1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/IR/ValueSymbolTable.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/SaveAndRestore.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstring>
50 #include <iterator>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 static std::string getTypeString(Type *T) {
56   std::string Result;
57   raw_string_ostream Tmp(Result);
58   Tmp << *T;
59   return Tmp.str();
60 }
61 
62 /// Run: module ::= toplevelentity*
63 bool LLParser::Run(bool UpgradeDebugInfo,
64                    DataLayoutCallbackTy DataLayoutCallback) {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   if (M) {
74     if (parseTargetDefinitions())
75       return true;
76 
77     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
78       M->setDataLayout(*LayoutOverride);
79   }
80 
81   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
82          validateEndOfIndex();
83 }
84 
85 bool LLParser::parseStandaloneConstantValue(Constant *&C,
86                                             const SlotMapping *Slots) {
87   restoreParsingState(Slots);
88   Lex.Lex();
89 
90   Type *Ty = nullptr;
91   if (parseType(Ty) || parseConstantValue(Ty, C))
92     return true;
93   if (Lex.getKind() != lltok::Eof)
94     return error(Lex.getLoc(), "expected end of string");
95   return false;
96 }
97 
98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
99                                     const SlotMapping *Slots) {
100   restoreParsingState(Slots);
101   Lex.Lex();
102 
103   Read = 0;
104   SMLoc Start = Lex.getLoc();
105   Ty = nullptr;
106   if (parseType(Ty))
107     return true;
108   SMLoc End = Lex.getLoc();
109   Read = End.getPointer() - Start.getPointer();
110 
111   return false;
112 }
113 
114 void LLParser::restoreParsingState(const SlotMapping *Slots) {
115   if (!Slots)
116     return;
117   NumberedVals = Slots->GlobalValues;
118   NumberedMetadata = Slots->MetadataNodes;
119   for (const auto &I : Slots->NamedTypes)
120     NamedTypes.insert(
121         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
122   for (const auto &I : Slots->Types)
123     NumberedTypes.insert(
124         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
125 }
126 
127 /// validateEndOfModule - Do final validity and sanity checks at the end of the
128 /// module.
129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
130   if (!M)
131     return false;
132   // Handle any function attribute group forward references.
133   for (const auto &RAG : ForwardRefAttrGroups) {
134     Value *V = RAG.first;
135     const std::vector<unsigned> &Attrs = RAG.second;
136     AttrBuilder B;
137 
138     for (const auto &Attr : Attrs)
139       B.merge(NumberedAttrBuilders[Attr]);
140 
141     if (Function *Fn = dyn_cast<Function>(V)) {
142       AttributeList AS = Fn->getAttributes();
143       AttrBuilder FnAttrs(AS.getFnAttributes());
144       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
145 
146       FnAttrs.merge(B);
147 
148       // If the alignment was parsed as an attribute, move to the alignment
149       // field.
150       if (FnAttrs.hasAlignmentAttr()) {
151         Fn->setAlignment(FnAttrs.getAlignment());
152         FnAttrs.removeAttribute(Attribute::Alignment);
153       }
154 
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       Fn->setAttributes(AS);
158     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
159       AttributeList AS = CI->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       CI->setAttributes(AS);
166     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
167       AttributeList AS = II->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       II->setAttributes(AS);
174     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
175       AttributeList AS = CBI->getAttributes();
176       AttrBuilder FnAttrs(AS.getFnAttributes());
177       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
178       FnAttrs.merge(B);
179       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
180                             AttributeSet::get(Context, FnAttrs));
181       CBI->setAttributes(AS);
182     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
183       AttrBuilder Attrs(GV->getAttributes());
184       Attrs.merge(B);
185       GV->setAttributes(AttributeSet::get(Context,Attrs));
186     } else {
187       llvm_unreachable("invalid object with forward attribute group reference");
188     }
189   }
190 
191   // If there are entries in ForwardRefBlockAddresses at this point, the
192   // function was never defined.
193   if (!ForwardRefBlockAddresses.empty())
194     return error(ForwardRefBlockAddresses.begin()->first.Loc,
195                  "expected function name in blockaddress");
196 
197   for (const auto &NT : NumberedTypes)
198     if (NT.second.second.isValid())
199       return error(NT.second.second,
200                    "use of undefined type '%" + Twine(NT.first) + "'");
201 
202   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
203        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
204     if (I->second.second.isValid())
205       return error(I->second.second,
206                    "use of undefined type named '" + I->getKey() + "'");
207 
208   if (!ForwardRefComdats.empty())
209     return error(ForwardRefComdats.begin()->second,
210                  "use of undefined comdat '$" +
211                      ForwardRefComdats.begin()->first + "'");
212 
213   if (!ForwardRefVals.empty())
214     return error(ForwardRefVals.begin()->second.second,
215                  "use of undefined value '@" + ForwardRefVals.begin()->first +
216                      "'");
217 
218   if (!ForwardRefValIDs.empty())
219     return error(ForwardRefValIDs.begin()->second.second,
220                  "use of undefined value '@" +
221                      Twine(ForwardRefValIDs.begin()->first) + "'");
222 
223   if (!ForwardRefMDNodes.empty())
224     return error(ForwardRefMDNodes.begin()->second.second,
225                  "use of undefined metadata '!" +
226                      Twine(ForwardRefMDNodes.begin()->first) + "'");
227 
228   // Resolve metadata cycles.
229   for (auto &N : NumberedMetadata) {
230     if (N.second && !N.second->isResolved())
231       N.second->resolveCycles();
232   }
233 
234   for (auto *Inst : InstsWithTBAATag) {
235     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
236     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
237     auto *UpgradedMD = UpgradeTBAANode(*MD);
238     if (MD != UpgradedMD)
239       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
240   }
241 
242   // Look for intrinsic functions and CallInst that need to be upgraded
243   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
244     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
245 
246   // Some types could be renamed during loading if several modules are
247   // loaded in the same LLVMContext (LTO scenario). In this case we should
248   // remangle intrinsics names as well.
249   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
250     Function *F = &*FI++;
251     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
252       F->replaceAllUsesWith(Remangled.getValue());
253       F->eraseFromParent();
254     }
255   }
256 
257   if (UpgradeDebugInfo)
258     llvm::UpgradeDebugInfo(*M);
259 
260   UpgradeModuleFlags(*M);
261   UpgradeSectionAttributes(*M);
262 
263   if (!Slots)
264     return false;
265   // Initialize the slot mapping.
266   // Because by this point we've parsed and validated everything, we can "steal"
267   // the mapping from LLParser as it doesn't need it anymore.
268   Slots->GlobalValues = std::move(NumberedVals);
269   Slots->MetadataNodes = std::move(NumberedMetadata);
270   for (const auto &I : NamedTypes)
271     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
272   for (const auto &I : NumberedTypes)
273     Slots->Types.insert(std::make_pair(I.first, I.second.first));
274 
275   return false;
276 }
277 
278 /// Do final validity and sanity checks at the end of the index.
279 bool LLParser::validateEndOfIndex() {
280   if (!Index)
281     return false;
282 
283   if (!ForwardRefValueInfos.empty())
284     return error(ForwardRefValueInfos.begin()->second.front().second,
285                  "use of undefined summary '^" +
286                      Twine(ForwardRefValueInfos.begin()->first) + "'");
287 
288   if (!ForwardRefAliasees.empty())
289     return error(ForwardRefAliasees.begin()->second.front().second,
290                  "use of undefined summary '^" +
291                      Twine(ForwardRefAliasees.begin()->first) + "'");
292 
293   if (!ForwardRefTypeIds.empty())
294     return error(ForwardRefTypeIds.begin()->second.front().second,
295                  "use of undefined type id summary '^" +
296                      Twine(ForwardRefTypeIds.begin()->first) + "'");
297 
298   return false;
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // Top-Level Entities
303 //===----------------------------------------------------------------------===//
304 
305 bool LLParser::parseTargetDefinitions() {
306   while (true) {
307     switch (Lex.getKind()) {
308     case lltok::kw_target:
309       if (parseTargetDefinition())
310         return true;
311       break;
312     case lltok::kw_source_filename:
313       if (parseSourceFileName())
314         return true;
315       break;
316     default:
317       return false;
318     }
319   }
320 }
321 
322 bool LLParser::parseTopLevelEntities() {
323   // If there is no Module, then parse just the summary index entries.
324   if (!M) {
325     while (true) {
326       switch (Lex.getKind()) {
327       case lltok::Eof:
328         return false;
329       case lltok::SummaryID:
330         if (parseSummaryEntry())
331           return true;
332         break;
333       case lltok::kw_source_filename:
334         if (parseSourceFileName())
335           return true;
336         break;
337       default:
338         // Skip everything else
339         Lex.Lex();
340       }
341     }
342   }
343   while (true) {
344     switch (Lex.getKind()) {
345     default:
346       return tokError("expected top-level entity");
347     case lltok::Eof: return false;
348     case lltok::kw_declare:
349       if (parseDeclare())
350         return true;
351       break;
352     case lltok::kw_define:
353       if (parseDefine())
354         return true;
355       break;
356     case lltok::kw_module:
357       if (parseModuleAsm())
358         return true;
359       break;
360     case lltok::LocalVarID:
361       if (parseUnnamedType())
362         return true;
363       break;
364     case lltok::LocalVar:
365       if (parseNamedType())
366         return true;
367       break;
368     case lltok::GlobalID:
369       if (parseUnnamedGlobal())
370         return true;
371       break;
372     case lltok::GlobalVar:
373       if (parseNamedGlobal())
374         return true;
375       break;
376     case lltok::ComdatVar:  if (parseComdat()) return true; break;
377     case lltok::exclaim:
378       if (parseStandaloneMetadata())
379         return true;
380       break;
381     case lltok::SummaryID:
382       if (parseSummaryEntry())
383         return true;
384       break;
385     case lltok::MetadataVar:
386       if (parseNamedMetadata())
387         return true;
388       break;
389     case lltok::kw_attributes:
390       if (parseUnnamedAttrGrp())
391         return true;
392       break;
393     case lltok::kw_uselistorder:
394       if (parseUseListOrder())
395         return true;
396       break;
397     case lltok::kw_uselistorder_bb:
398       if (parseUseListOrderBB())
399         return true;
400       break;
401     }
402   }
403 }
404 
405 /// toplevelentity
406 ///   ::= 'module' 'asm' STRINGCONSTANT
407 bool LLParser::parseModuleAsm() {
408   assert(Lex.getKind() == lltok::kw_module);
409   Lex.Lex();
410 
411   std::string AsmStr;
412   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
413       parseStringConstant(AsmStr))
414     return true;
415 
416   M->appendModuleInlineAsm(AsmStr);
417   return false;
418 }
419 
420 /// toplevelentity
421 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
422 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
423 bool LLParser::parseTargetDefinition() {
424   assert(Lex.getKind() == lltok::kw_target);
425   std::string Str;
426   switch (Lex.Lex()) {
427   default:
428     return tokError("unknown target property");
429   case lltok::kw_triple:
430     Lex.Lex();
431     if (parseToken(lltok::equal, "expected '=' after target triple") ||
432         parseStringConstant(Str))
433       return true;
434     M->setTargetTriple(Str);
435     return false;
436   case lltok::kw_datalayout:
437     Lex.Lex();
438     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
439         parseStringConstant(Str))
440       return true;
441     M->setDataLayout(Str);
442     return false;
443   }
444 }
445 
446 /// toplevelentity
447 ///   ::= 'source_filename' '=' STRINGCONSTANT
448 bool LLParser::parseSourceFileName() {
449   assert(Lex.getKind() == lltok::kw_source_filename);
450   Lex.Lex();
451   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
452       parseStringConstant(SourceFileName))
453     return true;
454   if (M)
455     M->setSourceFileName(SourceFileName);
456   return false;
457 }
458 
459 /// parseUnnamedType:
460 ///   ::= LocalVarID '=' 'type' type
461 bool LLParser::parseUnnamedType() {
462   LocTy TypeLoc = Lex.getLoc();
463   unsigned TypeID = Lex.getUIntVal();
464   Lex.Lex(); // eat LocalVarID;
465 
466   if (parseToken(lltok::equal, "expected '=' after name") ||
467       parseToken(lltok::kw_type, "expected 'type' after '='"))
468     return true;
469 
470   Type *Result = nullptr;
471   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
472     return true;
473 
474   if (!isa<StructType>(Result)) {
475     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
476     if (Entry.first)
477       return error(TypeLoc, "non-struct types may not be recursive");
478     Entry.first = Result;
479     Entry.second = SMLoc();
480   }
481 
482   return false;
483 }
484 
485 /// toplevelentity
486 ///   ::= LocalVar '=' 'type' type
487 bool LLParser::parseNamedType() {
488   std::string Name = Lex.getStrVal();
489   LocTy NameLoc = Lex.getLoc();
490   Lex.Lex();  // eat LocalVar.
491 
492   if (parseToken(lltok::equal, "expected '=' after name") ||
493       parseToken(lltok::kw_type, "expected 'type' after name"))
494     return true;
495 
496   Type *Result = nullptr;
497   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
498     return true;
499 
500   if (!isa<StructType>(Result)) {
501     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
502     if (Entry.first)
503       return error(NameLoc, "non-struct types may not be recursive");
504     Entry.first = Result;
505     Entry.second = SMLoc();
506   }
507 
508   return false;
509 }
510 
511 /// toplevelentity
512 ///   ::= 'declare' FunctionHeader
513 bool LLParser::parseDeclare() {
514   assert(Lex.getKind() == lltok::kw_declare);
515   Lex.Lex();
516 
517   std::vector<std::pair<unsigned, MDNode *>> MDs;
518   while (Lex.getKind() == lltok::MetadataVar) {
519     unsigned MDK;
520     MDNode *N;
521     if (parseMetadataAttachment(MDK, N))
522       return true;
523     MDs.push_back({MDK, N});
524   }
525 
526   Function *F;
527   if (parseFunctionHeader(F, false))
528     return true;
529   for (auto &MD : MDs)
530     F->addMetadata(MD.first, *MD.second);
531   return false;
532 }
533 
534 /// toplevelentity
535 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
536 bool LLParser::parseDefine() {
537   assert(Lex.getKind() == lltok::kw_define);
538   Lex.Lex();
539 
540   Function *F;
541   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
542          parseFunctionBody(*F);
543 }
544 
545 /// parseGlobalType
546 ///   ::= 'constant'
547 ///   ::= 'global'
548 bool LLParser::parseGlobalType(bool &IsConstant) {
549   if (Lex.getKind() == lltok::kw_constant)
550     IsConstant = true;
551   else if (Lex.getKind() == lltok::kw_global)
552     IsConstant = false;
553   else {
554     IsConstant = false;
555     return tokError("expected 'global' or 'constant'");
556   }
557   Lex.Lex();
558   return false;
559 }
560 
561 bool LLParser::parseOptionalUnnamedAddr(
562     GlobalVariable::UnnamedAddr &UnnamedAddr) {
563   if (EatIfPresent(lltok::kw_unnamed_addr))
564     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
565   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
566     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
567   else
568     UnnamedAddr = GlobalValue::UnnamedAddr::None;
569   return false;
570 }
571 
572 /// parseUnnamedGlobal:
573 ///   OptionalVisibility (ALIAS | IFUNC) ...
