1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/AsmParser/LLParser.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/LLToken.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SaveAndRestore.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstring> 51 #include <vector> 52 53 using namespace llvm; 54 55 static std::string getTypeString(Type *T) { 56 std::string Result; 57 raw_string_ostream Tmp(Result); 58 Tmp << *T; 59 return Tmp.str(); 60 } 61 62 static void setContextOpaquePointers(LLLexer &L, LLVMContext &C) { 63 while (true) { 64 lltok::Kind K = L.Lex(); 65 // LLLexer will set the opaque pointers option in LLVMContext if it sees an 66 // explicit "ptr". 67 if (K == lltok::star || K == lltok::Error || K == lltok::Eof || 68 isa_and_nonnull<PointerType>(L.getTyVal())) { 69 if (K == lltok::star) 70 C.setOpaquePointers(false); 71 return; 72 } 73 } 74 } 75 76 /// Run: module ::= toplevelentity* 77 bool LLParser::Run(bool UpgradeDebugInfo, 78 DataLayoutCallbackTy DataLayoutCallback) { 79 // If we haven't decided on whether or not we're using opaque pointers, do a 80 // quick lex over the tokens to see if we explicitly construct any typed or 81 // opaque pointer types. 82 // Don't bail out on an error so we do the same work in the parsing below 83 // regardless of if --opaque-pointers is set. 84 if (!Context.hasSetOpaquePointersValue()) 85 setContextOpaquePointers(OPLex, Context); 86 87 // Prime the lexer. 88 Lex.Lex(); 89 90 if (Context.shouldDiscardValueNames()) 91 return error( 92 Lex.getLoc(), 93 "Can't read textual IR with a Context that discards named Values"); 94 95 if (M) { 96 if (parseTargetDefinitions()) 97 return true; 98 99 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 100 M->setDataLayout(*LayoutOverride); 101 } 102 103 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 104 validateEndOfIndex(); 105 } 106 107 bool LLParser::parseStandaloneConstantValue(Constant *&C, 108 const SlotMapping *Slots) { 109 restoreParsingState(Slots); 110 Lex.Lex(); 111 112 Type *Ty = nullptr; 113 if (parseType(Ty) || parseConstantValue(Ty, C)) 114 return true; 115 if (Lex.getKind() != lltok::Eof) 116 return error(Lex.getLoc(), "expected end of string"); 117 return false; 118 } 119 120 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 121 const SlotMapping *Slots) { 122 restoreParsingState(Slots); 123 Lex.Lex(); 124 125 Read = 0; 126 SMLoc Start = Lex.getLoc(); 127 Ty = nullptr; 128 if (parseType(Ty)) 129 return true; 130 SMLoc End = Lex.getLoc(); 131 Read = End.getPointer() - Start.getPointer(); 132 133 return false; 134 } 135 136 void LLParser::restoreParsingState(const SlotMapping *Slots) { 137 if (!Slots) 138 return; 139 NumberedVals = Slots->GlobalValues; 140 NumberedMetadata = Slots->MetadataNodes; 141 for (const auto &I : Slots->NamedTypes) 142 NamedTypes.insert( 143 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 144 for (const auto &I : Slots->Types) 145 NumberedTypes.insert( 146 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 147 } 148 149 /// validateEndOfModule - Do final validity and basic correctness checks at the 150 /// end of the module. 151 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 152 if (!M) 153 return false; 154 // Handle any function attribute group forward references. 155 for (const auto &RAG : ForwardRefAttrGroups) { 156 Value *V = RAG.first; 157 const std::vector<unsigned> &Attrs = RAG.second; 158 AttrBuilder B(Context); 159 160 for (const auto &Attr : Attrs) { 161 auto R = NumberedAttrBuilders.find(Attr); 162 if (R != NumberedAttrBuilders.end()) 163 B.merge(R->second); 164 } 165 166 if (Function *Fn = dyn_cast<Function>(V)) { 167 AttributeList AS = Fn->getAttributes(); 168 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 169 AS = AS.removeFnAttributes(Context); 170 171 FnAttrs.merge(B); 172 173 // If the alignment was parsed as an attribute, move to the alignment 174 // field. 175 if (FnAttrs.hasAlignmentAttr()) { 176 Fn->setAlignment(FnAttrs.getAlignment()); 177 FnAttrs.removeAttribute(Attribute::Alignment); 178 } 179 180 AS = AS.addFnAttributes(Context, FnAttrs); 181 Fn->setAttributes(AS); 182 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 183 AttributeList AS = CI->getAttributes(); 184 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 185 AS = AS.removeFnAttributes(Context); 186 FnAttrs.merge(B); 187 AS = AS.addFnAttributes(Context, FnAttrs); 188 CI->setAttributes(AS); 189 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 190 AttributeList AS = II->getAttributes(); 191 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 192 AS = AS.removeFnAttributes(Context); 193 FnAttrs.merge(B); 194 AS = AS.addFnAttributes(Context, FnAttrs); 195 II->setAttributes(AS); 196 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 197 AttributeList AS = CBI->getAttributes(); 198 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 199 AS = AS.removeFnAttributes(Context); 200 FnAttrs.merge(B); 201 AS = AS.addFnAttributes(Context, FnAttrs); 202 CBI->setAttributes(AS); 203 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 204 AttrBuilder Attrs(M->getContext(), GV->getAttributes()); 205 Attrs.merge(B); 206 GV->setAttributes(AttributeSet::get(Context,Attrs)); 207 } else { 208 llvm_unreachable("invalid object with forward attribute group reference"); 209 } 210 } 211 212 // If there are entries in ForwardRefBlockAddresses at this point, the 213 // function was never defined. 214 if (!ForwardRefBlockAddresses.empty()) 215 return error(ForwardRefBlockAddresses.begin()->first.Loc, 216 "expected function name in blockaddress"); 217 218 for (const auto &NT : NumberedTypes) 219 if (NT.second.second.isValid()) 220 return error(NT.second.second, 221 "use of undefined type '%" + Twine(NT.first) + "'"); 222 223 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 224 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 225 if (I->second.second.isValid()) 226 return error(I->second.second, 227 "use of undefined type named '" + I->getKey() + "'"); 228 229 if (!ForwardRefComdats.empty()) 230 return error(ForwardRefComdats.begin()->second, 231 "use of undefined comdat '$" + 232 ForwardRefComdats.begin()->first + "'"); 233 234 if (!ForwardRefVals.empty()) 235 return error(ForwardRefVals.begin()->second.second, 236 "use of undefined value '@" + ForwardRefVals.begin()->first + 237 "'"); 238 239 if (!ForwardRefValIDs.empty()) 240 return error(ForwardRefValIDs.begin()->second.second, 241 "use of undefined value '@" + 242 Twine(ForwardRefValIDs.begin()->first) + "'"); 243 244 if (!ForwardRefMDNodes.empty()) 245 return error(ForwardRefMDNodes.begin()->second.second, 246 "use of undefined metadata '!" + 247 Twine(ForwardRefMDNodes.begin()->first) + "'"); 248 249 // Resolve metadata cycles. 250 for (auto &N : NumberedMetadata) { 251 if (N.second && !N.second->isResolved()) 252 N.second->resolveCycles(); 253 } 254 255 for (auto *Inst : InstsWithTBAATag) { 256 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 257 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 258 auto *UpgradedMD = UpgradeTBAANode(*MD); 259 if (MD != UpgradedMD) 260 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 261 } 262 263 // Look for intrinsic functions and CallInst that need to be upgraded. We use 264 // make_early_inc_range here because we may remove some functions. 265 for (Function &F : llvm::make_early_inc_range(*M)) 266 UpgradeCallsToIntrinsic(&F); 267 268 // Some types could be renamed during loading if several modules are 269 // loaded in the same LLVMContext (LTO scenario). In this case we should 270 // remangle intrinsics names as well. 271 for (Function &F : llvm::make_early_inc_range(*M)) { 272 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) { 273 F.replaceAllUsesWith(*Remangled); 274 F.eraseFromParent(); 275 } 276 } 277 278 if (UpgradeDebugInfo) 279 llvm::UpgradeDebugInfo(*M); 280 281 UpgradeModuleFlags(*M); 282 UpgradeSectionAttributes(*M); 283 284 if (!Slots) 285 return false; 286 // Initialize the slot mapping. 287 // Because by this point we've parsed and validated everything, we can "steal" 288 // the mapping from LLParser as it doesn't need it anymore. 289 Slots->GlobalValues = std::move(NumberedVals); 290 Slots->MetadataNodes = std::move(NumberedMetadata); 291 for (const auto &I : NamedTypes) 292 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 293 for (const auto &I : NumberedTypes) 294 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 295 296 return false; 297 } 298 299 /// Do final validity and basic correctness checks at the end of the index. 300 bool LLParser::validateEndOfIndex() { 301 if (!Index) 302 return false; 303 304 if (!ForwardRefValueInfos.empty()) 305 return error(ForwardRefValueInfos.begin()->second.front().second, 306 "use of undefined summary '^" + 307 Twine(ForwardRefValueInfos.begin()->first) + "'"); 308 309 if (!ForwardRefAliasees.empty()) 310 return error(ForwardRefAliasees.begin()->second.front().second, 311 "use of undefined summary '^" + 312 Twine(ForwardRefAliasees.begin()->first) + "'"); 313 314 if (!ForwardRefTypeIds.empty()) 315 return error(ForwardRefTypeIds.begin()->second.front().second, 316 "use of undefined type id summary '^" + 317 Twine(ForwardRefTypeIds.begin()->first) + "'"); 318 319 return false; 320 } 321 322 //===----------------------------------------------------------------------===// 323 // Top-Level Entities 324 //===----------------------------------------------------------------------===// 325 326 bool LLParser::parseTargetDefinitions() { 327 while (true) { 328 switch (Lex.getKind()) { 329 case lltok::kw_target: 330 if (parseTargetDefinition()) 331 return true; 332 break; 333 case lltok::kw_source_filename: 334 if (parseSourceFileName()) 335 return true; 336 break; 337 default: 338 return false; 339 } 340 } 341 } 342 343 bool LLParser::parseTopLevelEntities() { 344 // If there is no Module, then parse just the summary index entries. 345 if (!M) { 346 while (true) { 347 switch (Lex.getKind()) { 348 case lltok::Eof: 349 return false; 350 case lltok::SummaryID: 351 if (parseSummaryEntry()) 352 return true; 353 break; 354 case lltok::kw_source_filename: 355 if (parseSourceFileName()) 356 return true; 357 break; 358 default: 359 // Skip everything else 360 Lex.Lex(); 361 } 362 } 363 } 364 while (true) { 365 switch (Lex.getKind()) { 366 default: 367 return tokError("expected top-level entity"); 368 case lltok::Eof: return false; 369 case lltok::kw_declare: 370 if (parseDeclare()) 371 return true; 372 break; 373 case lltok::kw_define: 374 if (parseDefine()) 375 return true; 376 break; 377 case lltok::kw_module: 378 if (parseModuleAsm()) 379 return true; 380 break; 381 case lltok::LocalVarID: 382 if (parseUnnamedType()) 383 return true; 384 break; 385 case lltok::LocalVar: 386 if (parseNamedType()) 387 return true; 388 break; 389 case lltok::GlobalID: 390 if (parseUnnamedGlobal()) 391 return true; 392 break; 393 case lltok::GlobalVar: 394 if (parseNamedGlobal()) 395 return true; 396 break; 397 case lltok::ComdatVar: if (parseComdat()) return true; break; 398 case lltok::exclaim: 399 if (parseStandaloneMetadata()) 400 return true; 401 break; 402 case lltok::SummaryID: 403 if (parseSummaryEntry()) 404 return true; 405 break; 406 case lltok::MetadataVar: 407 if (parseNamedMetadata()) 408 return true; 409 break; 410 case lltok::kw_attributes: 411 if (parseUnnamedAttrGrp()) 412 return true; 413 break; 414 case lltok::kw_uselistorder: 415 if (parseUseListOrder()) 416 return true; 417 break; 418 case lltok::kw_uselistorder_bb: 419 if (parseUseListOrderBB()) 420 return true; 421 break; 422 } 423 } 424 } 425 426 /// toplevelentity 427 /// ::= 'module' 'asm' STRINGCONSTANT 428 bool LLParser::parseModuleAsm() { 429 assert(Lex.getKind() == lltok::kw_module); 430 Lex.Lex(); 431 432 std::string AsmStr; 433 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 434 parseStringConstant(AsmStr)) 435 return true; 436 437 M->appendModuleInlineAsm(AsmStr); 438 return false; 439 } 440 441 /// toplevelentity 442 /// ::= 'target' 'triple' '=' STRINGCONSTANT 443 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 444 bool LLParser::parseTargetDefinition() { 445 assert(Lex.getKind() == lltok::kw_target); 446 std::string Str; 447 switch (Lex.Lex()) { 448 default: 449 return tokError("unknown target property"); 450 case lltok::kw_triple: 451 Lex.Lex(); 452 if (parseToken(lltok::equal, "expected '=' after target triple") || 453 parseStringConstant(Str)) 454 return true; 455 M->setTargetTriple(Str); 456 return false; 457 case lltok::kw_datalayout: 458 Lex.Lex(); 459 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 460 parseStringConstant(Str)) 461 return true; 462 M->setDataLayout(Str); 463 return false; 464 } 465 } 466 467 /// toplevelentity 468 /// ::= 'source_filename' '=' STRINGCONSTANT 469 bool LLParser::parseSourceFileName() { 470 assert(Lex.getKind() == lltok::kw_source_filename); 471 Lex.Lex(); 472 if (parseToken(lltok::equal, "expected '=' after source_filename") || 473 parseStringConstant(SourceFileName)) 474 return true; 475 if (M) 476 M->setSourceFileName(SourceFileName); 477 return false; 478 } 479 480 /// parseUnnamedType: 481 /// ::= LocalVarID '=' 'type' type 482 bool LLParser::parseUnnamedType() { 483 LocTy TypeLoc = Lex.getLoc(); 484 unsigned TypeID = Lex.getUIntVal(); 485 Lex.Lex(); // eat LocalVarID; 486 487 if (parseToken(lltok::equal, "expected '=' after name") || 488 parseToken(lltok::kw_type, "expected 'type' after '='")) 489 return true; 490 491 Type *Result = nullptr; 492 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 493 return true; 494 495 if (!isa<StructType>(Result)) { 496 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 497 if (Entry.first) 498 return error(TypeLoc, "non-struct types may not be recursive"); 499 Entry.first = Result; 500 Entry.second = SMLoc(); 501 } 502 503 return false; 504 } 505 506 /// toplevelentity 507 /// ::= LocalVar '=' 'type' type 508 bool LLParser::parseNamedType() { 509 std::string Name = Lex.getStrVal(); 510 LocTy NameLoc = Lex.getLoc(); 511 Lex.Lex(); // eat LocalVar. 512 513 if (parseToken(lltok::equal, "expected '=' after name") || 514 parseToken(lltok::kw_type, "expected 'type' after name")) 515 return true; 516 517 Type *Result = nullptr; 518 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 519 return true; 520 521 if (!isa<StructType>(Result)) { 522 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 523 if (Entry.first) 524 return error(NameLoc, "non-struct types may not be recursive"); 525 Entry.first = Result; 526 Entry.second = SMLoc(); 527 } 528 529 return false; 530 } 531 532 /// toplevelentity 533 /// ::= 'declare' FunctionHeader 534 bool LLParser::parseDeclare() { 535 assert(Lex.getKind() == lltok::kw_declare); 536 Lex.Lex(); 537 538 std::vector<std::pair<unsigned, MDNode *>> MDs; 539 while (Lex.getKind() == lltok::MetadataVar) { 540 unsigned MDK; 541 MDNode *N; 542 if (parseMetadataAttachment(MDK, N)) 543 return true; 544 MDs.push_back({MDK, N}); 545 } 546 547 Function *F; 548 if (parseFunctionHeader(F, false)) 549 return true; 550 for (auto &MD : MDs) 551 F->addMetadata(MD.first, *MD.second); 552 return false; 553 } 554 555 /// toplevelentity 556 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 557 bool LLParser::parseDefine() { 558 assert(Lex.getKind() == lltok::kw_define); 559 Lex.Lex(); 560 561 Function *F; 562 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 563 parseFunctionBody(*F); 564 } 565 566 /// parseGlobalType 567 /// ::= 'constant' 568 /// ::= 'global' 569 bool LLParser::parseGlobalType(bool &IsConstant) { 570 if (Lex.getKind() == lltok::kw_constant) 571 IsConstant = true; 572 else if (Lex.getKind() == lltok::kw_global) 573 IsConstant = false; 574 else { 575 IsConstant = false; 576 return tokError("expected 'global' or 'constant'"); 577 } 578 Lex.Lex(); 579 return false; 580 } 581 582 bool LLParser::parseOptionalUnnamedAddr( 583 GlobalVariable::UnnamedAddr &UnnamedAddr) { 584 if (EatIfPresent(lltok::kw_unnamed_addr)) 585 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 586 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 587 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 588 else 589 UnnamedAddr = GlobalValue::UnnamedAddr::None; 590 return false; 591 } 592 593 /// parseUnnamedGlobal: 594 /// OptionalVisibility (ALIAS | IFUNC) ... 595 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 596 /// OptionalDLLStorageClass 597 /// ... -> global variable 598 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 599 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 600 /// OptionalVisibility 601 /// OptionalDLLStorageClass 602 /// ... -> global variable 603 bool LLParser::parseUnnamedGlobal() { 604 unsigned VarID = NumberedVals.size(); 605 std::string Name; 606 LocTy NameLoc = Lex.getLoc(); 607 608 // Handle the GlobalID form. 609 if (Lex.getKind() == lltok::GlobalID) { 610 if (Lex.getUIntVal() != VarID) 611 return error(Lex.getLoc(), 612 "variable expected to be numbered '%" + Twine(VarID) + "'"); 613 Lex.Lex(); // eat GlobalID; 614 615 if (parseToken(lltok::equal, "expected '=' after name")) 616 return true; 617 } 618 619 bool HasLinkage; 620 unsigned Linkage, Visibility, DLLStorageClass; 621 bool DSOLocal; 622 GlobalVariable::ThreadLocalMode TLM; 623 GlobalVariable::UnnamedAddr UnnamedAddr; 624 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 625 DSOLocal) || 626 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 627 return true; 628 629 switch (Lex.getKind()) { 630 default: 631 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 632 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 633 case lltok::kw_alias: 634 case lltok::kw_ifunc: 635 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, 636 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 637 } 638 } 639 640 /// parseNamedGlobal: 641 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 642 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 643 /// OptionalVisibility OptionalDLLStorageClass 644 /// ... -> global variable 645 bool LLParser::parseNamedGlobal() { 646 assert(Lex.getKind() == lltok::GlobalVar); 647 LocTy NameLoc = Lex.getLoc(); 648 std::string Name = Lex.getStrVal(); 649 Lex.Lex(); 650 651 bool HasLinkage; 652 unsigned Linkage, Visibility, DLLStorageClass; 653 bool DSOLocal; 654 GlobalVariable::ThreadLocalMode TLM; 655 GlobalVariable::UnnamedAddr UnnamedAddr; 656 if (parseToken(lltok::equal, "expected '=' in global variable") || 657 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 658 DSOLocal) || 659 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 660 return true; 661 662 switch (Lex.getKind()) { 663 default: 664 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 665 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 666 case lltok::kw_alias: 667 case lltok::kw_ifunc: 668 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, 669 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 670 } 671 } 672 673 bool LLParser::parseComdat() { 674 assert(Lex.getKind() == lltok::ComdatVar); 675 std::string Name = Lex.getStrVal(); 676 LocTy NameLoc = Lex.getLoc(); 677 Lex.Lex(); 678 679 if (parseToken(lltok::equal, "expected '=' here")) 680 return true; 681 682 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 683 return tokError("expected comdat type"); 684 685 Comdat::SelectionKind SK; 686 switch (Lex.getKind()) { 687 default: 688 return tokError("unknown selection kind"); 689 case lltok::kw_any: 690 SK = Comdat::Any; 691 break; 692 case lltok::kw_exactmatch: 693 SK = Comdat::ExactMatch; 694 break; 695 case lltok::kw_largest: 696 SK = Comdat::Largest; 697 break; 698 case lltok::kw_nodeduplicate: 699 SK = Comdat::NoDeduplicate; 700 break; 701 case lltok::kw_samesize: 702 SK = Comdat::SameSize; 703 break; 704 } 705 Lex.Lex(); 706 707 // See if the comdat was forward referenced, if so, use the comdat. 708 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 709 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 710 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 711 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 712 713 Comdat *C; 714 if (I != ComdatSymTab.end()) 715 C = &I->second; 716 else 717 C = M->getOrInsertComdat(Name); 718 C->setSelectionKind(SK); 719 720 return false; 721 } 722 723 // MDString: 724 // ::= '!' STRINGCONSTANT 725 bool LLParser::parseMDString(MDString *&Result) { 726 std::string Str; 727 if (parseStringConstant(Str)) 728 return true; 729 Result = MDString::get(Context, Str); 730 return false; 731 } 732 733 // MDNode: 734 // ::= '!' MDNodeNumber 735 bool LLParser::parseMDNodeID(MDNode *&Result) { 736 // !{ ..., !42, ... } 737 LocTy IDLoc = Lex.getLoc(); 738 unsigned MID = 0; 739 if (parseUInt32(MID)) 740 return true; 741 742 // If not a forward reference, just return it now. 743 if (NumberedMetadata.count(MID)) { 744 Result = NumberedMetadata[MID]; 745 return false; 746 } 747 748 // Otherwise, create MDNode forward reference. 749 auto &FwdRef = ForwardRefMDNodes[MID]; 750 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 751 752 Result = FwdRef.first.get(); 753 NumberedMetadata[MID].reset(Result); 754 return false; 755 } 756 757 /// parseNamedMetadata: 758 /// !foo = !{ !1, !2 } 759 bool LLParser::parseNamedMetadata() { 760 assert(Lex.getKind() == lltok::MetadataVar); 761 std::string Name = Lex.getStrVal(); 762 Lex.Lex(); 763 764 if (parseToken(lltok::equal, "expected '=' here") || 765 parseToken(lltok::exclaim, "Expected '!' here") || 766 parseToken(lltok::lbrace, "Expected '{' here")) 767 return true; 768 769 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 770 if (Lex.getKind() != lltok::rbrace) 771 do { 772 MDNode *N = nullptr; 773 // parse DIExpressions inline as a special case. They are still MDNodes, 774 // so they can still appear in named metadata. Remove this logic if they 775 // become plain Metadata. 776 if (Lex.getKind() == lltok::MetadataVar && 777 Lex.getStrVal() == "DIExpression") { 778 if (parseDIExpression(N, /*IsDistinct=*/false)) 779 return true; 780 // DIArgLists should only appear inline in a function, as they may 781 // contain LocalAsMetadata arguments which require a function context. 782 } else if (Lex.getKind() == lltok::MetadataVar && 783 Lex.getStrVal() == "DIArgList") { 784 return tokError("found DIArgList outside of function"); 785 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 786 parseMDNodeID(N)) { 787 return true; 788 } 789 NMD->addOperand(N); 790 } while (EatIfPresent(lltok::comma)); 791 792 return parseToken(lltok::rbrace, "expected end of metadata node"); 793 } 794 795 /// parseStandaloneMetadata: 796 /// !42 = !{...} 797 bool LLParser::parseStandaloneMetadata() { 798 assert(Lex.getKind() == lltok::exclaim); 799 Lex.Lex(); 800 unsigned MetadataID = 0; 801 802 MDNode *Init; 803 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 804 return true; 805 806 // Detect common error, from old metadata syntax. 807 if (Lex.getKind() == lltok::Type) 808 return tokError("unexpected type in metadata definition"); 809 810 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 811 if (Lex.getKind() == lltok::MetadataVar) { 812 if (parseSpecializedMDNode(Init, IsDistinct)) 813 return true; 814 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 815 parseMDTuple(Init, IsDistinct)) 816 return true; 817 818 // See if this was forward referenced, if so, handle it. 819 auto FI = ForwardRefMDNodes.find(MetadataID); 820 if (FI != ForwardRefMDNodes.end()) { 821 FI->second.first->replaceAllUsesWith(Init); 822 ForwardRefMDNodes.erase(FI); 823 824 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 825 } else { 826 if (NumberedMetadata.count(MetadataID)) 827 return tokError("Metadata id is already used"); 828 NumberedMetadata[MetadataID].reset(Init); 829 } 830 831 return false; 832 } 833 834 // Skips a single module summary entry. 835 bool LLParser::skipModuleSummaryEntry() { 836 // Each module summary entry consists of a tag for the entry 837 // type, followed by a colon, then the fields which may be surrounded by 838 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 839 // support is in place we will look for the tokens corresponding to the 840 // expected tags. 841 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 842 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 843 Lex.getKind() != lltok::kw_blockcount) 844 return tokError( 845 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 846 "start of summary entry"); 847 if (Lex.getKind() == lltok::kw_flags) 848 return parseSummaryIndexFlags(); 849 if (Lex.getKind() == lltok::kw_blockcount) 850 return parseBlockCount(); 851 Lex.Lex(); 852 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 853 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 854 return true; 855 // Now walk through the parenthesized entry, until the number of open 856 // parentheses goes back down to 0 (the first '(' was parsed above). 857 unsigned NumOpenParen = 1; 858 do { 859 switch (Lex.getKind()) { 860 case lltok::lparen: 861 NumOpenParen++; 862 break; 863 case lltok::rparen: 864 NumOpenParen--; 865 break; 866 case lltok::Eof: 867 return tokError("found end of file while parsing summary entry"); 868 default: 869 // Skip everything in between parentheses. 870 break; 871 } 872 Lex.Lex(); 873 } while (NumOpenParen > 0); 874 return false; 875 } 876 877 /// SummaryEntry 878 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 879 bool LLParser::parseSummaryEntry() { 880 assert(Lex.getKind() == lltok::SummaryID); 881 unsigned SummaryID = Lex.getUIntVal(); 882 883 // For summary entries, colons should be treated as distinct tokens, 884 // not an indication of the end of a label token. 885 Lex.setIgnoreColonInIdentifiers(true); 886 887 Lex.Lex(); 888 if (parseToken(lltok::equal, "expected '=' here")) 889 return true; 890 891 // If we don't have an index object, skip the summary entry. 892 if (!Index) 893 return skipModuleSummaryEntry(); 894 895 bool result = false; 896 switch (Lex.getKind()) { 897 case lltok::kw_gv: 898 result = parseGVEntry(SummaryID); 899 break; 900 case lltok::kw_module: 901 result = parseModuleEntry(SummaryID); 902 break; 903 case lltok::kw_typeid: 904 result = parseTypeIdEntry(SummaryID); 905 break; 906 case lltok::kw_typeidCompatibleVTable: 907 result = parseTypeIdCompatibleVtableEntry(SummaryID); 908 break; 909 case lltok::kw_flags: 910 result = parseSummaryIndexFlags(); 911 break; 912 case lltok::kw_blockcount: 913 result = parseBlockCount(); 914 break; 915 default: 916 result = error(Lex.getLoc(), "unexpected summary kind"); 917 break; 918 } 919 Lex.setIgnoreColonInIdentifiers(false); 920 return result; 921 } 922 923 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 924 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 925 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 926 } 927 928 // If there was an explicit dso_local, update GV. In the absence of an explicit 929 // dso_local we keep the default value. 930 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 931 if (DSOLocal) 932 GV.setDSOLocal(true); 933 } 934 935 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1, 936 Type *Ty2) { 937 std::string ErrString; 938 raw_string_ostream ErrOS(ErrString); 939 ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")"; 940 return ErrOS.str(); 941 } 942 943 /// parseAliasOrIFunc: 944 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 945 /// OptionalVisibility OptionalDLLStorageClass 946 /// OptionalThreadLocal OptionalUnnamedAddr 947 /// 'alias|ifunc' AliaseeOrResolver SymbolAttrs* 948 /// 949 /// AliaseeOrResolver 950 /// ::= TypeAndValue 951 /// 952 /// SymbolAttrs 953 /// ::= ',' 'partition' StringConstant 954 /// 955 /// Everything through OptionalUnnamedAddr has already been parsed. 956 /// 957 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc, 958 unsigned L, unsigned Visibility, 959 unsigned DLLStorageClass, bool DSOLocal, 960 GlobalVariable::ThreadLocalMode TLM, 961 GlobalVariable::UnnamedAddr UnnamedAddr) { 962 bool IsAlias; 963 if (Lex.getKind() == lltok::kw_alias) 964 IsAlias = true; 965 else if (Lex.getKind() == lltok::kw_ifunc) 966 IsAlias = false; 967 else 968 llvm_unreachable("Not an alias or ifunc!"); 969 Lex.Lex(); 970 971 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 972 973 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 974 return error(NameLoc, "invalid linkage type for alias"); 975 976 if (!isValidVisibilityForLinkage(Visibility, L)) 977 return error(NameLoc, 978 "symbol with local linkage must have default visibility"); 979 980 Type *Ty; 981 LocTy ExplicitTypeLoc = Lex.getLoc(); 982 if (parseType(Ty) || 983 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 984 return true; 985 986 Constant *Aliasee; 987 LocTy AliaseeLoc = Lex.getLoc(); 988 if (Lex.getKind() != lltok::kw_bitcast && 989 Lex.getKind() != lltok::kw_getelementptr && 990 Lex.getKind() != lltok::kw_addrspacecast && 991 Lex.getKind() != lltok::kw_inttoptr) { 992 if (parseGlobalTypeAndValue(Aliasee)) 993 return true; 994 } else { 995 // The bitcast dest type is not present, it is implied by the dest type. 996 ValID ID; 997 if (parseValID(ID, /*PFS=*/nullptr)) 998 return true; 999 if (ID.Kind != ValID::t_Constant) 1000 return error(AliaseeLoc, "invalid aliasee"); 1001 Aliasee = ID.ConstantVal; 1002 } 1003 1004 Type *AliaseeType = Aliasee->getType(); 1005 auto *PTy = dyn_cast<PointerType>(AliaseeType); 1006 if (!PTy) 1007 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 1008 unsigned AddrSpace = PTy->getAddressSpace(); 1009 1010 if (IsAlias) { 1011 if (!PTy->isOpaqueOrPointeeTypeMatches(Ty)) 1012 return error( 1013 ExplicitTypeLoc, 1014 typeComparisonErrorMessage( 1015 "explicit pointee type doesn't match operand's pointee type", Ty, 1016 PTy->getNonOpaquePointerElementType())); 1017 } else { 1018 if (!PTy->isOpaque() && 1019 !PTy->getNonOpaquePointerElementType()->isFunctionTy()) 1020 return error(ExplicitTypeLoc, 1021 "explicit pointee type should be a function type"); 1022 } 1023 1024 GlobalValue *GVal = nullptr; 1025 1026 // See if the alias was forward referenced, if so, prepare to replace the 1027 // forward reference. 1028 if (!Name.empty()) { 1029 auto I = ForwardRefVals.find(Name); 1030 if (I != ForwardRefVals.end()) { 1031 GVal = I->second.first; 1032 ForwardRefVals.erase(Name); 1033 } else if (M->getNamedValue(Name)) { 1034 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1035 } 1036 } else { 1037 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1038 if (I != ForwardRefValIDs.end()) { 1039 GVal = I->second.first; 1040 ForwardRefValIDs.erase(I); 1041 } 1042 } 1043 1044 // Okay, create the alias/ifunc but do not insert it into the module yet. 1045 std::unique_ptr<GlobalAlias> GA; 1046 std::unique_ptr<GlobalIFunc> GI; 1047 GlobalValue *GV; 1048 if (IsAlias) { 1049 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1050 (GlobalValue::LinkageTypes)Linkage, Name, 1051 Aliasee, /*Parent*/ nullptr)); 1052 GV = GA.get(); 1053 } else { 1054 GI.reset(GlobalIFunc::create(Ty, AddrSpace, 1055 (GlobalValue::LinkageTypes)Linkage, Name, 1056 Aliasee, /*Parent*/ nullptr)); 1057 GV = GI.get(); 1058 } 1059 GV->setThreadLocalMode(TLM); 1060 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1061 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1062 GV->setUnnamedAddr(UnnamedAddr); 1063 maybeSetDSOLocal(DSOLocal, *GV); 1064 1065 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1066 // Now parse them if there are any. 1067 while (Lex.getKind() == lltok::comma) { 1068 Lex.Lex(); 1069 1070 if (Lex.getKind() == lltok::kw_partition) { 1071 Lex.Lex(); 1072 GV->setPartition(Lex.getStrVal()); 1073 if (parseToken(lltok::StringConstant, "expected partition string")) 1074 return true; 1075 } else { 1076 return tokError("unknown alias or ifunc property!"); 1077 } 1078 } 1079 1080 if (Name.empty()) 1081 NumberedVals.push_back(GV); 1082 1083 if (GVal) { 1084 // Verify that types agree. 1085 if (GVal->getType() != GV->getType()) 1086 return error( 1087 ExplicitTypeLoc, 1088 "forward reference and definition of alias have different types"); 1089 1090 // If they agree, just RAUW the old value with the alias and remove the 1091 // forward ref info. 1092 GVal->replaceAllUsesWith(GV); 1093 GVal->eraseFromParent(); 1094 } 1095 1096 // Insert into the module, we know its name won't collide now. 1097 if (IsAlias) 1098 M->getAliasList().push_back(GA.release()); 1099 else 1100 M->getIFuncList().push_back(GI.release()); 1101 assert(GV->getName() == Name && "Should not be a name conflict!"); 1102 1103 return false; 1104 } 1105 1106 static bool isSanitizer(lltok::Kind Kind) { 1107 switch (Kind) { 1108 case lltok::kw_no_sanitize_address: 1109 case lltok::kw_no_sanitize_hwaddress: 1110 case lltok::kw_no_sanitize_memtag: 1111 case lltok::kw_sanitize_address_dyninit: 1112 return true; 1113 default: 1114 return false; 1115 } 1116 } 1117 1118 bool LLParser::parseSanitizer(GlobalVariable *GV) { 1119 using SanitizerMetadata = GlobalValue::SanitizerMetadata; 1120 SanitizerMetadata Meta; 1121 if (GV->hasSanitizerMetadata()) 1122 Meta = GV->getSanitizerMetadata(); 1123 1124 switch (Lex.getKind()) { 1125 case lltok::kw_no_sanitize_address: 1126 Meta.NoAddress = true; 1127 break; 1128 case lltok::kw_no_sanitize_hwaddress: 1129 Meta.NoHWAddress = true; 1130 break; 1131 case lltok::kw_no_sanitize_memtag: 1132 Meta.NoMemtag = true; 1133 break; 1134 case lltok::kw_sanitize_address_dyninit: 1135 Meta.IsDynInit = true; 1136 break; 1137 default: 1138 return tokError("non-sanitizer token passed to LLParser::parseSanitizer()"); 1139 } 1140 GV->setSanitizerMetadata(Meta); 1141 Lex.Lex(); 1142 return false; 1143 } 1144 1145 /// parseGlobal 1146 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1147 /// OptionalVisibility OptionalDLLStorageClass 1148 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1149 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1150 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1151 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1152 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1153 /// Const OptionalAttrs 1154 /// 1155 /// Everything up to and including OptionalUnnamedAddr has been parsed 1156 /// already. 1157 /// 1158 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1159 unsigned Linkage, bool HasLinkage, 1160 unsigned Visibility, unsigned DLLStorageClass, 1161 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1162 GlobalVariable::UnnamedAddr UnnamedAddr) { 1163 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1164 return error(NameLoc, 1165 "symbol with local linkage must have default visibility"); 1166 1167 unsigned AddrSpace; 1168 bool IsConstant, IsExternallyInitialized; 1169 LocTy IsExternallyInitializedLoc; 1170 LocTy TyLoc; 1171 1172 Type *Ty = nullptr; 1173 if (parseOptionalAddrSpace(AddrSpace) || 1174 parseOptionalToken(lltok::kw_externally_initialized, 1175 IsExternallyInitialized, 1176 &IsExternallyInitializedLoc) || 1177 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1178 return true; 1179 1180 // If the linkage is specified and is external, then no initializer is 1181 // present. 1182 Constant *Init = nullptr; 1183 if (!HasLinkage || 1184 !GlobalValue::isValidDeclarationLinkage( 1185 (GlobalValue::LinkageTypes)Linkage)) { 1186 if (parseGlobalValue(Ty, Init)) 1187 return true; 1188 } 1189 1190 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1191 return error(TyLoc, "invalid type for global variable"); 1192 1193 GlobalValue *GVal = nullptr; 1194 1195 // See if the global was forward referenced, if so, use the global. 1196 if (!Name.empty()) { 1197 auto I = ForwardRefVals.find(Name); 1198 if (I != ForwardRefVals.end()) { 1199 GVal = I->second.first; 1200 ForwardRefVals.erase(I); 1201 } else if (M->getNamedValue(Name)) { 1202 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1203 } 1204 } else { 1205 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1206 if (I != ForwardRefValIDs.end()) { 1207 GVal = I->second.first; 1208 ForwardRefValIDs.erase(I); 1209 } 1210 } 1211 1212 GlobalVariable *GV = new GlobalVariable( 1213 *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr, 1214 GlobalVariable::NotThreadLocal, AddrSpace); 1215 1216 if (Name.empty()) 1217 NumberedVals.push_back(GV); 1218 1219 // Set the parsed properties on the global. 1220 if (Init) 1221 GV->setInitializer(Init); 1222 GV->setConstant(IsConstant); 1223 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1224 maybeSetDSOLocal(DSOLocal, *GV); 1225 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1226 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1227 GV->setExternallyInitialized(IsExternallyInitialized); 1228 GV->setThreadLocalMode(TLM); 1229 GV->setUnnamedAddr(UnnamedAddr); 1230 1231 if (GVal) { 1232 if (GVal->getType() != Ty->getPointerTo(AddrSpace)) 1233 return error( 1234 TyLoc, 1235 "forward reference and definition of global have different types"); 1236 1237 GVal->replaceAllUsesWith(GV); 1238 GVal->eraseFromParent(); 1239 } 1240 1241 // parse attributes on the global. 