1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/AsmParser/SlotMapping.h" 19 #include "llvm/IR/AutoUpgrade.h" 20 #include "llvm/IR/CallingConv.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfo.h" 23 #include "llvm/IR/DebugInfoMetadata.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/InlineAsm.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/Dwarf.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/SaveAndRestore.h" 35 #include "llvm/Support/raw_ostream.h" 36 using namespace llvm; 37 38 static std::string getTypeString(Type *T) { 39 std::string Result; 40 raw_string_ostream Tmp(Result); 41 Tmp << *T; 42 return Tmp.str(); 43 } 44 45 /// Run: module ::= toplevelentity* 46 bool LLParser::Run() { 47 // Prime the lexer. 48 Lex.Lex(); 49 50 if (Context.shouldDiscardValueNames()) 51 return Error( 52 Lex.getLoc(), 53 "Can't read textual IR with a Context that discards named Values"); 54 55 return ParseTopLevelEntities() || 56 ValidateEndOfModule(); 57 } 58 59 bool LLParser::parseStandaloneConstantValue(Constant *&C, 60 const SlotMapping *Slots) { 61 restoreParsingState(Slots); 62 Lex.Lex(); 63 64 Type *Ty = nullptr; 65 if (ParseType(Ty) || parseConstantValue(Ty, C)) 66 return true; 67 if (Lex.getKind() != lltok::Eof) 68 return Error(Lex.getLoc(), "expected end of string"); 69 return false; 70 } 71 72 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 73 const SlotMapping *Slots) { 74 restoreParsingState(Slots); 75 Lex.Lex(); 76 77 Read = 0; 78 SMLoc Start = Lex.getLoc(); 79 Ty = nullptr; 80 if (ParseType(Ty)) 81 return true; 82 SMLoc End = Lex.getLoc(); 83 Read = End.getPointer() - Start.getPointer(); 84 85 return false; 86 } 87 88 void LLParser::restoreParsingState(const SlotMapping *Slots) { 89 if (!Slots) 90 return; 91 NumberedVals = Slots->GlobalValues; 92 NumberedMetadata = Slots->MetadataNodes; 93 for (const auto &I : Slots->NamedTypes) 94 NamedTypes.insert( 95 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 96 for (const auto &I : Slots->Types) 97 NumberedTypes.insert( 98 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 99 } 100 101 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 102 /// module. 103 bool LLParser::ValidateEndOfModule() { 104 // Handle any function attribute group forward references. 105 for (std::map<Value*, std::vector<unsigned> >::iterator 106 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end(); 107 I != E; ++I) { 108 Value *V = I->first; 109 std::vector<unsigned> &Vec = I->second; 110 AttrBuilder B; 111 112 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end(); 113 VI != VE; ++VI) 114 B.merge(NumberedAttrBuilders[*VI]); 115 116 if (Function *Fn = dyn_cast<Function>(V)) { 117 AttributeSet AS = Fn->getAttributes(); 118 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 119 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 120 AS.getFnAttributes()); 121 122 FnAttrs.merge(B); 123 124 // If the alignment was parsed as an attribute, move to the alignment 125 // field. 126 if (FnAttrs.hasAlignmentAttr()) { 127 Fn->setAlignment(FnAttrs.getAlignment()); 128 FnAttrs.removeAttribute(Attribute::Alignment); 129 } 130 131 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 132 AttributeSet::get(Context, 133 AttributeSet::FunctionIndex, 134 FnAttrs)); 135 Fn->setAttributes(AS); 136 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 137 AttributeSet AS = CI->getAttributes(); 138 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 139 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 140 AS.getFnAttributes()); 141 FnAttrs.merge(B); 142 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 143 AttributeSet::get(Context, 144 AttributeSet::FunctionIndex, 145 FnAttrs)); 146 CI->setAttributes(AS); 147 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 148 AttributeSet AS = II->getAttributes(); 149 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 150 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 151 AS.getFnAttributes()); 152 FnAttrs.merge(B); 153 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 154 AttributeSet::get(Context, 155 AttributeSet::FunctionIndex, 156 FnAttrs)); 157 II->setAttributes(AS); 158 } else { 159 llvm_unreachable("invalid object with forward attribute group reference"); 160 } 161 } 162 163 // If there are entries in ForwardRefBlockAddresses at this point, the 164 // function was never defined. 165 if (!ForwardRefBlockAddresses.empty()) 166 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 167 "expected function name in blockaddress"); 168 169 for (const auto &NT : NumberedTypes) 170 if (NT.second.second.isValid()) 171 return Error(NT.second.second, 172 "use of undefined type '%" + Twine(NT.first) + "'"); 173 174 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 175 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 176 if (I->second.second.isValid()) 177 return Error(I->second.second, 178 "use of undefined type named '" + I->getKey() + "'"); 179 180 if (!ForwardRefComdats.empty()) 181 return Error(ForwardRefComdats.begin()->second, 182 "use of undefined comdat '$" + 183 ForwardRefComdats.begin()->first + "'"); 184 185 if (!ForwardRefVals.empty()) 186 return Error(ForwardRefVals.begin()->second.second, 187 "use of undefined value '@" + ForwardRefVals.begin()->first + 188 "'"); 189 190 if (!ForwardRefValIDs.empty()) 191 return Error(ForwardRefValIDs.begin()->second.second, 192 "use of undefined value '@" + 193 Twine(ForwardRefValIDs.begin()->first) + "'"); 194 195 if (!ForwardRefMDNodes.empty()) 196 return Error(ForwardRefMDNodes.begin()->second.second, 197 "use of undefined metadata '!" + 198 Twine(ForwardRefMDNodes.begin()->first) + "'"); 199 200 // Resolve metadata cycles. 201 for (auto &N : NumberedMetadata) { 202 if (N.second && !N.second->isResolved()) 203 N.second->resolveCycles(); 204 } 205 206 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 207 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 208 209 // Look for intrinsic functions and CallInst that need to be upgraded 210 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 211 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 212 213 UpgradeDebugInfo(*M); 214 215 UpgradeModuleFlags(*M); 216 217 if (!Slots) 218 return false; 219 // Initialize the slot mapping. 220 // Because by this point we've parsed and validated everything, we can "steal" 221 // the mapping from LLParser as it doesn't need it anymore. 222 Slots->GlobalValues = std::move(NumberedVals); 223 Slots->MetadataNodes = std::move(NumberedMetadata); 224 for (const auto &I : NamedTypes) 225 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 226 for (const auto &I : NumberedTypes) 227 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 228 229 return false; 230 } 231 232 //===----------------------------------------------------------------------===// 233 // Top-Level Entities 234 //===----------------------------------------------------------------------===// 235 236 bool LLParser::ParseTopLevelEntities() { 237 while (1) { 238 switch (Lex.getKind()) { 239 default: return TokError("expected top-level entity"); 240 case lltok::Eof: return false; 241 case lltok::kw_declare: if (ParseDeclare()) return true; break; 242 case lltok::kw_define: if (ParseDefine()) return true; break; 243 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 244 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 245 case lltok::kw_source_filename: 246 if (ParseSourceFileName()) 247 return true; 248 break; 249 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 250 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 251 case lltok::LocalVar: if (ParseNamedType()) return true; break; 252 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 253 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 254 case lltok::ComdatVar: if (parseComdat()) return true; break; 255 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 256 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 257 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 258 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 259 case lltok::kw_uselistorder_bb: 260 if (ParseUseListOrderBB()) return true; break; 261 } 262 } 263 } 264 265 266 /// toplevelentity 267 /// ::= 'module' 'asm' STRINGCONSTANT 268 bool LLParser::ParseModuleAsm() { 269 assert(Lex.getKind() == lltok::kw_module); 270 Lex.Lex(); 271 272 std::string AsmStr; 273 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 274 ParseStringConstant(AsmStr)) return true; 275 276 M->appendModuleInlineAsm(AsmStr); 277 return false; 278 } 279 280 /// toplevelentity 281 /// ::= 'target' 'triple' '=' STRINGCONSTANT 282 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 283 bool LLParser::ParseTargetDefinition() { 284 assert(Lex.getKind() == lltok::kw_target); 285 std::string Str; 286 switch (Lex.Lex()) { 287 default: return TokError("unknown target property"); 288 case lltok::kw_triple: 289 Lex.Lex(); 290 if (ParseToken(lltok::equal, "expected '=' after target triple") || 291 ParseStringConstant(Str)) 292 return true; 293 M->setTargetTriple(Str); 294 return false; 295 case lltok::kw_datalayout: 296 Lex.Lex(); 297 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 298 ParseStringConstant(Str)) 299 return true; 300 M->setDataLayout(Str); 301 return false; 302 } 303 } 304 305 /// toplevelentity 306 /// ::= 'source_filename' '=' STRINGCONSTANT 307 bool LLParser::ParseSourceFileName() { 308 assert(Lex.getKind() == lltok::kw_source_filename); 309 std::string Str; 310 Lex.Lex(); 311 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 312 ParseStringConstant(Str)) 313 return true; 314 M->setSourceFileName(Str); 315 return false; 316 } 317 318 /// toplevelentity 319 /// ::= 'deplibs' '=' '[' ']' 320 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 321 /// FIXME: Remove in 4.0. Currently parse, but ignore. 322 bool LLParser::ParseDepLibs() { 323 assert(Lex.getKind() == lltok::kw_deplibs); 324 Lex.Lex(); 325 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 326 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 327 return true; 328 329 if (EatIfPresent(lltok::rsquare)) 330 return false; 331 332 do { 333 std::string Str; 334 if (ParseStringConstant(Str)) return true; 335 } while (EatIfPresent(lltok::comma)); 336 337 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 338 } 339 340 /// ParseUnnamedType: 341 /// ::= LocalVarID '=' 'type' type 342 bool LLParser::ParseUnnamedType() { 343 LocTy TypeLoc = Lex.getLoc(); 344 unsigned TypeID = Lex.getUIntVal(); 345 Lex.Lex(); // eat LocalVarID; 346 347 if (ParseToken(lltok::equal, "expected '=' after name") || 348 ParseToken(lltok::kw_type, "expected 'type' after '='")) 349 return true; 350 351 Type *Result = nullptr; 352 if (ParseStructDefinition(TypeLoc, "", 353 NumberedTypes[TypeID], Result)) return true; 354 355 if (!isa<StructType>(Result)) { 356 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 357 if (Entry.first) 358 return Error(TypeLoc, "non-struct types may not be recursive"); 359 Entry.first = Result; 360 Entry.second = SMLoc(); 361 } 362 363 return false; 364 } 365 366 367 /// toplevelentity 368 /// ::= LocalVar '=' 'type' type 369 bool LLParser::ParseNamedType() { 370 std::string Name = Lex.getStrVal(); 371 LocTy NameLoc = Lex.getLoc(); 372 Lex.Lex(); // eat LocalVar. 373 374 if (ParseToken(lltok::equal, "expected '=' after name") || 375 ParseToken(lltok::kw_type, "expected 'type' after name")) 376 return true; 377 378 Type *Result = nullptr; 379 if (ParseStructDefinition(NameLoc, Name, 380 NamedTypes[Name], Result)) return true; 381 382 if (!isa<StructType>(Result)) { 383 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 384 if (Entry.first) 385 return Error(NameLoc, "non-struct types may not be recursive"); 386 Entry.first = Result; 387 Entry.second = SMLoc(); 388 } 389 390 return false; 391 } 392 393 394 /// toplevelentity 395 /// ::= 'declare' FunctionHeader 396 bool LLParser::ParseDeclare() { 397 assert(Lex.getKind() == lltok::kw_declare); 398 Lex.Lex(); 399 400 Function *F; 401 return ParseFunctionHeader(F, false); 402 } 403 404 /// toplevelentity 405 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 406 bool LLParser::ParseDefine() { 407 assert(Lex.getKind() == lltok::kw_define); 408 Lex.Lex(); 409 410 Function *F; 411 return ParseFunctionHeader(F, true) || 412 ParseOptionalFunctionMetadata(*F) || 413 ParseFunctionBody(*F); 414 } 415 416 /// ParseGlobalType 417 /// ::= 'constant' 418 /// ::= 'global' 419 bool LLParser::ParseGlobalType(bool &IsConstant) { 420 if (Lex.getKind() == lltok::kw_constant) 421 IsConstant = true; 422 else if (Lex.getKind() == lltok::kw_global) 423 IsConstant = false; 424 else { 425 IsConstant = false; 426 return TokError("expected 'global' or 'constant'"); 427 } 428 Lex.Lex(); 429 return false; 430 } 431 432 bool LLParser::ParseOptionalUnnamedAddr( 433 GlobalVariable::UnnamedAddr &UnnamedAddr) { 434 if (EatIfPresent(lltok::kw_unnamed_addr)) 435 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 436 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 437 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 438 else 439 UnnamedAddr = GlobalValue::UnnamedAddr::None; 440 return false; 441 } 442 443 /// ParseUnnamedGlobal: 444 /// OptionalVisibility (ALIAS | IFUNC) ... 445 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass 446 /// ... -> global variable 447 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 448 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 449 /// ... -> global variable 450 bool LLParser::ParseUnnamedGlobal() { 451 unsigned VarID = NumberedVals.size(); 452 std::string Name; 453 LocTy NameLoc = Lex.getLoc(); 454 455 // Handle the GlobalID form. 456 if (Lex.getKind() == lltok::GlobalID) { 457 if (Lex.getUIntVal() != VarID) 458 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 459 Twine(VarID) + "'"); 460 Lex.Lex(); // eat GlobalID; 461 462 if (ParseToken(lltok::equal, "expected '=' after name")) 463 return true; 464 } 465 466 bool HasLinkage; 467 unsigned Linkage, Visibility, DLLStorageClass; 468 GlobalVariable::ThreadLocalMode TLM; 469 GlobalVariable::UnnamedAddr UnnamedAddr; 470 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 471 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 472 return true; 473 474 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 475 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 476 DLLStorageClass, TLM, UnnamedAddr); 477 478 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 479 DLLStorageClass, TLM, UnnamedAddr); 480 } 481 482 /// ParseNamedGlobal: 483 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 484 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 485 /// ... -> global variable 486 bool LLParser::ParseNamedGlobal() { 487 assert(Lex.getKind() == lltok::GlobalVar); 488 LocTy NameLoc = Lex.getLoc(); 489 std::string Name = Lex.getStrVal(); 490 Lex.Lex(); 491 492 bool HasLinkage; 493 unsigned Linkage, Visibility, DLLStorageClass; 494 GlobalVariable::ThreadLocalMode TLM; 495 GlobalVariable::UnnamedAddr UnnamedAddr; 496 if (ParseToken(lltok::equal, "expected '=' in global variable") || 497 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 498 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 499 return true; 500 501 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 502 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 503 DLLStorageClass, TLM, UnnamedAddr); 504 505 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 506 DLLStorageClass, TLM, UnnamedAddr); 507 } 508 509 bool LLParser::parseComdat() { 510 assert(Lex.getKind() == lltok::ComdatVar); 511 std::string Name = Lex.getStrVal(); 512 LocTy NameLoc = Lex.getLoc(); 513 Lex.Lex(); 514 515 if (ParseToken(lltok::equal, "expected '=' here")) 516 return true; 517 518 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 519 return TokError("expected comdat type"); 520 521 Comdat::SelectionKind SK; 522 switch (Lex.getKind()) { 523 default: 524 return TokError("unknown selection kind"); 525 case lltok::kw_any: 526 SK = Comdat::Any; 527 break; 528 case lltok::kw_exactmatch: 529 SK = Comdat::ExactMatch; 530 break; 531 case lltok::kw_largest: 532 SK = Comdat::Largest; 533 break; 534 case lltok::kw_noduplicates: 535 SK = Comdat::NoDuplicates; 536 break; 537 case lltok::kw_samesize: 538 SK = Comdat::SameSize; 539 break; 540 } 541 Lex.Lex(); 542 543 // See if the comdat was forward referenced, if so, use the comdat. 544 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 545 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 546 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 547 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 548 549 Comdat *C; 550 if (I != ComdatSymTab.end()) 551 C = &I->second; 552 else 553 C = M->getOrInsertComdat(Name); 554 C->setSelectionKind(SK); 555 556 return false; 557 } 558 559 // MDString: 560 // ::= '!' STRINGCONSTANT 561 bool LLParser::ParseMDString(MDString *&Result) { 562 std::string Str; 563 if (ParseStringConstant(Str)) return true; 564 Result = MDString::get(Context, Str); 565 return false; 566 } 567 568 // MDNode: 569 // ::= '!' MDNodeNumber 570 bool LLParser::ParseMDNodeID(MDNode *&Result) { 571 // !{ ..., !42, ... } 572 LocTy IDLoc = Lex.getLoc(); 573 unsigned MID = 0; 574 if (ParseUInt32(MID)) 575 return true; 576 577 // If not a forward reference, just return it now. 578 if (NumberedMetadata.count(MID)) { 579 Result = NumberedMetadata[MID]; 580 return false; 581 } 582 583 // Otherwise, create MDNode forward reference. 584 auto &FwdRef = ForwardRefMDNodes[MID]; 585 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 586 587 Result = FwdRef.first.get(); 588 NumberedMetadata[MID].reset(Result); 589 return false; 590 } 591 592 /// ParseNamedMetadata: 593 /// !foo = !{ !1, !2 } 594 bool LLParser::ParseNamedMetadata() { 595 assert(Lex.getKind() == lltok::MetadataVar); 596 std::string Name = Lex.getStrVal(); 597 Lex.Lex(); 598 599 if (ParseToken(lltok::equal, "expected '=' here") || 600 ParseToken(lltok::exclaim, "Expected '!' here") || 601 ParseToken(lltok::lbrace, "Expected '{' here")) 602 return true; 603 604 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 605 if (Lex.getKind() != lltok::rbrace) 606 do { 607 if (ParseToken(lltok::exclaim, "Expected '!' here")) 608 return true; 609 610 MDNode *N = nullptr; 611 if (ParseMDNodeID(N)) return true; 612 NMD->addOperand(N); 613 } while (EatIfPresent(lltok::comma)); 614 615 return ParseToken(lltok::rbrace, "expected end of metadata node"); 616 } 617 618 /// ParseStandaloneMetadata: 619 /// !42 = !{...} 620 bool LLParser::ParseStandaloneMetadata() { 621 assert(Lex.getKind() == lltok::exclaim); 622 Lex.Lex(); 623 unsigned MetadataID = 0; 624 625 MDNode *Init; 626 if (ParseUInt32(MetadataID) || 627 ParseToken(lltok::equal, "expected '=' here")) 628 return true; 629 630 // Detect common error, from old metadata syntax. 631 if (Lex.getKind() == lltok::Type) 632 return TokError("unexpected type in metadata definition"); 633 634 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 635 if (Lex.getKind() == lltok::MetadataVar) { 636 if (ParseSpecializedMDNode(Init, IsDistinct)) 637 return true; 638 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 639 ParseMDTuple(Init, IsDistinct)) 640 return true; 641 642 // See if this was forward referenced, if so, handle it. 643 auto FI = ForwardRefMDNodes.find(MetadataID); 644 if (FI != ForwardRefMDNodes.end()) { 645 FI->second.first->replaceAllUsesWith(Init); 646 ForwardRefMDNodes.erase(FI); 647 648 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 649 } else { 650 if (NumberedMetadata.count(MetadataID)) 651 return TokError("Metadata id is already used"); 652 NumberedMetadata[MetadataID].reset(Init); 653 } 654 655 return false; 656 } 657 658 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 659 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 660 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 661 } 662 663 /// parseIndirectSymbol: 664 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility 665 /// OptionalDLLStorageClass OptionalThreadLocal 666 /// OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol 667 /// 668 /// IndirectSymbol 669 /// ::= TypeAndValue 670 /// 671 /// Everything through OptionalUnnamedAddr has already been parsed. 672 /// 673 bool LLParser::parseIndirectSymbol( 674 const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility, 675 unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM, 676 GlobalVariable::UnnamedAddr UnnamedAddr) { 677 bool IsAlias; 678 if (Lex.getKind() == lltok::kw_alias) 679 IsAlias = true; 680 else if (Lex.getKind() == lltok::kw_ifunc) 681 IsAlias = false; 682 else 683 llvm_unreachable("Not an alias or ifunc!"); 684 Lex.Lex(); 685 686 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 687 688 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 689 return Error(NameLoc, "invalid linkage type for alias"); 690 691 if (!isValidVisibilityForLinkage(Visibility, L)) 692 return Error(NameLoc, 693 "symbol with local linkage must have default visibility"); 694 695 Type *Ty; 696 LocTy ExplicitTypeLoc = Lex.getLoc(); 697 if (ParseType(Ty) || 698 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 699 return true; 700 701 Constant *Aliasee; 702 LocTy AliaseeLoc = Lex.getLoc(); 703 if (Lex.getKind() != lltok::kw_bitcast && 704 Lex.getKind() != lltok::kw_getelementptr && 705 Lex.getKind() != lltok::kw_addrspacecast && 706 Lex.getKind() != lltok::kw_inttoptr) { 707 if (ParseGlobalTypeAndValue(Aliasee)) 708 return true; 709 } else { 710 // The bitcast dest type is not present, it is implied by the dest type. 711 ValID ID; 712 if (ParseValID(ID)) 713 return true; 714 if (ID.Kind != ValID::t_Constant) 715 return Error(AliaseeLoc, "invalid aliasee"); 716 Aliasee = ID.ConstantVal; 717 } 718 719 Type *AliaseeType = Aliasee->getType(); 720 auto *PTy = dyn_cast<PointerType>(AliaseeType); 721 if (!PTy) 722 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 723 unsigned AddrSpace = PTy->getAddressSpace(); 724 725 if (IsAlias && Ty != PTy->getElementType()) 726 return Error( 727 ExplicitTypeLoc, 728 "explicit pointee type doesn't match operand's pointee type"); 729 730 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 731 return Error( 732 ExplicitTypeLoc, 733 "explicit pointee type should be a function type"); 734 735 GlobalValue *GVal = nullptr; 736 737 // See if the alias was forward referenced, if so, prepare to replace the 738 // forward reference. 739 if (!Name.empty()) { 740 GVal = M->getNamedValue(Name); 741 if (GVal) { 742 if (!ForwardRefVals.erase(Name)) 743 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 744 } 745 } else { 746 auto I = ForwardRefValIDs.find(NumberedVals.size()); 747 if (I != ForwardRefValIDs.end()) { 748 GVal = I->second.first; 749 ForwardRefValIDs.erase(I); 750 } 751 } 752 753 // Okay, create the alias but do not insert it into the module yet. 754 std::unique_ptr<GlobalIndirectSymbol> GA; 755 if (IsAlias) 756 GA.reset(GlobalAlias::create(Ty, AddrSpace, 757 (GlobalValue::LinkageTypes)Linkage, Name, 758 Aliasee, /*Parent*/ nullptr)); 759 else 760 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 761 (GlobalValue::LinkageTypes)Linkage, Name, 762 Aliasee, /*Parent*/ nullptr)); 763 GA->setThreadLocalMode(TLM); 764 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 765 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 766 GA->setUnnamedAddr(UnnamedAddr); 767 768 if (Name.empty()) 769 NumberedVals.push_back(GA.get()); 770 771 if (GVal) { 772 // Verify that types agree. 773 if (GVal->getType() != GA->getType()) 774 return Error( 775 ExplicitTypeLoc, 776 "forward reference and definition of alias have different types"); 777 778 // If they agree, just RAUW the old value with the alias and remove the 779 // forward ref info. 780 GVal->replaceAllUsesWith(GA.get()); 781 GVal->eraseFromParent(); 782 } 783 784 // Insert into the module, we know its name won't collide now. 785 if (IsAlias) 786 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 787 else 788 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 789 assert(GA->getName() == Name && "Should not be a name conflict!"); 790 791 // The module owns this now 792 GA.release(); 793 794 return false; 795 } 796 797 /// ParseGlobal 798 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 799 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 800 /// OptionalExternallyInitialized GlobalType Type Const 801 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 802 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 803 /// OptionalExternallyInitialized GlobalType Type Const 804 /// 805 /// Everything up to and including OptionalUnnamedAddr has been parsed 806 /// already. 807 /// 808 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 809 unsigned Linkage, bool HasLinkage, 810 unsigned Visibility, unsigned DLLStorageClass, 811 GlobalVariable::ThreadLocalMode TLM, 812 GlobalVariable::UnnamedAddr UnnamedAddr) { 813 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 814 return Error(NameLoc, 815 "symbol with local linkage must have default visibility"); 816 817 unsigned AddrSpace; 818 bool IsConstant, IsExternallyInitialized; 819 LocTy IsExternallyInitializedLoc; 820 LocTy TyLoc; 821 822 Type *Ty = nullptr; 823 if (ParseOptionalAddrSpace(AddrSpace) || 824 ParseOptionalToken(lltok::kw_externally_initialized, 825 IsExternallyInitialized, 826 &IsExternallyInitializedLoc) || 827 ParseGlobalType(IsConstant) || 828 ParseType(Ty, TyLoc)) 829 return true; 830 831 // If the linkage is specified and is external, then no initializer is 832 // present. 833 Constant *Init = nullptr; 834 if (!HasLinkage || 835 !GlobalValue::isValidDeclarationLinkage( 836 (GlobalValue::LinkageTypes)Linkage)) { 837 if (ParseGlobalValue(Ty, Init)) 838 return true; 839 } 840 841 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 842 return Error(TyLoc, "invalid type for global variable"); 843 844 GlobalValue *GVal = nullptr; 845 846 // See if the global was forward referenced, if so, use the global. 847 if (!Name.empty()) { 848 GVal = M->getNamedValue(Name); 849 if (GVal) { 850 if (!ForwardRefVals.erase(Name)) 851 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 852 } 853 } else { 854 auto I = ForwardRefValIDs.find(NumberedVals.size()); 855 if (I != ForwardRefValIDs.end()) { 856 GVal = I->second.first; 857 ForwardRefValIDs.erase(I); 858 } 859 } 860 861 GlobalVariable *GV; 862 if (!GVal) { 863 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 864 Name, nullptr, GlobalVariable::NotThreadLocal, 865 AddrSpace); 866 } else { 867 if (GVal->getValueType() != Ty) 868 return Error(TyLoc, 869 "forward reference and definition of global have different types"); 870 871 GV = cast<GlobalVariable>(GVal); 872 873 // Move the forward-reference to the correct spot in the module. 