1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 static std::string getTypeString(Type *T) {
57   std::string Result;
58   raw_string_ostream Tmp(Result);
59   Tmp << *T;
60   return Tmp.str();
61 }
62 
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return Error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   return ParseTopLevelEntities() || ValidateEndOfModule() ||
74          ValidateEndOfIndex();
75 }
76 
77 bool LLParser::parseStandaloneConstantValue(Constant *&C,
78                                             const SlotMapping *Slots) {
79   restoreParsingState(Slots);
80   Lex.Lex();
81 
82   Type *Ty = nullptr;
83   if (ParseType(Ty) || parseConstantValue(Ty, C))
84     return true;
85   if (Lex.getKind() != lltok::Eof)
86     return Error(Lex.getLoc(), "expected end of string");
87   return false;
88 }
89 
90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91                                     const SlotMapping *Slots) {
92   restoreParsingState(Slots);
93   Lex.Lex();
94 
95   Read = 0;
96   SMLoc Start = Lex.getLoc();
97   Ty = nullptr;
98   if (ParseType(Ty))
99     return true;
100   SMLoc End = Lex.getLoc();
101   Read = End.getPointer() - Start.getPointer();
102 
103   return false;
104 }
105 
106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107   if (!Slots)
108     return;
109   NumberedVals = Slots->GlobalValues;
110   NumberedMetadata = Slots->MetadataNodes;
111   for (const auto &I : Slots->NamedTypes)
112     NamedTypes.insert(
113         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114   for (const auto &I : Slots->Types)
115     NumberedTypes.insert(
116         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
117 }
118 
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
121 bool LLParser::ValidateEndOfModule() {
122   if (!M)
123     return false;
124   // Handle any function attribute group forward references.
125   for (const auto &RAG : ForwardRefAttrGroups) {
126     Value *V = RAG.first;
127     const std::vector<unsigned> &Attrs = RAG.second;
128     AttrBuilder B;
129 
130     for (const auto &Attr : Attrs)
131       B.merge(NumberedAttrBuilders[Attr]);
132 
133     if (Function *Fn = dyn_cast<Function>(V)) {
134       AttributeList AS = Fn->getAttributes();
135       AttrBuilder FnAttrs(AS.getFnAttributes());
136       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
137 
138       FnAttrs.merge(B);
139 
140       // If the alignment was parsed as an attribute, move to the alignment
141       // field.
142       if (FnAttrs.hasAlignmentAttr()) {
143         Fn->setAlignment(FnAttrs.getAlignment());
144         FnAttrs.removeAttribute(Attribute::Alignment);
145       }
146 
147       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
148                             AttributeSet::get(Context, FnAttrs));
149       Fn->setAttributes(AS);
150     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151       AttributeList AS = CI->getAttributes();
152       AttrBuilder FnAttrs(AS.getFnAttributes());
153       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
154       FnAttrs.merge(B);
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       CI->setAttributes(AS);
158     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159       AttributeList AS = II->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       II->setAttributes(AS);
166     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
167       AttributeList AS = CBI->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       CBI->setAttributes(AS);
174     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
175       AttrBuilder Attrs(GV->getAttributes());
176       Attrs.merge(B);
177       GV->setAttributes(AttributeSet::get(Context,Attrs));
178     } else {
179       llvm_unreachable("invalid object with forward attribute group reference");
180     }
181   }
182 
183   // If there are entries in ForwardRefBlockAddresses at this point, the
184   // function was never defined.
185   if (!ForwardRefBlockAddresses.empty())
186     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
187                  "expected function name in blockaddress");
188 
189   for (const auto &NT : NumberedTypes)
190     if (NT.second.second.isValid())
191       return Error(NT.second.second,
192                    "use of undefined type '%" + Twine(NT.first) + "'");
193 
194   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
195        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
196     if (I->second.second.isValid())
197       return Error(I->second.second,
198                    "use of undefined type named '" + I->getKey() + "'");
199 
200   if (!ForwardRefComdats.empty())
201     return Error(ForwardRefComdats.begin()->second,
202                  "use of undefined comdat '$" +
203                      ForwardRefComdats.begin()->first + "'");
204 
205   if (!ForwardRefVals.empty())
206     return Error(ForwardRefVals.begin()->second.second,
207                  "use of undefined value '@" + ForwardRefVals.begin()->first +
208                  "'");
209 
210   if (!ForwardRefValIDs.empty())
211     return Error(ForwardRefValIDs.begin()->second.second,
212                  "use of undefined value '@" +
213                  Twine(ForwardRefValIDs.begin()->first) + "'");
214 
215   if (!ForwardRefMDNodes.empty())
216     return Error(ForwardRefMDNodes.begin()->second.second,
217                  "use of undefined metadata '!" +
218                  Twine(ForwardRefMDNodes.begin()->first) + "'");
219 
220   // Resolve metadata cycles.
221   for (auto &N : NumberedMetadata) {
222     if (N.second && !N.second->isResolved())
223       N.second->resolveCycles();
224   }
225 
226   for (auto *Inst : InstsWithTBAATag) {
227     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
228     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
229     auto *UpgradedMD = UpgradeTBAANode(*MD);
230     if (MD != UpgradedMD)
231       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
232   }
233 
234   // Look for intrinsic functions and CallInst that need to be upgraded
235   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
236     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
237 
238   // Some types could be renamed during loading if several modules are
239   // loaded in the same LLVMContext (LTO scenario). In this case we should
240   // remangle intrinsics names as well.
241   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
242     Function *F = &*FI++;
243     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
244       F->replaceAllUsesWith(Remangled.getValue());
245       F->eraseFromParent();
246     }
247   }
248 
249   if (UpgradeDebugInfo)
250     llvm::UpgradeDebugInfo(*M);
251 
252   UpgradeModuleFlags(*M);
253   UpgradeSectionAttributes(*M);
254 
255   if (!Slots)
256     return false;
257   // Initialize the slot mapping.
258   // Because by this point we've parsed and validated everything, we can "steal"
259   // the mapping from LLParser as it doesn't need it anymore.
260   Slots->GlobalValues = std::move(NumberedVals);
261   Slots->MetadataNodes = std::move(NumberedMetadata);
262   for (const auto &I : NamedTypes)
263     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
264   for (const auto &I : NumberedTypes)
265     Slots->Types.insert(std::make_pair(I.first, I.second.first));
266 
267   return false;
268 }
269 
270 /// Do final validity and sanity checks at the end of the index.
271 bool LLParser::ValidateEndOfIndex() {
272   if (!Index)
273     return false;
274 
275   if (!ForwardRefValueInfos.empty())
276     return Error(ForwardRefValueInfos.begin()->second.front().second,
277                  "use of undefined summary '^" +
278                      Twine(ForwardRefValueInfos.begin()->first) + "'");
279 
280   if (!ForwardRefAliasees.empty())
281     return Error(ForwardRefAliasees.begin()->second.front().second,
282                  "use of undefined summary '^" +
283                      Twine(ForwardRefAliasees.begin()->first) + "'");
284 
285   if (!ForwardRefTypeIds.empty())
286     return Error(ForwardRefTypeIds.begin()->second.front().second,
287                  "use of undefined type id summary '^" +
288                      Twine(ForwardRefTypeIds.begin()->first) + "'");
289 
290   return false;
291 }
292 
293 //===----------------------------------------------------------------------===//
294 // Top-Level Entities
295 //===----------------------------------------------------------------------===//
296 
297 bool LLParser::ParseTopLevelEntities() {
298   // If there is no Module, then parse just the summary index entries.
299   if (!M) {
300     while (true) {
301       switch (Lex.getKind()) {
302       case lltok::Eof:
303         return false;
304       case lltok::SummaryID:
305         if (ParseSummaryEntry())
306           return true;
307         break;
308       case lltok::kw_source_filename:
309         if (ParseSourceFileName())
310           return true;
311         break;
312       default:
313         // Skip everything else
314         Lex.Lex();
315       }
316     }
317   }
318   while (true) {
319     switch (Lex.getKind()) {
320     default:         return TokError("expected top-level entity");
321     case lltok::Eof: return false;
322     case lltok::kw_declare: if (ParseDeclare()) return true; break;
323     case lltok::kw_define:  if (ParseDefine()) return true; break;
324     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
325     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
326     case lltok::kw_source_filename:
327       if (ParseSourceFileName())
328         return true;
329       break;
330     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
331     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
332     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
333     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
334     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
335     case lltok::ComdatVar:  if (parseComdat()) return true; break;
336     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
337     case lltok::SummaryID:
338       if (ParseSummaryEntry())
339         return true;
340       break;
341     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
342     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
343     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
344     case lltok::kw_uselistorder_bb:
345       if (ParseUseListOrderBB())
346         return true;
347       break;
348     }
349   }
350 }
351 
352 /// toplevelentity
353 ///   ::= 'module' 'asm' STRINGCONSTANT
354 bool LLParser::ParseModuleAsm() {
355   assert(Lex.getKind() == lltok::kw_module);
356   Lex.Lex();
357 
358   std::string AsmStr;
359   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
360       ParseStringConstant(AsmStr)) return true;
361 
362   M->appendModuleInlineAsm(AsmStr);
363   return false;
364 }
365 
366 /// toplevelentity
367 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
368 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
369 bool LLParser::ParseTargetDefinition() {
370   assert(Lex.getKind() == lltok::kw_target);
371   std::string Str;
372   switch (Lex.Lex()) {
373   default: return TokError("unknown target property");
374   case lltok::kw_triple:
375     Lex.Lex();
376     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
377         ParseStringConstant(Str))
378       return true;
379     M->setTargetTriple(Str);
380     return false;
381   case lltok::kw_datalayout:
382     Lex.Lex();
383     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
384         ParseStringConstant(Str))
385       return true;
386     if (DataLayoutStr.empty())
387       M->setDataLayout(Str);
388     return false;
389   }
390 }
391 
392 /// toplevelentity
393 ///   ::= 'source_filename' '=' STRINGCONSTANT
394 bool LLParser::ParseSourceFileName() {
395   assert(Lex.getKind() == lltok::kw_source_filename);
396   Lex.Lex();
397   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
398       ParseStringConstant(SourceFileName))
399     return true;
400   if (M)
401     M->setSourceFileName(SourceFileName);
402   return false;
403 }
404 
405 /// toplevelentity
406 ///   ::= 'deplibs' '=' '[' ']'
407 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
408 /// FIXME: Remove in 4.0. Currently parse, but ignore.
409 bool LLParser::ParseDepLibs() {
410   assert(Lex.getKind() == lltok::kw_deplibs);
411   Lex.Lex();
412   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
413       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
414     return true;
415 
416   if (EatIfPresent(lltok::rsquare))
417     return false;
418 
419   do {
420     std::string Str;
421     if (ParseStringConstant(Str)) return true;
422   } while (EatIfPresent(lltok::comma));
423 
424   return ParseToken(lltok::rsquare, "expected ']' at end of list");
425 }
426 
427 /// ParseUnnamedType:
428 ///   ::= LocalVarID '=' 'type' type
429 bool LLParser::ParseUnnamedType() {
430   LocTy TypeLoc = Lex.getLoc();
431   unsigned TypeID = Lex.getUIntVal();
432   Lex.Lex(); // eat LocalVarID;
433 
434   if (ParseToken(lltok::equal, "expected '=' after name") ||
435       ParseToken(lltok::kw_type, "expected 'type' after '='"))
436     return true;
437 
438   Type *Result = nullptr;
439   if (ParseStructDefinition(TypeLoc, "",
440                             NumberedTypes[TypeID], Result)) return true;
441 
442   if (!isa<StructType>(Result)) {
443     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
444     if (Entry.first)
445       return Error(TypeLoc, "non-struct types may not be recursive");
446     Entry.first = Result;
447     Entry.second = SMLoc();
448   }
449 
450   return false;
451 }
452 
453 /// toplevelentity
454 ///   ::= LocalVar '=' 'type' type
455 bool LLParser::ParseNamedType() {
456   std::string Name = Lex.getStrVal();
457   LocTy NameLoc = Lex.getLoc();
458   Lex.Lex();  // eat LocalVar.
459 
460   if (ParseToken(lltok::equal, "expected '=' after name") ||
461       ParseToken(lltok::kw_type, "expected 'type' after name"))
462     return true;
463 
464   Type *Result = nullptr;
465   if (ParseStructDefinition(NameLoc, Name,
466                             NamedTypes[Name], Result)) return true;
467 
468   if (!isa<StructType>(Result)) {
469     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
470     if (Entry.first)
471       return Error(NameLoc, "non-struct types may not be recursive");
472     Entry.first = Result;
473     Entry.second = SMLoc();
474   }
475 
476   return false;
477 }
478 
479 /// toplevelentity
480 ///   ::= 'declare' FunctionHeader
481 bool LLParser::ParseDeclare() {
482   assert(Lex.getKind() == lltok::kw_declare);
483   Lex.Lex();
484 
485   std::vector<std::pair<unsigned, MDNode *>> MDs;
486   while (Lex.getKind() == lltok::MetadataVar) {
487     unsigned MDK;
488     MDNode *N;
489     if (ParseMetadataAttachment(MDK, N))
490       return true;
491     MDs.push_back({MDK, N});
492   }
493 
494   Function *F;
495   if (ParseFunctionHeader(F, false))
496     return true;
497   for (auto &MD : MDs)
498     F->addMetadata(MD.first, *MD.second);
499   return false;
500 }
501 
502 /// toplevelentity
503 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
504 bool LLParser::ParseDefine() {
505   assert(Lex.getKind() == lltok::kw_define);
506   Lex.Lex();
507 
508   Function *F;
509   return ParseFunctionHeader(F, true) ||
510          ParseOptionalFunctionMetadata(*F) ||
511          ParseFunctionBody(*F);
512 }
513 
514 /// ParseGlobalType
515 ///   ::= 'constant'
516 ///   ::= 'global'
517 bool LLParser::ParseGlobalType(bool &IsConstant) {
518   if (Lex.getKind() == lltok::kw_constant)
519     IsConstant = true;
520   else if (Lex.getKind() == lltok::kw_global)
521     IsConstant = false;
522   else {
523     IsConstant = false;
524     return TokError("expected 'global' or 'constant'");
525   }
526   Lex.Lex();
527   return false;
528 }
529 
530 bool LLParser::ParseOptionalUnnamedAddr(
531     GlobalVariable::UnnamedAddr &UnnamedAddr) {
532   if (EatIfPresent(lltok::kw_unnamed_addr))
533     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
534   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
535     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
536   else
537     UnnamedAddr = GlobalValue::UnnamedAddr::None;
538   return false;
539 }
540 
541 /// ParseUnnamedGlobal:
542 ///   OptionalVisibility (ALIAS | IFUNC) ...
543 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
544 ///   OptionalDLLStorageClass
545 ///                                                     ...   -> global variable
546 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
547 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
548 ///                OptionalDLLStorageClass
549 ///                                                     ...   -> global variable
550 bool LLParser::ParseUnnamedGlobal() {
551   unsigned VarID = NumberedVals.size();
552   std::string Name;
553   LocTy NameLoc = Lex.getLoc();
554 
555   // Handle the GlobalID form.
556   if (Lex.getKind() == lltok::GlobalID) {
557     if (Lex.getUIntVal() != VarID)
558       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
559                    Twine(VarID) + "'");
560     Lex.Lex(); // eat GlobalID;
561 
562     if (ParseToken(lltok::equal, "expected '=' after name"))
563       return true;
564   }
565 
566   bool HasLinkage;
567   unsigned Linkage, Visibility, DLLStorageClass;
568   bool DSOLocal;
569   GlobalVariable::ThreadLocalMode TLM;
570   GlobalVariable::UnnamedAddr UnnamedAddr;
571   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
572                            DSOLocal) ||
573       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
574     return true;
575 
576   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
577     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
578                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
579 
580   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
581                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
582 }
583 
584 /// ParseNamedGlobal:
585 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
586 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
587 ///                 OptionalVisibility OptionalDLLStorageClass
588 ///                                                     ...   -> global variable
589 bool LLParser::ParseNamedGlobal() {
590   assert(Lex.getKind() == lltok::GlobalVar);
591   LocTy NameLoc = Lex.getLoc();
592   std::string Name = Lex.getStrVal();
593   Lex.Lex();
594 
595   bool HasLinkage;
596   unsigned Linkage, Visibility, DLLStorageClass;
597   bool DSOLocal;
598   GlobalVariable::ThreadLocalMode TLM;
599   GlobalVariable::UnnamedAddr UnnamedAddr;
600   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
601       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
602                            DSOLocal) ||
603       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
604     return true;
605 
606   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
607     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
608                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
609 
610   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
611                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
612 }
613 
614 bool LLParser::parseComdat() {
615   assert(Lex.getKind() == lltok::ComdatVar);
616   std::string Name = Lex.getStrVal();
617   LocTy NameLoc = Lex.getLoc();
618   Lex.Lex();
619 
620   if (ParseToken(lltok::equal, "expected '=' here"))
621     return true;
622 
623   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
624     return TokError("expected comdat type");
625 
626   Comdat::SelectionKind SK;
627   switch (Lex.getKind()) {
628   default:
629     return TokError("unknown selection kind");
630   case lltok::kw_any:
631     SK = Comdat::Any;
632     break;
633   case lltok::kw_exactmatch:
634     SK = Comdat::ExactMatch;
635     break;
636   case lltok::kw_largest:
637     SK = Comdat::Largest;
638     break;
639   case lltok::kw_noduplicates:
640     SK = Comdat::NoDuplicates;
641     break;
642   case lltok::kw_samesize:
643     SK = Comdat::SameSize;
644     break;
645   }
646   Lex.Lex();
647 
648   // See if the comdat was forward referenced, if so, use the comdat.
649   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
650   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
651   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
652     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
653 
654   Comdat *C;
655   if (I != ComdatSymTab.end())
656     C = &I->second;
657   else
658     C = M->getOrInsertComdat(Name);
659   C->setSelectionKind(SK);
660 
661   return false;
662 }
663 
664 // MDString:
665 //   ::= '!' STRINGCONSTANT
666 bool LLParser::ParseMDString(MDString *&Result) {
667   std::string Str;
668   if (ParseStringConstant(Str)) return true;
669   Result = MDString::get(Context, Str);
670   return false;
671 }
672 
673 // MDNode:
674 //   ::= '!' MDNodeNumber
675 bool LLParser::ParseMDNodeID(MDNode *&Result) {
676   // !{ ..., !42, ... }
677   LocTy IDLoc = Lex.getLoc();
678   unsigned MID = 0;
679   if (ParseUInt32(MID))
680     return true;
681 
682   // If not a forward reference, just return it now.
683   if (NumberedMetadata.count(MID)) {
684     Result = NumberedMetadata[MID];
685     return false;
686   }
687 
688   // Otherwise, create MDNode forward reference.
689   auto &FwdRef = ForwardRefMDNodes[MID];
690   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
691 
692   Result = FwdRef.first.get();
693   NumberedMetadata[MID].reset(Result);
694   return false;
695 }
696 
697 /// ParseNamedMetadata:
698 ///   !foo = !{ !1, !2 }
699 bool LLParser::ParseNamedMetadata() {
700   assert(Lex.getKind() == lltok::MetadataVar);
701   std::string Name = Lex.getStrVal();
702   Lex.Lex();
703 
704   if (ParseToken(lltok::equal, "expected '=' here") ||
705       ParseToken(lltok::exclaim, "Expected '!' here") ||
706       ParseToken(lltok::lbrace, "Expected '{' here"))
707     return true;
708 
709   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
710   if (Lex.getKind() != lltok::rbrace)
711     do {
712       MDNode *N = nullptr;
713       // Parse DIExpressions inline as a special case. They are still MDNodes,
714       // so they can still appear in named metadata. Remove this logic if they
715       // become plain Metadata.
716       if (Lex.getKind() == lltok::MetadataVar &&
717           Lex.getStrVal() == "DIExpression") {
718         if (ParseDIExpression(N, /*IsDistinct=*/false))
719           return true;
720       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
721                  ParseMDNodeID(N)) {
722         return true;
723       }
724       NMD->addOperand(N);
725     } while (EatIfPresent(lltok::comma));
726 
727   return ParseToken(lltok::rbrace, "expected end of metadata node");
728 }
729 
730 /// ParseStandaloneMetadata:
731 ///   !42 = !{...}
732 bool LLParser::ParseStandaloneMetadata() {
733   assert(Lex.getKind() == lltok::exclaim);
734   Lex.Lex();
735   unsigned MetadataID = 0;
736 
737   MDNode *Init;
738   if (ParseUInt32(MetadataID) ||
739       ParseToken(lltok::equal, "expected '=' here"))
740     return true;
741 
742   // Detect common error, from old metadata syntax.
743   if (Lex.getKind() == lltok::Type)
744     return TokError("unexpected type in metadata definition");
745 
746   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
747   if (Lex.getKind() == lltok::MetadataVar) {
748     if (ParseSpecializedMDNode(Init, IsDistinct))
749       return true;
750   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
751              ParseMDTuple(Init, IsDistinct))
752     return true;
753 
754   // See if this was forward referenced, if so, handle it.
755   auto FI = ForwardRefMDNodes.find(MetadataID);
756   if (FI != ForwardRefMDNodes.end()) {
757     FI->second.first->replaceAllUsesWith(Init);
758     ForwardRefMDNodes.erase(FI);
759 
760     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
761   } else {
762     if (NumberedMetadata.count(MetadataID))
763       return TokError("Metadata id is already used");
764     NumberedMetadata[MetadataID].reset(Init);
765   }
766 
767   return false;
768 }
769 
770 // Skips a single module summary entry.
771 bool LLParser::SkipModuleSummaryEntry() {
772   // Each module summary entry consists of a tag for the entry
773   // type, followed by a colon, then the fields surrounded by nested sets of
774   // parentheses. The "tag:" looks like a Label. Once parsing support is
775   // in place we will look for the tokens corresponding to the expected tags.
776   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
777       Lex.getKind() != lltok::kw_typeid)
778     return TokError(
779         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
780   Lex.Lex();
781   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
782       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
783     return true;
784   // Now walk through the parenthesized entry, until the number of open
785   // parentheses goes back down to 0 (the first '(' was parsed above).
786   unsigned NumOpenParen = 1;
787   do {
788     switch (Lex.getKind()) {
789     case lltok::lparen:
790       NumOpenParen++;
791       break;
792     case lltok::rparen:
793       NumOpenParen--;
794       break;
795     case lltok::Eof:
796       return TokError("found end of file while parsing summary entry");
797     default:
798       // Skip everything in between parentheses.
799       break;
800     }
801     Lex.Lex();
802   } while (NumOpenParen > 0);
803   return false;
804 }
805 
806 /// SummaryEntry
807 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
808 bool LLParser::ParseSummaryEntry() {
809   assert(Lex.getKind() == lltok::SummaryID);
810   unsigned SummaryID = Lex.getUIntVal();
811 
812   // For summary entries, colons should be treated as distinct tokens,
813   // not an indication of the end of a label token.
814   Lex.setIgnoreColonInIdentifiers(true);
815 
816   Lex.Lex();
817   if (ParseToken(lltok::equal, "expected '=' here"))
818     return true;
819 
820   // If we don't have an index object, skip the summary entry.
821   if (!Index)
822     return SkipModuleSummaryEntry();
823 
824   bool result = false;
825   switch (Lex.getKind()) {
826   case lltok::kw_gv:
827     result = ParseGVEntry(SummaryID);
828     break;
829   case lltok::kw_module:
830     result = ParseModuleEntry(SummaryID);
831     break;
832   case lltok::kw_typeid:
833     result = ParseTypeIdEntry(SummaryID);
834     break;
835   default:
836     result = Error(Lex.getLoc(), "unexpected summary kind");
837     break;
838   }
839   Lex.setIgnoreColonInIdentifiers(false);
840   return result;
841 }
842 
843 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
844   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
845          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
846 }
847 
848 // If there was an explicit dso_local, update GV. In the absence of an explicit
849 // dso_local we keep the default value.
850 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
851   if (DSOLocal)
852     GV.setDSOLocal(true);
853 }
854 
855 /// parseIndirectSymbol:
856 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
857 ///                     OptionalVisibility OptionalDLLStorageClass
858 ///                     OptionalThreadLocal OptionalUnnamedAddr
859 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
860 ///
861 /// IndirectSymbol
862 ///   ::= TypeAndValue
863 ///
864 /// IndirectSymbolAttr
865 ///   ::= ',' 'partition' StringConstant
866 ///
867 /// Everything through OptionalUnnamedAddr has already been parsed.
868 ///
869 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
870                                    unsigned L, unsigned Visibility,
871                                    unsigned DLLStorageClass, bool DSOLocal,
872                                    GlobalVariable::ThreadLocalMode TLM,
873                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
874   bool IsAlias;
875   if (Lex.getKind() == lltok::kw_alias)
876     IsAlias = true;
877   else if (Lex.getKind() == lltok::kw_ifunc)
878     IsAlias = false;
879   else
880     llvm_unreachable("Not an alias or ifunc!");
881   Lex.Lex();
882 
883   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
884 
885   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
886     return Error(NameLoc, "invalid linkage type for alias");
887 
888   if (!isValidVisibilityForLinkage(Visibility, L))
889     return Error(NameLoc,
890                  "symbol with local linkage must have default visibility");
891 
892   Type *Ty;
893   LocTy ExplicitTypeLoc = Lex.getLoc();
894   if (ParseType(Ty) ||
895       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
896     return true;
897 
898   Constant *Aliasee;
899   LocTy AliaseeLoc = Lex.getLoc();
900   if (Lex.getKind() != lltok::kw_bitcast &&
901       Lex.getKind() != lltok::kw_getelementptr &&
902       Lex.getKind() != lltok::kw_addrspacecast &&
903       Lex.getKind() != lltok::kw_inttoptr) {
904     if (ParseGlobalTypeAndValue(Aliasee))
905       return true;
906   } else {
907     // The bitcast dest type is not present, it is implied by the dest type.
908     ValID ID;
909     if (ParseValID(ID))
910       return true;
911     if (ID.Kind != ValID::t_Constant)
912       return Error(AliaseeLoc, "invalid aliasee");
913     Aliasee = ID.ConstantVal;
914   }
915 
916   Type *AliaseeType = Aliasee->getType();
917   auto *PTy = dyn_cast<PointerType>(AliaseeType);
918   if (!PTy)
919     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
920   unsigned AddrSpace = PTy->getAddressSpace();
921 
922   if (IsAlias && Ty != PTy->getElementType())
923     return Error(
924         ExplicitTypeLoc,
925         "explicit pointee type doesn't match operand's pointee type");
926 
927   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
928     return Error(
929         ExplicitTypeLoc,
930         "explicit pointee type should be a function type");
931 
932   GlobalValue *GVal = nullptr;
933 
934   // See if the alias was forward referenced, if so, prepare to replace the
935   // forward reference.
936   if (!Name.empty()) {
937     GVal = M->getNamedValue(Name);
938     if (GVal) {
939       if (!ForwardRefVals.erase(Name))
940         return Error(NameLoc, "redefinition of global '@" + Name + "'");
941     }
942   } else {
943     auto I = ForwardRefValIDs.find(NumberedVals.size());
944     if (I != ForwardRefValIDs.end()) {
945       GVal = I->second.first;
946       ForwardRefValIDs.erase(I);
947     }
948   }
949 
950   // Okay, create the alias but do not insert it into the module yet.
951   std::unique_ptr<GlobalIndirectSymbol> GA;
952   if (IsAlias)
953     GA.reset(GlobalAlias::create(Ty, AddrSpace,
954                                  (GlobalValue::LinkageTypes)Linkage, Name,
955                                  Aliasee, /*Parent*/ nullptr));
956   else
957     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
958                                  (GlobalValue::LinkageTypes)Linkage, Name,
959                                  Aliasee, /*Parent*/ nullptr));
960   GA->setThreadLocalMode(TLM);
961   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
962   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
963   GA->setUnnamedAddr(UnnamedAddr);
964   maybeSetDSOLocal(DSOLocal, *GA);
965 
966   // At this point we've parsed everything except for the IndirectSymbolAttrs.
967   // Now parse them if there are any.
968   while (Lex.getKind() == lltok::comma) {
969     Lex.Lex();
970 
971     if (Lex.getKind() == lltok::kw_partition) {
972       Lex.Lex();
973       GA->setPartition(Lex.getStrVal());
974       if (ParseToken(lltok::StringConstant, "expected partition string"))
975         return true;
976     } else {
977       return TokError("unknown alias or ifunc property!");
978     }
979   }
980 
981   if (Name.empty())
982     NumberedVals.push_back(GA.get());
983 
984   if (GVal) {
985     // Verify that types agree.
986     if (GVal->getType() != GA->getType())
987       return Error(
988           ExplicitTypeLoc,
989           "forward reference and definition of alias have different types");
990 
991     // If they agree, just RAUW the old value with the alias and remove the
992     // forward ref info.
993     GVal->replaceAllUsesWith(GA.get());
994     GVal->eraseFromParent();
995   }
996 
997   // Insert into the module, we know its name won't collide now.
998   if (IsAlias)
999     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1000   else
1001     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1002   assert(GA->getName() == Name && "Should not be a name conflict!");
1003 
1004   // The module owns this now
1005   GA.release();
1006 
1007   return false;
1008 }
1009 
1010 /// ParseGlobal
1011 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1012 ///       OptionalVisibility OptionalDLLStorageClass
1013 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1014 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1015 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1016 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1017 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1018 ///       Const OptionalAttrs
1019 ///
1020 /// Everything up to and including OptionalUnnamedAddr has been parsed
1021 /// already.
1022 ///
1023 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1024                            unsigned Linkage, bool HasLinkage,
1025                            unsigned Visibility, unsigned DLLStorageClass,
1026                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1027                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1028   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1029     return Error(NameLoc,
1030                  "symbol with local linkage must have default visibility");
1031 
1032   unsigned AddrSpace;
1033   bool IsConstant, IsExternallyInitialized;
1034   LocTy IsExternallyInitializedLoc;
1035   LocTy TyLoc;
1036 
1037   Type *Ty = nullptr;
1038   if (ParseOptionalAddrSpace(AddrSpace) ||
1039       ParseOptionalToken(lltok::kw_externally_initialized,
1040                          IsExternallyInitialized,
1041                          &IsExternallyInitializedLoc) ||
1042       ParseGlobalType(IsConstant) ||
1043       ParseType(Ty, TyLoc))
1044     return true;
1045 
1046   // If the linkage is specified and is external, then no initializer is
1047   // present.
1048   Constant *Init = nullptr;
1049   if (!HasLinkage ||
1050       !GlobalValue::isValidDeclarationLinkage(
1051           (GlobalValue::LinkageTypes)Linkage)) {
1052     if (ParseGlobalValue(Ty, Init))
1053       return true;
1054   }
1055 
1056   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1057     return Error(TyLoc, "invalid type for global variable");
1058 
1059   GlobalValue *GVal = nullptr;
1060 
1061   // See if the global was forward referenced, if so, use the global.
1062   if (!Name.empty()) {
1063     GVal = M->getNamedValue(Name);
1064     if (GVal) {
1065       if (!ForwardRefVals.erase(Name))
1066         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1067     }
1068   } else {
1069     auto I = ForwardRefValIDs.find(NumberedVals.size());
1070     if (I != ForwardRefValIDs.end()) {
1071       GVal = I->second.first;
1072       ForwardRefValIDs.erase(I);
1073     }
1074   }
1075 
1076   GlobalVariable *GV;
1077   if (!GVal) {
1078     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1079                             Name, nullptr, GlobalVariable::NotThreadLocal,
1080                             AddrSpace);
1081   } else {
1082     if (GVal->getValueType() != Ty)
1083       return Error(TyLoc,
1084             "forward reference and definition of global have different types");
1085 
1086     GV = cast<GlobalVariable>(GVal);
1087 
1088     // Move the forward-reference to the correct spot in the module.
1089     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1090   }
1091 
1092   if (Name.empty())
1093     NumberedVals.push_back(GV);
1094 
1095   // Set the parsed properties on the global.
1096   if (Init)
1097     GV->setInitializer(Init);
1098   GV->setConstant(IsConstant);
1099   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1100   maybeSetDSOLocal(DSOLocal, *GV);
1101   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1102   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1103   GV->setExternallyInitialized(IsExternallyInitialized);
1104   GV->setThreadLocalMode(TLM);
1105   GV->setUnnamedAddr(UnnamedAddr);
1106 
1107   // Parse attributes on the global.