574 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
575 ///   OptionalDLLStorageClass
576 ///                                                     ...   -> global variable
577 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
578 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
579 ///   OptionalVisibility
580 ///                OptionalDLLStorageClass
581 ///                                                     ...   -> global variable
582 bool LLParser::parseUnnamedGlobal() {
583   unsigned VarID = NumberedVals.size();
584   std::string Name;
585   LocTy NameLoc = Lex.getLoc();
586 
587   // Handle the GlobalID form.
588   if (Lex.getKind() == lltok::GlobalID) {
589     if (Lex.getUIntVal() != VarID)
590       return error(Lex.getLoc(),
591                    "variable expected to be numbered '%" + Twine(VarID) + "'");
592     Lex.Lex(); // eat GlobalID;
593 
594     if (parseToken(lltok::equal, "expected '=' after name"))
595       return true;
596   }
597 
598   bool HasLinkage;
599   unsigned Linkage, Visibility, DLLStorageClass;
600   bool DSOLocal;
601   GlobalVariable::ThreadLocalMode TLM;
602   GlobalVariable::UnnamedAddr UnnamedAddr;
603   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
604                            DSOLocal) ||
605       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
606     return true;
607 
608   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
609     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
610                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
611 
612   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
613                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
614 }
615 
616 /// parseNamedGlobal:
617 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
618 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
619 ///                 OptionalVisibility OptionalDLLStorageClass
620 ///                                                     ...   -> global variable
621 bool LLParser::parseNamedGlobal() {
622   assert(Lex.getKind() == lltok::GlobalVar);
623   LocTy NameLoc = Lex.getLoc();
624   std::string Name = Lex.getStrVal();
625   Lex.Lex();
626 
627   bool HasLinkage;
628   unsigned Linkage, Visibility, DLLStorageClass;
629   bool DSOLocal;
630   GlobalVariable::ThreadLocalMode TLM;
631   GlobalVariable::UnnamedAddr UnnamedAddr;
632   if (parseToken(lltok::equal, "expected '=' in global variable") ||
633       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
634                            DSOLocal) ||
635       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
636     return true;
637 
638   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
639     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
640                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
641 
642   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
643                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
644 }
645 
646 bool LLParser::parseComdat() {
647   assert(Lex.getKind() == lltok::ComdatVar);
648   std::string Name = Lex.getStrVal();
649   LocTy NameLoc = Lex.getLoc();
650   Lex.Lex();
651 
652   if (parseToken(lltok::equal, "expected '=' here"))
653     return true;
654 
655   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
656     return tokError("expected comdat type");
657 
658   Comdat::SelectionKind SK;
659   switch (Lex.getKind()) {
660   default:
661     return tokError("unknown selection kind");
662   case lltok::kw_any:
663     SK = Comdat::Any;
664     break;
665   case lltok::kw_exactmatch:
666     SK = Comdat::ExactMatch;
667     break;
668   case lltok::kw_largest:
669     SK = Comdat::Largest;
670     break;
671   case lltok::kw_noduplicates:
672     SK = Comdat::NoDuplicates;
673     break;
674   case lltok::kw_samesize:
675     SK = Comdat::SameSize;
676     break;
677   }
678   Lex.Lex();
679 
680   // See if the comdat was forward referenced, if so, use the comdat.
681   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
682   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
683   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
684     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
685 
686   Comdat *C;
687   if (I != ComdatSymTab.end())
688     C = &I->second;
689   else
690     C = M->getOrInsertComdat(Name);
691   C->setSelectionKind(SK);
692 
693   return false;
694 }
695 
696 // MDString:
697 //   ::= '!' STRINGCONSTANT
698 bool LLParser::parseMDString(MDString *&Result) {
699   std::string Str;
700   if (parseStringConstant(Str))
701     return true;
702   Result = MDString::get(Context, Str);
703   return false;
704 }
705 
706 // MDNode:
707 //   ::= '!' MDNodeNumber
708 bool LLParser::parseMDNodeID(MDNode *&Result) {
709   // !{ ..., !42, ... }
710   LocTy IDLoc = Lex.getLoc();
711   unsigned MID = 0;
712   if (parseUInt32(MID))
713     return true;
714 
715   // If not a forward reference, just return it now.
716   if (NumberedMetadata.count(MID)) {
717     Result = NumberedMetadata[MID];
718     return false;
719   }
720 
721   // Otherwise, create MDNode forward reference.
722   auto &FwdRef = ForwardRefMDNodes[MID];
723   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
724 
725   Result = FwdRef.first.get();
726   NumberedMetadata[MID].reset(Result);
727   return false;
728 }
729 
730 /// parseNamedMetadata:
731 ///   !foo = !{ !1, !2 }
732 bool LLParser::parseNamedMetadata() {
733   assert(Lex.getKind() == lltok::MetadataVar);
734   std::string Name = Lex.getStrVal();
735   Lex.Lex();
736 
737   if (parseToken(lltok::equal, "expected '=' here") ||
738       parseToken(lltok::exclaim, "Expected '!' here") ||
739       parseToken(lltok::lbrace, "Expected '{' here"))
740     return true;
741 
742   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
743 
744   if (Lex.getKind() == lltok::rbrace) {
745     Lex.Lex();
746     return false;
747   }
748 
749   do {
750     MDNode *N = nullptr;
751     // Parse uniqued MDNodes inline as a special case.
752 #define HANDLE_MDNODE_LEAF_UNIQUED(CLASS)                                      \
753   if (Lex.getKind() == lltok::MetadataVar && Lex.getStrVal() == #CLASS) {      \
754     if (parse##CLASS(N, /*IsDistinct=*/false))                                 \
755       return true;                                                             \
756     NMD->addOperand(N);                                                        \
757     continue;                                                                  \
758   }
759 #include "llvm/IR/Metadata.def"
760     // Parse all other MDNodes as an MDNodeID.
761     if (parseToken(lltok::exclaim, "Expected '!' here") || parseMDNodeID(N)) {
762       return true;
763     }
764     NMD->addOperand(N);
765   } while (EatIfPresent(lltok::comma));
766 
767   return parseToken(lltok::rbrace, "expected end of metadata node");
768 }
769 
770 /// parseStandaloneMetadata:
771 ///   !42 = !{...}
772 bool LLParser::parseStandaloneMetadata() {
773   assert(Lex.getKind() == lltok::exclaim);
774   Lex.Lex();
775   unsigned MetadataID = 0;
776 
777   MDNode *Init;
778   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
779     return true;
780 
781   // Detect common error, from old metadata syntax.
782   if (Lex.getKind() == lltok::Type)
783     return tokError("unexpected type in metadata definition");
784 
785   auto DistinctLoc = Lex.getLoc();
786   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
787   if (Lex.getKind() == lltok::MetadataVar) {
788     if (parseSpecializedMDNode(Init, IsDistinct, DistinctLoc))
789       return true;
790   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
791              parseMDTuple(Init, IsDistinct))
792     return true;
793 
794   // See if this was forward referenced, if so, handle it.
795   auto FI = ForwardRefMDNodes.find(MetadataID);
796   if (FI != ForwardRefMDNodes.end()) {
797     FI->second.first->replaceAllUsesWith(Init);
798     ForwardRefMDNodes.erase(FI);
799 
800     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
801   } else {
802     if (NumberedMetadata.count(MetadataID))
803       return tokError("Metadata id is already used");
804     NumberedMetadata[MetadataID].reset(Init);
805   }
806 
807   return false;
808 }
809 
810 // Skips a single module summary entry.
811 bool LLParser::skipModuleSummaryEntry() {
812   // Each module summary entry consists of a tag for the entry
813   // type, followed by a colon, then the fields which may be surrounded by
814   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
815   // support is in place we will look for the tokens corresponding to the
816   // expected tags.
817   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
818       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
819       Lex.getKind() != lltok::kw_blockcount)
820     return tokError(
821         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
822         "start of summary entry");
823   if (Lex.getKind() == lltok::kw_flags)
824     return parseSummaryIndexFlags();
825   if (Lex.getKind() == lltok::kw_blockcount)
826     return parseBlockCount();
827   Lex.Lex();
828   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
829       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
830     return true;
831   // Now walk through the parenthesized entry, until the number of open
832   // parentheses goes back down to 0 (the first '(' was parsed above).
833   unsigned NumOpenParen = 1;
834   do {
835     switch (Lex.getKind()) {
836     case lltok::lparen:
837       NumOpenParen++;
838       break;
839     case lltok::rparen:
840       NumOpenParen--;
841       break;
842     case lltok::Eof:
843       return tokError("found end of file while parsing summary entry");
844     default:
845       // Skip everything in between parentheses.
846       break;
847     }
848     Lex.Lex();
849   } while (NumOpenParen > 0);
850   return false;
851 }
852 
853 /// SummaryEntry
854 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
855 bool LLParser::parseSummaryEntry() {
856   assert(Lex.getKind() == lltok::SummaryID);
857   unsigned SummaryID = Lex.getUIntVal();
858 
859   // For summary entries, colons should be treated as distinct tokens,
860   // not an indication of the end of a label token.
861   Lex.setIgnoreColonInIdentifiers(true);
862 
863   Lex.Lex();
864   if (parseToken(lltok::equal, "expected '=' here"))
865     return true;
866 
867   // If we don't have an index object, skip the summary entry.
868   if (!Index)
869     return skipModuleSummaryEntry();
870 
871   bool result = false;
872   switch (Lex.getKind()) {
873   case lltok::kw_gv:
874     result = parseGVEntry(SummaryID);
875     break;
876   case lltok::kw_module:
877     result = parseModuleEntry(SummaryID);
878     break;
879   case lltok::kw_typeid:
880     result = parseTypeIdEntry(SummaryID);
881     break;
882   case lltok::kw_typeidCompatibleVTable:
883     result = parseTypeIdCompatibleVtableEntry(SummaryID);
884     break;
885   case lltok::kw_flags:
886     result = parseSummaryIndexFlags();
887     break;
888   case lltok::kw_blockcount:
889     result = parseBlockCount();
890     break;
891   default:
892     result = error(Lex.getLoc(), "unexpected summary kind");
893     break;
894   }
895   Lex.setIgnoreColonInIdentifiers(false);
896   return result;
897 }
898 
899 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
900   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
901          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
902 }
903 
904 // If there was an explicit dso_local, update GV. In the absence of an explicit
905 // dso_local we keep the default value.
906 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
907   if (DSOLocal)
908     GV.setDSOLocal(true);
909 }
910 
911 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
912                                               Type *Ty2) {
913   std::string ErrString;
914   raw_string_ostream ErrOS(ErrString);
915   ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
916   return ErrOS.str();
917 }
918 
919 /// parseIndirectSymbol:
920 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
921 ///                     OptionalVisibility OptionalDLLStorageClass
922 ///                     OptionalThreadLocal OptionalUnnamedAddr
923 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
924 ///
925 /// IndirectSymbol
926 ///   ::= TypeAndValue
927 ///
928 /// IndirectSymbolAttr
929 ///   ::= ',' 'partition' StringConstant
930 ///
931 /// Everything through OptionalUnnamedAddr has already been parsed.
932 ///
933 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
934                                    unsigned L, unsigned Visibility,
935                                    unsigned DLLStorageClass, bool DSOLocal,
936                                    GlobalVariable::ThreadLocalMode TLM,
937                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
938   bool IsAlias;
939   if (Lex.getKind() == lltok::kw_alias)
940     IsAlias = true;
941   else if (Lex.getKind() == lltok::kw_ifunc)
942     IsAlias = false;
943   else
944     llvm_unreachable("Not an alias or ifunc!");
945   Lex.Lex();
946 
947   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
948 
949   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
950     return error(NameLoc, "invalid linkage type for alias");
951 
952   if (!isValidVisibilityForLinkage(Visibility, L))
953     return error(NameLoc,
954                  "symbol with local linkage must have default visibility");
955 
956   Type *Ty;
957   LocTy ExplicitTypeLoc = Lex.getLoc();
958   if (parseType(Ty) ||
959       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
960     return true;
961 
962   Constant *Aliasee;
963   LocTy AliaseeLoc = Lex.getLoc();
964   if (Lex.getKind() != lltok::kw_bitcast &&
965       Lex.getKind() != lltok::kw_getelementptr &&
966       Lex.getKind() != lltok::kw_addrspacecast &&
967       Lex.getKind() != lltok::kw_inttoptr) {
968     if (parseGlobalTypeAndValue(Aliasee))
969       return true;
970   } else {
971     // The bitcast dest type is not present, it is implied by the dest type.
