005 GO.addMetadata(MDK, *N); 2006 return false; 2007 } 2008 2009 /// parseOptionalFunctionMetadata 2010 /// ::= (!dbg !57)* 2011 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 2012 while (Lex.getKind() == lltok::MetadataVar) 2013 if (parseGlobalObjectMetadataAttachment(F)) 2014 return true; 2015 return false; 2016 } 2017 2018 /// parseOptionalAlignment 2019 /// ::= /* empty */ 2020 /// ::= 'align' 4 2021 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 2022 Alignment = None; 2023 if (!EatIfPresent(lltok::kw_align)) 2024 return false; 2025 LocTy AlignLoc = Lex.getLoc(); 2026 uint64_t Value = 0; 2027 2028 LocTy ParenLoc = Lex.getLoc(); 2029 bool HaveParens = false; 2030 if (AllowParens) { 2031 if (EatIfPresent(lltok::lparen)) 2032 HaveParens = true; 2033 } 2034 2035 if (parseUInt64(Value)) 2036 return true; 2037 2038 if (HaveParens && !EatIfPresent(lltok::rparen)) 2039 return error(ParenLoc, "expected ')'"); 2040 2041 if (!isPowerOf2_64(Value)) 2042 return error(AlignLoc, "alignment is not a power of two"); 2043 if (Value > Value::MaximumAlignment) 2044 return error(AlignLoc, "huge alignments are not supported yet"); 2045 Alignment = Align(Value); 2046 return false; 2047 } 2048 2049 /// parseOptionalDerefAttrBytes 2050 /// ::= /* empty */ 2051 /// ::= AttrKind '(' 4 ')' 2052 /// 2053 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2054 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2055 uint64_t &Bytes) { 2056 assert((AttrKind == lltok::kw_dereferenceable || 2057 AttrKind == lltok::kw_dereferenceable_or_null) && 2058 "contract!"); 2059 2060 Bytes = 0; 2061 if (!EatIfPresent(AttrKind)) 2062 return false; 2063 LocTy ParenLoc = Lex.getLoc(); 2064 if (!EatIfPresent(lltok::lparen)) 2065 return error(ParenLoc, "expected '('"); 2066 LocTy DerefLoc = Lex.getLoc(); 2067 if (parseUInt64(Bytes)) 2068 return true; 2069 ParenLoc = Lex.getLoc(); 2070 if (!EatIfPresent(lltok::rparen)) 2071 return error(ParenLoc, "expected ')'"); 2072 if (!Bytes) 2073 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 2074 return false; 2075 } 2076 2077 bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) { 2078 Lex.Lex(); 2079 Kind = UWTableKind::Default; 2080 if (!EatIfPresent(lltok::lparen)) 2081 return false; 2082 LocTy KindLoc = Lex.getLoc(); 2083 if (Lex.getKind() == lltok::kw_sync) 2084 Kind = UWTableKind::Sync; 2085 else if (Lex.getKind() == lltok::kw_async) 2086 Kind = UWTableKind::Async; 2087 else 2088 return error(KindLoc, "expected unwind table kind"); 2089 Lex.Lex(); 2090 return parseToken(lltok::rparen, "expected ')'"); 2091 } 2092 2093 bool LLParser::parseAllocKind(AllocFnKind &Kind) { 2094 Lex.Lex(); 2095 LocTy ParenLoc = Lex.getLoc(); 2096 if (!EatIfPresent(lltok::lparen)) 2097 return error(ParenLoc, "expected '('"); 2098 LocTy KindLoc = Lex.getLoc(); 2099 std::string Arg; 2100 if (parseStringConstant(Arg)) 2101 return error(KindLoc, "expected allockind value"); 2102 for (StringRef A : llvm::split(Arg, ",")) { 2103 if (A == "alloc") { 2104 Kind |= AllocFnKind::Alloc; 2105 } else if (A == "realloc") { 2106 Kind |= AllocFnKind::Realloc; 2107 } else if (A == "free") { 2108 Kind |= AllocFnKind::Free; 2109 } else if (A == "uninitialized") { 2110 Kind |= AllocFnKind::Uninitialized; 2111 } else if (A == "zeroed") { 2112 Kind |= AllocFnKind::Zeroed; 2113 } else if (A == "aligned") { 2114 Kind |= AllocFnKind::Aligned; 2115 } else { 2116 return error(KindLoc, Twine("unknown allockind ") + A); 2117 } 2118 } 2119 ParenLoc = Lex.getLoc(); 2120 if (!EatIfPresent(lltok::rparen)) 2121 return error(ParenLoc, "expected ')'"); 2122 if (Kind == AllocFnKind::Unknown) 2123 return error(KindLoc, "expected allockind value"); 2124 return false; 2125 } 2126 2127 /// parseOptionalCommaAlign 2128 /// ::= 2129 /// ::= ',' align 4 2130 /// 2131 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2132 /// end. 2133 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 2134 bool &AteExtraComma) { 2135 AteExtraComma = false; 2136 while (EatIfPresent(lltok::comma)) { 2137 // Metadata at the end is an early exit. 2138 if (Lex.getKind() == lltok::MetadataVar) { 2139 AteExtraComma = true; 2140 return false; 2141 } 2142 2143 if (Lex.getKind() != lltok::kw_align) 2144 return error(Lex.getLoc(), "expected metadata or 'align'"); 2145 2146 if (parseOptionalAlignment(Alignment)) 2147 return true; 2148 } 2149 2150 return false; 2151 } 2152 2153 /// parseOptionalCommaAddrSpace 2154 /// ::= 2155 /// ::= ',' addrspace(1) 2156 /// 2157 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2158 /// end. 2159 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2160 bool &AteExtraComma) { 2161 AteExtraComma = false; 2162 while (EatIfPresent(lltok::comma)) { 2163 // Metadata at the end is an early exit. 2164 if (Lex.getKind() == lltok::MetadataVar) { 2165 AteExtraComma = true; 2166 return false; 2167 } 2168 2169 Loc = Lex.getLoc(); 2170 if (Lex.getKind() != lltok::kw_addrspace) 2171 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2172 2173 if (parseOptionalAddrSpace(AddrSpace)) 2174 return true; 2175 } 2176 2177 return false; 2178 } 2179 2180 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2181 Optional<unsigned> &HowManyArg) { 2182 Lex.Lex(); 2183 2184 auto StartParen = Lex.getLoc(); 2185 if (!EatIfPresent(lltok::lparen)) 2186 return error(StartParen, "expected '('"); 2187 2188 if (parseUInt32(BaseSizeArg)) 2189 return true; 2190 2191 if (EatIfPresent(lltok::comma)) { 2192 auto HowManyAt = Lex.getLoc(); 2193 unsigned HowMany; 2194 if (parseUInt32(HowMany)) 2195 return true; 2196 if (HowMany == BaseSizeArg) 2197 return error(HowManyAt, 2198 "'allocsize' indices can't refer to the same parameter"); 2199 HowManyArg = HowMany; 2200 } else 2201 HowManyArg = None; 2202 2203 auto EndParen = Lex.getLoc(); 2204 if (!EatIfPresent(lltok::rparen)) 2205 return error(EndParen, "expected ')'"); 2206 return false; 2207 } 2208 2209 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2210 unsigned &MaxValue) { 2211 Lex.Lex(); 2212 2213 auto StartParen = Lex.getLoc(); 2214 if (!EatIfPresent(lltok::lparen)) 2215 return error(StartParen, "expected '('"); 2216 2217 if (parseUInt32(MinValue)) 2218 return true; 2219 2220 if (EatIfPresent(lltok::comma)) { 2221 if (parseUInt32(MaxValue)) 2222 return true; 2223 } else 2224 MaxValue = MinValue; 2225 2226 auto EndParen = Lex.getLoc(); 2227 if (!EatIfPresent(lltok::rparen)) 2228 return error(EndParen, "expected ')'"); 2229 return false; 2230 } 2231 2232 /// parseScopeAndOrdering 2233 /// if isAtomic: ::= SyncScope? AtomicOrdering 2234 /// else: ::= 2235 /// 2236 /// This sets Scope and Ordering to the parsed values. 2237 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2238 AtomicOrdering &Ordering) { 2239 if (!IsAtomic) 2240 return false; 2241 2242 return parseScope(SSID) || parseOrdering(Ordering); 2243 } 2244 2245 /// parseScope 2246 /// ::= syncscope("singlethread" | "<target scope>")? 2247 /// 2248 /// This sets synchronization scope ID to the ID of the parsed value. 2249 bool LLParser::parseScope(SyncScope::ID &SSID) { 2250 SSID = SyncScope::System; 2251 if (EatIfPresent(lltok::kw_syncscope)) { 2252 auto StartParenAt = Lex.getLoc(); 2253 if (!EatIfPresent(lltok::lparen)) 2254 return error(StartParenAt, "Expected '(' in syncscope"); 2255 2256 std::string SSN; 2257 auto SSNAt = Lex.getLoc(); 2258 if (parseStringConstant(SSN)) 2259 return error(SSNAt, "Expected synchronization scope name"); 2260 2261 auto EndParenAt = Lex.getLoc(); 2262 if (!EatIfPresent(lltok::rparen)) 2263 return error(EndParenAt, "Expected ')' in syncscope"); 2264 2265 SSID = Context.getOrInsertSyncScopeID(SSN); 2266 } 2267 2268 return false; 2269 } 2270 2271 /// parseOrdering 2272 /// ::= AtomicOrdering 2273 /// 2274 /// This sets Ordering to the parsed value. 2275 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2276 switch (Lex.getKind()) { 2277 default: 2278 return tokError("Expected ordering on atomic instruction"); 2279 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2280 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2281 // Not specified yet: 2282 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2283 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2284 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2285 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2286 case lltok::kw_seq_cst: 2287 Ordering = AtomicOrdering::SequentiallyConsistent; 2288 break; 2289 } 2290 Lex.Lex(); 2291 return false; 2292 } 2293 2294 /// parseOptionalStackAlignment 2295 /// ::= /* empty */ 2296 /// ::= 'alignstack' '(' 4 ')' 2297 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2298 Alignment = 0; 2299 if (!EatIfPresent(lltok::kw_alignstack)) 2300 return false; 2301 LocTy ParenLoc = Lex.getLoc(); 2302 if (!EatIfPresent(lltok::lparen)) 2303 return error(ParenLoc, "expected '('"); 2304 LocTy AlignLoc = Lex.getLoc(); 2305 if (parseUInt32(Alignment)) 2306 return true; 2307 ParenLoc = Lex.getLoc(); 2308 if (!EatIfPresent(lltok::rparen)) 2309 return error(ParenLoc, "expected ')'"); 2310 if (!isPowerOf2_32(Alignment)) 2311 return error(AlignLoc, "stack alignment is not a power of two"); 2312 return false; 2313 } 2314 2315 /// parseIndexList - This parses the index list for an insert/extractvalue 2316 /// instruction. This sets AteExtraComma in the case where we eat an extra 2317 /// comma at the end of the line and find that it is followed by metadata. 2318 /// Clients that don't allow metadata can call the version of this function that 2319 /// only takes one argument. 2320 /// 2321 /// parseIndexList 2322 /// ::= (',' uint32)+ 2323 /// 2324 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2325 bool &AteExtraComma) { 2326 AteExtraComma = false; 2327 2328 if (Lex.getKind() != lltok::comma) 2329 return tokError("expected ',' as start of index list"); 2330 2331 while (EatIfPresent(lltok::comma)) { 2332 if (Lex.getKind() == lltok::MetadataVar) { 2333 if (Indices.empty()) 2334 return tokError("expected index"); 2335 AteExtraComma = true; 2336 return false; 2337 } 2338 unsigned Idx = 0; 2339 if (parseUInt32(Idx)) 2340 return true; 2341 Indices.push_back(Idx); 2342 } 2343 2344 return false; 2345 } 2346 2347 //===----------------------------------------------------------------------===// 2348 // Type Parsing. 2349 //===----------------------------------------------------------------------===// 2350 2351 /// parseType - parse a type. 2352 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2353 SMLoc TypeLoc = Lex.getLoc(); 2354 switch (Lex.getKind()) { 2355 default: 2356 return tokError(Msg); 2357 case lltok::Type: 2358 // Type ::= 'float' | 'void' (etc) 2359 Result = Lex.getTyVal(); 2360 Lex.Lex(); 2361 2362 // Handle "ptr" opaque pointer type. 2363 // 2364 // Type ::= ptr ('addrspace' '(' uint32 ')')? 2365 if (Result->isOpaquePointerTy()) { 2366 unsigned AddrSpace; 2367 if (parseOptionalAddrSpace(AddrSpace)) 2368 return true; 2369 Result = PointerType::get(getContext(), AddrSpace); 2370 2371 // Give a nice error for 'ptr*'. 2372 if (Lex.getKind() == lltok::star) 2373 return tokError("ptr* is invalid - use ptr instead"); 2374 2375 // Fall through to parsing the type suffixes only if this 'ptr' is a 2376 // function return. Otherwise, return success, implicitly rejecting other 2377 // suffixes. 2378 if (Lex.getKind() != lltok::lparen) 2379 return false; 2380 } 2381 break; 2382 case lltok::lbrace: 2383 // Type ::= StructType 2384 if (parseAnonStructType(Result, false)) 2385 return true; 2386 break; 2387 case lltok::lsquare: 2388 // Type ::= '[' ... ']' 2389 Lex.Lex(); // eat the lsquare. 2390 if (parseArrayVectorType(Result, false)) 2391 return true; 2392 break; 2393 case lltok::less: // Either vector or packed struct. 2394 // Type ::= '<' ... '>' 2395 Lex.Lex(); 2396 if (Lex.getKind() == lltok::lbrace) { 2397 if (parseAnonStructType(Result, true) || 2398 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2399 return true; 2400 } else if (parseArrayVectorType(Result, true)) 2401 return true; 2402 break; 2403 case lltok::LocalVar: { 2404 // Type ::= %foo 2405 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2406 2407 // If the type hasn't been defined yet, create a forward definition and 2408 // remember where that forward def'n was seen (in case it never is defined). 2409 if (!Entry.first) { 2410 Entry.first = StructType::create(Context, Lex.getStrVal()); 2411 Entry.second = Lex.getLoc(); 2412 } 2413 Result = Entry.first; 2414 Lex.Lex(); 2415 break; 2416 } 2417 2418 case lltok::LocalVarID: { 2419 // Type ::= %4 2420 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2421 2422 // If the type hasn't been defined yet, create a forward definition and 2423 // remember where that forward def'n was seen (in case it never is defined). 2424 if (!Entry.first) { 2425 Entry.first = StructType::create(Context); 2426 Entry.second = Lex.getLoc(); 2427 } 2428 Result = Entry.first; 2429 Lex.Lex(); 2430 break; 2431 } 2432 } 2433 2434 // parse the type suffixes. 2435 while (true) { 2436 switch (Lex.getKind()) { 2437 // End of type. 2438 default: 2439 if (!AllowVoid && Result->isVoidTy()) 2440 return error(TypeLoc, "void type only allowed for function results"); 2441 return false; 2442 2443 // Type ::= Type '*' 2444 case lltok::star: 2445 if (Result->isLabelTy()) 2446 return tokError("basic block pointers are invalid"); 2447 if (Result->isVoidTy()) 2448 return tokError("pointers to void are invalid - use i8* instead"); 2449 if (!PointerType::isValidElementType(Result)) 2450 return tokError("pointer to this type is invalid"); 2451 Result = PointerType::getUnqual(Result); 2452 Lex.Lex(); 2453 break; 2454 2455 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2456 case lltok::kw_addrspace: { 2457 if (Result->isLabelTy()) 2458 return tokError("basic block pointers are invalid"); 2459 if (Result->isVoidTy()) 2460 return tokError("pointers to void are invalid; use i8* instead"); 2461 if (!PointerType::isValidElementType(Result)) 2462 return tokError("pointer to this type is invalid"); 2463 unsigned AddrSpace; 2464 if (parseOptionalAddrSpace(AddrSpace) || 2465 parseToken(lltok::star, "expected '*' in address space")) 2466 return true; 2467 2468 Result = PointerType::get(Result, AddrSpace); 2469 break; 2470 } 2471 2472 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2473 case lltok::lparen: 2474 if (parseFunctionType(Result)) 2475 return true; 2476 break; 2477 } 2478 } 2479 } 2480 2481 /// parseParameterList 2482 /// ::= '(' ')' 2483 /// ::= '(' Arg (',' Arg)* ')' 2484 /// Arg 2485 /// ::= Type OptionalAttributes Value OptionalAttributes 2486 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2487 PerFunctionState &PFS, bool IsMustTailCall, 2488 bool InVarArgsFunc) { 2489 if (parseToken(lltok::lparen, "expected '(' in call")) 2490 return true; 2491 2492 while (Lex.getKind() != lltok::rparen) { 2493 // If this isn't the first argument, we need a comma. 2494 if (!ArgList.empty() && 2495 parseToken(lltok::comma, "expected ',' in argument list")) 2496 return true; 2497 2498 // parse an ellipsis if this is a musttail call in a variadic function. 2499 if (Lex.getKind() == lltok::dotdotdot) { 2500 const char *Msg = "unexpected ellipsis in argument list for "; 2501 if (!IsMustTailCall) 2502 return tokError(Twine(Msg) + "non-musttail call"); 2503 if (!InVarArgsFunc) 2504 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2505 Lex.Lex(); // Lex the '...', it is purely for readability. 2506 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2507 } 2508 2509 // parse the argument. 2510 LocTy ArgLoc; 2511 Type *ArgTy = nullptr; 2512 Value *V; 2513 if (parseType(ArgTy, ArgLoc)) 2514 return true; 2515 2516 AttrBuilder ArgAttrs(M->getContext()); 2517 2518 if (ArgTy->isMetadataTy()) { 2519 if (parseMetadataAsValue(V, PFS)) 2520 return true; 2521 } else { 2522 // Otherwise, handle normal operands. 2523 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2524 return true; 2525 } 2526 ArgList.push_back(ParamInfo( 2527 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2528 } 2529 2530 if (IsMustTailCall && InVarArgsFunc) 2531 return tokError("expected '...' at end of argument list for musttail call " 2532 "in varargs function"); 2533 2534 Lex.Lex(); // Lex the ')'. 2535 return false; 2536 } 2537 2538 /// parseRequiredTypeAttr 2539 /// ::= attrname(<ty>) 2540 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken, 2541 Attribute::AttrKind AttrKind) { 2542 Type *Ty = nullptr; 2543 if (!EatIfPresent(AttrToken)) 2544 return true; 2545 if (!EatIfPresent(lltok::lparen)) 2546 return error(Lex.getLoc(), "expected '('"); 2547 if (parseType(Ty)) 2548 return true; 2549 if (!EatIfPresent(lltok::rparen)) 2550 return error(Lex.getLoc(), "expected ')'"); 2551 2552 B.addTypeAttr(AttrKind, Ty); 2553 return false; 2554 } 2555 2556 /// parseOptionalOperandBundles 2557 /// ::= /*empty*/ 2558 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2559 /// 2560 /// OperandBundle 2561 /// ::= bundle-tag '(' ')' 2562 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2563 /// 2564 /// bundle-tag ::= String Constant 2565 bool LLParser::parseOptionalOperandBundles( 2566 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2567 LocTy BeginLoc = Lex.getLoc(); 2568 if (!EatIfPresent(lltok::lsquare)) 2569 return false; 2570 2571 while (Lex.getKind() != lltok::rsquare) { 2572 // If this isn't the first operand bundle, we need a comma. 2573 if (!BundleList.empty() && 2574 parseToken(lltok::comma, "expected ',' in input list")) 2575 return true; 2576 2577 std::string Tag; 2578 if (parseStringConstant(Tag)) 2579 return true; 2580 2581 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2582 return true; 2583 2584 std::vector<Value *> Inputs; 2585 while (Lex.getKind() != lltok::rparen) { 2586 // If this isn't the first input, we need a comma. 2587 if (!Inputs.empty() && 2588 parseToken(lltok::comma, "expected ',' in input list")) 2589 return true; 2590 2591 Type *Ty = nullptr; 2592 Value *Input = nullptr; 2593 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2594 return true; 2595 Inputs.push_back(Input); 2596 } 2597 2598 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2599 2600 Lex.Lex(); // Lex the ')'. 2601 } 2602 2603 if (BundleList.empty()) 2604 return error(BeginLoc, "operand bundle set must not be empty"); 2605 2606 Lex.Lex(); // Lex the ']'. 2607 return false; 2608 } 2609 2610 /// parseArgumentList - parse the argument list for a function type or function 2611 /// prototype. 2612 /// ::= '(' ArgTypeListI ')' 2613 /// ArgTypeListI 2614 /// ::= /*empty*/ 2615 /// ::= '...' 2616 /// ::= ArgTypeList ',' '...' 2617 /// ::= ArgType (',' ArgType)* 2618 /// 2619 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2620 bool &IsVarArg) { 2621 unsigned CurValID = 0; 2622 IsVarArg = false; 2623 assert(Lex.getKind() == lltok::lparen); 2624 Lex.Lex(); // eat the (. 2625 2626 if (Lex.getKind() == lltok::rparen) { 2627 // empty 2628 } else if (Lex.getKind() == lltok::dotdotdot) { 2629 IsVarArg = true; 2630 Lex.Lex(); 2631 } else { 2632 LocTy TypeLoc = Lex.getLoc(); 2633 Type *ArgTy = nullptr; 2634 AttrBuilder Attrs(M->getContext()); 2635 std::string Name; 2636 2637 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2638 return true; 2639 2640 if (ArgTy->isVoidTy()) 2641 return error(TypeLoc, "argument can not have void type"); 2642 2643 if (Lex.getKind() == lltok::LocalVar) { 2644 Name = Lex.getStrVal(); 2645 Lex.Lex(); 2646 } else if (Lex.getKind() == lltok::LocalVarID) { 2647 if (Lex.getUIntVal() != CurValID) 2648 return error(TypeLoc, "argument expected to be numbered '%" + 2649 Twine(CurValID) + "'"); 2650 ++CurValID; 2651 Lex.Lex(); 2652 } 2653 2654 if (!FunctionType::isValidArgumentType(ArgTy)) 2655 return error(TypeLoc, "invalid type for function argument"); 2656 2657 ArgList.emplace_back(TypeLoc, ArgTy, 2658 AttributeSet::get(ArgTy->getContext(), Attrs), 2659 std::move(Name)); 2660 2661 while (EatIfPresent(lltok::comma)) { 2662 // Handle ... at end of arg list. 2663 if (EatIfPresent(lltok::dotdotdot)) { 2664 IsVarArg = true; 2665 break; 2666 } 2667 2668 // Otherwise must be an argument type. 2669 TypeLoc = Lex.getLoc(); 2670 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2671 return true; 2672 2673 if (ArgTy->isVoidTy()) 2674 return error(TypeLoc, "argument can not have void type"); 2675 2676 if (Lex.getKind() == lltok::LocalVar) { 2677 Name = Lex.getStrVal(); 2678 Lex.Lex(); 2679 } else { 2680 if (Lex.getKind() == lltok::LocalVarID) { 2681 if (Lex.getUIntVal() != CurValID) 2682 return error(TypeLoc, "argument expected to be numbered '%" + 2683 Twine(CurValID) + "'"); 2684 Lex.Lex(); 2685 } 2686 ++CurValID; 2687 Name = ""; 2688 } 2689 2690 if (!ArgTy->isFirstClassType()) 2691 return error(TypeLoc, "invalid type for function argument"); 2692 2693 ArgList.emplace_back(TypeLoc, ArgTy, 2694 AttributeSet::get(ArgTy->getContext(), Attrs), 2695 std::move(Name)); 2696 } 2697 } 2698 2699 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2700 } 2701 2702 /// parseFunctionType 2703 /// ::= Type ArgumentList OptionalAttrs 2704 bool LLParser::parseFunctionType(Type *&Result) { 2705 assert(Lex.getKind() == lltok::lparen); 2706 2707 if (!FunctionType::isValidReturnType(Result)) 2708 return tokError("invalid function return type"); 2709 2710 SmallVector<ArgInfo, 8> ArgList; 2711 bool IsVarArg; 2712 if (parseArgumentList(ArgList, IsVarArg)) 2713 return true; 2714 2715 // Reject names on the arguments lists. 2716 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2717 if (!ArgList[i].Name.empty()) 2718 return error(ArgList[i].Loc, "argument name invalid in function type"); 2719 if (ArgList[i].Attrs.hasAttributes()) 2720 return error(ArgList[i].Loc, 2721 "argument attributes invalid in function type"); 2722 } 2723 2724 SmallVector<Type*, 16> ArgListTy; 2725 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2726 ArgListTy.push_back(ArgList[i].Ty); 2727 2728 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2729 return false; 2730 } 2731 2732 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2733 /// other structs. 2734 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2735 SmallVector<Type*, 8> Elts; 2736 if (parseStructBody(Elts)) 2737 return true; 2738 2739 Result = StructType::get(Context, Elts, Packed); 2740 return false; 2741 } 2742 2743 /// parseStructDefinition - parse a struct in a 'type' definition. 2744 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2745 std::pair<Type *, LocTy> &Entry, 2746 Type *&ResultTy) { 2747 // If the type was already defined, diagnose the redefinition. 2748 if (Entry.first && !Entry.second.isValid()) 2749 return error(TypeLoc, "redefinition of type"); 2750 2751 // If we have opaque, just return without filling in the definition for the 2752 // struct. This counts as a definition as far as the .ll file goes. 2753 if (EatIfPresent(lltok::kw_opaque)) { 2754 // This type is being defined, so clear the location to indicate this. 2755 Entry.second = SMLoc(); 2756 2757 // If this type number has never been uttered, create it. 2758 if (!Entry.first) 2759 Entry.first = StructType::create(Context, Name); 2760 ResultTy = Entry.first; 2761 return false; 2762 } 2763 2764 // If the type starts with '<', then it is either a packed struct or a vector. 2765 bool isPacked = EatIfPresent(lltok::less); 2766 2767 // If we don't have a struct, then we have a random type alias, which we 2768 // accept for compatibility with old files. These types are not allowed to be 2769 // forward referenced and not allowed to be recursive. 2770 if (Lex.getKind() != lltok::lbrace) { 2771 if (Entry.first) 2772 return error(TypeLoc, "forward references to non-struct type"); 2773 2774 ResultTy = nullptr; 2775 if (isPacked) 2776 return parseArrayVectorType(ResultTy, true); 2777 return parseType(ResultTy); 2778 } 2779 2780 // This type is being defined, so clear the location to indicate this. 2781 Entry.second = SMLoc(); 2782 2783 // If this type number has never been uttered, create it. 2784 if (!Entry.first) 2785 Entry.first = StructType::create(Context, Name); 2786 2787 StructType *STy = cast<StructType>(Entry.first); 2788 2789 SmallVector<Type*, 8> Body; 2790 if (parseStructBody(Body) || 2791 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2792 return true; 2793 2794 STy->setBody(Body, isPacked); 2795 ResultTy = STy; 2796 return false; 2797 } 2798 2799 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2800 /// StructType 2801 /// ::= '{' '}' 2802 /// ::= '{' Type (',' Type)* '}' 2803 /// ::= '<' '{' '}' '>' 2804 /// ::= '<' '{' Type (',' Type)* '}' '>' 2805 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2806 assert(Lex.getKind() == lltok::lbrace); 2807 Lex.Lex(); // Consume the '{' 2808 2809 // Handle the empty struct. 2810 if (EatIfPresent(lltok::rbrace)) 2811 return false; 2812 2813 LocTy EltTyLoc = Lex.getLoc(); 2814 Type *Ty = nullptr; 2815 if (parseType(Ty)) 2816 return true; 2817 Body.push_back(Ty); 2818 2819 if (!StructType::isValidElementType(Ty)) 2820 return error(EltTyLoc, "invalid element type for struct"); 2821 2822 while (EatIfPresent(lltok::comma)) { 2823 EltTyLoc = Lex.getLoc(); 2824 if (parseType(Ty)) 2825 return true; 2826 2827 if (!StructType::isValidElementType(Ty)) 2828 return error(EltTyLoc, "invalid element type for struct"); 2829 2830 Body.push_back(Ty); 2831 } 2832 2833 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 2834 } 2835 2836 /// parseArrayVectorType - parse an array or vector type, assuming the first 2837 /// token has already been consumed. 2838 /// Type 2839 /// ::= '[' APSINTVAL 'x' Types ']' 2840 /// ::= '<' APSINTVAL 'x' Types '>' 2841 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2842 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 2843 bool Scalable = false; 2844 2845 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 2846 Lex.Lex(); // consume the 'vscale' 2847 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 2848 return true; 2849 2850 Scalable = true; 2851 } 2852 2853 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2854 Lex.getAPSIntVal().getBitWidth() > 64) 2855 return tokError("expected number in address space"); 2856 2857 LocTy SizeLoc = Lex.getLoc(); 2858 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2859 Lex.Lex(); 2860 2861 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 2862 return true; 2863 2864 LocTy TypeLoc = Lex.getLoc(); 2865 Type *EltTy = nullptr; 2866 if (parseType(EltTy)) 2867 return true; 2868 2869 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 2870 "expected end of sequential type")) 2871 return true; 2872 2873 if (IsVector) { 2874 if (Size == 0) 2875 return error(SizeLoc, "zero element vector is illegal"); 2876 if ((unsigned)Size != Size) 2877 return error(SizeLoc, "size too large for vector"); 2878 if (!VectorType::isValidElementType(EltTy)) 2879 return error(TypeLoc, "invalid vector element type"); 2880 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2881 } else { 2882 if (!ArrayType::isValidElementType(EltTy)) 2883 return error(TypeLoc, "invalid array element type"); 2884 Result = ArrayType::get(EltTy, Size); 2885 } 2886 return false; 2887 } 2888 2889 //===----------------------------------------------------------------------===// 2890 // Function Semantic Analysis. 2891 //===----------------------------------------------------------------------===// 2892 2893 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2894 int functionNumber) 2895 : P(p), F(f), FunctionNumber(functionNumber) { 2896 2897 // Insert unnamed arguments into the NumberedVals list. 2898 for (Argument &A : F.args()) 2899 if (!A.hasName()) 2900 NumberedVals.push_back(&A); 2901 } 2902 2903 LLParser::PerFunctionState::~PerFunctionState() { 2904 // If there were any forward referenced non-basicblock values, delete them. 2905 2906 for (const auto &P : ForwardRefVals) { 2907 if (isa<BasicBlock>(P.second.first)) 2908 continue; 2909 P.second.first->replaceAllUsesWith( 2910 UndefValue::get(P.second.first->getType())); 2911 P.second.first->deleteValue(); 2912 } 2913 2914 for (const auto &P : ForwardRefValIDs) { 2915 if (isa<BasicBlock>(P.second.first)) 2916 continue; 2917 P.second.first->replaceAllUsesWith( 2918 UndefValue::get(P.second.first->getType())); 2919 P.second.first->deleteValue(); 2920 } 2921 } 2922 2923 bool LLParser::PerFunctionState::finishFunction() { 2924 if (!ForwardRefVals.empty()) 2925 return P.error(ForwardRefVals.begin()->second.second, 2926 "use of undefined value '%" + ForwardRefVals.begin()->first + 2927 "'"); 2928 if (!ForwardRefValIDs.empty()) 2929 return P.error(ForwardRefValIDs.begin()->second.second, 2930 "use of undefined value '%" + 2931 Twine(ForwardRefValIDs.begin()->first) + "'"); 2932 return false; 2933 } 2934 2935 /// getVal - Get a value with the specified name or ID, creating a 2936 /// forward reference record if needed. This can return null if the value 2937 /// exists but does not have the right type. 2938 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 2939 LocTy Loc) { 2940 // Look this name up in the normal function symbol table. 2941 Value *Val = F.getValueSymbolTable()->lookup(Name); 2942 2943 // If this is a forward reference for the value, see if we already created a 2944 // forward ref record. 2945 if (!Val) { 2946 auto I = ForwardRefVals.find(Name); 2947 if (I != ForwardRefVals.end()) 2948 Val = I->second.first; 2949 } 2950 2951 // If we have the value in the symbol table or fwd-ref table, return it. 2952 if (Val) 2953 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val); 2954 2955 // Don't make placeholders with invalid type. 2956 if (!Ty->isFirstClassType()) { 2957 P.error(Loc, "invalid use of a non-first-class type"); 2958 return nullptr; 2959 } 2960 2961 // Otherwise, create a new forward reference for this value and remember it. 2962 Value *FwdVal; 2963 if (Ty->isLabelTy()) { 2964 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2965 } else { 2966 FwdVal = new Argument(Ty, Name); 2967 } 2968 2969 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2970 return FwdVal; 2971 } 2972 2973 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) { 2974 // Look this name up in the normal function symbol table. 2975 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2976 2977 // If this is a forward reference for the value, see if we already created a 2978 // forward ref record. 2979 if (!Val) { 2980 auto I = ForwardRefValIDs.find(ID); 2981 if (I != ForwardRefValIDs.end()) 2982 Val = I->second.first; 2983 } 2984 2985 // If we have the value in the symbol table or fwd-ref table, return it. 2986 if (Val) 2987 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val); 2988 2989 if (!Ty->isFirstClassType()) { 2990 P.error(Loc, "invalid use of a non-first-class type"); 2991 return nullptr; 2992 } 2993 2994 // Otherwise, create a new forward reference for this value and remember it. 2995 Value *FwdVal; 2996 if (Ty->isLabelTy()) { 2997 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2998 } else { 2999 FwdVal = new Argument(Ty); 3000 } 3001 3002 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 3003 return FwdVal; 3004 } 3005 3006 /// setInstName - After an instruction is parsed and inserted into its 3007 /// basic block, this installs its name. 3008 bool LLParser::PerFunctionState::setInstName(int NameID, 3009 const std::string &NameStr, 3010 LocTy NameLoc, Instruction *Inst) { 3011 // If this instruction has void type, it cannot have a name or ID specified. 