1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/IR/ValueSymbolTable.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/SaveAndRestore.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstring>
50 #include <iterator>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 static std::string getTypeString(Type *T) {
56   std::string Result;
57   raw_string_ostream Tmp(Result);
58   Tmp << *T;
59   return Tmp.str();
60 }
61 
62 /// Run: module ::= toplevelentity*
63 bool LLParser::Run(bool UpgradeDebugInfo,
64                    DataLayoutCallbackTy DataLayoutCallback) {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   if (M) {
74     if (parseTargetDefinitions())
75       return true;
76 
77     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
78       M->setDataLayout(*LayoutOverride);
79   }
80 
81   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
82          validateEndOfIndex();
83 }
84 
85 bool LLParser::parseStandaloneConstantValue(Constant *&C,
86                                             const SlotMapping *Slots) {
87   restoreParsingState(Slots);
88   Lex.Lex();
89 
90   Type *Ty = nullptr;
91   if (parseType(Ty) || parseConstantValue(Ty, C))
92     return true;
93   if (Lex.getKind() != lltok::Eof)
94     return error(Lex.getLoc(), "expected end of string");
95   return false;
96 }
97 
98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
99                                     const SlotMapping *Slots) {
100   restoreParsingState(Slots);
101   Lex.Lex();
102 
103   Read = 0;
104   SMLoc Start = Lex.getLoc();
105   Ty = nullptr;
106   if (parseType(Ty))
107     return true;
108   SMLoc End = Lex.getLoc();
109   Read = End.getPointer() - Start.getPointer();
110 
111   return false;
112 }
113 
114 void LLParser::restoreParsingState(const SlotMapping *Slots) {
115   if (!Slots)
116     return;
117   NumberedVals = Slots->GlobalValues;
118   NumberedMetadata = Slots->MetadataNodes;
119   for (const auto &I : Slots->NamedTypes)
120     NamedTypes.insert(
121         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
122   for (const auto &I : Slots->Types)
123     NumberedTypes.insert(
124         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
125 }
126 
127 /// validateEndOfModule - Do final validity and basic correctness checks at the
128 /// end of the module.
129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
130   if (!M)
131     return false;
132   // Handle any function attribute group forward references.
133   for (const auto &RAG : ForwardRefAttrGroups) {
134     Value *V = RAG.first;
135     const std::vector<unsigned> &Attrs = RAG.second;
136     AttrBuilder B(Context);
137 
138     for (const auto &Attr : Attrs) {
139       auto R = NumberedAttrBuilders.find(Attr);
140       if (R != NumberedAttrBuilders.end())
141         B.merge(R->second);
142     }
143 
144     if (Function *Fn = dyn_cast<Function>(V)) {
145       AttributeList AS = Fn->getAttributes();
146       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
147       AS = AS.removeFnAttributes(Context);
148 
149       FnAttrs.merge(B);
150 
151       // If the alignment was parsed as an attribute, move to the alignment
152       // field.
153       if (FnAttrs.hasAlignmentAttr()) {
154         Fn->setAlignment(FnAttrs.getAlignment());
155         FnAttrs.removeAttribute(Attribute::Alignment);
156       }
157 
158       AS = AS.addFnAttributes(Context, FnAttrs);
159       Fn->setAttributes(AS);
160     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
161       AttributeList AS = CI->getAttributes();
162       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
163       AS = AS.removeFnAttributes(Context);
164       FnAttrs.merge(B);
165       AS = AS.addFnAttributes(Context, FnAttrs);
166       CI->setAttributes(AS);
167     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
168       AttributeList AS = II->getAttributes();
169       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
170       AS = AS.removeFnAttributes(Context);
171       FnAttrs.merge(B);
172       AS = AS.addFnAttributes(Context, FnAttrs);
173       II->setAttributes(AS);
174     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
175       AttributeList AS = CBI->getAttributes();
176       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
177       AS = AS.removeFnAttributes(Context);
178       FnAttrs.merge(B);
179       AS = AS.addFnAttributes(Context, FnAttrs);
180       CBI->setAttributes(AS);
181     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
182       AttrBuilder Attrs(M->getContext(), GV->getAttributes());
183       Attrs.merge(B);
184       GV->setAttributes(AttributeSet::get(Context,Attrs));
185     } else {
186       llvm_unreachable("invalid object with forward attribute group reference");
187     }
188   }
189 
190   // If there are entries in ForwardRefBlockAddresses at this point, the
191   // function was never defined.
192   if (!ForwardRefBlockAddresses.empty())
193     return error(ForwardRefBlockAddresses.begin()->first.Loc,
194                  "expected function name in blockaddress");
195 
196   for (const auto &NT : NumberedTypes)
197     if (NT.second.second.isValid())
198       return error(NT.second.second,
199                    "use of undefined type '%" + Twine(NT.first) + "'");
200 
201   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
202        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
203     if (I->second.second.isValid())
204       return error(I->second.second,
205                    "use of undefined type named '" + I->getKey() + "'");
206 
207   if (!ForwardRefComdats.empty())
208     return error(ForwardRefComdats.begin()->second,
209                  "use of undefined comdat '$" +
210                      ForwardRefComdats.begin()->first + "'");
211 
212   if (!ForwardRefVals.empty())
213     return error(ForwardRefVals.begin()->second.second,
214                  "use of undefined value '@" + ForwardRefVals.begin()->first +
215                      "'");
216 
217   if (!ForwardRefValIDs.empty())
218     return error(ForwardRefValIDs.begin()->second.second,
219                  "use of undefined value '@" +
220                      Twine(ForwardRefValIDs.begin()->first) + "'");
221 
222   if (!ForwardRefMDNodes.empty())
223     return error(ForwardRefMDNodes.begin()->second.second,
224                  "use of undefined metadata '!" +
225                      Twine(ForwardRefMDNodes.begin()->first) + "'");
226 
227   // Resolve metadata cycles.
228   for (auto &N : NumberedMetadata) {
229     if (N.second && !N.second->isResolved())
230       N.second->resolveCycles();
231   }
232 
233   for (auto *Inst : InstsWithTBAATag) {
234     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
235     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
236     auto *UpgradedMD = UpgradeTBAANode(*MD);
237     if (MD != UpgradedMD)
238       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
239   }
240 
241   // Look for intrinsic functions and CallInst that need to be upgraded.  We use
242   // make_early_inc_range here because we may remove some functions.
243   for (Function &F : llvm::make_early_inc_range(*M))
244     UpgradeCallsToIntrinsic(&F);
245 
246   // Some types could be renamed during loading if several modules are
247   // loaded in the same LLVMContext (LTO scenario). In this case we should
248   // remangle intrinsics names as well.
249   for (Function &F : llvm::make_early_inc_range(*M)) {
250     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) {
251       F.replaceAllUsesWith(Remangled.getValue());
252       F.eraseFromParent();
253     }
254   }
255 
256   if (UpgradeDebugInfo)
257     llvm::UpgradeDebugInfo(*M);
258 
259   UpgradeModuleFlags(*M);
260   UpgradeSectionAttributes(*M);
261 
262   if (!Slots)
263     return false;
264   // Initialize the slot mapping.
265   // Because by this point we've parsed and validated everything, we can "steal"
266   // the mapping from LLParser as it doesn't need it anymore.
267   Slots->GlobalValues = std::move(NumberedVals);
268   Slots->MetadataNodes = std::move(NumberedMetadata);
269   for (const auto &I : NamedTypes)
270     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
271   for (const auto &I : NumberedTypes)
272     Slots->Types.insert(std::make_pair(I.first, I.second.first));
273 
274   return false;
275 }
276 
277 /// Do final validity and basic correctness checks at the end of the index.
278 bool LLParser::validateEndOfIndex() {
279   if (!Index)
280     return false;
281 
282   if (!ForwardRefValueInfos.empty())
283     return error(ForwardRefValueInfos.begin()->second.front().second,
284                  "use of undefined summary '^" +
285                      Twine(ForwardRefValueInfos.begin()->first) + "'");
286 
287   if (!ForwardRefAliasees.empty())
288     return error(ForwardRefAliasees.begin()->second.front().second,
289                  "use of undefined summary '^" +
290                      Twine(ForwardRefAliasees.begin()->first) + "'");
291 
292   if (!ForwardRefTypeIds.empty())
293     return error(ForwardRefTypeIds.begin()->second.front().second,
294                  "use of undefined type id summary '^" +
295                      Twine(ForwardRefTypeIds.begin()->first) + "'");
296 
297   return false;
298 }
299 
300 //===----------------------------------------------------------------------===//
301 // Top-Level Entities
302 //===----------------------------------------------------------------------===//
303 
304 bool LLParser::parseTargetDefinitions() {
305   while (true) {
306     switch (Lex.getKind()) {
307     case lltok::kw_target:
308       if (parseTargetDefinition())
309         return true;
310       break;
311     case lltok::kw_source_filename:
312       if (parseSourceFileName())
313         return true;
314       break;
315     default:
316       return false;
317     }
318   }
319 }
320 
321 bool LLParser::parseTopLevelEntities() {
322   // If there is no Module, then parse just the summary index entries.
323   if (!M) {
324     while (true) {
325       switch (Lex.getKind()) {
326       case lltok::Eof:
327         return false;
328       case lltok::SummaryID:
329         if (parseSummaryEntry())
330           return true;
331         break;
332       case lltok::kw_source_filename:
333         if (parseSourceFileName())
334           return true;
335         break;
336       default:
337         // Skip everything else
338         Lex.Lex();
339       }
340     }
341   }
342   while (true) {
343     switch (Lex.getKind()) {
344     default:
345       return tokError("expected top-level entity");
346     case lltok::Eof: return false;
347     case lltok::kw_declare:
348       if (parseDeclare())
349         return true;
350       break;
351     case lltok::kw_define:
352       if (parseDefine())
353         return true;
354       break;
355     case lltok::kw_module:
356       if (parseModuleAsm())
357         return true;
358       break;
359     case lltok::LocalVarID:
360       if (parseUnnamedType())
361         return true;
362       break;
363     case lltok::LocalVar:
364       if (parseNamedType())
365         return true;
366       break;
367     case lltok::GlobalID:
368       if (parseUnnamedGlobal())
369         return true;
370       break;
371     case lltok::GlobalVar:
372       if (parseNamedGlobal())
373         return true;
374       break;
375     case lltok::ComdatVar:  if (parseComdat()) return true; break;
376     case lltok::exclaim:
377       if (parseStandaloneMetadata())
378         return true;
379       break;
380     case lltok::SummaryID:
381       if (parseSummaryEntry())
382         return true;
383       break;
384     case lltok::MetadataVar:
385       if (parseNamedMetadata())
386         return true;
387       break;
388     case lltok::kw_attributes:
389       if (parseUnnamedAttrGrp())
390         return true;
391       break;
392     case lltok::kw_uselistorder:
393       if (parseUseListOrder())
394         return true;
395       break;
396     case lltok::kw_uselistorder_bb:
397       if (parseUseListOrderBB())
398         return true;
399       break;
400     }
401   }
402 }
403 
404 /// toplevelentity
405 ///   ::= 'module' 'asm' STRINGCONSTANT
406 bool LLParser::parseModuleAsm() {
407   assert(Lex.getKind() == lltok::kw_module);
408   Lex.Lex();
409 
410   std::string AsmStr;
411   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
412       parseStringConstant(AsmStr))
413     return true;
414 
415   M->appendModuleInlineAsm(AsmStr);
416   return false;
417 }
418 
419 /// toplevelentity
420 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
421 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
422 bool LLParser::parseTargetDefinition() {
423   assert(Lex.getKind() == lltok::kw_target);
424   std::string Str;
425   switch (Lex.Lex()) {
426   default:
427     return tokError("unknown target property");
428   case lltok::kw_triple:
429     Lex.Lex();
430     if (parseToken(lltok::equal, "expected '=' after target triple") ||
431         parseStringConstant(Str))
432       return true;
433     M->setTargetTriple(Str);
434     return false;
435   case lltok::kw_datalayout:
436     Lex.Lex();
437     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
438         parseStringConstant(Str))
439       return true;
440     M->setDataLayout(Str);
441     return false;
442   }
443 }
444 
445 /// toplevelentity
446 ///   ::= 'source_filename' '=' STRINGCONSTANT
447 bool LLParser::parseSourceFileName() {
448   assert(Lex.getKind() == lltok::kw_source_filename);
449   Lex.Lex();
450   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
451       parseStringConstant(SourceFileName))
452     return true;
453   if (M)
454     M->setSourceFileName(SourceFileName);
455   return false;
456 }
457 
458 /// parseUnnamedType:
459 ///   ::= LocalVarID '=' 'type' type
460 bool LLParser::parseUnnamedType() {
461   LocTy TypeLoc = Lex.getLoc();
462   unsigned TypeID = Lex.getUIntVal();
463   Lex.Lex(); // eat LocalVarID;
464 
465   if (parseToken(lltok::equal, "expected '=' after name") ||
466       parseToken(lltok::kw_type, "expected 'type' after '='"))
467     return true;
468 
469   Type *Result = nullptr;
470   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
471     return true;
472 
473   if (!isa<StructType>(Result)) {
474     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
475     if (Entry.first)
476       return error(TypeLoc, "non-struct types may not be recursive");
477     Entry.first = Result;
478     Entry.second = SMLoc();
479   }
480 
481   return false;
482 }
483 
484 /// toplevelentity
485 ///   ::= LocalVar '=' 'type' type
486 bool LLParser::parseNamedType() {
487   std::string Name = Lex.getStrVal();
488   LocTy NameLoc = Lex.getLoc();
489   Lex.Lex();  // eat LocalVar.
490 
491   if (parseToken(lltok::equal, "expected '=' after name") ||
492       parseToken(lltok::kw_type, "expected 'type' after name"))
493     return true;
494 
495   Type *Result = nullptr;
496   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
497     return true;
498 
499   if (!isa<StructType>(Result)) {
500     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
501     if (Entry.first)
502       return error(NameLoc, "non-struct types may not be recursive");
503     Entry.first = Result;
504     Entry.second = SMLoc();
505   }
506 
507   return false;
508 }
509 
510 /// toplevelentity
511 ///   ::= 'declare' FunctionHeader
512 bool LLParser::parseDeclare() {
513   assert(Lex.getKind() == lltok::kw_declare);
514   Lex.Lex();
515 
516   std::vector<std::pair<unsigned, MDNode *>> MDs;
517   while (Lex.getKind() == lltok::MetadataVar) {
518     unsigned MDK;
519     MDNode *N;
520     if (parseMetadataAttachment(MDK, N))
521       return true;
522     MDs.push_back({MDK, N});
523   }
524 
525   Function *F;
526   if (parseFunctionHeader(F, false))
527     return true;
528   for (auto &MD : MDs)
529     F->addMetadata(MD.first, *MD.second);
530   return false;
531 }
532 
533 /// toplevelentity
534 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
535 bool LLParser::parseDefine() {
536   assert(Lex.getKind() == lltok::kw_define);
537   Lex.Lex();
538 
539   Function *F;
540   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
541          parseFunctionBody(*F);
542 }
543 
544 /// parseGlobalType
545 ///   ::= 'constant'
546 ///   ::= 'global'
547 bool LLParser::parseGlobalType(bool &IsConstant) {
548   if (Lex.getKind() == lltok::kw_constant)
549     IsConstant = true;
550   else if (Lex.getKind() == lltok::kw_global)
551     IsConstant = false;
552   else {
553     IsConstant = false;
554     return tokError("expected 'global' or 'constant'");
555   }
556   Lex.Lex();
557   return false;
558 }
559 
560 bool LLParser::parseOptionalUnnamedAddr(
561     GlobalVariable::UnnamedAddr &UnnamedAddr) {
562   if (EatIfPresent(lltok::kw_unnamed_addr))
563     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
564   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
565     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
566   else
567     UnnamedAddr = GlobalValue::UnnamedAddr::None;
568   return false;
569 }
570 
571 /// parseUnnamedGlobal:
572 ///   OptionalVisibility (ALIAS | IFUNC) ...
573 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
574 ///   OptionalDLLStorageClass
575 ///                                                     ...   -> global variable
576 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
577 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
578 ///   OptionalVisibility
579 ///                OptionalDLLStorageClass
580 ///                                                     ...   -> global variable
581 bool LLParser::parseUnnamedGlobal() {
582   unsigned VarID = NumberedVals.size();
583   std::string Name;
584   LocTy NameLoc = Lex.getLoc();
585 
586   // Handle the GlobalID form.
587   if (Lex.getKind() == lltok::GlobalID) {
588     if (Lex.getUIntVal() != VarID)
589       return error(Lex.getLoc(),
590                    "variable expected to be numbered '%" + Twine(VarID) + "'");
591     Lex.Lex(); // eat GlobalID;
592 
593     if (parseToken(lltok::equal, "expected '=' after name"))
594       return true;
595   }
596 
597   bool HasLinkage;
598   unsigned Linkage, Visibility, DLLStorageClass;
599   bool DSOLocal;
600   GlobalVariable::ThreadLocalMode TLM;
601   GlobalVariable::UnnamedAddr UnnamedAddr;
602   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
603                            DSOLocal) ||
604       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
605     return true;
606 
607   switch (Lex.getKind()) {
608   default:
609     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
610                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
611   case lltok::kw_alias:
612   case lltok::kw_ifunc:
613     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
614                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
615   }
616 }
617 
618 /// parseNamedGlobal:
619 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
620 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
621 ///                 OptionalVisibility OptionalDLLStorageClass
622 ///                                                     ...   -> global variable
623 bool LLParser::parseNamedGlobal() {
624   assert(Lex.getKind() == lltok::GlobalVar);
625   LocTy NameLoc = Lex.getLoc();
626   std::string Name = Lex.getStrVal();
627   Lex.Lex();
628 
629   bool HasLinkage;
630   unsigned Linkage, Visibility, DLLStorageClass;
631   bool DSOLocal;
632   GlobalVariable::ThreadLocalMode TLM;
633   GlobalVariable::UnnamedAddr UnnamedAddr;
634   if (parseToken(lltok::equal, "expected '=' in global variable") ||
635       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
636                            DSOLocal) ||
637       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
638     return true;
639 
640   switch (Lex.getKind()) {
641   default:
642     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
643                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
644   case lltok::kw_alias:
645   case lltok::kw_ifunc:
646     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
647                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
648   }
649 }
650 
651 bool LLParser::parseComdat() {
652   assert(Lex.getKind() == lltok::ComdatVar);
653   std::string Name = Lex.getStrVal();
654   LocTy NameLoc = Lex.getLoc();
655   Lex.Lex();
656 
657   if (parseToken(lltok::equal, "expected '=' here"))
658     return true;
659 
660   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
661     return tokError("expected comdat type");
662 
663   Comdat::SelectionKind SK;
664   switch (Lex.getKind()) {
665   default:
666     return tokError("unknown selection kind");
667   case lltok::kw_any:
668     SK = Comdat::Any;
669     break;
670   case lltok::kw_exactmatch:
671     SK = Comdat::ExactMatch;
672     break;
673   case lltok::kw_largest:
674     SK = Comdat::Largest;
675     break;
676   case lltok::kw_nodeduplicate:
677     SK = Comdat::NoDeduplicate;
678     break;
679   case lltok::kw_samesize:
680     SK = Comdat::SameSize;
681     break;
682   }
683   Lex.Lex();
684 
685   // See if the comdat was forward referenced, if so, use the comdat.
686   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
687   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
688   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
689     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
690 
691   Comdat *C;
692   if (I != ComdatSymTab.end())
693     C = &I->second;
694   else
695     C = M->getOrInsertComdat(Name);
696   C->setSelectionKind(SK);
697 
698   return false;
699 }
700 
701 // MDString:
702 //   ::= '!' STRINGCONSTANT
703 bool LLParser::parseMDString(MDString *&Result) {
704   std::string Str;
705   if (parseStringConstant(Str))
706     return true;
707   Result = MDString::get(Context, Str);
708   return false;
709 }
710 
711 // MDNode:
712 //   ::= '!' MDNodeNumber
713 bool LLParser::parseMDNodeID(MDNode *&Result) {
714   // !{ ..., !42, ... }
715   LocTy IDLoc = Lex.getLoc();
716   unsigned MID = 0;
717   if (parseUInt32(MID))
718     return true;
719 
720   // If not a forward reference, just return it now.
721   if (NumberedMetadata.count(MID)) {
722     Result = NumberedMetadata[MID];
723     return false;
724   }
725 
726   // Otherwise, create MDNode forward reference.
727   auto &FwdRef = ForwardRefMDNodes[MID];
728   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
729 
730   Result = FwdRef.first.get();
731   NumberedMetadata[MID].reset(Result);
732   return false;
733 }
734 
735 /// parseNamedMetadata:
736 ///   !foo = !{ !1, !2 }
737 bool LLParser::parseNamedMetadata() {
738   assert(Lex.getKind() == lltok::MetadataVar);
739   std::string Name = Lex.getStrVal();
740   Lex.Lex();
741 
742   if (parseToken(lltok::equal, "expected '=' here") ||
743       parseToken(lltok::exclaim, "Expected '!' here") ||
744       parseToken(lltok::lbrace, "Expected '{' here"))
745     return true;
746 
747   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
748   if (Lex.getKind() != lltok::rbrace)
749     do {
750       MDNode *N = nullptr;
751       // parse DIExpressions inline as a special case. They are still MDNodes,
752       // so they can still appear in named metadata. Remove this logic if they
753       // become plain Metadata.
754       if (Lex.getKind() == lltok::MetadataVar &&
755           Lex.getStrVal() == "DIExpression") {
756         if (parseDIExpression(N, /*IsDistinct=*/false))
757           return true;
758         // DIArgLists should only appear inline in a function, as they may
759         // contain LocalAsMetadata arguments which require a function context.
760       } else if (Lex.getKind() == lltok::MetadataVar &&
761                  Lex.getStrVal() == "DIArgList") {
762         return tokError("found DIArgList outside of function");
763       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
764                  parseMDNodeID(N)) {
765         return true;
766       }
767       NMD->addOperand(N);
768     } while (EatIfPresent(lltok::comma));
769 
770   return parseToken(lltok::rbrace, "expected end of metadata node");
771 }
772 
773 /// parseStandaloneMetadata:
774 ///   !42 = !{...}
775 bool LLParser::parseStandaloneMetadata() {
776   assert(Lex.getKind() == lltok::exclaim);
777   Lex.Lex();
778   unsigned MetadataID = 0;
779 
780   MDNode *Init;
781   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
782     return true;
783 
784   // Detect common error, from old metadata syntax.
785   if (Lex.getKind() == lltok::Type)
786     return tokError("unexpected type in metadata definition");
787 
788   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
789   if (Lex.getKind() == lltok::MetadataVar) {
790     if (parseSpecializedMDNode(Init, IsDistinct))
791       return true;
792   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
793              parseMDTuple(Init, IsDistinct))
794     return true;
795 
796   // See if this was forward referenced, if so, handle it.
797   auto FI = ForwardRefMDNodes.find(MetadataID);
798   if (FI != ForwardRefMDNodes.end()) {
799     FI->second.first->replaceAllUsesWith(Init);
800     ForwardRefMDNodes.erase(FI);
801 
802     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
803   } else {
804     if (NumberedMetadata.count(MetadataID))
805       return tokError("Metadata id is already used");
806     NumberedMetadata[MetadataID].reset(Init);
807   }
808 
809   return false;
810 }
811 
812 // Skips a single module summary entry.
813 bool LLParser::skipModuleSummaryEntry() {
814   // Each module summary entry consists of a tag for the entry
815   // type, followed by a colon, then the fields which may be surrounded by
816   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
817   // support is in place we will look for the tokens corresponding to the
818   // expected tags.
819   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
820       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
821       Lex.getKind() != lltok::kw_blockcount)
822     return tokError(
823         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
824         "start of summary entry");
825   if (Lex.getKind() == lltok::kw_flags)
826     return parseSummaryIndexFlags();
827   if (Lex.getKind() == lltok::kw_blockcount)
828     return parseBlockCount();
829   Lex.Lex();
830   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
831       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
832     return true;
833   // Now walk through the parenthesized entry, until the number of open
834   // parentheses goes back down to 0 (the first '(' was parsed above).
835   unsigned NumOpenParen = 1;
836   do {
837     switch (Lex.getKind()) {
838     case lltok::lparen:
839       NumOpenParen++;
840       break;
841     case lltok::rparen:
842       NumOpenParen--;
843       break;
844     case lltok::Eof:
845       return tokError("found end of file while parsing summary entry");
846     default:
847       // Skip everything in between parentheses.
848       break;
849     }
850     Lex.Lex();
851   } while (NumOpenParen > 0);
852   return false;
853 }
854 
855 /// SummaryEntry
856 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
857 bool LLParser::parseSummaryEntry() {
858   assert(Lex.getKind() == lltok::SummaryID);
859   unsigned SummaryID = Lex.getUIntVal();
860 
861   // For summary entries, colons should be treated as distinct tokens,
862   // not an indication of the end of a label token.
863   Lex.setIgnoreColonInIdentifiers(true);
864 
865   Lex.Lex();
866   if (parseToken(lltok::equal, "expected '=' here"))
867     return true;
868 
869   // If we don't have an index object, skip the summary entry.
870   if (!Index)
871     return skipModuleSummaryEntry();
872 
873   bool result = false;
874   switch (Lex.getKind()) {
875   case lltok::kw_gv:
876     result = parseGVEntry(SummaryID);
877     break;
878   case lltok::kw_module:
879     result = parseModuleEntry(SummaryID);
880     break;
881   case lltok::kw_typeid:
882     result = parseTypeIdEntry(SummaryID);
883     break;
884   case lltok::kw_typeidCompatibleVTable:
885     result = parseTypeIdCompatibleVtableEntry(SummaryID);
886     break;
887   case lltok::kw_flags:
888     result = parseSummaryIndexFlags();
889     break;
890   case lltok::kw_blockcount:
891     result = parseBlockCount();
892     break;
893   default:
894     result = error(Lex.getLoc(), "unexpected summary kind");
895     break;
896   }
897   Lex.setIgnoreColonInIdentifiers(false);
898   return result;
899 }
900 
901 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
902   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
903          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
904 }
905 
906 // If there was an explicit dso_local, update GV. In the absence of an explicit
907 // dso_local we keep the default value.
908 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
909   if (DSOLocal)
910     GV.setDSOLocal(true);
911 }
912 
913 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
914                                               Type *Ty2) {
915   std::string ErrString;
916   raw_string_ostream ErrOS(ErrString);
917   ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
918   return ErrOS.str();
919 }
920 
921 /// parseAliasOrIFunc:
922 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
923 ///                     OptionalVisibility OptionalDLLStorageClass
924 ///                     OptionalThreadLocal OptionalUnnamedAddr
925 ///                     'alias|ifunc' AliaseeOrResolver SymbolAttrs*
926 ///
927 /// AliaseeOrResolver
928 ///   ::= TypeAndValue
929 ///
930 /// SymbolAttrs
931 ///   ::= ',' 'partition' StringConstant
932 ///
933 /// Everything through OptionalUnnamedAddr has already been parsed.
934 ///
935 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc,
936                                  unsigned L, unsigned Visibility,
937                                  unsigned DLLStorageClass, bool DSOLocal,
938                                  GlobalVariable::ThreadLocalMode TLM,
939                                  GlobalVariable::UnnamedAddr UnnamedAddr) {
940   bool IsAlias;
941   if (Lex.getKind() == lltok::kw_alias)
942     IsAlias = true;
943   else if (Lex.getKind() == lltok::kw_ifunc)
944     IsAlias = false;
945   else
946     llvm_unreachable("Not an alias or ifunc!");
947   Lex.Lex();
948 
949   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
950 
951   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
952     return error(NameLoc, "invalid linkage type for alias");
953 
954   if (!isValidVisibilityForLinkage(Visibility, L))
955     return error(NameLoc,
956                  "symbol with local linkage must have default visibility");
957 
958   Type *Ty;
959   LocTy ExplicitTypeLoc = Lex.getLoc();
960   if (parseType(Ty) ||
961       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
962     return true;
963 
964   Constant *Aliasee;
965   LocTy AliaseeLoc = Lex.getLoc();
966   if (Lex.getKind() != lltok::kw_bitcast &&
967       Lex.getKind() != lltok::kw_getelementptr &&
968       Lex.getKind() != lltok::kw_addrspacecast &&
969       Lex.getKind() != lltok::kw_inttoptr) {
970     if (parseGlobalTypeAndValue(Aliasee))
971       return true;
972   } else {
973     // The bitcast dest type is not present, it is implied by the dest type.
974     ValID ID;
975     if (parseValID(ID, /*PFS=*/nullptr))
976       return true;
977     if (ID.Kind != ValID::t_Constant)
978       return error(AliaseeLoc, "invalid aliasee");
979     Aliasee = ID.ConstantVal;
980   }
981 
982   Type *AliaseeType = Aliasee->getType();
983   auto *PTy = dyn_cast<PointerType>(AliaseeType);
984   if (!PTy)
985     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
986   unsigned AddrSpace = PTy->getAddressSpace();
987 
988   if (IsAlias) {
989     if (!PTy->isOpaqueOrPointeeTypeMatches(Ty))
990       return error(
991           ExplicitTypeLoc,
992           typeComparisonErrorMessage(
993               "explicit pointee type doesn't match operand's pointee type", Ty,
994               PTy->getNonOpaquePointerElementType()));
995   } else {
996     if (!PTy->isOpaque() &&
997         !PTy->getNonOpaquePointerElementType()->isFunctionTy())
998       return error(ExplicitTypeLoc,
999                    "explicit pointee type should be a function type");
1000   }
1001 
1002   GlobalValue *GVal = nullptr;
1003 
1004   // See if the alias was forward referenced, if so, prepare to replace the
1005   // forward reference.
1006   if (!Name.empty()) {
1007     auto I = ForwardRefVals.find(Name);
1008     if (I != ForwardRefVals.end()) {
1009       GVal = I->second.first;
1010       ForwardRefVals.erase(Name);
1011     } else if (M->getNamedValue(Name)) {
1012       return error(NameLoc, "redefinition of global '@" + Name + "'");
1013     }
1014   } else {
1015     auto I = ForwardRefValIDs.find(NumberedVals.size());
1016     if (I != ForwardRefValIDs.end()) {
1017       GVal = I->second.first;
1018       ForwardRefValIDs.erase(I);
1019     }
1020   }
1021 
1022   // Okay, create the alias/ifunc but do not insert it into the module yet.
1023   std::unique_ptr<GlobalAlias> GA;
1024   std::unique_ptr<GlobalIFunc> GI;
1025   GlobalValue *GV;
1026   if (IsAlias) {
1027     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1028                                  (GlobalValue::LinkageTypes)Linkage, Name,
1029                                  Aliasee, /*Parent*/ nullptr));
1030     GV = GA.get();
1031   } else {
1032     GI.reset(GlobalIFunc::create(Ty, AddrSpace,
1033                                  (GlobalValue::LinkageTypes)Linkage, Name,
1034                                  Aliasee, /*Parent*/ nullptr));
1035     GV = GI.get();
1036   }
1037   GV->setThreadLocalMode(TLM);
1038   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1039   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1040   GV->setUnnamedAddr(UnnamedAddr);
1041   maybeSetDSOLocal(DSOLocal, *GV);
1042 
1043   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1044   // Now parse them if there are any.
1045   while (Lex.getKind() == lltok::comma) {
1046     Lex.Lex();
1047 
1048     if (Lex.getKind() == lltok::kw_partition) {
1049       Lex.Lex();
1050       GV->setPartition(Lex.getStrVal());
1051       if (parseToken(lltok::StringConstant, "expected partition string"))
1052         return true;
1053     } else {
1054       return tokError("unknown alias or ifunc property!");
1055     }
1056   }
1057 
1058   if (Name.empty())
1059     NumberedVals.push_back(GV);
1060 
1061   if (GVal) {
1062     // Verify that types agree.
1063     if (GVal->getType() != GV->getType())
1064       return error(
1065           ExplicitTypeLoc,
1066           "forward reference and definition of alias have different types");
1067 
1068     // If they agree, just RAUW the old value with the alias and remove the
1069     // forward ref info.
1070     GVal->replaceAllUsesWith(GV);
1071     GVal->eraseFromParent();
1072   }
1073 
1074   // Insert into the module, we know its name won't collide now.
1075   if (IsAlias)
1076     M->getAliasList().push_back(GA.release());
1077   else
1078     M->getIFuncList().push_back(GI.release());
1079   assert(GV->getName() == Name && "Should not be a name conflict!");
1080 
1081   return false;
1082 }
1083 
1084 /// parseGlobal
1085 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1086 ///       OptionalVisibility OptionalDLLStorageClass
1087 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1088 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1089 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1090 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1091 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1092 ///       Const OptionalAttrs
1093 ///
1094 /// Everything up to and including OptionalUnnamedAddr has been parsed
1095 /// already.
1096 ///
1097 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1098                            unsigned Linkage, bool HasLinkage,
1099                            unsigned Visibility, unsigned DLLStorageClass,
1100                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1101                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1102   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1103     return error(NameLoc,
1104                  "symbol with local linkage must have default visibility");
1105 
1106   unsigned AddrSpace;
1107   bool IsConstant, IsExternallyInitialized;
1108   LocTy IsExternallyInitializedLoc;
1109   LocTy TyLoc;
1110 
1111   Type *Ty = nullptr;
1112   if (parseOptionalAddrSpace(AddrSpace) ||
1113       parseOptionalToken(lltok::kw_externally_initialized,
1114                          IsExternallyInitialized,
1115                          &IsExternallyInitializedLoc) ||
1116       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1117     return true;
1118 
1119   // If the linkage is specified and is external, then no initializer is
1120   // present.
1121   Constant *Init = nullptr;
1122   if (!HasLinkage ||
1123       !GlobalValue::isValidDeclarationLinkage(
1124           (GlobalValue::LinkageTypes)Linkage)) {
1125     if (parseGlobalValue(Ty, Init))
1126       return true;
1127   }
1128 
1129   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1130     return error(TyLoc, "invalid type for global variable");
1131 
1132   GlobalValue *GVal = nullptr;
1133 
1134   // See if the global was forward referenced, if so, use the global.
1135   if (!Name.empty()) {
1136     auto I = ForwardRefVals.find(Name);
1137     if (I != ForwardRefVals.end()) {
1138       GVal = I->second.first;
1139       ForwardRefVals.erase(I);
1140     } else if (M->getNamedValue(Name)) {
1141       return error(NameLoc, "redefinition of global '@" + Name + "'");
1142     }
1143   } else {
1144     auto I = ForwardRefValIDs.find(NumberedVals.size());
1145     if (I != ForwardRefValIDs.end()) {
1146       GVal = I->second.first;
1147       ForwardRefValIDs.erase(I);
1148     }
1149   }
1150 
1151   GlobalVariable *GV = new GlobalVariable(
1152       *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1153       GlobalVariable::NotThreadLocal, AddrSpace);
1154 
1155   if (Name.empty())
1156     NumberedVals.push_back(GV);
1157 
1158   // Set the parsed properties on the global.
1159   if (Init)
1160     GV->setInitializer(Init);
1161   GV->setConstant(IsConstant);
1162   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1163   maybeSetDSOLocal(DSOLocal, *GV);
1164   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1165   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1166   GV->setExternallyInitialized(IsExternallyInitialized);
1167   GV->setThreadLocalMode(TLM);
1168   GV->setUnnamedAddr(UnnamedAddr);
1169 
1170   if (GVal) {
1171     if (!GVal->getType()->isOpaque() && GVal->getValueType() != Ty)
1172       return error(
1173           TyLoc,
1174           "forward reference and definition of global have different types");
1175 
1176     GVal->replaceAllUsesWith(GV);
1177     GVal->eraseFromParent();
1178   }
1179 
1180   // parse attributes on the global.