972     ValID ID;
973     if (parseValID(ID, /*PFS=*/nullptr))
974       return true;
975     if (ID.Kind != ValID::t_Constant)
976       return error(AliaseeLoc, "invalid aliasee");
977     Aliasee = ID.ConstantVal;
978   }
979 
980   Type *AliaseeType = Aliasee->getType();
981   auto *PTy = dyn_cast<PointerType>(AliaseeType);
982   if (!PTy)
983     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
984   unsigned AddrSpace = PTy->getAddressSpace();
985 
986   if (IsAlias && !PTy->isOpaqueOrPointeeTypeMatches(Ty)) {
987     return error(
988         ExplicitTypeLoc,
989         typeComparisonErrorMessage(
990             "explicit pointee type doesn't match operand's pointee type", Ty,
991             PTy->getElementType()));
992   }
993 
994   if (!IsAlias && !PTy->getElementType()->isFunctionTy()) {
995     return error(ExplicitTypeLoc,
996                  "explicit pointee type should be a function type");
997   }
998 
999   GlobalValue *GVal = nullptr;
1000 
1001   // See if the alias was forward referenced, if so, prepare to replace the
1002   // forward reference.
1003   if (!Name.empty()) {
1004     auto I = ForwardRefVals.find(Name);
1005     if (I != ForwardRefVals.end()) {
1006       GVal = I->second.first;
1007       ForwardRefVals.erase(Name);
1008     } else if (M->getNamedValue(Name)) {
1009       return error(NameLoc, "redefinition of global '@" + Name + "'");
1010     }
1011   } else {
1012     auto I = ForwardRefValIDs.find(NumberedVals.size());
1013     if (I != ForwardRefValIDs.end()) {
1014       GVal = I->second.first;
1015       ForwardRefValIDs.erase(I);
1016     }
1017   }
1018 
1019   // Okay, create the alias but do not insert it into the module yet.
1020   std::unique_ptr<GlobalIndirectSymbol> GA;
1021   if (IsAlias)
1022     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1023                                  (GlobalValue::LinkageTypes)Linkage, Name,
1024                                  Aliasee, /*Parent*/ nullptr));
1025   else
1026     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
1027                                  (GlobalValue::LinkageTypes)Linkage, Name,
1028                                  Aliasee, /*Parent*/ nullptr));
1029   GA->setThreadLocalMode(TLM);
1030   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1031   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1032   GA->setUnnamedAddr(UnnamedAddr);
1033   maybeSetDSOLocal(DSOLocal, *GA);
1034 
1035   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1036   // Now parse them if there are any.
1037   while (Lex.getKind() == lltok::comma) {
1038     Lex.Lex();
1039 
1040     if (Lex.getKind() == lltok::kw_partition) {
1041       Lex.Lex();
1042       GA->setPartition(Lex.getStrVal());
1043       if (parseToken(lltok::StringConstant, "expected partition string"))
1044         return true;
1045     } else {
1046       return tokError("unknown alias or ifunc property!");
1047     }
1048   }
1049 
1050   if (Name.empty())
1051     NumberedVals.push_back(GA.get());
1052 
1053   if (GVal) {
1054     // Verify that types agree.
1055     if (GVal->getType() != GA->getType())
1056       return error(
1057           ExplicitTypeLoc,
1058           "forward reference and definition of alias have different types");
1059 
1060     // If they agree, just RAUW the old value with the alias and remove the
1061     // forward ref info.
1062     GVal->replaceAllUsesWith(GA.get());
1063     GVal->eraseFromParent();
1064   }
1065 
1066   // Insert into the module, we know its name won't collide now.
1067   if (IsAlias)
1068     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1069   else
1070     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1071   assert(GA->getName() == Name && "Should not be a name conflict!");
1072 
1073   // The module owns this now
1074   GA.release();
1075 
1076   return false;
1077 }
1078 
1079 /// parseGlobal
1080 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1081 ///       OptionalVisibility OptionalDLLStorageClass
1082 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1083 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1084 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1085 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1086 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1087 ///       Const OptionalAttrs
1088 ///
1089 /// Everything up to and including OptionalUnnamedAddr has been parsed
1090 /// already.
1091 ///
1092 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1093                            unsigned Linkage, bool HasLinkage,
1094                            unsigned Visibility, unsigned DLLStorageClass,
1095                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1096                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1097   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1098     return error(NameLoc,
1099                  "symbol with local linkage must have default visibility");
1100 
1101   unsigned AddrSpace;
1102   bool IsConstant, IsExternallyInitialized;
1103   LocTy IsExternallyInitializedLoc;
1104   LocTy TyLoc;
1105 
1106   Type *Ty = nullptr;
1107   if (parseOptionalAddrSpace(AddrSpace) ||
1108       parseOptionalToken(lltok::kw_externally_initialized,
1109                          IsExternallyInitialized,
1110                          &IsExternallyInitializedLoc) ||
1111       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1112     return true;
1113 
1114   // If the linkage is specified and is external, then no initializer is
1115   // present.
1116   Constant *Init = nullptr;
1117   if (!HasLinkage ||
1118       !GlobalValue::isValidDeclarationLinkage(
1119           (GlobalValue::LinkageTypes)Linkage)) {
1120     if (parseGlobalValue(Ty, Init))
1121       return true;
1122   }
1123 
1124   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1125     return error(TyLoc, "invalid type for global variable");
1126 
1127   GlobalValue *GVal = nullptr;
1128 
1129   // See if the global was forward referenced, if so, use the global.
1130   if (!Name.empty()) {
1131     auto I = ForwardRefVals.find(Name);
1132     if (I != ForwardRefVals.end()) {
1133       GVal = I->second.first;
1134       ForwardRefVals.erase(I);
1135     } else if (M->getNamedValue(Name)) {
1136       return error(NameLoc, "redefinition of global '@" + Name + "'");
1137     }
1138   } else {
1139     auto I = ForwardRefValIDs.find(NumberedVals.size());
1140     if (I != ForwardRefValIDs.end()) {
1141       GVal = I->second.first;
1142       ForwardRefValIDs.erase(I);
1143     }
1144   }
1145 
1146   GlobalVariable *GV = new GlobalVariable(
1147       *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1148       GlobalVariable::NotThreadLocal, AddrSpace);
1149 
1150   if (Name.empty())
1151     NumberedVals.push_back(GV);
1152 
1153   // Set the parsed properties on the global.
1154   if (Init)
1155     GV->setInitializer(Init);
1156   GV->setConstant(IsConstant);
1157   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1158   maybeSetDSOLocal(DSOLocal, *GV);
1159   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1160   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1161   GV->setExternallyInitialized(IsExternallyInitialized);
1162   GV->setThreadLocalMode(TLM);
1163   GV->setUnnamedAddr(UnnamedAddr);
1164 
1165   if (GVal) {
1166     if (!GVal->getType()->isOpaque() && GVal->getValueType() != Ty)
1167       return error(
1168           TyLoc,
1169           "forward reference and definition of global have different types");
1170 
1171     GVal->replaceAllUsesWith(GV);
1172     GVal->eraseFromParent();
1173   }
1174 
1175   // parse attributes on the global.
1176   while (Lex.getKind() == lltok::comma) {
1177     Lex.Lex();
1178 
1179     if (Lex.getKind() == lltok::kw_section) {
1180       Lex.Lex();
1181       GV->setSection(Lex.getStrVal());
1182       if (parseToken(lltok::StringConstant, "expected global section string"))
1183         return true;
1184     } else if (Lex.getKind() == lltok::kw_partition) {
1185       Lex.Lex();
1186       GV->setPartition(Lex.getStrVal());
1187       if (parseToken(lltok::StringConstant, "expected partition string"))
1188         return true;
1189     } else if (Lex.getKind() == lltok::kw_align) {
1190       MaybeAlign Alignment;
1191       if (parseOptionalAlignment(Alignment))
1192         return true;
1193       GV->setAlignment(Alignment);
1194     } else if (Lex.getKind() == lltok::MetadataVar) {
1195       if (parseGlobalObjectMetadataAttachment(*GV))
1196         return true;
1197     } else {
1198       Comdat *C;
1199       if (parseOptionalComdat(Name, C))
1200         return true;
1201       if (C)
1202         GV->setComdat(C);
1203       else
1204         return tokError("unknown global variable property!");
1205     }
1206   }
1207 
1208   AttrBuilder Attrs;
1209   LocTy BuiltinLoc;
1210   std::vector<unsigned> FwdRefAttrGrps;
1211   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1212     return true;
1213   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1214     GV->setAttributes(AttributeSet::get(Context, Attrs));
1215     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1216   }
1217 
1218   return false;
1219 }
1220 
1221 /// parseUnnamedAttrGrp
1222 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1223 bool LLParser::parseUnnamedAttrGrp() {
1224   assert(Lex.getKind() == lltok::kw_attributes);
1225   LocTy AttrGrpLoc = Lex.getLoc();
1226   Lex.Lex();
1227 
1228   if (Lex.getKind() != lltok::AttrGrpID)
1229     return tokError("expected attribute group id");
1230 
1231   unsigned VarID = Lex.getUIntVal();
1232   std::vector<unsigned> unused;
1233   LocTy BuiltinLoc;
1234   Lex.Lex();
1235 
1236   if (parseToken(lltok::equal, "expected '=' here") ||
1237       parseToken(lltok::lbrace, "expected '{' here") ||
1238       parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1239                                  BuiltinLoc) ||
1240       parseToken(lltok::rbrace, "expected end of attribute group"))
1241     return true;
1242 
1243   if (!NumberedAttrBuilders[VarID].hasAttributes())
1244     return error(AttrGrpLoc, "attribute group has no attributes");
1245 
1246   return false;
1247 }
1248 
1249 /// parseFnAttributeValuePairs
1250 ///   ::= <attr> | <attr> '=' <value>
1251 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1252                                           std::vector<unsigned> &FwdRefAttrGrps,
1253                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1254   bool HaveError = false;
1255 
1256   B.clear();
1257 
1258   while (true) {
1259     lltok::Kind Token = Lex.getKind();
1260     if (Token == lltok::kw_builtin)
1261       BuiltinLoc = Lex.getLoc();
1262     switch (Token) {
1263     default:
1264       if (!inAttrGrp) return HaveError;
1265       return error(Lex.getLoc(), "unterminated attribute group");
1266     case lltok::rbrace:
1267       // Finished.
1268       return false;
1269 
1270     case lltok::AttrGrpID: {
1271       // Allow a function to reference an attribute group:
1272       //
1273       //   define void @foo() #1 { ... }
1274       if (inAttrGrp)
1275         HaveError |= error(
1276             Lex.getLoc(),
1277             "cannot have an attribute group reference in an attribute group");
1278 
1279       unsigned AttrGrpNum = Lex.getUIntVal();
1280       if (inAttrGrp) break;
1281 
1282       // Save the reference to the attribute group. We'll fill it in later.
1283       FwdRefAttrGrps.push_back(AttrGrpNum);
1284       break;
1285     }
1286     // Target-dependent attributes:
1287     case lltok::StringConstant: {
1288       if (parseStringAttribute(B))
1289         return true;
1290       continue;
1291     }
1292 
1293     // Target-independent attributes:
1294     case lltok::kw_align: {
1295       // As a hack, we allow function alignment to be initially parsed as an
1296       // attribute on a function declaration/definition or added to an attribute
1297       // group and later moved to the alignment field.
1298       MaybeAlign Alignment;
1299       if (inAttrGrp) {
1300         Lex.Lex();
1301         uint32_t Value = 0;
1302         if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1303           return true;
1304         Alignment = Align(Value);
1305       } else {
1306         if (parseOptionalAlignment(Alignment))
1307           return true;
1308       }
1309       B.addAlignmentAttr(Alignment);
1310       continue;
1311     }
1312     case lltok::kw_alignstack: {
1313       unsigned Alignment;
1314       if (inAttrGrp) {
1315         Lex.Lex();
1316         if (parseToken(lltok::equal, "expected '=' here") ||
1317             parseUInt32(Alignment))
1318           return true;
1319       } else {
1320         if (parseOptionalStackAlignment(Alignment))
1321           return true;
1322       }
1323       B.addStackAlignmentAttr(Alignment);
1324       continue;
1325     }
1326     case lltok::kw_allocsize: {
1327       unsigned ElemSizeArg;
1328       Optional<unsigned> NumElemsArg;
1329       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1330       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1331         return true;
1332       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1333       continue;
1334     }
1335     case lltok::kw_vscale_range: {
1336       unsigned MinValue, MaxValue;
1337       // inAttrGrp doesn't matter; we only support vscale_range(a[, b])
1338       if (parseVScaleRangeArguments(MinValue, MaxValue))
1339         return true;
1340       B.addVScaleRangeAttr(MinValue, MaxValue);
1341       continue;
1342     }
1343     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1344     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1345     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1346     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1347     case lltok::kw_hot: B.addAttribute(Attribute::Hot); break;
1348     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1349     case lltok::kw_inaccessiblememonly:
1350       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1351     case lltok::kw_inaccessiblemem_or_argmemonly:
1352       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1353     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1354     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1355     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1356     case lltok::kw_mustprogress:
1357       B.addAttribute(Attribute::MustProgress);
1358       break;
1359     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1360     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1361     case lltok::kw_nocallback:
1362       B.addAttribute(Attribute::NoCallback);
1363       break;
1364     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1365     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1366     case lltok::kw_noimplicitfloat:
1367       B.addAttribute(Attribute::NoImplicitFloat); break;
1368     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1369     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1370     case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break;
1371     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1372     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1373     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1374     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1375     case lltok::kw_noprofile: B.addAttribute(Attribute::NoProfile); break;
1376     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1377     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1378     case lltok::kw_nosanitize_coverage:
1379       B.addAttribute(Attribute::NoSanitizeCoverage);
1380       break;
1381     case lltok::kw_null_pointer_is_valid:
1382       B.addAttribute(Attribute::NullPointerIsValid); break;
1383     case lltok::kw_optforfuzzing:
1384       B.addAttribute(Attribute::OptForFuzzing); break;
1385     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1386     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1387     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1388     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1389     case lltok::kw_returns_twice:
1390       B.addAttribute(Attribute::ReturnsTwice); break;
1391     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1392     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1393     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1394     case lltok::kw_sspstrong:
1395       B.addAttribute(Attribute::StackProtectStrong); break;
1396     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1397     case lltok::kw_shadowcallstack:
1398       B.addAttribute(Attribute::ShadowCallStack); break;
1399     case lltok::kw_sanitize_address:
1400       B.addAttribute(Attribute::SanitizeAddress); break;
1401     case lltok::kw_sanitize_hwaddress:
1402       B.addAttribute(Attribute::SanitizeHWAddress); break;
1403     case lltok::kw_sanitize_memtag:
1404       B.addAttribute(Attribute::SanitizeMemTag); break;
1405     case lltok::kw_sanitize_thread:
1406       B.addAttribute(Attribute::SanitizeThread); break;
1407     case lltok::kw_sanitize_memory:
1408       B.addAttribute(Attribute::SanitizeMemory); break;
1409     case lltok::kw_speculative_load_hardening:
1410       B.addAttribute(Attribute::SpeculativeLoadHardening);
1411       break;
1412     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1413     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1414     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1415     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1416     case lltok::kw_preallocated: {
1417       Type *Ty;
1418       if (parsePreallocated(Ty))
1419         return true;
1420       B.addPreallocatedAttr(Ty);
1421       break;
1422     }
1423 
1424     // error handling.