1242 while (Lex.getKind() == lltok::comma) { 1243 Lex.Lex(); 1244 1245 if (Lex.getKind() == lltok::kw_section) { 1246 Lex.Lex(); 1247 GV->setSection(Lex.getStrVal()); 1248 if (parseToken(lltok::StringConstant, "expected global section string")) 1249 return true; 1250 } else if (Lex.getKind() == lltok::kw_partition) { 1251 Lex.Lex(); 1252 GV->setPartition(Lex.getStrVal()); 1253 if (parseToken(lltok::StringConstant, "expected partition string")) 1254 return true; 1255 } else if (Lex.getKind() == lltok::kw_align) { 1256 MaybeAlign Alignment; 1257 if (parseOptionalAlignment(Alignment)) 1258 return true; 1259 GV->setAlignment(Alignment); 1260 } else if (Lex.getKind() == lltok::MetadataVar) { 1261 if (parseGlobalObjectMetadataAttachment(*GV)) 1262 return true; 1263 } else if (isSanitizer(Lex.getKind())) { 1264 if (parseSanitizer(GV)) 1265 return true; 1266 } else { 1267 Comdat *C; 1268 if (parseOptionalComdat(Name, C)) 1269 return true; 1270 if (C) 1271 GV->setComdat(C); 1272 else 1273 return tokError("unknown global variable property!"); 1274 } 1275 } 1276 1277 AttrBuilder Attrs(M->getContext()); 1278 LocTy BuiltinLoc; 1279 std::vector<unsigned> FwdRefAttrGrps; 1280 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1281 return true; 1282 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1283 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1284 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1285 } 1286 1287 return false; 1288 } 1289 1290 /// parseUnnamedAttrGrp 1291 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1292 bool LLParser::parseUnnamedAttrGrp() { 1293 assert(Lex.getKind() == lltok::kw_attributes); 1294 LocTy AttrGrpLoc = Lex.getLoc(); 1295 Lex.Lex(); 1296 1297 if (Lex.getKind() != lltok::AttrGrpID) 1298 return tokError("expected attribute group id"); 1299 1300 unsigned VarID = Lex.getUIntVal(); 1301 std::vector<unsigned> unused; 1302 LocTy BuiltinLoc; 1303 Lex.Lex(); 1304 1305 if (parseToken(lltok::equal, "expected '=' here") || 1306 parseToken(lltok::lbrace, "expected '{' here")) 1307 return true; 1308 1309 auto R = NumberedAttrBuilders.find(VarID); 1310 if (R == NumberedAttrBuilders.end()) 1311 R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first; 1312 1313 if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) || 1314 parseToken(lltok::rbrace, "expected end of attribute group")) 1315 return true; 1316 1317 if (!R->second.hasAttributes()) 1318 return error(AttrGrpLoc, "attribute group has no attributes"); 1319 1320 return false; 1321 } 1322 1323 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) { 1324 switch (Kind) { 1325 #define GET_ATTR_NAMES 1326 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ 1327 case lltok::kw_##DISPLAY_NAME: \ 1328 return Attribute::ENUM_NAME; 1329 #include "llvm/IR/Attributes.inc" 1330 default: 1331 return Attribute::None; 1332 } 1333 } 1334 1335 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B, 1336 bool InAttrGroup) { 1337 if (Attribute::isTypeAttrKind(Attr)) 1338 return parseRequiredTypeAttr(B, Lex.getKind(), Attr); 1339 1340 switch (Attr) { 1341 case Attribute::Alignment: { 1342 MaybeAlign Alignment; 1343 if (InAttrGroup) { 1344 uint32_t Value = 0; 1345 Lex.Lex(); 1346 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1347 return true; 1348 Alignment = Align(Value); 1349 } else { 1350 if (parseOptionalAlignment(Alignment, true)) 1351 return true; 1352 } 1353 B.addAlignmentAttr(Alignment); 1354 return false; 1355 } 1356 case Attribute::StackAlignment: { 1357 unsigned Alignment; 1358 if (InAttrGroup) { 1359 Lex.Lex(); 1360 if (parseToken(lltok::equal, "expected '=' here") || 1361 parseUInt32(Alignment)) 1362 return true; 1363 } else { 1364 if (parseOptionalStackAlignment(Alignment)) 1365 return true; 1366 } 1367 B.addStackAlignmentAttr(Alignment); 1368 return false; 1369 } 1370 case Attribute::AllocSize: { 1371 unsigned ElemSizeArg; 1372 Optional<unsigned> NumElemsArg; 1373 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1374 return true; 1375 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1376 return false; 1377 } 1378 case Attribute::VScaleRange: { 1379 unsigned MinValue, MaxValue; 1380 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1381 return true; 1382 B.addVScaleRangeAttr(MinValue, 1383 MaxValue > 0 ? MaxValue : Optional<unsigned>()); 1384 return false; 1385 } 1386 case Attribute::Dereferenceable: { 1387 uint64_t Bytes; 1388 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1389 return true; 1390 B.addDereferenceableAttr(Bytes); 1391 return false; 1392 } 1393 case Attribute::DereferenceableOrNull: { 1394 uint64_t Bytes; 1395 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1396 return true; 1397 B.addDereferenceableOrNullAttr(Bytes); 1398 return false; 1399 } 1400 case Attribute::UWTable: { 1401 UWTableKind Kind; 1402 if (parseOptionalUWTableKind(Kind)) 1403 return true; 1404 B.addUWTableAttr(Kind); 1405 return false; 1406 } 1407 case Attribute::AllocKind: { 1408 AllocFnKind Kind = AllocFnKind::Unknown; 1409 if (parseAllocKind(Kind)) 1410 return true; 1411 B.addAllocKindAttr(Kind); 1412 return false; 1413 } 1414 default: 1415 B.addAttribute(Attr); 1416 Lex.Lex(); 1417 return false; 1418 } 1419 } 1420 1421 /// parseFnAttributeValuePairs 1422 /// ::= <attr> | <attr> '=' <value> 1423 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1424 std::vector<unsigned> &FwdRefAttrGrps, 1425 bool InAttrGrp, LocTy &BuiltinLoc) { 1426 bool HaveError = false; 1427 1428 B.clear(); 1429 1430 while (true) { 1431 lltok::Kind Token = Lex.getKind(); 1432 if (Token == lltok::rbrace) 1433 return HaveError; // Finished. 1434 1435 if (Token == lltok::StringConstant) { 1436 if (parseStringAttribute(B)) 1437 return true; 1438 continue; 1439 } 1440 1441 if (Token == lltok::AttrGrpID) { 1442 // Allow a function to reference an attribute group: 1443 // 1444 // define void @foo() #1 { ... } 1445 if (InAttrGrp) { 1446 HaveError |= error( 1447 Lex.getLoc(), 1448 "cannot have an attribute group reference in an attribute group"); 1449 } else { 1450 // Save the reference to the attribute group. We'll fill it in later. 1451 FwdRefAttrGrps.push_back(Lex.getUIntVal()); 1452 } 1453 Lex.Lex(); 1454 continue; 1455 } 1456 1457 SMLoc Loc = Lex.getLoc(); 1458 if (Token == lltok::kw_builtin) 1459 BuiltinLoc = Loc; 1460 1461 Attribute::AttrKind Attr = tokenToAttribute(Token); 1462 if (Attr == Attribute::None) { 1463 if (!InAttrGrp) 1464 return HaveError; 1465 return error(Lex.getLoc(), "unterminated attribute group"); 1466 } 1467 1468 if (parseEnumAttribute(Attr, B, InAttrGrp)) 1469 return true; 1470 1471 // As a hack, we allow function alignment to be initially parsed as an 1472 // attribute on a function declaration/definition or added to an attribute 1473 // group and later moved to the alignment field. 1474 if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment) 1475 HaveError |= error(Loc, "this attribute does not apply to functions"); 1476 } 1477 } 1478 1479 //===----------------------------------------------------------------------===// 1480 // GlobalValue Reference/Resolution Routines. 1481 //===----------------------------------------------------------------------===// 1482 1483 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) { 1484 // For opaque pointers, the used global type does not matter. We will later 1485 // RAUW it with a global/function of the correct type. 1486 if (PTy->isOpaque()) 1487 return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false, 1488 GlobalValue::ExternalWeakLinkage, nullptr, "", 1489 nullptr, GlobalVariable::NotThreadLocal, 1490 PTy->getAddressSpace()); 1491 1492 Type *ElemTy = PTy->getNonOpaquePointerElementType(); 1493 if (auto *FT = dyn_cast<FunctionType>(ElemTy)) 1494 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1495 PTy->getAddressSpace(), "", M); 1496 else 1497 return new GlobalVariable( 1498 *M, ElemTy, false, GlobalValue::ExternalWeakLinkage, nullptr, "", 1499 nullptr, GlobalVariable::NotThreadLocal, PTy->getAddressSpace()); 1500 } 1501 1502 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1503 Value *Val) { 1504 Type *ValTy = Val->getType(); 1505 if (ValTy == Ty) 1506 return Val; 1507 if (Ty->isLabelTy()) 1508 error(Loc, "'" + Name + "' is not a basic block"); 1509 else 1510 error(Loc, "'" + Name + "' defined with type '" + 1511 getTypeString(Val->getType()) + "' but expected '" + 1512 getTypeString(Ty) + "'"); 1513 return nullptr; 1514 } 1515 1516 /// getGlobalVal - Get a value with the specified name or ID, creating a 1517 /// forward reference record if needed. This can return null if the value 1518 /// exists but does not have the right type. 1519 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1520 LocTy Loc) { 1521 PointerType *PTy = dyn_cast<PointerType>(Ty); 1522 if (!PTy) { 1523 error(Loc, "global variable reference must have pointer type"); 1524 return nullptr; 1525 } 1526 1527 // Look this name up in the normal function symbol table. 1528 GlobalValue *Val = 1529 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1530 1531 // If this is a forward reference for the value, see if we already created a 1532 // forward ref record. 1533 if (!Val) { 1534 auto I = ForwardRefVals.find(Name); 1535 if (I != ForwardRefVals.end()) 1536 Val = I->second.first; 1537 } 1538 1539 // If we have the value in the symbol table or fwd-ref table, return it. 1540 if (Val) 1541 return cast_or_null<GlobalValue>( 1542 checkValidVariableType(Loc, "@" + Name, Ty, Val)); 1543 1544 // Otherwise, create a new forward reference for this value and remember it. 1545 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1546 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1547 return FwdVal; 1548 } 1549 1550 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1551 PointerType *PTy = dyn_cast<PointerType>(Ty); 1552 if (!PTy) { 1553 error(Loc, "global variable reference must have pointer type"); 1554 return nullptr; 1555 } 1556 1557 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1558 1559 // If this is a forward reference for the value, see if we already created a 1560 // forward ref record. 1561 if (!Val) { 1562 auto I = ForwardRefValIDs.find(ID); 1563 if (I != ForwardRefValIDs.end()) 1564 Val = I->second.first; 1565 } 1566 1567 // If we have the value in the symbol table or fwd-ref table, return it. 1568 if (Val) 1569 return cast_or_null<GlobalValue>( 1570 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val)); 1571 1572 // Otherwise, create a new forward reference for this value and remember it. 1573 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1574 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1575 return FwdVal; 1576 } 1577 1578 //===----------------------------------------------------------------------===// 1579 // Comdat Reference/Resolution Routines. 1580 //===----------------------------------------------------------------------===// 1581 1582 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1583 // Look this name up in the comdat symbol table. 1584 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1585 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1586 if (I != ComdatSymTab.end()) 1587 return &I->second; 1588 1589 // Otherwise, create a new forward reference for this value and remember it. 1590 Comdat *C = M->getOrInsertComdat(Name); 1591 ForwardRefComdats[Name] = Loc; 1592 return C; 1593 } 1594 1595 //===----------------------------------------------------------------------===// 1596 // Helper Routines. 1597 //===----------------------------------------------------------------------===// 1598 1599 /// parseToken - If the current token has the specified kind, eat it and return 1600 /// success. Otherwise, emit the specified error and return failure. 1601 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1602 if (Lex.getKind() != T) 1603 return tokError(ErrMsg); 1604 Lex.Lex(); 1605 return false; 1606 } 1607 1608 /// parseStringConstant 1609 /// ::= StringConstant 1610 bool LLParser::parseStringConstant(std::string &Result) { 1611 if (Lex.getKind() != lltok::StringConstant) 1612 return tokError("expected string constant"); 1613 Result = Lex.getStrVal(); 1614 Lex.Lex(); 1615 return false; 1616 } 1617 1618 /// parseUInt32 1619 /// ::= uint32 1620 bool LLParser::parseUInt32(uint32_t &Val) { 1621 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1622 return tokError("expected integer"); 1623 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1624 if (Val64 != unsigned(Val64)) 1625 return tokError("expected 32-bit integer (too large)"); 1626 Val = Val64; 1627 Lex.Lex(); 1628 return false; 1629 } 1630 1631 /// parseUInt64 1632 /// ::= uint64 1633 bool LLParser::parseUInt64(uint64_t &Val) { 1634 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1635 return tokError("expected integer"); 1636 Val = Lex.getAPSIntVal().getLimitedValue(); 1637 Lex.Lex(); 1638 return false; 1639 } 1640 1641 /// parseTLSModel 1642 /// := 'localdynamic' 1643 /// := 'initialexec' 1644 /// := 'localexec' 1645 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1646 switch (Lex.getKind()) { 1647 default: 1648 return tokError("expected localdynamic, initialexec or localexec"); 1649 case lltok::kw_localdynamic: 1650 TLM = GlobalVariable::LocalDynamicTLSModel; 1651 break; 1652 case lltok::kw_initialexec: 1653 TLM = GlobalVariable::InitialExecTLSModel; 1654 break; 1655 case lltok::kw_localexec: 1656 TLM = GlobalVariable::LocalExecTLSModel; 1657 break; 1658 } 1659 1660 Lex.Lex(); 1661 return false; 1662 } 1663 1664 /// parseOptionalThreadLocal 1665 /// := /*empty*/ 1666 /// := 'thread_local' 1667 /// := 'thread_local' '(' tlsmodel ')' 1668 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1669 TLM = GlobalVariable::NotThreadLocal; 1670 if (!EatIfPresent(lltok::kw_thread_local)) 1671 return false; 1672 1673 TLM = GlobalVariable::GeneralDynamicTLSModel; 1674 if (Lex.getKind() == lltok::lparen) { 1675 Lex.Lex(); 1676 return parseTLSModel(TLM) || 1677 parseToken(lltok::rparen, "expected ')' after thread local model"); 1678 } 1679 return false; 1680 } 1681 1682 /// parseOptionalAddrSpace 1683 /// := /*empty*/ 1684 /// := 'addrspace' '(' uint32 ')' 1685 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1686 AddrSpace = DefaultAS; 1687 if (!EatIfPresent(lltok::kw_addrspace)) 1688 return false; 1689 return parseToken(lltok::lparen, "expected '(' in address space") || 1690 parseUInt32(AddrSpace) || 1691 parseToken(lltok::rparen, "expected ')' in address space"); 1692 } 1693 1694 /// parseStringAttribute 1695 /// := StringConstant 1696 /// := StringConstant '=' StringConstant 1697 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1698 std::string Attr = Lex.getStrVal(); 1699 Lex.Lex(); 1700 std::string Val; 1701 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1702 return true; 1703 B.addAttribute(Attr, Val); 1704 return false; 1705 } 1706 1707 /// Parse a potentially empty list of parameter or return attributes. 1708 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) { 1709 bool HaveError = false; 1710 1711 B.clear(); 1712 1713 while (true) { 1714 lltok::Kind Token = Lex.getKind(); 1715 if (Token == lltok::StringConstant) { 1716 if (parseStringAttribute(B)) 1717 return true; 1718 continue; 1719 } 1720 1721 SMLoc Loc = Lex.getLoc(); 1722 Attribute::AttrKind Attr = tokenToAttribute(Token); 1723 if (Attr == Attribute::None) 1724 return HaveError; 1725 1726 if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false)) 1727 return true; 1728 1729 if (IsParam && !Attribute::canUseAsParamAttr(Attr)) 1730 HaveError |= error(Loc, "this attribute does not apply to parameters"); 1731 if (!IsParam && !Attribute::canUseAsRetAttr(Attr)) 1732 HaveError |= error(Loc, "this attribute does not apply to return values"); 1733 } 1734 } 1735 1736 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1737 HasLinkage = true; 1738 switch (Kind) { 1739 default: 1740 HasLinkage = false; 1741 return GlobalValue::ExternalLinkage; 1742 case lltok::kw_private: 1743 return GlobalValue::PrivateLinkage; 1744 case lltok::kw_internal: 1745 return GlobalValue::InternalLinkage; 1746 case lltok::kw_weak: 1747 return GlobalValue::WeakAnyLinkage; 1748 case lltok::kw_weak_odr: 1749 return GlobalValue::WeakODRLinkage; 1750 case lltok::kw_linkonce: 1751 return GlobalValue::LinkOnceAnyLinkage; 1752 case lltok::kw_linkonce_odr: 1753 return GlobalValue::LinkOnceODRLinkage; 1754 case lltok::kw_available_externally: 1755 return GlobalValue::AvailableExternallyLinkage; 1756 case lltok::kw_appending: 1757 return GlobalValue::AppendingLinkage; 1758 case lltok::kw_common: 1759 return GlobalValue::CommonLinkage; 1760 case lltok::kw_extern_weak: 1761 return GlobalValue::ExternalWeakLinkage; 1762 case lltok::kw_external: 1763 return GlobalValue::ExternalLinkage; 1764 } 1765 } 1766 1767 /// parseOptionalLinkage 1768 /// ::= /*empty*/ 1769 /// ::= 'private' 1770 /// ::= 'internal' 1771 /// ::= 'weak' 1772 /// ::= 'weak_odr' 1773 /// ::= 'linkonce' 1774 /// ::= 'linkonce_odr' 1775 /// ::= 'available_externally' 1776 /// ::= 'appending' 1777 /// ::= 'common' 1778 /// ::= 'extern_weak' 1779 /// ::= 'external' 1780 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1781 unsigned &Visibility, 1782 unsigned &DLLStorageClass, bool &DSOLocal) { 1783 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1784 if (HasLinkage) 1785 Lex.Lex(); 1786 parseOptionalDSOLocal(DSOLocal); 1787 parseOptionalVisibility(Visibility); 1788 parseOptionalDLLStorageClass(DLLStorageClass); 1789 1790 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1791 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1792 } 1793 1794 return false; 1795 } 1796 1797 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 1798 switch (Lex.getKind()) { 1799 default: 1800 DSOLocal = false; 1801 break; 1802 case lltok::kw_dso_local: 1803 DSOLocal = true; 1804 Lex.Lex(); 1805 break; 1806 case lltok::kw_dso_preemptable: 1807 DSOLocal = false; 1808 Lex.Lex(); 1809 break; 1810 } 1811 } 1812 1813 /// parseOptionalVisibility 1814 /// ::= /*empty*/ 1815 /// ::= 'default' 1816 /// ::= 'hidden' 1817 /// ::= 'protected' 1818 /// 1819 void LLParser::parseOptionalVisibility(unsigned &Res) { 1820 switch (Lex.getKind()) { 1821 default: 1822 Res = GlobalValue::DefaultVisibility; 1823 return; 1824 case lltok::kw_default: 1825 Res = GlobalValue::DefaultVisibility; 1826 break; 1827 case lltok::kw_hidden: 1828 Res = GlobalValue::HiddenVisibility; 1829 break; 1830 case lltok::kw_protected: 1831 Res = GlobalValue::ProtectedVisibility; 1832 break; 1833 } 1834 Lex.Lex(); 1835 } 1836 1837 /// parseOptionalDLLStorageClass 1838 /// ::= /*empty*/ 1839 /// ::= 'dllimport' 1840 /// ::= 'dllexport' 1841 /// 1842 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 1843 switch (Lex.getKind()) { 1844 default: 1845 Res = GlobalValue::DefaultStorageClass; 1846 return; 1847 case lltok::kw_dllimport: 1848 Res = GlobalValue::DLLImportStorageClass; 1849 break; 1850 case lltok::kw_dllexport: 1851 Res = GlobalValue::DLLExportStorageClass; 1852 break; 1853 } 1854 Lex.Lex(); 1855 } 1856 1857 /// parseOptionalCallingConv 1858 /// ::= /*empty*/ 1859 /// ::= 'ccc' 1860 /// ::= 'fastcc' 1861 /// ::= 'intel_ocl_bicc' 1862 /// ::= 'coldcc' 1863 /// ::= 'cfguard_checkcc' 1864 /// ::= 'x86_stdcallcc' 1865 /// ::= 'x86_fastcallcc' 1866 /// ::= 'x86_thiscallcc' 1867 /// ::= 'x86_vectorcallcc' 1868 /// ::= 'arm_apcscc' 1869 /// ::= 'arm_aapcscc' 1870 /// ::= 'arm_aapcs_vfpcc' 1871 /// ::= 'aarch64_vector_pcs' 1872 /// ::= 'aarch64_sve_vector_pcs' 1873 /// ::= 'msp430_intrcc' 1874 /// ::= 'avr_intrcc' 1875 /// ::= 'avr_signalcc' 1876 /// ::= 'ptx_kernel' 1877 /// ::= 'ptx_device' 1878 /// ::= 'spir_func' 1879 /// ::= 'spir_kernel' 1880 /// ::= 'x86_64_sysvcc' 1881 /// ::= 'win64cc' 1882 /// ::= 'webkit_jscc' 1883 /// ::= 'anyregcc' 1884 /// ::= 'preserve_mostcc' 1885 /// ::= 'preserve_allcc' 1886 /// ::= 'ghccc' 1887 /// ::= 'swiftcc' 1888 /// ::= 'swifttailcc' 1889 /// ::= 'x86_intrcc' 1890 /// ::= 'hhvmcc' 1891 /// ::= 'hhvm_ccc' 1892 /// ::= 'cxx_fast_tlscc' 1893 /// ::= 'amdgpu_vs' 1894 /// ::= 'amdgpu_ls' 1895 /// ::= 'amdgpu_hs' 1896 /// ::= 'amdgpu_es' 1897 /// ::= 'amdgpu_gs' 1898 /// ::= 'amdgpu_ps' 1899 /// ::= 'amdgpu_cs' 1900 /// ::= 'amdgpu_kernel' 1901 /// ::= 'tailcc' 1902 /// ::= 'cc' UINT 1903 /// 1904 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 1905 switch (Lex.getKind()) { 1906 default: CC = CallingConv::C; return false; 1907 case lltok::kw_ccc: CC = CallingConv::C; break; 1908 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1909 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1910 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 1911 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1912 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1913 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1914 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1915 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1916 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1917 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1918 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1919 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1920 case lltok::kw_aarch64_sve_vector_pcs: 1921 CC = CallingConv::AArch64_SVE_VectorCall; 1922 break; 1923 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1924 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1925 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1926 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1927 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1928 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1929 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1930 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1931 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1932 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1933 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1934 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1935 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1936 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1937 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1938 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1939 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; 1940 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1941 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1942 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1943 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1944 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1945 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 1946 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1947 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1948 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1949 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1950 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1951 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1952 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1953 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 1954 case lltok::kw_cc: { 1955 Lex.Lex(); 1956 return parseUInt32(CC); 1957 } 1958 } 1959 1960 Lex.Lex(); 1961 return false; 1962 } 1963 1964 /// parseMetadataAttachment 1965 /// ::= !dbg !42 1966 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1967 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1968 1969 std::string Name = Lex.getStrVal(); 1970 Kind = M->getMDKindID(Name); 1971 Lex.Lex(); 1972 1973 return parseMDNode(MD); 1974 } 1975 1976 /// parseInstructionMetadata 1977 /// ::= !dbg !42 (',' !dbg !57)* 1978 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 1979 do { 1980 if (Lex.getKind() != lltok::MetadataVar) 1981 return tokError("expected metadata after comma"); 1982 1983 unsigned MDK; 1984 MDNode *N; 1985 if (parseMetadataAttachment(MDK, N)) 1986 return true; 1987 1988 Inst.setMetadata(MDK, N); 1989 if (MDK == LLVMContext::MD_tbaa) 1990 InstsWithTBAATag.push_back(&Inst); 1991 1992 // If this is the end of the list, we're done. 1993 } while (EatIfPresent(lltok::comma)); 1994 return false; 1995 } 1996 1997 /// parseGlobalObjectMetadataAttachment 1998 /// ::= !dbg !57 1999 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2000 unsigned MDK; 2001 MDNode *N; 2002 if (parseMetadataAttachment(MDK, N)) 2003 return true; 2004 2005 GO.addMetadata(MDK, *N); 2006 return false; 2007 } 2008 2009 /// parseOptionalFunctionMetadata 2010 /// ::= (!dbg !57)* 2011 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 2012 while (Lex.getKind() == lltok::MetadataVar) 2013 if (parseGlobalObjectMetadataAttachment(F)) 2014 return true; 2015 return false; 2016 } 2017 2018 /// parseOptionalAlignment 2019 /// ::= /* empty */ 2020 /// ::= 'align' 4 2021 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 2022 Alignment = None; 2023 if (!EatIfPresent(lltok::kw_align)) 2024 return false; 2025 LocTy AlignLoc = Lex.getLoc(); 2026 uint64_t Value = 0; 2027 2028 LocTy ParenLoc = Lex.getLoc(); 2029 bool HaveParens = false; 2030 if (AllowParens) { 2031 if (EatIfPresent(lltok::lparen)) 2032 HaveParens = true; 2033 } 2034 2035 if (parseUInt64(Value)) 2036 return true; 2037 2038 if (HaveParens && !EatIfPresent(lltok::rparen)) 2039 return error(ParenLoc, "expected ')'"); 2040 2041 if (!isPowerOf2_64(Value)) 2042 return error(AlignLoc, "alignment is not a power of two"); 2043 if (Value > Value::MaximumAlignment) 2044 return error(AlignLoc, "huge alignments are not supported yet"); 2045 Alignment = Align(Value); 2046 return false; 2047 } 2048 2049 /// parseOptionalDerefAttrBytes 2050 /// ::= /* empty */ 2051 /// ::= AttrKind '(' 4 ')' 2052 /// 2053 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2054 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2055 uint64_t &Bytes) { 2056 assert((AttrKind == lltok::kw_dereferenceable || 2057 AttrKind == lltok::kw_dereferenceable_or_null) && 2058 "contract!"); 2059 2060 Bytes = 0; 2061 if (!EatIfPresent(AttrKind)) 2062 return false; 2063 LocTy ParenLoc = Lex.getLoc(); 2064 if (!EatIfPresent(lltok::lparen)) 2065 return error(ParenLoc, "expected '('"); 2066 LocTy DerefLoc = Lex.getLoc(); 2067 if (parseUInt64(Bytes)) 2068 return true; 2069 ParenLoc = Lex.getLoc(); 2070 if (!EatIfPresent(lltok::rparen)) 2071 return error(ParenLoc, "expected ')'"); 2072 if (!Bytes) 2073 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 2074 return false; 2075 } 2076 2077 bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) { 2078 Lex.Lex(); 2079 Kind = UWTableKind::Default; 2080 if (!EatIfPresent(lltok::lparen)) 2081 return false; 2082 LocTy KindLoc = Lex.getLoc(); 2083 if (Lex.getKind() == lltok::kw_sync) 2084 Kind = UWTableKind::Sync; 2085 else if (Lex.getKind() == lltok::kw_async) 2086 Kind = UWTableKind::Async; 2087 else 2088 return error(KindLoc, "expected unwind table kind"); 2089 Lex.Lex(); 2090 return parseToken(lltok::rparen, "expected ')'"); 2091 } 2092 2093 bool LLParser::parseAllocKind(AllocFnKind &Kind) { 2094 Lex.Lex(); 2095 LocTy ParenLoc = Lex.getLoc(); 2096 if (!EatIfPresent(lltok::lparen)) 2097 return error(ParenLoc, "expected '('"); 2098 LocTy KindLoc = Lex.getLoc(); 2099 std::string Arg; 2100 if (parseStringConstant(Arg)) 2101 return error(KindLoc, "expected allockind value"); 2102 for (StringRef A : llvm::split(Arg, ",")) { 2103 if (A == "alloc") { 2104 Kind |= AllocFnKind::Alloc; 2105 } else if (A == "realloc") { 2106 Kind |= AllocFnKind::Realloc; 2107 } else if (A == "free") { 2108 Kind |= AllocFnKind::Free; 2109 } else if (A == "uninitialized") { 2110 Kind |= AllocFnKind::Uninitialized; 2111 } else if (A == "zeroed") { 2112 Kind |= AllocFnKind::Zeroed; 2113 } else if (A == "aligned") { 2114 Kind |= AllocFnKind::Aligned; 2115 } else { 2116 return error(KindLoc, Twine("unknown allockind ") + A); 2117 } 2118 } 2119 ParenLoc = Lex.getLoc(); 2120 if (!EatIfPresent(lltok::rparen)) 2121 return error(ParenLoc, "expected ')'"); 2122 if (Kind == AllocFnKind::Unknown) 2123 return error(KindLoc, "expected allockind value"); 2124 return false; 2125 } 2126 2127 /// parseOptionalCommaAlign 2128 /// ::= 2129 /// ::= ',' align 4 2130 /// 2131 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2132 /// end. 2133 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 2134 bool &AteExtraComma) { 2135 AteExtraComma = false; 2136 while (EatIfPresent(lltok::comma)) { 2137 // Metadata at the end is an early exit. 2138 if (Lex.getKind() == lltok::MetadataVar) { 2139 AteExtraComma = true; 2140 return false; 2141 } 2142 2143 if (Lex.getKind() != lltok::kw_align) 2144 return error(Lex.getLoc(), "expected metadata or 'align'"); 2145 2146 if (parseOptionalAlignment(Alignment)) 2147 return true; 2148 } 2149 2150 return false; 2151 } 2152 2153 /// parseOptionalCommaAddrSpace 2154 /// ::= 2155 /// ::= ',' addrspace(1) 2156 /// 2157 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2158 /// end. 2159 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2160 bool &AteExtraComma) { 2161 AteExtraComma = false; 2162 while (EatIfPresent(lltok::comma)) { 2163 // Metadata at the end is an early exit. 2164 if (Lex.getKind() == lltok::MetadataVar) { 2165 AteExtraComma = true; 2166 return false; 2167 } 2168 2169 Loc = Lex.getLoc(); 2170 if (Lex.getKind() != lltok::kw_addrspace) 2171 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2172 2173 if (parseOptionalAddrSpace(AddrSpace)) 2174 return true; 2175 } 2176 2177 return false; 2178 } 2179 2180 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2181 Optional<unsigned> &HowManyArg) { 2182 Lex.Lex(); 2183 2184 auto StartParen = Lex.getLoc(); 2185 if (!EatIfPresent(lltok::lparen)) 2186 return error(StartParen, "expected '('"); 2187 2188 if (parseUInt32(BaseSizeArg)) 2189 return true; 2190 2191 if (EatIfPresent(lltok::comma)) { 2192 auto HowManyAt = Lex.getLoc(); 2193 unsigned HowMany; 2194 if (parseUInt32(HowMany)) 2195 return true; 2196 if (HowMany == BaseSizeArg) 2197 return error(HowManyAt, 2198 "'allocsize' indices can't refer to the same parameter"); 2199 HowManyArg = HowMany; 2200 } else 2201 HowManyArg = None; 2202 2203 auto EndParen = Lex.getLoc(); 2204 if (!EatIfPresent(lltok::rparen)) 2205 return error(EndParen, "expected ')'"); 2206 return false; 2207 } 2208 2209 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2210 unsigned &MaxValue) { 2211 Lex.Lex(); 2212 2213 auto StartParen = Lex.getLoc(); 2214 if (!EatIfPresent(lltok::lparen)) 2215 return error(StartParen, "expected '('"); 2216 2217 if (parseUInt32(MinValue)) 2218 return true; 2219 2220 if (EatIfPresent(lltok::comma)) { 2221 if (parseUInt32(MaxValue)) 2222 return true; 2223 } else 2224 MaxValue = MinValue; 2225 2226 auto EndParen = Lex.getLoc(); 2227 if (!EatIfPresent(lltok::rparen)) 2228 return error(EndParen, "expected ')'"); 2229 return false; 2230 } 2231 2232 /// parseScopeAndOrdering 2233 /// if isAtomic: ::= SyncScope? AtomicOrdering 2234 /// else: ::= 2235 /// 2236 /// This sets Scope and Ordering to the parsed values. 2237 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2238 AtomicOrdering &Ordering) { 2239 if (!IsAtomic) 2240 return false; 2241 2242 return parseScope(SSID) || parseOrdering(Ordering); 2243 } 2244 2245 /// parseScope 2246 /// ::= syncscope("singlethread" | "<target scope>")? 2247 /// 2248 /// This sets synchronization scope ID to the ID of the parsed value. 2249 bool LLParser::parseScope(SyncScope::ID &SSID) { 2250 SSID = SyncScope::System; 2251 if (EatIfPresent(lltok::kw_syncscope)) { 2252 auto StartParenAt = Lex.getLoc(); 2253 if (!EatIfPresent(lltok::lparen)) 2254 return error(StartParenAt, "Expected '(' in syncscope"); 2255 2256 std::string SSN; 2257 auto SSNAt = Lex.getLoc(); 2258 if (parseStringConstant(SSN)) 2259 return error(SSNAt, "Expected synchronization scope name"); 2260 2261 auto EndParenAt = Lex.getLoc(); 2262 if (!EatIfPresent(lltok::rparen)) 2263 return error(EndParenAt, "Expected ')' in syncscope"); 2264 2265 SSID = Context.getOrInsertSyncScopeID(SSN); 2266 } 2267 2268 return false; 2269 } 2270 2271 /// parseOrdering 2272 /// ::= AtomicOrdering 2273 /// 2274 /// This sets Ordering to the parsed value. 2275 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2276 switch (Lex.getKind()) { 2277 default: 2278 return tokError("Expected ordering on atomic instruction"); 2279 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2280 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2281 // Not specified yet: 2282 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2283 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2284 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2285 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2286 case lltok::kw_seq_cst: 2287 Ordering = AtomicOrdering::SequentiallyConsistent; 2288 break; 2289 } 2290 Lex.Lex(); 2291 return false; 2292 } 2293 2294 /// parseOptionalStackAlignment 2295 /// ::= /* empty */ 2296 /// ::= 'alignstack' '(' 4 ')' 2297 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2298 Alignment = 0; 2299 if (!EatIfPresent(lltok::kw_alignstack)) 2300 return false; 2301 LocTy ParenLoc = Lex.getLoc(); 2302 if (!EatIfPresent(lltok::lparen)) 2303 return error(ParenLoc, "expected '('"); 2304 LocTy AlignLoc = Lex.getLoc(); 2305 if (parseUInt32(Alignment)) 2306 return true; 2307 ParenLoc = Lex.getLoc(); 2308 if (!EatIfPresent(lltok::rparen)) 2309 return error(ParenLoc, "expected ')'"); 2310 if (!isPowerOf2_32(Alignment)) 2311 return error(AlignLoc, "stack alignment is not a power of two"); 2312 return false; 2313 } 2314 2315 /// parseIndexList - This parses the index list for an insert/extractvalue 2316 /// instruction. This sets AteExtraComma in the case where we eat an extra 2317 /// comma at the end of the line and find that it is followed by metadata. 2318 /// Clients that don't allow metadata can call the version of this function that 2319 /// only takes one argument. 2320 /// 2321 /// parseIndexList 2322 /// ::= (',' uint32)+ 2323 /// 2324 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2325 bool &AteExtraComma) { 2326 AteExtraComma = false; 2327 2328 if (Lex.getKind() != lltok::comma) 2329 return tokError("expected ',' as start of index list"); 2330 2331 while (EatIfPresent(lltok::comma)) { 2332 if (Lex.getKind() == lltok::MetadataVar) { 2333 if (Indices.empty()) 2334 return tokError("expected index"); 2335 AteExtraComma = true; 2336 return false; 2337 } 2338 unsigned Idx = 0; 2339 if (parseUInt32(Idx)) 2340 return true; 2341 Indices.push_back(Idx); 2342 } 2343 2344 return false; 2345 } 2346 2347 //===----------------------------------------------------------------------===// 2348 // Type Parsing. 2349 //===----------------------------------------------------------------------===// 2350 2351 /// parseType - parse a type. 2352 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2353 SMLoc TypeLoc = Lex.getLoc(); 2354 switch (Lex.getKind()) { 2355 default: 2356 return tokError(Msg); 2357 case lltok::Type: 2358 // Type ::= 'float' | 'void' (etc) 2359 Result = Lex.getTyVal(); 2360 Lex.Lex(); 2361 2362 // Handle "ptr" opaque pointer type. 2363 // 2364 // Type ::= ptr ('addrspace' '(' uint32 ')')? 2365 if (Result->isOpaquePointerTy()) { 2366 unsigned AddrSpace; 2367 if (parseOptionalAddrSpace(AddrSpace)) 2368 return true; 2369 Result = PointerType::get(getContext(), AddrSpace); 2370 2371 // Give a nice error for 'ptr*'. 2372 if (Lex.getKind() == lltok::star) 2373 return tokError("ptr* is invalid - use ptr instead"); 2374 2375 // Fall through to parsing the type suffixes only if this 'ptr' is a 2376 // function return. Otherwise, return success, implicitly rejecting other 2377 // suffixes. 2378 if (Lex.getKind() != lltok::lparen) 2379 return false; 2380 } 2381 break; 2382 case lltok::lbrace: 2383 // Type ::= StructType 2384 if (parseAnonStructType(Result, false)) 2385 return true; 2386 break; 2387 case lltok::lsquare: 2388 // Type ::= '[' ... ']' 2389 Lex.Lex(); // eat the lsquare. 2390 if (parseArrayVectorType(Result, false)) 2391 return true; 2392 break; 2393 case lltok::less: // Either vector or packed struct. 2394 // Type ::= '<' ... '>' 2395 Lex.Lex(); 2396 if (Lex.getKind() == lltok::lbrace) { 2397 if (parseAnonStructType(Result, true) || 2398 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2399 return true; 2400 } else if (parseArrayVectorType(Result, true)) 2401 return true; 2402 break; 2403 case lltok::LocalVar: { 2404 // Type ::= %foo 2405 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2406 2407 // If the type hasn't been defined yet, create a forward definition and 2408 // remember where that forward def'n was seen (in case it never is defined). 2409 if (!Entry.first) { 2410 Entry.first = StructType::create(Context, Lex.getStrVal()); 2411 Entry.second = Lex.getLoc(); 2412 } 2413 Result = Entry.first; 2414 Lex.Lex(); 2415 break; 2416 } 2417 2418 case lltok::LocalVarID: { 2419 // Type ::= %4 2420 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2421 2422 // If the type hasn't been defined yet, create a forward definition and 2423 // remember where that forward def'n was seen (in case it never is defined). 2424 if (!Entry.first) { 2425 Entry.first = StructType::create(Context); 2426 Entry.second = Lex.getLoc(); 2427 } 2428 Result = Entry.first; 2429 Lex.Lex(); 2430 break; 2431 } 2432 } 2433 2434 // parse the type suffixes. 2435 while (true) { 2436 switch (Lex.getKind()) { 2437 // End of type. 2438 default: 2439 if (!AllowVoid && Result->isVoidTy()) 2440 return error(TypeLoc, "void type only allowed for function results"); 2441 return false; 2442 2443 // Type ::= Type '*' 2444 case lltok::star: 2445 if (Result->isLabelTy()) 2446 return tokError("basic block pointers are invalid"); 2447 if (Result->isVoidTy()) 2448 return tokError("pointers to void are invalid - use i8* instead"); 2449 if (!PointerType::isValidElementType(Result)) 2450 return tokError("pointer to this type is invalid"); 2451 Result = PointerType::getUnqual(Result); 2452 Lex.Lex(); 2453 break; 2454 2455 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2456 case lltok::kw_addrspace: { 2457 if (Result->isLabelTy()) 2458 return tokError("basic block pointers are invalid"); 2459 if (Result->isVoidTy()) 2460 return tokError("pointers to void are invalid; use i8* instead"); 2461 if (!PointerType::isValidElementType(Result)) 2462 return tokError("pointer to this type is invalid"); 2463 unsigned AddrSpace; 2464 if (parseOptionalAddrSpace(AddrSpace) || 2465 parseToken(lltok::star, "expected '*' in address space")) 2466 return true; 2467 2468 Result = PointerType::get(Result, AddrSpace); 2469 break; 2470 } 2471 2472 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2473 case lltok::lparen: 2474 if (parseFunctionType(Result)) 2475 return true; 2476 break; 2477 } 2478 } 2479 } 2480 2481 /// parseParameterList 2482 /// ::= '(' ')' 2483 /// ::= '(' Arg (',' Arg)* ')' 2484 /// Arg 2485 /// ::= Type OptionalAttributes Value OptionalAttributes 2486 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2487 PerFunctionState &PFS, bool IsMustTailCall, 2488 bool InVarArgsFunc) { 2489 if (parseToken(lltok::lparen, "expected '(' in call")) 2490 return true; 2491 2492 while (Lex.getKind() != lltok::rparen) { 2493 // If this isn't the first argument, we need a comma. 2494 if (!ArgList.empty() && 2495 parseToken(lltok::comma, "expected ',' in argument list")) 2496 return true; 2497 2498 // parse an ellipsis if this is a musttail call in a variadic function. 2499 if (Lex.getKind() == lltok::dotdotdot) { 2500 const char *Msg = "unexpected ellipsis in argument list for "; 2501 if (!IsMustTailCall) 2502 return tokError(Twine(Msg) + "non-musttail call"); 2503 if (!InVarArgsFunc) 2504 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2505 Lex.Lex(); // Lex the '...', it is purely for readability. 2506 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2507 } 2508 2509 // parse the argument. 2510 LocTy ArgLoc; 2511 Type *ArgTy = nullptr; 2512 Value *V; 2513 if (parseType(ArgTy, ArgLoc)) 2514 return true; 2515 2516 AttrBuilder ArgAttrs(M->getContext()); 2517 2518 if (ArgTy->isMetadataTy()) { 2519 if (parseMetadataAsValue(V, PFS)) 2520 return true; 2521 } else { 2522 // Otherwise, handle normal operands. 