874 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 875 } 876 877 if (Name.empty()) 878 NumberedVals.push_back(GV); 879 880 // Set the parsed properties on the global. 881 if (Init) 882 GV->setInitializer(Init); 883 GV->setConstant(IsConstant); 884 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 885 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 886 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 887 GV->setExternallyInitialized(IsExternallyInitialized); 888 GV->setThreadLocalMode(TLM); 889 GV->setUnnamedAddr(UnnamedAddr); 890 891 // Parse attributes on the global. 892 while (Lex.getKind() == lltok::comma) { 893 Lex.Lex(); 894 895 if (Lex.getKind() == lltok::kw_section) { 896 Lex.Lex(); 897 GV->setSection(Lex.getStrVal()); 898 if (ParseToken(lltok::StringConstant, "expected global section string")) 899 return true; 900 } else if (Lex.getKind() == lltok::kw_align) { 901 unsigned Alignment; 902 if (ParseOptionalAlignment(Alignment)) return true; 903 GV->setAlignment(Alignment); 904 } else if (Lex.getKind() == lltok::MetadataVar) { 905 if (ParseGlobalObjectMetadataAttachment(*GV)) 906 return true; 907 } else { 908 Comdat *C; 909 if (parseOptionalComdat(Name, C)) 910 return true; 911 if (C) 912 GV->setComdat(C); 913 else 914 return TokError("unknown global variable property!"); 915 } 916 } 917 918 return false; 919 } 920 921 /// ParseUnnamedAttrGrp 922 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 923 bool LLParser::ParseUnnamedAttrGrp() { 924 assert(Lex.getKind() == lltok::kw_attributes); 925 LocTy AttrGrpLoc = Lex.getLoc(); 926 Lex.Lex(); 927 928 if (Lex.getKind() != lltok::AttrGrpID) 929 return TokError("expected attribute group id"); 930 931 unsigned VarID = Lex.getUIntVal(); 932 std::vector<unsigned> unused; 933 LocTy BuiltinLoc; 934 Lex.Lex(); 935 936 if (ParseToken(lltok::equal, "expected '=' here") || 937 ParseToken(lltok::lbrace, "expected '{' here") || 938 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 939 BuiltinLoc) || 940 ParseToken(lltok::rbrace, "expected end of attribute group")) 941 return true; 942 943 if (!NumberedAttrBuilders[VarID].hasAttributes()) 944 return Error(AttrGrpLoc, "attribute group has no attributes"); 945 946 return false; 947 } 948 949 /// ParseFnAttributeValuePairs 950 /// ::= <attr> | <attr> '=' <value> 951 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 952 std::vector<unsigned> &FwdRefAttrGrps, 953 bool inAttrGrp, LocTy &BuiltinLoc) { 954 bool HaveError = false; 955 956 B.clear(); 957 958 while (true) { 959 lltok::Kind Token = Lex.getKind(); 960 if (Token == lltok::kw_builtin) 961 BuiltinLoc = Lex.getLoc(); 962 switch (Token) { 963 default: 964 if (!inAttrGrp) return HaveError; 965 return Error(Lex.getLoc(), "unterminated attribute group"); 966 case lltok::rbrace: 967 // Finished. 968 return false; 969 970 case lltok::AttrGrpID: { 971 // Allow a function to reference an attribute group: 972 // 973 // define void @foo() #1 { ... } 974 if (inAttrGrp) 975 HaveError |= 976 Error(Lex.getLoc(), 977 "cannot have an attribute group reference in an attribute group"); 978 979 unsigned AttrGrpNum = Lex.getUIntVal(); 980 if (inAttrGrp) break; 981 982 // Save the reference to the attribute group. We'll fill it in later. 983 FwdRefAttrGrps.push_back(AttrGrpNum); 984 break; 985 } 986 // Target-dependent attributes: 987 case lltok::StringConstant: { 988 if (ParseStringAttribute(B)) 989 return true; 990 continue; 991 } 992 993 // Target-independent attributes: 994 case lltok::kw_align: { 995 // As a hack, we allow function alignment to be initially parsed as an 996 // attribute on a function declaration/definition or added to an attribute 997 // group and later moved to the alignment field. 998 unsigned Alignment; 999 if (inAttrGrp) { 1000 Lex.Lex(); 1001 if (ParseToken(lltok::equal, "expected '=' here") || 1002 ParseUInt32(Alignment)) 1003 return true; 1004 } else { 1005 if (ParseOptionalAlignment(Alignment)) 1006 return true; 1007 } 1008 B.addAlignmentAttr(Alignment); 1009 continue; 1010 } 1011 case lltok::kw_alignstack: { 1012 unsigned Alignment; 1013 if (inAttrGrp) { 1014 Lex.Lex(); 1015 if (ParseToken(lltok::equal, "expected '=' here") || 1016 ParseUInt32(Alignment)) 1017 return true; 1018 } else { 1019 if (ParseOptionalStackAlignment(Alignment)) 1020 return true; 1021 } 1022 B.addStackAlignmentAttr(Alignment); 1023 continue; 1024 } 1025 case lltok::kw_allocsize: { 1026 unsigned ElemSizeArg; 1027 Optional<unsigned> NumElemsArg; 1028 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1029 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1030 return true; 1031 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1032 continue; 1033 } 1034 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1035 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1036 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1037 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1038 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1039 case lltok::kw_inaccessiblememonly: 1040 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1041 case lltok::kw_inaccessiblemem_or_argmemonly: 1042 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1043 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1044 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1045 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1046 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1047 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1048 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1049 case lltok::kw_noimplicitfloat: 1050 B.addAttribute(Attribute::NoImplicitFloat); break; 1051 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1052 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1053 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1054 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1055 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1056 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1057 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1058 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1059 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1060 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1061 case lltok::kw_returns_twice: 1062 B.addAttribute(Attribute::ReturnsTwice); break; 1063 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1064 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1065 case lltok::kw_sspstrong: 1066 B.addAttribute(Attribute::StackProtectStrong); break; 1067 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1068 case lltok::kw_sanitize_address: 1069 B.addAttribute(Attribute::SanitizeAddress); break; 1070 case lltok::kw_sanitize_thread: 1071 B.addAttribute(Attribute::SanitizeThread); break; 1072 case lltok::kw_sanitize_memory: 1073 B.addAttribute(Attribute::SanitizeMemory); break; 1074 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1075 1076 // Error handling. 1077 case lltok::kw_inreg: 1078 case lltok::kw_signext: 1079 case lltok::kw_zeroext: 1080 HaveError |= 1081 Error(Lex.getLoc(), 1082 "invalid use of attribute on a function"); 1083 break; 1084 case lltok::kw_byval: 1085 case lltok::kw_dereferenceable: 1086 case lltok::kw_dereferenceable_or_null: 1087 case lltok::kw_inalloca: 1088 case lltok::kw_nest: 1089 case lltok::kw_noalias: 1090 case lltok::kw_nocapture: 1091 case lltok::kw_nonnull: 1092 case lltok::kw_returned: 1093 case lltok::kw_sret: 1094 case lltok::kw_swifterror: 1095 case lltok::kw_swiftself: 1096 HaveError |= 1097 Error(Lex.getLoc(), 1098 "invalid use of parameter-only attribute on a function"); 1099 break; 1100 } 1101 1102 Lex.Lex(); 1103 } 1104 } 1105 1106 //===----------------------------------------------------------------------===// 1107 // GlobalValue Reference/Resolution Routines. 1108 //===----------------------------------------------------------------------===// 1109 1110 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1111 const std::string &Name) { 1112 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1113 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1114 else 1115 return new GlobalVariable(*M, PTy->getElementType(), false, 1116 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1117 nullptr, GlobalVariable::NotThreadLocal, 1118 PTy->getAddressSpace()); 1119 } 1120 1121 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1122 /// forward reference record if needed. This can return null if the value 1123 /// exists but does not have the right type. 1124 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1125 LocTy Loc) { 1126 PointerType *PTy = dyn_cast<PointerType>(Ty); 1127 if (!PTy) { 1128 Error(Loc, "global variable reference must have pointer type"); 1129 return nullptr; 1130 } 1131 1132 // Look this name up in the normal function symbol table. 1133 GlobalValue *Val = 1134 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1135 1136 // If this is a forward reference for the value, see if we already created a 1137 // forward ref record. 1138 if (!Val) { 1139 auto I = ForwardRefVals.find(Name); 1140 if (I != ForwardRefVals.end()) 1141 Val = I->second.first; 1142 } 1143 1144 // If we have the value in the symbol table or fwd-ref table, return it. 1145 if (Val) { 1146 if (Val->getType() == Ty) return Val; 1147 Error(Loc, "'@" + Name + "' defined with type '" + 1148 getTypeString(Val->getType()) + "'"); 1149 return nullptr; 1150 } 1151 1152 // Otherwise, create a new forward reference for this value and remember it. 1153 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1154 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1155 return FwdVal; 1156 } 1157 1158 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1159 PointerType *PTy = dyn_cast<PointerType>(Ty); 1160 if (!PTy) { 1161 Error(Loc, "global variable reference must have pointer type"); 1162 return nullptr; 1163 } 1164 1165 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1166 1167 // If this is a forward reference for the value, see if we already created a 1168 // forward ref record. 1169 if (!Val) { 1170 auto I = ForwardRefValIDs.find(ID); 1171 if (I != ForwardRefValIDs.end()) 1172 Val = I->second.first; 1173 } 1174 1175 // If we have the value in the symbol table or fwd-ref table, return it. 1176 if (Val) { 1177 if (Val->getType() == Ty) return Val; 1178 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1179 getTypeString(Val->getType()) + "'"); 1180 return nullptr; 1181 } 1182 1183 // Otherwise, create a new forward reference for this value and remember it. 1184 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1185 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1186 return FwdVal; 1187 } 1188 1189 1190 //===----------------------------------------------------------------------===// 1191 // Comdat Reference/Resolution Routines. 1192 //===----------------------------------------------------------------------===// 1193 1194 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1195 // Look this name up in the comdat symbol table. 1196 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1197 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1198 if (I != ComdatSymTab.end()) 1199 return &I->second; 1200 1201 // Otherwise, create a new forward reference for this value and remember it. 1202 Comdat *C = M->getOrInsertComdat(Name); 1203 ForwardRefComdats[Name] = Loc; 1204 return C; 1205 } 1206 1207 1208 //===----------------------------------------------------------------------===// 1209 // Helper Routines. 1210 //===----------------------------------------------------------------------===// 1211 1212 /// ParseToken - If the current token has the specified kind, eat it and return 1213 /// success. Otherwise, emit the specified error and return failure. 1214 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1215 if (Lex.getKind() != T) 1216 return TokError(ErrMsg); 1217 Lex.Lex(); 1218 return false; 1219 } 1220 1221 /// ParseStringConstant 1222 /// ::= StringConstant 1223 bool LLParser::ParseStringConstant(std::string &Result) { 1224 if (Lex.getKind() != lltok::StringConstant) 1225 return TokError("expected string constant"); 1226 Result = Lex.getStrVal(); 1227 Lex.Lex(); 1228 return false; 1229 } 1230 1231 /// ParseUInt32 1232 /// ::= uint32 1233 bool LLParser::ParseUInt32(unsigned &Val) { 1234 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1235 return TokError("expected integer"); 1236 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1237 if (Val64 != unsigned(Val64)) 1238 return TokError("expected 32-bit integer (too large)"); 1239 Val = Val64; 1240 Lex.Lex(); 1241 return false; 1242 } 1243 1244 /// ParseUInt64 1245 /// ::= uint64 1246 bool LLParser::ParseUInt64(uint64_t &Val) { 1247 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1248 return TokError("expected integer"); 1249 Val = Lex.getAPSIntVal().getLimitedValue(); 1250 Lex.Lex(); 1251 return false; 1252 } 1253 1254 /// ParseTLSModel 1255 /// := 'localdynamic' 1256 /// := 'initialexec' 1257 /// := 'localexec' 1258 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1259 switch (Lex.getKind()) { 1260 default: 1261 return TokError("expected localdynamic, initialexec or localexec"); 1262 case lltok::kw_localdynamic: 1263 TLM = GlobalVariable::LocalDynamicTLSModel; 1264 break; 1265 case lltok::kw_initialexec: 1266 TLM = GlobalVariable::InitialExecTLSModel; 1267 break; 1268 case lltok::kw_localexec: 1269 TLM = GlobalVariable::LocalExecTLSModel; 1270 break; 1271 } 1272 1273 Lex.Lex(); 1274 return false; 1275 } 1276 1277 /// ParseOptionalThreadLocal 1278 /// := /*empty*/ 1279 /// := 'thread_local' 1280 /// := 'thread_local' '(' tlsmodel ')' 1281 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1282 TLM = GlobalVariable::NotThreadLocal; 1283 if (!EatIfPresent(lltok::kw_thread_local)) 1284 return false; 1285 1286 TLM = GlobalVariable::GeneralDynamicTLSModel; 1287 if (Lex.getKind() == lltok::lparen) { 1288 Lex.Lex(); 1289 return ParseTLSModel(TLM) || 1290 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1291 } 1292 return false; 1293 } 1294 1295 /// ParseOptionalAddrSpace 1296 /// := /*empty*/ 1297 /// := 'addrspace' '(' uint32 ')' 1298 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1299 AddrSpace = 0; 1300 if (!EatIfPresent(lltok::kw_addrspace)) 1301 return false; 1302 return ParseToken(lltok::lparen, "expected '(' in address space") || 1303 ParseUInt32(AddrSpace) || 1304 ParseToken(lltok::rparen, "expected ')' in address space"); 1305 } 1306 1307 /// ParseStringAttribute 1308 /// := StringConstant 1309 /// := StringConstant '=' StringConstant 1310 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1311 std::string Attr = Lex.getStrVal(); 1312 Lex.Lex(); 1313 std::string Val; 1314 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1315 return true; 1316 B.addAttribute(Attr, Val); 1317 return false; 1318 } 1319 1320 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1321 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1322 bool HaveError = false; 1323 1324 B.clear(); 1325 1326 while (1) { 1327 lltok::Kind Token = Lex.getKind(); 1328 switch (Token) { 1329 default: // End of attributes. 1330 return HaveError; 1331 case lltok::StringConstant: { 1332 if (ParseStringAttribute(B)) 1333 return true; 1334 continue; 1335 } 1336 case lltok::kw_align: { 1337 unsigned Alignment; 1338 if (ParseOptionalAlignment(Alignment)) 1339 return true; 1340 B.addAlignmentAttr(Alignment); 1341 continue; 1342 } 1343 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1344 case lltok::kw_dereferenceable: { 1345 uint64_t Bytes; 1346 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1347 return true; 1348 B.addDereferenceableAttr(Bytes); 1349 continue; 1350 } 1351 case lltok::kw_dereferenceable_or_null: { 1352 uint64_t Bytes; 1353 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1354 return true; 1355 B.addDereferenceableOrNullAttr(Bytes); 1356 continue; 1357 } 1358 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1359 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1360 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1361 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1362 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1363 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1364 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1365 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1366 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1367 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1368 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1369 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1370 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1371 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1372 1373 case lltok::kw_alignstack: 1374 case lltok::kw_alwaysinline: 1375 case lltok::kw_argmemonly: 1376 case lltok::kw_builtin: 1377 case lltok::kw_inlinehint: 1378 case lltok::kw_jumptable: 1379 case lltok::kw_minsize: 1380 case lltok::kw_naked: 1381 case lltok::kw_nobuiltin: 1382 case lltok::kw_noduplicate: 1383 case lltok::kw_noimplicitfloat: 1384 case lltok::kw_noinline: 1385 case lltok::kw_nonlazybind: 1386 case lltok::kw_noredzone: 1387 case lltok::kw_noreturn: 1388 case lltok::kw_nounwind: 1389 case lltok::kw_optnone: 1390 case lltok::kw_optsize: 1391 case lltok::kw_returns_twice: 1392 case lltok::kw_sanitize_address: 1393 case lltok::kw_sanitize_memory: 1394 case lltok::kw_sanitize_thread: 1395 case lltok::kw_ssp: 1396 case lltok::kw_sspreq: 1397 case lltok::kw_sspstrong: 1398 case lltok::kw_safestack: 1399 case lltok::kw_uwtable: 1400 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1401 break; 1402 } 1403 1404 Lex.Lex(); 1405 } 1406 } 1407 1408 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1409 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1410 bool HaveError = false; 1411 1412 B.clear(); 1413 1414 while (1) { 1415 lltok::Kind Token = Lex.getKind(); 1416 switch (Token) { 1417 default: // End of attributes. 1418 return HaveError; 1419 case lltok::StringConstant: { 1420 if (ParseStringAttribute(B)) 1421 return true; 1422 continue; 1423 } 1424 case lltok::kw_dereferenceable: { 1425 uint64_t Bytes; 1426 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1427 return true; 1428 B.addDereferenceableAttr(Bytes); 1429 continue; 1430 } 1431 case lltok::kw_dereferenceable_or_null: { 1432 uint64_t Bytes; 1433 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1434 return true; 1435 B.addDereferenceableOrNullAttr(Bytes); 1436 continue; 1437 } 1438 case lltok::kw_align: { 1439 unsigned Alignment; 1440 if (ParseOptionalAlignment(Alignment)) 1441 return true; 1442 B.addAlignmentAttr(Alignment); 1443 continue; 1444 } 1445 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1446 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1447 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1448 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1449 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1450 1451 // Error handling. 1452 case lltok::kw_byval: 1453 case lltok::kw_inalloca: 1454 case lltok::kw_nest: 1455 case lltok::kw_nocapture: 1456 case lltok::kw_returned: 1457 case lltok::kw_sret: 1458 case lltok::kw_swifterror: 1459 case lltok::kw_swiftself: 1460 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1461 break; 1462 1463 case lltok::kw_alignstack: 1464 case lltok::kw_alwaysinline: 1465 case lltok::kw_argmemonly: 1466 case lltok::kw_builtin: 1467 case lltok::kw_cold: 1468 case lltok::kw_inlinehint: 1469 case lltok::kw_jumptable: 1470 case lltok::kw_minsize: 1471 case lltok::kw_naked: 1472 case lltok::kw_nobuiltin: 1473 case lltok::kw_noduplicate: 1474 case lltok::kw_noimplicitfloat: 1475 case lltok::kw_noinline: 1476 case lltok::kw_nonlazybind: 1477 case lltok::kw_noredzone: 1478 case lltok::kw_noreturn: 1479 case lltok::kw_nounwind: 1480 case lltok::kw_optnone: 1481 case lltok::kw_optsize: 1482 case lltok::kw_returns_twice: 1483 case lltok::kw_sanitize_address: 1484 case lltok::kw_sanitize_memory: 1485 case lltok::kw_sanitize_thread: 1486 case lltok::kw_ssp: 1487 case lltok::kw_sspreq: 1488 case lltok::kw_sspstrong: 1489 case lltok::kw_safestack: 1490 case lltok::kw_uwtable: 1491 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1492 break; 1493 1494 case lltok::kw_readnone: 1495 case lltok::kw_readonly: 1496 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1497 } 1498 1499 Lex.Lex(); 1500 } 1501 } 1502 1503 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1504 HasLinkage = true; 1505 switch (Kind) { 1506 default: 1507 HasLinkage = false; 1508 return GlobalValue::ExternalLinkage; 1509 case lltok::kw_private: 1510 return GlobalValue::PrivateLinkage; 1511 case lltok::kw_internal: 1512 return GlobalValue::InternalLinkage; 1513 case lltok::kw_weak: 1514 return GlobalValue::WeakAnyLinkage; 1515 case lltok::kw_weak_odr: 1516 return GlobalValue::WeakODRLinkage; 1517 case lltok::kw_linkonce: 1518 return GlobalValue::LinkOnceAnyLinkage; 1519 case lltok::kw_linkonce_odr: 1520 return GlobalValue::LinkOnceODRLinkage; 1521 case lltok::kw_available_externally: 1522 return GlobalValue::AvailableExternallyLinkage; 1523 case lltok::kw_appending: 1524 return GlobalValue::AppendingLinkage; 1525 case lltok::kw_common: 1526 return GlobalValue::CommonLinkage; 1527 case lltok::kw_extern_weak: 1528 return GlobalValue::ExternalWeakLinkage; 1529 case lltok::kw_external: 1530 return GlobalValue::ExternalLinkage; 1531 } 1532 } 1533 1534 /// ParseOptionalLinkage 1535 /// ::= /*empty*/ 1536 /// ::= 'private' 1537 /// ::= 'internal' 1538 /// ::= 'weak' 1539 /// ::= 'weak_odr' 1540 /// ::= 'linkonce' 1541 /// ::= 'linkonce_odr' 1542 /// ::= 'available_externally' 1543 /// ::= 'appending' 1544 /// ::= 'common' 1545 /// ::= 'extern_weak' 1546 /// ::= 'external' 1547 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1548 unsigned &Visibility, 1549 unsigned &DLLStorageClass) { 1550 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1551 if (HasLinkage) 1552 Lex.Lex(); 1553 ParseOptionalVisibility(Visibility); 1554 ParseOptionalDLLStorageClass(DLLStorageClass); 1555 return false; 1556 } 1557 1558 /// ParseOptionalVisibility 1559 /// ::= /*empty*/ 1560 /// ::= 'default' 1561 /// ::= 'hidden' 1562 /// ::= 'protected' 1563 /// 1564 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1565 switch (Lex.getKind()) { 1566 default: 1567 Res = GlobalValue::DefaultVisibility; 1568 return; 1569 case lltok::kw_default: 1570 Res = GlobalValue::DefaultVisibility; 1571 break; 1572 case lltok::kw_hidden: 1573 Res = GlobalValue::HiddenVisibility; 1574 break; 1575 case lltok::kw_protected: 1576 Res = GlobalValue::ProtectedVisibility; 1577 break; 1578 } 1579 Lex.Lex(); 1580 } 1581 1582 /// ParseOptionalDLLStorageClass 1583 /// ::= /*empty*/ 1584 /// ::= 'dllimport' 1585 /// ::= 'dllexport' 1586 /// 1587 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1588 switch (Lex.getKind()) { 1589 default: 1590 Res = GlobalValue::DefaultStorageClass; 1591 return; 1592 case lltok::kw_dllimport: 1593 Res = GlobalValue::DLLImportStorageClass; 1594 break; 1595 case lltok::kw_dllexport: 1596 Res = GlobalValue::DLLExportStorageClass; 1597 break; 1598 } 1599 Lex.Lex(); 1600 } 1601 1602 /// ParseOptionalCallingConv 1603 /// ::= /*empty*/ 1604 /// ::= 'ccc' 1605 /// ::= 'fastcc' 1606 /// ::= 'intel_ocl_bicc' 1607 /// ::= 'coldcc' 1608 /// ::= 'x86_stdcallcc' 1609 /// ::= 'x86_fastcallcc' 1610 /// ::= 'x86_thiscallcc' 1611 /// ::= 'x86_vectorcallcc' 1612 /// ::= 'arm_apcscc' 1613 /// ::= 'arm_aapcscc' 1614 /// ::= 'arm_aapcs_vfpcc' 1615 /// ::= 'msp430_intrcc' 1616 /// ::= 'avr_intrcc' 1617 /// ::= 'avr_signalcc' 1618 /// ::= 'ptx_kernel' 1619 /// ::= 'ptx_device' 1620 /// ::= 'spir_func' 1621 /// ::= 'spir_kernel' 1622 /// ::= 'x86_64_sysvcc' 1623 /// ::= 'x86_64_win64cc' 1624 /// ::= 'webkit_jscc' 1625 /// ::= 'anyregcc' 1626 /// ::= 'preserve_mostcc' 1627 /// ::= 'preserve_allcc' 1628 /// ::= 'ghccc' 1629 /// ::= 'swiftcc' 1630 /// ::= 'x86_intrcc' 1631 /// ::= 'hhvmcc' 1632 /// ::= 'hhvm_ccc' 1633 /// ::= 'cxx_fast_tlscc' 1634 /// ::= 'amdgpu_vs' 1635 /// ::= 'amdgpu_tcs' 1636 /// ::= 'amdgpu_tes' 1637 /// ::= 'amdgpu_gs' 1638 /// ::= 'amdgpu_ps' 1639 /// ::= 'amdgpu_cs' 1640 /// ::= 'amdgpu_kernel' 1641 /// ::= 'cc' UINT 1642 /// 1643 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1644 switch (Lex.getKind()) { 1645 default: CC = CallingConv::C; return false; 1646 case lltok::kw_ccc: CC = CallingConv::C; break; 1647 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1648 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1649 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1650 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1651 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1652 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1653 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1654 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1655 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1656 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1657 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1658 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1659 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1660 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1661 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1662 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1663 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1664 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1665 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break; 1666 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1667 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1668 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1669 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1670 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1671 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1672 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1673 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1674 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1675 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1676 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1677 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1678 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1679 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1680 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1681 case lltok::kw_cc: { 1682 Lex.Lex(); 1683 return ParseUInt32(CC); 1684 } 1685 } 1686 1687 Lex.Lex(); 1688 return false; 1689 } 1690 1691 /// ParseMetadataAttachment 1692 /// ::= !dbg !42 1693 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1694 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1695 1696 std::string Name = Lex.getStrVal(); 