1425     case lltok::kw_inreg:
1426     case lltok::kw_signext:
1427     case lltok::kw_zeroext:
1428       HaveError |=
1429           error(Lex.getLoc(), "invalid use of attribute on a function");
1430       break;
1431     case lltok::kw_byval:
1432     case lltok::kw_dereferenceable:
1433     case lltok::kw_dereferenceable_or_null:
1434     case lltok::kw_inalloca:
1435     case lltok::kw_nest:
1436     case lltok::kw_noalias:
1437     case lltok::kw_noundef:
1438     case lltok::kw_nocapture:
1439     case lltok::kw_nonnull:
1440     case lltok::kw_returned:
1441     case lltok::kw_sret:
1442     case lltok::kw_swifterror:
1443     case lltok::kw_swiftself:
1444     case lltok::kw_swiftasync:
1445     case lltok::kw_immarg:
1446     case lltok::kw_byref:
1447       HaveError |=
1448           error(Lex.getLoc(),
1449                 "invalid use of parameter-only attribute on a function");
1450       break;
1451     }
1452 
1453     // parsePreallocated() consumes token
1454     if (Token != lltok::kw_preallocated)
1455       Lex.Lex();
1456   }
1457 }
1458 
1459 //===----------------------------------------------------------------------===//
1460 // GlobalValue Reference/Resolution Routines.
1461 //===----------------------------------------------------------------------===//
1462 
1463 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1464   // For opaque pointers, the used global type does not matter. We will later
1465   // RAUW it with a global/function of the correct type.
1466   if (PTy->isOpaque())
1467     return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1468                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1469                               nullptr, GlobalVariable::NotThreadLocal,
1470                               PTy->getAddressSpace());
1471 
1472   if (auto *FT = dyn_cast<FunctionType>(PTy->getPointerElementType()))
1473     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1474                             PTy->getAddressSpace(), "", M);
1475   else
1476     return new GlobalVariable(*M, PTy->getPointerElementType(), false,
1477                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1478                               nullptr, GlobalVariable::NotThreadLocal,
1479                               PTy->getAddressSpace());
1480 }
1481 
1482 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1483                                         Value *Val, bool IsCall) {
1484   Type *ValTy = Val->getType();
1485   if (ValTy == Ty)
1486     return Val;
1487   // For calls, we also allow opaque pointers.
1488   if (IsCall && ValTy == PointerType::get(Ty->getContext(),
1489                                           Ty->getPointerAddressSpace()))
1490     return Val;
1491   if (Ty->isLabelTy())
1492     error(Loc, "'" + Name + "' is not a basic block");
1493   else
1494     error(Loc, "'" + Name + "' defined with type '" +
1495                    getTypeString(Val->getType()) + "' but expected '" +
1496                    getTypeString(Ty) + "'");
1497   return nullptr;
1498 }
1499 
1500 /// getGlobalVal - Get a value with the specified name or ID, creating a
1501 /// forward reference record if needed.  This can return null if the value
1502 /// exists but does not have the right type.
1503 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1504                                     LocTy Loc, bool IsCall) {
1505   PointerType *PTy = dyn_cast<PointerType>(Ty);
1506   if (!PTy) {
1507     error(Loc, "global variable reference must have pointer type");
1508     return nullptr;
1509   }
1510 
1511   // Look this name up in the normal function symbol table.
1512   GlobalValue *Val =
1513     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1514 
1515   // If this is a forward reference for the value, see if we already created a
1516   // forward ref record.
1517   if (!Val) {
1518     auto I = ForwardRefVals.find(Name);
1519     if (I != ForwardRefVals.end())
1520       Val = I->second.first;
1521   }
1522 
1523   // If we have the value in the symbol table or fwd-ref table, return it.
1524   if (Val)
1525     return cast_or_null<GlobalValue>(
1526         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1527 
1528   // Otherwise, create a new forward reference for this value and remember it.
1529   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1530   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1531   return FwdVal;
1532 }
1533 
1534 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1535                                     bool IsCall) {
1536   PointerType *PTy = dyn_cast<PointerType>(Ty);
1537   if (!PTy) {
1538     error(Loc, "global variable reference must have pointer type");
1539     return nullptr;
1540   }
1541 
1542   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1543 
1544   // If this is a forward reference for the value, see if we already created a
1545   // forward ref record.
1546   if (!Val) {
1547     auto I = ForwardRefValIDs.find(ID);
1548     if (I != ForwardRefValIDs.end())
1549       Val = I->second.first;
1550   }
1551 
1552   // If we have the value in the symbol table or fwd-ref table, return it.
1553   if (Val)
1554     return cast_or_null<GlobalValue>(
1555         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1556 
1557   // Otherwise, create a new forward reference for this value and remember it.
1558   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1559   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1560   return FwdVal;
1561 }
1562 
1563 //===----------------------------------------------------------------------===//
1564 // Comdat Reference/Resolution Routines.
1565 //===----------------------------------------------------------------------===//
1566 
1567 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1568   // Look this name up in the comdat symbol table.
1569   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1570   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1571   if (I != ComdatSymTab.end())
1572     return &I->second;
1573 
1574   // Otherwise, create a new forward reference for this value and remember it.
1575   Comdat *C = M->getOrInsertComdat(Name);
1576   ForwardRefComdats[Name] = Loc;
1577   return C;
1578 }
1579 
1580 //===----------------------------------------------------------------------===//
1581 // Helper Routines.
1582 //===----------------------------------------------------------------------===//
1583 
1584 /// parseToken - If the current token has the specified kind, eat it and return
1585 /// success.  Otherwise, emit the specified error and return failure.
1586 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1587   if (Lex.getKind() != T)
1588     return tokError(ErrMsg);
1589   Lex.Lex();
1590   return false;
1591 }
1592 
1593 /// parseStringConstant
1594 ///   ::= StringConstant
1595 bool LLParser::parseStringConstant(std::string &Result) {
1596   if (Lex.getKind() != lltok::StringConstant)
1597     return tokError("expected string constant");
1598   Result = Lex.getStrVal();
1599   Lex.Lex();
1600   return false;
1601 }
1602 
1603 /// parseUInt32
1604 ///   ::= uint32
1605 bool LLParser::parseUInt32(uint32_t &Val) {
1606   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1607     return tokError("expected integer");
1608   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1609   if (Val64 != unsigned(Val64))
1610     return tokError("expected 32-bit integer (too large)");
1611   Val = Val64;
1612   Lex.Lex();
1613   return false;
1614 }
1615 
1616 /// parseUInt64
1617 ///   ::= uint64
1618 bool LLParser::parseUInt64(uint64_t &Val) {
1619   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1620     return tokError("expected integer");
1621   Val = Lex.getAPSIntVal().getLimitedValue();
1622   Lex.Lex();
1623   return false;
1624 }
1625 
1626 /// parseTLSModel
1627 ///   := 'localdynamic'
1628 ///   := 'initialexec'
1629 ///   := 'localexec'
1630 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1631   switch (Lex.getKind()) {
1632     default:
1633       return tokError("expected localdynamic, initialexec or localexec");
1634     case lltok::kw_localdynamic:
1635       TLM = GlobalVariable::LocalDynamicTLSModel;
1636       break;
1637     case lltok::kw_initialexec:
1638       TLM = GlobalVariable::InitialExecTLSModel;
1639       break;
1640     case lltok::kw_localexec:
1641       TLM = GlobalVariable::LocalExecTLSModel;
1642       break;
1643   }
1644 
1645   Lex.Lex();
1646   return false;
1647 }
1648 
1649 /// parseOptionalThreadLocal
1650 ///   := /*empty*/
1651 ///   := 'thread_local'
1652 ///   := 'thread_local' '(' tlsmodel ')'
1653 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1654   TLM = GlobalVariable::NotThreadLocal;
1655   if (!EatIfPresent(lltok::kw_thread_local))
1656     return false;
1657 
1658   TLM = GlobalVariable::GeneralDynamicTLSModel;
1659   if (Lex.getKind() == lltok::lparen) {
1660     Lex.Lex();
1661     return parseTLSModel(TLM) ||
1662            parseToken(lltok::rparen, "expected ')' after thread local model");
1663   }
1664   return false;
1665 }
1666 
1667 /// parseOptionalAddrSpace
1668 ///   := /*empty*/
1669 ///   := 'addrspace' '(' uint32 ')'
1670 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1671   AddrSpace = DefaultAS;
1672   if (!EatIfPresent(lltok::kw_addrspace))
1673     return false;
1674   return parseToken(lltok::lparen, "expected '(' in address space") ||
1675          parseUInt32(AddrSpace) ||
1676          parseToken(lltok::rparen, "expected ')' in address space");
1677 }
1678 
1679 /// parseStringAttribute
1680 ///   := StringConstant
1681 ///   := StringConstant '=' StringConstant
1682 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1683   std::string Attr = Lex.getStrVal();
1684   Lex.Lex();
1685   std::string Val;
1686   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1687     return true;
1688   B.addAttribute(Attr, Val);
1689   return false;
1690 }
1691 
1692 /// parseOptionalParamAttrs - parse a potentially empty list of parameter
1693 /// attributes.
1694 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) {
1695   bool HaveError = false;
1696 
1697   B.clear();
1698 
1699   while (true) {
1700     lltok::Kind Token = Lex.getKind();
1701     switch (Token) {
1702     default:  // End of attributes.
1703       return HaveError;
1704     case lltok::StringConstant: {
1705       if (parseStringAttribute(B))
1706         return true;
1707       continue;
1708     }
1709     case lltok::kw_align: {
1710       MaybeAlign Alignment;
1711       if (parseOptionalAlignment(Alignment, true))
1712         return true;
1713       B.addAlignmentAttr(Alignment);
1714       continue;
1715     }
1716     case lltok::kw_alignstack: {
1717       unsigned Alignment;
1718       if (parseOptionalStackAlignment(Alignment))
1719         return true;
1720       B.addStackAlignmentAttr(Alignment);
1721       continue;
1722     }
1723     case lltok::kw_byval: {
1724       Type *Ty;
1725       if (parseRequiredTypeAttr(Ty, lltok::kw_byval))
1726         return true;
1727       B.addByValAttr(Ty);
1728       continue;
1729     }
1730     case lltok::kw_sret: {
1731       Type *Ty;
1732       if (parseRequiredTypeAttr(Ty, lltok::kw_sret))
1733         return true;
1734       B.addStructRetAttr(Ty);
1735       continue;
1736     }
1737     case lltok::kw_preallocated: {
1738       Type *Ty;
1739       if (parsePreallocated(Ty))
1740         return true;
1741       B.addPreallocatedAttr(Ty);
1742       continue;
1743     }
1744     case lltok::kw_inalloca: {
1745       Type *Ty;
1746       if (parseInalloca(Ty))
1747         return true;
1748       B.addInAllocaAttr(Ty);
1749       continue;
1750     }
1751     case lltok::kw_dereferenceable: {
1752       uint64_t Bytes;
1753       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1754         return true;
1755       B.addDereferenceableAttr(Bytes);
1756       continue;
1757     }
1758     case lltok::kw_dereferenceable_or_null: {
1759       uint64_t Bytes;
1760       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1761         return true;
1762       B.addDereferenceableOrNullAttr(Bytes);
1763       continue;
1764     }
1765     case lltok::kw_byref: {
1766       Type *Ty;
1767       if (parseByRef(Ty))
1768         return true;
1769       B.addByRefAttr(Ty);
1770       continue;
1771     }
1772     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1773     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1774     case lltok::kw_noundef:
1775       B.addAttribute(Attribute::NoUndef);
1776       break;
1777     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1778     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1779     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1780     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1781     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1782     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1783     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1784     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1785     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1786     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1787     case lltok::kw_swiftasync:      B.addAttribute(Attribute::SwiftAsync); break;
1788     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1789     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1790     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1791 
1792     case lltok::kw_alwaysinline:
1793     case lltok::kw_argmemonly:
1794     case lltok::kw_builtin:
1795     case lltok::kw_inlinehint:
1796     case lltok::kw_jumptable:
1797     case lltok::kw_minsize:
1798     case lltok::kw_mustprogress:
1799     case lltok::kw_naked:
1800     case lltok::kw_nobuiltin:
1801     case lltok::kw_noduplicate:
1802     case lltok::kw_noimplicitfloat:
1803     case lltok::kw_noinline:
1804     case lltok::kw_nonlazybind:
1805     case lltok::kw_nomerge:
1806     case lltok::kw_noprofile:
1807     case lltok::kw_noredzone:
1808     case lltok::kw_noreturn:
1809     case lltok::kw_nocf_check:
1810     case lltok::kw_nounwind:
1811     case lltok::kw_nosanitize_coverage:
1812     case lltok::kw_optforfuzzing:
1813     case lltok::kw_optnone:
1814     case lltok::kw_optsize:
1815     case lltok::kw_returns_twice:
1816     case lltok::kw_sanitize_address:
1817     case lltok::kw_sanitize_hwaddress:
1818     case lltok::kw_sanitize_memtag:
1819     case lltok::kw_sanitize_memory:
1820     case lltok::kw_sanitize_thread:
1821     case lltok::kw_speculative_load_hardening:
1822     case lltok::kw_ssp:
1823     case lltok::kw_sspreq:
1824     case lltok::kw_sspstrong:
1825     case lltok::kw_safestack:
1826     case lltok::kw_shadowcallstack:
1827     case lltok::kw_strictfp:
1828     case lltok::kw_uwtable:
1829     case lltok::kw_vscale_range:
1830       HaveError |=
1831           error(Lex.getLoc(), "invalid use of function-only attribute");
1832       break;
1833     }
1834 
1835     Lex.Lex();
1836   }
1837 }
1838 
1839 /// parseOptionalReturnAttrs - parse a potentially empty list of return
1840 /// attributes.