1181   while (Lex.getKind() == lltok::comma) {
1182     Lex.Lex();
1183 
1184     if (Lex.getKind() == lltok::kw_section) {
1185       Lex.Lex();
1186       GV->setSection(Lex.getStrVal());
1187       if (parseToken(lltok::StringConstant, "expected global section string"))
1188         return true;
1189     } else if (Lex.getKind() == lltok::kw_partition) {
1190       Lex.Lex();
1191       GV->setPartition(Lex.getStrVal());
1192       if (parseToken(lltok::StringConstant, "expected partition string"))
1193         return true;
1194     } else if (Lex.getKind() == lltok::kw_align) {
1195       MaybeAlign Alignment;
1196       if (parseOptionalAlignment(Alignment))
1197         return true;
1198       GV->setAlignment(Alignment);
1199     } else if (Lex.getKind() == lltok::MetadataVar) {
1200       if (parseGlobalObjectMetadataAttachment(*GV))
1201         return true;
1202     } else {
1203       Comdat *C;
1204       if (parseOptionalComdat(Name, C))
1205         return true;
1206       if (C)
1207         GV->setComdat(C);
1208       else
1209         return tokError("unknown global variable property!");
1210     }
1211   }
1212 
1213   AttrBuilder Attrs(M->getContext());
1214   LocTy BuiltinLoc;
1215   std::vector<unsigned> FwdRefAttrGrps;
1216   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1217     return true;
1218   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1219     GV->setAttributes(AttributeSet::get(Context, Attrs));
1220     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1221   }
1222 
1223   return false;
1224 }
1225 
1226 /// parseUnnamedAttrGrp
1227 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1228 bool LLParser::parseUnnamedAttrGrp() {
1229   assert(Lex.getKind() == lltok::kw_attributes);
1230   LocTy AttrGrpLoc = Lex.getLoc();
1231   Lex.Lex();
1232 
1233   if (Lex.getKind() != lltok::AttrGrpID)
1234     return tokError("expected attribute group id");
1235 
1236   unsigned VarID = Lex.getUIntVal();
1237   std::vector<unsigned> unused;
1238   LocTy BuiltinLoc;
1239   Lex.Lex();
1240 
1241   if (parseToken(lltok::equal, "expected '=' here") ||
1242       parseToken(lltok::lbrace, "expected '{' here"))
1243     return true;
1244 
1245   auto R = NumberedAttrBuilders.find(VarID);
1246   if (R == NumberedAttrBuilders.end())
1247     R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first;
1248 
1249   if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) ||
1250       parseToken(lltok::rbrace, "expected end of attribute group"))
1251     return true;
1252 
1253   if (!R->second.hasAttributes())
1254     return error(AttrGrpLoc, "attribute group has no attributes");
1255 
1256   return false;
1257 }
1258 
1259 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
1260   switch (Kind) {
1261 #define GET_ATTR_NAMES
1262 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
1263   case lltok::kw_##DISPLAY_NAME: \
1264     return Attribute::ENUM_NAME;
1265 #include "llvm/IR/Attributes.inc"
1266   default:
1267     return Attribute::None;
1268   }
1269 }
1270 
1271 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
1272                                   bool InAttrGroup) {
1273   if (Attribute::isTypeAttrKind(Attr))
1274     return parseRequiredTypeAttr(B, Lex.getKind(), Attr);
1275 
1276   switch (Attr) {
1277   case Attribute::Alignment: {
1278     MaybeAlign Alignment;
1279     if (InAttrGroup) {
1280       uint32_t Value = 0;
1281       Lex.Lex();
1282       if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1283         return true;
1284       Alignment = Align(Value);
1285     } else {
1286       if (parseOptionalAlignment(Alignment, true))
1287         return true;
1288     }
1289     B.addAlignmentAttr(Alignment);
1290     return false;
1291   }
1292   case Attribute::StackAlignment: {
1293     unsigned Alignment;
1294     if (InAttrGroup) {
1295       Lex.Lex();
1296       if (parseToken(lltok::equal, "expected '=' here") ||
1297           parseUInt32(Alignment))
1298         return true;
1299     } else {
1300       if (parseOptionalStackAlignment(Alignment))
1301         return true;
1302     }
1303     B.addStackAlignmentAttr(Alignment);
1304     return false;
1305   }
1306   case Attribute::AllocSize: {
1307     unsigned ElemSizeArg;
1308     Optional<unsigned> NumElemsArg;
1309     if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1310       return true;
1311     B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1312     return false;
1313   }
1314   case Attribute::VScaleRange: {
1315     unsigned MinValue, MaxValue;
1316     if (parseVScaleRangeArguments(MinValue, MaxValue))
1317       return true;
1318     B.addVScaleRangeAttr(MinValue,
1319                          MaxValue > 0 ? MaxValue : Optional<unsigned>());
1320     return false;
1321   }
1322   case Attribute::Dereferenceable: {
1323     uint64_t Bytes;
1324     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1325       return true;
1326     B.addDereferenceableAttr(Bytes);
1327     return false;
1328   }
1329   case Attribute::DereferenceableOrNull: {
1330     uint64_t Bytes;
1331     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1332       return true;
1333     B.addDereferenceableOrNullAttr(Bytes);
1334     return false;
1335   }
1336   case Attribute::UWTable: {
1337     UWTableKind Kind;
1338     if (parseOptionalUWTableKind(Kind))
1339       return true;
1340     B.addUWTableAttr(Kind);
1341     return false;
1342   }
1343   default:
1344     B.addAttribute(Attr);
1345     Lex.Lex();
1346     return false;
1347   }
1348 }
1349 
1350 /// parseFnAttributeValuePairs
1351 ///   ::= <attr> | <attr> '=' <value>
1352 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1353                                           std::vector<unsigned> &FwdRefAttrGrps,
1354                                           bool InAttrGrp, LocTy &BuiltinLoc) {
1355   bool HaveError = false;
1356 
1357   B.clear();
1358 
1359   while (true) {
1360     lltok::Kind Token = Lex.getKind();
1361     if (Token == lltok::rbrace)
1362       return HaveError; // Finished.
1363 
1364     if (Token == lltok::StringConstant) {
1365       if (parseStringAttribute(B))
1366         return true;
1367       continue;
1368     }
1369 
1370     if (Token == lltok::AttrGrpID) {
1371       // Allow a function to reference an attribute group:
1372       //
1373       //   define void @foo() #1 { ... }
1374       if (InAttrGrp) {
1375         HaveError |= error(
1376             Lex.getLoc(),
1377             "cannot have an attribute group reference in an attribute group");
1378       } else {
1379         // Save the reference to the attribute group. We'll fill it in later.
1380         FwdRefAttrGrps.push_back(Lex.getUIntVal());
1381       }
1382       Lex.Lex();
1383       continue;
1384     }
1385 
1386     SMLoc Loc = Lex.getLoc();
1387     if (Token == lltok::kw_builtin)
1388       BuiltinLoc = Loc;
1389 
1390     Attribute::AttrKind Attr = tokenToAttribute(Token);
1391     if (Attr == Attribute::None) {
1392       if (!InAttrGrp)
1393         return HaveError;
1394       return error(Lex.getLoc(), "unterminated attribute group");
1395     }
1396 
1397     if (parseEnumAttribute(Attr, B, InAttrGrp))
1398       return true;
1399 
1400     // As a hack, we allow function alignment to be initially parsed as an
1401     // attribute on a function declaration/definition or added to an attribute
1402     // group and later moved to the alignment field.
1403     if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment)
1404       HaveError |= error(Loc, "this attribute does not apply to functions");
1405   }
1406 }
1407 
1408 //===----------------------------------------------------------------------===//
1409 // GlobalValue Reference/Resolution Routines.
1410 //===----------------------------------------------------------------------===//
1411 
1412 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1413   // For opaque pointers, the used global type does not matter. We will later
1414   // RAUW it with a global/function of the correct type.
1415   if (PTy->isOpaque())
1416     return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1417                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1418                               nullptr, GlobalVariable::NotThreadLocal,
1419                               PTy->getAddressSpace());
1420 
1421   Type *ElemTy = PTy->getNonOpaquePointerElementType();
1422   if (auto *FT = dyn_cast<FunctionType>(ElemTy))
1423     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1424                             PTy->getAddressSpace(), "", M);
1425   else
1426     return new GlobalVariable(
1427         *M, ElemTy, false, GlobalValue::ExternalWeakLinkage, nullptr, "",
1428         nullptr, GlobalVariable::NotThreadLocal, PTy->getAddressSpace());
1429 }
1430 
1431 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1432                                         Value *Val) {
1433   Type *ValTy = Val->getType();
1434   if (ValTy == Ty)
1435     return Val;
1436   if (Ty->isLabelTy())
1437     error(Loc, "'" + Name + "' is not a basic block");
1438   else
1439     error(Loc, "'" + Name + "' defined with type '" +
1440                    getTypeString(Val->getType()) + "' but expected '" +
1441                    getTypeString(Ty) + "'");
1442   return nullptr;
1443 }
1444 
1445 /// getGlobalVal - Get a value with the specified name or ID, creating a
1446 /// forward reference record if needed.  This can return null if the value
1447 /// exists but does not have the right type.
1448 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1449                                     LocTy Loc) {
1450   PointerType *PTy = dyn_cast<PointerType>(Ty);
1451   if (!PTy) {
1452     error(Loc, "global variable reference must have pointer type");
1453     return nullptr;
1454   }
1455 
1456   // Look this name up in the normal function symbol table.
1457   GlobalValue *Val =
1458     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1459 
1460   // If this is a forward reference for the value, see if we already created a
1461   // forward ref record.
1462   if (!Val) {
1463     auto I = ForwardRefVals.find(Name);
1464     if (I != ForwardRefVals.end())
1465       Val = I->second.first;
1466   }
1467 
1468   // If we have the value in the symbol table or fwd-ref table, return it.
1469   if (Val)
1470     return cast_or_null<GlobalValue>(
1471         checkValidVariableType(Loc, "@" + Name, Ty, Val));
1472 
1473   // Otherwise, create a new forward reference for this value and remember it.
1474   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1475   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1476   return FwdVal;
1477 }
1478 
1479 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1480   PointerType *PTy = dyn_cast<PointerType>(Ty);
1481   if (!PTy) {
1482     error(Loc, "global variable reference must have pointer type");
1483     return nullptr;
1484   }
1485 
1486   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1487 
1488   // If this is a forward reference for the value, see if we already created a
1489   // forward ref record.
1490   if (!Val) {
1491     auto I = ForwardRefValIDs.find(ID);
1492     if (I != ForwardRefValIDs.end())
1493       Val = I->second.first;
1494   }
1495 
1496   // If we have the value in the symbol table or fwd-ref table, return it.
1497   if (Val)
1498     return cast_or_null<GlobalValue>(
1499         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val));
1500 
1501   // Otherwise, create a new forward reference for this value and remember it.
1502   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1503   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1504   return FwdVal;
1505 }
1506 
1507 //===----------------------------------------------------------------------===//
1508 // Comdat Reference/Resolution Routines.
1509 //===----------------------------------------------------------------------===//
1510 
1511 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1512   // Look this name up in the comdat symbol table.
1513   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1514   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1515   if (I != ComdatSymTab.end())
1516     return &I->second;
1517 
1518   // Otherwise, create a new forward reference for this value and remember it.
1519   Comdat *C = M->getOrInsertComdat(Name);
1520   ForwardRefComdats[Name] = Loc;
1521   return C;
1522 }
1523 
1524 //===----------------------------------------------------------------------===//
1525 // Helper Routines.
1526 //===----------------------------------------------------------------------===//
1527 
1528 /// parseToken - If the current token has the specified kind, eat it and return
1529 /// success.  Otherwise, emit the specified error and return failure.
1530 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1531   if (Lex.getKind() != T)
1532     return tokError(ErrMsg);
1533   Lex.Lex();
1534   return false;
1535 }
1536 
1537 /// parseStringConstant
1538 ///   ::= StringConstant
1539 bool LLParser::parseStringConstant(std::string &Result) {
1540   if (Lex.getKind() != lltok::StringConstant)
1541     return tokError("expected string constant");
1542   Result = Lex.getStrVal();
1543   Lex.Lex();
1544   return false;
1545 }
1546 
1547 /// parseUInt32
1548 ///   ::= uint32
1549 bool LLParser::parseUInt32(uint32_t &Val) {
1550   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1551     return tokError("expected integer");
1552   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1553   if (Val64 != unsigned(Val64))
1554     return tokError("expected 32-bit integer (too large)");
1555   Val = Val64;
1556   Lex.Lex();
1557   return false;
1558 }
1559 
1560 /// parseUInt64
1561 ///   ::= uint64
1562 bool LLParser::parseUInt64(uint64_t &Val) {
1563   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1564     return tokError("expected integer");
1565   Val = Lex.getAPSIntVal().getLimitedValue();
1566   Lex.Lex();
1567   return false;
1568 }
1569 
1570 /// parseTLSModel
1571 ///   := 'localdynamic'
1572 ///   := 'initialexec'
1573 ///   := 'localexec'
1574 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1575   switch (Lex.getKind()) {
1576     default:
1577       return tokError("expected localdynamic, initialexec or localexec");
1578     case lltok::kw_localdynamic:
1579       TLM = GlobalVariable::LocalDynamicTLSModel;
1580       break;
1581     case lltok::kw_initialexec:
1582       TLM = GlobalVariable::InitialExecTLSModel;
1583       break;
1584     case lltok::kw_localexec:
1585       TLM = GlobalVariable::LocalExecTLSModel;
1586       break;
1587   }
1588 
1589   Lex.Lex();
1590   return false;
1591 }
1592 
1593 /// parseOptionalThreadLocal
1594 ///   := /*empty*/
1595 ///   := 'thread_local'
1596 ///   := 'thread_local' '(' tlsmodel ')'
1597 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1598   TLM = GlobalVariable::NotThreadLocal;
1599   if (!EatIfPresent(lltok::kw_thread_local))
1600     return false;
1601 
1602   TLM = GlobalVariable::GeneralDynamicTLSModel;
1603   if (Lex.getKind() == lltok::lparen) {
1604     Lex.Lex();
1605     return parseTLSModel(TLM) ||
1606            parseToken(lltok::rparen, "expected ')' after thread local model");
1607   }
1608   return false;
1609 }
1610 
1611 /// parseOptionalAddrSpace
1612 ///   := /*empty*/
1613 ///   := 'addrspace' '(' uint32 ')'
1614 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1615   AddrSpace = DefaultAS;
1616   if (!EatIfPresent(lltok::kw_addrspace))
1617     return false;
1618   return parseToken(lltok::lparen, "expected '(' in address space") ||
1619          parseUInt32(AddrSpace) ||
1620          parseToken(lltok::rparen, "expected ')' in address space");
1621 }
1622 
1623 /// parseStringAttribute
1624 ///   := StringConstant
1625 ///   := StringConstant '=' StringConstant
1626 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1627   std::string Attr = Lex.getStrVal();
1628   Lex.Lex();
1629   std::string Val;
1630   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1631     return true;
1632   B.addAttribute(Attr, Val);
1633   return false;
1634 }
1635 
1636 /// Parse a potentially empty list of parameter or return attributes.
1637 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
1638   bool HaveError = false;
1639 
1640   B.clear();
1641 
1642   while (true) {
1643     lltok::Kind Token = Lex.getKind();
1644     if (Token == lltok::StringConstant) {
1645       if (parseStringAttribute(B))
1646         return true;
1647       continue;
1648     }
1649 
1650     SMLoc Loc = Lex.getLoc();
1651     Attribute::AttrKind Attr = tokenToAttribute(Token);
1652     if (Attr == Attribute::None)
1653       return HaveError;
1654 
1655     if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
1656       return true;
1657 
1658     if (IsParam && !Attribute::canUseAsParamAttr(Attr))
1659       HaveError |= error(Loc, "this attribute does not apply to parameters");
1660     if (!IsParam && !Attribute::canUseAsRetAttr(Attr))
1661       HaveError |= error(Loc, "this attribute does not apply to return values");
1662   }
1663 }
1664 
1665 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1666   HasLinkage = true;
1667   switch (Kind) {
1668   default:
1669     HasLinkage = false;
1670     return GlobalValue::ExternalLinkage;
1671   case lltok::kw_private:
1672     return GlobalValue::PrivateLinkage;
1673   case lltok::kw_internal:
1674     return GlobalValue::InternalLinkage;
1675   case lltok::kw_weak:
1676     return GlobalValue::WeakAnyLinkage;
1677   case lltok::kw_weak_odr:
1678     return GlobalValue::WeakODRLinkage;
1679   case lltok::kw_linkonce:
1680     return GlobalValue::LinkOnceAnyLinkage;
1681   case lltok::kw_linkonce_odr:
1682     return GlobalValue::LinkOnceODRLinkage;
1683   case lltok::kw_available_externally:
1684     return GlobalValue::AvailableExternallyLinkage;
1685   case lltok::kw_appending:
1686     return GlobalValue::AppendingLinkage;
1687   case lltok::kw_common:
1688     return GlobalValue::CommonLinkage;
1689   case lltok::kw_extern_weak:
1690     return GlobalValue::ExternalWeakLinkage;
1691   case lltok::kw_external:
1692     return GlobalValue::ExternalLinkage;
1693   }
1694 }
1695 
1696 /// parseOptionalLinkage
1697 ///   ::= /*empty*/
1698 ///   ::= 'private'
1699 ///   ::= 'internal'
1700 ///   ::= 'weak'
1701 ///   ::= 'weak_odr'
1702 ///   ::= 'linkonce'
1703 ///   ::= 'linkonce_odr'
1704 ///   ::= 'available_externally'
1705 ///   ::= 'appending'
1706 ///   ::= 'common'
1707 ///   ::= 'extern_weak'
1708 ///   ::= 'external'
1709 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1710                                     unsigned &Visibility,
1711                                     unsigned &DLLStorageClass, bool &DSOLocal) {
1712   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1713   if (HasLinkage)
1714     Lex.Lex();
1715   parseOptionalDSOLocal(DSOLocal);
1716   parseOptionalVisibility(Visibility);
1717   parseOptionalDLLStorageClass(DLLStorageClass);
1718 
1719   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1720     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1721   }
1722 
1723   return false;
1724 }
1725 
1726 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
1727   switch (Lex.getKind()) {
1728   default:
1729     DSOLocal = false;
1730     break;
1731   case lltok::kw_dso_local:
1732     DSOLocal = true;
1733     Lex.Lex();
1734     break;
1735   case lltok::kw_dso_preemptable:
1736     DSOLocal = false;
1737     Lex.Lex();
1738     break;
1739   }
1740 }
1741 
1742 /// parseOptionalVisibility
1743 ///   ::= /*empty*/
1744 ///   ::= 'default'
1745 ///   ::= 'hidden'
1746 ///   ::= 'protected'
1747 ///
1748 void LLParser::parseOptionalVisibility(unsigned &Res) {
1749   switch (Lex.getKind()) {
1750   default:
1751     Res = GlobalValue::DefaultVisibility;
1752     return;
1753   case lltok::kw_default:
1754     Res = GlobalValue::DefaultVisibility;
1755     break;
1756   case lltok::kw_hidden:
1757     Res = GlobalValue::HiddenVisibility;
1758     break;
1759   case lltok::kw_protected:
1760     Res = GlobalValue::ProtectedVisibility;
1761     break;
1762   }
1763   Lex.Lex();
1764 }
1765 
1766 /// parseOptionalDLLStorageClass
1767 ///   ::= /*empty*/
1768 ///   ::= 'dllimport'
1769 ///   ::= 'dllexport'
1770 ///
1771 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
1772   switch (Lex.getKind()) {
1773   default:
1774     Res = GlobalValue::DefaultStorageClass;
1775     return;
1776   case lltok::kw_dllimport:
1777     Res = GlobalValue::DLLImportStorageClass;
1778     break;
1779   case lltok::kw_dllexport:
1780     Res = GlobalValue::DLLExportStorageClass;
1781     break;
1782   }
1783   Lex.Lex();
1784 }
1785 
1786 /// parseOptionalCallingConv
1787 ///   ::= /*empty*/
1788 ///   ::= 'ccc'
1789 ///   ::= 'fastcc'
1790 ///   ::= 'intel_ocl_bicc'
1791 ///   ::= 'coldcc'
1792 ///   ::= 'cfguard_checkcc'
1793 ///   ::= 'x86_stdcallcc'
1794 ///   ::= 'x86_fastcallcc'
1795 ///   ::= 'x86_thiscallcc'
1796 ///   ::= 'x86_vectorcallcc'
1797 ///   ::= 'arm_apcscc'
1798 ///   ::= 'arm_aapcscc'
1799 ///   ::= 'arm_aapcs_vfpcc'
1800 ///   ::= 'aarch64_vector_pcs'
1801 ///   ::= 'aarch64_sve_vector_pcs'
1802 ///   ::= 'msp430_intrcc'
1803 ///   ::= 'avr_intrcc'
1804 ///   ::= 'avr_signalcc'
1805 ///   ::= 'ptx_kernel'
1806 ///   ::= 'ptx_device'
1807 ///   ::= 'spir_func'
1808 ///   ::= 'spir_kernel'
1809 ///   ::= 'x86_64_sysvcc'
1810 ///   ::= 'win64cc'
1811 ///   ::= 'webkit_jscc'
1812 ///   ::= 'anyregcc'
1813 ///   ::= 'preserve_mostcc'
1814 ///   ::= 'preserve_allcc'
1815 ///   ::= 'ghccc'
1816 ///   ::= 'swiftcc'
1817 ///   ::= 'swifttailcc'
1818 ///   ::= 'x86_intrcc'
1819 ///   ::= 'hhvmcc'
1820 ///   ::= 'hhvm_ccc'
1821 ///   ::= 'cxx_fast_tlscc'
1822 ///   ::= 'amdgpu_vs'
1823 ///   ::= 'amdgpu_ls'
1824 ///   ::= 'amdgpu_hs'
1825 ///   ::= 'amdgpu_es'
1826 ///   ::= 'amdgpu_gs'
1827 ///   ::= 'amdgpu_ps'
1828 ///   ::= 'amdgpu_cs'
1829 ///   ::= 'amdgpu_kernel'
1830 ///   ::= 'tailcc'
1831 ///   ::= 'cc' UINT
1832 ///
1833 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
1834   switch (Lex.getKind()) {
1835   default:                       CC = CallingConv::C; return false;
1836   case lltok::kw_ccc:            CC = CallingConv::C; break;
1837   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1838   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1839   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
1840   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1841   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1842   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1843   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1844   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1845   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1846   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1847   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1848   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1849   case lltok::kw_aarch64_sve_vector_pcs:
1850     CC = CallingConv::AArch64_SVE_VectorCall;
1851     break;
1852   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1853   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1854   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1855   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1856   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1857   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1858   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1859   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1860   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1861   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1862   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1863   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1864   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1865   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1866   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1867   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1868   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
1869   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1870   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1871   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1872   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1873   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1874   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
1875   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1876   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1877   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1878   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1879   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1880   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1881   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1882   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
1883   case lltok::kw_cc: {
1884       Lex.Lex();
1885       return parseUInt32(CC);
1886     }
1887   }
1888 
1889   Lex.Lex();
1890   return false;
1891 }
1892 
1893 /// parseMetadataAttachment
1894 ///   ::= !dbg !42
1895 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1896   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1897 
1898   std::string Name = Lex.getStrVal();
1899   Kind = M->getMDKindID(Name);
1900   Lex.Lex();
1901 
1902   return parseMDNode(MD);
1903 }
1904 
1905 /// parseInstructionMetadata
1906 ///   ::= !dbg !42 (',' !dbg !57)*
1907 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
1908   do {
1909     if (Lex.getKind() != lltok::MetadataVar)
1910       return tokError("expected metadata after comma");
1911 
1912     unsigned MDK;
1913     MDNode *N;
1914     if (parseMetadataAttachment(MDK, N))
1915       return true;
1916 
1917     Inst.setMetadata(MDK, N);
1918     if (MDK == LLVMContext::MD_tbaa)
1919       InstsWithTBAATag.push_back(&Inst);
1920 
1921     // If this is the end of the list, we're done.
1922   } while (EatIfPresent(lltok::comma));
1923   return false;
1924 }
1925 
1926 /// parseGlobalObjectMetadataAttachment
1927 ///   ::= !dbg !57
1928 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1929   unsigned MDK;
1930   MDNode *N;
1931   if (parseMetadataAttachment(MDK, N))
1932     return true;
1933 
1934   GO.addMetadata(MDK, *N);
1935   return false;
1936 }
1937 
1938 /// parseOptionalFunctionMetadata
1939 ///   ::= (!dbg !57)*
1940 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
1941   while (Lex.getKind() == lltok::MetadataVar)
1942     if (parseGlobalObjectMetadataAttachment(F))
1943       return true;
1944   return false;
1945 }
1946 
1947 /// parseOptionalAlignment
1948 ///   ::= /* empty */
1949 ///   ::= 'align' 4
1950 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
1951   Alignment = None;
1952   if (!EatIfPresent(lltok::kw_align))
1953     return false;
1954   LocTy AlignLoc = Lex.getLoc();
1955   uint64_t Value = 0;
1956 
1957   LocTy ParenLoc = Lex.getLoc();
1958   bool HaveParens = false;
1959   if (AllowParens) {
1960     if (EatIfPresent(lltok::lparen))
1961       HaveParens = true;
1962   }
1963 
1964   if (parseUInt64(Value))
1965     return true;
1966 
1967   if (HaveParens && !EatIfPresent(lltok::rparen))
1968     return error(ParenLoc, "expected ')'");
1969 
1970   if (!isPowerOf2_64(Value))
1971     return error(AlignLoc, "alignment is not a power of two");
1972   if (Value > Value::MaximumAlignment)
1973     return error(AlignLoc, "huge alignments are not supported yet");
1974   Alignment = Align(Value);
1975   return false;
1976 }
1977 
1978 /// parseOptionalDerefAttrBytes
1979 ///   ::= /* empty */
1980 ///   ::= AttrKind '(' 4 ')'
1981 ///
1982 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1983 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1984                                            uint64_t &Bytes) {
1985   assert((AttrKind == lltok::kw_dereferenceable ||
1986           AttrKind == lltok::kw_dereferenceable_or_null) &&
1987          "contract!");
1988 
1989   Bytes = 0;
1990   if (!EatIfPresent(AttrKind))
1991     return false;
1992   LocTy ParenLoc = Lex.getLoc();
1993   if (!EatIfPresent(lltok::lparen))
1994     return error(ParenLoc, "expected '('");
1995   LocTy DerefLoc = Lex.getLoc();
1996   if (parseUInt64(Bytes))
1997     return true;
1998   ParenLoc = Lex.getLoc();
1999   if (!EatIfPresent(lltok::rparen))
2000     return error(ParenLoc, "expected ')'");
2001   if (!Bytes)
2002     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2003   return false;
2004 }
2005 
2006 bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) {
2007   Lex.Lex();
2008   Kind = UWTableKind::Default;
2009   if (!EatIfPresent(lltok::lparen))
2010     return false;
2011   LocTy KindLoc = Lex.getLoc();
2012   if (Lex.getKind() == lltok::kw_sync)
2013     Kind = UWTableKind::Sync;
2014   else if (Lex.getKind() == lltok::kw_async)
2015     Kind = UWTableKind::Async;
2016   else
2017     return error(KindLoc, "expected unwind table kind");
2018   Lex.Lex();
2019   return parseToken(lltok::rparen, "expected ')'");
2020 }
2021 
2022 /// parseOptionalCommaAlign
2023 ///   ::=
2024 ///   ::= ',' align 4
2025 ///
2026 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2027 /// end.
2028 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2029                                        bool &AteExtraComma) {
2030   AteExtraComma = false;
2031   while (EatIfPresent(lltok::comma)) {
2032     // Metadata at the end is an early exit.
2033     if (Lex.getKind() == lltok::MetadataVar) {
2034       AteExtraComma = true;
2035       return false;
2036     }
2037 
2038     if (Lex.getKind() != lltok::kw_align)
2039       return error(Lex.getLoc(), "expected metadata or 'align'");
2040 
2041     if (parseOptionalAlignment(Alignment))
2042       return true;
2043   }
2044 
2045   return false;
2046 }
2047 
2048 /// parseOptionalCommaAddrSpace
2049 ///   ::=
2050 ///   ::= ',' addrspace(1)
2051 ///
2052 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2053 /// end.
2054 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2055                                            bool &AteExtraComma) {
2056   AteExtraComma = false;
2057   while (EatIfPresent(lltok::comma)) {
2058     // Metadata at the end is an early exit.
2059     if (Lex.getKind() == lltok::MetadataVar) {
2060       AteExtraComma = true;
2061       return false;
2062     }
2063 
2064     Loc = Lex.getLoc();
2065     if (Lex.getKind() != lltok::kw_addrspace)
2066       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2067 
2068     if (parseOptionalAddrSpace(AddrSpace))
2069       return true;
2070   }
2071 
2072   return false;
2073 }
2074 
2075 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2076                                        Optional<unsigned> &HowManyArg) {
2077   Lex.Lex();
2078 
2079   auto StartParen = Lex.getLoc();
2080   if (!EatIfPresent(lltok::lparen))
2081     return error(StartParen, "expected '('");
2082 
2083   if (parseUInt32(BaseSizeArg))
2084     return true;
2085 
2086   if (EatIfPresent(lltok::comma)) {
2087     auto HowManyAt = Lex.getLoc();
2088     unsigned HowMany;
2089     if (parseUInt32(HowMany))
2090       return true;
2091     if (HowMany == BaseSizeArg)
2092       return error(HowManyAt,
2093                    "'allocsize' indices can't refer to the same parameter");
2094     HowManyArg = HowMany;
2095   } else
2096     HowManyArg = None;
2097 
2098   auto EndParen = Lex.getLoc();
2099   if (!EatIfPresent(lltok::rparen))
2100     return error(EndParen, "expected ')'");
2101   return false;
2102 }
2103 
2104 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2105                                          unsigned &MaxValue) {
2106   Lex.Lex();
2107 
2108   auto StartParen = Lex.getLoc();
2109   if (!EatIfPresent(lltok::lparen))
2110     return error(StartParen, "expected '('");
2111 
2112   if (parseUInt32(MinValue))
2113     return true;
2114 
2115   if (EatIfPresent(lltok::comma)) {
2116     if (parseUInt32(MaxValue))
2117       return true;
2118   } else
2119     MaxValue = MinValue;
2120 
2121   auto EndParen = Lex.getLoc();
2122   if (!EatIfPresent(lltok::rparen))
2123     return error(EndParen, "expected ')'");
2124   return false;
2125 }
2126 
2127 /// parseScopeAndOrdering
2128 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2129 ///   else: ::=
2130 ///
2131 /// This sets Scope and Ordering to the parsed values.
2132 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2133                                      AtomicOrdering &Ordering) {
2134   if (!IsAtomic)
2135     return false;
2136 
2137   return parseScope(SSID) || parseOrdering(Ordering);
2138 }
2139 
2140 /// parseScope
2141 ///   ::= syncscope("singlethread" | "<target scope>")?
2142 ///
2143 /// This sets synchronization scope ID to the ID of the parsed value.
2144 bool LLParser::parseScope(SyncScope::ID &SSID) {
2145   SSID = SyncScope::System;
2146   if (EatIfPresent(lltok::kw_syncscope)) {
2147     auto StartParenAt = Lex.getLoc();
2148     if (!EatIfPresent(lltok::lparen))
2149       return error(StartParenAt, "Expected '(' in syncscope");
2150 
2151     std::string SSN;
2152     auto SSNAt = Lex.getLoc();
2153     if (parseStringConstant(SSN))
2154       return error(SSNAt, "Expected synchronization scope name");
2155 
2156     auto EndParenAt = Lex.getLoc();
2157     if (!EatIfPresent(lltok::rparen))
2158       return error(EndParenAt, "Expected ')' in syncscope");
2159 
2160     SSID = Context.getOrInsertSyncScopeID(SSN);
2161   }
2162 
2163   return false;
2164 }
2165 
2166 /// parseOrdering
2167 ///   ::= AtomicOrdering
2168 ///
2169 /// This sets Ordering to the parsed value.
2170 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2171   switch (Lex.getKind()) {
2172   default:
2173     return tokError("Expected ordering on atomic instruction");
2174   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2175   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2176   // Not specified yet:
2177   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2178   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2179   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2180   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2181   case lltok::kw_seq_cst:
2182     Ordering = AtomicOrdering::SequentiallyConsistent;
2183     break;
2184   }
2185   Lex.Lex();
2186   return false;
2187 }
2188 
2189 /// parseOptionalStackAlignment
2190 ///   ::= /* empty */
2191 ///   ::= 'alignstack' '(' 4 ')'
2192 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2193   Alignment = 0;
2194   if (!EatIfPresent(lltok::kw_alignstack))
2195     return false;
2196   LocTy ParenLoc = Lex.getLoc();
2197   if (!EatIfPresent(lltok::lparen))
2198     return error(ParenLoc, "expected '('");
2199   LocTy AlignLoc = Lex.getLoc();
2200   if (parseUInt32(Alignment))
2201     return true;
2202   ParenLoc = Lex.getLoc();
2203   if (!EatIfPresent(lltok::rparen))
2204     return error(ParenLoc, "expected ')'");
2205   if (!isPowerOf2_32(Alignment))
2206     return error(AlignLoc, "stack alignment is not a power of two");
2207   return false;
2208 }
2209 
2210 /// parseIndexList - This parses the index list for an insert/extractvalue
2211 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2212 /// comma at the end of the line and find that it is followed by metadata.
2213 /// Clients that don't allow metadata can call the version of this function that
2214 /// only takes one argument.
2215 ///
2216 /// parseIndexList
2217 ///    ::=  (',' uint32)+
2218 ///
2219 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2220                               bool &AteExtraComma) {
2221   AteExtraComma = false;
2222 
2223   if (Lex.getKind() != lltok::comma)
2224     return tokError("expected ',' as start of index list");
2225 
2226   while (EatIfPresent(lltok::comma)) {
2227     if (Lex.getKind() == lltok::MetadataVar) {
2228       if (Indices.empty())
2229         return tokError("expected index");
2230       AteExtraComma = true;
2231       return false;
2232     }
2233     unsigned Idx = 0;
2234     if (parseUInt32(Idx))
2235       return true;
2236     Indices.push_back(Idx);
2237   }
2238 
2239   return false;
2240 }
2241 
2242 //===----------------------------------------------------------------------===//
2243 // Type Parsing.
2244 //===----------------------------------------------------------------------===//
2245 
2246 /// parseType - parse a type.
2247 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2248   SMLoc TypeLoc = Lex.getLoc();
2249   switch (Lex.getKind()) {
2250   default:
2251     return tokError(Msg);
2252   case lltok::Type:
2253     // Type ::= 'float' | 'void' (etc)
2254     Result = Lex.getTyVal();
2255     Lex.Lex();
2256 
2257     // Handle "ptr" opaque pointer type.
2258     //
2259     // Type ::= ptr ('addrspace' '(' uint32 ')')?
2260     if (Result->isOpaquePointerTy()) {
2261       unsigned AddrSpace;
2262       if (parseOptionalAddrSpace(AddrSpace))
2263         return true;
2264       Result = PointerType::get(getContext(), AddrSpace);
2265 
2266       // Give a nice error for 'ptr*'.
2267       if (Lex.getKind() == lltok::star)
2268         return tokError("ptr* is invalid - use ptr instead");
2269 
2270       // Fall through to parsing the type suffixes only if this 'ptr' is a
2271       // function return. Otherwise, return success, implicitly rejecting other
2272       // suffixes.
2273       if (Lex.getKind() != lltok::lparen)
2274         return false;
2275     }
2276     break;
2277   case lltok::lbrace:
2278     // Type ::= StructType
2279     if (parseAnonStructType(Result, false))
2280       return true;
2281     break;
2282   case lltok::lsquare:
2283     // Type ::= '[' ... ']'
2284     Lex.Lex(); // eat the lsquare.
2285     if (parseArrayVectorType(Result, false))
2286       return true;
2287     break;
2288   case lltok::less: // Either vector or packed struct.
2289     // Type ::= '<' ... '>'
2290     Lex.Lex();
2291     if (Lex.getKind() == lltok::lbrace) {
2292       if (parseAnonStructType(Result, true) ||
2293           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2294         return true;
2295     } else if (parseArrayVectorType(Result, true))
2296       return true;
2297     break;
2298   case lltok::LocalVar: {
2299     // Type ::= %foo
2300     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2301 
2302     // If the type hasn't been defined yet, create a forward definition and
2303     // remember where that forward def'n was seen (in case it never is defined).
2304     if (!Entry.first) {
2305       Entry.first = StructType::create(Context, Lex.getStrVal());
2306       Entry.second = Lex.getLoc();
2307     }
2308     Result = Entry.first;
2309     Lex.Lex();
2310     break;
2311   }
2312 
2313   case lltok::LocalVarID: {
2314     // Type ::= %4
2315     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2316 
2317     // If the type hasn't been defined yet, create a forward definition and
2318     // remember where that forward def'n was seen (in case it never is defined).
2319     if (!Entry.first) {
2320       Entry.first = StructType::create(Context);
2321       Entry.second = Lex.getLoc();
2322     }
2323     Result = Entry.first;
2324     Lex.Lex();
2325     break;
2326   }
2327   }
2328 
2329   // parse the type suffixes.
2330   while (true) {
2331     switch (Lex.getKind()) {
2332     // End of type.
2333     default:
2334       if (!AllowVoid && Result->isVoidTy())
2335         return error(TypeLoc, "void type only allowed for function results");
2336       return false;
2337 
2338     // Type ::= Type '*'
2339     case lltok::star:
2340       if (Result->isLabelTy())
2341         return tokError("basic block pointers are invalid");
2342       if (Result->isVoidTy())
2343         return tokError("pointers to void are invalid - use i8* instead");
2344       if (!PointerType::isValidElementType(Result))
2345         return tokError("pointer to this type is invalid");
2346       Result = PointerType::getUnqual(Result);
2347       Lex.Lex();
2348       break;
2349 
2350     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2351     case lltok::kw_addrspace: {
2352       if (Result->isLabelTy())
2353         return tokError("basic block pointers are invalid");
2354       if (Result->isVoidTy())
2355         return tokError("pointers to void are invalid; use i8* instead");
2356       if (!PointerType::isValidElementType(Result))
2357         return tokError("pointer to this type is invalid");
2358       unsigned AddrSpace;
2359       if (parseOptionalAddrSpace(AddrSpace) ||
2360           parseToken(lltok::star, "expected '*' in address space"))
2361         return true;
2362 
2363       Result = PointerType::get(Result, AddrSpace);
2364       break;
2365     }
2366 
2367     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2368     case lltok::lparen:
2369       if (parseFunctionType(Result))
2370         return true;
2371       break;
2372     }
2373   }
2374 }
2375 
2376 /// parseParameterList
2377 ///    ::= '(' ')'
2378 ///    ::= '(' Arg (',' Arg)* ')'
2379 ///  Arg
2380 ///    ::= Type OptionalAttributes Value OptionalAttributes
2381 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2382                                   PerFunctionState &PFS, bool IsMustTailCall,
2383                                   bool InVarArgsFunc) {
2384   if (parseToken(lltok::lparen, "expected '(' in call"))
2385     return true;
2386 
2387   while (Lex.getKind() != lltok::rparen) {
2388     // If this isn't the first argument, we need a comma.