1697 Kind = M->getMDKindID(Name); 1698 Lex.Lex(); 1699 1700 return ParseMDNode(MD); 1701 } 1702 1703 /// ParseInstructionMetadata 1704 /// ::= !dbg !42 (',' !dbg !57)* 1705 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1706 do { 1707 if (Lex.getKind() != lltok::MetadataVar) 1708 return TokError("expected metadata after comma"); 1709 1710 unsigned MDK; 1711 MDNode *N; 1712 if (ParseMetadataAttachment(MDK, N)) 1713 return true; 1714 1715 Inst.setMetadata(MDK, N); 1716 if (MDK == LLVMContext::MD_tbaa) 1717 InstsWithTBAATag.push_back(&Inst); 1718 1719 // If this is the end of the list, we're done. 1720 } while (EatIfPresent(lltok::comma)); 1721 return false; 1722 } 1723 1724 /// ParseGlobalObjectMetadataAttachment 1725 /// ::= !dbg !57 1726 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1727 unsigned MDK; 1728 MDNode *N; 1729 if (ParseMetadataAttachment(MDK, N)) 1730 return true; 1731 1732 GO.addMetadata(MDK, *N); 1733 return false; 1734 } 1735 1736 /// ParseOptionalFunctionMetadata 1737 /// ::= (!dbg !57)* 1738 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1739 while (Lex.getKind() == lltok::MetadataVar) 1740 if (ParseGlobalObjectMetadataAttachment(F)) 1741 return true; 1742 return false; 1743 } 1744 1745 /// ParseOptionalAlignment 1746 /// ::= /* empty */ 1747 /// ::= 'align' 4 1748 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1749 Alignment = 0; 1750 if (!EatIfPresent(lltok::kw_align)) 1751 return false; 1752 LocTy AlignLoc = Lex.getLoc(); 1753 if (ParseUInt32(Alignment)) return true; 1754 if (!isPowerOf2_32(Alignment)) 1755 return Error(AlignLoc, "alignment is not a power of two"); 1756 if (Alignment > Value::MaximumAlignment) 1757 return Error(AlignLoc, "huge alignments are not supported yet"); 1758 return false; 1759 } 1760 1761 /// ParseOptionalDerefAttrBytes 1762 /// ::= /* empty */ 1763 /// ::= AttrKind '(' 4 ')' 1764 /// 1765 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1766 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1767 uint64_t &Bytes) { 1768 assert((AttrKind == lltok::kw_dereferenceable || 1769 AttrKind == lltok::kw_dereferenceable_or_null) && 1770 "contract!"); 1771 1772 Bytes = 0; 1773 if (!EatIfPresent(AttrKind)) 1774 return false; 1775 LocTy ParenLoc = Lex.getLoc(); 1776 if (!EatIfPresent(lltok::lparen)) 1777 return Error(ParenLoc, "expected '('"); 1778 LocTy DerefLoc = Lex.getLoc(); 1779 if (ParseUInt64(Bytes)) return true; 1780 ParenLoc = Lex.getLoc(); 1781 if (!EatIfPresent(lltok::rparen)) 1782 return Error(ParenLoc, "expected ')'"); 1783 if (!Bytes) 1784 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1785 return false; 1786 } 1787 1788 /// ParseOptionalCommaAlign 1789 /// ::= 1790 /// ::= ',' align 4 1791 /// 1792 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1793 /// end. 1794 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1795 bool &AteExtraComma) { 1796 AteExtraComma = false; 1797 while (EatIfPresent(lltok::comma)) { 1798 // Metadata at the end is an early exit. 1799 if (Lex.getKind() == lltok::MetadataVar) { 1800 AteExtraComma = true; 1801 return false; 1802 } 1803 1804 if (Lex.getKind() != lltok::kw_align) 1805 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1806 1807 if (ParseOptionalAlignment(Alignment)) return true; 1808 } 1809 1810 return false; 1811 } 1812 1813 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 1814 Optional<unsigned> &HowManyArg) { 1815 Lex.Lex(); 1816 1817 auto StartParen = Lex.getLoc(); 1818 if (!EatIfPresent(lltok::lparen)) 1819 return Error(StartParen, "expected '('"); 1820 1821 if (ParseUInt32(BaseSizeArg)) 1822 return true; 1823 1824 if (EatIfPresent(lltok::comma)) { 1825 auto HowManyAt = Lex.getLoc(); 1826 unsigned HowMany; 1827 if (ParseUInt32(HowMany)) 1828 return true; 1829 if (HowMany == BaseSizeArg) 1830 return Error(HowManyAt, 1831 "'allocsize' indices can't refer to the same parameter"); 1832 HowManyArg = HowMany; 1833 } else 1834 HowManyArg = None; 1835 1836 auto EndParen = Lex.getLoc(); 1837 if (!EatIfPresent(lltok::rparen)) 1838 return Error(EndParen, "expected ')'"); 1839 return false; 1840 } 1841 1842 /// ParseScopeAndOrdering 1843 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1844 /// else: ::= 1845 /// 1846 /// This sets Scope and Ordering to the parsed values. 1847 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1848 AtomicOrdering &Ordering) { 1849 if (!isAtomic) 1850 return false; 1851 1852 Scope = CrossThread; 1853 if (EatIfPresent(lltok::kw_singlethread)) 1854 Scope = SingleThread; 1855 1856 return ParseOrdering(Ordering); 1857 } 1858 1859 /// ParseOrdering 1860 /// ::= AtomicOrdering 1861 /// 1862 /// This sets Ordering to the parsed value. 1863 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 1864 switch (Lex.getKind()) { 1865 default: return TokError("Expected ordering on atomic instruction"); 1866 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 1867 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 1868 // Not specified yet: 1869 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 1870 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 1871 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 1872 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 1873 case lltok::kw_seq_cst: 1874 Ordering = AtomicOrdering::SequentiallyConsistent; 1875 break; 1876 } 1877 Lex.Lex(); 1878 return false; 1879 } 1880 1881 /// ParseOptionalStackAlignment 1882 /// ::= /* empty */ 1883 /// ::= 'alignstack' '(' 4 ')' 1884 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1885 Alignment = 0; 1886 if (!EatIfPresent(lltok::kw_alignstack)) 1887 return false; 1888 LocTy ParenLoc = Lex.getLoc(); 1889 if (!EatIfPresent(lltok::lparen)) 1890 return Error(ParenLoc, "expected '('"); 1891 LocTy AlignLoc = Lex.getLoc(); 1892 if (ParseUInt32(Alignment)) return true; 1893 ParenLoc = Lex.getLoc(); 1894 if (!EatIfPresent(lltok::rparen)) 1895 return Error(ParenLoc, "expected ')'"); 1896 if (!isPowerOf2_32(Alignment)) 1897 return Error(AlignLoc, "stack alignment is not a power of two"); 1898 return false; 1899 } 1900 1901 /// ParseIndexList - This parses the index list for an insert/extractvalue 1902 /// instruction. This sets AteExtraComma in the case where we eat an extra 1903 /// comma at the end of the line and find that it is followed by metadata. 1904 /// Clients that don't allow metadata can call the version of this function that 1905 /// only takes one argument. 1906 /// 1907 /// ParseIndexList 1908 /// ::= (',' uint32)+ 1909 /// 1910 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1911 bool &AteExtraComma) { 1912 AteExtraComma = false; 1913 1914 if (Lex.getKind() != lltok::comma) 1915 return TokError("expected ',' as start of index list"); 1916 1917 while (EatIfPresent(lltok::comma)) { 1918 if (Lex.getKind() == lltok::MetadataVar) { 1919 if (Indices.empty()) return TokError("expected index"); 1920 AteExtraComma = true; 1921 return false; 1922 } 1923 unsigned Idx = 0; 1924 if (ParseUInt32(Idx)) return true; 1925 Indices.push_back(Idx); 1926 } 1927 1928 return false; 1929 } 1930 1931 //===----------------------------------------------------------------------===// 1932 // Type Parsing. 1933 //===----------------------------------------------------------------------===// 1934 1935 /// ParseType - Parse a type. 1936 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 1937 SMLoc TypeLoc = Lex.getLoc(); 1938 switch (Lex.getKind()) { 1939 default: 1940 return TokError(Msg); 1941 case lltok::Type: 1942 // Type ::= 'float' | 'void' (etc) 1943 Result = Lex.getTyVal(); 1944 Lex.Lex(); 1945 break; 1946 case lltok::lbrace: 1947 // Type ::= StructType 1948 if (ParseAnonStructType(Result, false)) 1949 return true; 1950 break; 1951 case lltok::lsquare: 1952 // Type ::= '[' ... ']' 1953 Lex.Lex(); // eat the lsquare. 1954 if (ParseArrayVectorType(Result, false)) 1955 return true; 1956 break; 1957 case lltok::less: // Either vector or packed struct. 1958 // Type ::= '<' ... '>' 1959 Lex.Lex(); 1960 if (Lex.getKind() == lltok::lbrace) { 1961 if (ParseAnonStructType(Result, true) || 1962 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1963 return true; 1964 } else if (ParseArrayVectorType(Result, true)) 1965 return true; 1966 break; 1967 case lltok::LocalVar: { 1968 // Type ::= %foo 1969 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1970 1971 // If the type hasn't been defined yet, create a forward definition and 1972 // remember where that forward def'n was seen (in case it never is defined). 1973 if (!Entry.first) { 1974 Entry.first = StructType::create(Context, Lex.getStrVal()); 1975 Entry.second = Lex.getLoc(); 1976 } 1977 Result = Entry.first; 1978 Lex.Lex(); 1979 break; 1980 } 1981 1982 case lltok::LocalVarID: { 1983 // Type ::= %4 1984 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 1985 1986 // If the type hasn't been defined yet, create a forward definition and 1987 // remember where that forward def'n was seen (in case it never is defined). 1988 if (!Entry.first) { 1989 Entry.first = StructType::create(Context); 1990 Entry.second = Lex.getLoc(); 1991 } 1992 Result = Entry.first; 1993 Lex.Lex(); 1994 break; 1995 } 1996 } 1997 1998 // Parse the type suffixes. 1999 while (1) { 2000 switch (Lex.getKind()) { 2001 // End of type. 2002 default: 2003 if (!AllowVoid && Result->isVoidTy()) 2004 return Error(TypeLoc, "void type only allowed for function results"); 2005 return false; 2006 2007 // Type ::= Type '*' 2008 case lltok::star: 2009 if (Result->isLabelTy()) 2010 return TokError("basic block pointers are invalid"); 2011 if (Result->isVoidTy()) 2012 return TokError("pointers to void are invalid - use i8* instead"); 2013 if (!PointerType::isValidElementType(Result)) 2014 return TokError("pointer to this type is invalid"); 2015 Result = PointerType::getUnqual(Result); 2016 Lex.Lex(); 2017 break; 2018 2019 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2020 case lltok::kw_addrspace: { 2021 if (Result->isLabelTy()) 2022 return TokError("basic block pointers are invalid"); 2023 if (Result->isVoidTy()) 2024 return TokError("pointers to void are invalid; use i8* instead"); 2025 if (!PointerType::isValidElementType(Result)) 2026 return TokError("pointer to this type is invalid"); 2027 unsigned AddrSpace; 2028 if (ParseOptionalAddrSpace(AddrSpace) || 2029 ParseToken(lltok::star, "expected '*' in address space")) 2030 return true; 2031 2032 Result = PointerType::get(Result, AddrSpace); 2033 break; 2034 } 2035 2036 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2037 case lltok::lparen: 2038 if (ParseFunctionType(Result)) 2039 return true; 2040 break; 2041 } 2042 } 2043 } 2044 2045 /// ParseParameterList 2046 /// ::= '(' ')' 2047 /// ::= '(' Arg (',' Arg)* ')' 2048 /// Arg 2049 /// ::= Type OptionalAttributes Value OptionalAttributes 2050 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2051 PerFunctionState &PFS, bool IsMustTailCall, 2052 bool InVarArgsFunc) { 2053 if (ParseToken(lltok::lparen, "expected '(' in call")) 2054 return true; 2055 2056 unsigned AttrIndex = 1; 2057 while (Lex.getKind() != lltok::rparen) { 2058 // If this isn't the first argument, we need a comma. 2059 if (!ArgList.empty() && 2060 ParseToken(lltok::comma, "expected ',' in argument list")) 2061 return true; 2062 2063 // Parse an ellipsis if this is a musttail call in a variadic function. 2064 if (Lex.getKind() == lltok::dotdotdot) { 2065 const char *Msg = "unexpected ellipsis in argument list for "; 2066 if (!IsMustTailCall) 2067 return TokError(Twine(Msg) + "non-musttail call"); 2068 if (!InVarArgsFunc) 2069 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2070 Lex.Lex(); // Lex the '...', it is purely for readability. 2071 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2072 } 2073 2074 // Parse the argument. 2075 LocTy ArgLoc; 2076 Type *ArgTy = nullptr; 2077 AttrBuilder ArgAttrs; 2078 Value *V; 2079 if (ParseType(ArgTy, ArgLoc)) 2080 return true; 2081 2082 if (ArgTy->isMetadataTy()) { 2083 if (ParseMetadataAsValue(V, PFS)) 2084 return true; 2085 } else { 2086 // Otherwise, handle normal operands. 2087 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2088 return true; 2089 } 2090 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(), 2091 AttrIndex++, 2092 ArgAttrs))); 2093 } 2094 2095 if (IsMustTailCall && InVarArgsFunc) 2096 return TokError("expected '...' at end of argument list for musttail call " 2097 "in varargs function"); 2098 2099 Lex.Lex(); // Lex the ')'. 2100 return false; 2101 } 2102 2103 /// ParseOptionalOperandBundles 2104 /// ::= /*empty*/ 2105 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2106 /// 2107 /// OperandBundle 2108 /// ::= bundle-tag '(' ')' 2109 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2110 /// 2111 /// bundle-tag ::= String Constant 2112 bool LLParser::ParseOptionalOperandBundles( 2113 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2114 LocTy BeginLoc = Lex.getLoc(); 2115 if (!EatIfPresent(lltok::lsquare)) 2116 return false; 2117 2118 while (Lex.getKind() != lltok::rsquare) { 2119 // If this isn't the first operand bundle, we need a comma. 2120 if (!BundleList.empty() && 2121 ParseToken(lltok::comma, "expected ',' in input list")) 2122 return true; 2123 2124 std::string Tag; 2125 if (ParseStringConstant(Tag)) 2126 return true; 2127 2128 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2129 return true; 2130 2131 std::vector<Value *> Inputs; 2132 while (Lex.getKind() != lltok::rparen) { 2133 // If this isn't the first input, we need a comma. 2134 if (!Inputs.empty() && 2135 ParseToken(lltok::comma, "expected ',' in input list")) 2136 return true; 2137 2138 Type *Ty = nullptr; 2139 Value *Input = nullptr; 2140 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2141 return true; 2142 Inputs.push_back(Input); 2143 } 2144 2145 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2146 2147 Lex.Lex(); // Lex the ')'. 2148 } 2149 2150 if (BundleList.empty()) 2151 return Error(BeginLoc, "operand bundle set must not be empty"); 2152 2153 Lex.Lex(); // Lex the ']'. 2154 return false; 2155 } 2156 2157 /// ParseArgumentList - Parse the argument list for a function type or function 2158 /// prototype. 2159 /// ::= '(' ArgTypeListI ')' 2160 /// ArgTypeListI 2161 /// ::= /*empty*/ 2162 /// ::= '...' 2163 /// ::= ArgTypeList ',' '...' 2164 /// ::= ArgType (',' ArgType)* 2165 /// 2166 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2167 bool &isVarArg){ 2168 isVarArg = false; 2169 assert(Lex.getKind() == lltok::lparen); 2170 Lex.Lex(); // eat the (. 2171 2172 if (Lex.getKind() == lltok::rparen) { 2173 // empty 2174 } else if (Lex.getKind() == lltok::dotdotdot) { 2175 isVarArg = true; 2176 Lex.Lex(); 2177 } else { 2178 LocTy TypeLoc = Lex.getLoc(); 2179 Type *ArgTy = nullptr; 2180 AttrBuilder Attrs; 2181 std::string Name; 2182 2183 if (ParseType(ArgTy) || 2184 ParseOptionalParamAttrs(Attrs)) return true; 2185 2186 if (ArgTy->isVoidTy()) 2187 return Error(TypeLoc, "argument can not have void type"); 2188 2189 if (Lex.getKind() == lltok::LocalVar) { 2190 Name = Lex.getStrVal(); 2191 Lex.Lex(); 2192 } 2193 2194 if (!FunctionType::isValidArgumentType(ArgTy)) 2195 return Error(TypeLoc, "invalid type for function argument"); 2196 2197 unsigned AttrIndex = 1; 2198 ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(), 2199 AttrIndex++, Attrs), 2200 std::move(Name)); 2201 2202 while (EatIfPresent(lltok::comma)) { 2203 // Handle ... at end of arg list. 2204 if (EatIfPresent(lltok::dotdotdot)) { 2205 isVarArg = true; 2206 break; 2207 } 2208 2209 // Otherwise must be an argument type. 2210 TypeLoc = Lex.getLoc(); 2211 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2212 2213 if (ArgTy->isVoidTy()) 2214 return Error(TypeLoc, "argument can not have void type"); 2215 2216 if (Lex.getKind() == lltok::LocalVar) { 2217 Name = Lex.getStrVal(); 2218 Lex.Lex(); 2219 } else { 2220 Name = ""; 2221 } 2222 2223 if (!ArgTy->isFirstClassType()) 2224 return Error(TypeLoc, "invalid type for function argument"); 2225 2226 ArgList.emplace_back( 2227 TypeLoc, ArgTy, 2228 AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs), 2229 std::move(Name)); 2230 } 2231 } 2232 2233 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2234 } 2235 2236 /// ParseFunctionType 2237 /// ::= Type ArgumentList OptionalAttrs 2238 bool LLParser::ParseFunctionType(Type *&Result) { 2239 assert(Lex.getKind() == lltok::lparen); 2240 2241 if (!FunctionType::isValidReturnType(Result)) 2242 return TokError("invalid function return type"); 2243 2244 SmallVector<ArgInfo, 8> ArgList; 2245 bool isVarArg; 2246 if (ParseArgumentList(ArgList, isVarArg)) 2247 return true; 2248 2249 // Reject names on the arguments lists. 2250 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2251 if (!ArgList[i].Name.empty()) 2252 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2253 if (ArgList[i].Attrs.hasAttributes(i + 1)) 2254 return Error(ArgList[i].Loc, 2255 "argument attributes invalid in function type"); 2256 } 2257 2258 SmallVector<Type*, 16> ArgListTy; 2259 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2260 ArgListTy.push_back(ArgList[i].Ty); 2261 2262 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2263 return false; 2264 } 2265 2266 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2267 /// other structs. 2268 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2269 SmallVector<Type*, 8> Elts; 2270 if (ParseStructBody(Elts)) return true; 2271 2272 Result = StructType::get(Context, Elts, Packed); 2273 return false; 2274 } 2275 2276 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2277 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2278 std::pair<Type*, LocTy> &Entry, 2279 Type *&ResultTy) { 2280 // If the type was already defined, diagnose the redefinition. 2281 if (Entry.first && !Entry.second.isValid()) 2282 return Error(TypeLoc, "redefinition of type"); 2283 2284 // If we have opaque, just return without filling in the definition for the 2285 // struct. This counts as a definition as far as the .ll file goes. 2286 if (EatIfPresent(lltok::kw_opaque)) { 2287 // This type is being defined, so clear the location to indicate this. 2288 Entry.second = SMLoc(); 2289 2290 // If this type number has never been uttered, create it. 2291 if (!Entry.first) 2292 Entry.first = StructType::create(Context, Name); 2293 ResultTy = Entry.first; 2294 return false; 2295 } 2296 2297 // If the type starts with '<', then it is either a packed struct or a vector. 2298 bool isPacked = EatIfPresent(lltok::less); 2299 2300 // If we don't have a struct, then we have a random type alias, which we 2301 // accept for compatibility with old files. These types are not allowed to be 2302 // forward referenced and not allowed to be recursive. 2303 if (Lex.getKind() != lltok::lbrace) { 2304 if (Entry.first) 2305 return Error(TypeLoc, "forward references to non-struct type"); 2306 2307 ResultTy = nullptr; 2308 if (isPacked) 2309 return ParseArrayVectorType(ResultTy, true); 2310 return ParseType(ResultTy); 2311 } 2312 2313 // This type is being defined, so clear the location to indicate this. 2314 Entry.second = SMLoc(); 2315 2316 // If this type number has never been uttered, create it. 2317 if (!Entry.first) 2318 Entry.first = StructType::create(Context, Name); 2319 2320 StructType *STy = cast<StructType>(Entry.first); 2321 2322 SmallVector<Type*, 8> Body; 2323 if (ParseStructBody(Body) || 2324 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2325 return true; 2326 2327 STy->setBody(Body, isPacked); 2328 ResultTy = STy; 2329 return false; 2330 } 2331 2332 2333 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2334 /// StructType 2335 /// ::= '{' '}' 2336 /// ::= '{' Type (',' Type)* '}' 2337 /// ::= '<' '{' '}' '>' 2338 /// ::= '<' '{' Type (',' Type)* '}' '>' 2339 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2340 assert(Lex.getKind() == lltok::lbrace); 2341 Lex.Lex(); // Consume the '{' 2342 2343 // Handle the empty struct. 2344 if (EatIfPresent(lltok::rbrace)) 2345 return false; 2346 2347 LocTy EltTyLoc = Lex.getLoc(); 2348 Type *Ty = nullptr; 2349 if (ParseType(Ty)) return true; 2350 Body.push_back(Ty); 2351 2352 if (!StructType::isValidElementType(Ty)) 2353 return Error(EltTyLoc, "invalid element type for struct"); 2354 2355 while (EatIfPresent(lltok::comma)) { 2356 EltTyLoc = Lex.getLoc(); 2357 if (ParseType(Ty)) return true; 2358 2359 if (!StructType::isValidElementType(Ty)) 2360 return Error(EltTyLoc, "invalid element type for struct"); 2361 2362 Body.push_back(Ty); 2363 } 2364 2365 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2366 } 2367 2368 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2369 /// token has already been consumed. 2370 /// Type 2371 /// ::= '[' APSINTVAL 'x' Types ']' 2372 /// ::= '<' APSINTVAL 'x' Types '>' 2373 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2374 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2375 Lex.getAPSIntVal().getBitWidth() > 64) 2376 return TokError("expected number in address space"); 2377 2378 LocTy SizeLoc = Lex.getLoc(); 2379 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2380 Lex.Lex(); 2381 2382 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2383 return true; 2384 2385 LocTy TypeLoc = Lex.getLoc(); 2386 Type *EltTy = nullptr; 2387 if (ParseType(EltTy)) return true; 2388 2389 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2390 "expected end of sequential type")) 2391 return true; 2392 2393 if (isVector) { 2394 if (Size == 0) 2395 return Error(SizeLoc, "zero element vector is illegal"); 2396 if ((unsigned)Size != Size) 2397 return Error(SizeLoc, "size too large for vector"); 2398 if (!VectorType::isValidElementType(EltTy)) 2399 return Error(TypeLoc, "invalid vector element type"); 2400 Result = VectorType::get(EltTy, unsigned(Size)); 2401 } else { 2402 if (!ArrayType::isValidElementType(EltTy)) 2403 return Error(TypeLoc, "invalid array element type"); 2404 Result = ArrayType::get(EltTy, Size); 2405 } 2406 return false; 2407 } 2408 2409 //===----------------------------------------------------------------------===// 2410 // Function Semantic Analysis. 2411 //===----------------------------------------------------------------------===// 2412 2413 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2414 int functionNumber) 2415 : P(p), F(f), FunctionNumber(functionNumber) { 2416 2417 // Insert unnamed arguments into the NumberedVals list. 2418 for (Argument &A : F.args()) 2419 if (!A.hasName()) 2420 NumberedVals.push_back(&A); 2421 } 2422 2423 LLParser::PerFunctionState::~PerFunctionState() { 2424 // If there were any forward referenced non-basicblock values, delete them. 2425 2426 for (const auto &P : ForwardRefVals) { 2427 if (isa<BasicBlock>(P.second.first)) 2428 continue; 2429 P.second.first->replaceAllUsesWith( 2430 UndefValue::get(P.second.first->getType())); 2431 delete P.second.first; 2432 } 2433 2434 for (const auto &P : ForwardRefValIDs) { 2435 if (isa<BasicBlock>(P.second.first)) 2436 continue; 2437 P.second.first->replaceAllUsesWith( 2438 UndefValue::get(P.second.first->getType())); 2439 delete P.second.first; 2440 } 2441 } 2442 2443 bool LLParser::PerFunctionState::FinishFunction() { 2444 if (!ForwardRefVals.empty()) 2445 return P.Error(ForwardRefVals.begin()->second.second, 2446 "use of undefined value '%" + ForwardRefVals.begin()->first + 2447 "'"); 2448 if (!ForwardRefValIDs.empty()) 2449 return P.Error(ForwardRefValIDs.begin()->second.second, 2450 "use of undefined value '%" + 2451 Twine(ForwardRefValIDs.begin()->first) + "'"); 2452 return false; 2453 } 2454 2455 2456 /// GetVal - Get a value with the specified name or ID, creating a 2457 /// forward reference record if needed. This can return null if the value 2458 /// exists but does not have the right type. 2459 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2460 LocTy Loc) { 2461 // Look this name up in the normal function symbol table. 2462 Value *Val = F.getValueSymbolTable().lookup(Name); 2463 2464 // If this is a forward reference for the value, see if we already created a 2465 // forward ref record. 2466 if (!Val) { 2467 auto I = ForwardRefVals.find(Name); 2468 if (I != ForwardRefVals.end()) 2469 Val = I->second.first; 2470 } 2471 2472 // If we have the value in the symbol table or fwd-ref table, return it. 2473 if (Val) { 2474 if (Val->getType() == Ty) return Val; 2475 if (Ty->isLabelTy()) 2476 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2477 else 2478 P.Error(Loc, "'%" + Name + "' defined with type '" + 2479 getTypeString(Val->getType()) + "'"); 2480 return nullptr; 2481 } 2482 2483 // Don't make placeholders with invalid type. 2484 if (!Ty->isFirstClassType()) { 2485 P.Error(Loc, "invalid use of a non-first-class type"); 2486 return nullptr; 2487 } 2488 2489 // Otherwise, create a new forward reference for this value and remember it. 2490 Value *FwdVal; 2491 if (Ty->isLabelTy()) { 2492 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2493 } else { 2494 FwdVal = new Argument(Ty, Name); 2495 } 2496 2497 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2498 return FwdVal; 2499 } 2500 2501 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) { 2502 // Look this name up in the normal function symbol table. 2503 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2504 2505 // If this is a forward reference for the value, see if we already created a 2506 // forward ref record. 2507 if (!Val) { 2508 auto I = ForwardRefValIDs.find(ID); 2509 if (I != ForwardRefValIDs.end()) 2510 Val = I->second.first; 2511 } 2512 2513 // If we have the value in the symbol table or fwd-ref table, return it. 2514 if (Val) { 2515 if (Val->getType() == Ty) return Val; 2516 if (Ty->isLabelTy()) 2517 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2518 else 2519 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2520 getTypeString(Val->getType()) + "'"); 2521 return nullptr; 2522 } 2523 2524 if (!Ty->isFirstClassType()) { 2525 P.Error(Loc, "invalid use of a non-first-class type"); 2526 return nullptr; 2527 } 2528 2529 // Otherwise, create a new forward reference for this value and remember it. 2530 Value *FwdVal; 2531 if (Ty->isLabelTy()) { 2532 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2533 } else { 2534 FwdVal = new Argument(Ty); 2535 } 2536 2537 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2538 return FwdVal; 2539 } 2540 2541 /// SetInstName - After an instruction is parsed and inserted into its 2542 /// basic block, this installs its name. 2543 bool LLParser::PerFunctionState::SetInstName(int NameID, 2544 const std::string &NameStr, 2545 LocTy NameLoc, Instruction *Inst) { 2546 // If this instruction has void type, it cannot have a name or ID specified. 