1841 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) {
1842   bool HaveError = false;
1843 
1844   B.clear();
1845 
1846   while (true) {
1847     lltok::Kind Token = Lex.getKind();
1848     switch (Token) {
1849     default:  // End of attributes.
1850       return HaveError;
1851     case lltok::StringConstant: {
1852       if (parseStringAttribute(B))
1853         return true;
1854       continue;
1855     }
1856     case lltok::kw_dereferenceable: {
1857       uint64_t Bytes;
1858       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1859         return true;
1860       B.addDereferenceableAttr(Bytes);
1861       continue;
1862     }
1863     case lltok::kw_dereferenceable_or_null: {
1864       uint64_t Bytes;
1865       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1866         return true;
1867       B.addDereferenceableOrNullAttr(Bytes);
1868       continue;
1869     }
1870     case lltok::kw_align: {
1871       MaybeAlign Alignment;
1872       if (parseOptionalAlignment(Alignment))
1873         return true;
1874       B.addAlignmentAttr(Alignment);
1875       continue;
1876     }
1877     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1878     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1879     case lltok::kw_noundef:
1880       B.addAttribute(Attribute::NoUndef);
1881       break;
1882     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1883     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1884     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1885 
1886     // error handling.
1887     case lltok::kw_byval:
1888     case lltok::kw_inalloca:
1889     case lltok::kw_nest:
1890     case lltok::kw_nocapture:
1891     case lltok::kw_returned:
1892     case lltok::kw_sret:
1893     case lltok::kw_swifterror:
1894     case lltok::kw_swiftself:
1895     case lltok::kw_swiftasync:
1896     case lltok::kw_immarg:
1897     case lltok::kw_byref:
1898       HaveError |=
1899           error(Lex.getLoc(), "invalid use of parameter-only attribute");
1900       break;
1901 
1902     case lltok::kw_alignstack:
1903     case lltok::kw_alwaysinline:
1904     case lltok::kw_argmemonly:
1905     case lltok::kw_builtin:
1906     case lltok::kw_cold:
1907     case lltok::kw_inlinehint:
1908     case lltok::kw_jumptable:
1909     case lltok::kw_minsize:
1910     case lltok::kw_mustprogress:
1911     case lltok::kw_naked:
1912     case lltok::kw_nobuiltin:
1913     case lltok::kw_noduplicate:
1914     case lltok::kw_noimplicitfloat:
1915     case lltok::kw_noinline:
1916     case lltok::kw_nonlazybind:
1917     case lltok::kw_nomerge:
1918     case lltok::kw_noprofile:
1919     case lltok::kw_noredzone:
1920     case lltok::kw_noreturn:
1921     case lltok::kw_nocf_check:
1922     case lltok::kw_nounwind:
1923     case lltok::kw_nosanitize_coverage:
1924     case lltok::kw_optforfuzzing:
1925     case lltok::kw_optnone:
1926     case lltok::kw_optsize:
1927     case lltok::kw_returns_twice:
1928     case lltok::kw_sanitize_address:
1929     case lltok::kw_sanitize_hwaddress:
1930     case lltok::kw_sanitize_memtag:
1931     case lltok::kw_sanitize_memory:
1932     case lltok::kw_sanitize_thread:
1933     case lltok::kw_speculative_load_hardening:
1934     case lltok::kw_ssp:
1935     case lltok::kw_sspreq:
1936     case lltok::kw_sspstrong:
1937     case lltok::kw_safestack:
1938     case lltok::kw_shadowcallstack:
1939     case lltok::kw_strictfp:
1940     case lltok::kw_uwtable:
1941     case lltok::kw_vscale_range:
1942       HaveError |=
1943           error(Lex.getLoc(), "invalid use of function-only attribute");
1944       break;
1945     case lltok::kw_readnone:
1946     case lltok::kw_readonly:
1947       HaveError |=
1948           error(Lex.getLoc(), "invalid use of attribute on return type");
1949       break;
1950     case lltok::kw_preallocated:
1951       HaveError |=
1952           error(Lex.getLoc(),
1953                 "invalid use of parameter-only/call site-only attribute");
1954       break;
1955     }
1956 
1957     Lex.Lex();
1958   }
1959 }
1960 
1961 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1962   HasLinkage = true;
1963   switch (Kind) {
1964   default:
1965     HasLinkage = false;
1966     return GlobalValue::ExternalLinkage;
1967   case lltok::kw_private:
1968     return GlobalValue::PrivateLinkage;
1969   case lltok::kw_internal:
1970     return GlobalValue::InternalLinkage;
1971   case lltok::kw_weak:
1972     return GlobalValue::WeakAnyLinkage;
1973   case lltok::kw_weak_odr:
1974     return GlobalValue::WeakODRLinkage;
1975   case lltok::kw_linkonce:
1976     return GlobalValue::LinkOnceAnyLinkage;
1977   case lltok::kw_linkonce_odr:
1978     return GlobalValue::LinkOnceODRLinkage;
1979   case lltok::kw_available_externally:
1980     return GlobalValue::AvailableExternallyLinkage;
1981   case lltok::kw_appending:
1982     return GlobalValue::AppendingLinkage;
1983   case lltok::kw_common:
1984     return GlobalValue::CommonLinkage;
1985   case lltok::kw_extern_weak:
1986     return GlobalValue::ExternalWeakLinkage;
1987   case lltok::kw_external:
1988     return GlobalValue::ExternalLinkage;
1989   }
1990 }
1991 
1992 /// parseOptionalLinkage
1993 ///   ::= /*empty*/
1994 ///   ::= 'private'
1995 ///   ::= 'internal'
1996 ///   ::= 'weak'
1997 ///   ::= 'weak_odr'
1998 ///   ::= 'linkonce'
1999 ///   ::= 'linkonce_odr'
2000 ///   ::= 'available_externally'
2001 ///   ::= 'appending'
2002 ///   ::= 'common'
2003 ///   ::= 'extern_weak'
2004 ///   ::= 'external'
2005 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
2006                                     unsigned &Visibility,
2007                                     unsigned &DLLStorageClass, bool &DSOLocal) {
2008   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
2009   if (HasLinkage)
2010     Lex.Lex();
2011   parseOptionalDSOLocal(DSOLocal);
2012   parseOptionalVisibility(Visibility);
2013   parseOptionalDLLStorageClass(DLLStorageClass);
2014 
2015   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
2016     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
2017   }
2018 
2019   return false;
2020 }
2021 
2022 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
2023   switch (Lex.getKind()) {
2024   default:
2025     DSOLocal = false;
2026     break;
2027   case lltok::kw_dso_local:
2028     DSOLocal = true;
2029     Lex.Lex();
2030     break;
2031   case lltok::kw_dso_preemptable:
2032     DSOLocal = false;
2033     Lex.Lex();
2034     break;
2035   }
2036 }
2037 
2038 /// parseOptionalVisibility
2039 ///   ::= /*empty*/
2040 ///   ::= 'default'
2041 ///   ::= 'hidden'
2042 ///   ::= 'protected'
2043 ///
2044 void LLParser::parseOptionalVisibility(unsigned &Res) {
2045   switch (Lex.getKind()) {
2046   default:
2047     Res = GlobalValue::DefaultVisibility;
2048     return;
2049   case lltok::kw_default:
2050     Res = GlobalValue::DefaultVisibility;
2051     break;
2052   case lltok::kw_hidden:
2053     Res = GlobalValue::HiddenVisibility;
2054     break;
2055   case lltok::kw_protected:
2056     Res = GlobalValue::ProtectedVisibility;
2057     break;
2058   }
2059   Lex.Lex();
2060 }
2061 
2062 /// parseOptionalDLLStorageClass
2063 ///   ::= /*empty*/
2064 ///   ::= 'dllimport'
2065 ///   ::= 'dllexport'
2066 ///
2067 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
2068   switch (Lex.getKind()) {
2069   default:
2070     Res = GlobalValue::DefaultStorageClass;
2071     return;
2072   case lltok::kw_dllimport:
2073     Res = GlobalValue::DLLImportStorageClass;
2074     break;
2075   case lltok::kw_dllexport:
2076     Res = GlobalValue::DLLExportStorageClass;
2077     break;
2078   }
2079   Lex.Lex();
2080 }
2081 
2082 /// parseOptionalCallingConv
2083 ///   ::= /*empty*/
2084 ///   ::= 'ccc'
2085 ///   ::= 'fastcc'
2086 ///   ::= 'intel_ocl_bicc'
2087 ///   ::= 'coldcc'
2088 ///   ::= 'cfguard_checkcc'
2089 ///   ::= 'x86_stdcallcc'
2090 ///   ::= 'x86_fastcallcc'
2091 ///   ::= 'x86_thiscallcc'
2092 ///   ::= 'x86_vectorcallcc'
2093 ///   ::= 'arm_apcscc'
2094 ///   ::= 'arm_aapcscc'
2095 ///   ::= 'arm_aapcs_vfpcc'
2096 ///   ::= 'aarch64_vector_pcs'
2097 ///   ::= 'aarch64_sve_vector_pcs'
2098 ///   ::= 'msp430_intrcc'
2099 ///   ::= 'avr_intrcc'
2100 ///   ::= 'avr_signalcc'
2101 ///   ::= 'ptx_kernel'
2102 ///   ::= 'ptx_device'
2103 ///   ::= 'spir_func'
2104 ///   ::= 'spir_kernel'
2105 ///   ::= 'x86_64_sysvcc'
2106 ///   ::= 'win64cc'
2107 ///   ::= 'webkit_jscc'
2108 ///   ::= 'anyregcc'
2109 ///   ::= 'preserve_mostcc'
2110 ///   ::= 'preserve_allcc'
2111 ///   ::= 'ghccc'
2112 ///   ::= 'swiftcc'
2113 ///   ::= 'swifttailcc'
2114 ///   ::= 'x86_intrcc'
2115 ///   ::= 'hhvmcc'
2116 ///   ::= 'hhvm_ccc'
2117 ///   ::= 'cxx_fast_tlscc'
2118 ///   ::= 'amdgpu_vs'
2119 ///   ::= 'amdgpu_ls'
2120 ///   ::= 'amdgpu_hs'
2121 ///   ::= 'amdgpu_es'
2122 ///   ::= 'amdgpu_gs'
2123 ///   ::= 'amdgpu_ps'
2124 ///   ::= 'amdgpu_cs'
2125 ///   ::= 'amdgpu_kernel'
2126 ///   ::= 'tailcc'
2127 ///   ::= 'cc' UINT
2128 ///
2129 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
2130   switch (Lex.getKind()) {
2131   default:                       CC = CallingConv::C; return false;
2132   case lltok::kw_ccc:            CC = CallingConv::C; break;
2133   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2134   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2135   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2136   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2137   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2138   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2139   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2140   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2141   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2142   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2143   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2144   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2145   case lltok::kw_aarch64_sve_vector_pcs:
2146     CC = CallingConv::AArch64_SVE_VectorCall;
2147     break;
2148   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2149   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2150   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2151   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2152   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2153   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2154   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2155   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2156   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2157   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2158   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2159   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2160   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2161   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2162   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2163   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2164   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
2165   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2166   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2167   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2168   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2169   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2170   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
2171   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2172   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2173   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2174   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2175   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2176   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2177   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2178   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2179   case lltok::kw_cc: {
2180       Lex.Lex();
2181       return parseUInt32(CC);
2182     }
2183   }
2184 
2185   Lex.Lex();
2186   return false;
2187 }
2188 
2189 /// parseMetadataAttachment
2190 ///   ::= !dbg !42
2191 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2192   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2193 
2194   std::string Name = Lex.getStrVal();
2195   Kind = M->getMDKindID(Name);
2196   Lex.Lex();
2197 
2198   return parseMDNode(MD);
2199 }
2200 
2201 /// parseInstructionMetadata
2202 ///   ::= !dbg !42 (',' !dbg !57)*
2203 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
2204   do {
2205     if (Lex.getKind() != lltok::MetadataVar)
2206       return tokError("expected metadata after comma");
2207 
2208     unsigned MDK;
2209     MDNode *N;
2210     if (parseMetadataAttachment(MDK, N))
2211       return true;
2212 
2213     Inst.setMetadata(MDK, N);
2214     if (MDK == LLVMContext::MD_tbaa)
2215       InstsWithTBAATag.push_back(&Inst);
2216 
2217     // If this is the end of the list, we're done.