2389     if (!ArgList.empty() &&
2390         parseToken(lltok::comma, "expected ',' in argument list"))
2391       return true;
2392 
2393     // parse an ellipsis if this is a musttail call in a variadic function.
2394     if (Lex.getKind() == lltok::dotdotdot) {
2395       const char *Msg = "unexpected ellipsis in argument list for ";
2396       if (!IsMustTailCall)
2397         return tokError(Twine(Msg) + "non-musttail call");
2398       if (!InVarArgsFunc)
2399         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2400       Lex.Lex();  // Lex the '...', it is purely for readability.
2401       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2402     }
2403 
2404     // parse the argument.
2405     LocTy ArgLoc;
2406     Type *ArgTy = nullptr;
2407     Value *V;
2408     if (parseType(ArgTy, ArgLoc))
2409       return true;
2410 
2411     AttrBuilder ArgAttrs(M->getContext());
2412 
2413     if (ArgTy->isMetadataTy()) {
2414       if (parseMetadataAsValue(V, PFS))
2415         return true;
2416     } else {
2417       // Otherwise, handle normal operands.
2418       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2419         return true;
2420     }
2421     ArgList.push_back(ParamInfo(
2422         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2423   }
2424 
2425   if (IsMustTailCall && InVarArgsFunc)
2426     return tokError("expected '...' at end of argument list for musttail call "
2427                     "in varargs function");
2428 
2429   Lex.Lex();  // Lex the ')'.
2430   return false;
2431 }
2432 
2433 /// parseRequiredTypeAttr
2434 ///   ::= attrname(<ty>)
2435 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
2436                                      Attribute::AttrKind AttrKind) {
2437   Type *Ty = nullptr;
2438   if (!EatIfPresent(AttrToken))
2439     return true;
2440   if (!EatIfPresent(lltok::lparen))
2441     return error(Lex.getLoc(), "expected '('");
2442   if (parseType(Ty))
2443     return true;
2444   if (!EatIfPresent(lltok::rparen))
2445     return error(Lex.getLoc(), "expected ')'");
2446 
2447   B.addTypeAttr(AttrKind, Ty);
2448   return false;
2449 }
2450 
2451 /// parseOptionalOperandBundles
2452 ///    ::= /*empty*/
2453 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2454 ///
2455 /// OperandBundle
2456 ///    ::= bundle-tag '(' ')'
2457 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2458 ///
2459 /// bundle-tag ::= String Constant
2460 bool LLParser::parseOptionalOperandBundles(
2461     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2462   LocTy BeginLoc = Lex.getLoc();
2463   if (!EatIfPresent(lltok::lsquare))
2464     return false;
2465 
2466   while (Lex.getKind() != lltok::rsquare) {
2467     // If this isn't the first operand bundle, we need a comma.
2468     if (!BundleList.empty() &&
2469         parseToken(lltok::comma, "expected ',' in input list"))
2470       return true;
2471 
2472     std::string Tag;
2473     if (parseStringConstant(Tag))
2474       return true;
2475 
2476     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2477       return true;
2478 
2479     std::vector<Value *> Inputs;
2480     while (Lex.getKind() != lltok::rparen) {
2481       // If this isn't the first input, we need a comma.
2482       if (!Inputs.empty() &&
2483           parseToken(lltok::comma, "expected ',' in input list"))
2484         return true;
2485 
2486       Type *Ty = nullptr;
2487       Value *Input = nullptr;
2488       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2489         return true;
2490       Inputs.push_back(Input);
2491     }
2492 
2493     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2494 
2495     Lex.Lex(); // Lex the ')'.
2496   }
2497 
2498   if (BundleList.empty())
2499     return error(BeginLoc, "operand bundle set must not be empty");
2500 
2501   Lex.Lex(); // Lex the ']'.
2502   return false;
2503 }
2504 
2505 /// parseArgumentList - parse the argument list for a function type or function
2506 /// prototype.
2507 ///   ::= '(' ArgTypeListI ')'
2508 /// ArgTypeListI
2509 ///   ::= /*empty*/
2510 ///   ::= '...'
2511 ///   ::= ArgTypeList ',' '...'
2512 ///   ::= ArgType (',' ArgType)*
2513 ///
2514 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2515                                  bool &IsVarArg) {
2516   unsigned CurValID = 0;
2517   IsVarArg = false;
2518   assert(Lex.getKind() == lltok::lparen);
2519   Lex.Lex(); // eat the (.
2520 
2521   if (Lex.getKind() == lltok::rparen) {
2522     // empty
2523   } else if (Lex.getKind() == lltok::dotdotdot) {
2524     IsVarArg = true;
2525     Lex.Lex();
2526   } else {
2527     LocTy TypeLoc = Lex.getLoc();
2528     Type *ArgTy = nullptr;
2529     AttrBuilder Attrs(M->getContext());
2530     std::string Name;
2531 
2532     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2533       return true;
2534 
2535     if (ArgTy->isVoidTy())
2536       return error(TypeLoc, "argument can not have void type");
2537 
2538     if (Lex.getKind() == lltok::LocalVar) {
2539       Name = Lex.getStrVal();
2540       Lex.Lex();
2541     } else if (Lex.getKind() == lltok::LocalVarID) {
2542       if (Lex.getUIntVal() != CurValID)
2543         return error(TypeLoc, "argument expected to be numbered '%" +
2544                                   Twine(CurValID) + "'");
2545       ++CurValID;
2546       Lex.Lex();
2547     }
2548 
2549     if (!FunctionType::isValidArgumentType(ArgTy))
2550       return error(TypeLoc, "invalid type for function argument");
2551 
2552     ArgList.emplace_back(TypeLoc, ArgTy,
2553                          AttributeSet::get(ArgTy->getContext(), Attrs),
2554                          std::move(Name));
2555 
2556     while (EatIfPresent(lltok::comma)) {
2557       // Handle ... at end of arg list.
2558       if (EatIfPresent(lltok::dotdotdot)) {
2559         IsVarArg = true;
2560         break;
2561       }
2562 
2563       // Otherwise must be an argument type.
2564       TypeLoc = Lex.getLoc();
2565       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2566         return true;
2567 
2568       if (ArgTy->isVoidTy())
2569         return error(TypeLoc, "argument can not have void type");
2570 
2571       if (Lex.getKind() == lltok::LocalVar) {
2572         Name = Lex.getStrVal();
2573         Lex.Lex();
2574       } else {
2575         if (Lex.getKind() == lltok::LocalVarID) {
2576           if (Lex.getUIntVal() != CurValID)
2577             return error(TypeLoc, "argument expected to be numbered '%" +
2578                                       Twine(CurValID) + "'");
2579           Lex.Lex();
2580         }
2581         ++CurValID;
2582         Name = "";
2583       }
2584 
2585       if (!ArgTy->isFirstClassType())
2586         return error(TypeLoc, "invalid type for function argument");
2587 
2588       ArgList.emplace_back(TypeLoc, ArgTy,
2589                            AttributeSet::get(ArgTy->getContext(), Attrs),
2590                            std::move(Name));
2591     }
2592   }
2593 
2594   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2595 }
2596 
2597 /// parseFunctionType
2598 ///  ::= Type ArgumentList OptionalAttrs
2599 bool LLParser::parseFunctionType(Type *&Result) {
2600   assert(Lex.getKind() == lltok::lparen);
2601 
2602   if (!FunctionType::isValidReturnType(Result))
2603     return tokError("invalid function return type");
2604 
2605   SmallVector<ArgInfo, 8> ArgList;
2606   bool IsVarArg;
2607   if (parseArgumentList(ArgList, IsVarArg))
2608     return true;
2609 
2610   // Reject names on the arguments lists.
2611   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2612     if (!ArgList[i].Name.empty())
2613       return error(ArgList[i].Loc, "argument name invalid in function type");
2614     if (ArgList[i].Attrs.hasAttributes())
2615       return error(ArgList[i].Loc,
2616                    "argument attributes invalid in function type");
2617   }
2618 
2619   SmallVector<Type*, 16> ArgListTy;
2620   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2621     ArgListTy.push_back(ArgList[i].Ty);
2622 
2623   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2624   return false;
2625 }
2626 
2627 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2628 /// other structs.
2629 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2630   SmallVector<Type*, 8> Elts;
2631   if (parseStructBody(Elts))
2632     return true;
2633 
2634   Result = StructType::get(Context, Elts, Packed);
2635   return false;
2636 }
2637 
2638 /// parseStructDefinition - parse a struct in a 'type' definition.
2639 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2640                                      std::pair<Type *, LocTy> &Entry,
2641                                      Type *&ResultTy) {
2642   // If the type was already defined, diagnose the redefinition.
2643   if (Entry.first && !Entry.second.isValid())
2644     return error(TypeLoc, "redefinition of type");
2645 
2646   // If we have opaque, just return without filling in the definition for the
2647   // struct.  This counts as a definition as far as the .ll file goes.
2648   if (EatIfPresent(lltok::kw_opaque)) {
2649     // This type is being defined, so clear the location to indicate this.
2650     Entry.second = SMLoc();
2651 
2652     // If this type number has never been uttered, create it.
2653     if (!Entry.first)
2654       Entry.first = StructType::create(Context, Name);
2655     ResultTy = Entry.first;
2656     return false;
2657   }
2658 
2659   // If the type starts with '<', then it is either a packed struct or a vector.
2660   bool isPacked = EatIfPresent(lltok::less);
2661 
2662   // If we don't have a struct, then we have a random type alias, which we
2663   // accept for compatibility with old files.  These types are not allowed to be
2664   // forward referenced and not allowed to be recursive.
2665   if (Lex.getKind() != lltok::lbrace) {
2666     if (Entry.first)
2667       return error(TypeLoc, "forward references to non-struct type");
2668 
2669     ResultTy = nullptr;
2670     if (isPacked)
2671       return parseArrayVectorType(ResultTy, true);
2672     return parseType(ResultTy);
2673   }
2674 
2675   // This type is being defined, so clear the location to indicate this.
2676   Entry.second = SMLoc();
2677 
2678   // If this type number has never been uttered, create it.
2679   if (!Entry.first)
2680     Entry.first = StructType::create(Context, Name);
2681 
2682   StructType *STy = cast<StructType>(Entry.first);
2683 
2684   SmallVector<Type*, 8> Body;
2685   if (parseStructBody(Body) ||
2686       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2687     return true;
2688 
2689   STy->setBody(Body, isPacked);
2690   ResultTy = STy;
2691   return false;
2692 }
2693 
2694 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2695 ///   StructType
2696 ///     ::= '{' '}'
2697 ///     ::= '{' Type (',' Type)* '}'
2698 ///     ::= '<' '{' '}' '>'
2699 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2700 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2701   assert(Lex.getKind() == lltok::lbrace);
2702   Lex.Lex(); // Consume the '{'
2703 
2704   // Handle the empty struct.
2705   if (EatIfPresent(lltok::rbrace))
2706     return false;
2707 
2708   LocTy EltTyLoc = Lex.getLoc();
2709   Type *Ty = nullptr;
2710   if (parseType(Ty))
2711     return true;
2712   Body.push_back(Ty);
2713 
2714   if (!StructType::isValidElementType(Ty))
2715     return error(EltTyLoc, "invalid element type for struct");
2716 
2717   while (EatIfPresent(lltok::comma)) {
2718     EltTyLoc = Lex.getLoc();
2719     if (parseType(Ty))
2720       return true;
2721 
2722     if (!StructType::isValidElementType(Ty))
2723       return error(EltTyLoc, "invalid element type for struct");
2724 
2725     Body.push_back(Ty);
2726   }
2727 
2728   return parseToken(lltok::rbrace, "expected '}' at end of struct");
2729 }
2730 
2731 /// parseArrayVectorType - parse an array or vector type, assuming the first
2732 /// token has already been consumed.
2733 ///   Type
2734 ///     ::= '[' APSINTVAL 'x' Types ']'
2735 ///     ::= '<' APSINTVAL 'x' Types '>'
2736 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2737 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
2738   bool Scalable = false;
2739 
2740   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
2741     Lex.Lex(); // consume the 'vscale'
2742     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
2743       return true;
2744 
2745     Scalable = true;
2746   }
2747 
2748   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2749       Lex.getAPSIntVal().getBitWidth() > 64)
2750     return tokError("expected number in address space");
2751 
2752   LocTy SizeLoc = Lex.getLoc();
2753   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2754   Lex.Lex();
2755 
2756   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
2757     return true;
2758 
2759   LocTy TypeLoc = Lex.getLoc();
2760   Type *EltTy = nullptr;
2761   if (parseType(EltTy))
2762     return true;
2763 
2764   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
2765                  "expected end of sequential type"))
2766     return true;
2767 
2768   if (IsVector) {
2769     if (Size == 0)
2770       return error(SizeLoc, "zero element vector is illegal");
2771     if ((unsigned)Size != Size)
2772       return error(SizeLoc, "size too large for vector");
2773     if (!VectorType::isValidElementType(EltTy))
2774       return error(TypeLoc, "invalid vector element type");
2775     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2776   } else {
2777     if (!ArrayType::isValidElementType(EltTy))
2778       return error(TypeLoc, "invalid array element type");
2779     Result = ArrayType::get(EltTy, Size);
2780   }
2781   return false;
2782 }
2783 
2784 //===----------------------------------------------------------------------===//
2785 // Function Semantic Analysis.
2786 //===----------------------------------------------------------------------===//
2787 
2788 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2789                                              int functionNumber)
2790   : P(p), F(f), FunctionNumber(functionNumber) {
2791 
2792   // Insert unnamed arguments into the NumberedVals list.
2793   for (Argument &A : F.args())
2794     if (!A.hasName())
2795       NumberedVals.push_back(&A);
2796 }
2797 
2798 LLParser::PerFunctionState::~PerFunctionState() {
2799   // If there were any forward referenced non-basicblock values, delete them.
2800 
2801   for (const auto &P : ForwardRefVals) {
2802     if (isa<BasicBlock>(P.second.first))
2803       continue;
2804     P.second.first->replaceAllUsesWith(
2805         UndefValue::get(P.second.first->getType()));
2806     P.second.first->deleteValue();
2807   }
2808 
2809   for (const auto &P : ForwardRefValIDs) {
2810     if (isa<BasicBlock>(P.second.first))
2811       continue;
2812     P.second.first->replaceAllUsesWith(
2813         UndefValue::get(P.second.first->getType()));
2814     P.second.first->deleteValue();
2815   }
2816 }
2817 
2818 bool LLParser::PerFunctionState::finishFunction() {
2819   if (!ForwardRefVals.empty())
2820     return P.error(ForwardRefVals.begin()->second.second,
2821                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2822                        "'");
2823   if (!ForwardRefValIDs.empty())
2824     return P.error(ForwardRefValIDs.begin()->second.second,
2825                    "use of undefined value '%" +
2826                        Twine(ForwardRefValIDs.begin()->first) + "'");
2827   return false;
2828 }
2829 
2830 /// getVal - Get a value with the specified name or ID, creating a
2831 /// forward reference record if needed.  This can return null if the value
2832 /// exists but does not have the right type.
2833 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
2834                                           LocTy Loc) {
2835   // Look this name up in the normal function symbol table.
2836   Value *Val = F.getValueSymbolTable()->lookup(Name);
2837 
2838   // If this is a forward reference for the value, see if we already created a
2839   // forward ref record.
2840   if (!Val) {
2841     auto I = ForwardRefVals.find(Name);
2842     if (I != ForwardRefVals.end())
2843       Val = I->second.first;
2844   }
2845 
2846   // If we have the value in the symbol table or fwd-ref table, return it.
2847   if (Val)
2848     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val);
2849 
2850   // Don't make placeholders with invalid type.
2851   if (!Ty->isFirstClassType()) {
2852     P.error(Loc, "invalid use of a non-first-class type");
2853     return nullptr;
2854   }
2855 
2856   // Otherwise, create a new forward reference for this value and remember it.
2857   Value *FwdVal;
2858   if (Ty->isLabelTy()) {
2859     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2860   } else {
2861     FwdVal = new Argument(Ty, Name);
2862   }
2863 
2864   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2865   return FwdVal;
2866 }
2867 
2868 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) {
2869   // Look this name up in the normal function symbol table.
2870   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2871 
2872   // If this is a forward reference for the value, see if we already created a
2873   // forward ref record.
2874   if (!Val) {
2875     auto I = ForwardRefValIDs.find(ID);
2876     if (I != ForwardRefValIDs.end())
2877       Val = I->second.first;
2878   }
2879 
2880   // If we have the value in the symbol table or fwd-ref table, return it.
2881   if (Val)
2882     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val);
2883 
2884   if (!Ty->isFirstClassType()) {
2885     P.error(Loc, "invalid use of a non-first-class type");
2886     return nullptr;
2887   }
2888 
2889   // Otherwise, create a new forward reference for this value and remember it.
2890   Value *FwdVal;
2891   if (Ty->isLabelTy()) {
2892     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2893   } else {
2894     FwdVal = new Argument(Ty);
2895   }
2896 
2897   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2898   return FwdVal;
2899 }
2900 
2901 /// setInstName - After an instruction is parsed and inserted into its
2902 /// basic block, this installs its name.
2903 bool LLParser::PerFunctionState::setInstName(int NameID,
2904                                              const std::string &NameStr,
2905                                              LocTy NameLoc, Instruction *Inst) {
2906   // If this instruction has void type, it cannot have a name or ID specified.
2907   if (Inst->getType()->isVoidTy()) {
2908     if (NameID != -1 || !NameStr.empty())
2909       return P.error(NameLoc, "instructions returning void cannot have a name");
2910     return false;
2911   }
2912 
2913   // If this was a numbered instruction, verify that the instruction is the
2914   // expected value and resolve any forward references.
2915   if (NameStr.empty()) {
2916     // If neither a name nor an ID was specified, just use the next ID.
2917     if (NameID == -1)
2918       NameID = NumberedVals.size();
2919 
2920     if (unsigned(NameID) != NumberedVals.size())
2921       return P.error(NameLoc, "instruction expected to be numbered '%" +
2922                                   Twine(NumberedVals.size()) + "'");
2923 
2924     auto FI = ForwardRefValIDs.find(NameID);
2925     if (FI != ForwardRefValIDs.end()) {
2926       Value *Sentinel = FI->second.first;
2927       if (Sentinel->getType() != Inst->getType())
2928         return P.error(NameLoc, "instruction forward referenced with type '" +
2929                                     getTypeString(FI->second.first->getType()) +
2930                                     "'");
2931 
2932       Sentinel->replaceAllUsesWith(Inst);
2933       Sentinel->deleteValue();
2934       ForwardRefValIDs.erase(FI);
2935     }
2936 
2937     NumberedVals.push_back(Inst);
2938     return false;
2939   }
2940 
2941   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2942   auto FI = ForwardRefVals.find(NameStr);
2943   if (FI != ForwardRefVals.end()) {
2944     Value *Sentinel = FI->second.first;
2945     if (Sentinel->getType() != Inst->getType())
2946       return P.error(NameLoc, "instruction forward referenced with type '" +
2947                                   getTypeString(FI->second.first->getType()) +
2948                                   "'");
2949 
2950     Sentinel->replaceAllUsesWith(Inst);
2951     Sentinel->deleteValue();
2952     ForwardRefVals.erase(FI);
2953   }
2954 
2955   // Set the name on the instruction.
2956   Inst->setName(NameStr);
2957 
2958   if (Inst->getName() != NameStr)
2959     return P.error(NameLoc, "multiple definition of local value named '" +
2960                                 NameStr + "'");
2961   return false;
2962 }
2963 
2964 /// getBB - Get a basic block with the specified name or ID, creating a
2965 /// forward reference record if needed.
2966 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
2967                                               LocTy Loc) {
2968   return dyn_cast_or_null<BasicBlock>(
2969       getVal(Name, Type::getLabelTy(F.getContext()), Loc));
2970 }
2971 
2972 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
2973   return dyn_cast_or_null<BasicBlock>(
2974       getVal(ID, Type::getLabelTy(F.getContext()), Loc));
2975 }
2976 
2977 /// defineBB - Define the specified basic block, which is either named or
2978 /// unnamed.  If there is an error, this returns null otherwise it returns
2979 /// the block being defined.
2980 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
2981                                                  int NameID, LocTy Loc) {
2982   BasicBlock *BB;
2983   if (Name.empty()) {
2984     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
2985       P.error(Loc, "label expected to be numbered '" +
2986                        Twine(NumberedVals.size()) + "'");
2987       return nullptr;
2988     }
2989     BB = getBB(NumberedVals.size(), Loc);
2990     if (!BB) {
2991       P.error(Loc, "unable to create block numbered '" +
2992                        Twine(NumberedVals.size()) + "'");
2993       return nullptr;
2994     }
2995   } else {
2996     BB = getBB(Name, Loc);
2997     if (!BB) {
2998       P.error(Loc, "unable to create block named '" + Name + "'");
2999       return nullptr;
3000     }
3001   }
3002 
3003   // Move the block to the end of the function.  Forward ref'd blocks are
3004   // inserted wherever they happen to be referenced.
3005   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3006 
3007   // Remove the block from forward ref sets.
3008   if (Name.empty()) {
3009     ForwardRefValIDs.erase(NumberedVals.size());
3010     NumberedVals.push_back(BB);
3011   } else {
3012     // BB forward references are already in the function symbol table.
3013     ForwardRefVals.erase(Name);
3014   }
3015 
3016   return BB;
3017 }
3018 
3019 //===----------------------------------------------------------------------===//
3020 // Constants.
3021 //===----------------------------------------------------------------------===//
3022 
3023 /// parseValID - parse an abstract value that doesn't necessarily have a
3024 /// type implied.  For example, if we parse "4" we don't know what integer type
3025 /// it has.  The value will later be combined with its type and checked for
3026 /// basic correctness.  PFS is used to convert function-local operands of
3027 /// metadata (since metadata operands are not just parsed here but also
3028 /// converted to values). PFS can be null when we are not parsing metadata
3029 /// values inside a function.
3030 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
3031   ID.Loc = Lex.getLoc();
3032   switch (Lex.getKind()) {
3033   default:
3034     return tokError("expected value token");
3035   case lltok::GlobalID:  // @42
3036     ID.UIntVal = Lex.getUIntVal();
3037     ID.Kind = ValID::t_GlobalID;
3038     break;
3039   case lltok::GlobalVar:  // @foo
3040     ID.StrVal = Lex.getStrVal();
3041     ID.Kind = ValID::t_GlobalName;
3042     break;
3043   case lltok::LocalVarID:  // %42
3044     ID.UIntVal = Lex.getUIntVal();
3045     ID.Kind = ValID::t_LocalID;
3046     break;
3047   case lltok::LocalVar:  // %foo
3048     ID.StrVal = Lex.getStrVal();
3049     ID.Kind = ValID::t_LocalName;
3050     break;
3051   case lltok::APSInt:
3052     ID.APSIntVal = Lex.getAPSIntVal();
3053     ID.Kind = ValID::t_APSInt;
3054     break;
3055   case lltok::APFloat:
3056     ID.APFloatVal = Lex.getAPFloatVal();
3057     ID.Kind = ValID::t_APFloat;
3058     break;
3059   case lltok::kw_true:
3060     ID.ConstantVal = ConstantInt::getTrue(Context);
3061     ID.Kind = ValID::t_Constant;
3062     break;
3063   case lltok::kw_false:
3064     ID.ConstantVal = ConstantInt::getFalse(Context);
3065     ID.Kind = ValID::t_Constant;
3066     break;
3067   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3068   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3069   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3070   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3071   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3072 
3073   case lltok::lbrace: {
3074     // ValID ::= '{' ConstVector '}'
3075     Lex.Lex();
3076     SmallVector<Constant*, 16> Elts;
3077     if (parseGlobalValueVector(Elts) ||
3078         parseToken(lltok::rbrace, "expected end of struct constant"))
3079       return true;
3080 
3081     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3082     ID.UIntVal = Elts.size();
3083     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3084            Elts.size() * sizeof(Elts[0]));
3085     ID.Kind = ValID::t_ConstantStruct;
3086     return false;
3087   }
3088   case lltok::less: {
3089     // ValID ::= '<' ConstVector '>'         --> Vector.
3090     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3091     Lex.Lex();
3092     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3093 
3094     SmallVector<Constant*, 16> Elts;
3095     LocTy FirstEltLoc = Lex.getLoc();
3096     if (parseGlobalValueVector(Elts) ||
3097         (isPackedStruct &&
3098          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3099         parseToken(lltok::greater, "expected end of constant"))
3100       return true;
3101 
3102     if (isPackedStruct) {
3103       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3104       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3105              Elts.size() * sizeof(Elts[0]));
3106       ID.UIntVal = Elts.size();
3107       ID.Kind = ValID::t_PackedConstantStruct;
3108       return false;
3109     }
3110 
3111     if (Elts.empty())
3112       return error(ID.Loc, "constant vector must not be empty");
3113 
3114     if (!Elts[0]->getType()->isIntegerTy() &&
3115         !Elts[0]->getType()->isFloatingPointTy() &&
3116         !Elts[0]->getType()->isPointerTy())
3117       return error(
3118           FirstEltLoc,
3119           "vector elements must have integer, pointer or floating point type");
3120 
3121     // Verify that all the vector elements have the same type.
3122     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3123       if (Elts[i]->getType() != Elts[0]->getType())
3124         return error(FirstEltLoc, "vector element #" + Twine(i) +
3125                                       " is not of type '" +
3126                                       getTypeString(Elts[0]->getType()));
3127 
3128     ID.ConstantVal = ConstantVector::get(Elts);
3129     ID.Kind = ValID::t_Constant;
3130     return false;
3131   }
3132   case lltok::lsquare: {   // Array Constant
3133     Lex.Lex();
3134     SmallVector<Constant*, 16> Elts;
3135     LocTy FirstEltLoc = Lex.getLoc();
3136     if (parseGlobalValueVector(Elts) ||
3137         parseToken(lltok::rsquare, "expected end of array constant"))
3138       return true;
3139 
3140     // Handle empty element.
3141     if (Elts.empty()) {
3142       // Use undef instead of an array because it's inconvenient to determine
3143       // the element type at this point, there being no elements to examine.
3144       ID.Kind = ValID::t_EmptyArray;
3145       return false;
3146     }
3147 
3148     if (!Elts[0]->getType()->isFirstClassType())
3149       return error(FirstEltLoc, "invalid array element type: " +
3150                                     getTypeString(Elts[0]->getType()));
3151 
3152     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3153 
3154     // Verify all elements are correct type!
3155     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3156       if (Elts[i]->getType() != Elts[0]->getType())
3157         return error(FirstEltLoc, "array element #" + Twine(i) +
3158                                       " is not of type '" +
3159                                       getTypeString(Elts[0]->getType()));
3160     }
3161 
3162     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3163     ID.Kind = ValID::t_Constant;
3164     return false;
3165   }
3166   case lltok::kw_c:  // c "foo"
3167     Lex.Lex();
3168     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3169                                                   false);
3170     if (parseToken(lltok::StringConstant, "expected string"))
3171       return true;
3172     ID.Kind = ValID::t_Constant;
3173     return false;
3174 
3175   case lltok::kw_asm: {
3176     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3177     //             STRINGCONSTANT
3178     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3179     Lex.Lex();
3180     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3181         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3182         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3183         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3184         parseStringConstant(ID.StrVal) ||
3185         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3186         parseToken(lltok::StringConstant, "expected constraint string"))
3187       return true;
3188     ID.StrVal2 = Lex.getStrVal();
3189     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3190                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3191     ID.Kind = ValID::t_InlineAsm;
3192     return false;
3193   }
3194 
3195   case lltok::kw_blockaddress: {
3196     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3197     Lex.Lex();
3198 
3199     ValID Fn, Label;
3200 
3201     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3202         parseValID(Fn, PFS) ||
3203         parseToken(lltok::comma,
3204                    "expected comma in block address expression") ||
3205         parseValID(Label, PFS) ||
3206         parseToken(lltok::rparen, "expected ')' in block address expression"))
3207       return true;
3208 
3209     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3210       return error(Fn.Loc, "expected function name in blockaddress");
3211     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3212       return error(Label.Loc, "expected basic block name in blockaddress");
3213 
3214     // Try to find the function (but skip it if it's forward-referenced).
3215     GlobalValue *GV = nullptr;
3216     if (Fn.Kind == ValID::t_GlobalID) {
3217       if (Fn.UIntVal < NumberedVals.size())
3218         GV = NumberedVals[Fn.UIntVal];
3219     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3220       GV = M->getNamedValue(Fn.StrVal);
3221     }
3222     Function *F = nullptr;
3223     if (GV) {
3224       // Confirm that it's actually a function with a definition.
3225       if (!isa<Function>(GV))
3226         return error(Fn.Loc, "expected function name in blockaddress");
3227       F = cast<Function>(GV);
3228       if (F->isDeclaration())
3229         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3230     }
3231 
3232     if (!F) {
3233       // Make a global variable as a placeholder for this reference.
3234       GlobalValue *&FwdRef =
3235           ForwardRefBlockAddresses.insert(std::make_pair(
3236                                               std::move(Fn),
3237                                               std::map<ValID, GlobalValue *>()))
3238               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3239               .first->second;
3240       if (!FwdRef) {
3241         unsigned FwdDeclAS;
3242         if (ExpectedTy) {
3243           // If we know the type that the blockaddress is being assigned to,
3244           // we can use the address space of that type.
3245           if (!ExpectedTy->isPointerTy())
3246             return error(ID.Loc,
3247                          "type of blockaddress must be a pointer and not '" +
3248                              getTypeString(ExpectedTy) + "'");
3249           FwdDeclAS = ExpectedTy->getPointerAddressSpace();
3250         } else if (PFS) {
3251           // Otherwise, we default the address space of the current function.
3252           FwdDeclAS = PFS->getFunction().getAddressSpace();
3253         } else {
3254           llvm_unreachable("Unknown address space for blockaddress");
3255         }
3256         FwdRef = new GlobalVariable(
3257             *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
3258             nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
3259       }
3260 
3261       ID.ConstantVal = FwdRef;
3262       ID.Kind = ValID::t_Constant;
3263       return false;
3264     }
3265 
3266     // We found the function; now find the basic block.  Don't use PFS, since we
3267     // might be inside a constant expression.
3268     BasicBlock *BB;
3269     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3270       if (Label.Kind == ValID::t_LocalID)
3271         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3272       else
3273         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3274       if (!BB)
3275         return error(Label.Loc, "referenced value is not a basic block");
3276     } else {
3277       if (Label.Kind == ValID::t_LocalID)
3278         return error(Label.Loc, "cannot take address of numeric label after "
3279                                 "the function is defined");
3280       BB = dyn_cast_or_null<BasicBlock>(
3281           F->getValueSymbolTable()->lookup(Label.StrVal));
3282       if (!BB)
3283         return error(Label.Loc, "referenced value is not a basic block");
3284     }
3285 
3286     ID.ConstantVal = BlockAddress::get(F, BB);
3287     ID.Kind = ValID::t_Constant;
3288     return false;
3289   }
3290 
3291   case lltok::kw_dso_local_equivalent: {
3292     // ValID ::= 'dso_local_equivalent' @foo
3293     Lex.Lex();
3294 
3295     ValID Fn;
3296 
3297     if (parseValID(Fn, PFS))
3298       return true;
3299 
3300     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3301       return error(Fn.Loc,
3302                    "expected global value name in dso_local_equivalent");
3303 
3304     // Try to find the function (but skip it if it's forward-referenced).
3305     GlobalValue *GV = nullptr;
3306     if (Fn.Kind == ValID::t_GlobalID) {
3307       if (Fn.UIntVal < NumberedVals.size())
3308         GV = NumberedVals[Fn.UIntVal];
3309     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3310       GV = M->getNamedValue(Fn.StrVal);
3311     }
3312 
3313     assert(GV && "Could not find a corresponding global variable");
3314 
3315     if (!GV->getValueType()->isFunctionTy())
3316       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3317                            "in dso_local_equivalent");
3318 
3319     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3320     ID.Kind = ValID::t_Constant;
3321     return false;
3322   }
3323 
3324   case lltok::kw_no_cfi: {
3325     // ValID ::= 'no_cfi' @foo
3326     Lex.Lex();
3327 
3328     if (parseValID(ID, PFS))
3329       return true;
3330 
3331     if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName)
3332       return error(ID.Loc, "expected global value name in no_cfi");
3333 
3334     ID.NoCFI = true;
3335     return false;
3336   }
3337 
3338   case lltok::kw_trunc:
3339   case lltok::kw_zext:
3340   case lltok::kw_sext:
3341   case lltok::kw_fptrunc:
3342   case lltok::kw_fpext:
3343   case lltok::kw_bitcast:
3344   case lltok::kw_addrspacecast:
3345   case lltok::kw_uitofp:
3346   case lltok::kw_sitofp:
3347   case lltok::kw_fptoui:
3348   case lltok::kw_fptosi:
3349   case lltok::kw_inttoptr:
3350   case lltok::kw_ptrtoint: {
3351     unsigned Opc = Lex.getUIntVal();
3352     Type *DestTy = nullptr;
3353     Constant *SrcVal;
3354     Lex.Lex();
3355     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3356         parseGlobalTypeAndValue(SrcVal) ||
3357         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3358         parseType(DestTy) ||
3359         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3360       return true;
3361     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3362       return error(ID.Loc, "invalid cast opcode for cast from '" +
3363                                getTypeString(SrcVal->getType()) + "' to '" +
3364                                getTypeString(DestTy) + "'");
3365     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3366                                                  SrcVal, DestTy);
3367     ID.Kind = ValID::t_Constant;
3368     return false;
3369   }
3370   case lltok::kw_extractvalue: {
3371     Lex.Lex();
3372     Constant *Val;
3373     SmallVector<unsigned, 4> Indices;
3374     if (parseToken(lltok::lparen,
3375                    "expected '(' in extractvalue constantexpr") ||
3376         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3377         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3378       return true;
3379 
3380     if (!Val->getType()->isAggregateType())
3381       return error(ID.Loc, "extractvalue operand must be aggregate type");
3382     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3383       return error(ID.Loc, "invalid indices for extractvalue");
3384     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3385     ID.Kind = ValID::t_Constant;
3386     return false;
3387   }
3388   case lltok::kw_insertvalue: {
3389     Lex.Lex();
3390     Constant *Val0, *Val1;
3391     SmallVector<unsigned, 4> Indices;
3392     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3393         parseGlobalTypeAndValue(Val0) ||
3394         parseToken(lltok::comma,
3395                    "expected comma in insertvalue constantexpr") ||
3396         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3397         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3398       return true;
3399     if (!Val0->getType()->isAggregateType())
3400       return error(ID.Loc, "insertvalue operand must be aggregate type");
3401     Type *IndexedType =
3402         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3403     if (!IndexedType)
3404       return error(ID.Loc, "invalid indices for insertvalue");
3405     if (IndexedType != Val1->getType())
3406       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3407                                getTypeString(Val1->getType()) +
3408                                "' instead of '" + getTypeString(IndexedType) +
3409                                "'");
3410     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3411     ID.Kind = ValID::t_Constant;
3412     return false;
3413   }
3414   case lltok::kw_icmp:
3415   case lltok::kw_fcmp: {
3416     unsigned PredVal, Opc = Lex.getUIntVal();
3417     Constant *Val0, *Val1;
3418     Lex.Lex();
3419     if (parseCmpPredicate(PredVal, Opc) ||
3420         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3421         parseGlobalTypeAndValue(Val0) ||
3422         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3423         parseGlobalTypeAndValue(Val1) ||
3424         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3425       return true;
3426 
3427     if (Val0->getType() != Val1->getType())
3428       return error(ID.Loc, "compare operands must have the same type");
3429 
3430     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3431 
3432     if (Opc == Instruction::FCmp) {
3433       if (!Val0->getType()->isFPOrFPVectorTy())
3434         return error(ID.Loc, "fcmp requires floating point operands");
3435       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3436     } else {
3437       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3438       if (!Val0->getType()->isIntOrIntVectorTy() &&
3439           !Val0->getType()->isPtrOrPtrVectorTy())
3440         return error(ID.Loc, "icmp requires pointer or integer operands");
3441       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3442     }
3443     ID.Kind = ValID::t_Constant;
3444     return false;
3445   }
3446 
3447   // Unary Operators.
3448   case lltok::kw_fneg: {
3449     unsigned Opc = Lex.getUIntVal();
3450     Constant *Val;
3451     Lex.Lex();
3452     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3453         parseGlobalTypeAndValue(Val) ||
3454         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3455       return true;
3456 
3457     // Check that the type is valid for the operator.
