1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/AsmParser/SlotMapping.h"
19 #include "llvm/BinaryFormat/Dwarf.h"
20 #include "llvm/IR/Argument.h"
21 #include "llvm/IR/AutoUpgrade.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/CallingConv.h"
24 #include "llvm/IR/Comdat.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalIFunc.h"
30 #include "llvm/IR/GlobalObject.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Metadata.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/IR/ValueSymbolTable.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/SaveAndRestore.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstring>
46 #include <iterator>
47 #include <vector>
48 
49 using namespace llvm;
50 
51 static std::string getTypeString(Type *T) {
52   std::string Result;
53   raw_string_ostream Tmp(Result);
54   Tmp << *T;
55   return Tmp.str();
56 }
57 
58 /// Run: module ::= toplevelentity*
59 bool LLParser::Run(bool UpgradeDebugInfo,
60                    DataLayoutCallbackTy DataLayoutCallback) {
61   // Prime the lexer.
62   Lex.Lex();
63 
64   if (Context.shouldDiscardValueNames())
65     return Error(
66         Lex.getLoc(),
67         "Can't read textual IR with a Context that discards named Values");
68 
69   if (M) {
70     if (ParseTargetDefinitions())
71       return true;
72 
73     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
74       M->setDataLayout(*LayoutOverride);
75   }
76 
77   return ParseTopLevelEntities() || ValidateEndOfModule(UpgradeDebugInfo) ||
78          ValidateEndOfIndex();
79 }
80 
81 bool LLParser::parseStandaloneConstantValue(Constant *&C,
82                                             const SlotMapping *Slots) {
83   restoreParsingState(Slots);
84   Lex.Lex();
85 
86   Type *Ty = nullptr;
87   if (ParseType(Ty) || parseConstantValue(Ty, C))
88     return true;
89   if (Lex.getKind() != lltok::Eof)
90     return Error(Lex.getLoc(), "expected end of string");
91   return false;
92 }
93 
94 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
95                                     const SlotMapping *Slots) {
96   restoreParsingState(Slots);
97   Lex.Lex();
98 
99   Read = 0;
100   SMLoc Start = Lex.getLoc();
101   Ty = nullptr;
102   if (ParseType(Ty))
103     return true;
104   SMLoc End = Lex.getLoc();
105   Read = End.getPointer() - Start.getPointer();
106 
107   return false;
108 }
109 
110 void LLParser::restoreParsingState(const SlotMapping *Slots) {
111   if (!Slots)
112     return;
113   NumberedVals = Slots->GlobalValues;
114   NumberedMetadata = Slots->MetadataNodes;
115   for (const auto &I : Slots->NamedTypes)
116     NamedTypes.insert(
117         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
118   for (const auto &I : Slots->Types)
119     NumberedTypes.insert(
120         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
121 }
122 
123 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
124 /// module.
125 bool LLParser::ValidateEndOfModule(bool UpgradeDebugInfo) {
126   if (!M)
127     return false;
128   // Handle any function attribute group forward references.
129   for (const auto &RAG : ForwardRefAttrGroups) {
130     Value *V = RAG.first;
131     const std::vector<unsigned> &Attrs = RAG.second;
132     AttrBuilder B;
133 
134     for (const auto &Attr : Attrs)
135       B.merge(NumberedAttrBuilders[Attr]);
136 
137     if (Function *Fn = dyn_cast<Function>(V)) {
138       AttributeList AS = Fn->getAttributes();
139       AttrBuilder FnAttrs(AS.getFnAttributes());
140       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
141 
142       FnAttrs.merge(B);
143 
144       // If the alignment was parsed as an attribute, move to the alignment
145       // field.
146       if (FnAttrs.hasAlignmentAttr()) {
147         Fn->setAlignment(FnAttrs.getAlignment());
148         FnAttrs.removeAttribute(Attribute::Alignment);
149       }
150 
151       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
152                             AttributeSet::get(Context, FnAttrs));
153       Fn->setAttributes(AS);
154     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
155       AttributeList AS = CI->getAttributes();
156       AttrBuilder FnAttrs(AS.getFnAttributes());
157       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
158       FnAttrs.merge(B);
159       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
160                             AttributeSet::get(Context, FnAttrs));
161       CI->setAttributes(AS);
162     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
163       AttributeList AS = II->getAttributes();
164       AttrBuilder FnAttrs(AS.getFnAttributes());
165       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
166       FnAttrs.merge(B);
167       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
168                             AttributeSet::get(Context, FnAttrs));
169       II->setAttributes(AS);
170     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
171       AttributeList AS = CBI->getAttributes();
172       AttrBuilder FnAttrs(AS.getFnAttributes());
173       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
174       FnAttrs.merge(B);
175       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
176                             AttributeSet::get(Context, FnAttrs));
177       CBI->setAttributes(AS);
178     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
179       AttrBuilder Attrs(GV->getAttributes());
180       Attrs.merge(B);
181       GV->setAttributes(AttributeSet::get(Context,Attrs));
182     } else {
183       llvm_unreachable("invalid object with forward attribute group reference");
184     }
185   }
186 
187   // If there are entries in ForwardRefBlockAddresses at this point, the
188   // function was never defined.
189   if (!ForwardRefBlockAddresses.empty())
190     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
191                  "expected function name in blockaddress");
192 
193   for (const auto &NT : NumberedTypes)
194     if (NT.second.second.isValid())
195       return Error(NT.second.second,
196                    "use of undefined type '%" + Twine(NT.first) + "'");
197 
198   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
199        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
200     if (I->second.second.isValid())
201       return Error(I->second.second,
202                    "use of undefined type named '" + I->getKey() + "'");
203 
204   if (!ForwardRefComdats.empty())
205     return Error(ForwardRefComdats.begin()->second,
206                  "use of undefined comdat '$" +
207                      ForwardRefComdats.begin()->first + "'");
208 
209   if (!ForwardRefVals.empty())
210     return Error(ForwardRefVals.begin()->second.second,
211                  "use of undefined value '@" + ForwardRefVals.begin()->first +
212                  "'");
213 
214   if (!ForwardRefValIDs.empty())
215     return Error(ForwardRefValIDs.begin()->second.second,
216                  "use of undefined value '@" +
217                  Twine(ForwardRefValIDs.begin()->first) + "'");
218 
219   if (!ForwardRefMDNodes.empty())
220     return Error(ForwardRefMDNodes.begin()->second.second,
221                  "use of undefined metadata '!" +
222                  Twine(ForwardRefMDNodes.begin()->first) + "'");
223 
224   // Resolve metadata cycles.
225   for (auto &N : NumberedMetadata) {
226     if (N.second && !N.second->isResolved())
227       N.second->resolveCycles();
228   }
229 
230   for (auto *Inst : InstsWithTBAATag) {
231     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
232     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
233     auto *UpgradedMD = UpgradeTBAANode(*MD);
234     if (MD != UpgradedMD)
235       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
236   }
237 
238   // Look for intrinsic functions and CallInst that need to be upgraded
239   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
240     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
241 
242   // Some types could be renamed during loading if several modules are
243   // loaded in the same LLVMContext (LTO scenario). In this case we should
244   // remangle intrinsics names as well.
245   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
246     Function *F = &*FI++;
247     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
248       F->replaceAllUsesWith(Remangled.getValue());
249       F->eraseFromParent();
250     }
251   }
252 
253   if (UpgradeDebugInfo)
254     llvm::UpgradeDebugInfo(*M);
255 
256   UpgradeModuleFlags(*M);
257   UpgradeSectionAttributes(*M);
258 
259   if (!Slots)
260     return false;
261   // Initialize the slot mapping.
262   // Because by this point we've parsed and validated everything, we can "steal"
263   // the mapping from LLParser as it doesn't need it anymore.
264   Slots->GlobalValues = std::move(NumberedVals);
265   Slots->MetadataNodes = std::move(NumberedMetadata);
266   for (const auto &I : NamedTypes)
267     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
268   for (const auto &I : NumberedTypes)
269     Slots->Types.insert(std::make_pair(I.first, I.second.first));
270 
271   return false;
272 }
273 
274 /// Do final validity and sanity checks at the end of the index.
275 bool LLParser::ValidateEndOfIndex() {
276   if (!Index)
277     return false;
278 
279   if (!ForwardRefValueInfos.empty())
280     return Error(ForwardRefValueInfos.begin()->second.front().second,
281                  "use of undefined summary '^" +
282                      Twine(ForwardRefValueInfos.begin()->first) + "'");
283 
284   if (!ForwardRefAliasees.empty())
285     return Error(ForwardRefAliasees.begin()->second.front().second,
286                  "use of undefined summary '^" +
287                      Twine(ForwardRefAliasees.begin()->first) + "'");
288 
289   if (!ForwardRefTypeIds.empty())
290     return Error(ForwardRefTypeIds.begin()->second.front().second,
291                  "use of undefined type id summary '^" +
292                      Twine(ForwardRefTypeIds.begin()->first) + "'");
293 
294   return false;
295 }
296 
297 //===----------------------------------------------------------------------===//
298 // Top-Level Entities
299 //===----------------------------------------------------------------------===//
300 
301 bool LLParser::ParseTargetDefinitions() {
302   while (true) {
303     switch (Lex.getKind()) {
304     case lltok::kw_target:
305       if (ParseTargetDefinition())
306         return true;
307       break;
308     case lltok::kw_source_filename:
309       if (ParseSourceFileName())
310         return true;
311       break;
312     default:
313       return false;
314     }
315   }
316 }
317 
318 bool LLParser::ParseTopLevelEntities() {
319   // If there is no Module, then parse just the summary index entries.
320   if (!M) {
321     while (true) {
322       switch (Lex.getKind()) {
323       case lltok::Eof:
324         return false;
325       case lltok::SummaryID:
326         if (ParseSummaryEntry())
327           return true;
328         break;
329       case lltok::kw_source_filename:
330         if (ParseSourceFileName())
331           return true;
332         break;
333       default:
334         // Skip everything else
335         Lex.Lex();
336       }
337     }
338   }
339   while (true) {
340     switch (Lex.getKind()) {
341     default:         return TokError("expected top-level entity");
342     case lltok::Eof: return false;
343     case lltok::kw_declare: if (ParseDeclare()) return true; break;
344     case lltok::kw_define:  if (ParseDefine()) return true; break;
345     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
346     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
347     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
348     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
349     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
350     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
351     case lltok::ComdatVar:  if (parseComdat()) return true; break;
352     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
353     case lltok::SummaryID:
354       if (ParseSummaryEntry())
355         return true;
356       break;
357     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
358     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
359     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
360     case lltok::kw_uselistorder_bb:
361       if (ParseUseListOrderBB())
362         return true;
363       break;
364     }
365   }
366 }
367 
368 /// toplevelentity
369 ///   ::= 'module' 'asm' STRINGCONSTANT
370 bool LLParser::ParseModuleAsm() {
371   assert(Lex.getKind() == lltok::kw_module);
372   Lex.Lex();
373 
374   std::string AsmStr;
375   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
376       ParseStringConstant(AsmStr)) return true;
377 
378   M->appendModuleInlineAsm(AsmStr);
379   return false;
380 }
381 
382 /// toplevelentity
383 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
384 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
385 bool LLParser::ParseTargetDefinition() {
386   assert(Lex.getKind() == lltok::kw_target);
387   std::string Str;
388   switch (Lex.Lex()) {
389   default: return TokError("unknown target property");
390   case lltok::kw_triple:
391     Lex.Lex();
392     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
393         ParseStringConstant(Str))
394       return true;
395     M->setTargetTriple(Str);
396     return false;
397   case lltok::kw_datalayout:
398     Lex.Lex();
399     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
400         ParseStringConstant(Str))
401       return true;
402     M->setDataLayout(Str);
403     return false;
404   }
405 }
406 
407 /// toplevelentity
408 ///   ::= 'source_filename' '=' STRINGCONSTANT
409 bool LLParser::ParseSourceFileName() {
410   assert(Lex.getKind() == lltok::kw_source_filename);
411   Lex.Lex();
412   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
413       ParseStringConstant(SourceFileName))
414     return true;
415   if (M)
416     M->setSourceFileName(SourceFileName);
417   return false;
418 }
419 
420 /// toplevelentity
421 ///   ::= 'deplibs' '=' '[' ']'
422 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
423 /// FIXME: Remove in 4.0. Currently parse, but ignore.
424 bool LLParser::ParseDepLibs() {
425   assert(Lex.getKind() == lltok::kw_deplibs);
426   Lex.Lex();
427   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
428       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
429     return true;
430 
431   if (EatIfPresent(lltok::rsquare))
432     return false;
433 
434   do {
435     std::string Str;
436     if (ParseStringConstant(Str)) return true;
437   } while (EatIfPresent(lltok::comma));
438 
439   return ParseToken(lltok::rsquare, "expected ']' at end of list");
440 }
441 
442 /// ParseUnnamedType:
443 ///   ::= LocalVarID '=' 'type' type
444 bool LLParser::ParseUnnamedType() {
445   LocTy TypeLoc = Lex.getLoc();
446   unsigned TypeID = Lex.getUIntVal();
447   Lex.Lex(); // eat LocalVarID;
448 
449   if (ParseToken(lltok::equal, "expected '=' after name") ||
450       ParseToken(lltok::kw_type, "expected 'type' after '='"))
451     return true;
452 
453   Type *Result = nullptr;
454   if (ParseStructDefinition(TypeLoc, "",
455                             NumberedTypes[TypeID], Result)) return true;
456 
457   if (!isa<StructType>(Result)) {
458     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
459     if (Entry.first)
460       return Error(TypeLoc, "non-struct types may not be recursive");
461     Entry.first = Result;
462     Entry.second = SMLoc();
463   }
464 
465   return false;
466 }
467 
468 /// toplevelentity
469 ///   ::= LocalVar '=' 'type' type
470 bool LLParser::ParseNamedType() {
471   std::string Name = Lex.getStrVal();
472   LocTy NameLoc = Lex.getLoc();
473   Lex.Lex();  // eat LocalVar.
474 
475   if (ParseToken(lltok::equal, "expected '=' after name") ||
476       ParseToken(lltok::kw_type, "expected 'type' after name"))
477     return true;
478 
479   Type *Result = nullptr;
480   if (ParseStructDefinition(NameLoc, Name,
481                             NamedTypes[Name], Result)) return true;
482 
483   if (!isa<StructType>(Result)) {
484     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
485     if (Entry.first)
486       return Error(NameLoc, "non-struct types may not be recursive");
487     Entry.first = Result;
488     Entry.second = SMLoc();
489   }
490 
491   return false;
492 }
493 
494 /// toplevelentity
495 ///   ::= 'declare' FunctionHeader
496 bool LLParser::ParseDeclare() {
497   assert(Lex.getKind() == lltok::kw_declare);
498   Lex.Lex();
499 
500   std::vector<std::pair<unsigned, MDNode *>> MDs;
501   while (Lex.getKind() == lltok::MetadataVar) {
502     unsigned MDK;
503     MDNode *N;
504     if (ParseMetadataAttachment(MDK, N))
505       return true;
506     MDs.push_back({MDK, N});
507   }
508 
509   Function *F;
510   if (ParseFunctionHeader(F, false))
511     return true;
512   for (auto &MD : MDs)
513     F->addMetadata(MD.first, *MD.second);
514   return false;
515 }
516 
517 /// toplevelentity
518 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
519 bool LLParser::ParseDefine() {
520   assert(Lex.getKind() == lltok::kw_define);
521   Lex.Lex();
522 
523   Function *F;
524   return ParseFunctionHeader(F, true) ||
525          ParseOptionalFunctionMetadata(*F) ||
526          ParseFunctionBody(*F);
527 }
528 
529 /// ParseGlobalType
530 ///   ::= 'constant'
531 ///   ::= 'global'
532 bool LLParser::ParseGlobalType(bool &IsConstant) {
533   if (Lex.getKind() == lltok::kw_constant)
534     IsConstant = true;
535   else if (Lex.getKind() == lltok::kw_global)
536     IsConstant = false;
537   else {
538     IsConstant = false;
539     return TokError("expected 'global' or 'constant'");
540   }
541   Lex.Lex();
542   return false;
543 }
544 
545 bool LLParser::ParseOptionalUnnamedAddr(
546     GlobalVariable::UnnamedAddr &UnnamedAddr) {
547   if (EatIfPresent(lltok::kw_unnamed_addr))
548     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
549   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
550     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
551   else
552     UnnamedAddr = GlobalValue::UnnamedAddr::None;
553   return false;
554 }
555 
556 /// ParseUnnamedGlobal:
557 ///   OptionalVisibility (ALIAS | IFUNC) ...
558 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
559 ///   OptionalDLLStorageClass
560 ///                                                     ...   -> global variable
561 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
562 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
563 ///                OptionalDLLStorageClass
564 ///                                                     ...   -> global variable
565 bool LLParser::ParseUnnamedGlobal() {
566   unsigned VarID = NumberedVals.size();
567   std::string Name;
568   LocTy NameLoc = Lex.getLoc();
569 
570   // Handle the GlobalID form.
571   if (Lex.getKind() == lltok::GlobalID) {
572     if (Lex.getUIntVal() != VarID)
573       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
574                    Twine(VarID) + "'");
575     Lex.Lex(); // eat GlobalID;
576 
577     if (ParseToken(lltok::equal, "expected '=' after name"))
578       return true;
579   }
580 
581   bool HasLinkage;
582   unsigned Linkage, Visibility, DLLStorageClass;
583   bool DSOLocal;
584   GlobalVariable::ThreadLocalMode TLM;
585   GlobalVariable::UnnamedAddr UnnamedAddr;
586   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
587                            DSOLocal) ||
588       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
589     return true;
590 
591   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
592     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
593                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
594 
595   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
596                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
597 }
598 
599 /// ParseNamedGlobal:
600 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
601 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
602 ///                 OptionalVisibility OptionalDLLStorageClass
603 ///                                                     ...   -> global variable
604 bool LLParser::ParseNamedGlobal() {
605   assert(Lex.getKind() == lltok::GlobalVar);
606   LocTy NameLoc = Lex.getLoc();
607   std::string Name = Lex.getStrVal();
608   Lex.Lex();
609 
610   bool HasLinkage;
611   unsigned Linkage, Visibility, DLLStorageClass;
612   bool DSOLocal;
613   GlobalVariable::ThreadLocalMode TLM;
614   GlobalVariable::UnnamedAddr UnnamedAddr;
615   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
616       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
617                            DSOLocal) ||
618       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
619     return true;
620 
621   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
622     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
623                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
624 
625   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
626                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
627 }
628 
629 bool LLParser::parseComdat() {
630   assert(Lex.getKind() == lltok::ComdatVar);
631   std::string Name = Lex.getStrVal();
632   LocTy NameLoc = Lex.getLoc();
633   Lex.Lex();
634 
635   if (ParseToken(lltok::equal, "expected '=' here"))
636     return true;
637 
638   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
639     return TokError("expected comdat type");
640 
641   Comdat::SelectionKind SK;
642   switch (Lex.getKind()) {
643   default:
644     return TokError("unknown selection kind");
645   case lltok::kw_any:
646     SK = Comdat::Any;
647     break;
648   case lltok::kw_exactmatch:
649     SK = Comdat::ExactMatch;
650     break;
651   case lltok::kw_largest:
652     SK = Comdat::Largest;
653     break;
654   case lltok::kw_noduplicates:
655     SK = Comdat::NoDuplicates;
656     break;
657   case lltok::kw_samesize:
658     SK = Comdat::SameSize;
659     break;
660   }
661   Lex.Lex();
662 
663   // See if the comdat was forward referenced, if so, use the comdat.
664   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
665   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
666   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
667     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
668 
669   Comdat *C;
670   if (I != ComdatSymTab.end())
671     C = &I->second;
672   else
673     C = M->getOrInsertComdat(Name);
674   C->setSelectionKind(SK);
675 
676   return false;
677 }
678 
679 // MDString:
680 //   ::= '!' STRINGCONSTANT
681 bool LLParser::ParseMDString(MDString *&Result) {
682   std::string Str;
683   if (ParseStringConstant(Str)) return true;
684   Result = MDString::get(Context, Str);
685   return false;
686 }
687 
688 // MDNode:
689 //   ::= '!' MDNodeNumber
690 bool LLParser::ParseMDNodeID(MDNode *&Result) {
691   // !{ ..., !42, ... }
692   LocTy IDLoc = Lex.getLoc();
693   unsigned MID = 0;
694   if (ParseUInt32(MID))
695     return true;
696 
697   // If not a forward reference, just return it now.
698   if (NumberedMetadata.count(MID)) {
699     Result = NumberedMetadata[MID];
700     return false;
701   }
702 
703   // Otherwise, create MDNode forward reference.
704   auto &FwdRef = ForwardRefMDNodes[MID];
705   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
706 
707   Result = FwdRef.first.get();
708   NumberedMetadata[MID].reset(Result);
709   return false;
710 }
711 
712 /// ParseNamedMetadata:
713 ///   !foo = !{ !1, !2 }
714 bool LLParser::ParseNamedMetadata() {
715   assert(Lex.getKind() == lltok::MetadataVar);
716   std::string Name = Lex.getStrVal();
717   Lex.Lex();
718 
719   if (ParseToken(lltok::equal, "expected '=' here") ||
720       ParseToken(lltok::exclaim, "Expected '!' here") ||
721       ParseToken(lltok::lbrace, "Expected '{' here"))
722     return true;
723 
724   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
725   if (Lex.getKind() != lltok::rbrace)
726     do {
727       MDNode *N = nullptr;
728       // Parse DIExpressions inline as a special case. They are still MDNodes,
729       // so they can still appear in named metadata. Remove this logic if they
730       // become plain Metadata.
731       if (Lex.getKind() == lltok::MetadataVar &&
732           Lex.getStrVal() == "DIExpression") {
733         if (ParseDIExpression(N, /*IsDistinct=*/false))
734           return true;
735       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
736                  ParseMDNodeID(N)) {
737         return true;
738       }
739       NMD->addOperand(N);
740     } while (EatIfPresent(lltok::comma));
741 
742   return ParseToken(lltok::rbrace, "expected end of metadata node");
743 }
744 
745 /// ParseStandaloneMetadata:
746 ///   !42 = !{...}
747 bool LLParser::ParseStandaloneMetadata() {
748   assert(Lex.getKind() == lltok::exclaim);
749   Lex.Lex();
750   unsigned MetadataID = 0;
751 
752   MDNode *Init;
753   if (ParseUInt32(MetadataID) ||
754       ParseToken(lltok::equal, "expected '=' here"))
755     return true;
756 
757   // Detect common error, from old metadata syntax.
758   if (Lex.getKind() == lltok::Type)
759     return TokError("unexpected type in metadata definition");
760 
761   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
762   if (Lex.getKind() == lltok::MetadataVar) {
763     if (ParseSpecializedMDNode(Init, IsDistinct))
764       return true;
765   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
766              ParseMDTuple(Init, IsDistinct))
767     return true;
768 
769   // See if this was forward referenced, if so, handle it.
770   auto FI = ForwardRefMDNodes.find(MetadataID);
771   if (FI != ForwardRefMDNodes.end()) {
772     FI->second.first->replaceAllUsesWith(Init);
773     ForwardRefMDNodes.erase(FI);
774 
775     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
776   } else {
777     if (NumberedMetadata.count(MetadataID))
778       return TokError("Metadata id is already used");
779     NumberedMetadata[MetadataID].reset(Init);
780   }
781 
782   return false;
783 }
784 
785 // Skips a single module summary entry.
786 bool LLParser::SkipModuleSummaryEntry() {
787   // Each module summary entry consists of a tag for the entry
788   // type, followed by a colon, then the fields surrounded by nested sets of
789   // parentheses. The "tag:" looks like a Label. Once parsing support is
790   // in place we will look for the tokens corresponding to the expected tags.
791   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
792       Lex.getKind() != lltok::kw_typeid)
793     return TokError(
794         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
795   Lex.Lex();
796   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
797       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
798     return true;
799   // Now walk through the parenthesized entry, until the number of open
800   // parentheses goes back down to 0 (the first '(' was parsed above).
801   unsigned NumOpenParen = 1;
802   do {
803     switch (Lex.getKind()) {
804     case lltok::lparen:
805       NumOpenParen++;
806       break;
807     case lltok::rparen:
808       NumOpenParen--;
809       break;
810     case lltok::Eof:
811       return TokError("found end of file while parsing summary entry");
812     default:
813       // Skip everything in between parentheses.
814       break;
815     }
816     Lex.Lex();
817   } while (NumOpenParen > 0);
818   return false;
819 }
820 
821 /// SummaryEntry
822 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
823 bool LLParser::ParseSummaryEntry() {
824   assert(Lex.getKind() == lltok::SummaryID);
825   unsigned SummaryID = Lex.getUIntVal();
826 
827   // For summary entries, colons should be treated as distinct tokens,
828   // not an indication of the end of a label token.
829   Lex.setIgnoreColonInIdentifiers(true);
830 
831   Lex.Lex();
832   if (ParseToken(lltok::equal, "expected '=' here"))
833     return true;
834 
835   // If we don't have an index object, skip the summary entry.
836   if (!Index)
837     return SkipModuleSummaryEntry();
838 
839   bool result = false;
840   switch (Lex.getKind()) {
841   case lltok::kw_gv:
842     result = ParseGVEntry(SummaryID);
843     break;
844   case lltok::kw_module:
845     result = ParseModuleEntry(SummaryID);
846     break;
847   case lltok::kw_typeid:
848     result = ParseTypeIdEntry(SummaryID);
849     break;
850   case lltok::kw_typeidCompatibleVTable:
851     result = ParseTypeIdCompatibleVtableEntry(SummaryID);
852     break;
853   case lltok::kw_flags:
854     result = ParseSummaryIndexFlags();
855     break;
856   default:
857     result = Error(Lex.getLoc(), "unexpected summary kind");
858     break;
859   }
860   Lex.setIgnoreColonInIdentifiers(false);
861   return result;
862 }
863 
864 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
865   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
866          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
867 }
868 
869 // If there was an explicit dso_local, update GV. In the absence of an explicit
870 // dso_local we keep the default value.
871 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
872   if (DSOLocal)
873     GV.setDSOLocal(true);
874 }
875 
876 /// parseIndirectSymbol:
877 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
878 ///                     OptionalVisibility OptionalDLLStorageClass
879 ///                     OptionalThreadLocal OptionalUnnamedAddr
880 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
881 ///
882 /// IndirectSymbol
883 ///   ::= TypeAndValue
884 ///
885 /// IndirectSymbolAttr
886 ///   ::= ',' 'partition' StringConstant
887 ///
888 /// Everything through OptionalUnnamedAddr has already been parsed.
889 ///
890 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
891                                    unsigned L, unsigned Visibility,
892                                    unsigned DLLStorageClass, bool DSOLocal,
893                                    GlobalVariable::ThreadLocalMode TLM,
894                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
895   bool IsAlias;
896   if (Lex.getKind() == lltok::kw_alias)
897     IsAlias = true;
898   else if (Lex.getKind() == lltok::kw_ifunc)
899     IsAlias = false;
900   else
901     llvm_unreachable("Not an alias or ifunc!");
902   Lex.Lex();
903 
904   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
905 
906   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
907     return Error(NameLoc, "invalid linkage type for alias");
908 
909   if (!isValidVisibilityForLinkage(Visibility, L))
910     return Error(NameLoc,
911                  "symbol with local linkage must have default visibility");
912 
913   Type *Ty;
914   LocTy ExplicitTypeLoc = Lex.getLoc();
915   if (ParseType(Ty) ||
916       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
917     return true;
918 
919   Constant *Aliasee;
920   LocTy AliaseeLoc = Lex.getLoc();
921   if (Lex.getKind() != lltok::kw_bitcast &&
922       Lex.getKind() != lltok::kw_getelementptr &&
923       Lex.getKind() != lltok::kw_addrspacecast &&
924       Lex.getKind() != lltok::kw_inttoptr) {
925     if (ParseGlobalTypeAndValue(Aliasee))
926       return true;
927   } else {
928     // The bitcast dest type is not present, it is implied by the dest type.
929     ValID ID;
930     if (ParseValID(ID))
931       return true;
932     if (ID.Kind != ValID::t_Constant)
933       return Error(AliaseeLoc, "invalid aliasee");
934     Aliasee = ID.ConstantVal;
935   }
936 
937   Type *AliaseeType = Aliasee->getType();
938   auto *PTy = dyn_cast<PointerType>(AliaseeType);
939   if (!PTy)
940     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
941   unsigned AddrSpace = PTy->getAddressSpace();
942 
943   if (IsAlias && Ty != PTy->getElementType())
944     return Error(
945         ExplicitTypeLoc,
946         "explicit pointee type doesn't match operand's pointee type");
947 
948   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
949     return Error(
950         ExplicitTypeLoc,
951         "explicit pointee type should be a function type");
952 
953   GlobalValue *GVal = nullptr;
954 
955   // See if the alias was forward referenced, if so, prepare to replace the
956   // forward reference.
957   if (!Name.empty()) {
958     GVal = M->getNamedValue(Name);
959     if (GVal) {
960       if (!ForwardRefVals.erase(Name))
961         return Error(NameLoc, "redefinition of global '@" + Name + "'");
962     }
963   } else {
964     auto I = ForwardRefValIDs.find(NumberedVals.size());
965     if (I != ForwardRefValIDs.end()) {
966       GVal = I->second.first;
967       ForwardRefValIDs.erase(I);
968     }
969   }
970 
971   // Okay, create the alias but do not insert it into the module yet.
972   std::unique_ptr<GlobalIndirectSymbol> GA;
973   if (IsAlias)
974     GA.reset(GlobalAlias::create(Ty, AddrSpace,
975                                  (GlobalValue::LinkageTypes)Linkage, Name,
976                                  Aliasee, /*Parent*/ nullptr));
977   else
978     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
979                                  (GlobalValue::LinkageTypes)Linkage, Name,
980                                  Aliasee, /*Parent*/ nullptr));
981   GA->setThreadLocalMode(TLM);
982   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
983   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
984   GA->setUnnamedAddr(UnnamedAddr);
985   maybeSetDSOLocal(DSOLocal, *GA);
986 
987   // At this point we've parsed everything except for the IndirectSymbolAttrs.
988   // Now parse them if there are any.
989   while (Lex.getKind() == lltok::comma) {
990     Lex.Lex();
991 
992     if (Lex.getKind() == lltok::kw_partition) {
993       Lex.Lex();
994       GA->setPartition(Lex.getStrVal());
995       if (ParseToken(lltok::StringConstant, "expected partition string"))
996         return true;
997     } else {
998       return TokError("unknown alias or ifunc property!");
999     }
1000   }
1001 
1002   if (Name.empty())
1003     NumberedVals.push_back(GA.get());
1004 
1005   if (GVal) {
1006     // Verify that types agree.
1007     if (GVal->getType() != GA->getType())
1008       return Error(
1009           ExplicitTypeLoc,
1010           "forward reference and definition of alias have different types");
1011 
1012     // If they agree, just RAUW the old value with the alias and remove the
1013     // forward ref info.
1014     GVal->replaceAllUsesWith(GA.get());
1015     GVal->eraseFromParent();
1016   }
1017 
1018   // Insert into the module, we know its name won't collide now.
1019   if (IsAlias)
1020     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1021   else
1022     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1023   assert(GA->getName() == Name && "Should not be a name conflict!");
1024 
1025   // The module owns this now
1026   GA.release();
1027 
1028   return false;
1029 }
1030 
1031 /// ParseGlobal
1032 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1033 ///       OptionalVisibility OptionalDLLStorageClass
1034 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1035 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1036 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1037 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1038 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1039 ///       Const OptionalAttrs
1040 ///
1041 /// Everything up to and including OptionalUnnamedAddr has been parsed
1042 /// already.
1043 ///
1044 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1045                            unsigned Linkage, bool HasLinkage,
1046                            unsigned Visibility, unsigned DLLStorageClass,
1047                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1048                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1049   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1050     return Error(NameLoc,
1051                  "symbol with local linkage must have default visibility");
1052 
1053   unsigned AddrSpace;
1054   bool IsConstant, IsExternallyInitialized;
1055   LocTy IsExternallyInitializedLoc;
1056   LocTy TyLoc;
1057 
1058   Type *Ty = nullptr;
1059   if (ParseOptionalAddrSpace(AddrSpace) ||
1060       ParseOptionalToken(lltok::kw_externally_initialized,
1061                          IsExternallyInitialized,
1062                          &IsExternallyInitializedLoc) ||
1063       ParseGlobalType(IsConstant) ||
1064       ParseType(Ty, TyLoc))
1065     return true;
1066 
1067   // If the linkage is specified and is external, then no initializer is
1068   // present.
1069   Constant *Init = nullptr;
1070   if (!HasLinkage ||
1071       !GlobalValue::isValidDeclarationLinkage(
1072           (GlobalValue::LinkageTypes)Linkage)) {
1073     if (ParseGlobalValue(Ty, Init))
1074       return true;
1075   }
1076 
1077   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1078     return Error(TyLoc, "invalid type for global variable");
1079 
1080   GlobalValue *GVal = nullptr;
1081 
1082   // See if the global was forward referenced, if so, use the global.
1083   if (!Name.empty()) {
1084     GVal = M->getNamedValue(Name);
1085     if (GVal) {
1086       if (!ForwardRefVals.erase(Name))
1087         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1088     }
1089   } else {
1090     auto I = ForwardRefValIDs.find(NumberedVals.size());
1091     if (I != ForwardRefValIDs.end()) {
1092       GVal = I->second.first;
1093       ForwardRefValIDs.erase(I);
1094     }
1095   }
1096 
1097   GlobalVariable *GV;
1098   if (!GVal) {
1099     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1100                             Name, nullptr, GlobalVariable::NotThreadLocal,
1101                             AddrSpace);
1102   } else {
1103     if (GVal->getValueType() != Ty)
1104       return Error(TyLoc,
1105             "forward reference and definition of global have different types");
1106 
1107     GV = cast<GlobalVariable>(GVal);
1108 
1109     // Move the forward-reference to the correct spot in the module.
1110     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1111   }
1112 
1113   if (Name.empty())
1114     NumberedVals.push_back(GV);
1115 
1116   // Set the parsed properties on the global.
1117   if (Init)
1118     GV->setInitializer(Init);
1119   GV->setConstant(IsConstant);
1120   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1121   maybeSetDSOLocal(DSOLocal, *GV);
1122   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1123   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1124   GV->setExternallyInitialized(IsExternallyInitialized);
1125   GV->setThreadLocalMode(TLM);
1126   GV->setUnnamedAddr(UnnamedAddr);
1127 
1128   // Parse attributes on the global.