1108   while (Lex.getKind() == lltok::comma) {
1109     Lex.Lex();
1110 
1111     if (Lex.getKind() == lltok::kw_section) {
1112       Lex.Lex();
1113       GV->setSection(Lex.getStrVal());
1114       if (ParseToken(lltok::StringConstant, "expected global section string"))
1115         return true;
1116     } else if (Lex.getKind() == lltok::kw_partition) {
1117       Lex.Lex();
1118       GV->setPartition(Lex.getStrVal());
1119       if (ParseToken(lltok::StringConstant, "expected partition string"))
1120         return true;
1121     } else if (Lex.getKind() == lltok::kw_align) {
1122       unsigned Alignment;
1123       if (ParseOptionalAlignment(Alignment)) return true;
1124       GV->setAlignment(Alignment);
1125     } else if (Lex.getKind() == lltok::MetadataVar) {
1126       if (ParseGlobalObjectMetadataAttachment(*GV))
1127         return true;
1128     } else {
1129       Comdat *C;
1130       if (parseOptionalComdat(Name, C))
1131         return true;
1132       if (C)
1133         GV->setComdat(C);
1134       else
1135         return TokError("unknown global variable property!");
1136     }
1137   }
1138 
1139   AttrBuilder Attrs;
1140   LocTy BuiltinLoc;
1141   std::vector<unsigned> FwdRefAttrGrps;
1142   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1143     return true;
1144   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1145     GV->setAttributes(AttributeSet::get(Context, Attrs));
1146     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1147   }
1148 
1149   return false;
1150 }
1151 
1152 /// ParseUnnamedAttrGrp
1153 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1154 bool LLParser::ParseUnnamedAttrGrp() {
1155   assert(Lex.getKind() == lltok::kw_attributes);
1156   LocTy AttrGrpLoc = Lex.getLoc();
1157   Lex.Lex();
1158 
1159   if (Lex.getKind() != lltok::AttrGrpID)
1160     return TokError("expected attribute group id");
1161 
1162   unsigned VarID = Lex.getUIntVal();
1163   std::vector<unsigned> unused;
1164   LocTy BuiltinLoc;
1165   Lex.Lex();
1166 
1167   if (ParseToken(lltok::equal, "expected '=' here") ||
1168       ParseToken(lltok::lbrace, "expected '{' here") ||
1169       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1170                                  BuiltinLoc) ||
1171       ParseToken(lltok::rbrace, "expected end of attribute group"))
1172     return true;
1173 
1174   if (!NumberedAttrBuilders[VarID].hasAttributes())
1175     return Error(AttrGrpLoc, "attribute group has no attributes");
1176 
1177   return false;
1178 }
1179 
1180 /// ParseFnAttributeValuePairs
1181 ///   ::= <attr> | <attr> '=' <value>
1182 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1183                                           std::vector<unsigned> &FwdRefAttrGrps,
1184                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1185   bool HaveError = false;
1186 
1187   B.clear();
1188 
1189   while (true) {
1190     lltok::Kind Token = Lex.getKind();
1191     if (Token == lltok::kw_builtin)
1192       BuiltinLoc = Lex.getLoc();
1193     switch (Token) {
1194     default:
1195       if (!inAttrGrp) return HaveError;
1196       return Error(Lex.getLoc(), "unterminated attribute group");
1197     case lltok::rbrace:
1198       // Finished.
1199       return false;
1200 
1201     case lltok::AttrGrpID: {
1202       // Allow a function to reference an attribute group:
1203       //
1204       //   define void @foo() #1 { ... }
1205       if (inAttrGrp)
1206         HaveError |=
1207           Error(Lex.getLoc(),
1208               "cannot have an attribute group reference in an attribute group");
1209 
1210       unsigned AttrGrpNum = Lex.getUIntVal();
1211       if (inAttrGrp) break;
1212 
1213       // Save the reference to the attribute group. We'll fill it in later.
1214       FwdRefAttrGrps.push_back(AttrGrpNum);
1215       break;
1216     }
1217     // Target-dependent attributes:
1218     case lltok::StringConstant: {
1219       if (ParseStringAttribute(B))
1220         return true;
1221       continue;
1222     }
1223 
1224     // Target-independent attributes:
1225     case lltok::kw_align: {
1226       // As a hack, we allow function alignment to be initially parsed as an
1227       // attribute on a function declaration/definition or added to an attribute
1228       // group and later moved to the alignment field.
1229       unsigned Alignment;
1230       if (inAttrGrp) {
1231         Lex.Lex();
1232         if (ParseToken(lltok::equal, "expected '=' here") ||
1233             ParseUInt32(Alignment))
1234           return true;
1235       } else {
1236         if (ParseOptionalAlignment(Alignment))
1237           return true;
1238       }
1239       B.addAlignmentAttr(Alignment);
1240       continue;
1241     }
1242     case lltok::kw_alignstack: {
1243       unsigned Alignment;
1244       if (inAttrGrp) {
1245         Lex.Lex();
1246         if (ParseToken(lltok::equal, "expected '=' here") ||
1247             ParseUInt32(Alignment))
1248           return true;
1249       } else {
1250         if (ParseOptionalStackAlignment(Alignment))
1251           return true;
1252       }
1253       B.addStackAlignmentAttr(Alignment);
1254       continue;
1255     }
1256     case lltok::kw_allocsize: {
1257       unsigned ElemSizeArg;
1258       Optional<unsigned> NumElemsArg;
1259       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1260       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1261         return true;
1262       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1263       continue;
1264     }
1265     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1266     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1267     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1268     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1269     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1270     case lltok::kw_inaccessiblememonly:
1271       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1272     case lltok::kw_inaccessiblemem_or_argmemonly:
1273       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1274     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1275     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1276     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1277     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1278     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1279     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1280     case lltok::kw_noimplicitfloat:
1281       B.addAttribute(Attribute::NoImplicitFloat); break;
1282     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1283     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1284     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1285     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1286     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1287     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1288     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1289     case lltok::kw_optforfuzzing:
1290       B.addAttribute(Attribute::OptForFuzzing); break;
1291     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1292     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1293     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1294     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1295     case lltok::kw_returns_twice:
1296       B.addAttribute(Attribute::ReturnsTwice); break;
1297     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1298     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1299     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1300     case lltok::kw_sspstrong:
1301       B.addAttribute(Attribute::StackProtectStrong); break;
1302     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1303     case lltok::kw_shadowcallstack:
1304       B.addAttribute(Attribute::ShadowCallStack); break;
1305     case lltok::kw_sanitize_address:
1306       B.addAttribute(Attribute::SanitizeAddress); break;
1307     case lltok::kw_sanitize_hwaddress:
1308       B.addAttribute(Attribute::SanitizeHWAddress); break;
1309     case lltok::kw_sanitize_thread:
1310       B.addAttribute(Attribute::SanitizeThread); break;
1311     case lltok::kw_sanitize_memory:
1312       B.addAttribute(Attribute::SanitizeMemory); break;
1313     case lltok::kw_speculative_load_hardening:
1314       B.addAttribute(Attribute::SpeculativeLoadHardening);
1315       break;
1316     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1317     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1318     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1319     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1320 
1321     // Error handling.
1322     case lltok::kw_inreg:
1323     case lltok::kw_signext:
1324     case lltok::kw_zeroext:
1325       HaveError |=
1326         Error(Lex.getLoc(),
1327               "invalid use of attribute on a function");
1328       break;
1329     case lltok::kw_byval:
1330     case lltok::kw_dereferenceable:
1331     case lltok::kw_dereferenceable_or_null:
1332     case lltok::kw_inalloca:
1333     case lltok::kw_nest:
1334     case lltok::kw_noalias:
1335     case lltok::kw_nocapture:
1336     case lltok::kw_nonnull:
1337     case lltok::kw_returned:
1338     case lltok::kw_sret:
1339     case lltok::kw_swifterror:
1340     case lltok::kw_swiftself:
1341     case lltok::kw_immarg:
1342       HaveError |=
1343         Error(Lex.getLoc(),
1344               "invalid use of parameter-only attribute on a function");
1345       break;
1346     }
1347 
1348     Lex.Lex();
1349   }
1350 }
1351 
1352 //===----------------------------------------------------------------------===//
1353 // GlobalValue Reference/Resolution Routines.
1354 //===----------------------------------------------------------------------===//
1355 
1356 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1357                                               const std::string &Name) {
1358   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1359     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1360                             PTy->getAddressSpace(), Name, M);
1361   else
1362     return new GlobalVariable(*M, PTy->getElementType(), false,
1363                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1364                               nullptr, GlobalVariable::NotThreadLocal,
1365                               PTy->getAddressSpace());
1366 }
1367 
1368 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1369                                         Value *Val, bool IsCall) {
1370   if (Val->getType() == Ty)
1371     return Val;
1372   // For calls we also accept variables in the program address space.
1373   Type *SuggestedTy = Ty;
1374   if (IsCall && isa<PointerType>(Ty)) {
1375     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1376         M->getDataLayout().getProgramAddressSpace());
1377     SuggestedTy = TyInProgAS;
1378     if (Val->getType() == TyInProgAS)
1379       return Val;
1380   }
1381   if (Ty->isLabelTy())
1382     Error(Loc, "'" + Name + "' is not a basic block");
1383   else
1384     Error(Loc, "'" + Name + "' defined with type '" +
1385                    getTypeString(Val->getType()) + "' but expected '" +
1386                    getTypeString(SuggestedTy) + "'");
1387   return nullptr;
1388 }
1389 
1390 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1391 /// forward reference record if needed.  This can return null if the value
1392 /// exists but does not have the right type.
1393 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1394                                     LocTy Loc, bool IsCall) {
1395   PointerType *PTy = dyn_cast<PointerType>(Ty);
1396   if (!PTy) {
1397     Error(Loc, "global variable reference must have pointer type");
1398     return nullptr;
1399   }
1400 
1401   // Look this name up in the normal function symbol table.
1402   GlobalValue *Val =
1403     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1404 
1405   // If this is a forward reference for the value, see if we already created a
1406   // forward ref record.
1407   if (!Val) {
1408     auto I = ForwardRefVals.find(Name);
1409     if (I != ForwardRefVals.end())
1410       Val = I->second.first;
1411   }
1412 
1413   // If we have the value in the symbol table or fwd-ref table, return it.
1414   if (Val)
1415     return cast_or_null<GlobalValue>(
1416         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1417 
1418   // Otherwise, create a new forward reference for this value and remember it.
1419   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1420   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1421   return FwdVal;
1422 }
1423 
1424 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1425                                     bool IsCall) {
1426   PointerType *PTy = dyn_cast<PointerType>(Ty);
1427   if (!PTy) {
1428     Error(Loc, "global variable reference must have pointer type");
1429     return nullptr;
1430   }
1431 
1432   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1433 
1434   // If this is a forward reference for the value, see if we already created a
1435   // forward ref record.
1436   if (!Val) {
1437     auto I = ForwardRefValIDs.find(ID);
1438     if (I != ForwardRefValIDs.end())
1439       Val = I->second.first;
1440   }
1441 
1442   // If we have the value in the symbol table or fwd-ref table, return it.
1443   if (Val)
1444     return cast_or_null<GlobalValue>(
1445         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1446 
1447   // Otherwise, create a new forward reference for this value and remember it.
1448   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1449   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1450   return FwdVal;
1451 }
1452 
1453 //===----------------------------------------------------------------------===//
1454 // Comdat Reference/Resolution Routines.
1455 //===----------------------------------------------------------------------===//
1456 
1457 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1458   // Look this name up in the comdat symbol table.
1459   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1460   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1461   if (I != ComdatSymTab.end())
1462     return &I->second;
1463 
1464   // Otherwise, create a new forward reference for this value and remember it.
1465   Comdat *C = M->getOrInsertComdat(Name);
1466   ForwardRefComdats[Name] = Loc;
1467   return C;
1468 }
1469 
1470 //===----------------------------------------------------------------------===//
1471 // Helper Routines.
1472 //===----------------------------------------------------------------------===//
1473 
1474 /// ParseToken - If the current token has the specified kind, eat it and return
1475 /// success.  Otherwise, emit the specified error and return failure.
1476 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1477   if (Lex.getKind() != T)
1478     return TokError(ErrMsg);
1479   Lex.Lex();
1480   return false;
1481 }
1482 
1483 /// ParseStringConstant
1484 ///   ::= StringConstant
1485 bool LLParser::ParseStringConstant(std::string &Result) {
1486   if (Lex.getKind() != lltok::StringConstant)
1487     return TokError("expected string constant");
1488   Result = Lex.getStrVal();
1489   Lex.Lex();
1490   return false;
1491 }
1492 
1493 /// ParseUInt32
1494 ///   ::= uint32
1495 bool LLParser::ParseUInt32(uint32_t &Val) {
1496   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1497     return TokError("expected integer");
1498   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1499   if (Val64 != unsigned(Val64))
1500     return TokError("expected 32-bit integer (too large)");
1501   Val = Val64;
1502   Lex.Lex();
1503   return false;
1504 }
1505 
1506 /// ParseUInt64
1507 ///   ::= uint64
1508 bool LLParser::ParseUInt64(uint64_t &Val) {
1509   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1510     return TokError("expected integer");
1511   Val = Lex.getAPSIntVal().getLimitedValue();
1512   Lex.Lex();
1513   return false;
1514 }
1515 
1516 /// ParseTLSModel
1517 ///   := 'localdynamic'
1518 ///   := 'initialexec'
1519 ///   := 'localexec'
1520 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1521   switch (Lex.getKind()) {
1522     default:
1523       return TokError("expected localdynamic, initialexec or localexec");
1524     case lltok::kw_localdynamic:
1525       TLM = GlobalVariable::LocalDynamicTLSModel;
1526       break;
1527     case lltok::kw_initialexec:
1528       TLM = GlobalVariable::InitialExecTLSModel;
1529       break;
1530     case lltok::kw_localexec:
1531       TLM = GlobalVariable::LocalExecTLSModel;
1532       break;
1533   }
1534 
1535   Lex.Lex();
1536   return false;
1537 }
1538 
1539 /// ParseOptionalThreadLocal
1540 ///   := /*empty*/
1541 ///   := 'thread_local'
1542 ///   := 'thread_local' '(' tlsmodel ')'
1543 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1544   TLM = GlobalVariable::NotThreadLocal;
1545   if (!EatIfPresent(lltok::kw_thread_local))
1546     return false;
1547 
1548   TLM = GlobalVariable::GeneralDynamicTLSModel;
1549   if (Lex.getKind() == lltok::lparen) {
1550     Lex.Lex();
1551     return ParseTLSModel(TLM) ||
1552       ParseToken(lltok::rparen, "expected ')' after thread local model");
1553   }
1554   return false;
1555 }
1556 
1557 /// ParseOptionalAddrSpace
1558 ///   := /*empty*/
1559 ///   := 'addrspace' '(' uint32 ')'
1560 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1561   AddrSpace = DefaultAS;
1562   if (!EatIfPresent(lltok::kw_addrspace))
1563     return false;
1564   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1565          ParseUInt32(AddrSpace) ||
1566          ParseToken(lltok::rparen, "expected ')' in address space");
1567 }
1568 
1569 /// ParseStringAttribute
1570 ///   := StringConstant
1571 ///   := StringConstant '=' StringConstant
1572 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1573   std::string Attr = Lex.getStrVal();
1574   Lex.Lex();
1575   std::string Val;
1576   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1577     return true;
1578   B.addAttribute(Attr, Val);
1579   return false;
1580 }
1581 
1582 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1583 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1584   bool HaveError = false;
1585 
1586   B.clear();
1587 
1588   while (true) {
1589     lltok::Kind Token = Lex.getKind();
1590     switch (Token) {
1591     default:  // End of attributes.
1592       return HaveError;
1593     case lltok::StringConstant: {
1594       if (ParseStringAttribute(B))
1595         return true;
1596       continue;
1597     }
1598     case lltok::kw_align: {
1599       unsigned Alignment;
1600       if (ParseOptionalAlignment(Alignment))
1601         return true;
1602       B.addAlignmentAttr(Alignment);
1603       continue;
1604     }
1605     case lltok::kw_byval: {
1606       Type *Ty;
1607       if (ParseByValWithOptionalType(Ty))
1608         return true;
1609       B.addByValAttr(Ty);
1610       continue;
1611     }
1612     case lltok::kw_dereferenceable: {
1613       uint64_t Bytes;
1614       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1615         return true;
1616       B.addDereferenceableAttr(Bytes);
1617       continue;
1618     }
1619     case lltok::kw_dereferenceable_or_null: {
1620       uint64_t Bytes;
1621       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1622         return true;
1623       B.addDereferenceableOrNullAttr(Bytes);
1624       continue;
1625     }
1626     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1627     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1628     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1629     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1630     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1631     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1632     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1633     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1634     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1635     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1636     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1637     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1638     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1639     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1640     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1641     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1642 
1643     case lltok::kw_alignstack:
1644     case lltok::kw_alwaysinline:
1645     case lltok::kw_argmemonly:
1646     case lltok::kw_builtin:
1647     case lltok::kw_inlinehint:
1648     case lltok::kw_jumptable:
1649     case lltok::kw_minsize:
1650     case lltok::kw_naked:
1651     case lltok::kw_nobuiltin:
1652     case lltok::kw_noduplicate:
1653     case lltok::kw_noimplicitfloat:
1654     case lltok::kw_noinline:
1655     case lltok::kw_nonlazybind:
1656     case lltok::kw_noredzone:
1657     case lltok::kw_noreturn:
1658     case lltok::kw_nocf_check:
1659     case lltok::kw_nounwind:
1660     case lltok::kw_optforfuzzing:
1661     case lltok::kw_optnone:
1662     case lltok::kw_optsize:
1663     case lltok::kw_returns_twice:
1664     case lltok::kw_sanitize_address:
1665     case lltok::kw_sanitize_hwaddress:
1666     case lltok::kw_sanitize_memory:
1667     case lltok::kw_sanitize_thread:
1668     case lltok::kw_speculative_load_hardening:
1669     case lltok::kw_ssp:
1670     case lltok::kw_sspreq:
1671     case lltok::kw_sspstrong:
1672     case lltok::kw_safestack:
1673     case lltok::kw_shadowcallstack:
1674     case lltok::kw_strictfp:
1675     case lltok::kw_uwtable:
1676       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1677       break;
1678     }
1679 
1680     Lex.Lex();
1681   }
1682 }
1683 
1684 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1685 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1686   bool HaveError = false;
1687 
1688   B.clear();
1689 
1690   while (true) {
1691     lltok::Kind Token = Lex.getKind();
1692     switch (Token) {
1693     default:  // End of attributes.
1694       return HaveError;
1695     case lltok::StringConstant: {
1696       if (ParseStringAttribute(B))
1697         return true;
1698       continue;
1699     }
1700     case lltok::kw_dereferenceable: {
1701       uint64_t Bytes;
1702       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1703         return true;
1704       B.addDereferenceableAttr(Bytes);
1705       continue;
1706     }
1707     case lltok::kw_dereferenceable_or_null: {
1708       uint64_t Bytes;
1709       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1710         return true;
1711       B.addDereferenceableOrNullAttr(Bytes);
1712       continue;
1713     }
1714     case lltok::kw_align: {
1715       unsigned Alignment;
1716       if (ParseOptionalAlignment(Alignment))
1717         return true;
1718       B.addAlignmentAttr(Alignment);
1719       continue;
1720     }
1721     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1722     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1723     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1724     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1725     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1726 
1727     // Error handling.
1728     case lltok::kw_byval:
1729     case lltok::kw_inalloca:
1730     case lltok::kw_nest:
1731     case lltok::kw_nocapture:
1732     case lltok::kw_returned:
1733     case lltok::kw_sret:
1734     case lltok::kw_swifterror:
1735     case lltok::kw_swiftself:
1736     case lltok::kw_immarg:
1737       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1738       break;
1739 
1740     case lltok::kw_alignstack:
1741     case lltok::kw_alwaysinline:
1742     case lltok::kw_argmemonly:
1743     case lltok::kw_builtin:
1744     case lltok::kw_cold:
1745     case lltok::kw_inlinehint:
1746     case lltok::kw_jumptable:
1747     case lltok::kw_minsize:
1748     case lltok::kw_naked:
1749     case lltok::kw_nobuiltin:
1750     case lltok::kw_noduplicate:
1751     case lltok::kw_noimplicitfloat:
1752     case lltok::kw_noinline:
1753     case lltok::kw_nonlazybind:
1754     case lltok::kw_noredzone:
1755     case lltok::kw_noreturn:
1756     case lltok::kw_nocf_check:
1757     case lltok::kw_nounwind:
1758     case lltok::kw_optforfuzzing:
1759     case lltok::kw_optnone:
1760     case lltok::kw_optsize:
1761     case lltok::kw_returns_twice:
1762     case lltok::kw_sanitize_address:
1763     case lltok::kw_sanitize_hwaddress:
1764     case lltok::kw_sanitize_memory:
1765     case lltok::kw_sanitize_thread:
1766     case lltok::kw_speculative_load_hardening:
1767     case lltok::kw_ssp:
1768     case lltok::kw_sspreq:
1769     case lltok::kw_sspstrong:
1770     case lltok::kw_safestack:
1771     case lltok::kw_shadowcallstack:
1772     case lltok::kw_strictfp:
1773     case lltok::kw_uwtable:
1774       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1775       break;
1776 
1777     case lltok::kw_readnone:
1778     case lltok::kw_readonly:
1779       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1780     }
1781 
1782     Lex.Lex();
1783   }
1784 }
1785 
1786 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1787   HasLinkage = true;
1788   switch (Kind) {
1789   default:
1790     HasLinkage = false;
1791     return GlobalValue::ExternalLinkage;
1792   case lltok::kw_private:
1793     return GlobalValue::PrivateLinkage;
1794   case lltok::kw_internal:
1795     return GlobalValue::InternalLinkage;
1796   case lltok::kw_weak:
1797     return GlobalValue::WeakAnyLinkage;
1798   case lltok::kw_weak_odr:
1799     return GlobalValue::WeakODRLinkage;
1800   case lltok::kw_linkonce:
1801     return GlobalValue::LinkOnceAnyLinkage;
1802   case lltok::kw_linkonce_odr:
1803     return GlobalValue::LinkOnceODRLinkage;
1804   case lltok::kw_available_externally:
1805     return GlobalValue::AvailableExternallyLinkage;
1806   case lltok::kw_appending:
1807     return GlobalValue::AppendingLinkage;
1808   case lltok::kw_common:
1809     return GlobalValue::CommonLinkage;
1810   case lltok::kw_extern_weak:
1811     return GlobalValue::ExternalWeakLinkage;
1812   case lltok::kw_external:
1813     return GlobalValue::ExternalLinkage;
1814   }
1815 }
1816 
1817 /// ParseOptionalLinkage
1818 ///   ::= /*empty*/
1819 ///   ::= 'private'
1820 ///   ::= 'internal'
1821 ///   ::= 'weak'
1822 ///   ::= 'weak_odr'
1823 ///   ::= 'linkonce'
1824 ///   ::= 'linkonce_odr'
1825 ///   ::= 'available_externally'
1826 ///   ::= 'appending'
1827 ///   ::= 'common'
1828 ///   ::= 'extern_weak'
1829 ///   ::= 'external'
1830 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1831                                     unsigned &Visibility,
1832                                     unsigned &DLLStorageClass,
1833                                     bool &DSOLocal) {
1834   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1835   if (HasLinkage)
1836     Lex.Lex();
1837   ParseOptionalDSOLocal(DSOLocal);
1838   ParseOptionalVisibility(Visibility);
1839   ParseOptionalDLLStorageClass(DLLStorageClass);
1840 
1841   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1842     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1843   }
1844 
1845   return false;
1846 }
1847 
1848 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1849   switch (Lex.getKind()) {
1850   default:
1851     DSOLocal = false;
1852     break;
1853   case lltok::kw_dso_local:
1854     DSOLocal = true;
1855     Lex.Lex();
1856     break;
1857   case lltok::kw_dso_preemptable:
1858     DSOLocal = false;
1859     Lex.Lex();
1860     break;
1861   }
1862 }
1863 
1864 /// ParseOptionalVisibility
1865 ///   ::= /*empty*/
1866 ///   ::= 'default'
1867 ///   ::= 'hidden'
1868 ///   ::= 'protected'
1869 ///
1870 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1871   switch (Lex.getKind()) {
1872   default:
1873     Res = GlobalValue::DefaultVisibility;
1874     return;
1875   case lltok::kw_default:
1876     Res = GlobalValue::DefaultVisibility;
1877     break;
1878   case lltok::kw_hidden:
1879     Res = GlobalValue::HiddenVisibility;
1880     break;
1881   case lltok::kw_protected:
1882     Res = GlobalValue::ProtectedVisibility;
1883     break;
1884   }
1885   Lex.Lex();
1886 }
1887 
1888 /// ParseOptionalDLLStorageClass
1889 ///   ::= /*empty*/
1890 ///   ::= 'dllimport'
1891 ///   ::= 'dllexport'
1892 ///
1893 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1894   switch (Lex.getKind()) {
1895   default:
1896     Res = GlobalValue::DefaultStorageClass;
1897     return;
1898   case lltok::kw_dllimport:
1899     Res = GlobalValue::DLLImportStorageClass;
1900     break;
1901   case lltok::kw_dllexport:
1902     Res = GlobalValue::DLLExportStorageClass;
1903     break;
1904   }
1905   Lex.Lex();
1906 }
1907 
1908 /// ParseOptionalCallingConv
1909 ///   ::= /*empty*/
1910 ///   ::= 'ccc'
1911 ///   ::= 'fastcc'
1912 ///   ::= 'intel_ocl_bicc'
1913 ///   ::= 'coldcc'
1914 ///   ::= 'x86_stdcallcc'
1915 ///   ::= 'x86_fastcallcc'
1916 ///   ::= 'x86_thiscallcc'
1917 ///   ::= 'x86_vectorcallcc'
1918 ///   ::= 'arm_apcscc'
1919 ///   ::= 'arm_aapcscc'
1920 ///   ::= 'arm_aapcs_vfpcc'
1921 ///   ::= 'aarch64_vector_pcs'
1922 ///   ::= 'msp430_intrcc'
1923 ///   ::= 'avr_intrcc'
1924 ///   ::= 'avr_signalcc'
1925 ///   ::= 'ptx_kernel'
1926 ///   ::= 'ptx_device'
1927 ///   ::= 'spir_func'
1928 ///   ::= 'spir_kernel'
1929 ///   ::= 'x86_64_sysvcc'
1930 ///   ::= 'win64cc'
1931 ///   ::= 'webkit_jscc'
1932 ///   ::= 'anyregcc'
1933 ///   ::= 'preserve_mostcc'
1934 ///   ::= 'preserve_allcc'
1935 ///   ::= 'ghccc'
1936 ///   ::= 'swiftcc'
1937 ///   ::= 'x86_intrcc'
1938 ///   ::= 'hhvmcc'
1939 ///   ::= 'hhvm_ccc'
1940 ///   ::= 'cxx_fast_tlscc'
1941 ///   ::= 'amdgpu_vs'
1942 ///   ::= 'amdgpu_ls'
1943 ///   ::= 'amdgpu_hs'
1944 ///   ::= 'amdgpu_es'
1945 ///   ::= 'amdgpu_gs'
1946 ///   ::= 'amdgpu_ps'
1947 ///   ::= 'amdgpu_cs'
1948 ///   ::= 'amdgpu_kernel'
1949 ///   ::= 'cc' UINT
1950 ///
1951 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1952   switch (Lex.getKind()) {
1953   default:                       CC = CallingConv::C; return false;
1954   case lltok::kw_ccc:            CC = CallingConv::C; break;
1955   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1956   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1957   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1958   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1959   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1960   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1961   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1962   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1963   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1964   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1965   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1966   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1967   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1968   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1969   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1970   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1971   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1972   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1973   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1974   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1975   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1976   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1977   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1978   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1979   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1980   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1981   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1982   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1983   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1984   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1985   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1986   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1987   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1988   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1989   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1990   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1991   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1992   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1993   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1994   case lltok::kw_cc: {
1995       Lex.Lex();
1996       return ParseUInt32(CC);
1997     }
1998   }
1999 
2000   Lex.Lex();
2001   return false;
2002 }
2003 
2004 /// ParseMetadataAttachment
2005 ///   ::= !dbg !42
2006 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2007   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2008 
2009   std::string Name = Lex.getStrVal();
2010   Kind = M->getMDKindID(Name);
2011   Lex.Lex();
2012 
2013   return ParseMDNode(MD);
2014 }
2015 
2016 /// ParseInstructionMetadata
2017 ///   ::= !dbg !42 (',' !dbg !57)*
2018 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
2019   do {
2020     if (Lex.getKind() != lltok::MetadataVar)
2021       return TokError("expected metadata after comma");
2022 
2023     unsigned MDK;
2024     MDNode *N;
2025     if (ParseMetadataAttachment(MDK, N))
2026       return true;
2027 
2028     Inst.setMetadata(MDK, N);
2029     if (MDK == LLVMContext::MD_tbaa)
2030       InstsWithTBAATag.push_back(&Inst);
2031 
2032     // If this is the end of the list, we're done.
2033   } while (EatIfPresent(lltok::comma));
2034   return false;
2035 }
2036 
2037 /// ParseGlobalObjectMetadataAttachment
2038 ///   ::= !dbg !57
2039 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2040   unsigned MDK;
2041   MDNode *N;
2042   if (ParseMetadataAttachment(MDK, N))
2043     return true;
2044 
2045   GO.addMetadata(MDK, *N);
2046   return false;
2047 }
2048 
2049 /// ParseOptionalFunctionMetadata
2050 ///   ::= (!dbg !57)*
2051 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2052   while (Lex.getKind() == lltok::MetadataVar)
2053     if (ParseGlobalObjectMetadataAttachment(F))
2054       return true;
2055   return false;
2056 }
2057 
2058 /// ParseOptionalAlignment
2059 ///   ::= /* empty */
2060 ///   ::= 'align' 4
2061 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
2062   Alignment = 0;
2063   if (!EatIfPresent(lltok::kw_align))
2064     return false;
2065   LocTy AlignLoc = Lex.getLoc();
2066   if (ParseUInt32(Alignment)) return true;
2067   if (!isPowerOf2_32(Alignment))
2068     return Error(AlignLoc, "alignment is not a power of two");
2069   if (Alignment > Value::MaximumAlignment)
2070     return Error(AlignLoc, "huge alignments are not supported yet");
2071   return false;
2072 }
2073 
2074 /// ParseOptionalDerefAttrBytes
2075 ///   ::= /* empty */
2076 ///   ::= AttrKind '(' 4 ')'
2077 ///
2078 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2079 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2080                                            uint64_t &Bytes) {
2081   assert((AttrKind == lltok::kw_dereferenceable ||
2082           AttrKind == lltok::kw_dereferenceable_or_null) &&
2083          "contract!");
2084 
2085   Bytes = 0;
2086   if (!EatIfPresent(AttrKind))
2087     return false;
2088   LocTy ParenLoc = Lex.getLoc();
2089   if (!EatIfPresent(lltok::lparen))
2090     return Error(ParenLoc, "expected '('");
2091   LocTy DerefLoc = Lex.getLoc();
2092   if (ParseUInt64(Bytes)) return true;
2093   ParenLoc = Lex.getLoc();
2094   if (!EatIfPresent(lltok::rparen))
2095     return Error(ParenLoc, "expected ')'");
2096   if (!Bytes)
2097     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2098   return false;
2099 }
2100 
2101 /// ParseOptionalCommaAlign
2102 ///   ::=
2103 ///   ::= ',' align 4
2104 ///
2105 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2106 /// end.
2107 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2108                                        bool &AteExtraComma) {
2109   AteExtraComma = false;
2110   while (EatIfPresent(lltok::comma)) {
2111     // Metadata at the end is an early exit.
2112     if (Lex.getKind() == lltok::MetadataVar) {
2113       AteExtraComma = true;
2114       return false;
2115     }
2116 
2117     if (Lex.getKind() != lltok::kw_align)
2118       return Error(Lex.getLoc(), "expected metadata or 'align'");
2119 
2120     if (ParseOptionalAlignment(Alignment)) return true;
2121   }
2122 
2123   return false;
2124 }
2125 
2126 /// ParseOptionalCommaAddrSpace
2127 ///   ::=
2128 ///   ::= ',' addrspace(1)
2129 ///
2130 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2131 /// end.
2132 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2133                                            LocTy &Loc,
2134                                            bool &AteExtraComma) {
2135   AteExtraComma = false;
2136   while (EatIfPresent(lltok::comma)) {
2137     // Metadata at the end is an early exit.
2138     if (Lex.getKind() == lltok::MetadataVar) {
2139       AteExtraComma = true;
2140       return false;
2141     }
2142 
2143     Loc = Lex.getLoc();
2144     if (Lex.getKind() != lltok::kw_addrspace)
2145       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2146 
2147     if (ParseOptionalAddrSpace(AddrSpace))
2148       return true;
2149   }
2150 
2151   return false;
2152 }
2153 
2154 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2155                                        Optional<unsigned> &HowManyArg) {
2156   Lex.Lex();
2157 
2158   auto StartParen = Lex.getLoc();
2159   if (!EatIfPresent(lltok::lparen))
2160     return Error(StartParen, "expected '('");
2161 
2162   if (ParseUInt32(BaseSizeArg))
2163     return true;
2164 
2165   if (EatIfPresent(lltok::comma)) {
2166     auto HowManyAt = Lex.getLoc();
2167     unsigned HowMany;
2168     if (ParseUInt32(HowMany))
2169       return true;
2170     if (HowMany == BaseSizeArg)
2171       return Error(HowManyAt,
2172                    "'allocsize' indices can't refer to the same parameter");
2173     HowManyArg = HowMany;
2174   } else
2175     HowManyArg = None;
2176 
2177   auto EndParen = Lex.getLoc();
2178   if (!EatIfPresent(lltok::rparen))
2179     return Error(EndParen, "expected ')'");
2180   return false;
2181 }
2182 
2183 /// ParseScopeAndOrdering
2184 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2185 ///   else: ::=
2186 ///
2187 /// This sets Scope and Ordering to the parsed values.
2188 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2189                                      AtomicOrdering &Ordering) {
2190   if (!isAtomic)
2191     return false;
2192 
2193   return ParseScope(SSID) || ParseOrdering(Ordering);
2194 }
2195 
2196 /// ParseScope
2197 ///   ::= syncscope("singlethread" | "<target scope>")?
2198 ///
2199 /// This sets synchronization scope ID to the ID of the parsed value.