3458     switch (Opc) {
3459     case Instruction::FNeg:
3460       if (!Val->getType()->isFPOrFPVectorTy())
3461         return error(ID.Loc, "constexpr requires fp operands");
3462       break;
3463     default: llvm_unreachable("Unknown unary operator!");
3464     }
3465     unsigned Flags = 0;
3466     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3467     ID.ConstantVal = C;
3468     ID.Kind = ValID::t_Constant;
3469     return false;
3470   }
3471   // Binary Operators.
3472   case lltok::kw_add:
3473   case lltok::kw_fadd:
3474   case lltok::kw_sub:
3475   case lltok::kw_fsub:
3476   case lltok::kw_mul:
3477   case lltok::kw_fmul:
3478   case lltok::kw_udiv:
3479   case lltok::kw_sdiv:
3480   case lltok::kw_fdiv:
3481   case lltok::kw_urem:
3482   case lltok::kw_srem:
3483   case lltok::kw_frem:
3484   case lltok::kw_shl:
3485   case lltok::kw_lshr:
3486   case lltok::kw_ashr: {
3487     bool NUW = false;
3488     bool NSW = false;
3489     bool Exact = false;
3490     unsigned Opc = Lex.getUIntVal();
3491     Constant *Val0, *Val1;
3492     Lex.Lex();
3493     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3494         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3495       if (EatIfPresent(lltok::kw_nuw))
3496         NUW = true;
3497       if (EatIfPresent(lltok::kw_nsw)) {
3498         NSW = true;
3499         if (EatIfPresent(lltok::kw_nuw))
3500           NUW = true;
3501       }
3502     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3503                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3504       if (EatIfPresent(lltok::kw_exact))
3505         Exact = true;
3506     }
3507     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3508         parseGlobalTypeAndValue(Val0) ||
3509         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3510         parseGlobalTypeAndValue(Val1) ||
3511         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3512       return true;
3513     if (Val0->getType() != Val1->getType())
3514       return error(ID.Loc, "operands of constexpr must have same type");
3515     // Check that the type is valid for the operator.
3516     switch (Opc) {
3517     case Instruction::Add:
3518     case Instruction::Sub:
3519     case Instruction::Mul:
3520     case Instruction::UDiv:
3521     case Instruction::SDiv:
3522     case Instruction::URem:
3523     case Instruction::SRem:
3524     case Instruction::Shl:
3525     case Instruction::AShr:
3526     case Instruction::LShr:
3527       if (!Val0->getType()->isIntOrIntVectorTy())
3528         return error(ID.Loc, "constexpr requires integer operands");
3529       break;
3530     case Instruction::FAdd:
3531     case Instruction::FSub:
3532     case Instruction::FMul:
3533     case Instruction::FDiv:
3534     case Instruction::FRem:
3535       if (!Val0->getType()->isFPOrFPVectorTy())
3536         return error(ID.Loc, "constexpr requires fp operands");
3537       break;
3538     default: llvm_unreachable("Unknown binary operator!");
3539     }
3540     unsigned Flags = 0;
3541     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3542     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3543     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3544     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3545     ID.ConstantVal = C;
3546     ID.Kind = ValID::t_Constant;
3547     return false;
3548   }
3549 
3550   // Logical Operations
3551   case lltok::kw_and:
3552   case lltok::kw_or:
3553   case lltok::kw_xor: {
3554     unsigned Opc = Lex.getUIntVal();
3555     Constant *Val0, *Val1;
3556     Lex.Lex();
3557     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3558         parseGlobalTypeAndValue(Val0) ||
3559         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3560         parseGlobalTypeAndValue(Val1) ||
3561         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3562       return true;
3563     if (Val0->getType() != Val1->getType())
3564       return error(ID.Loc, "operands of constexpr must have same type");
3565     if (!Val0->getType()->isIntOrIntVectorTy())
3566       return error(ID.Loc,
3567                    "constexpr requires integer or integer vector operands");
3568     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3569     ID.Kind = ValID::t_Constant;
3570     return false;
3571   }
3572 
3573   case lltok::kw_getelementptr:
3574   case lltok::kw_shufflevector:
3575   case lltok::kw_insertelement:
3576   case lltok::kw_extractelement:
3577   case lltok::kw_select: {
3578     unsigned Opc = Lex.getUIntVal();
3579     SmallVector<Constant*, 16> Elts;
3580     bool InBounds = false;
3581     Type *Ty;
3582     Lex.Lex();
3583 
3584     if (Opc == Instruction::GetElementPtr)
3585       InBounds = EatIfPresent(lltok::kw_inbounds);
3586 
3587     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3588       return true;
3589 
3590     LocTy ExplicitTypeLoc = Lex.getLoc();
3591     if (Opc == Instruction::GetElementPtr) {
3592       if (parseType(Ty) ||
3593           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3594         return true;
3595     }
3596 
3597     Optional<unsigned> InRangeOp;
3598     if (parseGlobalValueVector(
3599             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3600         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3601       return true;
3602 
3603     if (Opc == Instruction::GetElementPtr) {
3604       if (Elts.size() == 0 ||
3605           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3606         return error(ID.Loc, "base of getelementptr must be a pointer");
3607 
3608       Type *BaseType = Elts[0]->getType();
3609       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3610       if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
3611         return error(
3612             ExplicitTypeLoc,
3613             typeComparisonErrorMessage(
3614                 "explicit pointee type doesn't match operand's pointee type",
3615                 Ty, BasePointerType->getNonOpaquePointerElementType()));
3616       }
3617 
3618       unsigned GEPWidth =
3619           BaseType->isVectorTy()
3620               ? cast<FixedVectorType>(BaseType)->getNumElements()
3621               : 0;
3622 
3623       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3624       for (Constant *Val : Indices) {
3625         Type *ValTy = Val->getType();
3626         if (!ValTy->isIntOrIntVectorTy())
3627           return error(ID.Loc, "getelementptr index must be an integer");
3628         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3629           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3630           if (GEPWidth && (ValNumEl != GEPWidth))
3631             return error(
3632                 ID.Loc,
3633                 "getelementptr vector index has a wrong number of elements");
3634           // GEPWidth may have been unknown because the base is a scalar,
3635           // but it is known now.
3636           GEPWidth = ValNumEl;
3637         }
3638       }
3639 
3640       SmallPtrSet<Type*, 4> Visited;
3641       if (!Indices.empty() && !Ty->isSized(&Visited))
3642         return error(ID.Loc, "base element of getelementptr must be sized");
3643 
3644       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3645         return error(ID.Loc, "invalid getelementptr indices");
3646 
3647       if (InRangeOp) {
3648         if (*InRangeOp == 0)
3649           return error(ID.Loc,
3650                        "inrange keyword may not appear on pointer operand");
3651         --*InRangeOp;
3652       }
3653 
3654       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3655                                                       InBounds, InRangeOp);
3656     } else if (Opc == Instruction::Select) {
3657       if (Elts.size() != 3)
3658         return error(ID.Loc, "expected three operands to select");
3659       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3660                                                               Elts[2]))
3661         return error(ID.Loc, Reason);
3662       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3663     } else if (Opc == Instruction::ShuffleVector) {
3664       if (Elts.size() != 3)
3665         return error(ID.Loc, "expected three operands to shufflevector");
3666       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3667         return error(ID.Loc, "invalid operands to shufflevector");
3668       SmallVector<int, 16> Mask;
3669       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3670       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3671     } else if (Opc == Instruction::ExtractElement) {
3672       if (Elts.size() != 2)
3673         return error(ID.Loc, "expected two operands to extractelement");
3674       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3675         return error(ID.Loc, "invalid extractelement operands");
3676       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3677     } else {
3678       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3679       if (Elts.size() != 3)
3680         return error(ID.Loc, "expected three operands to insertelement");
3681       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3682         return error(ID.Loc, "invalid insertelement operands");
3683       ID.ConstantVal =
3684                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3685     }
3686 
3687     ID.Kind = ValID::t_Constant;
3688     return false;
3689   }
3690   }
3691 
3692   Lex.Lex();
3693   return false;
3694 }
3695 
3696 /// parseGlobalValue - parse a global value with the specified type.
3697 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3698   C = nullptr;
3699   ValID ID;
3700   Value *V = nullptr;
3701   bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
3702                 convertValIDToValue(Ty, ID, V, nullptr);
3703   if (V && !(C = dyn_cast<Constant>(V)))
3704     return error(ID.Loc, "global values must be constants");
3705   return Parsed;
3706 }
3707 
3708 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3709   Type *Ty = nullptr;
3710   return parseType(Ty) || parseGlobalValue(Ty, V);
3711 }
3712 
3713 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3714   C = nullptr;
3715 
3716   LocTy KwLoc = Lex.getLoc();
3717   if (!EatIfPresent(lltok::kw_comdat))
3718     return false;
3719 
3720   if (EatIfPresent(lltok::lparen)) {
3721     if (Lex.getKind() != lltok::ComdatVar)
3722       return tokError("expected comdat variable");
3723     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3724     Lex.Lex();
3725     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3726       return true;
3727   } else {
3728     if (GlobalName.empty())
3729       return tokError("comdat cannot be unnamed");
3730     C = getComdat(std::string(GlobalName), KwLoc);
3731   }
3732 
3733   return false;
3734 }
3735 
3736 /// parseGlobalValueVector
3737 ///   ::= /*empty*/
3738 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3739 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3740                                       Optional<unsigned> *InRangeOp) {
3741   // Empty list.
3742   if (Lex.getKind() == lltok::rbrace ||
3743       Lex.getKind() == lltok::rsquare ||
3744       Lex.getKind() == lltok::greater ||
3745       Lex.getKind() == lltok::rparen)
3746     return false;
3747 
3748   do {
3749     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3750       *InRangeOp = Elts.size();
3751 
3752     Constant *C;
3753     if (parseGlobalTypeAndValue(C))
3754       return true;
3755     Elts.push_back(C);
3756   } while (EatIfPresent(lltok::comma));
3757 
3758   return false;
3759 }
3760 
3761 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
3762   SmallVector<Metadata *, 16> Elts;
3763   if (parseMDNodeVector(Elts))
3764     return true;
3765 
3766   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3767   return false;
3768 }
3769 
3770 /// MDNode:
3771 ///  ::= !{ ... }
3772 ///  ::= !7
3773 ///  ::= !DILocation(...)
3774 bool LLParser::parseMDNode(MDNode *&N) {
3775   if (Lex.getKind() == lltok::MetadataVar)
3776     return parseSpecializedMDNode(N);
3777 
3778   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
3779 }
3780 
3781 bool LLParser::parseMDNodeTail(MDNode *&N) {
3782   // !{ ... }
3783   if (Lex.getKind() == lltok::lbrace)
3784     return parseMDTuple(N);
3785 
3786   // !42
3787   return parseMDNodeID(N);
3788 }
3789 
3790 namespace {
3791 
3792 /// Structure to represent an optional metadata field.
3793 template <class FieldTy> struct MDFieldImpl {
3794   typedef MDFieldImpl ImplTy;
3795   FieldTy Val;
3796   bool Seen;
3797 
3798   void assign(FieldTy Val) {
3799     Seen = true;
3800     this->Val = std::move(Val);
3801   }
3802 
3803   explicit MDFieldImpl(FieldTy Default)
3804       : Val(std::move(Default)), Seen(false) {}
3805 };
3806 
3807 /// Structure to represent an optional metadata field that
3808 /// can be of either type (A or B) and encapsulates the
3809 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3810 /// to reimplement the specifics for representing each Field.
3811 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3812   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3813   FieldTypeA A;
3814   FieldTypeB B;
3815   bool Seen;
3816 
3817   enum {
3818     IsInvalid = 0,
3819     IsTypeA = 1,
3820     IsTypeB = 2
3821   } WhatIs;
3822 
3823   void assign(FieldTypeA A) {
3824     Seen = true;
3825     this->A = std::move(A);
3826     WhatIs = IsTypeA;
3827   }
3828 
3829   void assign(FieldTypeB B) {
3830     Seen = true;
3831     this->B = std::move(B);
3832     WhatIs = IsTypeB;
3833   }
3834 
3835   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3836       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3837         WhatIs(IsInvalid) {}
3838 };
3839 
3840 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3841   uint64_t Max;
3842 
3843   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3844       : ImplTy(Default), Max(Max) {}
3845 };
3846 
3847 struct LineField : public MDUnsignedField {
3848   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3849 };
3850 
3851 struct ColumnField : public MDUnsignedField {
3852   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3853 };
3854 
3855 struct DwarfTagField : public MDUnsignedField {
3856   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3857   DwarfTagField(dwarf::Tag DefaultTag)
3858       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3859 };
3860 
3861 struct DwarfMacinfoTypeField : public MDUnsignedField {
3862   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3863   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3864     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3865 };
3866 
3867 struct DwarfAttEncodingField : public MDUnsignedField {
3868   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3869 };
3870 
3871 struct DwarfVirtualityField : public MDUnsignedField {
3872   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3873 };
3874 
3875 struct DwarfLangField : public MDUnsignedField {
3876   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3877 };
3878 
3879 struct DwarfCCField : public MDUnsignedField {
3880   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3881 };
3882 
3883 struct EmissionKindField : public MDUnsignedField {
3884   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3885 };
3886 
3887 struct NameTableKindField : public MDUnsignedField {
3888   NameTableKindField()
3889       : MDUnsignedField(
3890             0, (unsigned)
3891                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3892 };
3893 
3894 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3895   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3896 };
3897 
3898 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3899   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3900 };
3901 
3902 struct MDAPSIntField : public MDFieldImpl<APSInt> {
3903   MDAPSIntField() : ImplTy(APSInt()) {}
3904 };
3905 
3906 struct MDSignedField : public MDFieldImpl<int64_t> {
3907   int64_t Min;
3908   int64_t Max;
3909 
3910   MDSignedField(int64_t Default = 0)
3911       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3912   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3913       : ImplTy(Default), Min(Min), Max(Max) {}
3914 };
3915 
3916 struct MDBoolField : public MDFieldImpl<bool> {
3917   MDBoolField(bool Default = false) : ImplTy(Default) {}
3918 };
3919 
3920 struct MDField : public MDFieldImpl<Metadata *> {
3921   bool AllowNull;
3922 
3923   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3924 };
3925 
3926 struct MDStringField : public MDFieldImpl<MDString *> {
3927   bool AllowEmpty;
3928   MDStringField(bool AllowEmpty = true)
3929       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3930 };
3931 
3932 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3933   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3934 };
3935 
3936 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3937   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3938 };
3939 
3940 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3941   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3942       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3943 
3944   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3945                     bool AllowNull = true)
3946       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3947 
3948   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3949   bool isMDField() const { return WhatIs == IsTypeB; }
3950   int64_t getMDSignedValue() const {
3951     assert(isMDSignedField() && "Wrong field type");
3952     return A.Val;
3953   }
3954   Metadata *getMDFieldValue() const {
3955     assert(isMDField() && "Wrong field type");
3956     return B.Val;
3957   }
3958 };
3959 
3960 } // end anonymous namespace
3961 
3962 namespace llvm {
3963 
3964 template <>
3965 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
3966   if (Lex.getKind() != lltok::APSInt)
3967     return tokError("expected integer");
3968 
3969   Result.assign(Lex.getAPSIntVal());
3970   Lex.Lex();
3971   return false;
3972 }
3973 
3974 template <>
3975 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
3976                             MDUnsignedField &Result) {
3977   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3978     return tokError("expected unsigned integer");
3979 
3980   auto &U = Lex.getAPSIntVal();
3981   if (U.ugt(Result.Max))
3982     return tokError("value for '" + Name + "' too large, limit is " +
3983                     Twine(Result.Max));
3984   Result.assign(U.getZExtValue());
3985   assert(Result.Val <= Result.Max && "Expected value in range");
3986   Lex.Lex();
3987   return false;
3988 }
3989 
3990 template <>
3991 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3992   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3993 }
3994 template <>
3995 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3996   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3997 }
3998 
3999 template <>
4000 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4001   if (Lex.getKind() == lltok::APSInt)
4002     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4003 
4004   if (Lex.getKind() != lltok::DwarfTag)
4005     return tokError("expected DWARF tag");
4006 
4007   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4008   if (Tag == dwarf::DW_TAG_invalid)
4009     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4010   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4011 
4012   Result.assign(Tag);
4013   Lex.Lex();
4014   return false;
4015 }
4016 
4017 template <>
4018 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4019                             DwarfMacinfoTypeField &Result) {
4020   if (Lex.getKind() == lltok::APSInt)
4021     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4022 
4023   if (Lex.getKind() != lltok::DwarfMacinfo)
4024     return tokError("expected DWARF macinfo type");
4025 
4026   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4027   if (Macinfo == dwarf::DW_MACINFO_invalid)
4028     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4029                     Lex.getStrVal() + "'");
4030   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4031 
4032   Result.assign(Macinfo);
4033   Lex.Lex();
4034   return false;
4035 }
4036 
4037 template <>
4038 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4039                             DwarfVirtualityField &Result) {
4040   if (Lex.getKind() == lltok::APSInt)
4041     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4042 
4043   if (Lex.getKind() != lltok::DwarfVirtuality)
4044     return tokError("expected DWARF virtuality code");
4045 
4046   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4047   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4048     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4049                     Lex.getStrVal() + "'");
4050   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4051   Result.assign(Virtuality);
4052   Lex.Lex();
4053   return false;
4054 }
4055 
4056 template <>
4057 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4058   if (Lex.getKind() == lltok::APSInt)
4059     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4060 
4061   if (Lex.getKind() != lltok::DwarfLang)
4062     return tokError("expected DWARF language");
4063 
4064   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4065   if (!Lang)
4066     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4067                     "'");
4068   assert(Lang <= Result.Max && "Expected valid DWARF language");
4069   Result.assign(Lang);
4070   Lex.Lex();
4071   return false;
4072 }
4073 
4074 template <>
4075 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4076   if (Lex.getKind() == lltok::APSInt)
4077     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4078 
4079   if (Lex.getKind() != lltok::DwarfCC)
4080     return tokError("expected DWARF calling convention");
4081 
4082   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4083   if (!CC)
4084     return tokError("invalid DWARF calling convention" + Twine(" '") +
4085                     Lex.getStrVal() + "'");
4086   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4087   Result.assign(CC);
4088   Lex.Lex();
4089   return false;
4090 }
4091 
4092 template <>
4093 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4094                             EmissionKindField &Result) {
4095   if (Lex.getKind() == lltok::APSInt)
4096     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4097 
4098   if (Lex.getKind() != lltok::EmissionKind)
4099     return tokError("expected emission kind");
4100 
4101   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4102   if (!Kind)
4103     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4104                     "'");
4105   assert(*Kind <= Result.Max && "Expected valid emission kind");
4106   Result.assign(*Kind);
4107   Lex.Lex();
4108   return false;
4109 }
4110 
4111 template <>
4112 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4113                             NameTableKindField &Result) {
4114   if (Lex.getKind() == lltok::APSInt)
4115     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4116 
4117   if (Lex.getKind() != lltok::NameTableKind)
4118     return tokError("expected nameTable kind");
4119 
4120   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4121   if (!Kind)
4122     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4123                     "'");
4124   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4125   Result.assign((unsigned)*Kind);
4126   Lex.Lex();
4127   return false;
4128 }
4129 
4130 template <>
4131 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4132                             DwarfAttEncodingField &Result) {
4133   if (Lex.getKind() == lltok::APSInt)
4134     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4135 
4136   if (Lex.getKind() != lltok::DwarfAttEncoding)
4137     return tokError("expected DWARF type attribute encoding");
4138 
4139   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4140   if (!Encoding)
4141     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4142                     Lex.getStrVal() + "'");
4143   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4144   Result.assign(Encoding);
4145   Lex.Lex();
4146   return false;
4147 }
4148 
4149 /// DIFlagField
4150 ///  ::= uint32
4151 ///  ::= DIFlagVector
4152 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4153 template <>
4154 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4155 
4156   // parser for a single flag.
4157   auto parseFlag = [&](DINode::DIFlags &Val) {
4158     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4159       uint32_t TempVal = static_cast<uint32_t>(Val);
4160       bool Res = parseUInt32(TempVal);
4161       Val = static_cast<DINode::DIFlags>(TempVal);
4162       return Res;
4163     }
4164 
4165     if (Lex.getKind() != lltok::DIFlag)
4166       return tokError("expected debug info flag");
4167 
4168     Val = DINode::getFlag(Lex.getStrVal());
4169     if (!Val)
4170       return tokError(Twine("invalid debug info flag flag '") +
4171                       Lex.getStrVal() + "'");
4172     Lex.Lex();
4173     return false;
4174   };
4175 
4176   // parse the flags and combine them together.
4177   DINode::DIFlags Combined = DINode::FlagZero;
4178   do {
4179     DINode::DIFlags Val;
4180     if (parseFlag(Val))
4181       return true;
4182     Combined |= Val;
4183   } while (EatIfPresent(lltok::bar));
4184 
4185   Result.assign(Combined);
4186   return false;
4187 }
4188 
4189 /// DISPFlagField
4190 ///  ::= uint32
4191 ///  ::= DISPFlagVector
4192 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4193 template <>
4194 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4195 
4196   // parser for a single flag.
4197   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4198     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4199       uint32_t TempVal = static_cast<uint32_t>(Val);
4200       bool Res = parseUInt32(TempVal);
4201       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4202       return Res;
4203     }
4204 
4205     if (Lex.getKind() != lltok::DISPFlag)
4206       return tokError("expected debug info flag");
4207 
4208     Val = DISubprogram::getFlag(Lex.getStrVal());
4209     if (!Val)
4210       return tokError(Twine("invalid subprogram debug info flag '") +
4211                       Lex.getStrVal() + "'");
4212     Lex.Lex();
4213     return false;
4214   };
4215 
4216   // parse the flags and combine them together.
4217   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4218   do {
4219     DISubprogram::DISPFlags Val;
4220     if (parseFlag(Val))
4221       return true;
4222     Combined |= Val;
4223   } while (EatIfPresent(lltok::bar));
4224 
4225   Result.assign(Combined);
4226   return false;
4227 }
4228 
4229 template <>
4230 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4231   if (Lex.getKind() != lltok::APSInt)
4232     return tokError("expected signed integer");
4233 
4234   auto &S = Lex.getAPSIntVal();
4235   if (S < Result.Min)
4236     return tokError("value for '" + Name + "' too small, limit is " +
4237                     Twine(Result.Min));
4238   if (S > Result.Max)
4239     return tokError("value for '" + Name + "' too large, limit is " +
4240                     Twine(Result.Max));
4241   Result.assign(S.getExtValue());
4242   assert(Result.Val >= Result.Min && "Expected value in range");
4243   assert(Result.Val <= Result.Max && "Expected value in range");
4244   Lex.Lex();
4245   return false;
4246 }
4247 
4248 template <>
4249 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4250   switch (Lex.getKind()) {
4251   default:
4252     return tokError("expected 'true' or 'false'");
4253   case lltok::kw_true:
4254     Result.assign(true);
4255     break;
4256   case lltok::kw_false:
4257     Result.assign(false);
4258     break;
4259   }
4260   Lex.Lex();
4261   return false;
4262 }
4263 
4264 template <>
4265 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4266   if (Lex.getKind() == lltok::kw_null) {
4267     if (!Result.AllowNull)
4268       return tokError("'" + Name + "' cannot be null");
4269     Lex.Lex();
4270     Result.assign(nullptr);
4271     return false;
4272   }
4273 
4274   Metadata *MD;
4275   if (parseMetadata(MD, nullptr))
4276     return true;
4277 
4278   Result.assign(MD);
4279   return false;
4280 }
4281 
4282 template <>
4283 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4284                             MDSignedOrMDField &Result) {
4285   // Try to parse a signed int.
4286   if (Lex.getKind() == lltok::APSInt) {
4287     MDSignedField Res = Result.A;
4288     if (!parseMDField(Loc, Name, Res)) {
4289       Result.assign(Res);
4290       return false;
4291     }
4292     return true;
4293   }
4294 
4295   // Otherwise, try to parse as an MDField.
4296   MDField Res = Result.B;
4297   if (!parseMDField(Loc, Name, Res)) {
4298     Result.assign(Res);
4299     return false;
4300   }
4301 
4302   return true;
4303 }
4304 
4305 template <>
4306 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4307   LocTy ValueLoc = Lex.getLoc();
4308   std::string S;
4309   if (parseStringConstant(S))
4310     return true;
4311 
4312   if (!Result.AllowEmpty && S.empty())
4313     return error(ValueLoc, "'" + Name + "' cannot be empty");
4314 
4315   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4316   return false;
4317 }
4318 
4319 template <>
4320 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4321   SmallVector<Metadata *, 4> MDs;
4322   if (parseMDNodeVector(MDs))
4323     return true;
4324 
4325   Result.assign(std::move(MDs));
4326   return false;
4327 }
4328 
4329 template <>
4330 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4331                             ChecksumKindField &Result) {
4332   Optional<DIFile::ChecksumKind> CSKind =
4333       DIFile::getChecksumKind(Lex.getStrVal());
4334 
4335   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4336     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4337                     "'");
4338 
4339   Result.assign(*CSKind);
4340   Lex.Lex();
4341   return false;
4342 }
4343 
4344 } // end namespace llvm
4345 
4346 template <class ParserTy>
4347 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4348   do {
4349     if (Lex.getKind() != lltok::LabelStr)
4350       return tokError("expected field label here");
4351 
4352     if (ParseField())
4353       return true;
4354   } while (EatIfPresent(lltok::comma));
4355 
4356   return false;
4357 }
4358 
4359 template <class ParserTy>
4360 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4361   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4362   Lex.Lex();
4363 
4364   if (parseToken(lltok::lparen, "expected '(' here"))
4365     return true;
4366   if (Lex.getKind() != lltok::rparen)
4367     if (parseMDFieldsImplBody(ParseField))
4368       return true;
4369 
4370   ClosingLoc = Lex.getLoc();
4371   return parseToken(lltok::rparen, "expected ')' here");
4372 }
4373 
4374 template <class FieldTy>
4375 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4376   if (Result.Seen)
4377     return tokError("field '" + Name + "' cannot be specified more than once");
4378 
4379   LocTy Loc = Lex.getLoc();
4380   Lex.Lex();
4381   return parseMDField(Loc, Name, Result);
4382 }
4383 
4384 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4385   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4386 
4387 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4388   if (Lex.getStrVal() == #CLASS)                                               \
4389     return parse##CLASS(N, IsDistinct);
4390 #include "llvm/IR/Metadata.def"
4391 
4392   return tokError("expected metadata type");
4393 }
4394 
4395 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4396 #define NOP_FIELD(NAME, TYPE, INIT)
4397 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4398   if (!NAME.Seen)                                                              \
4399     return error(ClosingLoc, "missing required field '" #NAME "'");
4400 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4401   if (Lex.getStrVal() == #NAME)                                                \
4402     return parseMDField(#NAME, NAME);
4403 #define PARSE_MD_FIELDS()                                                      \
4404   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4405   do {                                                                         \
4406     LocTy ClosingLoc;                                                          \
4407     if (parseMDFieldsImpl(                                                     \
4408             [&]() -> bool {                                                    \
4409               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4410               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4411                               "'");                                            \
4412             },                                                                 \
4413             ClosingLoc))                                                       \
4414       return true;                                                             \
4415     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4416   } while (false)
4417 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4418   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4419 
4420 /// parseDILocationFields:
4421 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4422 ///   isImplicitCode: true)
4423 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4424 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4425   OPTIONAL(line, LineField, );                                                 \
4426   OPTIONAL(column, ColumnField, );                                             \
4427   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4428   OPTIONAL(inlinedAt, MDField, );                                              \
4429   OPTIONAL(isImplicitCode, MDBoolField, (false));
4430   PARSE_MD_FIELDS();
4431 #undef VISIT_MD_FIELDS
4432 
4433   Result =
4434       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4435                                    inlinedAt.Val, isImplicitCode.Val));
4436   return false;
4437 }
4438 
4439 /// parseGenericDINode:
4440 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4441 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4442 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4443   REQUIRED(tag, DwarfTagField, );                                              \
4444   OPTIONAL(header, MDStringField, );                                           \
4445   OPTIONAL(operands, MDFieldList, );
4446   PARSE_MD_FIELDS();
4447 #undef VISIT_MD_FIELDS
4448 
4449   Result = GET_OR_DISTINCT(GenericDINode,
4450                            (Context, tag.Val, header.Val, operands.Val));
4451   return false;
4452 }
4453 
4454 /// parseDISubrange:
4455 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4456 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4457 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4458 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4459 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4460   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4461   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4462   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4463   OPTIONAL(stride, MDSignedOrMDField, );
4464   PARSE_MD_FIELDS();
4465 #undef VISIT_MD_FIELDS
4466 
4467   Metadata *Count = nullptr;
4468   Metadata *LowerBound = nullptr;
4469   Metadata *UpperBound = nullptr;
4470   Metadata *Stride = nullptr;
4471 
4472   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4473     if (Bound.isMDSignedField())
4474       return ConstantAsMetadata::get(ConstantInt::getSigned(
4475           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4476     if (Bound.isMDField())
4477       return Bound.getMDFieldValue();
4478     return nullptr;
4479   };
4480 
4481   Count = convToMetadata(count);
4482   LowerBound = convToMetadata(lowerBound);
4483   UpperBound = convToMetadata(upperBound);
4484   Stride = convToMetadata(stride);
4485 
4486   Result = GET_OR_DISTINCT(DISubrange,
4487                            (Context, Count, LowerBound, UpperBound, Stride));
4488 
4489   return false;
4490 }
4491 
4492 /// parseDIGenericSubrange:
4493 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4494 ///   !node3)
4495 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4496 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4497   OPTIONAL(count, MDSignedOrMDField, );                                        \
4498   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4499   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4500   OPTIONAL(stride, MDSignedOrMDField, );
4501   PARSE_MD_FIELDS();
4502 #undef VISIT_MD_FIELDS
4503 
4504   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4505     if (Bound.isMDSignedField())
4506       return DIExpression::get(
4507           Context, {dwarf::DW_OP_consts,
4508                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4509     if (Bound.isMDField())
4510       return Bound.getMDFieldValue();
4511     return nullptr;
4512   };
4513 
4514   Metadata *Count = ConvToMetadata(count);
4515   Metadata *LowerBound = ConvToMetadata(lowerBound);
4516   Metadata *UpperBound = ConvToMetadata(upperBound);
4517   Metadata *Stride = ConvToMetadata(stride);
4518 
4519   Result = GET_OR_DISTINCT(DIGenericSubrange,
4520                            (Context, Count, LowerBound, UpperBound, Stride));
4521 
4522   return false;
4523 }
4524 
4525 /// parseDIEnumerator:
4526 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4527 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4528 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4529   REQUIRED(name, MDStringField, );                                             \
4530   REQUIRED(value, MDAPSIntField, );                                            \
4531   OPTIONAL(isUnsigned, MDBoolField, (false));
4532   PARSE_MD_FIELDS();
4533 #undef VISIT_MD_FIELDS
4534 
4535   if (isUnsigned.Val && value.Val.isNegative())
4536     return tokError("unsigned enumerator with negative value");
4537 
4538   APSInt Value(value.Val);
4539   // Add a leading zero so that unsigned values with the msb set are not
4540   // mistaken for negative values when used for signed enumerators.
4541   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4542     Value = Value.zext(Value.getBitWidth() + 1);
4543 
4544   Result =
4545       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4546 
4547   return false;
4548 }
4549 
4550 /// parseDIBasicType:
4551 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4552 ///                    encoding: DW_ATE_encoding, flags: 0)
4553 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4554 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4555   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4556   OPTIONAL(name, MDStringField, );                                             \
4557   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4558   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4559   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4560   OPTIONAL(flags, DIFlagField, );
4561   PARSE_MD_FIELDS();
4562 #undef VISIT_MD_FIELDS
4563 
4564   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4565                                          align.Val, encoding.Val, flags.Val));
4566   return false;
4567 }
4568 
4569 /// parseDIStringType:
4570 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4571 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4572 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4573   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4574   OPTIONAL(name, MDStringField, );                                             \
4575   OPTIONAL(stringLength, MDField, );                                           \
4576   OPTIONAL(stringLengthExpression, MDField, );                                 \
4577   OPTIONAL(stringLocationExpression, MDField, );                               \
4578   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4579   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4580   OPTIONAL(encoding, DwarfAttEncodingField, );
4581   PARSE_MD_FIELDS();
4582 #undef VISIT_MD_FIELDS
4583 
4584   Result = GET_OR_DISTINCT(
4585       DIStringType,
4586       (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val,
4587        stringLocationExpression.Val, size.Val, align.Val, encoding.Val));
4588   return false;
4589 }
4590 
4591 /// parseDIDerivedType:
4592 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4593 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4594 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4595 ///                      dwarfAddressSpace: 3)
4596 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4597 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4598   REQUIRED(tag, DwarfTagField, );                                              \
4599   OPTIONAL(name, MDStringField, );                                             \
4600   OPTIONAL(file, MDField, );                                                   \
4601   OPTIONAL(line, LineField, );                                                 \
4602   OPTIONAL(scope, MDField, );                                                  \
4603   REQUIRED(baseType, MDField, );                                               \
4604   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4605   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4606   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4607   OPTIONAL(flags, DIFlagField, );                                              \
4608   OPTIONAL(extraData, MDField, );                                              \
4609   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));      \
4610   OPTIONAL(annotations, MDField, );
4611   PARSE_MD_FIELDS();
4612 #undef VISIT_MD_FIELDS
4613 
4614   Optional<unsigned> DWARFAddressSpace;
4615   if (dwarfAddressSpace.Val != UINT32_MAX)
4616     DWARFAddressSpace = dwarfAddressSpace.Val;
4617 
4618   Result = GET_OR_DISTINCT(DIDerivedType,
4619                            (Context, tag.Val, name.Val, file.Val, line.Val,
4620                             scope.Val, baseType.Val, size.Val, align.Val,
4621                             offset.Val, DWARFAddressSpace, flags.Val,
4622                             extraData.Val, annotations.Val));
4623   return false;
4624 }
4625 
4626 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4627 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4628   REQUIRED(tag, DwarfTagField, );                                              \
4629   OPTIONAL(name, MDStringField, );                                             \
4630   OPTIONAL(file, MDField, );                                                   \
4631   OPTIONAL(line, LineField, );                                                 \
4632   OPTIONAL(scope, MDField, );                                                  \
4633   OPTIONAL(baseType, MDField, );                                               \
4634   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4635   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4636   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4637   OPTIONAL(flags, DIFlagField, );                                              \
4638   OPTIONAL(elements, MDField, );                                               \
4639   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4640   OPTIONAL(vtableHolder, MDField, );                                           \
4641   OPTIONAL(templateParams, MDField, );                                         \
4642   OPTIONAL(identifier, MDStringField, );                                       \
4643   OPTIONAL(discriminator, MDField, );                                          \
4644   OPTIONAL(dataLocation, MDField, );                                           \
4645   OPTIONAL(associated, MDField, );                                             \
4646   OPTIONAL(allocated, MDField, );                                              \
4647   OPTIONAL(rank, MDSignedOrMDField, );                                         \
4648   OPTIONAL(annotations, MDField, );
4649   PARSE_MD_FIELDS();
4650 #undef VISIT_MD_FIELDS
4651 
4652   Metadata *Rank = nullptr;
4653   if (rank.isMDSignedField())
4654     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4655         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4656   else if (rank.isMDField())
4657     Rank = rank.getMDFieldValue();
4658 
4659   // If this has an identifier try to build an ODR type.
4660   if (identifier.Val)
4661     if (auto *CT = DICompositeType::buildODRType(
4662             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4663             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4664             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4665             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4666             Rank, annotations.Val)) {
4667       Result = CT;
4668       return false;
4669     }
4670 
4671   // Create a new node, and save it in the context if it belongs in the type
4672   // map.
4673   Result = GET_OR_DISTINCT(
4674       DICompositeType,
4675       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4676        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4677        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4678        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank,
4679        annotations.Val));
4680   return false;
4681 }
4682 
4683 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4684 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4685   OPTIONAL(flags, DIFlagField, );                                              \
4686   OPTIONAL(cc, DwarfCCField, );                                                \
4687   REQUIRED(types, MDField, );
4688   PARSE_MD_FIELDS();
4689 #undef VISIT_MD_FIELDS
4690 
4691   Result = GET_OR_DISTINCT(DISubroutineType,
4692                            (Context, flags.Val, cc.Val, types.Val));
4693   return false;
4694 }
4695 
4696 /// parseDIFileType:
4697 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4698 ///                   checksumkind: CSK_MD5,
4699 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4700 ///                   source: "source file contents")
4701 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4702   // The default constructed value for checksumkind is required, but will never
4703   // be used, as the parser checks if the field was actually Seen before using
4704   // the Val.