3012 if (Inst->getType()->isVoidTy()) { 3013 if (NameID != -1 || !NameStr.empty()) 3014 return P.error(NameLoc, "instructions returning void cannot have a name"); 3015 return false; 3016 } 3017 3018 // If this was a numbered instruction, verify that the instruction is the 3019 // expected value and resolve any forward references. 3020 if (NameStr.empty()) { 3021 // If neither a name nor an ID was specified, just use the next ID. 3022 if (NameID == -1) 3023 NameID = NumberedVals.size(); 3024 3025 if (unsigned(NameID) != NumberedVals.size()) 3026 return P.error(NameLoc, "instruction expected to be numbered '%" + 3027 Twine(NumberedVals.size()) + "'"); 3028 3029 auto FI = ForwardRefValIDs.find(NameID); 3030 if (FI != ForwardRefValIDs.end()) { 3031 Value *Sentinel = FI->second.first; 3032 if (Sentinel->getType() != Inst->getType()) 3033 return P.error(NameLoc, "instruction forward referenced with type '" + 3034 getTypeString(FI->second.first->getType()) + 3035 "'"); 3036 3037 Sentinel->replaceAllUsesWith(Inst); 3038 Sentinel->deleteValue(); 3039 ForwardRefValIDs.erase(FI); 3040 } 3041 3042 NumberedVals.push_back(Inst); 3043 return false; 3044 } 3045 3046 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3047 auto FI = ForwardRefVals.find(NameStr); 3048 if (FI != ForwardRefVals.end()) { 3049 Value *Sentinel = FI->second.first; 3050 if (Sentinel->getType() != Inst->getType()) 3051 return P.error(NameLoc, "instruction forward referenced with type '" + 3052 getTypeString(FI->second.first->getType()) + 3053 "'"); 3054 3055 Sentinel->replaceAllUsesWith(Inst); 3056 Sentinel->deleteValue(); 3057 ForwardRefVals.erase(FI); 3058 } 3059 3060 // Set the name on the instruction. 3061 Inst->setName(NameStr); 3062 3063 if (Inst->getName() != NameStr) 3064 return P.error(NameLoc, "multiple definition of local value named '" + 3065 NameStr + "'"); 3066 return false; 3067 } 3068 3069 /// getBB - Get a basic block with the specified name or ID, creating a 3070 /// forward reference record if needed. 3071 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 3072 LocTy Loc) { 3073 return dyn_cast_or_null<BasicBlock>( 3074 getVal(Name, Type::getLabelTy(F.getContext()), Loc)); 3075 } 3076 3077 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 3078 return dyn_cast_or_null<BasicBlock>( 3079 getVal(ID, Type::getLabelTy(F.getContext()), Loc)); 3080 } 3081 3082 /// defineBB - Define the specified basic block, which is either named or 3083 /// unnamed. If there is an error, this returns null otherwise it returns 3084 /// the block being defined. 3085 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 3086 int NameID, LocTy Loc) { 3087 BasicBlock *BB; 3088 if (Name.empty()) { 3089 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3090 P.error(Loc, "label expected to be numbered '" + 3091 Twine(NumberedVals.size()) + "'"); 3092 return nullptr; 3093 } 3094 BB = getBB(NumberedVals.size(), Loc); 3095 if (!BB) { 3096 P.error(Loc, "unable to create block numbered '" + 3097 Twine(NumberedVals.size()) + "'"); 3098 return nullptr; 3099 } 3100 } else { 3101 BB = getBB(Name, Loc); 3102 if (!BB) { 3103 P.error(Loc, "unable to create block named '" + Name + "'"); 3104 return nullptr; 3105 } 3106 } 3107 3108 // Move the block to the end of the function. Forward ref'd blocks are 3109 // inserted wherever they happen to be referenced. 3110 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3111 3112 // Remove the block from forward ref sets. 3113 if (Name.empty()) { 3114 ForwardRefValIDs.erase(NumberedVals.size()); 3115 NumberedVals.push_back(BB); 3116 } else { 3117 // BB forward references are already in the function symbol table. 3118 ForwardRefVals.erase(Name); 3119 } 3120 3121 return BB; 3122 } 3123 3124 //===----------------------------------------------------------------------===// 3125 // Constants. 3126 //===----------------------------------------------------------------------===// 3127 3128 /// parseValID - parse an abstract value that doesn't necessarily have a 3129 /// type implied. For example, if we parse "4" we don't know what integer type 3130 /// it has. The value will later be combined with its type and checked for 3131 /// basic correctness. PFS is used to convert function-local operands of 3132 /// metadata (since metadata operands are not just parsed here but also 3133 /// converted to values). PFS can be null when we are not parsing metadata 3134 /// values inside a function. 3135 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) { 3136 ID.Loc = Lex.getLoc(); 3137 switch (Lex.getKind()) { 3138 default: 3139 return tokError("expected value token"); 3140 case lltok::GlobalID: // @42 3141 ID.UIntVal = Lex.getUIntVal(); 3142 ID.Kind = ValID::t_GlobalID; 3143 break; 3144 case lltok::GlobalVar: // @foo 3145 ID.StrVal = Lex.getStrVal(); 3146 ID.Kind = ValID::t_GlobalName; 3147 break; 3148 case lltok::LocalVarID: // %42 3149 ID.UIntVal = Lex.getUIntVal(); 3150 ID.Kind = ValID::t_LocalID; 3151 break; 3152 case lltok::LocalVar: // %foo 3153 ID.StrVal = Lex.getStrVal(); 3154 ID.Kind = ValID::t_LocalName; 3155 break; 3156 case lltok::APSInt: 3157 ID.APSIntVal = Lex.getAPSIntVal(); 3158 ID.Kind = ValID::t_APSInt; 3159 break; 3160 case lltok::APFloat: 3161 ID.APFloatVal = Lex.getAPFloatVal(); 3162 ID.Kind = ValID::t_APFloat; 3163 break; 3164 case lltok::kw_true: 3165 ID.ConstantVal = ConstantInt::getTrue(Context); 3166 ID.Kind = ValID::t_Constant; 3167 break; 3168 case lltok::kw_false: 3169 ID.ConstantVal = ConstantInt::getFalse(Context); 3170 ID.Kind = ValID::t_Constant; 3171 break; 3172 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3173 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3174 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3175 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3176 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3177 3178 case lltok::lbrace: { 3179 // ValID ::= '{' ConstVector '}' 3180 Lex.Lex(); 3181 SmallVector<Constant*, 16> Elts; 3182 if (parseGlobalValueVector(Elts) || 3183 parseToken(lltok::rbrace, "expected end of struct constant")) 3184 return true; 3185 3186 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3187 ID.UIntVal = Elts.size(); 3188 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3189 Elts.size() * sizeof(Elts[0])); 3190 ID.Kind = ValID::t_ConstantStruct; 3191 return false; 3192 } 3193 case lltok::less: { 3194 // ValID ::= '<' ConstVector '>' --> Vector. 3195 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3196 Lex.Lex(); 3197 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3198 3199 SmallVector<Constant*, 16> Elts; 3200 LocTy FirstEltLoc = Lex.getLoc(); 3201 if (parseGlobalValueVector(Elts) || 3202 (isPackedStruct && 3203 parseToken(lltok::rbrace, "expected end of packed struct")) || 3204 parseToken(lltok::greater, "expected end of constant")) 3205 return true; 3206 3207 if (isPackedStruct) { 3208 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3209 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3210 Elts.size() * sizeof(Elts[0])); 3211 ID.UIntVal = Elts.size(); 3212 ID.Kind = ValID::t_PackedConstantStruct; 3213 return false; 3214 } 3215 3216 if (Elts.empty()) 3217 return error(ID.Loc, "constant vector must not be empty"); 3218 3219 if (!Elts[0]->getType()->isIntegerTy() && 3220 !Elts[0]->getType()->isFloatingPointTy() && 3221 !Elts[0]->getType()->isPointerTy()) 3222 return error( 3223 FirstEltLoc, 3224 "vector elements must have integer, pointer or floating point type"); 3225 3226 // Verify that all the vector elements have the same type. 3227 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3228 if (Elts[i]->getType() != Elts[0]->getType()) 3229 return error(FirstEltLoc, "vector element #" + Twine(i) + 3230 " is not of type '" + 3231 getTypeString(Elts[0]->getType())); 3232 3233 ID.ConstantVal = ConstantVector::get(Elts); 3234 ID.Kind = ValID::t_Constant; 3235 return false; 3236 } 3237 case lltok::lsquare: { // Array Constant 3238 Lex.Lex(); 3239 SmallVector<Constant*, 16> Elts; 3240 LocTy FirstEltLoc = Lex.getLoc(); 3241 if (parseGlobalValueVector(Elts) || 3242 parseToken(lltok::rsquare, "expected end of array constant")) 3243 return true; 3244 3245 // Handle empty element. 3246 if (Elts.empty()) { 3247 // Use undef instead of an array because it's inconvenient to determine 3248 // the element type at this point, there being no elements to examine. 3249 ID.Kind = ValID::t_EmptyArray; 3250 return false; 3251 } 3252 3253 if (!Elts[0]->getType()->isFirstClassType()) 3254 return error(FirstEltLoc, "invalid array element type: " + 3255 getTypeString(Elts[0]->getType())); 3256 3257 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3258 3259 // Verify all elements are correct type! 3260 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3261 if (Elts[i]->getType() != Elts[0]->getType()) 3262 return error(FirstEltLoc, "array element #" + Twine(i) + 3263 " is not of type '" + 3264 getTypeString(Elts[0]->getType())); 3265 } 3266 3267 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3268 ID.Kind = ValID::t_Constant; 3269 return false; 3270 } 3271 case lltok::kw_c: // c "foo" 3272 Lex.Lex(); 3273 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3274 false); 3275 if (parseToken(lltok::StringConstant, "expected string")) 3276 return true; 3277 ID.Kind = ValID::t_Constant; 3278 return false; 3279 3280 case lltok::kw_asm: { 3281 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3282 // STRINGCONSTANT 3283 bool HasSideEffect, AlignStack, AsmDialect, CanThrow; 3284 Lex.Lex(); 3285 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3286 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3287 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3288 parseOptionalToken(lltok::kw_unwind, CanThrow) || 3289 parseStringConstant(ID.StrVal) || 3290 parseToken(lltok::comma, "expected comma in inline asm expression") || 3291 parseToken(lltok::StringConstant, "expected constraint string")) 3292 return true; 3293 ID.StrVal2 = Lex.getStrVal(); 3294 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | 3295 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); 3296 ID.Kind = ValID::t_InlineAsm; 3297 return false; 3298 } 3299 3300 case lltok::kw_blockaddress: { 3301 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3302 Lex.Lex(); 3303 3304 ValID Fn, Label; 3305 3306 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3307 parseValID(Fn, PFS) || 3308 parseToken(lltok::comma, 3309 "expected comma in block address expression") || 3310 parseValID(Label, PFS) || 3311 parseToken(lltok::rparen, "expected ')' in block address expression")) 3312 return true; 3313 3314 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3315 return error(Fn.Loc, "expected function name in blockaddress"); 3316 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3317 return error(Label.Loc, "expected basic block name in blockaddress"); 3318 3319 // Try to find the function (but skip it if it's forward-referenced). 3320 GlobalValue *GV = nullptr; 3321 if (Fn.Kind == ValID::t_GlobalID) { 3322 if (Fn.UIntVal < NumberedVals.size()) 3323 GV = NumberedVals[Fn.UIntVal]; 3324 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3325 GV = M->getNamedValue(Fn.StrVal); 3326 } 3327 Function *F = nullptr; 3328 if (GV) { 3329 // Confirm that it's actually a function with a definition. 3330 if (!isa<Function>(GV)) 3331 return error(Fn.Loc, "expected function name in blockaddress"); 3332 F = cast<Function>(GV); 3333 if (F->isDeclaration()) 3334 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3335 } 3336 3337 if (!F) { 3338 // Make a global variable as a placeholder for this reference. 3339 GlobalValue *&FwdRef = 3340 ForwardRefBlockAddresses.insert(std::make_pair( 3341 std::move(Fn), 3342 std::map<ValID, GlobalValue *>())) 3343 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3344 .first->second; 3345 if (!FwdRef) { 3346 unsigned FwdDeclAS; 3347 if (ExpectedTy) { 3348 // If we know the type that the blockaddress is being assigned to, 3349 // we can use the address space of that type. 3350 if (!ExpectedTy->isPointerTy()) 3351 return error(ID.Loc, 3352 "type of blockaddress must be a pointer and not '" + 3353 getTypeString(ExpectedTy) + "'"); 3354 FwdDeclAS = ExpectedTy->getPointerAddressSpace(); 3355 } else if (PFS) { 3356 // Otherwise, we default the address space of the current function. 3357 FwdDeclAS = PFS->getFunction().getAddressSpace(); 3358 } else { 3359 llvm_unreachable("Unknown address space for blockaddress"); 3360 } 3361 FwdRef = new GlobalVariable( 3362 *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage, 3363 nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS); 3364 } 3365 3366 ID.ConstantVal = FwdRef; 3367 ID.Kind = ValID::t_Constant; 3368 return false; 3369 } 3370 3371 // We found the function; now find the basic block. Don't use PFS, since we 3372 // might be inside a constant expression. 3373 BasicBlock *BB; 3374 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3375 if (Label.Kind == ValID::t_LocalID) 3376 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3377 else 3378 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3379 if (!BB) 3380 return error(Label.Loc, "referenced value is not a basic block"); 3381 } else { 3382 if (Label.Kind == ValID::t_LocalID) 3383 return error(Label.Loc, "cannot take address of numeric label after " 3384 "the function is defined"); 3385 BB = dyn_cast_or_null<BasicBlock>( 3386 F->getValueSymbolTable()->lookup(Label.StrVal)); 3387 if (!BB) 3388 return error(Label.Loc, "referenced value is not a basic block"); 3389 } 3390 3391 ID.ConstantVal = BlockAddress::get(F, BB); 3392 ID.Kind = ValID::t_Constant; 3393 return false; 3394 } 3395 3396 case lltok::kw_dso_local_equivalent: { 3397 // ValID ::= 'dso_local_equivalent' @foo 3398 Lex.Lex(); 3399 3400 ValID Fn; 3401 3402 if (parseValID(Fn, PFS)) 3403 return true; 3404 3405 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3406 return error(Fn.Loc, 3407 "expected global value name in dso_local_equivalent"); 3408 3409 // Try to find the function (but skip it if it's forward-referenced). 3410 GlobalValue *GV = nullptr; 3411 if (Fn.Kind == ValID::t_GlobalID) { 3412 if (Fn.UIntVal < NumberedVals.size()) 3413 GV = NumberedVals[Fn.UIntVal]; 3414 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3415 GV = M->getNamedValue(Fn.StrVal); 3416 } 3417 3418 assert(GV && "Could not find a corresponding global variable"); 3419 3420 if (!GV->getValueType()->isFunctionTy()) 3421 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3422 "in dso_local_equivalent"); 3423 3424 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3425 ID.Kind = ValID::t_Constant; 3426 return false; 3427 } 3428 3429 case lltok::kw_no_cfi: { 3430 // ValID ::= 'no_cfi' @foo 3431 Lex.Lex(); 3432 3433 if (parseValID(ID, PFS)) 3434 return true; 3435 3436 if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName) 3437 return error(ID.Loc, "expected global value name in no_cfi"); 3438 3439 ID.NoCFI = true; 3440 return false; 3441 } 3442 3443 case lltok::kw_trunc: 3444 case lltok::kw_zext: 3445 case lltok::kw_sext: 3446 case lltok::kw_fptrunc: 3447 case lltok::kw_fpext: 3448 case lltok::kw_bitcast: 3449 case lltok::kw_addrspacecast: 3450 case lltok::kw_uitofp: 3451 case lltok::kw_sitofp: 3452 case lltok::kw_fptoui: 3453 case lltok::kw_fptosi: 3454 case lltok::kw_inttoptr: 3455 case lltok::kw_ptrtoint: { 3456 unsigned Opc = Lex.getUIntVal(); 3457 Type *DestTy = nullptr; 3458 Constant *SrcVal; 3459 Lex.Lex(); 3460 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3461 parseGlobalTypeAndValue(SrcVal) || 3462 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3463 parseType(DestTy) || 3464 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3465 return true; 3466 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3467 return error(ID.Loc, "invalid cast opcode for cast from '" + 3468 getTypeString(SrcVal->getType()) + "' to '" + 3469 getTypeString(DestTy) + "'"); 3470 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3471 SrcVal, DestTy); 3472 ID.Kind = ValID::t_Constant; 3473 return false; 3474 } 3475 case lltok::kw_extractvalue: 3476 return error(ID.Loc, "extractvalue constexprs are no longer supported"); 3477 case lltok::kw_insertvalue: 3478 return error(ID.Loc, "insertvalue constexprs are no longer supported"); 3479 case lltok::kw_udiv: 3480 return error(ID.Loc, "udiv constexprs are no longer supported"); 3481 case lltok::kw_sdiv: 3482 return error(ID.Loc, "sdiv constexprs are no longer supported"); 3483 case lltok::kw_urem: 3484 return error(ID.Loc, "urem constexprs are no longer supported"); 3485 case lltok::kw_srem: 3486 return error(ID.Loc, "srem constexprs are no longer supported"); 3487 case lltok::kw_icmp: 3488 case lltok::kw_fcmp: { 3489 unsigned PredVal, Opc = Lex.getUIntVal(); 3490 Constant *Val0, *Val1; 3491 Lex.Lex(); 3492 if (parseCmpPredicate(PredVal, Opc) || 3493 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3494 parseGlobalTypeAndValue(Val0) || 3495 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3496 parseGlobalTypeAndValue(Val1) || 3497 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3498 return true; 3499 3500 if (Val0->getType() != Val1->getType()) 3501 return error(ID.Loc, "compare operands must have the same type"); 3502 3503 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3504 3505 if (Opc == Instruction::FCmp) { 3506 if (!Val0->getType()->isFPOrFPVectorTy()) 3507 return error(ID.Loc, "fcmp requires floating point operands"); 3508 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3509 } else { 3510 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3511 if (!Val0->getType()->isIntOrIntVectorTy() && 3512 !Val0->getType()->isPtrOrPtrVectorTy()) 3513 return error(ID.Loc, "icmp requires pointer or integer operands"); 3514 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3515 } 3516 ID.Kind = ValID::t_Constant; 3517 return false; 3518 } 3519 3520 // Unary Operators. 3521 case lltok::kw_fneg: { 3522 unsigned Opc = Lex.getUIntVal(); 3523 Constant *Val; 3524 Lex.Lex(); 3525 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3526 parseGlobalTypeAndValue(Val) || 3527 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3528 return true; 3529 3530 // Check that the type is valid for the operator. 3531 switch (Opc) { 3532 case Instruction::FNeg: 3533 if (!Val->getType()->isFPOrFPVectorTy()) 3534 return error(ID.Loc, "constexpr requires fp operands"); 3535 break; 3536 default: llvm_unreachable("Unknown unary operator!"); 3537 } 3538 unsigned Flags = 0; 3539 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3540 ID.ConstantVal = C; 3541 ID.Kind = ValID::t_Constant; 3542 return false; 3543 } 3544 // Binary Operators. 3545 case lltok::kw_add: 3546 case lltok::kw_fadd: 3547 case lltok::kw_sub: 3548 case lltok::kw_fsub: 3549 case lltok::kw_mul: 3550 case lltok::kw_fmul: 3551 case lltok::kw_fdiv: 3552 case lltok::kw_frem: 3553 case lltok::kw_shl: 3554 case lltok::kw_lshr: 3555 case lltok::kw_ashr: { 3556 bool NUW = false; 3557 bool NSW = false; 3558 bool Exact = false; 3559 unsigned Opc = Lex.getUIntVal(); 3560 Constant *Val0, *Val1; 3561 Lex.Lex(); 3562 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3563 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3564 if (EatIfPresent(lltok::kw_nuw)) 3565 NUW = true; 3566 if (EatIfPresent(lltok::kw_nsw)) { 3567 NSW = true; 3568 if (EatIfPresent(lltok::kw_nuw)) 3569 NUW = true; 3570 } 3571 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3572 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3573 if (EatIfPresent(lltok::kw_exact)) 3574 Exact = true; 3575 } 3576 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3577 parseGlobalTypeAndValue(Val0) || 3578 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3579 parseGlobalTypeAndValue(Val1) || 3580 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3581 return true; 3582 if (Val0->getType() != Val1->getType()) 3583 return error(ID.Loc, "operands of constexpr must have same type"); 3584 // Check that the type is valid for the operator. 3585 switch (Opc) { 3586 case Instruction::Add: 3587 case Instruction::Sub: 3588 case Instruction::Mul: 3589 case Instruction::UDiv: 3590 case Instruction::SDiv: 3591 case Instruction::URem: 3592 case Instruction::SRem: 3593 case Instruction::Shl: 3594 case Instruction::AShr: 3595 case Instruction::LShr: 3596 if (!Val0->getType()->isIntOrIntVectorTy()) 3597 return error(ID.Loc, "constexpr requires integer operands"); 3598 break; 3599 case Instruction::FAdd: 3600 case Instruction::FSub: 3601 case Instruction::FMul: 3602 case Instruction::FDiv: 3603 case Instruction::FRem: 3604 if (!Val0->getType()->isFPOrFPVectorTy()) 3605 return error(ID.Loc, "constexpr requires fp operands"); 3606 break; 3607 default: llvm_unreachable("Unknown binary operator!"); 3608 } 3609 unsigned Flags = 0; 3610 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3611 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3612 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3613 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3614 ID.ConstantVal = C; 3615 ID.Kind = ValID::t_Constant; 3616 return false; 3617 } 3618 3619 // Logical Operations 3620 case lltok::kw_and: 3621 case lltok::kw_or: 3622 case lltok::kw_xor: { 3623 unsigned Opc = Lex.getUIntVal(); 3624 Constant *Val0, *Val1; 3625 Lex.Lex(); 3626 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3627 parseGlobalTypeAndValue(Val0) || 3628 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3629 parseGlobalTypeAndValue(Val1) || 3630 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3631 return true; 3632 if (Val0->getType() != Val1->getType()) 3633 return error(ID.Loc, "operands of constexpr must have same type"); 3634 if (!Val0->getType()->isIntOrIntVectorTy()) 3635 return error(ID.Loc, 3636 "constexpr requires integer or integer vector operands"); 3637 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3638 ID.Kind = ValID::t_Constant; 3639 return false; 3640 } 3641 3642 case lltok::kw_getelementptr: 3643 case lltok::kw_shufflevector: 3644 case lltok::kw_insertelement: 3645 case lltok::kw_extractelement: 3646 case lltok::kw_select: { 3647 unsigned Opc = Lex.getUIntVal(); 3648 SmallVector<Constant*, 16> Elts; 3649 bool InBounds = false; 3650 Type *Ty; 3651 Lex.Lex(); 3652 3653 if (Opc == Instruction::GetElementPtr) 3654 InBounds = EatIfPresent(lltok::kw_inbounds); 3655 3656 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3657 return true; 3658 3659 LocTy ExplicitTypeLoc = Lex.getLoc(); 3660 if (Opc == Instruction::GetElementPtr) { 3661 if (parseType(Ty) || 3662 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3663 return true; 3664 } 3665 3666 Optional<unsigned> InRangeOp; 3667 if (parseGlobalValueVector( 3668 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3669 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3670 return true; 3671 3672 if (Opc == Instruction::GetElementPtr) { 3673 if (Elts.size() == 0 || 3674 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3675 return error(ID.Loc, "base of getelementptr must be a pointer"); 3676 3677 Type *BaseType = Elts[0]->getType(); 3678 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3679 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 3680 return error( 3681 ExplicitTypeLoc, 3682 typeComparisonErrorMessage( 3683 "explicit pointee type doesn't match operand's pointee type", 3684 Ty, BasePointerType->getNonOpaquePointerElementType())); 3685 } 3686 3687 unsigned GEPWidth = 3688 BaseType->isVectorTy() 3689 ? cast<FixedVectorType>(BaseType)->getNumElements() 3690 : 0; 3691 3692 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3693 for (Constant *Val : Indices) { 3694 Type *ValTy = Val->getType(); 3695 if (!ValTy->isIntOrIntVectorTy()) 3696 return error(ID.Loc, "getelementptr index must be an integer"); 3697 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3698 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3699 if (GEPWidth && (ValNumEl != GEPWidth)) 3700 return error( 3701 ID.Loc, 3702 "getelementptr vector index has a wrong number of elements"); 3703 // GEPWidth may have been unknown because the base is a scalar, 3704 // but it is known now. 3705 GEPWidth = ValNumEl; 3706 } 3707 } 3708 3709 SmallPtrSet<Type*, 4> Visited; 3710 if (!Indices.empty() && !Ty->isSized(&Visited)) 3711 return error(ID.Loc, "base element of getelementptr must be sized"); 3712 3713 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3714 return error(ID.Loc, "invalid getelementptr indices"); 3715 3716 if (InRangeOp) { 3717 if (*InRangeOp == 0) 3718 return error(ID.Loc, 3719 "inrange keyword may not appear on pointer operand"); 3720 --*InRangeOp; 3721 } 3722 3723 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3724 InBounds, InRangeOp); 3725 } else if (Opc == Instruction::Select) { 3726 if (Elts.size() != 3) 3727 return error(ID.Loc, "expected three operands to select"); 3728 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3729 Elts[2])) 3730 return error(ID.Loc, Reason); 3731 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3732 } else if (Opc == Instruction::ShuffleVector) { 3733 if (Elts.size() != 3) 3734 return error(ID.Loc, "expected three operands to shufflevector"); 3735 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3736 return error(ID.Loc, "invalid operands to shufflevector"); 3737 SmallVector<int, 16> Mask; 3738 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3739 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3740 } else if (Opc == Instruction::ExtractElement) { 3741 if (Elts.size() != 2) 3742 return error(ID.Loc, "expected two operands to extractelement"); 3743 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3744 return error(ID.Loc, "invalid extractelement operands"); 3745 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3746 } else { 3747 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3748 if (Elts.size() != 3) 3749 return error(ID.Loc, "expected three operands to insertelement"); 3750 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3751 return error(ID.Loc, "invalid insertelement operands"); 3752 ID.ConstantVal = 3753 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3754 } 3755 3756 ID.Kind = ValID::t_Constant; 3757 return false; 3758 } 3759 } 3760 3761 Lex.Lex(); 3762 return false; 3763 } 3764 3765 /// parseGlobalValue - parse a global value with the specified type. 3766 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3767 C = nullptr; 3768 ValID ID; 3769 Value *V = nullptr; 3770 bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) || 3771 convertValIDToValue(Ty, ID, V, nullptr); 3772 if (V && !(C = dyn_cast<Constant>(V))) 3773 return error(ID.Loc, "global values must be constants"); 3774 return Parsed; 3775 } 3776 3777 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3778 Type *Ty = nullptr; 3779 return parseType(Ty) || parseGlobalValue(Ty, V); 3780 } 3781 3782 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3783 C = nullptr; 3784 3785 LocTy KwLoc = Lex.getLoc(); 3786 if (!EatIfPresent(lltok::kw_comdat)) 3787 return false; 3788 3789 if (EatIfPresent(lltok::lparen)) { 3790 if (Lex.getKind() != lltok::ComdatVar) 3791 return tokError("expected comdat variable"); 3792 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3793 Lex.Lex(); 3794 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3795 return true; 3796 } else { 3797 if (GlobalName.empty()) 3798 return tokError("comdat cannot be unnamed"); 3799 C = getComdat(std::string(GlobalName), KwLoc); 3800 } 3801 3802 return false; 3803 } 3804 3805 /// parseGlobalValueVector 3806 /// ::= /*empty*/ 3807 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3808 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3809 Optional<unsigned> *InRangeOp) { 3810 // Empty list. 3811 if (Lex.getKind() == lltok::rbrace || 3812 Lex.getKind() == lltok::rsquare || 3813 Lex.getKind() == lltok::greater || 3814 Lex.getKind() == lltok::rparen) 3815 return false; 3816 3817 do { 3818 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3819 *InRangeOp = Elts.size(); 3820 3821 Constant *C; 3822 if (parseGlobalTypeAndValue(C)) 3823 return true; 3824 Elts.push_back(C); 3825 } while (EatIfPresent(lltok::comma)); 3826 3827 return false; 3828 } 3829 3830 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 3831 SmallVector<Metadata *, 16> Elts; 3832 if (parseMDNodeVector(Elts)) 3833 return true; 3834 3835 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3836 return false; 3837 } 3838 3839 /// MDNode: 3840 /// ::= !{ ... } 3841 /// ::= !7 3842 /// ::= !DILocation(...) 3843 bool LLParser::parseMDNode(MDNode *&N) { 3844 if (Lex.getKind() == lltok::MetadataVar) 3845 return parseSpecializedMDNode(N); 3846 3847 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 3848 } 3849 3850 bool LLParser::parseMDNodeTail(MDNode *&N) { 3851 // !{ ... } 3852 if (Lex.getKind() == lltok::lbrace) 3853 return parseMDTuple(N); 3854 3855 // !42 3856 return parseMDNodeID(N); 3857 } 3858 3859 namespace { 3860 3861 /// Structure to represent an optional metadata field. 3862 template <class FieldTy> struct MDFieldImpl { 3863 typedef MDFieldImpl ImplTy; 3864 FieldTy Val; 3865 bool Seen; 3866 3867 void assign(FieldTy Val) { 3868 Seen = true; 3869 this->Val = std::move(Val); 3870 } 3871 3872 explicit MDFieldImpl(FieldTy Default) 3873 : Val(std::move(Default)), Seen(false) {} 3874 }; 3875 3876 /// Structure to represent an optional metadata field that 3877 /// can be of either type (A or B) and encapsulates the 3878 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3879 /// to reimplement the specifics for representing each Field. 