2523 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2524 return true; 2525 } 2526 ArgList.push_back(ParamInfo( 2527 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2528 } 2529 2530 if (IsMustTailCall && InVarArgsFunc) 2531 return tokError("expected '...' at end of argument list for musttail call " 2532 "in varargs function"); 2533 2534 Lex.Lex(); // Lex the ')'. 2535 return false; 2536 } 2537 2538 /// parseRequiredTypeAttr 2539 /// ::= attrname(<ty>) 2540 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken, 2541 Attribute::AttrKind AttrKind) { 2542 Type *Ty = nullptr; 2543 if (!EatIfPresent(AttrToken)) 2544 return true; 2545 if (!EatIfPresent(lltok::lparen)) 2546 return error(Lex.getLoc(), "expected '('"); 2547 if (parseType(Ty)) 2548 return true; 2549 if (!EatIfPresent(lltok::rparen)) 2550 return error(Lex.getLoc(), "expected ')'"); 2551 2552 B.addTypeAttr(AttrKind, Ty); 2553 return false; 2554 } 2555 2556 /// parseOptionalOperandBundles 2557 /// ::= /*empty*/ 2558 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2559 /// 2560 /// OperandBundle 2561 /// ::= bundle-tag '(' ')' 2562 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2563 /// 2564 /// bundle-tag ::= String Constant 2565 bool LLParser::parseOptionalOperandBundles( 2566 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2567 LocTy BeginLoc = Lex.getLoc(); 2568 if (!EatIfPresent(lltok::lsquare)) 2569 return false; 2570 2571 while (Lex.getKind() != lltok::rsquare) { 2572 // If this isn't the first operand bundle, we need a comma. 2573 if (!BundleList.empty() && 2574 parseToken(lltok::comma, "expected ',' in input list")) 2575 return true; 2576 2577 std::string Tag; 2578 if (parseStringConstant(Tag)) 2579 return true; 2580 2581 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2582 return true; 2583 2584 std::vector<Value *> Inputs; 2585 while (Lex.getKind() != lltok::rparen) { 2586 // If this isn't the first input, we need a comma. 2587 if (!Inputs.empty() && 2588 parseToken(lltok::comma, "expected ',' in input list")) 2589 return true; 2590 2591 Type *Ty = nullptr; 2592 Value *Input = nullptr; 2593 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2594 return true; 2595 Inputs.push_back(Input); 2596 } 2597 2598 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2599 2600 Lex.Lex(); // Lex the ')'. 2601 } 2602 2603 if (BundleList.empty()) 2604 return error(BeginLoc, "operand bundle set must not be empty"); 2605 2606 Lex.Lex(); // Lex the ']'. 2607 return false; 2608 } 2609 2610 /// parseArgumentList - parse the argument list for a function type or function 2611 /// prototype. 2612 /// ::= '(' ArgTypeListI ')' 2613 /// ArgTypeListI 2614 /// ::= /*empty*/ 2615 /// ::= '...' 2616 /// ::= ArgTypeList ',' '...' 2617 /// ::= ArgType (',' ArgType)* 2618 /// 2619 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2620 bool &IsVarArg) { 2621 unsigned CurValID = 0; 2622 IsVarArg = false; 2623 assert(Lex.getKind() == lltok::lparen); 2624 Lex.Lex(); // eat the (. 2625 2626 if (Lex.getKind() == lltok::rparen) { 2627 // empty 2628 } else if (Lex.getKind() == lltok::dotdotdot) { 2629 IsVarArg = true; 2630 Lex.Lex(); 2631 } else { 2632 LocTy TypeLoc = Lex.getLoc(); 2633 Type *ArgTy = nullptr; 2634 AttrBuilder Attrs(M->getContext()); 2635 std::string Name; 2636 2637 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2638 return true; 2639 2640 if (ArgTy->isVoidTy()) 2641 return error(TypeLoc, "argument can not have void type"); 2642 2643 if (Lex.getKind() == lltok::LocalVar) { 2644 Name = Lex.getStrVal(); 2645 Lex.Lex(); 2646 } else if (Lex.getKind() == lltok::LocalVarID) { 2647 if (Lex.getUIntVal() != CurValID) 2648 return error(TypeLoc, "argument expected to be numbered '%" + 2649 Twine(CurValID) + "'"); 2650 ++CurValID; 2651 Lex.Lex(); 2652 } 2653 2654 if (!FunctionType::isValidArgumentType(ArgTy)) 2655 return error(TypeLoc, "invalid type for function argument"); 2656 2657 ArgList.emplace_back(TypeLoc, ArgTy, 2658 AttributeSet::get(ArgTy->getContext(), Attrs), 2659 std::move(Name)); 2660 2661 while (EatIfPresent(lltok::comma)) { 2662 // Handle ... at end of arg list. 2663 if (EatIfPresent(lltok::dotdotdot)) { 2664 IsVarArg = true; 2665 break; 2666 } 2667 2668 // Otherwise must be an argument type. 2669 TypeLoc = Lex.getLoc(); 2670 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2671 return true; 2672 2673 if (ArgTy->isVoidTy()) 2674 return error(TypeLoc, "argument can not have void type"); 2675 2676 if (Lex.getKind() == lltok::LocalVar) { 2677 Name = Lex.getStrVal(); 2678 Lex.Lex(); 2679 } else { 2680 if (Lex.getKind() == lltok::LocalVarID) { 2681 if (Lex.getUIntVal() != CurValID) 2682 return error(TypeLoc, "argument expected to be numbered '%" + 2683 Twine(CurValID) + "'"); 2684 Lex.Lex(); 2685 } 2686 ++CurValID; 2687 Name = ""; 2688 } 2689 2690 if (!ArgTy->isFirstClassType()) 2691 return error(TypeLoc, "invalid type for function argument"); 2692 2693 ArgList.emplace_back(TypeLoc, ArgTy, 2694 AttributeSet::get(ArgTy->getContext(), Attrs), 2695 std::move(Name)); 2696 } 2697 } 2698 2699 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2700 } 2701 2702 /// parseFunctionType 2703 /// ::= Type ArgumentList OptionalAttrs 2704 bool LLParser::parseFunctionType(Type *&Result) { 2705 assert(Lex.getKind() == lltok::lparen); 2706 2707 if (!FunctionType::isValidReturnType(Result)) 2708 return tokError("invalid function return type"); 2709 2710 SmallVector<ArgInfo, 8> ArgList; 2711 bool IsVarArg; 2712 if (parseArgumentList(ArgList, IsVarArg)) 2713 return true; 2714 2715 // Reject names on the arguments lists. 2716 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2717 if (!ArgList[i].Name.empty()) 2718 return error(ArgList[i].Loc, "argument name invalid in function type"); 2719 if (ArgList[i].Attrs.hasAttributes()) 2720 return error(ArgList[i].Loc, 2721 "argument attributes invalid in function type"); 2722 } 2723 2724 SmallVector<Type*, 16> ArgListTy; 2725 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2726 ArgListTy.push_back(ArgList[i].Ty); 2727 2728 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2729 return false; 2730 } 2731 2732 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2733 /// other structs. 2734 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2735 SmallVector<Type*, 8> Elts; 2736 if (parseStructBody(Elts)) 2737 return true; 2738 2739 Result = StructType::get(Context, Elts, Packed); 2740 return false; 2741 } 2742 2743 /// parseStructDefinition - parse a struct in a 'type' definition. 2744 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2745 std::pair<Type *, LocTy> &Entry, 2746 Type *&ResultTy) { 2747 // If the type was already defined, diagnose the redefinition. 2748 if (Entry.first && !Entry.second.isValid()) 2749 return error(TypeLoc, "redefinition of type"); 2750 2751 // If we have opaque, just return without filling in the definition for the 2752 // struct. This counts as a definition as far as the .ll file goes. 2753 if (EatIfPresent(lltok::kw_opaque)) { 2754 // This type is being defined, so clear the location to indicate this. 2755 Entry.second = SMLoc(); 2756 2757 // If this type number has never been uttered, create it. 2758 if (!Entry.first) 2759 Entry.first = StructType::create(Context, Name); 2760 ResultTy = Entry.first; 2761 return false; 2762 } 2763 2764 // If the type starts with '<', then it is either a packed struct or a vector. 2765 bool isPacked = EatIfPresent(lltok::less); 2766 2767 // If we don't have a struct, then we have a random type alias, which we 2768 // accept for compatibility with old files. These types are not allowed to be 2769 // forward referenced and not allowed to be recursive. 2770 if (Lex.getKind() != lltok::lbrace) { 2771 if (Entry.first) 2772 return error(TypeLoc, "forward references to non-struct type"); 2773 2774 ResultTy = nullptr; 2775 if (isPacked) 2776 return parseArrayVectorType(ResultTy, true); 2777 return parseType(ResultTy); 2778 } 2779 2780 // This type is being defined, so clear the location to indicate this. 2781 Entry.second = SMLoc(); 2782 2783 // If this type number has never been uttered, create it. 2784 if (!Entry.first) 2785 Entry.first = StructType::create(Context, Name); 2786 2787 StructType *STy = cast<StructType>(Entry.first); 2788 2789 SmallVector<Type*, 8> Body; 2790 if (parseStructBody(Body) || 2791 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2792 return true; 2793 2794 STy->setBody(Body, isPacked); 2795 ResultTy = STy; 2796 return false; 2797 } 2798 2799 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2800 /// StructType 2801 /// ::= '{' '}' 2802 /// ::= '{' Type (',' Type)* '}' 2803 /// ::= '<' '{' '}' '>' 2804 /// ::= '<' '{' Type (',' Type)* '}' '>' 2805 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2806 assert(Lex.getKind() == lltok::lbrace); 2807 Lex.Lex(); // Consume the '{' 2808 2809 // Handle the empty struct. 2810 if (EatIfPresent(lltok::rbrace)) 2811 return false; 2812 2813 LocTy EltTyLoc = Lex.getLoc(); 2814 Type *Ty = nullptr; 2815 if (parseType(Ty)) 2816 return true; 2817 Body.push_back(Ty); 2818 2819 if (!StructType::isValidElementType(Ty)) 2820 return error(EltTyLoc, "invalid element type for struct"); 2821 2822 while (EatIfPresent(lltok::comma)) { 2823 EltTyLoc = Lex.getLoc(); 2824 if (parseType(Ty)) 2825 return true; 2826 2827 if (!StructType::isValidElementType(Ty)) 2828 return error(EltTyLoc, "invalid element type for struct"); 2829 2830 Body.push_back(Ty); 2831 } 2832 2833 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 2834 } 2835 2836 /// parseArrayVectorType - parse an array or vector type, assuming the first 2837 /// token has already been consumed. 2838 /// Type 2839 /// ::= '[' APSINTVAL 'x' Types ']' 2840 /// ::= '<' APSINTVAL 'x' Types '>' 2841 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2842 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 2843 bool Scalable = false; 2844 2845 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 2846 Lex.Lex(); // consume the 'vscale' 2847 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 2848 return true; 2849 2850 Scalable = true; 2851 } 2852 2853 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2854 Lex.getAPSIntVal().getBitWidth() > 64) 2855 return tokError("expected number in address space"); 2856 2857 LocTy SizeLoc = Lex.getLoc(); 2858 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2859 Lex.Lex(); 2860 2861 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 2862 return true; 2863 2864 LocTy TypeLoc = Lex.getLoc(); 2865 Type *EltTy = nullptr; 2866 if (parseType(EltTy)) 2867 return true; 2868 2869 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 2870 "expected end of sequential type")) 2871 return true; 2872 2873 if (IsVector) { 2874 if (Size == 0) 2875 return error(SizeLoc, "zero element vector is illegal"); 2876 if ((unsigned)Size != Size) 2877 return error(SizeLoc, "size too large for vector"); 2878 if (!VectorType::isValidElementType(EltTy)) 2879 return error(TypeLoc, "invalid vector element type"); 2880 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2881 } else { 2882 if (!ArrayType::isValidElementType(EltTy)) 2883 return error(TypeLoc, "invalid array element type"); 2884 Result = ArrayType::get(EltTy, Size); 2885 } 2886 return false; 2887 } 2888 2889 //===----------------------------------------------------------------------===// 2890 // Function Semantic Analysis. 2891 //===----------------------------------------------------------------------===// 2892 2893 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2894 int functionNumber) 2895 : P(p), F(f), FunctionNumber(functionNumber) { 2896 2897 // Insert unnamed arguments into the NumberedVals list. 2898 for (Argument &A : F.args()) 2899 if (!A.hasName()) 2900 NumberedVals.push_back(&A); 2901 } 2902 2903 LLParser::PerFunctionState::~PerFunctionState() { 2904 // If there were any forward referenced non-basicblock values, delete them. 2905 2906 for (const auto &P : ForwardRefVals) { 2907 if (isa<BasicBlock>(P.second.first)) 2908 continue; 2909 P.second.first->replaceAllUsesWith( 2910 UndefValue::get(P.second.first->getType())); 2911 P.second.first->deleteValue(); 2912 } 2913 2914 for (const auto &P : ForwardRefValIDs) { 2915 if (isa<BasicBlock>(P.second.first)) 2916 continue; 2917 P.second.first->replaceAllUsesWith( 2918 UndefValue::get(P.second.first->getType())); 2919 P.second.first->deleteValue(); 2920 } 2921 } 2922 2923 bool LLParser::PerFunctionState::finishFunction() { 2924 if (!ForwardRefVals.empty()) 2925 return P.error(ForwardRefVals.begin()->second.second, 2926 "use of undefined value '%" + ForwardRefVals.begin()->first + 2927 "'"); 2928 if (!ForwardRefValIDs.empty()) 2929 return P.error(ForwardRefValIDs.begin()->second.second, 2930 "use of undefined value '%" + 2931 Twine(ForwardRefValIDs.begin()->first) + "'"); 2932 return false; 2933 } 2934 2935 /// getVal - Get a value with the specified name or ID, creating a 2936 /// forward reference record if needed. This can return null if the value 2937 /// exists but does not have the right type. 2938 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 2939 LocTy Loc) { 2940 // Look this name up in the normal function symbol table. 2941 Value *Val = F.getValueSymbolTable()->lookup(Name); 2942 2943 // If this is a forward reference for the value, see if we already created a 2944 // forward ref record. 2945 if (!Val) { 2946 auto I = ForwardRefVals.find(Name); 2947 if (I != ForwardRefVals.end()) 2948 Val = I->second.first; 2949 } 2950 2951 // If we have the value in the symbol table or fwd-ref table, return it. 2952 if (Val) 2953 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val); 2954 2955 // Don't make placeholders with invalid type. 2956 if (!Ty->isFirstClassType()) { 2957 P.error(Loc, "invalid use of a non-first-class type"); 2958 return nullptr; 2959 } 2960 2961 // Otherwise, create a new forward reference for this value and remember it. 2962 Value *FwdVal; 2963 if (Ty->isLabelTy()) { 2964 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2965 } else { 2966 FwdVal = new Argument(Ty, Name); 2967 } 2968 2969 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2970 return FwdVal; 2971 } 2972 2973 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) { 2974 // Look this name up in the normal function symbol table. 2975 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2976 2977 // If this is a forward reference for the value, see if we already created a 2978 // forward ref record. 2979 if (!Val) { 2980 auto I = ForwardRefValIDs.find(ID); 2981 if (I != ForwardRefValIDs.end()) 2982 Val = I->second.first; 2983 } 2984 2985 // If we have the value in the symbol table or fwd-ref table, return it. 2986 if (Val) 2987 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val); 2988 2989 if (!Ty->isFirstClassType()) { 2990 P.error(Loc, "invalid use of a non-first-class type"); 2991 return nullptr; 2992 } 2993 2994 // Otherwise, create a new forward reference for this value and remember it. 2995 Value *FwdVal; 2996 if (Ty->isLabelTy()) { 2997 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2998 } else { 2999 FwdVal = new Argument(Ty); 3000 } 3001 3002 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 3003 return FwdVal; 3004 } 3005 3006 /// setInstName - After an instruction is parsed and inserted into its 3007 /// basic block, this installs its name. 3008 bool LLParser::PerFunctionState::setInstName(int NameID, 3009 const std::string &NameStr, 3010 LocTy NameLoc, Instruction *Inst) { 3011 // If this instruction has void type, it cannot have a name or ID specified. 3012 if (Inst->getType()->isVoidTy()) { 3013 if (NameID != -1 || !NameStr.empty()) 3014 return P.error(NameLoc, "instructions returning void cannot have a name"); 3015 return false; 3016 } 3017 3018 // If this was a numbered instruction, verify that the instruction is the 3019 // expected value and resolve any forward references. 3020 if (NameStr.empty()) { 3021 // If neither a name nor an ID was specified, just use the next ID. 3022 if (NameID == -1) 3023 NameID = NumberedVals.size(); 3024 3025 if (unsigned(NameID) != NumberedVals.size()) 3026 return P.error(NameLoc, "instruction expected to be numbered '%" + 3027 Twine(NumberedVals.size()) + "'"); 3028 3029 auto FI = ForwardRefValIDs.find(NameID); 3030 if (FI != ForwardRefValIDs.end()) { 3031 Value *Sentinel = FI->second.first; 3032 if (Sentinel->getType() != Inst->getType()) 3033 return P.error(NameLoc, "instruction forward referenced with type '" + 3034 getTypeString(FI->second.first->getType()) + 3035 "'"); 3036 3037 Sentinel->replaceAllUsesWith(Inst); 3038 Sentinel->deleteValue(); 3039 ForwardRefValIDs.erase(FI); 3040 } 3041 3042 NumberedVals.push_back(Inst); 3043 return false; 3044 } 3045 3046 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3047 auto FI = ForwardRefVals.find(NameStr); 3048 if (FI != ForwardRefVals.end()) { 3049 Value *Sentinel = FI->second.first; 3050 if (Sentinel->getType() != Inst->getType()) 3051 return P.error(NameLoc, "instruction forward referenced with type '" + 3052 getTypeString(FI->second.first->getType()) + 3053 "'"); 3054 3055 Sentinel->replaceAllUsesWith(Inst); 3056 Sentinel->deleteValue(); 3057 ForwardRefVals.erase(FI); 3058 } 3059 3060 // Set the name on the instruction. 3061 Inst->setName(NameStr); 3062 3063 if (Inst->getName() != NameStr) 3064 return P.error(NameLoc, "multiple definition of local value named '" + 3065 NameStr + "'"); 3066 return false; 3067 } 3068 3069 /// getBB - Get a basic block with the specified name or ID, creating a 3070 /// forward reference record if needed. 3071 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 3072 LocTy Loc) { 3073 return dyn_cast_or_null<BasicBlock>( 3074 getVal(Name, Type::getLabelTy(F.getContext()), Loc)); 3075 } 3076 3077 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 3078 return dyn_cast_or_null<BasicBlock>( 3079 getVal(ID, Type::getLabelTy(F.getContext()), Loc)); 3080 } 3081 3082 /// defineBB - Define the specified basic block, which is either named or 3083 /// unnamed. If there is an error, this returns null otherwise it returns 3084 /// the block being defined. 3085 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 3086 int NameID, LocTy Loc) { 3087 BasicBlock *BB; 3088 if (Name.empty()) { 3089 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3090 P.error(Loc, "label expected to be numbered '" + 3091 Twine(NumberedVals.size()) + "'"); 3092 return nullptr; 3093 } 3094 BB = getBB(NumberedVals.size(), Loc); 3095 if (!BB) { 3096 P.error(Loc, "unable to create block numbered '" + 3097 Twine(NumberedVals.size()) + "'"); 3098 return nullptr; 3099 } 3100 } else { 3101 BB = getBB(Name, Loc); 3102 if (!BB) { 3103 P.error(Loc, "unable to create block named '" + Name + "'"); 3104 return nullptr; 3105 } 3106 } 3107 3108 // Move the block to the end of the function. Forward ref'd blocks are 3109 // inserted wherever they happen to be referenced. 3110 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3111 3112 // Remove the block from forward ref sets. 3113 if (Name.empty()) { 3114 ForwardRefValIDs.erase(NumberedVals.size()); 3115 NumberedVals.push_back(BB); 3116 } else { 3117 // BB forward references are already in the function symbol table. 3118 ForwardRefVals.erase(Name); 3119 } 3120 3121 return BB; 3122 } 3123 3124 //===----------------------------------------------------------------------===// 3125 // Constants. 3126 //===----------------------------------------------------------------------===// 3127 3128 /// parseValID - parse an abstract value that doesn't necessarily have a 3129 /// type implied. For example, if we parse "4" we don't know what integer type 3130 /// it has. The value will later be combined with its type and checked for 3131 /// basic correctness. PFS is used to convert function-local operands of 3132 /// metadata (since metadata operands are not just parsed here but also 3133 /// converted to values). PFS can be null when we are not parsing metadata 3134 /// values inside a function. 3135 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) { 3136 ID.Loc = Lex.getLoc(); 3137 switch (Lex.getKind()) { 3138 default: 3139 return tokError("expected value token"); 3140 case lltok::GlobalID: // @42 3141 ID.UIntVal = Lex.getUIntVal(); 3142 ID.Kind = ValID::t_GlobalID; 3143 break; 3144 case lltok::GlobalVar: // @foo 3145 ID.StrVal = Lex.getStrVal(); 3146 ID.Kind = ValID::t_GlobalName; 3147 break; 3148 case lltok::LocalVarID: // %42 3149 ID.UIntVal = Lex.getUIntVal(); 3150 ID.Kind = ValID::t_LocalID; 3151 break; 3152 case lltok::LocalVar: // %foo 3153 ID.StrVal = Lex.getStrVal(); 3154 ID.Kind = ValID::t_LocalName; 3155 break; 3156 case lltok::APSInt: 3157 ID.APSIntVal = Lex.getAPSIntVal(); 3158 ID.Kind = ValID::t_APSInt; 3159 break; 3160 case lltok::APFloat: 3161 ID.APFloatVal = Lex.getAPFloatVal(); 3162 ID.Kind = ValID::t_APFloat; 3163 break; 3164 case lltok::kw_true: 3165 ID.ConstantVal = ConstantInt::getTrue(Context); 3166 ID.Kind = ValID::t_Constant; 3167 break; 3168 case lltok::kw_false: 3169 ID.ConstantVal = ConstantInt::getFalse(Context); 3170 ID.Kind = ValID::t_Constant; 3171 break; 3172 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3173 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3174 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3175 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3176 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3177 3178 case lltok::lbrace: { 3179 // ValID ::= '{' ConstVector '}' 3180 Lex.Lex(); 3181 SmallVector<Constant*, 16> Elts; 3182 if (parseGlobalValueVector(Elts) || 3183 parseToken(lltok::rbrace, "expected end of struct constant")) 3184 return true; 3185 3186 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3187 ID.UIntVal = Elts.size(); 3188 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3189 Elts.size() * sizeof(Elts[0])); 3190 ID.Kind = ValID::t_ConstantStruct; 3191 return false; 3192 } 3193 case lltok::less: { 3194 // ValID ::= '<' ConstVector '>' --> Vector. 3195 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3196 Lex.Lex(); 3197 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3198 3199 SmallVector<Constant*, 16> Elts; 3200 LocTy FirstEltLoc = Lex.getLoc(); 3201 if (parseGlobalValueVector(Elts) || 3202 (isPackedStruct && 3203 parseToken(lltok::rbrace, "expected end of packed struct")) || 3204 parseToken(lltok::greater, "expected end of constant")) 3205 return true; 3206 3207 if (isPackedStruct) { 3208 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3209 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3210 Elts.size() * sizeof(Elts[0])); 3211 ID.UIntVal = Elts.size(); 3212 ID.Kind = ValID::t_PackedConstantStruct; 3213 return false; 3214 } 3215 3216 if (Elts.empty()) 3217 return error(ID.Loc, "constant vector must not be empty"); 3218 3219 if (!Elts[0]->getType()->isIntegerTy() && 3220 !Elts[0]->getType()->isFloatingPointTy() && 3221 !Elts[0]->getType()->isPointerTy()) 3222 return error( 3223 FirstEltLoc, 3224 "vector elements must have integer, pointer or floating point type"); 3225 3226 // Verify that all the vector elements have the same type. 3227 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3228 if (Elts[i]->getType() != Elts[0]->getType()) 3229 return error(FirstEltLoc, "vector element #" + Twine(i) + 3230 " is not of type '" + 3231 getTypeString(Elts[0]->getType())); 3232 3233 ID.ConstantVal = ConstantVector::get(Elts); 3234 ID.Kind = ValID::t_Constant; 3235 return false; 3236 } 3237 case lltok::lsquare: { // Array Constant 3238 Lex.Lex(); 3239 SmallVector<Constant*, 16> Elts; 3240 LocTy FirstEltLoc = Lex.getLoc(); 3241 if (parseGlobalValueVector(Elts) || 3242 parseToken(lltok::rsquare, "expected end of array constant")) 3243 return true; 3244 3245 // Handle empty element. 3246 if (Elts.empty()) { 3247 // Use undef instead of an array because it's inconvenient to determine 3248 // the element type at this point, there being no elements to examine. 3249 ID.Kind = ValID::t_EmptyArray; 3250 return false; 3251 } 3252 3253 if (!Elts[0]->getType()->isFirstClassType()) 3254 return error(FirstEltLoc, "invalid array element type: " + 3255 getTypeString(Elts[0]->getType())); 3256 3257 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3258 3259 // Verify all elements are correct type! 3260 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3261 if (Elts[i]->getType() != Elts[0]->getType()) 3262 return error(FirstEltLoc, "array element #" + Twine(i) + 3263 " is not of type '" + 3264 getTypeString(Elts[0]->getType())); 3265 } 3266 3267 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3268 ID.Kind = ValID::t_Constant; 3269 return false; 3270 } 3271 case lltok::kw_c: // c "foo" 3272 Lex.Lex(); 3273 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3274 false); 3275 if (parseToken(lltok::StringConstant, "expected string")) 3276 return true; 3277 ID.Kind = ValID::t_Constant; 3278 return false; 3279 3280 case lltok::kw_asm: { 3281 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3282 // STRINGCONSTANT 3283 bool HasSideEffect, AlignStack, AsmDialect, CanThrow; 3284 Lex.Lex(); 3285 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3286 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3287 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3288 parseOptionalToken(lltok::kw_unwind, CanThrow) || 3289 parseStringConstant(ID.StrVal) || 3290 parseToken(lltok::comma, "expected comma in inline asm expression") || 3291 parseToken(lltok::StringConstant, "expected constraint string")) 3292 return true; 3293 ID.StrVal2 = Lex.getStrVal(); 3294 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | 3295 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); 3296 ID.Kind = ValID::t_InlineAsm; 3297 return false; 3298 } 3299 3300 case lltok::kw_blockaddress: { 3301 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3302 Lex.Lex(); 3303 3304 ValID Fn, Label; 3305 3306 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3307 parseValID(Fn, PFS) || 3308 parseToken(lltok::comma, 3309 "expected comma in block address expression") || 3310 parseValID(Label, PFS) || 3311 parseToken(lltok::rparen, "expected ')' in block address expression")) 3312 return true; 3313 3314 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3315 return error(Fn.Loc, "expected function name in blockaddress"); 3316 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3317 return error(Label.Loc, "expected basic block name in blockaddress"); 3318 3319 // Try to find the function (but skip it if it's forward-referenced). 3320 GlobalValue *GV = nullptr; 3321 if (Fn.Kind == ValID::t_GlobalID) { 3322 if (Fn.UIntVal < NumberedVals.size()) 3323 GV = NumberedVals[Fn.UIntVal]; 3324 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3325 GV = M->getNamedValue(Fn.StrVal); 3326 } 3327 Function *F = nullptr; 3328 if (GV) { 3329 // Confirm that it's actually a function with a definition. 3330 if (!isa<Function>(GV)) 3331 return error(Fn.Loc, "expected function name in blockaddress"); 3332 F = cast<Function>(GV); 3333 if (F->isDeclaration()) 3334 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3335 } 3336 3337 if (!F) { 3338 // Make a global variable as a placeholder for this reference. 3339 GlobalValue *&FwdRef = 3340 ForwardRefBlockAddresses.insert(std::make_pair( 3341 std::move(Fn), 3342 std::map<ValID, GlobalValue *>())) 3343 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3344 .first->second; 3345 if (!FwdRef) { 3346 unsigned FwdDeclAS; 3347 if (ExpectedTy) { 3348 // If we know the type that the blockaddress is being assigned to, 3349 // we can use the address space of that type. 3350 if (!ExpectedTy->isPointerTy()) 3351 return error(ID.Loc, 3352 "type of blockaddress must be a pointer and not '" + 3353 getTypeString(ExpectedTy) + "'"); 3354 FwdDeclAS = ExpectedTy->getPointerAddressSpace(); 3355 } else if (PFS) { 3356 // Otherwise, we default the address space of the current function. 3357 FwdDeclAS = PFS->getFunction().getAddressSpace(); 3358 } else { 3359 llvm_unreachable("Unknown address space for blockaddress"); 3360 } 3361 FwdRef = new GlobalVariable( 3362 *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage, 3363 nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS); 3364 } 3365 3366 ID.ConstantVal = FwdRef; 3367 ID.Kind = ValID::t_Constant; 3368 return false; 3369 } 3370 3371 // We found the function; now find the basic block. Don't use PFS, since we 3372 // might be inside a constant expression. 3373 BasicBlock *BB; 3374 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3375 if (Label.Kind == ValID::t_LocalID) 3376 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3377 else 3378 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3379 if (!BB) 3380 return error(Label.Loc, "referenced value is not a basic block"); 3381 } else { 3382 if (Label.Kind == ValID::t_LocalID) 3383 return error(Label.Loc, "cannot take address of numeric label after " 3384 "the function is defined"); 3385 BB = dyn_cast_or_null<BasicBlock>( 3386 F->getValueSymbolTable()->lookup(Label.StrVal)); 3387 if (!BB) 3388 return error(Label.Loc, "referenced value is not a basic block"); 3389 } 3390 3391 ID.ConstantVal = BlockAddress::get(F, BB); 3392 ID.Kind = ValID::t_Constant; 3393 return false; 3394 } 3395 3396 case lltok::kw_dso_local_equivalent: { 3397 // ValID ::= 'dso_local_equivalent' @foo 3398 Lex.Lex(); 3399 3400 ValID Fn; 3401 3402 if (parseValID(Fn, PFS)) 3403 return true; 3404 3405 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3406 return error(Fn.Loc, 3407 "expected global value name in dso_local_equivalent"); 3408 3409 // Try to find the function (but skip it if it's forward-referenced). 3410 GlobalValue *GV = nullptr; 3411 if (Fn.Kind == ValID::t_GlobalID) { 3412 if (Fn.UIntVal < NumberedVals.size()) 3413 GV = NumberedVals[Fn.UIntVal]; 3414 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3415 GV = M->getNamedValue(Fn.StrVal); 3416 } 3417 3418 assert(GV && "Could not find a corresponding global variable"); 3419 3420 if (!GV->getValueType()->isFunctionTy()) 3421 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3422 "in dso_local_equivalent"); 3423 3424 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3425 ID.Kind = ValID::t_Constant; 3426 return false; 3427 } 3428 3429 case lltok::kw_no_cfi: { 3430 // ValID ::= 'no_cfi' @foo 3431 Lex.Lex(); 3432 3433 if (parseValID(ID, PFS)) 3434 return true; 3435 3436 if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName) 3437 return error(ID.Loc, "expected global value name in no_cfi"); 3438 3439 ID.NoCFI = true; 3440 return false; 3441 } 3442 3443 case lltok::kw_trunc: 3444 case lltok::kw_zext: 3445 case lltok::kw_sext: 3446 case lltok::kw_fptrunc: 3447 case lltok::kw_fpext: 3448 case lltok::kw_bitcast: 3449 case lltok::kw_addrspacecast: 3450 case lltok::kw_uitofp: 3451 case lltok::kw_sitofp: 3452 case lltok::kw_fptoui: 3453 case lltok::kw_fptosi: 3454 case lltok::kw_inttoptr: 3455 case lltok::kw_ptrtoint: { 3456 unsigned Opc = Lex.getUIntVal(); 3457 Type *DestTy = nullptr; 3458 Constant *SrcVal; 3459 Lex.Lex(); 3460 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3461 parseGlobalTypeAndValue(SrcVal) || 3462 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3463 parseType(DestTy) || 3464 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3465 return true; 3466 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3467 return error(ID.Loc, "invalid cast opcode for cast from '" + 3468 getTypeString(SrcVal->getType()) + "' to '" + 3469 getTypeString(DestTy) + "'"); 3470 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3471 SrcVal, DestTy); 3472 ID.Kind = ValID::t_Constant; 3473 return false; 3474 } 3475 case lltok::kw_extractvalue: 3476 return error(ID.Loc, "extractvalue constexprs are no longer supported"); 3477 case lltok::kw_insertvalue: 3478 return error(ID.Loc, "insertvalue constexprs are no longer supported"); 3479 case lltok::kw_icmp: 3480 case lltok::kw_fcmp: { 3481 unsigned PredVal, Opc = Lex.getUIntVal(); 3482 Constant *Val0, *Val1; 3483 Lex.Lex(); 3484 if (parseCmpPredicate(PredVal, Opc) || 3485 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3486 parseGlobalTypeAndValue(Val0) || 3487 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3488 parseGlobalTypeAndValue(Val1) || 3489 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3490 return true; 3491 3492 if (Val0->getType() != Val1->getType()) 3493 return error(ID.Loc, "compare operands must have the same type"); 3494 3495 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3496 3497 if (Opc == Instruction::FCmp) { 3498 if (!Val0->getType()->isFPOrFPVectorTy()) 3499 return error(ID.Loc, "fcmp requires floating point operands"); 3500 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3501 } else { 3502 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3503 if (!Val0->getType()->isIntOrIntVectorTy() && 3504 !Val0->getType()->isPtrOrPtrVectorTy()) 3505 return error(ID.Loc, "icmp requires pointer or integer operands"); 3506 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3507 } 3508 ID.Kind = ValID::t_Constant; 3509 return false; 3510 } 3511 3512 // Unary Operators. 3513 case lltok::kw_fneg: { 3514 unsigned Opc = Lex.getUIntVal(); 3515 Constant *Val; 3516 Lex.Lex(); 3517 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3518 parseGlobalTypeAndValue(Val) || 3519 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3520 return true; 3521 3522 // Check that the type is valid for the operator. 3523 switch (Opc) { 3524 case Instruction::FNeg: 3525 if (!Val->getType()->isFPOrFPVectorTy()) 3526 return error(ID.Loc, "constexpr requires fp operands"); 3527 break; 3528 default: llvm_unreachable("Unknown unary operator!"); 3529 } 3530 unsigned Flags = 0; 3531 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3532 ID.ConstantVal = C; 3533 ID.Kind = ValID::t_Constant; 3534 return false; 3535 } 3536 // Binary Operators. 3537 case lltok::kw_add: 3538 case lltok::kw_fadd: 3539 case lltok::kw_sub: 3540 case lltok::kw_fsub: 3541 case lltok::kw_mul: 3542 case lltok::kw_fmul: 3543 case lltok::kw_udiv: 3544 case lltok::kw_sdiv: 3545 case lltok::kw_fdiv: 3546 case lltok::kw_urem: 3547 case lltok::kw_srem: 3548 case lltok::kw_frem: 3549 case lltok::kw_shl: 3550 case lltok::kw_lshr: 3551 case lltok::kw_ashr: { 3552 bool NUW = false; 3553 bool NSW = false; 3554 bool Exact = false; 3555 unsigned Opc = Lex.getUIntVal(); 3556 Constant *Val0, *Val1; 3557 Lex.Lex(); 3558 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3559 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3560 if (EatIfPresent(lltok::kw_nuw)) 3561 NUW = true; 3562 if (EatIfPresent(lltok::kw_nsw)) { 3563 NSW = true; 3564 if (EatIfPresent(lltok::kw_nuw)) 3565 NUW = true; 3566 } 3567 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3568 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3569 if (EatIfPresent(lltok::kw_exact)) 3570 Exact = true; 3571 } 3572 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3573 parseGlobalTypeAndValue(Val0) || 3574 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3575 parseGlobalTypeAndValue(Val1) || 3576 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3577 return true; 3578 if (Val0->getType() != Val1->getType()) 3579 return error(ID.Loc, "operands of constexpr must have same type"); 3580 // Check that the type is valid for the operator. 3581 switch (Opc) { 3582 case Instruction::Add: 3583 case Instruction::Sub: 3584 case Instruction::Mul: 3585 case Instruction::UDiv: 3586 case Instruction::SDiv: 3587 case Instruction::URem: 3588 case Instruction::SRem: 3589 case Instruction::Shl: 3590 case Instruction::AShr: 3591 case Instruction::LShr: 3592 if (!Val0->getType()->isIntOrIntVectorTy()) 3593 return error(ID.Loc, "constexpr requires integer operands"); 3594 break; 3595 case Instruction::FAdd: 3596 case Instruction::FSub: 3597 case Instruction::FMul: 3598 case Instruction::FDiv: 3599 case Instruction::FRem: 3600 if (!Val0->getType()->isFPOrFPVectorTy()) 3601 return error(ID.Loc, "constexpr requires fp operands"); 3602 break; 3603 default: llvm_unreachable("Unknown binary operator!"); 3604 } 3605 unsigned Flags = 0; 3606 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3607 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3608 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3609 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3610 ID.ConstantVal = C; 3611 ID.Kind = ValID::t_Constant; 3612 return false; 3613 } 3614 3615 // Logical Operations 3616 case lltok::kw_and: 3617 case lltok::kw_or: 3618 case lltok::kw_xor: { 3619 unsigned Opc = Lex.getUIntVal(); 3620 Constant *Val0, *Val1; 3621 Lex.Lex(); 3622 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3623 parseGlobalTypeAndValue(Val0) || 3624 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3625 parseGlobalTypeAndValue(Val1) || 3626 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3627 return true; 3628 if (Val0->getType() != Val1->getType()) 3629 return error(ID.Loc, "operands of constexpr must have same type"); 3630 if (!Val0->getType()->isIntOrIntVectorTy()) 3631 return error(ID.Loc, 3632 "constexpr requires integer or integer vector operands"); 3633 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3634 ID.Kind = ValID::t_Constant; 3635 return false; 3636 } 3637 3638 case lltok::kw_getelementptr: 3639 case lltok::kw_shufflevector: 3640 case lltok::kw_insertelement: 3641 case lltok::kw_extractelement: 3642 case lltok::kw_select: { 3643 unsigned Opc = Lex.getUIntVal(); 3644 SmallVector<Constant*, 16> Elts; 3645 bool InBounds = false; 3646 Type *Ty; 3647 Lex.Lex(); 3648 3649 if (Opc == Instruction::GetElementPtr) 3650 InBounds = EatIfPresent(lltok::kw_inbounds); 3651 3652 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3653 return true; 3654 3655 LocTy ExplicitTypeLoc = Lex.getLoc(); 3656 if (Opc == Instruction::GetElementPtr) { 3657 if (parseType(Ty) || 3658 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3659 return true; 3660 } 3661 3662 Optional<unsigned> InRangeOp; 3663 if (parseGlobalValueVector( 3664 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3665 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3666 return true; 3667 3668 if (Opc == Instruction::GetElementPtr) { 3669 if (Elts.size() == 0 || 3670 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3671 return error(ID.Loc, "base of getelementptr must be a pointer"); 3672 3673 Type *BaseType = Elts[0]->getType(); 3674 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3675 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 3676 return error( 3677 ExplicitTypeLoc, 3678 typeComparisonErrorMessage( 3679 "explicit pointee type doesn't match operand's pointee type", 3680 Ty, BasePointerType->getNonOpaquePointerElementType())); 3681 } 3682 3683 unsigned GEPWidth = 3684 BaseType->isVectorTy() 3685 ? cast<FixedVectorType>(BaseType)->getNumElements() 3686 : 0; 3687 3688 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3689 for (Constant *Val : Indices) { 3690 Type *ValTy = Val->getType(); 3691 if (!ValTy->isIntOrIntVectorTy()) 3692 return error(ID.Loc, "getelementptr index must be an integer"); 3693 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3694 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3695 if (GEPWidth && (ValNumEl != GEPWidth)) 3696 return error( 3697 ID.Loc, 3698 "getelementptr vector index has a wrong number of elements"); 3699 // GEPWidth may have been unknown because the base is a scalar, 3700 // but it is known now. 3701 GEPWidth = ValNumEl; 3702 } 3703 } 3704 3705 SmallPtrSet<Type*, 4> Visited; 3706 if (!Indices.empty() && !Ty->isSized(&Visited)) 3707 return error(ID.Loc, "base element of getelementptr must be sized"); 3708 3709 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3710 return error(ID.Loc, "invalid getelementptr indices"); 3711 3712 if (InRangeOp) { 3713 if (*InRangeOp == 0) 3714 return error(ID.Loc, 3715 "inrange keyword may not appear on pointer operand"); 3716 --*InRangeOp; 3717 } 3718 3719 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3720 InBounds, InRangeOp); 3721 } else if (Opc == Instruction::Select) { 3722 if (Elts.size() != 3) 3723 return error(ID.Loc, "expected three operands to select"); 3724 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3725 Elts[2])) 3726 return error(ID.Loc, Reason); 3727 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3728 } else if (Opc == Instruction::ShuffleVector) { 3729 if (Elts.size() != 3) 3730 return error(ID.Loc, "expected three operands to shufflevector"); 3731 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3732 return error(ID.Loc, "invalid operands to shufflevector"); 3733 SmallVector<int, 16> Mask; 3734 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3735 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3736 } else if (Opc == Instruction::ExtractElement) { 3737 if (Elts.size() != 2) 3738 return error(ID.Loc, "expected two operands to extractelement"); 3739 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3740 return error(ID.Loc, "invalid extractelement operands"); 3741 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3742 } else { 3743 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3744 if (Elts.size() != 3) 3745 return error(ID.Loc, "expected three operands to insertelement"); 3746 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3747 return error(ID.Loc, "invalid insertelement operands"); 3748 ID.ConstantVal = 3749 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3750 } 3751 3752 ID.Kind = ValID::t_Constant; 3753 return false; 3754 } 3755 } 3756 3757 Lex.Lex(); 3758 return false; 3759 } 3760 3761 /// parseGlobalValue - parse a global value with the specified type. 3762 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3763 C = nullptr; 3764 ValID ID; 3765 Value *V = nullptr; 3766 bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) || 3767 convertValIDToValue(Ty, ID, V, nullptr); 3768 if (V && !