4705 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4706   REQUIRED(filename, MDStringField, );                                         \
4707   REQUIRED(directory, MDStringField, );                                        \
4708   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4709   OPTIONAL(checksum, MDStringField, );                                         \
4710   OPTIONAL(source, MDStringField, );
4711   PARSE_MD_FIELDS();
4712 #undef VISIT_MD_FIELDS
4713 
4714   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4715   if (checksumkind.Seen && checksum.Seen)
4716     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4717   else if (checksumkind.Seen || checksum.Seen)
4718     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4719 
4720   Optional<MDString *> OptSource;
4721   if (source.Seen)
4722     OptSource = source.Val;
4723   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4724                                     OptChecksum, OptSource));
4725   return false;
4726 }
4727 
4728 /// parseDICompileUnit:
4729 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4730 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4731 ///                      splitDebugFilename: "abc.debug",
4732 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4733 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4734 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4735 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4736   if (!IsDistinct)
4737     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4738 
4739 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4740   REQUIRED(language, DwarfLangField, );                                        \
4741   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4742   OPTIONAL(producer, MDStringField, );                                         \
4743   OPTIONAL(isOptimized, MDBoolField, );                                        \
4744   OPTIONAL(flags, MDStringField, );                                            \
4745   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4746   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4747   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4748   OPTIONAL(enums, MDField, );                                                  \
4749   OPTIONAL(retainedTypes, MDField, );                                          \
4750   OPTIONAL(globals, MDField, );                                                \
4751   OPTIONAL(imports, MDField, );                                                \
4752   OPTIONAL(macros, MDField, );                                                 \
4753   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4754   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4755   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4756   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4757   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4758   OPTIONAL(sysroot, MDStringField, );                                          \
4759   OPTIONAL(sdk, MDStringField, );
4760   PARSE_MD_FIELDS();
4761 #undef VISIT_MD_FIELDS
4762 
4763   Result = DICompileUnit::getDistinct(
4764       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4765       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4766       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4767       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4768       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4769   return false;
4770 }
4771 
4772 /// parseDISubprogram:
4773 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4774 ///                     file: !1, line: 7, type: !2, isLocal: false,
4775 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4776 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4777 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4778 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4779 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7,
4780 ///                     annotations: !8)
4781 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
4782   auto Loc = Lex.getLoc();
4783 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4784   OPTIONAL(scope, MDField, );                                                  \
4785   OPTIONAL(name, MDStringField, );                                             \
4786   OPTIONAL(linkageName, MDStringField, );                                      \
4787   OPTIONAL(file, MDField, );                                                   \
4788   OPTIONAL(line, LineField, );                                                 \
4789   OPTIONAL(type, MDField, );                                                   \
4790   OPTIONAL(isLocal, MDBoolField, );                                            \
4791   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4792   OPTIONAL(scopeLine, LineField, );                                            \
4793   OPTIONAL(containingType, MDField, );                                         \
4794   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4795   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4796   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4797   OPTIONAL(flags, DIFlagField, );                                              \
4798   OPTIONAL(spFlags, DISPFlagField, );                                          \
4799   OPTIONAL(isOptimized, MDBoolField, );                                        \
4800   OPTIONAL(unit, MDField, );                                                   \
4801   OPTIONAL(templateParams, MDField, );                                         \
4802   OPTIONAL(declaration, MDField, );                                            \
4803   OPTIONAL(retainedNodes, MDField, );                                          \
4804   OPTIONAL(thrownTypes, MDField, );                                            \
4805   OPTIONAL(annotations, MDField, );
4806   PARSE_MD_FIELDS();
4807 #undef VISIT_MD_FIELDS
4808 
4809   // An explicit spFlags field takes precedence over individual fields in
4810   // older IR versions.
4811   DISubprogram::DISPFlags SPFlags =
4812       spFlags.Seen ? spFlags.Val
4813                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4814                                              isOptimized.Val, virtuality.Val);
4815   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4816     return Lex.Error(
4817         Loc,
4818         "missing 'distinct', required for !DISubprogram that is a Definition");
4819   Result = GET_OR_DISTINCT(
4820       DISubprogram,
4821       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4822        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4823        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4824        declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val));
4825   return false;
4826 }
4827 
4828 /// parseDILexicalBlock:
4829 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4830 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4831 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4832   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4833   OPTIONAL(file, MDField, );                                                   \
4834   OPTIONAL(line, LineField, );                                                 \
4835   OPTIONAL(column, ColumnField, );
4836   PARSE_MD_FIELDS();
4837 #undef VISIT_MD_FIELDS
4838 
4839   Result = GET_OR_DISTINCT(
4840       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4841   return false;
4842 }
4843 
4844 /// parseDILexicalBlockFile:
4845 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4846 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4847 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4848   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4849   OPTIONAL(file, MDField, );                                                   \
4850   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4851   PARSE_MD_FIELDS();
4852 #undef VISIT_MD_FIELDS
4853 
4854   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4855                            (Context, scope.Val, file.Val, discriminator.Val));
4856   return false;
4857 }
4858 
4859 /// parseDICommonBlock:
4860 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4861 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4862 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4863   REQUIRED(scope, MDField, );                                                  \
4864   OPTIONAL(declaration, MDField, );                                            \
4865   OPTIONAL(name, MDStringField, );                                             \
4866   OPTIONAL(file, MDField, );                                                   \
4867   OPTIONAL(line, LineField, );
4868   PARSE_MD_FIELDS();
4869 #undef VISIT_MD_FIELDS
4870 
4871   Result = GET_OR_DISTINCT(DICommonBlock,
4872                            (Context, scope.Val, declaration.Val, name.Val,
4873                             file.Val, line.Val));
4874   return false;
4875 }
4876 
4877 /// parseDINamespace:
4878 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4879 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
4880 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4881   REQUIRED(scope, MDField, );                                                  \
4882   OPTIONAL(name, MDStringField, );                                             \
4883   OPTIONAL(exportSymbols, MDBoolField, );
4884   PARSE_MD_FIELDS();
4885 #undef VISIT_MD_FIELDS
4886 
4887   Result = GET_OR_DISTINCT(DINamespace,
4888                            (Context, scope.Val, name.Val, exportSymbols.Val));
4889   return false;
4890 }
4891 
4892 /// parseDIMacro:
4893 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
4894 ///   "SomeValue")
4895 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
4896 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4897   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4898   OPTIONAL(line, LineField, );                                                 \
4899   REQUIRED(name, MDStringField, );                                             \
4900   OPTIONAL(value, MDStringField, );
4901   PARSE_MD_FIELDS();
4902 #undef VISIT_MD_FIELDS
4903 
4904   Result = GET_OR_DISTINCT(DIMacro,
4905                            (Context, type.Val, line.Val, name.Val, value.Val));
4906   return false;
4907 }
4908 
4909 /// parseDIMacroFile:
4910 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4911 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4912 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4913   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4914   OPTIONAL(line, LineField, );                                                 \
4915   REQUIRED(file, MDField, );                                                   \
4916   OPTIONAL(nodes, MDField, );
4917   PARSE_MD_FIELDS();
4918 #undef VISIT_MD_FIELDS
4919 
4920   Result = GET_OR_DISTINCT(DIMacroFile,
4921                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4922   return false;
4923 }
4924 
4925 /// parseDIModule:
4926 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
4927 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
4928 ///   file: !1, line: 4, isDecl: false)
4929 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
4930 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4931   REQUIRED(scope, MDField, );                                                  \
4932   REQUIRED(name, MDStringField, );                                             \
4933   OPTIONAL(configMacros, MDStringField, );                                     \
4934   OPTIONAL(includePath, MDStringField, );                                      \
4935   OPTIONAL(apinotes, MDStringField, );                                         \
4936   OPTIONAL(file, MDField, );                                                   \
4937   OPTIONAL(line, LineField, );                                                 \
4938   OPTIONAL(isDecl, MDBoolField, );
4939   PARSE_MD_FIELDS();
4940 #undef VISIT_MD_FIELDS
4941 
4942   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
4943                                       configMacros.Val, includePath.Val,
4944                                       apinotes.Val, line.Val, isDecl.Val));
4945   return false;
4946 }
4947 
4948 /// parseDITemplateTypeParameter:
4949 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
4950 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4951 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4952   OPTIONAL(name, MDStringField, );                                             \
4953   REQUIRED(type, MDField, );                                                   \
4954   OPTIONAL(defaulted, MDBoolField, );
4955   PARSE_MD_FIELDS();
4956 #undef VISIT_MD_FIELDS
4957 
4958   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
4959                            (Context, name.Val, type.Val, defaulted.Val));
4960   return false;
4961 }
4962 
4963 /// parseDITemplateValueParameter:
4964 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4965 ///                                 name: "V", type: !1, defaulted: false,
4966 ///                                 value: i32 7)
4967 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4968 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4969   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4970   OPTIONAL(name, MDStringField, );                                             \
4971   OPTIONAL(type, MDField, );                                                   \
4972   OPTIONAL(defaulted, MDBoolField, );                                          \
4973   REQUIRED(value, MDField, );
4974 
4975   PARSE_MD_FIELDS();
4976 #undef VISIT_MD_FIELDS
4977 
4978   Result = GET_OR_DISTINCT(
4979       DITemplateValueParameter,
4980       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
4981   return false;
4982 }
4983 
4984 /// parseDIGlobalVariable:
4985 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4986 ///                         file: !1, line: 7, type: !2, isLocal: false,
4987 ///                         isDefinition: true, templateParams: !3,
4988 ///                         declaration: !4, align: 8)
4989 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4990 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4991   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4992   OPTIONAL(scope, MDField, );                                                  \
4993   OPTIONAL(linkageName, MDStringField, );                                      \
4994   OPTIONAL(file, MDField, );                                                   \
4995   OPTIONAL(line, LineField, );                                                 \
4996   OPTIONAL(type, MDField, );                                                   \
4997   OPTIONAL(isLocal, MDBoolField, );                                            \
4998   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4999   OPTIONAL(templateParams, MDField, );                                         \
5000   OPTIONAL(declaration, MDField, );                                            \
5001   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5002   OPTIONAL(annotations, MDField, );
5003   PARSE_MD_FIELDS();
5004 #undef VISIT_MD_FIELDS
5005 
5006   Result =
5007       GET_OR_DISTINCT(DIGlobalVariable,
5008                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5009                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5010                        declaration.Val, templateParams.Val, align.Val,
5011                        annotations.Val));
5012   return false;
5013 }
5014 
5015 /// parseDILocalVariable:
5016 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5017 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5018 ///                        align: 8)
5019 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5020 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5021 ///                        align: 8)
5022 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5023 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5024   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5025   OPTIONAL(name, MDStringField, );                                             \
5026   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5027   OPTIONAL(file, MDField, );                                                   \
5028   OPTIONAL(line, LineField, );                                                 \
5029   OPTIONAL(type, MDField, );                                                   \
5030   OPTIONAL(flags, DIFlagField, );                                              \
5031   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5032   OPTIONAL(annotations, MDField, );
5033   PARSE_MD_FIELDS();
5034 #undef VISIT_MD_FIELDS
5035 
5036   Result = GET_OR_DISTINCT(DILocalVariable,
5037                            (Context, scope.Val, name.Val, file.Val, line.Val,
5038                             type.Val, arg.Val, flags.Val, align.Val,
5039                             annotations.Val));
5040   return false;
5041 }
5042 
5043 /// parseDILabel:
5044 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5045 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5046 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5047   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5048   REQUIRED(name, MDStringField, );                                             \
5049   REQUIRED(file, MDField, );                                                   \
5050   REQUIRED(line, LineField, );
5051   PARSE_MD_FIELDS();
5052 #undef VISIT_MD_FIELDS
5053 
5054   Result = GET_OR_DISTINCT(DILabel,
5055                            (Context, scope.Val, name.Val, file.Val, line.Val));
5056   return false;
5057 }
5058 
5059 /// parseDIExpression:
5060 ///   ::= !DIExpression(0, 7, -1)
5061 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5062   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5063   Lex.Lex();
5064 
5065   if (parseToken(lltok::lparen, "expected '(' here"))
5066     return true;
5067 
5068   SmallVector<uint64_t, 8> Elements;
5069   if (Lex.getKind() != lltok::rparen)
5070     do {
5071       if (Lex.getKind() == lltok::DwarfOp) {
5072         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5073           Lex.Lex();
5074           Elements.push_back(Op);
5075           continue;
5076         }
5077         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5078       }
5079 
5080       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5081         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5082           Lex.Lex();
5083           Elements.push_back(Op);
5084           continue;
5085         }
5086         return tokError(Twine("invalid DWARF attribute encoding '") +
5087                         Lex.getStrVal() + "'");
5088       }
5089 
5090       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5091         return tokError("expected unsigned integer");
5092 
5093       auto &U = Lex.getAPSIntVal();
5094       if (U.ugt(UINT64_MAX))
5095         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5096       Elements.push_back(U.getZExtValue());
5097       Lex.Lex();
5098     } while (EatIfPresent(lltok::comma));
5099 
5100   if (parseToken(lltok::rparen, "expected ')' here"))
5101     return true;
5102 
5103   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5104   return false;
5105 }
5106 
5107 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5108   return parseDIArgList(Result, IsDistinct, nullptr);
5109 }
5110 /// ParseDIArgList:
5111 ///   ::= !DIArgList(i32 7, i64 %0)
5112 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5113                               PerFunctionState *PFS) {
5114   assert(PFS && "Expected valid function state");
5115   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5116   Lex.Lex();
5117 
5118   if (parseToken(lltok::lparen, "expected '(' here"))
5119     return true;
5120 
5121   SmallVector<ValueAsMetadata *, 4> Args;
5122   if (Lex.getKind() != lltok::rparen)
5123     do {
5124       Metadata *MD;
5125       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5126         return true;
5127       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5128     } while (EatIfPresent(lltok::comma));
5129 
5130   if (parseToken(lltok::rparen, "expected ')' here"))
5131     return true;
5132 
5133   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5134   return false;
5135 }
5136 
5137 /// parseDIGlobalVariableExpression:
5138 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5139 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5140                                                bool IsDistinct) {
5141 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5142   REQUIRED(var, MDField, );                                                    \
5143   REQUIRED(expr, MDField, );
5144   PARSE_MD_FIELDS();
5145 #undef VISIT_MD_FIELDS
5146 
5147   Result =
5148       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5149   return false;
5150 }
5151 
5152 /// parseDIObjCProperty:
5153 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5154 ///                       getter: "getFoo", attributes: 7, type: !2)
5155 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5156 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5157   OPTIONAL(name, MDStringField, );                                             \
5158   OPTIONAL(file, MDField, );                                                   \
5159   OPTIONAL(line, LineField, );                                                 \
5160   OPTIONAL(setter, MDStringField, );                                           \
5161   OPTIONAL(getter, MDStringField, );                                           \
5162   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5163   OPTIONAL(type, MDField, );
5164   PARSE_MD_FIELDS();
5165 #undef VISIT_MD_FIELDS
5166 
5167   Result = GET_OR_DISTINCT(DIObjCProperty,
5168                            (Context, name.Val, file.Val, line.Val, setter.Val,
5169                             getter.Val, attributes.Val, type.Val));
5170   return false;
5171 }
5172 
5173 /// parseDIImportedEntity:
5174 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5175 ///                         line: 7, name: "foo", elements: !2)
5176 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5177 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5178   REQUIRED(tag, DwarfTagField, );                                              \
5179   REQUIRED(scope, MDField, );                                                  \
5180   OPTIONAL(entity, MDField, );                                                 \
5181   OPTIONAL(file, MDField, );                                                   \
5182   OPTIONAL(line, LineField, );                                                 \
5183   OPTIONAL(name, MDStringField, );                                             \
5184   OPTIONAL(elements, MDField, );
5185   PARSE_MD_FIELDS();
5186 #undef VISIT_MD_FIELDS
5187 
5188   Result = GET_OR_DISTINCT(DIImportedEntity,
5189                            (Context, tag.Val, scope.Val, entity.Val, file.Val,
5190                             line.Val, name.Val, elements.Val));
5191   return false;
5192 }
5193 
5194 #undef PARSE_MD_FIELD
5195 #undef NOP_FIELD
5196 #undef REQUIRE_FIELD
5197 #undef DECLARE_FIELD
5198 
5199 /// parseMetadataAsValue
5200 ///  ::= metadata i32 %local
5201 ///  ::= metadata i32 @global
5202 ///  ::= metadata i32 7
5203 ///  ::= metadata !0
5204 ///  ::= metadata !{...}
5205 ///  ::= metadata !"string"
5206 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5207   // Note: the type 'metadata' has already been parsed.
5208   Metadata *MD;
5209   if (parseMetadata(MD, &PFS))
5210     return true;
5211 
5212   V = MetadataAsValue::get(Context, MD);
5213   return false;
5214 }
5215 
5216 /// parseValueAsMetadata
5217 ///  ::= i32 %local
5218 ///  ::= i32 @global
5219 ///  ::= i32 7
5220 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5221                                     PerFunctionState *PFS) {
5222   Type *Ty;
5223   LocTy Loc;
5224   if (parseType(Ty, TypeMsg, Loc))
5225     return true;
5226   if (Ty->isMetadataTy())
5227     return error(Loc, "invalid metadata-value-metadata roundtrip");
5228 
5229   Value *V;
5230   if (parseValue(Ty, V, PFS))
5231     return true;
5232 
5233   MD = ValueAsMetadata::get(V);
5234   return false;
5235 }
5236 
5237 /// parseMetadata
5238 ///  ::= i32 %local
5239 ///  ::= i32 @global
5240 ///  ::= i32 7
5241 ///  ::= !42
5242 ///  ::= !{...}
5243 ///  ::= !"string"
5244 ///  ::= !DILocation(...)
5245 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5246   if (Lex.getKind() == lltok::MetadataVar) {
5247     MDNode *N;
5248     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5249     // so parsing this requires a Function State.
5250     if (Lex.getStrVal() == "DIArgList") {
5251       if (parseDIArgList(N, false, PFS))
5252         return true;
5253     } else if (parseSpecializedMDNode(N)) {
5254       return true;
5255     }
5256     MD = N;
5257     return false;
5258   }
5259 
5260   // ValueAsMetadata:
5261   // <type> <value>
5262   if (Lex.getKind() != lltok::exclaim)
5263     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5264 
5265   // '!'.
5266   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5267   Lex.Lex();
5268 
5269   // MDString:
5270   //   ::= '!' STRINGCONSTANT
5271   if (Lex.getKind() == lltok::StringConstant) {
5272     MDString *S;
5273     if (parseMDString(S))
5274       return true;
5275     MD = S;
5276     return false;
5277   }
5278 
5279   // MDNode:
5280   // !{ ... }
5281   // !7
5282   MDNode *N;
5283   if (parseMDNodeTail(N))
5284     return true;
5285   MD = N;
5286   return false;
5287 }
5288 
5289 //===----------------------------------------------------------------------===//
5290 // Function Parsing.
5291 //===----------------------------------------------------------------------===//
5292 
5293 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5294                                    PerFunctionState *PFS) {
5295   if (Ty->isFunctionTy())
5296     return error(ID.Loc, "functions are not values, refer to them as pointers");
5297 
5298   switch (ID.Kind) {
5299   case ValID::t_LocalID:
5300     if (!PFS)
5301       return error(ID.Loc, "invalid use of function-local name");
5302     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc);
5303     return V == nullptr;
5304   case ValID::t_LocalName:
5305     if (!PFS)
5306       return error(ID.Loc, "invalid use of function-local name");
5307     V = PFS->getVal(ID.StrVal, Ty, ID.Loc);
5308     return V == nullptr;
5309   case ValID::t_InlineAsm: {
5310     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5311       return error(ID.Loc, "invalid type for inline asm constraint string");
5312     V = InlineAsm::get(
5313         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5314         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5315     return false;
5316   }
5317   case ValID::t_GlobalName:
5318     V = getGlobalVal(ID.StrVal, Ty, ID.Loc);
5319     if (V && ID.NoCFI)
5320       V = NoCFIValue::get(cast<GlobalValue>(V));
5321     return V == nullptr;
5322   case ValID::t_GlobalID:
5323     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc);
5324     if (V && ID.NoCFI)
5325       V = NoCFIValue::get(cast<GlobalValue>(V));
5326     return V == nullptr;
5327   case ValID::t_APSInt:
5328     if (!Ty->isIntegerTy())
5329       return error(ID.Loc, "integer constant must have integer type");
5330     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5331     V = ConstantInt::get(Context, ID.APSIntVal);
5332     return false;
5333   case ValID::t_APFloat:
5334     if (!Ty->isFloatingPointTy() ||
5335         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5336       return error(ID.Loc, "floating point constant invalid for type");
5337 
5338     // The lexer has no type info, so builds all half, bfloat, float, and double
5339     // FP constants as double.  Fix this here.  Long double does not need this.
5340     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5341       // Check for signaling before potentially converting and losing that info.
5342       bool IsSNAN = ID.APFloatVal.isSignaling();
5343       bool Ignored;
5344       if (Ty->isHalfTy())
5345         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5346                               &Ignored);
5347       else if (Ty->isBFloatTy())
5348         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5349                               &Ignored);
5350       else if (Ty->isFloatTy())
5351         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5352                               &Ignored);
5353       if (IsSNAN) {
5354         // The convert call above may quiet an SNaN, so manufacture another
5355         // SNaN. The bitcast works because the payload (significand) parameter
5356         // is truncated to fit.
5357         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5358         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5359                                          ID.APFloatVal.isNegative(), &Payload);
5360       }
5361     }
5362     V = ConstantFP::get(Context, ID.APFloatVal);
5363 
5364     if (V->getType() != Ty)
5365       return error(ID.Loc, "floating point constant does not have type '" +
5366                                getTypeString(Ty) + "'");
5367 
5368     return false;
5369   case ValID::t_Null:
5370     if (!Ty->isPointerTy())
5371       return error(ID.Loc, "null must be a pointer type");
5372     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5373     return false;
5374   case ValID::t_Undef:
5375     // FIXME: LabelTy should not be a first-class type.
5376     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5377       return error(ID.Loc, "invalid type for undef constant");
5378     V = UndefValue::get(Ty);
5379     return false;
5380   case ValID::t_EmptyArray:
5381     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5382       return error(ID.Loc, "invalid empty array initializer");
5383     V = UndefValue::get(Ty);
5384     return false;
5385   case ValID::t_Zero:
5386     // FIXME: LabelTy should not be a first-class type.
5387     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5388       return error(ID.Loc, "invalid type for null constant");
5389     V = Constant::getNullValue(Ty);
5390     return false;
5391   case ValID::t_None:
5392     if (!Ty->isTokenTy())
5393       return error(ID.Loc, "invalid type for none constant");
5394     V = Constant::getNullValue(Ty);
5395     return false;
5396   case ValID::t_Poison:
5397     // FIXME: LabelTy should not be a first-class type.
5398     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5399       return error(ID.Loc, "invalid type for poison constant");
5400     V = PoisonValue::get(Ty);
5401     return false;
5402   case ValID::t_Constant:
5403     if (ID.ConstantVal->getType() != Ty)
5404       return error(ID.Loc, "constant expression type mismatch: got type '" +
5405                                getTypeString(ID.ConstantVal->getType()) +
5406                                "' but expected '" + getTypeString(Ty) + "'");
5407     V = ID.ConstantVal;
5408     return false;
5409   case ValID::t_ConstantStruct:
5410   case ValID::t_PackedConstantStruct:
5411     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5412       if (ST->getNumElements() != ID.UIntVal)
5413         return error(ID.Loc,
5414                      "initializer with struct type has wrong # elements");
5415       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5416         return error(ID.Loc, "packed'ness of initializer and type don't match");
5417 
5418       // Verify that the elements are compatible with the structtype.
5419       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5420         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5421           return error(
5422               ID.Loc,
5423               "element " + Twine(i) +
5424                   " of struct initializer doesn't match struct element type");
5425 
5426       V = ConstantStruct::get(
5427           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5428     } else
5429       return error(ID.Loc, "constant expression type mismatch");
5430     return false;
5431   }
5432   llvm_unreachable("Invalid ValID");
5433 }
5434 
5435 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5436   C = nullptr;
5437   ValID ID;
5438   auto Loc = Lex.getLoc();
5439   if (parseValID(ID, /*PFS=*/nullptr))
5440     return true;
5441   switch (ID.Kind) {
5442   case ValID::t_APSInt:
5443   case ValID::t_APFloat:
5444   case ValID::t_Undef:
5445   case ValID::t_Constant:
5446   case ValID::t_ConstantStruct:
5447   case ValID::t_PackedConstantStruct: {
5448     Value *V;
5449     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
5450       return true;
5451     assert(isa<Constant>(V) && "Expected a constant value");
5452     C = cast<Constant>(V);
5453     return false;
5454   }
5455   case ValID::t_Null:
5456     C = Constant::getNullValue(Ty);
5457     return false;
5458   default:
5459     return error(Loc, "expected a constant value");
5460   }
5461 }
5462 
5463 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5464   V = nullptr;
5465   ValID ID;
5466   return parseValID(ID, PFS, Ty) ||
5467          convertValIDToValue(Ty, ID, V, PFS);
5468 }
5469 
5470 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5471   Type *Ty = nullptr;
5472   return parseType(Ty) || parseValue(Ty, V, PFS);
5473 }
5474 
5475 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5476                                       PerFunctionState &PFS) {
5477   Value *V;
5478   Loc = Lex.getLoc();
5479   if (parseTypeAndValue(V, PFS))
5480     return true;
5481   if (!isa<BasicBlock>(V))
5482     return error(Loc, "expected a basic block");
5483   BB = cast<BasicBlock>(V);
5484   return false;
5485 }
5486 
5487 /// FunctionHeader
5488 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5489 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5490 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5491 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5492 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5493   // parse the linkage.
5494   LocTy LinkageLoc = Lex.getLoc();
5495   unsigned Linkage;
5496   unsigned Visibility;
5497   unsigned DLLStorageClass;
5498   bool DSOLocal;
5499   AttrBuilder RetAttrs(M->getContext());
5500   unsigned CC;
5501   bool HasLinkage;
5502   Type *RetType = nullptr;
5503   LocTy RetTypeLoc = Lex.getLoc();
5504   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5505                            DSOLocal) ||
5506       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5507       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5508     return true;
5509 
5510   // Verify that the linkage is ok.
5511   switch ((GlobalValue::LinkageTypes)Linkage) {
5512   case GlobalValue::ExternalLinkage:
5513     break; // always ok.
5514   case GlobalValue::ExternalWeakLinkage:
5515     if (IsDefine)
5516       return error(LinkageLoc, "invalid linkage for function definition");
5517     break;
5518   case GlobalValue::PrivateLinkage:
5519   case GlobalValue::InternalLinkage:
5520   case GlobalValue::AvailableExternallyLinkage:
5521   case GlobalValue::LinkOnceAnyLinkage:
5522   case GlobalValue::LinkOnceODRLinkage:
5523   case GlobalValue::WeakAnyLinkage:
5524   case GlobalValue::WeakODRLinkage:
5525     if (!IsDefine)
5526       return error(LinkageLoc, "invalid linkage for function declaration");
5527     break;
5528   case GlobalValue::AppendingLinkage:
5529   case GlobalValue::CommonLinkage:
5530     return error(LinkageLoc, "invalid function linkage type");
5531   }
5532 
5533   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5534     return error(LinkageLoc,
5535                  "symbol with local linkage must have default visibility");
5536 
5537   if (!FunctionType::isValidReturnType(RetType))
5538     return error(RetTypeLoc, "invalid function return type");
5539 
5540   LocTy NameLoc = Lex.getLoc();
5541 
5542   std::string FunctionName;
5543   if (Lex.getKind() == lltok::GlobalVar) {
5544     FunctionName = Lex.getStrVal();
5545   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5546     unsigned NameID = Lex.getUIntVal();
5547 
5548     if (NameID != NumberedVals.size())
5549       return tokError("function expected to be numbered '%" +
5550                       Twine(NumberedVals.size()) + "'");
5551   } else {
5552     return tokError("expected function name");
5553   }
5554 
5555   Lex.Lex();
5556 
5557   if (Lex.getKind() != lltok::lparen)
5558     return tokError("expected '(' in function argument list");
5559 
5560   SmallVector<ArgInfo, 8> ArgList;
5561   bool IsVarArg;
5562   AttrBuilder FuncAttrs(M->getContext());
5563   std::vector<unsigned> FwdRefAttrGrps;
5564   LocTy BuiltinLoc;
5565   std::string Section;
5566   std::string Partition;
5567   MaybeAlign Alignment;
5568   std::string GC;
5569   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5570   unsigned AddrSpace = 0;
5571   Constant *Prefix = nullptr;
5572   Constant *Prologue = nullptr;
5573   Constant *PersonalityFn = nullptr;
5574   Comdat *C;
5575 
5576   if (parseArgumentList(ArgList, IsVarArg) ||
5577       parseOptionalUnnamedAddr(UnnamedAddr) ||
5578       parseOptionalProgramAddrSpace(AddrSpace) ||
5579       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5580                                  BuiltinLoc) ||
5581       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5582       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5583       parseOptionalComdat(FunctionName, C) ||
5584       parseOptionalAlignment(Alignment) ||
5585       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5586       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5587       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5588       (EatIfPresent(lltok::kw_personality) &&
5589        parseGlobalTypeAndValue(PersonalityFn)))
5590     return true;
5591 
5592   if (FuncAttrs.contains(Attribute::Builtin))
5593     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5594 
5595   // If the alignment was parsed as an attribute, move to the alignment field.
5596   if (FuncAttrs.hasAlignmentAttr()) {
5597     Alignment = FuncAttrs.getAlignment();
5598     FuncAttrs.removeAttribute(Attribute::Alignment);
5599   }
5600 
5601   // Okay, if we got here, the function is syntactically valid.  Convert types
5602   // and do semantic checks.
5603   std::vector<Type*> ParamTypeList;
5604   SmallVector<AttributeSet, 8> Attrs;
5605 
5606   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5607     ParamTypeList.push_back(ArgList[i].Ty);
5608     Attrs.push_back(ArgList[i].Attrs);
5609   }
5610 
5611   AttributeList PAL =
5612       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5613                          AttributeSet::get(Context, RetAttrs), Attrs);
5614 
5615   if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy())
5616     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5617 
5618   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5619   PointerType *PFT = PointerType::get(FT, AddrSpace);
5620 
5621   Fn = nullptr;
5622   GlobalValue *FwdFn = nullptr;
5623   if (!FunctionName.empty()) {
5624     // If this was a definition of a forward reference, remove the definition
5625     // from the forward reference table and fill in the forward ref.
5626     auto FRVI = ForwardRefVals.find(FunctionName);
5627     if (FRVI != ForwardRefVals.end()) {
5628       FwdFn = FRVI->second.first;
5629       if (!FwdFn->getType()->isOpaque()) {
5630         if (!FwdFn->getType()->getNonOpaquePointerElementType()->isFunctionTy())
5631           return error(FRVI->second.second, "invalid forward reference to "
5632                                             "function as global value!");
5633         if (FwdFn->getType() != PFT)
5634           return error(FRVI->second.second,
5635                        "invalid forward reference to "
5636                        "function '" +
5637                            FunctionName +
5638                            "' with wrong type: "
5639                            "expected '" +
5640                            getTypeString(PFT) + "' but was '" +
5641                            getTypeString(FwdFn->getType()) + "'");
5642       }
5643       ForwardRefVals.erase(FRVI);
5644     } else if ((Fn = M->getFunction(FunctionName))) {
5645       // Reject redefinitions.
5646       return error(NameLoc,
5647                    "invalid redefinition of function '" + FunctionName + "'");
5648     } else if (M->getNamedValue(FunctionName)) {
5649       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5650     }
5651 
5652   } else {
5653     // If this is a definition of a forward referenced function, make sure the
5654     // types agree.
5655     auto I = ForwardRefValIDs.find(NumberedVals.size());
5656     if (I != ForwardRefValIDs.end()) {
5657       FwdFn = I->second.first;
5658       if (!FwdFn->getType()->isOpaque() && FwdFn->getType() != PFT)
5659         return error(NameLoc, "type of definition and forward reference of '@" +
5660                                   Twine(NumberedVals.size()) +
5661                                   "' disagree: "
5662                                   "expected '" +
5663                                   getTypeString(PFT) + "' but was '" +
5664                                   getTypeString(FwdFn->getType()) + "'");
5665       ForwardRefValIDs.erase(I);
5666     }
5667   }
5668 
5669   Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5670                         FunctionName, M);
5671 
5672   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5673 
5674   if (FunctionName.empty())
5675     NumberedVals.push_back(Fn);
5676 
5677   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5678   maybeSetDSOLocal(DSOLocal, *Fn);
5679   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5680   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5681   Fn->setCallingConv(CC);
5682   Fn->setAttributes(PAL);
5683   Fn->setUnnamedAddr(UnnamedAddr);
5684   Fn->setAlignment(MaybeAlign(Alignment));
5685   Fn->setSection(Section);
5686   Fn->setPartition(Partition);
5687   Fn->setComdat(C);
5688   Fn->setPersonalityFn(PersonalityFn);
5689   if (!GC.empty()) Fn->setGC(GC);
5690   Fn->setPrefixData(Prefix);
5691   Fn->setPrologueData(Prologue);
5692   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5693 
5694   // Add all of the arguments we parsed to the function.
5695   Function::arg_iterator ArgIt = Fn->arg_begin();
5696   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5697     // If the argument has a name, insert it into the argument symbol table.
5698     if (ArgList[i].Name.empty()) continue;
5699 
5700     // Set the name, if it conflicted, it will be auto-renamed.
5701     ArgIt->setName(ArgList[i].Name);
5702 
5703     if (ArgIt->getName() != ArgList[i].Name)
5704       return error(ArgList[i].Loc,
5705                    "redefinition of argument '%" + ArgList[i].Name + "'");
5706   }
5707 
5708   if (FwdFn) {
5709     FwdFn->replaceAllUsesWith(Fn);
5710     FwdFn->eraseFromParent();
5711   }
5712 
5713   if (IsDefine)
5714     return false;
5715 
5716   // Check the declaration has no block address forward references.
5717   ValID ID;
5718   if (FunctionName.empty()) {
5719     ID.Kind = ValID::t_GlobalID;
5720     ID.UIntVal = NumberedVals.size() - 1;
5721   } else {
5722     ID.Kind = ValID::t_GlobalName;
5723     ID.StrVal = FunctionName;
5724   }
5725   auto Blocks = ForwardRefBlockAddresses.find(ID);
5726   if (Blocks != ForwardRefBlockAddresses.end())
5727     return error(Blocks->first.Loc,
5728                  "cannot take blockaddress inside a declaration");
5729   return false;
5730 }
5731 
5732 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5733   ValID ID;
5734   if (FunctionNumber == -1) {
5735     ID.Kind = ValID::t_GlobalName;
5736     ID.StrVal = std::string(F.getName());
5737   } else {
5738     ID.Kind = ValID::t_GlobalID;
5739     ID.UIntVal = FunctionNumber;
5740   }
5741 
5742   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5743   if (Blocks == P.ForwardRefBlockAddresses.end())
5744     return false;
5745 
5746   for (const auto &I : Blocks->second) {
5747     const ValID &BBID = I.first;
5748     GlobalValue *GV = I.second;
5749 
5750     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5751            "Expected local id or name");
5752     BasicBlock *BB;
5753     if (BBID.Kind == ValID::t_LocalName)
5754       BB = getBB(BBID.StrVal, BBID.Loc);
5755     else
5756       BB = getBB(BBID.UIntVal, BBID.Loc);
5757     if (!BB)
5758       return P.error(BBID.Loc, "referenced value is not a basic block");
5759 
5760     Value *ResolvedVal = BlockAddress::get(&F, BB);
5761     ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
5762                                            ResolvedVal);
5763     if (!ResolvedVal)
5764       return true;
5765     GV->replaceAllUsesWith(ResolvedVal);
5766     GV->eraseFromParent();
5767   }
5768 
5769   P.ForwardRefBlockAddresses.erase(Blocks);
5770   return false;
5771 }
5772 
5773 /// parseFunctionBody
5774 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5775 bool LLParser::parseFunctionBody(Function &Fn) {
5776   if (Lex.getKind() != lltok::lbrace)
5777     return tokError("expected '{' in function body");
5778   Lex.Lex();  // eat the {.
5779 
5780   int FunctionNumber = -1;
5781   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5782 
5783   PerFunctionState PFS(*this, Fn, FunctionNumber);
5784 
5785   // Resolve block addresses and allow basic blocks to be forward-declared
5786   // within this function.
5787   if (PFS.resolveForwardRefBlockAddresses())
5788     return true;
5789   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5790 
5791   // We need at least one basic block.
5792   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5793     return tokError("function body requires at least one basic block");
5794 
5795   while (Lex.getKind() != lltok::rbrace &&
5796          Lex.getKind() != lltok::kw_uselistorder)
5797     if (parseBasicBlock(PFS))
5798       return true;
5799 
5800   while (Lex.getKind() != lltok::rbrace)
5801     if (parseUseListOrder(&PFS))
5802       return true;
5803 
5804   // Eat the }.
5805   Lex.Lex();
5806 
5807   // Verify function is ok.
5808   return PFS.finishFunction();
5809 }
5810 
5811 /// parseBasicBlock
5812 ///   ::= (LabelStr|LabelID)? Instruction*
5813 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
5814   // If this basic block starts out with a name, remember it.
5815   std::string Name;
5816   int NameID = -1;
5817   LocTy NameLoc = Lex.getLoc();
5818   if (Lex.getKind() == lltok::LabelStr) {
5819     Name = Lex.getStrVal();
5820     Lex.Lex();
5821   } else if (Lex.getKind() == lltok::LabelID) {
5822     NameID = Lex.getUIntVal();
5823     Lex.Lex();
5824   }
5825 
5826   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
5827   if (!BB)
5828     return true;
5829 
5830   std::string NameStr;
5831 
5832   // parse the instructions in this block until we get a terminator.