2547 if (Inst->getType()->isVoidTy()) { 2548 if (NameID != -1 || !NameStr.empty()) 2549 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2550 return false; 2551 } 2552 2553 // If this was a numbered instruction, verify that the instruction is the 2554 // expected value and resolve any forward references. 2555 if (NameStr.empty()) { 2556 // If neither a name nor an ID was specified, just use the next ID. 2557 if (NameID == -1) 2558 NameID = NumberedVals.size(); 2559 2560 if (unsigned(NameID) != NumberedVals.size()) 2561 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2562 Twine(NumberedVals.size()) + "'"); 2563 2564 auto FI = ForwardRefValIDs.find(NameID); 2565 if (FI != ForwardRefValIDs.end()) { 2566 Value *Sentinel = FI->second.first; 2567 if (Sentinel->getType() != Inst->getType()) 2568 return P.Error(NameLoc, "instruction forward referenced with type '" + 2569 getTypeString(FI->second.first->getType()) + "'"); 2570 2571 Sentinel->replaceAllUsesWith(Inst); 2572 delete Sentinel; 2573 ForwardRefValIDs.erase(FI); 2574 } 2575 2576 NumberedVals.push_back(Inst); 2577 return false; 2578 } 2579 2580 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2581 auto FI = ForwardRefVals.find(NameStr); 2582 if (FI != ForwardRefVals.end()) { 2583 Value *Sentinel = FI->second.first; 2584 if (Sentinel->getType() != Inst->getType()) 2585 return P.Error(NameLoc, "instruction forward referenced with type '" + 2586 getTypeString(FI->second.first->getType()) + "'"); 2587 2588 Sentinel->replaceAllUsesWith(Inst); 2589 delete Sentinel; 2590 ForwardRefVals.erase(FI); 2591 } 2592 2593 // Set the name on the instruction. 2594 Inst->setName(NameStr); 2595 2596 if (Inst->getName() != NameStr) 2597 return P.Error(NameLoc, "multiple definition of local value named '" + 2598 NameStr + "'"); 2599 return false; 2600 } 2601 2602 /// GetBB - Get a basic block with the specified name or ID, creating a 2603 /// forward reference record if needed. 2604 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2605 LocTy Loc) { 2606 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2607 Type::getLabelTy(F.getContext()), Loc)); 2608 } 2609 2610 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2611 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2612 Type::getLabelTy(F.getContext()), Loc)); 2613 } 2614 2615 /// DefineBB - Define the specified basic block, which is either named or 2616 /// unnamed. If there is an error, this returns null otherwise it returns 2617 /// the block being defined. 2618 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2619 LocTy Loc) { 2620 BasicBlock *BB; 2621 if (Name.empty()) 2622 BB = GetBB(NumberedVals.size(), Loc); 2623 else 2624 BB = GetBB(Name, Loc); 2625 if (!BB) return nullptr; // Already diagnosed error. 2626 2627 // Move the block to the end of the function. Forward ref'd blocks are 2628 // inserted wherever they happen to be referenced. 2629 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2630 2631 // Remove the block from forward ref sets. 2632 if (Name.empty()) { 2633 ForwardRefValIDs.erase(NumberedVals.size()); 2634 NumberedVals.push_back(BB); 2635 } else { 2636 // BB forward references are already in the function symbol table. 2637 ForwardRefVals.erase(Name); 2638 } 2639 2640 return BB; 2641 } 2642 2643 //===----------------------------------------------------------------------===// 2644 // Constants. 2645 //===----------------------------------------------------------------------===// 2646 2647 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2648 /// type implied. For example, if we parse "4" we don't know what integer type 2649 /// it has. The value will later be combined with its type and checked for 2650 /// sanity. PFS is used to convert function-local operands of metadata (since 2651 /// metadata operands are not just parsed here but also converted to values). 2652 /// PFS can be null when we are not parsing metadata values inside a function. 2653 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2654 ID.Loc = Lex.getLoc(); 2655 switch (Lex.getKind()) { 2656 default: return TokError("expected value token"); 2657 case lltok::GlobalID: // @42 2658 ID.UIntVal = Lex.getUIntVal(); 2659 ID.Kind = ValID::t_GlobalID; 2660 break; 2661 case lltok::GlobalVar: // @foo 2662 ID.StrVal = Lex.getStrVal(); 2663 ID.Kind = ValID::t_GlobalName; 2664 break; 2665 case lltok::LocalVarID: // %42 2666 ID.UIntVal = Lex.getUIntVal(); 2667 ID.Kind = ValID::t_LocalID; 2668 break; 2669 case lltok::LocalVar: // %foo 2670 ID.StrVal = Lex.getStrVal(); 2671 ID.Kind = ValID::t_LocalName; 2672 break; 2673 case lltok::APSInt: 2674 ID.APSIntVal = Lex.getAPSIntVal(); 2675 ID.Kind = ValID::t_APSInt; 2676 break; 2677 case lltok::APFloat: 2678 ID.APFloatVal = Lex.getAPFloatVal(); 2679 ID.Kind = ValID::t_APFloat; 2680 break; 2681 case lltok::kw_true: 2682 ID.ConstantVal = ConstantInt::getTrue(Context); 2683 ID.Kind = ValID::t_Constant; 2684 break; 2685 case lltok::kw_false: 2686 ID.ConstantVal = ConstantInt::getFalse(Context); 2687 ID.Kind = ValID::t_Constant; 2688 break; 2689 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2690 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2691 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2692 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2693 2694 case lltok::lbrace: { 2695 // ValID ::= '{' ConstVector '}' 2696 Lex.Lex(); 2697 SmallVector<Constant*, 16> Elts; 2698 if (ParseGlobalValueVector(Elts) || 2699 ParseToken(lltok::rbrace, "expected end of struct constant")) 2700 return true; 2701 2702 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2703 ID.UIntVal = Elts.size(); 2704 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2705 Elts.size() * sizeof(Elts[0])); 2706 ID.Kind = ValID::t_ConstantStruct; 2707 return false; 2708 } 2709 case lltok::less: { 2710 // ValID ::= '<' ConstVector '>' --> Vector. 2711 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2712 Lex.Lex(); 2713 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2714 2715 SmallVector<Constant*, 16> Elts; 2716 LocTy FirstEltLoc = Lex.getLoc(); 2717 if (ParseGlobalValueVector(Elts) || 2718 (isPackedStruct && 2719 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2720 ParseToken(lltok::greater, "expected end of constant")) 2721 return true; 2722 2723 if (isPackedStruct) { 2724 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2725 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2726 Elts.size() * sizeof(Elts[0])); 2727 ID.UIntVal = Elts.size(); 2728 ID.Kind = ValID::t_PackedConstantStruct; 2729 return false; 2730 } 2731 2732 if (Elts.empty()) 2733 return Error(ID.Loc, "constant vector must not be empty"); 2734 2735 if (!Elts[0]->getType()->isIntegerTy() && 2736 !Elts[0]->getType()->isFloatingPointTy() && 2737 !Elts[0]->getType()->isPointerTy()) 2738 return Error(FirstEltLoc, 2739 "vector elements must have integer, pointer or floating point type"); 2740 2741 // Verify that all the vector elements have the same type. 2742 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2743 if (Elts[i]->getType() != Elts[0]->getType()) 2744 return Error(FirstEltLoc, 2745 "vector element #" + Twine(i) + 2746 " is not of type '" + getTypeString(Elts[0]->getType())); 2747 2748 ID.ConstantVal = ConstantVector::get(Elts); 2749 ID.Kind = ValID::t_Constant; 2750 return false; 2751 } 2752 case lltok::lsquare: { // Array Constant 2753 Lex.Lex(); 2754 SmallVector<Constant*, 16> Elts; 2755 LocTy FirstEltLoc = Lex.getLoc(); 2756 if (ParseGlobalValueVector(Elts) || 2757 ParseToken(lltok::rsquare, "expected end of array constant")) 2758 return true; 2759 2760 // Handle empty element. 2761 if (Elts.empty()) { 2762 // Use undef instead of an array because it's inconvenient to determine 2763 // the element type at this point, there being no elements to examine. 2764 ID.Kind = ValID::t_EmptyArray; 2765 return false; 2766 } 2767 2768 if (!Elts[0]->getType()->isFirstClassType()) 2769 return Error(FirstEltLoc, "invalid array element type: " + 2770 getTypeString(Elts[0]->getType())); 2771 2772 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2773 2774 // Verify all elements are correct type! 2775 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2776 if (Elts[i]->getType() != Elts[0]->getType()) 2777 return Error(FirstEltLoc, 2778 "array element #" + Twine(i) + 2779 " is not of type '" + getTypeString(Elts[0]->getType())); 2780 } 2781 2782 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2783 ID.Kind = ValID::t_Constant; 2784 return false; 2785 } 2786 case lltok::kw_c: // c "foo" 2787 Lex.Lex(); 2788 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2789 false); 2790 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2791 ID.Kind = ValID::t_Constant; 2792 return false; 2793 2794 case lltok::kw_asm: { 2795 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2796 // STRINGCONSTANT 2797 bool HasSideEffect, AlignStack, AsmDialect; 2798 Lex.Lex(); 2799 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2800 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2801 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2802 ParseStringConstant(ID.StrVal) || 2803 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2804 ParseToken(lltok::StringConstant, "expected constraint string")) 2805 return true; 2806 ID.StrVal2 = Lex.getStrVal(); 2807 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2808 (unsigned(AsmDialect)<<2); 2809 ID.Kind = ValID::t_InlineAsm; 2810 return false; 2811 } 2812 2813 case lltok::kw_blockaddress: { 2814 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2815 Lex.Lex(); 2816 2817 ValID Fn, Label; 2818 2819 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2820 ParseValID(Fn) || 2821 ParseToken(lltok::comma, "expected comma in block address expression")|| 2822 ParseValID(Label) || 2823 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2824 return true; 2825 2826 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2827 return Error(Fn.Loc, "expected function name in blockaddress"); 2828 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2829 return Error(Label.Loc, "expected basic block name in blockaddress"); 2830 2831 // Try to find the function (but skip it if it's forward-referenced). 2832 GlobalValue *GV = nullptr; 2833 if (Fn.Kind == ValID::t_GlobalID) { 2834 if (Fn.UIntVal < NumberedVals.size()) 2835 GV = NumberedVals[Fn.UIntVal]; 2836 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2837 GV = M->getNamedValue(Fn.StrVal); 2838 } 2839 Function *F = nullptr; 2840 if (GV) { 2841 // Confirm that it's actually a function with a definition. 2842 if (!isa<Function>(GV)) 2843 return Error(Fn.Loc, "expected function name in blockaddress"); 2844 F = cast<Function>(GV); 2845 if (F->isDeclaration()) 2846 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 2847 } 2848 2849 if (!F) { 2850 // Make a global variable as a placeholder for this reference. 2851 GlobalValue *&FwdRef = 2852 ForwardRefBlockAddresses.insert(std::make_pair( 2853 std::move(Fn), 2854 std::map<ValID, GlobalValue *>())) 2855 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 2856 .first->second; 2857 if (!FwdRef) 2858 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 2859 GlobalValue::InternalLinkage, nullptr, ""); 2860 ID.ConstantVal = FwdRef; 2861 ID.Kind = ValID::t_Constant; 2862 return false; 2863 } 2864 2865 // We found the function; now find the basic block. Don't use PFS, since we 2866 // might be inside a constant expression. 2867 BasicBlock *BB; 2868 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 2869 if (Label.Kind == ValID::t_LocalID) 2870 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 2871 else 2872 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 2873 if (!BB) 2874 return Error(Label.Loc, "referenced value is not a basic block"); 2875 } else { 2876 if (Label.Kind == ValID::t_LocalID) 2877 return Error(Label.Loc, "cannot take address of numeric label after " 2878 "the function is defined"); 2879 BB = dyn_cast_or_null<BasicBlock>( 2880 F->getValueSymbolTable().lookup(Label.StrVal)); 2881 if (!BB) 2882 return Error(Label.Loc, "referenced value is not a basic block"); 2883 } 2884 2885 ID.ConstantVal = BlockAddress::get(F, BB); 2886 ID.Kind = ValID::t_Constant; 2887 return false; 2888 } 2889 2890 case lltok::kw_trunc: 2891 case lltok::kw_zext: 2892 case lltok::kw_sext: 2893 case lltok::kw_fptrunc: 2894 case lltok::kw_fpext: 2895 case lltok::kw_bitcast: 2896 case lltok::kw_addrspacecast: 2897 case lltok::kw_uitofp: 2898 case lltok::kw_sitofp: 2899 case lltok::kw_fptoui: 2900 case lltok::kw_fptosi: 2901 case lltok::kw_inttoptr: 2902 case lltok::kw_ptrtoint: { 2903 unsigned Opc = Lex.getUIntVal(); 2904 Type *DestTy = nullptr; 2905 Constant *SrcVal; 2906 Lex.Lex(); 2907 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2908 ParseGlobalTypeAndValue(SrcVal) || 2909 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2910 ParseType(DestTy) || 2911 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2912 return true; 2913 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2914 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2915 getTypeString(SrcVal->getType()) + "' to '" + 2916 getTypeString(DestTy) + "'"); 2917 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2918 SrcVal, DestTy); 2919 ID.Kind = ValID::t_Constant; 2920 return false; 2921 } 2922 case lltok::kw_extractvalue: { 2923 Lex.Lex(); 2924 Constant *Val; 2925 SmallVector<unsigned, 4> Indices; 2926 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2927 ParseGlobalTypeAndValue(Val) || 2928 ParseIndexList(Indices) || 2929 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2930 return true; 2931 2932 if (!Val->getType()->isAggregateType()) 2933 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2934 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2935 return Error(ID.Loc, "invalid indices for extractvalue"); 2936 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2937 ID.Kind = ValID::t_Constant; 2938 return false; 2939 } 2940 case lltok::kw_insertvalue: { 2941 Lex.Lex(); 2942 Constant *Val0, *Val1; 2943 SmallVector<unsigned, 4> Indices; 2944 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2945 ParseGlobalTypeAndValue(Val0) || 2946 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2947 ParseGlobalTypeAndValue(Val1) || 2948 ParseIndexList(Indices) || 2949 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2950 return true; 2951 if (!Val0->getType()->isAggregateType()) 2952 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2953 Type *IndexedType = 2954 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 2955 if (!IndexedType) 2956 return Error(ID.Loc, "invalid indices for insertvalue"); 2957 if (IndexedType != Val1->getType()) 2958 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 2959 getTypeString(Val1->getType()) + 2960 "' instead of '" + getTypeString(IndexedType) + 2961 "'"); 2962 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2963 ID.Kind = ValID::t_Constant; 2964 return false; 2965 } 2966 case lltok::kw_icmp: 2967 case lltok::kw_fcmp: { 2968 unsigned PredVal, Opc = Lex.getUIntVal(); 2969 Constant *Val0, *Val1; 2970 Lex.Lex(); 2971 if (ParseCmpPredicate(PredVal, Opc) || 2972 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2973 ParseGlobalTypeAndValue(Val0) || 2974 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2975 ParseGlobalTypeAndValue(Val1) || 2976 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2977 return true; 2978 2979 if (Val0->getType() != Val1->getType()) 2980 return Error(ID.Loc, "compare operands must have the same type"); 2981 2982 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2983 2984 if (Opc == Instruction::FCmp) { 2985 if (!Val0->getType()->isFPOrFPVectorTy()) 2986 return Error(ID.Loc, "fcmp requires floating point operands"); 2987 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2988 } else { 2989 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2990 if (!Val0->getType()->isIntOrIntVectorTy() && 2991 !Val0->getType()->getScalarType()->isPointerTy()) 2992 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2993 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2994 } 2995 ID.Kind = ValID::t_Constant; 2996 return false; 2997 } 2998 2999 // Binary Operators. 3000 case lltok::kw_add: 3001 case lltok::kw_fadd: 3002 case lltok::kw_sub: 3003 case lltok::kw_fsub: 3004 case lltok::kw_mul: 3005 case lltok::kw_fmul: 3006 case lltok::kw_udiv: 3007 case lltok::kw_sdiv: 3008 case lltok::kw_fdiv: 3009 case lltok::kw_urem: 3010 case lltok::kw_srem: 3011 case lltok::kw_frem: 3012 case lltok::kw_shl: 3013 case lltok::kw_lshr: 3014 case lltok::kw_ashr: { 3015 bool NUW = false; 3016 bool NSW = false; 3017 bool Exact = false; 3018 unsigned Opc = Lex.getUIntVal(); 3019 Constant *Val0, *Val1; 3020 Lex.Lex(); 3021 LocTy ModifierLoc = Lex.getLoc(); 3022 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3023 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3024 if (EatIfPresent(lltok::kw_nuw)) 3025 NUW = true; 3026 if (EatIfPresent(lltok::kw_nsw)) { 3027 NSW = true; 3028 if (EatIfPresent(lltok::kw_nuw)) 3029 NUW = true; 3030 } 3031 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3032 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3033 if (EatIfPresent(lltok::kw_exact)) 3034 Exact = true; 3035 } 3036 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3037 ParseGlobalTypeAndValue(Val0) || 3038 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3039 ParseGlobalTypeAndValue(Val1) || 3040 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3041 return true; 3042 if (Val0->getType() != Val1->getType()) 3043 return Error(ID.Loc, "operands of constexpr must have same type"); 3044 if (!Val0->getType()->isIntOrIntVectorTy()) { 3045 if (NUW) 3046 return Error(ModifierLoc, "nuw only applies to integer operations"); 3047 if (NSW) 3048 return Error(ModifierLoc, "nsw only applies to integer operations"); 3049 } 3050 // Check that the type is valid for the operator. 3051 switch (Opc) { 3052 case Instruction::Add: 3053 case Instruction::Sub: 3054 case Instruction::Mul: 3055 case Instruction::UDiv: 3056 case Instruction::SDiv: 3057 case Instruction::URem: 3058 case Instruction::SRem: 3059 case Instruction::Shl: 3060 case Instruction::AShr: 3061 case Instruction::LShr: 3062 if (!Val0->getType()->isIntOrIntVectorTy()) 3063 return Error(ID.Loc, "constexpr requires integer operands"); 3064 break; 3065 case Instruction::FAdd: 3066 case Instruction::FSub: 3067 case Instruction::FMul: 3068 case Instruction::FDiv: 3069 case Instruction::FRem: 3070 if (!Val0->getType()->isFPOrFPVectorTy()) 3071 return Error(ID.Loc, "constexpr requires fp operands"); 3072 break; 3073 default: llvm_unreachable("Unknown binary operator!"); 3074 } 3075 unsigned Flags = 0; 3076 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3077 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3078 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3079 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3080 ID.ConstantVal = C; 3081 ID.Kind = ValID::t_Constant; 3082 return false; 3083 } 3084 3085 // Logical Operations 3086 case lltok::kw_and: 3087 case lltok::kw_or: 3088 case lltok::kw_xor: { 3089 unsigned Opc = Lex.getUIntVal(); 3090 Constant *Val0, *Val1; 3091 Lex.Lex(); 3092 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3093 ParseGlobalTypeAndValue(Val0) || 3094 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3095 ParseGlobalTypeAndValue(Val1) || 3096 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3097 return true; 3098 if (Val0->getType() != Val1->getType()) 3099 return Error(ID.Loc, "operands of constexpr must have same type"); 3100 if (!Val0->getType()->isIntOrIntVectorTy()) 3101 return Error(ID.Loc, 3102 "constexpr requires integer or integer vector operands"); 3103 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3104 ID.Kind = ValID::t_Constant; 3105 return false; 3106 } 3107 3108 case lltok::kw_getelementptr: 3109 case lltok::kw_shufflevector: 3110 case lltok::kw_insertelement: 3111 case lltok::kw_extractelement: 3112 case lltok::kw_select: { 3113 unsigned Opc = Lex.getUIntVal(); 3114 SmallVector<Constant*, 16> Elts; 3115 bool InBounds = false; 3116 Type *Ty; 3117 Lex.Lex(); 3118 3119 if (Opc == Instruction::GetElementPtr) 3120 InBounds = EatIfPresent(lltok::kw_inbounds); 3121 3122 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3123 return true; 3124 3125 LocTy ExplicitTypeLoc = Lex.getLoc(); 3126 if (Opc == Instruction::GetElementPtr) { 3127 if (ParseType(Ty) || 3128 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3129 return true; 3130 } 3131 3132 if (ParseGlobalValueVector(Elts) || 3133 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3134 return true; 3135 3136 if (Opc == Instruction::GetElementPtr) { 3137 if (Elts.size() == 0 || 3138 !Elts[0]->getType()->getScalarType()->isPointerTy()) 3139 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3140 3141 Type *BaseType = Elts[0]->getType(); 3142 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3143 if (Ty != BasePointerType->getElementType()) 3144 return Error( 3145 ExplicitTypeLoc, 3146 "explicit pointee type doesn't match operand's pointee type"); 3147 3148 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3149 for (Constant *Val : Indices) { 3150 Type *ValTy = Val->getType(); 3151 if (!ValTy->getScalarType()->isIntegerTy()) 3152 return Error(ID.Loc, "getelementptr index must be an integer"); 3153 if (ValTy->isVectorTy() != BaseType->isVectorTy()) 3154 return Error(ID.Loc, "getelementptr index type missmatch"); 3155 if (ValTy->isVectorTy()) { 3156 unsigned ValNumEl = ValTy->getVectorNumElements(); 3157 unsigned PtrNumEl = BaseType->getVectorNumElements(); 3158 if (ValNumEl != PtrNumEl) 3159 return Error( 3160 ID.Loc, 3161 "getelementptr vector index has a wrong number of elements"); 3162 } 3163 } 3164 3165 SmallPtrSet<Type*, 4> Visited; 3166 if (!Indices.empty() && !Ty->isSized(&Visited)) 3167 return Error(ID.Loc, "base element of getelementptr must be sized"); 3168 3169 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3170 return Error(ID.Loc, "invalid getelementptr indices"); 3171 ID.ConstantVal = 3172 ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds); 3173 } else if (Opc == Instruction::Select) { 3174 if (Elts.size() != 3) 3175 return Error(ID.Loc, "expected three operands to select"); 3176 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3177 Elts[2])) 3178 return Error(ID.Loc, Reason); 3179 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3180 } else if (Opc == Instruction::ShuffleVector) { 3181 if (Elts.size() != 3) 3182 return Error(ID.Loc, "expected three operands to shufflevector"); 3183 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3184 return Error(ID.Loc, "invalid operands to shufflevector"); 3185 ID.ConstantVal = 3186 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3187 } else if (Opc == Instruction::ExtractElement) { 3188 if (Elts.size() != 2) 3189 return Error(ID.Loc, "expected two operands to extractelement"); 3190 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3191 return Error(ID.Loc, "invalid extractelement operands"); 3192 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3193 } else { 3194 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3195 if (Elts.size() != 3) 3196 return Error(ID.Loc, "expected three operands to insertelement"); 3197 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3198 return Error(ID.Loc, "invalid insertelement operands"); 3199 ID.ConstantVal = 3200 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3201 } 3202 3203 ID.Kind = ValID::t_Constant; 3204 return false; 3205 } 3206 } 3207 3208 Lex.Lex(); 3209 return false; 3210 } 3211 3212 /// ParseGlobalValue - Parse a global value with the specified type. 3213 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3214 C = nullptr; 3215 ValID ID; 3216 Value *V = nullptr; 3217 bool Parsed = ParseValID(ID) || 3218 ConvertValIDToValue(Ty, ID, V, nullptr); 3219 if (V && !(C = dyn_cast<Constant>(V))) 3220 return Error(ID.Loc, "global values must be constants"); 3221 return Parsed; 3222 } 3223 3224 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3225 Type *Ty = nullptr; 3226 return ParseType(Ty) || 3227 ParseGlobalValue(Ty, V); 3228 } 3229 3230 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3231 C = nullptr; 3232 3233 LocTy KwLoc = Lex.getLoc(); 3234 if (!EatIfPresent(lltok::kw_comdat)) 3235 return false; 3236 3237 if (EatIfPresent(lltok::lparen)) { 3238 if (Lex.getKind() != lltok::ComdatVar) 3239 return TokError("expected comdat variable"); 3240 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3241 Lex.Lex(); 3242 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3243 return true; 3244 } else { 3245 if (GlobalName.empty()) 3246 return TokError("comdat cannot be unnamed"); 3247 C = getComdat(GlobalName, KwLoc); 3248 } 3249 3250 return false; 3251 } 3252 3253 /// ParseGlobalValueVector 3254 /// ::= /*empty*/ 3255 /// ::= TypeAndValue (',' TypeAndValue)* 3256 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) { 3257 // Empty list. 3258 if (Lex.getKind() == lltok::rbrace || 3259 Lex.getKind() == lltok::rsquare || 3260 Lex.getKind() == lltok::greater || 3261 Lex.getKind() == lltok::rparen) 3262 return false; 3263 3264 Constant *C; 3265 if (ParseGlobalTypeAndValue(C)) return true; 3266 Elts.push_back(C); 3267 3268 while (EatIfPresent(lltok::comma)) { 3269 if (ParseGlobalTypeAndValue(C)) return true; 3270 Elts.push_back(C); 3271 } 3272 3273 return false; 3274 } 3275 3276 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3277 SmallVector<Metadata *, 16> Elts; 3278 if (ParseMDNodeVector(Elts)) 3279 return true; 3280 3281 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3282 return false; 3283 } 3284 3285 /// MDNode: 3286 /// ::= !{ ... } 3287 /// ::= !7 3288 /// ::= !DILocation(...) 3289 bool LLParser::ParseMDNode(MDNode *&N) { 3290 if (Lex.getKind() == lltok::MetadataVar) 3291 return ParseSpecializedMDNode(N); 3292 3293 return ParseToken(lltok::exclaim, "expected '!' here") || 3294 ParseMDNodeTail(N); 3295 } 3296 3297 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3298 // !{ ... } 3299 if (Lex.getKind() == lltok::lbrace) 3300 return ParseMDTuple(N); 3301 3302 // !42 3303 return ParseMDNodeID(N); 3304 } 3305 3306 namespace { 3307 3308 /// Structure to represent an optional metadata field. 