(C = dyn_cast<Constant>(V))) 3769 return error(ID.Loc, "global values must be constants"); 3770 return Parsed; 3771 } 3772 3773 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3774 Type *Ty = nullptr; 3775 return parseType(Ty) || parseGlobalValue(Ty, V); 3776 } 3777 3778 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3779 C = nullptr; 3780 3781 LocTy KwLoc = Lex.getLoc(); 3782 if (!EatIfPresent(lltok::kw_comdat)) 3783 return false; 3784 3785 if (EatIfPresent(lltok::lparen)) { 3786 if (Lex.getKind() != lltok::ComdatVar) 3787 return tokError("expected comdat variable"); 3788 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3789 Lex.Lex(); 3790 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3791 return true; 3792 } else { 3793 if (GlobalName.empty()) 3794 return tokError("comdat cannot be unnamed"); 3795 C = getComdat(std::string(GlobalName), KwLoc); 3796 } 3797 3798 return false; 3799 } 3800 3801 /// parseGlobalValueVector 3802 /// ::= /*empty*/ 3803 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3804 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3805 Optional<unsigned> *InRangeOp) { 3806 // Empty list. 3807 if (Lex.getKind() == lltok::rbrace || 3808 Lex.getKind() == lltok::rsquare || 3809 Lex.getKind() == lltok::greater || 3810 Lex.getKind() == lltok::rparen) 3811 return false; 3812 3813 do { 3814 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3815 *InRangeOp = Elts.size(); 3816 3817 Constant *C; 3818 if (parseGlobalTypeAndValue(C)) 3819 return true; 3820 Elts.push_back(C); 3821 } while (EatIfPresent(lltok::comma)); 3822 3823 return false; 3824 } 3825 3826 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 3827 SmallVector<Metadata *, 16> Elts; 3828 if (parseMDNodeVector(Elts)) 3829 return true; 3830 3831 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3832 return false; 3833 } 3834 3835 /// MDNode: 3836 /// ::= !{ ... } 3837 /// ::= !7 3838 /// ::= !DILocation(...) 3839 bool LLParser::parseMDNode(MDNode *&N) { 3840 if (Lex.getKind() == lltok::MetadataVar) 3841 return parseSpecializedMDNode(N); 3842 3843 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 3844 } 3845 3846 bool LLParser::parseMDNodeTail(MDNode *&N) { 3847 // !{ ... } 3848 if (Lex.getKind() == lltok::lbrace) 3849 return parseMDTuple(N); 3850 3851 // !42 3852 return parseMDNodeID(N); 3853 } 3854 3855 namespace { 3856 3857 /// Structure to represent an optional metadata field. 3858 template <class FieldTy> struct MDFieldImpl { 3859 typedef MDFieldImpl ImplTy; 3860 FieldTy Val; 3861 bool Seen; 3862 3863 void assign(FieldTy Val) { 3864 Seen = true; 3865 this->Val = std::move(Val); 3866 } 3867 3868 explicit MDFieldImpl(FieldTy Default) 3869 : Val(std::move(Default)), Seen(false) {} 3870 }; 3871 3872 /// Structure to represent an optional metadata field that 3873 /// can be of either type (A or B) and encapsulates the 3874 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3875 /// to reimplement the specifics for representing each Field. 3876 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3877 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3878 FieldTypeA A; 3879 FieldTypeB B; 3880 bool Seen; 3881 3882 enum { 3883 IsInvalid = 0, 3884 IsTypeA = 1, 3885 IsTypeB = 2 3886 } WhatIs; 3887 3888 void assign(FieldTypeA A) { 3889 Seen = true; 3890 this->A = std::move(A); 3891 WhatIs = IsTypeA; 3892 } 3893 3894 void assign(FieldTypeB B) { 3895 Seen = true; 3896 this->B = std::move(B); 3897 WhatIs = IsTypeB; 3898 } 3899 3900 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3901 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3902 WhatIs(IsInvalid) {} 3903 }; 3904 3905 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3906 uint64_t Max; 3907 3908 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3909 : ImplTy(Default), Max(Max) {} 3910 }; 3911 3912 struct LineField : public MDUnsignedField { 3913 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3914 }; 3915 3916 struct ColumnField : public MDUnsignedField { 3917 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3918 }; 3919 3920 struct DwarfTagField : public MDUnsignedField { 3921 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3922 DwarfTagField(dwarf::Tag DefaultTag) 3923 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3924 }; 3925 3926 struct DwarfMacinfoTypeField : public MDUnsignedField { 3927 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3928 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3929 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3930 }; 3931 3932 struct DwarfAttEncodingField : public MDUnsignedField { 3933 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3934 }; 3935 3936 struct DwarfVirtualityField : public MDUnsignedField { 3937 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3938 }; 3939 3940 struct DwarfLangField : public MDUnsignedField { 3941 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3942 }; 3943 3944 struct DwarfCCField : public MDUnsignedField { 3945 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3946 }; 3947 3948 struct EmissionKindField : public MDUnsignedField { 3949 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3950 }; 3951 3952 struct NameTableKindField : public MDUnsignedField { 3953 NameTableKindField() 3954 : MDUnsignedField( 3955 0, (unsigned) 3956 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3957 }; 3958 3959 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3960 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3961 }; 3962 3963 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3964 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3965 }; 3966 3967 struct MDAPSIntField : public MDFieldImpl<APSInt> { 3968 MDAPSIntField() : ImplTy(APSInt()) {} 3969 }; 3970 3971 struct MDSignedField : public MDFieldImpl<int64_t> { 3972 int64_t Min = INT64_MIN; 3973 int64_t Max = INT64_MAX; 3974 3975 MDSignedField(int64_t Default = 0) 3976 : ImplTy(Default) {} 3977 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3978 : ImplTy(Default), Min(Min), Max(Max) {} 3979 }; 3980 3981 struct MDBoolField : public MDFieldImpl<bool> { 3982 MDBoolField(bool Default = false) : ImplTy(Default) {} 3983 }; 3984 3985 struct MDField : public MDFieldImpl<Metadata *> { 3986 bool AllowNull; 3987 3988 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3989 }; 3990 3991 struct MDStringField : public MDFieldImpl<MDString *> { 3992 bool AllowEmpty; 3993 MDStringField(bool AllowEmpty = true) 3994 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3995 }; 3996 3997 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3998 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3999 }; 4000 4001 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 4002 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 4003 }; 4004 4005 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 4006 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 4007 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 4008 4009 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 4010 bool AllowNull = true) 4011 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 4012 4013 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4014 bool isMDField() const { return WhatIs == IsTypeB; } 4015 int64_t getMDSignedValue() const { 4016 assert(isMDSignedField() && "Wrong field type"); 4017 return A.Val; 4018 } 4019 Metadata *getMDFieldValue() const { 4020 assert(isMDField() && "Wrong field type"); 4021 return B.Val; 4022 } 4023 }; 4024 4025 } // end anonymous namespace 4026 4027 namespace llvm { 4028 4029 template <> 4030 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 4031 if (Lex.getKind() != lltok::APSInt) 4032 return tokError("expected integer"); 4033 4034 Result.assign(Lex.getAPSIntVal()); 4035 Lex.Lex(); 4036 return false; 4037 } 4038 4039 template <> 4040 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4041 MDUnsignedField &Result) { 4042 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4043 return tokError("expected unsigned integer"); 4044 4045 auto &U = Lex.getAPSIntVal(); 4046 if (U.ugt(Result.Max)) 4047 return tokError("value for '" + Name + "' too large, limit is " + 4048 Twine(Result.Max)); 4049 Result.assign(U.getZExtValue()); 4050 assert(Result.Val <= Result.Max && "Expected value in range"); 4051 Lex.Lex(); 4052 return false; 4053 } 4054 4055 template <> 4056 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4057 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4058 } 4059 template <> 4060 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4061 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4062 } 4063 4064 template <> 4065 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4066 if (Lex.getKind() == lltok::APSInt) 4067 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4068 4069 if (Lex.getKind() != lltok::DwarfTag) 4070 return tokError("expected DWARF tag"); 4071 4072 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4073 if (Tag == dwarf::DW_TAG_invalid) 4074 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4075 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4076 4077 Result.assign(Tag); 4078 Lex.Lex(); 4079 return false; 4080 } 4081 4082 template <> 4083 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4084 DwarfMacinfoTypeField &Result) { 4085 if (Lex.getKind() == lltok::APSInt) 4086 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4087 4088 if (Lex.getKind() != lltok::DwarfMacinfo) 4089 return tokError("expected DWARF macinfo type"); 4090 4091 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4092 if (Macinfo == dwarf::DW_MACINFO_invalid) 4093 return tokError("invalid DWARF macinfo type" + Twine(" '") + 4094 Lex.getStrVal() + "'"); 4095 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4096 4097 Result.assign(Macinfo); 4098 Lex.Lex(); 4099 return false; 4100 } 4101 4102 template <> 4103 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4104 DwarfVirtualityField &Result) { 4105 if (Lex.getKind() == lltok::APSInt) 4106 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4107 4108 if (Lex.getKind() != lltok::DwarfVirtuality) 4109 return tokError("expected DWARF virtuality code"); 4110 4111 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4112 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4113 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4114 Lex.getStrVal() + "'"); 4115 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4116 Result.assign(Virtuality); 4117 Lex.Lex(); 4118 return false; 4119 } 4120 4121 template <> 4122 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4123 if (Lex.getKind() == lltok::APSInt) 4124 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4125 4126 if (Lex.getKind() != lltok::DwarfLang) 4127 return tokError("expected DWARF language"); 4128 4129 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4130 if (!Lang) 4131 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4132 "'"); 4133 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4134 Result.assign(Lang); 4135 Lex.Lex(); 4136 return false; 4137 } 4138 4139 template <> 4140 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4141 if (Lex.getKind() == lltok::APSInt) 4142 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4143 4144 if (Lex.getKind() != lltok::DwarfCC) 4145 return tokError("expected DWARF calling convention"); 4146 4147 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4148 if (!CC) 4149 return tokError("invalid DWARF calling convention" + Twine(" '") + 4150 Lex.getStrVal() + "'"); 4151 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4152 Result.assign(CC); 4153 Lex.Lex(); 4154 return false; 4155 } 4156 4157 template <> 4158 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4159 EmissionKindField &Result) { 4160 if (Lex.getKind() == lltok::APSInt) 4161 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4162 4163 if (Lex.getKind() != lltok::EmissionKind) 4164 return tokError("expected emission kind"); 4165 4166 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4167 if (!Kind) 4168 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4169 "'"); 4170 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4171 Result.assign(*Kind); 4172 Lex.Lex(); 4173 return false; 4174 } 4175 4176 template <> 4177 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4178 NameTableKindField &Result) { 4179 if (Lex.getKind() == lltok::APSInt) 4180 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4181 4182 if (Lex.getKind() != lltok::NameTableKind) 4183 return tokError("expected nameTable kind"); 4184 4185 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4186 if (!Kind) 4187 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4188 "'"); 4189 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4190 Result.assign((unsigned)*Kind); 4191 Lex.Lex(); 4192 return false; 4193 } 4194 4195 template <> 4196 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4197 DwarfAttEncodingField &Result) { 4198 if (Lex.getKind() == lltok::APSInt) 4199 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4200 4201 if (Lex.getKind() != lltok::DwarfAttEncoding) 4202 return tokError("expected DWARF type attribute encoding"); 4203 4204 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4205 if (!Encoding) 4206 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4207 Lex.getStrVal() + "'"); 4208 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4209 Result.assign(Encoding); 4210 Lex.Lex(); 4211 return false; 4212 } 4213 4214 /// DIFlagField 4215 /// ::= uint32 4216 /// ::= DIFlagVector 4217 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4218 template <> 4219 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4220 4221 // parser for a single flag. 4222 auto parseFlag = [&](DINode::DIFlags &Val) { 4223 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4224 uint32_t TempVal = static_cast<uint32_t>(Val); 4225 bool Res = parseUInt32(TempVal); 4226 Val = static_cast<DINode::DIFlags>(TempVal); 4227 return Res; 4228 } 4229 4230 if (Lex.getKind() != lltok::DIFlag) 4231 return tokError("expected debug info flag"); 4232 4233 Val = DINode::getFlag(Lex.getStrVal()); 4234 if (!Val) 4235 return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() + 4236 "'"); 4237 Lex.Lex(); 4238 return false; 4239 }; 4240 4241 // parse the flags and combine them together. 4242 DINode::DIFlags Combined = DINode::FlagZero; 4243 do { 4244 DINode::DIFlags Val; 4245 if (parseFlag(Val)) 4246 return true; 4247 Combined |= Val; 4248 } while (EatIfPresent(lltok::bar)); 4249 4250 Result.assign(Combined); 4251 return false; 4252 } 4253 4254 /// DISPFlagField 4255 /// ::= uint32 4256 /// ::= DISPFlagVector 4257 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4258 template <> 4259 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4260 4261 // parser for a single flag. 4262 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4263 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4264 uint32_t TempVal = static_cast<uint32_t>(Val); 4265 bool Res = parseUInt32(TempVal); 4266 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4267 return Res; 4268 } 4269 4270 if (Lex.getKind() != lltok::DISPFlag) 4271 return tokError("expected debug info flag"); 4272 4273 Val = DISubprogram::getFlag(Lex.getStrVal()); 4274 if (!Val) 4275 return tokError(Twine("invalid subprogram debug info flag '") + 4276 Lex.getStrVal() + "'"); 4277 Lex.Lex(); 4278 return false; 4279 }; 4280 4281 // parse the flags and combine them together. 4282 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4283 do { 4284 DISubprogram::DISPFlags Val; 4285 if (parseFlag(Val)) 4286 return true; 4287 Combined |= Val; 4288 } while (EatIfPresent(lltok::bar)); 4289 4290 Result.assign(Combined); 4291 return false; 4292 } 4293 4294 template <> 4295 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4296 if (Lex.getKind() != lltok::APSInt) 4297 return tokError("expected signed integer"); 4298 4299 auto &S = Lex.getAPSIntVal(); 4300 if (S < Result.Min) 4301 return tokError("value for '" + Name + "' too small, limit is " + 4302 Twine(Result.Min)); 4303 if (S > Result.Max) 4304 return tokError("value for '" + Name + "' too large, limit is " + 4305 Twine(Result.Max)); 4306 Result.assign(S.getExtValue()); 4307 assert(Result.Val >= Result.Min && "Expected value in range"); 4308 assert(Result.Val <= Result.Max && "Expected value in range"); 4309 Lex.Lex(); 4310 return false; 4311 } 4312 4313 template <> 4314 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4315 switch (Lex.getKind()) { 4316 default: 4317 return tokError("expected 'true' or 'false'"); 4318 case lltok::kw_true: 4319 Result.assign(true); 4320 break; 4321 case lltok::kw_false: 4322 Result.assign(false); 4323 break; 4324 } 4325 Lex.Lex(); 4326 return false; 4327 } 4328 4329 template <> 4330 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4331 if (Lex.getKind() == lltok::kw_null) { 4332 if (!Result.AllowNull) 4333 return tokError("'" + Name + "' cannot be null"); 4334 Lex.Lex(); 4335 Result.assign(nullptr); 4336 return false; 4337 } 4338 4339 Metadata *MD; 4340 if (parseMetadata(MD, nullptr)) 4341 return true; 4342 4343 Result.assign(MD); 4344 return false; 4345 } 4346 4347 template <> 4348 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4349 MDSignedOrMDField &Result) { 4350 // Try to parse a signed int. 4351 if (Lex.getKind() == lltok::APSInt) { 4352 MDSignedField Res = Result.A; 4353 if (!parseMDField(Loc, Name, Res)) { 4354 Result.assign(Res); 4355 return false; 4356 } 4357 return true; 4358 } 4359 4360 // Otherwise, try to parse as an MDField. 4361 MDField Res = Result.B; 4362 if (!parseMDField(Loc, Name, Res)) { 4363 Result.assign(Res); 4364 return false; 4365 } 4366 4367 return true; 4368 } 4369 4370 template <> 4371 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4372 LocTy ValueLoc = Lex.getLoc(); 4373 std::string S; 4374 if (parseStringConstant(S)) 4375 return true; 4376 4377 if (!Result.AllowEmpty && S.empty()) 4378 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4379 4380 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4381 return false; 4382 } 4383 4384 template <> 4385 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4386 SmallVector<Metadata *, 4> MDs; 4387 if (parseMDNodeVector(MDs)) 4388 return true; 4389 4390 Result.assign(std::move(MDs)); 4391 return false; 4392 } 4393 4394 template <> 4395 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4396 ChecksumKindField &Result) { 4397 Optional<DIFile::ChecksumKind> CSKind = 4398 DIFile::getChecksumKind(Lex.getStrVal()); 4399 4400 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4401 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4402 "'"); 4403 4404 Result.assign(*CSKind); 4405 Lex.Lex(); 4406 return false; 4407 } 4408 4409 } // end namespace llvm 4410 4411 template <class ParserTy> 4412 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4413 do { 4414 if (Lex.getKind() != lltok::LabelStr) 4415 return tokError("expected field label here"); 4416 4417 if (ParseField()) 4418 return true; 4419 } while (EatIfPresent(lltok::comma)); 4420 4421 return false; 4422 } 4423 4424 template <class ParserTy> 4425 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4426 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4427 Lex.Lex(); 4428 4429 if (parseToken(lltok::lparen, "expected '(' here")) 4430 return true; 4431 if (Lex.getKind() != lltok::rparen) 4432 if (parseMDFieldsImplBody(ParseField)) 4433 return true; 4434 4435 ClosingLoc = Lex.getLoc(); 4436 return parseToken(lltok::rparen, "expected ')' here"); 4437 } 4438 4439 template <class FieldTy> 4440 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4441 if (Result.Seen) 4442 return tokError("field '" + Name + "' cannot be specified more than once"); 4443 4444 LocTy Loc = Lex.getLoc(); 4445 Lex.Lex(); 4446 return parseMDField(Loc, Name, Result); 4447 } 4448 4449 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4450 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4451 4452 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4453 if (Lex.getStrVal() == #CLASS) \ 4454 return parse##CLASS(N, IsDistinct); 4455 #include "llvm/IR/Metadata.def" 4456 4457 return tokError("expected metadata type"); 4458 } 4459 4460 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4461 #define NOP_FIELD(NAME, TYPE, INIT) 4462 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4463 if (!NAME.Seen) \ 4464 return error(ClosingLoc, "missing required field '" #NAME "'"); 4465 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4466 if (Lex.getStrVal() == #NAME) \ 4467 return parseMDField(#NAME, NAME); 4468 #define PARSE_MD_FIELDS() \ 4469 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4470 do { \ 4471 LocTy ClosingLoc; \ 4472 if (parseMDFieldsImpl( \ 4473 [&]() -> bool { \ 4474 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4475 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4476 "'"); \ 4477 }, \ 4478 ClosingLoc)) \ 4479 return true; \ 4480 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4481 } while (false) 4482 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4483 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4484 4485 /// parseDILocationFields: 4486 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4487 /// isImplicitCode: true) 4488 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4489 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4490 OPTIONAL(line, LineField, ); \ 4491 OPTIONAL(column, ColumnField, ); \ 4492 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4493 OPTIONAL(inlinedAt, MDField, ); \ 4494 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4495 PARSE_MD_FIELDS(); 4496 #undef VISIT_MD_FIELDS 4497 4498 Result = 4499 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4500 inlinedAt.Val, isImplicitCode.Val)); 4501 return false; 4502 } 4503 4504 /// parseGenericDINode: 4505 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4506 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4507 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4508 REQUIRED(tag, DwarfTagField, ); \ 4509 OPTIONAL(header, MDStringField, ); \ 4510 OPTIONAL(operands, MDFieldList, ); 4511 PARSE_MD_FIELDS(); 4512 #undef VISIT_MD_FIELDS 4513 4514 Result = GET_OR_DISTINCT(GenericDINode, 4515 (Context, tag.Val, header.Val, operands.Val)); 4516 return false; 4517 } 4518 4519 /// parseDISubrange: 4520 /// ::= !DISubrange(count: 30, lowerBound: 2) 4521 /// ::= !DISubrange(count: !node, lowerBound: 2) 4522 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4523 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4524 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4525 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4526 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4527 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4528 OPTIONAL(stride, MDSignedOrMDField, ); 4529 PARSE_MD_FIELDS(); 4530 #undef VISIT_MD_FIELDS 4531 4532 Metadata *Count = nullptr; 4533 Metadata *LowerBound = nullptr; 4534 Metadata *UpperBound = nullptr; 4535 Metadata *Stride = nullptr; 4536 4537 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4538 if (Bound.isMDSignedField()) 4539 return ConstantAsMetadata::get(ConstantInt::getSigned( 4540 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4541 if (Bound.isMDField()) 4542 return Bound.getMDFieldValue(); 4543 return nullptr; 4544 }; 4545 4546 Count = convToMetadata(count); 4547 LowerBound = convToMetadata(lowerBound); 4548 UpperBound = convToMetadata(upperBound); 4549 Stride = convToMetadata(stride); 4550 4551 Result = GET_OR_DISTINCT(DISubrange, 4552 (Context, Count, LowerBound, UpperBound, Stride)); 4553 4554 return false; 4555 } 4556 4557 /// parseDIGenericSubrange: 4558 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4559 /// !node3) 4560 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4561 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4562 OPTIONAL(count, MDSignedOrMDField, ); \ 4563 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4564 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4565 OPTIONAL(stride, MDSignedOrMDField, ); 4566 PARSE_MD_FIELDS(); 4567 #undef VISIT_MD_FIELDS 4568 4569 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4570 if (Bound.isMDSignedField()) 4571 return DIExpression::get( 4572 Context, {dwarf::DW_OP_consts, 4573 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4574 if (Bound.isMDField()) 4575 return Bound.getMDFieldValue(); 4576 return nullptr; 4577 }; 4578 4579 Metadata *Count = ConvToMetadata(count); 4580 Metadata *LowerBound = ConvToMetadata(lowerBound); 4581 Metadata *UpperBound = ConvToMetadata(upperBound); 4582 Metadata *Stride = ConvToMetadata(stride); 4583 4584 Result = GET_OR_DISTINCT(DIGenericSubrange, 4585 (Context, Count, LowerBound, UpperBound, Stride)); 4586 4587 return false; 4588 } 4589 4590 /// parseDIEnumerator: 4591 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4592 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4593 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4594 REQUIRED(name, MDStringField, ); \ 4595 REQUIRED(value, MDAPSIntField, ); \ 4596 OPTIONAL(isUnsigned, MDBoolField, (false)); 4597 PARSE_MD_FIELDS(); 4598 #undef VISIT_MD_FIELDS 4599 4600 if (isUnsigned.Val && value.Val.isNegative()) 4601 return tokError("unsigned enumerator with negative value"); 4602 4603 APSInt Value(value.Val); 4604 // Add a leading zero so that unsigned values with the msb set are not 4605 // mistaken for negative values when used for signed enumerators. 4606 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4607 Value = Value.zext(Value.getBitWidth() + 1); 4608 4609 Result = 4610 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4611 4612 return false; 4613 } 4614 4615 /// parseDIBasicType: 4616 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4617 /// encoding: DW_ATE_encoding, flags: 0) 4618 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4619 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4620 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4621 OPTIONAL(name, MDStringField, ); \ 4622 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4623 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4624 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4625 OPTIONAL(flags, DIFlagField, ); 4626 PARSE_MD_FIELDS(); 4627 #undef VISIT_MD_FIELDS 4628 4629 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4630 align.Val, encoding.Val, flags.Val)); 4631 return false; 4632 } 4633 4634 /// parseDIStringType: 4635 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4636 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4637 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4638 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4639 OPTIONAL(name, MDStringField, ); \ 4640 OPTIONAL(stringLength, MDField, ); \ 4641 OPTIONAL(stringLengthExpression, MDField, ); \ 4642 OPTIONAL(stringLocationExpression, MDField, ); \ 4643 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4644 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4645 OPTIONAL(encoding, DwarfAttEncodingField, ); 4646 PARSE_MD_FIELDS(); 4647 #undef VISIT_MD_FIELDS 4648 4649 Result = GET_OR_DISTINCT( 4650 DIStringType, 4651 (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val, 4652 stringLocationExpression.Val, size.Val, align.Val, encoding.Val)); 4653 return false; 4654 } 4655 4656 /// parseDIDerivedType: 4657 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4658 /// line: 7, scope: !1, baseType: !2, size: 32, 4659 /// align: 32, offset: 0, flags: 0, extraData: !3, 4660 /// dwarfAddressSpace: 3) 4661 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4662 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4663 REQUIRED(tag, DwarfTagField, ); \ 4664 OPTIONAL(name, MDStringField, ); \ 4665 OPTIONAL(file, MDField, ); \ 4666 OPTIONAL(line, LineField, ); \ 4667 OPTIONAL(scope, MDField, ); \ 4668 REQUIRED(baseType, MDField, ); \ 4669 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4670 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4671 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4672 OPTIONAL(flags, DIFlagField, ); \ 4673 OPTIONAL(extraData, MDField, ); \ 4674 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); \ 4675 OPTIONAL(annotations, MDField, ); 4676 PARSE_MD_FIELDS(); 4677 #undef VISIT_MD_FIELDS 4678 4679 Optional<unsigned> DWARFAddressSpace; 4680 if (dwarfAddressSpace.Val != UINT32_MAX) 4681 DWARFAddressSpace = dwarfAddressSpace.Val; 4682 4683 Result = GET_OR_DISTINCT(DIDerivedType, 4684 (Context, tag.Val, name.Val, file.Val, line.Val, 4685 scope.Val, baseType.Val, size.Val, align.Val, 4686 offset.Val, DWARFAddressSpace, flags.Val, 4687 extraData.Val, annotations.Val)); 4688 return false; 4689 } 4690 4691 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4692 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4693 REQUIRED(tag, DwarfTagField, ); \ 4694 OPTIONAL(name, MDStringField, ); \ 4695 OPTIONAL(file, MDField, ); \ 4696 OPTIONAL(line, LineField, ); \ 4697 OPTIONAL(scope, MDField, ); \ 4698 OPTIONAL(baseType, MDField, ); \ 4699 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4700 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4701 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4702 OPTIONAL(flags, DIFlagField, ); \ 4703 OPTIONAL(elements, MDField, ); \ 4704 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4705 OPTIONAL(vtableHolder, MDField, ); \ 4706 OPTIONAL(templateParams, MDField, ); \ 4707 OPTIONAL(identifier, MDStringField, ); \ 4708 OPTIONAL(discriminator, MDField, ); \ 4709 OPTIONAL(dataLocation, MDField, ); \ 4710 OPTIONAL(associated, MDField, ); \ 4711 OPTIONAL(allocated, MDField, ); \ 4712 OPTIONAL(rank, MDSignedOrMDField, ); \ 4713 OPTIONAL(annotations, MDField, ); 4714 PARSE_MD_FIELDS(); 4715 #undef VISIT_MD_FIELDS 4716 4717 Metadata *Rank = nullptr; 4718 if (rank.isMDSignedField()) 4719 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4720 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4721 else if (rank.isMDField()) 4722 Rank = rank.getMDFieldValue(); 4723 4724 // If this has an identifier try to build an ODR type. 4725 if (identifier.Val) 4726 if (auto *CT = DICompositeType::buildODRType( 4727 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4728 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4729 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4730 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4731 Rank, annotations.Val)) { 4732 Result = CT; 4733 return false; 4734 } 4735 4736 // Create a new node, and save it in the context if it belongs in the type 4737 // map. 4738 Result = GET_OR_DISTINCT( 4739 DICompositeType, 4740 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4741 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4742 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4743 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank, 4744 annotations.Val)); 4745 return false; 4746 } 4747 4748 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4749 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4750 OPTIONAL(flags, DIFlagField, ); \ 4751 OPTIONAL(cc, DwarfCCField, ); \ 4752 REQUIRED(types, MDField, ); 4753 PARSE_MD_FIELDS(); 4754 #undef VISIT_MD_FIELDS 4755 4756 Result = GET_OR_DISTINCT(DISubroutineType, 4757 (Context, flags.Val, cc.Val, types.Val)); 4758 return false; 4759 } 4760 4761 /// parseDIFileType: 4762 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4763 /// checksumkind: CSK_MD5, 4764 /// checksum: "000102030405060708090a0b0c0d0e0f", 4765 /// source: "source file contents") 4766 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4767 // The default constructed value for checksumkind is required, but will never 4768 // be used, as the parser checks if the field was actually Seen before using 4769 // the Val. 4770 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4771 REQUIRED(filename, MDStringField, ); \ 4772 REQUIRED(directory, MDStringField, ); \ 4773 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4774 OPTIONAL(checksum, MDStringField, ); \ 4775 OPTIONAL(source, MDStringField, ); 4776 PARSE_MD_FIELDS(); 4777 #undef VISIT_MD_FIELDS 4778 4779 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4780 if (checksumkind.Seen && checksum.Seen) 4781 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4782 else if (checksumkind.Seen || checksum.Seen) 4783 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4784 4785 Optional<MDString *> OptSource; 4786 if (source.Seen) 4787 OptSource = source.Val; 4788 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4789 OptChecksum, OptSource)); 4790 return false; 4791 } 4792 4793 /// parseDICompileUnit: 4794 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4795 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4796 /// splitDebugFilename: "abc.debug", 4797 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4798 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 4799 /// sysroot: "/", sdk: "MacOSX.sdk") 4800 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4801 if (!IsDistinct) 4802 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4803 4804 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4805 REQUIRED(language, DwarfLangField, ); \ 4806 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4807 OPTIONAL(producer, MDStringField, ); \ 4808 OPTIONAL(isOptimized, MDBoolField, ); \ 4809 OPTIONAL(flags, MDStringField, ); \ 4810 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4811 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4812 OPTIONAL(emissionKind, EmissionKindField, ); \ 4813 OPTIONAL(enums, MDField, ); \ 4814 OPTIONAL(retainedTypes, MDField, ); \ 4815 OPTIONAL(globals, MDField, ); \ 4816 OPTIONAL(imports, MDField, ); \ 4817 OPTIONAL(macros, MDField, ); \ 4818 OPTIONAL(dwoId, MDUnsignedField, ); \ 4819 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4820 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4821 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4822 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 4823 OPTIONAL(sysroot, MDStringField, ); \ 4824 OPTIONAL(sdk, MDStringField, ); 4825 PARSE_MD_FIELDS(); 4826 #undef VISIT_MD_FIELDS 4827 4828 Result = DICompileUnit::getDistinct( 4829 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4830 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4831 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4832 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4833 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 4834 return false; 4835 } 4836 4837 /// parseDISubprogram: 4838 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4839 /// file: !1, line: 7, type: !2, isLocal: false, 4840 /// isDefinition: true, scopeLine: 8, containingType: !3, 4841 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4842 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4843 /// spFlags: 10, isOptimized: false, templateParams: !4, 4844 /// declaration: !5, retainedNodes: !6, thrownTypes: !7, 4845 /// annotations: !8) 4846 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 4847 auto Loc = Lex.getLoc(); 4848 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4849 OPTIONAL(scope, MDField, ); \ 4850 OPTIONAL(name, MDStringField, ); \ 4851 OPTIONAL(linkageName, MDStringField, ); \ 4852 OPTIONAL(file, MDField, ); \ 4853 OPTIONAL(line, LineField, ); \ 4854 OPTIONAL(type, MDField, ); \ 4855 OPTIONAL(isLocal, MDBoolField, ); \ 4856 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4857 OPTIONAL(scopeLine, LineField, ); \ 4858 OPTIONAL(containingType, MDField, ); \ 4859 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4860 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4861 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4862 OPTIONAL(flags, DIFlagField, ); \ 4863 OPTIONAL(spFlags, DISPFlagField, ); \ 4864 OPTIONAL(isOptimized, MDBoolField, ); \ 4865 OPTIONAL(unit, MDField, ); \ 4866 OPTIONAL(templateParams, MDField, ); \ 4867 OPTIONAL(declaration, MDField, ); \ 4868 OPTIONAL(retainedNodes, MDField, ); \ 4869 OPTIONAL(thrownTypes, MDField, ); \ 4870 OPTIONAL(annotations, MDField, ); \ 4871 OPTIONAL(targetFuncName, MDStringField, ); 4872 PARSE_MD_FIELDS(); 4873 #undef VISIT_MD_FIELDS 4874 4875 // An explicit spFlags field takes precedence over individual fields in 4876 // older IR versions. 