3880 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3881 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3882 FieldTypeA A; 3883 FieldTypeB B; 3884 bool Seen; 3885 3886 enum { 3887 IsInvalid = 0, 3888 IsTypeA = 1, 3889 IsTypeB = 2 3890 } WhatIs; 3891 3892 void assign(FieldTypeA A) { 3893 Seen = true; 3894 this->A = std::move(A); 3895 WhatIs = IsTypeA; 3896 } 3897 3898 void assign(FieldTypeB B) { 3899 Seen = true; 3900 this->B = std::move(B); 3901 WhatIs = IsTypeB; 3902 } 3903 3904 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3905 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3906 WhatIs(IsInvalid) {} 3907 }; 3908 3909 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3910 uint64_t Max; 3911 3912 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3913 : ImplTy(Default), Max(Max) {} 3914 }; 3915 3916 struct LineField : public MDUnsignedField { 3917 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3918 }; 3919 3920 struct ColumnField : public MDUnsignedField { 3921 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3922 }; 3923 3924 struct DwarfTagField : public MDUnsignedField { 3925 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3926 DwarfTagField(dwarf::Tag DefaultTag) 3927 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3928 }; 3929 3930 struct DwarfMacinfoTypeField : public MDUnsignedField { 3931 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3932 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3933 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3934 }; 3935 3936 struct DwarfAttEncodingField : public MDUnsignedField { 3937 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3938 }; 3939 3940 struct DwarfVirtualityField : public MDUnsignedField { 3941 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3942 }; 3943 3944 struct DwarfLangField : public MDUnsignedField { 3945 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3946 }; 3947 3948 struct DwarfCCField : public MDUnsignedField { 3949 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3950 }; 3951 3952 struct EmissionKindField : public MDUnsignedField { 3953 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3954 }; 3955 3956 struct NameTableKindField : public MDUnsignedField { 3957 NameTableKindField() 3958 : MDUnsignedField( 3959 0, (unsigned) 3960 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3961 }; 3962 3963 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3964 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3965 }; 3966 3967 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3968 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3969 }; 3970 3971 struct MDAPSIntField : public MDFieldImpl<APSInt> { 3972 MDAPSIntField() : ImplTy(APSInt()) {} 3973 }; 3974 3975 struct MDSignedField : public MDFieldImpl<int64_t> { 3976 int64_t Min = INT64_MIN; 3977 int64_t Max = INT64_MAX; 3978 3979 MDSignedField(int64_t Default = 0) 3980 : ImplTy(Default) {} 3981 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3982 : ImplTy(Default), Min(Min), Max(Max) {} 3983 }; 3984 3985 struct MDBoolField : public MDFieldImpl<bool> { 3986 MDBoolField(bool Default = false) : ImplTy(Default) {} 3987 }; 3988 3989 struct MDField : public MDFieldImpl<Metadata *> { 3990 bool AllowNull; 3991 3992 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3993 }; 3994 3995 struct MDStringField : public MDFieldImpl<MDString *> { 3996 bool AllowEmpty; 3997 MDStringField(bool AllowEmpty = true) 3998 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3999 }; 4000 4001 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 4002 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 4003 }; 4004 4005 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 4006 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 4007 }; 4008 4009 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 4010 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 4011 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 4012 4013 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 4014 bool AllowNull = true) 4015 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 4016 4017 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4018 bool isMDField() const { return WhatIs == IsTypeB; } 4019 int64_t getMDSignedValue() const { 4020 assert(isMDSignedField() && "Wrong field type"); 4021 return A.Val; 4022 } 4023 Metadata *getMDFieldValue() const { 4024 assert(isMDField() && "Wrong field type"); 4025 return B.Val; 4026 } 4027 }; 4028 4029 } // end anonymous namespace 4030 4031 namespace llvm { 4032 4033 template <> 4034 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 4035 if (Lex.getKind() != lltok::APSInt) 4036 return tokError("expected integer"); 4037 4038 Result.assign(Lex.getAPSIntVal()); 4039 Lex.Lex(); 4040 return false; 4041 } 4042 4043 template <> 4044 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4045 MDUnsignedField &Result) { 4046 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4047 return tokError("expected unsigned integer"); 4048 4049 auto &U = Lex.getAPSIntVal(); 4050 if (U.ugt(Result.Max)) 4051 return tokError("value for '" + Name + "' too large, limit is " + 4052 Twine(Result.Max)); 4053 Result.assign(U.getZExtValue()); 4054 assert(Result.Val <= Result.Max && "Expected value in range"); 4055 Lex.Lex(); 4056 return false; 4057 } 4058 4059 template <> 4060 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4061 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4062 } 4063 template <> 4064 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4065 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4066 } 4067 4068 template <> 4069 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4070 if (Lex.getKind() == lltok::APSInt) 4071 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4072 4073 if (Lex.getKind() != lltok::DwarfTag) 4074 return tokError("expected DWARF tag"); 4075 4076 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4077 if (Tag == dwarf::DW_TAG_invalid) 4078 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4079 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4080 4081 Result.assign(Tag); 4082 Lex.Lex(); 4083 return false; 4084 } 4085 4086 template <> 4087 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4088 DwarfMacinfoTypeField &Result) { 4089 if (Lex.getKind() == lltok::APSInt) 4090 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4091 4092 if (Lex.getKind() != lltok::DwarfMacinfo) 4093 return tokError("expected DWARF macinfo type"); 4094 4095 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4096 if (Macinfo == dwarf::DW_MACINFO_invalid) 4097 return tokError("invalid DWARF macinfo type" + Twine(" '") + 4098 Lex.getStrVal() + "'"); 4099 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4100 4101 Result.assign(Macinfo); 4102 Lex.Lex(); 4103 return false; 4104 } 4105 4106 template <> 4107 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4108 DwarfVirtualityField &Result) { 4109 if (Lex.getKind() == lltok::APSInt) 4110 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4111 4112 if (Lex.getKind() != lltok::DwarfVirtuality) 4113 return tokError("expected DWARF virtuality code"); 4114 4115 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4116 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4117 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4118 Lex.getStrVal() + "'"); 4119 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4120 Result.assign(Virtuality); 4121 Lex.Lex(); 4122 return false; 4123 } 4124 4125 template <> 4126 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4127 if (Lex.getKind() == lltok::APSInt) 4128 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4129 4130 if (Lex.getKind() != lltok::DwarfLang) 4131 return tokError("expected DWARF language"); 4132 4133 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4134 if (!Lang) 4135 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4136 "'"); 4137 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4138 Result.assign(Lang); 4139 Lex.Lex(); 4140 return false; 4141 } 4142 4143 template <> 4144 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4145 if (Lex.getKind() == lltok::APSInt) 4146 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4147 4148 if (Lex.getKind() != lltok::DwarfCC) 4149 return tokError("expected DWARF calling convention"); 4150 4151 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4152 if (!CC) 4153 return tokError("invalid DWARF calling convention" + Twine(" '") + 4154 Lex.getStrVal() + "'"); 4155 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4156 Result.assign(CC); 4157 Lex.Lex(); 4158 return false; 4159 } 4160 4161 template <> 4162 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4163 EmissionKindField &Result) { 4164 if (Lex.getKind() == lltok::APSInt) 4165 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4166 4167 if (Lex.getKind() != lltok::EmissionKind) 4168 return tokError("expected emission kind"); 4169 4170 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4171 if (!Kind) 4172 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4173 "'"); 4174 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4175 Result.assign(*Kind); 4176 Lex.Lex(); 4177 return false; 4178 } 4179 4180 template <> 4181 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4182 NameTableKindField &Result) { 4183 if (Lex.getKind() == lltok::APSInt) 4184 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4185 4186 if (Lex.getKind() != lltok::NameTableKind) 4187 return tokError("expected nameTable kind"); 4188 4189 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4190 if (!Kind) 4191 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4192 "'"); 4193 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4194 Result.assign((unsigned)*Kind); 4195 Lex.Lex(); 4196 return false; 4197 } 4198 4199 template <> 4200 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4201 DwarfAttEncodingField &Result) { 4202 if (Lex.getKind() == lltok::APSInt) 4203 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4204 4205 if (Lex.getKind() != lltok::DwarfAttEncoding) 4206 return tokError("expected DWARF type attribute encoding"); 4207 4208 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4209 if (!Encoding) 4210 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4211 Lex.getStrVal() + "'"); 4212 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4213 Result.assign(Encoding); 4214 Lex.Lex(); 4215 return false; 4216 } 4217 4218 /// DIFlagField 4219 /// ::= uint32 4220 /// ::= DIFlagVector 4221 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4222 template <> 4223 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4224 4225 // parser for a single flag. 4226 auto parseFlag = [&](DINode::DIFlags &Val) { 4227 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4228 uint32_t TempVal = static_cast<uint32_t>(Val); 4229 bool Res = parseUInt32(TempVal); 4230 Val = static_cast<DINode::DIFlags>(TempVal); 4231 return Res; 4232 } 4233 4234 if (Lex.getKind() != lltok::DIFlag) 4235 return tokError("expected debug info flag"); 4236 4237 Val = DINode::getFlag(Lex.getStrVal()); 4238 if (!Val) 4239 return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() + 4240 "'"); 4241 Lex.Lex(); 4242 return false; 4243 }; 4244 4245 // parse the flags and combine them together. 4246 DINode::DIFlags Combined = DINode::FlagZero; 4247 do { 4248 DINode::DIFlags Val; 4249 if (parseFlag(Val)) 4250 return true; 4251 Combined |= Val; 4252 } while (EatIfPresent(lltok::bar)); 4253 4254 Result.assign(Combined); 4255 return false; 4256 } 4257 4258 /// DISPFlagField 4259 /// ::= uint32 4260 /// ::= DISPFlagVector 4261 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4262 template <> 4263 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4264 4265 // parser for a single flag. 4266 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4267 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4268 uint32_t TempVal = static_cast<uint32_t>(Val); 4269 bool Res = parseUInt32(TempVal); 4270 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4271 return Res; 4272 } 4273 4274 if (Lex.getKind() != lltok::DISPFlag) 4275 return tokError("expected debug info flag"); 4276 4277 Val = DISubprogram::getFlag(Lex.getStrVal()); 4278 if (!Val) 4279 return tokError(Twine("invalid subprogram debug info flag '") + 4280 Lex.getStrVal() + "'"); 4281 Lex.Lex(); 4282 return false; 4283 }; 4284 4285 // parse the flags and combine them together. 4286 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4287 do { 4288 DISubprogram::DISPFlags Val; 4289 if (parseFlag(Val)) 4290 return true; 4291 Combined |= Val; 4292 } while (EatIfPresent(lltok::bar)); 4293 4294 Result.assign(Combined); 4295 return false; 4296 } 4297 4298 template <> 4299 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4300 if (Lex.getKind() != lltok::APSInt) 4301 return tokError("expected signed integer"); 4302 4303 auto &S = Lex.getAPSIntVal(); 4304 if (S < Result.Min) 4305 return tokError("value for '" + Name + "' too small, limit is " + 4306 Twine(Result.Min)); 4307 if (S > Result.Max) 4308 return tokError("value for '" + Name + "' too large, limit is " + 4309 Twine(Result.Max)); 4310 Result.assign(S.getExtValue()); 4311 assert(Result.Val >= Result.Min && "Expected value in range"); 4312 assert(Result.Val <= Result.Max && "Expected value in range"); 4313 Lex.Lex(); 4314 return false; 4315 } 4316 4317 template <> 4318 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4319 switch (Lex.getKind()) { 4320 default: 4321 return tokError("expected 'true' or 'false'"); 4322 case lltok::kw_true: 4323 Result.assign(true); 4324 break; 4325 case lltok::kw_false: 4326 Result.assign(false); 4327 break; 4328 } 4329 Lex.Lex(); 4330 return false; 4331 } 4332 4333 template <> 4334 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4335 if (Lex.getKind() == lltok::kw_null) { 4336 if (!Result.AllowNull) 4337 return tokError("'" + Name + "' cannot be null"); 4338 Lex.Lex(); 4339 Result.assign(nullptr); 4340 return false; 4341 } 4342 4343 Metadata *MD; 4344 if (parseMetadata(MD, nullptr)) 4345 return true; 4346 4347 Result.assign(MD); 4348 return false; 4349 } 4350 4351 template <> 4352 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4353 MDSignedOrMDField &Result) { 4354 // Try to parse a signed int. 4355 if (Lex.getKind() == lltok::APSInt) { 4356 MDSignedField Res = Result.A; 4357 if (!parseMDField(Loc, Name, Res)) { 4358 Result.assign(Res); 4359 return false; 4360 } 4361 return true; 4362 } 4363 4364 // Otherwise, try to parse as an MDField. 4365 MDField Res = Result.B; 4366 if (!parseMDField(Loc, Name, Res)) { 4367 Result.assign(Res); 4368 return false; 4369 } 4370 4371 return true; 4372 } 4373 4374 template <> 4375 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4376 LocTy ValueLoc = Lex.getLoc(); 4377 std::string S; 4378 if (parseStringConstant(S)) 4379 return true; 4380 4381 if (!Result.AllowEmpty && S.empty()) 4382 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4383 4384 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4385 return false; 4386 } 4387 4388 template <> 4389 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4390 SmallVector<Metadata *, 4> MDs; 4391 if (parseMDNodeVector(MDs)) 4392 return true; 4393 4394 Result.assign(std::move(MDs)); 4395 return false; 4396 } 4397 4398 template <> 4399 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4400 ChecksumKindField &Result) { 4401 Optional<DIFile::ChecksumKind> CSKind = 4402 DIFile::getChecksumKind(Lex.getStrVal()); 4403 4404 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4405 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4406 "'"); 4407 4408 Result.assign(*CSKind); 4409 Lex.Lex(); 4410 return false; 4411 } 4412 4413 } // end namespace llvm 4414 4415 template <class ParserTy> 4416 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4417 do { 4418 if (Lex.getKind() != lltok::LabelStr) 4419 return tokError("expected field label here"); 4420 4421 if (ParseField()) 4422 return true; 4423 } while (EatIfPresent(lltok::comma)); 4424 4425 return false; 4426 } 4427 4428 template <class ParserTy> 4429 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4430 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4431 Lex.Lex(); 4432 4433 if (parseToken(lltok::lparen, "expected '(' here")) 4434 return true; 4435 if (Lex.getKind() != lltok::rparen) 4436 if (parseMDFieldsImplBody(ParseField)) 4437 return true; 4438 4439 ClosingLoc = Lex.getLoc(); 4440 return parseToken(lltok::rparen, "expected ')' here"); 4441 } 4442 4443 template <class FieldTy> 4444 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4445 if (Result.Seen) 4446 return tokError("field '" + Name + "' cannot be specified more than once"); 4447 4448 LocTy Loc = Lex.getLoc(); 4449 Lex.Lex(); 4450 return parseMDField(Loc, Name, Result); 4451 } 4452 4453 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4454 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4455 4456 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4457 if (Lex.getStrVal() == #CLASS) \ 4458 return parse##CLASS(N, IsDistinct); 4459 #include "llvm/IR/Metadata.def" 4460 4461 return tokError("expected metadata type"); 4462 } 4463 4464 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4465 #define NOP_FIELD(NAME, TYPE, INIT) 4466 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4467 if (!NAME.Seen) \ 4468 return error(ClosingLoc, "missing required field '" #NAME "'"); 4469 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4470 if (Lex.getStrVal() == #NAME) \ 4471 return parseMDField(#NAME, NAME); 4472 #define PARSE_MD_FIELDS() \ 4473 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4474 do { \ 4475 LocTy ClosingLoc; \ 4476 if (parseMDFieldsImpl( \ 4477 [&]() -> bool { \ 4478 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4479 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4480 "'"); \ 4481 }, \ 4482 ClosingLoc)) \ 4483 return true; \ 4484 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4485 } while (false) 4486 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4487 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4488 4489 /// parseDILocationFields: 4490 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4491 /// isImplicitCode: true) 4492 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4493 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4494 OPTIONAL(line, LineField, ); \ 4495 OPTIONAL(column, ColumnField, ); \ 4496 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4497 OPTIONAL(inlinedAt, MDField, ); \ 4498 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4499 PARSE_MD_FIELDS(); 4500 #undef VISIT_MD_FIELDS 4501 4502 Result = 4503 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4504 inlinedAt.Val, isImplicitCode.Val)); 4505 return false; 4506 } 4507 4508 /// parseGenericDINode: 4509 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4510 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4511 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4512 REQUIRED(tag, DwarfTagField, ); \ 4513 OPTIONAL(header, MDStringField, ); \ 4514 OPTIONAL(operands, MDFieldList, ); 4515 PARSE_MD_FIELDS(); 4516 #undef VISIT_MD_FIELDS 4517 4518 Result = GET_OR_DISTINCT(GenericDINode, 4519 (Context, tag.Val, header.Val, operands.Val)); 4520 return false; 4521 } 4522 4523 /// parseDISubrange: 4524 /// ::= !DISubrange(count: 30, lowerBound: 2) 4525 /// ::= !DISubrange(count: !node, lowerBound: 2) 4526 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4527 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4528 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4529 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4530 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4531 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4532 OPTIONAL(stride, MDSignedOrMDField, ); 4533 PARSE_MD_FIELDS(); 4534 #undef VISIT_MD_FIELDS 4535 4536 Metadata *Count = nullptr; 4537 Metadata *LowerBound = nullptr; 4538 Metadata *UpperBound = nullptr; 4539 Metadata *Stride = nullptr; 4540 4541 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4542 if (Bound.isMDSignedField()) 4543 return ConstantAsMetadata::get(ConstantInt::getSigned( 4544 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4545 if (Bound.isMDField()) 4546 return Bound.getMDFieldValue(); 4547 return nullptr; 4548 }; 4549 4550 Count = convToMetadata(count); 4551 LowerBound = convToMetadata(lowerBound); 4552 UpperBound = convToMetadata(upperBound); 4553 Stride = convToMetadata(stride); 4554 4555 Result = GET_OR_DISTINCT(DISubrange, 4556 (Context, Count, LowerBound, UpperBound, Stride)); 4557 4558 return false; 4559 } 4560 4561 /// parseDIGenericSubrange: 4562 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4563 /// !node3) 4564 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4565 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4566 OPTIONAL(count, MDSignedOrMDField, ); \ 4567 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4568 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4569 OPTIONAL(stride, MDSignedOrMDField, ); 4570 PARSE_MD_FIELDS(); 4571 #undef VISIT_MD_FIELDS 4572 4573 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4574 if (Bound.isMDSignedField()) 4575 return DIExpression::get( 4576 Context, {dwarf::DW_OP_consts, 4577 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4578 if (Bound.isMDField()) 4579 return Bound.getMDFieldValue(); 4580 return nullptr; 4581 }; 4582 4583 Metadata *Count = ConvToMetadata(count); 4584 Metadata *LowerBound = ConvToMetadata(lowerBound); 4585 Metadata *UpperBound = ConvToMetadata(upperBound); 4586 Metadata *Stride = ConvToMetadata(stride); 4587 4588 Result = GET_OR_DISTINCT(DIGenericSubrange, 4589 (Context, Count, LowerBound, UpperBound, Stride)); 4590 4591 return false; 4592 } 4593 4594 /// parseDIEnumerator: 4595 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4596 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4597 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4598 REQUIRED(name, MDStringField, ); \ 4599 REQUIRED(value, MDAPSIntField, ); \ 4600 OPTIONAL(isUnsigned, MDBoolField, (false)); 4601 PARSE_MD_FIELDS(); 4602 #undef VISIT_MD_FIELDS 4603 4604 if (isUnsigned.Val && value.Val.isNegative()) 4605 return tokError("unsigned enumerator with negative value"); 4606 4607 APSInt Value(value.Val); 4608 // Add a leading zero so that unsigned values with the msb set are not 4609 // mistaken for negative values when used for signed enumerators. 4610 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4611 Value = Value.zext(Value.getBitWidth() + 1); 4612 4613 Result = 4614 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4615 4616 return false; 4617 } 4618 4619 /// parseDIBasicType: 4620 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4621 /// encoding: DW_ATE_encoding, flags: 0) 4622 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4623 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4624 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4625 OPTIONAL(name, MDStringField, ); \ 4626 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4627 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4628 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4629 OPTIONAL(flags, DIFlagField, ); 4630 PARSE_MD_FIELDS(); 4631 #undef VISIT_MD_FIELDS 4632 4633 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4634 align.Val, encoding.Val, flags.Val)); 4635 return false; 4636 } 4637 4638 /// parseDIStringType: 4639 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4640 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4641 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4642 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4643 OPTIONAL(name, MDStringField, ); \ 4644 OPTIONAL(stringLength, MDField, ); \ 4645 OPTIONAL(stringLengthExpression, MDField, ); \ 4646 OPTIONAL(stringLocationExpression, MDField, ); \ 4647 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4648 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4649 OPTIONAL(encoding, DwarfAttEncodingField, ); 4650 PARSE_MD_FIELDS(); 4651 #undef VISIT_MD_FIELDS 4652 4653 Result = GET_OR_DISTINCT( 4654 DIStringType, 4655 (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val, 4656 stringLocationExpression.Val, size.Val, align.Val, encoding.Val)); 4657 return false; 4658 } 4659 4660 /// parseDIDerivedType: 4661 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4662 /// line: 7, scope: !1, baseType: !2, size: 32, 4663 /// align: 32, offset: 0, flags: 0, extraData: !3, 4664 /// dwarfAddressSpace: 3) 4665 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4666 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4667 REQUIRED(tag, DwarfTagField, ); \ 4668 OPTIONAL(name, MDStringField, ); \ 4669 OPTIONAL(file, MDField, ); \ 4670 OPTIONAL(line, LineField, ); \ 4671 OPTIONAL(scope, MDField, ); \ 4672 REQUIRED(baseType, MDField, ); \ 4673 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4674 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4675 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4676 OPTIONAL(flags, DIFlagField, ); \ 4677 OPTIONAL(extraData, MDField, ); \ 4678 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); \ 4679 OPTIONAL(annotations, MDField, ); 4680 PARSE_MD_FIELDS(); 4681 #undef VISIT_MD_FIELDS 4682 4683 Optional<unsigned> DWARFAddressSpace; 4684 if (dwarfAddressSpace.Val != UINT32_MAX) 4685 DWARFAddressSpace = dwarfAddressSpace.Val; 4686 4687 Result = GET_OR_DISTINCT(DIDerivedType, 4688 (Context, tag.Val, name.Val, file.Val, line.Val, 4689 scope.Val, baseType.Val, size.Val, align.Val, 4690 offset.Val, DWARFAddressSpace, flags.Val, 4691 extraData.Val, annotations.Val)); 4692 return false; 4693 } 4694 4695 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4696 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4697 REQUIRED(tag, DwarfTagField, ); \ 4698 OPTIONAL(name, MDStringField, ); \ 4699 OPTIONAL(file, MDField, ); \ 4700 OPTIONAL(line, LineField, ); \ 4701 OPTIONAL(scope, MDField, ); \ 4702 OPTIONAL(baseType, MDField, ); \ 4703 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4704 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4705 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4706 OPTIONAL(flags, DIFlagField, ); \ 4707 OPTIONAL(elements, MDField, ); \ 4708 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4709 OPTIONAL(vtableHolder, MDField, ); \ 4710 OPTIONAL(templateParams, MDField, ); \ 4711 OPTIONAL(identifier, MDStringField, ); \ 4712 OPTIONAL(discriminator, MDField, ); \ 4713 OPTIONAL(dataLocation, MDField, ); \ 4714 OPTIONAL(associated, MDField, ); \ 4715 OPTIONAL(allocated, MDField, ); \ 4716 OPTIONAL(rank, MDSignedOrMDField, ); \ 4717 OPTIONAL(annotations, MDField, ); 4718 PARSE_MD_FIELDS(); 4719 #undef VISIT_MD_FIELDS 4720 4721 Metadata *Rank = nullptr; 4722 if (rank.isMDSignedField()) 4723 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4724 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4725 else if (rank.isMDField()) 4726 Rank = rank.getMDFieldValue(); 4727 4728 // If this has an identifier try to build an ODR type. 4729 if (identifier.Val) 4730 if (auto *CT = DICompositeType::buildODRType( 4731 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4732 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4733 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4734 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4735 Rank, annotations.Val)) { 4736 Result = CT; 4737 return false; 4738 } 4739 4740 // Create a new node, and save it in the context if it belongs in the type 4741 // map. 4742 Result = GET_OR_DISTINCT( 4743 DICompositeType, 4744 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4745 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4746 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4747 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank, 4748 annotations.Val)); 4749 return false; 4750 } 4751 4752 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4753 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4754 OPTIONAL(flags, DIFlagField, ); \ 4755 OPTIONAL(cc, DwarfCCField, ); \ 4756 REQUIRED(types, MDField, ); 4757 PARSE_MD_FIELDS(); 4758 #undef VISIT_MD_FIELDS 4759 4760 Result = GET_OR_DISTINCT(DISubroutineType, 4761 (Context, flags.Val, cc.Val, types.Val)); 4762 return false; 4763 } 4764 4765 /// parseDIFileType: 4766 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4767 /// checksumkind: CSK_MD5, 4768 /// checksum: "000102030405060708090a0b0c0d0e0f", 4769 /// source: "source file contents") 4770 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4771 // The default constructed value for checksumkind is required, but will never 4772 // be used, as the parser checks if the field was actually Seen before using 4773 // the Val. 4774 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4775 REQUIRED(filename, MDStringField, ); \ 4776 REQUIRED(directory, MDStringField, ); \ 4777 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4778 OPTIONAL(checksum, MDStringField, ); \ 4779 OPTIONAL(source, MDStringField, ); 4780 PARSE_MD_FIELDS(); 4781 #undef VISIT_MD_FIELDS 4782 4783 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4784 if (checksumkind.Seen && checksum.Seen) 4785 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4786 else if (checksumkind.Seen || checksum.Seen) 4787 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4788 4789 Optional<MDString *> OptSource; 4790 if (source.Seen) 4791 OptSource = source.Val; 4792 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4793 OptChecksum, OptSource)); 4794 return false; 4795 } 4796 4797 /// parseDICompileUnit: 4798 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4799 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4800 /// splitDebugFilename: "abc.debug", 4801 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4802 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 4803 /// sysroot: "/", sdk: "MacOSX.sdk") 4804 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4805 if (!IsDistinct) 4806 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4807 4808 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4809 REQUIRED(language, DwarfLangField, ); \ 4810 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4811 OPTIONAL(producer, MDStringField, ); \ 4812 OPTIONAL(isOptimized, MDBoolField, ); \ 4813 OPTIONAL(flags, MDStringField, ); \ 4814 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4815 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4816 OPTIONAL(emissionKind, EmissionKindField, ); \ 4817 OPTIONAL(enums, MDField, ); \ 4818 OPTIONAL(retainedTypes, MDField, ); \ 4819 OPTIONAL(globals, MDField, ); \ 4820 OPTIONAL(imports, MDField, ); \ 4821 OPTIONAL(macros, MDField, ); \ 4822 OPTIONAL(dwoId, MDUnsignedField, ); \ 4823 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4824 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4825 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4826 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 4827 OPTIONAL(sysroot, MDStringField, ); \ 4828 OPTIONAL(sdk, MDStringField, ); 4829 PARSE_MD_FIELDS(); 4830 #undef VISIT_MD_FIELDS 4831 4832 Result = DICompileUnit::getDistinct( 4833 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4834 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4835 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4836 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4837 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 4838 return false; 4839 } 4840 4841 /// parseDISubprogram: 4842 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4843 /// file: !1, line: 7, type: !2, isLocal: false, 4844 /// isDefinition: true, scopeLine: 8, containingType: !3, 4845 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4846 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4847 /// spFlags: 10, isOptimized: false, templateParams: !4, 4848 /// declaration: !5, retainedNodes: !6, thrownTypes: !7, 4849 /// annotations: !8) 4850 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 4851 auto Loc = Lex.getLoc(); 4852 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4853 OPTIONAL(scope, MDField, ); \ 4854 OPTIONAL(name, MDStringField, ); \ 4855 OPTIONAL(linkageName, MDStringField, ); \ 4856 OPTIONAL(file, MDField, ); \ 4857 OPTIONAL(line, LineField, ); \ 4858 OPTIONAL(type, MDField, ); \ 4859 OPTIONAL(isLocal, MDBoolField, ); \ 4860 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4861 OPTIONAL(scopeLine, LineField, ); \ 4862 OPTIONAL(containingType, MDField, ); \ 4863 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4864 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4865 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4866 OPTIONAL(flags, DIFlagField, ); \ 4867 OPTIONAL(spFlags, DISPFlagField, ); \ 4868 OPTIONAL(isOptimized, MDBoolField, ); \ 4869 OPTIONAL(unit, MDField, ); \ 4870 OPTIONAL(templateParams, MDField, ); \ 4871 OPTIONAL(declaration, MDField, ); \ 4872 OPTIONAL(retainedNodes, MDField, ); \ 4873 OPTIONAL(thrownTypes, MDField, ); \ 4874 OPTIONAL(annotations, MDField, ); \ 4875 OPTIONAL(targetFuncName, MDStringField, ); 4876 PARSE_MD_FIELDS(); 4877 #undef VISIT_MD_FIELDS 4878 4879 // An explicit spFlags field takes precedence over individual fields in 4880 // older IR versions. 