5833   Instruction *Inst;
5834   do {
5835     // This instruction may have three possibilities for a name: a) none
5836     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5837     LocTy NameLoc = Lex.getLoc();
5838     int NameID = -1;
5839     NameStr = "";
5840 
5841     if (Lex.getKind() == lltok::LocalVarID) {
5842       NameID = Lex.getUIntVal();
5843       Lex.Lex();
5844       if (parseToken(lltok::equal, "expected '=' after instruction id"))
5845         return true;
5846     } else if (Lex.getKind() == lltok::LocalVar) {
5847       NameStr = Lex.getStrVal();
5848       Lex.Lex();
5849       if (parseToken(lltok::equal, "expected '=' after instruction name"))
5850         return true;
5851     }
5852 
5853     switch (parseInstruction(Inst, BB, PFS)) {
5854     default:
5855       llvm_unreachable("Unknown parseInstruction result!");
5856     case InstError: return true;
5857     case InstNormal:
5858       BB->getInstList().push_back(Inst);
5859 
5860       // With a normal result, we check to see if the instruction is followed by
5861       // a comma and metadata.
5862       if (EatIfPresent(lltok::comma))
5863         if (parseInstructionMetadata(*Inst))
5864           return true;
5865       break;
5866     case InstExtraComma:
5867       BB->getInstList().push_back(Inst);
5868 
5869       // If the instruction parser ate an extra comma at the end of it, it
5870       // *must* be followed by metadata.
5871       if (parseInstructionMetadata(*Inst))
5872         return true;
5873       break;
5874     }
5875 
5876     // Set the name on the instruction.
5877     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
5878       return true;
5879   } while (!Inst->isTerminator());
5880 
5881   return false;
5882 }
5883 
5884 //===----------------------------------------------------------------------===//
5885 // Instruction Parsing.
5886 //===----------------------------------------------------------------------===//
5887 
5888 /// parseInstruction - parse one of the many different instructions.
5889 ///
5890 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
5891                                PerFunctionState &PFS) {
5892   lltok::Kind Token = Lex.getKind();
5893   if (Token == lltok::Eof)
5894     return tokError("found end of file when expecting more instructions");
5895   LocTy Loc = Lex.getLoc();
5896   unsigned KeywordVal = Lex.getUIntVal();
5897   Lex.Lex();  // Eat the keyword.
5898 
5899   switch (Token) {
5900   default:
5901     return error(Loc, "expected instruction opcode");
5902   // Terminator Instructions.
5903   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5904   case lltok::kw_ret:
5905     return parseRet(Inst, BB, PFS);
5906   case lltok::kw_br:
5907     return parseBr(Inst, PFS);
5908   case lltok::kw_switch:
5909     return parseSwitch(Inst, PFS);
5910   case lltok::kw_indirectbr:
5911     return parseIndirectBr(Inst, PFS);
5912   case lltok::kw_invoke:
5913     return parseInvoke(Inst, PFS);
5914   case lltok::kw_resume:
5915     return parseResume(Inst, PFS);
5916   case lltok::kw_cleanupret:
5917     return parseCleanupRet(Inst, PFS);
5918   case lltok::kw_catchret:
5919     return parseCatchRet(Inst, PFS);
5920   case lltok::kw_catchswitch:
5921     return parseCatchSwitch(Inst, PFS);
5922   case lltok::kw_catchpad:
5923     return parseCatchPad(Inst, PFS);
5924   case lltok::kw_cleanuppad:
5925     return parseCleanupPad(Inst, PFS);
5926   case lltok::kw_callbr:
5927     return parseCallBr(Inst, PFS);
5928   // Unary Operators.
5929   case lltok::kw_fneg: {
5930     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5931     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
5932     if (Res != 0)
5933       return Res;
5934     if (FMF.any())
5935       Inst->setFastMathFlags(FMF);
5936     return false;
5937   }
5938   // Binary Operators.
5939   case lltok::kw_add:
5940   case lltok::kw_sub:
5941   case lltok::kw_mul:
5942   case lltok::kw_shl: {
5943     bool NUW = EatIfPresent(lltok::kw_nuw);
5944     bool NSW = EatIfPresent(lltok::kw_nsw);
5945     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5946 
5947     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
5948       return true;
5949 
5950     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5951     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5952     return false;
5953   }
5954   case lltok::kw_fadd:
5955   case lltok::kw_fsub:
5956   case lltok::kw_fmul:
5957   case lltok::kw_fdiv:
5958   case lltok::kw_frem: {
5959     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5960     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
5961     if (Res != 0)
5962       return Res;
5963     if (FMF.any())
5964       Inst->setFastMathFlags(FMF);
5965     return 0;
5966   }
5967 
5968   case lltok::kw_sdiv:
5969   case lltok::kw_udiv:
5970   case lltok::kw_lshr:
5971   case lltok::kw_ashr: {
5972     bool Exact = EatIfPresent(lltok::kw_exact);
5973 
5974     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
5975       return true;
5976     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5977     return false;
5978   }
5979 
5980   case lltok::kw_urem:
5981   case lltok::kw_srem:
5982     return parseArithmetic(Inst, PFS, KeywordVal,
5983                            /*IsFP*/ false);
5984   case lltok::kw_and:
5985   case lltok::kw_or:
5986   case lltok::kw_xor:
5987     return parseLogical(Inst, PFS, KeywordVal);
5988   case lltok::kw_icmp:
5989     return parseCompare(Inst, PFS, KeywordVal);
5990   case lltok::kw_fcmp: {
5991     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5992     int Res = parseCompare(Inst, PFS, KeywordVal);
5993     if (Res != 0)
5994       return Res;
5995     if (FMF.any())
5996       Inst->setFastMathFlags(FMF);
5997     return 0;
5998   }
5999 
6000   // Casts.
6001   case lltok::kw_trunc:
6002   case lltok::kw_zext:
6003   case lltok::kw_sext:
6004   case lltok::kw_fptrunc:
6005   case lltok::kw_fpext:
6006   case lltok::kw_bitcast:
6007   case lltok::kw_addrspacecast:
6008   case lltok::kw_uitofp:
6009   case lltok::kw_sitofp:
6010   case lltok::kw_fptoui:
6011   case lltok::kw_fptosi:
6012   case lltok::kw_inttoptr:
6013   case lltok::kw_ptrtoint:
6014     return parseCast(Inst, PFS, KeywordVal);
6015   // Other.
6016   case lltok::kw_select: {
6017     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6018     int Res = parseSelect(Inst, PFS);
6019     if (Res != 0)
6020       return Res;
6021     if (FMF.any()) {
6022       if (!isa<FPMathOperator>(Inst))
6023         return error(Loc, "fast-math-flags specified for select without "
6024                           "floating-point scalar or vector return type");
6025       Inst->setFastMathFlags(FMF);
6026     }
6027     return 0;
6028   }
6029   case lltok::kw_va_arg:
6030     return parseVAArg(Inst, PFS);
6031   case lltok::kw_extractelement:
6032     return parseExtractElement(Inst, PFS);
6033   case lltok::kw_insertelement:
6034     return parseInsertElement(Inst, PFS);
6035   case lltok::kw_shufflevector:
6036     return parseShuffleVector(Inst, PFS);
6037   case lltok::kw_phi: {
6038     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6039     int Res = parsePHI(Inst, PFS);
6040     if (Res != 0)
6041       return Res;
6042     if (FMF.any()) {
6043       if (!isa<FPMathOperator>(Inst))
6044         return error(Loc, "fast-math-flags specified for phi without "
6045                           "floating-point scalar or vector return type");
6046       Inst->setFastMathFlags(FMF);
6047     }
6048     return 0;
6049   }
6050   case lltok::kw_landingpad:
6051     return parseLandingPad(Inst, PFS);
6052   case lltok::kw_freeze:
6053     return parseFreeze(Inst, PFS);
6054   // Call.
6055   case lltok::kw_call:
6056     return parseCall(Inst, PFS, CallInst::TCK_None);
6057   case lltok::kw_tail:
6058     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6059   case lltok::kw_musttail:
6060     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6061   case lltok::kw_notail:
6062     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6063   // Memory.
6064   case lltok::kw_alloca:
6065     return parseAlloc(Inst, PFS);
6066   case lltok::kw_load:
6067     return parseLoad(Inst, PFS);
6068   case lltok::kw_store:
6069     return parseStore(Inst, PFS);
6070   case lltok::kw_cmpxchg:
6071     return parseCmpXchg(Inst, PFS);
6072   case lltok::kw_atomicrmw:
6073     return parseAtomicRMW(Inst, PFS);
6074   case lltok::kw_fence:
6075     return parseFence(Inst, PFS);
6076   case lltok::kw_getelementptr:
6077     return parseGetElementPtr(Inst, PFS);
6078   case lltok::kw_extractvalue:
6079     return parseExtractValue(Inst, PFS);
6080   case lltok::kw_insertvalue:
6081     return parseInsertValue(Inst, PFS);
6082   }
6083 }
6084 
6085 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6086 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6087   if (Opc == Instruction::FCmp) {
6088     switch (Lex.getKind()) {
6089     default:
6090       return tokError("expected fcmp predicate (e.g. 'oeq')");
6091     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6092     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6093     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6094     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6095     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6096     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6097     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6098     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6099     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6100     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6101     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6102     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6103     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6104     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6105     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6106     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6107     }
6108   } else {
6109     switch (Lex.getKind()) {
6110     default:
6111       return tokError("expected icmp predicate (e.g. 'eq')");
6112     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6113     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6114     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6115     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6116     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6117     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6118     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6119     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6120     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6121     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6122     }
6123   }
6124   Lex.Lex();
6125   return false;
6126 }
6127 
6128 //===----------------------------------------------------------------------===//
6129 // Terminator Instructions.
6130 //===----------------------------------------------------------------------===//
6131 
6132 /// parseRet - parse a return instruction.
6133 ///   ::= 'ret' void (',' !dbg, !1)*
6134 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6135 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6136                         PerFunctionState &PFS) {
6137   SMLoc TypeLoc = Lex.getLoc();
6138   Type *Ty = nullptr;
6139   if (parseType(Ty, true /*void allowed*/))
6140     return true;
6141 
6142   Type *ResType = PFS.getFunction().getReturnType();
6143 
6144   if (Ty->isVoidTy()) {
6145     if (!ResType->isVoidTy())
6146       return error(TypeLoc, "value doesn't match function result type '" +
6147                                 getTypeString(ResType) + "'");
6148 
6149     Inst = ReturnInst::Create(Context);
6150     return false;
6151   }
6152 
6153   Value *RV;
6154   if (parseValue(Ty, RV, PFS))
6155     return true;
6156 
6157   if (ResType != RV->getType())
6158     return error(TypeLoc, "value doesn't match function result type '" +
6159                               getTypeString(ResType) + "'");
6160 
6161   Inst = ReturnInst::Create(Context, RV);
6162   return false;
6163 }
6164 
6165 /// parseBr
6166 ///   ::= 'br' TypeAndValue
6167 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6168 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6169   LocTy Loc, Loc2;
6170   Value *Op0;
6171   BasicBlock *Op1, *Op2;
6172   if (parseTypeAndValue(Op0, Loc, PFS))
6173     return true;
6174 
6175   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6176     Inst = BranchInst::Create(BB);
6177     return false;
6178   }
6179 
6180   if (Op0->getType() != Type::getInt1Ty(Context))
6181     return error(Loc, "branch condition must have 'i1' type");
6182 
6183   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6184       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6185       parseToken(lltok::comma, "expected ',' after true destination") ||
6186       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6187     return true;
6188 
6189   Inst = BranchInst::Create(Op1, Op2, Op0);
6190   return false;
6191 }
6192 
6193 /// parseSwitch
6194 ///  Instruction
6195 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6196 ///  JumpTable
6197 ///    ::= (TypeAndValue ',' TypeAndValue)*
6198 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6199   LocTy CondLoc, BBLoc;
6200   Value *Cond;
6201   BasicBlock *DefaultBB;
6202   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6203       parseToken(lltok::comma, "expected ',' after switch condition") ||
6204       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6205       parseToken(lltok::lsquare, "expected '[' with switch table"))
6206     return true;
6207 
6208   if (!Cond->getType()->isIntegerTy())
6209     return error(CondLoc, "switch condition must have integer type");
6210 
6211   // parse the jump table pairs.
6212   SmallPtrSet<Value*, 32> SeenCases;
6213   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6214   while (Lex.getKind() != lltok::rsquare) {
6215     Value *Constant;
6216     BasicBlock *DestBB;
6217 
6218     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6219         parseToken(lltok::comma, "expected ',' after case value") ||
6220         parseTypeAndBasicBlock(DestBB, PFS))
6221       return true;
6222 
6223     if (!SeenCases.insert(Constant).second)
6224       return error(CondLoc, "duplicate case value in switch");
6225     if (!isa<ConstantInt>(Constant))
6226       return error(CondLoc, "case value is not a constant integer");
6227 
6228     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6229   }
6230 
6231   Lex.Lex();  // Eat the ']'.
6232 
6233   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6234   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6235     SI->addCase(Table[i].first, Table[i].second);
6236   Inst = SI;
6237   return false;
6238 }
6239 
6240 /// parseIndirectBr
6241 ///  Instruction
6242 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6243 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6244   LocTy AddrLoc;
6245   Value *Address;
6246   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6247       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6248       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6249     return true;
6250 
6251   if (!Address->getType()->isPointerTy())
6252     return error(AddrLoc, "indirectbr address must have pointer type");
6253 
6254   // parse the destination list.
6255   SmallVector<BasicBlock*, 16> DestList;
6256 
6257   if (Lex.getKind() != lltok::rsquare) {
6258     BasicBlock *DestBB;
6259     if (parseTypeAndBasicBlock(DestBB, PFS))
6260       return true;
6261     DestList.push_back(DestBB);
6262 
6263     while (EatIfPresent(lltok::comma)) {
6264       if (parseTypeAndBasicBlock(DestBB, PFS))
6265         return true;
6266       DestList.push_back(DestBB);
6267     }
6268   }
6269 
6270   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6271     return true;
6272 
6273   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6274   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6275     IBI->addDestination(DestList[i]);
6276   Inst = IBI;
6277   return false;
6278 }
6279 
6280 /// parseInvoke
6281 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6282 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6283 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6284   LocTy CallLoc = Lex.getLoc();
6285   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
6286   std::vector<unsigned> FwdRefAttrGrps;
6287   LocTy NoBuiltinLoc;
6288   unsigned CC;
6289   unsigned InvokeAddrSpace;
6290   Type *RetType = nullptr;
6291   LocTy RetTypeLoc;
6292   ValID CalleeID;
6293   SmallVector<ParamInfo, 16> ArgList;
6294   SmallVector<OperandBundleDef, 2> BundleList;
6295 
6296   BasicBlock *NormalBB, *UnwindBB;
6297   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6298       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6299       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6300       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6301       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6302                                  NoBuiltinLoc) ||
6303       parseOptionalOperandBundles(BundleList, PFS) ||
6304       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6305       parseTypeAndBasicBlock(NormalBB, PFS) ||
6306       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6307       parseTypeAndBasicBlock(UnwindBB, PFS))
6308     return true;
6309 
6310   // If RetType is a non-function pointer type, then this is the short syntax
6311   // for the call, which means that RetType is just the return type.  Infer the
6312   // rest of the function argument types from the arguments that are present.
6313   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6314   if (!Ty) {
6315     // Pull out the types of all of the arguments...
6316     std::vector<Type*> ParamTypes;
6317     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6318       ParamTypes.push_back(ArgList[i].V->getType());
6319 
6320     if (!FunctionType::isValidReturnType(RetType))
6321       return error(RetTypeLoc, "Invalid result type for LLVM function");
6322 
6323     Ty = FunctionType::get(RetType, ParamTypes, false);
6324   }
6325 
6326   CalleeID.FTy = Ty;
6327 
6328   // Look up the callee.
6329   Value *Callee;
6330   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6331                           Callee, &PFS))
6332     return true;
6333 
6334   // Set up the Attribute for the function.
6335   SmallVector<Value *, 8> Args;
6336   SmallVector<AttributeSet, 8> ArgAttrs;
6337 
6338   // Loop through FunctionType's arguments and ensure they are specified
6339   // correctly.  Also, gather any parameter attributes.
6340   FunctionType::param_iterator I = Ty->param_begin();
6341   FunctionType::param_iterator E = Ty->param_end();
6342   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6343     Type *ExpectedTy = nullptr;
6344     if (I != E) {
6345       ExpectedTy = *I++;
6346     } else if (!Ty->isVarArg()) {
6347       return error(ArgList[i].Loc, "too many arguments specified");
6348     }
6349 
6350     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6351       return error(ArgList[i].Loc, "argument is not of expected type '" +
6352                                        getTypeString(ExpectedTy) + "'");
6353     Args.push_back(ArgList[i].V);
6354     ArgAttrs.push_back(ArgList[i].Attrs);
6355   }
6356 
6357   if (I != E)
6358     return error(CallLoc, "not enough parameters specified for call");
6359 
6360   if (FnAttrs.hasAlignmentAttr())
6361     return error(CallLoc, "invoke instructions may not have an alignment");
6362 
6363   // Finish off the Attribute and check them
6364   AttributeList PAL =
6365       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6366                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6367 
6368   InvokeInst *II =
6369       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6370   II->setCallingConv(CC);
6371   II->setAttributes(PAL);
6372   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6373   Inst = II;
6374   return false;
6375 }
6376 
6377 /// parseResume
6378 ///   ::= 'resume' TypeAndValue
6379 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6380   Value *Exn; LocTy ExnLoc;
6381   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6382     return true;
6383 
6384   ResumeInst *RI = ResumeInst::Create(Exn);
6385   Inst = RI;
6386   return false;
6387 }
6388 
6389 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6390                                   PerFunctionState &PFS) {
6391   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6392     return true;
6393 
6394   while (Lex.getKind() != lltok::rsquare) {
6395     // If this isn't the first argument, we need a comma.
6396     if (!Args.empty() &&
6397         parseToken(lltok::comma, "expected ',' in argument list"))
6398       return true;
6399 
6400     // parse the argument.
6401     LocTy ArgLoc;
6402     Type *ArgTy = nullptr;
6403     if (parseType(ArgTy, ArgLoc))
6404       return true;
6405 
6406     Value *V;
6407     if (ArgTy->isMetadataTy()) {
6408       if (parseMetadataAsValue(V, PFS))
6409         return true;
6410     } else {
6411       if (parseValue(ArgTy, V, PFS))
6412         return true;
6413     }
6414     Args.push_back(V);
6415   }
6416 
6417   Lex.Lex();  // Lex the ']'.
6418   return false;
6419 }
6420 
6421 /// parseCleanupRet
6422 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6423 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6424   Value *CleanupPad = nullptr;
6425 
6426   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6427     return true;
6428 
6429   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6430     return true;
6431 
6432   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6433     return true;
6434 
6435   BasicBlock *UnwindBB = nullptr;
6436   if (Lex.getKind() == lltok::kw_to) {
6437     Lex.Lex();
6438     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6439       return true;
6440   } else {
6441     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6442       return true;
6443     }
6444   }
6445 
6446   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6447   return false;
6448 }
6449 
6450 /// parseCatchRet
6451 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6452 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6453   Value *CatchPad = nullptr;
6454 
6455   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6456     return true;
6457 
6458   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6459     return true;
6460 
6461   BasicBlock *BB;
6462   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6463       parseTypeAndBasicBlock(BB, PFS))
6464     return true;
6465 
6466   Inst = CatchReturnInst::Create(CatchPad, BB);
6467   return false;
6468 }
6469 
6470 /// parseCatchSwitch
6471 ///   ::= 'catchswitch' within Parent
6472 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6473   Value *ParentPad;
6474 
6475   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6476     return true;
6477 
6478   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6479       Lex.getKind() != lltok::LocalVarID)
6480     return tokError("expected scope value for catchswitch");
6481 
6482   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6483     return true;
6484 
6485   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6486     return true;
6487 
6488   SmallVector<BasicBlock *, 32> Table;
6489   do {
6490     BasicBlock *DestBB;
6491     if (parseTypeAndBasicBlock(DestBB, PFS))
6492       return true;
6493     Table.push_back(DestBB);
6494   } while (EatIfPresent(lltok::comma));
6495 
6496   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6497     return true;
6498 
6499   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6500     return true;
6501 
6502   BasicBlock *UnwindBB = nullptr;
6503   if (EatIfPresent(lltok::kw_to)) {
6504     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6505       return true;
6506   } else {
6507     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6508       return true;
6509   }
6510 
6511   auto *CatchSwitch =
6512       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6513   for (BasicBlock *DestBB : Table)
6514     CatchSwitch->addHandler(DestBB);
6515   Inst = CatchSwitch;
6516   return false;
6517 }
6518 
6519 /// parseCatchPad
6520 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6521 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6522   Value *CatchSwitch = nullptr;
6523 
6524   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6525     return true;
6526 
6527   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6528     return tokError("expected scope value for catchpad");
6529 
6530   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6531     return true;
6532 
6533   SmallVector<Value *, 8> Args;
6534   if (parseExceptionArgs(Args, PFS))
6535     return true;
6536 
6537   Inst = CatchPadInst::Create(CatchSwitch, Args);
6538   return false;
6539 }
6540 
6541 /// parseCleanupPad
6542 ///   ::= 'cleanuppad' within Parent ParamList
6543 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6544   Value *ParentPad = nullptr;
6545 
6546   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6547     return true;
6548 
6549   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6550       Lex.getKind() != lltok::LocalVarID)
6551     return tokError("expected scope value for cleanuppad");
6552 
6553   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6554     return true;
6555 
6556   SmallVector<Value *, 8> Args;
6557   if (parseExceptionArgs(Args, PFS))
6558     return true;
6559 
6560   Inst = CleanupPadInst::Create(ParentPad, Args);
6561   return false;
6562 }
6563 
6564 //===----------------------------------------------------------------------===//
6565 // Unary Operators.
6566 //===----------------------------------------------------------------------===//
6567 
6568 /// parseUnaryOp
6569 ///  ::= UnaryOp TypeAndValue ',' Value
6570 ///
6571 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6572 /// operand is allowed.
6573 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6574                             unsigned Opc, bool IsFP) {
6575   LocTy Loc; Value *LHS;
6576   if (parseTypeAndValue(LHS, Loc, PFS))
6577     return true;
6578 
6579   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6580                     : LHS->getType()->isIntOrIntVectorTy();
6581 
6582   if (!Valid)
6583     return error(Loc, "invalid operand type for instruction");
6584 
6585   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6586   return false;
6587 }
6588 
6589 /// parseCallBr
6590 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6591 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6592 ///       '[' LabelList ']'
6593 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6594   LocTy CallLoc = Lex.getLoc();
6595   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
6596   std::vector<unsigned> FwdRefAttrGrps;
6597   LocTy NoBuiltinLoc;
6598   unsigned CC;
6599   Type *RetType = nullptr;
6600   LocTy RetTypeLoc;
6601   ValID CalleeID;
6602   SmallVector<ParamInfo, 16> ArgList;
6603   SmallVector<OperandBundleDef, 2> BundleList;
6604 
6605   BasicBlock *DefaultDest;
6606   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6607       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6608       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6609       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6610                                  NoBuiltinLoc) ||
6611       parseOptionalOperandBundles(BundleList, PFS) ||
6612       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6613       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6614       parseToken(lltok::lsquare, "expected '[' in callbr"))
6615     return true;
6616 
6617   // parse the destination list.
6618   SmallVector<BasicBlock *, 16> IndirectDests;
6619 
6620   if (Lex.getKind() != lltok::rsquare) {
6621     BasicBlock *DestBB;
6622     if (parseTypeAndBasicBlock(DestBB, PFS))
6623       return true;
6624     IndirectDests.push_back(DestBB);
6625 
6626     while (EatIfPresent(lltok::comma)) {
6627       if (parseTypeAndBasicBlock(DestBB, PFS))
6628         return true;
6629       IndirectDests.push_back(DestBB);
6630     }
6631   }
6632 
6633   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6634     return true;
6635 
6636   // If RetType is a non-function pointer type, then this is the short syntax
6637   // for the call, which means that RetType is just the return type.  Infer the
6638   // rest of the function argument types from the arguments that are present.
6639   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6640   if (!Ty) {
6641     // Pull out the types of all of the arguments...
6642     std::vector<Type *> ParamTypes;
6643     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6644       ParamTypes.push_back(ArgList[i].V->getType());
6645 
6646     if (!FunctionType::isValidReturnType(RetType))
6647       return error(RetTypeLoc, "Invalid result type for LLVM function");
6648 
6649     Ty = FunctionType::get(RetType, ParamTypes, false);
6650   }
6651 
6652   CalleeID.FTy = Ty;
6653 
6654   // Look up the callee.
6655   Value *Callee;
6656   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
6657     return true;
6658 
6659   // Set up the Attribute for the function.
6660   SmallVector<Value *, 8> Args;
6661   SmallVector<AttributeSet, 8> ArgAttrs;
6662 
6663   // Loop through FunctionType's arguments and ensure they are specified
6664   // correctly.  Also, gather any parameter attributes.
6665   FunctionType::param_iterator I = Ty->param_begin();
6666   FunctionType::param_iterator E = Ty->param_end();
6667   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6668     Type *ExpectedTy = nullptr;
6669     if (I != E) {
6670       ExpectedTy = *I++;
6671     } else if (!Ty->isVarArg()) {
6672       return error(ArgList[i].Loc, "too many arguments specified");
6673     }
6674 
6675     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6676       return error(ArgList[i].Loc, "argument is not of expected type '" +
6677                                        getTypeString(ExpectedTy) + "'");
6678     Args.push_back(ArgList[i].V);
6679     ArgAttrs.push_back(ArgList[i].Attrs);
6680   }
6681 
6682   if (I != E)
6683     return error(CallLoc, "not enough parameters specified for call");
6684 
6685   if (FnAttrs.hasAlignmentAttr())
6686     return error(CallLoc, "callbr instructions may not have an alignment");
6687 
6688   // Finish off the Attribute and check them
6689   AttributeList PAL =
6690       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6691                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6692 
6693   CallBrInst *CBI =
6694       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6695                          BundleList);
6696   CBI->setCallingConv(CC);
6697   CBI->setAttributes(PAL);
6698   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6699   Inst = CBI;
6700   return false;
6701 }
6702 
6703 //===----------------------------------------------------------------------===//
6704 // Binary Operators.
6705 //===----------------------------------------------------------------------===//
6706 
6707 /// parseArithmetic
6708 ///  ::= ArithmeticOps TypeAndValue ',' Value
6709 ///
6710 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6711 /// operand is allowed.
6712 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6713                                unsigned Opc, bool IsFP) {
6714   LocTy Loc; Value *LHS, *RHS;
6715   if (parseTypeAndValue(LHS, Loc, PFS) ||
6716       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6717       parseValue(LHS->getType(), RHS, PFS))
6718     return true;
6719 
6720   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6721                     : LHS->getType()->isIntOrIntVectorTy();
6722 
6723   if (!Valid)
6724     return error(Loc, "invalid operand type for instruction");
6725 
6726   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6727   return false;
6728 }
6729 
6730 /// parseLogical
6731 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6732 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6733                             unsigned Opc) {
6734   LocTy Loc; Value *LHS, *RHS;
6735   if (parseTypeAndValue(LHS, Loc, PFS) ||
6736       parseToken(lltok::comma, "expected ',' in logical operation") ||
6737       parseValue(LHS->getType(), RHS, PFS))
6738     return true;
6739 
6740   if (!LHS->getType()->isIntOrIntVectorTy())
6741     return error(Loc,
6742                  "instruction requires integer or integer vector operands");
6743 
6744   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6745   return false;
6746 }
6747 
6748 /// parseCompare
6749 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6750 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6751 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
6752                             unsigned Opc) {
6753   // parse the integer/fp comparison predicate.
6754   LocTy Loc;
6755   unsigned Pred;
6756   Value *LHS, *RHS;
6757   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
6758       parseToken(lltok::comma, "expected ',' after compare value") ||
6759       parseValue(LHS->getType(), RHS, PFS))
6760     return true;
6761 
6762   if (Opc == Instruction::FCmp) {
6763     if (!LHS->getType()->isFPOrFPVectorTy())
6764       return error(Loc, "fcmp requires floating point operands");
6765     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6766   } else {
6767     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6768     if (!LHS->getType()->isIntOrIntVectorTy() &&
6769         !LHS->getType()->isPtrOrPtrVectorTy())
6770       return error(Loc, "icmp requires integer operands");
6771     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6772   }
6773   return false;
6774 }
6775 
6776 //===----------------------------------------------------------------------===//
6777 // Other Instructions.
6778 //===----------------------------------------------------------------------===//
6779 
6780 /// parseCast
6781 ///   ::= CastOpc TypeAndValue 'to' Type
6782 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
6783                          unsigned Opc) {
6784   LocTy Loc;
6785   Value *Op;
6786   Type *DestTy = nullptr;
6787   if (parseTypeAndValue(Op, Loc, PFS) ||
6788       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
6789       parseType(DestTy))
6790     return true;
6791 
6792   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6793     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6794     return error(Loc, "invalid cast opcode for cast from '" +
6795                           getTypeString(Op->getType()) + "' to '" +
6796                           getTypeString(DestTy) + "'");
6797   }
6798   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6799   return false;
6800 }
6801 
6802 /// parseSelect
6803 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6804 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6805   LocTy Loc;
6806   Value *Op0, *Op1, *Op2;
6807   if (parseTypeAndValue(Op0, Loc, PFS) ||
6808       parseToken(lltok::comma, "expected ',' after select condition") ||
6809       parseTypeAndValue(Op1, PFS) ||
6810       parseToken(lltok::comma, "expected ',' after select value") ||
6811       parseTypeAndValue(Op2, PFS))
6812     return true;
6813 
6814   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6815     return error(Loc, Reason);
6816 
6817   Inst = SelectInst::Create(Op0, Op1, Op2);
6818   return false;
6819 }
6820 
6821 /// parseVAArg
6822 ///   ::= 'va_arg' TypeAndValue ',' Type
6823 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
6824   Value *Op;
6825   Type *EltTy = nullptr;
6826   LocTy TypeLoc;
6827   if (parseTypeAndValue(Op, PFS) ||
6828       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
6829       parseType(EltTy, TypeLoc))
6830     return true;
6831 
6832   if (!EltTy->isFirstClassType())
6833     return error(TypeLoc, "va_arg requires operand with first class type");
6834 
6835   Inst = new VAArgInst(Op, EltTy);
6836   return false;
6837 }
6838 
6839 /// parseExtractElement
6840 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6841 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6842   LocTy Loc;
6843   Value *Op0, *Op1;
6844   if (parseTypeAndValue(Op0, Loc, PFS) ||
6845       parseToken(lltok::comma, "expected ',' after extract value") ||
6846       parseTypeAndValue(Op1, PFS))
6847     return true;
6848 
6849   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6850     return error(Loc, "invalid extractelement operands");
6851 
6852   Inst = ExtractElementInst::Create(Op0, Op1);
6853   return false;
6854 }
6855 
6856 /// parseInsertElement
6857 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6858 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6859   LocTy Loc;
6860   Value *Op0, *Op1, *Op2;
6861   if (parseTypeAndValue(Op0, Loc, PFS) ||
6862       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6863       parseTypeAndValue(Op1, PFS) ||
6864       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6865       parseTypeAndValue(Op2, PFS))
6866     return true;
6867 
6868   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6869     return error(Loc, "invalid insertelement operands");
6870 
6871   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6872   return false;
6873 }
6874 
6875 /// parseShuffleVector
6876 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6877 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6878   LocTy Loc;
6879   Value *Op0, *Op1, *Op2;
6880   if (parseTypeAndValue(Op0, Loc, PFS) ||
6881       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
6882       parseTypeAndValue(Op1, PFS) ||
6883       parseToken(lltok::comma, "expected ',' after shuffle value") ||
6884       parseTypeAndValue(Op2, PFS))
6885     return true;
6886 
6887   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6888     return error(Loc, "invalid shufflevector operands");
6889 
6890   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6891   return false;
6892 }
6893 
6894 /// parsePHI
6895 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6896 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6897   Type *Ty = nullptr;  LocTy TypeLoc;
6898   Value *Op0, *Op1;
6899 
6900   if (parseType(Ty, TypeLoc) ||
6901       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6902       parseValue(Ty, Op0, PFS) ||
6903       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6904       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6905       parseToken(lltok::rsquare, "expected ']' in phi value list"))
6906     return true;
6907 
6908   bool AteExtraComma = false;
6909   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6910 
6911   while (true) {
6912     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6913 
6914     if (!EatIfPresent(lltok::comma))
6915       break;
6916 
6917     if (Lex.getKind() == lltok::MetadataVar) {
6918       AteExtraComma = true;
6919       break;
6920     }
6921 
6922     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6923         parseValue(Ty, Op0, PFS) ||
6924         parseToken(lltok::comma, "expected ',' after insertelement value") ||
6925         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6926         parseToken(lltok::rsquare, "expected ']' in phi value list"))
6927       return true;
6928   }
6929 
6930   if (!Ty->isFirstClassType())
6931     return error(TypeLoc, "phi node must have first class type");
6932 
6933   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6934   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6935     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6936   Inst = PN;
6937   return AteExtraComma ? InstExtraComma : InstNormal;
6938 }
6939 
6940 /// parseLandingPad
6941 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6942 /// Clause
6943 ///   ::= 'catch' TypeAndValue
6944 ///   ::= 'filter'
6945 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6946 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6947   Type *Ty = nullptr; LocTy TyLoc;
6948 
6949   if (parseType(Ty, TyLoc))
6950     return true;
6951 
6952   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6953   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6954 
6955   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6956     LandingPadInst::ClauseType CT;
6957     if (EatIfPresent(lltok::kw_catch))
6958       CT = LandingPadInst::Catch;
6959     else if (EatIfPresent(lltok::kw_filter))
6960       CT = LandingPadInst::Filter;
6961     else
6962       return tokError("expected 'catch' or 'filter' clause type");
6963 
6964     Value *V;
6965     LocTy VLoc;
6966     if (parseTypeAndValue(V, VLoc, PFS))
6967       return true;
6968 
6969     // A 'catch' type expects a non-array constant. A filter clause expects an
6970     // array constant.
6971     if (CT == LandingPadInst::Catch) {
6972       if (isa<ArrayType>(V->getType()))
6973         error(VLoc, "'catch' clause has an invalid type");
6974     } else {
6975       if (!isa<ArrayType>(V->getType()))
6976         error(VLoc, "'filter' clause has an invalid type");
6977     }
6978 
6979     Constant *CV = dyn_cast<Constant>(V);
6980     if (!CV)
6981       return error(VLoc, "clause argument must be a constant");
6982     LP->addClause(CV);
6983   }
6984 
6985   Inst = LP.release();
6986   return false;
6987 }
6988 
6989 /// parseFreeze
6990 ///   ::= 'freeze' Type Value
6991 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
6992   LocTy Loc;
6993   Value *Op;
6994   if (parseTypeAndValue(Op, Loc, PFS))
6995     return true;
6996 
6997   Inst = new FreezeInst(Op);
6998   return false;
6999 }
7000 
7001 /// parseCall
7002 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7003 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7004 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7005 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7006 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7007 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7008 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7009 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7010 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7011                          CallInst::TailCallKind TCK) {
7012   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7013   std::vector<unsigned> FwdRefAttrGrps;
7014   LocTy BuiltinLoc;
7015   unsigned CallAddrSpace;
7016   unsigned CC;
7017   Type *RetType = nullptr;
7018   LocTy RetTypeLoc;
7019   ValID CalleeID;
7020   SmallVector<ParamInfo, 16> ArgList;
7021   SmallVector<OperandBundleDef, 2> BundleList;
7022   LocTy CallLoc = Lex.getLoc();
7023 
7024   if (TCK != CallInst::TCK_None &&
7025       parseToken(lltok::kw_call,
7026                  "expected 'tail call', 'musttail call', or 'notail call'"))
7027     return true;
7028 
7029   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7030 
7031   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7032       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7033       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7034       parseValID(CalleeID, &PFS) ||
7035       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7036                          PFS.getFunction().isVarArg()) ||
7037       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7038       parseOptionalOperandBundles(BundleList, PFS))
7039     return true;
7040 
7041   // If RetType is a non-function pointer type, then this is the short syntax
7042   // for the call, which means that RetType is just the return type.  Infer the
7043   // rest of the function argument types from the arguments that are present.
7044   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7045   if (!Ty) {
7046     // Pull out the types of all of the arguments...
7047     std::vector<Type*> ParamTypes;
7048     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7049       ParamTypes.push_back(ArgList[i].V->getType());
7050 
7051     if (!FunctionType::isValidReturnType(RetType))
7052       return error(RetTypeLoc, "Invalid result type for LLVM function");
7053 
7054     Ty = FunctionType::get(RetType, ParamTypes, false);
7055   }
7056 
7057   CalleeID.FTy = Ty;
7058 
7059   // Look up the callee.
7060   Value *Callee;
7061   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7062                           &PFS))
7063     return true;
7064 
7065   // Set up the Attribute for the function.
7066   SmallVector<AttributeSet, 8> Attrs;
7067 
7068   SmallVector<Value*, 8> Args;
7069 
7070   // Loop through FunctionType's arguments and ensure they are specified
7071   // correctly.  Also, gather any parameter attributes.