3309 template <class FieldTy> struct MDFieldImpl { 3310 typedef MDFieldImpl ImplTy; 3311 FieldTy Val; 3312 bool Seen; 3313 3314 void assign(FieldTy Val) { 3315 Seen = true; 3316 this->Val = std::move(Val); 3317 } 3318 3319 explicit MDFieldImpl(FieldTy Default) 3320 : Val(std::move(Default)), Seen(false) {} 3321 }; 3322 3323 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3324 uint64_t Max; 3325 3326 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3327 : ImplTy(Default), Max(Max) {} 3328 }; 3329 struct LineField : public MDUnsignedField { 3330 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3331 }; 3332 struct ColumnField : public MDUnsignedField { 3333 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3334 }; 3335 struct DwarfTagField : public MDUnsignedField { 3336 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3337 DwarfTagField(dwarf::Tag DefaultTag) 3338 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3339 }; 3340 struct DwarfMacinfoTypeField : public MDUnsignedField { 3341 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3342 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3343 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3344 }; 3345 struct DwarfAttEncodingField : public MDUnsignedField { 3346 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3347 }; 3348 struct DwarfVirtualityField : public MDUnsignedField { 3349 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3350 }; 3351 struct DwarfLangField : public MDUnsignedField { 3352 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3353 }; 3354 struct DwarfCCField : public MDUnsignedField { 3355 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3356 }; 3357 struct EmissionKindField : public MDUnsignedField { 3358 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3359 }; 3360 3361 struct DIFlagField : public MDUnsignedField { 3362 DIFlagField() : MDUnsignedField(0, UINT32_MAX) {} 3363 }; 3364 3365 struct MDSignedField : public MDFieldImpl<int64_t> { 3366 int64_t Min; 3367 int64_t Max; 3368 3369 MDSignedField(int64_t Default = 0) 3370 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3371 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3372 : ImplTy(Default), Min(Min), Max(Max) {} 3373 }; 3374 3375 struct MDBoolField : public MDFieldImpl<bool> { 3376 MDBoolField(bool Default = false) : ImplTy(Default) {} 3377 }; 3378 struct MDField : public MDFieldImpl<Metadata *> { 3379 bool AllowNull; 3380 3381 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3382 }; 3383 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3384 MDConstant() : ImplTy(nullptr) {} 3385 }; 3386 struct MDStringField : public MDFieldImpl<MDString *> { 3387 bool AllowEmpty; 3388 MDStringField(bool AllowEmpty = true) 3389 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3390 }; 3391 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3392 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3393 }; 3394 3395 } // end namespace 3396 3397 namespace llvm { 3398 3399 template <> 3400 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3401 MDUnsignedField &Result) { 3402 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3403 return TokError("expected unsigned integer"); 3404 3405 auto &U = Lex.getAPSIntVal(); 3406 if (U.ugt(Result.Max)) 3407 return TokError("value for '" + Name + "' too large, limit is " + 3408 Twine(Result.Max)); 3409 Result.assign(U.getZExtValue()); 3410 assert(Result.Val <= Result.Max && "Expected value in range"); 3411 Lex.Lex(); 3412 return false; 3413 } 3414 3415 template <> 3416 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3417 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3418 } 3419 template <> 3420 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3421 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3422 } 3423 3424 template <> 3425 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3426 if (Lex.getKind() == lltok::APSInt) 3427 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3428 3429 if (Lex.getKind() != lltok::DwarfTag) 3430 return TokError("expected DWARF tag"); 3431 3432 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3433 if (Tag == dwarf::DW_TAG_invalid) 3434 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3435 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3436 3437 Result.assign(Tag); 3438 Lex.Lex(); 3439 return false; 3440 } 3441 3442 template <> 3443 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3444 DwarfMacinfoTypeField &Result) { 3445 if (Lex.getKind() == lltok::APSInt) 3446 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3447 3448 if (Lex.getKind() != lltok::DwarfMacinfo) 3449 return TokError("expected DWARF macinfo type"); 3450 3451 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3452 if (Macinfo == dwarf::DW_MACINFO_invalid) 3453 return TokError( 3454 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3455 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3456 3457 Result.assign(Macinfo); 3458 Lex.Lex(); 3459 return false; 3460 } 3461 3462 template <> 3463 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3464 DwarfVirtualityField &Result) { 3465 if (Lex.getKind() == lltok::APSInt) 3466 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3467 3468 if (Lex.getKind() != lltok::DwarfVirtuality) 3469 return TokError("expected DWARF virtuality code"); 3470 3471 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3472 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3473 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3474 Lex.getStrVal() + "'"); 3475 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3476 Result.assign(Virtuality); 3477 Lex.Lex(); 3478 return false; 3479 } 3480 3481 template <> 3482 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3483 if (Lex.getKind() == lltok::APSInt) 3484 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3485 3486 if (Lex.getKind() != lltok::DwarfLang) 3487 return TokError("expected DWARF language"); 3488 3489 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3490 if (!Lang) 3491 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3492 "'"); 3493 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3494 Result.assign(Lang); 3495 Lex.Lex(); 3496 return false; 3497 } 3498 3499 template <> 3500 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3501 if (Lex.getKind() == lltok::APSInt) 3502 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3503 3504 if (Lex.getKind() != lltok::DwarfCC) 3505 return TokError("expected DWARF calling convention"); 3506 3507 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3508 if (!CC) 3509 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3510 "'"); 3511 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3512 Result.assign(CC); 3513 Lex.Lex(); 3514 return false; 3515 } 3516 3517 template <> 3518 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3519 if (Lex.getKind() == lltok::APSInt) 3520 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3521 3522 if (Lex.getKind() != lltok::EmissionKind) 3523 return TokError("expected emission kind"); 3524 3525 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3526 if (!Kind) 3527 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3528 "'"); 3529 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3530 Result.assign(*Kind); 3531 Lex.Lex(); 3532 return false; 3533 } 3534 3535 template <> 3536 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3537 DwarfAttEncodingField &Result) { 3538 if (Lex.getKind() == lltok::APSInt) 3539 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3540 3541 if (Lex.getKind() != lltok::DwarfAttEncoding) 3542 return TokError("expected DWARF type attribute encoding"); 3543 3544 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3545 if (!Encoding) 3546 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3547 Lex.getStrVal() + "'"); 3548 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3549 Result.assign(Encoding); 3550 Lex.Lex(); 3551 return false; 3552 } 3553 3554 /// DIFlagField 3555 /// ::= uint32 3556 /// ::= DIFlagVector 3557 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3558 template <> 3559 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3560 assert(Result.Max == UINT32_MAX && "Expected only 32-bits"); 3561 3562 // Parser for a single flag. 3563 auto parseFlag = [&](unsigned &Val) { 3564 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) 3565 return ParseUInt32(Val); 3566 3567 if (Lex.getKind() != lltok::DIFlag) 3568 return TokError("expected debug info flag"); 3569 3570 Val = DINode::getFlag(Lex.getStrVal()); 3571 if (!Val) 3572 return TokError(Twine("invalid debug info flag flag '") + 3573 Lex.getStrVal() + "'"); 3574 Lex.Lex(); 3575 return false; 3576 }; 3577 3578 // Parse the flags and combine them together. 3579 unsigned Combined = 0; 3580 do { 3581 unsigned Val; 3582 if (parseFlag(Val)) 3583 return true; 3584 Combined |= Val; 3585 } while (EatIfPresent(lltok::bar)); 3586 3587 Result.assign(Combined); 3588 return false; 3589 } 3590 3591 template <> 3592 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3593 MDSignedField &Result) { 3594 if (Lex.getKind() != lltok::APSInt) 3595 return TokError("expected signed integer"); 3596 3597 auto &S = Lex.getAPSIntVal(); 3598 if (S < Result.Min) 3599 return TokError("value for '" + Name + "' too small, limit is " + 3600 Twine(Result.Min)); 3601 if (S > Result.Max) 3602 return TokError("value for '" + Name + "' too large, limit is " + 3603 Twine(Result.Max)); 3604 Result.assign(S.getExtValue()); 3605 assert(Result.Val >= Result.Min && "Expected value in range"); 3606 assert(Result.Val <= Result.Max && "Expected value in range"); 3607 Lex.Lex(); 3608 return false; 3609 } 3610 3611 template <> 3612 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3613 switch (Lex.getKind()) { 3614 default: 3615 return TokError("expected 'true' or 'false'"); 3616 case lltok::kw_true: 3617 Result.assign(true); 3618 break; 3619 case lltok::kw_false: 3620 Result.assign(false); 3621 break; 3622 } 3623 Lex.Lex(); 3624 return false; 3625 } 3626 3627 template <> 3628 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3629 if (Lex.getKind() == lltok::kw_null) { 3630 if (!Result.AllowNull) 3631 return TokError("'" + Name + "' cannot be null"); 3632 Lex.Lex(); 3633 Result.assign(nullptr); 3634 return false; 3635 } 3636 3637 Metadata *MD; 3638 if (ParseMetadata(MD, nullptr)) 3639 return true; 3640 3641 Result.assign(MD); 3642 return false; 3643 } 3644 3645 template <> 3646 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) { 3647 Metadata *MD; 3648 if (ParseValueAsMetadata(MD, "expected constant", nullptr)) 3649 return true; 3650 3651 Result.assign(cast<ConstantAsMetadata>(MD)); 3652 return false; 3653 } 3654 3655 template <> 3656 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3657 LocTy ValueLoc = Lex.getLoc(); 3658 std::string S; 3659 if (ParseStringConstant(S)) 3660 return true; 3661 3662 if (!Result.AllowEmpty && S.empty()) 3663 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3664 3665 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3666 return false; 3667 } 3668 3669 template <> 3670 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3671 SmallVector<Metadata *, 4> MDs; 3672 if (ParseMDNodeVector(MDs)) 3673 return true; 3674 3675 Result.assign(std::move(MDs)); 3676 return false; 3677 } 3678 3679 } // end namespace llvm 3680 3681 template <class ParserTy> 3682 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3683 do { 3684 if (Lex.getKind() != lltok::LabelStr) 3685 return TokError("expected field label here"); 3686 3687 if (parseField()) 3688 return true; 3689 } while (EatIfPresent(lltok::comma)); 3690 3691 return false; 3692 } 3693 3694 template <class ParserTy> 3695 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3696 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3697 Lex.Lex(); 3698 3699 if (ParseToken(lltok::lparen, "expected '(' here")) 3700 return true; 3701 if (Lex.getKind() != lltok::rparen) 3702 if (ParseMDFieldsImplBody(parseField)) 3703 return true; 3704 3705 ClosingLoc = Lex.getLoc(); 3706 return ParseToken(lltok::rparen, "expected ')' here"); 3707 } 3708 3709 template <class FieldTy> 3710 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3711 if (Result.Seen) 3712 return TokError("field '" + Name + "' cannot be specified more than once"); 3713 3714 LocTy Loc = Lex.getLoc(); 3715 Lex.Lex(); 3716 return ParseMDField(Loc, Name, Result); 3717 } 3718 3719 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3720 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3721 3722 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3723 if (Lex.getStrVal() == #CLASS) \ 3724 return Parse##CLASS(N, IsDistinct); 3725 #include "llvm/IR/Metadata.def" 3726 3727 return TokError("expected metadata type"); 3728 } 3729 3730 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3731 #define NOP_FIELD(NAME, TYPE, INIT) 3732 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3733 if (!NAME.Seen) \ 3734 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3735 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3736 if (Lex.getStrVal() == #NAME) \ 3737 return ParseMDField(#NAME, NAME); 3738 #define PARSE_MD_FIELDS() \ 3739 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3740 do { \ 3741 LocTy ClosingLoc; \ 3742 if (ParseMDFieldsImpl([&]() -> bool { \ 3743 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3744 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3745 }, ClosingLoc)) \ 3746 return true; \ 3747 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3748 } while (false) 3749 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3750 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3751 3752 /// ParseDILocationFields: 3753 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3754 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 3755 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3756 OPTIONAL(line, LineField, ); \ 3757 OPTIONAL(column, ColumnField, ); \ 3758 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3759 OPTIONAL(inlinedAt, MDField, ); 3760 PARSE_MD_FIELDS(); 3761 #undef VISIT_MD_FIELDS 3762 3763 Result = GET_OR_DISTINCT( 3764 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3765 return false; 3766 } 3767 3768 /// ParseGenericDINode: 3769 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 3770 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 3771 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3772 REQUIRED(tag, DwarfTagField, ); \ 3773 OPTIONAL(header, MDStringField, ); \ 3774 OPTIONAL(operands, MDFieldList, ); 3775 PARSE_MD_FIELDS(); 3776 #undef VISIT_MD_FIELDS 3777 3778 Result = GET_OR_DISTINCT(GenericDINode, 3779 (Context, tag.Val, header.Val, operands.Val)); 3780 return false; 3781 } 3782 3783 /// ParseDISubrange: 3784 /// ::= !DISubrange(count: 30, lowerBound: 2) 3785 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 3786 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3787 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3788 OPTIONAL(lowerBound, MDSignedField, ); 3789 PARSE_MD_FIELDS(); 3790 #undef VISIT_MD_FIELDS 3791 3792 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val)); 3793 return false; 3794 } 3795 3796 /// ParseDIEnumerator: 3797 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 3798 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 3799 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3800 REQUIRED(name, MDStringField, ); \ 3801 REQUIRED(value, MDSignedField, ); 3802 PARSE_MD_FIELDS(); 3803 #undef VISIT_MD_FIELDS 3804 3805 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 3806 return false; 3807 } 3808 3809 /// ParseDIBasicType: 3810 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 3811 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 3812 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3813 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 3814 OPTIONAL(name, MDStringField, ); \ 3815 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3816 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3817 OPTIONAL(encoding, DwarfAttEncodingField, ); 3818 PARSE_MD_FIELDS(); 3819 #undef VISIT_MD_FIELDS 3820 3821 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 3822 align.Val, encoding.Val)); 3823 return false; 3824 } 3825 3826 /// ParseDIDerivedType: 3827 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 3828 /// line: 7, scope: !1, baseType: !2, size: 32, 3829 /// align: 32, offset: 0, flags: 0, extraData: !3) 3830 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 3831 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3832 REQUIRED(tag, DwarfTagField, ); \ 3833 OPTIONAL(name, MDStringField, ); \ 3834 OPTIONAL(file, MDField, ); \ 3835 OPTIONAL(line, LineField, ); \ 3836 OPTIONAL(scope, MDField, ); \ 3837 REQUIRED(baseType, MDField, ); \ 3838 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3839 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3840 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3841 OPTIONAL(flags, DIFlagField, ); \ 3842 OPTIONAL(extraData, MDField, ); 3843 PARSE_MD_FIELDS(); 3844 #undef VISIT_MD_FIELDS 3845 3846 Result = GET_OR_DISTINCT(DIDerivedType, 3847 (Context, tag.Val, name.Val, file.Val, line.Val, 3848 scope.Val, baseType.Val, size.Val, align.Val, 3849 offset.Val, flags.Val, extraData.Val)); 3850 return false; 3851 } 3852 3853 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 3854 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3855 REQUIRED(tag, DwarfTagField, ); \ 3856 OPTIONAL(name, MDStringField, ); \ 3857 OPTIONAL(file, MDField, ); \ 3858 OPTIONAL(line, LineField, ); \ 3859 OPTIONAL(scope, MDField, ); \ 3860 OPTIONAL(baseType, MDField, ); \ 3861 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3862 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3863 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3864 OPTIONAL(flags, DIFlagField, ); \ 3865 OPTIONAL(elements, MDField, ); \ 3866 OPTIONAL(runtimeLang, DwarfLangField, ); \ 3867 OPTIONAL(vtableHolder, MDField, ); \ 3868 OPTIONAL(templateParams, MDField, ); \ 3869 OPTIONAL(identifier, MDStringField, ); 3870 PARSE_MD_FIELDS(); 3871 #undef VISIT_MD_FIELDS 3872 3873 // If this has an identifier try to build an ODR type. 3874 if (identifier.Val) 3875 if (auto *CT = DICompositeType::buildODRType( 3876 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 3877 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 3878 elements.Val, runtimeLang.Val, vtableHolder.Val, 3879 templateParams.Val)) { 3880 Result = CT; 3881 return false; 3882 } 3883 3884 // Create a new node, and save it in the context if it belongs in the type 3885 // map. 3886 Result = GET_OR_DISTINCT( 3887 DICompositeType, 3888 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 3889 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 3890 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 3891 return false; 3892 } 3893 3894 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 3895 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3896 OPTIONAL(flags, DIFlagField, ); \ 3897 OPTIONAL(cc, DwarfCCField, ); \ 3898 REQUIRED(types, MDField, ); 3899 PARSE_MD_FIELDS(); 3900 #undef VISIT_MD_FIELDS 3901 3902 Result = GET_OR_DISTINCT(DISubroutineType, 3903 (Context, flags.Val, cc.Val, types.Val)); 3904 return false; 3905 } 3906 3907 /// ParseDIFileType: 3908 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir") 3909 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 3910 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3911 REQUIRED(filename, MDStringField, ); \ 3912 REQUIRED(directory, MDStringField, ); 3913 PARSE_MD_FIELDS(); 3914 #undef VISIT_MD_FIELDS 3915 3916 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val)); 3917 return false; 3918 } 3919 3920 /// ParseDICompileUnit: 3921 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 3922 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 3923 /// splitDebugFilename: "abc.debug", 3924 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 3925 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 3926 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 3927 if (!IsDistinct) 3928 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 3929 3930 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3931 REQUIRED(language, DwarfLangField, ); \ 3932 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 3933 OPTIONAL(producer, MDStringField, ); \ 3934 OPTIONAL(isOptimized, MDBoolField, ); \ 3935 OPTIONAL(flags, MDStringField, ); \ 3936 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 3937 OPTIONAL(splitDebugFilename, MDStringField, ); \ 3938 OPTIONAL(emissionKind, EmissionKindField, ); \ 3939 OPTIONAL(enums, MDField, ); \ 3940 OPTIONAL(retainedTypes, MDField, ); \ 3941 OPTIONAL(globals, MDField, ); \ 3942 OPTIONAL(imports, MDField, ); \ 3943 OPTIONAL(macros, MDField, ); \ 3944 OPTIONAL(dwoId, MDUnsignedField, ); 3945 PARSE_MD_FIELDS(); 3946 #undef VISIT_MD_FIELDS 3947 3948 Result = DICompileUnit::getDistinct( 3949 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 3950 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 3951 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val); 3952 return false; 3953 } 3954 3955 /// ParseDISubprogram: 3956 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 3957 /// file: !1, line: 7, type: !2, isLocal: false, 3958 /// isDefinition: true, scopeLine: 8, containingType: !3, 3959 /// virtuality: DW_VIRTUALTIY_pure_virtual, 3960 /// virtualIndex: 10, flags: 11, 3961 /// isOptimized: false, templateParams: !4, declaration: !5, 3962 /// variables: !6) 3963 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 3964 auto Loc = Lex.getLoc(); 3965 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3966 OPTIONAL(scope, MDField, ); \ 3967 OPTIONAL(name, MDStringField, ); \ 3968 OPTIONAL(linkageName, MDStringField, ); \ 3969 OPTIONAL(file, MDField, ); \ 3970 OPTIONAL(line, LineField, ); \ 3971 OPTIONAL(type, MDField, ); \ 3972 OPTIONAL(isLocal, MDBoolField, ); \ 3973 OPTIONAL(isDefinition, MDBoolField, (true)); \ 3974 OPTIONAL(scopeLine, LineField, ); \ 3975 OPTIONAL(containingType, MDField, ); \ 3976 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 3977 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 3978 OPTIONAL(flags, DIFlagField, ); \ 3979 OPTIONAL(isOptimized, MDBoolField, ); \ 3980 OPTIONAL(unit, MDField, ); \ 3981 OPTIONAL(templateParams, MDField, ); \ 3982 OPTIONAL(declaration, MDField, ); \ 3983 OPTIONAL(variables, MDField, ); 3984 PARSE_MD_FIELDS(); 3985 #undef VISIT_MD_FIELDS 3986 3987 if (isDefinition.Val && !IsDistinct) 3988 return Lex.Error( 3989 Loc, 3990 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 3991 3992 Result = GET_OR_DISTINCT( 3993 DISubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val, 3994 line.Val, type.Val, isLocal.Val, isDefinition.Val, 3995 scopeLine.Val, containingType.Val, virtuality.Val, 3996 virtualIndex.Val, flags.Val, isOptimized.Val, unit.Val, 3997 templateParams.Val, declaration.Val, variables.Val)); 3998 return false; 3999 } 4000 4001 /// ParseDILexicalBlock: 4002 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4003 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4004 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4005 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4006 OPTIONAL(file, MDField, ); \ 4007 OPTIONAL(line, LineField, ); \ 4008 OPTIONAL(column, ColumnField, ); 4009 PARSE_MD_FIELDS(); 4010 #undef VISIT_MD_FIELDS 4011 4012 Result = GET_OR_DISTINCT( 4013 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4014 return false; 4015 } 4016 4017 /// ParseDILexicalBlockFile: 4018 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4019 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4020 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4021 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4022 OPTIONAL(file, MDField, ); \ 4023 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4024 PARSE_MD_FIELDS(); 4025 #undef VISIT_MD_FIELDS 4026 4027 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4028 (Context, scope.Val, file.Val, discriminator.Val)); 4029 return false; 4030 } 4031 4032 /// ParseDINamespace: 4033 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4034 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4035 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4036 REQUIRED(scope, MDField, ); \ 4037 OPTIONAL(file, MDField, ); \ 4038 OPTIONAL(name, MDStringField, ); \ 4039 OPTIONAL(line, LineField, ); 4040 PARSE_MD_FIELDS(); 4041 #undef VISIT_MD_FIELDS 4042 4043 Result = GET_OR_DISTINCT(DINamespace, 4044 (Context, scope.Val, file.Val, name.Val, line.Val)); 4045 return false; 4046 } 4047 4048 /// ParseDIMacro: 4049 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4050 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4051 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4052 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4053 REQUIRED(line, LineField, ); \ 4054 REQUIRED(name, MDStringField, ); \ 4055 OPTIONAL(value, MDStringField, ); 4056 PARSE_MD_FIELDS(); 4057 #undef VISIT_MD_FIELDS 4058 4059 Result = GET_OR_DISTINCT(DIMacro, 4060 (Context, type.Val, line.Val, name.Val, value.Val)); 4061 return false; 4062 } 4063 4064 /// ParseDIMacroFile: 4065 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4066 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4067 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4068 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4069 REQUIRED(line, LineField, ); \ 4070 REQUIRED(file, MDField, ); \ 4071 OPTIONAL(nodes, MDField, ); 4072 PARSE_MD_FIELDS(); 4073 #undef VISIT_MD_FIELDS 4074 4075 Result = GET_OR_DISTINCT(DIMacroFile, 4076 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4077 return false; 4078 } 4079 4080 4081 /// ParseDIModule: 4082 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4083 /// includePath: "/usr/include", isysroot: "/") 4084 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4085 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4086 REQUIRED(scope, MDField, ); \ 4087 REQUIRED(name, MDStringField, ); \ 4088 OPTIONAL(configMacros, MDStringField, ); \ 4089 OPTIONAL(includePath, MDStringField, ); \ 4090 OPTIONAL(isysroot, MDStringField, ); 4091 PARSE_MD_FIELDS(); 4092 #undef VISIT_MD_FIELDS 4093 4094 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4095 configMacros.Val, includePath.Val, isysroot.Val)); 4096 return false; 4097 } 4098 4099 /// ParseDITemplateTypeParameter: 4100 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4101 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4102 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4103 OPTIONAL(name, MDStringField, ); \ 4104 REQUIRED(type, MDField, ); 4105 PARSE_MD_FIELDS(); 4106 #undef VISIT_MD_FIELDS 4107 4108 Result = 4109 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4110 return false; 4111 } 4112 4113 /// ParseDITemplateValueParameter: 4114 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4115 /// name: "V", type: !1, value: i32 7) 4116 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4117 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4118 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4119 OPTIONAL(name, MDStringField, ); \ 4120 