2200 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2201   SSID = SyncScope::System;
2202   if (EatIfPresent(lltok::kw_syncscope)) {
2203     auto StartParenAt = Lex.getLoc();
2204     if (!EatIfPresent(lltok::lparen))
2205       return Error(StartParenAt, "Expected '(' in syncscope");
2206 
2207     std::string SSN;
2208     auto SSNAt = Lex.getLoc();
2209     if (ParseStringConstant(SSN))
2210       return Error(SSNAt, "Expected synchronization scope name");
2211 
2212     auto EndParenAt = Lex.getLoc();
2213     if (!EatIfPresent(lltok::rparen))
2214       return Error(EndParenAt, "Expected ')' in syncscope");
2215 
2216     SSID = Context.getOrInsertSyncScopeID(SSN);
2217   }
2218 
2219   return false;
2220 }
2221 
2222 /// ParseOrdering
2223 ///   ::= AtomicOrdering
2224 ///
2225 /// This sets Ordering to the parsed value.
2226 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2227   switch (Lex.getKind()) {
2228   default: return TokError("Expected ordering on atomic instruction");
2229   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2230   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2231   // Not specified yet:
2232   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2233   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2234   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2235   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2236   case lltok::kw_seq_cst:
2237     Ordering = AtomicOrdering::SequentiallyConsistent;
2238     break;
2239   }
2240   Lex.Lex();
2241   return false;
2242 }
2243 
2244 /// ParseOptionalStackAlignment
2245 ///   ::= /* empty */
2246 ///   ::= 'alignstack' '(' 4 ')'
2247 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2248   Alignment = 0;
2249   if (!EatIfPresent(lltok::kw_alignstack))
2250     return false;
2251   LocTy ParenLoc = Lex.getLoc();
2252   if (!EatIfPresent(lltok::lparen))
2253     return Error(ParenLoc, "expected '('");
2254   LocTy AlignLoc = Lex.getLoc();
2255   if (ParseUInt32(Alignment)) return true;
2256   ParenLoc = Lex.getLoc();
2257   if (!EatIfPresent(lltok::rparen))
2258     return Error(ParenLoc, "expected ')'");
2259   if (!isPowerOf2_32(Alignment))
2260     return Error(AlignLoc, "stack alignment is not a power of two");
2261   return false;
2262 }
2263 
2264 /// ParseIndexList - This parses the index list for an insert/extractvalue
2265 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2266 /// comma at the end of the line and find that it is followed by metadata.
2267 /// Clients that don't allow metadata can call the version of this function that
2268 /// only takes one argument.
2269 ///
2270 /// ParseIndexList
2271 ///    ::=  (',' uint32)+
2272 ///
2273 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2274                               bool &AteExtraComma) {
2275   AteExtraComma = false;
2276 
2277   if (Lex.getKind() != lltok::comma)
2278     return TokError("expected ',' as start of index list");
2279 
2280   while (EatIfPresent(lltok::comma)) {
2281     if (Lex.getKind() == lltok::MetadataVar) {
2282       if (Indices.empty()) return TokError("expected index");
2283       AteExtraComma = true;
2284       return false;
2285     }
2286     unsigned Idx = 0;
2287     if (ParseUInt32(Idx)) return true;
2288     Indices.push_back(Idx);
2289   }
2290 
2291   return false;
2292 }
2293 
2294 //===----------------------------------------------------------------------===//
2295 // Type Parsing.
2296 //===----------------------------------------------------------------------===//
2297 
2298 /// ParseType - Parse a type.
2299 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2300   SMLoc TypeLoc = Lex.getLoc();
2301   switch (Lex.getKind()) {
2302   default:
2303     return TokError(Msg);
2304   case lltok::Type:
2305     // Type ::= 'float' | 'void' (etc)
2306     Result = Lex.getTyVal();
2307     Lex.Lex();
2308     break;
2309   case lltok::lbrace:
2310     // Type ::= StructType
2311     if (ParseAnonStructType(Result, false))
2312       return true;
2313     break;
2314   case lltok::lsquare:
2315     // Type ::= '[' ... ']'
2316     Lex.Lex(); // eat the lsquare.
2317     if (ParseArrayVectorType(Result, false))
2318       return true;
2319     break;
2320   case lltok::less: // Either vector or packed struct.
2321     // Type ::= '<' ... '>'
2322     Lex.Lex();
2323     if (Lex.getKind() == lltok::lbrace) {
2324       if (ParseAnonStructType(Result, true) ||
2325           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2326         return true;
2327     } else if (ParseArrayVectorType(Result, true))
2328       return true;
2329     break;
2330   case lltok::LocalVar: {
2331     // Type ::= %foo
2332     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2333 
2334     // If the type hasn't been defined yet, create a forward definition and
2335     // remember where that forward def'n was seen (in case it never is defined).
2336     if (!Entry.first) {
2337       Entry.first = StructType::create(Context, Lex.getStrVal());
2338       Entry.second = Lex.getLoc();
2339     }
2340     Result = Entry.first;
2341     Lex.Lex();
2342     break;
2343   }
2344 
2345   case lltok::LocalVarID: {
2346     // Type ::= %4
2347     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2348 
2349     // If the type hasn't been defined yet, create a forward definition and
2350     // remember where that forward def'n was seen (in case it never is defined).
2351     if (!Entry.first) {
2352       Entry.first = StructType::create(Context);
2353       Entry.second = Lex.getLoc();
2354     }
2355     Result = Entry.first;
2356     Lex.Lex();
2357     break;
2358   }
2359   }
2360 
2361   // Parse the type suffixes.
2362   while (true) {
2363     switch (Lex.getKind()) {
2364     // End of type.
2365     default:
2366       if (!AllowVoid && Result->isVoidTy())
2367         return Error(TypeLoc, "void type only allowed for function results");
2368       return false;
2369 
2370     // Type ::= Type '*'
2371     case lltok::star:
2372       if (Result->isLabelTy())
2373         return TokError("basic block pointers are invalid");
2374       if (Result->isVoidTy())
2375         return TokError("pointers to void are invalid - use i8* instead");
2376       if (!PointerType::isValidElementType(Result))
2377         return TokError("pointer to this type is invalid");
2378       Result = PointerType::getUnqual(Result);
2379       Lex.Lex();
2380       break;
2381 
2382     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2383     case lltok::kw_addrspace: {
2384       if (Result->isLabelTy())
2385         return TokError("basic block pointers are invalid");
2386       if (Result->isVoidTy())
2387         return TokError("pointers to void are invalid; use i8* instead");
2388       if (!PointerType::isValidElementType(Result))
2389         return TokError("pointer to this type is invalid");
2390       unsigned AddrSpace;
2391       if (ParseOptionalAddrSpace(AddrSpace) ||
2392           ParseToken(lltok::star, "expected '*' in address space"))
2393         return true;
2394 
2395       Result = PointerType::get(Result, AddrSpace);
2396       break;
2397     }
2398 
2399     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2400     case lltok::lparen:
2401       if (ParseFunctionType(Result))
2402         return true;
2403       break;
2404     }
2405   }
2406 }
2407 
2408 /// ParseParameterList
2409 ///    ::= '(' ')'
2410 ///    ::= '(' Arg (',' Arg)* ')'
2411 ///  Arg
2412 ///    ::= Type OptionalAttributes Value OptionalAttributes
2413 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2414                                   PerFunctionState &PFS, bool IsMustTailCall,
2415                                   bool InVarArgsFunc) {
2416   if (ParseToken(lltok::lparen, "expected '(' in call"))
2417     return true;
2418 
2419   while (Lex.getKind() != lltok::rparen) {
2420     // If this isn't the first argument, we need a comma.
2421     if (!ArgList.empty() &&
2422         ParseToken(lltok::comma, "expected ',' in argument list"))
2423       return true;
2424 
2425     // Parse an ellipsis if this is a musttail call in a variadic function.
2426     if (Lex.getKind() == lltok::dotdotdot) {
2427       const char *Msg = "unexpected ellipsis in argument list for ";
2428       if (!IsMustTailCall)
2429         return TokError(Twine(Msg) + "non-musttail call");
2430       if (!InVarArgsFunc)
2431         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2432       Lex.Lex();  // Lex the '...', it is purely for readability.
2433       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2434     }
2435 
2436     // Parse the argument.
2437     LocTy ArgLoc;
2438     Type *ArgTy = nullptr;
2439     AttrBuilder ArgAttrs;
2440     Value *V;
2441     if (ParseType(ArgTy, ArgLoc))
2442       return true;
2443 
2444     if (ArgTy->isMetadataTy()) {
2445       if (ParseMetadataAsValue(V, PFS))
2446         return true;
2447     } else {
2448       // Otherwise, handle normal operands.
2449       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2450         return true;
2451     }
2452     ArgList.push_back(ParamInfo(
2453         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2454   }
2455 
2456   if (IsMustTailCall && InVarArgsFunc)
2457     return TokError("expected '...' at end of argument list for musttail call "
2458                     "in varargs function");
2459 
2460   Lex.Lex();  // Lex the ')'.
2461   return false;
2462 }
2463 
2464 /// ParseByValWithOptionalType
2465 ///   ::= byval
2466 ///   ::= byval(<ty>)
2467 bool LLParser::ParseByValWithOptionalType(Type *&Result) {
2468   Result = nullptr;
2469   if (!EatIfPresent(lltok::kw_byval))
2470     return true;
2471   if (!EatIfPresent(lltok::lparen))
2472     return false;
2473   if (ParseType(Result))
2474     return true;
2475   if (!EatIfPresent(lltok::rparen))
2476     return Error(Lex.getLoc(), "expected ')'");
2477   return false;
2478 }
2479 
2480 /// ParseOptionalOperandBundles
2481 ///    ::= /*empty*/
2482 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2483 ///
2484 /// OperandBundle
2485 ///    ::= bundle-tag '(' ')'
2486 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2487 ///
2488 /// bundle-tag ::= String Constant
2489 bool LLParser::ParseOptionalOperandBundles(
2490     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2491   LocTy BeginLoc = Lex.getLoc();
2492   if (!EatIfPresent(lltok::lsquare))
2493     return false;
2494 
2495   while (Lex.getKind() != lltok::rsquare) {
2496     // If this isn't the first operand bundle, we need a comma.
2497     if (!BundleList.empty() &&
2498         ParseToken(lltok::comma, "expected ',' in input list"))
2499       return true;
2500 
2501     std::string Tag;
2502     if (ParseStringConstant(Tag))
2503       return true;
2504 
2505     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2506       return true;
2507 
2508     std::vector<Value *> Inputs;
2509     while (Lex.getKind() != lltok::rparen) {
2510       // If this isn't the first input, we need a comma.
2511       if (!Inputs.empty() &&
2512           ParseToken(lltok::comma, "expected ',' in input list"))
2513         return true;
2514 
2515       Type *Ty = nullptr;
2516       Value *Input = nullptr;
2517       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2518         return true;
2519       Inputs.push_back(Input);
2520     }
2521 
2522     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2523 
2524     Lex.Lex(); // Lex the ')'.
2525   }
2526 
2527   if (BundleList.empty())
2528     return Error(BeginLoc, "operand bundle set must not be empty");
2529 
2530   Lex.Lex(); // Lex the ']'.
2531   return false;
2532 }
2533 
2534 /// ParseArgumentList - Parse the argument list for a function type or function
2535 /// prototype.
2536 ///   ::= '(' ArgTypeListI ')'
2537 /// ArgTypeListI
2538 ///   ::= /*empty*/
2539 ///   ::= '...'
2540 ///   ::= ArgTypeList ',' '...'
2541 ///   ::= ArgType (',' ArgType)*
2542 ///
2543 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2544                                  bool &isVarArg){
2545   isVarArg = false;
2546   assert(Lex.getKind() == lltok::lparen);
2547   Lex.Lex(); // eat the (.
2548 
2549   if (Lex.getKind() == lltok::rparen) {
2550     // empty
2551   } else if (Lex.getKind() == lltok::dotdotdot) {
2552     isVarArg = true;
2553     Lex.Lex();
2554   } else {
2555     LocTy TypeLoc = Lex.getLoc();
2556     Type *ArgTy = nullptr;
2557     AttrBuilder Attrs;
2558     std::string Name;
2559 
2560     if (ParseType(ArgTy) ||
2561         ParseOptionalParamAttrs(Attrs)) return true;
2562 
2563     if (ArgTy->isVoidTy())
2564       return Error(TypeLoc, "argument can not have void type");
2565 
2566     if (Lex.getKind() == lltok::LocalVar) {
2567       Name = Lex.getStrVal();
2568       Lex.Lex();
2569     }
2570 
2571     if (!FunctionType::isValidArgumentType(ArgTy))
2572       return Error(TypeLoc, "invalid type for function argument");
2573 
2574     ArgList.emplace_back(TypeLoc, ArgTy,
2575                          AttributeSet::get(ArgTy->getContext(), Attrs),
2576                          std::move(Name));
2577 
2578     while (EatIfPresent(lltok::comma)) {
2579       // Handle ... at end of arg list.
2580       if (EatIfPresent(lltok::dotdotdot)) {
2581         isVarArg = true;
2582         break;
2583       }
2584 
2585       // Otherwise must be an argument type.
2586       TypeLoc = Lex.getLoc();
2587       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2588 
2589       if (ArgTy->isVoidTy())
2590         return Error(TypeLoc, "argument can not have void type");
2591 
2592       if (Lex.getKind() == lltok::LocalVar) {
2593         Name = Lex.getStrVal();
2594         Lex.Lex();
2595       } else {
2596         Name = "";
2597       }
2598 
2599       if (!ArgTy->isFirstClassType())
2600         return Error(TypeLoc, "invalid type for function argument");
2601 
2602       ArgList.emplace_back(TypeLoc, ArgTy,
2603                            AttributeSet::get(ArgTy->getContext(), Attrs),
2604                            std::move(Name));
2605     }
2606   }
2607 
2608   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2609 }
2610 
2611 /// ParseFunctionType
2612 ///  ::= Type ArgumentList OptionalAttrs
2613 bool LLParser::ParseFunctionType(Type *&Result) {
2614   assert(Lex.getKind() == lltok::lparen);
2615 
2616   if (!FunctionType::isValidReturnType(Result))
2617     return TokError("invalid function return type");
2618 
2619   SmallVector<ArgInfo, 8> ArgList;
2620   bool isVarArg;
2621   if (ParseArgumentList(ArgList, isVarArg))
2622     return true;
2623 
2624   // Reject names on the arguments lists.
2625   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2626     if (!ArgList[i].Name.empty())
2627       return Error(ArgList[i].Loc, "argument name invalid in function type");
2628     if (ArgList[i].Attrs.hasAttributes())
2629       return Error(ArgList[i].Loc,
2630                    "argument attributes invalid in function type");
2631   }
2632 
2633   SmallVector<Type*, 16> ArgListTy;
2634   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2635     ArgListTy.push_back(ArgList[i].Ty);
2636 
2637   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2638   return false;
2639 }
2640 
2641 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2642 /// other structs.
2643 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2644   SmallVector<Type*, 8> Elts;
2645   if (ParseStructBody(Elts)) return true;
2646 
2647   Result = StructType::get(Context, Elts, Packed);
2648   return false;
2649 }
2650 
2651 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2652 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2653                                      std::pair<Type*, LocTy> &Entry,
2654                                      Type *&ResultTy) {
2655   // If the type was already defined, diagnose the redefinition.
2656   if (Entry.first && !Entry.second.isValid())
2657     return Error(TypeLoc, "redefinition of type");
2658 
2659   // If we have opaque, just return without filling in the definition for the
2660   // struct.  This counts as a definition as far as the .ll file goes.
2661   if (EatIfPresent(lltok::kw_opaque)) {
2662     // This type is being defined, so clear the location to indicate this.
2663     Entry.second = SMLoc();
2664 
2665     // If this type number has never been uttered, create it.
2666     if (!Entry.first)
2667       Entry.first = StructType::create(Context, Name);
2668     ResultTy = Entry.first;
2669     return false;
2670   }
2671 
2672   // If the type starts with '<', then it is either a packed struct or a vector.
2673   bool isPacked = EatIfPresent(lltok::less);
2674 
2675   // If we don't have a struct, then we have a random type alias, which we
2676   // accept for compatibility with old files.  These types are not allowed to be
2677   // forward referenced and not allowed to be recursive.
2678   if (Lex.getKind() != lltok::lbrace) {
2679     if (Entry.first)
2680       return Error(TypeLoc, "forward references to non-struct type");
2681 
2682     ResultTy = nullptr;
2683     if (isPacked)
2684       return ParseArrayVectorType(ResultTy, true);
2685     return ParseType(ResultTy);
2686   }
2687 
2688   // This type is being defined, so clear the location to indicate this.
2689   Entry.second = SMLoc();
2690 
2691   // If this type number has never been uttered, create it.
2692   if (!Entry.first)
2693     Entry.first = StructType::create(Context, Name);
2694 
2695   StructType *STy = cast<StructType>(Entry.first);
2696 
2697   SmallVector<Type*, 8> Body;
2698   if (ParseStructBody(Body) ||
2699       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2700     return true;
2701 
2702   STy->setBody(Body, isPacked);
2703   ResultTy = STy;
2704   return false;
2705 }
2706 
2707 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2708 ///   StructType
2709 ///     ::= '{' '}'
2710 ///     ::= '{' Type (',' Type)* '}'
2711 ///     ::= '<' '{' '}' '>'
2712 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2713 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2714   assert(Lex.getKind() == lltok::lbrace);
2715   Lex.Lex(); // Consume the '{'
2716 
2717   // Handle the empty struct.
2718   if (EatIfPresent(lltok::rbrace))
2719     return false;
2720 
2721   LocTy EltTyLoc = Lex.getLoc();
2722   Type *Ty = nullptr;
2723   if (ParseType(Ty)) return true;
2724   Body.push_back(Ty);
2725 
2726   if (!StructType::isValidElementType(Ty))
2727     return Error(EltTyLoc, "invalid element type for struct");
2728 
2729   while (EatIfPresent(lltok::comma)) {
2730     EltTyLoc = Lex.getLoc();
2731     if (ParseType(Ty)) return true;
2732 
2733     if (!StructType::isValidElementType(Ty))
2734       return Error(EltTyLoc, "invalid element type for struct");
2735 
2736     Body.push_back(Ty);
2737   }
2738 
2739   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2740 }
2741 
2742 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2743 /// token has already been consumed.
2744 ///   Type
2745 ///     ::= '[' APSINTVAL 'x' Types ']'
2746 ///     ::= '<' APSINTVAL 'x' Types '>'
2747 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2748   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2749       Lex.getAPSIntVal().getBitWidth() > 64)
2750     return TokError("expected number in address space");
2751 
2752   LocTy SizeLoc = Lex.getLoc();
2753   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2754   Lex.Lex();
2755 
2756   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2757       return true;
2758 
2759   LocTy TypeLoc = Lex.getLoc();
2760   Type *EltTy = nullptr;
2761   if (ParseType(EltTy)) return true;
2762 
2763   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2764                  "expected end of sequential type"))
2765     return true;
2766 
2767   if (isVector) {
2768     if (Size == 0)
2769       return Error(SizeLoc, "zero element vector is illegal");
2770     if ((unsigned)Size != Size)
2771       return Error(SizeLoc, "size too large for vector");
2772     if (!VectorType::isValidElementType(EltTy))
2773       return Error(TypeLoc, "invalid vector element type");
2774     Result = VectorType::get(EltTy, unsigned(Size));
2775   } else {
2776     if (!ArrayType::isValidElementType(EltTy))
2777       return Error(TypeLoc, "invalid array element type");
2778     Result = ArrayType::get(EltTy, Size);
2779   }
2780   return false;
2781 }
2782 
2783 //===----------------------------------------------------------------------===//
2784 // Function Semantic Analysis.
2785 //===----------------------------------------------------------------------===//
2786 
2787 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2788                                              int functionNumber)
2789   : P(p), F(f), FunctionNumber(functionNumber) {
2790 
2791   // Insert unnamed arguments into the NumberedVals list.
2792   for (Argument &A : F.args())
2793     if (!A.hasName())
2794       NumberedVals.push_back(&A);
2795 }
2796 
2797 LLParser::PerFunctionState::~PerFunctionState() {
2798   // If there were any forward referenced non-basicblock values, delete them.
2799 
2800   for (const auto &P : ForwardRefVals) {
2801     if (isa<BasicBlock>(P.second.first))
2802       continue;
2803     P.second.first->replaceAllUsesWith(
2804         UndefValue::get(P.second.first->getType()));
2805     P.second.first->deleteValue();
2806   }
2807 
2808   for (const auto &P : ForwardRefValIDs) {
2809     if (isa<BasicBlock>(P.second.first))
2810       continue;
2811     P.second.first->replaceAllUsesWith(
2812         UndefValue::get(P.second.first->getType()));
2813     P.second.first->deleteValue();
2814   }
2815 }
2816 
2817 bool LLParser::PerFunctionState::FinishFunction() {
2818   if (!ForwardRefVals.empty())
2819     return P.Error(ForwardRefVals.begin()->second.second,
2820                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2821                    "'");
2822   if (!ForwardRefValIDs.empty())
2823     return P.Error(ForwardRefValIDs.begin()->second.second,
2824                    "use of undefined value '%" +
2825                    Twine(ForwardRefValIDs.begin()->first) + "'");
2826   return false;
2827 }
2828 
2829 /// GetVal - Get a value with the specified name or ID, creating a
2830 /// forward reference record if needed.  This can return null if the value
2831 /// exists but does not have the right type.
2832 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2833                                           LocTy Loc, bool IsCall) {
2834   // Look this name up in the normal function symbol table.
2835   Value *Val = F.getValueSymbolTable()->lookup(Name);
2836 
2837   // If this is a forward reference for the value, see if we already created a
2838   // forward ref record.
2839   if (!Val) {
2840     auto I = ForwardRefVals.find(Name);
2841     if (I != ForwardRefVals.end())
2842       Val = I->second.first;
2843   }
2844 
2845   // If we have the value in the symbol table or fwd-ref table, return it.
2846   if (Val)
2847     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2848 
2849   // Don't make placeholders with invalid type.
2850   if (!Ty->isFirstClassType()) {
2851     P.Error(Loc, "invalid use of a non-first-class type");
2852     return nullptr;
2853   }
2854 
2855   // Otherwise, create a new forward reference for this value and remember it.
2856   Value *FwdVal;
2857   if (Ty->isLabelTy()) {
2858     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2859   } else {
2860     FwdVal = new Argument(Ty, Name);
2861   }
2862 
2863   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2864   return FwdVal;
2865 }
2866 
2867 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2868                                           bool IsCall) {
2869   // Look this name up in the normal function symbol table.
2870   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2871 
2872   // If this is a forward reference for the value, see if we already created a
2873   // forward ref record.
2874   if (!Val) {
2875     auto I = ForwardRefValIDs.find(ID);
2876     if (I != ForwardRefValIDs.end())
2877       Val = I->second.first;
2878   }
2879 
2880   // If we have the value in the symbol table or fwd-ref table, return it.
2881   if (Val)
2882     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2883 
2884   if (!Ty->isFirstClassType()) {
2885     P.Error(Loc, "invalid use of a non-first-class type");
2886     return nullptr;
2887   }
2888 
2889   // Otherwise, create a new forward reference for this value and remember it.
2890   Value *FwdVal;
2891   if (Ty->isLabelTy()) {
2892     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2893   } else {
2894     FwdVal = new Argument(Ty);
2895   }
2896 
2897   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2898   return FwdVal;
2899 }
2900 
2901 /// SetInstName - After an instruction is parsed and inserted into its
2902 /// basic block, this installs its name.
2903 bool LLParser::PerFunctionState::SetInstName(int NameID,
2904                                              const std::string &NameStr,
2905                                              LocTy NameLoc, Instruction *Inst) {
2906   // If this instruction has void type, it cannot have a name or ID specified.
2907   if (Inst->getType()->isVoidTy()) {
2908     if (NameID != -1 || !NameStr.empty())
2909       return P.Error(NameLoc, "instructions returning void cannot have a name");
2910     return false;
2911   }
2912 
2913   // If this was a numbered instruction, verify that the instruction is the
2914   // expected value and resolve any forward references.
2915   if (NameStr.empty()) {
2916     // If neither a name nor an ID was specified, just use the next ID.
2917     if (NameID == -1)
2918       NameID = NumberedVals.size();
2919 
2920     if (unsigned(NameID) != NumberedVals.size())
2921       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2922                      Twine(NumberedVals.size()) + "'");
2923 
2924     auto FI = ForwardRefValIDs.find(NameID);
2925     if (FI != ForwardRefValIDs.end()) {
2926       Value *Sentinel = FI->second.first;
2927       if (Sentinel->getType() != Inst->getType())
2928         return P.Error(NameLoc, "instruction forward referenced with type '" +
2929                        getTypeString(FI->second.first->getType()) + "'");
2930 
2931       Sentinel->replaceAllUsesWith(Inst);
2932       Sentinel->deleteValue();
2933       ForwardRefValIDs.erase(FI);
2934     }
2935 
2936     NumberedVals.push_back(Inst);
2937     return false;
2938   }
2939 
2940   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2941   auto FI = ForwardRefVals.find(NameStr);
2942   if (FI != ForwardRefVals.end()) {
2943     Value *Sentinel = FI->second.first;
2944     if (Sentinel->getType() != Inst->getType())
2945       return P.Error(NameLoc, "instruction forward referenced with type '" +
2946                      getTypeString(FI->second.first->getType()) + "'");
2947 
2948     Sentinel->replaceAllUsesWith(Inst);
2949     Sentinel->deleteValue();
2950     ForwardRefVals.erase(FI);
2951   }
2952 
2953   // Set the name on the instruction.
2954   Inst->setName(NameStr);
2955 
2956   if (Inst->getName() != NameStr)
2957     return P.Error(NameLoc, "multiple definition of local value named '" +
2958                    NameStr + "'");
2959   return false;
2960 }
2961 
2962 /// GetBB - Get a basic block with the specified name or ID, creating a
2963 /// forward reference record if needed.
2964 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2965                                               LocTy Loc) {
2966   return dyn_cast_or_null<BasicBlock>(
2967       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2968 }
2969 
2970 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2971   return dyn_cast_or_null<BasicBlock>(
2972       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2973 }
2974 
2975 /// DefineBB - Define the specified basic block, which is either named or
2976 /// unnamed.  If there is an error, this returns null otherwise it returns
2977 /// the block being defined.
2978 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2979                                                  int NameID, LocTy Loc) {
2980   BasicBlock *BB;
2981   if (Name.empty()) {
2982     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
2983       P.Error(Loc, "label expected to be numbered '" +
2984                        Twine(NumberedVals.size()) + "'");
2985       return nullptr;
2986     }
2987     BB = GetBB(NumberedVals.size(), Loc);
2988     if (!BB) {
2989       P.Error(Loc, "unable to create block numbered '" +
2990                        Twine(NumberedVals.size()) + "'");
2991       return nullptr;
2992     }
2993   } else {
2994     BB = GetBB(Name, Loc);
2995     if (!BB) {
2996       P.Error(Loc, "unable to create block named '" + Name + "'");
2997       return nullptr;
2998     }
2999   }
3000 
3001   // Move the block to the end of the function.  Forward ref'd blocks are
3002   // inserted wherever they happen to be referenced.
3003   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3004 
3005   // Remove the block from forward ref sets.
3006   if (Name.empty()) {
3007     ForwardRefValIDs.erase(NumberedVals.size());
3008     NumberedVals.push_back(BB);
3009   } else {
3010     // BB forward references are already in the function symbol table.
3011     ForwardRefVals.erase(Name);
3012   }
3013 
3014   return BB;
3015 }
3016 
3017 //===----------------------------------------------------------------------===//
3018 // Constants.
3019 //===----------------------------------------------------------------------===//
3020 
3021 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3022 /// type implied.  For example, if we parse "4" we don't know what integer type
3023 /// it has.  The value will later be combined with its type and checked for
3024 /// sanity.  PFS is used to convert function-local operands of metadata (since
3025 /// metadata operands are not just parsed here but also converted to values).
3026 /// PFS can be null when we are not parsing metadata values inside a function.
3027 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
3028   ID.Loc = Lex.getLoc();
3029   switch (Lex.getKind()) {
3030   default: return TokError("expected value token");
3031   case lltok::GlobalID:  // @42
3032     ID.UIntVal = Lex.getUIntVal();
3033     ID.Kind = ValID::t_GlobalID;
3034     break;
3035   case lltok::GlobalVar:  // @foo
3036     ID.StrVal = Lex.getStrVal();
3037     ID.Kind = ValID::t_GlobalName;
3038     break;
3039   case lltok::LocalVarID:  // %42
3040     ID.UIntVal = Lex.getUIntVal();
3041     ID.Kind = ValID::t_LocalID;
3042     break;
3043   case lltok::LocalVar:  // %foo
3044     ID.StrVal = Lex.getStrVal();
3045     ID.Kind = ValID::t_LocalName;
3046     break;
3047   case lltok::APSInt:
3048     ID.APSIntVal = Lex.getAPSIntVal();
3049     ID.Kind = ValID::t_APSInt;
3050     break;
3051   case lltok::APFloat:
3052     ID.APFloatVal = Lex.getAPFloatVal();
3053     ID.Kind = ValID::t_APFloat;
3054     break;
3055   case lltok::kw_true:
3056     ID.ConstantVal = ConstantInt::getTrue(Context);
3057     ID.Kind = ValID::t_Constant;
3058     break;
3059   case lltok::kw_false:
3060     ID.ConstantVal = ConstantInt::getFalse(Context);
3061     ID.Kind = ValID::t_Constant;
3062     break;
3063   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3064   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3065   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3066   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3067 
3068   case lltok::lbrace: {
3069     // ValID ::= '{' ConstVector '}'
3070     Lex.Lex();
3071     SmallVector<Constant*, 16> Elts;
3072     if (ParseGlobalValueVector(Elts) ||
3073         ParseToken(lltok::rbrace, "expected end of struct constant"))
3074       return true;
3075 
3076     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3077     ID.UIntVal = Elts.size();
3078     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3079            Elts.size() * sizeof(Elts[0]));
3080     ID.Kind = ValID::t_ConstantStruct;
3081     return false;
3082   }
3083   case lltok::less: {
3084     // ValID ::= '<' ConstVector '>'         --> Vector.
3085     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3086     Lex.Lex();
3087     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3088 
3089     SmallVector<Constant*, 16> Elts;
3090     LocTy FirstEltLoc = Lex.getLoc();
3091     if (ParseGlobalValueVector(Elts) ||
3092         (isPackedStruct &&
3093          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3094         ParseToken(lltok::greater, "expected end of constant"))
3095       return true;
3096 
3097     if (isPackedStruct) {
3098       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3099       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3100              Elts.size() * sizeof(Elts[0]));
3101       ID.UIntVal = Elts.size();
3102       ID.Kind = ValID::t_PackedConstantStruct;
3103       return false;
3104     }
3105 
3106     if (Elts.empty())
3107       return Error(ID.Loc, "constant vector must not be empty");
3108 
3109     if (!Elts[0]->getType()->isIntegerTy() &&
3110         !Elts[0]->getType()->isFloatingPointTy() &&
3111         !Elts[0]->getType()->isPointerTy())
3112       return Error(FirstEltLoc,
3113             "vector elements must have integer, pointer or floating point type");
3114 
3115     // Verify that all the vector elements have the same type.
3116     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3117       if (Elts[i]->getType() != Elts[0]->getType())
3118         return Error(FirstEltLoc,
3119                      "vector element #" + Twine(i) +
3120                     " is not of type '" + getTypeString(Elts[0]->getType()));
3121 
3122     ID.ConstantVal = ConstantVector::get(Elts);
3123     ID.Kind = ValID::t_Constant;
3124     return false;
3125   }
3126   case lltok::lsquare: {   // Array Constant
3127     Lex.Lex();
3128     SmallVector<Constant*, 16> Elts;
3129     LocTy FirstEltLoc = Lex.getLoc();
3130     if (ParseGlobalValueVector(Elts) ||
3131         ParseToken(lltok::rsquare, "expected end of array constant"))
3132       return true;
3133 
3134     // Handle empty element.
3135     if (Elts.empty()) {
3136       // Use undef instead of an array because it's inconvenient to determine
3137       // the element type at this point, there being no elements to examine.
3138       ID.Kind = ValID::t_EmptyArray;
3139       return false;
3140     }
3141 
3142     if (!Elts[0]->getType()->isFirstClassType())
3143       return Error(FirstEltLoc, "invalid array element type: " +
3144                    getTypeString(Elts[0]->getType()));
3145 
3146     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3147 
3148     // Verify all elements are correct type!
3149     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3150       if (Elts[i]->getType() != Elts[0]->getType())
3151         return Error(FirstEltLoc,
3152                      "array element #" + Twine(i) +
3153                      " is not of type '" + getTypeString(Elts[0]->getType()));
3154     }
3155 
3156     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3157     ID.Kind = ValID::t_Constant;
3158     return false;
3159   }
3160   case lltok::kw_c:  // c "foo"
3161     Lex.Lex();
3162     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3163                                                   false);
3164     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3165     ID.Kind = ValID::t_Constant;
3166     return false;
3167 
3168   case lltok::kw_asm: {
3169     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3170     //             STRINGCONSTANT
3171     bool HasSideEffect, AlignStack, AsmDialect;
3172     Lex.Lex();
3173     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3174         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3175         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3176         ParseStringConstant(ID.StrVal) ||
3177         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3178         ParseToken(lltok::StringConstant, "expected constraint string"))
3179       return true;
3180     ID.StrVal2 = Lex.getStrVal();
3181     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3182       (unsigned(AsmDialect)<<2);
3183     ID.Kind = ValID::t_InlineAsm;
3184     return false;
3185   }
3186 
3187   case lltok::kw_blockaddress: {
3188     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3189     Lex.Lex();
3190 
3191     ValID Fn, Label;
3192 
3193     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3194         ParseValID(Fn) ||
3195         ParseToken(lltok::comma, "expected comma in block address expression")||
3196         ParseValID(Label) ||
3197         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3198       return true;
3199 
3200     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3201       return Error(Fn.Loc, "expected function name in blockaddress");
3202     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3203       return Error(Label.Loc, "expected basic block name in blockaddress");
3204 
3205     // Try to find the function (but skip it if it's forward-referenced).