4881 DISubprogram::DISPFlags SPFlags = 4882 spFlags.Seen ? spFlags.Val 4883 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4884 isOptimized.Val, virtuality.Val); 4885 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4886 return Lex.Error( 4887 Loc, 4888 "missing 'distinct', required for !DISubprogram that is a Definition"); 4889 Result = GET_OR_DISTINCT( 4890 DISubprogram, 4891 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4892 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4893 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4894 declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val, 4895 targetFuncName.Val)); 4896 return false; 4897 } 4898 4899 /// parseDILexicalBlock: 4900 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4901 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4902 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4903 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4904 OPTIONAL(file, MDField, ); \ 4905 OPTIONAL(line, LineField, ); \ 4906 OPTIONAL(column, ColumnField, ); 4907 PARSE_MD_FIELDS(); 4908 #undef VISIT_MD_FIELDS 4909 4910 Result = GET_OR_DISTINCT( 4911 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4912 return false; 4913 } 4914 4915 /// parseDILexicalBlockFile: 4916 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4917 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4918 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4919 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4920 OPTIONAL(file, MDField, ); \ 4921 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4922 PARSE_MD_FIELDS(); 4923 #undef VISIT_MD_FIELDS 4924 4925 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4926 (Context, scope.Val, file.Val, discriminator.Val)); 4927 return false; 4928 } 4929 4930 /// parseDICommonBlock: 4931 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4932 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4933 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4934 REQUIRED(scope, MDField, ); \ 4935 OPTIONAL(declaration, MDField, ); \ 4936 OPTIONAL(name, MDStringField, ); \ 4937 OPTIONAL(file, MDField, ); \ 4938 OPTIONAL(line, LineField, ); 4939 PARSE_MD_FIELDS(); 4940 #undef VISIT_MD_FIELDS 4941 4942 Result = GET_OR_DISTINCT(DICommonBlock, 4943 (Context, scope.Val, declaration.Val, name.Val, 4944 file.Val, line.Val)); 4945 return false; 4946 } 4947 4948 /// parseDINamespace: 4949 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4950 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 4951 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4952 REQUIRED(scope, MDField, ); \ 4953 OPTIONAL(name, MDStringField, ); \ 4954 OPTIONAL(exportSymbols, MDBoolField, ); 4955 PARSE_MD_FIELDS(); 4956 #undef VISIT_MD_FIELDS 4957 4958 Result = GET_OR_DISTINCT(DINamespace, 4959 (Context, scope.Val, name.Val, exportSymbols.Val)); 4960 return false; 4961 } 4962 4963 /// parseDIMacro: 4964 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 4965 /// "SomeValue") 4966 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 4967 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4968 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4969 OPTIONAL(line, LineField, ); \ 4970 REQUIRED(name, MDStringField, ); \ 4971 OPTIONAL(value, MDStringField, ); 4972 PARSE_MD_FIELDS(); 4973 #undef VISIT_MD_FIELDS 4974 4975 Result = GET_OR_DISTINCT(DIMacro, 4976 (Context, type.Val, line.Val, name.Val, value.Val)); 4977 return false; 4978 } 4979 4980 /// parseDIMacroFile: 4981 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4982 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4983 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4984 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4985 OPTIONAL(line, LineField, ); \ 4986 REQUIRED(file, MDField, ); \ 4987 OPTIONAL(nodes, MDField, ); 4988 PARSE_MD_FIELDS(); 4989 #undef VISIT_MD_FIELDS 4990 4991 Result = GET_OR_DISTINCT(DIMacroFile, 4992 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4993 return false; 4994 } 4995 4996 /// parseDIModule: 4997 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 4998 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 4999 /// file: !1, line: 4, isDecl: false) 5000 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 5001 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5002 REQUIRED(scope, MDField, ); \ 5003 REQUIRED(name, MDStringField, ); \ 5004 OPTIONAL(configMacros, MDStringField, ); \ 5005 OPTIONAL(includePath, MDStringField, ); \ 5006 OPTIONAL(apinotes, MDStringField, ); \ 5007 OPTIONAL(file, MDField, ); \ 5008 OPTIONAL(line, LineField, ); \ 5009 OPTIONAL(isDecl, MDBoolField, ); 5010 PARSE_MD_FIELDS(); 5011 #undef VISIT_MD_FIELDS 5012 5013 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 5014 configMacros.Val, includePath.Val, 5015 apinotes.Val, line.Val, isDecl.Val)); 5016 return false; 5017 } 5018 5019 /// parseDITemplateTypeParameter: 5020 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 5021 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 5022 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5023 OPTIONAL(name, MDStringField, ); \ 5024 REQUIRED(type, MDField, ); \ 5025 OPTIONAL(defaulted, MDBoolField, ); 5026 PARSE_MD_FIELDS(); 5027 #undef VISIT_MD_FIELDS 5028 5029 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 5030 (Context, name.Val, type.Val, defaulted.Val)); 5031 return false; 5032 } 5033 5034 /// parseDITemplateValueParameter: 5035 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 5036 /// name: "V", type: !1, defaulted: false, 5037 /// value: i32 7) 5038 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 5039 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5040 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 5041 OPTIONAL(name, MDStringField, ); \ 5042 OPTIONAL(type, MDField, ); \ 5043 OPTIONAL(defaulted, MDBoolField, ); \ 5044 REQUIRED(value, MDField, ); 5045 5046 PARSE_MD_FIELDS(); 5047 #undef VISIT_MD_FIELDS 5048 5049 Result = GET_OR_DISTINCT( 5050 DITemplateValueParameter, 5051 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 5052 return false; 5053 } 5054 5055 /// parseDIGlobalVariable: 5056 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 5057 /// file: !1, line: 7, type: !2, isLocal: false, 5058 /// isDefinition: true, templateParams: !3, 5059 /// declaration: !4, align: 8) 5060 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 5061 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5062 OPTIONAL(name, MDStringField, (/* AllowEmpty */ false)); \ 5063 OPTIONAL(scope, MDField, ); \ 5064 OPTIONAL(linkageName, MDStringField, ); \ 5065 OPTIONAL(file, MDField, ); \ 5066 OPTIONAL(line, LineField, ); \ 5067 OPTIONAL(type, MDField, ); \ 5068 OPTIONAL(isLocal, MDBoolField, ); \ 5069 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5070 OPTIONAL(templateParams, MDField, ); \ 5071 OPTIONAL(declaration, MDField, ); \ 5072 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5073 OPTIONAL(annotations, MDField, ); 5074 PARSE_MD_FIELDS(); 5075 #undef VISIT_MD_FIELDS 5076 5077 Result = 5078 GET_OR_DISTINCT(DIGlobalVariable, 5079 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 5080 line.Val, type.Val, isLocal.Val, isDefinition.Val, 5081 declaration.Val, templateParams.Val, align.Val, 5082 annotations.Val)); 5083 return false; 5084 } 5085 5086 /// parseDILocalVariable: 5087 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 5088 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5089 /// align: 8) 5090 /// ::= !DILocalVariable(scope: !0, name: "foo", 5091 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5092 /// align: 8) 5093 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5094 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5095 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5096 OPTIONAL(name, MDStringField, ); \ 5097 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5098 OPTIONAL(file, MDField, ); \ 5099 OPTIONAL(line, LineField, ); \ 5100 OPTIONAL(type, MDField, ); \ 5101 OPTIONAL(flags, DIFlagField, ); \ 5102 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5103 OPTIONAL(annotations, MDField, ); 5104 PARSE_MD_FIELDS(); 5105 #undef VISIT_MD_FIELDS 5106 5107 Result = GET_OR_DISTINCT(DILocalVariable, 5108 (Context, scope.Val, name.Val, file.Val, line.Val, 5109 type.Val, arg.Val, flags.Val, align.Val, 5110 annotations.Val)); 5111 return false; 5112 } 5113 5114 /// parseDILabel: 5115 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5116 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5117 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5118 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5119 REQUIRED(name, MDStringField, ); \ 5120 REQUIRED(file, MDField, ); \ 5121 REQUIRED(line, LineField, ); 5122 PARSE_MD_FIELDS(); 5123 #undef VISIT_MD_FIELDS 5124 5125 Result = GET_OR_DISTINCT(DILabel, 5126 (Context, scope.Val, name.Val, file.Val, line.Val)); 5127 return false; 5128 } 5129 5130 /// parseDIExpression: 5131 /// ::= !DIExpression(0, 7, -1) 5132 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5133 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5134 Lex.Lex(); 5135 5136 if (parseToken(lltok::lparen, "expected '(' here")) 5137 return true; 5138 5139 SmallVector<uint64_t, 8> Elements; 5140 if (Lex.getKind() != lltok::rparen) 5141 do { 5142 if (Lex.getKind() == lltok::DwarfOp) { 5143 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5144 Lex.Lex(); 5145 Elements.push_back(Op); 5146 continue; 5147 } 5148 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5149 } 5150 5151 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5152 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5153 Lex.Lex(); 5154 Elements.push_back(Op); 5155 continue; 5156 } 5157 return tokError(Twine("invalid DWARF attribute encoding '") + 5158 Lex.getStrVal() + "'"); 5159 } 5160 5161 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5162 return tokError("expected unsigned integer"); 5163 5164 auto &U = Lex.getAPSIntVal(); 5165 if (U.ugt(UINT64_MAX)) 5166 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5167 Elements.push_back(U.getZExtValue()); 5168 Lex.Lex(); 5169 } while (EatIfPresent(lltok::comma)); 5170 5171 if (parseToken(lltok::rparen, "expected ')' here")) 5172 return true; 5173 5174 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5175 return false; 5176 } 5177 5178 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) { 5179 return parseDIArgList(Result, IsDistinct, nullptr); 5180 } 5181 /// ParseDIArgList: 5182 /// ::= !DIArgList(i32 7, i64 %0) 5183 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct, 5184 PerFunctionState *PFS) { 5185 assert(PFS && "Expected valid function state"); 5186 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5187 Lex.Lex(); 5188 5189 if (parseToken(lltok::lparen, "expected '(' here")) 5190 return true; 5191 5192 SmallVector<ValueAsMetadata *, 4> Args; 5193 if (Lex.getKind() != lltok::rparen) 5194 do { 5195 Metadata *MD; 5196 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5197 return true; 5198 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5199 } while (EatIfPresent(lltok::comma)); 5200 5201 if (parseToken(lltok::rparen, "expected ')' here")) 5202 return true; 5203 5204 Result = GET_OR_DISTINCT(DIArgList, (Context, Args)); 5205 return false; 5206 } 5207 5208 /// parseDIGlobalVariableExpression: 5209 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5210 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5211 bool IsDistinct) { 5212 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5213 REQUIRED(var, MDField, ); \ 5214 REQUIRED(expr, MDField, ); 5215 PARSE_MD_FIELDS(); 5216 #undef VISIT_MD_FIELDS 5217 5218 Result = 5219 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5220 return false; 5221 } 5222 5223 /// parseDIObjCProperty: 5224 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5225 /// getter: "getFoo", attributes: 7, type: !2) 5226 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5227 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5228 OPTIONAL(name, MDStringField, ); \ 5229 OPTIONAL(file, MDField, ); \ 5230 OPTIONAL(line, LineField, ); \ 5231 OPTIONAL(setter, MDStringField, ); \ 5232 OPTIONAL(getter, MDStringField, ); \ 5233 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5234 OPTIONAL(type, MDField, ); 5235 PARSE_MD_FIELDS(); 5236 #undef VISIT_MD_FIELDS 5237 5238 Result = GET_OR_DISTINCT(DIObjCProperty, 5239 (Context, name.Val, file.Val, line.Val, setter.Val, 5240 getter.Val, attributes.Val, type.Val)); 5241 return false; 5242 } 5243 5244 /// parseDIImportedEntity: 5245 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5246 /// line: 7, name: "foo", elements: !2) 5247 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5248 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5249 REQUIRED(tag, DwarfTagField, ); \ 5250 REQUIRED(scope, MDField, ); \ 5251 OPTIONAL(entity, MDField, ); \ 5252 OPTIONAL(file, MDField, ); \ 5253 OPTIONAL(line, LineField, ); \ 5254 OPTIONAL(name, MDStringField, ); \ 5255 OPTIONAL(elements, MDField, ); 5256 PARSE_MD_FIELDS(); 5257 #undef VISIT_MD_FIELDS 5258 5259 Result = GET_OR_DISTINCT(DIImportedEntity, 5260 (Context, tag.Val, scope.Val, entity.Val, file.Val, 5261 line.Val, name.Val, elements.Val)); 5262 return false; 5263 } 5264 5265 #undef PARSE_MD_FIELD 5266 #undef NOP_FIELD 5267 #undef REQUIRE_FIELD 5268 #undef DECLARE_FIELD 5269 5270 /// parseMetadataAsValue 5271 /// ::= metadata i32 %local 5272 /// ::= metadata i32 @global 5273 /// ::= metadata i32 7 5274 /// ::= metadata !0 5275 /// ::= metadata !{...} 5276 /// ::= metadata !"string" 5277 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5278 // Note: the type 'metadata' has already been parsed. 5279 Metadata *MD; 5280 if (parseMetadata(MD, &PFS)) 5281 return true; 5282 5283 V = MetadataAsValue::get(Context, MD); 5284 return false; 5285 } 5286 5287 /// parseValueAsMetadata 5288 /// ::= i32 %local 5289 /// ::= i32 @global 5290 /// ::= i32 7 5291 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5292 PerFunctionState *PFS) { 5293 Type *Ty; 5294 LocTy Loc; 5295 if (parseType(Ty, TypeMsg, Loc)) 5296 return true; 5297 if (Ty->isMetadataTy()) 5298 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5299 5300 Value *V; 5301 if (parseValue(Ty, V, PFS)) 5302 return true; 5303 5304 MD = ValueAsMetadata::get(V); 5305 return false; 5306 } 5307 5308 /// parseMetadata 5309 /// ::= i32 %local 5310 /// ::= i32 @global 5311 /// ::= i32 7 5312 /// ::= !42 5313 /// ::= !{...} 5314 /// ::= !"string" 5315 /// ::= !DILocation(...) 5316 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5317 if (Lex.getKind() == lltok::MetadataVar) { 5318 MDNode *N; 5319 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5320 // so parsing this requires a Function State. 5321 if (Lex.getStrVal() == "DIArgList") { 5322 if (parseDIArgList(N, false, PFS)) 5323 return true; 5324 } else if (parseSpecializedMDNode(N)) { 5325 return true; 5326 } 5327 MD = N; 5328 return false; 5329 } 5330 5331 // ValueAsMetadata: 5332 // <type> <value> 5333 if (Lex.getKind() != lltok::exclaim) 5334 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5335 5336 // '!'. 5337 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5338 Lex.Lex(); 5339 5340 // MDString: 5341 // ::= '!' STRINGCONSTANT 5342 if (Lex.getKind() == lltok::StringConstant) { 5343 MDString *S; 5344 if (parseMDString(S)) 5345 return true; 5346 MD = S; 5347 return false; 5348 } 5349 5350 // MDNode: 5351 // !{ ... } 5352 // !7 5353 MDNode *N; 5354 if (parseMDNodeTail(N)) 5355 return true; 5356 MD = N; 5357 return false; 5358 } 5359 5360 //===----------------------------------------------------------------------===// 5361 // Function Parsing. 5362 //===----------------------------------------------------------------------===// 5363 5364 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5365 PerFunctionState *PFS) { 5366 if (Ty->isFunctionTy()) 5367 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5368 5369 switch (ID.Kind) { 5370 case ValID::t_LocalID: 5371 if (!PFS) 5372 return error(ID.Loc, "invalid use of function-local name"); 5373 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc); 5374 return V == nullptr; 5375 case ValID::t_LocalName: 5376 if (!PFS) 5377 return error(ID.Loc, "invalid use of function-local name"); 5378 V = PFS->getVal(ID.StrVal, Ty, ID.Loc); 5379 return V == nullptr; 5380 case ValID::t_InlineAsm: { 5381 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5382 return error(ID.Loc, "invalid type for inline asm constraint string"); 5383 V = InlineAsm::get( 5384 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, 5385 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); 5386 return false; 5387 } 5388 case ValID::t_GlobalName: 5389 V = getGlobalVal(ID.StrVal, Ty, ID.Loc); 5390 if (V && ID.NoCFI) 5391 V = NoCFIValue::get(cast<GlobalValue>(V)); 5392 return V == nullptr; 5393 case ValID::t_GlobalID: 5394 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc); 5395 if (V && ID.NoCFI) 5396 V = NoCFIValue::get(cast<GlobalValue>(V)); 5397 return V == nullptr; 5398 case ValID::t_APSInt: 5399 if (!Ty->isIntegerTy()) 5400 return error(ID.Loc, "integer constant must have integer type"); 5401 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5402 V = ConstantInt::get(Context, ID.APSIntVal); 5403 return false; 5404 case ValID::t_APFloat: 5405 if (!Ty->isFloatingPointTy() || 5406 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5407 return error(ID.Loc, "floating point constant invalid for type"); 5408 5409 // The lexer has no type info, so builds all half, bfloat, float, and double 5410 // FP constants as double. Fix this here. Long double does not need this. 5411 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5412 // Check for signaling before potentially converting and losing that info. 5413 bool IsSNAN = ID.APFloatVal.isSignaling(); 5414 bool Ignored; 5415 if (Ty->isHalfTy()) 5416 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5417 &Ignored); 5418 else if (Ty->isBFloatTy()) 5419 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5420 &Ignored); 5421 else if (Ty->isFloatTy()) 5422 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5423 &Ignored); 5424 if (IsSNAN) { 5425 // The convert call above may quiet an SNaN, so manufacture another 5426 // SNaN. The bitcast works because the payload (significand) parameter 5427 // is truncated to fit. 5428 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5429 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5430 ID.APFloatVal.isNegative(), &Payload); 5431 } 5432 } 5433 V = ConstantFP::get(Context, ID.APFloatVal); 5434 5435 if (V->getType() != Ty) 5436 return error(ID.Loc, "floating point constant does not have type '" + 5437 getTypeString(Ty) + "'"); 5438 5439 return false; 5440 case ValID::t_Null: 5441 if (!Ty->isPointerTy()) 5442 return error(ID.Loc, "null must be a pointer type"); 5443 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5444 return false; 5445 case ValID::t_Undef: 5446 // FIXME: LabelTy should not be a first-class type. 5447 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5448 return error(ID.Loc, "invalid type for undef constant"); 5449 V = UndefValue::get(Ty); 5450 return false; 5451 case ValID::t_EmptyArray: 5452 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5453 return error(ID.Loc, "invalid empty array initializer"); 5454 V = UndefValue::get(Ty); 5455 return false; 5456 case ValID::t_Zero: 5457 // FIXME: LabelTy should not be a first-class type. 5458 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5459 return error(ID.Loc, "invalid type for null constant"); 5460 V = Constant::getNullValue(Ty); 5461 return false; 5462 case ValID::t_None: 5463 if (!Ty->isTokenTy()) 5464 return error(ID.Loc, "invalid type for none constant"); 5465 V = Constant::getNullValue(Ty); 5466 return false; 5467 case ValID::t_Poison: 5468 // FIXME: LabelTy should not be a first-class type. 5469 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5470 return error(ID.Loc, "invalid type for poison constant"); 5471 V = PoisonValue::get(Ty); 5472 return false; 5473 case ValID::t_Constant: 5474 if (ID.ConstantVal->getType() != Ty) 5475 return error(ID.Loc, "constant expression type mismatch: got type '" + 5476 getTypeString(ID.ConstantVal->getType()) + 5477 "' but expected '" + getTypeString(Ty) + "'"); 5478 V = ID.ConstantVal; 5479 return false; 5480 case ValID::t_ConstantStruct: 5481 case ValID::t_PackedConstantStruct: 5482 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5483 if (ST->getNumElements() != ID.UIntVal) 5484 return error(ID.Loc, 5485 "initializer with struct type has wrong # elements"); 5486 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5487 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5488 5489 // Verify that the elements are compatible with the structtype. 5490 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5491 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5492 return error( 5493 ID.Loc, 5494 "element " + Twine(i) + 5495 " of struct initializer doesn't match struct element type"); 5496 5497 V = ConstantStruct::get( 5498 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5499 } else 5500 return error(ID.Loc, "constant expression type mismatch"); 5501 return false; 5502 } 5503 llvm_unreachable("Invalid ValID"); 5504 } 5505 5506 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5507 C = nullptr; 5508 ValID ID; 5509 auto Loc = Lex.getLoc(); 5510 if (parseValID(ID, /*PFS=*/nullptr)) 5511 return true; 5512 switch (ID.Kind) { 5513 case ValID::t_APSInt: 5514 case ValID::t_APFloat: 5515 case ValID::t_Undef: 5516 case ValID::t_Constant: 5517 case ValID::t_ConstantStruct: 5518 case ValID::t_PackedConstantStruct: { 5519 Value *V; 5520 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 5521 return true; 5522 assert(isa<Constant>(V) && "Expected a constant value"); 5523 C = cast<Constant>(V); 5524 return false; 5525 } 5526 case ValID::t_Null: 5527 C = Constant::getNullValue(Ty); 5528 return false; 5529 default: 5530 return error(Loc, "expected a constant value"); 5531 } 5532 } 5533 5534 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5535 V = nullptr; 5536 ValID ID; 5537 return parseValID(ID, PFS, Ty) || 5538 convertValIDToValue(Ty, ID, V, PFS); 5539 } 5540 5541 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5542 Type *Ty = nullptr; 5543 return parseType(Ty) || parseValue(Ty, V, PFS); 5544 } 5545 5546 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5547 PerFunctionState &PFS) { 5548 Value *V; 5549 Loc = Lex.getLoc(); 5550 if (parseTypeAndValue(V, PFS)) 5551 return true; 5552 if (!isa<BasicBlock>(V)) 5553 return error(Loc, "expected a basic block"); 5554 BB = cast<BasicBlock>(V); 5555 return false; 5556 } 5557 5558 /// FunctionHeader 5559 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5560 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5561 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5562 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5563 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5564 // parse the linkage. 5565 LocTy LinkageLoc = Lex.getLoc(); 5566 unsigned Linkage; 5567 unsigned Visibility; 5568 unsigned DLLStorageClass; 5569 bool DSOLocal; 5570 AttrBuilder RetAttrs(M->getContext()); 5571 unsigned CC; 5572 bool HasLinkage; 5573 Type *RetType = nullptr; 5574 LocTy RetTypeLoc = Lex.getLoc(); 5575 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5576 DSOLocal) || 5577 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5578 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5579 return true; 5580 5581 // Verify that the linkage is ok. 5582 switch ((GlobalValue::LinkageTypes)Linkage) { 5583 case GlobalValue::ExternalLinkage: 5584 break; // always ok. 5585 case GlobalValue::ExternalWeakLinkage: 5586 if (IsDefine) 5587 return error(LinkageLoc, "invalid linkage for function definition"); 5588 break; 5589 case GlobalValue::PrivateLinkage: 5590 case GlobalValue::InternalLinkage: 5591 case GlobalValue::AvailableExternallyLinkage: 5592 case GlobalValue::LinkOnceAnyLinkage: 5593 case GlobalValue::LinkOnceODRLinkage: 5594 case GlobalValue::WeakAnyLinkage: 5595 case GlobalValue::WeakODRLinkage: 5596 if (!IsDefine) 5597 return error(LinkageLoc, "invalid linkage for function declaration"); 5598 break; 5599 case GlobalValue::AppendingLinkage: 5600 case GlobalValue::CommonLinkage: 5601 return error(LinkageLoc, "invalid function linkage type"); 5602 } 5603 5604 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5605 return error(LinkageLoc, 5606 "symbol with local linkage must have default visibility"); 5607 5608 if (!FunctionType::isValidReturnType(RetType)) 5609 return error(RetTypeLoc, "invalid function return type"); 5610 5611 LocTy NameLoc = Lex.getLoc(); 5612 5613 std::string FunctionName; 5614 if (Lex.getKind() == lltok::GlobalVar) { 5615 FunctionName = Lex.getStrVal(); 5616 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5617 unsigned NameID = Lex.getUIntVal(); 5618 5619 if (NameID != NumberedVals.size()) 5620 return tokError("function expected to be numbered '%" + 5621 Twine(NumberedVals.size()) + "'"); 5622 } else { 5623 return tokError("expected function name"); 5624 } 5625 5626 Lex.Lex(); 5627 5628 if (Lex.getKind() != lltok::lparen) 5629 return tokError("expected '(' in function argument list"); 5630 5631 SmallVector<ArgInfo, 8> ArgList; 5632 bool IsVarArg; 5633 AttrBuilder FuncAttrs(M->getContext()); 5634 std::vector<unsigned> FwdRefAttrGrps; 5635 LocTy BuiltinLoc; 5636 std::string Section; 5637 std::string Partition; 5638 MaybeAlign Alignment; 5639 std::string GC; 5640 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5641 unsigned AddrSpace = 0; 5642 Constant *Prefix = nullptr; 5643 Constant *Prologue = nullptr; 5644 Constant *PersonalityFn = nullptr; 5645 Comdat *C; 5646 5647 if (parseArgumentList(ArgList, IsVarArg) || 5648 parseOptionalUnnamedAddr(UnnamedAddr) || 5649 parseOptionalProgramAddrSpace(AddrSpace) || 5650 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5651 BuiltinLoc) || 5652 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5653 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5654 parseOptionalComdat(FunctionName, C) || 5655 parseOptionalAlignment(Alignment) || 5656 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5657 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5658 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5659 (EatIfPresent(lltok::kw_personality) && 5660 parseGlobalTypeAndValue(PersonalityFn))) 5661 return true; 5662 5663 if (FuncAttrs.contains(Attribute::Builtin)) 5664 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5665 5666 // If the alignment was parsed as an attribute, move to the alignment field. 5667 if (FuncAttrs.hasAlignmentAttr()) { 5668 Alignment = FuncAttrs.getAlignment(); 5669 FuncAttrs.removeAttribute(Attribute::Alignment); 5670 } 5671 5672 // Okay, if we got here, the function is syntactically valid. Convert types 5673 // and do semantic checks. 5674 std::vector<Type*> ParamTypeList; 5675 SmallVector<AttributeSet, 8> Attrs; 5676 5677 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5678 ParamTypeList.push_back(ArgList[i].Ty); 5679 Attrs.push_back(ArgList[i].Attrs); 5680 } 5681 5682 AttributeList PAL = 5683 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5684 AttributeSet::get(Context, RetAttrs), Attrs); 5685 5686 if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy()) 5687 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5688 5689 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5690 PointerType *PFT = PointerType::get(FT, AddrSpace); 5691 5692 Fn = nullptr; 5693 GlobalValue *FwdFn = nullptr; 5694 if (!FunctionName.empty()) { 5695 // If this was a definition of a forward reference, remove the definition 5696 // from the forward reference table and fill in the forward ref. 5697 auto FRVI = ForwardRefVals.find(FunctionName); 5698 if (FRVI != ForwardRefVals.end()) { 5699 FwdFn = FRVI->second.first; 5700 if (!FwdFn->getType()->isOpaque() && 5701 !FwdFn->getType()->getNonOpaquePointerElementType()->isFunctionTy()) 5702 return error(FRVI->second.second, "invalid forward reference to " 5703 "function as global value!"); 5704 if (FwdFn->getType() != PFT) 5705 return error(FRVI->second.second, 5706 "invalid forward reference to " 5707 "function '" + 5708 FunctionName + 5709 "' with wrong type: " 5710 "expected '" + 5711 getTypeString(PFT) + "' but was '" + 5712 getTypeString(FwdFn->getType()) + "'"); 5713 ForwardRefVals.erase(FRVI); 5714 } else if ((Fn = M->getFunction(FunctionName))) { 5715 // Reject redefinitions. 5716 return error(NameLoc, 5717 "invalid redefinition of function '" + FunctionName + "'"); 5718 } else if (M->getNamedValue(FunctionName)) { 5719 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5720 } 5721 5722 } else { 5723 // If this is a definition of a forward referenced function, make sure the 5724 // types agree. 5725 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5726 if (I != ForwardRefValIDs.end()) { 5727 FwdFn = I->second.first; 5728 if (FwdFn->getType() != PFT) 5729 return error(NameLoc, "type of definition and forward reference of '@" + 5730 Twine(NumberedVals.size()) + 5731 "' disagree: " 5732 "expected '" + 5733 getTypeString(PFT) + "' but was '" + 5734 getTypeString(FwdFn->getType()) + "'"); 5735 ForwardRefValIDs.erase(I); 5736 } 5737 } 5738 5739 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5740 FunctionName, M); 5741 5742 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5743 5744 if (FunctionName.empty()) 5745 NumberedVals.push_back(Fn); 5746 5747 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5748 maybeSetDSOLocal(DSOLocal, *Fn); 5749 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5750 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5751 Fn->setCallingConv(CC); 5752 Fn->setAttributes(PAL); 5753 Fn->setUnnamedAddr(UnnamedAddr); 5754 Fn->setAlignment(MaybeAlign(Alignment)); 5755 Fn->setSection(Section); 5756 Fn->setPartition(Partition); 5757 Fn->setComdat(C); 5758 Fn->setPersonalityFn(PersonalityFn); 5759 if (!GC.empty()) Fn->setGC(GC); 5760 Fn->setPrefixData(Prefix); 5761 Fn->setPrologueData(Prologue); 5762 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5763 5764 // Add all of the arguments we parsed to the function. 