OPTIONAL(type, MDField, ); \ 4121 REQUIRED(value, MDField, ); 4122 PARSE_MD_FIELDS(); 4123 #undef VISIT_MD_FIELDS 4124 4125 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4126 (Context, tag.Val, name.Val, type.Val, value.Val)); 4127 return false; 4128 } 4129 4130 /// ParseDIGlobalVariable: 4131 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4132 /// file: !1, line: 7, type: !2, isLocal: false, 4133 /// isDefinition: true, variable: i32* @foo, 4134 /// declaration: !3) 4135 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4136 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4137 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4138 OPTIONAL(scope, MDField, ); \ 4139 OPTIONAL(linkageName, MDStringField, ); \ 4140 OPTIONAL(file, MDField, ); \ 4141 OPTIONAL(line, LineField, ); \ 4142 OPTIONAL(type, MDField, ); \ 4143 OPTIONAL(isLocal, MDBoolField, ); \ 4144 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4145 OPTIONAL(variable, MDConstant, ); \ 4146 OPTIONAL(declaration, MDField, ); 4147 PARSE_MD_FIELDS(); 4148 #undef VISIT_MD_FIELDS 4149 4150 Result = GET_OR_DISTINCT(DIGlobalVariable, 4151 (Context, scope.Val, name.Val, linkageName.Val, 4152 file.Val, line.Val, type.Val, isLocal.Val, 4153 isDefinition.Val, variable.Val, declaration.Val)); 4154 return false; 4155 } 4156 4157 /// ParseDILocalVariable: 4158 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4159 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 4160 /// ::= !DILocalVariable(scope: !0, name: "foo", 4161 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 4162 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4163 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4164 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4165 OPTIONAL(name, MDStringField, ); \ 4166 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4167 OPTIONAL(file, MDField, ); \ 4168 OPTIONAL(line, LineField, ); \ 4169 OPTIONAL(type, MDField, ); \ 4170 OPTIONAL(flags, DIFlagField, ); 4171 PARSE_MD_FIELDS(); 4172 #undef VISIT_MD_FIELDS 4173 4174 Result = GET_OR_DISTINCT(DILocalVariable, 4175 (Context, scope.Val, name.Val, file.Val, line.Val, 4176 type.Val, arg.Val, flags.Val)); 4177 return false; 4178 } 4179 4180 /// ParseDIExpression: 4181 /// ::= !DIExpression(0, 7, -1) 4182 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4183 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4184 Lex.Lex(); 4185 4186 if (ParseToken(lltok::lparen, "expected '(' here")) 4187 return true; 4188 4189 SmallVector<uint64_t, 8> Elements; 4190 if (Lex.getKind() != lltok::rparen) 4191 do { 4192 if (Lex.getKind() == lltok::DwarfOp) { 4193 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4194 Lex.Lex(); 4195 Elements.push_back(Op); 4196 continue; 4197 } 4198 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4199 } 4200 4201 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4202 return TokError("expected unsigned integer"); 4203 4204 auto &U = Lex.getAPSIntVal(); 4205 if (U.ugt(UINT64_MAX)) 4206 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4207 Elements.push_back(U.getZExtValue()); 4208 Lex.Lex(); 4209 } while (EatIfPresent(lltok::comma)); 4210 4211 if (ParseToken(lltok::rparen, "expected ')' here")) 4212 return true; 4213 4214 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4215 return false; 4216 } 4217 4218 /// ParseDIObjCProperty: 4219 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4220 /// getter: "getFoo", attributes: 7, type: !2) 4221 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4222 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4223 OPTIONAL(name, MDStringField, ); \ 4224 OPTIONAL(file, MDField, ); \ 4225 OPTIONAL(line, LineField, ); \ 4226 OPTIONAL(setter, MDStringField, ); \ 4227 OPTIONAL(getter, MDStringField, ); \ 4228 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4229 OPTIONAL(type, MDField, ); 4230 PARSE_MD_FIELDS(); 4231 #undef VISIT_MD_FIELDS 4232 4233 Result = GET_OR_DISTINCT(DIObjCProperty, 4234 (Context, name.Val, file.Val, line.Val, setter.Val, 4235 getter.Val, attributes.Val, type.Val)); 4236 return false; 4237 } 4238 4239 /// ParseDIImportedEntity: 4240 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4241 /// line: 7, name: "foo") 4242 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4243 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4244 REQUIRED(tag, DwarfTagField, ); \ 4245 REQUIRED(scope, MDField, ); \ 4246 OPTIONAL(entity, MDField, ); \ 4247 OPTIONAL(line, LineField, ); \ 4248 OPTIONAL(name, MDStringField, ); 4249 PARSE_MD_FIELDS(); 4250 #undef VISIT_MD_FIELDS 4251 4252 Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val, 4253 entity.Val, line.Val, name.Val)); 4254 return false; 4255 } 4256 4257 #undef PARSE_MD_FIELD 4258 #undef NOP_FIELD 4259 #undef REQUIRE_FIELD 4260 #undef DECLARE_FIELD 4261 4262 /// ParseMetadataAsValue 4263 /// ::= metadata i32 %local 4264 /// ::= metadata i32 @global 4265 /// ::= metadata i32 7 4266 /// ::= metadata !0 4267 /// ::= metadata !{...} 4268 /// ::= metadata !"string" 4269 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4270 // Note: the type 'metadata' has already been parsed. 4271 Metadata *MD; 4272 if (ParseMetadata(MD, &PFS)) 4273 return true; 4274 4275 V = MetadataAsValue::get(Context, MD); 4276 return false; 4277 } 4278 4279 /// ParseValueAsMetadata 4280 /// ::= i32 %local 4281 /// ::= i32 @global 4282 /// ::= i32 7 4283 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4284 PerFunctionState *PFS) { 4285 Type *Ty; 4286 LocTy Loc; 4287 if (ParseType(Ty, TypeMsg, Loc)) 4288 return true; 4289 if (Ty->isMetadataTy()) 4290 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4291 4292 Value *V; 4293 if (ParseValue(Ty, V, PFS)) 4294 return true; 4295 4296 MD = ValueAsMetadata::get(V); 4297 return false; 4298 } 4299 4300 /// ParseMetadata 4301 /// ::= i32 %local 4302 /// ::= i32 @global 4303 /// ::= i32 7 4304 /// ::= !42 4305 /// ::= !{...} 4306 /// ::= !"string" 4307 /// ::= !DILocation(...) 4308 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4309 if (Lex.getKind() == lltok::MetadataVar) { 4310 MDNode *N; 4311 if (ParseSpecializedMDNode(N)) 4312 return true; 4313 MD = N; 4314 return false; 4315 } 4316 4317 // ValueAsMetadata: 4318 // <type> <value> 4319 if (Lex.getKind() != lltok::exclaim) 4320 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4321 4322 // '!'. 4323 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4324 Lex.Lex(); 4325 4326 // MDString: 4327 // ::= '!' STRINGCONSTANT 4328 if (Lex.getKind() == lltok::StringConstant) { 4329 MDString *S; 4330 if (ParseMDString(S)) 4331 return true; 4332 MD = S; 4333 return false; 4334 } 4335 4336 // MDNode: 4337 // !{ ... } 4338 // !7 4339 MDNode *N; 4340 if (ParseMDNodeTail(N)) 4341 return true; 4342 MD = N; 4343 return false; 4344 } 4345 4346 4347 //===----------------------------------------------------------------------===// 4348 // Function Parsing. 4349 //===----------------------------------------------------------------------===// 4350 4351 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4352 PerFunctionState *PFS) { 4353 if (Ty->isFunctionTy()) 4354 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4355 4356 switch (ID.Kind) { 4357 case ValID::t_LocalID: 4358 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4359 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 4360 return V == nullptr; 4361 case ValID::t_LocalName: 4362 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4363 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 4364 return V == nullptr; 4365 case ValID::t_InlineAsm: { 4366 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4367 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4368 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4369 (ID.UIntVal >> 1) & 1, 4370 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4371 return false; 4372 } 4373 case ValID::t_GlobalName: 4374 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4375 return V == nullptr; 4376 case ValID::t_GlobalID: 4377 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4378 return V == nullptr; 4379 case ValID::t_APSInt: 4380 if (!Ty->isIntegerTy()) 4381 return Error(ID.Loc, "integer constant must have integer type"); 4382 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4383 V = ConstantInt::get(Context, ID.APSIntVal); 4384 return false; 4385 case ValID::t_APFloat: 4386 if (!Ty->isFloatingPointTy() || 4387 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4388 return Error(ID.Loc, "floating point constant invalid for type"); 4389 4390 // The lexer has no type info, so builds all half, float, and double FP 4391 // constants as double. Fix this here. Long double does not need this. 4392 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 4393 bool Ignored; 4394 if (Ty->isHalfTy()) 4395 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 4396 &Ignored); 4397 else if (Ty->isFloatTy()) 4398 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 4399 &Ignored); 4400 } 4401 V = ConstantFP::get(Context, ID.APFloatVal); 4402 4403 if (V->getType() != Ty) 4404 return Error(ID.Loc, "floating point constant does not have type '" + 4405 getTypeString(Ty) + "'"); 4406 4407 return false; 4408 case ValID::t_Null: 4409 if (!Ty->isPointerTy()) 4410 return Error(ID.Loc, "null must be a pointer type"); 4411 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4412 return false; 4413 case ValID::t_Undef: 4414 // FIXME: LabelTy should not be a first-class type. 4415 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4416 return Error(ID.Loc, "invalid type for undef constant"); 4417 V = UndefValue::get(Ty); 4418 return false; 4419 case ValID::t_EmptyArray: 4420 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4421 return Error(ID.Loc, "invalid empty array initializer"); 4422 V = UndefValue::get(Ty); 4423 return false; 4424 case ValID::t_Zero: 4425 // FIXME: LabelTy should not be a first-class type. 4426 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4427 return Error(ID.Loc, "invalid type for null constant"); 4428 V = Constant::getNullValue(Ty); 4429 return false; 4430 case ValID::t_None: 4431 if (!Ty->isTokenTy()) 4432 return Error(ID.Loc, "invalid type for none constant"); 4433 V = Constant::getNullValue(Ty); 4434 return false; 4435 case ValID::t_Constant: 4436 if (ID.ConstantVal->getType() != Ty) 4437 return Error(ID.Loc, "constant expression type mismatch"); 4438 4439 V = ID.ConstantVal; 4440 return false; 4441 case ValID::t_ConstantStruct: 4442 case ValID::t_PackedConstantStruct: 4443 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4444 if (ST->getNumElements() != ID.UIntVal) 4445 return Error(ID.Loc, 4446 "initializer with struct type has wrong # elements"); 4447 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4448 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4449 4450 // Verify that the elements are compatible with the structtype. 4451 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4452 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4453 return Error(ID.Loc, "element " + Twine(i) + 4454 " of struct initializer doesn't match struct element type"); 4455 4456 V = ConstantStruct::get( 4457 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4458 } else 4459 return Error(ID.Loc, "constant expression type mismatch"); 4460 return false; 4461 } 4462 llvm_unreachable("Invalid ValID"); 4463 } 4464 4465 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4466 C = nullptr; 4467 ValID ID; 4468 auto Loc = Lex.getLoc(); 4469 if (ParseValID(ID, /*PFS=*/nullptr)) 4470 return true; 4471 switch (ID.Kind) { 4472 case ValID::t_APSInt: 4473 case ValID::t_APFloat: 4474 case ValID::t_Undef: 4475 case ValID::t_Constant: 4476 case ValID::t_ConstantStruct: 4477 case ValID::t_PackedConstantStruct: { 4478 Value *V; 4479 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4480 return true; 4481 assert(isa<Constant>(V) && "Expected a constant value"); 4482 C = cast<Constant>(V); 4483 return false; 4484 } 4485 default: 4486 return Error(Loc, "expected a constant value"); 4487 } 4488 } 4489 4490 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 4491 V = nullptr; 4492 ValID ID; 4493 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS); 4494 } 4495 4496 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4497 Type *Ty = nullptr; 4498 return ParseType(Ty) || 4499 ParseValue(Ty, V, PFS); 4500 } 4501 4502 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4503 PerFunctionState &PFS) { 4504 Value *V; 4505 Loc = Lex.getLoc(); 4506 if (ParseTypeAndValue(V, PFS)) return true; 4507 if (!isa<BasicBlock>(V)) 4508 return Error(Loc, "expected a basic block"); 4509 BB = cast<BasicBlock>(V); 4510 return false; 4511 } 4512 4513 4514 /// FunctionHeader 4515 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 4516 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 4517 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 4518 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4519 // Parse the linkage. 4520 LocTy LinkageLoc = Lex.getLoc(); 4521 unsigned Linkage; 4522 4523 unsigned Visibility; 4524 unsigned DLLStorageClass; 4525 AttrBuilder RetAttrs; 4526 unsigned CC; 4527 bool HasLinkage; 4528 Type *RetType = nullptr; 4529 LocTy RetTypeLoc = Lex.getLoc(); 4530 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 4531 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 4532 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4533 return true; 4534 4535 // Verify that the linkage is ok. 4536 switch ((GlobalValue::LinkageTypes)Linkage) { 4537 case GlobalValue::ExternalLinkage: 4538 break; // always ok. 4539 case GlobalValue::ExternalWeakLinkage: 4540 if (isDefine) 4541 return Error(LinkageLoc, "invalid linkage for function definition"); 4542 break; 4543 case GlobalValue::PrivateLinkage: 4544 case GlobalValue::InternalLinkage: 4545 case GlobalValue::AvailableExternallyLinkage: 4546 case GlobalValue::LinkOnceAnyLinkage: 4547 case GlobalValue::LinkOnceODRLinkage: 4548 case GlobalValue::WeakAnyLinkage: 4549 case GlobalValue::WeakODRLinkage: 4550 if (!isDefine) 4551 return Error(LinkageLoc, "invalid linkage for function declaration"); 4552 break; 4553 case GlobalValue::AppendingLinkage: 4554 case GlobalValue::CommonLinkage: 4555 return Error(LinkageLoc, "invalid function linkage type"); 4556 } 4557 4558 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4559 return Error(LinkageLoc, 4560 "symbol with local linkage must have default visibility"); 4561 4562 if (!FunctionType::isValidReturnType(RetType)) 4563 return Error(RetTypeLoc, "invalid function return type"); 4564 4565 LocTy NameLoc = Lex.getLoc(); 4566 4567 std::string FunctionName; 4568 if (Lex.getKind() == lltok::GlobalVar) { 4569 FunctionName = Lex.getStrVal(); 4570 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4571 unsigned NameID = Lex.getUIntVal(); 4572 4573 if (NameID != NumberedVals.size()) 4574 return TokError("function expected to be numbered '%" + 4575 Twine(NumberedVals.size()) + "'"); 4576 } else { 4577 return TokError("expected function name"); 4578 } 4579 4580 Lex.Lex(); 4581 4582 if (Lex.getKind() != lltok::lparen) 4583 return TokError("expected '(' in function argument list"); 4584 4585 SmallVector<ArgInfo, 8> ArgList; 4586 bool isVarArg; 4587 AttrBuilder FuncAttrs; 4588 std::vector<unsigned> FwdRefAttrGrps; 4589 LocTy BuiltinLoc; 4590 std::string Section; 4591 unsigned Alignment; 4592 std::string GC; 4593 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4594 LocTy UnnamedAddrLoc; 4595 Constant *Prefix = nullptr; 4596 Constant *Prologue = nullptr; 4597 Constant *PersonalityFn = nullptr; 4598 Comdat *C; 4599 4600 if (ParseArgumentList(ArgList, isVarArg) || 4601 ParseOptionalUnnamedAddr(UnnamedAddr) || 4602 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4603 BuiltinLoc) || 4604 (EatIfPresent(lltok::kw_section) && 4605 ParseStringConstant(Section)) || 4606 parseOptionalComdat(FunctionName, C) || 4607 ParseOptionalAlignment(Alignment) || 4608 (EatIfPresent(lltok::kw_gc) && 4609 ParseStringConstant(GC)) || 4610 (EatIfPresent(lltok::kw_prefix) && 4611 ParseGlobalTypeAndValue(Prefix)) || 4612 (EatIfPresent(lltok::kw_prologue) && 4613 ParseGlobalTypeAndValue(Prologue)) || 4614 (EatIfPresent(lltok::kw_personality) && 4615 ParseGlobalTypeAndValue(PersonalityFn))) 4616 return true; 4617 4618 if (FuncAttrs.contains(Attribute::Builtin)) 4619 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4620 4621 // If the alignment was parsed as an attribute, move to the alignment field. 4622 if (FuncAttrs.hasAlignmentAttr()) { 4623 Alignment = FuncAttrs.getAlignment(); 4624 FuncAttrs.removeAttribute(Attribute::Alignment); 4625 } 4626 4627 // Okay, if we got here, the function is syntactically valid. Convert types 4628 // and do semantic checks. 4629 std::vector<Type*> ParamTypeList; 4630 SmallVector<AttributeSet, 8> Attrs; 4631 4632 if (RetAttrs.hasAttributes()) 4633 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4634 AttributeSet::ReturnIndex, 4635 RetAttrs)); 4636 4637 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4638 ParamTypeList.push_back(ArgList[i].Ty); 4639 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 4640 AttrBuilder B(ArgList[i].Attrs, i + 1); 4641 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 4642 } 4643 } 4644 4645 if (FuncAttrs.hasAttributes()) 4646 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4647 AttributeSet::FunctionIndex, 4648 FuncAttrs)); 4649 4650 AttributeSet PAL = AttributeSet::get(Context, Attrs); 4651 4652 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4653 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4654 4655 FunctionType *FT = 4656 FunctionType::get(RetType, ParamTypeList, isVarArg); 4657 PointerType *PFT = PointerType::getUnqual(FT); 4658 4659 Fn = nullptr; 4660 if (!FunctionName.empty()) { 4661 // If this was a definition of a forward reference, remove the definition 4662 // from the forward reference table and fill in the forward ref. 4663 auto FRVI = ForwardRefVals.find(FunctionName); 4664 if (FRVI != ForwardRefVals.end()) { 4665 Fn = M->getFunction(FunctionName); 4666 if (!Fn) 4667 return Error(FRVI->second.second, "invalid forward reference to " 4668 "function as global value!"); 4669 if (Fn->getType() != PFT) 4670 return Error(FRVI->second.second, "invalid forward reference to " 4671 "function '" + FunctionName + "' with wrong type!"); 4672 4673 ForwardRefVals.erase(FRVI); 4674 } else if ((Fn = M->getFunction(FunctionName))) { 4675 // Reject redefinitions. 4676 return Error(NameLoc, "invalid redefinition of function '" + 4677 FunctionName + "'"); 4678 } else if (M->getNamedValue(FunctionName)) { 4679 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4680 } 4681 4682 } else { 4683 // If this is a definition of a forward referenced function, make sure the 4684 // types agree. 4685 auto I = ForwardRefValIDs.find(NumberedVals.size()); 4686 if (I != ForwardRefValIDs.end()) { 4687 Fn = cast<Function>(I->second.first); 4688 if (Fn->getType() != PFT) 4689 return Error(NameLoc, "type of definition and forward reference of '@" + 4690 Twine(NumberedVals.size()) + "' disagree"); 4691 ForwardRefValIDs.erase(I); 4692 } 4693 } 4694 4695 if (!Fn) 4696 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4697 else // Move the forward-reference to the correct spot in the module. 4698 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4699 4700 if (FunctionName.empty()) 4701 NumberedVals.push_back(Fn); 4702 4703 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4704 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4705 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4706 Fn->setCallingConv(CC); 4707 Fn->setAttributes(PAL); 4708 Fn->setUnnamedAddr(UnnamedAddr); 4709 Fn->setAlignment(Alignment); 4710 Fn->setSection(Section); 4711 Fn->setComdat(C); 4712 Fn->setPersonalityFn(PersonalityFn); 4713 if (!GC.empty()) Fn->setGC(GC); 4714 Fn->setPrefixData(Prefix); 4715 Fn->setPrologueData(Prologue); 4716 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4717 4718 // Add all of the arguments we parsed to the function. 4719 Function::arg_iterator ArgIt = Fn->arg_begin(); 4720 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4721 // If the argument has a name, insert it into the argument symbol table. 4722 if (ArgList[i].Name.empty()) continue; 4723 4724 // Set the name, if it conflicted, it will be auto-renamed. 4725 ArgIt->setName(ArgList[i].Name); 4726 4727 if (ArgIt->getName() != ArgList[i].Name) 4728 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4729 ArgList[i].Name + "'"); 4730 } 4731 4732 if (isDefine) 4733 return false; 4734 4735 // Check the declaration has no block address forward references. 4736 ValID ID; 4737 if (FunctionName.empty()) { 4738 ID.Kind = ValID::t_GlobalID; 4739 ID.UIntVal = NumberedVals.size() - 1; 4740 } else { 4741 ID.Kind = ValID::t_GlobalName; 4742 ID.StrVal = FunctionName; 4743 } 4744 auto Blocks = ForwardRefBlockAddresses.find(ID); 4745 if (Blocks != ForwardRefBlockAddresses.end()) 4746 return Error(Blocks->first.Loc, 4747 "cannot take blockaddress inside a declaration"); 4748 return false; 4749 } 4750 4751 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4752 ValID ID; 4753 if (FunctionNumber == -1) { 4754 ID.Kind = ValID::t_GlobalName; 4755 ID.StrVal = F.getName(); 4756 } else { 4757 ID.Kind = ValID::t_GlobalID; 4758 ID.UIntVal = FunctionNumber; 4759 } 4760 4761 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4762 if (Blocks == P.ForwardRefBlockAddresses.end()) 4763 return false; 4764 4765 for (const auto &I : Blocks->second) { 4766 const ValID &BBID = I.first; 4767 GlobalValue *GV = I.second; 4768 4769 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4770 "Expected local id or name"); 4771 BasicBlock *BB; 4772 if (BBID.Kind == ValID::t_LocalName) 4773 BB = GetBB(BBID.StrVal, BBID.Loc); 4774 else 4775 BB = GetBB(BBID.UIntVal, BBID.Loc); 4776 if (!BB) 4777 return P.Error(BBID.Loc, "referenced value is not a basic block"); 4778 4779 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 4780 GV->eraseFromParent(); 4781 } 4782 4783 P.ForwardRefBlockAddresses.erase(Blocks); 4784 return false; 4785 } 4786 4787 /// ParseFunctionBody 4788 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 4789 bool LLParser::ParseFunctionBody(Function &Fn) { 4790 if (Lex.getKind() != lltok::lbrace) 4791 return TokError("expected '{' in function body"); 4792 Lex.Lex(); // eat the {. 4793 4794 int FunctionNumber = -1; 4795 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 4796 4797 PerFunctionState PFS(*this, Fn, FunctionNumber); 4798 4799 // Resolve block addresses and allow basic blocks to be forward-declared 4800 // within this function. 4801 if (PFS.resolveForwardRefBlockAddresses()) 4802 return true; 4803 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 4804 4805 // We need at least one basic block. 4806 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 4807 return TokError("function body requires at least one basic block"); 4808 4809 while (Lex.getKind() != lltok::rbrace && 4810 Lex.getKind() != lltok::kw_uselistorder) 4811 if (ParseBasicBlock(PFS)) return true; 4812 4813 while (Lex.getKind() != lltok::rbrace) 4814 if (ParseUseListOrder(&PFS)) 4815 return true; 4816 4817 // Eat the }. 4818 Lex.Lex(); 4819 4820 // Verify function is ok. 4821 return PFS.FinishFunction(); 4822 } 4823 4824 /// ParseBasicBlock 4825 /// ::= LabelStr? Instruction* 4826 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 4827 // If this basic block starts out with a name, remember it. 4828 std::string Name; 4829 LocTy NameLoc = Lex.getLoc(); 4830 if (Lex.getKind() == lltok::LabelStr) { 4831 Name = Lex.getStrVal(); 4832 Lex.Lex(); 4833 } 4834 4835 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 4836 if (!BB) 4837 return Error(NameLoc, 4838 "unable to create block named '" + Name + "'"); 4839 4840 std::string NameStr; 4841 4842 // Parse the instructions in this block until we get a terminator. 4843 Instruction *Inst; 4844 do { 4845 // This instruction may have three possibilities for a name: a) none 4846 // specified, b) name specified "%foo =", c) number specified: "%4 =". 4847 LocTy NameLoc = Lex.getLoc(); 4848 int NameID = -1; 4849 NameStr = ""; 4850 4851 if (Lex.getKind() == lltok::LocalVarID) { 4852 NameID = Lex.getUIntVal(); 4853 Lex.Lex(); 4854 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 4855 return true; 4856 } else if (Lex.getKind() == lltok::LocalVar) { 4857 NameStr = Lex.getStrVal(); 4858 Lex.Lex(); 4859 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 4860 return true; 4861 } 4862 4863 switch (ParseInstruction(Inst, BB, PFS)) { 4864 default: llvm_unreachable("Unknown ParseInstruction result!"); 4865 case InstError: return true; 4866 case InstNormal: 4867 BB->getInstList().push_back(Inst); 4868 4869 // With a normal result, we check to see if the instruction is followed by 4870 // a comma and metadata. 4871 if (EatIfPresent(lltok::comma)) 4872 if (ParseInstructionMetadata(*Inst)) 4873 return true; 4874 break; 4875 case InstExtraComma: 4876 BB->getInstList().push_back(Inst); 4877 4878 // If the instruction parser ate an extra comma at the end of it, it 4879 // *must* be followed by metadata. 4880 if (ParseInstructionMetadata(*Inst)) 4881 return true; 4882 break; 4883 } 4884 4885 // Set the name on the instruction. 4886 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 4887 } while (!isa<TerminatorInst>(Inst)); 4888 4889 return false; 4890 } 4891 4892 //===----------------------------------------------------------------------===// 4893 // Instruction Parsing. 4894 //===----------------------------------------------------------------------===// 4895 4896 /// ParseInstruction - Parse one of the many different instructions. 4897 /// 4898 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 4899 PerFunctionState &PFS) { 4900 lltok::Kind Token = Lex.getKind(); 4901 if (Token == lltok::Eof) 4902 return TokError("found end of file when expecting more instructions"); 4903 LocTy Loc = Lex.getLoc(); 4904 unsigned KeywordVal = Lex.getUIntVal(); 4905 Lex.Lex(); // Eat the keyword. 4906 4907 switch (Token) { 4908 default: return Error(Loc, "expected instruction opcode"); 4909 // Terminator Instructions. 4910 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 4911 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 4912 case lltok::kw_br: return ParseBr(Inst, PFS); 4913 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 4914 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 4915 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 4916 case lltok::kw_resume: return ParseResume(Inst, PFS); 4917 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 4918 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 4919 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 4920 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 4921 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 4922 // Binary Operators. 