1129   while (Lex.getKind() == lltok::comma) {
1130     Lex.Lex();
1131 
1132     if (Lex.getKind() == lltok::kw_section) {
1133       Lex.Lex();
1134       GV->setSection(Lex.getStrVal());
1135       if (ParseToken(lltok::StringConstant, "expected global section string"))
1136         return true;
1137     } else if (Lex.getKind() == lltok::kw_partition) {
1138       Lex.Lex();
1139       GV->setPartition(Lex.getStrVal());
1140       if (ParseToken(lltok::StringConstant, "expected partition string"))
1141         return true;
1142     } else if (Lex.getKind() == lltok::kw_align) {
1143       MaybeAlign Alignment;
1144       if (ParseOptionalAlignment(Alignment)) return true;
1145       GV->setAlignment(Alignment);
1146     } else if (Lex.getKind() == lltok::MetadataVar) {
1147       if (ParseGlobalObjectMetadataAttachment(*GV))
1148         return true;
1149     } else {
1150       Comdat *C;
1151       if (parseOptionalComdat(Name, C))
1152         return true;
1153       if (C)
1154         GV->setComdat(C);
1155       else
1156         return TokError("unknown global variable property!");
1157     }
1158   }
1159 
1160   AttrBuilder Attrs;
1161   LocTy BuiltinLoc;
1162   std::vector<unsigned> FwdRefAttrGrps;
1163   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1164     return true;
1165   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1166     GV->setAttributes(AttributeSet::get(Context, Attrs));
1167     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1168   }
1169 
1170   return false;
1171 }
1172 
1173 /// ParseUnnamedAttrGrp
1174 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1175 bool LLParser::ParseUnnamedAttrGrp() {
1176   assert(Lex.getKind() == lltok::kw_attributes);
1177   LocTy AttrGrpLoc = Lex.getLoc();
1178   Lex.Lex();
1179 
1180   if (Lex.getKind() != lltok::AttrGrpID)
1181     return TokError("expected attribute group id");
1182 
1183   unsigned VarID = Lex.getUIntVal();
1184   std::vector<unsigned> unused;
1185   LocTy BuiltinLoc;
1186   Lex.Lex();
1187 
1188   if (ParseToken(lltok::equal, "expected '=' here") ||
1189       ParseToken(lltok::lbrace, "expected '{' here") ||
1190       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1191                                  BuiltinLoc) ||
1192       ParseToken(lltok::rbrace, "expected end of attribute group"))
1193     return true;
1194 
1195   if (!NumberedAttrBuilders[VarID].hasAttributes())
1196     return Error(AttrGrpLoc, "attribute group has no attributes");
1197 
1198   return false;
1199 }
1200 
1201 /// ParseFnAttributeValuePairs
1202 ///   ::= <attr> | <attr> '=' <value>
1203 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1204                                           std::vector<unsigned> &FwdRefAttrGrps,
1205                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1206   bool HaveError = false;
1207 
1208   B.clear();
1209 
1210   while (true) {
1211     lltok::Kind Token = Lex.getKind();
1212     if (Token == lltok::kw_builtin)
1213       BuiltinLoc = Lex.getLoc();
1214     switch (Token) {
1215     default:
1216       if (!inAttrGrp) return HaveError;
1217       return Error(Lex.getLoc(), "unterminated attribute group");
1218     case lltok::rbrace:
1219       // Finished.
1220       return false;
1221 
1222     case lltok::AttrGrpID: {
1223       // Allow a function to reference an attribute group:
1224       //
1225       //   define void @foo() #1 { ... }
1226       if (inAttrGrp)
1227         HaveError |=
1228           Error(Lex.getLoc(),
1229               "cannot have an attribute group reference in an attribute group");
1230 
1231       unsigned AttrGrpNum = Lex.getUIntVal();
1232       if (inAttrGrp) break;
1233 
1234       // Save the reference to the attribute group. We'll fill it in later.
1235       FwdRefAttrGrps.push_back(AttrGrpNum);
1236       break;
1237     }
1238     // Target-dependent attributes:
1239     case lltok::StringConstant: {
1240       if (ParseStringAttribute(B))
1241         return true;
1242       continue;
1243     }
1244 
1245     // Target-independent attributes:
1246     case lltok::kw_align: {
1247       // As a hack, we allow function alignment to be initially parsed as an
1248       // attribute on a function declaration/definition or added to an attribute
1249       // group and later moved to the alignment field.
1250       MaybeAlign Alignment;
1251       if (inAttrGrp) {
1252         Lex.Lex();
1253         uint32_t Value = 0;
1254         if (ParseToken(lltok::equal, "expected '=' here") || ParseUInt32(Value))
1255           return true;
1256         Alignment = Align(Value);
1257       } else {
1258         if (ParseOptionalAlignment(Alignment))
1259           return true;
1260       }
1261       B.addAlignmentAttr(Alignment);
1262       continue;
1263     }
1264     case lltok::kw_alignstack: {
1265       unsigned Alignment;
1266       if (inAttrGrp) {
1267         Lex.Lex();
1268         if (ParseToken(lltok::equal, "expected '=' here") ||
1269             ParseUInt32(Alignment))
1270           return true;
1271       } else {
1272         if (ParseOptionalStackAlignment(Alignment))
1273           return true;
1274       }
1275       B.addStackAlignmentAttr(Alignment);
1276       continue;
1277     }
1278     case lltok::kw_allocsize: {
1279       unsigned ElemSizeArg;
1280       Optional<unsigned> NumElemsArg;
1281       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1282       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1283         return true;
1284       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1285       continue;
1286     }
1287     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1288     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1289     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1290     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1291     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1292     case lltok::kw_inaccessiblememonly:
1293       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1294     case lltok::kw_inaccessiblemem_or_argmemonly:
1295       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1296     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1297     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1298     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1299     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1300     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1301     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1302     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1303     case lltok::kw_noimplicitfloat:
1304       B.addAttribute(Attribute::NoImplicitFloat); break;
1305     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1306     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1307     case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break;
1308     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1309     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1310     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1311     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1312     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1313     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1314     case lltok::kw_null_pointer_is_valid:
1315       B.addAttribute(Attribute::NullPointerIsValid); break;
1316     case lltok::kw_optforfuzzing:
1317       B.addAttribute(Attribute::OptForFuzzing); break;
1318     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1319     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1320     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1321     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1322     case lltok::kw_returns_twice:
1323       B.addAttribute(Attribute::ReturnsTwice); break;
1324     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1325     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1326     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1327     case lltok::kw_sspstrong:
1328       B.addAttribute(Attribute::StackProtectStrong); break;
1329     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1330     case lltok::kw_shadowcallstack:
1331       B.addAttribute(Attribute::ShadowCallStack); break;
1332     case lltok::kw_sanitize_address:
1333       B.addAttribute(Attribute::SanitizeAddress); break;
1334     case lltok::kw_sanitize_hwaddress:
1335       B.addAttribute(Attribute::SanitizeHWAddress); break;
1336     case lltok::kw_sanitize_memtag:
1337       B.addAttribute(Attribute::SanitizeMemTag); break;
1338     case lltok::kw_sanitize_thread:
1339       B.addAttribute(Attribute::SanitizeThread); break;
1340     case lltok::kw_sanitize_memory:
1341       B.addAttribute(Attribute::SanitizeMemory); break;
1342     case lltok::kw_speculative_load_hardening:
1343       B.addAttribute(Attribute::SpeculativeLoadHardening);
1344       break;
1345     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1346     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1347     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1348     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1349     case lltok::kw_preallocated: {
1350       Type *Ty;
1351       if (ParsePreallocated(Ty))
1352         return true;
1353       B.addPreallocatedAttr(Ty);
1354       break;
1355     }
1356 
1357     // Error handling.
1358     case lltok::kw_inreg:
1359     case lltok::kw_signext:
1360     case lltok::kw_zeroext:
1361       HaveError |=
1362         Error(Lex.getLoc(),
1363               "invalid use of attribute on a function");
1364       break;
1365     case lltok::kw_byval:
1366     case lltok::kw_dereferenceable:
1367     case lltok::kw_dereferenceable_or_null:
1368     case lltok::kw_inalloca:
1369     case lltok::kw_nest:
1370     case lltok::kw_noalias:
1371     case lltok::kw_nocapture:
1372     case lltok::kw_nonnull:
1373     case lltok::kw_returned:
1374     case lltok::kw_sret:
1375     case lltok::kw_swifterror:
1376     case lltok::kw_swiftself:
1377     case lltok::kw_immarg:
1378       HaveError |=
1379         Error(Lex.getLoc(),
1380               "invalid use of parameter-only attribute on a function");
1381       break;
1382     }
1383 
1384     // ParsePreallocated() consumes token
1385     if (Token != lltok::kw_preallocated)
1386       Lex.Lex();
1387   }
1388 }
1389 
1390 //===----------------------------------------------------------------------===//
1391 // GlobalValue Reference/Resolution Routines.
1392 //===----------------------------------------------------------------------===//
1393 
1394 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1395                                               const std::string &Name) {
1396   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1397     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1398                             PTy->getAddressSpace(), Name, M);
1399   else
1400     return new GlobalVariable(*M, PTy->getElementType(), false,
1401                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1402                               nullptr, GlobalVariable::NotThreadLocal,
1403                               PTy->getAddressSpace());
1404 }
1405 
1406 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1407                                         Value *Val, bool IsCall) {
1408   if (Val->getType() == Ty)
1409     return Val;
1410   // For calls we also accept variables in the program address space.
1411   Type *SuggestedTy = Ty;
1412   if (IsCall && isa<PointerType>(Ty)) {
1413     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1414         M->getDataLayout().getProgramAddressSpace());
1415     SuggestedTy = TyInProgAS;
1416     if (Val->getType() == TyInProgAS)
1417       return Val;
1418   }
1419   if (Ty->isLabelTy())
1420     Error(Loc, "'" + Name + "' is not a basic block");
1421   else
1422     Error(Loc, "'" + Name + "' defined with type '" +
1423                    getTypeString(Val->getType()) + "' but expected '" +
1424                    getTypeString(SuggestedTy) + "'");
1425   return nullptr;
1426 }
1427 
1428 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1429 /// forward reference record if needed.  This can return null if the value
1430 /// exists but does not have the right type.
1431 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1432                                     LocTy Loc, bool IsCall) {
1433   PointerType *PTy = dyn_cast<PointerType>(Ty);
1434   if (!PTy) {
1435     Error(Loc, "global variable reference must have pointer type");
1436     return nullptr;
1437   }
1438 
1439   // Look this name up in the normal function symbol table.
1440   GlobalValue *Val =
1441     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1442 
1443   // If this is a forward reference for the value, see if we already created a
1444   // forward ref record.
1445   if (!Val) {
1446     auto I = ForwardRefVals.find(Name);
1447     if (I != ForwardRefVals.end())
1448       Val = I->second.first;
1449   }
1450 
1451   // If we have the value in the symbol table or fwd-ref table, return it.
1452   if (Val)
1453     return cast_or_null<GlobalValue>(
1454         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1455 
1456   // Otherwise, create a new forward reference for this value and remember it.
1457   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1458   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1459   return FwdVal;
1460 }
1461 
1462 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1463                                     bool IsCall) {
1464   PointerType *PTy = dyn_cast<PointerType>(Ty);
1465   if (!PTy) {
1466     Error(Loc, "global variable reference must have pointer type");
1467     return nullptr;
1468   }
1469 
1470   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1471 
1472   // If this is a forward reference for the value, see if we already created a
1473   // forward ref record.
1474   if (!Val) {
1475     auto I = ForwardRefValIDs.find(ID);
1476     if (I != ForwardRefValIDs.end())
1477       Val = I->second.first;
1478   }
1479 
1480   // If we have the value in the symbol table or fwd-ref table, return it.
1481   if (Val)
1482     return cast_or_null<GlobalValue>(
1483         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1484 
1485   // Otherwise, create a new forward reference for this value and remember it.
1486   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1487   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1488   return FwdVal;
1489 }
1490 
1491 //===----------------------------------------------------------------------===//
1492 // Comdat Reference/Resolution Routines.
1493 //===----------------------------------------------------------------------===//
1494 
1495 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1496   // Look this name up in the comdat symbol table.
1497   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1498   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1499   if (I != ComdatSymTab.end())
1500     return &I->second;
1501 
1502   // Otherwise, create a new forward reference for this value and remember it.
1503   Comdat *C = M->getOrInsertComdat(Name);
1504   ForwardRefComdats[Name] = Loc;
1505   return C;
1506 }
1507 
1508 //===----------------------------------------------------------------------===//
1509 // Helper Routines.
1510 //===----------------------------------------------------------------------===//
1511 
1512 /// ParseToken - If the current token has the specified kind, eat it and return
1513 /// success.  Otherwise, emit the specified error and return failure.
1514 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1515   if (Lex.getKind() != T)
1516     return TokError(ErrMsg);
1517   Lex.Lex();
1518   return false;
1519 }
1520 
1521 /// ParseStringConstant
1522 ///   ::= StringConstant
1523 bool LLParser::ParseStringConstant(std::string &Result) {
1524   if (Lex.getKind() != lltok::StringConstant)
1525     return TokError("expected string constant");
1526   Result = Lex.getStrVal();
1527   Lex.Lex();
1528   return false;
1529 }
1530 
1531 /// ParseUInt32
1532 ///   ::= uint32
1533 bool LLParser::ParseUInt32(uint32_t &Val) {
1534   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1535     return TokError("expected integer");
1536   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1537   if (Val64 != unsigned(Val64))
1538     return TokError("expected 32-bit integer (too large)");
1539   Val = Val64;
1540   Lex.Lex();
1541   return false;
1542 }
1543 
1544 /// ParseUInt64
1545 ///   ::= uint64
1546 bool LLParser::ParseUInt64(uint64_t &Val) {
1547   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1548     return TokError("expected integer");
1549   Val = Lex.getAPSIntVal().getLimitedValue();
1550   Lex.Lex();
1551   return false;
1552 }
1553 
1554 /// ParseTLSModel
1555 ///   := 'localdynamic'
1556 ///   := 'initialexec'
1557 ///   := 'localexec'
1558 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1559   switch (Lex.getKind()) {
1560     default:
1561       return TokError("expected localdynamic, initialexec or localexec");
1562     case lltok::kw_localdynamic:
1563       TLM = GlobalVariable::LocalDynamicTLSModel;
1564       break;
1565     case lltok::kw_initialexec:
1566       TLM = GlobalVariable::InitialExecTLSModel;
1567       break;
1568     case lltok::kw_localexec:
1569       TLM = GlobalVariable::LocalExecTLSModel;
1570       break;
1571   }
1572 
1573   Lex.Lex();
1574   return false;
1575 }
1576 
1577 /// ParseOptionalThreadLocal
1578 ///   := /*empty*/
1579 ///   := 'thread_local'
1580 ///   := 'thread_local' '(' tlsmodel ')'
1581 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1582   TLM = GlobalVariable::NotThreadLocal;
1583   if (!EatIfPresent(lltok::kw_thread_local))
1584     return false;
1585 
1586   TLM = GlobalVariable::GeneralDynamicTLSModel;
1587   if (Lex.getKind() == lltok::lparen) {
1588     Lex.Lex();
1589     return ParseTLSModel(TLM) ||
1590       ParseToken(lltok::rparen, "expected ')' after thread local model");
1591   }
1592   return false;
1593 }
1594 
1595 /// ParseOptionalAddrSpace
1596 ///   := /*empty*/
1597 ///   := 'addrspace' '(' uint32 ')'
1598 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1599   AddrSpace = DefaultAS;
1600   if (!EatIfPresent(lltok::kw_addrspace))
1601     return false;
1602   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1603          ParseUInt32(AddrSpace) ||
1604          ParseToken(lltok::rparen, "expected ')' in address space");
1605 }
1606 
1607 /// ParseStringAttribute
1608 ///   := StringConstant
1609 ///   := StringConstant '=' StringConstant
1610 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1611   std::string Attr = Lex.getStrVal();
1612   Lex.Lex();
1613   std::string Val;
1614   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1615     return true;
1616   B.addAttribute(Attr, Val);
1617   return false;
1618 }
1619 
1620 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1621 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1622   bool HaveError = false;
1623 
1624   B.clear();
1625 
1626   while (true) {
1627     lltok::Kind Token = Lex.getKind();
1628     switch (Token) {
1629     default:  // End of attributes.
1630       return HaveError;
1631     case lltok::StringConstant: {
1632       if (ParseStringAttribute(B))
1633         return true;
1634       continue;
1635     }
1636     case lltok::kw_align: {
1637       MaybeAlign Alignment;
1638       if (ParseOptionalAlignment(Alignment))
1639         return true;
1640       B.addAlignmentAttr(Alignment);
1641       continue;
1642     }
1643     case lltok::kw_byval: {
1644       Type *Ty;
1645       if (ParseByValWithOptionalType(Ty))
1646         return true;
1647       B.addByValAttr(Ty);
1648       continue;
1649     }
1650     case lltok::kw_preallocated: {
1651       Type *Ty;
1652       if (ParsePreallocated(Ty))
1653         return true;
1654       B.addPreallocatedAttr(Ty);
1655       continue;
1656     }
1657     case lltok::kw_dereferenceable: {
1658       uint64_t Bytes;
1659       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1660         return true;
1661       B.addDereferenceableAttr(Bytes);
1662       continue;
1663     }
1664     case lltok::kw_dereferenceable_or_null: {
1665       uint64_t Bytes;
1666       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1667         return true;
1668       B.addDereferenceableOrNullAttr(Bytes);
1669       continue;
1670     }
1671     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1672     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1673     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1674     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1675     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1676     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1677     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1678     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1679     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1680     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1681     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1682     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1683     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1684     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1685     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1686     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1687     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1688 
1689     case lltok::kw_alignstack:
1690     case lltok::kw_alwaysinline:
1691     case lltok::kw_argmemonly:
1692     case lltok::kw_builtin:
1693     case lltok::kw_inlinehint:
1694     case lltok::kw_jumptable:
1695     case lltok::kw_minsize:
1696     case lltok::kw_naked:
1697     case lltok::kw_nobuiltin:
1698     case lltok::kw_noduplicate:
1699     case lltok::kw_noimplicitfloat:
1700     case lltok::kw_noinline:
1701     case lltok::kw_nonlazybind:
1702     case lltok::kw_nomerge:
1703     case lltok::kw_noredzone:
1704     case lltok::kw_noreturn:
1705     case lltok::kw_nocf_check:
1706     case lltok::kw_nounwind:
1707     case lltok::kw_optforfuzzing:
1708     case lltok::kw_optnone:
1709     case lltok::kw_optsize:
1710     case lltok::kw_returns_twice:
1711     case lltok::kw_sanitize_address:
1712     case lltok::kw_sanitize_hwaddress:
1713     case lltok::kw_sanitize_memtag:
1714     case lltok::kw_sanitize_memory:
1715     case lltok::kw_sanitize_thread:
1716     case lltok::kw_speculative_load_hardening:
1717     case lltok::kw_ssp:
1718     case lltok::kw_sspreq:
1719     case lltok::kw_sspstrong:
1720     case lltok::kw_safestack:
1721     case lltok::kw_shadowcallstack:
1722     case lltok::kw_strictfp:
1723     case lltok::kw_uwtable:
1724       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1725       break;
1726     }
1727 
1728     Lex.Lex();
1729   }
1730 }
1731 
1732 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1733 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1734   bool HaveError = false;
1735 
1736   B.clear();
1737 
1738   while (true) {
1739     lltok::Kind Token = Lex.getKind();
1740     switch (Token) {
1741     default:  // End of attributes.
1742       return HaveError;
1743     case lltok::StringConstant: {
1744       if (ParseStringAttribute(B))
1745         return true;
1746       continue;
1747     }
1748     case lltok::kw_dereferenceable: {
1749       uint64_t Bytes;
1750       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1751         return true;
1752       B.addDereferenceableAttr(Bytes);
1753       continue;
1754     }
1755     case lltok::kw_dereferenceable_or_null: {
1756       uint64_t Bytes;
1757       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1758         return true;
1759       B.addDereferenceableOrNullAttr(Bytes);
1760       continue;
1761     }
1762     case lltok::kw_align: {
1763       MaybeAlign Alignment;
1764       if (ParseOptionalAlignment(Alignment))
1765         return true;
1766       B.addAlignmentAttr(Alignment);
1767       continue;
1768     }
1769     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1770     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1771     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1772     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1773     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1774 
1775     // Error handling.
1776     case lltok::kw_byval:
1777     case lltok::kw_inalloca:
1778     case lltok::kw_nest:
1779     case lltok::kw_nocapture:
1780     case lltok::kw_returned:
1781     case lltok::kw_sret:
1782     case lltok::kw_swifterror:
1783     case lltok::kw_swiftself:
1784     case lltok::kw_immarg:
1785       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1786       break;
1787 
1788     case lltok::kw_alignstack:
1789     case lltok::kw_alwaysinline:
1790     case lltok::kw_argmemonly:
1791     case lltok::kw_builtin:
1792     case lltok::kw_cold:
1793     case lltok::kw_inlinehint:
1794     case lltok::kw_jumptable:
1795     case lltok::kw_minsize:
1796     case lltok::kw_naked:
1797     case lltok::kw_nobuiltin:
1798     case lltok::kw_noduplicate:
1799     case lltok::kw_noimplicitfloat:
1800     case lltok::kw_noinline:
1801     case lltok::kw_nonlazybind:
1802     case lltok::kw_nomerge:
1803     case lltok::kw_noredzone:
1804     case lltok::kw_noreturn:
1805     case lltok::kw_nocf_check:
1806     case lltok::kw_nounwind:
1807     case lltok::kw_optforfuzzing:
1808     case lltok::kw_optnone:
1809     case lltok::kw_optsize:
1810     case lltok::kw_returns_twice:
1811     case lltok::kw_sanitize_address:
1812     case lltok::kw_sanitize_hwaddress:
1813     case lltok::kw_sanitize_memtag:
1814     case lltok::kw_sanitize_memory:
1815     case lltok::kw_sanitize_thread:
1816     case lltok::kw_speculative_load_hardening:
1817     case lltok::kw_ssp:
1818     case lltok::kw_sspreq:
1819     case lltok::kw_sspstrong:
1820     case lltok::kw_safestack:
1821     case lltok::kw_shadowcallstack:
1822     case lltok::kw_strictfp:
1823     case lltok::kw_uwtable:
1824       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1825       break;
1826     case lltok::kw_readnone:
1827     case lltok::kw_readonly:
1828       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1829       break;
1830     case lltok::kw_preallocated:
1831       HaveError |=
1832           Error(Lex.getLoc(),
1833                 "invalid use of parameter-only/call site-only attribute");
1834       break;
1835     }
1836 
1837     Lex.Lex();
1838   }
1839 }
1840 
1841 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1842   HasLinkage = true;
1843   switch (Kind) {
1844   default:
1845     HasLinkage = false;
1846     return GlobalValue::ExternalLinkage;
1847   case lltok::kw_private:
1848     return GlobalValue::PrivateLinkage;
1849   case lltok::kw_internal:
1850     return GlobalValue::InternalLinkage;
1851   case lltok::kw_weak:
1852     return GlobalValue::WeakAnyLinkage;
1853   case lltok::kw_weak_odr:
1854     return GlobalValue::WeakODRLinkage;
1855   case lltok::kw_linkonce:
1856     return GlobalValue::LinkOnceAnyLinkage;
1857   case lltok::kw_linkonce_odr:
1858     return GlobalValue::LinkOnceODRLinkage;
1859   case lltok::kw_available_externally:
1860     return GlobalValue::AvailableExternallyLinkage;
1861   case lltok::kw_appending:
1862     return GlobalValue::AppendingLinkage;
1863   case lltok::kw_common:
1864     return GlobalValue::CommonLinkage;
1865   case lltok::kw_extern_weak:
1866     return GlobalValue::ExternalWeakLinkage;
1867   case lltok::kw_external:
1868     return GlobalValue::ExternalLinkage;
1869   }
1870 }
1871 
1872 /// ParseOptionalLinkage
1873 ///   ::= /*empty*/
1874 ///   ::= 'private'
1875 ///   ::= 'internal'
1876 ///   ::= 'weak'
1877 ///   ::= 'weak_odr'
1878 ///   ::= 'linkonce'
1879 ///   ::= 'linkonce_odr'
1880 ///   ::= 'available_externally'
1881 ///   ::= 'appending'
1882 ///   ::= 'common'
1883 ///   ::= 'extern_weak'
1884 ///   ::= 'external'
1885 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1886                                     unsigned &Visibility,
1887                                     unsigned &DLLStorageClass,
1888                                     bool &DSOLocal) {
1889   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1890   if (HasLinkage)
1891     Lex.Lex();
1892   ParseOptionalDSOLocal(DSOLocal);
1893   ParseOptionalVisibility(Visibility);
1894   ParseOptionalDLLStorageClass(DLLStorageClass);
1895 
1896   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1897     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1898   }
1899 
1900   return false;
1901 }
1902 
1903 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1904   switch (Lex.getKind()) {
1905   default:
1906     DSOLocal = false;
1907     break;
1908   case lltok::kw_dso_local:
1909     DSOLocal = true;
1910     Lex.Lex();
1911     break;
1912   case lltok::kw_dso_preemptable:
1913     DSOLocal = false;
1914     Lex.Lex();
1915     break;
1916   }
1917 }
1918 
1919 /// ParseOptionalVisibility
1920 ///   ::= /*empty*/
1921 ///   ::= 'default'
1922 ///   ::= 'hidden'
1923 ///   ::= 'protected'
1924 ///
1925 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1926   switch (Lex.getKind()) {
1927   default:
1928     Res = GlobalValue::DefaultVisibility;
1929     return;
1930   case lltok::kw_default:
1931     Res = GlobalValue::DefaultVisibility;
1932     break;
1933   case lltok::kw_hidden:
1934     Res = GlobalValue::HiddenVisibility;
1935     break;
1936   case lltok::kw_protected:
1937     Res = GlobalValue::ProtectedVisibility;
1938     break;
1939   }
1940   Lex.Lex();
1941 }
1942 
1943 /// ParseOptionalDLLStorageClass
1944 ///   ::= /*empty*/
1945 ///   ::= 'dllimport'
1946 ///   ::= 'dllexport'
1947 ///
1948 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1949   switch (Lex.getKind()) {
1950   default:
1951     Res = GlobalValue::DefaultStorageClass;
1952     return;
1953   case lltok::kw_dllimport:
1954     Res = GlobalValue::DLLImportStorageClass;
1955     break;
1956   case lltok::kw_dllexport:
1957     Res = GlobalValue::DLLExportStorageClass;
1958     break;
1959   }
1960   Lex.Lex();
1961 }
1962 
1963 /// ParseOptionalCallingConv
1964 ///   ::= /*empty*/
1965 ///   ::= 'ccc'
1966 ///   ::= 'fastcc'
1967 ///   ::= 'intel_ocl_bicc'
1968 ///   ::= 'coldcc'
1969 ///   ::= 'cfguard_checkcc'
1970 ///   ::= 'x86_stdcallcc'
1971 ///   ::= 'x86_fastcallcc'
1972 ///   ::= 'x86_thiscallcc'
1973 ///   ::= 'x86_vectorcallcc'
1974 ///   ::= 'arm_apcscc'
1975 ///   ::= 'arm_aapcscc'
1976 ///   ::= 'arm_aapcs_vfpcc'
1977 ///   ::= 'aarch64_vector_pcs'
1978 ///   ::= 'aarch64_sve_vector_pcs'
1979 ///   ::= 'msp430_intrcc'
1980 ///   ::= 'avr_intrcc'
1981 ///   ::= 'avr_signalcc'
1982 ///   ::= 'ptx_kernel'
1983 ///   ::= 'ptx_device'
1984 ///   ::= 'spir_func'
1985 ///   ::= 'spir_kernel'
1986 ///   ::= 'x86_64_sysvcc'
1987 ///   ::= 'win64cc'
1988 ///   ::= 'webkit_jscc'
1989 ///   ::= 'anyregcc'
1990 ///   ::= 'preserve_mostcc'
1991 ///   ::= 'preserve_allcc'
1992 ///   ::= 'ghccc'
1993 ///   ::= 'swiftcc'
1994 ///   ::= 'x86_intrcc'
1995 ///   ::= 'hhvmcc'
1996 ///   ::= 'hhvm_ccc'
1997 ///   ::= 'cxx_fast_tlscc'
1998 ///   ::= 'amdgpu_vs'
1999 ///   ::= 'amdgpu_ls'
2000 ///   ::= 'amdgpu_hs'
2001 ///   ::= 'amdgpu_es'
2002 ///   ::= 'amdgpu_gs'
2003 ///   ::= 'amdgpu_ps'
2004 ///   ::= 'amdgpu_cs'
2005 ///   ::= 'amdgpu_kernel'
2006 ///   ::= 'tailcc'
2007 ///   ::= 'cc' UINT
2008 ///
2009 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
2010   switch (Lex.getKind()) {
2011   default:                       CC = CallingConv::C; return false;
2012   case lltok::kw_ccc:            CC = CallingConv::C; break;
2013   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2014   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2015   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2016   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2017   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2018   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2019   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2020   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2021   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2022   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2023   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2024   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2025   case lltok::kw_aarch64_sve_vector_pcs:
2026     CC = CallingConv::AArch64_SVE_VectorCall;
2027     break;
2028   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2029   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2030   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2031   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2032   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2033   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2034   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2035   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2036   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2037   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2038   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2039   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2040   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2041   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2042   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2043   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2044   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2045   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2046   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2047   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2048   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2049   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2050   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2051   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2052   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2053   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2054   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2055   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2056   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2057   case lltok::kw_cc: {
2058       Lex.Lex();
2059       return ParseUInt32(CC);
2060     }
2061   }
2062 
2063   Lex.Lex();
2064   return false;
2065 }
2066 
2067 /// ParseMetadataAttachment
2068 ///   ::= !dbg !42
2069 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2070   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2071 
2072   std::string Name = Lex.getStrVal();
2073   Kind = M->getMDKindID(Name);
2074   Lex.Lex();
2075 
2076   return ParseMDNode(MD);
2077 }
2078 
2079 /// ParseInstructionMetadata
2080 ///   ::= !dbg !42 (',' !dbg !57)*
2081 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
2082   do {
2083     if (Lex.getKind() != lltok::MetadataVar)
2084       return TokError("expected metadata after comma");
2085 
2086     unsigned MDK;
2087     MDNode *N;
2088     if (ParseMetadataAttachment(MDK, N))
2089       return true;
2090 
2091     Inst.setMetadata(MDK, N);
2092     if (MDK == LLVMContext::MD_tbaa)
2093       InstsWithTBAATag.push_back(&Inst);
2094 
2095     // If this is the end of the list, we're done.
2096   } while (EatIfPresent(lltok::comma));
2097   return false;
2098 }
2099 
2100 /// ParseGlobalObjectMetadataAttachment
2101 ///   ::= !dbg !57
2102 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2103   unsigned MDK;
2104   MDNode *N;
2105   if (ParseMetadataAttachment(MDK, N))
2106     return true;
2107 
2108   GO.addMetadata(MDK, *N);
2109   return false;
2110 }
2111 
2112 /// ParseOptionalFunctionMetadata
2113 ///   ::= (!dbg !57)*
2114 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2115   while (Lex.getKind() == lltok::MetadataVar)
2116     if (ParseGlobalObjectMetadataAttachment(F))
2117       return true;
2118   return false;
2119 }
2120 
2121 /// ParseOptionalAlignment
2122 ///   ::= /* empty */
2123 ///   ::= 'align' 4
2124 bool LLParser::ParseOptionalAlignment(MaybeAlign &Alignment) {
2125   Alignment = None;
2126   if (!EatIfPresent(lltok::kw_align))
2127     return false;
2128   LocTy AlignLoc = Lex.getLoc();
2129   uint32_t Value = 0;
2130   if (ParseUInt32(Value))
2131     return true;
2132   if (!isPowerOf2_32(Value))
2133     return Error(AlignLoc, "alignment is not a power of two");
2134   if (Value > Value::MaximumAlignment)
2135     return Error(AlignLoc, "huge alignments are not supported yet");
2136   Alignment = Align(Value);
2137   return false;
2138 }
2139 
2140 /// ParseOptionalDerefAttrBytes
2141 ///   ::= /* empty */
2142 ///   ::= AttrKind '(' 4 ')'
2143 ///
2144 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2145 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2146                                            uint64_t &Bytes) {
2147   assert((AttrKind == lltok::kw_dereferenceable ||
2148           AttrKind == lltok::kw_dereferenceable_or_null) &&
2149          "contract!");
2150 
2151   Bytes = 0;
2152   if (!EatIfPresent(AttrKind))
2153     return false;
2154   LocTy ParenLoc = Lex.getLoc();
2155   if (!EatIfPresent(lltok::lparen))
2156     return Error(ParenLoc, "expected '('");
2157   LocTy DerefLoc = Lex.getLoc();
2158   if (ParseUInt64(Bytes)) return true;
2159   ParenLoc = Lex.getLoc();
2160   if (!EatIfPresent(lltok::rparen))
2161     return Error(ParenLoc, "expected ')'");
2162   if (!Bytes)
2163     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2164   return false;
2165 }
2166 
2167 /// ParseOptionalCommaAlign
2168 ///   ::=
2169 ///   ::= ',' align 4
2170 ///
2171 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2172 /// end.
2173 bool LLParser::ParseOptionalCommaAlign(MaybeAlign &Alignment,
2174                                        bool &AteExtraComma) {
2175   AteExtraComma = false;
2176   while (EatIfPresent(lltok::comma)) {
2177     // Metadata at the end is an early exit.
2178     if (Lex.getKind() == lltok::MetadataVar) {
2179       AteExtraComma = true;
2180       return false;
2181     }
2182 
2183     if (Lex.getKind() != lltok::kw_align)
2184       return Error(Lex.getLoc(), "expected metadata or 'align'");
2185 
2186     if (ParseOptionalAlignment(Alignment)) return true;
2187   }
2188 
2189   return false;
2190 }
2191 
2192 /// ParseOptionalCommaAddrSpace
2193 ///   ::=
2194 ///   ::= ',' addrspace(1)
2195 ///
2196 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2197 /// end.
2198 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2199                                            LocTy &Loc,
2200                                            bool &AteExtraComma) {
2201   AteExtraComma = false;
2202   while (EatIfPresent(lltok::comma)) {
2203     // Metadata at the end is an early exit.
2204     if (Lex.getKind() == lltok::MetadataVar) {
2205       AteExtraComma = true;
2206       return false;
2207     }
2208 
2209     Loc = Lex.getLoc();
2210     if (Lex.getKind() != lltok::kw_addrspace)
2211       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2212 
2213     if (ParseOptionalAddrSpace(AddrSpace))
2214       return true;
2215   }
2216 
2217   return false;
2218 }
2219 
2220 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2221                                        Optional<unsigned> &HowManyArg) {
2222   Lex.Lex();
2223 
2224   auto StartParen = Lex.getLoc();
2225   if (!EatIfPresent(lltok::lparen))
2226     return Error(StartParen, "expected '('");
2227 
2228   if (ParseUInt32(BaseSizeArg))
2229     return true;
2230 
2231   if (EatIfPresent(lltok::comma)) {
2232     auto HowManyAt = Lex.getLoc();
2233     unsigned HowMany;
2234     if (ParseUInt32(HowMany))
2235       return true;
2236     if (HowMany == BaseSizeArg)
2237       return Error(HowManyAt,
2238                    "'allocsize' indices can't refer to the same parameter");
2239     HowManyArg = HowMany;
2240   } else
2241     HowManyArg = None;
2242 
2243   auto EndParen = Lex.getLoc();
2244   if (!EatIfPresent(lltok::rparen))
2245     return Error(EndParen, "expected ')'");
2246   return false;
2247 }
2248 
2249 /// ParseScopeAndOrdering
2250 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2251 ///   else: ::=
2252 ///
2253 /// This sets Scope and Ordering to the parsed values.
2254 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2255                                      AtomicOrdering &Ordering) {
2256   if (!isAtomic)
2257     return false;
2258 
2259   return ParseScope(SSID) || ParseOrdering(Ordering);
2260 }
2261 
2262 /// ParseScope
2263 ///   ::= syncscope("singlethread" | "<target scope>")?