2218   } while (EatIfPresent(lltok::comma));
2219   return false;
2220 }
2221 
2222 /// parseGlobalObjectMetadataAttachment
2223 ///   ::= !dbg !57
2224 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2225   unsigned MDK;
2226   MDNode *N;
2227   if (parseMetadataAttachment(MDK, N))
2228     return true;
2229 
2230   GO.addMetadata(MDK, *N);
2231   return false;
2232 }
2233 
2234 /// parseOptionalFunctionMetadata
2235 ///   ::= (!dbg !57)*
2236 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2237   while (Lex.getKind() == lltok::MetadataVar)
2238     if (parseGlobalObjectMetadataAttachment(F))
2239       return true;
2240   return false;
2241 }
2242 
2243 /// parseOptionalAlignment
2244 ///   ::= /* empty */
2245 ///   ::= 'align' 4
2246 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2247   Alignment = None;
2248   if (!EatIfPresent(lltok::kw_align))
2249     return false;
2250   LocTy AlignLoc = Lex.getLoc();
2251   uint32_t Value = 0;
2252 
2253   LocTy ParenLoc = Lex.getLoc();
2254   bool HaveParens = false;
2255   if (AllowParens) {
2256     if (EatIfPresent(lltok::lparen))
2257       HaveParens = true;
2258   }
2259 
2260   if (parseUInt32(Value))
2261     return true;
2262 
2263   if (HaveParens && !EatIfPresent(lltok::rparen))
2264     return error(ParenLoc, "expected ')'");
2265 
2266   if (!isPowerOf2_32(Value))
2267     return error(AlignLoc, "alignment is not a power of two");
2268   if (Value > Value::MaximumAlignment)
2269     return error(AlignLoc, "huge alignments are not supported yet");
2270   Alignment = Align(Value);
2271   return false;
2272 }
2273 
2274 /// parseOptionalDerefAttrBytes
2275 ///   ::= /* empty */
2276 ///   ::= AttrKind '(' 4 ')'
2277 ///
2278 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2279 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2280                                            uint64_t &Bytes) {
2281   assert((AttrKind == lltok::kw_dereferenceable ||
2282           AttrKind == lltok::kw_dereferenceable_or_null) &&
2283          "contract!");
2284 
2285   Bytes = 0;
2286   if (!EatIfPresent(AttrKind))
2287     return false;
2288   LocTy ParenLoc = Lex.getLoc();
2289   if (!EatIfPresent(lltok::lparen))
2290     return error(ParenLoc, "expected '('");
2291   LocTy DerefLoc = Lex.getLoc();
2292   if (parseUInt64(Bytes))
2293     return true;
2294   ParenLoc = Lex.getLoc();
2295   if (!EatIfPresent(lltok::rparen))
2296     return error(ParenLoc, "expected ')'");
2297   if (!Bytes)
2298     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2299   return false;
2300 }
2301 
2302 /// parseOptionalCommaAlign
2303 ///   ::=
2304 ///   ::= ',' align 4
2305 ///
2306 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2307 /// end.
2308 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2309                                        bool &AteExtraComma) {
2310   AteExtraComma = false;
2311   while (EatIfPresent(lltok::comma)) {
2312     // Metadata at the end is an early exit.
2313     if (Lex.getKind() == lltok::MetadataVar) {
2314       AteExtraComma = true;
2315       return false;
2316     }
2317 
2318     if (Lex.getKind() != lltok::kw_align)
2319       return error(Lex.getLoc(), "expected metadata or 'align'");
2320 
2321     if (parseOptionalAlignment(Alignment))
2322       return true;
2323   }
2324 
2325   return false;
2326 }
2327 
2328 /// parseOptionalCommaAddrSpace
2329 ///   ::=
2330 ///   ::= ',' addrspace(1)
2331 ///
2332 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2333 /// end.
2334 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2335                                            bool &AteExtraComma) {
2336   AteExtraComma = false;
2337   while (EatIfPresent(lltok::comma)) {
2338     // Metadata at the end is an early exit.
2339     if (Lex.getKind() == lltok::MetadataVar) {
2340       AteExtraComma = true;
2341       return false;
2342     }
2343 
2344     Loc = Lex.getLoc();
2345     if (Lex.getKind() != lltok::kw_addrspace)
2346       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2347 
2348     if (parseOptionalAddrSpace(AddrSpace))
2349       return true;
2350   }
2351 
2352   return false;
2353 }
2354 
2355 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2356                                        Optional<unsigned> &HowManyArg) {
2357   Lex.Lex();
2358 
2359   auto StartParen = Lex.getLoc();
2360   if (!EatIfPresent(lltok::lparen))
2361     return error(StartParen, "expected '('");
2362 
2363   if (parseUInt32(BaseSizeArg))
2364     return true;
2365 
2366   if (EatIfPresent(lltok::comma)) {
2367     auto HowManyAt = Lex.getLoc();
2368     unsigned HowMany;
2369     if (parseUInt32(HowMany))
2370       return true;
2371     if (HowMany == BaseSizeArg)
2372       return error(HowManyAt,
2373                    "'allocsize' indices can't refer to the same parameter");
2374     HowManyArg = HowMany;
2375   } else
2376     HowManyArg = None;
2377 
2378   auto EndParen = Lex.getLoc();
2379   if (!EatIfPresent(lltok::rparen))
2380     return error(EndParen, "expected ')'");
2381   return false;
2382 }
2383 
2384 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2385                                          unsigned &MaxValue) {
2386   Lex.Lex();
2387 
2388   auto StartParen = Lex.getLoc();
2389   if (!EatIfPresent(lltok::lparen))
2390     return error(StartParen, "expected '('");
2391 
2392   if (parseUInt32(MinValue))
2393     return true;
2394 
2395   if (EatIfPresent(lltok::comma)) {
2396     if (parseUInt32(MaxValue))
2397       return true;
2398   } else
2399     MaxValue = MinValue;
2400 
2401   auto EndParen = Lex.getLoc();
2402   if (!EatIfPresent(lltok::rparen))
2403     return error(EndParen, "expected ')'");
2404   return false;
2405 }
2406 
2407 /// parseScopeAndOrdering
2408 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2409 ///   else: ::=
2410 ///
2411 /// This sets Scope and Ordering to the parsed values.
2412 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2413                                      AtomicOrdering &Ordering) {
2414   if (!IsAtomic)
2415     return false;
2416 
2417   return parseScope(SSID) || parseOrdering(Ordering);
2418 }
2419 
2420 /// parseScope
2421 ///   ::= syncscope("singlethread" | "<target scope>")?
2422 ///
2423 /// This sets synchronization scope ID to the ID of the parsed value.
2424 bool LLParser::parseScope(SyncScope::ID &SSID) {
2425   SSID = SyncScope::System;
2426   if (EatIfPresent(lltok::kw_syncscope)) {
2427     auto StartParenAt = Lex.getLoc();
2428     if (!EatIfPresent(lltok::lparen))
2429       return error(StartParenAt, "Expected '(' in syncscope");
2430 
2431     std::string SSN;
2432     auto SSNAt = Lex.getLoc();
2433     if (parseStringConstant(SSN))
2434       return error(SSNAt, "Expected synchronization scope name");
2435 
2436     auto EndParenAt = Lex.getLoc();
2437     if (!EatIfPresent(lltok::rparen))
2438       return error(EndParenAt, "Expected ')' in syncscope");
2439 
2440     SSID = Context.getOrInsertSyncScopeID(SSN);
2441   }
2442 
2443   return false;
2444 }
2445 
2446 /// parseOrdering
2447 ///   ::= AtomicOrdering
2448 ///
2449 /// This sets Ordering to the parsed value.
2450 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2451   switch (Lex.getKind()) {
2452   default:
2453     return tokError("Expected ordering on atomic instruction");
2454   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2455   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2456   // Not specified yet:
2457   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2458   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2459   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2460   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2461   case lltok::kw_seq_cst:
2462     Ordering = AtomicOrdering::SequentiallyConsistent;
2463     break;
2464   }
2465   Lex.Lex();
2466   return false;
2467 }
2468 
2469 /// parseOptionalStackAlignment
2470 ///   ::= /* empty */
2471 ///   ::= 'alignstack' '(' 4 ')'
2472 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2473   Alignment = 0;
2474   if (!EatIfPresent(lltok::kw_alignstack))
2475     return false;
2476   LocTy ParenLoc = Lex.getLoc();
2477   if (!EatIfPresent(lltok::lparen))
2478     return error(ParenLoc, "expected '('");
2479   LocTy AlignLoc = Lex.getLoc();
2480   if (parseUInt32(Alignment))
2481     return true;
2482   ParenLoc = Lex.getLoc();
2483   if (!EatIfPresent(lltok::rparen))
2484     return error(ParenLoc, "expected ')'");
2485   if (!isPowerOf2_32(Alignment))
2486     return error(AlignLoc, "stack alignment is not a power of two");
2487   return false;
2488 }
2489 
2490 /// parseIndexList - This parses the index list for an insert/extractvalue
2491 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2492 /// comma at the end of the line and find that it is followed by metadata.
2493 /// Clients that don't allow metadata can call the version of this function that
2494 /// only takes one argument.
2495 ///
2496 /// parseIndexList
2497 ///    ::=  (',' uint32)+
2498 ///
2499 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2500                               bool &AteExtraComma) {
2501   AteExtraComma = false;
2502 
2503   if (Lex.getKind() != lltok::comma)
2504     return tokError("expected ',' as start of index list");
2505 
2506   while (EatIfPresent(lltok::comma)) {
2507     if (Lex.getKind() == lltok::MetadataVar) {
2508       if (Indices.empty())
2509         return tokError("expected index");
2510       AteExtraComma = true;
2511       return false;
2512     }
2513     unsigned Idx = 0;
2514     if (parseUInt32(Idx))
2515       return true;
2516     Indices.push_back(Idx);
2517   }
2518 
2519   return false;
2520 }
2521 
2522 //===----------------------------------------------------------------------===//
2523 // Type Parsing.
2524 //===----------------------------------------------------------------------===//
2525 
2526 /// parseType - parse a type.
2527 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2528   SMLoc TypeLoc = Lex.getLoc();
2529   switch (Lex.getKind()) {
2530   default:
2531     return tokError(Msg);
2532   case lltok::Type:
2533     // Type ::= 'float' | 'void' (etc)
2534     Result = Lex.getTyVal();
2535     Lex.Lex();
2536     break;
2537   case lltok::lbrace:
2538     // Type ::= StructType
2539     if (parseAnonStructType(Result, false))
2540       return true;
2541     break;
2542   case lltok::lsquare:
2543     // Type ::= '[' ... ']'
2544     Lex.Lex(); // eat the lsquare.
2545     if (parseArrayVectorType(Result, false))
2546       return true;
2547     break;
2548   case lltok::less: // Either vector or packed struct.
2549     // Type ::= '<' ... '>'
2550     Lex.Lex();
2551     if (Lex.getKind() == lltok::lbrace) {
2552       if (parseAnonStructType(Result, true) ||
2553           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2554         return true;
2555     } else if (parseArrayVectorType(Result, true))
2556       return true;
2557     break;
2558   case lltok::LocalVar: {
2559     // Type ::= %foo
2560     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2561 
2562     // If the type hasn't been defined yet, create a forward definition and
2563     // remember where that forward def'n was seen (in case it never is defined).
2564     if (!Entry.first) {
2565       Entry.first = StructType::create(Context, Lex.getStrVal());
2566       Entry.second = Lex.getLoc();
2567     }
2568     Result = Entry.first;
2569     Lex.Lex();
2570     break;
2571   }
2572 
2573   case lltok::LocalVarID: {
2574     // Type ::= %4
2575     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2576 
2577     // If the type hasn't been defined yet, create a forward definition and
2578     // remember where that forward def'n was seen (in case it never is defined).
2579     if (!Entry.first) {
2580       Entry.first = StructType::create(Context);
2581       Entry.second = Lex.getLoc();
2582     }
2583     Result = Entry.first;
2584     Lex.Lex();
2585     break;
2586   }
2587   }
2588 
2589   // Handle (explicit) opaque pointer types (not --force-opaque-pointers).
2590   //
2591   // Type ::= ptr ('addrspace' '(' uint32 ')')?
2592   if (Result->isOpaquePointerTy()) {
2593     unsigned AddrSpace;
2594     if (parseOptionalAddrSpace(AddrSpace))
2595       return true;
2596     Result = PointerType::get(getContext(), AddrSpace);
2597 
2598     // Give a nice error for 'ptr*'.
2599     if (Lex.getKind() == lltok::star)
2600       return tokError("ptr* is invalid - use ptr instead");
2601 
2602     // Fall through to parsing the type suffixes only if this 'ptr' is a
2603     // function return. Otherwise, return success, implicitly rejecting other
2604     // suffixes.
2605     if (Lex.getKind() != lltok::lparen)
2606       return false;
2607   }
2608 
2609   // parse the type suffixes.
2610   while (true) {
2611     switch (Lex.getKind()) {
2612     // End of type.
2613     default:
2614       if (!AllowVoid && Result->isVoidTy())
2615         return error(TypeLoc, "void type only allowed for function results");
2616       return false;
2617 
2618     // Type ::= Type '*'
2619     case lltok::star:
2620       if (Result->isLabelTy())
2621         return tokError("basic block pointers are invalid");
2622       if (Result->isVoidTy())
2623         return tokError("pointers to void are invalid - use i8* instead");
2624       if (!PointerType::isValidElementType(Result))
2625         return tokError("pointer to this type is invalid");
2626       Result = PointerType::getUnqual(Result);
2627       Lex.Lex();
2628       break;
2629 
2630     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2631     case lltok::kw_addrspace: {
2632       if (Result->isLabelTy())
2633         return tokError("basic block pointers are invalid");
2634       if (Result->isVoidTy())
2635         return tokError("pointers to void are invalid; use i8* instead");
2636       if (!PointerType::isValidElementType(Result))
2637         return tokError("pointer to this type is invalid");
2638       unsigned AddrSpace;
2639       if (parseOptionalAddrSpace(AddrSpace) ||
2640           parseToken(lltok::star, "expected '*' in address space"))
2641         return true;
2642 
2643       Result = PointerType::get(Result, AddrSpace);
2644       break;
2645     }
2646 
2647     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2648     case lltok::lparen:
2649       if (parseFunctionType(Result))
2650         return true;
2651       break;
2652     }
2653   }
2654 }
2655 
2656 /// parseParameterList
2657 ///    ::= '(' ')'
2658 ///    ::= '(' Arg (',' Arg)* ')'
2659 ///  Arg
2660 ///    ::= Type OptionalAttributes Value OptionalAttributes
2661 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2662                                   PerFunctionState &PFS, bool IsMustTailCall,
2663                                   bool InVarArgsFunc) {
2664   if (parseToken(lltok::lparen, "expected '(' in call"))
2665     return true;
2666 
2667   while (Lex.getKind() != lltok::rparen) {
2668     // If this isn't the first argument, we need a comma.
2669     if (!ArgList.empty() &&
2670         parseToken(lltok::comma, "expected ',' in argument list"))
2671       return true;
2672 
2673     // parse an ellipsis if this is a musttail call in a variadic function.
2674     if (Lex.getKind() == lltok::dotdotdot) {
2675       const char *Msg = "unexpected ellipsis in argument list for ";
2676       if (!IsMustTailCall)
2677         return tokError(Twine(Msg) + "non-musttail call");
2678       if (!InVarArgsFunc)
2679         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2680       Lex.Lex();  // Lex the '...', it is purely for readability.
2681       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2682     }
2683 
2684     // parse the argument.