5765 Function::arg_iterator ArgIt = Fn->arg_begin(); 5766 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5767 // If the argument has a name, insert it into the argument symbol table. 5768 if (ArgList[i].Name.empty()) continue; 5769 5770 // Set the name, if it conflicted, it will be auto-renamed. 5771 ArgIt->setName(ArgList[i].Name); 5772 5773 if (ArgIt->getName() != ArgList[i].Name) 5774 return error(ArgList[i].Loc, 5775 "redefinition of argument '%" + ArgList[i].Name + "'"); 5776 } 5777 5778 if (FwdFn) { 5779 FwdFn->replaceAllUsesWith(Fn); 5780 FwdFn->eraseFromParent(); 5781 } 5782 5783 if (IsDefine) 5784 return false; 5785 5786 // Check the declaration has no block address forward references. 5787 ValID ID; 5788 if (FunctionName.empty()) { 5789 ID.Kind = ValID::t_GlobalID; 5790 ID.UIntVal = NumberedVals.size() - 1; 5791 } else { 5792 ID.Kind = ValID::t_GlobalName; 5793 ID.StrVal = FunctionName; 5794 } 5795 auto Blocks = ForwardRefBlockAddresses.find(ID); 5796 if (Blocks != ForwardRefBlockAddresses.end()) 5797 return error(Blocks->first.Loc, 5798 "cannot take blockaddress inside a declaration"); 5799 return false; 5800 } 5801 5802 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5803 ValID ID; 5804 if (FunctionNumber == -1) { 5805 ID.Kind = ValID::t_GlobalName; 5806 ID.StrVal = std::string(F.getName()); 5807 } else { 5808 ID.Kind = ValID::t_GlobalID; 5809 ID.UIntVal = FunctionNumber; 5810 } 5811 5812 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5813 if (Blocks == P.ForwardRefBlockAddresses.end()) 5814 return false; 5815 5816 for (const auto &I : Blocks->second) { 5817 const ValID &BBID = I.first; 5818 GlobalValue *GV = I.second; 5819 5820 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5821 "Expected local id or name"); 5822 BasicBlock *BB; 5823 if (BBID.Kind == ValID::t_LocalName) 5824 BB = getBB(BBID.StrVal, BBID.Loc); 5825 else 5826 BB = getBB(BBID.UIntVal, BBID.Loc); 5827 if (!BB) 5828 return P.error(BBID.Loc, "referenced value is not a basic block"); 5829 5830 Value *ResolvedVal = BlockAddress::get(&F, BB); 5831 ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(), 5832 ResolvedVal); 5833 if (!ResolvedVal) 5834 return true; 5835 GV->replaceAllUsesWith(ResolvedVal); 5836 GV->eraseFromParent(); 5837 } 5838 5839 P.ForwardRefBlockAddresses.erase(Blocks); 5840 return false; 5841 } 5842 5843 /// parseFunctionBody 5844 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5845 bool LLParser::parseFunctionBody(Function &Fn) { 5846 if (Lex.getKind() != lltok::lbrace) 5847 return tokError("expected '{' in function body"); 5848 Lex.Lex(); // eat the {. 5849 5850 int FunctionNumber = -1; 5851 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5852 5853 PerFunctionState PFS(*this, Fn, FunctionNumber); 5854 5855 // Resolve block addresses and allow basic blocks to be forward-declared 5856 // within this function. 5857 if (PFS.resolveForwardRefBlockAddresses()) 5858 return true; 5859 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5860 5861 // We need at least one basic block. 5862 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5863 return tokError("function body requires at least one basic block"); 5864 5865 while (Lex.getKind() != lltok::rbrace && 5866 Lex.getKind() != lltok::kw_uselistorder) 5867 if (parseBasicBlock(PFS)) 5868 return true; 5869 5870 while (Lex.getKind() != lltok::rbrace) 5871 if (parseUseListOrder(&PFS)) 5872 return true; 5873 5874 // Eat the }. 5875 Lex.Lex(); 5876 5877 // Verify function is ok. 5878 return PFS.finishFunction(); 5879 } 5880 5881 /// parseBasicBlock 5882 /// ::= (LabelStr|LabelID)? Instruction* 5883 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 5884 // If this basic block starts out with a name, remember it. 5885 std::string Name; 5886 int NameID = -1; 5887 LocTy NameLoc = Lex.getLoc(); 5888 if (Lex.getKind() == lltok::LabelStr) { 5889 Name = Lex.getStrVal(); 5890 Lex.Lex(); 5891 } else if (Lex.getKind() == lltok::LabelID) { 5892 NameID = Lex.getUIntVal(); 5893 Lex.Lex(); 5894 } 5895 5896 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 5897 if (!BB) 5898 return true; 5899 5900 std::string NameStr; 5901 5902 // parse the instructions in this block until we get a terminator. 5903 Instruction *Inst; 5904 do { 5905 // This instruction may have three possibilities for a name: a) none 5906 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5907 LocTy NameLoc = Lex.getLoc(); 5908 int NameID = -1; 5909 NameStr = ""; 5910 5911 if (Lex.getKind() == lltok::LocalVarID) { 5912 NameID = Lex.getUIntVal(); 5913 Lex.Lex(); 5914 if (parseToken(lltok::equal, "expected '=' after instruction id")) 5915 return true; 5916 } else if (Lex.getKind() == lltok::LocalVar) { 5917 NameStr = Lex.getStrVal(); 5918 Lex.Lex(); 5919 if (parseToken(lltok::equal, "expected '=' after instruction name")) 5920 return true; 5921 } 5922 5923 switch (parseInstruction(Inst, BB, PFS)) { 5924 default: 5925 llvm_unreachable("Unknown parseInstruction result!"); 5926 case InstError: return true; 5927 case InstNormal: 5928 BB->getInstList().push_back(Inst); 5929 5930 // With a normal result, we check to see if the instruction is followed by 5931 // a comma and metadata. 5932 if (EatIfPresent(lltok::comma)) 5933 if (parseInstructionMetadata(*Inst)) 5934 return true; 5935 break; 5936 case InstExtraComma: 5937 BB->getInstList().push_back(Inst); 5938 5939 // If the instruction parser ate an extra comma at the end of it, it 5940 // *must* be followed by metadata. 5941 if (parseInstructionMetadata(*Inst)) 5942 return true; 5943 break; 5944 } 5945 5946 // Set the name on the instruction. 5947 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 5948 return true; 5949 } while (!Inst->isTerminator()); 5950 5951 return false; 5952 } 5953 5954 //===----------------------------------------------------------------------===// 5955 // Instruction Parsing. 5956 //===----------------------------------------------------------------------===// 5957 5958 /// parseInstruction - parse one of the many different instructions. 5959 /// 5960 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 5961 PerFunctionState &PFS) { 5962 lltok::Kind Token = Lex.getKind(); 5963 if (Token == lltok::Eof) 5964 return tokError("found end of file when expecting more instructions"); 5965 LocTy Loc = Lex.getLoc(); 5966 unsigned KeywordVal = Lex.getUIntVal(); 5967 Lex.Lex(); // Eat the keyword. 5968 5969 switch (Token) { 5970 default: 5971 return error(Loc, "expected instruction opcode"); 5972 // Terminator Instructions. 5973 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5974 case lltok::kw_ret: 5975 return parseRet(Inst, BB, PFS); 5976 case lltok::kw_br: 5977 return parseBr(Inst, PFS); 5978 case lltok::kw_switch: 5979 return parseSwitch(Inst, PFS); 5980 case lltok::kw_indirectbr: 5981 return parseIndirectBr(Inst, PFS); 5982 case lltok::kw_invoke: 5983 return parseInvoke(Inst, PFS); 5984 case lltok::kw_resume: 5985 return parseResume(Inst, PFS); 5986 case lltok::kw_cleanupret: 5987 return parseCleanupRet(Inst, PFS); 5988 case lltok::kw_catchret: 5989 return parseCatchRet(Inst, PFS); 5990 case lltok::kw_catchswitch: 5991 return parseCatchSwitch(Inst, PFS); 5992 case lltok::kw_catchpad: 5993 return parseCatchPad(Inst, PFS); 5994 case lltok::kw_cleanuppad: 5995 return parseCleanupPad(Inst, PFS); 5996 case lltok::kw_callbr: 5997 return parseCallBr(Inst, PFS); 5998 // Unary Operators. 5999 case lltok::kw_fneg: { 6000 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6001 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 6002 if (Res != 0) 6003 return Res; 6004 if (FMF.any()) 6005 Inst->setFastMathFlags(FMF); 6006 return false; 6007 } 6008 // Binary Operators. 6009 case lltok::kw_add: 6010 case lltok::kw_sub: 6011 case lltok::kw_mul: 6012 case lltok::kw_shl: { 6013 bool NUW = EatIfPresent(lltok::kw_nuw); 6014 bool NSW = EatIfPresent(lltok::kw_nsw); 6015 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 6016 6017 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6018 return true; 6019 6020 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 6021 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 6022 return false; 6023 } 6024 case lltok::kw_fadd: 6025 case lltok::kw_fsub: 6026 case lltok::kw_fmul: 6027 case lltok::kw_fdiv: 6028 case lltok::kw_frem: { 6029 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6030 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 6031 if (Res != 0) 6032 return Res; 6033 if (FMF.any()) 6034 Inst->setFastMathFlags(FMF); 6035 return 0; 6036 } 6037 6038 case lltok::kw_sdiv: 6039 case lltok::kw_udiv: 6040 case lltok::kw_lshr: 6041 case lltok::kw_ashr: { 6042 bool Exact = EatIfPresent(lltok::kw_exact); 6043 6044 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6045 return true; 6046 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 6047 return false; 6048 } 6049 6050 case lltok::kw_urem: 6051 case lltok::kw_srem: 6052 return parseArithmetic(Inst, PFS, KeywordVal, 6053 /*IsFP*/ false); 6054 case lltok::kw_and: 6055 case lltok::kw_or: 6056 case lltok::kw_xor: 6057 return parseLogical(Inst, PFS, KeywordVal); 6058 case lltok::kw_icmp: 6059 return parseCompare(Inst, PFS, KeywordVal); 6060 case lltok::kw_fcmp: { 6061 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6062 int Res = parseCompare(Inst, PFS, KeywordVal); 6063 if (Res != 0) 6064 return Res; 6065 if (FMF.any()) 6066 Inst->setFastMathFlags(FMF); 6067 return 0; 6068 } 6069 6070 // Casts. 6071 case lltok::kw_trunc: 6072 case lltok::kw_zext: 6073 case lltok::kw_sext: 6074 case lltok::kw_fptrunc: 6075 case lltok::kw_fpext: 6076 case lltok::kw_bitcast: 6077 case lltok::kw_addrspacecast: 6078 case lltok::kw_uitofp: 6079 case lltok::kw_sitofp: 6080 case lltok::kw_fptoui: 6081 case lltok::kw_fptosi: 6082 case lltok::kw_inttoptr: 6083 case lltok::kw_ptrtoint: 6084 return parseCast(Inst, PFS, KeywordVal); 6085 // Other. 6086 case lltok::kw_select: { 6087 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6088 int Res = parseSelect(Inst, PFS); 6089 if (Res != 0) 6090 return Res; 6091 if (FMF.any()) { 6092 if (!isa<FPMathOperator>(Inst)) 6093 return error(Loc, "fast-math-flags specified for select without " 6094 "floating-point scalar or vector return type"); 6095 Inst->setFastMathFlags(FMF); 6096 } 6097 return 0; 6098 } 6099 case lltok::kw_va_arg: 6100 return parseVAArg(Inst, PFS); 6101 case lltok::kw_extractelement: 6102 return parseExtractElement(Inst, PFS); 6103 case lltok::kw_insertelement: 6104 return parseInsertElement(Inst, PFS); 6105 case lltok::kw_shufflevector: 6106 return parseShuffleVector(Inst, PFS); 6107 case lltok::kw_phi: { 6108 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6109 int Res = parsePHI(Inst, PFS); 6110 if (Res != 0) 6111 return Res; 6112 if (FMF.any()) { 6113 if (!isa<FPMathOperator>(Inst)) 6114 return error(Loc, "fast-math-flags specified for phi without " 6115 "floating-point scalar or vector return type"); 6116 Inst->setFastMathFlags(FMF); 6117 } 6118 return 0; 6119 } 6120 case lltok::kw_landingpad: 6121 return parseLandingPad(Inst, PFS); 6122 case lltok::kw_freeze: 6123 return parseFreeze(Inst, PFS); 6124 // Call. 6125 case lltok::kw_call: 6126 return parseCall(Inst, PFS, CallInst::TCK_None); 6127 case lltok::kw_tail: 6128 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6129 case lltok::kw_musttail: 6130 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6131 case lltok::kw_notail: 6132 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6133 // Memory. 6134 case lltok::kw_alloca: 6135 return parseAlloc(Inst, PFS); 6136 case lltok::kw_load: 6137 return parseLoad(Inst, PFS); 6138 case lltok::kw_store: 6139 return parseStore(Inst, PFS); 6140 case lltok::kw_cmpxchg: 6141 return parseCmpXchg(Inst, PFS); 6142 case lltok::kw_atomicrmw: 6143 return parseAtomicRMW(Inst, PFS); 6144 case lltok::kw_fence: 6145 return parseFence(Inst, PFS); 6146 case lltok::kw_getelementptr: 6147 return parseGetElementPtr(Inst, PFS); 6148 case lltok::kw_extractvalue: 6149 return parseExtractValue(Inst, PFS); 6150 case lltok::kw_insertvalue: 6151 return parseInsertValue(Inst, PFS); 6152 } 6153 } 6154 6155 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6156 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6157 if (Opc == Instruction::FCmp) { 6158 switch (Lex.getKind()) { 6159 default: 6160 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6161 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6162 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6163 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6164 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6165 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6166 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6167 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6168 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6169 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6170 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6171 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6172 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6173 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6174 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6175 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6176 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6177 } 6178 } else { 6179 switch (Lex.getKind()) { 6180 default: 6181 return tokError("expected icmp predicate (e.g. 'eq')"); 6182 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6183 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6184 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6185 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6186 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6187 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6188 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6189 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6190 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6191 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6192 } 6193 } 6194 Lex.Lex(); 6195 return false; 6196 } 6197 6198 //===----------------------------------------------------------------------===// 6199 // Terminator Instructions. 6200 //===----------------------------------------------------------------------===// 6201 6202 /// parseRet - parse a return instruction. 6203 /// ::= 'ret' void (',' !dbg, !1)* 6204 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6205 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6206 PerFunctionState &PFS) { 6207 SMLoc TypeLoc = Lex.getLoc(); 6208 Type *Ty = nullptr; 6209 if (parseType(Ty, true /*void allowed*/)) 6210 return true; 6211 6212 Type *ResType = PFS.getFunction().getReturnType(); 6213 6214 if (Ty->isVoidTy()) { 6215 if (!ResType->isVoidTy()) 6216 return error(TypeLoc, "value doesn't match function result type '" + 6217 getTypeString(ResType) + "'"); 6218 6219 Inst = ReturnInst::Create(Context); 6220 return false; 6221 } 6222 6223 Value *RV; 6224 if (parseValue(Ty, RV, PFS)) 6225 return true; 6226 6227 if (ResType != RV->getType()) 6228 return error(TypeLoc, "value doesn't match function result type '" + 6229 getTypeString(ResType) + "'"); 6230 6231 Inst = ReturnInst::Create(Context, RV); 6232 return false; 6233 } 6234 6235 /// parseBr 6236 /// ::= 'br' TypeAndValue 6237 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6238 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6239 LocTy Loc, Loc2; 6240 Value *Op0; 6241 BasicBlock *Op1, *Op2; 6242 if (parseTypeAndValue(Op0, Loc, PFS)) 6243 return true; 6244 6245 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6246 Inst = BranchInst::Create(BB); 6247 return false; 6248 } 6249 6250 if (Op0->getType() != Type::getInt1Ty(Context)) 6251 return error(Loc, "branch condition must have 'i1' type"); 6252 6253 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6254 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6255 parseToken(lltok::comma, "expected ',' after true destination") || 6256 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6257 return true; 6258 6259 Inst = BranchInst::Create(Op1, Op2, Op0); 6260 return false; 6261 } 6262 6263 /// parseSwitch 6264 /// Instruction 6265 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6266 /// JumpTable 6267 /// ::= (TypeAndValue ',' TypeAndValue)* 6268 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6269 LocTy CondLoc, BBLoc; 6270 Value *Cond; 6271 BasicBlock *DefaultBB; 6272 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6273 parseToken(lltok::comma, "expected ',' after switch condition") || 6274 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6275 parseToken(lltok::lsquare, "expected '[' with switch table")) 6276 return true; 6277 6278 if (!Cond->getType()->isIntegerTy()) 6279 return error(CondLoc, "switch condition must have integer type"); 6280 6281 // parse the jump table pairs. 6282 SmallPtrSet<Value*, 32> SeenCases; 6283 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6284 while (Lex.getKind() != lltok::rsquare) { 6285 Value *Constant; 6286 BasicBlock *DestBB; 6287 6288 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6289 parseToken(lltok::comma, "expected ',' after case value") || 6290 parseTypeAndBasicBlock(DestBB, PFS)) 6291 return true; 6292 6293 if (!SeenCases.insert(Constant).second) 6294 return error(CondLoc, "duplicate case value in switch"); 6295 if (!isa<ConstantInt>(Constant)) 6296 return error(CondLoc, "case value is not a constant integer"); 6297 6298 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6299 } 6300 6301 Lex.Lex(); // Eat the ']'. 6302 6303 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6304 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6305 SI->addCase(Table[i].first, Table[i].second); 6306 Inst = SI; 6307 return false; 6308 } 6309 6310 /// parseIndirectBr 6311 /// Instruction 6312 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6313 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6314 LocTy AddrLoc; 6315 Value *Address; 6316 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6317 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6318 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6319 return true; 6320 6321 if (!Address->getType()->isPointerTy()) 6322 return error(AddrLoc, "indirectbr address must have pointer type"); 6323 6324 // parse the destination list. 6325 SmallVector<BasicBlock*, 16> DestList; 6326 6327 if (Lex.getKind() != lltok::rsquare) { 6328 BasicBlock *DestBB; 6329 if (parseTypeAndBasicBlock(DestBB, PFS)) 6330 return true; 6331 DestList.push_back(DestBB); 6332 6333 while (EatIfPresent(lltok::comma)) { 6334 if (parseTypeAndBasicBlock(DestBB, PFS)) 6335 return true; 6336 DestList.push_back(DestBB); 6337 } 6338 } 6339 6340 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6341 return true; 6342 6343 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6344 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6345 IBI->addDestination(DestList[i]); 6346 Inst = IBI; 6347 return false; 6348 } 6349 6350 /// parseInvoke 6351 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6352 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6353 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6354 LocTy CallLoc = Lex.getLoc(); 6355 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 6356 std::vector<unsigned> FwdRefAttrGrps; 6357 LocTy NoBuiltinLoc; 6358 unsigned CC; 6359 unsigned InvokeAddrSpace; 6360 Type *RetType = nullptr; 6361 LocTy RetTypeLoc; 6362 ValID CalleeID; 6363 SmallVector<ParamInfo, 16> ArgList; 6364 SmallVector<OperandBundleDef, 2> BundleList; 6365 6366 BasicBlock *NormalBB, *UnwindBB; 6367 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6368 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6369 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6370 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6371 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6372 NoBuiltinLoc) || 6373 parseOptionalOperandBundles(BundleList, PFS) || 6374 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6375 parseTypeAndBasicBlock(NormalBB, PFS) || 6376 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6377 parseTypeAndBasicBlock(UnwindBB, PFS)) 6378 return true; 6379 6380 // If RetType is a non-function pointer type, then this is the short syntax 6381 // for the call, which means that RetType is just the return type. Infer the 6382 // rest of the function argument types from the arguments that are present. 6383 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6384 if (!Ty) { 6385 // Pull out the types of all of the arguments... 6386 std::vector<Type*> ParamTypes; 6387 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6388 ParamTypes.push_back(ArgList[i].V->getType()); 6389 6390 if (!FunctionType::isValidReturnType(RetType)) 6391 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6392 6393 Ty = FunctionType::get(RetType, ParamTypes, false); 6394 } 6395 6396 CalleeID.FTy = Ty; 6397 6398 // Look up the callee. 6399 Value *Callee; 6400 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6401 Callee, &PFS)) 6402 return true; 6403 6404 // Set up the Attribute for the function. 6405 SmallVector<Value *, 8> Args; 6406 SmallVector<AttributeSet, 8> ArgAttrs; 6407 6408 // Loop through FunctionType's arguments and ensure they are specified 6409 // correctly. Also, gather any parameter attributes. 6410 FunctionType::param_iterator I = Ty->param_begin(); 6411 FunctionType::param_iterator E = Ty->param_end(); 6412 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6413 Type *ExpectedTy = nullptr; 6414 if (I != E) { 6415 ExpectedTy = *I++; 6416 } else if (!Ty->isVarArg()) { 6417 return error(ArgList[i].Loc, "too many arguments specified"); 6418 } 6419 6420 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6421 return error(ArgList[i].Loc, "argument is not of expected type '" + 6422 getTypeString(ExpectedTy) + "'"); 6423 Args.push_back(ArgList[i].V); 6424 ArgAttrs.push_back(ArgList[i].Attrs); 6425 } 6426 6427 if (I != E) 6428 return error(CallLoc, "not enough parameters specified for call"); 6429 6430 if (FnAttrs.hasAlignmentAttr()) 6431 return error(CallLoc, "invoke instructions may not have an alignment"); 6432 6433 // Finish off the Attribute and check them 6434 AttributeList PAL = 6435 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6436 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6437 6438 InvokeInst *II = 6439 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6440 II->setCallingConv(CC); 6441 II->setAttributes(PAL); 6442 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6443 Inst = II; 6444 return false; 6445 } 6446 6447 /// parseResume 6448 /// ::= 'resume' TypeAndValue 6449 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6450 Value *Exn; LocTy ExnLoc; 6451 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6452 return true; 6453 6454 ResumeInst *RI = ResumeInst::Create(Exn); 6455 Inst = RI; 6456 return false; 6457 } 6458 6459 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6460 PerFunctionState &PFS) { 6461 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6462 return true; 6463 6464 while (Lex.getKind() != lltok::rsquare) { 6465 // If this isn't the first argument, we need a comma. 6466 if (!Args.empty() && 6467 parseToken(lltok::comma, "expected ',' in argument list")) 6468 return true; 6469 6470 // parse the argument. 6471 LocTy ArgLoc; 6472 Type *ArgTy = nullptr; 6473 if (parseType(ArgTy, ArgLoc)) 6474 return true; 6475 6476 Value *V; 6477 if (ArgTy->isMetadataTy()) { 6478 if (parseMetadataAsValue(V, PFS)) 6479 return true; 6480 } else { 6481 if (parseValue(ArgTy, V, PFS)) 6482 return true; 6483 } 6484 Args.push_back(V); 6485 } 6486 6487 Lex.Lex(); // Lex the ']'. 6488 return false; 6489 } 6490 6491 /// parseCleanupRet 6492 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6493 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6494 Value *CleanupPad = nullptr; 6495 6496 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6497 return true; 6498 6499 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6500 return true; 6501 6502 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6503 return true; 6504 6505 BasicBlock *UnwindBB = nullptr; 6506 if (Lex.getKind() == lltok::kw_to) { 6507 Lex.Lex(); 6508 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6509 return true; 6510 } else { 6511 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6512 return true; 6513 } 6514 } 6515 6516 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6517 return false; 6518 } 6519 6520 /// parseCatchRet 6521 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6522 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6523 Value *CatchPad = nullptr; 6524 6525 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6526 return true; 6527 6528 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6529 return true; 6530 6531 BasicBlock *BB; 6532 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6533 parseTypeAndBasicBlock(BB, PFS)) 6534 return true; 6535 6536 Inst = CatchReturnInst::Create(CatchPad, BB); 6537 return false; 6538 } 6539 6540 /// parseCatchSwitch 6541 /// ::= 'catchswitch' within Parent 6542 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6543 Value *ParentPad; 6544 6545 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6546 return true; 6547 6548 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6549 Lex.getKind() != lltok::LocalVarID) 6550 return tokError("expected scope value for catchswitch"); 6551 6552 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6553 return true; 6554 6555 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6556 return true; 6557 6558 SmallVector<BasicBlock *, 32> Table; 6559 do { 6560 BasicBlock *DestBB; 6561 if (parseTypeAndBasicBlock(DestBB, PFS)) 6562 return true; 6563 Table.push_back(DestBB); 6564 } while (EatIfPresent(lltok::comma)); 6565 6566 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6567 return true; 6568 6569 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6570 return true; 6571 6572 BasicBlock *UnwindBB = nullptr; 6573 if (EatIfPresent(lltok::kw_to)) { 6574 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6575 return true; 6576 } else { 6577 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6578 return true; 6579 } 6580 6581 auto *CatchSwitch = 6582 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6583 for (BasicBlock *DestBB : Table) 6584 CatchSwitch->addHandler(DestBB); 6585 Inst = CatchSwitch; 6586 return false; 6587 } 6588 6589 /// parseCatchPad 6590 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6591 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6592 Value *CatchSwitch = nullptr; 6593 6594 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6595 return true; 6596 6597 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6598 return tokError("expected scope value for catchpad"); 6599 6600 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6601 return true; 6602 6603 SmallVector<Value *, 8> Args; 6604 if (parseExceptionArgs(Args, PFS)) 6605 return true; 6606 6607 Inst = CatchPadInst::Create(CatchSwitch, Args); 6608 return false; 6609 } 6610 6611 /// parseCleanupPad 6612 /// ::= 'cleanuppad' within Parent ParamList 6613 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6614 Value *ParentPad = nullptr; 6615 6616 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6617 return true; 6618 6619 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6620 Lex.getKind() != lltok::LocalVarID) 6621 return tokError("expected scope value for cleanuppad"); 6622 6623 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6624 return true; 6625 6626 SmallVector<Value *, 8> Args; 6627 if (parseExceptionArgs(Args, PFS)) 6628 return true; 6629 6630 Inst = CleanupPadInst::Create(ParentPad, Args); 6631 return false; 6632 } 6633 6634 //===----------------------------------------------------------------------===// 6635 // Unary Operators. 6636 //===----------------------------------------------------------------------===// 6637 6638 /// parseUnaryOp 6639 /// ::= UnaryOp TypeAndValue ',' Value 6640 /// 6641 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6642 /// operand is allowed. 6643 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6644 unsigned Opc, bool IsFP) { 6645 LocTy Loc; Value *LHS; 6646 if (parseTypeAndValue(LHS, Loc, PFS)) 6647 return true; 6648 6649 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6650 : LHS->getType()->isIntOrIntVectorTy(); 6651 6652 if (!Valid) 6653 return error(Loc, "invalid operand type for instruction"); 6654 6655 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6656 return false; 6657 } 6658 6659 /// parseCallBr 6660 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6661 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6662 /// '[' LabelList ']' 6663 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6664 LocTy CallLoc = Lex.getLoc(); 6665 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 6666 std::vector<unsigned> FwdRefAttrGrps; 6667 LocTy NoBuiltinLoc; 6668 unsigned CC; 6669 Type *RetType = nullptr; 6670 LocTy RetTypeLoc; 6671 ValID CalleeID; 6672 SmallVector<ParamInfo, 16> ArgList; 6673 SmallVector<OperandBundleDef, 2> BundleList; 6674 6675 BasicBlock *DefaultDest; 6676 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6677 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6678 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6679 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6680 NoBuiltinLoc) || 6681 parseOptionalOperandBundles(BundleList, PFS) || 6682 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6683 parseTypeAndBasicBlock(DefaultDest, PFS) || 6684 parseToken(lltok::lsquare, "expected '[' in callbr")) 6685 return true; 6686 6687 // parse the destination list. 6688 SmallVector<BasicBlock *, 16> IndirectDests; 6689 6690 if (Lex.getKind() != lltok::rsquare) { 6691 BasicBlock *DestBB; 6692 if (parseTypeAndBasicBlock(DestBB, PFS)) 6693 return true; 6694 IndirectDests.push_back(DestBB); 6695 6696 while (EatIfPresent(lltok::comma)) { 6697 if (parseTypeAndBasicBlock(DestBB, PFS)) 6698 return true; 6699 IndirectDests.push_back(DestBB); 6700 } 6701 } 6702 6703 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6704 return true; 6705 6706 // If RetType is a non-function pointer type, then this is the short syntax 6707 // for the call, which means that RetType is just the return type. Infer the 6708 // rest of the function argument types from the arguments that are present. 6709 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6710 if (!Ty) { 6711 // Pull out the types of all of the arguments... 