3206     GlobalValue *GV = nullptr;
3207     if (Fn.Kind == ValID::t_GlobalID) {
3208       if (Fn.UIntVal < NumberedVals.size())
3209         GV = NumberedVals[Fn.UIntVal];
3210     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3211       GV = M->getNamedValue(Fn.StrVal);
3212     }
3213     Function *F = nullptr;
3214     if (GV) {
3215       // Confirm that it's actually a function with a definition.
3216       if (!isa<Function>(GV))
3217         return Error(Fn.Loc, "expected function name in blockaddress");
3218       F = cast<Function>(GV);
3219       if (F->isDeclaration())
3220         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3221     }
3222 
3223     if (!F) {
3224       // Make a global variable as a placeholder for this reference.
3225       GlobalValue *&FwdRef =
3226           ForwardRefBlockAddresses.insert(std::make_pair(
3227                                               std::move(Fn),
3228                                               std::map<ValID, GlobalValue *>()))
3229               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3230               .first->second;
3231       if (!FwdRef)
3232         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3233                                     GlobalValue::InternalLinkage, nullptr, "");
3234       ID.ConstantVal = FwdRef;
3235       ID.Kind = ValID::t_Constant;
3236       return false;
3237     }
3238 
3239     // We found the function; now find the basic block.  Don't use PFS, since we
3240     // might be inside a constant expression.
3241     BasicBlock *BB;
3242     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3243       if (Label.Kind == ValID::t_LocalID)
3244         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3245       else
3246         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3247       if (!BB)
3248         return Error(Label.Loc, "referenced value is not a basic block");
3249     } else {
3250       if (Label.Kind == ValID::t_LocalID)
3251         return Error(Label.Loc, "cannot take address of numeric label after "
3252                                 "the function is defined");
3253       BB = dyn_cast_or_null<BasicBlock>(
3254           F->getValueSymbolTable()->lookup(Label.StrVal));
3255       if (!BB)
3256         return Error(Label.Loc, "referenced value is not a basic block");
3257     }
3258 
3259     ID.ConstantVal = BlockAddress::get(F, BB);
3260     ID.Kind = ValID::t_Constant;
3261     return false;
3262   }
3263 
3264   case lltok::kw_trunc:
3265   case lltok::kw_zext:
3266   case lltok::kw_sext:
3267   case lltok::kw_fptrunc:
3268   case lltok::kw_fpext:
3269   case lltok::kw_bitcast:
3270   case lltok::kw_addrspacecast:
3271   case lltok::kw_uitofp:
3272   case lltok::kw_sitofp:
3273   case lltok::kw_fptoui:
3274   case lltok::kw_fptosi:
3275   case lltok::kw_inttoptr:
3276   case lltok::kw_ptrtoint: {
3277     unsigned Opc = Lex.getUIntVal();
3278     Type *DestTy = nullptr;
3279     Constant *SrcVal;
3280     Lex.Lex();
3281     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3282         ParseGlobalTypeAndValue(SrcVal) ||
3283         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3284         ParseType(DestTy) ||
3285         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3286       return true;
3287     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3288       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3289                    getTypeString(SrcVal->getType()) + "' to '" +
3290                    getTypeString(DestTy) + "'");
3291     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3292                                                  SrcVal, DestTy);
3293     ID.Kind = ValID::t_Constant;
3294     return false;
3295   }
3296   case lltok::kw_extractvalue: {
3297     Lex.Lex();
3298     Constant *Val;
3299     SmallVector<unsigned, 4> Indices;
3300     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3301         ParseGlobalTypeAndValue(Val) ||
3302         ParseIndexList(Indices) ||
3303         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3304       return true;
3305 
3306     if (!Val->getType()->isAggregateType())
3307       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3308     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3309       return Error(ID.Loc, "invalid indices for extractvalue");
3310     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3311     ID.Kind = ValID::t_Constant;
3312     return false;
3313   }
3314   case lltok::kw_insertvalue: {
3315     Lex.Lex();
3316     Constant *Val0, *Val1;
3317     SmallVector<unsigned, 4> Indices;
3318     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3319         ParseGlobalTypeAndValue(Val0) ||
3320         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3321         ParseGlobalTypeAndValue(Val1) ||
3322         ParseIndexList(Indices) ||
3323         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3324       return true;
3325     if (!Val0->getType()->isAggregateType())
3326       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3327     Type *IndexedType =
3328         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3329     if (!IndexedType)
3330       return Error(ID.Loc, "invalid indices for insertvalue");
3331     if (IndexedType != Val1->getType())
3332       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3333                                getTypeString(Val1->getType()) +
3334                                "' instead of '" + getTypeString(IndexedType) +
3335                                "'");
3336     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3337     ID.Kind = ValID::t_Constant;
3338     return false;
3339   }
3340   case lltok::kw_icmp:
3341   case lltok::kw_fcmp: {
3342     unsigned PredVal, Opc = Lex.getUIntVal();
3343     Constant *Val0, *Val1;
3344     Lex.Lex();
3345     if (ParseCmpPredicate(PredVal, Opc) ||
3346         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3347         ParseGlobalTypeAndValue(Val0) ||
3348         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3349         ParseGlobalTypeAndValue(Val1) ||
3350         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3351       return true;
3352 
3353     if (Val0->getType() != Val1->getType())
3354       return Error(ID.Loc, "compare operands must have the same type");
3355 
3356     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3357 
3358     if (Opc == Instruction::FCmp) {
3359       if (!Val0->getType()->isFPOrFPVectorTy())
3360         return Error(ID.Loc, "fcmp requires floating point operands");
3361       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3362     } else {
3363       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3364       if (!Val0->getType()->isIntOrIntVectorTy() &&
3365           !Val0->getType()->isPtrOrPtrVectorTy())
3366         return Error(ID.Loc, "icmp requires pointer or integer operands");
3367       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3368     }
3369     ID.Kind = ValID::t_Constant;
3370     return false;
3371   }
3372 
3373   // Unary Operators.
3374   case lltok::kw_fneg: {
3375     unsigned Opc = Lex.getUIntVal();
3376     Constant *Val;
3377     Lex.Lex();
3378     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3379         ParseGlobalTypeAndValue(Val) ||
3380         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3381       return true;
3382 
3383     // Check that the type is valid for the operator.
3384     switch (Opc) {
3385     case Instruction::FNeg:
3386       if (!Val->getType()->isFPOrFPVectorTy())
3387         return Error(ID.Loc, "constexpr requires fp operands");
3388       break;
3389     default: llvm_unreachable("Unknown unary operator!");
3390     }
3391     unsigned Flags = 0;
3392     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3393     ID.ConstantVal = C;
3394     ID.Kind = ValID::t_Constant;
3395     return false;
3396   }
3397   // Binary Operators.
3398   case lltok::kw_add:
3399   case lltok::kw_fadd:
3400   case lltok::kw_sub:
3401   case lltok::kw_fsub:
3402   case lltok::kw_mul:
3403   case lltok::kw_fmul:
3404   case lltok::kw_udiv:
3405   case lltok::kw_sdiv:
3406   case lltok::kw_fdiv:
3407   case lltok::kw_urem:
3408   case lltok::kw_srem:
3409   case lltok::kw_frem:
3410   case lltok::kw_shl:
3411   case lltok::kw_lshr:
3412   case lltok::kw_ashr: {
3413     bool NUW = false;
3414     bool NSW = false;
3415     bool Exact = false;
3416     unsigned Opc = Lex.getUIntVal();
3417     Constant *Val0, *Val1;
3418     Lex.Lex();
3419     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3420         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3421       if (EatIfPresent(lltok::kw_nuw))
3422         NUW = true;
3423       if (EatIfPresent(lltok::kw_nsw)) {
3424         NSW = true;
3425         if (EatIfPresent(lltok::kw_nuw))
3426           NUW = true;
3427       }
3428     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3429                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3430       if (EatIfPresent(lltok::kw_exact))
3431         Exact = true;
3432     }
3433     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3434         ParseGlobalTypeAndValue(Val0) ||
3435         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3436         ParseGlobalTypeAndValue(Val1) ||
3437         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3438       return true;
3439     if (Val0->getType() != Val1->getType())
3440       return Error(ID.Loc, "operands of constexpr must have same type");
3441     // Check that the type is valid for the operator.
3442     switch (Opc) {
3443     case Instruction::Add:
3444     case Instruction::Sub:
3445     case Instruction::Mul:
3446     case Instruction::UDiv:
3447     case Instruction::SDiv:
3448     case Instruction::URem:
3449     case Instruction::SRem:
3450     case Instruction::Shl:
3451     case Instruction::AShr:
3452     case Instruction::LShr:
3453       if (!Val0->getType()->isIntOrIntVectorTy())
3454         return Error(ID.Loc, "constexpr requires integer operands");
3455       break;
3456     case Instruction::FAdd:
3457     case Instruction::FSub:
3458     case Instruction::FMul:
3459     case Instruction::FDiv:
3460     case Instruction::FRem:
3461       if (!Val0->getType()->isFPOrFPVectorTy())
3462         return Error(ID.Loc, "constexpr requires fp operands");
3463       break;
3464     default: llvm_unreachable("Unknown binary operator!");
3465     }
3466     unsigned Flags = 0;
3467     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3468     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3469     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3470     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3471     ID.ConstantVal = C;
3472     ID.Kind = ValID::t_Constant;
3473     return false;
3474   }
3475 
3476   // Logical Operations
3477   case lltok::kw_and:
3478   case lltok::kw_or:
3479   case lltok::kw_xor: {
3480     unsigned Opc = Lex.getUIntVal();
3481     Constant *Val0, *Val1;
3482     Lex.Lex();
3483     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3484         ParseGlobalTypeAndValue(Val0) ||
3485         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3486         ParseGlobalTypeAndValue(Val1) ||
3487         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3488       return true;
3489     if (Val0->getType() != Val1->getType())
3490       return Error(ID.Loc, "operands of constexpr must have same type");
3491     if (!Val0->getType()->isIntOrIntVectorTy())
3492       return Error(ID.Loc,
3493                    "constexpr requires integer or integer vector operands");
3494     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3495     ID.Kind = ValID::t_Constant;
3496     return false;
3497   }
3498 
3499   case lltok::kw_getelementptr:
3500   case lltok::kw_shufflevector:
3501   case lltok::kw_insertelement:
3502   case lltok::kw_extractelement:
3503   case lltok::kw_select: {
3504     unsigned Opc = Lex.getUIntVal();
3505     SmallVector<Constant*, 16> Elts;
3506     bool InBounds = false;
3507     Type *Ty;
3508     Lex.Lex();
3509 
3510     if (Opc == Instruction::GetElementPtr)
3511       InBounds = EatIfPresent(lltok::kw_inbounds);
3512 
3513     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3514       return true;
3515 
3516     LocTy ExplicitTypeLoc = Lex.getLoc();
3517     if (Opc == Instruction::GetElementPtr) {
3518       if (ParseType(Ty) ||
3519           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3520         return true;
3521     }
3522 
3523     Optional<unsigned> InRangeOp;
3524     if (ParseGlobalValueVector(
3525             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3526         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3527       return true;
3528 
3529     if (Opc == Instruction::GetElementPtr) {
3530       if (Elts.size() == 0 ||
3531           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3532         return Error(ID.Loc, "base of getelementptr must be a pointer");
3533 
3534       Type *BaseType = Elts[0]->getType();
3535       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3536       if (Ty != BasePointerType->getElementType())
3537         return Error(
3538             ExplicitTypeLoc,
3539             "explicit pointee type doesn't match operand's pointee type");
3540 
3541       unsigned GEPWidth =
3542           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3543 
3544       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3545       for (Constant *Val : Indices) {
3546         Type *ValTy = Val->getType();
3547         if (!ValTy->isIntOrIntVectorTy())
3548           return Error(ID.Loc, "getelementptr index must be an integer");
3549         if (ValTy->isVectorTy()) {
3550           unsigned ValNumEl = ValTy->getVectorNumElements();
3551           if (GEPWidth && (ValNumEl != GEPWidth))
3552             return Error(
3553                 ID.Loc,
3554                 "getelementptr vector index has a wrong number of elements");
3555           // GEPWidth may have been unknown because the base is a scalar,
3556           // but it is known now.
3557           GEPWidth = ValNumEl;
3558         }
3559       }
3560 
3561       SmallPtrSet<Type*, 4> Visited;
3562       if (!Indices.empty() && !Ty->isSized(&Visited))
3563         return Error(ID.Loc, "base element of getelementptr must be sized");
3564 
3565       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3566         return Error(ID.Loc, "invalid getelementptr indices");
3567 
3568       if (InRangeOp) {
3569         if (*InRangeOp == 0)
3570           return Error(ID.Loc,
3571                        "inrange keyword may not appear on pointer operand");
3572         --*InRangeOp;
3573       }
3574 
3575       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3576                                                       InBounds, InRangeOp);
3577     } else if (Opc == Instruction::Select) {
3578       if (Elts.size() != 3)
3579         return Error(ID.Loc, "expected three operands to select");
3580       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3581                                                               Elts[2]))
3582         return Error(ID.Loc, Reason);
3583       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3584     } else if (Opc == Instruction::ShuffleVector) {
3585       if (Elts.size() != 3)
3586         return Error(ID.Loc, "expected three operands to shufflevector");
3587       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3588         return Error(ID.Loc, "invalid operands to shufflevector");
3589       ID.ConstantVal =
3590                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3591     } else if (Opc == Instruction::ExtractElement) {
3592       if (Elts.size() != 2)
3593         return Error(ID.Loc, "expected two operands to extractelement");
3594       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3595         return Error(ID.Loc, "invalid extractelement operands");
3596       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3597     } else {
3598       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3599       if (Elts.size() != 3)
3600       return Error(ID.Loc, "expected three operands to insertelement");
3601       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3602         return Error(ID.Loc, "invalid insertelement operands");
3603       ID.ConstantVal =
3604                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3605     }
3606 
3607     ID.Kind = ValID::t_Constant;
3608     return false;
3609   }
3610   }
3611 
3612   Lex.Lex();
3613   return false;
3614 }
3615 
3616 /// ParseGlobalValue - Parse a global value with the specified type.
3617 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3618   C = nullptr;
3619   ValID ID;
3620   Value *V = nullptr;
3621   bool Parsed = ParseValID(ID) ||
3622                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3623   if (V && !(C = dyn_cast<Constant>(V)))
3624     return Error(ID.Loc, "global values must be constants");
3625   return Parsed;
3626 }
3627 
3628 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3629   Type *Ty = nullptr;
3630   return ParseType(Ty) ||
3631          ParseGlobalValue(Ty, V);
3632 }
3633 
3634 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3635   C = nullptr;
3636 
3637   LocTy KwLoc = Lex.getLoc();
3638   if (!EatIfPresent(lltok::kw_comdat))
3639     return false;
3640 
3641   if (EatIfPresent(lltok::lparen)) {
3642     if (Lex.getKind() != lltok::ComdatVar)
3643       return TokError("expected comdat variable");
3644     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3645     Lex.Lex();
3646     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3647       return true;
3648   } else {
3649     if (GlobalName.empty())
3650       return TokError("comdat cannot be unnamed");
3651     C = getComdat(GlobalName, KwLoc);
3652   }
3653 
3654   return false;
3655 }
3656 
3657 /// ParseGlobalValueVector
3658 ///   ::= /*empty*/
3659 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3660 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3661                                       Optional<unsigned> *InRangeOp) {
3662   // Empty list.
3663   if (Lex.getKind() == lltok::rbrace ||
3664       Lex.getKind() == lltok::rsquare ||
3665       Lex.getKind() == lltok::greater ||
3666       Lex.getKind() == lltok::rparen)
3667     return false;
3668 
3669   do {
3670     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3671       *InRangeOp = Elts.size();
3672 
3673     Constant *C;
3674     if (ParseGlobalTypeAndValue(C)) return true;
3675     Elts.push_back(C);
3676   } while (EatIfPresent(lltok::comma));
3677 
3678   return false;
3679 }
3680 
3681 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3682   SmallVector<Metadata *, 16> Elts;
3683   if (ParseMDNodeVector(Elts))
3684     return true;
3685 
3686   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3687   return false;
3688 }
3689 
3690 /// MDNode:
3691 ///  ::= !{ ... }
3692 ///  ::= !7
3693 ///  ::= !DILocation(...)
3694 bool LLParser::ParseMDNode(MDNode *&N) {
3695   if (Lex.getKind() == lltok::MetadataVar)
3696     return ParseSpecializedMDNode(N);
3697 
3698   return ParseToken(lltok::exclaim, "expected '!' here") ||
3699          ParseMDNodeTail(N);
3700 }
3701 
3702 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3703   // !{ ... }
3704   if (Lex.getKind() == lltok::lbrace)
3705     return ParseMDTuple(N);
3706 
3707   // !42
3708   return ParseMDNodeID(N);
3709 }
3710 
3711 namespace {
3712 
3713 /// Structure to represent an optional metadata field.
3714 template <class FieldTy> struct MDFieldImpl {
3715   typedef MDFieldImpl ImplTy;
3716   FieldTy Val;
3717   bool Seen;
3718 
3719   void assign(FieldTy Val) {
3720     Seen = true;
3721     this->Val = std::move(Val);
3722   }
3723 
3724   explicit MDFieldImpl(FieldTy Default)
3725       : Val(std::move(Default)), Seen(false) {}
3726 };
3727 
3728 /// Structure to represent an optional metadata field that
3729 /// can be of either type (A or B) and encapsulates the
3730 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3731 /// to reimplement the specifics for representing each Field.
3732 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3733   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3734   FieldTypeA A;
3735   FieldTypeB B;
3736   bool Seen;
3737 
3738   enum {
3739     IsInvalid = 0,
3740     IsTypeA = 1,
3741     IsTypeB = 2
3742   } WhatIs;
3743 
3744   void assign(FieldTypeA A) {
3745     Seen = true;
3746     this->A = std::move(A);
3747     WhatIs = IsTypeA;
3748   }
3749 
3750   void assign(FieldTypeB B) {
3751     Seen = true;
3752     this->B = std::move(B);
3753     WhatIs = IsTypeB;
3754   }
3755 
3756   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3757       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3758         WhatIs(IsInvalid) {}
3759 };
3760 
3761 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3762   uint64_t Max;
3763 
3764   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3765       : ImplTy(Default), Max(Max) {}
3766 };
3767 
3768 struct LineField : public MDUnsignedField {
3769   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3770 };
3771 
3772 struct ColumnField : public MDUnsignedField {
3773   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3774 };
3775 
3776 struct DwarfTagField : public MDUnsignedField {
3777   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3778   DwarfTagField(dwarf::Tag DefaultTag)
3779       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3780 };
3781 
3782 struct DwarfMacinfoTypeField : public MDUnsignedField {
3783   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3784   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3785     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3786 };
3787 
3788 struct DwarfAttEncodingField : public MDUnsignedField {
3789   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3790 };
3791 
3792 struct DwarfVirtualityField : public MDUnsignedField {
3793   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3794 };
3795 
3796 struct DwarfLangField : public MDUnsignedField {
3797   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3798 };
3799 
3800 struct DwarfCCField : public MDUnsignedField {
3801   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3802 };
3803 
3804 struct EmissionKindField : public MDUnsignedField {
3805   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3806 };
3807 
3808 struct NameTableKindField : public MDUnsignedField {
3809   NameTableKindField()
3810       : MDUnsignedField(
3811             0, (unsigned)
3812                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3813 };
3814 
3815 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3816   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3817 };
3818 
3819 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3820   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3821 };
3822 
3823 struct MDSignedField : public MDFieldImpl<int64_t> {
3824   int64_t Min;
3825   int64_t Max;
3826 
3827   MDSignedField(int64_t Default = 0)
3828       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3829   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3830       : ImplTy(Default), Min(Min), Max(Max) {}
3831 };
3832 
3833 struct MDBoolField : public MDFieldImpl<bool> {
3834   MDBoolField(bool Default = false) : ImplTy(Default) {}
3835 };
3836 
3837 struct MDField : public MDFieldImpl<Metadata *> {
3838   bool AllowNull;
3839 
3840   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3841 };
3842 
3843 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3844   MDConstant() : ImplTy(nullptr) {}
3845 };
3846 
3847 struct MDStringField : public MDFieldImpl<MDString *> {
3848   bool AllowEmpty;
3849   MDStringField(bool AllowEmpty = true)
3850       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3851 };
3852 
3853 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3854   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3855 };
3856 
3857 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3858   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3859 };
3860 
3861 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3862   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3863       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3864 
3865   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3866                     bool AllowNull = true)
3867       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3868 
3869   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3870   bool isMDField() const { return WhatIs == IsTypeB; }
3871   int64_t getMDSignedValue() const {
3872     assert(isMDSignedField() && "Wrong field type");
3873     return A.Val;
3874   }
3875   Metadata *getMDFieldValue() const {
3876     assert(isMDField() && "Wrong field type");
3877     return B.Val;
3878   }
3879 };
3880 
3881 struct MDSignedOrUnsignedField
3882     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3883   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3884 
3885   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3886   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3887   int64_t getMDSignedValue() const {
3888     assert(isMDSignedField() && "Wrong field type");
3889     return A.Val;
3890   }
3891   uint64_t getMDUnsignedValue() const {
3892     assert(isMDUnsignedField() && "Wrong field type");
3893     return B.Val;
3894   }
3895 };
3896 
3897 } // end anonymous namespace
3898 
3899 namespace llvm {
3900 
3901 template <>
3902 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3903                             MDUnsignedField &Result) {
3904   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3905     return TokError("expected unsigned integer");
3906 
3907   auto &U = Lex.getAPSIntVal();
3908   if (U.ugt(Result.Max))
3909     return TokError("value for '" + Name + "' too large, limit is " +
3910                     Twine(Result.Max));
3911   Result.assign(U.getZExtValue());
3912   assert(Result.Val <= Result.Max && "Expected value in range");
3913   Lex.Lex();
3914   return false;
3915 }
3916 
3917 template <>
3918 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3919   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3920 }
3921 template <>
3922 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3923   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3924 }
3925 
3926 template <>
3927 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3928   if (Lex.getKind() == lltok::APSInt)
3929     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3930 
3931   if (Lex.getKind() != lltok::DwarfTag)
3932     return TokError("expected DWARF tag");
3933 
3934   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3935   if (Tag == dwarf::DW_TAG_invalid)
3936     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3937   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3938 
3939   Result.assign(Tag);
3940   Lex.Lex();
3941   return false;
3942 }
3943 
3944 template <>
3945 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3946                             DwarfMacinfoTypeField &Result) {
3947   if (Lex.getKind() == lltok::APSInt)
3948     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3949 
3950   if (Lex.getKind() != lltok::DwarfMacinfo)
3951     return TokError("expected DWARF macinfo type");
3952 
3953   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3954   if (Macinfo == dwarf::DW_MACINFO_invalid)
3955     return TokError(
3956         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3957   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3958 
3959   Result.assign(Macinfo);
3960   Lex.Lex();
3961   return false;
3962 }
3963 
3964 template <>
3965 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3966                             DwarfVirtualityField &Result) {
3967   if (Lex.getKind() == lltok::APSInt)
3968     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3969 
3970   if (Lex.getKind() != lltok::DwarfVirtuality)
3971     return TokError("expected DWARF virtuality code");
3972 
3973   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3974   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3975     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3976                     Lex.getStrVal() + "'");
3977   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3978   Result.assign(Virtuality);
3979   Lex.Lex();
3980   return false;
3981 }
3982 
3983 template <>
3984 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3985   if (Lex.getKind() == lltok::APSInt)
3986     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3987 
3988   if (Lex.getKind() != lltok::DwarfLang)
3989     return TokError("expected DWARF language");
3990 
3991   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3992   if (!Lang)
3993     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3994                     "'");
3995   assert(Lang <= Result.Max && "Expected valid DWARF language");
3996   Result.assign(Lang);
3997   Lex.Lex();
3998   return false;
3999 }
4000 
4001 template <>
4002 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4003   if (Lex.getKind() == lltok::APSInt)
4004     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4005 
4006   if (Lex.getKind() != lltok::DwarfCC)
4007     return TokError("expected DWARF calling convention");
4008 
4009   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4010   if (!CC)
4011     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
4012                     "'");
4013   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4014   Result.assign(CC);
4015   Lex.Lex();
4016   return false;
4017 }
4018 
4019 template <>
4020 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
4021   if (Lex.getKind() == lltok::APSInt)
4022     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4023 
4024   if (Lex.getKind() != lltok::EmissionKind)
4025     return TokError("expected emission kind");
4026 
4027   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4028   if (!Kind)
4029     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4030                     "'");
4031   assert(*Kind <= Result.Max && "Expected valid emission kind");
4032   Result.assign(*Kind);
4033   Lex.Lex();
4034   return false;
4035 }
4036 
4037 template <>
4038 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4039                             NameTableKindField &Result) {
4040   if (Lex.getKind() == lltok::APSInt)
4041     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4042 
4043   if (Lex.getKind() != lltok::NameTableKind)
4044     return TokError("expected nameTable kind");
4045 
4046   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4047   if (!Kind)
4048     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4049                     "'");
4050   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4051   Result.assign((unsigned)*Kind);
4052   Lex.Lex();
4053   return false;
4054 }
4055 
4056 template <>
4057 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4058                             DwarfAttEncodingField &Result) {
4059   if (Lex.getKind() == lltok::APSInt)
4060     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4061 
4062   if (Lex.getKind() != lltok::DwarfAttEncoding)
4063     return TokError("expected DWARF type attribute encoding");
4064 
4065   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4066   if (!Encoding)
4067     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4068                     Lex.getStrVal() + "'");
4069   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4070   Result.assign(Encoding);
4071   Lex.Lex();
4072   return false;
4073 }
4074 
4075 /// DIFlagField
4076 ///  ::= uint32
4077 ///  ::= DIFlagVector
4078 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4079 template <>
4080 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4081 
4082   // Parser for a single flag.
4083   auto parseFlag = [&](DINode::DIFlags &Val) {
4084     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4085       uint32_t TempVal = static_cast<uint32_t>(Val);
4086       bool Res = ParseUInt32(TempVal);
4087       Val = static_cast<DINode::DIFlags>(TempVal);
4088       return Res;
4089     }
4090 
4091     if (Lex.getKind() != lltok::DIFlag)
4092       return TokError("expected debug info flag");
4093 
4094     Val = DINode::getFlag(Lex.getStrVal());
4095     if (!Val)
4096       return TokError(Twine("invalid debug info flag flag '") +
4097                       Lex.getStrVal() + "'");
4098     Lex.Lex();
4099     return false;
4100   };
4101 
4102   // Parse the flags and combine them together.
4103   DINode::DIFlags Combined = DINode::FlagZero;
4104   do {
4105     DINode::DIFlags Val;
4106     if (parseFlag(Val))
4107       return true;
4108     Combined |= Val;
4109   } while (EatIfPresent(lltok::bar));
4110 
4111   Result.assign(Combined);
4112   return false;
4113 }
4114 
4115 /// DISPFlagField
4116 ///  ::= uint32
4117 ///  ::= DISPFlagVector
4118 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4119 template <>
4120 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4121 
4122   // Parser for a single flag.
4123   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4124     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4125       uint32_t TempVal = static_cast<uint32_t>(Val);
4126       bool Res = ParseUInt32(TempVal);
4127       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4128       return Res;
4129     }
4130 
4131     if (Lex.getKind() != lltok::DISPFlag)
4132       return TokError("expected debug info flag");
4133 
4134     Val = DISubprogram::getFlag(Lex.getStrVal());
4135     if (!Val)
4136       return TokError(Twine("invalid subprogram debug info flag '") +
4137                       Lex.getStrVal() + "'");
4138     Lex.Lex();
4139     return false;
4140   };
4141 
4142   // Parse the flags and combine them together.
4143   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4144   do {
4145     DISubprogram::DISPFlags Val;
4146     if (parseFlag(Val))
4147       return true;
4148     Combined |= Val;
4149   } while (EatIfPresent(lltok::bar));
4150 
4151   Result.assign(Combined);
4152   return false;
4153 }
4154 
4155 template <>
4156 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4157                             MDSignedField &Result) {
4158   if (Lex.getKind() != lltok::APSInt)
4159     return TokError("expected signed integer");
4160 
4161   auto &S = Lex.getAPSIntVal();
4162   if (S < Result.Min)
4163     return TokError("value for '" + Name + "' too small, limit is " +
4164                     Twine(Result.Min));
4165   if (S > Result.Max)
4166     return TokError("value for '" + Name + "' too large, limit is " +
4167                     Twine(Result.Max));
4168   Result.assign(S.getExtValue());
4169   assert(Result.Val >= Result.Min && "Expected value in range");
4170   assert(Result.Val <= Result.Max && "Expected value in range");
4171   Lex.Lex();
4172   return false;
4173 }
4174 
4175 template <>
4176 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4177   switch (Lex.getKind()) {
4178   default:
4179     return TokError("expected 'true' or 'false'");
4180   case lltok::kw_true:
4181     Result.assign(true);
4182     break;
4183   case lltok::kw_false:
4184     Result.assign(false);
4185     break;
4186   }
4187   Lex.Lex();
4188   return false;
4189 }
4190 
4191 template <>
4192 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4193   if (Lex.getKind() == lltok::kw_null) {
4194     if (!Result.AllowNull)
4195       return TokError("'" + Name + "' cannot be null");
4196     Lex.Lex();
4197     Result.assign(nullptr);
4198     return false;
4199   }
4200 
4201   Metadata *MD;
4202   if (ParseMetadata(MD, nullptr))
4203     return true;
4204 
4205   Result.assign(MD);
4206   return false;
4207 }
4208 
4209 template <>
4210 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4211                             MDSignedOrMDField &Result) {
4212   // Try to parse a signed int.
4213   if (Lex.getKind() == lltok::APSInt) {
4214     MDSignedField Res = Result.A;
4215     if (!ParseMDField(Loc, Name, Res)) {
4216       Result.assign(Res);
4217       return false;
4218     }
4219     return true;
4220   }
4221 
4222   // Otherwise, try to parse as an MDField.