4877 DISubprogram::DISPFlags SPFlags = 4878 spFlags.Seen ? spFlags.Val 4879 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4880 isOptimized.Val, virtuality.Val); 4881 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4882 return Lex.Error( 4883 Loc, 4884 "missing 'distinct', required for !DISubprogram that is a Definition"); 4885 Result = GET_OR_DISTINCT( 4886 DISubprogram, 4887 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4888 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4889 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4890 declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val, 4891 targetFuncName.Val)); 4892 return false; 4893 } 4894 4895 /// parseDILexicalBlock: 4896 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4897 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4898 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4899 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4900 OPTIONAL(file, MDField, ); \ 4901 OPTIONAL(line, LineField, ); \ 4902 OPTIONAL(column, ColumnField, ); 4903 PARSE_MD_FIELDS(); 4904 #undef VISIT_MD_FIELDS 4905 4906 Result = GET_OR_DISTINCT( 4907 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4908 return false; 4909 } 4910 4911 /// parseDILexicalBlockFile: 4912 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4913 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4914 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4915 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4916 OPTIONAL(file, MDField, ); \ 4917 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4918 PARSE_MD_FIELDS(); 4919 #undef VISIT_MD_FIELDS 4920 4921 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4922 (Context, scope.Val, file.Val, discriminator.Val)); 4923 return false; 4924 } 4925 4926 /// parseDICommonBlock: 4927 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4928 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4929 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4930 REQUIRED(scope, MDField, ); \ 4931 OPTIONAL(declaration, MDField, ); \ 4932 OPTIONAL(name, MDStringField, ); \ 4933 OPTIONAL(file, MDField, ); \ 4934 OPTIONAL(line, LineField, ); 4935 PARSE_MD_FIELDS(); 4936 #undef VISIT_MD_FIELDS 4937 4938 Result = GET_OR_DISTINCT(DICommonBlock, 4939 (Context, scope.Val, declaration.Val, name.Val, 4940 file.Val, line.Val)); 4941 return false; 4942 } 4943 4944 /// parseDINamespace: 4945 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4946 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 4947 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4948 REQUIRED(scope, MDField, ); \ 4949 OPTIONAL(name, MDStringField, ); \ 4950 OPTIONAL(exportSymbols, MDBoolField, ); 4951 PARSE_MD_FIELDS(); 4952 #undef VISIT_MD_FIELDS 4953 4954 Result = GET_OR_DISTINCT(DINamespace, 4955 (Context, scope.Val, name.Val, exportSymbols.Val)); 4956 return false; 4957 } 4958 4959 /// parseDIMacro: 4960 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 4961 /// "SomeValue") 4962 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 4963 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4964 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4965 OPTIONAL(line, LineField, ); \ 4966 REQUIRED(name, MDStringField, ); \ 4967 OPTIONAL(value, MDStringField, ); 4968 PARSE_MD_FIELDS(); 4969 #undef VISIT_MD_FIELDS 4970 4971 Result = GET_OR_DISTINCT(DIMacro, 4972 (Context, type.Val, line.Val, name.Val, value.Val)); 4973 return false; 4974 } 4975 4976 /// parseDIMacroFile: 4977 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4978 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4979 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4980 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4981 OPTIONAL(line, LineField, ); \ 4982 REQUIRED(file, MDField, ); \ 4983 OPTIONAL(nodes, MDField, ); 4984 PARSE_MD_FIELDS(); 4985 #undef VISIT_MD_FIELDS 4986 4987 Result = GET_OR_DISTINCT(DIMacroFile, 4988 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4989 return false; 4990 } 4991 4992 /// parseDIModule: 4993 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 4994 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 4995 /// file: !1, line: 4, isDecl: false) 4996 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 4997 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4998 REQUIRED(scope, MDField, ); \ 4999 REQUIRED(name, MDStringField, ); \ 5000 OPTIONAL(configMacros, MDStringField, ); \ 5001 OPTIONAL(includePath, MDStringField, ); \ 5002 OPTIONAL(apinotes, MDStringField, ); \ 5003 OPTIONAL(file, MDField, ); \ 5004 OPTIONAL(line, LineField, ); \ 5005 OPTIONAL(isDecl, MDBoolField, ); 5006 PARSE_MD_FIELDS(); 5007 #undef VISIT_MD_FIELDS 5008 5009 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 5010 configMacros.Val, includePath.Val, 5011 apinotes.Val, line.Val, isDecl.Val)); 5012 return false; 5013 } 5014 5015 /// parseDITemplateTypeParameter: 5016 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 5017 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 5018 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5019 OPTIONAL(name, MDStringField, ); \ 5020 REQUIRED(type, MDField, ); \ 5021 OPTIONAL(defaulted, MDBoolField, ); 5022 PARSE_MD_FIELDS(); 5023 #undef VISIT_MD_FIELDS 5024 5025 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 5026 (Context, name.Val, type.Val, defaulted.Val)); 5027 return false; 5028 } 5029 5030 /// parseDITemplateValueParameter: 5031 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 5032 /// name: "V", type: !1, defaulted: false, 5033 /// value: i32 7) 5034 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 5035 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5036 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 5037 OPTIONAL(name, MDStringField, ); \ 5038 OPTIONAL(type, MDField, ); \ 5039 OPTIONAL(defaulted, MDBoolField, ); \ 5040 REQUIRED(value, MDField, ); 5041 5042 PARSE_MD_FIELDS(); 5043 #undef VISIT_MD_FIELDS 5044 5045 Result = GET_OR_DISTINCT( 5046 DITemplateValueParameter, 5047 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 5048 return false; 5049 } 5050 5051 /// parseDIGlobalVariable: 5052 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 5053 /// file: !1, line: 7, type: !2, isLocal: false, 5054 /// isDefinition: true, templateParams: !3, 5055 /// declaration: !4, align: 8) 5056 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 5057 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5058 OPTIONAL(name, MDStringField, (/* AllowEmpty */ false)); \ 5059 OPTIONAL(scope, MDField, ); \ 5060 OPTIONAL(linkageName, MDStringField, ); \ 5061 OPTIONAL(file, MDField, ); \ 5062 OPTIONAL(line, LineField, ); \ 5063 OPTIONAL(type, MDField, ); \ 5064 OPTIONAL(isLocal, MDBoolField, ); \ 5065 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5066 OPTIONAL(templateParams, MDField, ); \ 5067 OPTIONAL(declaration, MDField, ); \ 5068 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5069 OPTIONAL(annotations, MDField, ); 5070 PARSE_MD_FIELDS(); 5071 #undef VISIT_MD_FIELDS 5072 5073 Result = 5074 GET_OR_DISTINCT(DIGlobalVariable, 5075 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 5076 line.Val, type.Val, isLocal.Val, isDefinition.Val, 5077 declaration.Val, templateParams.Val, align.Val, 5078 annotations.Val)); 5079 return false; 5080 } 5081 5082 /// parseDILocalVariable: 5083 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 5084 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5085 /// align: 8) 5086 /// ::= !DILocalVariable(scope: !0, name: "foo", 5087 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5088 /// align: 8) 5089 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5090 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5091 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5092 OPTIONAL(name, MDStringField, ); \ 5093 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5094 OPTIONAL(file, MDField, ); \ 5095 OPTIONAL(line, LineField, ); \ 5096 OPTIONAL(type, MDField, ); \ 5097 OPTIONAL(flags, DIFlagField, ); \ 5098 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5099 OPTIONAL(annotations, MDField, ); 5100 PARSE_MD_FIELDS(); 5101 #undef VISIT_MD_FIELDS 5102 5103 Result = GET_OR_DISTINCT(DILocalVariable, 5104 (Context, scope.Val, name.Val, file.Val, line.Val, 5105 type.Val, arg.Val, flags.Val, align.Val, 5106 annotations.Val)); 5107 return false; 5108 } 5109 5110 /// parseDILabel: 5111 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5112 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5113 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5114 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5115 REQUIRED(name, MDStringField, ); \ 5116 REQUIRED(file, MDField, ); \ 5117 REQUIRED(line, LineField, ); 5118 PARSE_MD_FIELDS(); 5119 #undef VISIT_MD_FIELDS 5120 5121 Result = GET_OR_DISTINCT(DILabel, 5122 (Context, scope.Val, name.Val, file.Val, line.Val)); 5123 return false; 5124 } 5125 5126 /// parseDIExpression: 5127 /// ::= !DIExpression(0, 7, -1) 5128 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5129 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5130 Lex.Lex(); 5131 5132 if (parseToken(lltok::lparen, "expected '(' here")) 5133 return true; 5134 5135 SmallVector<uint64_t, 8> Elements; 5136 if (Lex.getKind() != lltok::rparen) 5137 do { 5138 if (Lex.getKind() == lltok::DwarfOp) { 5139 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5140 Lex.Lex(); 5141 Elements.push_back(Op); 5142 continue; 5143 } 5144 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5145 } 5146 5147 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5148 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5149 Lex.Lex(); 5150 Elements.push_back(Op); 5151 continue; 5152 } 5153 return tokError(Twine("invalid DWARF attribute encoding '") + 5154 Lex.getStrVal() + "'"); 5155 } 5156 5157 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5158 return tokError("expected unsigned integer"); 5159 5160 auto &U = Lex.getAPSIntVal(); 5161 if (U.ugt(UINT64_MAX)) 5162 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5163 Elements.push_back(U.getZExtValue()); 5164 Lex.Lex(); 5165 } while (EatIfPresent(lltok::comma)); 5166 5167 if (parseToken(lltok::rparen, "expected ')' here")) 5168 return true; 5169 5170 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5171 return false; 5172 } 5173 5174 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) { 5175 return parseDIArgList(Result, IsDistinct, nullptr); 5176 } 5177 /// ParseDIArgList: 5178 /// ::= !DIArgList(i32 7, i64 %0) 5179 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct, 5180 PerFunctionState *PFS) { 5181 assert(PFS && "Expected valid function state"); 5182 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5183 Lex.Lex(); 5184 5185 if (parseToken(lltok::lparen, "expected '(' here")) 5186 return true; 5187 5188 SmallVector<ValueAsMetadata *, 4> Args; 5189 if (Lex.getKind() != lltok::rparen) 5190 do { 5191 Metadata *MD; 5192 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5193 return true; 5194 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5195 } while (EatIfPresent(lltok::comma)); 5196 5197 if (parseToken(lltok::rparen, "expected ')' here")) 5198 return true; 5199 5200 Result = GET_OR_DISTINCT(DIArgList, (Context, Args)); 5201 return false; 5202 } 5203 5204 /// parseDIGlobalVariableExpression: 5205 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5206 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5207 bool IsDistinct) { 5208 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5209 REQUIRED(var, MDField, ); \ 5210 REQUIRED(expr, MDField, ); 5211 PARSE_MD_FIELDS(); 5212 #undef VISIT_MD_FIELDS 5213 5214 Result = 5215 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5216 return false; 5217 } 5218 5219 /// parseDIObjCProperty: 5220 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5221 /// getter: "getFoo", attributes: 7, type: !2) 5222 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5223 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5224 OPTIONAL(name, MDStringField, ); \ 5225 OPTIONAL(file, MDField, ); \ 5226 OPTIONAL(line, LineField, ); \ 5227 OPTIONAL(setter, MDStringField, ); \ 5228 OPTIONAL(getter, MDStringField, ); \ 5229 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5230 OPTIONAL(type, MDField, ); 5231 PARSE_MD_FIELDS(); 5232 #undef VISIT_MD_FIELDS 5233 5234 Result = GET_OR_DISTINCT(DIObjCProperty, 5235 (Context, name.Val, file.Val, line.Val, setter.Val, 5236 getter.Val, attributes.Val, type.Val)); 5237 return false; 5238 } 5239 5240 /// parseDIImportedEntity: 5241 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5242 /// line: 7, name: "foo", elements: !2) 5243 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5244 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5245 REQUIRED(tag, DwarfTagField, ); \ 5246 REQUIRED(scope, MDField, ); \ 5247 OPTIONAL(entity, MDField, ); \ 5248 OPTIONAL(file, MDField, ); \ 5249 OPTIONAL(line, LineField, ); \ 5250 OPTIONAL(name, MDStringField, ); \ 5251 OPTIONAL(elements, MDField, ); 5252 PARSE_MD_FIELDS(); 5253 #undef VISIT_MD_FIELDS 5254 5255 Result = GET_OR_DISTINCT(DIImportedEntity, 5256 (Context, tag.Val, scope.Val, entity.Val, file.Val, 5257 line.Val, name.Val, elements.Val)); 5258 return false; 5259 } 5260 5261 #undef PARSE_MD_FIELD 5262 #undef NOP_FIELD 5263 #undef REQUIRE_FIELD 5264 #undef DECLARE_FIELD 5265 5266 /// parseMetadataAsValue 5267 /// ::= metadata i32 %local 5268 /// ::= metadata i32 @global 5269 /// ::= metadata i32 7 5270 /// ::= metadata !0 5271 /// ::= metadata !{...} 5272 /// ::= metadata !"string" 5273 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5274 // Note: the type 'metadata' has already been parsed. 5275 Metadata *MD; 5276 if (parseMetadata(MD, &PFS)) 5277 return true; 5278 5279 V = MetadataAsValue::get(Context, MD); 5280 return false; 5281 } 5282 5283 /// parseValueAsMetadata 5284 /// ::= i32 %local 5285 /// ::= i32 @global 5286 /// ::= i32 7 5287 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5288 PerFunctionState *PFS) { 5289 Type *Ty; 5290 LocTy Loc; 5291 if (parseType(Ty, TypeMsg, Loc)) 5292 return true; 5293 if (Ty->isMetadataTy()) 5294 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5295 5296 Value *V; 5297 if (parseValue(Ty, V, PFS)) 5298 return true; 5299 5300 MD = ValueAsMetadata::get(V); 5301 return false; 5302 } 5303 5304 /// parseMetadata 5305 /// ::= i32 %local 5306 /// ::= i32 @global 5307 /// ::= i32 7 5308 /// ::= !42 5309 /// ::= !{...} 5310 /// ::= !"string" 5311 /// ::= !DILocation(...) 5312 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5313 if (Lex.getKind() == lltok::MetadataVar) { 5314 MDNode *N; 5315 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5316 // so parsing this requires a Function State. 5317 if (Lex.getStrVal() == "DIArgList") { 5318 if (parseDIArgList(N, false, PFS)) 5319 return true; 5320 } else if (parseSpecializedMDNode(N)) { 5321 return true; 5322 } 5323 MD = N; 5324 return false; 5325 } 5326 5327 // ValueAsMetadata: 5328 // <type> <value> 5329 if (Lex.getKind() != lltok::exclaim) 5330 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5331 5332 // '!'. 5333 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5334 Lex.Lex(); 5335 5336 // MDString: 5337 // ::= '!' STRINGCONSTANT 5338 if (Lex.getKind() == lltok::StringConstant) { 5339 MDString *S; 5340 if (parseMDString(S)) 5341 return true; 5342 MD = S; 5343 return false; 5344 } 5345 5346 // MDNode: 5347 // !{ ... } 5348 // !7 5349 MDNode *N; 5350 if (parseMDNodeTail(N)) 5351 return true; 5352 MD = N; 5353 return false; 5354 } 5355 5356 //===----------------------------------------------------------------------===// 5357 // Function Parsing. 5358 //===----------------------------------------------------------------------===// 5359 5360 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5361 PerFunctionState *PFS) { 5362 if (Ty->isFunctionTy()) 5363 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5364 5365 switch (ID.Kind) { 5366 case ValID::t_LocalID: 5367 if (!PFS) 5368 return error(ID.Loc, "invalid use of function-local name"); 5369 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc); 5370 return V == nullptr; 5371 case ValID::t_LocalName: 5372 if (!PFS) 5373 return error(ID.Loc, "invalid use of function-local name"); 5374 V = PFS->getVal(ID.StrVal, Ty, ID.Loc); 5375 return V == nullptr; 5376 case ValID::t_InlineAsm: { 5377 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5378 return error(ID.Loc, "invalid type for inline asm constraint string"); 5379 V = InlineAsm::get( 5380 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, 5381 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); 5382 return false; 5383 } 5384 case ValID::t_GlobalName: 5385 V = getGlobalVal(ID.StrVal, Ty, ID.Loc); 5386 if (V && ID.NoCFI) 5387 V = NoCFIValue::get(cast<GlobalValue>(V)); 5388 return V == nullptr; 5389 case ValID::t_GlobalID: 5390 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc); 5391 if (V && ID.NoCFI) 5392 V = NoCFIValue::get(cast<GlobalValue>(V)); 5393 return V == nullptr; 5394 case ValID::t_APSInt: 5395 if (!Ty->isIntegerTy()) 5396 return error(ID.Loc, "integer constant must have integer type"); 5397 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5398 V = ConstantInt::get(Context, ID.APSIntVal); 5399 return false; 5400 case ValID::t_APFloat: 5401 if (!Ty->isFloatingPointTy() || 5402 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5403 return error(ID.Loc, "floating point constant invalid for type"); 5404 5405 // The lexer has no type info, so builds all half, bfloat, float, and double 5406 // FP constants as double. Fix this here. Long double does not need this. 5407 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5408 // Check for signaling before potentially converting and losing that info. 5409 bool IsSNAN = ID.APFloatVal.isSignaling(); 5410 bool Ignored; 5411 if (Ty->isHalfTy()) 5412 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5413 &Ignored); 5414 else if (Ty->isBFloatTy()) 5415 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5416 &Ignored); 5417 else if (Ty->isFloatTy()) 5418 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5419 &Ignored); 5420 if (IsSNAN) { 5421 // The convert call above may quiet an SNaN, so manufacture another 5422 // SNaN. The bitcast works because the payload (significand) parameter 5423 // is truncated to fit. 5424 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5425 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5426 ID.APFloatVal.isNegative(), &Payload); 5427 } 5428 } 5429 V = ConstantFP::get(Context, ID.APFloatVal); 5430 5431 if (V->getType() != Ty) 5432 return error(ID.Loc, "floating point constant does not have type '" + 5433 getTypeString(Ty) + "'"); 5434 5435 return false; 5436 case ValID::t_Null: 5437 if (!Ty->isPointerTy()) 5438 return error(ID.Loc, "null must be a pointer type"); 5439 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5440 return false; 5441 case ValID::t_Undef: 5442 // FIXME: LabelTy should not be a first-class type. 5443 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5444 return error(ID.Loc, "invalid type for undef constant"); 5445 V = UndefValue::get(Ty); 5446 return false; 5447 case ValID::t_EmptyArray: 5448 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5449 return error(ID.Loc, "invalid empty array initializer"); 5450 V = UndefValue::get(Ty); 5451 return false; 5452 case ValID::t_Zero: 5453 // FIXME: LabelTy should not be a first-class type. 5454 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5455 return error(ID.Loc, "invalid type for null constant"); 5456 V = Constant::getNullValue(Ty); 5457 return false; 5458 case ValID::t_None: 5459 if (!Ty->isTokenTy()) 5460 return error(ID.Loc, "invalid type for none constant"); 5461 V = Constant::getNullValue(Ty); 5462 return false; 5463 case ValID::t_Poison: 5464 // FIXME: LabelTy should not be a first-class type. 5465 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5466 return error(ID.Loc, "invalid type for poison constant"); 5467 V = PoisonValue::get(Ty); 5468 return false; 5469 case ValID::t_Constant: 5470 if (ID.ConstantVal->getType() != Ty) 5471 return error(ID.Loc, "constant expression type mismatch: got type '" + 5472 getTypeString(ID.ConstantVal->getType()) + 5473 "' but expected '" + getTypeString(Ty) + "'"); 5474 V = ID.ConstantVal; 5475 return false; 5476 case ValID::t_ConstantStruct: 5477 case ValID::t_PackedConstantStruct: 5478 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5479 if (ST->getNumElements() != ID.UIntVal) 5480 return error(ID.Loc, 5481 "initializer with struct type has wrong # elements"); 5482 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5483 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5484 5485 // Verify that the elements are compatible with the structtype. 5486 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5487 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5488 return error( 5489 ID.Loc, 5490 "element " + Twine(i) + 5491 " of struct initializer doesn't match struct element type"); 5492 5493 V = ConstantStruct::get( 5494 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5495 } else 5496 return error(ID.Loc, "constant expression type mismatch"); 5497 return false; 5498 } 5499 llvm_unreachable("Invalid ValID"); 5500 } 5501 5502 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5503 C = nullptr; 5504 ValID ID; 5505 auto Loc = Lex.getLoc(); 5506 if (parseValID(ID, /*PFS=*/nullptr)) 5507 return true; 5508 switch (ID.Kind) { 5509 case ValID::t_APSInt: 5510 case ValID::t_APFloat: 5511 case ValID::t_Undef: 5512 case ValID::t_Constant: 5513 case ValID::t_ConstantStruct: 5514 case ValID::t_PackedConstantStruct: { 5515 Value *V; 5516 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 5517 return true; 5518 assert(isa<Constant>(V) && "Expected a constant value"); 5519 C = cast<Constant>(V); 5520 return false; 5521 } 5522 case ValID::t_Null: 5523 C = Constant::getNullValue(Ty); 5524 return false; 5525 default: 5526 return error(Loc, "expected a constant value"); 5527 } 5528 } 5529 5530 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5531 V = nullptr; 5532 ValID ID; 5533 return parseValID(ID, PFS, Ty) || 5534 convertValIDToValue(Ty, ID, V, PFS); 5535 } 5536 5537 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5538 Type *Ty = nullptr; 5539 return parseType(Ty) || parseValue(Ty, V, PFS); 5540 } 5541 5542 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5543 PerFunctionState &PFS) { 5544 Value *V; 5545 Loc = Lex.getLoc(); 5546 if (parseTypeAndValue(V, PFS)) 5547 return true; 5548 if (!isa<BasicBlock>(V)) 5549 return error(Loc, "expected a basic block"); 5550 BB = cast<BasicBlock>(V); 5551 return false; 5552 } 5553 5554 /// FunctionHeader 5555 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5556 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5557 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5558 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5559 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5560 // parse the linkage. 5561 LocTy LinkageLoc = Lex.getLoc(); 5562 unsigned Linkage; 5563 unsigned Visibility; 5564 unsigned DLLStorageClass; 5565 bool DSOLocal; 5566 AttrBuilder RetAttrs(M->getContext()); 5567 unsigned CC; 5568 bool HasLinkage; 5569 Type *RetType = nullptr; 5570 LocTy RetTypeLoc = Lex.getLoc(); 5571 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5572 DSOLocal) || 5573 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5574 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5575 return true; 5576 5577 // Verify that the linkage is ok. 5578 switch ((GlobalValue::LinkageTypes)Linkage) { 5579 case GlobalValue::ExternalLinkage: 5580 break; // always ok. 5581 case GlobalValue::ExternalWeakLinkage: 5582 if (IsDefine) 5583 return error(LinkageLoc, "invalid linkage for function definition"); 5584 break; 5585 case GlobalValue::PrivateLinkage: 5586 case GlobalValue::InternalLinkage: 5587 case GlobalValue::AvailableExternallyLinkage: 5588 case GlobalValue::LinkOnceAnyLinkage: 5589 case GlobalValue::LinkOnceODRLinkage: 5590 case GlobalValue::WeakAnyLinkage: 5591 case GlobalValue::WeakODRLinkage: 5592 if (!IsDefine) 5593 return error(LinkageLoc, "invalid linkage for function declaration"); 5594 break; 5595 case GlobalValue::AppendingLinkage: 5596 case GlobalValue::CommonLinkage: 5597 return error(LinkageLoc, "invalid function linkage type"); 5598 } 5599 5600 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5601 return error(LinkageLoc, 5602 "symbol with local linkage must have default visibility"); 5603 5604 if (!FunctionType::isValidReturnType(RetType)) 5605 return error(RetTypeLoc, "invalid function return type"); 5606 5607 LocTy NameLoc = Lex.getLoc(); 5608 5609 std::string FunctionName; 5610 if (Lex.getKind() == lltok::GlobalVar) { 5611 FunctionName = Lex.getStrVal(); 5612 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5613 unsigned NameID = Lex.getUIntVal(); 5614 5615 if (NameID != NumberedVals.size()) 5616 return tokError("function expected to be numbered '%" + 5617 Twine(NumberedVals.size()) + "'"); 5618 } else { 5619 return tokError("expected function name"); 5620 } 5621 5622 Lex.Lex(); 5623 5624 if (Lex.getKind() != lltok::lparen) 5625 return tokError("expected '(' in function argument list"); 5626 5627 SmallVector<ArgInfo, 8> ArgList; 5628 bool IsVarArg; 5629 AttrBuilder FuncAttrs(M->getContext()); 5630 std::vector<unsigned> FwdRefAttrGrps; 5631 LocTy BuiltinLoc; 5632 std::string Section; 5633 std::string Partition; 5634 MaybeAlign Alignment; 5635 std::string GC; 5636 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5637 unsigned AddrSpace = 0; 5638 Constant *Prefix = nullptr; 5639 Constant *Prologue = nullptr; 5640 Constant *PersonalityFn = nullptr; 5641 Comdat *C; 5642 5643 if (parseArgumentList(ArgList, IsVarArg) || 5644 parseOptionalUnnamedAddr(UnnamedAddr) || 5645 parseOptionalProgramAddrSpace(AddrSpace) || 5646 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5647 BuiltinLoc) || 5648 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5649 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5650 parseOptionalComdat(FunctionName, C) || 5651 parseOptionalAlignment(Alignment) || 5652 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5653 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5654 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5655 (EatIfPresent(lltok::kw_personality) && 5656 parseGlobalTypeAndValue(PersonalityFn))) 5657 return true; 5658 5659 if (FuncAttrs.contains(Attribute::Builtin)) 5660 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5661 5662 // If the alignment was parsed as an attribute, move to the alignment field. 5663 if (FuncAttrs.hasAlignmentAttr()) { 5664 Alignment = FuncAttrs.getAlignment(); 5665 FuncAttrs.removeAttribute(Attribute::Alignment); 5666 } 5667 5668 // Okay, if we got here, the function is syntactically valid. Convert types 5669 // and do semantic checks. 5670 std::vector<Type*> ParamTypeList; 5671 SmallVector<AttributeSet, 8> Attrs; 5672 5673 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5674 ParamTypeList.push_back(ArgList[i].Ty); 5675 Attrs.push_back(ArgList[i].Attrs); 5676 } 5677 5678 AttributeList PAL = 5679 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5680 AttributeSet::get(Context, RetAttrs), Attrs); 5681 5682 if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy()) 5683 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5684 5685 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5686 PointerType *PFT = PointerType::get(FT, AddrSpace); 5687 5688 Fn = nullptr; 5689 GlobalValue *FwdFn = nullptr; 5690 if (!FunctionName.empty()) { 5691 // If this was a definition of a forward reference, remove the definition 5692 // from the forward reference table and fill in the forward ref. 5693 auto FRVI = ForwardRefVals.find(FunctionName); 5694 if (FRVI != ForwardRefVals.end()) { 5695 FwdFn = FRVI->second.first; 5696 if (!FwdFn->getType()->isOpaque() && 5697 !FwdFn->getType()->getNonOpaquePointerElementType()->isFunctionTy()) 5698 return error(FRVI->second.second, "invalid forward reference to " 5699 "function as global value!"); 5700 if (FwdFn->getType() != PFT) 5701 return error(FRVI->second.second, 5702 "invalid forward reference to " 5703 "function '" + 5704 FunctionName + 5705 "' with wrong type: " 5706 "expected '" + 5707 getTypeString(PFT) + "' but was '" + 5708 getTypeString(FwdFn->getType()) + "'"); 5709 ForwardRefVals.erase(FRVI); 5710 } else if ((Fn = M->getFunction(FunctionName))) { 5711 // Reject redefinitions. 5712 return error(NameLoc, 5713 "invalid redefinition of function '" + FunctionName + "'"); 5714 } else if (M->getNamedValue(FunctionName)) { 5715 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5716 } 5717 5718 } else { 5719 // If this is a definition of a forward referenced function, make sure the 5720 // types agree. 5721 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5722 if (I != ForwardRefValIDs.end()) { 5723 FwdFn = I->second.first; 5724 if (FwdFn->getType() != PFT) 5725 return error(NameLoc, "type of definition and forward reference of '@" + 5726 Twine(NumberedVals.size()) + 5727 "' disagree: " 5728 "expected '" + 5729 getTypeString(PFT) + "' but was '" + 5730 getTypeString(FwdFn->getType()) + "'"); 5731 ForwardRefValIDs.erase(I); 5732 } 5733 } 5734 5735 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5736 FunctionName, M); 5737 5738 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5739 5740 if (FunctionName.empty()) 5741 NumberedVals.push_back(Fn); 5742 5743 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5744 maybeSetDSOLocal(DSOLocal, *Fn); 5745 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5746 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5747 Fn->setCallingConv(CC); 5748 Fn->setAttributes(PAL); 5749 Fn->setUnnamedAddr(UnnamedAddr); 5750 Fn->setAlignment(MaybeAlign(Alignment)); 5751 Fn->setSection(Section); 5752 Fn->setPartition(Partition); 5753 Fn->setComdat(C); 5754 Fn->setPersonalityFn(PersonalityFn); 5755 if (!GC.empty()) Fn->setGC(GC); 5756 Fn->setPrefixData(Prefix); 5757 Fn->setPrologueData(Prologue); 5758 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5759 5760 // Add all of the arguments we parsed to the function. 5761 Function::arg_iterator ArgIt = Fn->arg_begin(); 5762 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5763 // If the argument has a name, insert it into the argument symbol table. 5764 if (ArgList[i].Name.empty()) continue; 5765 5766 // Set the name, if it conflicted, it will be auto-renamed. 5767 ArgIt->setName(ArgList[i].Name); 5768 5769 if (ArgIt->getName() != ArgList[i].Name) 5770 return error(ArgList[i].Loc, 5771 "redefinition of argument '%" + ArgList[i].Name + "'"); 5772 } 5773 5774 if (FwdFn) { 5775 FwdFn->replaceAllUsesWith(Fn); 5776 FwdFn->eraseFromParent(); 5777 } 5778 5779 if (IsDefine) 5780 return false; 5781 5782 // Check the declaration has no block address forward references. 5783 ValID ID; 5784 if (FunctionName.empty()) { 5785 ID.Kind = ValID::t_GlobalID; 5786 ID.UIntVal = NumberedVals.size() - 1; 5787 } else { 5788 ID.Kind = ValID::t_GlobalName; 5789 ID.StrVal = FunctionName; 5790 } 5791 auto Blocks = ForwardRefBlockAddresses.find(ID); 5792 if (Blocks != ForwardRefBlockAddresses.end()) 5793 return error(Blocks->first.Loc, 5794 "cannot take blockaddress inside a declaration"); 5795 return false; 5796 } 5797 5798 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5799 ValID ID; 5800 if (FunctionNumber == -1) { 5801 ID.Kind = ValID::t_GlobalName; 5802 ID.StrVal = std::string(F.getName()); 5803 } else { 5804 ID.Kind = ValID::t_GlobalID; 5805 ID.UIntVal = FunctionNumber; 5806 } 5807 5808 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5809 if (Blocks == P.ForwardRefBlockAddresses.end()) 5810 return false; 5811 5812 for (const auto &I : Blocks->second) { 5813 const ValID &BBID = I.first; 5814 GlobalValue *GV = I.second; 5815 5816 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5817 "Expected local id or name"); 5818 BasicBlock *BB; 5819 if (BBID.Kind == ValID::t_LocalName) 5820 BB = getBB(BBID.StrVal, BBID.Loc); 5821 else 5822 BB = getBB(BBID.UIntVal, BBID.Loc); 5823 if (!BB) 5824 return P.error(BBID.Loc, "referenced value is not a basic block"); 5825 5826 Value *ResolvedVal = BlockAddress::get(&F, BB); 5827 ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(), 5828 ResolvedVal); 5829 if (!ResolvedVal) 5830 return true; 5831 GV->replaceAllUsesWith(ResolvedVal); 5832 GV->eraseFromParent(); 5833 } 5834 5835 P.ForwardRefBlockAddresses.erase(Blocks); 5836 return false; 5837 } 5838 5839 /// parseFunctionBody 5840 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5841 bool LLParser::parseFunctionBody(Function &Fn) { 5842 if (Lex.getKind() != lltok::lbrace) 5843 return tokError("expected '{' in function body"); 5844 Lex.Lex(); // eat the {. 5845 5846 int FunctionNumber = -1; 5847 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5848 5849 PerFunctionState PFS(*this, Fn, FunctionNumber); 5850 5851 // Resolve block addresses and allow basic blocks to be forward-declared 5852 // within this function. 5853 if (PFS.resolveForwardRefBlockAddresses()) 5854 return true; 5855 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5856 5857 // We need at least one basic block. 5858 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5859 return tokError("function body requires at least one basic block"); 5860 5861 while (Lex.getKind() != lltok::rbrace && 5862 Lex.getKind() != lltok::kw_uselistorder) 5863 if (parseBasicBlock(PFS)) 5864 return true; 5865 5866 while (Lex.getKind() != lltok::rbrace) 5867 if (parseUseListOrder(&PFS)) 5868 return true; 5869 5870 // Eat the }. 5871 Lex.Lex(); 5872 5873 // Verify function is ok. 5874 return PFS.finishFunction(); 5875 } 5876 5877 /// parseBasicBlock 5878 /// ::= (LabelStr|LabelID)? Instruction* 5879 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 5880 // If this basic block starts out with a name, remember it. 5881 std::string Name; 5882 int NameID = -1; 5883 LocTy NameLoc = Lex.getLoc(); 5884 if (Lex.getKind() == lltok::LabelStr) { 5885 Name = Lex.getStrVal(); 5886 Lex.Lex(); 5887 } else if (Lex.getKind() == lltok::LabelID) { 5888 NameID = Lex.getUIntVal(); 5889 Lex.Lex(); 5890 } 5891 5892 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 5893 if (!BB) 5894 return true; 5895 5896 std::string NameStr; 5897 5898 // parse the instructions in this block until we get a terminator. 5899 Instruction *Inst; 5900 do { 5901 // This instruction may have three possibilities for a name: a) none 5902 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5903 LocTy NameLoc = Lex.getLoc(); 5904 int NameID = -1; 5905 NameStr = ""; 5906 5907 if (Lex.getKind() == lltok::LocalVarID) { 5908 NameID = Lex.getUIntVal(); 5909 Lex.Lex(); 5910 if (parseToken(lltok::equal, "expected '=' after instruction id")) 5911 return true; 5912 } else if (Lex.getKind() == lltok::LocalVar) { 5913 NameStr = Lex.getStrVal(); 5914 Lex.Lex(); 5915 if (parseToken(lltok::equal, "expected '=' after instruction name")) 5916 return true; 5917 } 5918 5919 switch (parseInstruction(Inst, BB, PFS)) { 5920 default: 5921 llvm_unreachable("Unknown parseInstruction result!"); 5922 case InstError: return true; 5923 case InstNormal: 5924 BB->getInstList().push_back(Inst); 5925 5926 // With a normal result, we check to see if the instruction is followed by 5927 // a comma and metadata. 5928 if (EatIfPresent(lltok::comma)) 5929 if (parseInstructionMetadata(*Inst)) 5930 return true; 5931 break; 5932 case InstExtraComma: 5933 BB->getInstList().push_back(Inst); 5934 5935 // If the instruction parser ate an extra comma at the end of it, it 5936 // *must* be followed by metadata. 5937 if (parseInstructionMetadata(*Inst)) 5938 return true; 5939 break; 5940 } 5941 5942 // Set the name on the instruction. 5943 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 5944 return true; 5945 } while (!Inst->isTerminator()); 5946 5947 return false; 5948 } 5949 5950 //===----------------------------------------------------------------------===// 5951 // Instruction Parsing. 5952 //===----------------------------------------------------------------------===// 5953 5954 /// parseInstruction - parse one of the many different instructions. 5955 /// 5956 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 5957 PerFunctionState &PFS) { 5958 lltok::Kind Token = Lex.getKind(); 5959 if (Token == lltok::Eof) 5960 return tokError("found end of file when expecting more instructions"); 5961 LocTy Loc = Lex.getLoc(); 5962 unsigned KeywordVal = Lex.getUIntVal(); 5963 Lex.Lex(); // Eat the keyword. 5964 5965 switch (Token) { 5966 default: 5967 return error(Loc, "expected instruction opcode"); 5968 // Terminator Instructions. 5969 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5970 case lltok::kw_ret: 5971 return parseRet(Inst, BB, PFS); 5972 case lltok::kw_br: 5973 return parseBr(Inst, PFS); 5974 case lltok::kw_switch: 5975 return parseSwitch(Inst, PFS); 5976 case lltok::kw_indirectbr: 5977 return parseIndirectBr(Inst, PFS); 5978 case lltok::kw_invoke: 5979 return parseInvoke(Inst, PFS); 5980 case lltok::kw_resume: 5981 return parseResume(Inst, PFS); 5982 case lltok::kw_cleanupret: 5983 return parseCleanupRet(Inst, PFS); 5984 case lltok::kw_catchret: 5985 return parseCatchRet(Inst, PFS); 5986 case lltok::kw_catchswitch: 5987 return parseCatchSwitch(Inst, PFS); 5988 case lltok::kw_catchpad: 5989 return parseCatchPad(Inst, PFS); 5990 case lltok::kw_cleanuppad: 5991 return parseCleanupPad(Inst, PFS); 5992 case lltok::kw_callbr: 5993 return parseCallBr(Inst, PFS); 5994 // Unary Operators. 5995 case lltok::kw_fneg: { 5996 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5997 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 5998 if (Res != 0) 5999 return Res; 6000 if (FMF.any()) 6001 Inst->setFastMathFlags(FMF); 6002 return false; 6003 } 6004 // Binary Operators. 