4923 case lltok::kw_add: 4924 case lltok::kw_sub: 4925 case lltok::kw_mul: 4926 case lltok::kw_shl: { 4927 bool NUW = EatIfPresent(lltok::kw_nuw); 4928 bool NSW = EatIfPresent(lltok::kw_nsw); 4929 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 4930 4931 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4932 4933 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 4934 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 4935 return false; 4936 } 4937 case lltok::kw_fadd: 4938 case lltok::kw_fsub: 4939 case lltok::kw_fmul: 4940 case lltok::kw_fdiv: 4941 case lltok::kw_frem: { 4942 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4943 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 4944 if (Res != 0) 4945 return Res; 4946 if (FMF.any()) 4947 Inst->setFastMathFlags(FMF); 4948 return 0; 4949 } 4950 4951 case lltok::kw_sdiv: 4952 case lltok::kw_udiv: 4953 case lltok::kw_lshr: 4954 case lltok::kw_ashr: { 4955 bool Exact = EatIfPresent(lltok::kw_exact); 4956 4957 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4958 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 4959 return false; 4960 } 4961 4962 case lltok::kw_urem: 4963 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 4964 case lltok::kw_and: 4965 case lltok::kw_or: 4966 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 4967 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 4968 case lltok::kw_fcmp: { 4969 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4970 int Res = ParseCompare(Inst, PFS, KeywordVal); 4971 if (Res != 0) 4972 return Res; 4973 if (FMF.any()) 4974 Inst->setFastMathFlags(FMF); 4975 return 0; 4976 } 4977 4978 // Casts. 4979 case lltok::kw_trunc: 4980 case lltok::kw_zext: 4981 case lltok::kw_sext: 4982 case lltok::kw_fptrunc: 4983 case lltok::kw_fpext: 4984 case lltok::kw_bitcast: 4985 case lltok::kw_addrspacecast: 4986 case lltok::kw_uitofp: 4987 case lltok::kw_sitofp: 4988 case lltok::kw_fptoui: 4989 case lltok::kw_fptosi: 4990 case lltok::kw_inttoptr: 4991 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 4992 // Other. 4993 case lltok::kw_select: return ParseSelect(Inst, PFS); 4994 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 4995 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 4996 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 4997 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 4998 case lltok::kw_phi: return ParsePHI(Inst, PFS); 4999 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5000 // Call. 5001 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5002 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5003 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5004 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5005 // Memory. 5006 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5007 case lltok::kw_load: return ParseLoad(Inst, PFS); 5008 case lltok::kw_store: return ParseStore(Inst, PFS); 5009 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5010 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5011 case lltok::kw_fence: return ParseFence(Inst, PFS); 5012 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5013 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5014 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5015 } 5016 } 5017 5018 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5019 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5020 if (Opc == Instruction::FCmp) { 5021 switch (Lex.getKind()) { 5022 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5023 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5024 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5025 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5026 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5027 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5028 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5029 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5030 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5031 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5032 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5033 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5034 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5035 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5036 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5037 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5038 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5039 } 5040 } else { 5041 switch (Lex.getKind()) { 5042 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5043 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5044 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5045 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5046 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5047 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5048 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5049 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5050 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5051 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5052 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5053 } 5054 } 5055 Lex.Lex(); 5056 return false; 5057 } 5058 5059 //===----------------------------------------------------------------------===// 5060 // Terminator Instructions. 5061 //===----------------------------------------------------------------------===// 5062 5063 /// ParseRet - Parse a return instruction. 5064 /// ::= 'ret' void (',' !dbg, !1)* 5065 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5066 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5067 PerFunctionState &PFS) { 5068 SMLoc TypeLoc = Lex.getLoc(); 5069 Type *Ty = nullptr; 5070 if (ParseType(Ty, true /*void allowed*/)) return true; 5071 5072 Type *ResType = PFS.getFunction().getReturnType(); 5073 5074 if (Ty->isVoidTy()) { 5075 if (!ResType->isVoidTy()) 5076 return Error(TypeLoc, "value doesn't match function result type '" + 5077 getTypeString(ResType) + "'"); 5078 5079 Inst = ReturnInst::Create(Context); 5080 return false; 5081 } 5082 5083 Value *RV; 5084 if (ParseValue(Ty, RV, PFS)) return true; 5085 5086 if (ResType != RV->getType()) 5087 return Error(TypeLoc, "value doesn't match function result type '" + 5088 getTypeString(ResType) + "'"); 5089 5090 Inst = ReturnInst::Create(Context, RV); 5091 return false; 5092 } 5093 5094 5095 /// ParseBr 5096 /// ::= 'br' TypeAndValue 5097 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5098 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5099 LocTy Loc, Loc2; 5100 Value *Op0; 5101 BasicBlock *Op1, *Op2; 5102 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5103 5104 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5105 Inst = BranchInst::Create(BB); 5106 return false; 5107 } 5108 5109 if (Op0->getType() != Type::getInt1Ty(Context)) 5110 return Error(Loc, "branch condition must have 'i1' type"); 5111 5112 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5113 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5114 ParseToken(lltok::comma, "expected ',' after true destination") || 5115 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5116 return true; 5117 5118 Inst = BranchInst::Create(Op1, Op2, Op0); 5119 return false; 5120 } 5121 5122 /// ParseSwitch 5123 /// Instruction 5124 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5125 /// JumpTable 5126 /// ::= (TypeAndValue ',' TypeAndValue)* 5127 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5128 LocTy CondLoc, BBLoc; 5129 Value *Cond; 5130 BasicBlock *DefaultBB; 5131 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5132 ParseToken(lltok::comma, "expected ',' after switch condition") || 5133 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5134 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5135 return true; 5136 5137 if (!Cond->getType()->isIntegerTy()) 5138 return Error(CondLoc, "switch condition must have integer type"); 5139 5140 // Parse the jump table pairs. 5141 SmallPtrSet<Value*, 32> SeenCases; 5142 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5143 while (Lex.getKind() != lltok::rsquare) { 5144 Value *Constant; 5145 BasicBlock *DestBB; 5146 5147 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5148 ParseToken(lltok::comma, "expected ',' after case value") || 5149 ParseTypeAndBasicBlock(DestBB, PFS)) 5150 return true; 5151 5152 if (!SeenCases.insert(Constant).second) 5153 return Error(CondLoc, "duplicate case value in switch"); 5154 if (!isa<ConstantInt>(Constant)) 5155 return Error(CondLoc, "case value is not a constant integer"); 5156 5157 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5158 } 5159 5160 Lex.Lex(); // Eat the ']'. 5161 5162 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5163 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5164 SI->addCase(Table[i].first, Table[i].second); 5165 Inst = SI; 5166 return false; 5167 } 5168 5169 /// ParseIndirectBr 5170 /// Instruction 5171 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5172 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5173 LocTy AddrLoc; 5174 Value *Address; 5175 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5176 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5177 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5178 return true; 5179 5180 if (!Address->getType()->isPointerTy()) 5181 return Error(AddrLoc, "indirectbr address must have pointer type"); 5182 5183 // Parse the destination list. 5184 SmallVector<BasicBlock*, 16> DestList; 5185 5186 if (Lex.getKind() != lltok::rsquare) { 5187 BasicBlock *DestBB; 5188 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5189 return true; 5190 DestList.push_back(DestBB); 5191 5192 while (EatIfPresent(lltok::comma)) { 5193 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5194 return true; 5195 DestList.push_back(DestBB); 5196 } 5197 } 5198 5199 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5200 return true; 5201 5202 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5203 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5204 IBI->addDestination(DestList[i]); 5205 Inst = IBI; 5206 return false; 5207 } 5208 5209 5210 /// ParseInvoke 5211 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5212 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5213 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5214 LocTy CallLoc = Lex.getLoc(); 5215 AttrBuilder RetAttrs, FnAttrs; 5216 std::vector<unsigned> FwdRefAttrGrps; 5217 LocTy NoBuiltinLoc; 5218 unsigned CC; 5219 Type *RetType = nullptr; 5220 LocTy RetTypeLoc; 5221 ValID CalleeID; 5222 SmallVector<ParamInfo, 16> ArgList; 5223 SmallVector<OperandBundleDef, 2> BundleList; 5224 5225 BasicBlock *NormalBB, *UnwindBB; 5226 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5227 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5228 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5229 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5230 NoBuiltinLoc) || 5231 ParseOptionalOperandBundles(BundleList, PFS) || 5232 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5233 ParseTypeAndBasicBlock(NormalBB, PFS) || 5234 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5235 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5236 return true; 5237 5238 // If RetType is a non-function pointer type, then this is the short syntax 5239 // for the call, which means that RetType is just the return type. Infer the 5240 // rest of the function argument types from the arguments that are present. 5241 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5242 if (!Ty) { 5243 // Pull out the types of all of the arguments... 5244 std::vector<Type*> ParamTypes; 5245 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5246 ParamTypes.push_back(ArgList[i].V->getType()); 5247 5248 if (!FunctionType::isValidReturnType(RetType)) 5249 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5250 5251 Ty = FunctionType::get(RetType, ParamTypes, false); 5252 } 5253 5254 CalleeID.FTy = Ty; 5255 5256 // Look up the callee. 5257 Value *Callee; 5258 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5259 return true; 5260 5261 // Set up the Attribute for the function. 5262 SmallVector<AttributeSet, 8> Attrs; 5263 if (RetAttrs.hasAttributes()) 5264 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5265 AttributeSet::ReturnIndex, 5266 RetAttrs)); 5267 5268 SmallVector<Value*, 8> Args; 5269 5270 // Loop through FunctionType's arguments and ensure they are specified 5271 // correctly. Also, gather any parameter attributes. 5272 FunctionType::param_iterator I = Ty->param_begin(); 5273 FunctionType::param_iterator E = Ty->param_end(); 5274 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5275 Type *ExpectedTy = nullptr; 5276 if (I != E) { 5277 ExpectedTy = *I++; 5278 } else if (!Ty->isVarArg()) { 5279 return Error(ArgList[i].Loc, "too many arguments specified"); 5280 } 5281 5282 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5283 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5284 getTypeString(ExpectedTy) + "'"); 5285 Args.push_back(ArgList[i].V); 5286 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5287 AttrBuilder B(ArgList[i].Attrs, i + 1); 5288 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5289 } 5290 } 5291 5292 if (I != E) 5293 return Error(CallLoc, "not enough parameters specified for call"); 5294 5295 if (FnAttrs.hasAttributes()) { 5296 if (FnAttrs.hasAlignmentAttr()) 5297 return Error(CallLoc, "invoke instructions may not have an alignment"); 5298 5299 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5300 AttributeSet::FunctionIndex, 5301 FnAttrs)); 5302 } 5303 5304 // Finish off the Attribute and check them 5305 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5306 5307 InvokeInst *II = 5308 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5309 II->setCallingConv(CC); 5310 II->setAttributes(PAL); 5311 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5312 Inst = II; 5313 return false; 5314 } 5315 5316 /// ParseResume 5317 /// ::= 'resume' TypeAndValue 5318 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5319 Value *Exn; LocTy ExnLoc; 5320 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5321 return true; 5322 5323 ResumeInst *RI = ResumeInst::Create(Exn); 5324 Inst = RI; 5325 return false; 5326 } 5327 5328 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5329 PerFunctionState &PFS) { 5330 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5331 return true; 5332 5333 while (Lex.getKind() != lltok::rsquare) { 5334 // If this isn't the first argument, we need a comma. 5335 if (!Args.empty() && 5336 ParseToken(lltok::comma, "expected ',' in argument list")) 5337 return true; 5338 5339 // Parse the argument. 5340 LocTy ArgLoc; 5341 Type *ArgTy = nullptr; 5342 if (ParseType(ArgTy, ArgLoc)) 5343 return true; 5344 5345 Value *V; 5346 if (ArgTy->isMetadataTy()) { 5347 if (ParseMetadataAsValue(V, PFS)) 5348 return true; 5349 } else { 5350 if (ParseValue(ArgTy, V, PFS)) 5351 return true; 5352 } 5353 Args.push_back(V); 5354 } 5355 5356 Lex.Lex(); // Lex the ']'. 5357 return false; 5358 } 5359 5360 /// ParseCleanupRet 5361 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5362 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5363 Value *CleanupPad = nullptr; 5364 5365 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5366 return true; 5367 5368 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5369 return true; 5370 5371 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5372 return true; 5373 5374 BasicBlock *UnwindBB = nullptr; 5375 if (Lex.getKind() == lltok::kw_to) { 5376 Lex.Lex(); 5377 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5378 return true; 5379 } else { 5380 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5381 return true; 5382 } 5383 } 5384 5385 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5386 return false; 5387 } 5388 5389 /// ParseCatchRet 5390 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5391 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5392 Value *CatchPad = nullptr; 5393 5394 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5395 return true; 5396 5397 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5398 return true; 5399 5400 BasicBlock *BB; 5401 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5402 ParseTypeAndBasicBlock(BB, PFS)) 5403 return true; 5404 5405 Inst = CatchReturnInst::Create(CatchPad, BB); 5406 return false; 5407 } 5408 5409 /// ParseCatchSwitch 5410 /// ::= 'catchswitch' within Parent 5411 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5412 Value *ParentPad; 5413 LocTy BBLoc; 5414 5415 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5416 return true; 5417 5418 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5419 Lex.getKind() != lltok::LocalVarID) 5420 return TokError("expected scope value for catchswitch"); 5421 5422 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5423 return true; 5424 5425 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5426 return true; 5427 5428 SmallVector<BasicBlock *, 32> Table; 5429 do { 5430 BasicBlock *DestBB; 5431 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5432 return true; 5433 Table.push_back(DestBB); 5434 } while (EatIfPresent(lltok::comma)); 5435 5436 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5437 return true; 5438 5439 if (ParseToken(lltok::kw_unwind, 5440 "expected 'unwind' after catchswitch scope")) 5441 return true; 5442 5443 BasicBlock *UnwindBB = nullptr; 5444 if (EatIfPresent(lltok::kw_to)) { 5445 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 5446 return true; 5447 } else { 5448 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 5449 return true; 5450 } 5451 5452 auto *CatchSwitch = 5453 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 5454 for (BasicBlock *DestBB : Table) 5455 CatchSwitch->addHandler(DestBB); 5456 Inst = CatchSwitch; 5457 return false; 5458 } 5459 5460 /// ParseCatchPad 5461 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5462 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5463 Value *CatchSwitch = nullptr; 5464 5465 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 5466 return true; 5467 5468 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 5469 return TokError("expected scope value for catchpad"); 5470 5471 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 5472 return true; 5473 5474 SmallVector<Value *, 8> Args; 5475 if (ParseExceptionArgs(Args, PFS)) 5476 return true; 5477 5478 Inst = CatchPadInst::Create(CatchSwitch, Args); 5479 return false; 5480 } 5481 5482 /// ParseCleanupPad 5483 /// ::= 'cleanuppad' within Parent ParamList 5484 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5485 Value *ParentPad = nullptr; 5486 5487 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 5488 return true; 5489 5490 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5491 Lex.getKind() != lltok::LocalVarID) 5492 return TokError("expected scope value for cleanuppad"); 5493 5494 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5495 return true; 5496 5497 SmallVector<Value *, 8> Args; 5498 if (ParseExceptionArgs(Args, PFS)) 5499 return true; 5500 5501 Inst = CleanupPadInst::Create(ParentPad, Args); 5502 return false; 5503 } 5504 5505 //===----------------------------------------------------------------------===// 5506 // Binary Operators. 5507 //===----------------------------------------------------------------------===// 5508 5509 /// ParseArithmetic 5510 /// ::= ArithmeticOps TypeAndValue ',' Value 5511 /// 5512 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5513 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5514 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5515 unsigned Opc, unsigned OperandType) { 5516 LocTy Loc; Value *LHS, *RHS; 5517 if (ParseTypeAndValue(LHS, Loc, PFS) || 5518 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5519 ParseValue(LHS->getType(), RHS, PFS)) 5520 return true; 5521 5522 bool Valid; 5523 switch (OperandType) { 5524 default: llvm_unreachable("Unknown operand type!"); 5525 case 0: // int or FP. 5526 Valid = LHS->getType()->isIntOrIntVectorTy() || 5527 LHS->getType()->isFPOrFPVectorTy(); 5528 break; 5529 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5530 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5531 } 5532 5533 if (!Valid) 5534 return Error(Loc, "invalid operand type for instruction"); 5535 5536 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5537 return false; 5538 } 5539 5540 /// ParseLogical 5541 /// ::= ArithmeticOps TypeAndValue ',' Value { 5542 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5543 unsigned Opc) { 5544 LocTy Loc; Value *LHS, *RHS; 5545 if (ParseTypeAndValue(LHS, Loc, PFS) || 5546 ParseToken(lltok::comma, "expected ',' in logical operation") || 5547 ParseValue(LHS->getType(), RHS, PFS)) 5548 return true; 5549 5550 if (!LHS->getType()->isIntOrIntVectorTy()) 5551 return Error(Loc,"instruction requires integer or integer vector operands"); 5552 5553 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5554 return false; 5555 } 5556 5557 5558 /// ParseCompare 5559 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5560 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5561 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5562 unsigned Opc) { 5563 // Parse the integer/fp comparison predicate. 5564 LocTy Loc; 5565 unsigned Pred; 5566 Value *LHS, *RHS; 5567 if (ParseCmpPredicate(Pred, Opc) || 5568 ParseTypeAndValue(LHS, Loc, PFS) || 5569 ParseToken(lltok::comma, "expected ',' after compare value") || 5570 ParseValue(LHS->getType(), RHS, PFS)) 5571 return true; 5572 5573 if (Opc == Instruction::FCmp) { 5574 if (!LHS->getType()->isFPOrFPVectorTy()) 5575 return Error(Loc, "fcmp requires floating point operands"); 5576 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5577 } else { 5578 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5579 if (!LHS->getType()->isIntOrIntVectorTy() && 5580 !LHS->getType()->getScalarType()->isPointerTy()) 5581 return Error(Loc, "icmp requires integer operands"); 5582 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5583 } 5584 return false; 5585 } 5586 5587 //===----------------------------------------------------------------------===// 5588 // Other Instructions. 5589 //===----------------------------------------------------------------------===// 5590 5591 5592 /// ParseCast 5593 /// ::= CastOpc TypeAndValue 'to' Type 5594 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5595 unsigned Opc) { 5596 LocTy Loc; 5597 Value *Op; 5598 Type *DestTy = nullptr; 5599 if (ParseTypeAndValue(Op, Loc, PFS) || 5600 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5601 ParseType(DestTy)) 5602 return true; 5603 5604 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5605 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5606 return Error(Loc, "invalid cast opcode for cast from '" + 5607 getTypeString(Op->getType()) + "' to '" + 5608 getTypeString(DestTy) + "'"); 5609 } 5610 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5611 return false; 5612 } 5613 5614 /// ParseSelect 5615 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5616 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5617 LocTy Loc; 5618 Value *Op0, *Op1, *Op2; 5619 if (ParseTypeAndValue(Op0, Loc, PFS) || 5620 ParseToken(lltok::comma, "expected ',' after select condition") || 5621 ParseTypeAndValue(Op1, PFS) || 5622 ParseToken(lltok::comma, "expected ',' after select value") || 5623 ParseTypeAndValue(Op2, PFS)) 5624 return true; 5625 5626 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5627 return Error(Loc, Reason); 5628 5629 Inst = SelectInst::Create(Op0, Op1, Op2); 5630 return false; 5631 } 5632 5633 /// ParseVA_Arg 5634 /// ::= 'va_arg' TypeAndValue ',' Type 5635 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5636 Value *Op; 5637 Type *EltTy = nullptr; 5638 LocTy TypeLoc; 5639 if (ParseTypeAndValue(Op, PFS) || 5640 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5641 ParseType(EltTy, TypeLoc)) 5642 return true; 5643 5644 if (!EltTy->isFirstClassType()) 5645 return Error(TypeLoc, "va_arg requires operand with first class type"); 5646 5647 Inst = new VAArgInst(Op, EltTy); 5648 return false; 5649 } 5650 5651 /// ParseExtractElement 5652 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5653 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5654 LocTy Loc; 5655 Value *Op0, *Op1; 5656 if (ParseTypeAndValue(Op0, Loc, PFS) || 5657 ParseToken(lltok::comma, "expected ',' after extract value") || 5658 ParseTypeAndValue(Op1, PFS)) 5659 return true; 5660 5661 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5662 return Error(Loc, "invalid extractelement operands"); 5663 5664 Inst = ExtractElementInst::Create(Op0, Op1); 5665 return false; 5666 } 5667 5668 /// ParseInsertElement 5669 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5670 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5671 LocTy Loc; 5672 Value *Op0, *Op1, *Op2; 5673 if (ParseTypeAndValue(Op0, Loc, PFS) || 5674 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5675 ParseTypeAndValue(Op1, PFS) || 5676 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5677 ParseTypeAndValue(Op2, PFS)) 5678 return true; 5679 5680 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5681 return Error(Loc, "invalid insertelement operands"); 5682 5683 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5684 return false; 5685 } 5686 5687 /// ParseShuffleVector 5688 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5689 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5690 LocTy Loc; 5691 Value *Op0, *Op1, *Op2; 5692 if (ParseTypeAndValue(Op0, Loc, PFS) || 5693 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5694 ParseTypeAndValue(Op1, PFS) || 5695 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5696 ParseTypeAndValue(Op2, PFS)) 5697 return true; 5698 5699 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5700 return Error(Loc, "invalid shufflevector operands"); 5701 5702 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5703 return false; 5704 } 5705 5706 /// ParsePHI 5707 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5708 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5709 Type *Ty = nullptr; LocTy TypeLoc; 5710 Value *Op0, *Op1; 5711 5712 if (ParseType(Ty, TypeLoc) || 5713 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5714 ParseValue(Ty, Op0, PFS) || 5715 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5716 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5717 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5718 return true; 5719 5720 bool AteExtraComma = false; 5721 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5722 while (1) { 5723 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5724 5725 if (!EatIfPresent(lltok::comma)) 5726 break; 5727 5728 if (Lex.getKind() == lltok::MetadataVar) { 5729 AteExtraComma = true; 5730 break; 5731 } 5732 5733 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5734 ParseValue(Ty, Op0, PFS) || 5735 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5736 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5737 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5738 return true; 5739 } 5740 5741 if (!Ty->isFirstClassType()) 5742 return Error(TypeLoc, "phi node must have first class type"); 5743 5744 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5745 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5746 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5747 Inst = PN; 5748 return AteExtraComma ? InstExtraComma : InstNormal; 5749 } 5750 5751 /// ParseLandingPad 5752 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5753 /// Clause 5754 /// ::= 'catch' TypeAndValue 5755 /// ::= 'filter' 5756 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5757 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5758 Type *Ty = nullptr; LocTy TyLoc; 5759 5760 if (ParseType(Ty, TyLoc)) 5761 return true; 5762 5763 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 5764 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5765 5766 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5767 LandingPadInst::ClauseType CT; 5768 if (EatIfPresent(lltok::kw_catch)) 5769 CT = LandingPadInst::Catch; 5770 else if (EatIfPresent(lltok::kw_filter)) 5771 CT = LandingPadInst::Filter; 5772 else 5773 return TokError("expected 'catch' or 'filter' clause type"); 5774 5775 Value *V; 5776 LocTy VLoc; 5777 if (ParseTypeAndValue(V, VLoc, PFS)) 5778 return true; 5779 5780 // A 'catch' type expects a non-array constant. A filter clause expects an 5781 // array constant. 