2264 ///
2265 /// This sets synchronization scope ID to the ID of the parsed value.
2266 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2267   SSID = SyncScope::System;
2268   if (EatIfPresent(lltok::kw_syncscope)) {
2269     auto StartParenAt = Lex.getLoc();
2270     if (!EatIfPresent(lltok::lparen))
2271       return Error(StartParenAt, "Expected '(' in syncscope");
2272 
2273     std::string SSN;
2274     auto SSNAt = Lex.getLoc();
2275     if (ParseStringConstant(SSN))
2276       return Error(SSNAt, "Expected synchronization scope name");
2277 
2278     auto EndParenAt = Lex.getLoc();
2279     if (!EatIfPresent(lltok::rparen))
2280       return Error(EndParenAt, "Expected ')' in syncscope");
2281 
2282     SSID = Context.getOrInsertSyncScopeID(SSN);
2283   }
2284 
2285   return false;
2286 }
2287 
2288 /// ParseOrdering
2289 ///   ::= AtomicOrdering
2290 ///
2291 /// This sets Ordering to the parsed value.
2292 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2293   switch (Lex.getKind()) {
2294   default: return TokError("Expected ordering on atomic instruction");
2295   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2296   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2297   // Not specified yet:
2298   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2299   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2300   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2301   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2302   case lltok::kw_seq_cst:
2303     Ordering = AtomicOrdering::SequentiallyConsistent;
2304     break;
2305   }
2306   Lex.Lex();
2307   return false;
2308 }
2309 
2310 /// ParseOptionalStackAlignment
2311 ///   ::= /* empty */
2312 ///   ::= 'alignstack' '(' 4 ')'
2313 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2314   Alignment = 0;
2315   if (!EatIfPresent(lltok::kw_alignstack))
2316     return false;
2317   LocTy ParenLoc = Lex.getLoc();
2318   if (!EatIfPresent(lltok::lparen))
2319     return Error(ParenLoc, "expected '('");
2320   LocTy AlignLoc = Lex.getLoc();
2321   if (ParseUInt32(Alignment)) return true;
2322   ParenLoc = Lex.getLoc();
2323   if (!EatIfPresent(lltok::rparen))
2324     return Error(ParenLoc, "expected ')'");
2325   if (!isPowerOf2_32(Alignment))
2326     return Error(AlignLoc, "stack alignment is not a power of two");
2327   return false;
2328 }
2329 
2330 /// ParseIndexList - This parses the index list for an insert/extractvalue
2331 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2332 /// comma at the end of the line and find that it is followed by metadata.
2333 /// Clients that don't allow metadata can call the version of this function that
2334 /// only takes one argument.
2335 ///
2336 /// ParseIndexList
2337 ///    ::=  (',' uint32)+
2338 ///
2339 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2340                               bool &AteExtraComma) {
2341   AteExtraComma = false;
2342 
2343   if (Lex.getKind() != lltok::comma)
2344     return TokError("expected ',' as start of index list");
2345 
2346   while (EatIfPresent(lltok::comma)) {
2347     if (Lex.getKind() == lltok::MetadataVar) {
2348       if (Indices.empty()) return TokError("expected index");
2349       AteExtraComma = true;
2350       return false;
2351     }
2352     unsigned Idx = 0;
2353     if (ParseUInt32(Idx)) return true;
2354     Indices.push_back(Idx);
2355   }
2356 
2357   return false;
2358 }
2359 
2360 //===----------------------------------------------------------------------===//
2361 // Type Parsing.
2362 //===----------------------------------------------------------------------===//
2363 
2364 /// ParseType - Parse a type.
2365 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2366   SMLoc TypeLoc = Lex.getLoc();
2367   switch (Lex.getKind()) {
2368   default:
2369     return TokError(Msg);
2370   case lltok::Type:
2371     // Type ::= 'float' | 'void' (etc)
2372     Result = Lex.getTyVal();
2373     Lex.Lex();
2374     break;
2375   case lltok::lbrace:
2376     // Type ::= StructType
2377     if (ParseAnonStructType(Result, false))
2378       return true;
2379     break;
2380   case lltok::lsquare:
2381     // Type ::= '[' ... ']'
2382     Lex.Lex(); // eat the lsquare.
2383     if (ParseArrayVectorType(Result, false))
2384       return true;
2385     break;
2386   case lltok::less: // Either vector or packed struct.
2387     // Type ::= '<' ... '>'
2388     Lex.Lex();
2389     if (Lex.getKind() == lltok::lbrace) {
2390       if (ParseAnonStructType(Result, true) ||
2391           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2392         return true;
2393     } else if (ParseArrayVectorType(Result, true))
2394       return true;
2395     break;
2396   case lltok::LocalVar: {
2397     // Type ::= %foo
2398     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2399 
2400     // If the type hasn't been defined yet, create a forward definition and
2401     // remember where that forward def'n was seen (in case it never is defined).
2402     if (!Entry.first) {
2403       Entry.first = StructType::create(Context, Lex.getStrVal());
2404       Entry.second = Lex.getLoc();
2405     }
2406     Result = Entry.first;
2407     Lex.Lex();
2408     break;
2409   }
2410 
2411   case lltok::LocalVarID: {
2412     // Type ::= %4
2413     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2414 
2415     // If the type hasn't been defined yet, create a forward definition and
2416     // remember where that forward def'n was seen (in case it never is defined).
2417     if (!Entry.first) {
2418       Entry.first = StructType::create(Context);
2419       Entry.second = Lex.getLoc();
2420     }
2421     Result = Entry.first;
2422     Lex.Lex();
2423     break;
2424   }
2425   }
2426 
2427   // Parse the type suffixes.
2428   while (true) {
2429     switch (Lex.getKind()) {
2430     // End of type.
2431     default:
2432       if (!AllowVoid && Result->isVoidTy())
2433         return Error(TypeLoc, "void type only allowed for function results");
2434       return false;
2435 
2436     // Type ::= Type '*'
2437     case lltok::star:
2438       if (Result->isLabelTy())
2439         return TokError("basic block pointers are invalid");
2440       if (Result->isVoidTy())
2441         return TokError("pointers to void are invalid - use i8* instead");
2442       if (!PointerType::isValidElementType(Result))
2443         return TokError("pointer to this type is invalid");
2444       Result = PointerType::getUnqual(Result);
2445       Lex.Lex();
2446       break;
2447 
2448     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2449     case lltok::kw_addrspace: {
2450       if (Result->isLabelTy())
2451         return TokError("basic block pointers are invalid");
2452       if (Result->isVoidTy())
2453         return TokError("pointers to void are invalid; use i8* instead");
2454       if (!PointerType::isValidElementType(Result))
2455         return TokError("pointer to this type is invalid");
2456       unsigned AddrSpace;
2457       if (ParseOptionalAddrSpace(AddrSpace) ||
2458           ParseToken(lltok::star, "expected '*' in address space"))
2459         return true;
2460 
2461       Result = PointerType::get(Result, AddrSpace);
2462       break;
2463     }
2464 
2465     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2466     case lltok::lparen:
2467       if (ParseFunctionType(Result))
2468         return true;
2469       break;
2470     }
2471   }
2472 }
2473 
2474 /// ParseParameterList
2475 ///    ::= '(' ')'
2476 ///    ::= '(' Arg (',' Arg)* ')'
2477 ///  Arg
2478 ///    ::= Type OptionalAttributes Value OptionalAttributes
2479 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2480                                   PerFunctionState &PFS, bool IsMustTailCall,
2481                                   bool InVarArgsFunc) {
2482   if (ParseToken(lltok::lparen, "expected '(' in call"))
2483     return true;
2484 
2485   while (Lex.getKind() != lltok::rparen) {
2486     // If this isn't the first argument, we need a comma.
2487     if (!ArgList.empty() &&
2488         ParseToken(lltok::comma, "expected ',' in argument list"))
2489       return true;
2490 
2491     // Parse an ellipsis if this is a musttail call in a variadic function.
2492     if (Lex.getKind() == lltok::dotdotdot) {
2493       const char *Msg = "unexpected ellipsis in argument list for ";
2494       if (!IsMustTailCall)
2495         return TokError(Twine(Msg) + "non-musttail call");
2496       if (!InVarArgsFunc)
2497         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2498       Lex.Lex();  // Lex the '...', it is purely for readability.
2499       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2500     }
2501 
2502     // Parse the argument.
2503     LocTy ArgLoc;
2504     Type *ArgTy = nullptr;
2505     AttrBuilder ArgAttrs;
2506     Value *V;
2507     if (ParseType(ArgTy, ArgLoc))
2508       return true;
2509 
2510     if (ArgTy->isMetadataTy()) {
2511       if (ParseMetadataAsValue(V, PFS))
2512         return true;
2513     } else {
2514       // Otherwise, handle normal operands.
2515       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2516         return true;
2517     }
2518     ArgList.push_back(ParamInfo(
2519         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2520   }
2521 
2522   if (IsMustTailCall && InVarArgsFunc)
2523     return TokError("expected '...' at end of argument list for musttail call "
2524                     "in varargs function");
2525 
2526   Lex.Lex();  // Lex the ')'.
2527   return false;
2528 }
2529 
2530 /// ParseByValWithOptionalType
2531 ///   ::= byval
2532 ///   ::= byval(<ty>)
2533 bool LLParser::ParseByValWithOptionalType(Type *&Result) {
2534   Result = nullptr;
2535   if (!EatIfPresent(lltok::kw_byval))
2536     return true;
2537   if (!EatIfPresent(lltok::lparen))
2538     return false;
2539   if (ParseType(Result))
2540     return true;
2541   if (!EatIfPresent(lltok::rparen))
2542     return Error(Lex.getLoc(), "expected ')'");
2543   return false;
2544 }
2545 
2546 /// ParsePreallocated
2547 ///   ::= preallocated(<ty>)
2548 bool LLParser::ParsePreallocated(Type *&Result) {
2549   Result = nullptr;
2550   if (!EatIfPresent(lltok::kw_preallocated))
2551     return true;
2552   if (!EatIfPresent(lltok::lparen))
2553     return Error(Lex.getLoc(), "expected '('");
2554   if (ParseType(Result))
2555     return true;
2556   if (!EatIfPresent(lltok::rparen))
2557     return Error(Lex.getLoc(), "expected ')'");
2558   return false;
2559 }
2560 
2561 /// ParseOptionalOperandBundles
2562 ///    ::= /*empty*/
2563 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2564 ///
2565 /// OperandBundle
2566 ///    ::= bundle-tag '(' ')'
2567 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2568 ///
2569 /// bundle-tag ::= String Constant
2570 bool LLParser::ParseOptionalOperandBundles(
2571     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2572   LocTy BeginLoc = Lex.getLoc();
2573   if (!EatIfPresent(lltok::lsquare))
2574     return false;
2575 
2576   while (Lex.getKind() != lltok::rsquare) {
2577     // If this isn't the first operand bundle, we need a comma.
2578     if (!BundleList.empty() &&
2579         ParseToken(lltok::comma, "expected ',' in input list"))
2580       return true;
2581 
2582     std::string Tag;
2583     if (ParseStringConstant(Tag))
2584       return true;
2585 
2586     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2587       return true;
2588 
2589     std::vector<Value *> Inputs;
2590     while (Lex.getKind() != lltok::rparen) {
2591       // If this isn't the first input, we need a comma.
2592       if (!Inputs.empty() &&
2593           ParseToken(lltok::comma, "expected ',' in input list"))
2594         return true;
2595 
2596       Type *Ty = nullptr;
2597       Value *Input = nullptr;
2598       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2599         return true;
2600       Inputs.push_back(Input);
2601     }
2602 
2603     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2604 
2605     Lex.Lex(); // Lex the ')'.
2606   }
2607 
2608   if (BundleList.empty())
2609     return Error(BeginLoc, "operand bundle set must not be empty");
2610 
2611   Lex.Lex(); // Lex the ']'.
2612   return false;
2613 }
2614 
2615 /// ParseArgumentList - Parse the argument list for a function type or function
2616 /// prototype.
2617 ///   ::= '(' ArgTypeListI ')'
2618 /// ArgTypeListI
2619 ///   ::= /*empty*/
2620 ///   ::= '...'
2621 ///   ::= ArgTypeList ',' '...'
2622 ///   ::= ArgType (',' ArgType)*
2623 ///
2624 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2625                                  bool &isVarArg){
2626   unsigned CurValID = 0;
2627   isVarArg = false;
2628   assert(Lex.getKind() == lltok::lparen);
2629   Lex.Lex(); // eat the (.
2630 
2631   if (Lex.getKind() == lltok::rparen) {
2632     // empty
2633   } else if (Lex.getKind() == lltok::dotdotdot) {
2634     isVarArg = true;
2635     Lex.Lex();
2636   } else {
2637     LocTy TypeLoc = Lex.getLoc();
2638     Type *ArgTy = nullptr;
2639     AttrBuilder Attrs;
2640     std::string Name;
2641 
2642     if (ParseType(ArgTy) ||
2643         ParseOptionalParamAttrs(Attrs)) return true;
2644 
2645     if (ArgTy->isVoidTy())
2646       return Error(TypeLoc, "argument can not have void type");
2647 
2648     if (Lex.getKind() == lltok::LocalVar) {
2649       Name = Lex.getStrVal();
2650       Lex.Lex();
2651     } else if (Lex.getKind() == lltok::LocalVarID) {
2652       if (Lex.getUIntVal() != CurValID)
2653         return Error(TypeLoc, "argument expected to be numbered '%" +
2654                                   Twine(CurValID) + "'");
2655       ++CurValID;
2656       Lex.Lex();
2657     }
2658 
2659     if (!FunctionType::isValidArgumentType(ArgTy))
2660       return Error(TypeLoc, "invalid type for function argument");
2661 
2662     ArgList.emplace_back(TypeLoc, ArgTy,
2663                          AttributeSet::get(ArgTy->getContext(), Attrs),
2664                          std::move(Name));
2665 
2666     while (EatIfPresent(lltok::comma)) {
2667       // Handle ... at end of arg list.
2668       if (EatIfPresent(lltok::dotdotdot)) {
2669         isVarArg = true;
2670         break;
2671       }
2672 
2673       // Otherwise must be an argument type.
2674       TypeLoc = Lex.getLoc();
2675       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2676 
2677       if (ArgTy->isVoidTy())
2678         return Error(TypeLoc, "argument can not have void type");
2679 
2680       if (Lex.getKind() == lltok::LocalVar) {
2681         Name = Lex.getStrVal();
2682         Lex.Lex();
2683       } else {
2684         if (Lex.getKind() == lltok::LocalVarID) {
2685           if (Lex.getUIntVal() != CurValID)
2686             return Error(TypeLoc, "argument expected to be numbered '%" +
2687                                       Twine(CurValID) + "'");
2688           Lex.Lex();
2689         }
2690         ++CurValID;
2691         Name = "";
2692       }
2693 
2694       if (!ArgTy->isFirstClassType())
2695         return Error(TypeLoc, "invalid type for function argument");
2696 
2697       ArgList.emplace_back(TypeLoc, ArgTy,
2698                            AttributeSet::get(ArgTy->getContext(), Attrs),
2699                            std::move(Name));
2700     }
2701   }
2702 
2703   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2704 }
2705 
2706 /// ParseFunctionType
2707 ///  ::= Type ArgumentList OptionalAttrs
2708 bool LLParser::ParseFunctionType(Type *&Result) {
2709   assert(Lex.getKind() == lltok::lparen);
2710 
2711   if (!FunctionType::isValidReturnType(Result))
2712     return TokError("invalid function return type");
2713 
2714   SmallVector<ArgInfo, 8> ArgList;
2715   bool isVarArg;
2716   if (ParseArgumentList(ArgList, isVarArg))
2717     return true;
2718 
2719   // Reject names on the arguments lists.
2720   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2721     if (!ArgList[i].Name.empty())
2722       return Error(ArgList[i].Loc, "argument name invalid in function type");
2723     if (ArgList[i].Attrs.hasAttributes())
2724       return Error(ArgList[i].Loc,
2725                    "argument attributes invalid in function type");
2726   }
2727 
2728   SmallVector<Type*, 16> ArgListTy;
2729   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2730     ArgListTy.push_back(ArgList[i].Ty);
2731 
2732   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2733   return false;
2734 }
2735 
2736 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2737 /// other structs.
2738 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2739   SmallVector<Type*, 8> Elts;
2740   if (ParseStructBody(Elts)) return true;
2741 
2742   Result = StructType::get(Context, Elts, Packed);
2743   return false;
2744 }
2745 
2746 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2747 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2748                                      std::pair<Type*, LocTy> &Entry,
2749                                      Type *&ResultTy) {
2750   // If the type was already defined, diagnose the redefinition.
2751   if (Entry.first && !Entry.second.isValid())
2752     return Error(TypeLoc, "redefinition of type");
2753 
2754   // If we have opaque, just return without filling in the definition for the
2755   // struct.  This counts as a definition as far as the .ll file goes.
2756   if (EatIfPresent(lltok::kw_opaque)) {
2757     // This type is being defined, so clear the location to indicate this.
2758     Entry.second = SMLoc();
2759 
2760     // If this type number has never been uttered, create it.
2761     if (!Entry.first)
2762       Entry.first = StructType::create(Context, Name);
2763     ResultTy = Entry.first;
2764     return false;
2765   }
2766 
2767   // If the type starts with '<', then it is either a packed struct or a vector.
2768   bool isPacked = EatIfPresent(lltok::less);
2769 
2770   // If we don't have a struct, then we have a random type alias, which we
2771   // accept for compatibility with old files.  These types are not allowed to be
2772   // forward referenced and not allowed to be recursive.
2773   if (Lex.getKind() != lltok::lbrace) {
2774     if (Entry.first)
2775       return Error(TypeLoc, "forward references to non-struct type");
2776 
2777     ResultTy = nullptr;
2778     if (isPacked)
2779       return ParseArrayVectorType(ResultTy, true);
2780     return ParseType(ResultTy);
2781   }
2782 
2783   // This type is being defined, so clear the location to indicate this.
2784   Entry.second = SMLoc();
2785 
2786   // If this type number has never been uttered, create it.
2787   if (!Entry.first)
2788     Entry.first = StructType::create(Context, Name);
2789 
2790   StructType *STy = cast<StructType>(Entry.first);
2791 
2792   SmallVector<Type*, 8> Body;
2793   if (ParseStructBody(Body) ||
2794       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2795     return true;
2796 
2797   STy->setBody(Body, isPacked);
2798   ResultTy = STy;
2799   return false;
2800 }
2801 
2802 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2803 ///   StructType
2804 ///     ::= '{' '}'
2805 ///     ::= '{' Type (',' Type)* '}'
2806 ///     ::= '<' '{' '}' '>'
2807 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2808 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2809   assert(Lex.getKind() == lltok::lbrace);
2810   Lex.Lex(); // Consume the '{'
2811 
2812   // Handle the empty struct.
2813   if (EatIfPresent(lltok::rbrace))
2814     return false;
2815 
2816   LocTy EltTyLoc = Lex.getLoc();
2817   Type *Ty = nullptr;
2818   if (ParseType(Ty)) return true;
2819   Body.push_back(Ty);
2820 
2821   if (!StructType::isValidElementType(Ty))
2822     return Error(EltTyLoc, "invalid element type for struct");
2823 
2824   while (EatIfPresent(lltok::comma)) {
2825     EltTyLoc = Lex.getLoc();
2826     if (ParseType(Ty)) return true;
2827 
2828     if (!StructType::isValidElementType(Ty))
2829       return Error(EltTyLoc, "invalid element type for struct");
2830 
2831     Body.push_back(Ty);
2832   }
2833 
2834   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2835 }
2836 
2837 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2838 /// token has already been consumed.
2839 ///   Type
2840 ///     ::= '[' APSINTVAL 'x' Types ']'
2841 ///     ::= '<' APSINTVAL 'x' Types '>'
2842 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2843 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2844   bool Scalable = false;
2845 
2846   if (isVector && Lex.getKind() == lltok::kw_vscale) {
2847     Lex.Lex(); // consume the 'vscale'
2848     if (ParseToken(lltok::kw_x, "expected 'x' after vscale"))
2849       return true;
2850 
2851     Scalable = true;
2852   }
2853 
2854   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2855       Lex.getAPSIntVal().getBitWidth() > 64)
2856     return TokError("expected number in address space");
2857 
2858   LocTy SizeLoc = Lex.getLoc();
2859   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2860   Lex.Lex();
2861 
2862   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2863       return true;
2864 
2865   LocTy TypeLoc = Lex.getLoc();
2866   Type *EltTy = nullptr;
2867   if (ParseType(EltTy)) return true;
2868 
2869   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2870                  "expected end of sequential type"))
2871     return true;
2872 
2873   if (isVector) {
2874     if (Size == 0)
2875       return Error(SizeLoc, "zero element vector is illegal");
2876     if ((unsigned)Size != Size)
2877       return Error(SizeLoc, "size too large for vector");
2878     if (!VectorType::isValidElementType(EltTy))
2879       return Error(TypeLoc, "invalid vector element type");
2880     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2881   } else {
2882     if (!ArrayType::isValidElementType(EltTy))
2883       return Error(TypeLoc, "invalid array element type");
2884     Result = ArrayType::get(EltTy, Size);
2885   }
2886   return false;
2887 }
2888 
2889 //===----------------------------------------------------------------------===//
2890 // Function Semantic Analysis.
2891 //===----------------------------------------------------------------------===//
2892 
2893 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2894                                              int functionNumber)
2895   : P(p), F(f), FunctionNumber(functionNumber) {
2896 
2897   // Insert unnamed arguments into the NumberedVals list.
2898   for (Argument &A : F.args())
2899     if (!A.hasName())
2900       NumberedVals.push_back(&A);
2901 }
2902 
2903 LLParser::PerFunctionState::~PerFunctionState() {
2904   // If there were any forward referenced non-basicblock values, delete them.
2905 
2906   for (const auto &P : ForwardRefVals) {
2907     if (isa<BasicBlock>(P.second.first))
2908       continue;
2909     P.second.first->replaceAllUsesWith(
2910         UndefValue::get(P.second.first->getType()));
2911     P.second.first->deleteValue();
2912   }
2913 
2914   for (const auto &P : ForwardRefValIDs) {
2915     if (isa<BasicBlock>(P.second.first))
2916       continue;
2917     P.second.first->replaceAllUsesWith(
2918         UndefValue::get(P.second.first->getType()));
2919     P.second.first->deleteValue();
2920   }
2921 }
2922 
2923 bool LLParser::PerFunctionState::FinishFunction() {
2924   if (!ForwardRefVals.empty())
2925     return P.Error(ForwardRefVals.begin()->second.second,
2926                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2927                    "'");
2928   if (!ForwardRefValIDs.empty())
2929     return P.Error(ForwardRefValIDs.begin()->second.second,
2930                    "use of undefined value '%" +
2931                    Twine(ForwardRefValIDs.begin()->first) + "'");
2932   return false;
2933 }
2934 
2935 /// GetVal - Get a value with the specified name or ID, creating a
2936 /// forward reference record if needed.  This can return null if the value
2937 /// exists but does not have the right type.
2938 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2939                                           LocTy Loc, bool IsCall) {
2940   // Look this name up in the normal function symbol table.
2941   Value *Val = F.getValueSymbolTable()->lookup(Name);
2942 
2943   // If this is a forward reference for the value, see if we already created a
2944   // forward ref record.
2945   if (!Val) {
2946     auto I = ForwardRefVals.find(Name);
2947     if (I != ForwardRefVals.end())
2948       Val = I->second.first;
2949   }
2950 
2951   // If we have the value in the symbol table or fwd-ref table, return it.
2952   if (Val)
2953     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2954 
2955   // Don't make placeholders with invalid type.
2956   if (!Ty->isFirstClassType()) {
2957     P.Error(Loc, "invalid use of a non-first-class type");
2958     return nullptr;
2959   }
2960 
2961   // Otherwise, create a new forward reference for this value and remember it.
2962   Value *FwdVal;
2963   if (Ty->isLabelTy()) {
2964     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2965   } else {
2966     FwdVal = new Argument(Ty, Name);
2967   }
2968 
2969   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2970   return FwdVal;
2971 }
2972 
2973 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2974                                           bool IsCall) {
2975   // Look this name up in the normal function symbol table.
2976   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2977 
2978   // If this is a forward reference for the value, see if we already created a
2979   // forward ref record.
2980   if (!Val) {
2981     auto I = ForwardRefValIDs.find(ID);
2982     if (I != ForwardRefValIDs.end())
2983       Val = I->second.first;
2984   }
2985 
2986   // If we have the value in the symbol table or fwd-ref table, return it.
2987   if (Val)
2988     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2989 
2990   if (!Ty->isFirstClassType()) {
2991     P.Error(Loc, "invalid use of a non-first-class type");
2992     return nullptr;
2993   }
2994 
2995   // Otherwise, create a new forward reference for this value and remember it.
2996   Value *FwdVal;
2997   if (Ty->isLabelTy()) {
2998     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2999   } else {
3000     FwdVal = new Argument(Ty);
3001   }
3002 
3003   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3004   return FwdVal;
3005 }
3006 
3007 /// SetInstName - After an instruction is parsed and inserted into its
3008 /// basic block, this installs its name.
3009 bool LLParser::PerFunctionState::SetInstName(int NameID,
3010                                              const std::string &NameStr,
3011                                              LocTy NameLoc, Instruction *Inst) {
3012   // If this instruction has void type, it cannot have a name or ID specified.
3013   if (Inst->getType()->isVoidTy()) {
3014     if (NameID != -1 || !NameStr.empty())
3015       return P.Error(NameLoc, "instructions returning void cannot have a name");
3016     return false;
3017   }
3018 
3019   // If this was a numbered instruction, verify that the instruction is the
3020   // expected value and resolve any forward references.
3021   if (NameStr.empty()) {
3022     // If neither a name nor an ID was specified, just use the next ID.
3023     if (NameID == -1)
3024       NameID = NumberedVals.size();
3025 
3026     if (unsigned(NameID) != NumberedVals.size())
3027       return P.Error(NameLoc, "instruction expected to be numbered '%" +
3028                      Twine(NumberedVals.size()) + "'");
3029 
3030     auto FI = ForwardRefValIDs.find(NameID);
3031     if (FI != ForwardRefValIDs.end()) {
3032       Value *Sentinel = FI->second.first;
3033       if (Sentinel->getType() != Inst->getType())
3034         return P.Error(NameLoc, "instruction forward referenced with type '" +
3035                        getTypeString(FI->second.first->getType()) + "'");
3036 
3037       Sentinel->replaceAllUsesWith(Inst);
3038       Sentinel->deleteValue();
3039       ForwardRefValIDs.erase(FI);
3040     }
3041 
3042     NumberedVals.push_back(Inst);
3043     return false;
3044   }
3045 
3046   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3047   auto FI = ForwardRefVals.find(NameStr);
3048   if (FI != ForwardRefVals.end()) {
3049     Value *Sentinel = FI->second.first;
3050     if (Sentinel->getType() != Inst->getType())
3051       return P.Error(NameLoc, "instruction forward referenced with type '" +
3052                      getTypeString(FI->second.first->getType()) + "'");
3053 
3054     Sentinel->replaceAllUsesWith(Inst);
3055     Sentinel->deleteValue();
3056     ForwardRefVals.erase(FI);
3057   }
3058 
3059   // Set the name on the instruction.
3060   Inst->setName(NameStr);
3061 
3062   if (Inst->getName() != NameStr)
3063     return P.Error(NameLoc, "multiple definition of local value named '" +
3064                    NameStr + "'");
3065   return false;
3066 }
3067 
3068 /// GetBB - Get a basic block with the specified name or ID, creating a
3069 /// forward reference record if needed.
3070 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
3071                                               LocTy Loc) {
3072   return dyn_cast_or_null<BasicBlock>(
3073       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3074 }
3075 
3076 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
3077   return dyn_cast_or_null<BasicBlock>(
3078       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3079 }
3080 
3081 /// DefineBB - Define the specified basic block, which is either named or
3082 /// unnamed.  If there is an error, this returns null otherwise it returns
3083 /// the block being defined.
3084 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
3085                                                  int NameID, LocTy Loc) {
3086   BasicBlock *BB;
3087   if (Name.empty()) {
3088     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3089       P.Error(Loc, "label expected to be numbered '" +
3090                        Twine(NumberedVals.size()) + "'");
3091       return nullptr;
3092     }
3093     BB = GetBB(NumberedVals.size(), Loc);
3094     if (!BB) {
3095       P.Error(Loc, "unable to create block numbered '" +
3096                        Twine(NumberedVals.size()) + "'");
3097       return nullptr;
3098     }
3099   } else {
3100     BB = GetBB(Name, Loc);
3101     if (!BB) {
3102       P.Error(Loc, "unable to create block named '" + Name + "'");
3103       return nullptr;
3104     }
3105   }
3106 
3107   // Move the block to the end of the function.  Forward ref'd blocks are
3108   // inserted wherever they happen to be referenced.
3109   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3110 
3111   // Remove the block from forward ref sets.
3112   if (Name.empty()) {
3113     ForwardRefValIDs.erase(NumberedVals.size());
3114     NumberedVals.push_back(BB);
3115   } else {
3116     // BB forward references are already in the function symbol table.
3117     ForwardRefVals.erase(Name);
3118   }
3119 
3120   return BB;
3121 }
3122 
3123 //===----------------------------------------------------------------------===//
3124 // Constants.
3125 //===----------------------------------------------------------------------===//
3126 
3127 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3128 /// type implied.  For example, if we parse "4" we don't know what integer type
3129 /// it has.  The value will later be combined with its type and checked for
3130 /// sanity.  PFS is used to convert function-local operands of metadata (since
3131 /// metadata operands are not just parsed here but also converted to values).
3132 /// PFS can be null when we are not parsing metadata values inside a function.
3133 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
3134   ID.Loc = Lex.getLoc();
3135   switch (Lex.getKind()) {
3136   default: return TokError("expected value token");
3137   case lltok::GlobalID:  // @42
3138     ID.UIntVal = Lex.getUIntVal();
3139     ID.Kind = ValID::t_GlobalID;
3140     break;
3141   case lltok::GlobalVar:  // @foo
3142     ID.StrVal = Lex.getStrVal();
3143     ID.Kind = ValID::t_GlobalName;
3144     break;
3145   case lltok::LocalVarID:  // %42
3146     ID.UIntVal = Lex.getUIntVal();
3147     ID.Kind = ValID::t_LocalID;
3148     break;
3149   case lltok::LocalVar:  // %foo
3150     ID.StrVal = Lex.getStrVal();
3151     ID.Kind = ValID::t_LocalName;
3152     break;
3153   case lltok::APSInt:
3154     ID.APSIntVal = Lex.getAPSIntVal();
3155     ID.Kind = ValID::t_APSInt;
3156     break;
3157   case lltok::APFloat:
3158     ID.APFloatVal = Lex.getAPFloatVal();
3159     ID.Kind = ValID::t_APFloat;
3160     break;
3161   case lltok::kw_true:
3162     ID.ConstantVal = ConstantInt::getTrue(Context);
3163     ID.Kind = ValID::t_Constant;
3164     break;
3165   case lltok::kw_false:
3166     ID.ConstantVal = ConstantInt::getFalse(Context);
3167     ID.Kind = ValID::t_Constant;
3168     break;
3169   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3170   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3171   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3172   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3173 
3174   case lltok::lbrace: {
3175     // ValID ::= '{' ConstVector '}'
3176     Lex.Lex();
3177     SmallVector<Constant*, 16> Elts;
3178     if (ParseGlobalValueVector(Elts) ||
3179         ParseToken(lltok::rbrace, "expected end of struct constant"))
3180       return true;
3181 
3182     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3183     ID.UIntVal = Elts.size();
3184     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3185            Elts.size() * sizeof(Elts[0]));
3186     ID.Kind = ValID::t_ConstantStruct;
3187     return false;
3188   }
3189   case lltok::less: {
3190     // ValID ::= '<' ConstVector '>'         --> Vector.
3191     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3192     Lex.Lex();
3193     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3194 
3195     SmallVector<Constant*, 16> Elts;
3196     LocTy FirstEltLoc = Lex.getLoc();
3197     if (ParseGlobalValueVector(Elts) ||
3198         (isPackedStruct &&
3199          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3200         ParseToken(lltok::greater, "expected end of constant"))
3201       return true;
3202 
3203     if (isPackedStruct) {
3204       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3205       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3206              Elts.size() * sizeof(Elts[0]));
3207       ID.UIntVal = Elts.size();
3208       ID.Kind = ValID::t_PackedConstantStruct;
3209       return false;
3210     }
3211 
3212     if (Elts.empty())
3213       return Error(ID.Loc, "constant vector must not be empty");
3214 
3215     if (!Elts[0]->getType()->isIntegerTy() &&
3216         !Elts[0]->getType()->isFloatingPointTy() &&
3217         !Elts[0]->getType()->isPointerTy())
3218       return Error(FirstEltLoc,
3219             "vector elements must have integer, pointer or floating point type");
3220 
3221     // Verify that all the vector elements have the same type.
3222     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3223       if (Elts[i]->getType() != Elts[0]->getType())
3224         return Error(FirstEltLoc,
3225                      "vector element #" + Twine(i) +
3226                     " is not of type '" + getTypeString(Elts[0]->getType()));
3227 
3228     ID.ConstantVal = ConstantVector::get(Elts);
3229     ID.Kind = ValID::t_Constant;
3230     return false;
3231   }
3232   case lltok::lsquare: {   // Array Constant
3233     Lex.Lex();
3234     SmallVector<Constant*, 16> Elts;
3235     LocTy FirstEltLoc = Lex.getLoc();
3236     if (ParseGlobalValueVector(Elts) ||
3237         ParseToken(lltok::rsquare, "expected end of array constant"))
3238       return true;
3239 
3240     // Handle empty element.
3241     if (Elts.empty()) {
3242       // Use undef instead of an array because it's inconvenient to determine
3243       // the element type at this point, there being no elements to examine.
3244       ID.Kind = ValID::t_EmptyArray;
3245       return false;
3246     }
3247 
3248     if (!Elts[0]->getType()->isFirstClassType())
3249       return Error(FirstEltLoc, "invalid array element type: " +
3250                    getTypeString(Elts[0]->getType()));
3251 
3252     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3253 
3254     // Verify all elements are correct type!
3255     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3256       if (Elts[i]->getType() != Elts[0]->getType())
3257         return Error(FirstEltLoc,
3258                      "array element #" + Twine(i) +
3259                      " is not of type '" + getTypeString(Elts[0]->getType()));
3260     }
3261 
3262     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3263     ID.Kind = ValID::t_Constant;
3264     return false;
3265   }
3266   case lltok::kw_c:  // c "foo"
3267     Lex.Lex();
3268     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3269                                                   false);
3270     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3271     ID.Kind = ValID::t_Constant;
3272     return false;
3273 
3274   case lltok::kw_asm: {
3275     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3276     //             STRINGCONSTANT
3277     bool HasSideEffect, AlignStack, AsmDialect;
3278     Lex.Lex();
3279     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3280         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3281         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3282         ParseStringConstant(ID.StrVal) ||
3283         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3284         ParseToken(lltok::StringConstant, "expected constraint string"))
3285       return true;
3286     ID.StrVal2 = Lex.getStrVal();
3287     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3288       (unsigned(AsmDialect)<<2);
3289     ID.Kind = ValID::t_InlineAsm;
3290     return false;
3291   }
3292 
3293   case lltok::kw_blockaddress: {
3294     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3295     Lex.Lex();
3296 
3297     ValID Fn, Label;
3298 
3299     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3300         ParseValID(Fn) ||
3301         ParseToken(lltok::comma, "expected comma in block address expression")||
3302         ParseValID(Label) ||
3303         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3304       return true;
3305 
3306     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3307       return Error(Fn.Loc, "expected function name in blockaddress");
3308     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3309       return Error(Label.Loc, "expected basic block name in blockaddress");
3310 
3311     // Try to find the function (but skip it if it's forward-referenced).