6005 case lltok::kw_add: 6006 case lltok::kw_sub: 6007 case lltok::kw_mul: 6008 case lltok::kw_shl: { 6009 bool NUW = EatIfPresent(lltok::kw_nuw); 6010 bool NSW = EatIfPresent(lltok::kw_nsw); 6011 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 6012 6013 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6014 return true; 6015 6016 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 6017 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 6018 return false; 6019 } 6020 case lltok::kw_fadd: 6021 case lltok::kw_fsub: 6022 case lltok::kw_fmul: 6023 case lltok::kw_fdiv: 6024 case lltok::kw_frem: { 6025 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6026 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 6027 if (Res != 0) 6028 return Res; 6029 if (FMF.any()) 6030 Inst->setFastMathFlags(FMF); 6031 return 0; 6032 } 6033 6034 case lltok::kw_sdiv: 6035 case lltok::kw_udiv: 6036 case lltok::kw_lshr: 6037 case lltok::kw_ashr: { 6038 bool Exact = EatIfPresent(lltok::kw_exact); 6039 6040 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6041 return true; 6042 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 6043 return false; 6044 } 6045 6046 case lltok::kw_urem: 6047 case lltok::kw_srem: 6048 return parseArithmetic(Inst, PFS, KeywordVal, 6049 /*IsFP*/ false); 6050 case lltok::kw_and: 6051 case lltok::kw_or: 6052 case lltok::kw_xor: 6053 return parseLogical(Inst, PFS, KeywordVal); 6054 case lltok::kw_icmp: 6055 return parseCompare(Inst, PFS, KeywordVal); 6056 case lltok::kw_fcmp: { 6057 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6058 int Res = parseCompare(Inst, PFS, KeywordVal); 6059 if (Res != 0) 6060 return Res; 6061 if (FMF.any()) 6062 Inst->setFastMathFlags(FMF); 6063 return 0; 6064 } 6065 6066 // Casts. 6067 case lltok::kw_trunc: 6068 case lltok::kw_zext: 6069 case lltok::kw_sext: 6070 case lltok::kw_fptrunc: 6071 case lltok::kw_fpext: 6072 case lltok::kw_bitcast: 6073 case lltok::kw_addrspacecast: 6074 case lltok::kw_uitofp: 6075 case lltok::kw_sitofp: 6076 case lltok::kw_fptoui: 6077 case lltok::kw_fptosi: 6078 case lltok::kw_inttoptr: 6079 case lltok::kw_ptrtoint: 6080 return parseCast(Inst, PFS, KeywordVal); 6081 // Other. 6082 case lltok::kw_select: { 6083 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6084 int Res = parseSelect(Inst, PFS); 6085 if (Res != 0) 6086 return Res; 6087 if (FMF.any()) { 6088 if (!isa<FPMathOperator>(Inst)) 6089 return error(Loc, "fast-math-flags specified for select without " 6090 "floating-point scalar or vector return type"); 6091 Inst->setFastMathFlags(FMF); 6092 } 6093 return 0; 6094 } 6095 case lltok::kw_va_arg: 6096 return parseVAArg(Inst, PFS); 6097 case lltok::kw_extractelement: 6098 return parseExtractElement(Inst, PFS); 6099 case lltok::kw_insertelement: 6100 return parseInsertElement(Inst, PFS); 6101 case lltok::kw_shufflevector: 6102 return parseShuffleVector(Inst, PFS); 6103 case lltok::kw_phi: { 6104 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6105 int Res = parsePHI(Inst, PFS); 6106 if (Res != 0) 6107 return Res; 6108 if (FMF.any()) { 6109 if (!isa<FPMathOperator>(Inst)) 6110 return error(Loc, "fast-math-flags specified for phi without " 6111 "floating-point scalar or vector return type"); 6112 Inst->setFastMathFlags(FMF); 6113 } 6114 return 0; 6115 } 6116 case lltok::kw_landingpad: 6117 return parseLandingPad(Inst, PFS); 6118 case lltok::kw_freeze: 6119 return parseFreeze(Inst, PFS); 6120 // Call. 6121 case lltok::kw_call: 6122 return parseCall(Inst, PFS, CallInst::TCK_None); 6123 case lltok::kw_tail: 6124 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6125 case lltok::kw_musttail: 6126 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6127 case lltok::kw_notail: 6128 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6129 // Memory. 6130 case lltok::kw_alloca: 6131 return parseAlloc(Inst, PFS); 6132 case lltok::kw_load: 6133 return parseLoad(Inst, PFS); 6134 case lltok::kw_store: 6135 return parseStore(Inst, PFS); 6136 case lltok::kw_cmpxchg: 6137 return parseCmpXchg(Inst, PFS); 6138 case lltok::kw_atomicrmw: 6139 return parseAtomicRMW(Inst, PFS); 6140 case lltok::kw_fence: 6141 return parseFence(Inst, PFS); 6142 case lltok::kw_getelementptr: 6143 return parseGetElementPtr(Inst, PFS); 6144 case lltok::kw_extractvalue: 6145 return parseExtractValue(Inst, PFS); 6146 case lltok::kw_insertvalue: 6147 return parseInsertValue(Inst, PFS); 6148 } 6149 } 6150 6151 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6152 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6153 if (Opc == Instruction::FCmp) { 6154 switch (Lex.getKind()) { 6155 default: 6156 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6157 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6158 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6159 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6160 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6161 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6162 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6163 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6164 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6165 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6166 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6167 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6168 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6169 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6170 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6171 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6172 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6173 } 6174 } else { 6175 switch (Lex.getKind()) { 6176 default: 6177 return tokError("expected icmp predicate (e.g. 'eq')"); 6178 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6179 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6180 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6181 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6182 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6183 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6184 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6185 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6186 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6187 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6188 } 6189 } 6190 Lex.Lex(); 6191 return false; 6192 } 6193 6194 //===----------------------------------------------------------------------===// 6195 // Terminator Instructions. 6196 //===----------------------------------------------------------------------===// 6197 6198 /// parseRet - parse a return instruction. 6199 /// ::= 'ret' void (',' !dbg, !1)* 6200 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6201 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6202 PerFunctionState &PFS) { 6203 SMLoc TypeLoc = Lex.getLoc(); 6204 Type *Ty = nullptr; 6205 if (parseType(Ty, true /*void allowed*/)) 6206 return true; 6207 6208 Type *ResType = PFS.getFunction().getReturnType(); 6209 6210 if (Ty->isVoidTy()) { 6211 if (!ResType->isVoidTy()) 6212 return error(TypeLoc, "value doesn't match function result type '" + 6213 getTypeString(ResType) + "'"); 6214 6215 Inst = ReturnInst::Create(Context); 6216 return false; 6217 } 6218 6219 Value *RV; 6220 if (parseValue(Ty, RV, PFS)) 6221 return true; 6222 6223 if (ResType != RV->getType()) 6224 return error(TypeLoc, "value doesn't match function result type '" + 6225 getTypeString(ResType) + "'"); 6226 6227 Inst = ReturnInst::Create(Context, RV); 6228 return false; 6229 } 6230 6231 /// parseBr 6232 /// ::= 'br' TypeAndValue 6233 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6234 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6235 LocTy Loc, Loc2; 6236 Value *Op0; 6237 BasicBlock *Op1, *Op2; 6238 if (parseTypeAndValue(Op0, Loc, PFS)) 6239 return true; 6240 6241 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6242 Inst = BranchInst::Create(BB); 6243 return false; 6244 } 6245 6246 if (Op0->getType() != Type::getInt1Ty(Context)) 6247 return error(Loc, "branch condition must have 'i1' type"); 6248 6249 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6250 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6251 parseToken(lltok::comma, "expected ',' after true destination") || 6252 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6253 return true; 6254 6255 Inst = BranchInst::Create(Op1, Op2, Op0); 6256 return false; 6257 } 6258 6259 /// parseSwitch 6260 /// Instruction 6261 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6262 /// JumpTable 6263 /// ::= (TypeAndValue ',' TypeAndValue)* 6264 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6265 LocTy CondLoc, BBLoc; 6266 Value *Cond; 6267 BasicBlock *DefaultBB; 6268 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6269 parseToken(lltok::comma, "expected ',' after switch condition") || 6270 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6271 parseToken(lltok::lsquare, "expected '[' with switch table")) 6272 return true; 6273 6274 if (!Cond->getType()->isIntegerTy()) 6275 return error(CondLoc, "switch condition must have integer type"); 6276 6277 // parse the jump table pairs. 6278 SmallPtrSet<Value*, 32> SeenCases; 6279 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6280 while (Lex.getKind() != lltok::rsquare) { 6281 Value *Constant; 6282 BasicBlock *DestBB; 6283 6284 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6285 parseToken(lltok::comma, "expected ',' after case value") || 6286 parseTypeAndBasicBlock(DestBB, PFS)) 6287 return true; 6288 6289 if (!SeenCases.insert(Constant).second) 6290 return error(CondLoc, "duplicate case value in switch"); 6291 if (!isa<ConstantInt>(Constant)) 6292 return error(CondLoc, "case value is not a constant integer"); 6293 6294 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6295 } 6296 6297 Lex.Lex(); // Eat the ']'. 6298 6299 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6300 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6301 SI->addCase(Table[i].first, Table[i].second); 6302 Inst = SI; 6303 return false; 6304 } 6305 6306 /// parseIndirectBr 6307 /// Instruction 6308 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6309 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6310 LocTy AddrLoc; 6311 Value *Address; 6312 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6313 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6314 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6315 return true; 6316 6317 if (!Address->getType()->isPointerTy()) 6318 return error(AddrLoc, "indirectbr address must have pointer type"); 6319 6320 // parse the destination list. 6321 SmallVector<BasicBlock*, 16> DestList; 6322 6323 if (Lex.getKind() != lltok::rsquare) { 6324 BasicBlock *DestBB; 6325 if (parseTypeAndBasicBlock(DestBB, PFS)) 6326 return true; 6327 DestList.push_back(DestBB); 6328 6329 while (EatIfPresent(lltok::comma)) { 6330 if (parseTypeAndBasicBlock(DestBB, PFS)) 6331 return true; 6332 DestList.push_back(DestBB); 6333 } 6334 } 6335 6336 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6337 return true; 6338 6339 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6340 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6341 IBI->addDestination(DestList[i]); 6342 Inst = IBI; 6343 return false; 6344 } 6345 6346 /// parseInvoke 6347 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6348 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6349 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6350 LocTy CallLoc = Lex.getLoc(); 6351 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 6352 std::vector<unsigned> FwdRefAttrGrps; 6353 LocTy NoBuiltinLoc; 6354 unsigned CC; 6355 unsigned InvokeAddrSpace; 6356 Type *RetType = nullptr; 6357 LocTy RetTypeLoc; 6358 ValID CalleeID; 6359 SmallVector<ParamInfo, 16> ArgList; 6360 SmallVector<OperandBundleDef, 2> BundleList; 6361 6362 BasicBlock *NormalBB, *UnwindBB; 6363 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6364 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6365 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6366 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6367 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6368 NoBuiltinLoc) || 6369 parseOptionalOperandBundles(BundleList, PFS) || 6370 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6371 parseTypeAndBasicBlock(NormalBB, PFS) || 6372 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6373 parseTypeAndBasicBlock(UnwindBB, PFS)) 6374 return true; 6375 6376 // If RetType is a non-function pointer type, then this is the short syntax 6377 // for the call, which means that RetType is just the return type. Infer the 6378 // rest of the function argument types from the arguments that are present. 6379 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6380 if (!Ty) { 6381 // Pull out the types of all of the arguments... 6382 std::vector<Type*> ParamTypes; 6383 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6384 ParamTypes.push_back(ArgList[i].V->getType()); 6385 6386 if (!FunctionType::isValidReturnType(RetType)) 6387 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6388 6389 Ty = FunctionType::get(RetType, ParamTypes, false); 6390 } 6391 6392 CalleeID.FTy = Ty; 6393 6394 // Look up the callee. 6395 Value *Callee; 6396 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6397 Callee, &PFS)) 6398 return true; 6399 6400 // Set up the Attribute for the function. 6401 SmallVector<Value *, 8> Args; 6402 SmallVector<AttributeSet, 8> ArgAttrs; 6403 6404 // Loop through FunctionType's arguments and ensure they are specified 6405 // correctly. Also, gather any parameter attributes. 6406 FunctionType::param_iterator I = Ty->param_begin(); 6407 FunctionType::param_iterator E = Ty->param_end(); 6408 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6409 Type *ExpectedTy = nullptr; 6410 if (I != E) { 6411 ExpectedTy = *I++; 6412 } else if (!Ty->isVarArg()) { 6413 return error(ArgList[i].Loc, "too many arguments specified"); 6414 } 6415 6416 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6417 return error(ArgList[i].Loc, "argument is not of expected type '" + 6418 getTypeString(ExpectedTy) + "'"); 6419 Args.push_back(ArgList[i].V); 6420 ArgAttrs.push_back(ArgList[i].Attrs); 6421 } 6422 6423 if (I != E) 6424 return error(CallLoc, "not enough parameters specified for call"); 6425 6426 if (FnAttrs.hasAlignmentAttr()) 6427 return error(CallLoc, "invoke instructions may not have an alignment"); 6428 6429 // Finish off the Attribute and check them 6430 AttributeList PAL = 6431 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6432 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6433 6434 InvokeInst *II = 6435 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6436 II->setCallingConv(CC); 6437 II->setAttributes(PAL); 6438 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6439 Inst = II; 6440 return false; 6441 } 6442 6443 /// parseResume 6444 /// ::= 'resume' TypeAndValue 6445 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6446 Value *Exn; LocTy ExnLoc; 6447 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6448 return true; 6449 6450 ResumeInst *RI = ResumeInst::Create(Exn); 6451 Inst = RI; 6452 return false; 6453 } 6454 6455 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6456 PerFunctionState &PFS) { 6457 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6458 return true; 6459 6460 while (Lex.getKind() != lltok::rsquare) { 6461 // If this isn't the first argument, we need a comma. 6462 if (!Args.empty() && 6463 parseToken(lltok::comma, "expected ',' in argument list")) 6464 return true; 6465 6466 // parse the argument. 6467 LocTy ArgLoc; 6468 Type *ArgTy = nullptr; 6469 if (parseType(ArgTy, ArgLoc)) 6470 return true; 6471 6472 Value *V; 6473 if (ArgTy->isMetadataTy()) { 6474 if (parseMetadataAsValue(V, PFS)) 6475 return true; 6476 } else { 6477 if (parseValue(ArgTy, V, PFS)) 6478 return true; 6479 } 6480 Args.push_back(V); 6481 } 6482 6483 Lex.Lex(); // Lex the ']'. 6484 return false; 6485 } 6486 6487 /// parseCleanupRet 6488 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6489 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6490 Value *CleanupPad = nullptr; 6491 6492 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6493 return true; 6494 6495 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6496 return true; 6497 6498 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6499 return true; 6500 6501 BasicBlock *UnwindBB = nullptr; 6502 if (Lex.getKind() == lltok::kw_to) { 6503 Lex.Lex(); 6504 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6505 return true; 6506 } else { 6507 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6508 return true; 6509 } 6510 } 6511 6512 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6513 return false; 6514 } 6515 6516 /// parseCatchRet 6517 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6518 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6519 Value *CatchPad = nullptr; 6520 6521 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6522 return true; 6523 6524 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6525 return true; 6526 6527 BasicBlock *BB; 6528 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6529 parseTypeAndBasicBlock(BB, PFS)) 6530 return true; 6531 6532 Inst = CatchReturnInst::Create(CatchPad, BB); 6533 return false; 6534 } 6535 6536 /// parseCatchSwitch 6537 /// ::= 'catchswitch' within Parent 6538 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6539 Value *ParentPad; 6540 6541 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6542 return true; 6543 6544 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6545 Lex.getKind() != lltok::LocalVarID) 6546 return tokError("expected scope value for catchswitch"); 6547 6548 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6549 return true; 6550 6551 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6552 return true; 6553 6554 SmallVector<BasicBlock *, 32> Table; 6555 do { 6556 BasicBlock *DestBB; 6557 if (parseTypeAndBasicBlock(DestBB, PFS)) 6558 return true; 6559 Table.push_back(DestBB); 6560 } while (EatIfPresent(lltok::comma)); 6561 6562 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6563 return true; 6564 6565 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6566 return true; 6567 6568 BasicBlock *UnwindBB = nullptr; 6569 if (EatIfPresent(lltok::kw_to)) { 6570 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6571 return true; 6572 } else { 6573 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6574 return true; 6575 } 6576 6577 auto *CatchSwitch = 6578 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6579 for (BasicBlock *DestBB : Table) 6580 CatchSwitch->addHandler(DestBB); 6581 Inst = CatchSwitch; 6582 return false; 6583 } 6584 6585 /// parseCatchPad 6586 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6587 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6588 Value *CatchSwitch = nullptr; 6589 6590 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6591 return true; 6592 6593 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6594 return tokError("expected scope value for catchpad"); 6595 6596 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6597 return true; 6598 6599 SmallVector<Value *, 8> Args; 6600 if (parseExceptionArgs(Args, PFS)) 6601 return true; 6602 6603 Inst = CatchPadInst::Create(CatchSwitch, Args); 6604 return false; 6605 } 6606 6607 /// parseCleanupPad 6608 /// ::= 'cleanuppad' within Parent ParamList 6609 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6610 Value *ParentPad = nullptr; 6611 6612 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6613 return true; 6614 6615 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6616 Lex.getKind() != lltok::LocalVarID) 6617 return tokError("expected scope value for cleanuppad"); 6618 6619 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6620 return true; 6621 6622 SmallVector<Value *, 8> Args; 6623 if (parseExceptionArgs(Args, PFS)) 6624 return true; 6625 6626 Inst = CleanupPadInst::Create(ParentPad, Args); 6627 return false; 6628 } 6629 6630 //===----------------------------------------------------------------------===// 6631 // Unary Operators. 6632 //===----------------------------------------------------------------------===// 6633 6634 /// parseUnaryOp 6635 /// ::= UnaryOp TypeAndValue ',' Value 6636 /// 6637 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6638 /// operand is allowed. 6639 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6640 unsigned Opc, bool IsFP) { 6641 LocTy Loc; Value *LHS; 6642 if (parseTypeAndValue(LHS, Loc, PFS)) 6643 return true; 6644 6645 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6646 : LHS->getType()->isIntOrIntVectorTy(); 6647 6648 if (!Valid) 6649 return error(Loc, "invalid operand type for instruction"); 6650 6651 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6652 return false; 6653 } 6654 6655 /// parseCallBr 6656 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6657 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6658 /// '[' LabelList ']' 6659 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6660 LocTy CallLoc = Lex.getLoc(); 6661 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 6662 std::vector<unsigned> FwdRefAttrGrps; 6663 LocTy NoBuiltinLoc; 6664 unsigned CC; 6665 Type *RetType = nullptr; 6666 LocTy RetTypeLoc; 6667 ValID CalleeID; 6668 SmallVector<ParamInfo, 16> ArgList; 6669 SmallVector<OperandBundleDef, 2> BundleList; 6670 6671 BasicBlock *DefaultDest; 6672 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6673 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6674 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6675 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6676 NoBuiltinLoc) || 6677 parseOptionalOperandBundles(BundleList, PFS) || 6678 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6679 parseTypeAndBasicBlock(DefaultDest, PFS) || 6680 parseToken(lltok::lsquare, "expected '[' in callbr")) 6681 return true; 6682 6683 // parse the destination list. 6684 SmallVector<BasicBlock *, 16> IndirectDests; 6685 6686 if (Lex.getKind() != lltok::rsquare) { 6687 BasicBlock *DestBB; 6688 if (parseTypeAndBasicBlock(DestBB, PFS)) 6689 return true; 6690 IndirectDests.push_back(DestBB); 6691 6692 while (EatIfPresent(lltok::comma)) { 6693 if (parseTypeAndBasicBlock(DestBB, PFS)) 6694 return true; 6695 IndirectDests.push_back(DestBB); 6696 } 6697 } 6698 6699 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6700 return true; 6701 6702 // If RetType is a non-function pointer type, then this is the short syntax 6703 // for the call, which means that RetType is just the return type. Infer the 6704 // rest of the function argument types from the arguments that are present. 6705 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6706 if (!Ty) { 6707 // Pull out the types of all of the arguments... 6708 std::vector<Type *> ParamTypes; 6709 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6710 ParamTypes.push_back(ArgList[i].V->getType()); 6711 6712 if (!FunctionType::isValidReturnType(RetType)) 6713 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6714 6715 Ty = FunctionType::get(RetType, ParamTypes, false); 6716 } 6717 6718 CalleeID.FTy = Ty; 6719 6720 // Look up the callee. 6721 Value *Callee; 6722 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 6723 return true; 6724 6725 // Set up the Attribute for the function. 6726 SmallVector<Value *, 8> Args; 6727 SmallVector<AttributeSet, 8> ArgAttrs; 6728 6729 // Loop through FunctionType's arguments and ensure they are specified 6730 // correctly. Also, gather any parameter attributes. 6731 FunctionType::param_iterator I = Ty->param_begin(); 6732 FunctionType::param_iterator E = Ty->param_end(); 6733 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6734 Type *ExpectedTy = nullptr; 6735 if (I != E) { 6736 ExpectedTy = *I++; 6737 } else if (!Ty->isVarArg()) { 6738 return error(ArgList[i].Loc, "too many arguments specified"); 6739 } 6740 6741 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6742 return error(ArgList[i].Loc, "argument is not of expected type '" + 6743 getTypeString(ExpectedTy) + "'"); 6744 Args.push_back(ArgList[i].V); 6745 ArgAttrs.push_back(ArgList[i].Attrs); 6746 } 6747 6748 if (I != E) 6749 return error(CallLoc, "not enough parameters specified for call"); 6750 6751 if (FnAttrs.hasAlignmentAttr()) 6752 return error(CallLoc, "callbr instructions may not have an alignment"); 6753 6754 // Finish off the Attribute and check them 6755 AttributeList PAL = 6756 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6757 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6758 6759 CallBrInst *CBI = 6760 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6761 BundleList); 6762 CBI->setCallingConv(CC); 6763 CBI->setAttributes(PAL); 6764 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6765 Inst = CBI; 6766 return false; 6767 } 6768 6769 //===----------------------------------------------------------------------===// 6770 // Binary Operators. 6771 //===----------------------------------------------------------------------===// 6772 6773 /// parseArithmetic 6774 /// ::= ArithmeticOps TypeAndValue ',' Value 6775 /// 6776 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6777 /// operand is allowed. 6778 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6779 unsigned Opc, bool IsFP) { 6780 LocTy Loc; Value *LHS, *RHS; 6781 if (parseTypeAndValue(LHS, Loc, PFS) || 6782 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6783 parseValue(LHS->getType(), RHS, PFS)) 6784 return true; 6785 6786 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6787 : LHS->getType()->isIntOrIntVectorTy(); 6788 6789 if (!Valid) 6790 return error(Loc, "invalid operand type for instruction"); 6791 6792 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6793 return false; 6794 } 6795 6796 /// parseLogical 6797 /// ::= ArithmeticOps TypeAndValue ',' Value { 6798 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6799 unsigned Opc) { 6800 LocTy Loc; Value *LHS, *RHS; 6801 if (parseTypeAndValue(LHS, Loc, PFS) || 6802 parseToken(lltok::comma, "expected ',' in logical operation") || 6803 parseValue(LHS->getType(), RHS, PFS)) 6804 return true; 6805 6806 if (!LHS->getType()->isIntOrIntVectorTy()) 6807 return error(Loc, 6808 "instruction requires integer or integer vector operands"); 6809 6810 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6811 return false; 6812 } 6813 6814 /// parseCompare 6815 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6816 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6817 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 6818 unsigned Opc) { 6819 // parse the integer/fp comparison predicate. 6820 LocTy Loc; 6821 unsigned Pred; 6822 Value *LHS, *RHS; 6823 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 6824 parseToken(lltok::comma, "expected ',' after compare value") || 6825 parseValue(LHS->getType(), RHS, PFS)) 6826 return true; 6827 6828 if (Opc == Instruction::FCmp) { 6829 if (!LHS->getType()->isFPOrFPVectorTy()) 6830 return error(Loc, "fcmp requires floating point operands"); 6831 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6832 } else { 6833 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6834 if (!LHS->getType()->isIntOrIntVectorTy() && 6835 !LHS->getType()->isPtrOrPtrVectorTy()) 6836 return error(Loc, "icmp requires integer operands"); 6837 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6838 } 6839 return false; 6840 } 6841 6842 //===----------------------------------------------------------------------===// 6843 // Other Instructions. 6844 //===----------------------------------------------------------------------===// 6845 6846 /// parseCast 6847 /// ::= CastOpc TypeAndValue 'to' Type 6848 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 6849 unsigned Opc) { 6850 LocTy Loc; 6851 Value *Op; 6852 Type *DestTy = nullptr; 6853 if (parseTypeAndValue(Op, Loc, PFS) || 6854 parseToken(lltok::kw_to, "expected 'to' after cast value") || 6855 parseType(DestTy)) 6856 return true; 6857 6858 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6859 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6860 return error(Loc, "invalid cast opcode for cast from '" + 6861 getTypeString(Op->getType()) + "' to '" + 6862 getTypeString(DestTy) + "'"); 6863 } 6864 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6865 return false; 6866 } 6867 6868 /// parseSelect 6869 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6870 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6871 LocTy Loc; 6872 Value *Op0, *Op1, *Op2; 6873 if (parseTypeAndValue(Op0, Loc, PFS) || 6874 parseToken(lltok::comma, "expected ',' after select condition") || 6875 parseTypeAndValue(Op1, PFS) || 6876 parseToken(lltok::comma, "expected ',' after select value") || 6877 parseTypeAndValue(Op2, PFS)) 6878 return true; 6879 6880 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6881 return error(Loc, Reason); 6882 6883 Inst = SelectInst::Create(Op0, Op1, Op2); 6884 return false; 6885 } 6886 6887 /// parseVAArg 6888 /// ::= 'va_arg' TypeAndValue ',' Type 6889 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 6890 Value *Op; 6891 Type *EltTy = nullptr; 6892 LocTy TypeLoc; 6893 if (parseTypeAndValue(Op, PFS) || 6894 parseToken(lltok::comma, "expected ',' after vaarg operand") || 6895 parseType(EltTy, TypeLoc)) 6896 return true; 6897 6898 if (!EltTy->isFirstClassType()) 6899 return error(TypeLoc, "va_arg requires operand with first class type"); 6900 6901 Inst = new VAArgInst(Op, EltTy); 6902 return false; 6903 } 6904 6905 /// parseExtractElement 6906 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6907 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6908 LocTy Loc; 6909 Value *Op0, *Op1; 6910 if (parseTypeAndValue(Op0, Loc, PFS) || 6911 parseToken(lltok::comma, "expected ',' after extract value") || 6912 parseTypeAndValue(Op1, PFS)) 6913 return true; 6914 6915 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6916 return error(Loc, "invalid extractelement operands"); 6917 6918 Inst = ExtractElementInst::Create(Op0, Op1); 6919 return false; 6920 } 6921 6922 /// parseInsertElement 6923 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6924 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6925 LocTy Loc; 6926 Value *Op0, *Op1, *Op2; 6927 if (parseTypeAndValue(Op0, Loc, PFS) || 6928 parseToken(lltok::comma, "expected ',' after insertelement value") || 6929 parseTypeAndValue(Op1, PFS) || 6930 parseToken(lltok::comma, "expected ',' after insertelement value") || 6931 parseTypeAndValue(Op2, PFS)) 6932 return true; 6933 6934 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6935 return error(Loc, "invalid insertelement operands"); 6936 6937 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6938 return false; 6939 } 6940 6941 /// parseShuffleVector 6942 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6943 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6944 LocTy Loc; 6945 Value *Op0, *Op1, *Op2; 6946 if (parseTypeAndValue(Op0, Loc, PFS) || 6947 parseToken(lltok::comma, "expected ',' after shuffle mask") || 6948 parseTypeAndValue(Op1, PFS) || 6949 parseToken(lltok::comma, "expected ',' after shuffle value") || 6950 parseTypeAndValue(Op2, PFS)) 6951 return true; 6952 6953 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6954 return error(Loc, "invalid shufflevector operands"); 6955 6956 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6957 return false; 6958 } 6959 6960 /// parsePHI 6961 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6962 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6963 Type *Ty = nullptr; LocTy TypeLoc; 6964 Value *Op0, *Op1; 6965 6966 if (parseType(Ty, TypeLoc) || 6967 parseToken(lltok::lsquare, "expected '[' in phi value list") || 6968 parseValue(Ty, Op0, PFS) || 6969 parseToken(lltok::comma, "expected ',' after insertelement value") || 6970 parseValue(Type::getLabelTy(Context), Op1, PFS) || 6971 parseToken(lltok::rsquare, "expected ']' in phi value list")) 6972 return true; 6973 6974 bool AteExtraComma = false; 6975 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6976 6977 while (true) { 6978 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6979 6980 if (!EatIfPresent(lltok::comma)) 6981 break; 6982 6983 if (Lex.getKind() == lltok::MetadataVar) { 6984 AteExtraComma = true; 6985 break; 6986 } 6987 6988 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 6989 parseValue(Ty, Op0, PFS) || 6990 parseToken(lltok::comma, "expected ',' after insertelement value") || 6991 parseValue(Type::getLabelTy(Context), Op1, PFS) || 6992 parseToken(lltok::rsquare, "expected ']' in phi value list")) 6993 return true; 6994 } 6995 6996 if (!Ty->isFirstClassType()) 6997 return error(TypeLoc, "phi node must have first class type"); 6998 6999 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 7000 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 7001 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 7002 Inst = PN; 7003 return AteExtraComma ? InstExtraComma : InstNormal; 7004 } 7005 7006 /// parseLandingPad 7007 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 7008 /// Clause 7009 /// ::= 'catch' TypeAndValue 7010 /// ::= 'filter' 7011 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 7012 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 7013 Type *Ty = nullptr; LocTy TyLoc; 7014 7015 if (parseType(Ty, TyLoc)) 7016 return true; 7017 7018 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 7019 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 7020 7021 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 7022 LandingPadInst::ClauseType CT; 7023 if (EatIfPresent(lltok::kw_catch)) 7024 CT = LandingPadInst::Catch; 7025 else if (EatIfPresent(lltok::kw_filter)) 7026 CT = LandingPadInst::Filter; 7027 else 7028 return tokError("expected 'catch' or 'filter' clause type"); 7029 7030 Value *V; 7031 LocTy VLoc; 7032 if (parseTypeAndValue(V, VLoc, PFS)) 7033 return true; 7034 7035 // A 'catch' type expects a non-array constant. A filter clause expects an 7036 // array constant. 7037 if (CT == LandingPadInst::Catch) { 7038 if (isa<ArrayType>(V->getType())) 7039 error(VLoc, "'catch' clause has an invalid type"); 7040 } else { 7041 if (!isa<ArrayType>(V->getType())) 7042 error(VLoc, "'filter' clause has an invalid type"); 7043 } 7044 7045 Constant *CV = dyn_cast<Constant>(V); 7046 if (!CV) 7047 return error(VLoc, "clause argument must be a constant"); 7048 LP->addClause(CV); 7049 } 7050 7051 Inst = LP.release(); 7052 return false; 7053 } 7054 7055 /// parseFreeze 7056 /// ::= 'freeze' Type Value 7057 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 7058 LocTy Loc; 7059 Value *Op; 7060 if (parseTypeAndValue(Op, Loc, PFS)) 7061 return true; 7062 7063 Inst = new FreezeInst(Op); 7064 return false; 7065 } 7066 7067 /// parseCall 7068 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 7069 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7070 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 7071 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7072 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 7073 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7074 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 7075 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7076 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 7077 CallInst::TailCallKind TCK) { 7078 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 7079 std::vector<unsigned> FwdRefAttrGrps; 7080 LocTy BuiltinLoc; 7081 unsigned CallAddrSpace; 7082 unsigned CC; 7083 Type *RetType = nullptr; 7084 LocTy RetTypeLoc; 7085 ValID CalleeID; 7086 SmallVector<ParamInfo, 16> ArgList; 7087 SmallVector<OperandBundleDef, 2> BundleList; 7088 LocTy CallLoc = Lex.getLoc(); 7089 7090 if (TCK != CallInst::TCK_None && 7091 parseToken(lltok::kw_call, 7092 "expected 'tail call', 'musttail call', or 'notail call'")) 7093 return true; 7094 7095 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 7096 7097 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7098 parseOptionalProgramAddrSpace(CallAddrSpace) || 7099 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7100 parseValID(CalleeID, &PFS) || 7101 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 7102 PFS.getFunction().isVarArg()) || 7103 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 7104 parseOptionalOperandBundles(BundleList, PFS)) 7105 return true; 7106 7107 // If RetType is a non-function pointer type, then this is the short syntax 7108 // for the call, which means that RetType is just the return type. Infer the 7109 // rest of the function argument types from the arguments that are present. 7110 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 7111 if (!Ty) { 7112 // Pull out the types of all of the arguments... 7113 std::vector<Type*> ParamTypes; 7114 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 7115 ParamTypes.push_back(ArgList[i].V->getType()); 7116 7117 if (!FunctionType::isValidReturnType(RetType)) 7118 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7119 7120 Ty = FunctionType::get(RetType, ParamTypes, false); 7121 } 7122 7123 CalleeID.FTy = Ty; 7124 7125 // Look up the callee. 7126 Value *Callee; 7127 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7128 &PFS)) 7129 return true; 7130 7131 // Set up the Attribute for the function. 7132 SmallVector<AttributeSet, 8> Attrs; 7133 7134 SmallVector<Value*, 8> Args; 7135 7136 // Loop through FunctionType's arguments and ensure they are specified 7137 // correctly. Also, gather any parameter attributes. 7138 FunctionType::param_iterator I = Ty->param_begin(); 7139 FunctionType::param_iterator E = Ty->param_end(); 7140 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7141 Type *ExpectedTy = nullptr; 7142 if (I != E) { 7143 ExpectedTy = *I++; 7144 } else if (!Ty->isVarArg()) { 7145 return error(ArgList[i].Loc, "too many arguments specified"); 7146 } 7147 7148 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7149 return error(ArgList[i].Loc, "argument is not of expected type '" + 7150 getTypeString(ExpectedTy) + "'"); 7151 Args.push_back(ArgList[i].V); 7152 Attrs.push_back(ArgList[i].Attrs); 7153 } 7154 7155 if (I != E) 7156 return error(CallLoc, "not enough parameters specified for call"); 7157 7158 if (FnAttrs.hasAlignmentAttr()) 7159 return error(CallLoc, "call instructions may not have an alignment"); 7160 7161 // Finish off the Attribute and check them 7162 AttributeList PAL = 7163 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7164 AttributeSet::get(Context, RetAttrs), Attrs); 7165 7166 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7167 CI->setTailCallKind(TCK); 7168 CI->setCallingConv(CC); 7169 if (FMF.any()) { 7170 if (!isa<FPMathOperator>(CI)) { 7171 CI->deleteValue(); 7172 return error(CallLoc, "fast-math-flags specified for call without " 7173 "floating-point scalar or vector return type"); 7174 } 7175 CI->setFastMathFlags(FMF); 7176 } 7177 CI->setAttributes(PAL); 7178 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7179 Inst = CI; 7180 return false; 7181 } 7182 7183 //===----------------------------------------------------------------------===// 7184 // Memory Instructions. 