4223   MDField Res = Result.B;
4224   if (!ParseMDField(Loc, Name, Res)) {
4225     Result.assign(Res);
4226     return false;
4227   }
4228 
4229   return true;
4230 }
4231 
4232 template <>
4233 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4234                             MDSignedOrUnsignedField &Result) {
4235   if (Lex.getKind() != lltok::APSInt)
4236     return false;
4237 
4238   if (Lex.getAPSIntVal().isSigned()) {
4239     MDSignedField Res = Result.A;
4240     if (ParseMDField(Loc, Name, Res))
4241       return true;
4242     Result.assign(Res);
4243     return false;
4244   }
4245 
4246   MDUnsignedField Res = Result.B;
4247   if (ParseMDField(Loc, Name, Res))
4248     return true;
4249   Result.assign(Res);
4250   return false;
4251 }
4252 
4253 template <>
4254 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4255   LocTy ValueLoc = Lex.getLoc();
4256   std::string S;
4257   if (ParseStringConstant(S))
4258     return true;
4259 
4260   if (!Result.AllowEmpty && S.empty())
4261     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4262 
4263   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4264   return false;
4265 }
4266 
4267 template <>
4268 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4269   SmallVector<Metadata *, 4> MDs;
4270   if (ParseMDNodeVector(MDs))
4271     return true;
4272 
4273   Result.assign(std::move(MDs));
4274   return false;
4275 }
4276 
4277 template <>
4278 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4279                             ChecksumKindField &Result) {
4280   Optional<DIFile::ChecksumKind> CSKind =
4281       DIFile::getChecksumKind(Lex.getStrVal());
4282 
4283   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4284     return TokError(
4285         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4286 
4287   Result.assign(*CSKind);
4288   Lex.Lex();
4289   return false;
4290 }
4291 
4292 } // end namespace llvm
4293 
4294 template <class ParserTy>
4295 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4296   do {
4297     if (Lex.getKind() != lltok::LabelStr)
4298       return TokError("expected field label here");
4299 
4300     if (parseField())
4301       return true;
4302   } while (EatIfPresent(lltok::comma));
4303 
4304   return false;
4305 }
4306 
4307 template <class ParserTy>
4308 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4309   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4310   Lex.Lex();
4311 
4312   if (ParseToken(lltok::lparen, "expected '(' here"))
4313     return true;
4314   if (Lex.getKind() != lltok::rparen)
4315     if (ParseMDFieldsImplBody(parseField))
4316       return true;
4317 
4318   ClosingLoc = Lex.getLoc();
4319   return ParseToken(lltok::rparen, "expected ')' here");
4320 }
4321 
4322 template <class FieldTy>
4323 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4324   if (Result.Seen)
4325     return TokError("field '" + Name + "' cannot be specified more than once");
4326 
4327   LocTy Loc = Lex.getLoc();
4328   Lex.Lex();
4329   return ParseMDField(Loc, Name, Result);
4330 }
4331 
4332 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4333   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4334 
4335 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4336   if (Lex.getStrVal() == #CLASS)                                               \
4337     return Parse##CLASS(N, IsDistinct);
4338 #include "llvm/IR/Metadata.def"
4339 
4340   return TokError("expected metadata type");
4341 }
4342 
4343 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4344 #define NOP_FIELD(NAME, TYPE, INIT)
4345 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4346   if (!NAME.Seen)                                                              \
4347     return Error(ClosingLoc, "missing required field '" #NAME "'");
4348 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4349   if (Lex.getStrVal() == #NAME)                                                \
4350     return ParseMDField(#NAME, NAME);
4351 #define PARSE_MD_FIELDS()                                                      \
4352   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4353   do {                                                                         \
4354     LocTy ClosingLoc;                                                          \
4355     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4356       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4357       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4358     }, ClosingLoc))                                                            \
4359       return true;                                                             \
4360     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4361   } while (false)
4362 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4363   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4364 
4365 /// ParseDILocationFields:
4366 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4367 ///   isImplicitCode: true)
4368 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4369 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4370   OPTIONAL(line, LineField, );                                                 \
4371   OPTIONAL(column, ColumnField, );                                             \
4372   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4373   OPTIONAL(inlinedAt, MDField, );                                              \
4374   OPTIONAL(isImplicitCode, MDBoolField, (false));
4375   PARSE_MD_FIELDS();
4376 #undef VISIT_MD_FIELDS
4377 
4378   Result =
4379       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4380                                    inlinedAt.Val, isImplicitCode.Val));
4381   return false;
4382 }
4383 
4384 /// ParseGenericDINode:
4385 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4386 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4387 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4388   REQUIRED(tag, DwarfTagField, );                                              \
4389   OPTIONAL(header, MDStringField, );                                           \
4390   OPTIONAL(operands, MDFieldList, );
4391   PARSE_MD_FIELDS();
4392 #undef VISIT_MD_FIELDS
4393 
4394   Result = GET_OR_DISTINCT(GenericDINode,
4395                            (Context, tag.Val, header.Val, operands.Val));
4396   return false;
4397 }
4398 
4399 /// ParseDISubrange:
4400 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4401 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4402 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4403 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4404   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4405   OPTIONAL(lowerBound, MDSignedField, );
4406   PARSE_MD_FIELDS();
4407 #undef VISIT_MD_FIELDS
4408 
4409   if (count.isMDSignedField())
4410     Result = GET_OR_DISTINCT(
4411         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4412   else if (count.isMDField())
4413     Result = GET_OR_DISTINCT(
4414         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4415   else
4416     return true;
4417 
4418   return false;
4419 }
4420 
4421 /// ParseDIEnumerator:
4422 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4423 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4424 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4425   REQUIRED(name, MDStringField, );                                             \
4426   REQUIRED(value, MDSignedOrUnsignedField, );                                  \
4427   OPTIONAL(isUnsigned, MDBoolField, (false));
4428   PARSE_MD_FIELDS();
4429 #undef VISIT_MD_FIELDS
4430 
4431   if (isUnsigned.Val && value.isMDSignedField())
4432     return TokError("unsigned enumerator with negative value");
4433 
4434   int64_t Value = value.isMDSignedField()
4435                       ? value.getMDSignedValue()
4436                       : static_cast<int64_t>(value.getMDUnsignedValue());
4437   Result =
4438       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4439 
4440   return false;
4441 }
4442 
4443 /// ParseDIBasicType:
4444 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4445 ///                    encoding: DW_ATE_encoding, flags: 0)
4446 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4447 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4448   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4449   OPTIONAL(name, MDStringField, );                                             \
4450   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4451   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4452   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4453   OPTIONAL(flags, DIFlagField, );
4454   PARSE_MD_FIELDS();
4455 #undef VISIT_MD_FIELDS
4456 
4457   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4458                                          align.Val, encoding.Val, flags.Val));
4459   return false;
4460 }
4461 
4462 /// ParseDIDerivedType:
4463 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4464 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4465 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4466 ///                      dwarfAddressSpace: 3)
4467 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4468 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4469   REQUIRED(tag, DwarfTagField, );                                              \
4470   OPTIONAL(name, MDStringField, );                                             \
4471   OPTIONAL(file, MDField, );                                                   \
4472   OPTIONAL(line, LineField, );                                                 \
4473   OPTIONAL(scope, MDField, );                                                  \
4474   REQUIRED(baseType, MDField, );                                               \
4475   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4476   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4477   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4478   OPTIONAL(flags, DIFlagField, );                                              \
4479   OPTIONAL(extraData, MDField, );                                              \
4480   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4481   PARSE_MD_FIELDS();
4482 #undef VISIT_MD_FIELDS
4483 
4484   Optional<unsigned> DWARFAddressSpace;
4485   if (dwarfAddressSpace.Val != UINT32_MAX)
4486     DWARFAddressSpace = dwarfAddressSpace.Val;
4487 
4488   Result = GET_OR_DISTINCT(DIDerivedType,
4489                            (Context, tag.Val, name.Val, file.Val, line.Val,
4490                             scope.Val, baseType.Val, size.Val, align.Val,
4491                             offset.Val, DWARFAddressSpace, flags.Val,
4492                             extraData.Val));
4493   return false;
4494 }
4495 
4496 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4497 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4498   REQUIRED(tag, DwarfTagField, );                                              \
4499   OPTIONAL(name, MDStringField, );                                             \
4500   OPTIONAL(file, MDField, );                                                   \
4501   OPTIONAL(line, LineField, );                                                 \
4502   OPTIONAL(scope, MDField, );                                                  \
4503   OPTIONAL(baseType, MDField, );                                               \
4504   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4505   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4506   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4507   OPTIONAL(flags, DIFlagField, );                                              \
4508   OPTIONAL(elements, MDField, );                                               \
4509   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4510   OPTIONAL(vtableHolder, MDField, );                                           \
4511   OPTIONAL(templateParams, MDField, );                                         \
4512   OPTIONAL(identifier, MDStringField, );                                       \
4513   OPTIONAL(discriminator, MDField, );
4514   PARSE_MD_FIELDS();
4515 #undef VISIT_MD_FIELDS
4516 
4517   // If this has an identifier try to build an ODR type.
4518   if (identifier.Val)
4519     if (auto *CT = DICompositeType::buildODRType(
4520             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4521             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4522             elements.Val, runtimeLang.Val, vtableHolder.Val,
4523             templateParams.Val, discriminator.Val)) {
4524       Result = CT;
4525       return false;
4526     }
4527 
4528   // Create a new node, and save it in the context if it belongs in the type
4529   // map.
4530   Result = GET_OR_DISTINCT(
4531       DICompositeType,
4532       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4533        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4534        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4535        discriminator.Val));
4536   return false;
4537 }
4538 
4539 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4540 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4541   OPTIONAL(flags, DIFlagField, );                                              \
4542   OPTIONAL(cc, DwarfCCField, );                                                \
4543   REQUIRED(types, MDField, );
4544   PARSE_MD_FIELDS();
4545 #undef VISIT_MD_FIELDS
4546 
4547   Result = GET_OR_DISTINCT(DISubroutineType,
4548                            (Context, flags.Val, cc.Val, types.Val));
4549   return false;
4550 }
4551 
4552 /// ParseDIFileType:
4553 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4554 ///                   checksumkind: CSK_MD5,
4555 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4556 ///                   source: "source file contents")
4557 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4558   // The default constructed value for checksumkind is required, but will never
4559   // be used, as the parser checks if the field was actually Seen before using
4560   // the Val.
4561 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4562   REQUIRED(filename, MDStringField, );                                         \
4563   REQUIRED(directory, MDStringField, );                                        \
4564   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4565   OPTIONAL(checksum, MDStringField, );                                         \
4566   OPTIONAL(source, MDStringField, );
4567   PARSE_MD_FIELDS();
4568 #undef VISIT_MD_FIELDS
4569 
4570   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4571   if (checksumkind.Seen && checksum.Seen)
4572     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4573   else if (checksumkind.Seen || checksum.Seen)
4574     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4575 
4576   Optional<MDString *> OptSource;
4577   if (source.Seen)
4578     OptSource = source.Val;
4579   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4580                                     OptChecksum, OptSource));
4581   return false;
4582 }
4583 
4584 /// ParseDICompileUnit:
4585 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4586 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4587 ///                      splitDebugFilename: "abc.debug",
4588 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4589 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4590 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4591   if (!IsDistinct)
4592     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4593 
4594 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4595   REQUIRED(language, DwarfLangField, );                                        \
4596   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4597   OPTIONAL(producer, MDStringField, );                                         \
4598   OPTIONAL(isOptimized, MDBoolField, );                                        \
4599   OPTIONAL(flags, MDStringField, );                                            \
4600   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4601   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4602   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4603   OPTIONAL(enums, MDField, );                                                  \
4604   OPTIONAL(retainedTypes, MDField, );                                          \
4605   OPTIONAL(globals, MDField, );                                                \
4606   OPTIONAL(imports, MDField, );                                                \
4607   OPTIONAL(macros, MDField, );                                                 \
4608   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4609   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4610   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4611   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4612   OPTIONAL(debugBaseAddress, MDBoolField, = false);
4613   PARSE_MD_FIELDS();
4614 #undef VISIT_MD_FIELDS
4615 
4616   Result = DICompileUnit::getDistinct(
4617       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4618       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4619       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4620       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4621       debugBaseAddress.Val);
4622   return false;
4623 }
4624 
4625 /// ParseDISubprogram:
4626 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4627 ///                     file: !1, line: 7, type: !2, isLocal: false,
4628 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4629 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4630 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4631 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4632 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4633 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4634   auto Loc = Lex.getLoc();
4635 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4636   OPTIONAL(scope, MDField, );                                                  \
4637   OPTIONAL(name, MDStringField, );                                             \
4638   OPTIONAL(linkageName, MDStringField, );                                      \
4639   OPTIONAL(file, MDField, );                                                   \
4640   OPTIONAL(line, LineField, );                                                 \
4641   OPTIONAL(type, MDField, );                                                   \
4642   OPTIONAL(isLocal, MDBoolField, );                                            \
4643   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4644   OPTIONAL(scopeLine, LineField, );                                            \
4645   OPTIONAL(containingType, MDField, );                                         \
4646   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4647   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4648   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4649   OPTIONAL(flags, DIFlagField, );                                              \
4650   OPTIONAL(spFlags, DISPFlagField, );                                          \
4651   OPTIONAL(isOptimized, MDBoolField, );                                        \
4652   OPTIONAL(unit, MDField, );                                                   \
4653   OPTIONAL(templateParams, MDField, );                                         \
4654   OPTIONAL(declaration, MDField, );                                            \
4655   OPTIONAL(retainedNodes, MDField, );                                          \
4656   OPTIONAL(thrownTypes, MDField, );
4657   PARSE_MD_FIELDS();
4658 #undef VISIT_MD_FIELDS
4659 
4660   // An explicit spFlags field takes precedence over individual fields in
4661   // older IR versions.
4662   DISubprogram::DISPFlags SPFlags =
4663       spFlags.Seen ? spFlags.Val
4664                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4665                                              isOptimized.Val, virtuality.Val);
4666   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4667     return Lex.Error(
4668         Loc,
4669         "missing 'distinct', required for !DISubprogram that is a Definition");
4670   Result = GET_OR_DISTINCT(
4671       DISubprogram,
4672       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4673        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4674        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4675        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4676   return false;
4677 }
4678 
4679 /// ParseDILexicalBlock:
4680 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4681 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4682 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4683   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4684   OPTIONAL(file, MDField, );                                                   \
4685   OPTIONAL(line, LineField, );                                                 \
4686   OPTIONAL(column, ColumnField, );
4687   PARSE_MD_FIELDS();
4688 #undef VISIT_MD_FIELDS
4689 
4690   Result = GET_OR_DISTINCT(
4691       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4692   return false;
4693 }
4694 
4695 /// ParseDILexicalBlockFile:
4696 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4697 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4698 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4699   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4700   OPTIONAL(file, MDField, );                                                   \
4701   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4702   PARSE_MD_FIELDS();
4703 #undef VISIT_MD_FIELDS
4704 
4705   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4706                            (Context, scope.Val, file.Val, discriminator.Val));
4707   return false;
4708 }
4709 
4710 /// ParseDICommonBlock:
4711 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4712 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4713 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4714   REQUIRED(scope, MDField, );                                                  \
4715   OPTIONAL(declaration, MDField, );                                            \
4716   OPTIONAL(name, MDStringField, );                                             \
4717   OPTIONAL(file, MDField, );                                                   \
4718   OPTIONAL(line, LineField, );
4719   PARSE_MD_FIELDS();
4720 #undef VISIT_MD_FIELDS
4721 
4722   Result = GET_OR_DISTINCT(DICommonBlock,
4723                            (Context, scope.Val, declaration.Val, name.Val,
4724                             file.Val, line.Val));
4725   return false;
4726 }
4727 
4728 /// ParseDINamespace:
4729 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4730 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4731 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4732   REQUIRED(scope, MDField, );                                                  \
4733   OPTIONAL(name, MDStringField, );                                             \
4734   OPTIONAL(exportSymbols, MDBoolField, );
4735   PARSE_MD_FIELDS();
4736 #undef VISIT_MD_FIELDS
4737 
4738   Result = GET_OR_DISTINCT(DINamespace,
4739                            (Context, scope.Val, name.Val, exportSymbols.Val));
4740   return false;
4741 }
4742 
4743 /// ParseDIMacro:
4744 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4745 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4746 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4747   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4748   OPTIONAL(line, LineField, );                                                 \
4749   REQUIRED(name, MDStringField, );                                             \
4750   OPTIONAL(value, MDStringField, );
4751   PARSE_MD_FIELDS();
4752 #undef VISIT_MD_FIELDS
4753 
4754   Result = GET_OR_DISTINCT(DIMacro,
4755                            (Context, type.Val, line.Val, name.Val, value.Val));
4756   return false;
4757 }
4758 
4759 /// ParseDIMacroFile:
4760 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4761 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4762 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4763   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4764   OPTIONAL(line, LineField, );                                                 \
4765   REQUIRED(file, MDField, );                                                   \
4766   OPTIONAL(nodes, MDField, );
4767   PARSE_MD_FIELDS();
4768 #undef VISIT_MD_FIELDS
4769 
4770   Result = GET_OR_DISTINCT(DIMacroFile,
4771                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4772   return false;
4773 }
4774 
4775 /// ParseDIModule:
4776 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4777 ///                 includePath: "/usr/include", isysroot: "/")
4778 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4779 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4780   REQUIRED(scope, MDField, );                                                  \
4781   REQUIRED(name, MDStringField, );                                             \
4782   OPTIONAL(configMacros, MDStringField, );                                     \
4783   OPTIONAL(includePath, MDStringField, );                                      \
4784   OPTIONAL(isysroot, MDStringField, );
4785   PARSE_MD_FIELDS();
4786 #undef VISIT_MD_FIELDS
4787 
4788   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4789                            configMacros.Val, includePath.Val, isysroot.Val));
4790   return false;
4791 }
4792 
4793 /// ParseDITemplateTypeParameter:
4794 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4795 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4796 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4797   OPTIONAL(name, MDStringField, );                                             \
4798   REQUIRED(type, MDField, );
4799   PARSE_MD_FIELDS();
4800 #undef VISIT_MD_FIELDS
4801 
4802   Result =
4803       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4804   return false;
4805 }
4806 
4807 /// ParseDITemplateValueParameter:
4808 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4809 ///                                 name: "V", type: !1, value: i32 7)
4810 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4811 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4812   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4813   OPTIONAL(name, MDStringField, );                                             \
4814   OPTIONAL(type, MDField, );                                                   \
4815   REQUIRED(value, MDField, );
4816   PARSE_MD_FIELDS();
4817 #undef VISIT_MD_FIELDS
4818 
4819   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4820                            (Context, tag.Val, name.Val, type.Val, value.Val));
4821   return false;
4822 }
4823 
4824 /// ParseDIGlobalVariable:
4825 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4826 ///                         file: !1, line: 7, type: !2, isLocal: false,
4827 ///                         isDefinition: true, templateParams: !3,
4828 ///                         declaration: !4, align: 8)
4829 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4830 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4831   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4832   OPTIONAL(scope, MDField, );                                                  \
4833   OPTIONAL(linkageName, MDStringField, );                                      \
4834   OPTIONAL(file, MDField, );                                                   \
4835   OPTIONAL(line, LineField, );                                                 \
4836   OPTIONAL(type, MDField, );                                                   \
4837   OPTIONAL(isLocal, MDBoolField, );                                            \
4838   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4839   OPTIONAL(templateParams, MDField, );                                         \
4840   OPTIONAL(declaration, MDField, );                                            \
4841   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4842   PARSE_MD_FIELDS();
4843 #undef VISIT_MD_FIELDS
4844 
4845   Result =
4846       GET_OR_DISTINCT(DIGlobalVariable,
4847                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4848                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4849                        declaration.Val, templateParams.Val, align.Val));
4850   return false;
4851 }
4852 
4853 /// ParseDILocalVariable:
4854 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4855 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4856 ///                        align: 8)
4857 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4858 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4859 ///                        align: 8)
4860 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4861 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4862   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4863   OPTIONAL(name, MDStringField, );                                             \
4864   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4865   OPTIONAL(file, MDField, );                                                   \
4866   OPTIONAL(line, LineField, );                                                 \
4867   OPTIONAL(type, MDField, );                                                   \
4868   OPTIONAL(flags, DIFlagField, );                                              \
4869   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4870   PARSE_MD_FIELDS();
4871 #undef VISIT_MD_FIELDS
4872 
4873   Result = GET_OR_DISTINCT(DILocalVariable,
4874                            (Context, scope.Val, name.Val, file.Val, line.Val,
4875                             type.Val, arg.Val, flags.Val, align.Val));
4876   return false;
4877 }
4878 
4879 /// ParseDILabel:
4880 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4881 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4882 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4883   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4884   REQUIRED(name, MDStringField, );                                             \
4885   REQUIRED(file, MDField, );                                                   \
4886   REQUIRED(line, LineField, );
4887   PARSE_MD_FIELDS();
4888 #undef VISIT_MD_FIELDS
4889 
4890   Result = GET_OR_DISTINCT(DILabel,
4891                            (Context, scope.Val, name.Val, file.Val, line.Val));
4892   return false;
4893 }
4894 
4895 /// ParseDIExpression:
4896 ///   ::= !DIExpression(0, 7, -1)
4897 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4898   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4899   Lex.Lex();
4900 
4901   if (ParseToken(lltok::lparen, "expected '(' here"))
4902     return true;
4903 
4904   SmallVector<uint64_t, 8> Elements;
4905   if (Lex.getKind() != lltok::rparen)
4906     do {
4907       if (Lex.getKind() == lltok::DwarfOp) {
4908         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4909           Lex.Lex();
4910           Elements.push_back(Op);
4911           continue;
4912         }
4913         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4914       }
4915 
4916       if (Lex.getKind() == lltok::DwarfAttEncoding) {
4917         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
4918           Lex.Lex();
4919           Elements.push_back(Op);
4920           continue;
4921         }
4922         return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
4923       }
4924 
4925       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4926         return TokError("expected unsigned integer");
4927 
4928       auto &U = Lex.getAPSIntVal();
4929       if (U.ugt(UINT64_MAX))
4930         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4931       Elements.push_back(U.getZExtValue());
4932       Lex.Lex();
4933     } while (EatIfPresent(lltok::comma));
4934 
4935   if (ParseToken(lltok::rparen, "expected ')' here"))
4936     return true;
4937 
4938   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4939   return false;
4940 }
4941 
4942 /// ParseDIGlobalVariableExpression:
4943 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4944 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4945                                                bool IsDistinct) {
4946 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4947   REQUIRED(var, MDField, );                                                    \
4948   REQUIRED(expr, MDField, );
4949   PARSE_MD_FIELDS();
4950 #undef VISIT_MD_FIELDS
4951 
4952   Result =
4953       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4954   return false;
4955 }
4956 
4957 /// ParseDIObjCProperty:
4958 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4959 ///                       getter: "getFoo", attributes: 7, type: !2)
4960 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4961 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4962   OPTIONAL(name, MDStringField, );                                             \
4963   OPTIONAL(file, MDField, );                                                   \
4964   OPTIONAL(line, LineField, );                                                 \
4965   OPTIONAL(setter, MDStringField, );                                           \
4966   OPTIONAL(getter, MDStringField, );                                           \
4967   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4968   OPTIONAL(type, MDField, );
4969   PARSE_MD_FIELDS();
4970 #undef VISIT_MD_FIELDS
4971 
4972   Result = GET_OR_DISTINCT(DIObjCProperty,
4973                            (Context, name.Val, file.Val, line.Val, setter.Val,
4974                             getter.Val, attributes.Val, type.Val));
4975   return false;
4976 }
4977 
4978 /// ParseDIImportedEntity:
4979 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4980 ///                         line: 7, name: "foo")
4981 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4982 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4983   REQUIRED(tag, DwarfTagField, );                                              \
4984   REQUIRED(scope, MDField, );                                                  \
4985   OPTIONAL(entity, MDField, );                                                 \
4986   OPTIONAL(file, MDField, );                                                   \
4987   OPTIONAL(line, LineField, );                                                 \
4988   OPTIONAL(name, MDStringField, );
4989   PARSE_MD_FIELDS();
4990 #undef VISIT_MD_FIELDS
4991 
4992   Result = GET_OR_DISTINCT(
4993       DIImportedEntity,
4994       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4995   return false;
4996 }
4997 
4998 #undef PARSE_MD_FIELD
4999 #undef NOP_FIELD
5000 #undef REQUIRE_FIELD
5001 #undef DECLARE_FIELD
5002 
5003 /// ParseMetadataAsValue
5004 ///  ::= metadata i32 %local
5005 ///  ::= metadata i32 @global
5006 ///  ::= metadata i32 7
5007 ///  ::= metadata !0
5008 ///  ::= metadata !{...}
5009 ///  ::= metadata !"string"
5010 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5011   // Note: the type 'metadata' has already been parsed.
5012   Metadata *MD;
5013   if (ParseMetadata(MD, &PFS))
5014     return true;
5015 
5016   V = MetadataAsValue::get(Context, MD);
5017   return false;
5018 }
5019 
5020 /// ParseValueAsMetadata
5021 ///  ::= i32 %local
5022 ///  ::= i32 @global
5023 ///  ::= i32 7
5024 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5025                                     PerFunctionState *PFS) {
5026   Type *Ty;
5027   LocTy Loc;
5028   if (ParseType(Ty, TypeMsg, Loc))
5029     return true;
5030   if (Ty->isMetadataTy())
5031     return Error(Loc, "invalid metadata-value-metadata roundtrip");
5032 
5033   Value *V;
5034   if (ParseValue(Ty, V, PFS))
5035     return true;
5036 
5037   MD = ValueAsMetadata::get(V);
5038   return false;
5039 }
5040 
5041 /// ParseMetadata
5042 ///  ::= i32 %local
5043 ///  ::= i32 @global
5044 ///  ::= i32 7
5045 ///  ::= !42
5046 ///  ::= !{...}
5047 ///  ::= !"string"
5048 ///  ::= !DILocation(...)
5049 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5050   if (Lex.getKind() == lltok::MetadataVar) {
5051     MDNode *N;
5052     if (ParseSpecializedMDNode(N))
5053       return true;
5054     MD = N;
5055     return false;
5056   }
5057 
5058   // ValueAsMetadata:
5059   // <type> <value>
5060   if (Lex.getKind() != lltok::exclaim)
5061     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5062 
5063   // '!'.
5064   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5065   Lex.Lex();
5066 
5067   // MDString:
5068   //   ::= '!' STRINGCONSTANT
5069   if (Lex.getKind() == lltok::StringConstant) {
5070     MDString *S;
5071     if (ParseMDString(S))
5072       return true;
5073     MD = S;
5074     return false;
5075   }
5076 
5077   // MDNode:
5078   // !{ ... }
5079   // !7
5080   MDNode *N;
5081   if (ParseMDNodeTail(N))
5082     return true;
5083   MD = N;
5084   return false;
5085 }
5086 
5087 //===----------------------------------------------------------------------===//
5088 // Function Parsing.
5089 //===----------------------------------------------------------------------===//
5090 
5091 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5092                                    PerFunctionState *PFS, bool IsCall) {
5093   if (Ty->isFunctionTy())
5094     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5095 
5096   switch (ID.Kind) {
5097   case ValID::t_LocalID:
5098     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5099     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5100     return V == nullptr;
5101   case ValID::t_LocalName:
5102     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5103     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5104     return V == nullptr;
5105   case ValID::t_InlineAsm: {
5106     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5107       return Error(ID.Loc, "invalid type for inline asm constraint string");
5108     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5109                        (ID.UIntVal >> 1) & 1,
5110                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5111     return false;
5112   }
5113   case ValID::t_GlobalName:
5114     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5115     return V == nullptr;
5116   case ValID::t_GlobalID:
5117     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5118     return V == nullptr;
5119   case ValID::t_APSInt:
5120     if (!Ty->isIntegerTy())
5121       return Error(ID.Loc, "integer constant must have integer type");
5122     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5123     V = ConstantInt::get(Context, ID.APSIntVal);
5124     return false;
5125   case ValID::t_APFloat:
5126     if (!Ty->isFloatingPointTy() ||
5127         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5128       return Error(ID.Loc, "floating point constant invalid for type");
5129 
5130     // The lexer has no type info, so builds all half, float, and double FP
5131     // constants as double.  Fix this here.  Long double does not need this.
5132     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5133       bool Ignored;
5134       if (Ty->isHalfTy())
5135         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5136                               &Ignored);
5137       else if (Ty->isFloatTy())
5138         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5139                               &Ignored);
5140     }
5141     V = ConstantFP::get(Context, ID.APFloatVal);
5142 
5143     if (V->getType() != Ty)
5144       return Error(ID.Loc, "floating point constant does not have type '" +
5145                    getTypeString(Ty) + "'");
5146 
5147     return false;
5148   case ValID::t_Null:
5149     if (!Ty->isPointerTy())
5150       return Error(ID.Loc, "null must be a pointer type");
5151     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5152     return false;
5153   case ValID::t_Undef:
5154     // FIXME: LabelTy should not be a first-class type.
5155     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5156       return Error(ID.Loc, "invalid type for undef constant");
5157     V = UndefValue::get(Ty);
5158     return false;
5159   case ValID::t_EmptyArray:
5160     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5161       return Error(ID.Loc, "invalid empty array initializer");
5162     V = UndefValue::get(Ty);
5163     return false;
5164   case ValID::t_Zero:
5165     // FIXME: LabelTy should not be a first-class type.
5166     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5167       return Error(ID.Loc, "invalid type for null constant");
5168     V = Constant::getNullValue(Ty);
5169     return false;
5170   case ValID::t_None:
5171     if (!Ty->isTokenTy())
5172       return Error(ID.Loc, "invalid type for none constant");
5173     V = Constant::getNullValue(Ty);
5174     return false;
5175   case ValID::t_Constant:
5176     if (ID.ConstantVal->getType() != Ty)
5177       return Error(ID.Loc, "constant expression type mismatch");
5178 
5179     V = ID.ConstantVal;
5180     return false;
5181   case ValID::t_ConstantStruct:
5182   case ValID::t_PackedConstantStruct:
5183     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5184       if (ST->getNumElements() != ID.UIntVal)
5185         return Error(ID.Loc,
5186                      "initializer with struct type has wrong # elements");
5187       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5188         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5189 
5190       // Verify that the elements are compatible with the structtype.
5191       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5192         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5193           return Error(ID.Loc, "element " + Twine(i) +
5194                     " of struct initializer doesn't match struct element type");
5195 
5196       V = ConstantStruct::get(
5197           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5198     } else
5199       return Error(ID.Loc, "constant expression type mismatch");
5200     return false;
5201   }
5202   llvm_unreachable("Invalid ValID");
5203 }
5204 
5205 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5206   C = nullptr;
5207   ValID ID;
5208   auto Loc = Lex.getLoc();
5209   if (ParseValID(ID, /*PFS=*/nullptr))
5210     return true;
5211   switch (ID.Kind) {
5212   case ValID::t_APSInt:
5213   case ValID::t_APFloat:
5214   case ValID::t_Undef:
5215   case ValID::t_Constant:
5216   case ValID::t_ConstantStruct:
5217   case ValID::t_PackedConstantStruct: {
5218     Value *V;
5219     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5220       return true;
5221     assert(isa<Constant>(V) && "Expected a constant value");
5222     C = cast<Constant>(V);
5223     return false;
5224   }
5225   case ValID::t_Null:
5226     C = Constant::getNullValue(Ty);
5227     return false;
5228   default:
5229     return Error(Loc, "expected a constant value");
5230   }
5231 }
5232 
5233 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5234   V = nullptr;
5235   ValID ID;
5236   return ParseValID(ID, PFS) ||
5237          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5238 }
5239 
5240 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5241   Type *Ty = nullptr;
5242   return ParseType(Ty) ||
5243          ParseValue(Ty, V, PFS);
5244 }
5245 
5246 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5247                                       PerFunctionState &PFS) {
5248   Value *V;
5249   Loc = Lex.getLoc();
5250   if (ParseTypeAndValue(V, PFS)) return true;
5251   if (!isa<BasicBlock>(V))
5252     return Error(Loc, "expected a basic block");
5253   BB = cast<BasicBlock>(V);
5254   return false;
5255 }
5256 
5257 /// FunctionHeader
5258 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5259 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5260 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5261 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5262 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5263   // Parse the linkage.
5264   LocTy LinkageLoc = Lex.getLoc();
5265   unsigned Linkage;
5266   unsigned Visibility;
5267   unsigned DLLStorageClass;
5268   bool DSOLocal;
5269   AttrBuilder RetAttrs;
5270   unsigned CC;
5271   bool HasLinkage;
5272   Type *RetType = nullptr;
5273   LocTy RetTypeLoc = Lex.getLoc();
5274   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5275                            DSOLocal) ||
5276       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5277       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5278     return true;
5279 
5280   // Verify that the linkage is ok.
5281   switch ((GlobalValue::LinkageTypes)Linkage) {
5282   case GlobalValue::ExternalLinkage:
5283     break; // always ok.
5284   case GlobalValue::ExternalWeakLinkage:
5285     if (isDefine)
5286       return Error(LinkageLoc, "invalid linkage for function definition");
5287     break;
5288   case GlobalValue::PrivateLinkage:
5289   case GlobalValue::InternalLinkage:
5290   case GlobalValue::AvailableExternallyLinkage:
5291   case GlobalValue::LinkOnceAnyLinkage:
5292   case GlobalValue::LinkOnceODRLinkage:
5293   case GlobalValue::WeakAnyLinkage:
5294   case GlobalValue::WeakODRLinkage:
5295     if (!isDefine)
5296       return Error(LinkageLoc, "invalid linkage for function declaration");
5297     break;
5298   case GlobalValue::AppendingLinkage:
5299   case GlobalValue::CommonLinkage:
5300     return Error(LinkageLoc, "invalid function linkage type");
5301   }
5302 
5303   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5304     return Error(LinkageLoc,
5305                  "symbol with local linkage must have default visibility");
5306 
5307   if (!FunctionType::isValidReturnType(RetType))
5308     return Error(RetTypeLoc, "invalid function return type");
5309 
5310   LocTy NameLoc = Lex.getLoc();
5311 
5312   std::string FunctionName;
5313   if (Lex.getKind() == lltok::GlobalVar) {
5314     FunctionName = Lex.getStrVal();
5315   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5316     unsigned NameID = Lex.getUIntVal();
5317 
5318     if (NameID != NumberedVals.size())
5319       return TokError("function expected to be numbered '%" +
5320                       Twine(NumberedVals.size()) + "'");
5321   } else {
5322     return TokError("expected function name");
5323   }
5324 
5325   Lex.Lex();
5326 
5327   if (Lex.getKind() != lltok::lparen)
5328     return TokError("expected '(' in function argument list");
5329 
5330   SmallVector<ArgInfo, 8> ArgList;
5331   bool isVarArg;
5332   AttrBuilder FuncAttrs;
5333   std::vector<unsigned> FwdRefAttrGrps;
5334   LocTy BuiltinLoc;
5335   std::string Section;
5336   std::string Partition;
5337   unsigned Alignment;
5338   std::string GC;
5339   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5340   unsigned AddrSpace = 0;
5341   Constant *Prefix = nullptr;
5342   Constant *Prologue = nullptr;
5343   Constant *PersonalityFn = nullptr;
5344   Comdat *C;
5345 
5346   if (ParseArgumentList(ArgList, isVarArg) ||
5347       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5348       ParseOptionalProgramAddrSpace(AddrSpace) ||
5349       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5350                                  BuiltinLoc) ||
5351       (EatIfPresent(lltok::kw_section) &&
5352        ParseStringConstant(Section)) ||
5353       (EatIfPresent(lltok::kw_partition) &&
5354        ParseStringConstant(Partition)) ||
5355       parseOptionalComdat(FunctionName, C) ||
5356       ParseOptionalAlignment(Alignment) ||
5357       (EatIfPresent(lltok::kw_gc) &&
5358        ParseStringConstant(GC)) ||
5359       (EatIfPresent(lltok::kw_prefix) &&
5360        ParseGlobalTypeAndValue(Prefix)) ||
5361       (EatIfPresent(lltok::kw_prologue) &&
5362        ParseGlobalTypeAndValue(Prologue)) ||
5363       (EatIfPresent(lltok::kw_personality) &&
5364        ParseGlobalTypeAndValue(PersonalityFn)))
5365     return true;
5366 
5367   if (FuncAttrs.contains(Attribute::Builtin))
5368     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5369 
5370   // If the alignment was parsed as an attribute, move to the alignment field.