6712 std::vector<Type *> ParamTypes; 6713 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6714 ParamTypes.push_back(ArgList[i].V->getType()); 6715 6716 if (!FunctionType::isValidReturnType(RetType)) 6717 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6718 6719 Ty = FunctionType::get(RetType, ParamTypes, false); 6720 } 6721 6722 CalleeID.FTy = Ty; 6723 6724 // Look up the callee. 6725 Value *Callee; 6726 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 6727 return true; 6728 6729 // Set up the Attribute for the function. 6730 SmallVector<Value *, 8> Args; 6731 SmallVector<AttributeSet, 8> ArgAttrs; 6732 6733 // Loop through FunctionType's arguments and ensure they are specified 6734 // correctly. Also, gather any parameter attributes. 6735 FunctionType::param_iterator I = Ty->param_begin(); 6736 FunctionType::param_iterator E = Ty->param_end(); 6737 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6738 Type *ExpectedTy = nullptr; 6739 if (I != E) { 6740 ExpectedTy = *I++; 6741 } else if (!Ty->isVarArg()) { 6742 return error(ArgList[i].Loc, "too many arguments specified"); 6743 } 6744 6745 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6746 return error(ArgList[i].Loc, "argument is not of expected type '" + 6747 getTypeString(ExpectedTy) + "'"); 6748 Args.push_back(ArgList[i].V); 6749 ArgAttrs.push_back(ArgList[i].Attrs); 6750 } 6751 6752 if (I != E) 6753 return error(CallLoc, "not enough parameters specified for call"); 6754 6755 if (FnAttrs.hasAlignmentAttr()) 6756 return error(CallLoc, "callbr instructions may not have an alignment"); 6757 6758 // Finish off the Attribute and check them 6759 AttributeList PAL = 6760 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6761 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6762 6763 CallBrInst *CBI = 6764 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6765 BundleList); 6766 CBI->setCallingConv(CC); 6767 CBI->setAttributes(PAL); 6768 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6769 Inst = CBI; 6770 return false; 6771 } 6772 6773 //===----------------------------------------------------------------------===// 6774 // Binary Operators. 6775 //===----------------------------------------------------------------------===// 6776 6777 /// parseArithmetic 6778 /// ::= ArithmeticOps TypeAndValue ',' Value 6779 /// 6780 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6781 /// operand is allowed. 6782 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6783 unsigned Opc, bool IsFP) { 6784 LocTy Loc; Value *LHS, *RHS; 6785 if (parseTypeAndValue(LHS, Loc, PFS) || 6786 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6787 parseValue(LHS->getType(), RHS, PFS)) 6788 return true; 6789 6790 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6791 : LHS->getType()->isIntOrIntVectorTy(); 6792 6793 if (!Valid) 6794 return error(Loc, "invalid operand type for instruction"); 6795 6796 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6797 return false; 6798 } 6799 6800 /// parseLogical 6801 /// ::= ArithmeticOps TypeAndValue ',' Value { 6802 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6803 unsigned Opc) { 6804 LocTy Loc; Value *LHS, *RHS; 6805 if (parseTypeAndValue(LHS, Loc, PFS) || 6806 parseToken(lltok::comma, "expected ',' in logical operation") || 6807 parseValue(LHS->getType(), RHS, PFS)) 6808 return true; 6809 6810 if (!LHS->getType()->isIntOrIntVectorTy()) 6811 return error(Loc, 6812 "instruction requires integer or integer vector operands"); 6813 6814 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6815 return false; 6816 } 6817 6818 /// parseCompare 6819 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6820 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6821 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 6822 unsigned Opc) { 6823 // parse the integer/fp comparison predicate. 6824 LocTy Loc; 6825 unsigned Pred; 6826 Value *LHS, *RHS; 6827 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 6828 parseToken(lltok::comma, "expected ',' after compare value") || 6829 parseValue(LHS->getType(), RHS, PFS)) 6830 return true; 6831 6832 if (Opc == Instruction::FCmp) { 6833 if (!LHS->getType()->isFPOrFPVectorTy()) 6834 return error(Loc, "fcmp requires floating point operands"); 6835 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6836 } else { 6837 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6838 if (!LHS->getType()->isIntOrIntVectorTy() && 6839 !LHS->getType()->isPtrOrPtrVectorTy()) 6840 return error(Loc, "icmp requires integer operands"); 6841 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6842 } 6843 return false; 6844 } 6845 6846 //===----------------------------------------------------------------------===// 6847 // Other Instructions. 6848 //===----------------------------------------------------------------------===// 6849 6850 /// parseCast 6851 /// ::= CastOpc TypeAndValue 'to' Type 6852 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 6853 unsigned Opc) { 6854 LocTy Loc; 6855 Value *Op; 6856 Type *DestTy = nullptr; 6857 if (parseTypeAndValue(Op, Loc, PFS) || 6858 parseToken(lltok::kw_to, "expected 'to' after cast value") || 6859 parseType(DestTy)) 6860 return true; 6861 6862 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6863 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6864 return error(Loc, "invalid cast opcode for cast from '" + 6865 getTypeString(Op->getType()) + "' to '" + 6866 getTypeString(DestTy) + "'"); 6867 } 6868 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6869 return false; 6870 } 6871 6872 /// parseSelect 6873 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6874 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6875 LocTy Loc; 6876 Value *Op0, *Op1, *Op2; 6877 if (parseTypeAndValue(Op0, Loc, PFS) || 6878 parseToken(lltok::comma, "expected ',' after select condition") || 6879 parseTypeAndValue(Op1, PFS) || 6880 parseToken(lltok::comma, "expected ',' after select value") || 6881 parseTypeAndValue(Op2, PFS)) 6882 return true; 6883 6884 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6885 return error(Loc, Reason); 6886 6887 Inst = SelectInst::Create(Op0, Op1, Op2); 6888 return false; 6889 } 6890 6891 /// parseVAArg 6892 /// ::= 'va_arg' TypeAndValue ',' Type 6893 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 6894 Value *Op; 6895 Type *EltTy = nullptr; 6896 LocTy TypeLoc; 6897 if (parseTypeAndValue(Op, PFS) || 6898 parseToken(lltok::comma, "expected ',' after vaarg operand") || 6899 parseType(EltTy, TypeLoc)) 6900 return true; 6901 6902 if (!EltTy->isFirstClassType()) 6903 return error(TypeLoc, "va_arg requires operand with first class type"); 6904 6905 Inst = new VAArgInst(Op, EltTy); 6906 return false; 6907 } 6908 6909 /// parseExtractElement 6910 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6911 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6912 LocTy Loc; 6913 Value *Op0, *Op1; 6914 if (parseTypeAndValue(Op0, Loc, PFS) || 6915 parseToken(lltok::comma, "expected ',' after extract value") || 6916 parseTypeAndValue(Op1, PFS)) 6917 return true; 6918 6919 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6920 return error(Loc, "invalid extractelement operands"); 6921 6922 Inst = ExtractElementInst::Create(Op0, Op1); 6923 return false; 6924 } 6925 6926 /// parseInsertElement 6927 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6928 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6929 LocTy Loc; 6930 Value *Op0, *Op1, *Op2; 6931 if (parseTypeAndValue(Op0, Loc, PFS) || 6932 parseToken(lltok::comma, "expected ',' after insertelement value") || 6933 parseTypeAndValue(Op1, PFS) || 6934 parseToken(lltok::comma, "expected ',' after insertelement value") || 6935 parseTypeAndValue(Op2, PFS)) 6936 return true; 6937 6938 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6939 return error(Loc, "invalid insertelement operands"); 6940 6941 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6942 return false; 6943 } 6944 6945 /// parseShuffleVector 6946 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6947 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6948 LocTy Loc; 6949 Value *Op0, *Op1, *Op2; 6950 if (parseTypeAndValue(Op0, Loc, PFS) || 6951 parseToken(lltok::comma, "expected ',' after shuffle mask") || 6952 parseTypeAndValue(Op1, PFS) || 6953 parseToken(lltok::comma, "expected ',' after shuffle value") || 6954 parseTypeAndValue(Op2, PFS)) 6955 return true; 6956 6957 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6958 return error(Loc, "invalid shufflevector operands"); 6959 6960 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6961 return false; 6962 } 6963 6964 /// parsePHI 6965 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6966 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6967 Type *Ty = nullptr; LocTy TypeLoc; 6968 Value *Op0, *Op1; 6969 6970 if (parseType(Ty, TypeLoc) || 6971 parseToken(lltok::lsquare, "expected '[' in phi value list") || 6972 parseValue(Ty, Op0, PFS) || 6973 parseToken(lltok::comma, "expected ',' after insertelement value") || 6974 parseValue(Type::getLabelTy(Context), Op1, PFS) || 6975 parseToken(lltok::rsquare, "expected ']' in phi value list")) 6976 return true; 6977 6978 bool AteExtraComma = false; 6979 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6980 6981 while (true) { 6982 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6983 6984 if (!EatIfPresent(lltok::comma)) 6985 break; 6986 6987 if (Lex.getKind() == lltok::MetadataVar) { 6988 AteExtraComma = true; 6989 break; 6990 } 6991 6992 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 6993 parseValue(Ty, Op0, PFS) || 6994 parseToken(lltok::comma, "expected ',' after insertelement value") || 6995 parseValue(Type::getLabelTy(Context), Op1, PFS) || 6996 parseToken(lltok::rsquare, "expected ']' in phi value list")) 6997 return true; 6998 } 6999 7000 if (!Ty->isFirstClassType()) 7001 return error(TypeLoc, "phi node must have first class type"); 7002 7003 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 7004 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 7005 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 7006 Inst = PN; 7007 return AteExtraComma ? InstExtraComma : InstNormal; 7008 } 7009 7010 /// parseLandingPad 7011 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 7012 /// Clause 7013 /// ::= 'catch' TypeAndValue 7014 /// ::= 'filter' 7015 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 7016 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 7017 Type *Ty = nullptr; LocTy TyLoc; 7018 7019 if (parseType(Ty, TyLoc)) 7020 return true; 7021 7022 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 7023 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 7024 7025 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 7026 LandingPadInst::ClauseType CT; 7027 if (EatIfPresent(lltok::kw_catch)) 7028 CT = LandingPadInst::Catch; 7029 else if (EatIfPresent(lltok::kw_filter)) 7030 CT = LandingPadInst::Filter; 7031 else 7032 return tokError("expected 'catch' or 'filter' clause type"); 7033 7034 Value *V; 7035 LocTy VLoc; 7036 if (parseTypeAndValue(V, VLoc, PFS)) 7037 return true; 7038 7039 // A 'catch' type expects a non-array constant. A filter clause expects an 7040 // array constant. 7041 if (CT == LandingPadInst::Catch) { 7042 if (isa<ArrayType>(V->getType())) 7043 error(VLoc, "'catch' clause has an invalid type"); 7044 } else { 7045 if (!isa<ArrayType>(V->getType())) 7046 error(VLoc, "'filter' clause has an invalid type"); 7047 } 7048 7049 Constant *CV = dyn_cast<Constant>(V); 7050 if (!CV) 7051 return error(VLoc, "clause argument must be a constant"); 7052 LP->addClause(CV); 7053 } 7054 7055 Inst = LP.release(); 7056 return false; 7057 } 7058 7059 /// parseFreeze 7060 /// ::= 'freeze' Type Value 7061 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 7062 LocTy Loc; 7063 Value *Op; 7064 if (parseTypeAndValue(Op, Loc, PFS)) 7065 return true; 7066 7067 Inst = new FreezeInst(Op); 7068 return false; 7069 } 7070 7071 /// parseCall 7072 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 7073 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7074 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 7075 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7076 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 7077 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7078 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 7079 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7080 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 7081 CallInst::TailCallKind TCK) { 7082 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 7083 std::vector<unsigned> FwdRefAttrGrps; 7084 LocTy BuiltinLoc; 7085 unsigned CallAddrSpace; 7086 unsigned CC; 7087 Type *RetType = nullptr; 7088 LocTy RetTypeLoc; 7089 ValID CalleeID; 7090 SmallVector<ParamInfo, 16> ArgList; 7091 SmallVector<OperandBundleDef, 2> BundleList; 7092 LocTy CallLoc = Lex.getLoc(); 7093 7094 if (TCK != CallInst::TCK_None && 7095 parseToken(lltok::kw_call, 7096 "expected 'tail call', 'musttail call', or 'notail call'")) 7097 return true; 7098 7099 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 7100 7101 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7102 parseOptionalProgramAddrSpace(CallAddrSpace) || 7103 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7104 parseValID(CalleeID, &PFS) || 7105 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 7106 PFS.getFunction().isVarArg()) || 7107 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 7108 parseOptionalOperandBundles(BundleList, PFS)) 7109 return true; 7110 7111 // If RetType is a non-function pointer type, then this is the short syntax 7112 // for the call, which means that RetType is just the return type. Infer the 7113 // rest of the function argument types from the arguments that are present. 7114 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 7115 if (!Ty) { 7116 // Pull out the types of all of the arguments... 7117 std::vector<Type*> ParamTypes; 7118 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 7119 ParamTypes.push_back(ArgList[i].V->getType()); 7120 7121 if (!FunctionType::isValidReturnType(RetType)) 7122 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7123 7124 Ty = FunctionType::get(RetType, ParamTypes, false); 7125 } 7126 7127 CalleeID.FTy = Ty; 7128 7129 // Look up the callee. 7130 Value *Callee; 7131 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7132 &PFS)) 7133 return true; 7134 7135 // Set up the Attribute for the function. 7136 SmallVector<AttributeSet, 8> Attrs; 7137 7138 SmallVector<Value*, 8> Args; 7139 7140 // Loop through FunctionType's arguments and ensure they are specified 7141 // correctly. Also, gather any parameter attributes. 7142 FunctionType::param_iterator I = Ty->param_begin(); 7143 FunctionType::param_iterator E = Ty->param_end(); 7144 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7145 Type *ExpectedTy = nullptr; 7146 if (I != E) { 7147 ExpectedTy = *I++; 7148 } else if (!Ty->isVarArg()) { 7149 return error(ArgList[i].Loc, "too many arguments specified"); 7150 } 7151 7152 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7153 return error(ArgList[i].Loc, "argument is not of expected type '" + 7154 getTypeString(ExpectedTy) + "'"); 7155 Args.push_back(ArgList[i].V); 7156 Attrs.push_back(ArgList[i].Attrs); 7157 } 7158 7159 if (I != E) 7160 return error(CallLoc, "not enough parameters specified for call"); 7161 7162 if (FnAttrs.hasAlignmentAttr()) 7163 return error(CallLoc, "call instructions may not have an alignment"); 7164 7165 // Finish off the Attribute and check them 7166 AttributeList PAL = 7167 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7168 AttributeSet::get(Context, RetAttrs), Attrs); 7169 7170 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7171 CI->setTailCallKind(TCK); 7172 CI->setCallingConv(CC); 7173 if (FMF.any()) { 7174 if (!isa<FPMathOperator>(CI)) { 7175 CI->deleteValue(); 7176 return error(CallLoc, "fast-math-flags specified for call without " 7177 "floating-point scalar or vector return type"); 7178 } 7179 CI->setFastMathFlags(FMF); 7180 } 7181 CI->setAttributes(PAL); 7182 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7183 Inst = CI; 7184 return false; 7185 } 7186 7187 //===----------------------------------------------------------------------===// 7188 // Memory Instructions. 7189 //===----------------------------------------------------------------------===// 7190 7191 /// parseAlloc 7192 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7193 /// (',' 'align' i32)? (',', 'addrspace(n))? 7194 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7195 Value *Size = nullptr; 7196 LocTy SizeLoc, TyLoc, ASLoc; 7197 MaybeAlign Alignment; 7198 unsigned AddrSpace = 0; 7199 Type *Ty = nullptr; 7200 7201 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7202 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7203 7204 if (parseType(Ty, TyLoc)) 7205 return true; 7206 7207 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7208 return error(TyLoc, "invalid type for alloca"); 7209 7210 bool AteExtraComma = false; 7211 if (EatIfPresent(lltok::comma)) { 7212 if (Lex.getKind() == lltok::kw_align) { 7213 if (parseOptionalAlignment(Alignment)) 7214 return true; 7215 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7216 return true; 7217 } else if (Lex.getKind() == lltok::kw_addrspace) { 7218 ASLoc = Lex.getLoc(); 7219 if (parseOptionalAddrSpace(AddrSpace)) 7220 return true; 7221 } else if (Lex.getKind() == lltok::MetadataVar) { 7222 AteExtraComma = true; 7223 } else { 7224 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7225 return true; 7226 if (EatIfPresent(lltok::comma)) { 7227 if (Lex.getKind() == lltok::kw_align) { 7228 if (parseOptionalAlignment(Alignment)) 7229 return true; 7230 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7231 return true; 7232 } else if (Lex.getKind() == lltok::kw_addrspace) { 7233 ASLoc = Lex.getLoc(); 7234 if (parseOptionalAddrSpace(AddrSpace)) 7235 return true; 7236 } else if (Lex.getKind() == lltok::MetadataVar) { 7237 AteExtraComma = true; 7238 } 7239 } 7240 } 7241 } 7242 7243 if (Size && !Size->getType()->isIntegerTy()) 7244 return error(SizeLoc, "element count must have integer type"); 7245 7246 SmallPtrSet<Type *, 4> Visited; 7247 if (!Alignment && !Ty->isSized(&Visited)) 7248 return error(TyLoc, "Cannot allocate unsized type"); 7249 if (!Alignment) 7250 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7251 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7252 AI->setUsedWithInAlloca(IsInAlloca); 7253 AI->setSwiftError(IsSwiftError); 7254 Inst = AI; 7255 return AteExtraComma ? InstExtraComma : InstNormal; 7256 } 7257 7258 /// parseLoad 7259 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7260 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7261 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7262 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7263 Value *Val; LocTy Loc; 7264 MaybeAlign Alignment; 7265 bool AteExtraComma = false; 7266 bool isAtomic = false; 7267 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7268 SyncScope::ID SSID = SyncScope::System; 7269 7270 if (Lex.getKind() == lltok::kw_atomic) { 7271 isAtomic = true; 7272 Lex.Lex(); 7273 } 7274 7275 bool isVolatile = false; 7276 if (Lex.getKind() == lltok::kw_volatile) { 7277 isVolatile = true; 7278 Lex.Lex(); 7279 } 7280 7281 Type *Ty; 7282 LocTy ExplicitTypeLoc = Lex.getLoc(); 7283 if (parseType(Ty) || 7284 parseToken(lltok::comma, "expected comma after load's type") || 7285 parseTypeAndValue(Val, Loc, PFS) || 7286 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7287 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7288 return true; 7289 7290 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7291 return error(Loc, "load operand must be a pointer to a first class type"); 7292 if (isAtomic && !Alignment) 7293 return error(Loc, "atomic load must have explicit non-zero alignment"); 7294 if (Ordering == AtomicOrdering::Release || 7295 Ordering == AtomicOrdering::AcquireRelease) 7296 return error(Loc, "atomic load cannot use Release ordering"); 7297 7298 if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) { 7299 return error( 7300 ExplicitTypeLoc, 7301 typeComparisonErrorMessage( 7302 "explicit pointee type doesn't match operand's pointee type", Ty, 7303 Val->getType()->getNonOpaquePointerElementType())); 7304 } 7305 SmallPtrSet<Type *, 4> Visited; 7306 if (!Alignment && !Ty->isSized(&Visited)) 7307 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7308 if (!Alignment) 7309 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7310 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7311 return AteExtraComma ? InstExtraComma : InstNormal; 7312 } 7313 7314 /// parseStore 7315 7316 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7317 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7318 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7319 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7320 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7321 MaybeAlign Alignment; 7322 bool AteExtraComma = false; 7323 bool isAtomic = false; 7324 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7325 SyncScope::ID SSID = SyncScope::System; 7326 7327 if (Lex.getKind() == lltok::kw_atomic) { 7328 isAtomic = true; 7329 Lex.Lex(); 7330 } 7331 7332 bool isVolatile = false; 7333 if (Lex.getKind() == lltok::kw_volatile) { 7334 isVolatile = true; 7335 Lex.Lex(); 7336 } 7337 7338 if (parseTypeAndValue(Val, Loc, PFS) || 7339 parseToken(lltok::comma, "expected ',' after store operand") || 7340 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7341 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7342 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7343 return true; 7344 7345 if (!Ptr->getType()->isPointerTy()) 7346 return error(PtrLoc, "store operand must be a pointer"); 7347 if (!Val->getType()->isFirstClassType()) 7348 return error(Loc, "store operand must be a first class value"); 7349 if (!cast<PointerType>(Ptr->getType()) 7350 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7351 return error(Loc, "stored value and pointer type do not match"); 7352 if (isAtomic && !Alignment) 7353 return error(Loc, "atomic store must have explicit non-zero alignment"); 7354 if (Ordering == AtomicOrdering::Acquire || 7355 Ordering == AtomicOrdering::AcquireRelease) 7356 return error(Loc, "atomic store cannot use Acquire ordering"); 7357 SmallPtrSet<Type *, 4> Visited; 7358 if (!Alignment && !Val->getType()->isSized(&Visited)) 7359 return error(Loc, "storing unsized types is not allowed"); 7360 if (!Alignment) 7361 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7362 7363 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7364 return AteExtraComma ? InstExtraComma : InstNormal; 7365 } 7366 7367 /// parseCmpXchg 7368 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7369 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7370 /// 'Align'? 7371 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7372 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7373 bool AteExtraComma = false; 7374 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7375 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7376 SyncScope::ID SSID = SyncScope::System; 7377 bool isVolatile = false; 7378 bool isWeak = false; 7379 MaybeAlign Alignment; 7380 7381 if (EatIfPresent(lltok::kw_weak)) 7382 isWeak = true; 7383 7384 if (EatIfPresent(lltok::kw_volatile)) 7385 isVolatile = true; 7386 7387 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7388 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7389 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7390 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7391 parseTypeAndValue(New, NewLoc, PFS) || 7392 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7393 parseOrdering(FailureOrdering) || 7394 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7395 return true; 7396 7397 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 7398 return tokError("invalid cmpxchg success ordering"); 7399 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 7400 return tokError("invalid cmpxchg failure ordering"); 7401 if (!Ptr->getType()->isPointerTy()) 7402 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7403 if (!cast<PointerType>(Ptr->getType()) 7404 ->isOpaqueOrPointeeTypeMatches(Cmp->getType())) 7405 return error(CmpLoc, "compare value and pointer type do not match"); 7406 if (!cast<PointerType>(Ptr->getType()) 7407 ->isOpaqueOrPointeeTypeMatches(New->getType())) 7408 return error(NewLoc, "new value and pointer type do not match"); 7409 if (Cmp->getType() != New->getType()) 7410 return error(NewLoc, "compare value and new value type do not match"); 7411 if (!New->getType()->isFirstClassType()) 7412 return error(NewLoc, "cmpxchg operand must be a first class value"); 7413 7414 const Align DefaultAlignment( 7415 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7416 Cmp->getType())); 7417 7418 AtomicCmpXchgInst *CXI = 7419 new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment.value_or(DefaultAlignment), 7420 SuccessOrdering, FailureOrdering, SSID); 7421 CXI->setVolatile(isVolatile); 7422 CXI->setWeak(isWeak); 7423 7424 Inst = CXI; 7425 return AteExtraComma ? InstExtraComma : InstNormal; 7426 } 7427 7428 /// parseAtomicRMW 7429 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7430 /// 'singlethread'? AtomicOrdering 7431 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7432 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7433 bool AteExtraComma = false; 7434 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7435 SyncScope::ID SSID = SyncScope::System; 7436 bool isVolatile = false; 7437 bool IsFP = false; 7438 AtomicRMWInst::BinOp Operation; 7439 MaybeAlign Alignment; 7440 7441 if (EatIfPresent(lltok::kw_volatile)) 7442 isVolatile = true; 7443 7444 switch (Lex.getKind()) { 7445 default: 7446 return tokError("expected binary operation in atomicrmw"); 7447 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7448 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7449 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7450 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7451 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7452 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7453 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7454 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7455 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7456 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7457 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7458 case lltok::kw_fadd: 7459 Operation = AtomicRMWInst::FAdd; 7460 IsFP = true; 7461 break; 7462 case lltok::kw_fsub: 7463 Operation = AtomicRMWInst::FSub; 7464 IsFP = true; 7465 break; 7466 case lltok::kw_fmax: 7467 Operation = AtomicRMWInst::FMax; 7468 IsFP = true; 7469 break; 7470 case lltok::kw_fmin: 7471 Operation = AtomicRMWInst::FMin; 7472 IsFP = true; 7473 break; 7474 } 7475 Lex.Lex(); // Eat the operation. 7476 7477 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7478 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7479 parseTypeAndValue(Val, ValLoc, PFS) || 7480 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7481 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7482 return true; 7483 7484 if (Ordering == AtomicOrdering::Unordered) 7485 return tokError("atomicrmw cannot be unordered"); 7486 if (!Ptr->getType()->isPointerTy()) 7487 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7488 if (!cast<PointerType>(Ptr->getType()) 7489 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7490 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7491 7492 if (Operation == AtomicRMWInst::Xchg) { 7493 if (!Val->getType()->isIntegerTy() && 7494 !Val->getType()->isFloatingPointTy() && 7495 !Val->getType()->isPointerTy()) { 7496 return error( 7497 ValLoc, 7498 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7499 " operand must be an integer, floating point, or pointer type"); 7500 } 7501 } else if (IsFP) { 7502 if (!Val->getType()->isFloatingPointTy()) { 7503 return error(ValLoc, "atomicrmw " + 7504 AtomicRMWInst::getOperationName(Operation) + 7505 " operand must be a floating point type"); 7506 } 7507 } else { 7508 if (!Val->getType()->isIntegerTy()) { 7509 return error(ValLoc, "atomicrmw " + 7510 AtomicRMWInst::getOperationName(Operation) + 7511 " operand must be an integer"); 7512 } 7513 } 7514 7515 unsigned Size = 7516 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSizeInBits( 7517 Val->getType()); 7518 if (Size < 8 || (Size & (Size - 1))) 7519 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7520 " integer"); 7521 const Align DefaultAlignment( 7522 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7523 Val->getType())); 7524 AtomicRMWInst *RMWI = 7525 new AtomicRMWInst(Operation, Ptr, Val, 7526 Alignment.value_or(DefaultAlignment), Ordering, SSID); 7527 RMWI->setVolatile(isVolatile); 7528 Inst = RMWI; 7529 return AteExtraComma ? InstExtraComma : InstNormal; 7530 } 7531 7532 /// parseFence 7533 /// ::= 'fence' 'singlethread'? AtomicOrdering 7534 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7535 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7536 SyncScope::ID SSID = SyncScope::System; 7537 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7538 return true; 7539 7540 if (Ordering == AtomicOrdering::Unordered) 7541 return tokError("fence cannot be unordered"); 7542 if (Ordering == AtomicOrdering::Monotonic) 7543 return tokError("fence cannot be monotonic"); 7544 7545 Inst = new FenceInst(Context, Ordering, SSID); 7546 return InstNormal; 7547 } 7548 7549 /// parseGetElementPtr 7550 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7551 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7552 Value *Ptr = nullptr; 7553 Value *Val = nullptr; 7554 LocTy Loc, EltLoc; 7555 7556 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7557 7558 Type *Ty = nullptr; 7559 LocTy ExplicitTypeLoc = Lex.getLoc(); 7560 if (parseType(Ty) || 7561 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7562 parseTypeAndValue(Ptr, Loc, PFS)) 7563 return true; 7564 7565 Type *BaseType = Ptr->getType(); 7566 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7567 if (!BasePointerType) 7568 return error(Loc, "base of getelementptr must be a pointer"); 7569 7570 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 7571 return error( 7572 ExplicitTypeLoc, 7573 typeComparisonErrorMessage( 7574 "explicit pointee type doesn't match operand's pointee type", Ty, 7575 BasePointerType->getNonOpaquePointerElementType())); 7576 } 7577 7578 SmallVector<Value*, 16> Indices; 7579 bool AteExtraComma = false; 7580 // GEP returns a vector of pointers if at least one of parameters is a vector. 7581 // All vector parameters should have the same vector width. 