3312     GlobalValue *GV = nullptr;
3313     if (Fn.Kind == ValID::t_GlobalID) {
3314       if (Fn.UIntVal < NumberedVals.size())
3315         GV = NumberedVals[Fn.UIntVal];
3316     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3317       GV = M->getNamedValue(Fn.StrVal);
3318     }
3319     Function *F = nullptr;
3320     if (GV) {
3321       // Confirm that it's actually a function with a definition.
3322       if (!isa<Function>(GV))
3323         return Error(Fn.Loc, "expected function name in blockaddress");
3324       F = cast<Function>(GV);
3325       if (F->isDeclaration())
3326         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3327     }
3328 
3329     if (!F) {
3330       // Make a global variable as a placeholder for this reference.
3331       GlobalValue *&FwdRef =
3332           ForwardRefBlockAddresses.insert(std::make_pair(
3333                                               std::move(Fn),
3334                                               std::map<ValID, GlobalValue *>()))
3335               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3336               .first->second;
3337       if (!FwdRef)
3338         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3339                                     GlobalValue::InternalLinkage, nullptr, "");
3340       ID.ConstantVal = FwdRef;
3341       ID.Kind = ValID::t_Constant;
3342       return false;
3343     }
3344 
3345     // We found the function; now find the basic block.  Don't use PFS, since we
3346     // might be inside a constant expression.
3347     BasicBlock *BB;
3348     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3349       if (Label.Kind == ValID::t_LocalID)
3350         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3351       else
3352         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3353       if (!BB)
3354         return Error(Label.Loc, "referenced value is not a basic block");
3355     } else {
3356       if (Label.Kind == ValID::t_LocalID)
3357         return Error(Label.Loc, "cannot take address of numeric label after "
3358                                 "the function is defined");
3359       BB = dyn_cast_or_null<BasicBlock>(
3360           F->getValueSymbolTable()->lookup(Label.StrVal));
3361       if (!BB)
3362         return Error(Label.Loc, "referenced value is not a basic block");
3363     }
3364 
3365     ID.ConstantVal = BlockAddress::get(F, BB);
3366     ID.Kind = ValID::t_Constant;
3367     return false;
3368   }
3369 
3370   case lltok::kw_trunc:
3371   case lltok::kw_zext:
3372   case lltok::kw_sext:
3373   case lltok::kw_fptrunc:
3374   case lltok::kw_fpext:
3375   case lltok::kw_bitcast:
3376   case lltok::kw_addrspacecast:
3377   case lltok::kw_uitofp:
3378   case lltok::kw_sitofp:
3379   case lltok::kw_fptoui:
3380   case lltok::kw_fptosi:
3381   case lltok::kw_inttoptr:
3382   case lltok::kw_ptrtoint: {
3383     unsigned Opc = Lex.getUIntVal();
3384     Type *DestTy = nullptr;
3385     Constant *SrcVal;
3386     Lex.Lex();
3387     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3388         ParseGlobalTypeAndValue(SrcVal) ||
3389         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3390         ParseType(DestTy) ||
3391         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3392       return true;
3393     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3394       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3395                    getTypeString(SrcVal->getType()) + "' to '" +
3396                    getTypeString(DestTy) + "'");
3397     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3398                                                  SrcVal, DestTy);
3399     ID.Kind = ValID::t_Constant;
3400     return false;
3401   }
3402   case lltok::kw_extractvalue: {
3403     Lex.Lex();
3404     Constant *Val;
3405     SmallVector<unsigned, 4> Indices;
3406     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3407         ParseGlobalTypeAndValue(Val) ||
3408         ParseIndexList(Indices) ||
3409         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3410       return true;
3411 
3412     if (!Val->getType()->isAggregateType())
3413       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3414     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3415       return Error(ID.Loc, "invalid indices for extractvalue");
3416     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3417     ID.Kind = ValID::t_Constant;
3418     return false;
3419   }
3420   case lltok::kw_insertvalue: {
3421     Lex.Lex();
3422     Constant *Val0, *Val1;
3423     SmallVector<unsigned, 4> Indices;
3424     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3425         ParseGlobalTypeAndValue(Val0) ||
3426         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3427         ParseGlobalTypeAndValue(Val1) ||
3428         ParseIndexList(Indices) ||
3429         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3430       return true;
3431     if (!Val0->getType()->isAggregateType())
3432       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3433     Type *IndexedType =
3434         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3435     if (!IndexedType)
3436       return Error(ID.Loc, "invalid indices for insertvalue");
3437     if (IndexedType != Val1->getType())
3438       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3439                                getTypeString(Val1->getType()) +
3440                                "' instead of '" + getTypeString(IndexedType) +
3441                                "'");
3442     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3443     ID.Kind = ValID::t_Constant;
3444     return false;
3445   }
3446   case lltok::kw_icmp:
3447   case lltok::kw_fcmp: {
3448     unsigned PredVal, Opc = Lex.getUIntVal();
3449     Constant *Val0, *Val1;
3450     Lex.Lex();
3451     if (ParseCmpPredicate(PredVal, Opc) ||
3452         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3453         ParseGlobalTypeAndValue(Val0) ||
3454         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3455         ParseGlobalTypeAndValue(Val1) ||
3456         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3457       return true;
3458 
3459     if (Val0->getType() != Val1->getType())
3460       return Error(ID.Loc, "compare operands must have the same type");
3461 
3462     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3463 
3464     if (Opc == Instruction::FCmp) {
3465       if (!Val0->getType()->isFPOrFPVectorTy())
3466         return Error(ID.Loc, "fcmp requires floating point operands");
3467       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3468     } else {
3469       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3470       if (!Val0->getType()->isIntOrIntVectorTy() &&
3471           !Val0->getType()->isPtrOrPtrVectorTy())
3472         return Error(ID.Loc, "icmp requires pointer or integer operands");
3473       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3474     }
3475     ID.Kind = ValID::t_Constant;
3476     return false;
3477   }
3478 
3479   // Unary Operators.
3480   case lltok::kw_fneg: {
3481     unsigned Opc = Lex.getUIntVal();
3482     Constant *Val;
3483     Lex.Lex();
3484     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3485         ParseGlobalTypeAndValue(Val) ||
3486         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3487       return true;
3488 
3489     // Check that the type is valid for the operator.
3490     switch (Opc) {
3491     case Instruction::FNeg:
3492       if (!Val->getType()->isFPOrFPVectorTy())
3493         return Error(ID.Loc, "constexpr requires fp operands");
3494       break;
3495     default: llvm_unreachable("Unknown unary operator!");
3496     }
3497     unsigned Flags = 0;
3498     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3499     ID.ConstantVal = C;
3500     ID.Kind = ValID::t_Constant;
3501     return false;
3502   }
3503   // Binary Operators.
3504   case lltok::kw_add:
3505   case lltok::kw_fadd:
3506   case lltok::kw_sub:
3507   case lltok::kw_fsub:
3508   case lltok::kw_mul:
3509   case lltok::kw_fmul:
3510   case lltok::kw_udiv:
3511   case lltok::kw_sdiv:
3512   case lltok::kw_fdiv:
3513   case lltok::kw_urem:
3514   case lltok::kw_srem:
3515   case lltok::kw_frem:
3516   case lltok::kw_shl:
3517   case lltok::kw_lshr:
3518   case lltok::kw_ashr: {
3519     bool NUW = false;
3520     bool NSW = false;
3521     bool Exact = false;
3522     unsigned Opc = Lex.getUIntVal();
3523     Constant *Val0, *Val1;
3524     Lex.Lex();
3525     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3526         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3527       if (EatIfPresent(lltok::kw_nuw))
3528         NUW = true;
3529       if (EatIfPresent(lltok::kw_nsw)) {
3530         NSW = true;
3531         if (EatIfPresent(lltok::kw_nuw))
3532           NUW = true;
3533       }
3534     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3535                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3536       if (EatIfPresent(lltok::kw_exact))
3537         Exact = true;
3538     }
3539     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3540         ParseGlobalTypeAndValue(Val0) ||
3541         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3542         ParseGlobalTypeAndValue(Val1) ||
3543         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3544       return true;
3545     if (Val0->getType() != Val1->getType())
3546       return Error(ID.Loc, "operands of constexpr must have same type");
3547     // Check that the type is valid for the operator.
3548     switch (Opc) {
3549     case Instruction::Add:
3550     case Instruction::Sub:
3551     case Instruction::Mul:
3552     case Instruction::UDiv:
3553     case Instruction::SDiv:
3554     case Instruction::URem:
3555     case Instruction::SRem:
3556     case Instruction::Shl:
3557     case Instruction::AShr:
3558     case Instruction::LShr:
3559       if (!Val0->getType()->isIntOrIntVectorTy())
3560         return Error(ID.Loc, "constexpr requires integer operands");
3561       break;
3562     case Instruction::FAdd:
3563     case Instruction::FSub:
3564     case Instruction::FMul:
3565     case Instruction::FDiv:
3566     case Instruction::FRem:
3567       if (!Val0->getType()->isFPOrFPVectorTy())
3568         return Error(ID.Loc, "constexpr requires fp operands");
3569       break;
3570     default: llvm_unreachable("Unknown binary operator!");
3571     }
3572     unsigned Flags = 0;
3573     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3574     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3575     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3576     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3577     ID.ConstantVal = C;
3578     ID.Kind = ValID::t_Constant;
3579     return false;
3580   }
3581 
3582   // Logical Operations
3583   case lltok::kw_and:
3584   case lltok::kw_or:
3585   case lltok::kw_xor: {
3586     unsigned Opc = Lex.getUIntVal();
3587     Constant *Val0, *Val1;
3588     Lex.Lex();
3589     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3590         ParseGlobalTypeAndValue(Val0) ||
3591         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3592         ParseGlobalTypeAndValue(Val1) ||
3593         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3594       return true;
3595     if (Val0->getType() != Val1->getType())
3596       return Error(ID.Loc, "operands of constexpr must have same type");
3597     if (!Val0->getType()->isIntOrIntVectorTy())
3598       return Error(ID.Loc,
3599                    "constexpr requires integer or integer vector operands");
3600     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3601     ID.Kind = ValID::t_Constant;
3602     return false;
3603   }
3604 
3605   case lltok::kw_getelementptr:
3606   case lltok::kw_shufflevector:
3607   case lltok::kw_insertelement:
3608   case lltok::kw_extractelement:
3609   case lltok::kw_select: {
3610     unsigned Opc = Lex.getUIntVal();
3611     SmallVector<Constant*, 16> Elts;
3612     bool InBounds = false;
3613     Type *Ty;
3614     Lex.Lex();
3615 
3616     if (Opc == Instruction::GetElementPtr)
3617       InBounds = EatIfPresent(lltok::kw_inbounds);
3618 
3619     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3620       return true;
3621 
3622     LocTy ExplicitTypeLoc = Lex.getLoc();
3623     if (Opc == Instruction::GetElementPtr) {
3624       if (ParseType(Ty) ||
3625           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3626         return true;
3627     }
3628 
3629     Optional<unsigned> InRangeOp;
3630     if (ParseGlobalValueVector(
3631             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3632         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3633       return true;
3634 
3635     if (Opc == Instruction::GetElementPtr) {
3636       if (Elts.size() == 0 ||
3637           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3638         return Error(ID.Loc, "base of getelementptr must be a pointer");
3639 
3640       Type *BaseType = Elts[0]->getType();
3641       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3642       if (Ty != BasePointerType->getElementType())
3643         return Error(
3644             ExplicitTypeLoc,
3645             "explicit pointee type doesn't match operand's pointee type");
3646 
3647       unsigned GEPWidth = BaseType->isVectorTy()
3648                               ? cast<VectorType>(BaseType)->getNumElements()
3649                               : 0;
3650 
3651       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3652       for (Constant *Val : Indices) {
3653         Type *ValTy = Val->getType();
3654         if (!ValTy->isIntOrIntVectorTy())
3655           return Error(ID.Loc, "getelementptr index must be an integer");
3656         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3657           unsigned ValNumEl = ValVTy->getNumElements();
3658           if (GEPWidth && (ValNumEl != GEPWidth))
3659             return Error(
3660                 ID.Loc,
3661                 "getelementptr vector index has a wrong number of elements");
3662           // GEPWidth may have been unknown because the base is a scalar,
3663           // but it is known now.
3664           GEPWidth = ValNumEl;
3665         }
3666       }
3667 
3668       SmallPtrSet<Type*, 4> Visited;
3669       if (!Indices.empty() && !Ty->isSized(&Visited))
3670         return Error(ID.Loc, "base element of getelementptr must be sized");
3671 
3672       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3673         return Error(ID.Loc, "invalid getelementptr indices");
3674 
3675       if (InRangeOp) {
3676         if (*InRangeOp == 0)
3677           return Error(ID.Loc,
3678                        "inrange keyword may not appear on pointer operand");
3679         --*InRangeOp;
3680       }
3681 
3682       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3683                                                       InBounds, InRangeOp);
3684     } else if (Opc == Instruction::Select) {
3685       if (Elts.size() != 3)
3686         return Error(ID.Loc, "expected three operands to select");
3687       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3688                                                               Elts[2]))
3689         return Error(ID.Loc, Reason);
3690       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3691     } else if (Opc == Instruction::ShuffleVector) {
3692       if (Elts.size() != 3)
3693         return Error(ID.Loc, "expected three operands to shufflevector");
3694       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3695         return Error(ID.Loc, "invalid operands to shufflevector");
3696       SmallVector<int, 16> Mask;
3697       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3698       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3699     } else if (Opc == Instruction::ExtractElement) {
3700       if (Elts.size() != 2)
3701         return Error(ID.Loc, "expected two operands to extractelement");
3702       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3703         return Error(ID.Loc, "invalid extractelement operands");
3704       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3705     } else {
3706       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3707       if (Elts.size() != 3)
3708       return Error(ID.Loc, "expected three operands to insertelement");
3709       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3710         return Error(ID.Loc, "invalid insertelement operands");
3711       ID.ConstantVal =
3712                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3713     }
3714 
3715     ID.Kind = ValID::t_Constant;
3716     return false;
3717   }
3718   }
3719 
3720   Lex.Lex();
3721   return false;
3722 }
3723 
3724 /// ParseGlobalValue - Parse a global value with the specified type.
3725 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3726   C = nullptr;
3727   ValID ID;
3728   Value *V = nullptr;
3729   bool Parsed = ParseValID(ID) ||
3730                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3731   if (V && !(C = dyn_cast<Constant>(V)))
3732     return Error(ID.Loc, "global values must be constants");
3733   return Parsed;
3734 }
3735 
3736 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3737   Type *Ty = nullptr;
3738   return ParseType(Ty) ||
3739          ParseGlobalValue(Ty, V);
3740 }
3741 
3742 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3743   C = nullptr;
3744 
3745   LocTy KwLoc = Lex.getLoc();
3746   if (!EatIfPresent(lltok::kw_comdat))
3747     return false;
3748 
3749   if (EatIfPresent(lltok::lparen)) {
3750     if (Lex.getKind() != lltok::ComdatVar)
3751       return TokError("expected comdat variable");
3752     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3753     Lex.Lex();
3754     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3755       return true;
3756   } else {
3757     if (GlobalName.empty())
3758       return TokError("comdat cannot be unnamed");
3759     C = getComdat(std::string(GlobalName), KwLoc);
3760   }
3761 
3762   return false;
3763 }
3764 
3765 /// ParseGlobalValueVector
3766 ///   ::= /*empty*/
3767 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3768 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3769                                       Optional<unsigned> *InRangeOp) {
3770   // Empty list.
3771   if (Lex.getKind() == lltok::rbrace ||
3772       Lex.getKind() == lltok::rsquare ||
3773       Lex.getKind() == lltok::greater ||
3774       Lex.getKind() == lltok::rparen)
3775     return false;
3776 
3777   do {
3778     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3779       *InRangeOp = Elts.size();
3780 
3781     Constant *C;
3782     if (ParseGlobalTypeAndValue(C)) return true;
3783     Elts.push_back(C);
3784   } while (EatIfPresent(lltok::comma));
3785 
3786   return false;
3787 }
3788 
3789 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3790   SmallVector<Metadata *, 16> Elts;
3791   if (ParseMDNodeVector(Elts))
3792     return true;
3793 
3794   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3795   return false;
3796 }
3797 
3798 /// MDNode:
3799 ///  ::= !{ ... }
3800 ///  ::= !7
3801 ///  ::= !DILocation(...)
3802 bool LLParser::ParseMDNode(MDNode *&N) {
3803   if (Lex.getKind() == lltok::MetadataVar)
3804     return ParseSpecializedMDNode(N);
3805 
3806   return ParseToken(lltok::exclaim, "expected '!' here") ||
3807          ParseMDNodeTail(N);
3808 }
3809 
3810 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3811   // !{ ... }
3812   if (Lex.getKind() == lltok::lbrace)
3813     return ParseMDTuple(N);
3814 
3815   // !42
3816   return ParseMDNodeID(N);
3817 }
3818 
3819 namespace {
3820 
3821 /// Structure to represent an optional metadata field.
3822 template <class FieldTy> struct MDFieldImpl {
3823   typedef MDFieldImpl ImplTy;
3824   FieldTy Val;
3825   bool Seen;
3826 
3827   void assign(FieldTy Val) {
3828     Seen = true;
3829     this->Val = std::move(Val);
3830   }
3831 
3832   explicit MDFieldImpl(FieldTy Default)
3833       : Val(std::move(Default)), Seen(false) {}
3834 };
3835 
3836 /// Structure to represent an optional metadata field that
3837 /// can be of either type (A or B) and encapsulates the
3838 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3839 /// to reimplement the specifics for representing each Field.
3840 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3841   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3842   FieldTypeA A;
3843   FieldTypeB B;
3844   bool Seen;
3845 
3846   enum {
3847     IsInvalid = 0,
3848     IsTypeA = 1,
3849     IsTypeB = 2
3850   } WhatIs;
3851 
3852   void assign(FieldTypeA A) {
3853     Seen = true;
3854     this->A = std::move(A);
3855     WhatIs = IsTypeA;
3856   }
3857 
3858   void assign(FieldTypeB B) {
3859     Seen = true;
3860     this->B = std::move(B);
3861     WhatIs = IsTypeB;
3862   }
3863 
3864   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3865       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3866         WhatIs(IsInvalid) {}
3867 };
3868 
3869 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3870   uint64_t Max;
3871 
3872   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3873       : ImplTy(Default), Max(Max) {}
3874 };
3875 
3876 struct LineField : public MDUnsignedField {
3877   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3878 };
3879 
3880 struct ColumnField : public MDUnsignedField {
3881   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3882 };
3883 
3884 struct DwarfTagField : public MDUnsignedField {
3885   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3886   DwarfTagField(dwarf::Tag DefaultTag)
3887       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3888 };
3889 
3890 struct DwarfMacinfoTypeField : public MDUnsignedField {
3891   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3892   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3893     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3894 };
3895 
3896 struct DwarfAttEncodingField : public MDUnsignedField {
3897   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3898 };
3899 
3900 struct DwarfVirtualityField : public MDUnsignedField {
3901   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3902 };
3903 
3904 struct DwarfLangField : public MDUnsignedField {
3905   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3906 };
3907 
3908 struct DwarfCCField : public MDUnsignedField {
3909   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3910 };
3911 
3912 struct EmissionKindField : public MDUnsignedField {
3913   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3914 };
3915 
3916 struct NameTableKindField : public MDUnsignedField {
3917   NameTableKindField()
3918       : MDUnsignedField(
3919             0, (unsigned)
3920                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3921 };
3922 
3923 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3924   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3925 };
3926 
3927 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3928   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3929 };
3930 
3931 struct MDAPSIntField : public MDFieldImpl<APSInt> {
3932   MDAPSIntField() : ImplTy(APSInt()) {}
3933 };
3934 
3935 struct MDSignedField : public MDFieldImpl<int64_t> {
3936   int64_t Min;
3937   int64_t Max;
3938 
3939   MDSignedField(int64_t Default = 0)
3940       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3941   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3942       : ImplTy(Default), Min(Min), Max(Max) {}
3943 };
3944 
3945 struct MDBoolField : public MDFieldImpl<bool> {
3946   MDBoolField(bool Default = false) : ImplTy(Default) {}
3947 };
3948 
3949 struct MDField : public MDFieldImpl<Metadata *> {
3950   bool AllowNull;
3951 
3952   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3953 };
3954 
3955 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3956   MDConstant() : ImplTy(nullptr) {}
3957 };
3958 
3959 struct MDStringField : public MDFieldImpl<MDString *> {
3960   bool AllowEmpty;
3961   MDStringField(bool AllowEmpty = true)
3962       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3963 };
3964 
3965 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3966   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3967 };
3968 
3969 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3970   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3971 };
3972 
3973 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3974   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3975       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3976 
3977   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3978                     bool AllowNull = true)
3979       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3980 
3981   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3982   bool isMDField() const { return WhatIs == IsTypeB; }
3983   int64_t getMDSignedValue() const {
3984     assert(isMDSignedField() && "Wrong field type");
3985     return A.Val;
3986   }
3987   Metadata *getMDFieldValue() const {
3988     assert(isMDField() && "Wrong field type");
3989     return B.Val;
3990   }
3991 };
3992 
3993 struct MDSignedOrUnsignedField
3994     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3995   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3996 
3997   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3998   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3999   int64_t getMDSignedValue() const {
4000     assert(isMDSignedField() && "Wrong field type");
4001     return A.Val;
4002   }
4003   uint64_t getMDUnsignedValue() const {
4004     assert(isMDUnsignedField() && "Wrong field type");
4005     return B.Val;
4006   }
4007 };
4008 
4009 } // end anonymous namespace
4010 
4011 namespace llvm {
4012 
4013 template <>
4014 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4015   if (Lex.getKind() != lltok::APSInt)
4016     return TokError("expected integer");
4017 
4018   Result.assign(Lex.getAPSIntVal());
4019   Lex.Lex();
4020   return false;
4021 }
4022 
4023 template <>
4024 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4025                             MDUnsignedField &Result) {
4026   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4027     return TokError("expected unsigned integer");
4028 
4029   auto &U = Lex.getAPSIntVal();
4030   if (U.ugt(Result.Max))
4031     return TokError("value for '" + Name + "' too large, limit is " +
4032                     Twine(Result.Max));
4033   Result.assign(U.getZExtValue());
4034   assert(Result.Val <= Result.Max && "Expected value in range");
4035   Lex.Lex();
4036   return false;
4037 }
4038 
4039 template <>
4040 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4041   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4042 }
4043 template <>
4044 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4045   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4046 }
4047 
4048 template <>
4049 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4050   if (Lex.getKind() == lltok::APSInt)
4051     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4052 
4053   if (Lex.getKind() != lltok::DwarfTag)
4054     return TokError("expected DWARF tag");
4055 
4056   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4057   if (Tag == dwarf::DW_TAG_invalid)
4058     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4059   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4060 
4061   Result.assign(Tag);
4062   Lex.Lex();
4063   return false;
4064 }
4065 
4066 template <>
4067 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4068                             DwarfMacinfoTypeField &Result) {
4069   if (Lex.getKind() == lltok::APSInt)
4070     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4071 
4072   if (Lex.getKind() != lltok::DwarfMacinfo)
4073     return TokError("expected DWARF macinfo type");
4074 
4075   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4076   if (Macinfo == dwarf::DW_MACINFO_invalid)
4077     return TokError(
4078         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
4079   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4080 
4081   Result.assign(Macinfo);
4082   Lex.Lex();
4083   return false;
4084 }
4085 
4086 template <>
4087 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4088                             DwarfVirtualityField &Result) {
4089   if (Lex.getKind() == lltok::APSInt)
4090     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4091 
4092   if (Lex.getKind() != lltok::DwarfVirtuality)
4093     return TokError("expected DWARF virtuality code");
4094 
4095   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4096   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4097     return TokError("invalid DWARF virtuality code" + Twine(" '") +
4098                     Lex.getStrVal() + "'");
4099   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4100   Result.assign(Virtuality);
4101   Lex.Lex();
4102   return false;
4103 }
4104 
4105 template <>
4106 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4107   if (Lex.getKind() == lltok::APSInt)
4108     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4109 
4110   if (Lex.getKind() != lltok::DwarfLang)
4111     return TokError("expected DWARF language");
4112 
4113   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4114   if (!Lang)
4115     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4116                     "'");
4117   assert(Lang <= Result.Max && "Expected valid DWARF language");
4118   Result.assign(Lang);
4119   Lex.Lex();
4120   return false;
4121 }
4122 
4123 template <>
4124 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4125   if (Lex.getKind() == lltok::APSInt)
4126     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4127 
4128   if (Lex.getKind() != lltok::DwarfCC)
4129     return TokError("expected DWARF calling convention");
4130 
4131   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4132   if (!CC)
4133     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
4134                     "'");
4135   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4136   Result.assign(CC);
4137   Lex.Lex();
4138   return false;
4139 }
4140 
4141 template <>
4142 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
4143   if (Lex.getKind() == lltok::APSInt)
4144     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4145 
4146   if (Lex.getKind() != lltok::EmissionKind)
4147     return TokError("expected emission kind");
4148 
4149   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4150   if (!Kind)
4151     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4152                     "'");
4153   assert(*Kind <= Result.Max && "Expected valid emission kind");
4154   Result.assign(*Kind);
4155   Lex.Lex();
4156   return false;
4157 }
4158 
4159 template <>
4160 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4161                             NameTableKindField &Result) {
4162   if (Lex.getKind() == lltok::APSInt)
4163     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4164 
4165   if (Lex.getKind() != lltok::NameTableKind)
4166     return TokError("expected nameTable kind");
4167 
4168   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4169   if (!Kind)
4170     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4171                     "'");
4172   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4173   Result.assign((unsigned)*Kind);
4174   Lex.Lex();
4175   return false;
4176 }
4177 
4178 template <>
4179 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4180                             DwarfAttEncodingField &Result) {
4181   if (Lex.getKind() == lltok::APSInt)
4182     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4183 
4184   if (Lex.getKind() != lltok::DwarfAttEncoding)
4185     return TokError("expected DWARF type attribute encoding");
4186 
4187   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4188   if (!Encoding)
4189     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4190                     Lex.getStrVal() + "'");
4191   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4192   Result.assign(Encoding);
4193   Lex.Lex();
4194   return false;
4195 }
4196 
4197 /// DIFlagField
4198 ///  ::= uint32
4199 ///  ::= DIFlagVector
4200 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4201 template <>
4202 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4203 
4204   // Parser for a single flag.
4205   auto parseFlag = [&](DINode::DIFlags &Val) {
4206     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4207       uint32_t TempVal = static_cast<uint32_t>(Val);
4208       bool Res = ParseUInt32(TempVal);
4209       Val = static_cast<DINode::DIFlags>(TempVal);
4210       return Res;
4211     }
4212 
4213     if (Lex.getKind() != lltok::DIFlag)
4214       return TokError("expected debug info flag");
4215 
4216     Val = DINode::getFlag(Lex.getStrVal());
4217     if (!Val)
4218       return TokError(Twine("invalid debug info flag flag '") +
4219                       Lex.getStrVal() + "'");
4220     Lex.Lex();
4221     return false;
4222   };
4223 
4224   // Parse the flags and combine them together.
4225   DINode::DIFlags Combined = DINode::FlagZero;
4226   do {
4227     DINode::DIFlags Val;
4228     if (parseFlag(Val))
4229       return true;
4230     Combined |= Val;
4231   } while (EatIfPresent(lltok::bar));
4232 
4233   Result.assign(Combined);
4234   return false;
4235 }
4236 
4237 /// DISPFlagField
4238 ///  ::= uint32
4239 ///  ::= DISPFlagVector
4240 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4241 template <>
4242 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4243 
4244   // Parser for a single flag.
4245   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4246     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4247       uint32_t TempVal = static_cast<uint32_t>(Val);
4248       bool Res = ParseUInt32(TempVal);
4249       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4250       return Res;
4251     }
4252 
4253     if (Lex.getKind() != lltok::DISPFlag)
4254       return TokError("expected debug info flag");
4255 
4256     Val = DISubprogram::getFlag(Lex.getStrVal());
4257     if (!Val)
4258       return TokError(Twine("invalid subprogram debug info flag '") +
4259                       Lex.getStrVal() + "'");
4260     Lex.Lex();
4261     return false;
4262   };
4263 
4264   // Parse the flags and combine them together.
4265   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4266   do {
4267     DISubprogram::DISPFlags Val;
4268     if (parseFlag(Val))
4269       return true;
4270     Combined |= Val;
4271   } while (EatIfPresent(lltok::bar));
4272 
4273   Result.assign(Combined);
4274   return false;
4275 }
4276 
4277 template <>
4278 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4279                             MDSignedField &Result) {
4280   if (Lex.getKind() != lltok::APSInt)
4281     return TokError("expected signed integer");
4282 
4283   auto &S = Lex.getAPSIntVal();
4284   if (S < Result.Min)
4285     return TokError("value for '" + Name + "' too small, limit is " +
4286                     Twine(Result.Min));
4287   if (S > Result.Max)
4288     return TokError("value for '" + Name + "' too large, limit is " +
4289                     Twine(Result.Max));
4290   Result.assign(S.getExtValue());
4291   assert(Result.Val >= Result.Min && "Expected value in range");
4292   assert(Result.Val <= Result.Max && "Expected value in range");
4293   Lex.Lex();
4294   return false;
4295 }
4296 
4297 template <>
4298 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4299   switch (Lex.getKind()) {
4300   default:
4301     return TokError("expected 'true' or 'false'");
4302   case lltok::kw_true:
4303     Result.assign(true);
4304     break;
4305   case lltok::kw_false:
4306     Result.assign(false);
4307     break;
4308   }
4309   Lex.Lex();
4310   return false;
4311 }
4312 
4313 template <>
4314 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4315   if (Lex.getKind() == lltok::kw_null) {
4316     if (!Result.AllowNull)
4317       return TokError("'" + Name + "' cannot be null");
4318     Lex.Lex();
4319     Result.assign(nullptr);
4320     return false;
4321   }
4322 
4323   Metadata *MD;
4324   if (ParseMetadata(MD, nullptr))
4325     return true;
4326 
4327   Result.assign(MD);
4328   return false;
4329 }
4330 
4331 template <>
4332 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4333                             MDSignedOrMDField &Result) {
4334   // Try to parse a signed int.
4335   if (Lex.getKind() == lltok::APSInt) {
4336     MDSignedField Res = Result.A;
4337     if (!ParseMDField(Loc, Name, Res)) {
4338       Result.assign(Res);
4339       return false;
4340     }
4341     return true;
4342   }
4343 
4344   // Otherwise, try to parse as an MDField.
4345   MDField Res = Result.B;
4346   if (!ParseMDField(Loc, Name, Res)) {
4347     Result.assign(Res);
4348     return false;
4349   }
4350 
4351   return true;
4352 }
4353 
4354 template <>
4355 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4356   LocTy ValueLoc = Lex.getLoc();
4357   std::string S;
4358   if (ParseStringConstant(S))
4359     return true;
4360 
4361   if (!Result.AllowEmpty && S.empty())
4362     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4363 
4364   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4365   return false;
4366 }
4367 
4368 template <>
4369 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4370   SmallVector<Metadata *, 4> MDs;
4371   if (ParseMDNodeVector(MDs))
4372     return true;
4373 
4374   Result.assign(std::move(MDs));
4375   return false;
4376 }
4377 
4378 template <>
4379 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4380                             ChecksumKindField &Result) {
4381   Optional<DIFile::ChecksumKind> CSKind =
4382       DIFile::getChecksumKind(Lex.getStrVal());
4383 
4384   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4385     return TokError(
4386         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4387 
4388   Result.assign(*CSKind);
4389   Lex.Lex();
4390   return false;
4391 }
4392 
4393 } // end namespace llvm
4394 
4395 template <class ParserTy>
4396 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4397   do {
4398     if (Lex.getKind() != lltok::LabelStr)
4399       return TokError("expected field label here");
4400 
4401     if (parseField())
4402       return true;
4403   } while (EatIfPresent(lltok::comma));
4404 
4405   return false;
4406 }
4407 
4408 template <class ParserTy>
4409 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4410   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4411   Lex.Lex();
4412 
4413   if (ParseToken(lltok::lparen, "expected '(' here"))
4414     return true;
4415   if (Lex.getKind() != lltok::rparen)
4416     if (ParseMDFieldsImplBody(parseField))
4417       return true;
4418 
4419   ClosingLoc = Lex.getLoc();
4420   return ParseToken(lltok::rparen, "expected ')' here");
4421 }
4422 
4423 template <class FieldTy>
4424 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4425   if (Result.Seen)
4426     return TokError("field '" + Name + "' cannot be specified more than once");
4427 
4428   LocTy Loc = Lex.getLoc();
4429   Lex.Lex();
4430   return ParseMDField(Loc, Name, Result);
4431 }
4432 
4433 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4434   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4435 
4436 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4437   if (Lex.getStrVal() == #CLASS)                                               \
4438     return Parse##CLASS(N, IsDistinct);
4439 #include "llvm/IR/Metadata.def"
4440 
4441   return TokError("expected metadata type");
4442 }
4443 
4444 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4445 #define NOP_FIELD(NAME, TYPE, INIT)
4446 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4447   if (!NAME.Seen)                                                              \
4448     return Error(ClosingLoc, "missing required field '" #NAME "'");
4449 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4450   if (Lex.getStrVal() == #NAME)                                                \
4451     return ParseMDField(#NAME, NAME);
4452 #define PARSE_MD_FIELDS()                                                      \
4453   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4454   do {                                                                         \
4455     LocTy ClosingLoc;                                                          \
4456     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4457       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4458       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4459     }, ClosingLoc))                                                            \
4460       return true;                                                             \
4461     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4462   } while (false)
4463 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4464   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4465 
4466 /// ParseDILocationFields:
4467 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4468 ///   isImplicitCode: true)
4469 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4470 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4471   OPTIONAL(line, LineField, );                                                 \
4472   OPTIONAL(column, ColumnField, );                                             \
4473   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4474   OPTIONAL(inlinedAt, MDField, );                                              \
4475   OPTIONAL(isImplicitCode, MDBoolField, (false));
4476   PARSE_MD_FIELDS();
4477 #undef VISIT_MD_FIELDS
4478 
4479   Result =
4480       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4481                                    inlinedAt.Val, isImplicitCode.Val));
4482   return false;
4483 }
4484 
4485 /// ParseGenericDINode:
4486 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4487 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4488 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4489   REQUIRED(tag, DwarfTagField, );                                              \
4490   OPTIONAL(header, MDStringField, );                                           \
4491   OPTIONAL(operands, MDFieldList, );
4492   PARSE_MD_FIELDS();
4493 #undef VISIT_MD_FIELDS
4494 
4495   Result = GET_OR_DISTINCT(GenericDINode,
4496                            (Context, tag.Val, header.Val, operands.Val));
4497   return false;
4498 }
4499 
4500 /// ParseDISubrange:
4501 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4502 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4503 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4504 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4505 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4506   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4507   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4508   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4509   OPTIONAL(stride, MDSignedOrMDField, );
4510   PARSE_MD_FIELDS();
4511 #undef VISIT_MD_FIELDS
4512 
4513   Metadata *Count = nullptr;
4514   Metadata *LowerBound = nullptr;
4515   Metadata *UpperBound = nullptr;
4516   Metadata *Stride = nullptr;
4517   if (count.isMDSignedField())
4518     Count = ConstantAsMetadata::get(ConstantInt::getSigned(
4519         Type::getInt64Ty(Context), count.getMDSignedValue()));
4520   else if (count.isMDField())
4521     Count = count.getMDFieldValue();
4522 
4523   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4524     if (Bound.isMDSignedField())
4525       return ConstantAsMetadata::get(ConstantInt::getSigned(
4526           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4527     if (Bound.isMDField())
4528       return Bound.getMDFieldValue();
4529     return nullptr;
4530   };
4531 
4532   LowerBound = convToMetadata(lowerBound);
4533   UpperBound = convToMetadata(upperBound);
4534   Stride = convToMetadata(stride);
4535 
4536   Result = GET_OR_DISTINCT(DISubrange,
4537                            (Context, Count, LowerBound, UpperBound, Stride));
4538 
4539   return false;
4540 }
4541 
4542 /// ParseDIEnumerator:
4543 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4544 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4545 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4546   REQUIRED(name, MDStringField, );                                             \
4547   REQUIRED(value, MDAPSIntField, );                                            \
4548   OPTIONAL(isUnsigned, MDBoolField, (false));
4549   PARSE_MD_FIELDS();
4550 #undef VISIT_MD_FIELDS
4551 
4552   if (isUnsigned.Val && value.Val.isNegative())
4553     return TokError("unsigned enumerator with negative value");
4554 
4555   APSInt Value(value.Val);
4556   // Add a leading zero so that unsigned values with the msb set are not
4557   // mistaken for negative values when used for signed enumerators.