7072   FunctionType::param_iterator I = Ty->param_begin();
7073   FunctionType::param_iterator E = Ty->param_end();
7074   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7075     Type *ExpectedTy = nullptr;
7076     if (I != E) {
7077       ExpectedTy = *I++;
7078     } else if (!Ty->isVarArg()) {
7079       return error(ArgList[i].Loc, "too many arguments specified");
7080     }
7081 
7082     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7083       return error(ArgList[i].Loc, "argument is not of expected type '" +
7084                                        getTypeString(ExpectedTy) + "'");
7085     Args.push_back(ArgList[i].V);
7086     Attrs.push_back(ArgList[i].Attrs);
7087   }
7088 
7089   if (I != E)
7090     return error(CallLoc, "not enough parameters specified for call");
7091 
7092   if (FnAttrs.hasAlignmentAttr())
7093     return error(CallLoc, "call instructions may not have an alignment");
7094 
7095   // Finish off the Attribute and check them
7096   AttributeList PAL =
7097       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7098                          AttributeSet::get(Context, RetAttrs), Attrs);
7099 
7100   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7101   CI->setTailCallKind(TCK);
7102   CI->setCallingConv(CC);
7103   if (FMF.any()) {
7104     if (!isa<FPMathOperator>(CI)) {
7105       CI->deleteValue();
7106       return error(CallLoc, "fast-math-flags specified for call without "
7107                             "floating-point scalar or vector return type");
7108     }
7109     CI->setFastMathFlags(FMF);
7110   }
7111   CI->setAttributes(PAL);
7112   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7113   Inst = CI;
7114   return false;
7115 }
7116 
7117 //===----------------------------------------------------------------------===//
7118 // Memory Instructions.
7119 //===----------------------------------------------------------------------===//
7120 
7121 /// parseAlloc
7122 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7123 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7124 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7125   Value *Size = nullptr;
7126   LocTy SizeLoc, TyLoc, ASLoc;
7127   MaybeAlign Alignment;
7128   unsigned AddrSpace = 0;
7129   Type *Ty = nullptr;
7130 
7131   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7132   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7133 
7134   if (parseType(Ty, TyLoc))
7135     return true;
7136 
7137   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7138     return error(TyLoc, "invalid type for alloca");
7139 
7140   bool AteExtraComma = false;
7141   if (EatIfPresent(lltok::comma)) {
7142     if (Lex.getKind() == lltok::kw_align) {
7143       if (parseOptionalAlignment(Alignment))
7144         return true;
7145       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7146         return true;
7147     } else if (Lex.getKind() == lltok::kw_addrspace) {
7148       ASLoc = Lex.getLoc();
7149       if (parseOptionalAddrSpace(AddrSpace))
7150         return true;
7151     } else if (Lex.getKind() == lltok::MetadataVar) {
7152       AteExtraComma = true;
7153     } else {
7154       if (parseTypeAndValue(Size, SizeLoc, PFS))
7155         return true;
7156       if (EatIfPresent(lltok::comma)) {
7157         if (Lex.getKind() == lltok::kw_align) {
7158           if (parseOptionalAlignment(Alignment))
7159             return true;
7160           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7161             return true;
7162         } else if (Lex.getKind() == lltok::kw_addrspace) {
7163           ASLoc = Lex.getLoc();
7164           if (parseOptionalAddrSpace(AddrSpace))
7165             return true;
7166         } else if (Lex.getKind() == lltok::MetadataVar) {
7167           AteExtraComma = true;
7168         }
7169       }
7170     }
7171   }
7172 
7173   if (Size && !Size->getType()->isIntegerTy())
7174     return error(SizeLoc, "element count must have integer type");
7175 
7176   SmallPtrSet<Type *, 4> Visited;
7177   if (!Alignment && !Ty->isSized(&Visited))
7178     return error(TyLoc, "Cannot allocate unsized type");
7179   if (!Alignment)
7180     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7181   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7182   AI->setUsedWithInAlloca(IsInAlloca);
7183   AI->setSwiftError(IsSwiftError);
7184   Inst = AI;
7185   return AteExtraComma ? InstExtraComma : InstNormal;
7186 }
7187 
7188 /// parseLoad
7189 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7190 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7191 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7192 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7193   Value *Val; LocTy Loc;
7194   MaybeAlign Alignment;
7195   bool AteExtraComma = false;
7196   bool isAtomic = false;
7197   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7198   SyncScope::ID SSID = SyncScope::System;
7199 
7200   if (Lex.getKind() == lltok::kw_atomic) {
7201     isAtomic = true;
7202     Lex.Lex();
7203   }
7204 
7205   bool isVolatile = false;
7206   if (Lex.getKind() == lltok::kw_volatile) {
7207     isVolatile = true;
7208     Lex.Lex();
7209   }
7210 
7211   Type *Ty;
7212   LocTy ExplicitTypeLoc = Lex.getLoc();
7213   if (parseType(Ty) ||
7214       parseToken(lltok::comma, "expected comma after load's type") ||
7215       parseTypeAndValue(Val, Loc, PFS) ||
7216       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7217       parseOptionalCommaAlign(Alignment, AteExtraComma))
7218     return true;
7219 
7220   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7221     return error(Loc, "load operand must be a pointer to a first class type");
7222   if (isAtomic && !Alignment)
7223     return error(Loc, "atomic load must have explicit non-zero alignment");
7224   if (Ordering == AtomicOrdering::Release ||
7225       Ordering == AtomicOrdering::AcquireRelease)
7226     return error(Loc, "atomic load cannot use Release ordering");
7227 
7228   if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
7229     return error(
7230         ExplicitTypeLoc,
7231         typeComparisonErrorMessage(
7232             "explicit pointee type doesn't match operand's pointee type", Ty,
7233             Val->getType()->getNonOpaquePointerElementType()));
7234   }
7235   SmallPtrSet<Type *, 4> Visited;
7236   if (!Alignment && !Ty->isSized(&Visited))
7237     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7238   if (!Alignment)
7239     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7240   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7241   return AteExtraComma ? InstExtraComma : InstNormal;
7242 }
7243 
7244 /// parseStore
7245 
7246 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7247 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7248 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7249 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7250   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7251   MaybeAlign Alignment;
7252   bool AteExtraComma = false;
7253   bool isAtomic = false;
7254   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7255   SyncScope::ID SSID = SyncScope::System;
7256 
7257   if (Lex.getKind() == lltok::kw_atomic) {
7258     isAtomic = true;
7259     Lex.Lex();
7260   }
7261 
7262   bool isVolatile = false;
7263   if (Lex.getKind() == lltok::kw_volatile) {
7264     isVolatile = true;
7265     Lex.Lex();
7266   }
7267 
7268   if (parseTypeAndValue(Val, Loc, PFS) ||
7269       parseToken(lltok::comma, "expected ',' after store operand") ||
7270       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7271       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7272       parseOptionalCommaAlign(Alignment, AteExtraComma))
7273     return true;
7274 
7275   if (!Ptr->getType()->isPointerTy())
7276     return error(PtrLoc, "store operand must be a pointer");
7277   if (!Val->getType()->isFirstClassType())
7278     return error(Loc, "store operand must be a first class value");
7279   if (!cast<PointerType>(Ptr->getType())
7280            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7281     return error(Loc, "stored value and pointer type do not match");
7282   if (isAtomic && !Alignment)
7283     return error(Loc, "atomic store must have explicit non-zero alignment");
7284   if (Ordering == AtomicOrdering::Acquire ||
7285       Ordering == AtomicOrdering::AcquireRelease)
7286     return error(Loc, "atomic store cannot use Acquire ordering");
7287   SmallPtrSet<Type *, 4> Visited;
7288   if (!Alignment && !Val->getType()->isSized(&Visited))
7289     return error(Loc, "storing unsized types is not allowed");
7290   if (!Alignment)
7291     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7292 
7293   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7294   return AteExtraComma ? InstExtraComma : InstNormal;
7295 }
7296 
7297 /// parseCmpXchg
7298 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7299 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7300 ///       'Align'?
7301 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7302   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7303   bool AteExtraComma = false;
7304   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7305   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7306   SyncScope::ID SSID = SyncScope::System;
7307   bool isVolatile = false;
7308   bool isWeak = false;
7309   MaybeAlign Alignment;
7310 
7311   if (EatIfPresent(lltok::kw_weak))
7312     isWeak = true;
7313 
7314   if (EatIfPresent(lltok::kw_volatile))
7315     isVolatile = true;
7316 
7317   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7318       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7319       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7320       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7321       parseTypeAndValue(New, NewLoc, PFS) ||
7322       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7323       parseOrdering(FailureOrdering) ||
7324       parseOptionalCommaAlign(Alignment, AteExtraComma))
7325     return true;
7326 
7327   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7328     return tokError("invalid cmpxchg success ordering");
7329   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7330     return tokError("invalid cmpxchg failure ordering");
7331   if (!Ptr->getType()->isPointerTy())
7332     return error(PtrLoc, "cmpxchg operand must be a pointer");
7333   if (!cast<PointerType>(Ptr->getType())
7334            ->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
7335     return error(CmpLoc, "compare value and pointer type do not match");
7336   if (!cast<PointerType>(Ptr->getType())
7337            ->isOpaqueOrPointeeTypeMatches(New->getType()))
7338     return error(NewLoc, "new value and pointer type do not match");
7339   if (Cmp->getType() != New->getType())
7340     return error(NewLoc, "compare value and new value type do not match");
7341   if (!New->getType()->isFirstClassType())
7342     return error(NewLoc, "cmpxchg operand must be a first class value");
7343 
7344   const Align DefaultAlignment(
7345       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7346           Cmp->getType()));
7347 
7348   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7349       Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
7350       FailureOrdering, SSID);
7351   CXI->setVolatile(isVolatile);
7352   CXI->setWeak(isWeak);
7353 
7354   Inst = CXI;
7355   return AteExtraComma ? InstExtraComma : InstNormal;
7356 }
7357 
7358 /// parseAtomicRMW
7359 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7360 ///       'singlethread'? AtomicOrdering
7361 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7362   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7363   bool AteExtraComma = false;
7364   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7365   SyncScope::ID SSID = SyncScope::System;
7366   bool isVolatile = false;
7367   bool IsFP = false;
7368   AtomicRMWInst::BinOp Operation;
7369   MaybeAlign Alignment;
7370 
7371   if (EatIfPresent(lltok::kw_volatile))
7372     isVolatile = true;
7373 
7374   switch (Lex.getKind()) {
7375   default:
7376     return tokError("expected binary operation in atomicrmw");
7377   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7378   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7379   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7380   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7381   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7382   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7383   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7384   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7385   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7386   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7387   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7388   case lltok::kw_fadd:
7389     Operation = AtomicRMWInst::FAdd;
7390     IsFP = true;
7391     break;
7392   case lltok::kw_fsub:
7393     Operation = AtomicRMWInst::FSub;
7394     IsFP = true;
7395     break;
7396   }
7397   Lex.Lex();  // Eat the operation.
7398 
7399   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7400       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7401       parseTypeAndValue(Val, ValLoc, PFS) ||
7402       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7403       parseOptionalCommaAlign(Alignment, AteExtraComma))
7404     return true;
7405 
7406   if (Ordering == AtomicOrdering::Unordered)
7407     return tokError("atomicrmw cannot be unordered");
7408   if (!Ptr->getType()->isPointerTy())
7409     return error(PtrLoc, "atomicrmw operand must be a pointer");
7410   if (!cast<PointerType>(Ptr->getType())
7411            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7412     return error(ValLoc, "atomicrmw value and pointer type do not match");
7413 
7414   if (Operation == AtomicRMWInst::Xchg) {
7415     if (!Val->getType()->isIntegerTy() &&
7416         !Val->getType()->isFloatingPointTy()) {
7417       return error(ValLoc,
7418                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7419                        " operand must be an integer or floating point type");
7420     }
7421   } else if (IsFP) {
7422     if (!Val->getType()->isFloatingPointTy()) {
7423       return error(ValLoc, "atomicrmw " +
7424                                AtomicRMWInst::getOperationName(Operation) +
7425                                " operand must be a floating point type");
7426     }
7427   } else {
7428     if (!Val->getType()->isIntegerTy()) {
7429       return error(ValLoc, "atomicrmw " +
7430                                AtomicRMWInst::getOperationName(Operation) +
7431                                " operand must be an integer");
7432     }
7433   }
7434 
7435   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7436   if (Size < 8 || (Size & (Size - 1)))
7437     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7438                          " integer");
7439   const Align DefaultAlignment(
7440       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7441           Val->getType()));
7442   AtomicRMWInst *RMWI =
7443       new AtomicRMWInst(Operation, Ptr, Val,
7444                         Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
7445   RMWI->setVolatile(isVolatile);
7446   Inst = RMWI;
7447   return AteExtraComma ? InstExtraComma : InstNormal;
7448 }
7449 
7450 /// parseFence
7451 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7452 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7453   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7454   SyncScope::ID SSID = SyncScope::System;
7455   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7456     return true;
7457 
7458   if (Ordering == AtomicOrdering::Unordered)
7459     return tokError("fence cannot be unordered");
7460   if (Ordering == AtomicOrdering::Monotonic)
7461     return tokError("fence cannot be monotonic");
7462 
7463   Inst = new FenceInst(Context, Ordering, SSID);
7464   return InstNormal;
7465 }
7466 
7467 /// parseGetElementPtr
7468 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7469 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7470   Value *Ptr = nullptr;
7471   Value *Val = nullptr;
7472   LocTy Loc, EltLoc;
7473 
7474   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7475 
7476   Type *Ty = nullptr;
7477   LocTy ExplicitTypeLoc = Lex.getLoc();
7478   if (parseType(Ty) ||
7479       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7480       parseTypeAndValue(Ptr, Loc, PFS))
7481     return true;
7482 
7483   Type *BaseType = Ptr->getType();
7484   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7485   if (!BasePointerType)
7486     return error(Loc, "base of getelementptr must be a pointer");
7487 
7488   if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
7489     return error(
7490         ExplicitTypeLoc,
7491         typeComparisonErrorMessage(
7492             "explicit pointee type doesn't match operand's pointee type", Ty,
7493             BasePointerType->getNonOpaquePointerElementType()));
7494   }
7495 
7496   SmallVector<Value*, 16> Indices;
7497   bool AteExtraComma = false;
7498   // GEP returns a vector of pointers if at least one of parameters is a vector.
7499   // All vector parameters should have the same vector width.
7500   ElementCount GEPWidth = BaseType->isVectorTy()
7501                               ? cast<VectorType>(BaseType)->getElementCount()
7502                               : ElementCount::getFixed(0);
7503 
7504   while (EatIfPresent(lltok::comma)) {
7505     if (Lex.getKind() == lltok::MetadataVar) {
7506       AteExtraComma = true;
7507       break;
7508     }
7509     if (parseTypeAndValue(Val, EltLoc, PFS))
7510       return true;
7511     if (!Val->getType()->isIntOrIntVectorTy())
7512       return error(EltLoc, "getelementptr index must be an integer");
7513 
7514     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7515       ElementCount ValNumEl = ValVTy->getElementCount();
7516       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7517         return error(
7518             EltLoc,
7519             "getelementptr vector index has a wrong number of elements");
7520       GEPWidth = ValNumEl;
7521     }
7522     Indices.push_back(Val);
7523   }
7524 
7525   SmallPtrSet<Type*, 4> Visited;
7526   if (!Indices.empty() && !Ty->isSized(&Visited))
7527     return error(Loc, "base element of getelementptr must be sized");
7528 
7529   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7530     return error(Loc, "invalid getelementptr indices");
7531   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7532   if (InBounds)
7533     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7534   return AteExtraComma ? InstExtraComma : InstNormal;
7535 }
7536 
7537 /// parseExtractValue
7538 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7539 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7540   Value *Val; LocTy Loc;
7541   SmallVector<unsigned, 4> Indices;
7542   bool AteExtraComma;
7543   if (parseTypeAndValue(Val, Loc, PFS) ||
7544       parseIndexList(Indices, AteExtraComma))
7545     return true;
7546 
7547   if (!Val->getType()->isAggregateType())
7548     return error(Loc, "extractvalue operand must be aggregate type");
7549 
7550   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7551     return error(Loc, "invalid indices for extractvalue");
7552   Inst = ExtractValueInst::Create(Val, Indices);
7553   return AteExtraComma ? InstExtraComma : InstNormal;
7554 }
7555 
7556 /// parseInsertValue
7557 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7558 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7559   Value *Val0, *Val1; LocTy Loc0, Loc1;
7560   SmallVector<unsigned, 4> Indices;
7561   bool AteExtraComma;
7562   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7563       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7564       parseTypeAndValue(Val1, Loc1, PFS) ||
7565       parseIndexList(Indices, AteExtraComma))
7566     return true;
7567 
7568   if (!Val0->getType()->isAggregateType())
7569     return error(Loc0, "insertvalue operand must be aggregate type");
7570 
7571   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7572   if (!IndexedType)
7573     return error(Loc0, "invalid indices for insertvalue");
7574   if (IndexedType != Val1->getType())
7575     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7576                            getTypeString(Val1->getType()) + "' instead of '" +
7577                            getTypeString(IndexedType) + "'");
7578   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7579   return AteExtraComma ? InstExtraComma : InstNormal;
7580 }
7581 
7582 //===----------------------------------------------------------------------===//
7583 // Embedded metadata.
7584 //===----------------------------------------------------------------------===//
7585 
7586 /// parseMDNodeVector
7587 ///   ::= { Element (',' Element)* }
7588 /// Element
7589 ///   ::= 'null' | TypeAndValue
7590 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7591   if (parseToken(lltok::lbrace, "expected '{' here"))
7592     return true;
7593 
7594   // Check for an empty list.
7595   if (EatIfPresent(lltok::rbrace))
7596     return false;
7597 
7598   do {
7599     // Null is a special case since it is typeless.
7600     if (EatIfPresent(lltok::kw_null)) {
7601       Elts.push_back(nullptr);
7602       continue;
7603     }
7604 
7605     Metadata *MD;
7606     if (parseMetadata(MD, nullptr))
7607       return true;
7608     Elts.push_back(MD);
7609   } while (EatIfPresent(lltok::comma));
7610 
7611   return parseToken(lltok::rbrace, "expected end of metadata node");
7612 }
7613 
7614 //===----------------------------------------------------------------------===//
7615 // Use-list order directives.
7616 //===----------------------------------------------------------------------===//
7617 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7618                                 SMLoc Loc) {
7619   if (V->use_empty())
7620     return error(Loc, "value has no uses");
7621 
7622   unsigned NumUses = 0;
7623   SmallDenseMap<const Use *, unsigned, 16> Order;
7624   for (const Use &U : V->uses()) {
7625     if (++NumUses > Indexes.size())
7626       break;
7627     Order[&U] = Indexes[NumUses - 1];
7628   }
7629   if (NumUses < 2)
7630     return error(Loc, "value only has one use");
7631   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7632     return error(Loc,
7633                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7634 
7635   V->sortUseList([&](const Use &L, const Use &R) {
7636     return Order.lookup(&L) < Order.lookup(&R);
7637   });
7638   return false;
7639 }
7640 
7641 /// parseUseListOrderIndexes
7642 ///   ::= '{' uint32 (',' uint32)+ '}'
7643 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7644   SMLoc Loc = Lex.getLoc();
7645   if (parseToken(lltok::lbrace, "expected '{' here"))
7646     return true;
7647   if (Lex.getKind() == lltok::rbrace)
7648     return Lex.Error("expected non-empty list of uselistorder indexes");
7649 
7650   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7651   // indexes should be distinct numbers in the range [0, size-1], and should
7652   // not be in order.
7653   unsigned Offset = 0;
7654   unsigned Max = 0;
7655   bool IsOrdered = true;
7656   assert(Indexes.empty() && "Expected empty order vector");
7657   do {
7658     unsigned Index;
7659     if (parseUInt32(Index))
7660       return true;
7661 
7662     // Update consistency checks.
7663     Offset += Index - Indexes.size();
7664     Max = std::max(Max, Index);
7665     IsOrdered &= Index == Indexes.size();
7666 
7667     Indexes.push_back(Index);
7668   } while (EatIfPresent(lltok::comma));
7669 
7670   if (parseToken(lltok::rbrace, "expected '}' here"))
7671     return true;
7672 
7673   if (Indexes.size() < 2)
7674     return error(Loc, "expected >= 2 uselistorder indexes");
7675   if (Offset != 0 || Max >= Indexes.size())
7676     return error(Loc,
7677                  "expected distinct uselistorder indexes in range [0, size)");
7678   if (IsOrdered)
7679     return error(Loc, "expected uselistorder indexes to change the order");
7680 
7681   return false;
7682 }
7683 
7684 /// parseUseListOrder
7685 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7686 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7687   SMLoc Loc = Lex.getLoc();
7688   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7689     return true;
7690 
7691   Value *V;
7692   SmallVector<unsigned, 16> Indexes;
7693   if (parseTypeAndValue(V, PFS) ||
7694       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7695       parseUseListOrderIndexes(Indexes))
7696     return true;
7697 
7698   return sortUseListOrder(V, Indexes, Loc);
7699 }
7700 
7701 /// parseUseListOrderBB
7702 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7703 bool LLParser::parseUseListOrderBB() {
7704   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7705   SMLoc Loc = Lex.getLoc();
7706   Lex.Lex();
7707 
7708   ValID Fn, Label;
7709   SmallVector<unsigned, 16> Indexes;
7710   if (parseValID(Fn, /*PFS=*/nullptr) ||
7711       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7712       parseValID(Label, /*PFS=*/nullptr) ||
7713       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7714       parseUseListOrderIndexes(Indexes))
7715     return true;
7716 
7717   // Check the function.
7718   GlobalValue *GV;
7719   if (Fn.Kind == ValID::t_GlobalName)
7720     GV = M->getNamedValue(Fn.StrVal);
7721   else if (Fn.Kind == ValID::t_GlobalID)
7722     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7723   else
7724     return error(Fn.Loc, "expected function name in uselistorder_bb");
7725   if (!GV)
7726     return error(Fn.Loc,
7727                  "invalid function forward reference in uselistorder_bb");
7728   auto *F = dyn_cast<Function>(GV);
7729   if (!F)
7730     return error(Fn.Loc, "expected function name in uselistorder_bb");
7731   if (F->isDeclaration())
7732     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7733 
7734   // Check the basic block.
7735   if (Label.Kind == ValID::t_LocalID)
7736     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7737   if (Label.Kind != ValID::t_LocalName)
7738     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7739   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7740   if (!V)
7741     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7742   if (!isa<BasicBlock>(V))
7743     return error(Label.Loc, "expected basic block in uselistorder_bb");
7744 
7745   return sortUseListOrder(V, Indexes, Loc);
7746 }
7747 
7748 /// ModuleEntry
7749 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7750 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7751 bool LLParser::parseModuleEntry(unsigned ID) {
7752   assert(Lex.getKind() == lltok::kw_module);
7753   Lex.Lex();
7754 
7755   std::string Path;
7756   if (parseToken(lltok::colon, "expected ':' here") ||
7757       parseToken(lltok::lparen, "expected '(' here") ||
7758       parseToken(lltok::kw_path, "expected 'path' here") ||
7759       parseToken(lltok::colon, "expected ':' here") ||
7760       parseStringConstant(Path) ||
7761       parseToken(lltok::comma, "expected ',' here") ||
7762       parseToken(lltok::kw_hash, "expected 'hash' here") ||
7763       parseToken(lltok::colon, "expected ':' here") ||
7764       parseToken(lltok::lparen, "expected '(' here"))
7765     return true;
7766 
7767   ModuleHash Hash;
7768   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
7769       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
7770       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
7771       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
7772       parseUInt32(Hash[4]))
7773     return true;
7774 
7775   if (parseToken(lltok::rparen, "expected ')' here") ||
7776       parseToken(lltok::rparen, "expected ')' here"))
7777     return true;
7778 
7779   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7780   ModuleIdMap[ID] = ModuleEntry->first();
7781 
7782   return false;
7783 }
7784 
7785 /// TypeIdEntry
7786 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7787 bool LLParser::parseTypeIdEntry(unsigned ID) {
7788   assert(Lex.getKind() == lltok::kw_typeid);
7789   Lex.Lex();
7790 
7791   std::string Name;
7792   if (parseToken(lltok::colon, "expected ':' here") ||
7793       parseToken(lltok::lparen, "expected '(' here") ||
7794       parseToken(lltok::kw_name, "expected 'name' here") ||
7795       parseToken(lltok::colon, "expected ':' here") ||
7796       parseStringConstant(Name))
7797     return true;
7798 
7799   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7800   if (parseToken(lltok::comma, "expected ',' here") ||
7801       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
7802     return true;
7803 
7804   // Check if this ID was forward referenced, and if so, update the
7805   // corresponding GUIDs.
7806   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7807   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7808     for (auto TIDRef : FwdRefTIDs->second) {
7809       assert(!*TIDRef.first &&
7810              "Forward referenced type id GUID expected to be 0");
7811       *TIDRef.first = GlobalValue::getGUID(Name);
7812     }
7813     ForwardRefTypeIds.erase(FwdRefTIDs);
7814   }
7815 
7816   return false;
7817 }
7818 
7819 /// TypeIdSummary
7820 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7821 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
7822   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
7823       parseToken(lltok::colon, "expected ':' here") ||
7824       parseToken(lltok::lparen, "expected '(' here") ||
7825       parseTypeTestResolution(TIS.TTRes))
7826     return true;
7827 
7828   if (EatIfPresent(lltok::comma)) {
7829     // Expect optional wpdResolutions field
7830     if (parseOptionalWpdResolutions(TIS.WPDRes))
7831       return true;
7832   }
7833 
7834   if (parseToken(lltok::rparen, "expected ')' here"))
7835     return true;
7836 
7837   return false;
7838 }
7839 
7840 static ValueInfo EmptyVI =
7841     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7842 
7843 /// TypeIdCompatibleVtableEntry
7844 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7845 ///   TypeIdCompatibleVtableInfo
7846 ///   ')'
7847 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
7848   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7849   Lex.Lex();
7850 
7851   std::string Name;
7852   if (parseToken(lltok::colon, "expected ':' here") ||
7853       parseToken(lltok::lparen, "expected '(' here") ||
7854       parseToken(lltok::kw_name, "expected 'name' here") ||
7855       parseToken(lltok::colon, "expected ':' here") ||
7856       parseStringConstant(Name))
7857     return true;
7858 
7859   TypeIdCompatibleVtableInfo &TI =
7860       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7861   if (parseToken(lltok::comma, "expected ',' here") ||
7862       parseToken(lltok::kw_summary, "expected 'summary' here") ||
7863       parseToken(lltok::colon, "expected ':' here") ||
7864       parseToken(lltok::lparen, "expected '(' here"))
7865     return true;
7866 
7867   IdToIndexMapType IdToIndexMap;
7868   // parse each call edge
7869   do {
7870     uint64_t Offset;
7871     if (parseToken(lltok::lparen, "expected '(' here") ||
7872         parseToken(lltok::kw_offset, "expected 'offset' here") ||
7873         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7874         parseToken(lltok::comma, "expected ',' here"))
7875       return true;
7876 
7877     LocTy Loc = Lex.getLoc();
7878     unsigned GVId;
7879     ValueInfo VI;
7880     if (parseGVReference(VI, GVId))
7881       return true;
7882 
7883     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7884     // forward reference. We will save the location of the ValueInfo needing an
7885     // update, but can only do so once the std::vector is finalized.
7886     if (VI == EmptyVI)
7887       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7888     TI.push_back({Offset, VI});
7889 
7890     if (parseToken(lltok::rparen, "expected ')' in call"))
7891       return true;
7892   } while (EatIfPresent(lltok::comma));
7893 
7894   // Now that the TI vector is finalized, it is safe to save the locations
7895   // of any forward GV references that need updating later.
7896   for (auto I : IdToIndexMap) {
7897     auto &Infos = ForwardRefValueInfos[I.first];
7898     for (auto P : I.second) {
7899       assert(TI[P.first].VTableVI == EmptyVI &&
7900              "Forward referenced ValueInfo expected to be empty");
7901       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
7902     }
7903   }
7904 
7905   if (parseToken(lltok::rparen, "expected ')' here") ||
7906       parseToken(lltok::rparen, "expected ')' here"))
7907     return true;
7908 
7909   // Check if this ID was forward referenced, and if so, update the
7910   // corresponding GUIDs.
7911   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7912   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7913     for (auto TIDRef : FwdRefTIDs->second) {
7914       assert(!*TIDRef.first &&
7915              "Forward referenced type id GUID expected to be 0");
7916       *TIDRef.first = GlobalValue::getGUID(Name);
7917     }
7918     ForwardRefTypeIds.erase(FwdRefTIDs);
7919   }
7920 
7921   return false;
7922 }
7923 
7924 /// TypeTestResolution
7925 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7926 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7927 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7928 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7929 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7930 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
7931   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7932       parseToken(lltok::colon, "expected ':' here") ||
7933       parseToken(lltok::lparen, "expected '(' here") ||
7934       parseToken(lltok::kw_kind, "expected 'kind' here") ||
7935       parseToken(lltok::colon, "expected ':' here"))
7936     return true;
7937 
7938   switch (Lex.getKind()) {
7939   case lltok::kw_unknown:
7940     TTRes.TheKind = TypeTestResolution::Unknown;
7941     break;
7942   case lltok::kw_unsat:
7943     TTRes.TheKind = TypeTestResolution::Unsat;
7944     break;
7945   case lltok::kw_byteArray:
7946     TTRes.TheKind = TypeTestResolution::ByteArray;
7947     break;
7948   case lltok::kw_inline:
7949     TTRes.TheKind = TypeTestResolution::Inline;
7950     break;
7951   case lltok::kw_single:
7952     TTRes.TheKind = TypeTestResolution::Single;
7953     break;
7954   case lltok::kw_allOnes:
7955     TTRes.TheKind = TypeTestResolution::AllOnes;
7956     break;
7957   default:
7958     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7959   }
7960   Lex.Lex();
7961 
7962   if (parseToken(lltok::comma, "expected ',' here") ||
7963       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7964       parseToken(lltok::colon, "expected ':' here") ||
7965       parseUInt32(TTRes.SizeM1BitWidth))
7966     return true;
7967 
7968   // parse optional fields
7969   while (EatIfPresent(lltok::comma)) {
7970     switch (Lex.getKind()) {
7971     case lltok::kw_alignLog2:
7972       Lex.Lex();
7973       if (parseToken(lltok::colon, "expected ':'") ||
7974           parseUInt64(TTRes.AlignLog2))
7975         return true;
7976       break;
7977     case lltok::kw_sizeM1:
7978       Lex.Lex();
7979       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
7980         return true;
7981       break;
7982     case lltok::kw_bitMask: {
7983       unsigned Val;
7984       Lex.Lex();
7985       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
7986         return true;
7987       assert(Val <= 0xff);
7988       TTRes.BitMask = (uint8_t)Val;
7989       break;
7990     }
7991     case lltok::kw_inlineBits:
7992       Lex.Lex();
7993       if (parseToken(lltok::colon, "expected ':'") ||
7994           parseUInt64(TTRes.InlineBits))
7995         return true;
7996       break;
7997     default:
7998       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
7999     }
8000   }
8001 
8002   if (parseToken(lltok::rparen, "expected ')' here"))
8003     return true;
8004 
8005   return false;
8006 }
8007 
8008 /// OptionalWpdResolutions
8009 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8010 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8011 bool LLParser::parseOptionalWpdResolutions(
8012     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8013   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8014       parseToken(lltok::colon, "expected ':' here") ||
8015       parseToken(lltok::lparen, "expected '(' here"))
8016     return true;
8017 
8018   do {
8019     uint64_t Offset;
8020     WholeProgramDevirtResolution WPDRes;
8021     if (parseToken(lltok::lparen, "expected '(' here") ||
8022         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8023         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8024         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8025         parseToken(lltok::rparen, "expected ')' here"))
8026       return true;
8027     WPDResMap[Offset] = WPDRes;
8028   } while (EatIfPresent(lltok::comma));
8029 
8030   if (parseToken(lltok::rparen, "expected ')' here"))
8031     return true;
8032 
8033   return false;
8034 }
8035 
8036 /// WpdRes
8037 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8038 ///         [',' OptionalResByArg]? ')'
8039 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8040 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8041 ///         [',' OptionalResByArg]? ')'
8042 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8043 ///         [',' OptionalResByArg]? ')'
8044 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8045   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8046       parseToken(lltok::colon, "expected ':' here") ||
8047       parseToken(lltok::lparen, "expected '(' here") ||
8048       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8049       parseToken(lltok::colon, "expected ':' here"))
8050     return true;
8051 
8052   switch (Lex.getKind()) {
8053   case lltok::kw_indir:
8054     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8055     break;
8056   case lltok::kw_singleImpl:
8057     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8058     break;
8059   case lltok::kw_branchFunnel:
8060     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8061     break;
8062   default:
8063     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8064   }
8065   Lex.Lex();
8066 
8067   // parse optional fields
8068   while (EatIfPresent(lltok::comma)) {
8069     switch (Lex.getKind()) {
8070     case lltok::kw_singleImplName:
8071       Lex.Lex();
8072       if (parseToken(lltok::colon, "expected ':' here") ||
8073           parseStringConstant(WPDRes.SingleImplName))
8074         return true;
8075       break;
8076     case lltok::kw_resByArg:
8077       if (parseOptionalResByArg(WPDRes.ResByArg))
8078         return true;
8079       break;
8080     default:
8081       return error(Lex.getLoc(),
8082                    "expected optional WholeProgramDevirtResolution field");
8083     }
8084   }
8085 
8086   if (parseToken(lltok::rparen, "expected ')' here"))
8087     return true;
8088 
8089   return false;
8090 }
8091 
8092 /// OptionalResByArg
8093 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8094 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8095 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8096 ///                  'virtualConstProp' )
8097 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8098 ///                [',' 'bit' ':' UInt32]? ')'
8099 bool LLParser::parseOptionalResByArg(
8100     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8101         &ResByArg) {
8102   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8103       parseToken(lltok::colon, "expected ':' here") ||
8104       parseToken(lltok::lparen, "expected '(' here"))
8105     return true;
8106 
8107   do {
8108     std::vector<uint64_t> Args;
8109     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8110         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8111         parseToken(lltok::colon, "expected ':' here") ||
8112         parseToken(lltok::lparen, "expected '(' here") ||
8113         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8114         parseToken(lltok::colon, "expected ':' here"))
8115       return true;
8116 
8117     WholeProgramDevirtResolution::ByArg ByArg;
8118     switch (Lex.getKind()) {
8119     case lltok::kw_indir:
8120       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8121       break;
8122     case lltok::kw_uniformRetVal:
8123       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8124       break;
8125     case lltok::kw_uniqueRetVal:
8126       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8127       break;
8128     case lltok::kw_virtualConstProp:
8129       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8130       break;
8131     default:
8132       return error(Lex.getLoc(),
8133                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8134     }
8135     Lex.Lex();
8136 
8137     // parse optional fields
8138     while (EatIfPresent(lltok::comma)) {
8139       switch (Lex.getKind()) {
8140       case lltok::kw_info:
8141         Lex.Lex();
8142         if (parseToken(lltok::colon, "expected ':' here") ||
8143             parseUInt64(ByArg.Info))
8144           return true;
8145         break;
8146       case lltok::kw_byte:
8147         Lex.Lex();
8148         if (parseToken(lltok::colon, "expected ':' here") ||
8149             parseUInt32(ByArg.Byte))
8150           return true;
8151         break;
8152       case lltok::kw_bit:
8153         Lex.Lex();
8154         if (parseToken(lltok::colon, "expected ':' here") ||
8155             parseUInt32(ByArg.Bit))
8156           return true;
8157         break;
8158       default:
8159         return error(Lex.getLoc(),
8160                      "expected optional whole program devirt field");
8161       }
8162     }
8163 
8164     if (parseToken(lltok::rparen, "expected ')' here"))
8165       return true;
8166 
8167     ResByArg[Args] = ByArg;
8168   } while (EatIfPresent(lltok::comma));
8169 
8170   if (parseToken(lltok::rparen, "expected ')' here"))
8171     return true;
8172 
8173   return false;
8174 }
8175 
8176 /// OptionalResByArg
8177 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8178 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8179   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8180       parseToken(lltok::colon, "expected ':' here") ||
8181       parseToken(lltok::lparen, "expected '(' here"))
8182     return true;
8183 
8184   do {
8185     uint64_t Val;
8186     if (parseUInt64(Val))
8187       return true;
8188     Args.push_back(Val);
8189   } while (EatIfPresent(lltok::comma));
8190 
8191   if (parseToken(lltok::rparen, "expected ')' here"))
8192     return true;
8193 
8194   return false;
8195 }
8196 
8197 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8198 
8199 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8200   bool ReadOnly = Fwd->isReadOnly();
8201   bool WriteOnly = Fwd->isWriteOnly();
8202   assert(!(ReadOnly && WriteOnly));
8203   *Fwd = Resolved;
8204   if (ReadOnly)
8205     Fwd->setReadOnly();
8206   if (WriteOnly)
8207     Fwd->setWriteOnly();
8208 }
8209 
8210 /// Stores the given Name/GUID and associated summary into the Index.
8211 /// Also updates any forward references to the associated entry ID.
8212 void LLParser::addGlobalValueToIndex(
8213     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8214     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8215   // First create the ValueInfo utilizing the Name or GUID.