7185 //===----------------------------------------------------------------------===// 7186 7187 /// parseAlloc 7188 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7189 /// (',' 'align' i32)? (',', 'addrspace(n))? 7190 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7191 Value *Size = nullptr; 7192 LocTy SizeLoc, TyLoc, ASLoc; 7193 MaybeAlign Alignment; 7194 unsigned AddrSpace = 0; 7195 Type *Ty = nullptr; 7196 7197 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7198 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7199 7200 if (parseType(Ty, TyLoc)) 7201 return true; 7202 7203 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7204 return error(TyLoc, "invalid type for alloca"); 7205 7206 bool AteExtraComma = false; 7207 if (EatIfPresent(lltok::comma)) { 7208 if (Lex.getKind() == lltok::kw_align) { 7209 if (parseOptionalAlignment(Alignment)) 7210 return true; 7211 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7212 return true; 7213 } else if (Lex.getKind() == lltok::kw_addrspace) { 7214 ASLoc = Lex.getLoc(); 7215 if (parseOptionalAddrSpace(AddrSpace)) 7216 return true; 7217 } else if (Lex.getKind() == lltok::MetadataVar) { 7218 AteExtraComma = true; 7219 } else { 7220 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7221 return true; 7222 if (EatIfPresent(lltok::comma)) { 7223 if (Lex.getKind() == lltok::kw_align) { 7224 if (parseOptionalAlignment(Alignment)) 7225 return true; 7226 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7227 return true; 7228 } else if (Lex.getKind() == lltok::kw_addrspace) { 7229 ASLoc = Lex.getLoc(); 7230 if (parseOptionalAddrSpace(AddrSpace)) 7231 return true; 7232 } else if (Lex.getKind() == lltok::MetadataVar) { 7233 AteExtraComma = true; 7234 } 7235 } 7236 } 7237 } 7238 7239 if (Size && !Size->getType()->isIntegerTy()) 7240 return error(SizeLoc, "element count must have integer type"); 7241 7242 SmallPtrSet<Type *, 4> Visited; 7243 if (!Alignment && !Ty->isSized(&Visited)) 7244 return error(TyLoc, "Cannot allocate unsized type"); 7245 if (!Alignment) 7246 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7247 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7248 AI->setUsedWithInAlloca(IsInAlloca); 7249 AI->setSwiftError(IsSwiftError); 7250 Inst = AI; 7251 return AteExtraComma ? InstExtraComma : InstNormal; 7252 } 7253 7254 /// parseLoad 7255 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7256 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7257 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7258 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7259 Value *Val; LocTy Loc; 7260 MaybeAlign Alignment; 7261 bool AteExtraComma = false; 7262 bool isAtomic = false; 7263 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7264 SyncScope::ID SSID = SyncScope::System; 7265 7266 if (Lex.getKind() == lltok::kw_atomic) { 7267 isAtomic = true; 7268 Lex.Lex(); 7269 } 7270 7271 bool isVolatile = false; 7272 if (Lex.getKind() == lltok::kw_volatile) { 7273 isVolatile = true; 7274 Lex.Lex(); 7275 } 7276 7277 Type *Ty; 7278 LocTy ExplicitTypeLoc = Lex.getLoc(); 7279 if (parseType(Ty) || 7280 parseToken(lltok::comma, "expected comma after load's type") || 7281 parseTypeAndValue(Val, Loc, PFS) || 7282 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7283 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7284 return true; 7285 7286 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7287 return error(Loc, "load operand must be a pointer to a first class type"); 7288 if (isAtomic && !Alignment) 7289 return error(Loc, "atomic load must have explicit non-zero alignment"); 7290 if (Ordering == AtomicOrdering::Release || 7291 Ordering == AtomicOrdering::AcquireRelease) 7292 return error(Loc, "atomic load cannot use Release ordering"); 7293 7294 if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) { 7295 return error( 7296 ExplicitTypeLoc, 7297 typeComparisonErrorMessage( 7298 "explicit pointee type doesn't match operand's pointee type", Ty, 7299 Val->getType()->getNonOpaquePointerElementType())); 7300 } 7301 SmallPtrSet<Type *, 4> Visited; 7302 if (!Alignment && !Ty->isSized(&Visited)) 7303 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7304 if (!Alignment) 7305 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7306 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7307 return AteExtraComma ? InstExtraComma : InstNormal; 7308 } 7309 7310 /// parseStore 7311 7312 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7313 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7314 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7315 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7316 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7317 MaybeAlign Alignment; 7318 bool AteExtraComma = false; 7319 bool isAtomic = false; 7320 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7321 SyncScope::ID SSID = SyncScope::System; 7322 7323 if (Lex.getKind() == lltok::kw_atomic) { 7324 isAtomic = true; 7325 Lex.Lex(); 7326 } 7327 7328 bool isVolatile = false; 7329 if (Lex.getKind() == lltok::kw_volatile) { 7330 isVolatile = true; 7331 Lex.Lex(); 7332 } 7333 7334 if (parseTypeAndValue(Val, Loc, PFS) || 7335 parseToken(lltok::comma, "expected ',' after store operand") || 7336 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7337 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7338 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7339 return true; 7340 7341 if (!Ptr->getType()->isPointerTy()) 7342 return error(PtrLoc, "store operand must be a pointer"); 7343 if (!Val->getType()->isFirstClassType()) 7344 return error(Loc, "store operand must be a first class value"); 7345 if (!cast<PointerType>(Ptr->getType()) 7346 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7347 return error(Loc, "stored value and pointer type do not match"); 7348 if (isAtomic && !Alignment) 7349 return error(Loc, "atomic store must have explicit non-zero alignment"); 7350 if (Ordering == AtomicOrdering::Acquire || 7351 Ordering == AtomicOrdering::AcquireRelease) 7352 return error(Loc, "atomic store cannot use Acquire ordering"); 7353 SmallPtrSet<Type *, 4> Visited; 7354 if (!Alignment && !Val->getType()->isSized(&Visited)) 7355 return error(Loc, "storing unsized types is not allowed"); 7356 if (!Alignment) 7357 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7358 7359 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7360 return AteExtraComma ? InstExtraComma : InstNormal; 7361 } 7362 7363 /// parseCmpXchg 7364 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7365 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7366 /// 'Align'? 7367 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7368 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7369 bool AteExtraComma = false; 7370 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7371 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7372 SyncScope::ID SSID = SyncScope::System; 7373 bool isVolatile = false; 7374 bool isWeak = false; 7375 MaybeAlign Alignment; 7376 7377 if (EatIfPresent(lltok::kw_weak)) 7378 isWeak = true; 7379 7380 if (EatIfPresent(lltok::kw_volatile)) 7381 isVolatile = true; 7382 7383 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7384 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7385 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7386 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7387 parseTypeAndValue(New, NewLoc, PFS) || 7388 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7389 parseOrdering(FailureOrdering) || 7390 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7391 return true; 7392 7393 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 7394 return tokError("invalid cmpxchg success ordering"); 7395 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 7396 return tokError("invalid cmpxchg failure ordering"); 7397 if (!Ptr->getType()->isPointerTy()) 7398 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7399 if (!cast<PointerType>(Ptr->getType()) 7400 ->isOpaqueOrPointeeTypeMatches(Cmp->getType())) 7401 return error(CmpLoc, "compare value and pointer type do not match"); 7402 if (!cast<PointerType>(Ptr->getType()) 7403 ->isOpaqueOrPointeeTypeMatches(New->getType())) 7404 return error(NewLoc, "new value and pointer type do not match"); 7405 if (Cmp->getType() != New->getType()) 7406 return error(NewLoc, "compare value and new value type do not match"); 7407 if (!New->getType()->isFirstClassType()) 7408 return error(NewLoc, "cmpxchg operand must be a first class value"); 7409 7410 const Align DefaultAlignment( 7411 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7412 Cmp->getType())); 7413 7414 AtomicCmpXchgInst *CXI = 7415 new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment.value_or(DefaultAlignment), 7416 SuccessOrdering, FailureOrdering, SSID); 7417 CXI->setVolatile(isVolatile); 7418 CXI->setWeak(isWeak); 7419 7420 Inst = CXI; 7421 return AteExtraComma ? InstExtraComma : InstNormal; 7422 } 7423 7424 /// parseAtomicRMW 7425 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7426 /// 'singlethread'? AtomicOrdering 7427 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7428 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7429 bool AteExtraComma = false; 7430 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7431 SyncScope::ID SSID = SyncScope::System; 7432 bool isVolatile = false; 7433 bool IsFP = false; 7434 AtomicRMWInst::BinOp Operation; 7435 MaybeAlign Alignment; 7436 7437 if (EatIfPresent(lltok::kw_volatile)) 7438 isVolatile = true; 7439 7440 switch (Lex.getKind()) { 7441 default: 7442 return tokError("expected binary operation in atomicrmw"); 7443 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7444 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7445 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7446 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7447 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7448 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7449 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7450 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7451 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7452 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7453 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7454 case lltok::kw_fadd: 7455 Operation = AtomicRMWInst::FAdd; 7456 IsFP = true; 7457 break; 7458 case lltok::kw_fsub: 7459 Operation = AtomicRMWInst::FSub; 7460 IsFP = true; 7461 break; 7462 } 7463 Lex.Lex(); // Eat the operation. 7464 7465 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7466 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7467 parseTypeAndValue(Val, ValLoc, PFS) || 7468 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7469 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7470 return true; 7471 7472 if (Ordering == AtomicOrdering::Unordered) 7473 return tokError("atomicrmw cannot be unordered"); 7474 if (!Ptr->getType()->isPointerTy()) 7475 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7476 if (!cast<PointerType>(Ptr->getType()) 7477 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7478 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7479 7480 if (Operation == AtomicRMWInst::Xchg) { 7481 if (!Val->getType()->isIntegerTy() && 7482 !Val->getType()->isFloatingPointTy() && 7483 !Val->getType()->isPointerTy()) { 7484 return error( 7485 ValLoc, 7486 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7487 " operand must be an integer, floating point, or pointer type"); 7488 } 7489 } else if (IsFP) { 7490 if (!Val->getType()->isFloatingPointTy()) { 7491 return error(ValLoc, "atomicrmw " + 7492 AtomicRMWInst::getOperationName(Operation) + 7493 " operand must be a floating point type"); 7494 } 7495 } else { 7496 if (!Val->getType()->isIntegerTy()) { 7497 return error(ValLoc, "atomicrmw " + 7498 AtomicRMWInst::getOperationName(Operation) + 7499 " operand must be an integer"); 7500 } 7501 } 7502 7503 unsigned Size = 7504 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSizeInBits( 7505 Val->getType()); 7506 if (Size < 8 || (Size & (Size - 1))) 7507 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7508 " integer"); 7509 const Align DefaultAlignment( 7510 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7511 Val->getType())); 7512 AtomicRMWInst *RMWI = 7513 new AtomicRMWInst(Operation, Ptr, Val, 7514 Alignment.value_or(DefaultAlignment), Ordering, SSID); 7515 RMWI->setVolatile(isVolatile); 7516 Inst = RMWI; 7517 return AteExtraComma ? InstExtraComma : InstNormal; 7518 } 7519 7520 /// parseFence 7521 /// ::= 'fence' 'singlethread'? AtomicOrdering 7522 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7523 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7524 SyncScope::ID SSID = SyncScope::System; 7525 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7526 return true; 7527 7528 if (Ordering == AtomicOrdering::Unordered) 7529 return tokError("fence cannot be unordered"); 7530 if (Ordering == AtomicOrdering::Monotonic) 7531 return tokError("fence cannot be monotonic"); 7532 7533 Inst = new FenceInst(Context, Ordering, SSID); 7534 return InstNormal; 7535 } 7536 7537 /// parseGetElementPtr 7538 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7539 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7540 Value *Ptr = nullptr; 7541 Value *Val = nullptr; 7542 LocTy Loc, EltLoc; 7543 7544 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7545 7546 Type *Ty = nullptr; 7547 LocTy ExplicitTypeLoc = Lex.getLoc(); 7548 if (parseType(Ty) || 7549 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7550 parseTypeAndValue(Ptr, Loc, PFS)) 7551 return true; 7552 7553 Type *BaseType = Ptr->getType(); 7554 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7555 if (!BasePointerType) 7556 return error(Loc, "base of getelementptr must be a pointer"); 7557 7558 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 7559 return error( 7560 ExplicitTypeLoc, 7561 typeComparisonErrorMessage( 7562 "explicit pointee type doesn't match operand's pointee type", Ty, 7563 BasePointerType->getNonOpaquePointerElementType())); 7564 } 7565 7566 SmallVector<Value*, 16> Indices; 7567 bool AteExtraComma = false; 7568 // GEP returns a vector of pointers if at least one of parameters is a vector. 7569 // All vector parameters should have the same vector width. 7570 ElementCount GEPWidth = BaseType->isVectorTy() 7571 ? cast<VectorType>(BaseType)->getElementCount() 7572 : ElementCount::getFixed(0); 7573 7574 while (EatIfPresent(lltok::comma)) { 7575 if (Lex.getKind() == lltok::MetadataVar) { 7576 AteExtraComma = true; 7577 break; 7578 } 7579 if (parseTypeAndValue(Val, EltLoc, PFS)) 7580 return true; 7581 if (!Val->getType()->isIntOrIntVectorTy()) 7582 return error(EltLoc, "getelementptr index must be an integer"); 7583 7584 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7585 ElementCount ValNumEl = ValVTy->getElementCount(); 7586 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7587 return error( 7588 EltLoc, 7589 "getelementptr vector index has a wrong number of elements"); 7590 GEPWidth = ValNumEl; 7591 } 7592 Indices.push_back(Val); 7593 } 7594 7595 SmallPtrSet<Type*, 4> Visited; 7596 if (!Indices.empty() && !Ty->isSized(&Visited)) 7597 return error(Loc, "base element of getelementptr must be sized"); 7598 7599 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7600 return error(Loc, "invalid getelementptr indices"); 7601 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7602 if (InBounds) 7603 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7604 return AteExtraComma ? InstExtraComma : InstNormal; 7605 } 7606 7607 /// parseExtractValue 7608 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7609 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7610 Value *Val; LocTy Loc; 7611 SmallVector<unsigned, 4> Indices; 7612 bool AteExtraComma; 7613 if (parseTypeAndValue(Val, Loc, PFS) || 7614 parseIndexList(Indices, AteExtraComma)) 7615 return true; 7616 7617 if (!Val->getType()->isAggregateType()) 7618 return error(Loc, "extractvalue operand must be aggregate type"); 7619 7620 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7621 return error(Loc, "invalid indices for extractvalue"); 7622 Inst = ExtractValueInst::Create(Val, Indices); 7623 return AteExtraComma ? InstExtraComma : InstNormal; 7624 } 7625 7626 /// parseInsertValue 7627 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7628 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7629 Value *Val0, *Val1; LocTy Loc0, Loc1; 7630 SmallVector<unsigned, 4> Indices; 7631 bool AteExtraComma; 7632 if (parseTypeAndValue(Val0, Loc0, PFS) || 7633 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7634 parseTypeAndValue(Val1, Loc1, PFS) || 7635 parseIndexList(Indices, AteExtraComma)) 7636 return true; 7637 7638 if (!Val0->getType()->isAggregateType()) 7639 return error(Loc0, "insertvalue operand must be aggregate type"); 7640 7641 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7642 if (!IndexedType) 7643 return error(Loc0, "invalid indices for insertvalue"); 7644 if (IndexedType != Val1->getType()) 7645 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7646 getTypeString(Val1->getType()) + "' instead of '" + 7647 getTypeString(IndexedType) + "'"); 7648 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7649 return AteExtraComma ? InstExtraComma : InstNormal; 7650 } 7651 7652 //===----------------------------------------------------------------------===// 7653 // Embedded metadata. 7654 //===----------------------------------------------------------------------===// 7655 7656 /// parseMDNodeVector 7657 /// ::= { Element (',' Element)* } 7658 /// Element 7659 /// ::= 'null' | TypeAndValue 7660 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7661 if (parseToken(lltok::lbrace, "expected '{' here")) 7662 return true; 7663 7664 // Check for an empty list. 7665 if (EatIfPresent(lltok::rbrace)) 7666 return false; 7667 7668 do { 7669 // Null is a special case since it is typeless. 7670 if (EatIfPresent(lltok::kw_null)) { 7671 Elts.push_back(nullptr); 7672 continue; 7673 } 7674 7675 Metadata *MD; 7676 if (parseMetadata(MD, nullptr)) 7677 return true; 7678 Elts.push_back(MD); 7679 } while (EatIfPresent(lltok::comma)); 7680 7681 return parseToken(lltok::rbrace, "expected end of metadata node"); 7682 } 7683 7684 //===----------------------------------------------------------------------===// 7685 // Use-list order directives. 7686 //===----------------------------------------------------------------------===// 7687 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7688 SMLoc Loc) { 7689 if (V->use_empty()) 7690 return error(Loc, "value has no uses"); 7691 7692 unsigned NumUses = 0; 7693 SmallDenseMap<const Use *, unsigned, 16> Order; 7694 for (const Use &U : V->uses()) { 7695 if (++NumUses > Indexes.size()) 7696 break; 7697 Order[&U] = Indexes[NumUses - 1]; 7698 } 7699 if (NumUses < 2) 7700 return error(Loc, "value only has one use"); 7701 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7702 return error(Loc, 7703 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7704 7705 V->sortUseList([&](const Use &L, const Use &R) { 7706 return Order.lookup(&L) < Order.lookup(&R); 7707 }); 7708 return false; 7709 } 7710 7711 /// parseUseListOrderIndexes 7712 /// ::= '{' uint32 (',' uint32)+ '}' 7713 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7714 SMLoc Loc = Lex.getLoc(); 7715 if (parseToken(lltok::lbrace, "expected '{' here")) 7716 return true; 7717 if (Lex.getKind() == lltok::rbrace) 7718 return Lex.Error("expected non-empty list of uselistorder indexes"); 7719 7720 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7721 // indexes should be distinct numbers in the range [0, size-1], and should 7722 // not be in order. 7723 unsigned Offset = 0; 7724 unsigned Max = 0; 7725 bool IsOrdered = true; 7726 assert(Indexes.empty() && "Expected empty order vector"); 7727 do { 7728 unsigned Index; 7729 if (parseUInt32(Index)) 7730 return true; 7731 7732 // Update consistency checks. 7733 Offset += Index - Indexes.size(); 7734 Max = std::max(Max, Index); 7735 IsOrdered &= Index == Indexes.size(); 7736 7737 Indexes.push_back(Index); 7738 } while (EatIfPresent(lltok::comma)); 7739 7740 if (parseToken(lltok::rbrace, "expected '}' here")) 7741 return true; 7742 7743 if (Indexes.size() < 2) 7744 return error(Loc, "expected >= 2 uselistorder indexes"); 7745 if (Offset != 0 || Max >= Indexes.size()) 7746 return error(Loc, 7747 "expected distinct uselistorder indexes in range [0, size)"); 7748 if (IsOrdered) 7749 return error(Loc, "expected uselistorder indexes to change the order"); 7750 7751 return false; 7752 } 7753 7754 /// parseUseListOrder 7755 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7756 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7757 SMLoc Loc = Lex.getLoc(); 7758 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7759 return true; 7760 7761 Value *V; 7762 SmallVector<unsigned, 16> Indexes; 7763 if (parseTypeAndValue(V, PFS) || 7764 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7765 parseUseListOrderIndexes(Indexes)) 7766 return true; 7767 7768 return sortUseListOrder(V, Indexes, Loc); 7769 } 7770 7771 /// parseUseListOrderBB 7772 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7773 bool LLParser::parseUseListOrderBB() { 7774 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7775 SMLoc Loc = Lex.getLoc(); 7776 Lex.Lex(); 7777 7778 ValID Fn, Label; 7779 SmallVector<unsigned, 16> Indexes; 7780 if (parseValID(Fn, /*PFS=*/nullptr) || 7781 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7782 parseValID(Label, /*PFS=*/nullptr) || 7783 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7784 parseUseListOrderIndexes(Indexes)) 7785 return true; 7786 7787 // Check the function. 7788 GlobalValue *GV; 7789 if (Fn.Kind == ValID::t_GlobalName) 7790 GV = M->getNamedValue(Fn.StrVal); 7791 else if (Fn.Kind == ValID::t_GlobalID) 7792 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7793 else 7794 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7795 if (!GV) 7796 return error(Fn.Loc, 7797 "invalid function forward reference in uselistorder_bb"); 7798 auto *F = dyn_cast<Function>(GV); 7799 if (!F) 7800 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7801 if (F->isDeclaration()) 7802 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7803 7804 // Check the basic block. 7805 if (Label.Kind == ValID::t_LocalID) 7806 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7807 if (Label.Kind != ValID::t_LocalName) 7808 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 7809 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7810 if (!V) 7811 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 7812 if (!isa<BasicBlock>(V)) 7813 return error(Label.Loc, "expected basic block in uselistorder_bb"); 7814 7815 return sortUseListOrder(V, Indexes, Loc); 7816 } 7817 7818 /// ModuleEntry 7819 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7820 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7821 bool LLParser::parseModuleEntry(unsigned ID) { 7822 assert(Lex.getKind() == lltok::kw_module); 7823 Lex.Lex(); 7824 7825 std::string Path; 7826 if (parseToken(lltok::colon, "expected ':' here") || 7827 parseToken(lltok::lparen, "expected '(' here") || 7828 parseToken(lltok::kw_path, "expected 'path' here") || 7829 parseToken(lltok::colon, "expected ':' here") || 7830 parseStringConstant(Path) || 7831 parseToken(lltok::comma, "expected ',' here") || 7832 parseToken(lltok::kw_hash, "expected 'hash' here") || 7833 parseToken(lltok::colon, "expected ':' here") || 7834 parseToken(lltok::lparen, "expected '(' here")) 7835 return true; 7836 7837 ModuleHash Hash; 7838 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 7839 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 7840 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 7841 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 7842 parseUInt32(Hash[4])) 7843 return true; 7844 7845 if (parseToken(lltok::rparen, "expected ')' here") || 7846 parseToken(lltok::rparen, "expected ')' here")) 7847 return true; 7848 7849 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7850 ModuleIdMap[ID] = ModuleEntry->first(); 7851 7852 return false; 7853 } 7854 7855 /// TypeIdEntry 7856 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7857 bool LLParser::parseTypeIdEntry(unsigned ID) { 7858 assert(Lex.getKind() == lltok::kw_typeid); 7859 Lex.Lex(); 7860 7861 std::string Name; 7862 if (parseToken(lltok::colon, "expected ':' here") || 7863 parseToken(lltok::lparen, "expected '(' here") || 7864 parseToken(lltok::kw_name, "expected 'name' here") || 7865 parseToken(lltok::colon, "expected ':' here") || 7866 parseStringConstant(Name)) 7867 return true; 7868 7869 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7870 if (parseToken(lltok::comma, "expected ',' here") || 7871 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 7872 return true; 7873 7874 // Check if this ID was forward referenced, and if so, update the 7875 // corresponding GUIDs. 7876 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7877 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7878 for (auto TIDRef : FwdRefTIDs->second) { 7879 assert(!*TIDRef.first && 7880 "Forward referenced type id GUID expected to be 0"); 7881 *TIDRef.first = GlobalValue::getGUID(Name); 7882 } 7883 ForwardRefTypeIds.erase(FwdRefTIDs); 7884 } 7885 7886 return false; 7887 } 7888 7889 /// TypeIdSummary 7890 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7891 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 7892 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 7893 parseToken(lltok::colon, "expected ':' here") || 7894 parseToken(lltok::lparen, "expected '(' here") || 7895 parseTypeTestResolution(TIS.TTRes)) 7896 return true; 7897 7898 if (EatIfPresent(lltok::comma)) { 7899 // Expect optional wpdResolutions field 7900 if (parseOptionalWpdResolutions(TIS.WPDRes)) 7901 return true; 7902 } 7903 7904 if (parseToken(lltok::rparen, "expected ')' here")) 7905 return true; 7906 7907 return false; 7908 } 7909 7910 static ValueInfo EmptyVI = 7911 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7912 7913 /// TypeIdCompatibleVtableEntry 7914 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7915 /// TypeIdCompatibleVtableInfo 7916 /// ')' 7917 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 7918 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7919 Lex.Lex(); 7920 7921 std::string Name; 7922 if (parseToken(lltok::colon, "expected ':' here") || 7923 parseToken(lltok::lparen, "expected '(' here") || 7924 parseToken(lltok::kw_name, "expected 'name' here") || 7925 parseToken(lltok::colon, "expected ':' here") || 7926 parseStringConstant(Name)) 7927 return true; 7928 7929 TypeIdCompatibleVtableInfo &TI = 7930 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7931 if (parseToken(lltok::comma, "expected ',' here") || 7932 parseToken(lltok::kw_summary, "expected 'summary' here") || 7933 parseToken(lltok::colon, "expected ':' here") || 7934 parseToken(lltok::lparen, "expected '(' here")) 7935 return true; 7936 7937 IdToIndexMapType IdToIndexMap; 7938 // parse each call edge 7939 do { 7940 uint64_t Offset; 7941 if (parseToken(lltok::lparen, "expected '(' here") || 7942 parseToken(lltok::kw_offset, "expected 'offset' here") || 7943 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7944 parseToken(lltok::comma, "expected ',' here")) 7945 return true; 7946 7947 LocTy Loc = Lex.getLoc(); 7948 unsigned GVId; 7949 ValueInfo VI; 7950 if (parseGVReference(VI, GVId)) 7951 return true; 7952 7953 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7954 // forward reference. We will save the location of the ValueInfo needing an 7955 // update, but can only do so once the std::vector is finalized. 7956 if (VI == EmptyVI) 7957 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7958 TI.push_back({Offset, VI}); 7959 7960 if (parseToken(lltok::rparen, "expected ')' in call")) 7961 return true; 7962 } while (EatIfPresent(lltok::comma)); 7963 7964 // Now that the TI vector is finalized, it is safe to save the locations 7965 // of any forward GV references that need updating later. 7966 for (auto I : IdToIndexMap) { 7967 auto &Infos = ForwardRefValueInfos[I.first]; 7968 for (auto P : I.second) { 7969 assert(TI[P.first].VTableVI == EmptyVI && 7970 "Forward referenced ValueInfo expected to be empty"); 7971 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 7972 } 7973 } 7974 7975 if (parseToken(lltok::rparen, "expected ')' here") || 7976 parseToken(lltok::rparen, "expected ')' here")) 7977 return true; 7978 7979 // Check if this ID was forward referenced, and if so, update the 7980 // corresponding GUIDs. 7981 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7982 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7983 for (auto TIDRef : FwdRefTIDs->second) { 7984 assert(!*TIDRef.first && 7985 "Forward referenced type id GUID expected to be 0"); 7986 *TIDRef.first = GlobalValue::getGUID(Name); 7987 } 7988 ForwardRefTypeIds.erase(FwdRefTIDs); 7989 } 7990 7991 return false; 7992 } 7993 7994 /// TypeTestResolution 7995 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7996 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7997 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7998 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7999 /// [',' 'inlinesBits' ':' UInt64]? ')' 8000 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 8001 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 8002 parseToken(lltok::colon, "expected ':' here") || 8003 parseToken(lltok::lparen, "expected '(' here") || 8004 parseToken(lltok::kw_kind, "expected 'kind' here") || 8005 parseToken(lltok::colon, "expected ':' here")) 8006 return true; 8007 8008 switch (Lex.getKind()) { 8009 case lltok::kw_unknown: 8010 TTRes.TheKind = TypeTestResolution::Unknown; 8011 break; 8012 case lltok::kw_unsat: 8013 TTRes.TheKind = TypeTestResolution::Unsat; 8014 break; 8015 case lltok::kw_byteArray: 8016 TTRes.TheKind = TypeTestResolution::ByteArray; 8017 break; 8018 case lltok::kw_inline: 8019 TTRes.TheKind = TypeTestResolution::Inline; 8020 break; 8021 case lltok::kw_single: 8022 TTRes.TheKind = TypeTestResolution::Single; 8023 break; 8024 case lltok::kw_allOnes: 8025 TTRes.TheKind = TypeTestResolution::AllOnes; 8026 break; 8027 default: 8028 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 8029 } 8030 Lex.Lex(); 8031 8032 if (parseToken(lltok::comma, "expected ',' here") || 8033 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 8034 parseToken(lltok::colon, "expected ':' here") || 8035 parseUInt32(TTRes.SizeM1BitWidth)) 8036 return true; 8037 8038 // parse optional fields 8039 while (EatIfPresent(lltok::comma)) { 8040 switch (Lex.getKind()) { 8041 case lltok::kw_alignLog2: 8042 Lex.Lex(); 8043 if (parseToken(lltok::colon, "expected ':'") || 8044 parseUInt64(TTRes.AlignLog2)) 8045 return true; 8046 break; 8047 case lltok::kw_sizeM1: 8048 Lex.Lex(); 8049 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 8050 return true; 8051 break; 8052 case lltok::kw_bitMask: { 8053 unsigned Val; 8054 Lex.Lex(); 8055 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 8056 return true; 8057 assert(Val <= 0xff); 8058 TTRes.BitMask = (uint8_t)Val; 8059 break; 8060 } 8061 case lltok::kw_inlineBits: 8062 Lex.Lex(); 8063 if (parseToken(lltok::colon, "expected ':'") || 8064 parseUInt64(TTRes.InlineBits)) 8065 return true; 8066 break; 8067 default: 8068 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 8069 } 8070 } 8071 8072 if (parseToken(lltok::rparen, "expected ')' here")) 8073 return true; 8074 8075 return false; 8076 } 8077 8078 /// OptionalWpdResolutions 8079 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 8080 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 8081 bool LLParser::parseOptionalWpdResolutions( 8082 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 8083 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 8084 parseToken(lltok::colon, "expected ':' here") || 8085 parseToken(lltok::lparen, "expected '(' here")) 8086 return true; 8087 8088 do { 8089 uint64_t Offset; 8090 WholeProgramDevirtResolution WPDRes; 8091 if (parseToken(lltok::lparen, "expected '(' here") || 8092 parseToken(lltok::kw_offset, "expected 'offset' here") || 8093 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8094 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 8095 parseToken(lltok::rparen, "expected ')' here")) 8096 return true; 8097 WPDResMap[Offset] = WPDRes; 8098 } while (EatIfPresent(lltok::comma)); 8099 8100 if (parseToken(lltok::rparen, "expected ')' here")) 8101 return true; 8102 8103 return false; 8104 } 8105 8106 /// WpdRes 8107 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 8108 /// [',' OptionalResByArg]? ')' 8109 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 8110 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 8111 /// [',' OptionalResByArg]? ')' 8112 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 8113 /// [',' OptionalResByArg]? ')' 8114 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 8115 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 8116 parseToken(lltok::colon, "expected ':' here") || 8117 parseToken(lltok::lparen, "expected '(' here") || 8118 parseToken(lltok::kw_kind, "expected 'kind' here") || 8119 parseToken(lltok::colon, "expected ':' here")) 8120 return true; 8121 8122 switch (Lex.getKind()) { 8123 case lltok::kw_indir: 8124 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8125 break; 8126 case lltok::kw_singleImpl: 8127 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8128 break; 8129 case lltok::kw_branchFunnel: 8130 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8131 break; 8132 default: 8133 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8134 } 8135 Lex.Lex(); 8136 8137 // parse optional fields 8138 while (EatIfPresent(lltok::comma)) { 8139 switch (Lex.getKind()) { 8140 case lltok::kw_singleImplName: 8141 Lex.Lex(); 8142 if (parseToken(lltok::colon, "expected ':' here") || 8143 parseStringConstant(WPDRes.SingleImplName)) 8144 return true; 8145 break; 8146 case lltok::kw_resByArg: 8147 if (parseOptionalResByArg(WPDRes.ResByArg)) 8148 return true; 8149 break; 8150 default: 8151 return error(Lex.getLoc(), 8152 "expected optional WholeProgramDevirtResolution field"); 8153 } 8154 } 8155 8156 if (parseToken(lltok::rparen, "expected ')' here")) 8157 return true; 8158 8159 return false; 8160 } 8161 8162 /// OptionalResByArg 8163 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8164 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8165 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8166 /// 'virtualConstProp' ) 8167 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8168 /// [',' 'bit' ':' UInt32]? ')' 8169 bool LLParser::parseOptionalResByArg( 8170 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8171 &ResByArg) { 8172 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8173 parseToken(lltok::colon, "expected ':' here") || 8174 parseToken(lltok::lparen, "expected '(' here")) 8175 return true; 8176 8177 do { 8178 std::vector<uint64_t> Args; 8179 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8180 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8181 parseToken(lltok::colon, "expected ':' here") || 8182 parseToken(lltok::lparen, "expected '(' here") || 8183 parseToken(lltok::kw_kind, "expected 'kind' here") || 8184 parseToken(lltok::colon, "expected ':' here")) 8185 return true; 8186 8187 WholeProgramDevirtResolution::ByArg ByArg; 8188 switch (Lex.getKind()) { 8189 case lltok::kw_indir: 8190 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8191 break; 8192 case lltok::kw_uniformRetVal: 8193 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8194 break; 8195 case lltok::kw_uniqueRetVal: 8196 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8197 break; 8198 case lltok::kw_virtualConstProp: 8199 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8200 break; 8201 default: 8202 return error(Lex.getLoc(), 8203 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8204 } 8205 Lex.Lex(); 8206 8207 // parse optional fields 8208 while (EatIfPresent(lltok::comma)) { 8209 switch (Lex.getKind()) { 8210 case lltok::kw_info: 8211 Lex.Lex(); 8212 if (parseToken(lltok::colon, "expected ':' here") || 8213 parseUInt64(ByArg.Info)) 8214 return true; 8215 break; 8216 case lltok::kw_byte: 8217 Lex.Lex(); 8218 if (parseToken(lltok::colon, "expected ':' here") || 8219 parseUInt32(ByArg.Byte)) 8220 return true; 8221 break; 8222 case lltok::kw_bit: 8223 Lex.Lex(); 8224 if (parseToken(lltok::colon, "expected ':' here") || 8225 parseUInt32(ByArg.Bit)) 8226 return true; 8227 break; 8228 default: 8229 return error(Lex.getLoc(), 8230 "expected optional whole program devirt field"); 8231 } 8232 } 8233 8234 if (parseToken(lltok::rparen, "expected ')' here")) 8235 return true; 8236 8237 ResByArg[Args] = ByArg; 8238 } while (EatIfPresent(lltok::comma)); 8239 8240 if (parseToken(lltok::rparen, "expected ')' here")) 8241 return true; 8242 8243 return false; 8244 } 8245 8246 /// OptionalResByArg 8247 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8248 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8249 if (parseToken(lltok::kw_args, "expected 'args' here") || 8250 parseToken(lltok::colon, "expected ':' here") || 8251 parseToken(lltok::lparen, "expected '(' here")) 8252 return true; 8253 8254 do { 8255 uint64_t Val; 8256 if (parseUInt64(Val)) 8257 return true; 8258 Args.push_back(Val); 8259 } while (EatIfPresent(lltok::comma)); 8260 8261 if (parseToken(lltok::rparen, "expected ')' here")) 8262 return true; 8263 8264 return false; 8265 } 8266 8267 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8268 8269 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8270 bool ReadOnly = Fwd->isReadOnly(); 8271 bool WriteOnly = Fwd->isWriteOnly(); 8272 assert(!