4558   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4559     Value = Value.zext(Value.getBitWidth() + 1);
4560 
4561   Result =
4562       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4563 
4564   return false;
4565 }
4566 
4567 /// ParseDIBasicType:
4568 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4569 ///                    encoding: DW_ATE_encoding, flags: 0)
4570 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4571 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4572   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4573   OPTIONAL(name, MDStringField, );                                             \
4574   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4575   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4576   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4577   OPTIONAL(flags, DIFlagField, );
4578   PARSE_MD_FIELDS();
4579 #undef VISIT_MD_FIELDS
4580 
4581   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4582                                          align.Val, encoding.Val, flags.Val));
4583   return false;
4584 }
4585 
4586 /// ParseDIDerivedType:
4587 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4588 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4589 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4590 ///                      dwarfAddressSpace: 3)
4591 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4592 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4593   REQUIRED(tag, DwarfTagField, );                                              \
4594   OPTIONAL(name, MDStringField, );                                             \
4595   OPTIONAL(file, MDField, );                                                   \
4596   OPTIONAL(line, LineField, );                                                 \
4597   OPTIONAL(scope, MDField, );                                                  \
4598   REQUIRED(baseType, MDField, );                                               \
4599   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4600   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4601   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4602   OPTIONAL(flags, DIFlagField, );                                              \
4603   OPTIONAL(extraData, MDField, );                                              \
4604   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4605   PARSE_MD_FIELDS();
4606 #undef VISIT_MD_FIELDS
4607 
4608   Optional<unsigned> DWARFAddressSpace;
4609   if (dwarfAddressSpace.Val != UINT32_MAX)
4610     DWARFAddressSpace = dwarfAddressSpace.Val;
4611 
4612   Result = GET_OR_DISTINCT(DIDerivedType,
4613                            (Context, tag.Val, name.Val, file.Val, line.Val,
4614                             scope.Val, baseType.Val, size.Val, align.Val,
4615                             offset.Val, DWARFAddressSpace, flags.Val,
4616                             extraData.Val));
4617   return false;
4618 }
4619 
4620 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4621 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4622   REQUIRED(tag, DwarfTagField, );                                              \
4623   OPTIONAL(name, MDStringField, );                                             \
4624   OPTIONAL(file, MDField, );                                                   \
4625   OPTIONAL(line, LineField, );                                                 \
4626   OPTIONAL(scope, MDField, );                                                  \
4627   OPTIONAL(baseType, MDField, );                                               \
4628   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4629   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4630   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4631   OPTIONAL(flags, DIFlagField, );                                              \
4632   OPTIONAL(elements, MDField, );                                               \
4633   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4634   OPTIONAL(vtableHolder, MDField, );                                           \
4635   OPTIONAL(templateParams, MDField, );                                         \
4636   OPTIONAL(identifier, MDStringField, );                                       \
4637   OPTIONAL(discriminator, MDField, );                                          \
4638   OPTIONAL(dataLocation, MDField, );
4639   PARSE_MD_FIELDS();
4640 #undef VISIT_MD_FIELDS
4641 
4642   // If this has an identifier try to build an ODR type.
4643   if (identifier.Val)
4644     if (auto *CT = DICompositeType::buildODRType(
4645             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4646             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4647             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4648             discriminator.Val, dataLocation.Val)) {
4649       Result = CT;
4650       return false;
4651     }
4652 
4653   // Create a new node, and save it in the context if it belongs in the type
4654   // map.
4655   Result = GET_OR_DISTINCT(
4656       DICompositeType,
4657       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4658        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4659        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4660        discriminator.Val, dataLocation.Val));
4661   return false;
4662 }
4663 
4664 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4665 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4666   OPTIONAL(flags, DIFlagField, );                                              \
4667   OPTIONAL(cc, DwarfCCField, );                                                \
4668   REQUIRED(types, MDField, );
4669   PARSE_MD_FIELDS();
4670 #undef VISIT_MD_FIELDS
4671 
4672   Result = GET_OR_DISTINCT(DISubroutineType,
4673                            (Context, flags.Val, cc.Val, types.Val));
4674   return false;
4675 }
4676 
4677 /// ParseDIFileType:
4678 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4679 ///                   checksumkind: CSK_MD5,
4680 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4681 ///                   source: "source file contents")
4682 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4683   // The default constructed value for checksumkind is required, but will never
4684   // be used, as the parser checks if the field was actually Seen before using
4685   // the Val.
4686 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4687   REQUIRED(filename, MDStringField, );                                         \
4688   REQUIRED(directory, MDStringField, );                                        \
4689   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4690   OPTIONAL(checksum, MDStringField, );                                         \
4691   OPTIONAL(source, MDStringField, );
4692   PARSE_MD_FIELDS();
4693 #undef VISIT_MD_FIELDS
4694 
4695   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4696   if (checksumkind.Seen && checksum.Seen)
4697     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4698   else if (checksumkind.Seen || checksum.Seen)
4699     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4700 
4701   Optional<MDString *> OptSource;
4702   if (source.Seen)
4703     OptSource = source.Val;
4704   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4705                                     OptChecksum, OptSource));
4706   return false;
4707 }
4708 
4709 /// ParseDICompileUnit:
4710 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4711 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4712 ///                      splitDebugFilename: "abc.debug",
4713 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4714 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4715 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4716 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4717   if (!IsDistinct)
4718     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4719 
4720 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4721   REQUIRED(language, DwarfLangField, );                                        \
4722   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4723   OPTIONAL(producer, MDStringField, );                                         \
4724   OPTIONAL(isOptimized, MDBoolField, );                                        \
4725   OPTIONAL(flags, MDStringField, );                                            \
4726   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4727   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4728   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4729   OPTIONAL(enums, MDField, );                                                  \
4730   OPTIONAL(retainedTypes, MDField, );                                          \
4731   OPTIONAL(globals, MDField, );                                                \
4732   OPTIONAL(imports, MDField, );                                                \
4733   OPTIONAL(macros, MDField, );                                                 \
4734   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4735   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4736   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4737   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4738   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4739   OPTIONAL(sysroot, MDStringField, );                                          \
4740   OPTIONAL(sdk, MDStringField, );
4741   PARSE_MD_FIELDS();
4742 #undef VISIT_MD_FIELDS
4743 
4744   Result = DICompileUnit::getDistinct(
4745       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4746       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4747       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4748       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4749       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4750   return false;
4751 }
4752 
4753 /// ParseDISubprogram:
4754 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4755 ///                     file: !1, line: 7, type: !2, isLocal: false,
4756 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4757 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4758 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4759 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4760 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4761 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4762   auto Loc = Lex.getLoc();
4763 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4764   OPTIONAL(scope, MDField, );                                                  \
4765   OPTIONAL(name, MDStringField, );                                             \
4766   OPTIONAL(linkageName, MDStringField, );                                      \
4767   OPTIONAL(file, MDField, );                                                   \
4768   OPTIONAL(line, LineField, );                                                 \
4769   OPTIONAL(type, MDField, );                                                   \
4770   OPTIONAL(isLocal, MDBoolField, );                                            \
4771   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4772   OPTIONAL(scopeLine, LineField, );                                            \
4773   OPTIONAL(containingType, MDField, );                                         \
4774   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4775   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4776   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4777   OPTIONAL(flags, DIFlagField, );                                              \
4778   OPTIONAL(spFlags, DISPFlagField, );                                          \
4779   OPTIONAL(isOptimized, MDBoolField, );                                        \
4780   OPTIONAL(unit, MDField, );                                                   \
4781   OPTIONAL(templateParams, MDField, );                                         \
4782   OPTIONAL(declaration, MDField, );                                            \
4783   OPTIONAL(retainedNodes, MDField, );                                          \
4784   OPTIONAL(thrownTypes, MDField, );
4785   PARSE_MD_FIELDS();
4786 #undef VISIT_MD_FIELDS
4787 
4788   // An explicit spFlags field takes precedence over individual fields in
4789   // older IR versions.
4790   DISubprogram::DISPFlags SPFlags =
4791       spFlags.Seen ? spFlags.Val
4792                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4793                                              isOptimized.Val, virtuality.Val);
4794   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4795     return Lex.Error(
4796         Loc,
4797         "missing 'distinct', required for !DISubprogram that is a Definition");
4798   Result = GET_OR_DISTINCT(
4799       DISubprogram,
4800       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4801        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4802        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4803        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4804   return false;
4805 }
4806 
4807 /// ParseDILexicalBlock:
4808 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4809 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4810 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4811   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4812   OPTIONAL(file, MDField, );                                                   \
4813   OPTIONAL(line, LineField, );                                                 \
4814   OPTIONAL(column, ColumnField, );
4815   PARSE_MD_FIELDS();
4816 #undef VISIT_MD_FIELDS
4817 
4818   Result = GET_OR_DISTINCT(
4819       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4820   return false;
4821 }
4822 
4823 /// ParseDILexicalBlockFile:
4824 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4825 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4826 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4827   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4828   OPTIONAL(file, MDField, );                                                   \
4829   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4830   PARSE_MD_FIELDS();
4831 #undef VISIT_MD_FIELDS
4832 
4833   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4834                            (Context, scope.Val, file.Val, discriminator.Val));
4835   return false;
4836 }
4837 
4838 /// ParseDICommonBlock:
4839 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4840 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4841 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4842   REQUIRED(scope, MDField, );                                                  \
4843   OPTIONAL(declaration, MDField, );                                            \
4844   OPTIONAL(name, MDStringField, );                                             \
4845   OPTIONAL(file, MDField, );                                                   \
4846   OPTIONAL(line, LineField, );
4847   PARSE_MD_FIELDS();
4848 #undef VISIT_MD_FIELDS
4849 
4850   Result = GET_OR_DISTINCT(DICommonBlock,
4851                            (Context, scope.Val, declaration.Val, name.Val,
4852                             file.Val, line.Val));
4853   return false;
4854 }
4855 
4856 /// ParseDINamespace:
4857 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4858 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4859 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4860   REQUIRED(scope, MDField, );                                                  \
4861   OPTIONAL(name, MDStringField, );                                             \
4862   OPTIONAL(exportSymbols, MDBoolField, );
4863   PARSE_MD_FIELDS();
4864 #undef VISIT_MD_FIELDS
4865 
4866   Result = GET_OR_DISTINCT(DINamespace,
4867                            (Context, scope.Val, name.Val, exportSymbols.Val));
4868   return false;
4869 }
4870 
4871 /// ParseDIMacro:
4872 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4873 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4874 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4875   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4876   OPTIONAL(line, LineField, );                                                 \
4877   REQUIRED(name, MDStringField, );                                             \
4878   OPTIONAL(value, MDStringField, );
4879   PARSE_MD_FIELDS();
4880 #undef VISIT_MD_FIELDS
4881 
4882   Result = GET_OR_DISTINCT(DIMacro,
4883                            (Context, type.Val, line.Val, name.Val, value.Val));
4884   return false;
4885 }
4886 
4887 /// ParseDIMacroFile:
4888 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4889 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4890 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4891   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4892   OPTIONAL(line, LineField, );                                                 \
4893   REQUIRED(file, MDField, );                                                   \
4894   OPTIONAL(nodes, MDField, );
4895   PARSE_MD_FIELDS();
4896 #undef VISIT_MD_FIELDS
4897 
4898   Result = GET_OR_DISTINCT(DIMacroFile,
4899                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4900   return false;
4901 }
4902 
4903 /// ParseDIModule:
4904 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
4905 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
4906 ///   file: !1, line: 4)
4907 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4908 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4909   REQUIRED(scope, MDField, );                                                  \
4910   REQUIRED(name, MDStringField, );                                             \
4911   OPTIONAL(configMacros, MDStringField, );                                     \
4912   OPTIONAL(includePath, MDStringField, );                                      \
4913   OPTIONAL(apinotes, MDStringField, );                                         \
4914   OPTIONAL(file, MDField, );                                                   \
4915   OPTIONAL(line, LineField, );
4916   PARSE_MD_FIELDS();
4917 #undef VISIT_MD_FIELDS
4918 
4919   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
4920                                       configMacros.Val, includePath.Val,
4921                                       apinotes.Val, line.Val));
4922   return false;
4923 }
4924 
4925 /// ParseDITemplateTypeParameter:
4926 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
4927 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4928 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4929   OPTIONAL(name, MDStringField, );                                             \
4930   REQUIRED(type, MDField, );                                                   \
4931   OPTIONAL(defaulted, MDBoolField, );
4932   PARSE_MD_FIELDS();
4933 #undef VISIT_MD_FIELDS
4934 
4935   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
4936                            (Context, name.Val, type.Val, defaulted.Val));
4937   return false;
4938 }
4939 
4940 /// ParseDITemplateValueParameter:
4941 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4942 ///                                 name: "V", type: !1, defaulted: false,
4943 ///                                 value: i32 7)
4944 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4945 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4946   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4947   OPTIONAL(name, MDStringField, );                                             \
4948   OPTIONAL(type, MDField, );                                                   \
4949   OPTIONAL(defaulted, MDBoolField, );                                          \
4950   REQUIRED(value, MDField, );
4951 
4952   PARSE_MD_FIELDS();
4953 #undef VISIT_MD_FIELDS
4954 
4955   Result = GET_OR_DISTINCT(
4956       DITemplateValueParameter,
4957       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
4958   return false;
4959 }
4960 
4961 /// ParseDIGlobalVariable:
4962 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4963 ///                         file: !1, line: 7, type: !2, isLocal: false,
4964 ///                         isDefinition: true, templateParams: !3,
4965 ///                         declaration: !4, align: 8)
4966 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4967 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4968   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4969   OPTIONAL(scope, MDField, );                                                  \
4970   OPTIONAL(linkageName, MDStringField, );                                      \
4971   OPTIONAL(file, MDField, );                                                   \
4972   OPTIONAL(line, LineField, );                                                 \
4973   OPTIONAL(type, MDField, );                                                   \
4974   OPTIONAL(isLocal, MDBoolField, );                                            \
4975   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4976   OPTIONAL(templateParams, MDField, );                                         \
4977   OPTIONAL(declaration, MDField, );                                            \
4978   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4979   PARSE_MD_FIELDS();
4980 #undef VISIT_MD_FIELDS
4981 
4982   Result =
4983       GET_OR_DISTINCT(DIGlobalVariable,
4984                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4985                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4986                        declaration.Val, templateParams.Val, align.Val));
4987   return false;
4988 }
4989 
4990 /// ParseDILocalVariable:
4991 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4992 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4993 ///                        align: 8)
4994 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4995 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4996 ///                        align: 8)
4997 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4998 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4999   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5000   OPTIONAL(name, MDStringField, );                                             \
5001   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5002   OPTIONAL(file, MDField, );                                                   \
5003   OPTIONAL(line, LineField, );                                                 \
5004   OPTIONAL(type, MDField, );                                                   \
5005   OPTIONAL(flags, DIFlagField, );                                              \
5006   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5007   PARSE_MD_FIELDS();
5008 #undef VISIT_MD_FIELDS
5009 
5010   Result = GET_OR_DISTINCT(DILocalVariable,
5011                            (Context, scope.Val, name.Val, file.Val, line.Val,
5012                             type.Val, arg.Val, flags.Val, align.Val));
5013   return false;
5014 }
5015 
5016 /// ParseDILabel:
5017 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5018 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
5019 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5020   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5021   REQUIRED(name, MDStringField, );                                             \
5022   REQUIRED(file, MDField, );                                                   \
5023   REQUIRED(line, LineField, );
5024   PARSE_MD_FIELDS();
5025 #undef VISIT_MD_FIELDS
5026 
5027   Result = GET_OR_DISTINCT(DILabel,
5028                            (Context, scope.Val, name.Val, file.Val, line.Val));
5029   return false;
5030 }
5031 
5032 /// ParseDIExpression:
5033 ///   ::= !DIExpression(0, 7, -1)
5034 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
5035   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5036   Lex.Lex();
5037 
5038   if (ParseToken(lltok::lparen, "expected '(' here"))
5039     return true;
5040 
5041   SmallVector<uint64_t, 8> Elements;
5042   if (Lex.getKind() != lltok::rparen)
5043     do {
5044       if (Lex.getKind() == lltok::DwarfOp) {
5045         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5046           Lex.Lex();
5047           Elements.push_back(Op);
5048           continue;
5049         }
5050         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5051       }
5052 
5053       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5054         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5055           Lex.Lex();
5056           Elements.push_back(Op);
5057           continue;
5058         }
5059         return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
5060       }
5061 
5062       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5063         return TokError("expected unsigned integer");
5064 
5065       auto &U = Lex.getAPSIntVal();
5066       if (U.ugt(UINT64_MAX))
5067         return TokError("element too large, limit is " + Twine(UINT64_MAX));
5068       Elements.push_back(U.getZExtValue());
5069       Lex.Lex();
5070     } while (EatIfPresent(lltok::comma));
5071 
5072   if (ParseToken(lltok::rparen, "expected ')' here"))
5073     return true;
5074 
5075   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5076   return false;
5077 }
5078 
5079 /// ParseDIGlobalVariableExpression:
5080 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5081 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
5082                                                bool IsDistinct) {
5083 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5084   REQUIRED(var, MDField, );                                                    \
5085   REQUIRED(expr, MDField, );
5086   PARSE_MD_FIELDS();
5087 #undef VISIT_MD_FIELDS
5088 
5089   Result =
5090       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5091   return false;
5092 }
5093 
5094 /// ParseDIObjCProperty:
5095 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5096 ///                       getter: "getFoo", attributes: 7, type: !2)
5097 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5098 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5099   OPTIONAL(name, MDStringField, );                                             \
5100   OPTIONAL(file, MDField, );                                                   \
5101   OPTIONAL(line, LineField, );                                                 \
5102   OPTIONAL(setter, MDStringField, );                                           \
5103   OPTIONAL(getter, MDStringField, );                                           \
5104   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5105   OPTIONAL(type, MDField, );
5106   PARSE_MD_FIELDS();
5107 #undef VISIT_MD_FIELDS
5108 
5109   Result = GET_OR_DISTINCT(DIObjCProperty,
5110                            (Context, name.Val, file.Val, line.Val, setter.Val,
5111                             getter.Val, attributes.Val, type.Val));
5112   return false;
5113 }
5114 
5115 /// ParseDIImportedEntity:
5116 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5117 ///                         line: 7, name: "foo")
5118 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5119 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5120   REQUIRED(tag, DwarfTagField, );                                              \
5121   REQUIRED(scope, MDField, );                                                  \
5122   OPTIONAL(entity, MDField, );                                                 \
5123   OPTIONAL(file, MDField, );                                                   \
5124   OPTIONAL(line, LineField, );                                                 \
5125   OPTIONAL(name, MDStringField, );
5126   PARSE_MD_FIELDS();
5127 #undef VISIT_MD_FIELDS
5128 
5129   Result = GET_OR_DISTINCT(
5130       DIImportedEntity,
5131       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5132   return false;
5133 }
5134 
5135 #undef PARSE_MD_FIELD
5136 #undef NOP_FIELD
5137 #undef REQUIRE_FIELD
5138 #undef DECLARE_FIELD
5139 
5140 /// ParseMetadataAsValue
5141 ///  ::= metadata i32 %local
5142 ///  ::= metadata i32 @global
5143 ///  ::= metadata i32 7
5144 ///  ::= metadata !0
5145 ///  ::= metadata !{...}
5146 ///  ::= metadata !"string"
5147 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5148   // Note: the type 'metadata' has already been parsed.
5149   Metadata *MD;
5150   if (ParseMetadata(MD, &PFS))
5151     return true;
5152 
5153   V = MetadataAsValue::get(Context, MD);
5154   return false;
5155 }
5156 
5157 /// ParseValueAsMetadata
5158 ///  ::= i32 %local
5159 ///  ::= i32 @global
5160 ///  ::= i32 7
5161 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5162                                     PerFunctionState *PFS) {
5163   Type *Ty;
5164   LocTy Loc;
5165   if (ParseType(Ty, TypeMsg, Loc))
5166     return true;
5167   if (Ty->isMetadataTy())
5168     return Error(Loc, "invalid metadata-value-metadata roundtrip");
5169 
5170   Value *V;
5171   if (ParseValue(Ty, V, PFS))
5172     return true;
5173 
5174   MD = ValueAsMetadata::get(V);
5175   return false;
5176 }
5177 
5178 /// ParseMetadata
5179 ///  ::= i32 %local
5180 ///  ::= i32 @global
5181 ///  ::= i32 7
5182 ///  ::= !42
5183 ///  ::= !{...}
5184 ///  ::= !"string"
5185 ///  ::= !DILocation(...)
5186 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5187   if (Lex.getKind() == lltok::MetadataVar) {
5188     MDNode *N;
5189     if (ParseSpecializedMDNode(N))
5190       return true;
5191     MD = N;
5192     return false;
5193   }
5194 
5195   // ValueAsMetadata:
5196   // <type> <value>
5197   if (Lex.getKind() != lltok::exclaim)
5198     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5199 
5200   // '!'.
5201   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5202   Lex.Lex();
5203 
5204   // MDString:
5205   //   ::= '!' STRINGCONSTANT
5206   if (Lex.getKind() == lltok::StringConstant) {
5207     MDString *S;
5208     if (ParseMDString(S))
5209       return true;
5210     MD = S;
5211     return false;
5212   }
5213 
5214   // MDNode:
5215   // !{ ... }
5216   // !7
5217   MDNode *N;
5218   if (ParseMDNodeTail(N))
5219     return true;
5220   MD = N;
5221   return false;
5222 }
5223 
5224 //===----------------------------------------------------------------------===//
5225 // Function Parsing.
5226 //===----------------------------------------------------------------------===//
5227 
5228 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5229                                    PerFunctionState *PFS, bool IsCall) {
5230   if (Ty->isFunctionTy())
5231     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5232 
5233   switch (ID.Kind) {
5234   case ValID::t_LocalID:
5235     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5236     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5237     return V == nullptr;
5238   case ValID::t_LocalName:
5239     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5240     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5241     return V == nullptr;
5242   case ValID::t_InlineAsm: {
5243     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5244       return Error(ID.Loc, "invalid type for inline asm constraint string");
5245     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5246                        (ID.UIntVal >> 1) & 1,
5247                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5248     return false;
5249   }
5250   case ValID::t_GlobalName:
5251     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5252     return V == nullptr;
5253   case ValID::t_GlobalID:
5254     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5255     return V == nullptr;
5256   case ValID::t_APSInt:
5257     if (!Ty->isIntegerTy())
5258       return Error(ID.Loc, "integer constant must have integer type");
5259     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5260     V = ConstantInt::get(Context, ID.APSIntVal);
5261     return false;
5262   case ValID::t_APFloat:
5263     if (!Ty->isFloatingPointTy() ||
5264         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5265       return Error(ID.Loc, "floating point constant invalid for type");
5266 
5267     // The lexer has no type info, so builds all half, bfloat, float, and double
5268     // FP constants as double.  Fix this here.  Long double does not need this.
5269     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5270       bool Ignored;
5271       if (Ty->isHalfTy())
5272         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5273                               &Ignored);
5274       else if (Ty->isBFloatTy())
5275         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5276                               &Ignored);
5277       else if (Ty->isFloatTy())
5278         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5279                               &Ignored);
5280     }
5281     V = ConstantFP::get(Context, ID.APFloatVal);
5282 
5283     if (V->getType() != Ty)
5284       return Error(ID.Loc, "floating point constant does not have type '" +
5285                    getTypeString(Ty) + "'");
5286 
5287     return false;
5288   case ValID::t_Null:
5289     if (!Ty->isPointerTy())
5290       return Error(ID.Loc, "null must be a pointer type");
5291     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5292     return false;
5293   case ValID::t_Undef:
5294     // FIXME: LabelTy should not be a first-class type.
5295     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5296       return Error(ID.Loc, "invalid type for undef constant");
5297     V = UndefValue::get(Ty);
5298     return false;
5299   case ValID::t_EmptyArray:
5300     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5301       return Error(ID.Loc, "invalid empty array initializer");
5302     V = UndefValue::get(Ty);
5303     return false;
5304   case ValID::t_Zero:
5305     // FIXME: LabelTy should not be a first-class type.
5306     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5307       return Error(ID.Loc, "invalid type for null constant");
5308     V = Constant::getNullValue(Ty);
5309     return false;
5310   case ValID::t_None:
5311     if (!Ty->isTokenTy())
5312       return Error(ID.Loc, "invalid type for none constant");
5313     V = Constant::getNullValue(Ty);
5314     return false;
5315   case ValID::t_Constant:
5316     if (ID.ConstantVal->getType() != Ty)
5317       return Error(ID.Loc, "constant expression type mismatch");
5318 
5319     V = ID.ConstantVal;
5320     return false;
5321   case ValID::t_ConstantStruct:
5322   case ValID::t_PackedConstantStruct:
5323     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5324       if (ST->getNumElements() != ID.UIntVal)
5325         return Error(ID.Loc,
5326                      "initializer with struct type has wrong # elements");
5327       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5328         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5329 
5330       // Verify that the elements are compatible with the structtype.
5331       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5332         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5333           return Error(ID.Loc, "element " + Twine(i) +
5334                     " of struct initializer doesn't match struct element type");
5335 
5336       V = ConstantStruct::get(
5337           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5338     } else
5339       return Error(ID.Loc, "constant expression type mismatch");
5340     return false;
5341   }
5342   llvm_unreachable("Invalid ValID");
5343 }
5344 
5345 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5346   C = nullptr;
5347   ValID ID;
5348   auto Loc = Lex.getLoc();
5349   if (ParseValID(ID, /*PFS=*/nullptr))
5350     return true;
5351   switch (ID.Kind) {
5352   case ValID::t_APSInt:
5353   case ValID::t_APFloat:
5354   case ValID::t_Undef:
5355   case ValID::t_Constant:
5356   case ValID::t_ConstantStruct:
5357   case ValID::t_PackedConstantStruct: {
5358     Value *V;
5359     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5360       return true;
5361     assert(isa<Constant>(V) && "Expected a constant value");
5362     C = cast<Constant>(V);
5363     return false;
5364   }
5365   case ValID::t_Null:
5366     C = Constant::getNullValue(Ty);
5367     return false;
5368   default:
5369     return Error(Loc, "expected a constant value");
5370   }
5371 }
5372 
5373 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5374   V = nullptr;
5375   ValID ID;
5376   return ParseValID(ID, PFS) ||
5377          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5378 }
5379 
5380 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5381   Type *Ty = nullptr;
5382   return ParseType(Ty) ||
5383          ParseValue(Ty, V, PFS);
5384 }
5385 
5386 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5387                                       PerFunctionState &PFS) {
5388   Value *V;
5389   Loc = Lex.getLoc();
5390   if (ParseTypeAndValue(V, PFS)) return true;
5391   if (!isa<BasicBlock>(V))
5392     return Error(Loc, "expected a basic block");
5393   BB = cast<BasicBlock>(V);
5394   return false;
5395 }
5396 
5397 /// FunctionHeader
5398 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5399 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5400 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5401 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5402 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5403   // Parse the linkage.
5404   LocTy LinkageLoc = Lex.getLoc();
5405   unsigned Linkage;
5406   unsigned Visibility;
5407   unsigned DLLStorageClass;
5408   bool DSOLocal;
5409   AttrBuilder RetAttrs;
5410   unsigned CC;
5411   bool HasLinkage;
5412   Type *RetType = nullptr;
5413   LocTy RetTypeLoc = Lex.getLoc();
5414   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5415                            DSOLocal) ||
5416       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5417       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5418     return true;
5419 
5420   // Verify that the linkage is ok.
5421   switch ((GlobalValue::LinkageTypes)Linkage) {
5422   case GlobalValue::ExternalLinkage:
5423     break; // always ok.
5424   case GlobalValue::ExternalWeakLinkage:
5425     if (isDefine)
5426       return Error(LinkageLoc, "invalid linkage for function definition");
5427     break;
5428   case GlobalValue::PrivateLinkage:
5429   case GlobalValue::InternalLinkage:
5430   case GlobalValue::AvailableExternallyLinkage:
5431   case GlobalValue::LinkOnceAnyLinkage:
5432   case GlobalValue::LinkOnceODRLinkage:
5433   case GlobalValue::WeakAnyLinkage:
5434   case GlobalValue::WeakODRLinkage:
5435     if (!isDefine)
5436       return Error(LinkageLoc, "invalid linkage for function declaration");
5437     break;
5438   case GlobalValue::AppendingLinkage:
5439   case GlobalValue::CommonLinkage:
5440     return Error(LinkageLoc, "invalid function linkage type");
5441   }
5442 
5443   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5444     return Error(LinkageLoc,
5445                  "symbol with local linkage must have default visibility");
5446 
5447   if (!FunctionType::isValidReturnType(RetType))
5448     return Error(RetTypeLoc, "invalid function return type");
5449 
5450   LocTy NameLoc = Lex.getLoc();
5451 
5452   std::string FunctionName;
5453   if (Lex.getKind() == lltok::GlobalVar) {
5454     FunctionName = Lex.getStrVal();
5455   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5456     unsigned NameID = Lex.getUIntVal();
5457 
5458     if (NameID != NumberedVals.size())
5459       return TokError("function expected to be numbered '%" +
5460                       Twine(NumberedVals.size()) + "'");
5461   } else {
5462     return TokError("expected function name");
5463   }
5464 
5465   Lex.Lex();
5466 
5467   if (Lex.getKind() != lltok::lparen)
5468     return TokError("expected '(' in function argument list");
5469 
5470   SmallVector<ArgInfo, 8> ArgList;
5471   bool isVarArg;
5472   AttrBuilder FuncAttrs;
5473   std::vector<unsigned> FwdRefAttrGrps;
5474   LocTy BuiltinLoc;
5475   std::string Section;
5476   std::string Partition;
5477   MaybeAlign Alignment;
5478   std::string GC;
5479   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5480   unsigned AddrSpace = 0;
5481   Constant *Prefix = nullptr;
5482   Constant *Prologue = nullptr;
5483   Constant *PersonalityFn = nullptr;
5484   Comdat *C;
5485 
5486   if (ParseArgumentList(ArgList, isVarArg) ||
5487       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5488       ParseOptionalProgramAddrSpace(AddrSpace) ||
5489       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5490                                  BuiltinLoc) ||
5491       (EatIfPresent(lltok::kw_section) &&
5492        ParseStringConstant(Section)) ||
5493       (EatIfPresent(lltok::kw_partition) &&
5494        ParseStringConstant(Partition)) ||
5495       parseOptionalComdat(FunctionName, C) ||
5496       ParseOptionalAlignment(Alignment) ||
5497       (EatIfPresent(lltok::kw_gc) &&
5498        ParseStringConstant(GC)) ||
5499       (EatIfPresent(lltok::kw_prefix) &&
5500        ParseGlobalTypeAndValue(Prefix)) ||
5501       (EatIfPresent(lltok::kw_prologue) &&
5502        ParseGlobalTypeAndValue(Prologue)) ||
5503       (EatIfPresent(lltok::kw_personality) &&
5504        ParseGlobalTypeAndValue(PersonalityFn)))
5505     return true;
5506 
5507   if (FuncAttrs.contains(Attribute::Builtin))
5508     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5509 
5510   // If the alignment was parsed as an attribute, move to the alignment field.
5511   if (FuncAttrs.hasAlignmentAttr()) {
5512     Alignment = FuncAttrs.getAlignment();
5513     FuncAttrs.removeAttribute(Attribute::Alignment);
5514   }
5515 
5516   // Okay, if we got here, the function is syntactically valid.  Convert types
5517   // and do semantic checks.
5518   std::vector<Type*> ParamTypeList;
5519   SmallVector<AttributeSet, 8> Attrs;
5520 
5521   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5522     ParamTypeList.push_back(ArgList[i].Ty);
5523     Attrs.push_back(ArgList[i].Attrs);
5524   }
5525 
5526   AttributeList PAL =
5527       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5528                          AttributeSet::get(Context, RetAttrs), Attrs);
5529 
5530   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5531     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5532 
5533   FunctionType *FT =
5534     FunctionType::get(RetType, ParamTypeList, isVarArg);
5535   PointerType *PFT = PointerType::get(FT, AddrSpace);
5536 
5537   Fn = nullptr;
5538   if (!FunctionName.empty()) {
5539     // If this was a definition of a forward reference, remove the definition
5540     // from the forward reference table and fill in the forward ref.
5541     auto FRVI = ForwardRefVals.find(FunctionName);
5542     if (FRVI != ForwardRefVals.end()) {
5543       Fn = M->getFunction(FunctionName);
5544       if (!Fn)
5545         return Error(FRVI->second.second, "invalid forward reference to "
5546                      "function as global value!");
5547       if (Fn->getType() != PFT)
5548         return Error(FRVI->second.second, "invalid forward reference to "
5549                      "function '" + FunctionName + "' with wrong type: "
5550                      "expected '" + getTypeString(PFT) + "' but was '" +
5551                      getTypeString(Fn->getType()) + "'");
5552       ForwardRefVals.erase(FRVI);
5553     } else if ((Fn = M->getFunction(FunctionName))) {
5554       // Reject redefinitions.
5555       return Error(NameLoc, "invalid redefinition of function '" +
5556                    FunctionName + "'");
5557     } else if (M->getNamedValue(FunctionName)) {
5558       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5559     }
5560 
5561   } else {
5562     // If this is a definition of a forward referenced function, make sure the
5563     // types agree.