5371   if (FuncAttrs.hasAlignmentAttr()) {
5372     Alignment = FuncAttrs.getAlignment();
5373     FuncAttrs.removeAttribute(Attribute::Alignment);
5374   }
5375 
5376   // Okay, if we got here, the function is syntactically valid.  Convert types
5377   // and do semantic checks.
5378   std::vector<Type*> ParamTypeList;
5379   SmallVector<AttributeSet, 8> Attrs;
5380 
5381   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5382     ParamTypeList.push_back(ArgList[i].Ty);
5383     Attrs.push_back(ArgList[i].Attrs);
5384   }
5385 
5386   AttributeList PAL =
5387       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5388                          AttributeSet::get(Context, RetAttrs), Attrs);
5389 
5390   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5391     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5392 
5393   FunctionType *FT =
5394     FunctionType::get(RetType, ParamTypeList, isVarArg);
5395   PointerType *PFT = PointerType::get(FT, AddrSpace);
5396 
5397   Fn = nullptr;
5398   if (!FunctionName.empty()) {
5399     // If this was a definition of a forward reference, remove the definition
5400     // from the forward reference table and fill in the forward ref.
5401     auto FRVI = ForwardRefVals.find(FunctionName);
5402     if (FRVI != ForwardRefVals.end()) {
5403       Fn = M->getFunction(FunctionName);
5404       if (!Fn)
5405         return Error(FRVI->second.second, "invalid forward reference to "
5406                      "function as global value!");
5407       if (Fn->getType() != PFT)
5408         return Error(FRVI->second.second, "invalid forward reference to "
5409                      "function '" + FunctionName + "' with wrong type: "
5410                      "expected '" + getTypeString(PFT) + "' but was '" +
5411                      getTypeString(Fn->getType()) + "'");
5412       ForwardRefVals.erase(FRVI);
5413     } else if ((Fn = M->getFunction(FunctionName))) {
5414       // Reject redefinitions.
5415       return Error(NameLoc, "invalid redefinition of function '" +
5416                    FunctionName + "'");
5417     } else if (M->getNamedValue(FunctionName)) {
5418       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5419     }
5420 
5421   } else {
5422     // If this is a definition of a forward referenced function, make sure the
5423     // types agree.
5424     auto I = ForwardRefValIDs.find(NumberedVals.size());
5425     if (I != ForwardRefValIDs.end()) {
5426       Fn = cast<Function>(I->second.first);
5427       if (Fn->getType() != PFT)
5428         return Error(NameLoc, "type of definition and forward reference of '@" +
5429                      Twine(NumberedVals.size()) + "' disagree: "
5430                      "expected '" + getTypeString(PFT) + "' but was '" +
5431                      getTypeString(Fn->getType()) + "'");
5432       ForwardRefValIDs.erase(I);
5433     }
5434   }
5435 
5436   if (!Fn)
5437     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5438                           FunctionName, M);
5439   else // Move the forward-reference to the correct spot in the module.
5440     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5441 
5442   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5443 
5444   if (FunctionName.empty())
5445     NumberedVals.push_back(Fn);
5446 
5447   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5448   maybeSetDSOLocal(DSOLocal, *Fn);
5449   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5450   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5451   Fn->setCallingConv(CC);
5452   Fn->setAttributes(PAL);
5453   Fn->setUnnamedAddr(UnnamedAddr);
5454   Fn->setAlignment(Alignment);
5455   Fn->setSection(Section);
5456   Fn->setPartition(Partition);
5457   Fn->setComdat(C);
5458   Fn->setPersonalityFn(PersonalityFn);
5459   if (!GC.empty()) Fn->setGC(GC);
5460   Fn->setPrefixData(Prefix);
5461   Fn->setPrologueData(Prologue);
5462   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5463 
5464   // Add all of the arguments we parsed to the function.
5465   Function::arg_iterator ArgIt = Fn->arg_begin();
5466   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5467     // If the argument has a name, insert it into the argument symbol table.
5468     if (ArgList[i].Name.empty()) continue;
5469 
5470     // Set the name, if it conflicted, it will be auto-renamed.
5471     ArgIt->setName(ArgList[i].Name);
5472 
5473     if (ArgIt->getName() != ArgList[i].Name)
5474       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5475                    ArgList[i].Name + "'");
5476   }
5477 
5478   if (isDefine)
5479     return false;
5480 
5481   // Check the declaration has no block address forward references.
5482   ValID ID;
5483   if (FunctionName.empty()) {
5484     ID.Kind = ValID::t_GlobalID;
5485     ID.UIntVal = NumberedVals.size() - 1;
5486   } else {
5487     ID.Kind = ValID::t_GlobalName;
5488     ID.StrVal = FunctionName;
5489   }
5490   auto Blocks = ForwardRefBlockAddresses.find(ID);
5491   if (Blocks != ForwardRefBlockAddresses.end())
5492     return Error(Blocks->first.Loc,
5493                  "cannot take blockaddress inside a declaration");
5494   return false;
5495 }
5496 
5497 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5498   ValID ID;
5499   if (FunctionNumber == -1) {
5500     ID.Kind = ValID::t_GlobalName;
5501     ID.StrVal = F.getName();
5502   } else {
5503     ID.Kind = ValID::t_GlobalID;
5504     ID.UIntVal = FunctionNumber;
5505   }
5506 
5507   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5508   if (Blocks == P.ForwardRefBlockAddresses.end())
5509     return false;
5510 
5511   for (const auto &I : Blocks->second) {
5512     const ValID &BBID = I.first;
5513     GlobalValue *GV = I.second;
5514 
5515     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5516            "Expected local id or name");
5517     BasicBlock *BB;
5518     if (BBID.Kind == ValID::t_LocalName)
5519       BB = GetBB(BBID.StrVal, BBID.Loc);
5520     else
5521       BB = GetBB(BBID.UIntVal, BBID.Loc);
5522     if (!BB)
5523       return P.Error(BBID.Loc, "referenced value is not a basic block");
5524 
5525     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5526     GV->eraseFromParent();
5527   }
5528 
5529   P.ForwardRefBlockAddresses.erase(Blocks);
5530   return false;
5531 }
5532 
5533 /// ParseFunctionBody
5534 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5535 bool LLParser::ParseFunctionBody(Function &Fn) {
5536   if (Lex.getKind() != lltok::lbrace)
5537     return TokError("expected '{' in function body");
5538   Lex.Lex();  // eat the {.
5539 
5540   int FunctionNumber = -1;
5541   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5542 
5543   PerFunctionState PFS(*this, Fn, FunctionNumber);
5544 
5545   // Resolve block addresses and allow basic blocks to be forward-declared
5546   // within this function.
5547   if (PFS.resolveForwardRefBlockAddresses())
5548     return true;
5549   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5550 
5551   // We need at least one basic block.
5552   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5553     return TokError("function body requires at least one basic block");
5554 
5555   while (Lex.getKind() != lltok::rbrace &&
5556          Lex.getKind() != lltok::kw_uselistorder)
5557     if (ParseBasicBlock(PFS)) return true;
5558 
5559   while (Lex.getKind() != lltok::rbrace)
5560     if (ParseUseListOrder(&PFS))
5561       return true;
5562 
5563   // Eat the }.
5564   Lex.Lex();
5565 
5566   // Verify function is ok.
5567   return PFS.FinishFunction();
5568 }
5569 
5570 /// ParseBasicBlock
5571 ///   ::= (LabelStr|LabelID)? Instruction*
5572 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5573   // If this basic block starts out with a name, remember it.
5574   std::string Name;
5575   int NameID = -1;
5576   LocTy NameLoc = Lex.getLoc();
5577   if (Lex.getKind() == lltok::LabelStr) {
5578     Name = Lex.getStrVal();
5579     Lex.Lex();
5580   } else if (Lex.getKind() == lltok::LabelID) {
5581     NameID = Lex.getUIntVal();
5582     Lex.Lex();
5583   }
5584 
5585   BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5586   if (!BB)
5587     return true;
5588 
5589   std::string NameStr;
5590 
5591   // Parse the instructions in this block until we get a terminator.
5592   Instruction *Inst;
5593   do {
5594     // This instruction may have three possibilities for a name: a) none
5595     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5596     LocTy NameLoc = Lex.getLoc();
5597     int NameID = -1;
5598     NameStr = "";
5599 
5600     if (Lex.getKind() == lltok::LocalVarID) {
5601       NameID = Lex.getUIntVal();
5602       Lex.Lex();
5603       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5604         return true;
5605     } else if (Lex.getKind() == lltok::LocalVar) {
5606       NameStr = Lex.getStrVal();
5607       Lex.Lex();
5608       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5609         return true;
5610     }
5611 
5612     switch (ParseInstruction(Inst, BB, PFS)) {
5613     default: llvm_unreachable("Unknown ParseInstruction result!");
5614     case InstError: return true;
5615     case InstNormal:
5616       BB->getInstList().push_back(Inst);
5617 
5618       // With a normal result, we check to see if the instruction is followed by
5619       // a comma and metadata.
5620       if (EatIfPresent(lltok::comma))
5621         if (ParseInstructionMetadata(*Inst))
5622           return true;
5623       break;
5624     case InstExtraComma:
5625       BB->getInstList().push_back(Inst);
5626 
5627       // If the instruction parser ate an extra comma at the end of it, it
5628       // *must* be followed by metadata.
5629       if (ParseInstructionMetadata(*Inst))
5630         return true;
5631       break;
5632     }
5633 
5634     // Set the name on the instruction.
5635     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5636   } while (!Inst->isTerminator());
5637 
5638   return false;
5639 }
5640 
5641 //===----------------------------------------------------------------------===//
5642 // Instruction Parsing.
5643 //===----------------------------------------------------------------------===//
5644 
5645 /// ParseInstruction - Parse one of the many different instructions.
5646 ///
5647 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5648                                PerFunctionState &PFS) {
5649   lltok::Kind Token = Lex.getKind();
5650   if (Token == lltok::Eof)
5651     return TokError("found end of file when expecting more instructions");
5652   LocTy Loc = Lex.getLoc();
5653   unsigned KeywordVal = Lex.getUIntVal();
5654   Lex.Lex();  // Eat the keyword.
5655 
5656   switch (Token) {
5657   default:                    return Error(Loc, "expected instruction opcode");
5658   // Terminator Instructions.
5659   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5660   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5661   case lltok::kw_br:          return ParseBr(Inst, PFS);
5662   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5663   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5664   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5665   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5666   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5667   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5668   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5669   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5670   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5671   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5672   // Unary Operators.
5673   case lltok::kw_fneg: {
5674     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5675     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
5676     if (Res != 0)
5677       return Res;
5678     if (FMF.any())
5679       Inst->setFastMathFlags(FMF);
5680     return false;
5681   }
5682   // Binary Operators.
5683   case lltok::kw_add:
5684   case lltok::kw_sub:
5685   case lltok::kw_mul:
5686   case lltok::kw_shl: {
5687     bool NUW = EatIfPresent(lltok::kw_nuw);
5688     bool NSW = EatIfPresent(lltok::kw_nsw);
5689     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5690 
5691     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5692 
5693     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5694     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5695     return false;
5696   }
5697   case lltok::kw_fadd:
5698   case lltok::kw_fsub:
5699   case lltok::kw_fmul:
5700   case lltok::kw_fdiv:
5701   case lltok::kw_frem: {
5702     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5703     int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
5704     if (Res != 0)
5705       return Res;
5706     if (FMF.any())
5707       Inst->setFastMathFlags(FMF);
5708     return 0;
5709   }
5710 
5711   case lltok::kw_sdiv:
5712   case lltok::kw_udiv:
5713   case lltok::kw_lshr:
5714   case lltok::kw_ashr: {
5715     bool Exact = EatIfPresent(lltok::kw_exact);
5716 
5717     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5718     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5719     return false;
5720   }
5721 
5722   case lltok::kw_urem:
5723   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal,
5724                                                 /*IsFP*/false);
5725   case lltok::kw_and:
5726   case lltok::kw_or:
5727   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5728   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5729   case lltok::kw_fcmp: {
5730     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5731     int Res = ParseCompare(Inst, PFS, KeywordVal);
5732     if (Res != 0)
5733       return Res;
5734     if (FMF.any())
5735       Inst->setFastMathFlags(FMF);
5736     return 0;
5737   }
5738 
5739   // Casts.
5740   case lltok::kw_trunc:
5741   case lltok::kw_zext:
5742   case lltok::kw_sext:
5743   case lltok::kw_fptrunc:
5744   case lltok::kw_fpext:
5745   case lltok::kw_bitcast:
5746   case lltok::kw_addrspacecast:
5747   case lltok::kw_uitofp:
5748   case lltok::kw_sitofp:
5749   case lltok::kw_fptoui:
5750   case lltok::kw_fptosi:
5751   case lltok::kw_inttoptr:
5752   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5753   // Other.
5754   case lltok::kw_select: {
5755     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5756     int Res = ParseSelect(Inst, PFS);
5757     if (Res != 0)
5758       return Res;
5759     if (FMF.any()) {
5760       if (!Inst->getType()->isFPOrFPVectorTy())
5761         return Error(Loc, "fast-math-flags specified for select without "
5762                           "floating-point scalar or vector return type");
5763       Inst->setFastMathFlags(FMF);
5764     }
5765     return 0;
5766   }
5767   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5768   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5769   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5770   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5771   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5772   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5773   // Call.
5774   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5775   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5776   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5777   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5778   // Memory.
5779   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5780   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5781   case lltok::kw_store:          return ParseStore(Inst, PFS);
5782   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5783   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5784   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5785   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5786   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5787   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5788   }
5789 }
5790 
5791 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5792 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5793   if (Opc == Instruction::FCmp) {
5794     switch (Lex.getKind()) {
5795     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5796     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5797     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5798     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5799     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5800     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5801     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5802     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5803     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5804     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5805     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5806     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5807     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5808     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5809     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5810     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5811     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5812     }
5813   } else {
5814     switch (Lex.getKind()) {
5815     default: return TokError("expected icmp predicate (e.g. 'eq')");
5816     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5817     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5818     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5819     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5820     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5821     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5822     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5823     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5824     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5825     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5826     }
5827   }
5828   Lex.Lex();
5829   return false;
5830 }
5831 
5832 //===----------------------------------------------------------------------===//
5833 // Terminator Instructions.
5834 //===----------------------------------------------------------------------===//
5835 
5836 /// ParseRet - Parse a return instruction.
5837 ///   ::= 'ret' void (',' !dbg, !1)*
5838 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5839 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5840                         PerFunctionState &PFS) {
5841   SMLoc TypeLoc = Lex.getLoc();
5842   Type *Ty = nullptr;
5843   if (ParseType(Ty, true /*void allowed*/)) return true;
5844 
5845   Type *ResType = PFS.getFunction().getReturnType();
5846 
5847   if (Ty->isVoidTy()) {
5848     if (!ResType->isVoidTy())
5849       return Error(TypeLoc, "value doesn't match function result type '" +
5850                    getTypeString(ResType) + "'");
5851 
5852     Inst = ReturnInst::Create(Context);
5853     return false;
5854   }
5855 
5856   Value *RV;
5857   if (ParseValue(Ty, RV, PFS)) return true;
5858 
5859   if (ResType != RV->getType())
5860     return Error(TypeLoc, "value doesn't match function result type '" +
5861                  getTypeString(ResType) + "'");
5862 
5863   Inst = ReturnInst::Create(Context, RV);
5864   return false;
5865 }
5866 
5867 /// ParseBr
5868 ///   ::= 'br' TypeAndValue
5869 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5870 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5871   LocTy Loc, Loc2;
5872   Value *Op0;
5873   BasicBlock *Op1, *Op2;
5874   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5875 
5876   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5877     Inst = BranchInst::Create(BB);
5878     return false;
5879   }
5880 
5881   if (Op0->getType() != Type::getInt1Ty(Context))
5882     return Error(Loc, "branch condition must have 'i1' type");
5883 
5884   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5885       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5886       ParseToken(lltok::comma, "expected ',' after true destination") ||
5887       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5888     return true;
5889 
5890   Inst = BranchInst::Create(Op1, Op2, Op0);
5891   return false;
5892 }
5893 
5894 /// ParseSwitch
5895 ///  Instruction
5896 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5897 ///  JumpTable
5898 ///    ::= (TypeAndValue ',' TypeAndValue)*
5899 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5900   LocTy CondLoc, BBLoc;
5901   Value *Cond;
5902   BasicBlock *DefaultBB;
5903   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5904       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5905       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5906       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5907     return true;
5908 
5909   if (!Cond->getType()->isIntegerTy())
5910     return Error(CondLoc, "switch condition must have integer type");
5911 
5912   // Parse the jump table pairs.
5913   SmallPtrSet<Value*, 32> SeenCases;
5914   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5915   while (Lex.getKind() != lltok::rsquare) {
5916     Value *Constant;
5917     BasicBlock *DestBB;
5918 
5919     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5920         ParseToken(lltok::comma, "expected ',' after case value") ||
5921         ParseTypeAndBasicBlock(DestBB, PFS))
5922       return true;
5923 
5924     if (!SeenCases.insert(Constant).second)
5925       return Error(CondLoc, "duplicate case value in switch");
5926     if (!isa<ConstantInt>(Constant))
5927       return Error(CondLoc, "case value is not a constant integer");
5928 
5929     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5930   }
5931 
5932   Lex.Lex();  // Eat the ']'.
5933 
5934   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5935   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5936     SI->addCase(Table[i].first, Table[i].second);
5937   Inst = SI;
5938   return false;
5939 }
5940 
5941 /// ParseIndirectBr
5942 ///  Instruction
5943 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5944 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5945   LocTy AddrLoc;
5946   Value *Address;
5947   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5948       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5949       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5950     return true;
5951 
5952   if (!Address->getType()->isPointerTy())
5953     return Error(AddrLoc, "indirectbr address must have pointer type");
5954 
5955   // Parse the destination list.
5956   SmallVector<BasicBlock*, 16> DestList;
5957 
5958   if (Lex.getKind() != lltok::rsquare) {
5959     BasicBlock *DestBB;
5960     if (ParseTypeAndBasicBlock(DestBB, PFS))
5961       return true;
5962     DestList.push_back(DestBB);
5963 
5964     while (EatIfPresent(lltok::comma)) {
5965       if (ParseTypeAndBasicBlock(DestBB, PFS))
5966         return true;
5967       DestList.push_back(DestBB);
5968     }
5969   }
5970 
5971   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5972     return true;
5973 
5974   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5975   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5976     IBI->addDestination(DestList[i]);
5977   Inst = IBI;
5978   return false;
5979 }
5980 
5981 /// ParseInvoke
5982 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5983 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5984 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5985   LocTy CallLoc = Lex.getLoc();
5986   AttrBuilder RetAttrs, FnAttrs;
5987   std::vector<unsigned> FwdRefAttrGrps;
5988   LocTy NoBuiltinLoc;
5989   unsigned CC;
5990   unsigned InvokeAddrSpace;
5991   Type *RetType = nullptr;
5992   LocTy RetTypeLoc;
5993   ValID CalleeID;
5994   SmallVector<ParamInfo, 16> ArgList;
5995   SmallVector<OperandBundleDef, 2> BundleList;
5996 
5997   BasicBlock *NormalBB, *UnwindBB;
5998   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5999       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6000       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6001       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6002       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6003                                  NoBuiltinLoc) ||
6004       ParseOptionalOperandBundles(BundleList, PFS) ||
6005       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
6006       ParseTypeAndBasicBlock(NormalBB, PFS) ||
6007       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6008       ParseTypeAndBasicBlock(UnwindBB, PFS))
6009     return true;
6010 
6011   // If RetType is a non-function pointer type, then this is the short syntax
6012   // for the call, which means that RetType is just the return type.  Infer the
6013   // rest of the function argument types from the arguments that are present.
6014   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6015   if (!Ty) {
6016     // Pull out the types of all of the arguments...
6017     std::vector<Type*> ParamTypes;
6018     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6019       ParamTypes.push_back(ArgList[i].V->getType());
6020 
6021     if (!FunctionType::isValidReturnType(RetType))
6022       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6023 
6024     Ty = FunctionType::get(RetType, ParamTypes, false);
6025   }
6026 
6027   CalleeID.FTy = Ty;
6028 
6029   // Look up the callee.
6030   Value *Callee;
6031   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6032                           Callee, &PFS, /*IsCall=*/true))
6033     return true;
6034 
6035   // Set up the Attribute for the function.
6036   SmallVector<Value *, 8> Args;
6037   SmallVector<AttributeSet, 8> ArgAttrs;
6038 
6039   // Loop through FunctionType's arguments and ensure they are specified
6040   // correctly.  Also, gather any parameter attributes.
6041   FunctionType::param_iterator I = Ty->param_begin();
6042   FunctionType::param_iterator E = Ty->param_end();
6043   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6044     Type *ExpectedTy = nullptr;
6045     if (I != E) {
6046       ExpectedTy = *I++;
6047     } else if (!Ty->isVarArg()) {
6048       return Error(ArgList[i].Loc, "too many arguments specified");
6049     }
6050 
6051     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6052       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6053                    getTypeString(ExpectedTy) + "'");
6054     Args.push_back(ArgList[i].V);
6055     ArgAttrs.push_back(ArgList[i].Attrs);
6056   }
6057 
6058   if (I != E)
6059     return Error(CallLoc, "not enough parameters specified for call");
6060 
6061   if (FnAttrs.hasAlignmentAttr())
6062     return Error(CallLoc, "invoke instructions may not have an alignment");
6063 
6064   // Finish off the Attribute and check them
6065   AttributeList PAL =
6066       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6067                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6068 
6069   InvokeInst *II =
6070       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6071   II->setCallingConv(CC);
6072   II->setAttributes(PAL);
6073   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6074   Inst = II;
6075   return false;
6076 }
6077 
6078 /// ParseResume
6079 ///   ::= 'resume' TypeAndValue
6080 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6081   Value *Exn; LocTy ExnLoc;
6082   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6083     return true;
6084 
6085   ResumeInst *RI = ResumeInst::Create(Exn);
6086   Inst = RI;
6087   return false;
6088 }
6089 
6090 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6091                                   PerFunctionState &PFS) {
6092   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6093     return true;
6094 
6095   while (Lex.getKind() != lltok::rsquare) {
6096     // If this isn't the first argument, we need a comma.
6097     if (!Args.empty() &&
6098         ParseToken(lltok::comma, "expected ',' in argument list"))
6099       return true;
6100 
6101     // Parse the argument.
6102     LocTy ArgLoc;
6103     Type *ArgTy = nullptr;
6104     if (ParseType(ArgTy, ArgLoc))
6105       return true;
6106 
6107     Value *V;
6108     if (ArgTy->isMetadataTy()) {
6109       if (ParseMetadataAsValue(V, PFS))
6110         return true;
6111     } else {
6112       if (ParseValue(ArgTy, V, PFS))
6113         return true;
6114     }
6115     Args.push_back(V);
6116   }
6117 
6118   Lex.Lex();  // Lex the ']'.
6119   return false;
6120 }
6121 
6122 /// ParseCleanupRet
6123 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6124 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6125   Value *CleanupPad = nullptr;
6126 
6127   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6128     return true;
6129 
6130   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6131     return true;
6132 
6133   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6134     return true;
6135 
6136   BasicBlock *UnwindBB = nullptr;
6137   if (Lex.getKind() == lltok::kw_to) {
6138     Lex.Lex();
6139     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6140       return true;
6141   } else {
6142     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6143       return true;
6144     }
6145   }
6146 
6147   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6148   return false;
6149 }
6150 
6151 /// ParseCatchRet
6152 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6153 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6154   Value *CatchPad = nullptr;
6155 
6156   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6157     return true;
6158 
6159   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6160     return true;
6161 
6162   BasicBlock *BB;
6163   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6164       ParseTypeAndBasicBlock(BB, PFS))
6165       return true;
6166 
6167   Inst = CatchReturnInst::Create(CatchPad, BB);
6168   return false;
6169 }
6170 
6171 /// ParseCatchSwitch
6172 ///   ::= 'catchswitch' within Parent
6173 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6174   Value *ParentPad;
6175 
6176   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6177     return true;
6178 
6179   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6180       Lex.getKind() != lltok::LocalVarID)
6181     return TokError("expected scope value for catchswitch");
6182 
6183   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6184     return true;
6185 
6186   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6187     return true;
6188 
6189   SmallVector<BasicBlock *, 32> Table;
6190   do {
6191     BasicBlock *DestBB;
6192     if (ParseTypeAndBasicBlock(DestBB, PFS))
6193       return true;
6194     Table.push_back(DestBB);
6195   } while (EatIfPresent(lltok::comma));
6196 
6197   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6198     return true;
6199 
6200   if (ParseToken(lltok::kw_unwind,
6201                  "expected 'unwind' after catchswitch scope"))
6202     return true;
6203 
6204   BasicBlock *UnwindBB = nullptr;
6205   if (EatIfPresent(lltok::kw_to)) {
6206     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6207       return true;
6208   } else {
6209     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6210       return true;
6211   }
6212 
6213   auto *CatchSwitch =
6214       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6215   for (BasicBlock *DestBB : Table)
6216     CatchSwitch->addHandler(DestBB);
6217   Inst = CatchSwitch;
6218   return false;
6219 }
6220 
6221 /// ParseCatchPad
6222 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6223 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6224   Value *CatchSwitch = nullptr;
6225 
6226   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6227     return true;
6228 
6229   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6230     return TokError("expected scope value for catchpad");
6231 
6232   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6233     return true;
6234 
6235   SmallVector<Value *, 8> Args;
6236   if (ParseExceptionArgs(Args, PFS))
6237     return true;
6238 
6239   Inst = CatchPadInst::Create(CatchSwitch, Args);
6240   return false;
6241 }
6242 
6243 /// ParseCleanupPad
6244 ///   ::= 'cleanuppad' within Parent ParamList
6245 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6246   Value *ParentPad = nullptr;
6247 
6248   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6249     return true;
6250 
6251   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6252       Lex.getKind() != lltok::LocalVarID)
6253     return TokError("expected scope value for cleanuppad");
6254 
6255   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6256     return true;
6257 
6258   SmallVector<Value *, 8> Args;
6259   if (ParseExceptionArgs(Args, PFS))
6260     return true;
6261 
6262   Inst = CleanupPadInst::Create(ParentPad, Args);
6263   return false;
6264 }
6265 
6266 //===----------------------------------------------------------------------===//
6267 // Unary Operators.
6268 //===----------------------------------------------------------------------===//
6269 
6270 /// ParseUnaryOp
6271 ///  ::= UnaryOp TypeAndValue ',' Value
6272 ///
6273 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6274 /// operand is allowed.
6275 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6276                             unsigned Opc, bool IsFP) {
6277   LocTy Loc; Value *LHS;
6278   if (ParseTypeAndValue(LHS, Loc, PFS))
6279     return true;
6280 
6281   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6282                     : LHS->getType()->isIntOrIntVectorTy();
6283 
6284   if (!Valid)
6285     return Error(Loc, "invalid operand type for instruction");
6286 
6287   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6288   return false;
6289 }
6290 
6291 /// ParseCallBr
6292 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6293 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6294 ///       '[' LabelList ']'
6295 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6296   LocTy CallLoc = Lex.getLoc();
6297   AttrBuilder RetAttrs, FnAttrs;
6298   std::vector<unsigned> FwdRefAttrGrps;
6299   LocTy NoBuiltinLoc;
6300   unsigned CC;
6301   Type *RetType = nullptr;
6302   LocTy RetTypeLoc;
6303   ValID CalleeID;
6304   SmallVector<ParamInfo, 16> ArgList;
6305   SmallVector<OperandBundleDef, 2> BundleList;
6306 
6307   BasicBlock *DefaultDest;
6308   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6309       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6310       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6311       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6312                                  NoBuiltinLoc) ||
6313       ParseOptionalOperandBundles(BundleList, PFS) ||
6314       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6315       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6316       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6317     return true;
6318 
6319   // Parse the destination list.
6320   SmallVector<BasicBlock *, 16> IndirectDests;
6321 
6322   if (Lex.getKind() != lltok::rsquare) {
6323     BasicBlock *DestBB;
6324     if (ParseTypeAndBasicBlock(DestBB, PFS))
6325       return true;
6326     IndirectDests.push_back(DestBB);
6327 
6328     while (EatIfPresent(lltok::comma)) {
6329       if (ParseTypeAndBasicBlock(DestBB, PFS))
6330         return true;
6331       IndirectDests.push_back(DestBB);
6332     }
6333   }
6334 
6335   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6336     return true;
6337 
6338   // If RetType is a non-function pointer type, then this is the short syntax
6339   // for the call, which means that RetType is just the return type.  Infer the
6340   // rest of the function argument types from the arguments that are present.
6341   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6342   if (!Ty) {
6343     // Pull out the types of all of the arguments...
6344     std::vector<Type *> ParamTypes;
6345     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6346       ParamTypes.push_back(ArgList[i].V->getType());
6347 
6348     if (!FunctionType::isValidReturnType(RetType))
6349       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6350 
6351     Ty = FunctionType::get(RetType, ParamTypes, false);
6352   }
6353 
6354   CalleeID.FTy = Ty;
6355 
6356   // Look up the callee.
6357   Value *Callee;
6358   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6359                           /*IsCall=*/true))
6360     return true;
6361 
6362   if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy())
6363     return Error(RetTypeLoc, "asm-goto outputs not supported");
6364 
6365   // Set up the Attribute for the function.
6366   SmallVector<Value *, 8> Args;
6367   SmallVector<AttributeSet, 8> ArgAttrs;
6368 
6369   // Loop through FunctionType's arguments and ensure they are specified
6370   // correctly.  Also, gather any parameter attributes.
6371   FunctionType::param_iterator I = Ty->param_begin();
6372   FunctionType::param_iterator E = Ty->param_end();
6373   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6374     Type *ExpectedTy = nullptr;
6375     if (I != E) {
6376       ExpectedTy = *I++;
6377     } else if (!Ty->isVarArg()) {
6378       return Error(ArgList[i].Loc, "too many arguments specified");
6379     }
6380 
6381     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6382       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6383                                        getTypeString(ExpectedTy) + "'");
6384     Args.push_back(ArgList[i].V);
6385     ArgAttrs.push_back(ArgList[i].Attrs);
6386   }
6387 
6388   if (I != E)
6389     return Error(CallLoc, "not enough parameters specified for call");
6390 
6391   if (FnAttrs.hasAlignmentAttr())
6392     return Error(CallLoc, "callbr instructions may not have an alignment");
6393 
6394   // Finish off the Attribute and check them
6395   AttributeList PAL =
6396       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6397                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6398 
6399   CallBrInst *CBI =
6400       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6401                          BundleList);
6402   CBI->setCallingConv(CC);
6403   CBI->setAttributes(PAL);
6404   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6405   Inst = CBI;
6406   return false;
6407 }
6408 
6409 //===----------------------------------------------------------------------===//
6410 // Binary Operators.
6411 //===----------------------------------------------------------------------===//
6412 
6413 /// ParseArithmetic
6414 ///  ::= ArithmeticOps TypeAndValue ',' Value
6415 ///
6416 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6417 /// operand is allowed.
6418 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6419                                unsigned Opc, bool IsFP) {
6420   LocTy Loc; Value *LHS, *RHS;
6421   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6422       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6423       ParseValue(LHS->getType(), RHS, PFS))
6424     return true;
6425 
6426   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6427                     : LHS->getType()->isIntOrIntVectorTy();
6428 
6429   if (!Valid)
6430     return Error(Loc, "invalid operand type for instruction");
6431 
6432   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6433   return false;
6434 }
6435 
6436 /// ParseLogical
6437 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6438 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6439                             unsigned Opc) {
6440   LocTy Loc; Value *LHS, *RHS;
6441   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6442       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6443       ParseValue(LHS->getType(), RHS, PFS))
6444     return true;
6445 
6446   if (!LHS->getType()->isIntOrIntVectorTy())
6447     return Error(Loc,"instruction requires integer or integer vector operands");
6448 
6449   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6450   return false;
6451 }
6452 
6453 /// ParseCompare
6454 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6455 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6456 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6457                             unsigned Opc) {
6458   // Parse the integer/fp comparison predicate.
6459   LocTy Loc;
6460   unsigned Pred;
6461   Value *LHS, *RHS;
6462   if (ParseCmpPredicate(Pred, Opc) ||
6463       ParseTypeAndValue(LHS, Loc, PFS) ||
6464       ParseToken(lltok::comma, "expected ',' after compare value") ||
6465       ParseValue(LHS->getType(), RHS, PFS))
6466     return true;
6467 
6468   if (Opc == Instruction::FCmp) {
6469     if (!LHS->getType()->isFPOrFPVectorTy())
6470       return Error(Loc, "fcmp requires floating point operands");
6471     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6472   } else {
6473     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6474     if (!LHS->getType()->isIntOrIntVectorTy() &&
6475         !LHS->getType()->isPtrOrPtrVectorTy())
6476       return Error(Loc, "icmp requires integer operands");
6477     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6478   }
6479   return false;
6480 }
6481 
6482 //===----------------------------------------------------------------------===//
6483 // Other Instructions.