8216   ValueInfo VI;
8217   if (GUID != 0) {
8218     assert(Name.empty());
8219     VI = Index->getOrInsertValueInfo(GUID);
8220   } else {
8221     assert(!Name.empty());
8222     if (M) {
8223       auto *GV = M->getNamedValue(Name);
8224       assert(GV);
8225       VI = Index->getOrInsertValueInfo(GV);
8226     } else {
8227       assert(
8228           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8229           "Need a source_filename to compute GUID for local");
8230       GUID = GlobalValue::getGUID(
8231           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8232       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8233     }
8234   }
8235 
8236   // Resolve forward references from calls/refs
8237   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8238   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8239     for (auto VIRef : FwdRefVIs->second) {
8240       assert(VIRef.first->getRef() == FwdVIRef &&
8241              "Forward referenced ValueInfo expected to be empty");
8242       resolveFwdRef(VIRef.first, VI);
8243     }
8244     ForwardRefValueInfos.erase(FwdRefVIs);
8245   }
8246 
8247   // Resolve forward references from aliases
8248   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8249   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8250     for (auto AliaseeRef : FwdRefAliasees->second) {
8251       assert(!AliaseeRef.first->hasAliasee() &&
8252              "Forward referencing alias already has aliasee");
8253       assert(Summary && "Aliasee must be a definition");
8254       AliaseeRef.first->setAliasee(VI, Summary.get());
8255     }
8256     ForwardRefAliasees.erase(FwdRefAliasees);
8257   }
8258 
8259   // Add the summary if one was provided.
8260   if (Summary)
8261     Index->addGlobalValueSummary(VI, std::move(Summary));
8262 
8263   // Save the associated ValueInfo for use in later references by ID.
8264   if (ID == NumberedValueInfos.size())
8265     NumberedValueInfos.push_back(VI);
8266   else {
8267     // Handle non-continuous numbers (to make test simplification easier).
8268     if (ID > NumberedValueInfos.size())
8269       NumberedValueInfos.resize(ID + 1);
8270     NumberedValueInfos[ID] = VI;
8271   }
8272 }
8273 
8274 /// parseSummaryIndexFlags
8275 ///   ::= 'flags' ':' UInt64
8276 bool LLParser::parseSummaryIndexFlags() {
8277   assert(Lex.getKind() == lltok::kw_flags);
8278   Lex.Lex();
8279 
8280   if (parseToken(lltok::colon, "expected ':' here"))
8281     return true;
8282   uint64_t Flags;
8283   if (parseUInt64(Flags))
8284     return true;
8285   if (Index)
8286     Index->setFlags(Flags);
8287   return false;
8288 }
8289 
8290 /// parseBlockCount
8291 ///   ::= 'blockcount' ':' UInt64
8292 bool LLParser::parseBlockCount() {
8293   assert(Lex.getKind() == lltok::kw_blockcount);
8294   Lex.Lex();
8295 
8296   if (parseToken(lltok::colon, "expected ':' here"))
8297     return true;
8298   uint64_t BlockCount;
8299   if (parseUInt64(BlockCount))
8300     return true;
8301   if (Index)
8302     Index->setBlockCount(BlockCount);
8303   return false;
8304 }
8305 
8306 /// parseGVEntry
8307 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8308 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8309 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8310 bool LLParser::parseGVEntry(unsigned ID) {
8311   assert(Lex.getKind() == lltok::kw_gv);
8312   Lex.Lex();
8313 
8314   if (parseToken(lltok::colon, "expected ':' here") ||
8315       parseToken(lltok::lparen, "expected '(' here"))
8316     return true;
8317 
8318   std::string Name;
8319   GlobalValue::GUID GUID = 0;
8320   switch (Lex.getKind()) {
8321   case lltok::kw_name:
8322     Lex.Lex();
8323     if (parseToken(lltok::colon, "expected ':' here") ||
8324         parseStringConstant(Name))
8325       return true;
8326     // Can't create GUID/ValueInfo until we have the linkage.
8327     break;
8328   case lltok::kw_guid:
8329     Lex.Lex();
8330     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8331       return true;
8332     break;
8333   default:
8334     return error(Lex.getLoc(), "expected name or guid tag");
8335   }
8336 
8337   if (!EatIfPresent(lltok::comma)) {
8338     // No summaries. Wrap up.
8339     if (parseToken(lltok::rparen, "expected ')' here"))
8340       return true;
8341     // This was created for a call to an external or indirect target.
8342     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8343     // created for indirect calls with VP. A Name with no GUID came from
8344     // an external definition. We pass ExternalLinkage since that is only
8345     // used when the GUID must be computed from Name, and in that case
8346     // the symbol must have external linkage.
8347     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8348                           nullptr);
8349     return false;
8350   }
8351 
8352   // Have a list of summaries
8353   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8354       parseToken(lltok::colon, "expected ':' here") ||
8355       parseToken(lltok::lparen, "expected '(' here"))
8356     return true;
8357   do {
8358     switch (Lex.getKind()) {
8359     case lltok::kw_function:
8360       if (parseFunctionSummary(Name, GUID, ID))
8361         return true;
8362       break;
8363     case lltok::kw_variable:
8364       if (parseVariableSummary(Name, GUID, ID))
8365         return true;
8366       break;
8367     case lltok::kw_alias:
8368       if (parseAliasSummary(Name, GUID, ID))
8369         return true;
8370       break;
8371     default:
8372       return error(Lex.getLoc(), "expected summary type");
8373     }
8374   } while (EatIfPresent(lltok::comma));
8375 
8376   if (parseToken(lltok::rparen, "expected ')' here") ||
8377       parseToken(lltok::rparen, "expected ')' here"))
8378     return true;
8379 
8380   return false;
8381 }
8382 
8383 /// FunctionSummary
8384 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8385 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8386 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8387 ///         [',' OptionalRefs]? ')'
8388 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8389                                     unsigned ID) {
8390   assert(Lex.getKind() == lltok::kw_function);
8391   Lex.Lex();
8392 
8393   StringRef ModulePath;
8394   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8395       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8396       /*NotEligibleToImport=*/false,
8397       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8398   unsigned InstCount;
8399   std::vector<FunctionSummary::EdgeTy> Calls;
8400   FunctionSummary::TypeIdInfo TypeIdInfo;
8401   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8402   std::vector<ValueInfo> Refs;
8403   // Default is all-zeros (conservative values).
8404   FunctionSummary::FFlags FFlags = {};
8405   if (parseToken(lltok::colon, "expected ':' here") ||
8406       parseToken(lltok::lparen, "expected '(' here") ||
8407       parseModuleReference(ModulePath) ||
8408       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8409       parseToken(lltok::comma, "expected ',' here") ||
8410       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8411       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8412     return true;
8413 
8414   // parse optional fields
8415   while (EatIfPresent(lltok::comma)) {
8416     switch (Lex.getKind()) {
8417     case lltok::kw_funcFlags:
8418       if (parseOptionalFFlags(FFlags))
8419         return true;
8420       break;
8421     case lltok::kw_calls:
8422       if (parseOptionalCalls(Calls))
8423         return true;
8424       break;
8425     case lltok::kw_typeIdInfo:
8426       if (parseOptionalTypeIdInfo(TypeIdInfo))
8427         return true;
8428       break;
8429     case lltok::kw_refs:
8430       if (parseOptionalRefs(Refs))
8431         return true;
8432       break;
8433     case lltok::kw_params:
8434       if (parseOptionalParamAccesses(ParamAccesses))
8435         return true;
8436       break;
8437     default:
8438       return error(Lex.getLoc(), "expected optional function summary field");
8439     }
8440   }
8441 
8442   if (parseToken(lltok::rparen, "expected ')' here"))
8443     return true;
8444 
8445   auto FS = std::make_unique<FunctionSummary>(
8446       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8447       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8448       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8449       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8450       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8451       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8452       std::move(ParamAccesses));
8453 
8454   FS->setModulePath(ModulePath);
8455 
8456   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8457                         ID, std::move(FS));
8458 
8459   return false;
8460 }
8461 
8462 /// VariableSummary
8463 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8464 ///         [',' OptionalRefs]? ')'
8465 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8466                                     unsigned ID) {
8467   assert(Lex.getKind() == lltok::kw_variable);
8468   Lex.Lex();
8469 
8470   StringRef ModulePath;
8471   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8472       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8473       /*NotEligibleToImport=*/false,
8474       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8475   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8476                                         /* WriteOnly */ false,
8477                                         /* Constant */ false,
8478                                         GlobalObject::VCallVisibilityPublic);
8479   std::vector<ValueInfo> Refs;
8480   VTableFuncList VTableFuncs;
8481   if (parseToken(lltok::colon, "expected ':' here") ||
8482       parseToken(lltok::lparen, "expected '(' here") ||
8483       parseModuleReference(ModulePath) ||
8484       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8485       parseToken(lltok::comma, "expected ',' here") ||
8486       parseGVarFlags(GVarFlags))
8487     return true;
8488 
8489   // parse optional fields
8490   while (EatIfPresent(lltok::comma)) {
8491     switch (Lex.getKind()) {
8492     case lltok::kw_vTableFuncs:
8493       if (parseOptionalVTableFuncs(VTableFuncs))
8494         return true;
8495       break;
8496     case lltok::kw_refs:
8497       if (parseOptionalRefs(Refs))
8498         return true;
8499       break;
8500     default:
8501       return error(Lex.getLoc(), "expected optional variable summary field");
8502     }
8503   }
8504 
8505   if (parseToken(lltok::rparen, "expected ')' here"))
8506     return true;
8507 
8508   auto GS =
8509       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8510 
8511   GS->setModulePath(ModulePath);
8512   GS->setVTableFuncs(std::move(VTableFuncs));
8513 
8514   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8515                         ID, std::move(GS));
8516 
8517   return false;
8518 }
8519 
8520 /// AliasSummary
8521 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8522 ///         'aliasee' ':' GVReference ')'
8523 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8524                                  unsigned ID) {
8525   assert(Lex.getKind() == lltok::kw_alias);
8526   LocTy Loc = Lex.getLoc();
8527   Lex.Lex();
8528 
8529   StringRef ModulePath;
8530   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8531       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8532       /*NotEligibleToImport=*/false,
8533       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8534   if (parseToken(lltok::colon, "expected ':' here") ||
8535       parseToken(lltok::lparen, "expected '(' here") ||
8536       parseModuleReference(ModulePath) ||
8537       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8538       parseToken(lltok::comma, "expected ',' here") ||
8539       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8540       parseToken(lltok::colon, "expected ':' here"))
8541     return true;
8542 
8543   ValueInfo AliaseeVI;
8544   unsigned GVId;
8545   if (parseGVReference(AliaseeVI, GVId))
8546     return true;
8547 
8548   if (parseToken(lltok::rparen, "expected ')' here"))
8549     return true;
8550 
8551   auto AS = std::make_unique<AliasSummary>(GVFlags);
8552 
8553   AS->setModulePath(ModulePath);
8554 
8555   // Record forward reference if the aliasee is not parsed yet.
8556   if (AliaseeVI.getRef() == FwdVIRef) {
8557     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8558   } else {
8559     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8560     assert(Summary && "Aliasee must be a definition");
8561     AS->setAliasee(AliaseeVI, Summary);
8562   }
8563 
8564   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8565                         ID, std::move(AS));
8566 
8567   return false;
8568 }
8569 
8570 /// Flag
8571 ///   ::= [0|1]
8572 bool LLParser::parseFlag(unsigned &Val) {
8573   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8574     return tokError("expected integer");
8575   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8576   Lex.Lex();
8577   return false;
8578 }
8579 
8580 /// OptionalFFlags
8581 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8582 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8583 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8584 ///        [',' 'noInline' ':' Flag]? ')'
8585 ///        [',' 'alwaysInline' ':' Flag]? ')'
8586 ///        [',' 'noUnwind' ':' Flag]? ')'
8587 ///        [',' 'mayThrow' ':' Flag]? ')'
8588 ///        [',' 'hasUnknownCall' ':' Flag]? ')'
8589 ///        [',' 'mustBeUnreachable' ':' Flag]? ')'
8590 
8591 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8592   assert(Lex.getKind() == lltok::kw_funcFlags);
8593   Lex.Lex();
8594 
8595   if (parseToken(lltok::colon, "expected ':' in funcFlags") ||
8596       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8597     return true;
8598 
8599   do {
8600     unsigned Val = 0;
8601     switch (Lex.getKind()) {
8602     case lltok::kw_readNone:
8603       Lex.Lex();
8604       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8605         return true;
8606       FFlags.ReadNone = Val;
8607       break;
8608     case lltok::kw_readOnly:
8609       Lex.Lex();
8610       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8611         return true;
8612       FFlags.ReadOnly = Val;
8613       break;
8614     case lltok::kw_noRecurse:
8615       Lex.Lex();
8616       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8617         return true;
8618       FFlags.NoRecurse = Val;
8619       break;
8620     case lltok::kw_returnDoesNotAlias:
8621       Lex.Lex();
8622       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8623         return true;
8624       FFlags.ReturnDoesNotAlias = Val;
8625       break;
8626     case lltok::kw_noInline:
8627       Lex.Lex();
8628       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8629         return true;
8630       FFlags.NoInline = Val;
8631       break;
8632     case lltok::kw_alwaysInline:
8633       Lex.Lex();
8634       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8635         return true;
8636       FFlags.AlwaysInline = Val;
8637       break;
8638     case lltok::kw_noUnwind:
8639       Lex.Lex();
8640       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8641         return true;
8642       FFlags.NoUnwind = Val;
8643       break;
8644     case lltok::kw_mayThrow:
8645       Lex.Lex();
8646       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8647         return true;
8648       FFlags.MayThrow = Val;
8649       break;
8650     case lltok::kw_hasUnknownCall:
8651       Lex.Lex();
8652       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8653         return true;
8654       FFlags.HasUnknownCall = Val;
8655       break;
8656     case lltok::kw_mustBeUnreachable:
8657       Lex.Lex();
8658       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8659         return true;
8660       FFlags.MustBeUnreachable = Val;
8661       break;
8662     default:
8663       return error(Lex.getLoc(), "expected function flag type");
8664     }
8665   } while (EatIfPresent(lltok::comma));
8666 
8667   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8668     return true;
8669 
8670   return false;
8671 }
8672 
8673 /// OptionalCalls
8674 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8675 /// Call ::= '(' 'callee' ':' GVReference
8676 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8677 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8678   assert(Lex.getKind() == lltok::kw_calls);
8679   Lex.Lex();
8680 
8681   if (parseToken(lltok::colon, "expected ':' in calls") ||
8682       parseToken(lltok::lparen, "expected '(' in calls"))
8683     return true;
8684 
8685   IdToIndexMapType IdToIndexMap;
8686   // parse each call edge
8687   do {
8688     ValueInfo VI;
8689     if (parseToken(lltok::lparen, "expected '(' in call") ||
8690         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8691         parseToken(lltok::colon, "expected ':'"))
8692       return true;
8693 
8694     LocTy Loc = Lex.getLoc();
8695     unsigned GVId;
8696     if (parseGVReference(VI, GVId))
8697       return true;
8698 
8699     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8700     unsigned RelBF = 0;
8701     if (EatIfPresent(lltok::comma)) {
8702       // Expect either hotness or relbf
8703       if (EatIfPresent(lltok::kw_hotness)) {
8704         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8705           return true;
8706       } else {
8707         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8708             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8709           return true;
8710       }
8711     }
8712     // Keep track of the Call array index needing a forward reference.
8713     // We will save the location of the ValueInfo needing an update, but
8714     // can only do so once the std::vector is finalized.
8715     if (VI.getRef() == FwdVIRef)
8716       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8717     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8718 
8719     if (parseToken(lltok::rparen, "expected ')' in call"))
8720       return true;
8721   } while (EatIfPresent(lltok::comma));
8722 
8723   // Now that the Calls vector is finalized, it is safe to save the locations
8724   // of any forward GV references that need updating later.
8725   for (auto I : IdToIndexMap) {
8726     auto &Infos = ForwardRefValueInfos[I.first];
8727     for (auto P : I.second) {
8728       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8729              "Forward referenced ValueInfo expected to be empty");
8730       Infos.emplace_back(&Calls[P.first].first, P.second);
8731     }
8732   }
8733 
8734   if (parseToken(lltok::rparen, "expected ')' in calls"))
8735     return true;
8736 
8737   return false;
8738 }
8739 
8740 /// Hotness
8741 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8742 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8743   switch (Lex.getKind()) {
8744   case lltok::kw_unknown:
8745     Hotness = CalleeInfo::HotnessType::Unknown;
8746     break;
8747   case lltok::kw_cold:
8748     Hotness = CalleeInfo::HotnessType::Cold;
8749     break;
8750   case lltok::kw_none:
8751     Hotness = CalleeInfo::HotnessType::None;
8752     break;
8753   case lltok::kw_hot:
8754     Hotness = CalleeInfo::HotnessType::Hot;
8755     break;
8756   case lltok::kw_critical:
8757     Hotness = CalleeInfo::HotnessType::Critical;
8758     break;
8759   default:
8760     return error(Lex.getLoc(), "invalid call edge hotness");
8761   }
8762   Lex.Lex();
8763   return false;
8764 }
8765 
8766 /// OptionalVTableFuncs
8767 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8768 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8769 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8770   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8771   Lex.Lex();
8772 
8773   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") ||
8774       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8775     return true;
8776 
8777   IdToIndexMapType IdToIndexMap;
8778   // parse each virtual function pair
8779   do {
8780     ValueInfo VI;
8781     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8782         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8783         parseToken(lltok::colon, "expected ':'"))
8784       return true;
8785 
8786     LocTy Loc = Lex.getLoc();
8787     unsigned GVId;
8788     if (parseGVReference(VI, GVId))
8789       return true;
8790 
8791     uint64_t Offset;
8792     if (parseToken(lltok::comma, "expected comma") ||
8793         parseToken(lltok::kw_offset, "expected offset") ||
8794         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
8795       return true;
8796 
8797     // Keep track of the VTableFuncs array index needing a forward reference.
8798     // We will save the location of the ValueInfo needing an update, but
8799     // can only do so once the std::vector is finalized.
8800     if (VI == EmptyVI)
8801       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8802     VTableFuncs.push_back({VI, Offset});
8803 
8804     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
8805       return true;
8806   } while (EatIfPresent(lltok::comma));
8807 
8808   // Now that the VTableFuncs vector is finalized, it is safe to save the
8809   // locations of any forward GV references that need updating later.
8810   for (auto I : IdToIndexMap) {
8811     auto &Infos = ForwardRefValueInfos[I.first];
8812     for (auto P : I.second) {
8813       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8814              "Forward referenced ValueInfo expected to be empty");
8815       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
8816     }
8817   }
8818 
8819   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8820     return true;
8821 
8822   return false;
8823 }
8824 
8825 /// ParamNo := 'param' ':' UInt64
8826 bool LLParser::parseParamNo(uint64_t &ParamNo) {
8827   if (parseToken(lltok::kw_param, "expected 'param' here") ||
8828       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
8829     return true;
8830   return false;
8831 }
8832 
8833 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
8834 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
8835   APSInt Lower;
8836   APSInt Upper;
8837   auto ParseAPSInt = [&](APSInt &Val) {
8838     if (Lex.getKind() != lltok::APSInt)
8839       return tokError("expected integer");
8840     Val = Lex.getAPSIntVal();
8841     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
8842     Val.setIsSigned(true);
8843     Lex.Lex();
8844     return false;
8845   };
8846   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
8847       parseToken(lltok::colon, "expected ':' here") ||
8848       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
8849       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
8850       parseToken(lltok::rsquare, "expected ']' here"))
8851     return true;
8852 
8853   ++Upper;
8854   Range =
8855       (Lower == Upper && !Lower.isMaxValue())
8856           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
8857           : ConstantRange(Lower, Upper);
8858 
8859   return false;
8860 }
8861 
8862 /// ParamAccessCall
8863 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
8864 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
8865                                     IdLocListType &IdLocList) {
8866   if (parseToken(lltok::lparen, "expected '(' here") ||
8867       parseToken(lltok::kw_callee, "expected 'callee' here") ||
8868       parseToken(lltok::colon, "expected ':' here"))
8869     return true;
8870 
8871   unsigned GVId;
8872   ValueInfo VI;
8873   LocTy Loc = Lex.getLoc();
8874   if (parseGVReference(VI, GVId))
8875     return true;
8876 
8877   Call.Callee = VI;
8878   IdLocList.emplace_back(GVId, Loc);
8879 
8880   if (parseToken(lltok::comma, "expected ',' here") ||
8881       parseParamNo(Call.ParamNo) ||
8882       parseToken(lltok::comma, "expected ',' here") ||
8883       parseParamAccessOffset(Call.Offsets))
8884     return true;
8885 
8886   if (parseToken(lltok::rparen, "expected ')' here"))
8887     return true;
8888 
8889   return false;
8890 }
8891 
8892 /// ParamAccess
8893 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
8894 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
8895 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
8896                                 IdLocListType &IdLocList) {
8897   if (parseToken(lltok::lparen, "expected '(' here") ||
8898       parseParamNo(Param.ParamNo) ||
8899       parseToken(lltok::comma, "expected ',' here") ||
8900       parseParamAccessOffset(Param.Use))
8901     return true;
8902 
8903   if (EatIfPresent(lltok::comma)) {
8904     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
8905         parseToken(lltok::colon, "expected ':' here") ||
8906         parseToken(lltok::lparen, "expected '(' here"))
8907       return true;
8908     do {
8909       FunctionSummary::ParamAccess::Call Call;
8910       if (parseParamAccessCall(Call, IdLocList))
8911         return true;
8912       Param.Calls.push_back(Call);
8913     } while (EatIfPresent(lltok::comma));
8914 
8915     if (parseToken(lltok::rparen, "expected ')' here"))
8916       return true;
8917   }
8918 
8919   if (parseToken(lltok::rparen, "expected ')' here"))
8920     return true;
8921 
8922   return false;
8923 }
8924 
8925 /// OptionalParamAccesses
8926 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
8927 bool LLParser::parseOptionalParamAccesses(
8928     std::vector<FunctionSummary::ParamAccess> &Params) {
8929   assert(Lex.getKind() == lltok::kw_params);
8930   Lex.Lex();
8931 
8932   if (parseToken(lltok::colon, "expected ':' here") ||
8933       parseToken(lltok::lparen, "expected '(' here"))
8934     return true;
8935 
8936   IdLocListType VContexts;
8937   size_t CallsNum = 0;
8938   do {
8939     FunctionSummary::ParamAccess ParamAccess;
8940     if (parseParamAccess(ParamAccess, VContexts))
8941       return true;
8942     CallsNum += ParamAccess.Calls.size();
8943     assert(VContexts.size() == CallsNum);
8944     (void)CallsNum;
8945     Params.emplace_back(std::move(ParamAccess));
8946   } while (EatIfPresent(lltok::comma));
8947 
8948   if (parseToken(lltok::rparen, "expected ')' here"))
8949     return true;
8950 
8951   // Now that the Params is finalized, it is safe to save the locations
8952   // of any forward GV references that need updating later.
8953   IdLocListType::const_iterator ItContext = VContexts.begin();
8954   for (auto &PA : Params) {
8955     for (auto &C : PA.Calls) {
8956       if (C.Callee.getRef() == FwdVIRef)
8957         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
8958                                                             ItContext->second);
8959       ++ItContext;
8960     }
8961   }
8962   assert(ItContext == VContexts.end());
8963 
8964   return false;
8965 }
8966 
8967 /// OptionalRefs
8968 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8969 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
8970   assert(Lex.getKind() == lltok::kw_refs);
8971   Lex.Lex();
8972 
8973   if (parseToken(lltok::colon, "expected ':' in refs") ||
8974       parseToken(lltok::lparen, "expected '(' in refs"))
8975     return true;
8976 
8977   struct ValueContext {
8978     ValueInfo VI;
8979     unsigned GVId;
8980     LocTy Loc;
8981   };
8982   std::vector<ValueContext> VContexts;
8983   // parse each ref edge
8984   do {
8985     ValueContext VC;
8986     VC.Loc = Lex.getLoc();
8987     if (parseGVReference(VC.VI, VC.GVId))
8988       return true;
8989     VContexts.push_back(VC);
8990   } while (EatIfPresent(lltok::comma));
8991 
8992   // Sort value contexts so that ones with writeonly
8993   // and readonly ValueInfo  are at the end of VContexts vector.
8994   // See FunctionSummary::specialRefCounts()
8995   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8996     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8997   });
8998 
8999   IdToIndexMapType IdToIndexMap;
9000   for (auto &VC : VContexts) {
9001     // Keep track of the Refs array index needing a forward reference.
9002     // We will save the location of the ValueInfo needing an update, but
9003     // can only do so once the std::vector is finalized.
9004     if (VC.VI.getRef() == FwdVIRef)
9005       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9006     Refs.push_back(VC.VI);
9007   }
9008 
9009   // Now that the Refs vector is finalized, it is safe to save the locations
9010   // of any forward GV references that need updating later.
9011   for (auto I : IdToIndexMap) {
9012     auto &Infos = ForwardRefValueInfos[I.first];
9013     for (auto P : I.second) {
9014       assert(Refs[P.first].getRef() == FwdVIRef &&
9015              "Forward referenced ValueInfo expected to be empty");
9016       Infos.emplace_back(&Refs[P.first], P.second);
9017     }
9018   }
9019 
9020   if (parseToken(lltok::rparen, "expected ')' in refs"))
9021     return true;
9022 
9023   return false;
9024 }
9025 
9026 /// OptionalTypeIdInfo
9027 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9028 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9029 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9030 bool LLParser::parseOptionalTypeIdInfo(
9031     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9032   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9033   Lex.Lex();
9034 
9035   if (parseToken(lltok::colon, "expected ':' here") ||
9036       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9037     return true;
9038 
9039   do {
9040     switch (Lex.getKind()) {
9041     case lltok::kw_typeTests:
9042       if (parseTypeTests(TypeIdInfo.TypeTests))
9043         return true;
9044       break;
9045     case lltok::kw_typeTestAssumeVCalls:
9046       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9047                            TypeIdInfo.TypeTestAssumeVCalls))
9048         return true;
9049       break;
9050     case lltok::kw_typeCheckedLoadVCalls:
9051       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9052                            TypeIdInfo.TypeCheckedLoadVCalls))
9053         return true;
9054       break;
9055     case lltok::kw_typeTestAssumeConstVCalls:
9056       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9057                               TypeIdInfo.TypeTestAssumeConstVCalls))
9058         return true;
9059       break;
9060     case lltok::kw_typeCheckedLoadConstVCalls:
9061       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9062                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9063         return true;
9064       break;
9065     default:
9066       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9067     }
9068   } while (EatIfPresent(lltok::comma));
9069 
9070   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9071     return true;
9072 
9073   return false;
9074 }
9075 
9076 /// TypeTests
9077 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9078 ///         [',' (SummaryID | UInt64)]* ')'
9079 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9080   assert(Lex.getKind() == lltok::kw_typeTests);
9081   Lex.Lex();
9082 
9083   if (parseToken(lltok::colon, "expected ':' here") ||
9084       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9085     return true;
9086 
9087   IdToIndexMapType IdToIndexMap;
9088   do {
9089     GlobalValue::GUID GUID = 0;
9090     if (Lex.getKind() == lltok::SummaryID) {
9091       unsigned ID = Lex.getUIntVal();
9092       LocTy Loc = Lex.getLoc();
9093       // Keep track of the TypeTests array index needing a forward reference.
9094       // We will save the location of the GUID needing an update, but
9095       // can only do so once the std::vector is finalized.
9096       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9097       Lex.Lex();
9098     } else if (parseUInt64(GUID))
9099       return true;
9100     TypeTests.push_back(GUID);
9101   } while (EatIfPresent(lltok::comma));
9102 
9103   // Now that the TypeTests vector is finalized, it is safe to save the
9104   // locations of any forward GV references that need updating later.
9105   for (auto I : IdToIndexMap) {
9106     auto &Ids = ForwardRefTypeIds[I.first];
9107     for (auto P : I.second) {
9108       assert(TypeTests[P.first] == 0 &&
9109              "Forward referenced type id GUID expected to be 0");
9110       Ids.emplace_back(&TypeTests[P.first], P.second);
9111     }
9112   }
9113 
9114   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9115     return true;
9116 
9117   return false;
9118 }
9119 
9120 /// VFuncIdList
9121 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9122 bool LLParser::parseVFuncIdList(
9123     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9124   assert(Lex.getKind() == Kind);
9125   Lex.Lex();
9126 
9127   if (parseToken(lltok::colon, "expected ':' here") ||
9128       parseToken(lltok::lparen, "expected '(' here"))
9129     return true;
9130 
9131   IdToIndexMapType IdToIndexMap;
9132   do {
9133     FunctionSummary::VFuncId VFuncId;
9134     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9135       return true;
9136     VFuncIdList.push_back(VFuncId);
9137   } while (EatIfPresent(lltok::comma));
9138 
9139   if (parseToken(lltok::rparen, "expected ')' here"))
9140     return true;
9141 
9142   // Now that the VFuncIdList vector is finalized, it is safe to save the
9143   // locations of any forward GV references that need updating later.
9144   for (auto I : IdToIndexMap) {
9145     auto &Ids = ForwardRefTypeIds[I.first];
9146     for (auto P : I.second) {
9147       assert(VFuncIdList[P.first].GUID == 0 &&
9148              "Forward referenced type id GUID expected to be 0");
9149       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9150     }
9151   }
9152 
9153   return false;
9154 }
9155 
9156 /// ConstVCallList
9157 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9158 bool LLParser::parseConstVCallList(
9159     lltok::Kind Kind,
9160     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9161   assert(Lex.getKind() == Kind);
9162   Lex.Lex();
9163 
9164   if (parseToken(lltok::colon, "expected ':' here") ||
9165       parseToken(lltok::lparen, "expected '(' here"))
9166     return true;
9167 
9168   IdToIndexMapType IdToIndexMap;
9169   do {
9170     FunctionSummary::ConstVCall ConstVCall;
9171     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9172       return true;
9173     ConstVCallList.push_back(ConstVCall);
9174   } while (EatIfPresent(lltok::comma));
9175 
9176   if (parseToken(lltok::rparen, "expected ')' here"))
9177     return true;
9178 
9179   // Now that the ConstVCallList vector is finalized, it is safe to save the
9180   // locations of any forward GV references that need updating later.
9181   for (auto I : IdToIndexMap) {
9182     auto &Ids = ForwardRefTypeIds[I.first];
9183     for (auto P : I.second) {
9184       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9185              "Forward referenced type id GUID expected to be 0");
9186       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9187     }
9188   }
9189 
9190   return false;
9191 }
9192 
9193 /// ConstVCall
9194 ///   ::= '(' VFuncId ',' Args ')'
9195 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9196                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9197   if (parseToken(lltok::lparen, "expected '(' here") ||
9198       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9199     return true;
9200 
9201   if (EatIfPresent(lltok::comma))
9202     if (parseArgs(ConstVCall.Args))
9203       return true;
9204 
9205   if (parseToken(lltok::rparen, "expected ')' here"))
9206     return true;
9207 
9208   return false;
9209 }
9210 
9211 /// VFuncId
9212 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9213 ///         'offset' ':' UInt64 ')'
9214 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9215                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9216   assert(Lex.getKind() == lltok::kw_vFuncId);
9217   Lex.Lex();
9218 
9219   if (parseToken(lltok::colon, "expected ':' here") ||
9220       parseToken(lltok::lparen, "expected '(' here"))
9221     return true;
9222 
9223   if (Lex.getKind() == lltok::SummaryID) {
9224     VFuncId.GUID = 0;
9225     unsigned ID = Lex.getUIntVal();
9226     LocTy Loc = Lex.getLoc();
9227     // Keep track of the array index needing a forward reference.
9228     // We will save the location of the GUID needing an update, but
9229     // can only do so once the caller's std::vector is finalized.
9230     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9231     Lex.Lex();
9232   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9233              parseToken(lltok::colon, "expected ':' here") ||
9234              parseUInt64(VFuncId.GUID))
9235     return true;
9236 
9237   if (parseToken(lltok::comma, "expected ',' here") ||
9238       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9239       parseToken(lltok::colon, "expected ':' here") ||
9240       parseUInt64(VFuncId.Offset) ||
9241       parseToken(lltok::rparen, "expected ')' here"))
9242     return true;
9243 
9244   return false;
9245 }
9246 
9247 /// GVFlags
9248 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9249 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9250 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9251 ///         'canAutoHide' ':' Flag ',' ')'
9252 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9253   assert(Lex.getKind() == lltok::kw_flags);
9254   Lex.Lex();
9255 
9256   if (parseToken(lltok::colon, "expected ':' here") ||
9257       parseToken(lltok::lparen, "expected '(' here"))
9258     return true;
9259 
9260   do {
9261     unsigned Flag = 0;
9262     switch (Lex.getKind()) {
9263     case lltok::kw_linkage:
9264       Lex.Lex();
9265       if (parseToken(lltok::colon, "expected ':'"))
9266         return true;
9267       bool HasLinkage;
9268       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9269       assert(HasLinkage && "Linkage not optional in summary entry");
9270       Lex.Lex();
9271       break;
9272     case lltok::kw_visibility:
9273       Lex.Lex();
9274       if (parseToken(lltok::colon, "expected ':'"))
9275         return true;
9276       parseOptionalVisibility(Flag);
9277       GVFlags.Visibility = Flag;
9278       break;
9279     case lltok::kw_notEligibleToImport:
9280       Lex.Lex();
9281       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9282         return true;
9283       GVFlags.NotEligibleToImport = Flag;
9284       break;
9285     case lltok::kw_live:
9286       Lex.Lex();
9287       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9288         return true;
9289       GVFlags.Live = Flag;
9290       break;
9291     case lltok::kw_dsoLocal:
9292       Lex.Lex();
9293       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9294         return true;
9295       GVFlags.DSOLocal = Flag;
9296       break;
9297     case lltok::kw_canAutoHide:
9298       Lex.Lex();
9299       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9300         return true;
9301       GVFlags.CanAutoHide = Flag;
9302       break;
9303     default:
9304       return error(Lex.getLoc(), "expected gv flag type");
9305     }
9306   } while (EatIfPresent(lltok::comma));
9307 
9308   if (parseToken(lltok::rparen, "expected ')' here"))
9309     return true;
9310 
9311   return false;
9312 }
9313 
9314 /// GVarFlags
9315 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9316 ///                      ',' 'writeonly' ':' Flag
9317 ///                      ',' 'constant' ':' Flag ')'
9318 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9319   assert(Lex.getKind() == lltok::kw_varFlags);
9320   Lex.Lex();
9321 
9322   if (parseToken(lltok::colon, "expected ':' here") ||
9323       parseToken(lltok::lparen, "expected '(' here"))
9324     return true;
9325 
9326   auto ParseRest = [this](unsigned int &Val) {
9327     Lex.Lex();
9328     if (parseToken(lltok::colon, "expected ':'"))
9329       return true;
9330     return parseFlag(Val);
9331   };
9332 
9333   do {
9334     unsigned Flag = 0;
9335     switch (Lex.getKind()) {
9336     case lltok::kw_readonly:
9337       if (ParseRest(Flag))
9338         return true;
9339       GVarFlags.MaybeReadOnly = Flag;
9340       break;
9341     case lltok::kw_writeonly:
9342       if (ParseRest(Flag))
9343         return true;
9344       GVarFlags.MaybeWriteOnly = Flag;
9345       break;
9346     case lltok::kw_constant:
9347       if (ParseRest(Flag))
9348         return true;
9349       GVarFlags.Constant = Flag;
9350       break;
9351     case lltok::kw_vcall_visibility:
9352       if (ParseRest(Flag))
9353         return true;
9354       GVarFlags.VCallVisibility = Flag;
9355       break;
9356     default:
9357       return error(Lex.getLoc(), "expected gvar flag type");
9358     }
9359   } while (EatIfPresent(lltok::comma));
9360   return parseToken(lltok::rparen, "expected ')' here");
9361 }
9362 
9363 /// ModuleReference
9364 ///   ::= 'module' ':' UInt
9365 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9366   // parse module id.
9367   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9368       parseToken(lltok::colon, "expected ':' here") ||
9369       parseToken(lltok::SummaryID, "expected module ID"))
9370     return true;
9371 
9372   unsigned ModuleID = Lex.getUIntVal();
9373   auto I = ModuleIdMap.find(ModuleID);
9374   // We should have already parsed all module IDs
9375   assert(I != ModuleIdMap.end());
9376   ModulePath = I->second;
9377   return false;
9378 }
9379 
9380 /// GVReference
9381 ///   ::= SummaryID
9382 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9383   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9384   if (!ReadOnly)
9385     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9386   if (parseToken(lltok::SummaryID, "expected GV ID"))
9387     return true;
9388 
9389   GVId = Lex.getUIntVal();
9390   // Check if we already have a VI for this GV
9391   if (GVId < NumberedValueInfos.size()) {
9392     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9393     VI = NumberedValueInfos[GVId];
9394   } else
9395     // We will create a forward reference to the stored location.
9396     VI = ValueInfo(false, FwdVIRef);
9397 
9398   if (ReadOnly)
9399     VI.setReadOnly();
9400   if (WriteOnly)
9401     VI.setWriteOnly();
9402   return false;
9403 }
9404