5564     auto I = ForwardRefValIDs.find(NumberedVals.size());
5565     if (I != ForwardRefValIDs.end()) {
5566       Fn = cast<Function>(I->second.first);
5567       if (Fn->getType() != PFT)
5568         return Error(NameLoc, "type of definition and forward reference of '@" +
5569                      Twine(NumberedVals.size()) + "' disagree: "
5570                      "expected '" + getTypeString(PFT) + "' but was '" +
5571                      getTypeString(Fn->getType()) + "'");
5572       ForwardRefValIDs.erase(I);
5573     }
5574   }
5575 
5576   if (!Fn)
5577     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5578                           FunctionName, M);
5579   else // Move the forward-reference to the correct spot in the module.
5580     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5581 
5582   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5583 
5584   if (FunctionName.empty())
5585     NumberedVals.push_back(Fn);
5586 
5587   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5588   maybeSetDSOLocal(DSOLocal, *Fn);
5589   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5590   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5591   Fn->setCallingConv(CC);
5592   Fn->setAttributes(PAL);
5593   Fn->setUnnamedAddr(UnnamedAddr);
5594   Fn->setAlignment(MaybeAlign(Alignment));
5595   Fn->setSection(Section);
5596   Fn->setPartition(Partition);
5597   Fn->setComdat(C);
5598   Fn->setPersonalityFn(PersonalityFn);
5599   if (!GC.empty()) Fn->setGC(GC);
5600   Fn->setPrefixData(Prefix);
5601   Fn->setPrologueData(Prologue);
5602   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5603 
5604   // Add all of the arguments we parsed to the function.
5605   Function::arg_iterator ArgIt = Fn->arg_begin();
5606   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5607     // If the argument has a name, insert it into the argument symbol table.
5608     if (ArgList[i].Name.empty()) continue;
5609 
5610     // Set the name, if it conflicted, it will be auto-renamed.
5611     ArgIt->setName(ArgList[i].Name);
5612 
5613     if (ArgIt->getName() != ArgList[i].Name)
5614       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5615                    ArgList[i].Name + "'");
5616   }
5617 
5618   if (isDefine)
5619     return false;
5620 
5621   // Check the declaration has no block address forward references.
5622   ValID ID;
5623   if (FunctionName.empty()) {
5624     ID.Kind = ValID::t_GlobalID;
5625     ID.UIntVal = NumberedVals.size() - 1;
5626   } else {
5627     ID.Kind = ValID::t_GlobalName;
5628     ID.StrVal = FunctionName;
5629   }
5630   auto Blocks = ForwardRefBlockAddresses.find(ID);
5631   if (Blocks != ForwardRefBlockAddresses.end())
5632     return Error(Blocks->first.Loc,
5633                  "cannot take blockaddress inside a declaration");
5634   return false;
5635 }
5636 
5637 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5638   ValID ID;
5639   if (FunctionNumber == -1) {
5640     ID.Kind = ValID::t_GlobalName;
5641     ID.StrVal = std::string(F.getName());
5642   } else {
5643     ID.Kind = ValID::t_GlobalID;
5644     ID.UIntVal = FunctionNumber;
5645   }
5646 
5647   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5648   if (Blocks == P.ForwardRefBlockAddresses.end())
5649     return false;
5650 
5651   for (const auto &I : Blocks->second) {
5652     const ValID &BBID = I.first;
5653     GlobalValue *GV = I.second;
5654 
5655     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5656            "Expected local id or name");
5657     BasicBlock *BB;
5658     if (BBID.Kind == ValID::t_LocalName)
5659       BB = GetBB(BBID.StrVal, BBID.Loc);
5660     else
5661       BB = GetBB(BBID.UIntVal, BBID.Loc);
5662     if (!BB)
5663       return P.Error(BBID.Loc, "referenced value is not a basic block");
5664 
5665     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5666     GV->eraseFromParent();
5667   }
5668 
5669   P.ForwardRefBlockAddresses.erase(Blocks);
5670   return false;
5671 }
5672 
5673 /// ParseFunctionBody
5674 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5675 bool LLParser::ParseFunctionBody(Function &Fn) {
5676   if (Lex.getKind() != lltok::lbrace)
5677     return TokError("expected '{' in function body");
5678   Lex.Lex();  // eat the {.
5679 
5680   int FunctionNumber = -1;
5681   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5682 
5683   PerFunctionState PFS(*this, Fn, FunctionNumber);
5684 
5685   // Resolve block addresses and allow basic blocks to be forward-declared
5686   // within this function.
5687   if (PFS.resolveForwardRefBlockAddresses())
5688     return true;
5689   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5690 
5691   // We need at least one basic block.
5692   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5693     return TokError("function body requires at least one basic block");
5694 
5695   while (Lex.getKind() != lltok::rbrace &&
5696          Lex.getKind() != lltok::kw_uselistorder)
5697     if (ParseBasicBlock(PFS)) return true;
5698 
5699   while (Lex.getKind() != lltok::rbrace)
5700     if (ParseUseListOrder(&PFS))
5701       return true;
5702 
5703   // Eat the }.
5704   Lex.Lex();
5705 
5706   // Verify function is ok.
5707   return PFS.FinishFunction();
5708 }
5709 
5710 /// ParseBasicBlock
5711 ///   ::= (LabelStr|LabelID)? Instruction*
5712 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5713   // If this basic block starts out with a name, remember it.
5714   std::string Name;
5715   int NameID = -1;
5716   LocTy NameLoc = Lex.getLoc();
5717   if (Lex.getKind() == lltok::LabelStr) {
5718     Name = Lex.getStrVal();
5719     Lex.Lex();
5720   } else if (Lex.getKind() == lltok::LabelID) {
5721     NameID = Lex.getUIntVal();
5722     Lex.Lex();
5723   }
5724 
5725   BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5726   if (!BB)
5727     return true;
5728 
5729   std::string NameStr;
5730 
5731   // Parse the instructions in this block until we get a terminator.
5732   Instruction *Inst;
5733   do {
5734     // This instruction may have three possibilities for a name: a) none
5735     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5736     LocTy NameLoc = Lex.getLoc();
5737     int NameID = -1;
5738     NameStr = "";
5739 
5740     if (Lex.getKind() == lltok::LocalVarID) {
5741       NameID = Lex.getUIntVal();
5742       Lex.Lex();
5743       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5744         return true;
5745     } else if (Lex.getKind() == lltok::LocalVar) {
5746       NameStr = Lex.getStrVal();
5747       Lex.Lex();
5748       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5749         return true;
5750     }
5751 
5752     switch (ParseInstruction(Inst, BB, PFS)) {
5753     default: llvm_unreachable("Unknown ParseInstruction result!");
5754     case InstError: return true;
5755     case InstNormal:
5756       BB->getInstList().push_back(Inst);
5757 
5758       // With a normal result, we check to see if the instruction is followed by
5759       // a comma and metadata.
5760       if (EatIfPresent(lltok::comma))
5761         if (ParseInstructionMetadata(*Inst))
5762           return true;
5763       break;
5764     case InstExtraComma:
5765       BB->getInstList().push_back(Inst);
5766 
5767       // If the instruction parser ate an extra comma at the end of it, it
5768       // *must* be followed by metadata.
5769       if (ParseInstructionMetadata(*Inst))
5770         return true;
5771       break;
5772     }
5773 
5774     // Set the name on the instruction.
5775     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5776   } while (!Inst->isTerminator());
5777 
5778   return false;
5779 }
5780 
5781 //===----------------------------------------------------------------------===//
5782 // Instruction Parsing.
5783 //===----------------------------------------------------------------------===//
5784 
5785 /// ParseInstruction - Parse one of the many different instructions.
5786 ///
5787 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5788                                PerFunctionState &PFS) {
5789   lltok::Kind Token = Lex.getKind();
5790   if (Token == lltok::Eof)
5791     return TokError("found end of file when expecting more instructions");
5792   LocTy Loc = Lex.getLoc();
5793   unsigned KeywordVal = Lex.getUIntVal();
5794   Lex.Lex();  // Eat the keyword.
5795 
5796   switch (Token) {
5797   default:                    return Error(Loc, "expected instruction opcode");
5798   // Terminator Instructions.
5799   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5800   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5801   case lltok::kw_br:          return ParseBr(Inst, PFS);
5802   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5803   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5804   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5805   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5806   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5807   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5808   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5809   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5810   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5811   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5812   // Unary Operators.
5813   case lltok::kw_fneg: {
5814     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5815     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
5816     if (Res != 0)
5817       return Res;
5818     if (FMF.any())
5819       Inst->setFastMathFlags(FMF);
5820     return false;
5821   }
5822   // Binary Operators.
5823   case lltok::kw_add:
5824   case lltok::kw_sub:
5825   case lltok::kw_mul:
5826   case lltok::kw_shl: {
5827     bool NUW = EatIfPresent(lltok::kw_nuw);
5828     bool NSW = EatIfPresent(lltok::kw_nsw);
5829     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5830 
5831     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5832 
5833     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5834     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5835     return false;
5836   }
5837   case lltok::kw_fadd:
5838   case lltok::kw_fsub:
5839   case lltok::kw_fmul:
5840   case lltok::kw_fdiv:
5841   case lltok::kw_frem: {
5842     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5843     int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
5844     if (Res != 0)
5845       return Res;
5846     if (FMF.any())
5847       Inst->setFastMathFlags(FMF);
5848     return 0;
5849   }
5850 
5851   case lltok::kw_sdiv:
5852   case lltok::kw_udiv:
5853   case lltok::kw_lshr:
5854   case lltok::kw_ashr: {
5855     bool Exact = EatIfPresent(lltok::kw_exact);
5856 
5857     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5858     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5859     return false;
5860   }
5861 
5862   case lltok::kw_urem:
5863   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal,
5864                                                 /*IsFP*/false);
5865   case lltok::kw_and:
5866   case lltok::kw_or:
5867   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5868   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5869   case lltok::kw_fcmp: {
5870     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5871     int Res = ParseCompare(Inst, PFS, KeywordVal);
5872     if (Res != 0)
5873       return Res;
5874     if (FMF.any())
5875       Inst->setFastMathFlags(FMF);
5876     return 0;
5877   }
5878 
5879   // Casts.
5880   case lltok::kw_trunc:
5881   case lltok::kw_zext:
5882   case lltok::kw_sext:
5883   case lltok::kw_fptrunc:
5884   case lltok::kw_fpext:
5885   case lltok::kw_bitcast:
5886   case lltok::kw_addrspacecast:
5887   case lltok::kw_uitofp:
5888   case lltok::kw_sitofp:
5889   case lltok::kw_fptoui:
5890   case lltok::kw_fptosi:
5891   case lltok::kw_inttoptr:
5892   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5893   // Other.
5894   case lltok::kw_select: {
5895     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5896     int Res = ParseSelect(Inst, PFS);
5897     if (Res != 0)
5898       return Res;
5899     if (FMF.any()) {
5900       if (!isa<FPMathOperator>(Inst))
5901         return Error(Loc, "fast-math-flags specified for select without "
5902                           "floating-point scalar or vector return type");
5903       Inst->setFastMathFlags(FMF);
5904     }
5905     return 0;
5906   }
5907   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5908   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5909   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5910   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5911   case lltok::kw_phi: {
5912     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5913     int Res = ParsePHI(Inst, PFS);
5914     if (Res != 0)
5915       return Res;
5916     if (FMF.any()) {
5917       if (!isa<FPMathOperator>(Inst))
5918         return Error(Loc, "fast-math-flags specified for phi without "
5919                           "floating-point scalar or vector return type");
5920       Inst->setFastMathFlags(FMF);
5921     }
5922     return 0;
5923   }
5924   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5925   case lltok::kw_freeze:         return ParseFreeze(Inst, PFS);
5926   // Call.
5927   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5928   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5929   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5930   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5931   // Memory.
5932   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5933   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5934   case lltok::kw_store:          return ParseStore(Inst, PFS);
5935   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5936   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5937   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5938   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5939   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5940   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5941   }
5942 }
5943 
5944 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5945 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5946   if (Opc == Instruction::FCmp) {
5947     switch (Lex.getKind()) {
5948     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5949     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5950     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5951     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5952     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5953     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5954     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5955     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5956     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5957     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5958     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5959     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5960     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5961     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5962     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5963     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5964     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5965     }
5966   } else {
5967     switch (Lex.getKind()) {
5968     default: return TokError("expected icmp predicate (e.g. 'eq')");
5969     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5970     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5971     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5972     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5973     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5974     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5975     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5976     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5977     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5978     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5979     }
5980   }
5981   Lex.Lex();
5982   return false;
5983 }
5984 
5985 //===----------------------------------------------------------------------===//
5986 // Terminator Instructions.
5987 //===----------------------------------------------------------------------===//
5988 
5989 /// ParseRet - Parse a return instruction.
5990 ///   ::= 'ret' void (',' !dbg, !1)*
5991 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5992 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5993                         PerFunctionState &PFS) {
5994   SMLoc TypeLoc = Lex.getLoc();
5995   Type *Ty = nullptr;
5996   if (ParseType(Ty, true /*void allowed*/)) return true;
5997 
5998   Type *ResType = PFS.getFunction().getReturnType();
5999 
6000   if (Ty->isVoidTy()) {
6001     if (!ResType->isVoidTy())
6002       return Error(TypeLoc, "value doesn't match function result type '" +
6003                    getTypeString(ResType) + "'");
6004 
6005     Inst = ReturnInst::Create(Context);
6006     return false;
6007   }
6008 
6009   Value *RV;
6010   if (ParseValue(Ty, RV, PFS)) return true;
6011 
6012   if (ResType != RV->getType())
6013     return Error(TypeLoc, "value doesn't match function result type '" +
6014                  getTypeString(ResType) + "'");
6015 
6016   Inst = ReturnInst::Create(Context, RV);
6017   return false;
6018 }
6019 
6020 /// ParseBr
6021 ///   ::= 'br' TypeAndValue
6022 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6023 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
6024   LocTy Loc, Loc2;
6025   Value *Op0;
6026   BasicBlock *Op1, *Op2;
6027   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
6028 
6029   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6030     Inst = BranchInst::Create(BB);
6031     return false;
6032   }
6033 
6034   if (Op0->getType() != Type::getInt1Ty(Context))
6035     return Error(Loc, "branch condition must have 'i1' type");
6036 
6037   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
6038       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
6039       ParseToken(lltok::comma, "expected ',' after true destination") ||
6040       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
6041     return true;
6042 
6043   Inst = BranchInst::Create(Op1, Op2, Op0);
6044   return false;
6045 }
6046 
6047 /// ParseSwitch
6048 ///  Instruction
6049 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6050 ///  JumpTable
6051 ///    ::= (TypeAndValue ',' TypeAndValue)*
6052 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6053   LocTy CondLoc, BBLoc;
6054   Value *Cond;
6055   BasicBlock *DefaultBB;
6056   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
6057       ParseToken(lltok::comma, "expected ',' after switch condition") ||
6058       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6059       ParseToken(lltok::lsquare, "expected '[' with switch table"))
6060     return true;
6061 
6062   if (!Cond->getType()->isIntegerTy())
6063     return Error(CondLoc, "switch condition must have integer type");
6064 
6065   // Parse the jump table pairs.
6066   SmallPtrSet<Value*, 32> SeenCases;
6067   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6068   while (Lex.getKind() != lltok::rsquare) {
6069     Value *Constant;
6070     BasicBlock *DestBB;
6071 
6072     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
6073         ParseToken(lltok::comma, "expected ',' after case value") ||
6074         ParseTypeAndBasicBlock(DestBB, PFS))
6075       return true;
6076 
6077     if (!SeenCases.insert(Constant).second)
6078       return Error(CondLoc, "duplicate case value in switch");
6079     if (!isa<ConstantInt>(Constant))
6080       return Error(CondLoc, "case value is not a constant integer");
6081 
6082     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6083   }
6084 
6085   Lex.Lex();  // Eat the ']'.
6086 
6087   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6088   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6089     SI->addCase(Table[i].first, Table[i].second);
6090   Inst = SI;
6091   return false;
6092 }
6093 
6094 /// ParseIndirectBr
6095 ///  Instruction
6096 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6097 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6098   LocTy AddrLoc;
6099   Value *Address;
6100   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
6101       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
6102       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
6103     return true;
6104 
6105   if (!Address->getType()->isPointerTy())
6106     return Error(AddrLoc, "indirectbr address must have pointer type");
6107 
6108   // Parse the destination list.
6109   SmallVector<BasicBlock*, 16> DestList;
6110 
6111   if (Lex.getKind() != lltok::rsquare) {
6112     BasicBlock *DestBB;
6113     if (ParseTypeAndBasicBlock(DestBB, PFS))
6114       return true;
6115     DestList.push_back(DestBB);
6116 
6117     while (EatIfPresent(lltok::comma)) {
6118       if (ParseTypeAndBasicBlock(DestBB, PFS))
6119         return true;
6120       DestList.push_back(DestBB);
6121     }
6122   }
6123 
6124   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6125     return true;
6126 
6127   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6128   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6129     IBI->addDestination(DestList[i]);
6130   Inst = IBI;
6131   return false;
6132 }
6133 
6134 /// ParseInvoke
6135 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6136 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6137 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6138   LocTy CallLoc = Lex.getLoc();
6139   AttrBuilder RetAttrs, FnAttrs;
6140   std::vector<unsigned> FwdRefAttrGrps;
6141   LocTy NoBuiltinLoc;
6142   unsigned CC;
6143   unsigned InvokeAddrSpace;
6144   Type *RetType = nullptr;
6145   LocTy RetTypeLoc;
6146   ValID CalleeID;
6147   SmallVector<ParamInfo, 16> ArgList;
6148   SmallVector<OperandBundleDef, 2> BundleList;
6149 
6150   BasicBlock *NormalBB, *UnwindBB;
6151   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6152       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6153       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6154       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6155       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6156                                  NoBuiltinLoc) ||
6157       ParseOptionalOperandBundles(BundleList, PFS) ||
6158       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
6159       ParseTypeAndBasicBlock(NormalBB, PFS) ||
6160       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6161       ParseTypeAndBasicBlock(UnwindBB, PFS))
6162     return true;
6163 
6164   // If RetType is a non-function pointer type, then this is the short syntax
6165   // for the call, which means that RetType is just the return type.  Infer the
6166   // rest of the function argument types from the arguments that are present.
6167   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6168   if (!Ty) {
6169     // Pull out the types of all of the arguments...
6170     std::vector<Type*> ParamTypes;
6171     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6172       ParamTypes.push_back(ArgList[i].V->getType());
6173 
6174     if (!FunctionType::isValidReturnType(RetType))
6175       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6176 
6177     Ty = FunctionType::get(RetType, ParamTypes, false);
6178   }
6179 
6180   CalleeID.FTy = Ty;
6181 
6182   // Look up the callee.
6183   Value *Callee;
6184   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6185                           Callee, &PFS, /*IsCall=*/true))
6186     return true;
6187 
6188   // Set up the Attribute for the function.
6189   SmallVector<Value *, 8> Args;
6190   SmallVector<AttributeSet, 8> ArgAttrs;
6191 
6192   // Loop through FunctionType's arguments and ensure they are specified
6193   // correctly.  Also, gather any parameter attributes.
6194   FunctionType::param_iterator I = Ty->param_begin();
6195   FunctionType::param_iterator E = Ty->param_end();
6196   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6197     Type *ExpectedTy = nullptr;
6198     if (I != E) {
6199       ExpectedTy = *I++;
6200     } else if (!Ty->isVarArg()) {
6201       return Error(ArgList[i].Loc, "too many arguments specified");
6202     }
6203 
6204     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6205       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6206                    getTypeString(ExpectedTy) + "'");
6207     Args.push_back(ArgList[i].V);
6208     ArgAttrs.push_back(ArgList[i].Attrs);
6209   }
6210 
6211   if (I != E)
6212     return Error(CallLoc, "not enough parameters specified for call");
6213 
6214   if (FnAttrs.hasAlignmentAttr())
6215     return Error(CallLoc, "invoke instructions may not have an alignment");
6216 
6217   // Finish off the Attribute and check them
6218   AttributeList PAL =
6219       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6220                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6221 
6222   InvokeInst *II =
6223       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6224   II->setCallingConv(CC);
6225   II->setAttributes(PAL);
6226   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6227   Inst = II;
6228   return false;
6229 }
6230 
6231 /// ParseResume
6232 ///   ::= 'resume' TypeAndValue
6233 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6234   Value *Exn; LocTy ExnLoc;
6235   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6236     return true;
6237 
6238   ResumeInst *RI = ResumeInst::Create(Exn);
6239   Inst = RI;
6240   return false;
6241 }
6242 
6243 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6244                                   PerFunctionState &PFS) {
6245   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6246     return true;
6247 
6248   while (Lex.getKind() != lltok::rsquare) {
6249     // If this isn't the first argument, we need a comma.
6250     if (!Args.empty() &&
6251         ParseToken(lltok::comma, "expected ',' in argument list"))
6252       return true;
6253 
6254     // Parse the argument.
6255     LocTy ArgLoc;
6256     Type *ArgTy = nullptr;
6257     if (ParseType(ArgTy, ArgLoc))
6258       return true;
6259 
6260     Value *V;
6261     if (ArgTy->isMetadataTy()) {
6262       if (ParseMetadataAsValue(V, PFS))
6263         return true;
6264     } else {
6265       if (ParseValue(ArgTy, V, PFS))
6266         return true;
6267     }
6268     Args.push_back(V);
6269   }
6270 
6271   Lex.Lex();  // Lex the ']'.
6272   return false;
6273 }
6274 
6275 /// ParseCleanupRet
6276 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6277 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6278   Value *CleanupPad = nullptr;
6279 
6280   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6281     return true;
6282 
6283   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6284     return true;
6285 
6286   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6287     return true;
6288 
6289   BasicBlock *UnwindBB = nullptr;
6290   if (Lex.getKind() == lltok::kw_to) {
6291     Lex.Lex();
6292     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6293       return true;
6294   } else {
6295     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6296       return true;
6297     }
6298   }
6299 
6300   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6301   return false;
6302 }
6303 
6304 /// ParseCatchRet
6305 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6306 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6307   Value *CatchPad = nullptr;
6308 
6309   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6310     return true;
6311 
6312   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6313     return true;
6314 
6315   BasicBlock *BB;
6316   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6317       ParseTypeAndBasicBlock(BB, PFS))
6318       return true;
6319 
6320   Inst = CatchReturnInst::Create(CatchPad, BB);
6321   return false;
6322 }
6323 
6324 /// ParseCatchSwitch
6325 ///   ::= 'catchswitch' within Parent
6326 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6327   Value *ParentPad;
6328 
6329   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6330     return true;
6331 
6332   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6333       Lex.getKind() != lltok::LocalVarID)
6334     return TokError("expected scope value for catchswitch");
6335 
6336   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6337     return true;
6338 
6339   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6340     return true;
6341 
6342   SmallVector<BasicBlock *, 32> Table;
6343   do {
6344     BasicBlock *DestBB;
6345     if (ParseTypeAndBasicBlock(DestBB, PFS))
6346       return true;
6347     Table.push_back(DestBB);
6348   } while (EatIfPresent(lltok::comma));
6349 
6350   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6351     return true;
6352 
6353   if (ParseToken(lltok::kw_unwind,
6354                  "expected 'unwind' after catchswitch scope"))
6355     return true;
6356 
6357   BasicBlock *UnwindBB = nullptr;
6358   if (EatIfPresent(lltok::kw_to)) {
6359     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6360       return true;
6361   } else {
6362     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6363       return true;
6364   }
6365 
6366   auto *CatchSwitch =
6367       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6368   for (BasicBlock *DestBB : Table)
6369     CatchSwitch->addHandler(DestBB);
6370   Inst = CatchSwitch;
6371   return false;
6372 }
6373 
6374 /// ParseCatchPad
6375 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6376 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6377   Value *CatchSwitch = nullptr;
6378 
6379   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6380     return true;
6381 
6382   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6383     return TokError("expected scope value for catchpad");
6384 
6385   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6386     return true;
6387 
6388   SmallVector<Value *, 8> Args;
6389   if (ParseExceptionArgs(Args, PFS))
6390     return true;
6391 
6392   Inst = CatchPadInst::Create(CatchSwitch, Args);
6393   return false;
6394 }
6395 
6396 /// ParseCleanupPad
6397 ///   ::= 'cleanuppad' within Parent ParamList
6398 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6399   Value *ParentPad = nullptr;
6400 
6401   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6402     return true;
6403 
6404   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6405       Lex.getKind() != lltok::LocalVarID)
6406     return TokError("expected scope value for cleanuppad");
6407 
6408   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6409     return true;
6410 
6411   SmallVector<Value *, 8> Args;
6412   if (ParseExceptionArgs(Args, PFS))
6413     return true;
6414 
6415   Inst = CleanupPadInst::Create(ParentPad, Args);
6416   return false;
6417 }
6418 
6419 //===----------------------------------------------------------------------===//
6420 // Unary Operators.
6421 //===----------------------------------------------------------------------===//
6422 
6423 /// ParseUnaryOp
6424 ///  ::= UnaryOp TypeAndValue ',' Value
6425 ///
6426 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6427 /// operand is allowed.
6428 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6429                             unsigned Opc, bool IsFP) {
6430   LocTy Loc; Value *LHS;
6431   if (ParseTypeAndValue(LHS, Loc, PFS))
6432     return true;
6433 
6434   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6435                     : LHS->getType()->isIntOrIntVectorTy();
6436 
6437   if (!Valid)
6438     return Error(Loc, "invalid operand type for instruction");
6439 
6440   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6441   return false;
6442 }
6443 
6444 /// ParseCallBr
6445 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6446 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6447 ///       '[' LabelList ']'
6448 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6449   LocTy CallLoc = Lex.getLoc();
6450   AttrBuilder RetAttrs, FnAttrs;
6451   std::vector<unsigned> FwdRefAttrGrps;
6452   LocTy NoBuiltinLoc;
6453   unsigned CC;
6454   Type *RetType = nullptr;
6455   LocTy RetTypeLoc;
6456   ValID CalleeID;
6457   SmallVector<ParamInfo, 16> ArgList;
6458   SmallVector<OperandBundleDef, 2> BundleList;
6459 
6460   BasicBlock *DefaultDest;
6461   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6462       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6463       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6464       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6465                                  NoBuiltinLoc) ||
6466       ParseOptionalOperandBundles(BundleList, PFS) ||
6467       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6468       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6469       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6470     return true;
6471 
6472   // Parse the destination list.
6473   SmallVector<BasicBlock *, 16> IndirectDests;
6474 
6475   if (Lex.getKind() != lltok::rsquare) {
6476     BasicBlock *DestBB;
6477     if (ParseTypeAndBasicBlock(DestBB, PFS))
6478       return true;
6479     IndirectDests.push_back(DestBB);
6480 
6481     while (EatIfPresent(lltok::comma)) {
6482       if (ParseTypeAndBasicBlock(DestBB, PFS))
6483         return true;
6484       IndirectDests.push_back(DestBB);
6485     }
6486   }
6487 
6488   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6489     return true;
6490 
6491   // If RetType is a non-function pointer type, then this is the short syntax
6492   // for the call, which means that RetType is just the return type.  Infer the
6493   // rest of the function argument types from the arguments that are present.
6494   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6495   if (!Ty) {
6496     // Pull out the types of all of the arguments...
6497     std::vector<Type *> ParamTypes;
6498     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6499       ParamTypes.push_back(ArgList[i].V->getType());
6500 
6501     if (!FunctionType::isValidReturnType(RetType))
6502       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6503 
6504     Ty = FunctionType::get(RetType, ParamTypes, false);
6505   }
6506 
6507   CalleeID.FTy = Ty;
6508 
6509   // Look up the callee.
6510   Value *Callee;
6511   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6512                           /*IsCall=*/true))
6513     return true;
6514 
6515   // Set up the Attribute for the function.
6516   SmallVector<Value *, 8> Args;
6517   SmallVector<AttributeSet, 8> ArgAttrs;
6518 
6519   // Loop through FunctionType's arguments and ensure they are specified
6520   // correctly.  Also, gather any parameter attributes.
6521   FunctionType::param_iterator I = Ty->param_begin();
6522   FunctionType::param_iterator E = Ty->param_end();
6523   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6524     Type *ExpectedTy = nullptr;
6525     if (I != E) {
6526       ExpectedTy = *I++;
6527     } else if (!Ty->isVarArg()) {
6528       return Error(ArgList[i].Loc, "too many arguments specified");
6529     }
6530 
6531     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6532       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6533                                        getTypeString(ExpectedTy) + "'");
6534     Args.push_back(ArgList[i].V);
6535     ArgAttrs.push_back(ArgList[i].Attrs);
6536   }
6537 
6538   if (I != E)
6539     return Error(CallLoc, "not enough parameters specified for call");
6540 
6541   if (FnAttrs.hasAlignmentAttr())
6542     return Error(CallLoc, "callbr instructions may not have an alignment");
6543 
6544   // Finish off the Attribute and check them
6545   AttributeList PAL =
6546       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6547                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6548 
6549   CallBrInst *CBI =
6550       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6551                          BundleList);
6552   CBI->setCallingConv(CC);
6553   CBI->setAttributes(PAL);
6554   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6555   Inst = CBI;
6556   return false;
6557 }
6558 
6559 //===----------------------------------------------------------------------===//
6560 // Binary Operators.
6561 //===----------------------------------------------------------------------===//
6562 
6563 /// ParseArithmetic
6564 ///  ::= ArithmeticOps TypeAndValue ',' Value
6565 ///
6566 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6567 /// operand is allowed.
6568 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6569                                unsigned Opc, bool IsFP) {
6570   LocTy Loc; Value *LHS, *RHS;
6571   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6572       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6573       ParseValue(LHS->getType(), RHS, PFS))
6574     return true;
6575 
6576   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6577                     : LHS->getType()->isIntOrIntVectorTy();
6578 
6579   if (!Valid)
6580     return Error(Loc, "invalid operand type for instruction");
6581 
6582   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6583   return false;
6584 }
6585 
6586 /// ParseLogical
6587 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6588 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6589                             unsigned Opc) {
6590   LocTy Loc; Value *LHS, *RHS;
6591   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6592       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6593       ParseValue(LHS->getType(), RHS, PFS))
6594     return true;
6595 
6596   if (!LHS->getType()->isIntOrIntVectorTy())
6597     return Error(Loc,"instruction requires integer or integer vector operands");
6598 
6599   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6600   return false;
6601 }
6602 
6603 /// ParseCompare
6604 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6605 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6606 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6607                             unsigned Opc) {
6608   // Parse the integer/fp comparison predicate.
6609   LocTy Loc;
6610   unsigned Pred;
6611   Value *LHS, *RHS;
6612   if (ParseCmpPredicate(Pred, Opc) ||
6613       ParseTypeAndValue(LHS, Loc, PFS) ||
6614       ParseToken(lltok::comma, "expected ',' after compare value") ||
6615       ParseValue(LHS->getType(), RHS, PFS))
6616     return true;
6617 
6618   if (Opc == Instruction::FCmp) {
6619     if (!LHS->getType()->isFPOrFPVectorTy())
6620       return Error(Loc, "fcmp requires floating point operands");
6621     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6622   } else {
6623     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6624     if (!LHS->getType()->isIntOrIntVectorTy() &&
6625         !LHS->getType()->isPtrOrPtrVectorTy())
6626       return Error(Loc, "icmp requires integer operands");
6627     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6628   }
6629   return false;
6630 }
6631 
6632 //===----------------------------------------------------------------------===//
6633 // Other Instructions.
6634 //===----------------------------------------------------------------------===//
6635 
6636 
6637 /// ParseCast
6638 ///   ::= CastOpc TypeAndValue 'to' Type
6639 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6640                          unsigned Opc) {
6641   LocTy Loc;
6642   Value *Op;
6643   Type *DestTy = nullptr;
6644   if (ParseTypeAndValue(Op, Loc, PFS) ||
6645       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6646       ParseType(DestTy))
6647     return true;
6648 
6649   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6650     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6651     return Error(Loc, "invalid cast opcode for cast from '" +
6652                  getTypeString(Op->getType()) + "' to '" +
6653                  getTypeString(DestTy) + "'");
6654   }
6655   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6656   return false;
6657 }
6658 
6659 /// ParseSelect
6660 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6661 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6662   LocTy Loc;
6663   Value *Op0, *Op1, *Op2;
6664   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6665       ParseToken(lltok::comma, "expected ',' after select condition") ||
6666       ParseTypeAndValue(Op1, PFS) ||
6667       ParseToken(lltok::comma, "expected ',' after select value") ||
6668       ParseTypeAndValue(Op2, PFS))
6669     return true;
6670 
6671   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6672     return Error(Loc, Reason);
6673 
6674   Inst = SelectInst::Create(Op0, Op1, Op2);
6675   return false;
6676 }
6677 
6678 /// ParseVA_Arg
6679 ///   ::= 'va_arg' TypeAndValue ',' Type
6680 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6681   Value *Op;
6682   Type *EltTy = nullptr;
6683   LocTy TypeLoc;
6684   if (ParseTypeAndValue(Op, PFS) ||
6685       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6686       ParseType(EltTy, TypeLoc))
6687     return true;
6688 
6689   if (!EltTy->isFirstClassType())
6690     return Error(TypeLoc, "va_arg requires operand with first class type");
6691 
6692   Inst = new VAArgInst(Op, EltTy);
6693   return false;
6694 }
6695 
6696 /// ParseExtractElement
6697 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6698 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6699   LocTy Loc;
6700   Value *Op0, *Op1;
6701   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6702       ParseToken(lltok::comma, "expected ',' after extract value") ||
6703       ParseTypeAndValue(Op1, PFS))
6704     return true;
6705 
6706   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6707     return Error(Loc, "invalid extractelement operands");
6708 
6709   Inst = ExtractElementInst::Create(Op0, Op1);
6710   return false;
6711 }
6712 
6713 /// ParseInsertElement
6714 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6715 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6716   LocTy Loc;
6717   Value *Op0, *Op1, *Op2;
6718   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6719       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6720       ParseTypeAndValue(Op1, PFS) ||
6721       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6722       ParseTypeAndValue(Op2, PFS))
6723     return true;
6724 
6725   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6726     return Error(Loc, "invalid insertelement operands");
6727 
6728   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6729   return false;
6730 }
6731 
6732 /// ParseShuffleVector
6733 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6734 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6735   LocTy Loc;
6736   Value *Op0, *Op1, *Op2;
6737   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6738       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6739       ParseTypeAndValue(Op1, PFS) ||
6740       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6741       ParseTypeAndValue(Op2, PFS))
6742     return true;
6743 
6744   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6745     return Error(Loc, "invalid shufflevector operands");
6746 
6747   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6748   return false;
6749 }
6750 
6751 /// ParsePHI
6752 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6753 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6754   Type *Ty = nullptr;  LocTy TypeLoc;
6755   Value *Op0, *Op1;
6756 
6757   if (ParseType(Ty, TypeLoc) ||
6758       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6759       ParseValue(Ty, Op0, PFS) ||
6760       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6761       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6762       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6763     return true;
6764 
6765   bool AteExtraComma = false;
6766   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6767 
6768   while (true) {
6769     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6770 
6771     if (!EatIfPresent(lltok::comma))
6772       break;
6773 
6774     if (Lex.getKind() == lltok::MetadataVar) {
6775       AteExtraComma = true;
6776       break;
6777     }
6778 
6779     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6780         ParseValue(Ty, Op0, PFS) ||
6781         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6782         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6783         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6784       return true;
6785   }
6786 
6787   if (!Ty->isFirstClassType())
6788     return Error(TypeLoc, "phi node must have first class type");
6789 
6790   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6791   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6792     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6793   Inst = PN;
6794   return AteExtraComma ? InstExtraComma : InstNormal;
6795 }
6796 
6797 /// ParseLandingPad
6798 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6799 /// Clause
6800 ///   ::= 'catch' TypeAndValue
6801 ///   ::= 'filter'
6802 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6803 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6804   Type *Ty = nullptr; LocTy TyLoc;
6805 
6806   if (ParseType(Ty, TyLoc))
6807     return true;
6808 
6809   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6810   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6811 
6812   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6813     LandingPadInst::ClauseType CT;
6814     if (EatIfPresent(lltok::kw_catch))
6815       CT = LandingPadInst::Catch;
6816     else if (EatIfPresent(lltok::kw_filter))
6817       CT = LandingPadInst::Filter;
6818     else
6819       return TokError("expected 'catch' or 'filter' clause type");
6820 
6821     Value *V;
6822     LocTy VLoc;
6823     if (ParseTypeAndValue(V, VLoc, PFS))
6824       return true;
6825 
6826     // A 'catch' type expects a non-array constant. A filter clause expects an
6827     // array constant.