6484 //===----------------------------------------------------------------------===//
6485 
6486 
6487 /// ParseCast
6488 ///   ::= CastOpc TypeAndValue 'to' Type
6489 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6490                          unsigned Opc) {
6491   LocTy Loc;
6492   Value *Op;
6493   Type *DestTy = nullptr;
6494   if (ParseTypeAndValue(Op, Loc, PFS) ||
6495       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6496       ParseType(DestTy))
6497     return true;
6498 
6499   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6500     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6501     return Error(Loc, "invalid cast opcode for cast from '" +
6502                  getTypeString(Op->getType()) + "' to '" +
6503                  getTypeString(DestTy) + "'");
6504   }
6505   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6506   return false;
6507 }
6508 
6509 /// ParseSelect
6510 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6511 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6512   LocTy Loc;
6513   Value *Op0, *Op1, *Op2;
6514   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6515       ParseToken(lltok::comma, "expected ',' after select condition") ||
6516       ParseTypeAndValue(Op1, PFS) ||
6517       ParseToken(lltok::comma, "expected ',' after select value") ||
6518       ParseTypeAndValue(Op2, PFS))
6519     return true;
6520 
6521   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6522     return Error(Loc, Reason);
6523 
6524   Inst = SelectInst::Create(Op0, Op1, Op2);
6525   return false;
6526 }
6527 
6528 /// ParseVA_Arg
6529 ///   ::= 'va_arg' TypeAndValue ',' Type
6530 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6531   Value *Op;
6532   Type *EltTy = nullptr;
6533   LocTy TypeLoc;
6534   if (ParseTypeAndValue(Op, PFS) ||
6535       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6536       ParseType(EltTy, TypeLoc))
6537     return true;
6538 
6539   if (!EltTy->isFirstClassType())
6540     return Error(TypeLoc, "va_arg requires operand with first class type");
6541 
6542   Inst = new VAArgInst(Op, EltTy);
6543   return false;
6544 }
6545 
6546 /// ParseExtractElement
6547 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6548 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6549   LocTy Loc;
6550   Value *Op0, *Op1;
6551   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6552       ParseToken(lltok::comma, "expected ',' after extract value") ||
6553       ParseTypeAndValue(Op1, PFS))
6554     return true;
6555 
6556   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6557     return Error(Loc, "invalid extractelement operands");
6558 
6559   Inst = ExtractElementInst::Create(Op0, Op1);
6560   return false;
6561 }
6562 
6563 /// ParseInsertElement
6564 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6565 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6566   LocTy Loc;
6567   Value *Op0, *Op1, *Op2;
6568   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6569       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6570       ParseTypeAndValue(Op1, PFS) ||
6571       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6572       ParseTypeAndValue(Op2, PFS))
6573     return true;
6574 
6575   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6576     return Error(Loc, "invalid insertelement operands");
6577 
6578   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6579   return false;
6580 }
6581 
6582 /// ParseShuffleVector
6583 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6584 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6585   LocTy Loc;
6586   Value *Op0, *Op1, *Op2;
6587   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6588       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6589       ParseTypeAndValue(Op1, PFS) ||
6590       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6591       ParseTypeAndValue(Op2, PFS))
6592     return true;
6593 
6594   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6595     return Error(Loc, "invalid shufflevector operands");
6596 
6597   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6598   return false;
6599 }
6600 
6601 /// ParsePHI
6602 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6603 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6604   Type *Ty = nullptr;  LocTy TypeLoc;
6605   Value *Op0, *Op1;
6606 
6607   if (ParseType(Ty, TypeLoc) ||
6608       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6609       ParseValue(Ty, Op0, PFS) ||
6610       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6611       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6612       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6613     return true;
6614 
6615   bool AteExtraComma = false;
6616   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6617 
6618   while (true) {
6619     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6620 
6621     if (!EatIfPresent(lltok::comma))
6622       break;
6623 
6624     if (Lex.getKind() == lltok::MetadataVar) {
6625       AteExtraComma = true;
6626       break;
6627     }
6628 
6629     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6630         ParseValue(Ty, Op0, PFS) ||
6631         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6632         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6633         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6634       return true;
6635   }
6636 
6637   if (!Ty->isFirstClassType())
6638     return Error(TypeLoc, "phi node must have first class type");
6639 
6640   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6641   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6642     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6643   Inst = PN;
6644   return AteExtraComma ? InstExtraComma : InstNormal;
6645 }
6646 
6647 /// ParseLandingPad
6648 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6649 /// Clause
6650 ///   ::= 'catch' TypeAndValue
6651 ///   ::= 'filter'
6652 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6653 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6654   Type *Ty = nullptr; LocTy TyLoc;
6655 
6656   if (ParseType(Ty, TyLoc))
6657     return true;
6658 
6659   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6660   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6661 
6662   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6663     LandingPadInst::ClauseType CT;
6664     if (EatIfPresent(lltok::kw_catch))
6665       CT = LandingPadInst::Catch;
6666     else if (EatIfPresent(lltok::kw_filter))
6667       CT = LandingPadInst::Filter;
6668     else
6669       return TokError("expected 'catch' or 'filter' clause type");
6670 
6671     Value *V;
6672     LocTy VLoc;
6673     if (ParseTypeAndValue(V, VLoc, PFS))
6674       return true;
6675 
6676     // A 'catch' type expects a non-array constant. A filter clause expects an
6677     // array constant.
6678     if (CT == LandingPadInst::Catch) {
6679       if (isa<ArrayType>(V->getType()))
6680         Error(VLoc, "'catch' clause has an invalid type");
6681     } else {
6682       if (!isa<ArrayType>(V->getType()))
6683         Error(VLoc, "'filter' clause has an invalid type");
6684     }
6685 
6686     Constant *CV = dyn_cast<Constant>(V);
6687     if (!CV)
6688       return Error(VLoc, "clause argument must be a constant");
6689     LP->addClause(CV);
6690   }
6691 
6692   Inst = LP.release();
6693   return false;
6694 }
6695 
6696 /// ParseCall
6697 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6698 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6699 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6700 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6701 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6702 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6703 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6704 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6705 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6706                          CallInst::TailCallKind TCK) {
6707   AttrBuilder RetAttrs, FnAttrs;
6708   std::vector<unsigned> FwdRefAttrGrps;
6709   LocTy BuiltinLoc;
6710   unsigned CallAddrSpace;
6711   unsigned CC;
6712   Type *RetType = nullptr;
6713   LocTy RetTypeLoc;
6714   ValID CalleeID;
6715   SmallVector<ParamInfo, 16> ArgList;
6716   SmallVector<OperandBundleDef, 2> BundleList;
6717   LocTy CallLoc = Lex.getLoc();
6718 
6719   if (TCK != CallInst::TCK_None &&
6720       ParseToken(lltok::kw_call,
6721                  "expected 'tail call', 'musttail call', or 'notail call'"))
6722     return true;
6723 
6724   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6725 
6726   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6727       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6728       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6729       ParseValID(CalleeID) ||
6730       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6731                          PFS.getFunction().isVarArg()) ||
6732       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6733       ParseOptionalOperandBundles(BundleList, PFS))
6734     return true;
6735 
6736   if (FMF.any() && !RetType->isFPOrFPVectorTy())
6737     return Error(CallLoc, "fast-math-flags specified for call without "
6738                           "floating-point scalar or vector return type");
6739 
6740   // If RetType is a non-function pointer type, then this is the short syntax
6741   // for the call, which means that RetType is just the return type.  Infer the
6742   // rest of the function argument types from the arguments that are present.
6743   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6744   if (!Ty) {
6745     // Pull out the types of all of the arguments...
6746     std::vector<Type*> ParamTypes;
6747     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6748       ParamTypes.push_back(ArgList[i].V->getType());
6749 
6750     if (!FunctionType::isValidReturnType(RetType))
6751       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6752 
6753     Ty = FunctionType::get(RetType, ParamTypes, false);
6754   }
6755 
6756   CalleeID.FTy = Ty;
6757 
6758   // Look up the callee.
6759   Value *Callee;
6760   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6761                           &PFS, /*IsCall=*/true))
6762     return true;
6763 
6764   // Set up the Attribute for the function.
6765   SmallVector<AttributeSet, 8> Attrs;
6766 
6767   SmallVector<Value*, 8> Args;
6768 
6769   // Loop through FunctionType's arguments and ensure they are specified
6770   // correctly.  Also, gather any parameter attributes.
6771   FunctionType::param_iterator I = Ty->param_begin();
6772   FunctionType::param_iterator E = Ty->param_end();
6773   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6774     Type *ExpectedTy = nullptr;
6775     if (I != E) {
6776       ExpectedTy = *I++;
6777     } else if (!Ty->isVarArg()) {
6778       return Error(ArgList[i].Loc, "too many arguments specified");
6779     }
6780 
6781     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6782       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6783                    getTypeString(ExpectedTy) + "'");
6784     Args.push_back(ArgList[i].V);
6785     Attrs.push_back(ArgList[i].Attrs);
6786   }
6787 
6788   if (I != E)
6789     return Error(CallLoc, "not enough parameters specified for call");
6790 
6791   if (FnAttrs.hasAlignmentAttr())
6792     return Error(CallLoc, "call instructions may not have an alignment");
6793 
6794   // Finish off the Attribute and check them
6795   AttributeList PAL =
6796       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6797                          AttributeSet::get(Context, RetAttrs), Attrs);
6798 
6799   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6800   CI->setTailCallKind(TCK);
6801   CI->setCallingConv(CC);
6802   if (FMF.any())
6803     CI->setFastMathFlags(FMF);
6804   CI->setAttributes(PAL);
6805   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6806   Inst = CI;
6807   return false;
6808 }
6809 
6810 //===----------------------------------------------------------------------===//
6811 // Memory Instructions.
6812 //===----------------------------------------------------------------------===//
6813 
6814 /// ParseAlloc
6815 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6816 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6817 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6818   Value *Size = nullptr;
6819   LocTy SizeLoc, TyLoc, ASLoc;
6820   unsigned Alignment = 0;
6821   unsigned AddrSpace = 0;
6822   Type *Ty = nullptr;
6823 
6824   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6825   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6826 
6827   if (ParseType(Ty, TyLoc)) return true;
6828 
6829   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6830     return Error(TyLoc, "invalid type for alloca");
6831 
6832   bool AteExtraComma = false;
6833   if (EatIfPresent(lltok::comma)) {
6834     if (Lex.getKind() == lltok::kw_align) {
6835       if (ParseOptionalAlignment(Alignment))
6836         return true;
6837       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6838         return true;
6839     } else if (Lex.getKind() == lltok::kw_addrspace) {
6840       ASLoc = Lex.getLoc();
6841       if (ParseOptionalAddrSpace(AddrSpace))
6842         return true;
6843     } else if (Lex.getKind() == lltok::MetadataVar) {
6844       AteExtraComma = true;
6845     } else {
6846       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6847         return true;
6848       if (EatIfPresent(lltok::comma)) {
6849         if (Lex.getKind() == lltok::kw_align) {
6850           if (ParseOptionalAlignment(Alignment))
6851             return true;
6852           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6853             return true;
6854         } else if (Lex.getKind() == lltok::kw_addrspace) {
6855           ASLoc = Lex.getLoc();
6856           if (ParseOptionalAddrSpace(AddrSpace))
6857             return true;
6858         } else if (Lex.getKind() == lltok::MetadataVar) {
6859           AteExtraComma = true;
6860         }
6861       }
6862     }
6863   }
6864 
6865   if (Size && !Size->getType()->isIntegerTy())
6866     return Error(SizeLoc, "element count must have integer type");
6867 
6868   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6869   AI->setUsedWithInAlloca(IsInAlloca);
6870   AI->setSwiftError(IsSwiftError);
6871   Inst = AI;
6872   return AteExtraComma ? InstExtraComma : InstNormal;
6873 }
6874 
6875 /// ParseLoad
6876 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6877 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6878 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6879 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6880   Value *Val; LocTy Loc;
6881   unsigned Alignment = 0;
6882   bool AteExtraComma = false;
6883   bool isAtomic = false;
6884   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6885   SyncScope::ID SSID = SyncScope::System;
6886 
6887   if (Lex.getKind() == lltok::kw_atomic) {
6888     isAtomic = true;
6889     Lex.Lex();
6890   }
6891 
6892   bool isVolatile = false;
6893   if (Lex.getKind() == lltok::kw_volatile) {
6894     isVolatile = true;
6895     Lex.Lex();
6896   }
6897 
6898   Type *Ty;
6899   LocTy ExplicitTypeLoc = Lex.getLoc();
6900   if (ParseType(Ty) ||
6901       ParseToken(lltok::comma, "expected comma after load's type") ||
6902       ParseTypeAndValue(Val, Loc, PFS) ||
6903       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6904       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6905     return true;
6906 
6907   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6908     return Error(Loc, "load operand must be a pointer to a first class type");
6909   if (isAtomic && !Alignment)
6910     return Error(Loc, "atomic load must have explicit non-zero alignment");
6911   if (Ordering == AtomicOrdering::Release ||
6912       Ordering == AtomicOrdering::AcquireRelease)
6913     return Error(Loc, "atomic load cannot use Release ordering");
6914 
6915   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6916     return Error(ExplicitTypeLoc,
6917                  "explicit pointee type doesn't match operand's pointee type");
6918 
6919   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6920   return AteExtraComma ? InstExtraComma : InstNormal;
6921 }
6922 
6923 /// ParseStore
6924 
6925 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6926 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6927 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6928 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6929   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6930   unsigned Alignment = 0;
6931   bool AteExtraComma = false;
6932   bool isAtomic = false;
6933   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6934   SyncScope::ID SSID = SyncScope::System;
6935 
6936   if (Lex.getKind() == lltok::kw_atomic) {
6937     isAtomic = true;
6938     Lex.Lex();
6939   }
6940 
6941   bool isVolatile = false;
6942   if (Lex.getKind() == lltok::kw_volatile) {
6943     isVolatile = true;
6944     Lex.Lex();
6945   }
6946 
6947   if (ParseTypeAndValue(Val, Loc, PFS) ||
6948       ParseToken(lltok::comma, "expected ',' after store operand") ||
6949       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6950       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6951       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6952     return true;
6953 
6954   if (!Ptr->getType()->isPointerTy())
6955     return Error(PtrLoc, "store operand must be a pointer");
6956   if (!Val->getType()->isFirstClassType())
6957     return Error(Loc, "store operand must be a first class value");
6958   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6959     return Error(Loc, "stored value and pointer type do not match");
6960   if (isAtomic && !Alignment)
6961     return Error(Loc, "atomic store must have explicit non-zero alignment");
6962   if (Ordering == AtomicOrdering::Acquire ||
6963       Ordering == AtomicOrdering::AcquireRelease)
6964     return Error(Loc, "atomic store cannot use Acquire ordering");
6965 
6966   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6967   return AteExtraComma ? InstExtraComma : InstNormal;
6968 }
6969 
6970 /// ParseCmpXchg
6971 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6972 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6973 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6974   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6975   bool AteExtraComma = false;
6976   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6977   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6978   SyncScope::ID SSID = SyncScope::System;
6979   bool isVolatile = false;
6980   bool isWeak = false;
6981 
6982   if (EatIfPresent(lltok::kw_weak))
6983     isWeak = true;
6984 
6985   if (EatIfPresent(lltok::kw_volatile))
6986     isVolatile = true;
6987 
6988   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6989       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6990       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6991       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6992       ParseTypeAndValue(New, NewLoc, PFS) ||
6993       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6994       ParseOrdering(FailureOrdering))
6995     return true;
6996 
6997   if (SuccessOrdering == AtomicOrdering::Unordered ||
6998       FailureOrdering == AtomicOrdering::Unordered)
6999     return TokError("cmpxchg cannot be unordered");
7000   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7001     return TokError("cmpxchg failure argument shall be no stronger than the "
7002                     "success argument");
7003   if (FailureOrdering == AtomicOrdering::Release ||
7004       FailureOrdering == AtomicOrdering::AcquireRelease)
7005     return TokError(
7006         "cmpxchg failure ordering cannot include release semantics");
7007   if (!Ptr->getType()->isPointerTy())
7008     return Error(PtrLoc, "cmpxchg operand must be a pointer");
7009   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7010     return Error(CmpLoc, "compare value and pointer type do not match");
7011   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7012     return Error(NewLoc, "new value and pointer type do not match");
7013   if (!New->getType()->isFirstClassType())
7014     return Error(NewLoc, "cmpxchg operand must be a first class value");
7015   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7016       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
7017   CXI->setVolatile(isVolatile);
7018   CXI->setWeak(isWeak);
7019   Inst = CXI;
7020   return AteExtraComma ? InstExtraComma : InstNormal;
7021 }
7022 
7023 /// ParseAtomicRMW
7024 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7025 ///       'singlethread'? AtomicOrdering
7026 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7027   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7028   bool AteExtraComma = false;
7029   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7030   SyncScope::ID SSID = SyncScope::System;
7031   bool isVolatile = false;
7032   bool IsFP = false;
7033   AtomicRMWInst::BinOp Operation;
7034 
7035   if (EatIfPresent(lltok::kw_volatile))
7036     isVolatile = true;
7037 
7038   switch (Lex.getKind()) {
7039   default: return TokError("expected binary operation in atomicrmw");
7040   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7041   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7042   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7043   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7044   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7045   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7046   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7047   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7048   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7049   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7050   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7051   case lltok::kw_fadd:
7052     Operation = AtomicRMWInst::FAdd;
7053     IsFP = true;
7054     break;
7055   case lltok::kw_fsub:
7056     Operation = AtomicRMWInst::FSub;
7057     IsFP = true;
7058     break;
7059   }
7060   Lex.Lex();  // Eat the operation.
7061 
7062   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7063       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7064       ParseTypeAndValue(Val, ValLoc, PFS) ||
7065       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7066     return true;
7067 
7068   if (Ordering == AtomicOrdering::Unordered)
7069     return TokError("atomicrmw cannot be unordered");
7070   if (!Ptr->getType()->isPointerTy())
7071     return Error(PtrLoc, "atomicrmw operand must be a pointer");
7072   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7073     return Error(ValLoc, "atomicrmw value and pointer type do not match");
7074 
7075   if (Operation == AtomicRMWInst::Xchg) {
7076     if (!Val->getType()->isIntegerTy() &&
7077         !Val->getType()->isFloatingPointTy()) {
7078       return Error(ValLoc, "atomicrmw " +
7079                    AtomicRMWInst::getOperationName(Operation) +
7080                    " operand must be an integer or floating point type");
7081     }
7082   } else if (IsFP) {
7083     if (!Val->getType()->isFloatingPointTy()) {
7084       return Error(ValLoc, "atomicrmw " +
7085                    AtomicRMWInst::getOperationName(Operation) +
7086                    " operand must be a floating point type");
7087     }
7088   } else {
7089     if (!Val->getType()->isIntegerTy()) {
7090       return Error(ValLoc, "atomicrmw " +
7091                    AtomicRMWInst::getOperationName(Operation) +
7092                    " operand must be an integer");
7093     }
7094   }
7095 
7096   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7097   if (Size < 8 || (Size & (Size - 1)))
7098     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7099                          " integer");
7100 
7101   AtomicRMWInst *RMWI =
7102     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7103   RMWI->setVolatile(isVolatile);
7104   Inst = RMWI;
7105   return AteExtraComma ? InstExtraComma : InstNormal;
7106 }
7107 
7108 /// ParseFence
7109 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7110 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7111   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7112   SyncScope::ID SSID = SyncScope::System;
7113   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7114     return true;
7115 
7116   if (Ordering == AtomicOrdering::Unordered)
7117     return TokError("fence cannot be unordered");
7118   if (Ordering == AtomicOrdering::Monotonic)
7119     return TokError("fence cannot be monotonic");
7120 
7121   Inst = new FenceInst(Context, Ordering, SSID);
7122   return InstNormal;
7123 }
7124 
7125 /// ParseGetElementPtr
7126 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7127 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7128   Value *Ptr = nullptr;
7129   Value *Val = nullptr;
7130   LocTy Loc, EltLoc;
7131 
7132   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7133 
7134   Type *Ty = nullptr;
7135   LocTy ExplicitTypeLoc = Lex.getLoc();
7136   if (ParseType(Ty) ||
7137       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7138       ParseTypeAndValue(Ptr, Loc, PFS))
7139     return true;
7140 
7141   Type *BaseType = Ptr->getType();
7142   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7143   if (!BasePointerType)
7144     return Error(Loc, "base of getelementptr must be a pointer");
7145 
7146   if (Ty != BasePointerType->getElementType())
7147     return Error(ExplicitTypeLoc,
7148                  "explicit pointee type doesn't match operand's pointee type");
7149 
7150   SmallVector<Value*, 16> Indices;
7151   bool AteExtraComma = false;
7152   // GEP returns a vector of pointers if at least one of parameters is a vector.
7153   // All vector parameters should have the same vector width.
7154   unsigned GEPWidth = BaseType->isVectorTy() ?
7155     BaseType->getVectorNumElements() : 0;
7156 
7157   while (EatIfPresent(lltok::comma)) {
7158     if (Lex.getKind() == lltok::MetadataVar) {
7159       AteExtraComma = true;
7160       break;
7161     }
7162     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7163     if (!Val->getType()->isIntOrIntVectorTy())
7164       return Error(EltLoc, "getelementptr index must be an integer");
7165 
7166     if (Val->getType()->isVectorTy()) {
7167       unsigned ValNumEl = Val->getType()->getVectorNumElements();
7168       if (GEPWidth && GEPWidth != ValNumEl)
7169         return Error(EltLoc,
7170           "getelementptr vector index has a wrong number of elements");
7171       GEPWidth = ValNumEl;
7172     }
7173     Indices.push_back(Val);
7174   }
7175 
7176   SmallPtrSet<Type*, 4> Visited;
7177   if (!Indices.empty() && !Ty->isSized(&Visited))
7178     return Error(Loc, "base element of getelementptr must be sized");
7179 
7180   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7181     return Error(Loc, "invalid getelementptr indices");
7182   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7183   if (InBounds)
7184     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7185   return AteExtraComma ? InstExtraComma : InstNormal;
7186 }
7187 
7188 /// ParseExtractValue
7189 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7190 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7191   Value *Val; LocTy Loc;
7192   SmallVector<unsigned, 4> Indices;
7193   bool AteExtraComma;
7194   if (ParseTypeAndValue(Val, Loc, PFS) ||
7195       ParseIndexList(Indices, AteExtraComma))
7196     return true;
7197 
7198   if (!Val->getType()->isAggregateType())
7199     return Error(Loc, "extractvalue operand must be aggregate type");
7200 
7201   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7202     return Error(Loc, "invalid indices for extractvalue");
7203   Inst = ExtractValueInst::Create(Val, Indices);
7204   return AteExtraComma ? InstExtraComma : InstNormal;
7205 }
7206 
7207 /// ParseInsertValue
7208 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7209 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7210   Value *Val0, *Val1; LocTy Loc0, Loc1;
7211   SmallVector<unsigned, 4> Indices;
7212   bool AteExtraComma;
7213   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7214       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7215       ParseTypeAndValue(Val1, Loc1, PFS) ||
7216       ParseIndexList(Indices, AteExtraComma))
7217     return true;
7218 
7219   if (!Val0->getType()->isAggregateType())
7220     return Error(Loc0, "insertvalue operand must be aggregate type");
7221 
7222   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7223   if (!IndexedType)
7224     return Error(Loc0, "invalid indices for insertvalue");
7225   if (IndexedType != Val1->getType())
7226     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7227                            getTypeString(Val1->getType()) + "' instead of '" +
7228                            getTypeString(IndexedType) + "'");
7229   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7230   return AteExtraComma ? InstExtraComma : InstNormal;
7231 }
7232 
7233 //===----------------------------------------------------------------------===//
7234 // Embedded metadata.
7235 //===----------------------------------------------------------------------===//
7236 
7237 /// ParseMDNodeVector
7238 ///   ::= { Element (',' Element)* }
7239 /// Element
7240 ///   ::= 'null' | TypeAndValue
7241 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7242   if (ParseToken(lltok::lbrace, "expected '{' here"))
7243     return true;
7244 
7245   // Check for an empty list.
7246   if (EatIfPresent(lltok::rbrace))
7247     return false;
7248 
7249   do {
7250     // Null is a special case since it is typeless.
7251     if (EatIfPresent(lltok::kw_null)) {
7252       Elts.push_back(nullptr);
7253       continue;
7254     }
7255 
7256     Metadata *MD;
7257     if (ParseMetadata(MD, nullptr))
7258       return true;
7259     Elts.push_back(MD);
7260   } while (EatIfPresent(lltok::comma));
7261 
7262   return ParseToken(lltok::rbrace, "expected end of metadata node");
7263 }
7264 
7265 //===----------------------------------------------------------------------===//
7266 // Use-list order directives.
7267 //===----------------------------------------------------------------------===//
7268 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7269                                 SMLoc Loc) {
7270   if (V->use_empty())
7271     return Error(Loc, "value has no uses");
7272 
7273   unsigned NumUses = 0;
7274   SmallDenseMap<const Use *, unsigned, 16> Order;
7275   for (const Use &U : V->uses()) {
7276     if (++NumUses > Indexes.size())
7277       break;
7278     Order[&U] = Indexes[NumUses - 1];
7279   }
7280   if (NumUses < 2)
7281     return Error(Loc, "value only has one use");
7282   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7283     return Error(Loc,
7284                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7285 
7286   V->sortUseList([&](const Use &L, const Use &R) {
7287     return Order.lookup(&L) < Order.lookup(&R);
7288   });
7289   return false;
7290 }
7291 
7292 /// ParseUseListOrderIndexes
7293 ///   ::= '{' uint32 (',' uint32)+ '}'
7294 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7295   SMLoc Loc = Lex.getLoc();
7296   if (ParseToken(lltok::lbrace, "expected '{' here"))
7297     return true;
7298   if (Lex.getKind() == lltok::rbrace)
7299     return Lex.Error("expected non-empty list of uselistorder indexes");
7300 
7301   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7302   // indexes should be distinct numbers in the range [0, size-1], and should
7303   // not be in order.
7304   unsigned Offset = 0;
7305   unsigned Max = 0;
7306   bool IsOrdered = true;
7307   assert(Indexes.empty() && "Expected empty order vector");
7308   do {
7309     unsigned Index;
7310     if (ParseUInt32(Index))
7311       return true;
7312 
7313     // Update consistency checks.
7314     Offset += Index - Indexes.size();
7315     Max = std::max(Max, Index);
7316     IsOrdered &= Index == Indexes.size();
7317 
7318     Indexes.push_back(Index);
7319   } while (EatIfPresent(lltok::comma));
7320 
7321   if (ParseToken(lltok::rbrace, "expected '}' here"))
7322     return true;
7323 
7324   if (Indexes.size() < 2)
7325     return Error(Loc, "expected >= 2 uselistorder indexes");
7326   if (Offset != 0 || Max >= Indexes.size())
7327     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7328   if (IsOrdered)
7329     return Error(Loc, "expected uselistorder indexes to change the order");
7330 
7331   return false;
7332 }
7333 
7334 /// ParseUseListOrder
7335 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7336 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7337   SMLoc Loc = Lex.getLoc();
7338   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7339     return true;
7340 
7341   Value *V;
7342   SmallVector<unsigned, 16> Indexes;
7343   if (ParseTypeAndValue(V, PFS) ||
7344       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7345       ParseUseListOrderIndexes(Indexes))
7346     return true;
7347 
7348   return sortUseListOrder(V, Indexes, Loc);
7349 }
7350 
7351 /// ParseUseListOrderBB
7352 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7353 bool LLParser::ParseUseListOrderBB() {
7354   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7355   SMLoc Loc = Lex.getLoc();
7356   Lex.Lex();
7357 
7358   ValID Fn, Label;
7359   SmallVector<unsigned, 16> Indexes;
7360   if (ParseValID(Fn) ||
7361       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7362       ParseValID(Label) ||
7363       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7364       ParseUseListOrderIndexes(Indexes))
7365     return true;
7366 
7367   // Check the function.
7368   GlobalValue *GV;
7369   if (Fn.Kind == ValID::t_GlobalName)
7370     GV = M->getNamedValue(Fn.StrVal);
7371   else if (Fn.Kind == ValID::t_GlobalID)
7372     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7373   else
7374     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7375   if (!GV)
7376     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7377   auto *F = dyn_cast<Function>(GV);
7378   if (!F)
7379     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7380   if (F->isDeclaration())
7381     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7382 
7383   // Check the basic block.
7384   if (Label.Kind == ValID::t_LocalID)
7385     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7386   if (Label.Kind != ValID::t_LocalName)
7387     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7388   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7389   if (!V)
7390     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7391   if (!isa<BasicBlock>(V))
7392     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7393 
7394   return sortUseListOrder(V, Indexes, Loc);
7395 }
7396 
7397 /// ModuleEntry
7398 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7399 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7400 bool LLParser::ParseModuleEntry(unsigned ID) {
7401   assert(Lex.getKind() == lltok::kw_module);
7402   Lex.Lex();
7403 
7404   std::string Path;
7405   if (ParseToken(lltok::colon, "expected ':' here") ||
7406       ParseToken(lltok::lparen, "expected '(' here") ||
7407       ParseToken(lltok::kw_path, "expected 'path' here") ||
7408       ParseToken(lltok::colon, "expected ':' here") ||
7409       ParseStringConstant(Path) ||
7410       ParseToken(lltok::comma, "expected ',' here") ||
7411       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7412       ParseToken(lltok::colon, "expected ':' here") ||
7413       ParseToken(lltok::lparen, "expected '(' here"))
7414     return true;
7415 
7416   ModuleHash Hash;
7417   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7418       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7419       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7420       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7421       ParseUInt32(Hash[4]))
7422     return true;
7423 
7424   if (ParseToken(lltok::rparen, "expected ')' here") ||
7425       ParseToken(lltok::rparen, "expected ')' here"))
7426     return true;
7427 
7428   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7429   ModuleIdMap[ID] = ModuleEntry->first();
7430 
7431   return false;
7432 }
7433 
7434 /// TypeIdEntry
7435 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7436 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7437   assert(Lex.getKind() == lltok::kw_typeid);
7438   Lex.Lex();
7439 
7440   std::string Name;
7441   if (ParseToken(lltok::colon, "expected ':' here") ||
7442       ParseToken(lltok::lparen, "expected '(' here") ||
7443       ParseToken(lltok::kw_name, "expected 'name' here") ||
7444       ParseToken(lltok::colon, "expected ':' here") ||
7445       ParseStringConstant(Name))
7446     return true;
7447 
7448   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7449   if (ParseToken(lltok::comma, "expected ',' here") ||
7450       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7451     return true;
7452 
7453   // Check if this ID was forward referenced, and if so, update the
7454   // corresponding GUIDs.