(ReadOnly && WriteOnly)); 8273 *Fwd = Resolved; 8274 if (ReadOnly) 8275 Fwd->setReadOnly(); 8276 if (WriteOnly) 8277 Fwd->setWriteOnly(); 8278 } 8279 8280 /// Stores the given Name/GUID and associated summary into the Index. 8281 /// Also updates any forward references to the associated entry ID. 8282 void LLParser::addGlobalValueToIndex( 8283 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8284 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8285 // First create the ValueInfo utilizing the Name or GUID. 8286 ValueInfo VI; 8287 if (GUID != 0) { 8288 assert(Name.empty()); 8289 VI = Index->getOrInsertValueInfo(GUID); 8290 } else { 8291 assert(!Name.empty()); 8292 if (M) { 8293 auto *GV = M->getNamedValue(Name); 8294 assert(GV); 8295 VI = Index->getOrInsertValueInfo(GV); 8296 } else { 8297 assert( 8298 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8299 "Need a source_filename to compute GUID for local"); 8300 GUID = GlobalValue::getGUID( 8301 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8302 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8303 } 8304 } 8305 8306 // Resolve forward references from calls/refs 8307 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8308 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8309 for (auto VIRef : FwdRefVIs->second) { 8310 assert(VIRef.first->getRef() == FwdVIRef && 8311 "Forward referenced ValueInfo expected to be empty"); 8312 resolveFwdRef(VIRef.first, VI); 8313 } 8314 ForwardRefValueInfos.erase(FwdRefVIs); 8315 } 8316 8317 // Resolve forward references from aliases 8318 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8319 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8320 for (auto AliaseeRef : FwdRefAliasees->second) { 8321 assert(!AliaseeRef.first->hasAliasee() && 8322 "Forward referencing alias already has aliasee"); 8323 assert(Summary && "Aliasee must be a definition"); 8324 AliaseeRef.first->setAliasee(VI, Summary.get()); 8325 } 8326 ForwardRefAliasees.erase(FwdRefAliasees); 8327 } 8328 8329 // Add the summary if one was provided. 8330 if (Summary) 8331 Index->addGlobalValueSummary(VI, std::move(Summary)); 8332 8333 // Save the associated ValueInfo for use in later references by ID. 8334 if (ID == NumberedValueInfos.size()) 8335 NumberedValueInfos.push_back(VI); 8336 else { 8337 // Handle non-continuous numbers (to make test simplification easier). 8338 if (ID > NumberedValueInfos.size()) 8339 NumberedValueInfos.resize(ID + 1); 8340 NumberedValueInfos[ID] = VI; 8341 } 8342 } 8343 8344 /// parseSummaryIndexFlags 8345 /// ::= 'flags' ':' UInt64 8346 bool LLParser::parseSummaryIndexFlags() { 8347 assert(Lex.getKind() == lltok::kw_flags); 8348 Lex.Lex(); 8349 8350 if (parseToken(lltok::colon, "expected ':' here")) 8351 return true; 8352 uint64_t Flags; 8353 if (parseUInt64(Flags)) 8354 return true; 8355 if (Index) 8356 Index->setFlags(Flags); 8357 return false; 8358 } 8359 8360 /// parseBlockCount 8361 /// ::= 'blockcount' ':' UInt64 8362 bool LLParser::parseBlockCount() { 8363 assert(Lex.getKind() == lltok::kw_blockcount); 8364 Lex.Lex(); 8365 8366 if (parseToken(lltok::colon, "expected ':' here")) 8367 return true; 8368 uint64_t BlockCount; 8369 if (parseUInt64(BlockCount)) 8370 return true; 8371 if (Index) 8372 Index->setBlockCount(BlockCount); 8373 return false; 8374 } 8375 8376 /// parseGVEntry 8377 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8378 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8379 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8380 bool LLParser::parseGVEntry(unsigned ID) { 8381 assert(Lex.getKind() == lltok::kw_gv); 8382 Lex.Lex(); 8383 8384 if (parseToken(lltok::colon, "expected ':' here") || 8385 parseToken(lltok::lparen, "expected '(' here")) 8386 return true; 8387 8388 std::string Name; 8389 GlobalValue::GUID GUID = 0; 8390 switch (Lex.getKind()) { 8391 case lltok::kw_name: 8392 Lex.Lex(); 8393 if (parseToken(lltok::colon, "expected ':' here") || 8394 parseStringConstant(Name)) 8395 return true; 8396 // Can't create GUID/ValueInfo until we have the linkage. 8397 break; 8398 case lltok::kw_guid: 8399 Lex.Lex(); 8400 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8401 return true; 8402 break; 8403 default: 8404 return error(Lex.getLoc(), "expected name or guid tag"); 8405 } 8406 8407 if (!EatIfPresent(lltok::comma)) { 8408 // No summaries. Wrap up. 8409 if (parseToken(lltok::rparen, "expected ')' here")) 8410 return true; 8411 // This was created for a call to an external or indirect target. 8412 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8413 // created for indirect calls with VP. A Name with no GUID came from 8414 // an external definition. We pass ExternalLinkage since that is only 8415 // used when the GUID must be computed from Name, and in that case 8416 // the symbol must have external linkage. 8417 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8418 nullptr); 8419 return false; 8420 } 8421 8422 // Have a list of summaries 8423 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8424 parseToken(lltok::colon, "expected ':' here") || 8425 parseToken(lltok::lparen, "expected '(' here")) 8426 return true; 8427 do { 8428 switch (Lex.getKind()) { 8429 case lltok::kw_function: 8430 if (parseFunctionSummary(Name, GUID, ID)) 8431 return true; 8432 break; 8433 case lltok::kw_variable: 8434 if (parseVariableSummary(Name, GUID, ID)) 8435 return true; 8436 break; 8437 case lltok::kw_alias: 8438 if (parseAliasSummary(Name, GUID, ID)) 8439 return true; 8440 break; 8441 default: 8442 return error(Lex.getLoc(), "expected summary type"); 8443 } 8444 } while (EatIfPresent(lltok::comma)); 8445 8446 if (parseToken(lltok::rparen, "expected ')' here") || 8447 parseToken(lltok::rparen, "expected ')' here")) 8448 return true; 8449 8450 return false; 8451 } 8452 8453 /// FunctionSummary 8454 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8455 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8456 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8457 /// [',' OptionalRefs]? ')' 8458 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8459 unsigned ID) { 8460 assert(Lex.getKind() == lltok::kw_function); 8461 Lex.Lex(); 8462 8463 StringRef ModulePath; 8464 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8465 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8466 /*NotEligibleToImport=*/false, 8467 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8468 unsigned InstCount; 8469 std::vector<FunctionSummary::EdgeTy> Calls; 8470 FunctionSummary::TypeIdInfo TypeIdInfo; 8471 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8472 std::vector<ValueInfo> Refs; 8473 // Default is all-zeros (conservative values). 8474 FunctionSummary::FFlags FFlags = {}; 8475 if (parseToken(lltok::colon, "expected ':' here") || 8476 parseToken(lltok::lparen, "expected '(' here") || 8477 parseModuleReference(ModulePath) || 8478 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8479 parseToken(lltok::comma, "expected ',' here") || 8480 parseToken(lltok::kw_insts, "expected 'insts' here") || 8481 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8482 return true; 8483 8484 // parse optional fields 8485 while (EatIfPresent(lltok::comma)) { 8486 switch (Lex.getKind()) { 8487 case lltok::kw_funcFlags: 8488 if (parseOptionalFFlags(FFlags)) 8489 return true; 8490 break; 8491 case lltok::kw_calls: 8492 if (parseOptionalCalls(Calls)) 8493 return true; 8494 break; 8495 case lltok::kw_typeIdInfo: 8496 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8497 return true; 8498 break; 8499 case lltok::kw_refs: 8500 if (parseOptionalRefs(Refs)) 8501 return true; 8502 break; 8503 case lltok::kw_params: 8504 if (parseOptionalParamAccesses(ParamAccesses)) 8505 return true; 8506 break; 8507 default: 8508 return error(Lex.getLoc(), "expected optional function summary field"); 8509 } 8510 } 8511 8512 if (parseToken(lltok::rparen, "expected ')' here")) 8513 return true; 8514 8515 auto FS = std::make_unique<FunctionSummary>( 8516 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8517 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8518 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8519 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8520 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8521 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8522 std::move(ParamAccesses)); 8523 8524 FS->setModulePath(ModulePath); 8525 8526 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8527 ID, std::move(FS)); 8528 8529 return false; 8530 } 8531 8532 /// VariableSummary 8533 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8534 /// [',' OptionalRefs]? ')' 8535 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8536 unsigned ID) { 8537 assert(Lex.getKind() == lltok::kw_variable); 8538 Lex.Lex(); 8539 8540 StringRef ModulePath; 8541 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8542 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8543 /*NotEligibleToImport=*/false, 8544 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8545 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8546 /* WriteOnly */ false, 8547 /* Constant */ false, 8548 GlobalObject::VCallVisibilityPublic); 8549 std::vector<ValueInfo> Refs; 8550 VTableFuncList VTableFuncs; 8551 if (parseToken(lltok::colon, "expected ':' here") || 8552 parseToken(lltok::lparen, "expected '(' here") || 8553 parseModuleReference(ModulePath) || 8554 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8555 parseToken(lltok::comma, "expected ',' here") || 8556 parseGVarFlags(GVarFlags)) 8557 return true; 8558 8559 // parse optional fields 8560 while (EatIfPresent(lltok::comma)) { 8561 switch (Lex.getKind()) { 8562 case lltok::kw_vTableFuncs: 8563 if (parseOptionalVTableFuncs(VTableFuncs)) 8564 return true; 8565 break; 8566 case lltok::kw_refs: 8567 if (parseOptionalRefs(Refs)) 8568 return true; 8569 break; 8570 default: 8571 return error(Lex.getLoc(), "expected optional variable summary field"); 8572 } 8573 } 8574 8575 if (parseToken(lltok::rparen, "expected ')' here")) 8576 return true; 8577 8578 auto GS = 8579 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8580 8581 GS->setModulePath(ModulePath); 8582 GS->setVTableFuncs(std::move(VTableFuncs)); 8583 8584 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8585 ID, std::move(GS)); 8586 8587 return false; 8588 } 8589 8590 /// AliasSummary 8591 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8592 /// 'aliasee' ':' GVReference ')' 8593 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8594 unsigned ID) { 8595 assert(Lex.getKind() == lltok::kw_alias); 8596 LocTy Loc = Lex.getLoc(); 8597 Lex.Lex(); 8598 8599 StringRef ModulePath; 8600 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8601 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8602 /*NotEligibleToImport=*/false, 8603 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8604 if (parseToken(lltok::colon, "expected ':' here") || 8605 parseToken(lltok::lparen, "expected '(' here") || 8606 parseModuleReference(ModulePath) || 8607 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8608 parseToken(lltok::comma, "expected ',' here") || 8609 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8610 parseToken(lltok::colon, "expected ':' here")) 8611 return true; 8612 8613 ValueInfo AliaseeVI; 8614 unsigned GVId; 8615 if (parseGVReference(AliaseeVI, GVId)) 8616 return true; 8617 8618 if (parseToken(lltok::rparen, "expected ')' here")) 8619 return true; 8620 8621 auto AS = std::make_unique<AliasSummary>(GVFlags); 8622 8623 AS->setModulePath(ModulePath); 8624 8625 // Record forward reference if the aliasee is not parsed yet. 8626 if (AliaseeVI.getRef() == FwdVIRef) { 8627 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8628 } else { 8629 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8630 assert(Summary && "Aliasee must be a definition"); 8631 AS->setAliasee(AliaseeVI, Summary); 8632 } 8633 8634 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8635 ID, std::move(AS)); 8636 8637 return false; 8638 } 8639 8640 /// Flag 8641 /// ::= [0|1] 8642 bool LLParser::parseFlag(unsigned &Val) { 8643 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8644 return tokError("expected integer"); 8645 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8646 Lex.Lex(); 8647 return false; 8648 } 8649 8650 /// OptionalFFlags 8651 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8652 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8653 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8654 /// [',' 'noInline' ':' Flag]? ')' 8655 /// [',' 'alwaysInline' ':' Flag]? ')' 8656 /// [',' 'noUnwind' ':' Flag]? ')' 8657 /// [',' 'mayThrow' ':' Flag]? ')' 8658 /// [',' 'hasUnknownCall' ':' Flag]? ')' 8659 /// [',' 'mustBeUnreachable' ':' Flag]? ')' 8660 8661 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8662 assert(Lex.getKind() == lltok::kw_funcFlags); 8663 Lex.Lex(); 8664 8665 if (parseToken(lltok::colon, "expected ':' in funcFlags") || 8666 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8667 return true; 8668 8669 do { 8670 unsigned Val = 0; 8671 switch (Lex.getKind()) { 8672 case lltok::kw_readNone: 8673 Lex.Lex(); 8674 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8675 return true; 8676 FFlags.ReadNone = Val; 8677 break; 8678 case lltok::kw_readOnly: 8679 Lex.Lex(); 8680 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8681 return true; 8682 FFlags.ReadOnly = Val; 8683 break; 8684 case lltok::kw_noRecurse: 8685 Lex.Lex(); 8686 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8687 return true; 8688 FFlags.NoRecurse = Val; 8689 break; 8690 case lltok::kw_returnDoesNotAlias: 8691 Lex.Lex(); 8692 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8693 return true; 8694 FFlags.ReturnDoesNotAlias = Val; 8695 break; 8696 case lltok::kw_noInline: 8697 Lex.Lex(); 8698 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8699 return true; 8700 FFlags.NoInline = Val; 8701 break; 8702 case lltok::kw_alwaysInline: 8703 Lex.Lex(); 8704 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8705 return true; 8706 FFlags.AlwaysInline = Val; 8707 break; 8708 case lltok::kw_noUnwind: 8709 Lex.Lex(); 8710 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8711 return true; 8712 FFlags.NoUnwind = Val; 8713 break; 8714 case lltok::kw_mayThrow: 8715 Lex.Lex(); 8716 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8717 return true; 8718 FFlags.MayThrow = Val; 8719 break; 8720 case lltok::kw_hasUnknownCall: 8721 Lex.Lex(); 8722 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8723 return true; 8724 FFlags.HasUnknownCall = Val; 8725 break; 8726 case lltok::kw_mustBeUnreachable: 8727 Lex.Lex(); 8728 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8729 return true; 8730 FFlags.MustBeUnreachable = Val; 8731 break; 8732 default: 8733 return error(Lex.getLoc(), "expected function flag type"); 8734 } 8735 } while (EatIfPresent(lltok::comma)); 8736 8737 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8738 return true; 8739 8740 return false; 8741 } 8742 8743 /// OptionalCalls 8744 /// := 'calls' ':' '(' Call [',' Call]* ')' 8745 /// Call ::= '(' 'callee' ':' GVReference 8746 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8747 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8748 assert(Lex.getKind() == lltok::kw_calls); 8749 Lex.Lex(); 8750 8751 if (parseToken(lltok::colon, "expected ':' in calls") || 8752 parseToken(lltok::lparen, "expected '(' in calls")) 8753 return true; 8754 8755 IdToIndexMapType IdToIndexMap; 8756 // parse each call edge 8757 do { 8758 ValueInfo VI; 8759 if (parseToken(lltok::lparen, "expected '(' in call") || 8760 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8761 parseToken(lltok::colon, "expected ':'")) 8762 return true; 8763 8764 LocTy Loc = Lex.getLoc(); 8765 unsigned GVId; 8766 if (parseGVReference(VI, GVId)) 8767 return true; 8768 8769 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8770 unsigned RelBF = 0; 8771 if (EatIfPresent(lltok::comma)) { 8772 // Expect either hotness or relbf 8773 if (EatIfPresent(lltok::kw_hotness)) { 8774 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8775 return true; 8776 } else { 8777 if (parseToken(lltok::kw_relbf, "expected relbf") || 8778 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8779 return true; 8780 } 8781 } 8782 // Keep track of the Call array index needing a forward reference. 8783 // We will save the location of the ValueInfo needing an update, but 8784 // can only do so once the std::vector is finalized. 8785 if (VI.getRef() == FwdVIRef) 8786 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8787 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8788 8789 if (parseToken(lltok::rparen, "expected ')' in call")) 8790 return true; 8791 } while (EatIfPresent(lltok::comma)); 8792 8793 // Now that the Calls vector is finalized, it is safe to save the locations 8794 // of any forward GV references that need updating later. 8795 for (auto I : IdToIndexMap) { 8796 auto &Infos = ForwardRefValueInfos[I.first]; 8797 for (auto P : I.second) { 8798 assert(Calls[P.first].first.getRef() == FwdVIRef && 8799 "Forward referenced ValueInfo expected to be empty"); 8800 Infos.emplace_back(&Calls[P.first].first, P.second); 8801 } 8802 } 8803 8804 if (parseToken(lltok::rparen, "expected ')' in calls")) 8805 return true; 8806 8807 return false; 8808 } 8809 8810 /// Hotness 8811 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8812 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8813 switch (Lex.getKind()) { 8814 case lltok::kw_unknown: 8815 Hotness = CalleeInfo::HotnessType::Unknown; 8816 break; 8817 case lltok::kw_cold: 8818 Hotness = CalleeInfo::HotnessType::Cold; 8819 break; 8820 case lltok::kw_none: 8821 Hotness = CalleeInfo::HotnessType::None; 8822 break; 8823 case lltok::kw_hot: 8824 Hotness = CalleeInfo::HotnessType::Hot; 8825 break; 8826 case lltok::kw_critical: 8827 Hotness = CalleeInfo::HotnessType::Critical; 8828 break; 8829 default: 8830 return error(Lex.getLoc(), "invalid call edge hotness"); 8831 } 8832 Lex.Lex(); 8833 return false; 8834 } 8835 8836 /// OptionalVTableFuncs 8837 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8838 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8839 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8840 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8841 Lex.Lex(); 8842 8843 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") || 8844 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8845 return true; 8846 8847 IdToIndexMapType IdToIndexMap; 8848 // parse each virtual function pair 8849 do { 8850 ValueInfo VI; 8851 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 8852 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8853 parseToken(lltok::colon, "expected ':'")) 8854 return true; 8855 8856 LocTy Loc = Lex.getLoc(); 8857 unsigned GVId; 8858 if (parseGVReference(VI, GVId)) 8859 return true; 8860 8861 uint64_t Offset; 8862 if (parseToken(lltok::comma, "expected comma") || 8863 parseToken(lltok::kw_offset, "expected offset") || 8864 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 8865 return true; 8866 8867 // Keep track of the VTableFuncs array index needing a forward reference. 8868 // We will save the location of the ValueInfo needing an update, but 8869 // can only do so once the std::vector is finalized. 8870 if (VI == EmptyVI) 8871 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8872 VTableFuncs.push_back({VI, Offset}); 8873 8874 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 8875 return true; 8876 } while (EatIfPresent(lltok::comma)); 8877 8878 // Now that the VTableFuncs vector is finalized, it is safe to save the 8879 // locations of any forward GV references that need updating later. 8880 for (auto I : IdToIndexMap) { 8881 auto &Infos = ForwardRefValueInfos[I.first]; 8882 for (auto P : I.second) { 8883 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8884 "Forward referenced ValueInfo expected to be empty"); 8885 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 8886 } 8887 } 8888 8889 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8890 return true; 8891 8892 return false; 8893 } 8894 8895 /// ParamNo := 'param' ':' UInt64 8896 bool LLParser::parseParamNo(uint64_t &ParamNo) { 8897 if (parseToken(lltok::kw_param, "expected 'param' here") || 8898 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 8899 return true; 8900 return false; 8901 } 8902 8903 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 8904 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 8905 APSInt Lower; 8906 APSInt Upper; 8907 auto ParseAPSInt = [&](APSInt &Val) { 8908 if (Lex.getKind() != lltok::APSInt) 8909 return tokError("expected integer"); 8910 Val = Lex.getAPSIntVal(); 8911 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 8912 Val.setIsSigned(true); 8913 Lex.Lex(); 8914 return false; 8915 }; 8916 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 8917 parseToken(lltok::colon, "expected ':' here") || 8918 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 8919 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 8920 parseToken(lltok::rsquare, "expected ']' here")) 8921 return true; 8922 8923 ++Upper; 8924 Range = 8925 (Lower == Upper && !Lower.isMaxValue()) 8926 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 8927 : ConstantRange(Lower, Upper); 8928 8929 return false; 8930 } 8931 8932 /// ParamAccessCall 8933 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 8934 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 8935 IdLocListType &IdLocList) { 8936 if (parseToken(lltok::lparen, "expected '(' here") || 8937 parseToken(lltok::kw_callee, "expected 'callee' here") || 8938 parseToken(lltok::colon, "expected ':' here")) 8939 return true; 8940 8941 unsigned GVId; 8942 ValueInfo VI; 8943 LocTy Loc = Lex.getLoc(); 8944 if (parseGVReference(VI, GVId)) 8945 return true; 8946 8947 Call.Callee = VI; 8948 IdLocList.emplace_back(GVId, Loc); 8949 8950 if (parseToken(lltok::comma, "expected ',' here") || 8951 parseParamNo(Call.ParamNo) || 8952 parseToken(lltok::comma, "expected ',' here") || 8953 parseParamAccessOffset(Call.Offsets)) 8954 return true; 8955 8956 if (parseToken(lltok::rparen, "expected ')' here")) 8957 return true; 8958 8959 return false; 8960 } 8961 8962 /// ParamAccess 8963 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 8964 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 8965 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 8966 IdLocListType &IdLocList) { 8967 if (parseToken(lltok::lparen, "expected '(' here") || 8968 parseParamNo(Param.ParamNo) || 8969 parseToken(lltok::comma, "expected ',' here") || 8970 parseParamAccessOffset(Param.Use)) 8971 return true; 8972 8973 if (EatIfPresent(lltok::comma)) { 8974 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 8975 parseToken(lltok::colon, "expected ':' here") || 8976 parseToken(lltok::lparen, "expected '(' here")) 8977 return true; 8978 do { 8979 FunctionSummary::ParamAccess::Call Call; 8980 if (parseParamAccessCall(Call, IdLocList)) 8981 return true; 8982 Param.Calls.push_back(Call); 8983 } while (EatIfPresent(lltok::comma)); 8984 8985 if (parseToken(lltok::rparen, "expected ')' here")) 8986 return true; 8987 } 8988 8989 if (parseToken(lltok::rparen, "expected ')' here")) 8990 return true; 8991 8992 return false; 8993 } 8994 8995 /// OptionalParamAccesses 8996 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 8997 bool LLParser::parseOptionalParamAccesses( 8998 std::vector<FunctionSummary::ParamAccess> &Params) { 8999 assert(Lex.getKind() == lltok::kw_params); 9000 Lex.Lex(); 9001 9002 if (parseToken(lltok::colon, "expected ':' here") || 9003 parseToken(lltok::lparen, "expected '(' here")) 9004 return true; 9005 9006 IdLocListType VContexts; 9007 size_t CallsNum = 0; 9008 do { 9009 FunctionSummary::ParamAccess ParamAccess; 9010 if (parseParamAccess(ParamAccess, VContexts)) 9011 return true; 9012 CallsNum += ParamAccess.Calls.size(); 9013 assert(VContexts.size() == CallsNum); 9014 (void)CallsNum; 9015 Params.emplace_back(std::move(ParamAccess)); 9016 } while (EatIfPresent(lltok::comma)); 9017 9018 if (parseToken(lltok::rparen, "expected ')' here")) 9019 return true; 9020 9021 // Now that the Params is finalized, it is safe to save the locations 9022 // of any forward GV references that need updating later. 9023 IdLocListType::const_iterator ItContext = VContexts.begin(); 9024 for (auto &PA : Params) { 9025 for (auto &C : PA.Calls) { 9026 if (C.Callee.getRef() == FwdVIRef) 9027 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 9028 ItContext->second); 9029 ++ItContext; 9030 } 9031 } 9032 assert(ItContext == VContexts.end()); 9033 9034 return false; 9035 } 9036 9037 /// OptionalRefs 9038 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 9039 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 9040 assert(Lex.getKind() == lltok::kw_refs); 9041 Lex.Lex(); 9042 9043 if (parseToken(lltok::colon, "expected ':' in refs") || 9044 parseToken(lltok::lparen, "expected '(' in refs")) 9045 return true; 9046 9047 struct ValueContext { 9048 ValueInfo VI; 9049 unsigned GVId; 9050 LocTy Loc; 9051 }; 9052 std::vector<ValueContext> VContexts; 9053 // parse each ref edge 9054 do { 9055 ValueContext VC; 9056 VC.Loc = Lex.getLoc(); 9057 if (parseGVReference(VC.VI, VC.GVId)) 9058 return true; 9059 VContexts.push_back(VC); 9060 } while (EatIfPresent(lltok::comma)); 9061 9062 // Sort value contexts so that ones with writeonly 9063 // and readonly ValueInfo are at the end of VContexts vector. 9064 // See FunctionSummary::specialRefCounts() 9065 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 9066 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 9067 }); 9068 9069 IdToIndexMapType IdToIndexMap; 9070 for (auto &VC : VContexts) { 9071 // Keep track of the Refs array index needing a forward reference. 9072 // We will save the location of the ValueInfo needing an update, but 9073 // can only do so once the std::vector is finalized. 9074 if (VC.VI.getRef() == FwdVIRef) 9075 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 9076 Refs.push_back(VC.VI); 9077 } 9078 9079 // Now that the Refs vector is finalized, it is safe to save the locations 9080 // of any forward GV references that need updating later. 9081 for (auto I : IdToIndexMap) { 9082 auto &Infos = ForwardRefValueInfos[I.first]; 9083 for (auto P : I.second) { 9084 assert(Refs[P.first].getRef() == FwdVIRef && 9085 "Forward referenced ValueInfo expected to be empty"); 9086 Infos.emplace_back(&Refs[P.first], P.second); 9087 } 9088 } 9089 9090 if (parseToken(lltok::rparen, "expected ')' in refs")) 9091 return true; 9092 9093 return false; 9094 } 9095 9096 /// OptionalTypeIdInfo 9097 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 9098 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 9099 /// [',' TypeCheckedLoadConstVCalls]? ')' 9100 bool LLParser::parseOptionalTypeIdInfo( 9101 FunctionSummary::TypeIdInfo &TypeIdInfo) { 9102 assert(Lex.getKind() == lltok::kw_typeIdInfo); 9103 Lex.Lex(); 9104 9105 if (parseToken(lltok::colon, "expected ':' here") || 9106 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9107 return true; 9108 9109 do { 9110 switch (Lex.getKind()) { 9111 case lltok::kw_typeTests: 9112 if (parseTypeTests(TypeIdInfo.TypeTests)) 9113 return true; 9114 break; 9115 case lltok::kw_typeTestAssumeVCalls: 9116 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 9117 TypeIdInfo.TypeTestAssumeVCalls)) 9118 return true; 9119 break; 9120 case lltok::kw_typeCheckedLoadVCalls: 9121 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 9122 TypeIdInfo.TypeCheckedLoadVCalls)) 9123 return true; 9124 break; 9125 case lltok::kw_typeTestAssumeConstVCalls: 9126 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 9127 TypeIdInfo.TypeTestAssumeConstVCalls)) 9128 return true; 9129 break; 9130 case lltok::kw_typeCheckedLoadConstVCalls: 9131 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9132 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9133 return true; 9134 break; 9135 default: 9136 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9137 } 9138 } while (EatIfPresent(lltok::comma)); 9139 9140 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9141 return true; 9142 9143 return false; 9144 } 9145 9146 /// TypeTests 9147 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9148 /// [',' (SummaryID | UInt64)]* ')' 9149 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9150 assert(Lex.getKind() == lltok::kw_typeTests); 9151 Lex.Lex(); 9152 9153 if (parseToken(lltok::colon, "expected ':' here") || 9154 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9155 return true; 9156 9157 IdToIndexMapType IdToIndexMap; 9158 do { 9159 GlobalValue::GUID GUID = 0; 9160 if (Lex.getKind() == lltok::SummaryID) { 9161 unsigned ID = Lex.getUIntVal(); 9162 LocTy Loc = Lex.getLoc(); 9163 // Keep track of the TypeTests array index needing a forward reference. 9164 // We will save the location of the GUID needing an update, but 9165 // can only do so once the std::vector is finalized. 9166 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9167 Lex.Lex(); 9168 } else if (parseUInt64(GUID)) 9169 return true; 9170 TypeTests.push_back(GUID); 9171 } while (EatIfPresent(lltok::comma)); 9172 9173 // Now that the TypeTests vector is finalized, it is safe to save the 9174 // locations of any forward GV references that need updating later. 9175 for (auto I : IdToIndexMap) { 9176 auto &Ids = ForwardRefTypeIds[I.first]; 9177 for (auto P : I.second) { 9178 assert(TypeTests[P.first] == 0 && 9179 "Forward referenced type id GUID expected to be 0"); 9180 Ids.emplace_back(&TypeTests[P.first], P.second); 9181 } 9182 } 9183 9184 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9185 return true; 9186 9187 return false; 9188 } 9189 9190 /// VFuncIdList 9191 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9192 bool LLParser::parseVFuncIdList( 9193 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9194 assert(Lex.getKind() == Kind); 9195 Lex.Lex(); 9196 9197 if (parseToken(lltok::colon, "expected ':' here") || 9198 parseToken(lltok::lparen, "expected '(' here")) 9199 return true; 9200 9201 IdToIndexMapType IdToIndexMap; 9202 do { 9203 FunctionSummary::VFuncId VFuncId; 9204 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9205 return true; 9206 VFuncIdList.push_back(VFuncId); 9207 } while (EatIfPresent(lltok::comma)); 9208 9209 if (parseToken(lltok::rparen, "expected ')' here")) 9210 return true; 9211 9212 // Now that the VFuncIdList vector is finalized, it is safe to save the 9213 // locations of any forward GV references that need updating later. 9214 for (auto I : IdToIndexMap) { 9215 auto &Ids = ForwardRefTypeIds[I.first]; 9216 for (auto P : I.second) { 9217 assert(VFuncIdList[P.first].GUID == 0 && 9218 "Forward referenced type id GUID expected to be 0"); 9219 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9220 } 9221 } 9222 9223 return false; 9224 } 9225 9226 /// ConstVCallList 9227 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9228 bool LLParser::parseConstVCallList( 9229 lltok::Kind Kind, 9230 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9231 assert(Lex.getKind() == Kind); 9232 Lex.Lex(); 9233 9234 if (parseToken(lltok::colon, "expected ':' here") || 9235 parseToken(lltok::lparen, "expected '(' here")) 9236 return true; 9237 9238 IdToIndexMapType IdToIndexMap; 9239 do { 9240 FunctionSummary::ConstVCall ConstVCall; 9241 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9242 return true; 9243 ConstVCallList.push_back(ConstVCall); 9244 } while (EatIfPresent(lltok::comma)); 9245 9246 if (parseToken(lltok::rparen, "expected ')' here")) 9247 return true; 9248 9249 // Now that the ConstVCallList vector is finalized, it is safe to save the 9250 // locations of any forward GV references that need updating later. 9251 for (auto I : IdToIndexMap) { 9252 auto &Ids = ForwardRefTypeIds[I.first]; 9253 for (auto P : I.second) { 9254 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9255 "Forward referenced type id GUID expected to be 0"); 9256 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9257 } 9258 } 9259 9260 return false; 9261 } 9262 9263 /// ConstVCall 9264 /// ::= '(' VFuncId ',' Args ')' 9265 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9266 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9267 if (parseToken(lltok::lparen, "expected '(' here") || 9268 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9269 return true; 9270 9271 if (EatIfPresent(lltok::comma)) 9272 if (parseArgs(ConstVCall.Args)) 9273 return true; 9274 9275 if (parseToken(lltok::rparen, "expected ')' here")) 9276 return true; 9277 9278 return false; 9279 } 9280 9281 /// VFuncId 9282 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9283 /// 'offset' ':' UInt64 ')' 9284 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9285 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9286 assert(Lex.getKind() == lltok::kw_vFuncId); 9287 Lex.Lex(); 9288 9289 if (parseToken(lltok::colon, "expected ':' here") || 9290 parseToken(lltok::lparen, "expected '(' here")) 9291 return true; 9292 9293 if (Lex.getKind() == lltok::SummaryID) { 9294 VFuncId.GUID = 0; 9295 unsigned ID = Lex.getUIntVal(); 9296 LocTy Loc = Lex.getLoc(); 9297 // Keep track of the array index needing a forward reference. 9298 // We will save the location of the GUID needing an update, but 9299 // can only do so once the caller's std::vector is finalized. 9300 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9301 Lex.Lex(); 9302 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9303 parseToken(lltok::colon, "expected ':' here") || 9304 parseUInt64(VFuncId.GUID)) 9305 return true; 9306 9307 if (parseToken(lltok::comma, "expected ',' here") || 9308 parseToken(lltok::kw_offset, "expected 'offset' here") || 9309 parseToken(lltok::colon, "expected ':' here") || 9310 parseUInt64(VFuncId.Offset) || 9311 parseToken(lltok::rparen, "expected ')' here")) 9312 return true; 9313 9314 return false; 9315 } 9316 9317 /// GVFlags 9318 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9319 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9320 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9321 /// 'canAutoHide' ':' Flag ',' ')' 9322 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9323 assert(Lex.getKind() == lltok::kw_flags); 9324 Lex.Lex(); 9325 9326 if (parseToken(lltok::colon, "expected ':' here") || 9327 parseToken(lltok::lparen, "expected '(' here")) 9328 return true; 9329 9330 do { 9331 unsigned Flag = 0; 9332 switch (Lex.getKind()) { 9333 case lltok::kw_linkage: 9334 Lex.Lex(); 9335 if (parseToken(lltok::colon, "expected ':'")) 9336 return true; 9337 bool HasLinkage; 9338 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9339 assert(HasLinkage && "Linkage not optional in summary entry"); 9340 Lex.Lex(); 9341 break; 9342 case lltok::kw_visibility: 9343 Lex.Lex(); 9344 if (parseToken(lltok::colon, "expected ':'")) 9345 return true; 9346 parseOptionalVisibility(Flag); 9347 GVFlags.Visibility = Flag; 9348 break; 9349 case lltok::kw_notEligibleToImport: 9350 Lex.Lex(); 9351 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9352 return true; 9353 GVFlags.NotEligibleToImport = Flag; 9354 break; 9355 case lltok::kw_live: 9356 Lex.Lex(); 9357 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9358 return true; 9359 GVFlags.Live = Flag; 9360 break; 9361 case lltok::kw_dsoLocal: 9362 Lex.Lex(); 9363 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9364 return true; 9365 GVFlags.DSOLocal = Flag; 9366 break; 9367 case lltok::kw_canAutoHide: 9368 Lex.Lex(); 9369 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9370 return true; 9371 GVFlags.CanAutoHide = Flag; 9372 break; 9373 default: 9374 return error(Lex.getLoc(), "expected gv flag type"); 9375 } 9376 } while (EatIfPresent(lltok::comma)); 9377 9378 if (parseToken(lltok::rparen, "expected ')' here")) 9379 return true; 9380 9381 return false; 9382 } 9383 9384 /// GVarFlags 9385 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9386 /// ',' 'writeonly' ':' Flag 9387 /// ',' 'constant' ':' Flag ')' 9388 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9389 assert(Lex.getKind() == lltok::kw_varFlags); 9390 Lex.Lex(); 9391 9392 if (parseToken(lltok::colon, "expected ':' here") || 9393 parseToken(lltok::lparen, "expected '(' here")) 9394 return true; 9395 9396 auto ParseRest = [this](unsigned int &Val) { 9397 Lex.Lex(); 9398 if (parseToken(lltok::colon, "expected ':'")) 9399 return true; 9400 return parseFlag(Val); 9401 }; 9402 9403 do { 9404 unsigned Flag = 0; 9405 switch (Lex.getKind()) { 9406 case lltok::kw_readonly: 9407 if (ParseRest(Flag)) 9408 return true; 9409 GVarFlags.MaybeReadOnly = Flag; 9410 break; 9411 case lltok::kw_writeonly: 9412 if (ParseRest(Flag)) 9413 return true; 9414 GVarFlags.MaybeWriteOnly = Flag; 9415 break; 9416 case lltok::kw_constant: 9417 if (ParseRest(Flag)) 9418 return true; 9419 GVarFlags.Constant = Flag; 9420 break; 9421 case lltok::kw_vcall_visibility: 9422 if (ParseRest(Flag)) 9423 return true; 9424 GVarFlags.VCallVisibility = Flag; 9425 break; 9426 default: 9427 return error(Lex.getLoc(), "expected gvar flag type"); 9428 } 9429 } while (EatIfPresent(lltok::comma)); 9430 return parseToken(lltok::rparen, "expected ')' here"); 9431 } 9432 9433 /// ModuleReference 9434 /// ::= 'module' ':' UInt 9435 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9436 // parse module id. 9437 if (parseToken(lltok::kw_module, "expected 'module' here") || 9438 parseToken(lltok::colon, "expected ':' here") || 9439 parseToken(lltok::SummaryID, "expected module ID")) 9440 return true; 9441 9442 unsigned ModuleID = Lex.getUIntVal(); 9443 auto I = ModuleIdMap.find(ModuleID); 9444 // We should have already parsed all module IDs 9445 assert(I != ModuleIdMap.end()); 9446 ModulePath = I->second; 9447 return false; 9448 } 9449 9450 /// GVReference 9451 /// ::= SummaryID 9452 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9453 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9454 if (!ReadOnly) 9455 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9456 if (parseToken(lltok::SummaryID, "expected GV ID")) 9457 return true; 9458 9459 GVId = Lex.getUIntVal(); 9460 // Check if we already have a VI for this GV 9461 if (GVId < NumberedValueInfos.size()) { 9462 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9463 VI = NumberedValueInfos[GVId]; 9464 } else 9465 // We will create a forward reference to the stored location. 9466 VI = ValueInfo(false, FwdVIRef); 9467 9468 if (ReadOnly) 9469 VI.setReadOnly(); 9470 if (WriteOnly) 9471 VI.setWriteOnly(); 9472 return false; 9473 } 9474