6828     if (CT == LandingPadInst::Catch) {
6829       if (isa<ArrayType>(V->getType()))
6830         Error(VLoc, "'catch' clause has an invalid type");
6831     } else {
6832       if (!isa<ArrayType>(V->getType()))
6833         Error(VLoc, "'filter' clause has an invalid type");
6834     }
6835 
6836     Constant *CV = dyn_cast<Constant>(V);
6837     if (!CV)
6838       return Error(VLoc, "clause argument must be a constant");
6839     LP->addClause(CV);
6840   }
6841 
6842   Inst = LP.release();
6843   return false;
6844 }
6845 
6846 /// ParseFreeze
6847 ///   ::= 'freeze' Type Value
6848 bool LLParser::ParseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
6849   LocTy Loc;
6850   Value *Op;
6851   if (ParseTypeAndValue(Op, Loc, PFS))
6852     return true;
6853 
6854   Inst = new FreezeInst(Op);
6855   return false;
6856 }
6857 
6858 /// ParseCall
6859 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6860 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6861 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6862 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6863 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6864 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6865 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6866 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6867 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6868                          CallInst::TailCallKind TCK) {
6869   AttrBuilder RetAttrs, FnAttrs;
6870   std::vector<unsigned> FwdRefAttrGrps;
6871   LocTy BuiltinLoc;
6872   unsigned CallAddrSpace;
6873   unsigned CC;
6874   Type *RetType = nullptr;
6875   LocTy RetTypeLoc;
6876   ValID CalleeID;
6877   SmallVector<ParamInfo, 16> ArgList;
6878   SmallVector<OperandBundleDef, 2> BundleList;
6879   LocTy CallLoc = Lex.getLoc();
6880 
6881   if (TCK != CallInst::TCK_None &&
6882       ParseToken(lltok::kw_call,
6883                  "expected 'tail call', 'musttail call', or 'notail call'"))
6884     return true;
6885 
6886   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6887 
6888   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6889       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6890       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6891       ParseValID(CalleeID) ||
6892       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6893                          PFS.getFunction().isVarArg()) ||
6894       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6895       ParseOptionalOperandBundles(BundleList, PFS))
6896     return true;
6897 
6898   // If RetType is a non-function pointer type, then this is the short syntax
6899   // for the call, which means that RetType is just the return type.  Infer the
6900   // rest of the function argument types from the arguments that are present.
6901   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6902   if (!Ty) {
6903     // Pull out the types of all of the arguments...
6904     std::vector<Type*> ParamTypes;
6905     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6906       ParamTypes.push_back(ArgList[i].V->getType());
6907 
6908     if (!FunctionType::isValidReturnType(RetType))
6909       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6910 
6911     Ty = FunctionType::get(RetType, ParamTypes, false);
6912   }
6913 
6914   CalleeID.FTy = Ty;
6915 
6916   // Look up the callee.
6917   Value *Callee;
6918   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6919                           &PFS, /*IsCall=*/true))
6920     return true;
6921 
6922   // Set up the Attribute for the function.
6923   SmallVector<AttributeSet, 8> Attrs;
6924 
6925   SmallVector<Value*, 8> Args;
6926 
6927   // Loop through FunctionType's arguments and ensure they are specified
6928   // correctly.  Also, gather any parameter attributes.
6929   FunctionType::param_iterator I = Ty->param_begin();
6930   FunctionType::param_iterator E = Ty->param_end();
6931   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6932     Type *ExpectedTy = nullptr;
6933     if (I != E) {
6934       ExpectedTy = *I++;
6935     } else if (!Ty->isVarArg()) {
6936       return Error(ArgList[i].Loc, "too many arguments specified");
6937     }
6938 
6939     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6940       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6941                    getTypeString(ExpectedTy) + "'");
6942     Args.push_back(ArgList[i].V);
6943     Attrs.push_back(ArgList[i].Attrs);
6944   }
6945 
6946   if (I != E)
6947     return Error(CallLoc, "not enough parameters specified for call");
6948 
6949   if (FnAttrs.hasAlignmentAttr())
6950     return Error(CallLoc, "call instructions may not have an alignment");
6951 
6952   // Finish off the Attribute and check them
6953   AttributeList PAL =
6954       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6955                          AttributeSet::get(Context, RetAttrs), Attrs);
6956 
6957   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6958   CI->setTailCallKind(TCK);
6959   CI->setCallingConv(CC);
6960   if (FMF.any()) {
6961     if (!isa<FPMathOperator>(CI))
6962       return Error(CallLoc, "fast-math-flags specified for call without "
6963                    "floating-point scalar or vector return type");
6964     CI->setFastMathFlags(FMF);
6965   }
6966   CI->setAttributes(PAL);
6967   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6968   Inst = CI;
6969   return false;
6970 }
6971 
6972 //===----------------------------------------------------------------------===//
6973 // Memory Instructions.
6974 //===----------------------------------------------------------------------===//
6975 
6976 /// ParseAlloc
6977 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6978 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6979 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6980   Value *Size = nullptr;
6981   LocTy SizeLoc, TyLoc, ASLoc;
6982   MaybeAlign Alignment;
6983   unsigned AddrSpace = 0;
6984   Type *Ty = nullptr;
6985 
6986   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6987   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6988 
6989   if (ParseType(Ty, TyLoc)) return true;
6990 
6991   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6992     return Error(TyLoc, "invalid type for alloca");
6993 
6994   bool AteExtraComma = false;
6995   if (EatIfPresent(lltok::comma)) {
6996     if (Lex.getKind() == lltok::kw_align) {
6997       if (ParseOptionalAlignment(Alignment))
6998         return true;
6999       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7000         return true;
7001     } else if (Lex.getKind() == lltok::kw_addrspace) {
7002       ASLoc = Lex.getLoc();
7003       if (ParseOptionalAddrSpace(AddrSpace))
7004         return true;
7005     } else if (Lex.getKind() == lltok::MetadataVar) {
7006       AteExtraComma = true;
7007     } else {
7008       if (ParseTypeAndValue(Size, SizeLoc, PFS))
7009         return true;
7010       if (EatIfPresent(lltok::comma)) {
7011         if (Lex.getKind() == lltok::kw_align) {
7012           if (ParseOptionalAlignment(Alignment))
7013             return true;
7014           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7015             return true;
7016         } else if (Lex.getKind() == lltok::kw_addrspace) {
7017           ASLoc = Lex.getLoc();
7018           if (ParseOptionalAddrSpace(AddrSpace))
7019             return true;
7020         } else if (Lex.getKind() == lltok::MetadataVar) {
7021           AteExtraComma = true;
7022         }
7023       }
7024     }
7025   }
7026 
7027   if (Size && !Size->getType()->isIntegerTy())
7028     return Error(SizeLoc, "element count must have integer type");
7029 
7030   SmallPtrSet<Type *, 4> Visited;
7031   if (!Alignment && !Ty->isSized(&Visited))
7032     return Error(TyLoc, "Cannot allocate unsized type");
7033   if (!Alignment)
7034     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7035   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7036   AI->setUsedWithInAlloca(IsInAlloca);
7037   AI->setSwiftError(IsSwiftError);
7038   Inst = AI;
7039   return AteExtraComma ? InstExtraComma : InstNormal;
7040 }
7041 
7042 /// ParseLoad
7043 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7044 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7045 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7046 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7047   Value *Val; LocTy Loc;
7048   MaybeAlign Alignment;
7049   bool AteExtraComma = false;
7050   bool isAtomic = false;
7051   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7052   SyncScope::ID SSID = SyncScope::System;
7053 
7054   if (Lex.getKind() == lltok::kw_atomic) {
7055     isAtomic = true;
7056     Lex.Lex();
7057   }
7058 
7059   bool isVolatile = false;
7060   if (Lex.getKind() == lltok::kw_volatile) {
7061     isVolatile = true;
7062     Lex.Lex();
7063   }
7064 
7065   Type *Ty;
7066   LocTy ExplicitTypeLoc = Lex.getLoc();
7067   if (ParseType(Ty) ||
7068       ParseToken(lltok::comma, "expected comma after load's type") ||
7069       ParseTypeAndValue(Val, Loc, PFS) ||
7070       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7071       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7072     return true;
7073 
7074   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7075     return Error(Loc, "load operand must be a pointer to a first class type");
7076   if (isAtomic && !Alignment)
7077     return Error(Loc, "atomic load must have explicit non-zero alignment");
7078   if (Ordering == AtomicOrdering::Release ||
7079       Ordering == AtomicOrdering::AcquireRelease)
7080     return Error(Loc, "atomic load cannot use Release ordering");
7081 
7082   if (Ty != cast<PointerType>(Val->getType())->getElementType())
7083     return Error(ExplicitTypeLoc,
7084                  "explicit pointee type doesn't match operand's pointee type");
7085   SmallPtrSet<Type *, 4> Visited;
7086   if (!Alignment && !Ty->isSized(&Visited))
7087     return Error(ExplicitTypeLoc, "loading unsized types is not allowed");
7088   if (!Alignment)
7089     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7090   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7091   return AteExtraComma ? InstExtraComma : InstNormal;
7092 }
7093 
7094 /// ParseStore
7095 
7096 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7097 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7098 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7099 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
7100   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7101   MaybeAlign Alignment;
7102   bool AteExtraComma = false;
7103   bool isAtomic = false;
7104   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7105   SyncScope::ID SSID = SyncScope::System;
7106 
7107   if (Lex.getKind() == lltok::kw_atomic) {
7108     isAtomic = true;
7109     Lex.Lex();
7110   }
7111 
7112   bool isVolatile = false;
7113   if (Lex.getKind() == lltok::kw_volatile) {
7114     isVolatile = true;
7115     Lex.Lex();
7116   }
7117 
7118   if (ParseTypeAndValue(Val, Loc, PFS) ||
7119       ParseToken(lltok::comma, "expected ',' after store operand") ||
7120       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7121       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7122       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7123     return true;
7124 
7125   if (!Ptr->getType()->isPointerTy())
7126     return Error(PtrLoc, "store operand must be a pointer");
7127   if (!Val->getType()->isFirstClassType())
7128     return Error(Loc, "store operand must be a first class value");
7129   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7130     return Error(Loc, "stored value and pointer type do not match");
7131   if (isAtomic && !Alignment)
7132     return Error(Loc, "atomic store must have explicit non-zero alignment");
7133   if (Ordering == AtomicOrdering::Acquire ||
7134       Ordering == AtomicOrdering::AcquireRelease)
7135     return Error(Loc, "atomic store cannot use Acquire ordering");
7136   SmallPtrSet<Type *, 4> Visited;
7137   if (!Alignment && !Val->getType()->isSized(&Visited))
7138     return Error(Loc, "storing unsized types is not allowed");
7139   if (!Alignment)
7140     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7141 
7142   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7143   return AteExtraComma ? InstExtraComma : InstNormal;
7144 }
7145 
7146 /// ParseCmpXchg
7147 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7148 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
7149 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7150   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7151   bool AteExtraComma = false;
7152   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7153   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7154   SyncScope::ID SSID = SyncScope::System;
7155   bool isVolatile = false;
7156   bool isWeak = false;
7157 
7158   if (EatIfPresent(lltok::kw_weak))
7159     isWeak = true;
7160 
7161   if (EatIfPresent(lltok::kw_volatile))
7162     isVolatile = true;
7163 
7164   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7165       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7166       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
7167       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7168       ParseTypeAndValue(New, NewLoc, PFS) ||
7169       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7170       ParseOrdering(FailureOrdering))
7171     return true;
7172 
7173   if (SuccessOrdering == AtomicOrdering::Unordered ||
7174       FailureOrdering == AtomicOrdering::Unordered)
7175     return TokError("cmpxchg cannot be unordered");
7176   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7177     return TokError("cmpxchg failure argument shall be no stronger than the "
7178                     "success argument");
7179   if (FailureOrdering == AtomicOrdering::Release ||
7180       FailureOrdering == AtomicOrdering::AcquireRelease)
7181     return TokError(
7182         "cmpxchg failure ordering cannot include release semantics");
7183   if (!Ptr->getType()->isPointerTy())
7184     return Error(PtrLoc, "cmpxchg operand must be a pointer");
7185   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7186     return Error(CmpLoc, "compare value and pointer type do not match");
7187   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7188     return Error(NewLoc, "new value and pointer type do not match");
7189   if (!New->getType()->isFirstClassType())
7190     return Error(NewLoc, "cmpxchg operand must be a first class value");
7191   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7192       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
7193   CXI->setVolatile(isVolatile);
7194   CXI->setWeak(isWeak);
7195   Inst = CXI;
7196   return AteExtraComma ? InstExtraComma : InstNormal;
7197 }
7198 
7199 /// ParseAtomicRMW
7200 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7201 ///       'singlethread'? AtomicOrdering
7202 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7203   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7204   bool AteExtraComma = false;
7205   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7206   SyncScope::ID SSID = SyncScope::System;
7207   bool isVolatile = false;
7208   bool IsFP = false;
7209   AtomicRMWInst::BinOp Operation;
7210 
7211   if (EatIfPresent(lltok::kw_volatile))
7212     isVolatile = true;
7213 
7214   switch (Lex.getKind()) {
7215   default: return TokError("expected binary operation in atomicrmw");
7216   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7217   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7218   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7219   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7220   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7221   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7222   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7223   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7224   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7225   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7226   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7227   case lltok::kw_fadd:
7228     Operation = AtomicRMWInst::FAdd;
7229     IsFP = true;
7230     break;
7231   case lltok::kw_fsub:
7232     Operation = AtomicRMWInst::FSub;
7233     IsFP = true;
7234     break;
7235   }
7236   Lex.Lex();  // Eat the operation.
7237 
7238   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7239       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7240       ParseTypeAndValue(Val, ValLoc, PFS) ||
7241       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7242     return true;
7243 
7244   if (Ordering == AtomicOrdering::Unordered)
7245     return TokError("atomicrmw cannot be unordered");
7246   if (!Ptr->getType()->isPointerTy())
7247     return Error(PtrLoc, "atomicrmw operand must be a pointer");
7248   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7249     return Error(ValLoc, "atomicrmw value and pointer type do not match");
7250 
7251   if (Operation == AtomicRMWInst::Xchg) {
7252     if (!Val->getType()->isIntegerTy() &&
7253         !Val->getType()->isFloatingPointTy()) {
7254       return Error(ValLoc, "atomicrmw " +
7255                    AtomicRMWInst::getOperationName(Operation) +
7256                    " operand must be an integer or floating point type");
7257     }
7258   } else if (IsFP) {
7259     if (!Val->getType()->isFloatingPointTy()) {
7260       return Error(ValLoc, "atomicrmw " +
7261                    AtomicRMWInst::getOperationName(Operation) +
7262                    " operand must be a floating point type");
7263     }
7264   } else {
7265     if (!Val->getType()->isIntegerTy()) {
7266       return Error(ValLoc, "atomicrmw " +
7267                    AtomicRMWInst::getOperationName(Operation) +
7268                    " operand must be an integer");
7269     }
7270   }
7271 
7272   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7273   if (Size < 8 || (Size & (Size - 1)))
7274     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7275                          " integer");
7276 
7277   AtomicRMWInst *RMWI =
7278     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7279   RMWI->setVolatile(isVolatile);
7280   Inst = RMWI;
7281   return AteExtraComma ? InstExtraComma : InstNormal;
7282 }
7283 
7284 /// ParseFence
7285 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7286 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7287   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7288   SyncScope::ID SSID = SyncScope::System;
7289   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7290     return true;
7291 
7292   if (Ordering == AtomicOrdering::Unordered)
7293     return TokError("fence cannot be unordered");
7294   if (Ordering == AtomicOrdering::Monotonic)
7295     return TokError("fence cannot be monotonic");
7296 
7297   Inst = new FenceInst(Context, Ordering, SSID);
7298   return InstNormal;
7299 }
7300 
7301 /// ParseGetElementPtr
7302 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7303 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7304   Value *Ptr = nullptr;
7305   Value *Val = nullptr;
7306   LocTy Loc, EltLoc;
7307 
7308   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7309 
7310   Type *Ty = nullptr;
7311   LocTy ExplicitTypeLoc = Lex.getLoc();
7312   if (ParseType(Ty) ||
7313       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7314       ParseTypeAndValue(Ptr, Loc, PFS))
7315     return true;
7316 
7317   Type *BaseType = Ptr->getType();
7318   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7319   if (!BasePointerType)
7320     return Error(Loc, "base of getelementptr must be a pointer");
7321 
7322   if (Ty != BasePointerType->getElementType())
7323     return Error(ExplicitTypeLoc,
7324                  "explicit pointee type doesn't match operand's pointee type");
7325 
7326   SmallVector<Value*, 16> Indices;
7327   bool AteExtraComma = false;
7328   // GEP returns a vector of pointers if at least one of parameters is a vector.
7329   // All vector parameters should have the same vector width.
7330   ElementCount GEPWidth = BaseType->isVectorTy()
7331                               ? cast<VectorType>(BaseType)->getElementCount()
7332                               : ElementCount(0, false);
7333 
7334   while (EatIfPresent(lltok::comma)) {
7335     if (Lex.getKind() == lltok::MetadataVar) {
7336       AteExtraComma = true;
7337       break;
7338     }
7339     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7340     if (!Val->getType()->isIntOrIntVectorTy())
7341       return Error(EltLoc, "getelementptr index must be an integer");
7342 
7343     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7344       ElementCount ValNumEl = ValVTy->getElementCount();
7345       if (GEPWidth != ElementCount(0, false) && GEPWidth != ValNumEl)
7346         return Error(EltLoc,
7347           "getelementptr vector index has a wrong number of elements");
7348       GEPWidth = ValNumEl;
7349     }
7350     Indices.push_back(Val);
7351   }
7352 
7353   SmallPtrSet<Type*, 4> Visited;
7354   if (!Indices.empty() && !Ty->isSized(&Visited))
7355     return Error(Loc, "base element of getelementptr must be sized");
7356 
7357   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7358     return Error(Loc, "invalid getelementptr indices");
7359   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7360   if (InBounds)
7361     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7362   return AteExtraComma ? InstExtraComma : InstNormal;
7363 }
7364 
7365 /// ParseExtractValue
7366 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7367 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7368   Value *Val; LocTy Loc;
7369   SmallVector<unsigned, 4> Indices;
7370   bool AteExtraComma;
7371   if (ParseTypeAndValue(Val, Loc, PFS) ||
7372       ParseIndexList(Indices, AteExtraComma))
7373     return true;
7374 
7375   if (!Val->getType()->isAggregateType())
7376     return Error(Loc, "extractvalue operand must be aggregate type");
7377 
7378   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7379     return Error(Loc, "invalid indices for extractvalue");
7380   Inst = ExtractValueInst::Create(Val, Indices);
7381   return AteExtraComma ? InstExtraComma : InstNormal;
7382 }
7383 
7384 /// ParseInsertValue
7385 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7386 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7387   Value *Val0, *Val1; LocTy Loc0, Loc1;
7388   SmallVector<unsigned, 4> Indices;
7389   bool AteExtraComma;
7390   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7391       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7392       ParseTypeAndValue(Val1, Loc1, PFS) ||
7393       ParseIndexList(Indices, AteExtraComma))
7394     return true;
7395 
7396   if (!Val0->getType()->isAggregateType())
7397     return Error(Loc0, "insertvalue operand must be aggregate type");
7398 
7399   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7400   if (!IndexedType)
7401     return Error(Loc0, "invalid indices for insertvalue");
7402   if (IndexedType != Val1->getType())
7403     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7404                            getTypeString(Val1->getType()) + "' instead of '" +
7405                            getTypeString(IndexedType) + "'");
7406   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7407   return AteExtraComma ? InstExtraComma : InstNormal;
7408 }
7409 
7410 //===----------------------------------------------------------------------===//
7411 // Embedded metadata.
7412 //===----------------------------------------------------------------------===//
7413 
7414 /// ParseMDNodeVector
7415 ///   ::= { Element (',' Element)* }
7416 /// Element
7417 ///   ::= 'null' | TypeAndValue
7418 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7419   if (ParseToken(lltok::lbrace, "expected '{' here"))
7420     return true;
7421 
7422   // Check for an empty list.
7423   if (EatIfPresent(lltok::rbrace))
7424     return false;
7425 
7426   do {
7427     // Null is a special case since it is typeless.
7428     if (EatIfPresent(lltok::kw_null)) {
7429       Elts.push_back(nullptr);
7430       continue;
7431     }
7432 
7433     Metadata *MD;
7434     if (ParseMetadata(MD, nullptr))
7435       return true;
7436     Elts.push_back(MD);
7437   } while (EatIfPresent(lltok::comma));
7438 
7439   return ParseToken(lltok::rbrace, "expected end of metadata node");
7440 }
7441 
7442 //===----------------------------------------------------------------------===//
7443 // Use-list order directives.
7444 //===----------------------------------------------------------------------===//
7445 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7446                                 SMLoc Loc) {
7447   if (V->use_empty())
7448     return Error(Loc, "value has no uses");
7449 
7450   unsigned NumUses = 0;
7451   SmallDenseMap<const Use *, unsigned, 16> Order;
7452   for (const Use &U : V->uses()) {
7453     if (++NumUses > Indexes.size())
7454       break;
7455     Order[&U] = Indexes[NumUses - 1];
7456   }
7457   if (NumUses < 2)
7458     return Error(Loc, "value only has one use");
7459   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7460     return Error(Loc,
7461                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7462 
7463   V->sortUseList([&](const Use &L, const Use &R) {
7464     return Order.lookup(&L) < Order.lookup(&R);
7465   });
7466   return false;
7467 }
7468 
7469 /// ParseUseListOrderIndexes
7470 ///   ::= '{' uint32 (',' uint32)+ '}'
7471 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7472   SMLoc Loc = Lex.getLoc();
7473   if (ParseToken(lltok::lbrace, "expected '{' here"))
7474     return true;
7475   if (Lex.getKind() == lltok::rbrace)
7476     return Lex.Error("expected non-empty list of uselistorder indexes");
7477 
7478   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7479   // indexes should be distinct numbers in the range [0, size-1], and should
7480   // not be in order.
7481   unsigned Offset = 0;
7482   unsigned Max = 0;
7483   bool IsOrdered = true;
7484   assert(Indexes.empty() && "Expected empty order vector");
7485   do {
7486     unsigned Index;
7487     if (ParseUInt32(Index))
7488       return true;
7489 
7490     // Update consistency checks.
7491     Offset += Index - Indexes.size();
7492     Max = std::max(Max, Index);
7493     IsOrdered &= Index == Indexes.size();
7494 
7495     Indexes.push_back(Index);
7496   } while (EatIfPresent(lltok::comma));
7497 
7498   if (ParseToken(lltok::rbrace, "expected '}' here"))
7499     return true;
7500 
7501   if (Indexes.size() < 2)
7502     return Error(Loc, "expected >= 2 uselistorder indexes");
7503   if (Offset != 0 || Max >= Indexes.size())
7504     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7505   if (IsOrdered)
7506     return Error(Loc, "expected uselistorder indexes to change the order");
7507 
7508   return false;
7509 }
7510 
7511 /// ParseUseListOrder
7512 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7513 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7514   SMLoc Loc = Lex.getLoc();
7515   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7516     return true;
7517 
7518   Value *V;
7519   SmallVector<unsigned, 16> Indexes;
7520   if (ParseTypeAndValue(V, PFS) ||
7521       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7522       ParseUseListOrderIndexes(Indexes))
7523     return true;
7524 
7525   return sortUseListOrder(V, Indexes, Loc);
7526 }
7527 
7528 /// ParseUseListOrderBB
7529 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7530 bool LLParser::ParseUseListOrderBB() {
7531   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7532   SMLoc Loc = Lex.getLoc();
7533   Lex.Lex();
7534 
7535   ValID Fn, Label;
7536   SmallVector<unsigned, 16> Indexes;
7537   if (ParseValID(Fn) ||
7538       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7539       ParseValID(Label) ||
7540       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7541       ParseUseListOrderIndexes(Indexes))
7542     return true;
7543 
7544   // Check the function.
7545   GlobalValue *GV;
7546   if (Fn.Kind == ValID::t_GlobalName)
7547     GV = M->getNamedValue(Fn.StrVal);
7548   else if (Fn.Kind == ValID::t_GlobalID)
7549     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7550   else
7551     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7552   if (!GV)
7553     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7554   auto *F = dyn_cast<Function>(GV);
7555   if (!F)
7556     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7557   if (F->isDeclaration())
7558     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7559 
7560   // Check the basic block.
7561   if (Label.Kind == ValID::t_LocalID)
7562     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7563   if (Label.Kind != ValID::t_LocalName)
7564     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7565   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7566   if (!V)
7567     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7568   if (!isa<BasicBlock>(V))
7569     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7570 
7571   return sortUseListOrder(V, Indexes, Loc);
7572 }
7573 
7574 /// ModuleEntry
7575 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7576 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7577 bool LLParser::ParseModuleEntry(unsigned ID) {
7578   assert(Lex.getKind() == lltok::kw_module);
7579   Lex.Lex();
7580 
7581   std::string Path;
7582   if (ParseToken(lltok::colon, "expected ':' here") ||
7583       ParseToken(lltok::lparen, "expected '(' here") ||
7584       ParseToken(lltok::kw_path, "expected 'path' here") ||
7585       ParseToken(lltok::colon, "expected ':' here") ||
7586       ParseStringConstant(Path) ||
7587       ParseToken(lltok::comma, "expected ',' here") ||
7588       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7589       ParseToken(lltok::colon, "expected ':' here") ||
7590       ParseToken(lltok::lparen, "expected '(' here"))
7591     return true;
7592 
7593   ModuleHash Hash;
7594   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7595       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7596       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7597       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7598       ParseUInt32(Hash[4]))
7599     return true;
7600 
7601   if (ParseToken(lltok::rparen, "expected ')' here") ||
7602       ParseToken(lltok::rparen, "expected ')' here"))
7603     return true;
7604 
7605   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7606   ModuleIdMap[ID] = ModuleEntry->first();
7607 
7608   return false;
7609 }
7610 
7611 /// TypeIdEntry
7612 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7613 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7614   assert(Lex.getKind() == lltok::kw_typeid);
7615   Lex.Lex();
7616 
7617   std::string Name;
7618   if (ParseToken(lltok::colon, "expected ':' here") ||
7619       ParseToken(lltok::lparen, "expected '(' here") ||
7620       ParseToken(lltok::kw_name, "expected 'name' here") ||
7621       ParseToken(lltok::colon, "expected ':' here") ||
7622       ParseStringConstant(Name))
7623     return true;
7624 
7625   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7626   if (ParseToken(lltok::comma, "expected ',' here") ||
7627       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7628     return true;
7629 
7630   // Check if this ID was forward referenced, and if so, update the
7631   // corresponding GUIDs.
7632   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7633   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7634     for (auto TIDRef : FwdRefTIDs->second) {
7635       assert(!*TIDRef.first &&
7636              "Forward referenced type id GUID expected to be 0");
7637       *TIDRef.first = GlobalValue::getGUID(Name);
7638     }
7639     ForwardRefTypeIds.erase(FwdRefTIDs);
7640   }
7641 
7642   return false;
7643 }
7644 
7645 /// TypeIdSummary
7646 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7647 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7648   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7649       ParseToken(lltok::colon, "expected ':' here") ||
7650       ParseToken(lltok::lparen, "expected '(' here") ||
7651       ParseTypeTestResolution(TIS.TTRes))
7652     return true;
7653 
7654   if (EatIfPresent(lltok::comma)) {
7655     // Expect optional wpdResolutions field
7656     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7657       return true;
7658   }
7659 
7660   if (ParseToken(lltok::rparen, "expected ')' here"))
7661     return true;
7662 
7663   return false;
7664 }
7665 
7666 static ValueInfo EmptyVI =
7667     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7668 
7669 /// TypeIdCompatibleVtableEntry
7670 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7671 ///   TypeIdCompatibleVtableInfo
7672 ///   ')'
7673 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) {
7674   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7675   Lex.Lex();
7676 
7677   std::string Name;
7678   if (ParseToken(lltok::colon, "expected ':' here") ||
7679       ParseToken(lltok::lparen, "expected '(' here") ||
7680       ParseToken(lltok::kw_name, "expected 'name' here") ||
7681       ParseToken(lltok::colon, "expected ':' here") ||
7682       ParseStringConstant(Name))
7683     return true;
7684 
7685   TypeIdCompatibleVtableInfo &TI =
7686       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7687   if (ParseToken(lltok::comma, "expected ',' here") ||
7688       ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7689       ParseToken(lltok::colon, "expected ':' here") ||
7690       ParseToken(lltok::lparen, "expected '(' here"))
7691     return true;
7692 
7693   IdToIndexMapType IdToIndexMap;
7694   // Parse each call edge
7695   do {
7696     uint64_t Offset;
7697     if (ParseToken(lltok::lparen, "expected '(' here") ||
7698         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7699         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7700         ParseToken(lltok::comma, "expected ',' here"))
7701       return true;
7702 
7703     LocTy Loc = Lex.getLoc();
7704     unsigned GVId;
7705     ValueInfo VI;
7706     if (ParseGVReference(VI, GVId))
7707       return true;
7708 
7709     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7710     // forward reference. We will save the location of the ValueInfo needing an
7711     // update, but can only do so once the std::vector is finalized.
7712     if (VI == EmptyVI)
7713       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7714     TI.push_back({Offset, VI});
7715 
7716     if (ParseToken(lltok::rparen, "expected ')' in call"))
7717       return true;
7718   } while (EatIfPresent(lltok::comma));
7719 
7720   // Now that the TI vector is finalized, it is safe to save the locations
7721   // of any forward GV references that need updating later.
7722   for (auto I : IdToIndexMap) {
7723     for (auto P : I.second) {
7724       assert(TI[P.first].VTableVI == EmptyVI &&
7725              "Forward referenced ValueInfo expected to be empty");
7726       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7727           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7728       FwdRef.first->second.push_back(
7729           std::make_pair(&TI[P.first].VTableVI, P.second));
7730     }
7731   }
7732 
7733   if (ParseToken(lltok::rparen, "expected ')' here") ||
7734       ParseToken(lltok::rparen, "expected ')' here"))
7735     return true;
7736 
7737   // Check if this ID was forward referenced, and if so, update the
7738   // corresponding GUIDs.