2685     LocTy ArgLoc;
2686     Type *ArgTy = nullptr;
2687     AttrBuilder ArgAttrs;
2688     Value *V;
2689     if (parseType(ArgTy, ArgLoc))
2690       return true;
2691 
2692     if (ArgTy->isMetadataTy()) {
2693       if (parseMetadataAsValue(V, PFS))
2694         return true;
2695     } else {
2696       // Otherwise, handle normal operands.
2697       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2698         return true;
2699     }
2700     ArgList.push_back(ParamInfo(
2701         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2702   }
2703 
2704   if (IsMustTailCall && InVarArgsFunc)
2705     return tokError("expected '...' at end of argument list for musttail call "
2706                     "in varargs function");
2707 
2708   Lex.Lex();  // Lex the ')'.
2709   return false;
2710 }
2711 
2712 /// parseRequiredTypeAttr
2713 ///   ::= attrname(<ty>)
2714 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) {
2715   Result = nullptr;
2716   if (!EatIfPresent(AttrName))
2717     return true;
2718   if (!EatIfPresent(lltok::lparen))
2719     return error(Lex.getLoc(), "expected '('");
2720   if (parseType(Result))
2721     return true;
2722   if (!EatIfPresent(lltok::rparen))
2723     return error(Lex.getLoc(), "expected ')'");
2724   return false;
2725 }
2726 
2727 /// parsePreallocated
2728 ///   ::= preallocated(<ty>)
2729 bool LLParser::parsePreallocated(Type *&Result) {
2730   return parseRequiredTypeAttr(Result, lltok::kw_preallocated);
2731 }
2732 
2733 /// parseInalloca
2734 ///   ::= inalloca(<ty>)
2735 bool LLParser::parseInalloca(Type *&Result) {
2736   return parseRequiredTypeAttr(Result, lltok::kw_inalloca);
2737 }
2738 
2739 /// parseByRef
2740 ///   ::= byref(<type>)
2741 bool LLParser::parseByRef(Type *&Result) {
2742   return parseRequiredTypeAttr(Result, lltok::kw_byref);
2743 }
2744 
2745 /// parseOptionalOperandBundles
2746 ///    ::= /*empty*/
2747 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2748 ///
2749 /// OperandBundle
2750 ///    ::= bundle-tag '(' ')'
2751 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2752 ///
2753 /// bundle-tag ::= String Constant
2754 bool LLParser::parseOptionalOperandBundles(
2755     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2756   LocTy BeginLoc = Lex.getLoc();
2757   if (!EatIfPresent(lltok::lsquare))
2758     return false;
2759 
2760   while (Lex.getKind() != lltok::rsquare) {
2761     // If this isn't the first operand bundle, we need a comma.
2762     if (!BundleList.empty() &&
2763         parseToken(lltok::comma, "expected ',' in input list"))
2764       return true;
2765 
2766     std::string Tag;
2767     if (parseStringConstant(Tag))
2768       return true;
2769 
2770     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2771       return true;
2772 
2773     std::vector<Value *> Inputs;
2774     while (Lex.getKind() != lltok::rparen) {
2775       // If this isn't the first input, we need a comma.
2776       if (!Inputs.empty() &&
2777           parseToken(lltok::comma, "expected ',' in input list"))
2778         return true;
2779 
2780       Type *Ty = nullptr;
2781       Value *Input = nullptr;
2782       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2783         return true;
2784       Inputs.push_back(Input);
2785     }
2786 
2787     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2788 
2789     Lex.Lex(); // Lex the ')'.
2790   }
2791 
2792   if (BundleList.empty())
2793     return error(BeginLoc, "operand bundle set must not be empty");
2794 
2795   Lex.Lex(); // Lex the ']'.
2796   return false;
2797 }
2798 
2799 /// parseArgumentList - parse the argument list for a function type or function
2800 /// prototype.
2801 ///   ::= '(' ArgTypeListI ')'
2802 /// ArgTypeListI
2803 ///   ::= /*empty*/
2804 ///   ::= '...'
2805 ///   ::= ArgTypeList ',' '...'
2806 ///   ::= ArgType (',' ArgType)*
2807 ///
2808 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2809                                  bool &IsVarArg) {
2810   unsigned CurValID = 0;
2811   IsVarArg = false;
2812   assert(Lex.getKind() == lltok::lparen);
2813   Lex.Lex(); // eat the (.
2814 
2815   if (Lex.getKind() == lltok::rparen) {
2816     // empty
2817   } else if (Lex.getKind() == lltok::dotdotdot) {
2818     IsVarArg = true;
2819     Lex.Lex();
2820   } else {
2821     LocTy TypeLoc = Lex.getLoc();
2822     Type *ArgTy = nullptr;
2823     AttrBuilder Attrs;
2824     std::string Name;
2825 
2826     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2827       return true;
2828 
2829     if (ArgTy->isVoidTy())
2830       return error(TypeLoc, "argument can not have void type");
2831 
2832     if (Lex.getKind() == lltok::LocalVar) {
2833       Name = Lex.getStrVal();
2834       Lex.Lex();
2835     } else if (Lex.getKind() == lltok::LocalVarID) {
2836       if (Lex.getUIntVal() != CurValID)
2837         return error(TypeLoc, "argument expected to be numbered '%" +
2838                                   Twine(CurValID) + "'");
2839       ++CurValID;
2840       Lex.Lex();
2841     }
2842 
2843     if (!FunctionType::isValidArgumentType(ArgTy))
2844       return error(TypeLoc, "invalid type for function argument");
2845 
2846     ArgList.emplace_back(TypeLoc, ArgTy,
2847                          AttributeSet::get(ArgTy->getContext(), Attrs),
2848                          std::move(Name));
2849 
2850     while (EatIfPresent(lltok::comma)) {
2851       // Handle ... at end of arg list.
2852       if (EatIfPresent(lltok::dotdotdot)) {
2853         IsVarArg = true;
2854         break;
2855       }
2856 
2857       // Otherwise must be an argument type.
2858       TypeLoc = Lex.getLoc();
2859       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2860         return true;
2861 
2862       if (ArgTy->isVoidTy())
2863         return error(TypeLoc, "argument can not have void type");
2864 
2865       if (Lex.getKind() == lltok::LocalVar) {
2866         Name = Lex.getStrVal();
2867         Lex.Lex();
2868       } else {
2869         if (Lex.getKind() == lltok::LocalVarID) {
2870           if (Lex.getUIntVal() != CurValID)
2871             return error(TypeLoc, "argument expected to be numbered '%" +
2872                                       Twine(CurValID) + "'");
2873           Lex.Lex();
2874         }
2875         ++CurValID;
2876         Name = "";
2877       }
2878 
2879       if (!ArgTy->isFirstClassType())
2880         return error(TypeLoc, "invalid type for function argument");
2881 
2882       ArgList.emplace_back(TypeLoc, ArgTy,
2883                            AttributeSet::get(ArgTy->getContext(), Attrs),
2884                            std::move(Name));
2885     }
2886   }
2887 
2888   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2889 }
2890 
2891 /// parseFunctionType
2892 ///  ::= Type ArgumentList OptionalAttrs
2893 bool LLParser::parseFunctionType(Type *&Result) {
2894   assert(Lex.getKind() == lltok::lparen);
2895 
2896   if (!FunctionType::isValidReturnType(Result))
2897     return tokError("invalid function return type");
2898 
2899   SmallVector<ArgInfo, 8> ArgList;
2900   bool IsVarArg;
2901   if (parseArgumentList(ArgList, IsVarArg))
2902     return true;
2903 
2904   // Reject names on the arguments lists.
2905   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2906     if (!ArgList[i].Name.empty())
2907       return error(ArgList[i].Loc, "argument name invalid in function type");
2908     if (ArgList[i].Attrs.hasAttributes())
2909       return error(ArgList[i].Loc,
2910                    "argument attributes invalid in function type");
2911   }
2912 
2913   SmallVector<Type*, 16> ArgListTy;
2914   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2915     ArgListTy.push_back(ArgList[i].Ty);
2916 
2917   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2918   return false;
2919 }
2920 
2921 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2922 /// other structs.
2923 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2924   SmallVector<Type*, 8> Elts;
2925   if (parseStructBody(Elts))
2926     return true;
2927 
2928   Result = StructType::get(Context, Elts, Packed);
2929   return false;
2930 }
2931 
2932 /// parseStructDefinition - parse a struct in a 'type' definition.
2933 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2934                                      std::pair<Type *, LocTy> &Entry,
2935                                      Type *&ResultTy) {
2936   // If the type was already defined, diagnose the redefinition.
2937   if (Entry.first && !Entry.second.isValid())
2938     return error(TypeLoc, "redefinition of type");
2939 
2940   // If we have opaque, just return without filling in the definition for the
2941   // struct.  This counts as a definition as far as the .ll file goes.
2942   if (EatIfPresent(lltok::kw_opaque)) {
2943     // This type is being defined, so clear the location to indicate this.
2944     Entry.second = SMLoc();
2945 
2946     // If this type number has never been uttered, create it.
2947     if (!Entry.first)
2948       Entry.first = StructType::create(Context, Name);
2949     ResultTy = Entry.first;
2950     return false;
2951   }
2952 
2953   // If the type starts with '<', then it is either a packed struct or a vector.
2954   bool isPacked = EatIfPresent(lltok::less);
2955 
2956   // If we don't have a struct, then we have a random type alias, which we
2957   // accept for compatibility with old files.  These types are not allowed to be
2958   // forward referenced and not allowed to be recursive.
2959   if (Lex.getKind() != lltok::lbrace) {
2960     if (Entry.first)
2961       return error(TypeLoc, "forward references to non-struct type");
2962 
2963     ResultTy = nullptr;
2964     if (isPacked)
2965       return parseArrayVectorType(ResultTy, true);
2966     return parseType(ResultTy);
2967   }
2968 
2969   // This type is being defined, so clear the location to indicate this.
2970   Entry.second = SMLoc();
2971 
2972   // If this type number has never been uttered, create it.
2973   if (!Entry.first)
2974     Entry.first = StructType::create(Context, Name);
2975 
2976   StructType *STy = cast<StructType>(Entry.first);
2977 
2978   SmallVector<Type*, 8> Body;
2979   if (parseStructBody(Body) ||
2980       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2981     return true;
2982 
2983   STy->setBody(Body, isPacked);
2984   ResultTy = STy;
2985   return false;
2986 }
2987 
2988 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2989 ///   StructType
2990 ///     ::= '{' '}'
2991 ///     ::= '{' Type (',' Type)* '}'
2992 ///     ::= '<' '{' '}' '>'
2993 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2994 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2995   assert(Lex.getKind() == lltok::lbrace);
2996   Lex.Lex(); // Consume the '{'
2997 
2998   // Handle the empty struct.
2999   if (EatIfPresent(lltok::rbrace))
3000     return false;
3001 
3002   LocTy EltTyLoc = Lex.getLoc();
3003   Type *Ty = nullptr;
3004   if (parseType(Ty))
3005     return true;
3006   Body.push_back(Ty);
3007 
3008   if (!StructType::isValidElementType(Ty))
3009     return error(EltTyLoc, "invalid element type for struct");
3010 
3011   while (EatIfPresent(lltok::comma)) {
3012     EltTyLoc = Lex.getLoc();
3013     if (parseType(Ty))
3014       return true;
3015 
3016     if (!StructType::isValidElementType(Ty))
3017       return error(EltTyLoc, "invalid element type for struct");
3018 
3019     Body.push_back(Ty);
3020   }
3021 
3022   return parseToken(lltok::rbrace, "expected '}' at end of struct");
3023 }
3024 
3025 /// parseArrayVectorType - parse an array or vector type, assuming the first
3026 /// token has already been consumed.
3027 ///   Type
3028 ///     ::= '[' APSINTVAL 'x' Types ']'
3029 ///     ::= '<' APSINTVAL 'x' Types '>'
3030 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
3031 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
3032   bool Scalable = false;
3033 
3034   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
3035     Lex.Lex(); // consume the 'vscale'
3036     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
3037       return true;
3038 
3039     Scalable = true;
3040   }
3041 
3042   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
3043       Lex.getAPSIntVal().getBitWidth() > 64)
3044     return tokError("expected number in address space");
3045 
3046   LocTy SizeLoc = Lex.getLoc();
3047   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
3048   Lex.Lex();
3049 
3050   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
3051     return true;
3052 
3053   LocTy TypeLoc = Lex.getLoc();
3054   Type *EltTy = nullptr;
3055   if (parseType(EltTy))
3056     return true;
3057 
3058   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
3059                  "expected end of sequential type"))
3060     return true;
3061 
3062   if (IsVector) {
3063     if (Size == 0)
3064       return error(SizeLoc, "zero element vector is illegal");
3065     if ((unsigned)Size != Size)
3066       return error(SizeLoc, "size too large for vector");
3067     if (!VectorType::isValidElementType(EltTy))
3068       return error(TypeLoc, "invalid vector element type");
3069     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
3070   } else {
3071     if (!ArrayType::isValidElementType(EltTy))
3072       return error(TypeLoc, "invalid array element type");
3073     Result = ArrayType::get(EltTy, Size);
3074   }
3075   return false;
3076 }
3077 
3078 //===----------------------------------------------------------------------===//
3079 // Function Semantic Analysis.
3080 //===----------------------------------------------------------------------===//
3081 
3082 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
3083                                              int functionNumber)
3084   : P(p), F(f), FunctionNumber(functionNumber) {
3085 
3086   // Insert unnamed arguments into the NumberedVals list.
3087   for (Argument &A : F.args())
3088     if (!A.hasName())
3089       NumberedVals.push_back(&A);
3090 }
3091 
3092 LLParser::PerFunctionState::~PerFunctionState() {
3093   // If there were any forward referenced non-basicblock values, delete them.