7582 ElementCount GEPWidth = BaseType->isVectorTy() 7583 ? cast<VectorType>(BaseType)->getElementCount() 7584 : ElementCount::getFixed(0); 7585 7586 while (EatIfPresent(lltok::comma)) { 7587 if (Lex.getKind() == lltok::MetadataVar) { 7588 AteExtraComma = true; 7589 break; 7590 } 7591 if (parseTypeAndValue(Val, EltLoc, PFS)) 7592 return true; 7593 if (!Val->getType()->isIntOrIntVectorTy()) 7594 return error(EltLoc, "getelementptr index must be an integer"); 7595 7596 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7597 ElementCount ValNumEl = ValVTy->getElementCount(); 7598 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7599 return error( 7600 EltLoc, 7601 "getelementptr vector index has a wrong number of elements"); 7602 GEPWidth = ValNumEl; 7603 } 7604 Indices.push_back(Val); 7605 } 7606 7607 SmallPtrSet<Type*, 4> Visited; 7608 if (!Indices.empty() && !Ty->isSized(&Visited)) 7609 return error(Loc, "base element of getelementptr must be sized"); 7610 7611 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7612 return error(Loc, "invalid getelementptr indices"); 7613 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7614 if (InBounds) 7615 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7616 return AteExtraComma ? InstExtraComma : InstNormal; 7617 } 7618 7619 /// parseExtractValue 7620 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7621 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7622 Value *Val; LocTy Loc; 7623 SmallVector<unsigned, 4> Indices; 7624 bool AteExtraComma; 7625 if (parseTypeAndValue(Val, Loc, PFS) || 7626 parseIndexList(Indices, AteExtraComma)) 7627 return true; 7628 7629 if (!Val->getType()->isAggregateType()) 7630 return error(Loc, "extractvalue operand must be aggregate type"); 7631 7632 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7633 return error(Loc, "invalid indices for extractvalue"); 7634 Inst = ExtractValueInst::Create(Val, Indices); 7635 return AteExtraComma ? InstExtraComma : InstNormal; 7636 } 7637 7638 /// parseInsertValue 7639 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7640 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7641 Value *Val0, *Val1; LocTy Loc0, Loc1; 7642 SmallVector<unsigned, 4> Indices; 7643 bool AteExtraComma; 7644 if (parseTypeAndValue(Val0, Loc0, PFS) || 7645 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7646 parseTypeAndValue(Val1, Loc1, PFS) || 7647 parseIndexList(Indices, AteExtraComma)) 7648 return true; 7649 7650 if (!Val0->getType()->isAggregateType()) 7651 return error(Loc0, "insertvalue operand must be aggregate type"); 7652 7653 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7654 if (!IndexedType) 7655 return error(Loc0, "invalid indices for insertvalue"); 7656 if (IndexedType != Val1->getType()) 7657 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7658 getTypeString(Val1->getType()) + "' instead of '" + 7659 getTypeString(IndexedType) + "'"); 7660 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7661 return AteExtraComma ? InstExtraComma : InstNormal; 7662 } 7663 7664 //===----------------------------------------------------------------------===// 7665 // Embedded metadata. 7666 //===----------------------------------------------------------------------===// 7667 7668 /// parseMDNodeVector 7669 /// ::= { Element (',' Element)* } 7670 /// Element 7671 /// ::= 'null' | TypeAndValue 7672 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7673 if (parseToken(lltok::lbrace, "expected '{' here")) 7674 return true; 7675 7676 // Check for an empty list. 7677 if (EatIfPresent(lltok::rbrace)) 7678 return false; 7679 7680 do { 7681 // Null is a special case since it is typeless. 7682 if (EatIfPresent(lltok::kw_null)) { 7683 Elts.push_back(nullptr); 7684 continue; 7685 } 7686 7687 Metadata *MD; 7688 if (parseMetadata(MD, nullptr)) 7689 return true; 7690 Elts.push_back(MD); 7691 } while (EatIfPresent(lltok::comma)); 7692 7693 return parseToken(lltok::rbrace, "expected end of metadata node"); 7694 } 7695 7696 //===----------------------------------------------------------------------===// 7697 // Use-list order directives. 7698 //===----------------------------------------------------------------------===// 7699 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7700 SMLoc Loc) { 7701 if (V->use_empty()) 7702 return error(Loc, "value has no uses"); 7703 7704 unsigned NumUses = 0; 7705 SmallDenseMap<const Use *, unsigned, 16> Order; 7706 for (const Use &U : V->uses()) { 7707 if (++NumUses > Indexes.size()) 7708 break; 7709 Order[&U] = Indexes[NumUses - 1]; 7710 } 7711 if (NumUses < 2) 7712 return error(Loc, "value only has one use"); 7713 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7714 return error(Loc, 7715 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7716 7717 V->sortUseList([&](const Use &L, const Use &R) { 7718 return Order.lookup(&L) < Order.lookup(&R); 7719 }); 7720 return false; 7721 } 7722 7723 /// parseUseListOrderIndexes 7724 /// ::= '{' uint32 (',' uint32)+ '}' 7725 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7726 SMLoc Loc = Lex.getLoc(); 7727 if (parseToken(lltok::lbrace, "expected '{' here")) 7728 return true; 7729 if (Lex.getKind() == lltok::rbrace) 7730 return Lex.Error("expected non-empty list of uselistorder indexes"); 7731 7732 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7733 // indexes should be distinct numbers in the range [0, size-1], and should 7734 // not be in order. 7735 unsigned Offset = 0; 7736 unsigned Max = 0; 7737 bool IsOrdered = true; 7738 assert(Indexes.empty() && "Expected empty order vector"); 7739 do { 7740 unsigned Index; 7741 if (parseUInt32(Index)) 7742 return true; 7743 7744 // Update consistency checks. 7745 Offset += Index - Indexes.size(); 7746 Max = std::max(Max, Index); 7747 IsOrdered &= Index == Indexes.size(); 7748 7749 Indexes.push_back(Index); 7750 } while (EatIfPresent(lltok::comma)); 7751 7752 if (parseToken(lltok::rbrace, "expected '}' here")) 7753 return true; 7754 7755 if (Indexes.size() < 2) 7756 return error(Loc, "expected >= 2 uselistorder indexes"); 7757 if (Offset != 0 || Max >= Indexes.size()) 7758 return error(Loc, 7759 "expected distinct uselistorder indexes in range [0, size)"); 7760 if (IsOrdered) 7761 return error(Loc, "expected uselistorder indexes to change the order"); 7762 7763 return false; 7764 } 7765 7766 /// parseUseListOrder 7767 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7768 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7769 SMLoc Loc = Lex.getLoc(); 7770 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7771 return true; 7772 7773 Value *V; 7774 SmallVector<unsigned, 16> Indexes; 7775 if (parseTypeAndValue(V, PFS) || 7776 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7777 parseUseListOrderIndexes(Indexes)) 7778 return true; 7779 7780 return sortUseListOrder(V, Indexes, Loc); 7781 } 7782 7783 /// parseUseListOrderBB 7784 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7785 bool LLParser::parseUseListOrderBB() { 7786 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7787 SMLoc Loc = Lex.getLoc(); 7788 Lex.Lex(); 7789 7790 ValID Fn, Label; 7791 SmallVector<unsigned, 16> Indexes; 7792 if (parseValID(Fn, /*PFS=*/nullptr) || 7793 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7794 parseValID(Label, /*PFS=*/nullptr) || 7795 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7796 parseUseListOrderIndexes(Indexes)) 7797 return true; 7798 7799 // Check the function. 7800 GlobalValue *GV; 7801 if (Fn.Kind == ValID::t_GlobalName) 7802 GV = M->getNamedValue(Fn.StrVal); 7803 else if (Fn.Kind == ValID::t_GlobalID) 7804 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7805 else 7806 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7807 if (!GV) 7808 return error(Fn.Loc, 7809 "invalid function forward reference in uselistorder_bb"); 7810 auto *F = dyn_cast<Function>(GV); 7811 if (!F) 7812 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7813 if (F->isDeclaration()) 7814 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7815 7816 // Check the basic block. 7817 if (Label.Kind == ValID::t_LocalID) 7818 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7819 if (Label.Kind != ValID::t_LocalName) 7820 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 7821 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7822 if (!V) 7823 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 7824 if (!isa<BasicBlock>(V)) 7825 return error(Label.Loc, "expected basic block in uselistorder_bb"); 7826 7827 return sortUseListOrder(V, Indexes, Loc); 7828 } 7829 7830 /// ModuleEntry 7831 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7832 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7833 bool LLParser::parseModuleEntry(unsigned ID) { 7834 assert(Lex.getKind() == lltok::kw_module); 7835 Lex.Lex(); 7836 7837 std::string Path; 7838 if (parseToken(lltok::colon, "expected ':' here") || 7839 parseToken(lltok::lparen, "expected '(' here") || 7840 parseToken(lltok::kw_path, "expected 'path' here") || 7841 parseToken(lltok::colon, "expected ':' here") || 7842 parseStringConstant(Path) || 7843 parseToken(lltok::comma, "expected ',' here") || 7844 parseToken(lltok::kw_hash, "expected 'hash' here") || 7845 parseToken(lltok::colon, "expected ':' here") || 7846 parseToken(lltok::lparen, "expected '(' here")) 7847 return true; 7848 7849 ModuleHash Hash; 7850 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 7851 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 7852 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 7853 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 7854 parseUInt32(Hash[4])) 7855 return true; 7856 7857 if (parseToken(lltok::rparen, "expected ')' here") || 7858 parseToken(lltok::rparen, "expected ')' here")) 7859 return true; 7860 7861 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7862 ModuleIdMap[ID] = ModuleEntry->first(); 7863 7864 return false; 7865 } 7866 7867 /// TypeIdEntry 7868 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7869 bool LLParser::parseTypeIdEntry(unsigned ID) { 7870 assert(Lex.getKind() == lltok::kw_typeid); 7871 Lex.Lex(); 7872 7873 std::string Name; 7874 if (parseToken(lltok::colon, "expected ':' here") || 7875 parseToken(lltok::lparen, "expected '(' here") || 7876 parseToken(lltok::kw_name, "expected 'name' here") || 7877 parseToken(lltok::colon, "expected ':' here") || 7878 parseStringConstant(Name)) 7879 return true; 7880 7881 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7882 if (parseToken(lltok::comma, "expected ',' here") || 7883 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 7884 return true; 7885 7886 // Check if this ID was forward referenced, and if so, update the 7887 // corresponding GUIDs. 7888 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7889 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7890 for (auto TIDRef : FwdRefTIDs->second) { 7891 assert(!*TIDRef.first && 7892 "Forward referenced type id GUID expected to be 0"); 7893 *TIDRef.first = GlobalValue::getGUID(Name); 7894 } 7895 ForwardRefTypeIds.erase(FwdRefTIDs); 7896 } 7897 7898 return false; 7899 } 7900 7901 /// TypeIdSummary 7902 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7903 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 7904 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 7905 parseToken(lltok::colon, "expected ':' here") || 7906 parseToken(lltok::lparen, "expected '(' here") || 7907 parseTypeTestResolution(TIS.TTRes)) 7908 return true; 7909 7910 if (EatIfPresent(lltok::comma)) { 7911 // Expect optional wpdResolutions field 7912 if (parseOptionalWpdResolutions(TIS.WPDRes)) 7913 return true; 7914 } 7915 7916 if (parseToken(lltok::rparen, "expected ')' here")) 7917 return true; 7918 7919 return false; 7920 } 7921 7922 static ValueInfo EmptyVI = 7923 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7924 7925 /// TypeIdCompatibleVtableEntry 7926 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7927 /// TypeIdCompatibleVtableInfo 7928 /// ')' 7929 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 7930 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7931 Lex.Lex(); 7932 7933 std::string Name; 7934 if (parseToken(lltok::colon, "expected ':' here") || 7935 parseToken(lltok::lparen, "expected '(' here") || 7936 parseToken(lltok::kw_name, "expected 'name' here") || 7937 parseToken(lltok::colon, "expected ':' here") || 7938 parseStringConstant(Name)) 7939 return true; 7940 7941 TypeIdCompatibleVtableInfo &TI = 7942 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7943 if (parseToken(lltok::comma, "expected ',' here") || 7944 parseToken(lltok::kw_summary, "expected 'summary' here") || 7945 parseToken(lltok::colon, "expected ':' here") || 7946 parseToken(lltok::lparen, "expected '(' here")) 7947 return true; 7948 7949 IdToIndexMapType IdToIndexMap; 7950 // parse each call edge 7951 do { 7952 uint64_t Offset; 7953 if (parseToken(lltok::lparen, "expected '(' here") || 7954 parseToken(lltok::kw_offset, "expected 'offset' here") || 7955 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7956 parseToken(lltok::comma, "expected ',' here")) 7957 return true; 7958 7959 LocTy Loc = Lex.getLoc(); 7960 unsigned GVId; 7961 ValueInfo VI; 7962 if (parseGVReference(VI, GVId)) 7963 return true; 7964 7965 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7966 // forward reference. We will save the location of the ValueInfo needing an 7967 // update, but can only do so once the std::vector is finalized. 7968 if (VI == EmptyVI) 7969 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7970 TI.push_back({Offset, VI}); 7971 7972 if (parseToken(lltok::rparen, "expected ')' in call")) 7973 return true; 7974 } while (EatIfPresent(lltok::comma)); 7975 7976 // Now that the TI vector is finalized, it is safe to save the locations 7977 // of any forward GV references that need updating later. 7978 for (auto I : IdToIndexMap) { 7979 auto &Infos = ForwardRefValueInfos[I.first]; 7980 for (auto P : I.second) { 7981 assert(TI[P.first].VTableVI == EmptyVI && 7982 "Forward referenced ValueInfo expected to be empty"); 7983 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 7984 } 7985 } 7986 7987 if (parseToken(lltok::rparen, "expected ')' here") || 7988 parseToken(lltok::rparen, "expected ')' here")) 7989 return true; 7990 7991 // Check if this ID was forward referenced, and if so, update the 7992 // corresponding GUIDs. 7993 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7994 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7995 for (auto TIDRef : FwdRefTIDs->second) { 7996 assert(!*TIDRef.first && 7997 "Forward referenced type id GUID expected to be 0"); 7998 *TIDRef.first = GlobalValue::getGUID(Name); 7999 } 8000 ForwardRefTypeIds.erase(FwdRefTIDs); 8001 } 8002 8003 return false; 8004 } 8005 8006 /// TypeTestResolution 8007 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 8008 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 8009 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 8010 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 8011 /// [',' 'inlinesBits' ':' UInt64]? ')' 8012 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 8013 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 8014 parseToken(lltok::colon, "expected ':' here") || 8015 parseToken(lltok::lparen, "expected '(' here") || 8016 parseToken(lltok::kw_kind, "expected 'kind' here") || 8017 parseToken(lltok::colon, "expected ':' here")) 8018 return true; 8019 8020 switch (Lex.getKind()) { 8021 case lltok::kw_unknown: 8022 TTRes.TheKind = TypeTestResolution::Unknown; 8023 break; 8024 case lltok::kw_unsat: 8025 TTRes.TheKind = TypeTestResolution::Unsat; 8026 break; 8027 case lltok::kw_byteArray: 8028 TTRes.TheKind = TypeTestResolution::ByteArray; 8029 break; 8030 case lltok::kw_inline: 8031 TTRes.TheKind = TypeTestResolution::Inline; 8032 break; 8033 case lltok::kw_single: 8034 TTRes.TheKind = TypeTestResolution::Single; 8035 break; 8036 case lltok::kw_allOnes: 8037 TTRes.TheKind = TypeTestResolution::AllOnes; 8038 break; 8039 default: 8040 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 8041 } 8042 Lex.Lex(); 8043 8044 if (parseToken(lltok::comma, "expected ',' here") || 8045 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 8046 parseToken(lltok::colon, "expected ':' here") || 8047 parseUInt32(TTRes.SizeM1BitWidth)) 8048 return true; 8049 8050 // parse optional fields 8051 while (EatIfPresent(lltok::comma)) { 8052 switch (Lex.getKind()) { 8053 case lltok::kw_alignLog2: 8054 Lex.Lex(); 8055 if (parseToken(lltok::colon, "expected ':'") || 8056 parseUInt64(TTRes.AlignLog2)) 8057 return true; 8058 break; 8059 case lltok::kw_sizeM1: 8060 Lex.Lex(); 8061 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 8062 return true; 8063 break; 8064 case lltok::kw_bitMask: { 8065 unsigned Val; 8066 Lex.Lex(); 8067 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 8068 return true; 8069 assert(Val <= 0xff); 8070 TTRes.BitMask = (uint8_t)Val; 8071 break; 8072 } 8073 case lltok::kw_inlineBits: 8074 Lex.Lex(); 8075 if (parseToken(lltok::colon, "expected ':'") || 8076 parseUInt64(TTRes.InlineBits)) 8077 return true; 8078 break; 8079 default: 8080 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 8081 } 8082 } 8083 8084 if (parseToken(lltok::rparen, "expected ')' here")) 8085 return true; 8086 8087 return false; 8088 } 8089 8090 /// OptionalWpdResolutions 8091 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 8092 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 8093 bool LLParser::parseOptionalWpdResolutions( 8094 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 8095 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 8096 parseToken(lltok::colon, "expected ':' here") || 8097 parseToken(lltok::lparen, "expected '(' here")) 8098 return true; 8099 8100 do { 8101 uint64_t Offset; 8102 WholeProgramDevirtResolution WPDRes; 8103 if (parseToken(lltok::lparen, "expected '(' here") || 8104 parseToken(lltok::kw_offset, "expected 'offset' here") || 8105 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8106 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 8107 parseToken(lltok::rparen, "expected ')' here")) 8108 return true; 8109 WPDResMap[Offset] = WPDRes; 8110 } while (EatIfPresent(lltok::comma)); 8111 8112 if (parseToken(lltok::rparen, "expected ')' here")) 8113 return true; 8114 8115 return false; 8116 } 8117 8118 /// WpdRes 8119 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 8120 /// [',' OptionalResByArg]? ')' 8121 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 8122 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 8123 /// [',' OptionalResByArg]? ')' 8124 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 8125 /// [',' OptionalResByArg]? ')' 8126 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 8127 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 8128 parseToken(lltok::colon, "expected ':' here") || 8129 parseToken(lltok::lparen, "expected '(' here") || 8130 parseToken(lltok::kw_kind, "expected 'kind' here") || 8131 parseToken(lltok::colon, "expected ':' here")) 8132 return true; 8133 8134 switch (Lex.getKind()) { 8135 case lltok::kw_indir: 8136 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8137 break; 8138 case lltok::kw_singleImpl: 8139 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8140 break; 8141 case lltok::kw_branchFunnel: 8142 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8143 break; 8144 default: 8145 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8146 } 8147 Lex.Lex(); 8148 8149 // parse optional fields 8150 while (EatIfPresent(lltok::comma)) { 8151 switch (Lex.getKind()) { 8152 case lltok::kw_singleImplName: 8153 Lex.Lex(); 8154 if (parseToken(lltok::colon, "expected ':' here") || 8155 parseStringConstant(WPDRes.SingleImplName)) 8156 return true; 8157 break; 8158 case lltok::kw_resByArg: 8159 if (parseOptionalResByArg(WPDRes.ResByArg)) 8160 return true; 8161 break; 8162 default: 8163 return error(Lex.getLoc(), 8164 "expected optional WholeProgramDevirtResolution field"); 8165 } 8166 } 8167 8168 if (parseToken(lltok::rparen, "expected ')' here")) 8169 return true; 8170 8171 return false; 8172 } 8173 8174 /// OptionalResByArg 8175 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8176 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8177 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8178 /// 'virtualConstProp' ) 8179 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8180 /// [',' 'bit' ':' UInt32]? ')' 8181 bool LLParser::parseOptionalResByArg( 8182 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8183 &ResByArg) { 8184 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8185 parseToken(lltok::colon, "expected ':' here") || 8186 parseToken(lltok::lparen, "expected '(' here")) 8187 return true; 8188 8189 do { 8190 std::vector<uint64_t> Args; 8191 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8192 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8193 parseToken(lltok::colon, "expected ':' here") || 8194 parseToken(lltok::lparen, "expected '(' here") || 8195 parseToken(lltok::kw_kind, "expected 'kind' here") || 8196 parseToken(lltok::colon, "expected ':' here")) 8197 return true; 8198 8199 WholeProgramDevirtResolution::ByArg ByArg; 8200 switch (Lex.getKind()) { 8201 case lltok::kw_indir: 8202 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8203 break; 8204 case lltok::kw_uniformRetVal: 8205 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8206 break; 8207 case lltok::kw_uniqueRetVal: 8208 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8209 break; 8210 case lltok::kw_virtualConstProp: 8211 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8212 break; 8213 default: 8214 return error(Lex.getLoc(), 8215 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8216 } 8217 Lex.Lex(); 8218 8219 // parse optional fields 8220 while (EatIfPresent(lltok::comma)) { 8221 switch (Lex.getKind()) { 8222 case lltok::kw_info: 8223 Lex.Lex(); 8224 if (parseToken(lltok::colon, "expected ':' here") || 8225 parseUInt64(ByArg.Info)) 8226 return true; 8227 break; 8228 case lltok::kw_byte: 8229 Lex.Lex(); 8230 if (parseToken(lltok::colon, "expected ':' here") || 8231 parseUInt32(ByArg.Byte)) 8232 return true; 8233 break; 8234 case lltok::kw_bit: 8235 Lex.Lex(); 8236 if (parseToken(lltok::colon, "expected ':' here") || 8237 parseUInt32(ByArg.Bit)) 8238 return true; 8239 break; 8240 default: 8241 return error(Lex.getLoc(), 8242 "expected optional whole program devirt field"); 8243 } 8244 } 8245 8246 if (parseToken(lltok::rparen, "expected ')' here")) 8247 return true; 8248 8249 ResByArg[Args] = ByArg; 8250 } while (EatIfPresent(lltok::comma)); 8251 8252 if (parseToken(lltok::rparen, "expected ')' here")) 8253 return true; 8254 8255 return false; 8256 } 8257 8258 /// OptionalResByArg 8259 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8260 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8261 if (parseToken(lltok::kw_args, "expected 'args' here") || 8262 parseToken(lltok::colon, "expected ':' here") || 8263 parseToken(lltok::lparen, "expected '(' here")) 8264 return true; 8265 8266 do { 8267 uint64_t Val; 8268 if (parseUInt64(Val)) 8269 return true; 8270 Args.push_back(Val); 8271 } while (EatIfPresent(lltok::comma)); 8272 8273 if (parseToken(lltok::rparen, "expected ')' here")) 8274 return true; 8275 8276 return false; 8277 } 8278 8279 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8280 8281 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8282 bool ReadOnly = Fwd->isReadOnly(); 8283 bool WriteOnly = Fwd->isWriteOnly(); 8284 assert(!(ReadOnly && WriteOnly)); 8285 *Fwd = Resolved; 8286 if (ReadOnly) 8287 Fwd->setReadOnly(); 8288 if (WriteOnly) 8289 Fwd->setWriteOnly(); 8290 } 8291 8292 /// Stores the given Name/GUID and associated summary into the Index. 8293 /// Also updates any forward references to the associated entry ID. 8294 void LLParser::addGlobalValueToIndex( 8295 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8296 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8297 // First create the ValueInfo utilizing the Name or GUID. 8298 ValueInfo VI; 8299 if (GUID != 0) { 8300 assert(Name.empty()); 8301 VI = Index->getOrInsertValueInfo(GUID); 8302 } else { 8303 assert(!Name.empty()); 8304 if (M) { 8305 auto *GV = M->getNamedValue(Name); 8306 assert(GV); 8307 VI = Index->getOrInsertValueInfo(GV); 8308 } else { 8309 assert( 8310 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8311 "Need a source_filename to compute GUID for local"); 8312 GUID = GlobalValue::getGUID( 8313 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8314 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8315 } 8316 } 8317 8318 // Resolve forward references from calls/refs 8319 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8320 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8321 for (auto VIRef : FwdRefVIs->second) { 8322 assert(VIRef.first->getRef() == FwdVIRef && 8323 "Forward referenced ValueInfo expected to be empty"); 8324 resolveFwdRef(VIRef.first, VI); 8325 } 8326 ForwardRefValueInfos.erase(FwdRefVIs); 8327 } 8328 8329 // Resolve forward references from aliases 8330 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8331 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8332 for (auto AliaseeRef : FwdRefAliasees->second) { 8333 assert(!AliaseeRef.first->hasAliasee() && 8334 "Forward referencing alias already has aliasee"); 8335 assert(Summary && "Aliasee must be a definition"); 8336 AliaseeRef.first->setAliasee(VI, Summary.get()); 8337 } 8338 ForwardRefAliasees.erase(FwdRefAliasees); 8339 } 8340 8341 // Add the summary if one was provided. 8342 if (Summary) 8343 Index->addGlobalValueSummary(VI, std::move(Summary)); 8344 8345 // Save the associated ValueInfo for use in later references by ID. 8346 if (ID == NumberedValueInfos.size()) 8347 NumberedValueInfos.push_back(VI); 8348 else { 8349 // Handle non-continuous numbers (to make test simplification easier). 8350 if (ID > NumberedValueInfos.size()) 8351 NumberedValueInfos.resize(ID + 1); 8352 NumberedValueInfos[ID] = VI; 8353 } 8354 } 8355 8356 /// parseSummaryIndexFlags 8357 /// ::= 'flags' ':' UInt64 8358 bool LLParser::parseSummaryIndexFlags() { 8359 assert(Lex.getKind() == lltok::kw_flags); 8360 Lex.Lex(); 8361 8362 if (parseToken(lltok::colon, "expected ':' here")) 8363 return true; 8364 uint64_t Flags; 8365 if (parseUInt64(Flags)) 8366 return true; 8367 if (Index) 8368 Index->setFlags(Flags); 8369 return false; 8370 } 8371 8372 /// parseBlockCount 8373 /// ::= 'blockcount' ':' UInt64 8374 bool LLParser::parseBlockCount() { 8375 assert(Lex.getKind() == lltok::kw_blockcount); 8376 Lex.Lex(); 8377 8378 if (parseToken(lltok::colon, "expected ':' here")) 8379 return true; 8380 uint64_t BlockCount; 8381 if (parseUInt64(BlockCount)) 8382 return true; 8383 if (Index) 8384 Index->setBlockCount(BlockCount); 8385 return false; 8386 } 8387 8388 /// parseGVEntry 8389 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8390 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8391 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8392 bool LLParser::parseGVEntry(unsigned ID) { 8393 assert(Lex.getKind() == lltok::kw_gv); 8394 Lex.Lex(); 8395 8396 if (parseToken(lltok::colon, "expected ':' here") || 8397 parseToken(lltok::lparen, "expected '(' here")) 8398 return true; 8399 8400 std::string Name; 8401 GlobalValue::GUID GUID = 0; 8402 switch (Lex.getKind()) { 8403 case lltok::kw_name: 8404 Lex.Lex(); 8405 if (parseToken(lltok::colon, "expected ':' here") || 8406 parseStringConstant(Name)) 8407 return true; 8408 // Can't create GUID/ValueInfo until we have the linkage. 8409 break; 8410 case lltok::kw_guid: 8411 Lex.Lex(); 8412 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8413 return true; 8414 break; 8415 default: 8416 return error(Lex.getLoc(), "expected name or guid tag"); 8417 } 8418 8419 if (!EatIfPresent(lltok::comma)) { 8420 // No summaries. Wrap up. 8421 if (parseToken(lltok::rparen, "expected ')' here")) 8422 return true; 8423 // This was created for a call to an external or indirect target. 8424 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8425 // created for indirect calls with VP. A Name with no GUID came from 8426 // an external definition. We pass ExternalLinkage since that is only 8427 // used when the GUID must be computed from Name, and in that case 8428 // the symbol must have external linkage. 8429 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8430 nullptr); 8431 return false; 8432 } 8433 8434 // Have a list of summaries 8435 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8436 parseToken(lltok::colon, "expected ':' here") || 8437 parseToken(lltok::lparen, "expected '(' here")) 8438 return true; 8439 do { 8440 switch (Lex.getKind()) { 8441 case lltok::kw_function: 8442 if (parseFunctionSummary(Name, GUID, ID)) 8443 return true; 8444 break; 8445 case lltok::kw_variable: 8446 if (parseVariableSummary(Name, GUID, ID)) 8447 return true; 8448 break; 8449 case lltok::kw_alias: 8450 if (parseAliasSummary(Name, GUID, ID)) 8451 return true; 8452 break; 8453 default: 8454 return error(Lex.getLoc(), "expected summary type"); 8455 } 8456 } while (EatIfPresent(lltok::comma)); 8457 8458 if (parseToken(lltok::rparen, "expected ')' here") || 8459 parseToken(lltok::rparen, "expected ')' here")) 8460 return true; 8461 8462 return false; 8463 } 8464 8465 /// FunctionSummary 8466 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8467 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8468 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8469 /// [',' OptionalRefs]? ')' 8470 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8471 unsigned ID) { 8472 assert(Lex.getKind() == lltok::kw_function); 8473 Lex.Lex(); 8474 8475 StringRef ModulePath; 8476 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8477 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8478 /*NotEligibleToImport=*/false, 8479 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8480 unsigned InstCount; 8481 std::vector<FunctionSummary::EdgeTy> Calls; 8482 FunctionSummary::TypeIdInfo TypeIdInfo; 8483 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8484 std::vector<ValueInfo> Refs; 8485 // Default is all-zeros (conservative values). 