5782 if (CT == LandingPadInst::Catch) { 5783 if (isa<ArrayType>(V->getType())) 5784 Error(VLoc, "'catch' clause has an invalid type"); 5785 } else { 5786 if (!isa<ArrayType>(V->getType())) 5787 Error(VLoc, "'filter' clause has an invalid type"); 5788 } 5789 5790 Constant *CV = dyn_cast<Constant>(V); 5791 if (!CV) 5792 return Error(VLoc, "clause argument must be a constant"); 5793 LP->addClause(CV); 5794 } 5795 5796 Inst = LP.release(); 5797 return false; 5798 } 5799 5800 /// ParseCall 5801 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 5802 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5803 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 5804 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5805 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 5806 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5807 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 5808 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5809 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 5810 CallInst::TailCallKind TCK) { 5811 AttrBuilder RetAttrs, FnAttrs; 5812 std::vector<unsigned> FwdRefAttrGrps; 5813 LocTy BuiltinLoc; 5814 unsigned CC; 5815 Type *RetType = nullptr; 5816 LocTy RetTypeLoc; 5817 ValID CalleeID; 5818 SmallVector<ParamInfo, 16> ArgList; 5819 SmallVector<OperandBundleDef, 2> BundleList; 5820 LocTy CallLoc = Lex.getLoc(); 5821 5822 if (TCK != CallInst::TCK_None && 5823 ParseToken(lltok::kw_call, 5824 "expected 'tail call', 'musttail call', or 'notail call'")) 5825 return true; 5826 5827 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5828 5829 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5830 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5831 ParseValID(CalleeID) || 5832 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 5833 PFS.getFunction().isVarArg()) || 5834 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 5835 ParseOptionalOperandBundles(BundleList, PFS)) 5836 return true; 5837 5838 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 5839 return Error(CallLoc, "fast-math-flags specified for call without " 5840 "floating-point scalar or vector return type"); 5841 5842 // If RetType is a non-function pointer type, then this is the short syntax 5843 // for the call, which means that RetType is just the return type. Infer the 5844 // rest of the function argument types from the arguments that are present. 5845 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5846 if (!Ty) { 5847 // Pull out the types of all of the arguments... 5848 std::vector<Type*> ParamTypes; 5849 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5850 ParamTypes.push_back(ArgList[i].V->getType()); 5851 5852 if (!FunctionType::isValidReturnType(RetType)) 5853 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5854 5855 Ty = FunctionType::get(RetType, ParamTypes, false); 5856 } 5857 5858 CalleeID.FTy = Ty; 5859 5860 // Look up the callee. 5861 Value *Callee; 5862 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5863 return true; 5864 5865 // Set up the Attribute for the function. 5866 SmallVector<AttributeSet, 8> Attrs; 5867 if (RetAttrs.hasAttributes()) 5868 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5869 AttributeSet::ReturnIndex, 5870 RetAttrs)); 5871 5872 SmallVector<Value*, 8> Args; 5873 5874 // Loop through FunctionType's arguments and ensure they are specified 5875 // correctly. Also, gather any parameter attributes. 5876 FunctionType::param_iterator I = Ty->param_begin(); 5877 FunctionType::param_iterator E = Ty->param_end(); 5878 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5879 Type *ExpectedTy = nullptr; 5880 if (I != E) { 5881 ExpectedTy = *I++; 5882 } else if (!Ty->isVarArg()) { 5883 return Error(ArgList[i].Loc, "too many arguments specified"); 5884 } 5885 5886 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5887 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5888 getTypeString(ExpectedTy) + "'"); 5889 Args.push_back(ArgList[i].V); 5890 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5891 AttrBuilder B(ArgList[i].Attrs, i + 1); 5892 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5893 } 5894 } 5895 5896 if (I != E) 5897 return Error(CallLoc, "not enough parameters specified for call"); 5898 5899 if (FnAttrs.hasAttributes()) { 5900 if (FnAttrs.hasAlignmentAttr()) 5901 return Error(CallLoc, "call instructions may not have an alignment"); 5902 5903 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5904 AttributeSet::FunctionIndex, 5905 FnAttrs)); 5906 } 5907 5908 // Finish off the Attribute and check them 5909 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5910 5911 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 5912 CI->setTailCallKind(TCK); 5913 CI->setCallingConv(CC); 5914 if (FMF.any()) 5915 CI->setFastMathFlags(FMF); 5916 CI->setAttributes(PAL); 5917 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 5918 Inst = CI; 5919 return false; 5920 } 5921 5922 //===----------------------------------------------------------------------===// 5923 // Memory Instructions. 5924 //===----------------------------------------------------------------------===// 5925 5926 /// ParseAlloc 5927 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 5928 /// (',' 'align' i32)? 5929 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 5930 Value *Size = nullptr; 5931 LocTy SizeLoc, TyLoc; 5932 unsigned Alignment = 0; 5933 Type *Ty = nullptr; 5934 5935 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 5936 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 5937 5938 if (ParseType(Ty, TyLoc)) return true; 5939 5940 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 5941 return Error(TyLoc, "invalid type for alloca"); 5942 5943 bool AteExtraComma = false; 5944 if (EatIfPresent(lltok::comma)) { 5945 if (Lex.getKind() == lltok::kw_align) { 5946 if (ParseOptionalAlignment(Alignment)) return true; 5947 } else if (Lex.getKind() == lltok::MetadataVar) { 5948 AteExtraComma = true; 5949 } else { 5950 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 5951 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5952 return true; 5953 } 5954 } 5955 5956 if (Size && !Size->getType()->isIntegerTy()) 5957 return Error(SizeLoc, "element count must have integer type"); 5958 5959 AllocaInst *AI = new AllocaInst(Ty, Size, Alignment); 5960 AI->setUsedWithInAlloca(IsInAlloca); 5961 AI->setSwiftError(IsSwiftError); 5962 Inst = AI; 5963 return AteExtraComma ? InstExtraComma : InstNormal; 5964 } 5965 5966 /// ParseLoad 5967 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 5968 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 5969 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 5970 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 5971 Value *Val; LocTy Loc; 5972 unsigned Alignment = 0; 5973 bool AteExtraComma = false; 5974 bool isAtomic = false; 5975 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 5976 SynchronizationScope Scope = CrossThread; 5977 5978 if (Lex.getKind() == lltok::kw_atomic) { 5979 isAtomic = true; 5980 Lex.Lex(); 5981 } 5982 5983 bool isVolatile = false; 5984 if (Lex.getKind() == lltok::kw_volatile) { 5985 isVolatile = true; 5986 Lex.Lex(); 5987 } 5988 5989 Type *Ty; 5990 LocTy ExplicitTypeLoc = Lex.getLoc(); 5991 if (ParseType(Ty) || 5992 ParseToken(lltok::comma, "expected comma after load's type") || 5993 ParseTypeAndValue(Val, Loc, PFS) || 5994 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 5995 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5996 return true; 5997 5998 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 5999 return Error(Loc, "load operand must be a pointer to a first class type"); 6000 if (isAtomic && !Alignment) 6001 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6002 if (Ordering == AtomicOrdering::Release || 6003 Ordering == AtomicOrdering::AcquireRelease) 6004 return Error(Loc, "atomic load cannot use Release ordering"); 6005 6006 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6007 return Error(ExplicitTypeLoc, 6008 "explicit pointee type doesn't match operand's pointee type"); 6009 6010 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope); 6011 return AteExtraComma ? InstExtraComma : InstNormal; 6012 } 6013 6014 /// ParseStore 6015 6016 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6017 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6018 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6019 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6020 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6021 unsigned Alignment = 0; 6022 bool AteExtraComma = false; 6023 bool isAtomic = false; 6024 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6025 SynchronizationScope Scope = CrossThread; 6026 6027 if (Lex.getKind() == lltok::kw_atomic) { 6028 isAtomic = true; 6029 Lex.Lex(); 6030 } 6031 6032 bool isVolatile = false; 6033 if (Lex.getKind() == lltok::kw_volatile) { 6034 isVolatile = true; 6035 Lex.Lex(); 6036 } 6037 6038 if (ParseTypeAndValue(Val, Loc, PFS) || 6039 ParseToken(lltok::comma, "expected ',' after store operand") || 6040 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6041 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 6042 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6043 return true; 6044 6045 if (!Ptr->getType()->isPointerTy()) 6046 return Error(PtrLoc, "store operand must be a pointer"); 6047 if (!Val->getType()->isFirstClassType()) 6048 return Error(Loc, "store operand must be a first class value"); 6049 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6050 return Error(Loc, "stored value and pointer type do not match"); 6051 if (isAtomic && !Alignment) 6052 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6053 if (Ordering == AtomicOrdering::Acquire || 6054 Ordering == AtomicOrdering::AcquireRelease) 6055 return Error(Loc, "atomic store cannot use Acquire ordering"); 6056 6057 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 6058 return AteExtraComma ? InstExtraComma : InstNormal; 6059 } 6060 6061 /// ParseCmpXchg 6062 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6063 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6064 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6065 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6066 bool AteExtraComma = false; 6067 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6068 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6069 SynchronizationScope Scope = CrossThread; 6070 bool isVolatile = false; 6071 bool isWeak = false; 6072 6073 if (EatIfPresent(lltok::kw_weak)) 6074 isWeak = true; 6075 6076 if (EatIfPresent(lltok::kw_volatile)) 6077 isVolatile = true; 6078 6079 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6080 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6081 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6082 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6083 ParseTypeAndValue(New, NewLoc, PFS) || 6084 ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) || 6085 ParseOrdering(FailureOrdering)) 6086 return true; 6087 6088 if (SuccessOrdering == AtomicOrdering::Unordered || 6089 FailureOrdering == AtomicOrdering::Unordered) 6090 return TokError("cmpxchg cannot be unordered"); 6091 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6092 return TokError("cmpxchg failure argument shall be no stronger than the " 6093 "success argument"); 6094 if (FailureOrdering == AtomicOrdering::Release || 6095 FailureOrdering == AtomicOrdering::AcquireRelease) 6096 return TokError( 6097 "cmpxchg failure ordering cannot include release semantics"); 6098 if (!Ptr->getType()->isPointerTy()) 6099 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6100 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6101 return Error(CmpLoc, "compare value and pointer type do not match"); 6102 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6103 return Error(NewLoc, "new value and pointer type do not match"); 6104 if (!New->getType()->isFirstClassType()) 6105 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6106 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6107 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope); 6108 CXI->setVolatile(isVolatile); 6109 CXI->setWeak(isWeak); 6110 Inst = CXI; 6111 return AteExtraComma ? InstExtraComma : InstNormal; 6112 } 6113 6114 /// ParseAtomicRMW 6115 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6116 /// 'singlethread'? AtomicOrdering 6117 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6118 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6119 bool AteExtraComma = false; 6120 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6121 SynchronizationScope Scope = CrossThread; 6122 bool isVolatile = false; 6123 AtomicRMWInst::BinOp Operation; 6124 6125 if (EatIfPresent(lltok::kw_volatile)) 6126 isVolatile = true; 6127 6128 switch (Lex.getKind()) { 6129 default: return TokError("expected binary operation in atomicrmw"); 6130 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6131 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6132 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6133 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6134 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6135 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6136 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6137 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6138 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6139 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6140 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6141 } 6142 Lex.Lex(); // Eat the operation. 6143 6144 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6145 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6146 ParseTypeAndValue(Val, ValLoc, PFS) || 6147 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6148 return true; 6149 6150 if (Ordering == AtomicOrdering::Unordered) 6151 return TokError("atomicrmw cannot be unordered"); 6152 if (!Ptr->getType()->isPointerTy()) 6153 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6154 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6155 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6156 if (!Val->getType()->isIntegerTy()) 6157 return Error(ValLoc, "atomicrmw operand must be an integer"); 6158 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6159 if (Size < 8 || (Size & (Size - 1))) 6160 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6161 " integer"); 6162 6163 AtomicRMWInst *RMWI = 6164 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 6165 RMWI->setVolatile(isVolatile); 6166 Inst = RMWI; 6167 return AteExtraComma ? InstExtraComma : InstNormal; 6168 } 6169 6170 /// ParseFence 6171 /// ::= 'fence' 'singlethread'? AtomicOrdering 6172 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6173 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6174 SynchronizationScope Scope = CrossThread; 6175 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6176 return true; 6177 6178 if (Ordering == AtomicOrdering::Unordered) 6179 return TokError("fence cannot be unordered"); 6180 if (Ordering == AtomicOrdering::Monotonic) 6181 return TokError("fence cannot be monotonic"); 6182 6183 Inst = new FenceInst(Context, Ordering, Scope); 6184 return InstNormal; 6185 } 6186 6187 /// ParseGetElementPtr 6188 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6189 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6190 Value *Ptr = nullptr; 6191 Value *Val = nullptr; 6192 LocTy Loc, EltLoc; 6193 6194 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6195 6196 Type *Ty = nullptr; 6197 LocTy ExplicitTypeLoc = Lex.getLoc(); 6198 if (ParseType(Ty) || 6199 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6200 ParseTypeAndValue(Ptr, Loc, PFS)) 6201 return true; 6202 6203 Type *BaseType = Ptr->getType(); 6204 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6205 if (!BasePointerType) 6206 return Error(Loc, "base of getelementptr must be a pointer"); 6207 6208 if (Ty != BasePointerType->getElementType()) 6209 return Error(ExplicitTypeLoc, 6210 "explicit pointee type doesn't match operand's pointee type"); 6211 6212 SmallVector<Value*, 16> Indices; 6213 bool AteExtraComma = false; 6214 // GEP returns a vector of pointers if at least one of parameters is a vector. 6215 // All vector parameters should have the same vector width. 6216 unsigned GEPWidth = BaseType->isVectorTy() ? 6217 BaseType->getVectorNumElements() : 0; 6218 6219 while (EatIfPresent(lltok::comma)) { 6220 if (Lex.getKind() == lltok::MetadataVar) { 6221 AteExtraComma = true; 6222 break; 6223 } 6224 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6225 if (!Val->getType()->getScalarType()->isIntegerTy()) 6226 return Error(EltLoc, "getelementptr index must be an integer"); 6227 6228 if (Val->getType()->isVectorTy()) { 6229 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6230 if (GEPWidth && GEPWidth != ValNumEl) 6231 return Error(EltLoc, 6232 "getelementptr vector index has a wrong number of elements"); 6233 GEPWidth = ValNumEl; 6234 } 6235 Indices.push_back(Val); 6236 } 6237 6238 SmallPtrSet<Type*, 4> Visited; 6239 if (!Indices.empty() && !Ty->isSized(&Visited)) 6240 return Error(Loc, "base element of getelementptr must be sized"); 6241 6242 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6243 return Error(Loc, "invalid getelementptr indices"); 6244 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6245 if (InBounds) 6246 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6247 return AteExtraComma ? InstExtraComma : InstNormal; 6248 } 6249 6250 /// ParseExtractValue 6251 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6252 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6253 Value *Val; LocTy Loc; 6254 SmallVector<unsigned, 4> Indices; 6255 bool AteExtraComma; 6256 if (ParseTypeAndValue(Val, Loc, PFS) || 6257 ParseIndexList(Indices, AteExtraComma)) 6258 return true; 6259 6260 if (!Val->getType()->isAggregateType()) 6261 return Error(Loc, "extractvalue operand must be aggregate type"); 6262 6263 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6264 return Error(Loc, "invalid indices for extractvalue"); 6265 Inst = ExtractValueInst::Create(Val, Indices); 6266 return AteExtraComma ? InstExtraComma : InstNormal; 6267 } 6268 6269 /// ParseInsertValue 6270 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6271 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6272 Value *Val0, *Val1; LocTy Loc0, Loc1; 6273 SmallVector<unsigned, 4> Indices; 6274 bool AteExtraComma; 6275 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6276 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6277 ParseTypeAndValue(Val1, Loc1, PFS) || 6278 ParseIndexList(Indices, AteExtraComma)) 6279 return true; 6280 6281 if (!Val0->getType()->isAggregateType()) 6282 return Error(Loc0, "insertvalue operand must be aggregate type"); 6283 6284 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6285 if (!IndexedType) 6286 return Error(Loc0, "invalid indices for insertvalue"); 6287 if (IndexedType != Val1->getType()) 6288 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6289 getTypeString(Val1->getType()) + "' instead of '" + 6290 getTypeString(IndexedType) + "'"); 6291 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6292 return AteExtraComma ? InstExtraComma : InstNormal; 6293 } 6294 6295 //===----------------------------------------------------------------------===// 6296 // Embedded metadata. 6297 //===----------------------------------------------------------------------===// 6298 6299 /// ParseMDNodeVector 6300 /// ::= { Element (',' Element)* } 6301 /// Element 6302 /// ::= 'null' | TypeAndValue 6303 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6304 if (ParseToken(lltok::lbrace, "expected '{' here")) 6305 return true; 6306 6307 // Check for an empty list. 6308 if (EatIfPresent(lltok::rbrace)) 6309 return false; 6310 6311 do { 6312 // Null is a special case since it is typeless. 6313 if (EatIfPresent(lltok::kw_null)) { 6314 Elts.push_back(nullptr); 6315 continue; 6316 } 6317 6318 Metadata *MD; 6319 if (ParseMetadata(MD, nullptr)) 6320 return true; 6321 Elts.push_back(MD); 6322 } while (EatIfPresent(lltok::comma)); 6323 6324 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6325 } 6326 6327 //===----------------------------------------------------------------------===// 6328 // Use-list order directives. 6329 //===----------------------------------------------------------------------===// 6330 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6331 SMLoc Loc) { 6332 if (V->use_empty()) 6333 return Error(Loc, "value has no uses"); 6334 6335 unsigned NumUses = 0; 6336 SmallDenseMap<const Use *, unsigned, 16> Order; 6337 for (const Use &U : V->uses()) { 6338 if (++NumUses > Indexes.size()) 6339 break; 6340 Order[&U] = Indexes[NumUses - 1]; 6341 } 6342 if (NumUses < 2) 6343 return Error(Loc, "value only has one use"); 6344 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6345 return Error(Loc, "wrong number of indexes, expected " + 6346 Twine(std::distance(V->use_begin(), V->use_end()))); 6347 6348 V->sortUseList([&](const Use &L, const Use &R) { 6349 return Order.lookup(&L) < Order.lookup(&R); 6350 }); 6351 return false; 6352 } 6353 6354 /// ParseUseListOrderIndexes 6355 /// ::= '{' uint32 (',' uint32)+ '}' 6356 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6357 SMLoc Loc = Lex.getLoc(); 6358 if (ParseToken(lltok::lbrace, "expected '{' here")) 6359 return true; 6360 if (Lex.getKind() == lltok::rbrace) 6361 return Lex.Error("expected non-empty list of uselistorder indexes"); 6362 6363 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6364 // indexes should be distinct numbers in the range [0, size-1], and should 6365 // not be in order. 6366 unsigned Offset = 0; 6367 unsigned Max = 0; 6368 bool IsOrdered = true; 6369 assert(Indexes.empty() && "Expected empty order vector"); 6370 do { 6371 unsigned Index; 6372 if (ParseUInt32(Index)) 6373 return true; 6374 6375 // Update consistency checks. 6376 Offset += Index - Indexes.size(); 6377 Max = std::max(Max, Index); 6378 IsOrdered &= Index == Indexes.size(); 6379 6380 Indexes.push_back(Index); 6381 } while (EatIfPresent(lltok::comma)); 6382 6383 if (ParseToken(lltok::rbrace, "expected '}' here")) 6384 return true; 6385 6386 if (Indexes.size() < 2) 6387 return Error(Loc, "expected >= 2 uselistorder indexes"); 6388 if (Offset != 0 || Max >= Indexes.size()) 6389 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6390 if (IsOrdered) 6391 return Error(Loc, "expected uselistorder indexes to change the order"); 6392 6393 return false; 6394 } 6395 6396 /// ParseUseListOrder 6397 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6398 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6399 SMLoc Loc = Lex.getLoc(); 6400 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6401 return true; 6402 6403 Value *V; 6404 SmallVector<unsigned, 16> Indexes; 6405 if (ParseTypeAndValue(V, PFS) || 6406 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6407 ParseUseListOrderIndexes(Indexes)) 6408 return true; 6409 6410 return sortUseListOrder(V, Indexes, Loc); 6411 } 6412 6413 /// ParseUseListOrderBB 6414 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6415 bool LLParser::ParseUseListOrderBB() { 6416 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6417 SMLoc Loc = Lex.getLoc(); 6418 Lex.Lex(); 6419 6420 ValID Fn, Label; 6421 SmallVector<unsigned, 16> Indexes; 6422 if (ParseValID(Fn) || 6423 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6424 ParseValID(Label) || 6425 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6426 ParseUseListOrderIndexes(Indexes)) 6427 return true; 6428 6429 // Check the function. 6430 GlobalValue *GV; 6431 if (Fn.Kind == ValID::t_GlobalName) 6432 GV = M->getNamedValue(Fn.StrVal); 6433 else if (Fn.Kind == ValID::t_GlobalID) 6434 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6435 else 6436 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6437 if (!GV) 6438 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6439 auto *F = dyn_cast<Function>(GV); 6440 if (!F) 6441 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6442 if (F->isDeclaration()) 6443 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6444 6445 // Check the basic block. 6446 if (Label.Kind == ValID::t_LocalID) 6447 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6448 if (Label.Kind != ValID::t_LocalName) 6449 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6450 Value *V = F->getValueSymbolTable().lookup(Label.StrVal); 6451 if (!V) 6452 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6453 if (!isa<BasicBlock>(V)) 6454 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6455 6456 return sortUseListOrder(V, Indexes, Loc); 6457 } 6458