7739   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7740   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7741     for (auto TIDRef : FwdRefTIDs->second) {
7742       assert(!*TIDRef.first &&
7743              "Forward referenced type id GUID expected to be 0");
7744       *TIDRef.first = GlobalValue::getGUID(Name);
7745     }
7746     ForwardRefTypeIds.erase(FwdRefTIDs);
7747   }
7748 
7749   return false;
7750 }
7751 
7752 /// TypeTestResolution
7753 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7754 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7755 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7756 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7757 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7758 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7759   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7760       ParseToken(lltok::colon, "expected ':' here") ||
7761       ParseToken(lltok::lparen, "expected '(' here") ||
7762       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7763       ParseToken(lltok::colon, "expected ':' here"))
7764     return true;
7765 
7766   switch (Lex.getKind()) {
7767   case lltok::kw_unsat:
7768     TTRes.TheKind = TypeTestResolution::Unsat;
7769     break;
7770   case lltok::kw_byteArray:
7771     TTRes.TheKind = TypeTestResolution::ByteArray;
7772     break;
7773   case lltok::kw_inline:
7774     TTRes.TheKind = TypeTestResolution::Inline;
7775     break;
7776   case lltok::kw_single:
7777     TTRes.TheKind = TypeTestResolution::Single;
7778     break;
7779   case lltok::kw_allOnes:
7780     TTRes.TheKind = TypeTestResolution::AllOnes;
7781     break;
7782   default:
7783     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7784   }
7785   Lex.Lex();
7786 
7787   if (ParseToken(lltok::comma, "expected ',' here") ||
7788       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7789       ParseToken(lltok::colon, "expected ':' here") ||
7790       ParseUInt32(TTRes.SizeM1BitWidth))
7791     return true;
7792 
7793   // Parse optional fields
7794   while (EatIfPresent(lltok::comma)) {
7795     switch (Lex.getKind()) {
7796     case lltok::kw_alignLog2:
7797       Lex.Lex();
7798       if (ParseToken(lltok::colon, "expected ':'") ||
7799           ParseUInt64(TTRes.AlignLog2))
7800         return true;
7801       break;
7802     case lltok::kw_sizeM1:
7803       Lex.Lex();
7804       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7805         return true;
7806       break;
7807     case lltok::kw_bitMask: {
7808       unsigned Val;
7809       Lex.Lex();
7810       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7811         return true;
7812       assert(Val <= 0xff);
7813       TTRes.BitMask = (uint8_t)Val;
7814       break;
7815     }
7816     case lltok::kw_inlineBits:
7817       Lex.Lex();
7818       if (ParseToken(lltok::colon, "expected ':'") ||
7819           ParseUInt64(TTRes.InlineBits))
7820         return true;
7821       break;
7822     default:
7823       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7824     }
7825   }
7826 
7827   if (ParseToken(lltok::rparen, "expected ')' here"))
7828     return true;
7829 
7830   return false;
7831 }
7832 
7833 /// OptionalWpdResolutions
7834 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7835 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7836 bool LLParser::ParseOptionalWpdResolutions(
7837     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7838   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7839       ParseToken(lltok::colon, "expected ':' here") ||
7840       ParseToken(lltok::lparen, "expected '(' here"))
7841     return true;
7842 
7843   do {
7844     uint64_t Offset;
7845     WholeProgramDevirtResolution WPDRes;
7846     if (ParseToken(lltok::lparen, "expected '(' here") ||
7847         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7848         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7849         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7850         ParseToken(lltok::rparen, "expected ')' here"))
7851       return true;
7852     WPDResMap[Offset] = WPDRes;
7853   } while (EatIfPresent(lltok::comma));
7854 
7855   if (ParseToken(lltok::rparen, "expected ')' here"))
7856     return true;
7857 
7858   return false;
7859 }
7860 
7861 /// WpdRes
7862 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7863 ///         [',' OptionalResByArg]? ')'
7864 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7865 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7866 ///         [',' OptionalResByArg]? ')'
7867 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7868 ///         [',' OptionalResByArg]? ')'
7869 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7870   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7871       ParseToken(lltok::colon, "expected ':' here") ||
7872       ParseToken(lltok::lparen, "expected '(' here") ||
7873       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7874       ParseToken(lltok::colon, "expected ':' here"))
7875     return true;
7876 
7877   switch (Lex.getKind()) {
7878   case lltok::kw_indir:
7879     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7880     break;
7881   case lltok::kw_singleImpl:
7882     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7883     break;
7884   case lltok::kw_branchFunnel:
7885     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7886     break;
7887   default:
7888     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7889   }
7890   Lex.Lex();
7891 
7892   // Parse optional fields
7893   while (EatIfPresent(lltok::comma)) {
7894     switch (Lex.getKind()) {
7895     case lltok::kw_singleImplName:
7896       Lex.Lex();
7897       if (ParseToken(lltok::colon, "expected ':' here") ||
7898           ParseStringConstant(WPDRes.SingleImplName))
7899         return true;
7900       break;
7901     case lltok::kw_resByArg:
7902       if (ParseOptionalResByArg(WPDRes.ResByArg))
7903         return true;
7904       break;
7905     default:
7906       return Error(Lex.getLoc(),
7907                    "expected optional WholeProgramDevirtResolution field");
7908     }
7909   }
7910 
7911   if (ParseToken(lltok::rparen, "expected ')' here"))
7912     return true;
7913 
7914   return false;
7915 }
7916 
7917 /// OptionalResByArg
7918 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7919 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7920 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7921 ///                  'virtualConstProp' )
7922 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7923 ///                [',' 'bit' ':' UInt32]? ')'
7924 bool LLParser::ParseOptionalResByArg(
7925     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7926         &ResByArg) {
7927   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7928       ParseToken(lltok::colon, "expected ':' here") ||
7929       ParseToken(lltok::lparen, "expected '(' here"))
7930     return true;
7931 
7932   do {
7933     std::vector<uint64_t> Args;
7934     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7935         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7936         ParseToken(lltok::colon, "expected ':' here") ||
7937         ParseToken(lltok::lparen, "expected '(' here") ||
7938         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7939         ParseToken(lltok::colon, "expected ':' here"))
7940       return true;
7941 
7942     WholeProgramDevirtResolution::ByArg ByArg;
7943     switch (Lex.getKind()) {
7944     case lltok::kw_indir:
7945       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7946       break;
7947     case lltok::kw_uniformRetVal:
7948       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7949       break;
7950     case lltok::kw_uniqueRetVal:
7951       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7952       break;
7953     case lltok::kw_virtualConstProp:
7954       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7955       break;
7956     default:
7957       return Error(Lex.getLoc(),
7958                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7959     }
7960     Lex.Lex();
7961 
7962     // Parse optional fields
7963     while (EatIfPresent(lltok::comma)) {
7964       switch (Lex.getKind()) {
7965       case lltok::kw_info:
7966         Lex.Lex();
7967         if (ParseToken(lltok::colon, "expected ':' here") ||
7968             ParseUInt64(ByArg.Info))
7969           return true;
7970         break;
7971       case lltok::kw_byte:
7972         Lex.Lex();
7973         if (ParseToken(lltok::colon, "expected ':' here") ||
7974             ParseUInt32(ByArg.Byte))
7975           return true;
7976         break;
7977       case lltok::kw_bit:
7978         Lex.Lex();
7979         if (ParseToken(lltok::colon, "expected ':' here") ||
7980             ParseUInt32(ByArg.Bit))
7981           return true;
7982         break;
7983       default:
7984         return Error(Lex.getLoc(),
7985                      "expected optional whole program devirt field");
7986       }
7987     }
7988 
7989     if (ParseToken(lltok::rparen, "expected ')' here"))
7990       return true;
7991 
7992     ResByArg[Args] = ByArg;
7993   } while (EatIfPresent(lltok::comma));
7994 
7995   if (ParseToken(lltok::rparen, "expected ')' here"))
7996     return true;
7997 
7998   return false;
7999 }
8000 
8001 /// OptionalResByArg
8002 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8003 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
8004   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
8005       ParseToken(lltok::colon, "expected ':' here") ||
8006       ParseToken(lltok::lparen, "expected '(' here"))
8007     return true;
8008 
8009   do {
8010     uint64_t Val;
8011     if (ParseUInt64(Val))
8012       return true;
8013     Args.push_back(Val);
8014   } while (EatIfPresent(lltok::comma));
8015 
8016   if (ParseToken(lltok::rparen, "expected ')' here"))
8017     return true;
8018 
8019   return false;
8020 }
8021 
8022 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8023 
8024 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8025   bool ReadOnly = Fwd->isReadOnly();
8026   bool WriteOnly = Fwd->isWriteOnly();
8027   assert(!(ReadOnly && WriteOnly));
8028   *Fwd = Resolved;
8029   if (ReadOnly)
8030     Fwd->setReadOnly();
8031   if (WriteOnly)
8032     Fwd->setWriteOnly();
8033 }
8034 
8035 /// Stores the given Name/GUID and associated summary into the Index.
8036 /// Also updates any forward references to the associated entry ID.
8037 void LLParser::AddGlobalValueToIndex(
8038     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8039     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8040   // First create the ValueInfo utilizing the Name or GUID.
8041   ValueInfo VI;
8042   if (GUID != 0) {
8043     assert(Name.empty());
8044     VI = Index->getOrInsertValueInfo(GUID);
8045   } else {
8046     assert(!Name.empty());
8047     if (M) {
8048       auto *GV = M->getNamedValue(Name);
8049       assert(GV);
8050       VI = Index->getOrInsertValueInfo(GV);
8051     } else {
8052       assert(
8053           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8054           "Need a source_filename to compute GUID for local");
8055       GUID = GlobalValue::getGUID(
8056           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8057       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8058     }
8059   }
8060 
8061   // Resolve forward references from calls/refs
8062   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8063   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8064     for (auto VIRef : FwdRefVIs->second) {
8065       assert(VIRef.first->getRef() == FwdVIRef &&
8066              "Forward referenced ValueInfo expected to be empty");
8067       resolveFwdRef(VIRef.first, VI);
8068     }
8069     ForwardRefValueInfos.erase(FwdRefVIs);
8070   }
8071 
8072   // Resolve forward references from aliases
8073   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8074   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8075     for (auto AliaseeRef : FwdRefAliasees->second) {
8076       assert(!AliaseeRef.first->hasAliasee() &&
8077              "Forward referencing alias already has aliasee");
8078       assert(Summary && "Aliasee must be a definition");
8079       AliaseeRef.first->setAliasee(VI, Summary.get());
8080     }
8081     ForwardRefAliasees.erase(FwdRefAliasees);
8082   }
8083 
8084   // Add the summary if one was provided.
8085   if (Summary)
8086     Index->addGlobalValueSummary(VI, std::move(Summary));
8087 
8088   // Save the associated ValueInfo for use in later references by ID.
8089   if (ID == NumberedValueInfos.size())
8090     NumberedValueInfos.push_back(VI);
8091   else {
8092     // Handle non-continuous numbers (to make test simplification easier).
8093     if (ID > NumberedValueInfos.size())
8094       NumberedValueInfos.resize(ID + 1);
8095     NumberedValueInfos[ID] = VI;
8096   }
8097 }
8098 
8099 /// ParseSummaryIndexFlags
8100 ///   ::= 'flags' ':' UInt64
8101 bool LLParser::ParseSummaryIndexFlags() {
8102   assert(Lex.getKind() == lltok::kw_flags);
8103   Lex.Lex();
8104 
8105   if (ParseToken(lltok::colon, "expected ':' here"))
8106     return true;
8107   uint64_t Flags;
8108   if (ParseUInt64(Flags))
8109     return true;
8110   Index->setFlags(Flags);
8111   return false;
8112 }
8113 
8114 /// ParseGVEntry
8115 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8116 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8117 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8118 bool LLParser::ParseGVEntry(unsigned ID) {
8119   assert(Lex.getKind() == lltok::kw_gv);
8120   Lex.Lex();
8121 
8122   if (ParseToken(lltok::colon, "expected ':' here") ||
8123       ParseToken(lltok::lparen, "expected '(' here"))
8124     return true;
8125 
8126   std::string Name;
8127   GlobalValue::GUID GUID = 0;
8128   switch (Lex.getKind()) {
8129   case lltok::kw_name:
8130     Lex.Lex();
8131     if (ParseToken(lltok::colon, "expected ':' here") ||
8132         ParseStringConstant(Name))
8133       return true;
8134     // Can't create GUID/ValueInfo until we have the linkage.
8135     break;
8136   case lltok::kw_guid:
8137     Lex.Lex();
8138     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
8139       return true;
8140     break;
8141   default:
8142     return Error(Lex.getLoc(), "expected name or guid tag");
8143   }
8144 
8145   if (!EatIfPresent(lltok::comma)) {
8146     // No summaries. Wrap up.
8147     if (ParseToken(lltok::rparen, "expected ')' here"))
8148       return true;
8149     // This was created for a call to an external or indirect target.
8150     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8151     // created for indirect calls with VP. A Name with no GUID came from
8152     // an external definition. We pass ExternalLinkage since that is only
8153     // used when the GUID must be computed from Name, and in that case
8154     // the symbol must have external linkage.
8155     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8156                           nullptr);
8157     return false;
8158   }
8159 
8160   // Have a list of summaries
8161   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8162       ParseToken(lltok::colon, "expected ':' here") ||
8163       ParseToken(lltok::lparen, "expected '(' here"))
8164     return true;
8165   do {
8166     switch (Lex.getKind()) {
8167     case lltok::kw_function:
8168       if (ParseFunctionSummary(Name, GUID, ID))
8169         return true;
8170       break;
8171     case lltok::kw_variable:
8172       if (ParseVariableSummary(Name, GUID, ID))
8173         return true;
8174       break;
8175     case lltok::kw_alias:
8176       if (ParseAliasSummary(Name, GUID, ID))
8177         return true;
8178       break;
8179     default:
8180       return Error(Lex.getLoc(), "expected summary type");
8181     }
8182   } while (EatIfPresent(lltok::comma));
8183 
8184   if (ParseToken(lltok::rparen, "expected ')' here") ||
8185       ParseToken(lltok::rparen, "expected ')' here"))
8186     return true;
8187 
8188   return false;
8189 }
8190 
8191 /// FunctionSummary
8192 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8193 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8194 ///         [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
8195 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8196                                     unsigned ID) {
8197   assert(Lex.getKind() == lltok::kw_function);
8198   Lex.Lex();
8199 
8200   StringRef ModulePath;
8201   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8202       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8203       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8204   unsigned InstCount;
8205   std::vector<FunctionSummary::EdgeTy> Calls;
8206   FunctionSummary::TypeIdInfo TypeIdInfo;
8207   std::vector<ValueInfo> Refs;
8208   // Default is all-zeros (conservative values).
8209   FunctionSummary::FFlags FFlags = {};
8210   if (ParseToken(lltok::colon, "expected ':' here") ||
8211       ParseToken(lltok::lparen, "expected '(' here") ||
8212       ParseModuleReference(ModulePath) ||
8213       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8214       ParseToken(lltok::comma, "expected ',' here") ||
8215       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
8216       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
8217     return true;
8218 
8219   // Parse optional fields
8220   while (EatIfPresent(lltok::comma)) {
8221     switch (Lex.getKind()) {
8222     case lltok::kw_funcFlags:
8223       if (ParseOptionalFFlags(FFlags))
8224         return true;
8225       break;
8226     case lltok::kw_calls:
8227       if (ParseOptionalCalls(Calls))
8228         return true;
8229       break;
8230     case lltok::kw_typeIdInfo:
8231       if (ParseOptionalTypeIdInfo(TypeIdInfo))
8232         return true;
8233       break;
8234     case lltok::kw_refs:
8235       if (ParseOptionalRefs(Refs))
8236         return true;
8237       break;
8238     default:
8239       return Error(Lex.getLoc(), "expected optional function summary field");
8240     }
8241   }
8242 
8243   if (ParseToken(lltok::rparen, "expected ')' here"))
8244     return true;
8245 
8246   auto FS = std::make_unique<FunctionSummary>(
8247       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8248       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8249       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8250       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8251       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8252       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
8253 
8254   FS->setModulePath(ModulePath);
8255 
8256   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8257                         ID, std::move(FS));
8258 
8259   return false;
8260 }
8261 
8262 /// VariableSummary
8263 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8264 ///         [',' OptionalRefs]? ')'
8265 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8266                                     unsigned ID) {
8267   assert(Lex.getKind() == lltok::kw_variable);
8268   Lex.Lex();
8269 
8270   StringRef ModulePath;
8271   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8272       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8273       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8274   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8275                                         /* WriteOnly */ false,
8276                                         /* Constant */ false,
8277                                         GlobalObject::VCallVisibilityPublic);
8278   std::vector<ValueInfo> Refs;
8279   VTableFuncList VTableFuncs;
8280   if (ParseToken(lltok::colon, "expected ':' here") ||
8281       ParseToken(lltok::lparen, "expected '(' here") ||
8282       ParseModuleReference(ModulePath) ||
8283       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8284       ParseToken(lltok::comma, "expected ',' here") ||
8285       ParseGVarFlags(GVarFlags))
8286     return true;
8287 
8288   // Parse optional fields
8289   while (EatIfPresent(lltok::comma)) {
8290     switch (Lex.getKind()) {
8291     case lltok::kw_vTableFuncs:
8292       if (ParseOptionalVTableFuncs(VTableFuncs))
8293         return true;
8294       break;
8295     case lltok::kw_refs:
8296       if (ParseOptionalRefs(Refs))
8297         return true;
8298       break;
8299     default:
8300       return Error(Lex.getLoc(), "expected optional variable summary field");
8301     }
8302   }
8303 
8304   if (ParseToken(lltok::rparen, "expected ')' here"))
8305     return true;
8306 
8307   auto GS =
8308       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8309 
8310   GS->setModulePath(ModulePath);
8311   GS->setVTableFuncs(std::move(VTableFuncs));
8312 
8313   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8314                         ID, std::move(GS));
8315 
8316   return false;
8317 }
8318 
8319 /// AliasSummary
8320 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8321 ///         'aliasee' ':' GVReference ')'
8322 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8323                                  unsigned ID) {
8324   assert(Lex.getKind() == lltok::kw_alias);
8325   LocTy Loc = Lex.getLoc();
8326   Lex.Lex();
8327 
8328   StringRef ModulePath;
8329   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8330       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8331       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8332   if (ParseToken(lltok::colon, "expected ':' here") ||
8333       ParseToken(lltok::lparen, "expected '(' here") ||
8334       ParseModuleReference(ModulePath) ||
8335       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8336       ParseToken(lltok::comma, "expected ',' here") ||
8337       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8338       ParseToken(lltok::colon, "expected ':' here"))
8339     return true;
8340 
8341   ValueInfo AliaseeVI;
8342   unsigned GVId;
8343   if (ParseGVReference(AliaseeVI, GVId))
8344     return true;
8345 
8346   if (ParseToken(lltok::rparen, "expected ')' here"))
8347     return true;
8348 
8349   auto AS = std::make_unique<AliasSummary>(GVFlags);
8350 
8351   AS->setModulePath(ModulePath);
8352 
8353   // Record forward reference if the aliasee is not parsed yet.
8354   if (AliaseeVI.getRef() == FwdVIRef) {
8355     auto FwdRef = ForwardRefAliasees.insert(
8356         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8357     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8358   } else {
8359     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8360     assert(Summary && "Aliasee must be a definition");
8361     AS->setAliasee(AliaseeVI, Summary);
8362   }
8363 
8364   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8365                         ID, std::move(AS));
8366 
8367   return false;
8368 }
8369 
8370 /// Flag
8371 ///   ::= [0|1]
8372 bool LLParser::ParseFlag(unsigned &Val) {
8373   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8374     return TokError("expected integer");
8375   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8376   Lex.Lex();
8377   return false;
8378 }
8379 
8380 /// OptionalFFlags
8381 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8382 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8383 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8384 ///        [',' 'noInline' ':' Flag]? ')'
8385 ///        [',' 'alwaysInline' ':' Flag]? ')'
8386 
8387 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8388   assert(Lex.getKind() == lltok::kw_funcFlags);
8389   Lex.Lex();
8390 
8391   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8392       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8393     return true;
8394 
8395   do {
8396     unsigned Val = 0;
8397     switch (Lex.getKind()) {
8398     case lltok::kw_readNone:
8399       Lex.Lex();
8400       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8401         return true;
8402       FFlags.ReadNone = Val;
8403       break;
8404     case lltok::kw_readOnly:
8405       Lex.Lex();
8406       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8407         return true;
8408       FFlags.ReadOnly = Val;
8409       break;
8410     case lltok::kw_noRecurse:
8411       Lex.Lex();
8412       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8413         return true;
8414       FFlags.NoRecurse = Val;
8415       break;
8416     case lltok::kw_returnDoesNotAlias:
8417       Lex.Lex();
8418       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8419         return true;
8420       FFlags.ReturnDoesNotAlias = Val;
8421       break;
8422     case lltok::kw_noInline:
8423       Lex.Lex();
8424       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8425         return true;
8426       FFlags.NoInline = Val;
8427       break;
8428     case lltok::kw_alwaysInline:
8429       Lex.Lex();
8430       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8431         return true;
8432       FFlags.AlwaysInline = Val;
8433       break;
8434     default:
8435       return Error(Lex.getLoc(), "expected function flag type");
8436     }
8437   } while (EatIfPresent(lltok::comma));
8438 
8439   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8440     return true;
8441 
8442   return false;
8443 }
8444 
8445 /// OptionalCalls
8446 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8447 /// Call ::= '(' 'callee' ':' GVReference
8448 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8449 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8450   assert(Lex.getKind() == lltok::kw_calls);
8451   Lex.Lex();
8452 
8453   if (ParseToken(lltok::colon, "expected ':' in calls") |
8454       ParseToken(lltok::lparen, "expected '(' in calls"))
8455     return true;
8456 
8457   IdToIndexMapType IdToIndexMap;
8458   // Parse each call edge
8459   do {
8460     ValueInfo VI;
8461     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8462         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8463         ParseToken(lltok::colon, "expected ':'"))
8464       return true;
8465 
8466     LocTy Loc = Lex.getLoc();
8467     unsigned GVId;
8468     if (ParseGVReference(VI, GVId))
8469       return true;
8470 
8471     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8472     unsigned RelBF = 0;
8473     if (EatIfPresent(lltok::comma)) {
8474       // Expect either hotness or relbf
8475       if (EatIfPresent(lltok::kw_hotness)) {
8476         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8477           return true;
8478       } else {
8479         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8480             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8481           return true;
8482       }
8483     }
8484     // Keep track of the Call array index needing a forward reference.
8485     // We will save the location of the ValueInfo needing an update, but
8486     // can only do so once the std::vector is finalized.
8487     if (VI.getRef() == FwdVIRef)
8488       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8489     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8490 
8491     if (ParseToken(lltok::rparen, "expected ')' in call"))
8492       return true;
8493   } while (EatIfPresent(lltok::comma));
8494 
8495   // Now that the Calls vector is finalized, it is safe to save the locations
8496   // of any forward GV references that need updating later.
8497   for (auto I : IdToIndexMap) {
8498     for (auto P : I.second) {
8499       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8500              "Forward referenced ValueInfo expected to be empty");
8501       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8502           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8503       FwdRef.first->second.push_back(
8504           std::make_pair(&Calls[P.first].first, P.second));
8505     }
8506   }
8507 
8508   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8509     return true;
8510 
8511   return false;
8512 }
8513 
8514 /// Hotness
8515 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8516 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8517   switch (Lex.getKind()) {
8518   case lltok::kw_unknown:
8519     Hotness = CalleeInfo::HotnessType::Unknown;
8520     break;
8521   case lltok::kw_cold:
8522     Hotness = CalleeInfo::HotnessType::Cold;
8523     break;
8524   case lltok::kw_none:
8525     Hotness = CalleeInfo::HotnessType::None;
8526     break;
8527   case lltok::kw_hot:
8528     Hotness = CalleeInfo::HotnessType::Hot;
8529     break;
8530   case lltok::kw_critical:
8531     Hotness = CalleeInfo::HotnessType::Critical;
8532     break;
8533   default:
8534     return Error(Lex.getLoc(), "invalid call edge hotness");
8535   }
8536   Lex.Lex();
8537   return false;
8538 }
8539 
8540 /// OptionalVTableFuncs
8541 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8542 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8543 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8544   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8545   Lex.Lex();
8546 
8547   if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") |
8548       ParseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8549     return true;
8550 
8551   IdToIndexMapType IdToIndexMap;
8552   // Parse each virtual function pair
8553   do {
8554     ValueInfo VI;
8555     if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8556         ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8557         ParseToken(lltok::colon, "expected ':'"))
8558       return true;
8559 
8560     LocTy Loc = Lex.getLoc();
8561     unsigned GVId;
8562     if (ParseGVReference(VI, GVId))
8563       return true;
8564 
8565     uint64_t Offset;
8566     if (ParseToken(lltok::comma, "expected comma") ||
8567         ParseToken(lltok::kw_offset, "expected offset") ||
8568         ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset))
8569       return true;
8570 
8571     // Keep track of the VTableFuncs array index needing a forward reference.
8572     // We will save the location of the ValueInfo needing an update, but
8573     // can only do so once the std::vector is finalized.
8574     if (VI == EmptyVI)
8575       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8576     VTableFuncs.push_back({VI, Offset});
8577 
8578     if (ParseToken(lltok::rparen, "expected ')' in vTableFunc"))
8579       return true;
8580   } while (EatIfPresent(lltok::comma));
8581 
8582   // Now that the VTableFuncs vector is finalized, it is safe to save the
8583   // locations of any forward GV references that need updating later.
8584   for (auto I : IdToIndexMap) {
8585     for (auto P : I.second) {
8586       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8587              "Forward referenced ValueInfo expected to be empty");
8588       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8589           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8590       FwdRef.first->second.push_back(
8591           std::make_pair(&VTableFuncs[P.first].FuncVI, P.second));
8592     }
8593   }
8594 
8595   if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8596     return true;
8597 
8598   return false;
8599 }
8600 
8601 /// OptionalRefs
8602 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8603 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8604   assert(Lex.getKind() == lltok::kw_refs);
8605   Lex.Lex();
8606 
8607   if (ParseToken(lltok::colon, "expected ':' in refs") |
8608       ParseToken(lltok::lparen, "expected '(' in refs"))
8609     return true;
8610 
8611   struct ValueContext {
8612     ValueInfo VI;
8613     unsigned GVId;
8614     LocTy Loc;
8615   };
8616   std::vector<ValueContext> VContexts;
8617   // Parse each ref edge
8618   do {
8619     ValueContext VC;
8620     VC.Loc = Lex.getLoc();
8621     if (ParseGVReference(VC.VI, VC.GVId))
8622       return true;
8623     VContexts.push_back(VC);
8624   } while (EatIfPresent(lltok::comma));
8625 
8626   // Sort value contexts so that ones with writeonly
8627   // and readonly ValueInfo  are at the end of VContexts vector.
8628   // See FunctionSummary::specialRefCounts()
8629   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8630     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8631   });
8632 
8633   IdToIndexMapType IdToIndexMap;
8634   for (auto &VC : VContexts) {
8635     // Keep track of the Refs array index needing a forward reference.
8636     // We will save the location of the ValueInfo needing an update, but
8637     // can only do so once the std::vector is finalized.
8638     if (VC.VI.getRef() == FwdVIRef)
8639       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8640     Refs.push_back(VC.VI);
8641   }
8642 
8643   // Now that the Refs vector is finalized, it is safe to save the locations
8644   // of any forward GV references that need updating later.
8645   for (auto I : IdToIndexMap) {
8646     for (auto P : I.second) {
8647       assert(Refs[P.first].getRef() == FwdVIRef &&
8648              "Forward referenced ValueInfo expected to be empty");
8649       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8650           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8651       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8652     }
8653   }
8654 
8655   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8656     return true;
8657 
8658   return false;
8659 }
8660 
8661 /// OptionalTypeIdInfo
8662 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8663 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8664 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8665 bool LLParser::ParseOptionalTypeIdInfo(
8666     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8667   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8668   Lex.Lex();
8669 
8670   if (ParseToken(lltok::colon, "expected ':' here") ||
8671       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8672     return true;
8673 
8674   do {
8675     switch (Lex.getKind()) {
8676     case lltok::kw_typeTests:
8677       if (ParseTypeTests(TypeIdInfo.TypeTests))
8678         return true;
8679       break;
8680     case lltok::kw_typeTestAssumeVCalls:
8681       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8682                            TypeIdInfo.TypeTestAssumeVCalls))
8683         return true;
8684       break;
8685     case lltok::kw_typeCheckedLoadVCalls:
8686       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8687                            TypeIdInfo.TypeCheckedLoadVCalls))
8688         return true;
8689       break;
8690     case lltok::kw_typeTestAssumeConstVCalls:
8691       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8692                               TypeIdInfo.TypeTestAssumeConstVCalls))
8693         return true;
8694       break;
8695     case lltok::kw_typeCheckedLoadConstVCalls:
8696       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8697                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8698         return true;
8699       break;
8700     default:
8701       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8702     }
8703   } while (EatIfPresent(lltok::comma));
8704 
8705   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8706     return true;
8707 
8708   return false;
8709 }
8710 
8711 /// TypeTests
8712 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8713 ///         [',' (SummaryID | UInt64)]* ')'
8714 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8715   assert(Lex.getKind() == lltok::kw_typeTests);
8716   Lex.Lex();
8717 
8718   if (ParseToken(lltok::colon, "expected ':' here") ||
8719       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8720     return true;
8721 
8722   IdToIndexMapType IdToIndexMap;
8723   do {
8724     GlobalValue::GUID GUID = 0;
8725     if (Lex.getKind() == lltok::SummaryID) {
8726       unsigned ID = Lex.getUIntVal();
8727       LocTy Loc = Lex.getLoc();
8728       // Keep track of the TypeTests array index needing a forward reference.
8729       // We will save the location of the GUID needing an update, but
8730       // can only do so once the std::vector is finalized.
8731       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8732       Lex.Lex();
8733     } else if (ParseUInt64(GUID))
8734       return true;
8735     TypeTests.push_back(GUID);
8736   } while (EatIfPresent(lltok::comma));
8737 
8738   // Now that the TypeTests vector is finalized, it is safe to save the
8739   // locations of any forward GV references that need updating later.
8740   for (auto I : IdToIndexMap) {
8741     for (auto P : I.second) {
8742       assert(TypeTests[P.first] == 0 &&
8743              "Forward referenced type id GUID expected to be 0");
8744       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8745           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8746       FwdRef.first->second.push_back(
8747           std::make_pair(&TypeTests[P.first], P.second));
8748     }
8749   }
8750 
8751   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8752     return true;
8753 
8754   return false;
8755 }
8756 
8757 /// VFuncIdList
8758 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8759 bool LLParser::ParseVFuncIdList(
8760     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8761   assert(Lex.getKind() == Kind);
8762   Lex.Lex();
8763 
8764   if (ParseToken(lltok::colon, "expected ':' here") ||
8765       ParseToken(lltok::lparen, "expected '(' here"))
8766     return true;
8767 
8768   IdToIndexMapType IdToIndexMap;
8769   do {
8770     FunctionSummary::VFuncId VFuncId;
8771     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8772       return true;
8773     VFuncIdList.push_back(VFuncId);
8774   } while (EatIfPresent(lltok::comma));
8775 
8776   if (ParseToken(lltok::rparen, "expected ')' here"))
8777     return true;
8778 
8779   // Now that the VFuncIdList vector is finalized, it is safe to save the
8780   // locations of any forward GV references that need updating later.
8781   for (auto I : IdToIndexMap) {
8782     for (auto P : I.second) {
8783       assert(VFuncIdList[P.first].GUID == 0 &&
8784              "Forward referenced type id GUID expected to be 0");
8785       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8786           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8787       FwdRef.first->second.push_back(
8788           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8789     }
8790   }
8791 
8792   return false;
8793 }
8794 
8795 /// ConstVCallList
8796 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8797 bool LLParser::ParseConstVCallList(
8798     lltok::Kind Kind,
8799     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8800   assert(Lex.getKind() == Kind);
8801   Lex.Lex();
8802 
8803   if (ParseToken(lltok::colon, "expected ':' here") ||
8804       ParseToken(lltok::lparen, "expected '(' here"))
8805     return true;
8806 
8807   IdToIndexMapType IdToIndexMap;
8808   do {
8809     FunctionSummary::ConstVCall ConstVCall;
8810     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8811       return true;
8812     ConstVCallList.push_back(ConstVCall);
8813   } while (EatIfPresent(lltok::comma));
8814 
8815   if (ParseToken(lltok::rparen, "expected ')' here"))
8816     return true;
8817 
8818   // Now that the ConstVCallList vector is finalized, it is safe to save the
8819   // locations of any forward GV references that need updating later.
8820   for (auto I : IdToIndexMap) {
8821     for (auto P : I.second) {
8822       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8823              "Forward referenced type id GUID expected to be 0");
8824       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8825           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8826       FwdRef.first->second.push_back(
8827           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8828     }
8829   }
8830 
8831   return false;
8832 }
8833 
8834 /// ConstVCall
8835 ///   ::= '(' VFuncId ',' Args ')'
8836 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8837                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8838   if (ParseToken(lltok::lparen, "expected '(' here") ||
8839       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8840     return true;
8841 
8842   if (EatIfPresent(lltok::comma))
8843     if (ParseArgs(ConstVCall.Args))
8844       return true;
8845 
8846   if (ParseToken(lltok::rparen, "expected ')' here"))
8847     return true;
8848 
8849   return false;
8850 }
8851 
8852 /// VFuncId
8853 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8854 ///         'offset' ':' UInt64 ')'
8855 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8856                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
8857   assert(Lex.getKind() == lltok::kw_vFuncId);
8858   Lex.Lex();
8859 
8860   if (ParseToken(lltok::colon, "expected ':' here") ||
8861       ParseToken(lltok::lparen, "expected '(' here"))
8862     return true;
8863 
8864   if (Lex.getKind() == lltok::SummaryID) {
8865     VFuncId.GUID = 0;
8866     unsigned ID = Lex.getUIntVal();
8867     LocTy Loc = Lex.getLoc();
8868     // Keep track of the array index needing a forward reference.
8869     // We will save the location of the GUID needing an update, but
8870     // can only do so once the caller's std::vector is finalized.
8871     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8872     Lex.Lex();
8873   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8874              ParseToken(lltok::colon, "expected ':' here") ||
8875              ParseUInt64(VFuncId.GUID))
8876     return true;
8877 
8878   if (ParseToken(lltok::comma, "expected ',' here") ||
8879       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8880       ParseToken(lltok::colon, "expected ':' here") ||
8881       ParseUInt64(VFuncId.Offset) ||
8882       ParseToken(lltok::rparen, "expected ')' here"))
8883     return true;
8884 
8885   return false;
8886 }
8887 
8888 /// GVFlags
8889 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8890 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8891 ///         'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
8892 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8893   assert(Lex.getKind() == lltok::kw_flags);
8894   Lex.Lex();
8895 
8896   if (ParseToken(lltok::colon, "expected ':' here") ||
8897       ParseToken(lltok::lparen, "expected '(' here"))
8898     return true;
8899 
8900   do {
8901     unsigned Flag = 0;
8902     switch (Lex.getKind()) {
8903     case lltok::kw_linkage:
8904       Lex.Lex();
8905       if (ParseToken(lltok::colon, "expected ':'"))
8906         return true;
8907       bool HasLinkage;
8908       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8909       assert(HasLinkage && "Linkage not optional in summary entry");
8910       Lex.Lex();
8911       break;
8912     case lltok::kw_notEligibleToImport:
8913       Lex.Lex();
8914       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8915         return true;
8916       GVFlags.NotEligibleToImport = Flag;
8917       break;
8918     case lltok::kw_live:
8919       Lex.Lex();
8920       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8921         return true;
8922       GVFlags.Live = Flag;
8923       break;
8924     case lltok::kw_dsoLocal:
8925       Lex.Lex();
8926       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8927         return true;
8928       GVFlags.DSOLocal = Flag;
8929       break;
8930     case lltok::kw_canAutoHide:
8931       Lex.Lex();
8932       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8933         return true;
8934       GVFlags.CanAutoHide = Flag;
8935       break;
8936     default:
8937       return Error(Lex.getLoc(), "expected gv flag type");
8938     }
8939   } while (EatIfPresent(lltok::comma));
8940 
8941   if (ParseToken(lltok::rparen, "expected ')' here"))
8942     return true;
8943 
8944   return false;
8945 }
8946 
8947 /// GVarFlags
8948 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
8949 ///                      ',' 'writeonly' ':' Flag
8950 ///                      ',' 'constant' ':' Flag ')'
8951 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8952   assert(Lex.getKind() == lltok::kw_varFlags);
8953   Lex.Lex();
8954 
8955   if (ParseToken(lltok::colon, "expected ':' here") ||
8956       ParseToken(lltok::lparen, "expected '(' here"))
8957     return true;
8958 
8959   auto ParseRest = [this](unsigned int &Val) {
8960     Lex.Lex();
8961     if (ParseToken(lltok::colon, "expected ':'"))
8962       return true;
8963     return ParseFlag(Val);
8964   };
8965 
8966   do {
8967     unsigned Flag = 0;
8968     switch (Lex.getKind()) {
8969     case lltok::kw_readonly:
8970       if (ParseRest(Flag))
8971         return true;
8972       GVarFlags.MaybeReadOnly = Flag;
8973       break;
8974     case lltok::kw_writeonly:
8975       if (ParseRest(Flag))
8976         return true;
8977       GVarFlags.MaybeWriteOnly = Flag;
8978       break;
8979     case lltok::kw_constant:
8980       if (ParseRest(Flag))
8981         return true;
8982       GVarFlags.Constant = Flag;
8983       break;
8984     case lltok::kw_vcall_visibility:
8985       if (ParseRest(Flag))
8986         return true;
8987       GVarFlags.VCallVisibility = Flag;
8988       break;
8989     default:
8990       return Error(Lex.getLoc(), "expected gvar flag type");
8991     }
8992   } while (EatIfPresent(lltok::comma));
8993   return ParseToken(lltok::rparen, "expected ')' here");
8994 }
8995 
8996 /// ModuleReference
8997 ///   ::= 'module' ':' UInt
8998 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8999   // Parse module id.
9000   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
9001       ParseToken(lltok::colon, "expected ':' here") ||
9002       ParseToken(lltok::SummaryID, "expected module ID"))
9003     return true;
9004 
9005   unsigned ModuleID = Lex.getUIntVal();
9006   auto I = ModuleIdMap.find(ModuleID);
9007   // We should have already parsed all module IDs
9008   assert(I != ModuleIdMap.end());
9009   ModulePath = I->second;
9010   return false;
9011 }
9012 
9013 /// GVReference
9014 ///   ::= SummaryID
9015 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
9016   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9017   if (!ReadOnly)
9018     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9019   if (ParseToken(lltok::SummaryID, "expected GV ID"))
9020     return true;
9021 
9022   GVId = Lex.getUIntVal();
9023   // Check if we already have a VI for this GV
9024   if (GVId < NumberedValueInfos.size()) {
9025     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9026     VI = NumberedValueInfos[GVId];
9027   } else
9028     // We will create a forward reference to the stored location.
9029     VI = ValueInfo(false, FwdVIRef);
9030 
9031   if (ReadOnly)
9032     VI.setReadOnly();
9033   if (WriteOnly)
9034     VI.setWriteOnly();
9035   return false;
9036 }
9037