7455   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7456   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7457     for (auto TIDRef : FwdRefTIDs->second) {
7458       assert(!*TIDRef.first &&
7459              "Forward referenced type id GUID expected to be 0");
7460       *TIDRef.first = GlobalValue::getGUID(Name);
7461     }
7462     ForwardRefTypeIds.erase(FwdRefTIDs);
7463   }
7464 
7465   return false;
7466 }
7467 
7468 /// TypeIdSummary
7469 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7470 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7471   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7472       ParseToken(lltok::colon, "expected ':' here") ||
7473       ParseToken(lltok::lparen, "expected '(' here") ||
7474       ParseTypeTestResolution(TIS.TTRes))
7475     return true;
7476 
7477   if (EatIfPresent(lltok::comma)) {
7478     // Expect optional wpdResolutions field
7479     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7480       return true;
7481   }
7482 
7483   if (ParseToken(lltok::rparen, "expected ')' here"))
7484     return true;
7485 
7486   return false;
7487 }
7488 
7489 /// TypeTestResolution
7490 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7491 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7492 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7493 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7494 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7495 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7496   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7497       ParseToken(lltok::colon, "expected ':' here") ||
7498       ParseToken(lltok::lparen, "expected '(' here") ||
7499       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7500       ParseToken(lltok::colon, "expected ':' here"))
7501     return true;
7502 
7503   switch (Lex.getKind()) {
7504   case lltok::kw_unsat:
7505     TTRes.TheKind = TypeTestResolution::Unsat;
7506     break;
7507   case lltok::kw_byteArray:
7508     TTRes.TheKind = TypeTestResolution::ByteArray;
7509     break;
7510   case lltok::kw_inline:
7511     TTRes.TheKind = TypeTestResolution::Inline;
7512     break;
7513   case lltok::kw_single:
7514     TTRes.TheKind = TypeTestResolution::Single;
7515     break;
7516   case lltok::kw_allOnes:
7517     TTRes.TheKind = TypeTestResolution::AllOnes;
7518     break;
7519   default:
7520     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7521   }
7522   Lex.Lex();
7523 
7524   if (ParseToken(lltok::comma, "expected ',' here") ||
7525       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7526       ParseToken(lltok::colon, "expected ':' here") ||
7527       ParseUInt32(TTRes.SizeM1BitWidth))
7528     return true;
7529 
7530   // Parse optional fields
7531   while (EatIfPresent(lltok::comma)) {
7532     switch (Lex.getKind()) {
7533     case lltok::kw_alignLog2:
7534       Lex.Lex();
7535       if (ParseToken(lltok::colon, "expected ':'") ||
7536           ParseUInt64(TTRes.AlignLog2))
7537         return true;
7538       break;
7539     case lltok::kw_sizeM1:
7540       Lex.Lex();
7541       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7542         return true;
7543       break;
7544     case lltok::kw_bitMask: {
7545       unsigned Val;
7546       Lex.Lex();
7547       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7548         return true;
7549       assert(Val <= 0xff);
7550       TTRes.BitMask = (uint8_t)Val;
7551       break;
7552     }
7553     case lltok::kw_inlineBits:
7554       Lex.Lex();
7555       if (ParseToken(lltok::colon, "expected ':'") ||
7556           ParseUInt64(TTRes.InlineBits))
7557         return true;
7558       break;
7559     default:
7560       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7561     }
7562   }
7563 
7564   if (ParseToken(lltok::rparen, "expected ')' here"))
7565     return true;
7566 
7567   return false;
7568 }
7569 
7570 /// OptionalWpdResolutions
7571 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7572 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7573 bool LLParser::ParseOptionalWpdResolutions(
7574     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7575   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7576       ParseToken(lltok::colon, "expected ':' here") ||
7577       ParseToken(lltok::lparen, "expected '(' here"))
7578     return true;
7579 
7580   do {
7581     uint64_t Offset;
7582     WholeProgramDevirtResolution WPDRes;
7583     if (ParseToken(lltok::lparen, "expected '(' here") ||
7584         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7585         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7586         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7587         ParseToken(lltok::rparen, "expected ')' here"))
7588       return true;
7589     WPDResMap[Offset] = WPDRes;
7590   } while (EatIfPresent(lltok::comma));
7591 
7592   if (ParseToken(lltok::rparen, "expected ')' here"))
7593     return true;
7594 
7595   return false;
7596 }
7597 
7598 /// WpdRes
7599 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7600 ///         [',' OptionalResByArg]? ')'
7601 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7602 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7603 ///         [',' OptionalResByArg]? ')'
7604 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7605 ///         [',' OptionalResByArg]? ')'
7606 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7607   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7608       ParseToken(lltok::colon, "expected ':' here") ||
7609       ParseToken(lltok::lparen, "expected '(' here") ||
7610       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7611       ParseToken(lltok::colon, "expected ':' here"))
7612     return true;
7613 
7614   switch (Lex.getKind()) {
7615   case lltok::kw_indir:
7616     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7617     break;
7618   case lltok::kw_singleImpl:
7619     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7620     break;
7621   case lltok::kw_branchFunnel:
7622     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7623     break;
7624   default:
7625     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7626   }
7627   Lex.Lex();
7628 
7629   // Parse optional fields
7630   while (EatIfPresent(lltok::comma)) {
7631     switch (Lex.getKind()) {
7632     case lltok::kw_singleImplName:
7633       Lex.Lex();
7634       if (ParseToken(lltok::colon, "expected ':' here") ||
7635           ParseStringConstant(WPDRes.SingleImplName))
7636         return true;
7637       break;
7638     case lltok::kw_resByArg:
7639       if (ParseOptionalResByArg(WPDRes.ResByArg))
7640         return true;
7641       break;
7642     default:
7643       return Error(Lex.getLoc(),
7644                    "expected optional WholeProgramDevirtResolution field");
7645     }
7646   }
7647 
7648   if (ParseToken(lltok::rparen, "expected ')' here"))
7649     return true;
7650 
7651   return false;
7652 }
7653 
7654 /// OptionalResByArg
7655 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7656 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7657 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7658 ///                  'virtualConstProp' )
7659 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7660 ///                [',' 'bit' ':' UInt32]? ')'
7661 bool LLParser::ParseOptionalResByArg(
7662     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7663         &ResByArg) {
7664   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7665       ParseToken(lltok::colon, "expected ':' here") ||
7666       ParseToken(lltok::lparen, "expected '(' here"))
7667     return true;
7668 
7669   do {
7670     std::vector<uint64_t> Args;
7671     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7672         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7673         ParseToken(lltok::colon, "expected ':' here") ||
7674         ParseToken(lltok::lparen, "expected '(' here") ||
7675         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7676         ParseToken(lltok::colon, "expected ':' here"))
7677       return true;
7678 
7679     WholeProgramDevirtResolution::ByArg ByArg;
7680     switch (Lex.getKind()) {
7681     case lltok::kw_indir:
7682       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7683       break;
7684     case lltok::kw_uniformRetVal:
7685       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7686       break;
7687     case lltok::kw_uniqueRetVal:
7688       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7689       break;
7690     case lltok::kw_virtualConstProp:
7691       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7692       break;
7693     default:
7694       return Error(Lex.getLoc(),
7695                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7696     }
7697     Lex.Lex();
7698 
7699     // Parse optional fields
7700     while (EatIfPresent(lltok::comma)) {
7701       switch (Lex.getKind()) {
7702       case lltok::kw_info:
7703         Lex.Lex();
7704         if (ParseToken(lltok::colon, "expected ':' here") ||
7705             ParseUInt64(ByArg.Info))
7706           return true;
7707         break;
7708       case lltok::kw_byte:
7709         Lex.Lex();
7710         if (ParseToken(lltok::colon, "expected ':' here") ||
7711             ParseUInt32(ByArg.Byte))
7712           return true;
7713         break;
7714       case lltok::kw_bit:
7715         Lex.Lex();
7716         if (ParseToken(lltok::colon, "expected ':' here") ||
7717             ParseUInt32(ByArg.Bit))
7718           return true;
7719         break;
7720       default:
7721         return Error(Lex.getLoc(),
7722                      "expected optional whole program devirt field");
7723       }
7724     }
7725 
7726     if (ParseToken(lltok::rparen, "expected ')' here"))
7727       return true;
7728 
7729     ResByArg[Args] = ByArg;
7730   } while (EatIfPresent(lltok::comma));
7731 
7732   if (ParseToken(lltok::rparen, "expected ')' here"))
7733     return true;
7734 
7735   return false;
7736 }
7737 
7738 /// OptionalResByArg
7739 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7740 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7741   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7742       ParseToken(lltok::colon, "expected ':' here") ||
7743       ParseToken(lltok::lparen, "expected '(' here"))
7744     return true;
7745 
7746   do {
7747     uint64_t Val;
7748     if (ParseUInt64(Val))
7749       return true;
7750     Args.push_back(Val);
7751   } while (EatIfPresent(lltok::comma));
7752 
7753   if (ParseToken(lltok::rparen, "expected ')' here"))
7754     return true;
7755 
7756   return false;
7757 }
7758 
7759 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7760 
7761 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7762   bool ReadOnly = Fwd->isReadOnly();
7763   *Fwd = Resolved;
7764   if (ReadOnly)
7765     Fwd->setReadOnly();
7766 }
7767 
7768 /// Stores the given Name/GUID and associated summary into the Index.
7769 /// Also updates any forward references to the associated entry ID.
7770 void LLParser::AddGlobalValueToIndex(
7771     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7772     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7773   // First create the ValueInfo utilizing the Name or GUID.
7774   ValueInfo VI;
7775   if (GUID != 0) {
7776     assert(Name.empty());
7777     VI = Index->getOrInsertValueInfo(GUID);
7778   } else {
7779     assert(!Name.empty());
7780     if (M) {
7781       auto *GV = M->getNamedValue(Name);
7782       assert(GV);
7783       VI = Index->getOrInsertValueInfo(GV);
7784     } else {
7785       assert(
7786           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7787           "Need a source_filename to compute GUID for local");
7788       GUID = GlobalValue::getGUID(
7789           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7790       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7791     }
7792   }
7793 
7794   // Resolve forward references from calls/refs
7795   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7796   if (FwdRefVIs != ForwardRefValueInfos.end()) {
7797     for (auto VIRef : FwdRefVIs->second) {
7798       assert(VIRef.first->getRef() == FwdVIRef &&
7799              "Forward referenced ValueInfo expected to be empty");
7800       resolveFwdRef(VIRef.first, VI);
7801     }
7802     ForwardRefValueInfos.erase(FwdRefVIs);
7803   }
7804 
7805   // Resolve forward references from aliases
7806   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7807   if (FwdRefAliasees != ForwardRefAliasees.end()) {
7808     for (auto AliaseeRef : FwdRefAliasees->second) {
7809       assert(!AliaseeRef.first->hasAliasee() &&
7810              "Forward referencing alias already has aliasee");
7811       assert(Summary && "Aliasee must be a definition");
7812       AliaseeRef.first->setAliasee(VI, Summary.get());
7813     }
7814     ForwardRefAliasees.erase(FwdRefAliasees);
7815   }
7816 
7817   // Add the summary if one was provided.
7818   if (Summary)
7819     Index->addGlobalValueSummary(VI, std::move(Summary));
7820 
7821   // Save the associated ValueInfo for use in later references by ID.
7822   if (ID == NumberedValueInfos.size())
7823     NumberedValueInfos.push_back(VI);
7824   else {
7825     // Handle non-continuous numbers (to make test simplification easier).
7826     if (ID > NumberedValueInfos.size())
7827       NumberedValueInfos.resize(ID + 1);
7828     NumberedValueInfos[ID] = VI;
7829   }
7830 }
7831 
7832 /// ParseGVEntry
7833 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7834 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7835 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
7836 bool LLParser::ParseGVEntry(unsigned ID) {
7837   assert(Lex.getKind() == lltok::kw_gv);
7838   Lex.Lex();
7839 
7840   if (ParseToken(lltok::colon, "expected ':' here") ||
7841       ParseToken(lltok::lparen, "expected '(' here"))
7842     return true;
7843 
7844   std::string Name;
7845   GlobalValue::GUID GUID = 0;
7846   switch (Lex.getKind()) {
7847   case lltok::kw_name:
7848     Lex.Lex();
7849     if (ParseToken(lltok::colon, "expected ':' here") ||
7850         ParseStringConstant(Name))
7851       return true;
7852     // Can't create GUID/ValueInfo until we have the linkage.
7853     break;
7854   case lltok::kw_guid:
7855     Lex.Lex();
7856     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
7857       return true;
7858     break;
7859   default:
7860     return Error(Lex.getLoc(), "expected name or guid tag");
7861   }
7862 
7863   if (!EatIfPresent(lltok::comma)) {
7864     // No summaries. Wrap up.
7865     if (ParseToken(lltok::rparen, "expected ')' here"))
7866       return true;
7867     // This was created for a call to an external or indirect target.
7868     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
7869     // created for indirect calls with VP. A Name with no GUID came from
7870     // an external definition. We pass ExternalLinkage since that is only
7871     // used when the GUID must be computed from Name, and in that case
7872     // the symbol must have external linkage.
7873     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
7874                           nullptr);
7875     return false;
7876   }
7877 
7878   // Have a list of summaries
7879   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
7880       ParseToken(lltok::colon, "expected ':' here"))
7881     return true;
7882 
7883   do {
7884     if (ParseToken(lltok::lparen, "expected '(' here"))
7885       return true;
7886     switch (Lex.getKind()) {
7887     case lltok::kw_function:
7888       if (ParseFunctionSummary(Name, GUID, ID))
7889         return true;
7890       break;
7891     case lltok::kw_variable:
7892       if (ParseVariableSummary(Name, GUID, ID))
7893         return true;
7894       break;
7895     case lltok::kw_alias:
7896       if (ParseAliasSummary(Name, GUID, ID))
7897         return true;
7898       break;
7899     default:
7900       return Error(Lex.getLoc(), "expected summary type");
7901     }
7902     if (ParseToken(lltok::rparen, "expected ')' here"))
7903       return true;
7904   } while (EatIfPresent(lltok::comma));
7905 
7906   if (ParseToken(lltok::rparen, "expected ')' here"))
7907     return true;
7908 
7909   return false;
7910 }
7911 
7912 /// FunctionSummary
7913 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7914 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
7915 ///         [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
7916 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
7917                                     unsigned ID) {
7918   assert(Lex.getKind() == lltok::kw_function);
7919   Lex.Lex();
7920 
7921   StringRef ModulePath;
7922   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7923       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7924       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
7925   unsigned InstCount;
7926   std::vector<FunctionSummary::EdgeTy> Calls;
7927   FunctionSummary::TypeIdInfo TypeIdInfo;
7928   std::vector<ValueInfo> Refs;
7929   // Default is all-zeros (conservative values).
7930   FunctionSummary::FFlags FFlags = {};
7931   if (ParseToken(lltok::colon, "expected ':' here") ||
7932       ParseToken(lltok::lparen, "expected '(' here") ||
7933       ParseModuleReference(ModulePath) ||
7934       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7935       ParseToken(lltok::comma, "expected ',' here") ||
7936       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
7937       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
7938     return true;
7939 
7940   // Parse optional fields
7941   while (EatIfPresent(lltok::comma)) {
7942     switch (Lex.getKind()) {
7943     case lltok::kw_funcFlags:
7944       if (ParseOptionalFFlags(FFlags))
7945         return true;
7946       break;
7947     case lltok::kw_calls:
7948       if (ParseOptionalCalls(Calls))
7949         return true;
7950       break;
7951     case lltok::kw_typeIdInfo:
7952       if (ParseOptionalTypeIdInfo(TypeIdInfo))
7953         return true;
7954       break;
7955     case lltok::kw_refs:
7956       if (ParseOptionalRefs(Refs))
7957         return true;
7958       break;
7959     default:
7960       return Error(Lex.getLoc(), "expected optional function summary field");
7961     }
7962   }
7963 
7964   if (ParseToken(lltok::rparen, "expected ')' here"))
7965     return true;
7966 
7967   auto FS = llvm::make_unique<FunctionSummary>(
7968       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
7969       std::move(Calls), std::move(TypeIdInfo.TypeTests),
7970       std::move(TypeIdInfo.TypeTestAssumeVCalls),
7971       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
7972       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
7973       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
7974 
7975   FS->setModulePath(ModulePath);
7976 
7977   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7978                         ID, std::move(FS));
7979 
7980   return false;
7981 }
7982 
7983 /// VariableSummary
7984 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7985 ///         [',' OptionalRefs]? ')'
7986 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
7987                                     unsigned ID) {
7988   assert(Lex.getKind() == lltok::kw_variable);
7989   Lex.Lex();
7990 
7991   StringRef ModulePath;
7992   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7993       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7994       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
7995   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false);
7996   std::vector<ValueInfo> Refs;
7997   if (ParseToken(lltok::colon, "expected ':' here") ||
7998       ParseToken(lltok::lparen, "expected '(' here") ||
7999       ParseModuleReference(ModulePath) ||
8000       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8001       ParseToken(lltok::comma, "expected ',' here") ||
8002       ParseGVarFlags(GVarFlags))
8003     return true;
8004 
8005   // Parse optional refs field
8006   if (EatIfPresent(lltok::comma)) {
8007     if (ParseOptionalRefs(Refs))
8008       return true;
8009   }
8010 
8011   if (ParseToken(lltok::rparen, "expected ')' here"))
8012     return true;
8013 
8014   auto GS =
8015       llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8016 
8017   GS->setModulePath(ModulePath);
8018 
8019   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8020                         ID, std::move(GS));
8021 
8022   return false;
8023 }
8024 
8025 /// AliasSummary
8026 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8027 ///         'aliasee' ':' GVReference ')'
8028 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8029                                  unsigned ID) {
8030   assert(Lex.getKind() == lltok::kw_alias);
8031   LocTy Loc = Lex.getLoc();
8032   Lex.Lex();
8033 
8034   StringRef ModulePath;
8035   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8036       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8037       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8038   if (ParseToken(lltok::colon, "expected ':' here") ||
8039       ParseToken(lltok::lparen, "expected '(' here") ||
8040       ParseModuleReference(ModulePath) ||
8041       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8042       ParseToken(lltok::comma, "expected ',' here") ||
8043       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8044       ParseToken(lltok::colon, "expected ':' here"))
8045     return true;
8046 
8047   ValueInfo AliaseeVI;
8048   unsigned GVId;
8049   if (ParseGVReference(AliaseeVI, GVId))
8050     return true;
8051 
8052   if (ParseToken(lltok::rparen, "expected ')' here"))
8053     return true;
8054 
8055   auto AS = llvm::make_unique<AliasSummary>(GVFlags);
8056 
8057   AS->setModulePath(ModulePath);
8058 
8059   // Record forward reference if the aliasee is not parsed yet.
8060   if (AliaseeVI.getRef() == FwdVIRef) {
8061     auto FwdRef = ForwardRefAliasees.insert(
8062         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8063     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8064   } else {
8065     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8066     assert(Summary && "Aliasee must be a definition");
8067     AS->setAliasee(AliaseeVI, Summary);
8068   }
8069 
8070   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8071                         ID, std::move(AS));
8072 
8073   return false;
8074 }
8075 
8076 /// Flag
8077 ///   ::= [0|1]
8078 bool LLParser::ParseFlag(unsigned &Val) {
8079   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8080     return TokError("expected integer");
8081   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8082   Lex.Lex();
8083   return false;
8084 }
8085 
8086 /// OptionalFFlags
8087 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8088 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8089 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8090 ///        [',' 'noInline' ':' Flag]? ')'
8091 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8092   assert(Lex.getKind() == lltok::kw_funcFlags);
8093   Lex.Lex();
8094 
8095   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8096       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8097     return true;
8098 
8099   do {
8100     unsigned Val = 0;
8101     switch (Lex.getKind()) {
8102     case lltok::kw_readNone:
8103       Lex.Lex();
8104       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8105         return true;
8106       FFlags.ReadNone = Val;
8107       break;
8108     case lltok::kw_readOnly:
8109       Lex.Lex();
8110       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8111         return true;
8112       FFlags.ReadOnly = Val;
8113       break;
8114     case lltok::kw_noRecurse:
8115       Lex.Lex();
8116       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8117         return true;
8118       FFlags.NoRecurse = Val;
8119       break;
8120     case lltok::kw_returnDoesNotAlias:
8121       Lex.Lex();
8122       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8123         return true;
8124       FFlags.ReturnDoesNotAlias = Val;
8125       break;
8126     case lltok::kw_noInline:
8127       Lex.Lex();
8128       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8129         return true;
8130       FFlags.NoInline = Val;
8131       break;
8132     default:
8133       return Error(Lex.getLoc(), "expected function flag type");
8134     }
8135   } while (EatIfPresent(lltok::comma));
8136 
8137   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8138     return true;
8139 
8140   return false;
8141 }
8142 
8143 /// OptionalCalls
8144 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8145 /// Call ::= '(' 'callee' ':' GVReference
8146 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8147 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8148   assert(Lex.getKind() == lltok::kw_calls);
8149   Lex.Lex();
8150 
8151   if (ParseToken(lltok::colon, "expected ':' in calls") |
8152       ParseToken(lltok::lparen, "expected '(' in calls"))
8153     return true;
8154 
8155   IdToIndexMapType IdToIndexMap;
8156   // Parse each call edge
8157   do {
8158     ValueInfo VI;
8159     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8160         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8161         ParseToken(lltok::colon, "expected ':'"))
8162       return true;
8163 
8164     LocTy Loc = Lex.getLoc();
8165     unsigned GVId;
8166     if (ParseGVReference(VI, GVId))
8167       return true;
8168 
8169     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8170     unsigned RelBF = 0;
8171     if (EatIfPresent(lltok::comma)) {
8172       // Expect either hotness or relbf
8173       if (EatIfPresent(lltok::kw_hotness)) {
8174         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8175           return true;
8176       } else {
8177         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8178             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8179           return true;
8180       }
8181     }
8182     // Keep track of the Call array index needing a forward reference.
8183     // We will save the location of the ValueInfo needing an update, but
8184     // can only do so once the std::vector is finalized.
8185     if (VI.getRef() == FwdVIRef)
8186       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8187     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8188 
8189     if (ParseToken(lltok::rparen, "expected ')' in call"))
8190       return true;
8191   } while (EatIfPresent(lltok::comma));
8192 
8193   // Now that the Calls vector is finalized, it is safe to save the locations
8194   // of any forward GV references that need updating later.
8195   for (auto I : IdToIndexMap) {
8196     for (auto P : I.second) {
8197       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8198              "Forward referenced ValueInfo expected to be empty");
8199       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8200           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8201       FwdRef.first->second.push_back(
8202           std::make_pair(&Calls[P.first].first, P.second));
8203     }
8204   }
8205 
8206   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8207     return true;
8208 
8209   return false;
8210 }
8211 
8212 /// Hotness
8213 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8214 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8215   switch (Lex.getKind()) {
8216   case lltok::kw_unknown:
8217     Hotness = CalleeInfo::HotnessType::Unknown;
8218     break;
8219   case lltok::kw_cold:
8220     Hotness = CalleeInfo::HotnessType::Cold;
8221     break;
8222   case lltok::kw_none:
8223     Hotness = CalleeInfo::HotnessType::None;
8224     break;
8225   case lltok::kw_hot:
8226     Hotness = CalleeInfo::HotnessType::Hot;
8227     break;
8228   case lltok::kw_critical:
8229     Hotness = CalleeInfo::HotnessType::Critical;
8230     break;
8231   default:
8232     return Error(Lex.getLoc(), "invalid call edge hotness");
8233   }
8234   Lex.Lex();
8235   return false;
8236 }
8237 
8238 /// OptionalRefs
8239 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8240 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8241   assert(Lex.getKind() == lltok::kw_refs);
8242   Lex.Lex();
8243 
8244   if (ParseToken(lltok::colon, "expected ':' in refs") |
8245       ParseToken(lltok::lparen, "expected '(' in refs"))
8246     return true;
8247 
8248   struct ValueContext {
8249     ValueInfo VI;
8250     unsigned GVId;
8251     LocTy Loc;
8252   };
8253   std::vector<ValueContext> VContexts;
8254   // Parse each ref edge
8255   do {
8256     ValueContext VC;
8257     VC.Loc = Lex.getLoc();
8258     if (ParseGVReference(VC.VI, VC.GVId))
8259       return true;
8260     VContexts.push_back(VC);
8261   } while (EatIfPresent(lltok::comma));
8262 
8263   // Sort value contexts so that ones with readonly ValueInfo are at the end
8264   // of VContexts vector. This is needed to match immutableRefCount() behavior.
8265   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8266     return VC1.VI.isReadOnly() < VC2.VI.isReadOnly();
8267   });
8268 
8269   IdToIndexMapType IdToIndexMap;
8270   for (auto &VC : VContexts) {
8271     // Keep track of the Refs array index needing a forward reference.
8272     // We will save the location of the ValueInfo needing an update, but
8273     // can only do so once the std::vector is finalized.
8274     if (VC.VI.getRef() == FwdVIRef)
8275       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8276     Refs.push_back(VC.VI);
8277   }
8278 
8279   // Now that the Refs vector is finalized, it is safe to save the locations
8280   // of any forward GV references that need updating later.
8281   for (auto I : IdToIndexMap) {
8282     for (auto P : I.second) {
8283       assert(Refs[P.first].getRef() == FwdVIRef &&
8284              "Forward referenced ValueInfo expected to be empty");
8285       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8286           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8287       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8288     }
8289   }
8290 
8291   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8292     return true;
8293 
8294   return false;
8295 }
8296 
8297 /// OptionalTypeIdInfo
8298 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8299 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8300 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8301 bool LLParser::ParseOptionalTypeIdInfo(
8302     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8303   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8304   Lex.Lex();
8305 
8306   if (ParseToken(lltok::colon, "expected ':' here") ||
8307       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8308     return true;
8309 
8310   do {
8311     switch (Lex.getKind()) {
8312     case lltok::kw_typeTests:
8313       if (ParseTypeTests(TypeIdInfo.TypeTests))
8314         return true;
8315       break;
8316     case lltok::kw_typeTestAssumeVCalls:
8317       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8318                            TypeIdInfo.TypeTestAssumeVCalls))
8319         return true;
8320       break;
8321     case lltok::kw_typeCheckedLoadVCalls:
8322       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8323                            TypeIdInfo.TypeCheckedLoadVCalls))
8324         return true;
8325       break;
8326     case lltok::kw_typeTestAssumeConstVCalls:
8327       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8328                               TypeIdInfo.TypeTestAssumeConstVCalls))
8329         return true;
8330       break;
8331     case lltok::kw_typeCheckedLoadConstVCalls:
8332       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8333                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8334         return true;
8335       break;
8336     default:
8337       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8338     }
8339   } while (EatIfPresent(lltok::comma));
8340 
8341   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8342     return true;
8343 
8344   return false;
8345 }
8346 
8347 /// TypeTests
8348 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8349 ///         [',' (SummaryID | UInt64)]* ')'
8350 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8351   assert(Lex.getKind() == lltok::kw_typeTests);
8352   Lex.Lex();
8353 
8354   if (ParseToken(lltok::colon, "expected ':' here") ||
8355       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8356     return true;
8357 
8358   IdToIndexMapType IdToIndexMap;
8359   do {
8360     GlobalValue::GUID GUID = 0;
8361     if (Lex.getKind() == lltok::SummaryID) {
8362       unsigned ID = Lex.getUIntVal();
8363       LocTy Loc = Lex.getLoc();
8364       // Keep track of the TypeTests array index needing a forward reference.
8365       // We will save the location of the GUID needing an update, but
8366       // can only do so once the std::vector is finalized.
8367       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8368       Lex.Lex();
8369     } else if (ParseUInt64(GUID))
8370       return true;
8371     TypeTests.push_back(GUID);
8372   } while (EatIfPresent(lltok::comma));
8373 
8374   // Now that the TypeTests vector is finalized, it is safe to save the
8375   // locations of any forward GV references that need updating later.
8376   for (auto I : IdToIndexMap) {
8377     for (auto P : I.second) {
8378       assert(TypeTests[P.first] == 0 &&
8379              "Forward referenced type id GUID expected to be 0");
8380       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8381           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8382       FwdRef.first->second.push_back(
8383           std::make_pair(&TypeTests[P.first], P.second));
8384     }
8385   }
8386 
8387   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8388     return true;
8389 
8390   return false;
8391 }
8392 
8393 /// VFuncIdList
8394 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8395 bool LLParser::ParseVFuncIdList(
8396     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8397   assert(Lex.getKind() == Kind);
8398   Lex.Lex();
8399 
8400   if (ParseToken(lltok::colon, "expected ':' here") ||
8401       ParseToken(lltok::lparen, "expected '(' here"))
8402     return true;
8403 
8404   IdToIndexMapType IdToIndexMap;
8405   do {
8406     FunctionSummary::VFuncId VFuncId;
8407     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8408       return true;
8409     VFuncIdList.push_back(VFuncId);
8410   } while (EatIfPresent(lltok::comma));
8411 
8412   if (ParseToken(lltok::rparen, "expected ')' here"))
8413     return true;
8414 
8415   // Now that the VFuncIdList vector is finalized, it is safe to save the
8416   // locations of any forward GV references that need updating later.
8417   for (auto I : IdToIndexMap) {
8418     for (auto P : I.second) {
8419       assert(VFuncIdList[P.first].GUID == 0 &&
8420              "Forward referenced type id GUID expected to be 0");
8421       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8422           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8423       FwdRef.first->second.push_back(
8424           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8425     }
8426   }
8427 
8428   return false;
8429 }
8430 
8431 /// ConstVCallList
8432 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8433 bool LLParser::ParseConstVCallList(
8434     lltok::Kind Kind,
8435     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8436   assert(Lex.getKind() == Kind);
8437   Lex.Lex();
8438 
8439   if (ParseToken(lltok::colon, "expected ':' here") ||
8440       ParseToken(lltok::lparen, "expected '(' here"))
8441     return true;
8442 
8443   IdToIndexMapType IdToIndexMap;
8444   do {
8445     FunctionSummary::ConstVCall ConstVCall;
8446     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8447       return true;
8448     ConstVCallList.push_back(ConstVCall);
8449   } while (EatIfPresent(lltok::comma));
8450 
8451   if (ParseToken(lltok::rparen, "expected ')' here"))
8452     return true;
8453 
8454   // Now that the ConstVCallList vector is finalized, it is safe to save the
8455   // locations of any forward GV references that need updating later.
8456   for (auto I : IdToIndexMap) {
8457     for (auto P : I.second) {
8458       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8459              "Forward referenced type id GUID expected to be 0");
8460       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8461           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8462       FwdRef.first->second.push_back(
8463           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8464     }
8465   }
8466 
8467   return false;
8468 }
8469 
8470 /// ConstVCall
8471 ///   ::= '(' VFuncId ',' Args ')'
8472 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8473                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8474   if (ParseToken(lltok::lparen, "expected '(' here") ||
8475       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8476     return true;
8477 
8478   if (EatIfPresent(lltok::comma))
8479     if (ParseArgs(ConstVCall.Args))
8480       return true;
8481 
8482   if (ParseToken(lltok::rparen, "expected ')' here"))
8483     return true;
8484 
8485   return false;
8486 }
8487 
8488 /// VFuncId
8489 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8490 ///         'offset' ':' UInt64 ')'
8491 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8492                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
8493   assert(Lex.getKind() == lltok::kw_vFuncId);
8494   Lex.Lex();
8495 
8496   if (ParseToken(lltok::colon, "expected ':' here") ||
8497       ParseToken(lltok::lparen, "expected '(' here"))
8498     return true;
8499 
8500   if (Lex.getKind() == lltok::SummaryID) {
8501     VFuncId.GUID = 0;
8502     unsigned ID = Lex.getUIntVal();
8503     LocTy Loc = Lex.getLoc();
8504     // Keep track of the array index needing a forward reference.
8505     // We will save the location of the GUID needing an update, but
8506     // can only do so once the caller's std::vector is finalized.
8507     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8508     Lex.Lex();
8509   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8510              ParseToken(lltok::colon, "expected ':' here") ||
8511              ParseUInt64(VFuncId.GUID))
8512     return true;
8513 
8514   if (ParseToken(lltok::comma, "expected ',' here") ||
8515       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8516       ParseToken(lltok::colon, "expected ':' here") ||
8517       ParseUInt64(VFuncId.Offset) ||
8518       ParseToken(lltok::rparen, "expected ')' here"))
8519     return true;
8520 
8521   return false;
8522 }
8523 
8524 /// GVFlags
8525 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8526 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8527 ///         'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
8528 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8529   assert(Lex.getKind() == lltok::kw_flags);
8530   Lex.Lex();
8531 
8532   if (ParseToken(lltok::colon, "expected ':' here") ||
8533       ParseToken(lltok::lparen, "expected '(' here"))
8534     return true;
8535 
8536   do {
8537     unsigned Flag = 0;
8538     switch (Lex.getKind()) {
8539     case lltok::kw_linkage:
8540       Lex.Lex();
8541       if (ParseToken(lltok::colon, "expected ':'"))
8542         return true;
8543       bool HasLinkage;
8544       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8545       assert(HasLinkage && "Linkage not optional in summary entry");
8546       Lex.Lex();
8547       break;
8548     case lltok::kw_notEligibleToImport:
8549       Lex.Lex();
8550       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8551         return true;
8552       GVFlags.NotEligibleToImport = Flag;
8553       break;
8554     case lltok::kw_live:
8555       Lex.Lex();
8556       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8557         return true;
8558       GVFlags.Live = Flag;
8559       break;
8560     case lltok::kw_dsoLocal:
8561       Lex.Lex();
8562       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8563         return true;
8564       GVFlags.DSOLocal = Flag;
8565       break;
8566     case lltok::kw_canAutoHide:
8567       Lex.Lex();
8568       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8569         return true;
8570       GVFlags.CanAutoHide = Flag;
8571       break;
8572     default:
8573       return Error(Lex.getLoc(), "expected gv flag type");
8574     }
8575   } while (EatIfPresent(lltok::comma));
8576 
8577   if (ParseToken(lltok::rparen, "expected ')' here"))
8578     return true;
8579 
8580   return false;
8581 }
8582 
8583 /// GVarFlags
8584 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag ')'
8585 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8586   assert(Lex.getKind() == lltok::kw_varFlags);
8587   Lex.Lex();
8588 
8589   unsigned Flag = 0;
8590   if (ParseToken(lltok::colon, "expected ':' here") ||
8591       ParseToken(lltok::lparen, "expected '(' here") ||
8592       ParseToken(lltok::kw_readonly, "expected 'readonly' here") ||
8593       ParseToken(lltok::colon, "expected ':' here"))
8594     return true;
8595 
8596   ParseFlag(Flag);
8597   GVarFlags.ReadOnly = Flag;
8598 
8599   if (ParseToken(lltok::rparen, "expected ')' here"))
8600     return true;
8601   return false;
8602 }
8603 
8604 /// ModuleReference
8605 ///   ::= 'module' ':' UInt
8606 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8607   // Parse module id.
8608   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8609       ParseToken(lltok::colon, "expected ':' here") ||
8610       ParseToken(lltok::SummaryID, "expected module ID"))
8611     return true;
8612 
8613   unsigned ModuleID = Lex.getUIntVal();
8614   auto I = ModuleIdMap.find(ModuleID);
8615   // We should have already parsed all module IDs
8616   assert(I != ModuleIdMap.end());
8617   ModulePath = I->second;
8618   return false;
8619 }
8620 
8621 /// GVReference
8622 ///   ::= SummaryID
8623 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8624   bool ReadOnly = EatIfPresent(lltok::kw_readonly);
8625   if (ParseToken(lltok::SummaryID, "expected GV ID"))
8626     return true;
8627 
8628   GVId = Lex.getUIntVal();
8629   // Check if we already have a VI for this GV
8630   if (GVId < NumberedValueInfos.size()) {
8631     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8632     VI = NumberedValueInfos[GVId];
8633   } else
8634     // We will create a forward reference to the stored location.
8635     VI = ValueInfo(false, FwdVIRef);
8636 
8637   if (ReadOnly)
8638     VI.setReadOnly();
8639   return false;
8640 }
8641