8486 FunctionSummary::FFlags FFlags = {}; 8487 if (parseToken(lltok::colon, "expected ':' here") || 8488 parseToken(lltok::lparen, "expected '(' here") || 8489 parseModuleReference(ModulePath) || 8490 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8491 parseToken(lltok::comma, "expected ',' here") || 8492 parseToken(lltok::kw_insts, "expected 'insts' here") || 8493 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8494 return true; 8495 8496 // parse optional fields 8497 while (EatIfPresent(lltok::comma)) { 8498 switch (Lex.getKind()) { 8499 case lltok::kw_funcFlags: 8500 if (parseOptionalFFlags(FFlags)) 8501 return true; 8502 break; 8503 case lltok::kw_calls: 8504 if (parseOptionalCalls(Calls)) 8505 return true; 8506 break; 8507 case lltok::kw_typeIdInfo: 8508 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8509 return true; 8510 break; 8511 case lltok::kw_refs: 8512 if (parseOptionalRefs(Refs)) 8513 return true; 8514 break; 8515 case lltok::kw_params: 8516 if (parseOptionalParamAccesses(ParamAccesses)) 8517 return true; 8518 break; 8519 default: 8520 return error(Lex.getLoc(), "expected optional function summary field"); 8521 } 8522 } 8523 8524 if (parseToken(lltok::rparen, "expected ')' here")) 8525 return true; 8526 8527 auto FS = std::make_unique<FunctionSummary>( 8528 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8529 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8530 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8531 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8532 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8533 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8534 std::move(ParamAccesses)); 8535 8536 FS->setModulePath(ModulePath); 8537 8538 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8539 ID, std::move(FS)); 8540 8541 return false; 8542 } 8543 8544 /// VariableSummary 8545 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8546 /// [',' OptionalRefs]? ')' 8547 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8548 unsigned ID) { 8549 assert(Lex.getKind() == lltok::kw_variable); 8550 Lex.Lex(); 8551 8552 StringRef ModulePath; 8553 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8554 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8555 /*NotEligibleToImport=*/false, 8556 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8557 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8558 /* WriteOnly */ false, 8559 /* Constant */ false, 8560 GlobalObject::VCallVisibilityPublic); 8561 std::vector<ValueInfo> Refs; 8562 VTableFuncList VTableFuncs; 8563 if (parseToken(lltok::colon, "expected ':' here") || 8564 parseToken(lltok::lparen, "expected '(' here") || 8565 parseModuleReference(ModulePath) || 8566 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8567 parseToken(lltok::comma, "expected ',' here") || 8568 parseGVarFlags(GVarFlags)) 8569 return true; 8570 8571 // parse optional fields 8572 while (EatIfPresent(lltok::comma)) { 8573 switch (Lex.getKind()) { 8574 case lltok::kw_vTableFuncs: 8575 if (parseOptionalVTableFuncs(VTableFuncs)) 8576 return true; 8577 break; 8578 case lltok::kw_refs: 8579 if (parseOptionalRefs(Refs)) 8580 return true; 8581 break; 8582 default: 8583 return error(Lex.getLoc(), "expected optional variable summary field"); 8584 } 8585 } 8586 8587 if (parseToken(lltok::rparen, "expected ')' here")) 8588 return true; 8589 8590 auto GS = 8591 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8592 8593 GS->setModulePath(ModulePath); 8594 GS->setVTableFuncs(std::move(VTableFuncs)); 8595 8596 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8597 ID, std::move(GS)); 8598 8599 return false; 8600 } 8601 8602 /// AliasSummary 8603 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8604 /// 'aliasee' ':' GVReference ')' 8605 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8606 unsigned ID) { 8607 assert(Lex.getKind() == lltok::kw_alias); 8608 LocTy Loc = Lex.getLoc(); 8609 Lex.Lex(); 8610 8611 StringRef ModulePath; 8612 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8613 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8614 /*NotEligibleToImport=*/false, 8615 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8616 if (parseToken(lltok::colon, "expected ':' here") || 8617 parseToken(lltok::lparen, "expected '(' here") || 8618 parseModuleReference(ModulePath) || 8619 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8620 parseToken(lltok::comma, "expected ',' here") || 8621 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8622 parseToken(lltok::colon, "expected ':' here")) 8623 return true; 8624 8625 ValueInfo AliaseeVI; 8626 unsigned GVId; 8627 if (parseGVReference(AliaseeVI, GVId)) 8628 return true; 8629 8630 if (parseToken(lltok::rparen, "expected ')' here")) 8631 return true; 8632 8633 auto AS = std::make_unique<AliasSummary>(GVFlags); 8634 8635 AS->setModulePath(ModulePath); 8636 8637 // Record forward reference if the aliasee is not parsed yet. 8638 if (AliaseeVI.getRef() == FwdVIRef) { 8639 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8640 } else { 8641 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8642 assert(Summary && "Aliasee must be a definition"); 8643 AS->setAliasee(AliaseeVI, Summary); 8644 } 8645 8646 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8647 ID, std::move(AS)); 8648 8649 return false; 8650 } 8651 8652 /// Flag 8653 /// ::= [0|1] 8654 bool LLParser::parseFlag(unsigned &Val) { 8655 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8656 return tokError("expected integer"); 8657 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8658 Lex.Lex(); 8659 return false; 8660 } 8661 8662 /// OptionalFFlags 8663 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8664 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8665 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8666 /// [',' 'noInline' ':' Flag]? ')' 8667 /// [',' 'alwaysInline' ':' Flag]? ')' 8668 /// [',' 'noUnwind' ':' Flag]? ')' 8669 /// [',' 'mayThrow' ':' Flag]? ')' 8670 /// [',' 'hasUnknownCall' ':' Flag]? ')' 8671 /// [',' 'mustBeUnreachable' ':' Flag]? ')' 8672 8673 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8674 assert(Lex.getKind() == lltok::kw_funcFlags); 8675 Lex.Lex(); 8676 8677 if (parseToken(lltok::colon, "expected ':' in funcFlags") || 8678 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8679 return true; 8680 8681 do { 8682 unsigned Val = 0; 8683 switch (Lex.getKind()) { 8684 case lltok::kw_readNone: 8685 Lex.Lex(); 8686 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8687 return true; 8688 FFlags.ReadNone = Val; 8689 break; 8690 case lltok::kw_readOnly: 8691 Lex.Lex(); 8692 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8693 return true; 8694 FFlags.ReadOnly = Val; 8695 break; 8696 case lltok::kw_noRecurse: 8697 Lex.Lex(); 8698 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8699 return true; 8700 FFlags.NoRecurse = Val; 8701 break; 8702 case lltok::kw_returnDoesNotAlias: 8703 Lex.Lex(); 8704 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8705 return true; 8706 FFlags.ReturnDoesNotAlias = Val; 8707 break; 8708 case lltok::kw_noInline: 8709 Lex.Lex(); 8710 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8711 return true; 8712 FFlags.NoInline = Val; 8713 break; 8714 case lltok::kw_alwaysInline: 8715 Lex.Lex(); 8716 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8717 return true; 8718 FFlags.AlwaysInline = Val; 8719 break; 8720 case lltok::kw_noUnwind: 8721 Lex.Lex(); 8722 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8723 return true; 8724 FFlags.NoUnwind = Val; 8725 break; 8726 case lltok::kw_mayThrow: 8727 Lex.Lex(); 8728 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8729 return true; 8730 FFlags.MayThrow = Val; 8731 break; 8732 case lltok::kw_hasUnknownCall: 8733 Lex.Lex(); 8734 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8735 return true; 8736 FFlags.HasUnknownCall = Val; 8737 break; 8738 case lltok::kw_mustBeUnreachable: 8739 Lex.Lex(); 8740 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8741 return true; 8742 FFlags.MustBeUnreachable = Val; 8743 break; 8744 default: 8745 return error(Lex.getLoc(), "expected function flag type"); 8746 } 8747 } while (EatIfPresent(lltok::comma)); 8748 8749 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8750 return true; 8751 8752 return false; 8753 } 8754 8755 /// OptionalCalls 8756 /// := 'calls' ':' '(' Call [',' Call]* ')' 8757 /// Call ::= '(' 'callee' ':' GVReference 8758 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8759 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8760 assert(Lex.getKind() == lltok::kw_calls); 8761 Lex.Lex(); 8762 8763 if (parseToken(lltok::colon, "expected ':' in calls") || 8764 parseToken(lltok::lparen, "expected '(' in calls")) 8765 return true; 8766 8767 IdToIndexMapType IdToIndexMap; 8768 // parse each call edge 8769 do { 8770 ValueInfo VI; 8771 if (parseToken(lltok::lparen, "expected '(' in call") || 8772 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8773 parseToken(lltok::colon, "expected ':'")) 8774 return true; 8775 8776 LocTy Loc = Lex.getLoc(); 8777 unsigned GVId; 8778 if (parseGVReference(VI, GVId)) 8779 return true; 8780 8781 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8782 unsigned RelBF = 0; 8783 if (EatIfPresent(lltok::comma)) { 8784 // Expect either hotness or relbf 8785 if (EatIfPresent(lltok::kw_hotness)) { 8786 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8787 return true; 8788 } else { 8789 if (parseToken(lltok::kw_relbf, "expected relbf") || 8790 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8791 return true; 8792 } 8793 } 8794 // Keep track of the Call array index needing a forward reference. 8795 // We will save the location of the ValueInfo needing an update, but 8796 // can only do so once the std::vector is finalized. 8797 if (VI.getRef() == FwdVIRef) 8798 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8799 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8800 8801 if (parseToken(lltok::rparen, "expected ')' in call")) 8802 return true; 8803 } while (EatIfPresent(lltok::comma)); 8804 8805 // Now that the Calls vector is finalized, it is safe to save the locations 8806 // of any forward GV references that need updating later. 8807 for (auto I : IdToIndexMap) { 8808 auto &Infos = ForwardRefValueInfos[I.first]; 8809 for (auto P : I.second) { 8810 assert(Calls[P.first].first.getRef() == FwdVIRef && 8811 "Forward referenced ValueInfo expected to be empty"); 8812 Infos.emplace_back(&Calls[P.first].first, P.second); 8813 } 8814 } 8815 8816 if (parseToken(lltok::rparen, "expected ')' in calls")) 8817 return true; 8818 8819 return false; 8820 } 8821 8822 /// Hotness 8823 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8824 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8825 switch (Lex.getKind()) { 8826 case lltok::kw_unknown: 8827 Hotness = CalleeInfo::HotnessType::Unknown; 8828 break; 8829 case lltok::kw_cold: 8830 Hotness = CalleeInfo::HotnessType::Cold; 8831 break; 8832 case lltok::kw_none: 8833 Hotness = CalleeInfo::HotnessType::None; 8834 break; 8835 case lltok::kw_hot: 8836 Hotness = CalleeInfo::HotnessType::Hot; 8837 break; 8838 case lltok::kw_critical: 8839 Hotness = CalleeInfo::HotnessType::Critical; 8840 break; 8841 default: 8842 return error(Lex.getLoc(), "invalid call edge hotness"); 8843 } 8844 Lex.Lex(); 8845 return false; 8846 } 8847 8848 /// OptionalVTableFuncs 8849 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8850 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8851 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8852 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8853 Lex.Lex(); 8854 8855 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") || 8856 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8857 return true; 8858 8859 IdToIndexMapType IdToIndexMap; 8860 // parse each virtual function pair 8861 do { 8862 ValueInfo VI; 8863 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 8864 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8865 parseToken(lltok::colon, "expected ':'")) 8866 return true; 8867 8868 LocTy Loc = Lex.getLoc(); 8869 unsigned GVId; 8870 if (parseGVReference(VI, GVId)) 8871 return true; 8872 8873 uint64_t Offset; 8874 if (parseToken(lltok::comma, "expected comma") || 8875 parseToken(lltok::kw_offset, "expected offset") || 8876 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 8877 return true; 8878 8879 // Keep track of the VTableFuncs array index needing a forward reference. 8880 // We will save the location of the ValueInfo needing an update, but 8881 // can only do so once the std::vector is finalized. 8882 if (VI == EmptyVI) 8883 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8884 VTableFuncs.push_back({VI, Offset}); 8885 8886 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 8887 return true; 8888 } while (EatIfPresent(lltok::comma)); 8889 8890 // Now that the VTableFuncs vector is finalized, it is safe to save the 8891 // locations of any forward GV references that need updating later. 8892 for (auto I : IdToIndexMap) { 8893 auto &Infos = ForwardRefValueInfos[I.first]; 8894 for (auto P : I.second) { 8895 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8896 "Forward referenced ValueInfo expected to be empty"); 8897 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 8898 } 8899 } 8900 8901 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8902 return true; 8903 8904 return false; 8905 } 8906 8907 /// ParamNo := 'param' ':' UInt64 8908 bool LLParser::parseParamNo(uint64_t &ParamNo) { 8909 if (parseToken(lltok::kw_param, "expected 'param' here") || 8910 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 8911 return true; 8912 return false; 8913 } 8914 8915 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 8916 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 8917 APSInt Lower; 8918 APSInt Upper; 8919 auto ParseAPSInt = [&](APSInt &Val) { 8920 if (Lex.getKind() != lltok::APSInt) 8921 return tokError("expected integer"); 8922 Val = Lex.getAPSIntVal(); 8923 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 8924 Val.setIsSigned(true); 8925 Lex.Lex(); 8926 return false; 8927 }; 8928 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 8929 parseToken(lltok::colon, "expected ':' here") || 8930 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 8931 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 8932 parseToken(lltok::rsquare, "expected ']' here")) 8933 return true; 8934 8935 ++Upper; 8936 Range = 8937 (Lower == Upper && !Lower.isMaxValue()) 8938 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 8939 : ConstantRange(Lower, Upper); 8940 8941 return false; 8942 } 8943 8944 /// ParamAccessCall 8945 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 8946 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 8947 IdLocListType &IdLocList) { 8948 if (parseToken(lltok::lparen, "expected '(' here") || 8949 parseToken(lltok::kw_callee, "expected 'callee' here") || 8950 parseToken(lltok::colon, "expected ':' here")) 8951 return true; 8952 8953 unsigned GVId; 8954 ValueInfo VI; 8955 LocTy Loc = Lex.getLoc(); 8956 if (parseGVReference(VI, GVId)) 8957 return true; 8958 8959 Call.Callee = VI; 8960 IdLocList.emplace_back(GVId, Loc); 8961 8962 if (parseToken(lltok::comma, "expected ',' here") || 8963 parseParamNo(Call.ParamNo) || 8964 parseToken(lltok::comma, "expected ',' here") || 8965 parseParamAccessOffset(Call.Offsets)) 8966 return true; 8967 8968 if (parseToken(lltok::rparen, "expected ')' here")) 8969 return true; 8970 8971 return false; 8972 } 8973 8974 /// ParamAccess 8975 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 8976 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 8977 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 8978 IdLocListType &IdLocList) { 8979 if (parseToken(lltok::lparen, "expected '(' here") || 8980 parseParamNo(Param.ParamNo) || 8981 parseToken(lltok::comma, "expected ',' here") || 8982 parseParamAccessOffset(Param.Use)) 8983 return true; 8984 8985 if (EatIfPresent(lltok::comma)) { 8986 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 8987 parseToken(lltok::colon, "expected ':' here") || 8988 parseToken(lltok::lparen, "expected '(' here")) 8989 return true; 8990 do { 8991 FunctionSummary::ParamAccess::Call Call; 8992 if (parseParamAccessCall(Call, IdLocList)) 8993 return true; 8994 Param.Calls.push_back(Call); 8995 } while (EatIfPresent(lltok::comma)); 8996 8997 if (parseToken(lltok::rparen, "expected ')' here")) 8998 return true; 8999 } 9000 9001 if (parseToken(lltok::rparen, "expected ')' here")) 9002 return true; 9003 9004 return false; 9005 } 9006 9007 /// OptionalParamAccesses 9008 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 9009 bool LLParser::parseOptionalParamAccesses( 9010 std::vector<FunctionSummary::ParamAccess> &Params) { 9011 assert(Lex.getKind() == lltok::kw_params); 9012 Lex.Lex(); 9013 9014 if (parseToken(lltok::colon, "expected ':' here") || 9015 parseToken(lltok::lparen, "expected '(' here")) 9016 return true; 9017 9018 IdLocListType VContexts; 9019 size_t CallsNum = 0; 9020 do { 9021 FunctionSummary::ParamAccess ParamAccess; 9022 if (parseParamAccess(ParamAccess, VContexts)) 9023 return true; 9024 CallsNum += ParamAccess.Calls.size(); 9025 assert(VContexts.size() == CallsNum); 9026 (void)CallsNum; 9027 Params.emplace_back(std::move(ParamAccess)); 9028 } while (EatIfPresent(lltok::comma)); 9029 9030 if (parseToken(lltok::rparen, "expected ')' here")) 9031 return true; 9032 9033 // Now that the Params is finalized, it is safe to save the locations 9034 // of any forward GV references that need updating later. 9035 IdLocListType::const_iterator ItContext = VContexts.begin(); 9036 for (auto &PA : Params) { 9037 for (auto &C : PA.Calls) { 9038 if (C.Callee.getRef() == FwdVIRef) 9039 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 9040 ItContext->second); 9041 ++ItContext; 9042 } 9043 } 9044 assert(ItContext == VContexts.end()); 9045 9046 return false; 9047 } 9048 9049 /// OptionalRefs 9050 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 9051 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 9052 assert(Lex.getKind() == lltok::kw_refs); 9053 Lex.Lex(); 9054 9055 if (parseToken(lltok::colon, "expected ':' in refs") || 9056 parseToken(lltok::lparen, "expected '(' in refs")) 9057 return true; 9058 9059 struct ValueContext { 9060 ValueInfo VI; 9061 unsigned GVId; 9062 LocTy Loc; 9063 }; 9064 std::vector<ValueContext> VContexts; 9065 // parse each ref edge 9066 do { 9067 ValueContext VC; 9068 VC.Loc = Lex.getLoc(); 9069 if (parseGVReference(VC.VI, VC.GVId)) 9070 return true; 9071 VContexts.push_back(VC); 9072 } while (EatIfPresent(lltok::comma)); 9073 9074 // Sort value contexts so that ones with writeonly 9075 // and readonly ValueInfo are at the end of VContexts vector. 9076 // See FunctionSummary::specialRefCounts() 9077 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 9078 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 9079 }); 9080 9081 IdToIndexMapType IdToIndexMap; 9082 for (auto &VC : VContexts) { 9083 // Keep track of the Refs array index needing a forward reference. 9084 // We will save the location of the ValueInfo needing an update, but 9085 // can only do so once the std::vector is finalized. 9086 if (VC.VI.getRef() == FwdVIRef) 9087 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 9088 Refs.push_back(VC.VI); 9089 } 9090 9091 // Now that the Refs vector is finalized, it is safe to save the locations 9092 // of any forward GV references that need updating later. 9093 for (auto I : IdToIndexMap) { 9094 auto &Infos = ForwardRefValueInfos[I.first]; 9095 for (auto P : I.second) { 9096 assert(Refs[P.first].getRef() == FwdVIRef && 9097 "Forward referenced ValueInfo expected to be empty"); 9098 Infos.emplace_back(&Refs[P.first], P.second); 9099 } 9100 } 9101 9102 if (parseToken(lltok::rparen, "expected ')' in refs")) 9103 return true; 9104 9105 return false; 9106 } 9107 9108 /// OptionalTypeIdInfo 9109 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 9110 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 9111 /// [',' TypeCheckedLoadConstVCalls]? ')' 9112 bool LLParser::parseOptionalTypeIdInfo( 9113 FunctionSummary::TypeIdInfo &TypeIdInfo) { 9114 assert(Lex.getKind() == lltok::kw_typeIdInfo); 9115 Lex.Lex(); 9116 9117 if (parseToken(lltok::colon, "expected ':' here") || 9118 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9119 return true; 9120 9121 do { 9122 switch (Lex.getKind()) { 9123 case lltok::kw_typeTests: 9124 if (parseTypeTests(TypeIdInfo.TypeTests)) 9125 return true; 9126 break; 9127 case lltok::kw_typeTestAssumeVCalls: 9128 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 9129 TypeIdInfo.TypeTestAssumeVCalls)) 9130 return true; 9131 break; 9132 case lltok::kw_typeCheckedLoadVCalls: 9133 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 9134 TypeIdInfo.TypeCheckedLoadVCalls)) 9135 return true; 9136 break; 9137 case lltok::kw_typeTestAssumeConstVCalls: 9138 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 9139 TypeIdInfo.TypeTestAssumeConstVCalls)) 9140 return true; 9141 break; 9142 case lltok::kw_typeCheckedLoadConstVCalls: 9143 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9144 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9145 return true; 9146 break; 9147 default: 9148 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9149 } 9150 } while (EatIfPresent(lltok::comma)); 9151 9152 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9153 return true; 9154 9155 return false; 9156 } 9157 9158 /// TypeTests 9159 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9160 /// [',' (SummaryID | UInt64)]* ')' 9161 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9162 assert(Lex.getKind() == lltok::kw_typeTests); 9163 Lex.Lex(); 9164 9165 if (parseToken(lltok::colon, "expected ':' here") || 9166 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9167 return true; 9168 9169 IdToIndexMapType IdToIndexMap; 9170 do { 9171 GlobalValue::GUID GUID = 0; 9172 if (Lex.getKind() == lltok::SummaryID) { 9173 unsigned ID = Lex.getUIntVal(); 9174 LocTy Loc = Lex.getLoc(); 9175 // Keep track of the TypeTests array index needing a forward reference. 9176 // We will save the location of the GUID needing an update, but 9177 // can only do so once the std::vector is finalized. 9178 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9179 Lex.Lex(); 9180 } else if (parseUInt64(GUID)) 9181 return true; 9182 TypeTests.push_back(GUID); 9183 } while (EatIfPresent(lltok::comma)); 9184 9185 // Now that the TypeTests vector is finalized, it is safe to save the 9186 // locations of any forward GV references that need updating later. 9187 for (auto I : IdToIndexMap) { 9188 auto &Ids = ForwardRefTypeIds[I.first]; 9189 for (auto P : I.second) { 9190 assert(TypeTests[P.first] == 0 && 9191 "Forward referenced type id GUID expected to be 0"); 9192 Ids.emplace_back(&TypeTests[P.first], P.second); 9193 } 9194 } 9195 9196 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9197 return true; 9198 9199 return false; 9200 } 9201 9202 /// VFuncIdList 9203 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9204 bool LLParser::parseVFuncIdList( 9205 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9206 assert(Lex.getKind() == Kind); 9207 Lex.Lex(); 9208 9209 if (parseToken(lltok::colon, "expected ':' here") || 9210 parseToken(lltok::lparen, "expected '(' here")) 9211 return true; 9212 9213 IdToIndexMapType IdToIndexMap; 9214 do { 9215 FunctionSummary::VFuncId VFuncId; 9216 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9217 return true; 9218 VFuncIdList.push_back(VFuncId); 9219 } while (EatIfPresent(lltok::comma)); 9220 9221 if (parseToken(lltok::rparen, "expected ')' here")) 9222 return true; 9223 9224 // Now that the VFuncIdList vector is finalized, it is safe to save the 9225 // locations of any forward GV references that need updating later. 9226 for (auto I : IdToIndexMap) { 9227 auto &Ids = ForwardRefTypeIds[I.first]; 9228 for (auto P : I.second) { 9229 assert(VFuncIdList[P.first].GUID == 0 && 9230 "Forward referenced type id GUID expected to be 0"); 9231 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9232 } 9233 } 9234 9235 return false; 9236 } 9237 9238 /// ConstVCallList 9239 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9240 bool LLParser::parseConstVCallList( 9241 lltok::Kind Kind, 9242 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9243 assert(Lex.getKind() == Kind); 9244 Lex.Lex(); 9245 9246 if (parseToken(lltok::colon, "expected ':' here") || 9247 parseToken(lltok::lparen, "expected '(' here")) 9248 return true; 9249 9250 IdToIndexMapType IdToIndexMap; 9251 do { 9252 FunctionSummary::ConstVCall ConstVCall; 9253 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9254 return true; 9255 ConstVCallList.push_back(ConstVCall); 9256 } while (EatIfPresent(lltok::comma)); 9257 9258 if (parseToken(lltok::rparen, "expected ')' here")) 9259 return true; 9260 9261 // Now that the ConstVCallList vector is finalized, it is safe to save the 9262 // locations of any forward GV references that need updating later. 9263 for (auto I : IdToIndexMap) { 9264 auto &Ids = ForwardRefTypeIds[I.first]; 9265 for (auto P : I.second) { 9266 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9267 "Forward referenced type id GUID expected to be 0"); 9268 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9269 } 9270 } 9271 9272 return false; 9273 } 9274 9275 /// ConstVCall 9276 /// ::= '(' VFuncId ',' Args ')' 9277 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9278 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9279 if (parseToken(lltok::lparen, "expected '(' here") || 9280 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9281 return true; 9282 9283 if (EatIfPresent(lltok::comma)) 9284 if (parseArgs(ConstVCall.Args)) 9285 return true; 9286 9287 if (parseToken(lltok::rparen, "expected ')' here")) 9288 return true; 9289 9290 return false; 9291 } 9292 9293 /// VFuncId 9294 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9295 /// 'offset' ':' UInt64 ')' 9296 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9297 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9298 assert(Lex.getKind() == lltok::kw_vFuncId); 9299 Lex.Lex(); 9300 9301 if (parseToken(lltok::colon, "expected ':' here") || 9302 parseToken(lltok::lparen, "expected '(' here")) 9303 return true; 9304 9305 if (Lex.getKind() == lltok::SummaryID) { 9306 VFuncId.GUID = 0; 9307 unsigned ID = Lex.getUIntVal(); 9308 LocTy Loc = Lex.getLoc(); 9309 // Keep track of the array index needing a forward reference. 9310 // We will save the location of the GUID needing an update, but 9311 // can only do so once the caller's std::vector is finalized. 9312 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9313 Lex.Lex(); 9314 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9315 parseToken(lltok::colon, "expected ':' here") || 9316 parseUInt64(VFuncId.GUID)) 9317 return true; 9318 9319 if (parseToken(lltok::comma, "expected ',' here") || 9320 parseToken(lltok::kw_offset, "expected 'offset' here") || 9321 parseToken(lltok::colon, "expected ':' here") || 9322 parseUInt64(VFuncId.Offset) || 9323 parseToken(lltok::rparen, "expected ')' here")) 9324 return true; 9325 9326 return false; 9327 } 9328 9329 /// GVFlags 9330 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9331 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9332 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9333 /// 'canAutoHide' ':' Flag ',' ')' 9334 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9335 assert(Lex.getKind() == lltok::kw_flags); 9336 Lex.Lex(); 9337 9338 if (parseToken(lltok::colon, "expected ':' here") || 9339 parseToken(lltok::lparen, "expected '(' here")) 9340 return true; 9341 9342 do { 9343 unsigned Flag = 0; 9344 switch (Lex.getKind()) { 9345 case lltok::kw_linkage: 9346 Lex.Lex(); 9347 if (parseToken(lltok::colon, "expected ':'")) 9348 return true; 9349 bool HasLinkage; 9350 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9351 assert(HasLinkage && "Linkage not optional in summary entry"); 9352 Lex.Lex(); 9353 break; 9354 case lltok::kw_visibility: 9355 Lex.Lex(); 9356 if (parseToken(lltok::colon, "expected ':'")) 9357 return true; 9358 parseOptionalVisibility(Flag); 9359 GVFlags.Visibility = Flag; 9360 break; 9361 case lltok::kw_notEligibleToImport: 9362 Lex.Lex(); 9363 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9364 return true; 9365 GVFlags.NotEligibleToImport = Flag; 9366 break; 9367 case lltok::kw_live: 9368 Lex.Lex(); 9369 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9370 return true; 9371 GVFlags.Live = Flag; 9372 break; 9373 case lltok::kw_dsoLocal: 9374 Lex.Lex(); 9375 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9376 return true; 9377 GVFlags.DSOLocal = Flag; 9378 break; 9379 case lltok::kw_canAutoHide: 9380 Lex.Lex(); 9381 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9382 return true; 9383 GVFlags.CanAutoHide = Flag; 9384 break; 9385 default: 9386 return error(Lex.getLoc(), "expected gv flag type"); 9387 } 9388 } while (EatIfPresent(lltok::comma)); 9389 9390 if (parseToken(lltok::rparen, "expected ')' here")) 9391 return true; 9392 9393 return false; 9394 } 9395 9396 /// GVarFlags 9397 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9398 /// ',' 'writeonly' ':' Flag 9399 /// ',' 'constant' ':' Flag ')' 9400 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9401 assert(Lex.getKind() == lltok::kw_varFlags); 9402 Lex.Lex(); 9403 9404 if (parseToken(lltok::colon, "expected ':' here") || 9405 parseToken(lltok::lparen, "expected '(' here")) 9406 return true; 9407 9408 auto ParseRest = [this](unsigned int &Val) { 9409 Lex.Lex(); 9410 if (parseToken(lltok::colon, "expected ':'")) 9411 return true; 9412 return parseFlag(Val); 9413 }; 9414 9415 do { 9416 unsigned Flag = 0; 9417 switch (Lex.getKind()) { 9418 case lltok::kw_readonly: 9419 if (ParseRest(Flag)) 9420 return true; 9421 GVarFlags.MaybeReadOnly = Flag; 9422 break; 9423 case lltok::kw_writeonly: 9424 if (ParseRest(Flag)) 9425 return true; 9426 GVarFlags.MaybeWriteOnly = Flag; 9427 break; 9428 case lltok::kw_constant: 9429 if (ParseRest(Flag)) 9430 return true; 9431 GVarFlags.Constant = Flag; 9432 break; 9433 case lltok::kw_vcall_visibility: 9434 if (ParseRest(Flag)) 9435 return true; 9436 GVarFlags.VCallVisibility = Flag; 9437 break; 9438 default: 9439 return error(Lex.getLoc(), "expected gvar flag type"); 9440 } 9441 } while (EatIfPresent(lltok::comma)); 9442 return parseToken(lltok::rparen, "expected ')' here"); 9443 } 9444 9445 /// ModuleReference 9446 /// ::= 'module' ':' UInt 9447 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9448 // parse module id. 9449 if (parseToken(lltok::kw_module, "expected 'module' here") || 9450 parseToken(lltok::colon, "expected ':' here") || 9451 parseToken(lltok::SummaryID, "expected module ID")) 9452 return true; 9453 9454 unsigned ModuleID = Lex.getUIntVal(); 9455 auto I = ModuleIdMap.find(ModuleID); 9456 // We should have already parsed all module IDs 9457 assert(I != ModuleIdMap.end()); 9458 ModulePath = I->second; 9459 return false; 9460 } 9461 9462 /// GVReference 9463 /// ::= SummaryID 9464 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9465 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9466 if (!ReadOnly) 9467 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9468 if (parseToken(lltok::SummaryID, "expected GV ID")) 9469 return true; 9470 9471 GVId = Lex.getUIntVal(); 9472 // Check if we already have a VI for this GV 9473 if (GVId < NumberedValueInfos.size()) { 9474 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9475 VI = NumberedValueInfos[GVId]; 9476 } else 9477 // We will create a forward reference to the stored location. 9478 VI = ValueInfo(false, FwdVIRef); 9479 9480 if (ReadOnly) 9481 VI.setReadOnly(); 9482 if (WriteOnly) 9483 VI.setWriteOnly(); 9484 return false; 9485 } 9486