3094 
3095   for (const auto &P : ForwardRefVals) {
3096     if (isa<BasicBlock>(P.second.first))
3097       continue;
3098     P.second.first->replaceAllUsesWith(
3099         UndefValue::get(P.second.first->getType()));
3100     P.second.first->deleteValue();
3101   }
3102 
3103   for (const auto &P : ForwardRefValIDs) {
3104     if (isa<BasicBlock>(P.second.first))
3105       continue;
3106     P.second.first->replaceAllUsesWith(
3107         UndefValue::get(P.second.first->getType()));
3108     P.second.first->deleteValue();
3109   }
3110 }
3111 
3112 bool LLParser::PerFunctionState::finishFunction() {
3113   if (!ForwardRefVals.empty())
3114     return P.error(ForwardRefVals.begin()->second.second,
3115                    "use of undefined value '%" + ForwardRefVals.begin()->first +
3116                        "'");
3117   if (!ForwardRefValIDs.empty())
3118     return P.error(ForwardRefValIDs.begin()->second.second,
3119                    "use of undefined value '%" +
3120                        Twine(ForwardRefValIDs.begin()->first) + "'");
3121   return false;
3122 }
3123 
3124 /// getVal - Get a value with the specified name or ID, creating a
3125 /// forward reference record if needed.  This can return null if the value
3126 /// exists but does not have the right type.
3127 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
3128                                           LocTy Loc, bool IsCall) {
3129   // Look this name up in the normal function symbol table.
3130   Value *Val = F.getValueSymbolTable()->lookup(Name);
3131 
3132   // If this is a forward reference for the value, see if we already created a
3133   // forward ref record.
3134   if (!Val) {
3135     auto I = ForwardRefVals.find(Name);
3136     if (I != ForwardRefVals.end())
3137       Val = I->second.first;
3138   }
3139 
3140   // If we have the value in the symbol table or fwd-ref table, return it.
3141   if (Val)
3142     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
3143 
3144   // Don't make placeholders with invalid type.
3145   if (!Ty->isFirstClassType()) {
3146     P.error(Loc, "invalid use of a non-first-class type");
3147     return nullptr;
3148   }
3149 
3150   // Otherwise, create a new forward reference for this value and remember it.
3151   Value *FwdVal;
3152   if (Ty->isLabelTy()) {
3153     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3154   } else {
3155     FwdVal = new Argument(Ty, Name);
3156   }
3157 
3158   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3159   return FwdVal;
3160 }
3161 
3162 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc,
3163                                           bool IsCall) {
3164   // Look this name up in the normal function symbol table.
3165   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
3166 
3167   // If this is a forward reference for the value, see if we already created a
3168   // forward ref record.
3169   if (!Val) {
3170     auto I = ForwardRefValIDs.find(ID);
3171     if (I != ForwardRefValIDs.end())
3172       Val = I->second.first;
3173   }
3174 
3175   // If we have the value in the symbol table or fwd-ref table, return it.
3176   if (Val)
3177     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
3178 
3179   if (!Ty->isFirstClassType()) {
3180     P.error(Loc, "invalid use of a non-first-class type");
3181     return nullptr;
3182   }
3183 
3184   // Otherwise, create a new forward reference for this value and remember it.
3185   Value *FwdVal;
3186   if (Ty->isLabelTy()) {
3187     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3188   } else {
3189     FwdVal = new Argument(Ty);
3190   }
3191 
3192   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3193   return FwdVal;
3194 }
3195 
3196 /// setInstName - After an instruction is parsed and inserted into its
3197 /// basic block, this installs its name.
3198 bool LLParser::PerFunctionState::setInstName(int NameID,
3199                                              const std::string &NameStr,
3200                                              LocTy NameLoc, Instruction *Inst) {
3201   // If this instruction has void type, it cannot have a name or ID specified.
3202   if (Inst->getType()->isVoidTy()) {
3203     if (NameID != -1 || !NameStr.empty())
3204       return P.error(NameLoc, "instructions returning void cannot have a name");
3205     return false;
3206   }
3207 
3208   // If this was a numbered instruction, verify that the instruction is the
3209   // expected value and resolve any forward references.
3210   if (NameStr.empty()) {
3211     // If neither a name nor an ID was specified, just use the next ID.
3212     if (NameID == -1)
3213       NameID = NumberedVals.size();
3214 
3215     if (unsigned(NameID) != NumberedVals.size())
3216       return P.error(NameLoc, "instruction expected to be numbered '%" +
3217                                   Twine(NumberedVals.size()) + "'");
3218 
3219     auto FI = ForwardRefValIDs.find(NameID);
3220     if (FI != ForwardRefValIDs.end()) {
3221       Value *Sentinel = FI->second.first;
3222       if (Sentinel->getType() != Inst->getType())
3223         return P.error(NameLoc, "instruction forward referenced with type '" +
3224                                     getTypeString(FI->second.first->getType()) +
3225                                     "'");
3226 
3227       Sentinel->replaceAllUsesWith(Inst);
3228       Sentinel->deleteValue();
3229       ForwardRefValIDs.erase(FI);
3230     }
3231 
3232     NumberedVals.push_back(Inst);
3233     return false;
3234   }
3235 
3236   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3237   auto FI = ForwardRefVals.find(NameStr);
3238   if (FI != ForwardRefVals.end()) {
3239     Value *Sentinel = FI->second.first;
3240     if (Sentinel->getType() != Inst->getType())
3241       return P.error(NameLoc, "instruction forward referenced with type '" +
3242                                   getTypeString(FI->second.first->getType()) +
3243                                   "'");
3244 
3245     Sentinel->replaceAllUsesWith(Inst);
3246     Sentinel->deleteValue();
3247     ForwardRefVals.erase(FI);
3248   }
3249 
3250   // Set the name on the instruction.
3251   Inst->setName(NameStr);
3252 
3253   if (Inst->getName() != NameStr)
3254     return P.error(NameLoc, "multiple definition of local value named '" +
3255                                 NameStr + "'");
3256   return false;
3257 }
3258 
3259 /// getBB - Get a basic block with the specified name or ID, creating a
3260 /// forward reference record if needed.
3261 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3262                                               LocTy Loc) {
3263   return dyn_cast_or_null<BasicBlock>(
3264       getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3265 }
3266 
3267 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3268   return dyn_cast_or_null<BasicBlock>(
3269       getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3270 }
3271 
3272 /// defineBB - Define the specified basic block, which is either named or
3273 /// unnamed.  If there is an error, this returns null otherwise it returns
3274 /// the block being defined.
3275 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3276                                                  int NameID, LocTy Loc) {
3277   BasicBlock *BB;
3278   if (Name.empty()) {
3279     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3280       P.error(Loc, "label expected to be numbered '" +
3281                        Twine(NumberedVals.size()) + "'");
3282       return nullptr;
3283     }
3284     BB = getBB(NumberedVals.size(), Loc);
3285     if (!BB) {
3286       P.error(Loc, "unable to create block numbered '" +
3287                        Twine(NumberedVals.size()) + "'");
3288       return nullptr;
3289     }
3290   } else {
3291     BB = getBB(Name, Loc);
3292     if (!BB) {
3293       P.error(Loc, "unable to create block named '" + Name + "'");
3294       return nullptr;
3295     }
3296   }
3297 
3298   // Move the block to the end of the function.  Forward ref'd blocks are
3299   // inserted wherever they happen to be referenced.
3300   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3301 
3302   // Remove the block from forward ref sets.
3303   if (Name.empty()) {
3304     ForwardRefValIDs.erase(NumberedVals.size());
3305     NumberedVals.push_back(BB);
3306   } else {
3307     // BB forward references are already in the function symbol table.
3308     ForwardRefVals.erase(Name);
3309   }
3310 
3311   return BB;
3312 }
3313 
3314 //===----------------------------------------------------------------------===//
3315 // Constants.
3316 //===----------------------------------------------------------------------===//
3317 
3318 /// parseValID - parse an abstract value that doesn't necessarily have a
3319 /// type implied.  For example, if we parse "4" we don't know what integer type
3320 /// it has.  The value will later be combined with its type and checked for
3321 /// sanity.  PFS is used to convert function-local operands of metadata (since
3322 /// metadata operands are not just parsed here but also converted to values).
3323 /// PFS can be null when we are not parsing metadata values inside a function.
3324 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
3325   ID.Loc = Lex.getLoc();
3326   switch (Lex.getKind()) {
3327   default:
3328     return tokError("expected value token");
3329   case lltok::GlobalID:  // @42
3330     ID.UIntVal = Lex.getUIntVal();
3331     ID.Kind = ValID::t_GlobalID;
3332     break;
3333   case lltok::GlobalVar:  // @foo
3334     ID.StrVal = Lex.getStrVal();
3335     ID.Kind = ValID::t_GlobalName;
3336     break;
3337   case lltok::LocalVarID:  // %42
3338     ID.UIntVal = Lex.getUIntVal();
3339     ID.Kind = ValID::t_LocalID;
3340     break;
3341   case lltok::LocalVar:  // %foo
3342     ID.StrVal = Lex.getStrVal();
3343     ID.Kind = ValID::t_LocalName;
3344     break;
3345   case lltok::APSInt:
3346     ID.APSIntVal = Lex.getAPSIntVal();
3347     ID.Kind = ValID::t_APSInt;
3348     break;
3349   case lltok::APFloat:
3350     ID.APFloatVal = Lex.getAPFloatVal();
3351     ID.Kind = ValID::t_APFloat;
3352     break;
3353   case lltok::kw_true:
3354     ID.ConstantVal = ConstantInt::getTrue(Context);
3355     ID.Kind = ValID::t_Constant;
3356     break;
3357   case lltok::kw_false:
3358     ID.ConstantVal = ConstantInt::getFalse(Context);
3359     ID.Kind = ValID::t_Constant;
3360     break;
3361   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3362   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3363   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3364   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3365   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3366 
3367   case lltok::lbrace: {
3368     // ValID ::= '{' ConstVector '}'
3369     Lex.Lex();
3370     SmallVector<Constant*, 16> Elts;
3371     if (parseGlobalValueVector(Elts) ||
3372         parseToken(lltok::rbrace, "expected end of struct constant"))
3373       return true;
3374 
3375     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3376     ID.UIntVal = Elts.size();
3377     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3378            Elts.size() * sizeof(Elts[0]));
3379     ID.Kind = ValID::t_ConstantStruct;
3380     return false;
3381   }
3382   case lltok::less: {
3383     // ValID ::= '<' ConstVector '>'         --> Vector.
3384     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3385     Lex.Lex();
3386     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3387 
3388     SmallVector<Constant*, 16> Elts;
3389     LocTy FirstEltLoc = Lex.getLoc();
3390     if (parseGlobalValueVector(Elts) ||
3391         (isPackedStruct &&
3392          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3393         parseToken(lltok::greater, "expected end of constant"))
3394       return true;
3395 
3396     if (isPackedStruct) {
3397       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3398       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3399              Elts.size() * sizeof(Elts[0]));
3400       ID.UIntVal = Elts.size();
3401       ID.Kind = ValID::t_PackedConstantStruct;
3402       return false;
3403     }
3404 
3405     if (Elts.empty())
3406       return error(ID.Loc, "constant vector must not be empty");
3407 
3408     if (!Elts[0]->getType()->isIntegerTy() &&
3409         !Elts[0]->getType()->isFloatingPointTy() &&
3410         !Elts[0]->getType()->isPointerTy())
3411       return error(
3412           FirstEltLoc,
3413           "vector elements must have integer, pointer or floating point type");
3414 
3415     // Verify that all the vector elements have the same type.
3416     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3417       if (Elts[i]->getType() != Elts[0]->getType())
3418         return error(FirstEltLoc, "vector element #" + Twine(i) +
3419                                       " is not of type '" +
3420                                       getTypeString(Elts[0]->getType()));
3421 
3422     ID.ConstantVal = ConstantVector::get(Elts);
3423     ID.Kind = ValID::t_Constant;
3424     return false;
3425   }
3426   case lltok::lsquare: {   // Array Constant
3427     Lex.Lex();
3428     SmallVector<Constant*, 16> Elts;
3429     LocTy FirstEltLoc = Lex.getLoc();
3430     if (parseGlobalValueVector(Elts) ||
3431         parseToken(lltok::rsquare, "expected end of array constant"))
3432       return true;
3433 
3434     // Handle empty element.
3435     if (Elts.empty()) {
3436       // Use undef instead of an array because it's inconvenient to determine
3437       // the element type at this point, there being no elements to examine.
3438       ID.Kind = ValID::t_EmptyArray;
3439       return false;
3440     }
3441 
3442     if (!Elts[0]->getType()->isFirstClassType())
3443       return error(FirstEltLoc, "invalid array element type: " +
3444                                     getTypeString(Elts[0]->getType()));
3445 
3446     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3447 
3448     // Verify all elements are correct type!
3449     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3450       if (Elts[i]->getType() != Elts[0]->getType())
3451         return error(FirstEltLoc, "array element #" + Twine(i) +
3452                                       " is not of type '" +
3453                                       getTypeString(Elts[0]->getType()));
3454     }
3455 
3456     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3457     ID.Kind = ValID::t_Constant;
3458     return false;
3459   }
3460   case lltok::kw_c:  // c "foo"
3461     Lex.Lex();
3462     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3463                                                   false);
3464     if (parseToken(lltok::StringConstant, "expected string"))
3465       return true;
3466     ID.Kind = ValID::t_Constant;
3467     return false;
3468 
3469   case lltok::kw_asm: {
3470     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3471     //             STRINGCONSTANT
3472     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3473     Lex.Lex();
3474     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3475         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3476         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3477         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3478         parseStringConstant(ID.StrVal) ||
3479         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3480         parseToken(lltok::StringConstant, "expected constraint string"))
3481       return true;
3482     ID.StrVal2 = Lex.getStrVal();
3483     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3484                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3485     ID.Kind = ValID::t_InlineAsm;
3486     return false;
3487   }
3488 
3489   case lltok::kw_blockaddress: {
3490     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3491     Lex.Lex();
3492 
3493     ValID Fn, Label;
3494 
3495     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3496         parseValID(Fn, PFS) ||
3497         parseToken(lltok::comma,
3498                    "expected comma in block address expression") ||
3499         parseValID(Label, PFS) ||
3500         parseToken(lltok::rparen, "expected ')' in block address expression"))
3501       return true;
3502 
3503     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3504       return error(Fn.Loc, "expected function name in blockaddress");
3505     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3506       return error(Label.Loc, "expected basic block name in blockaddress");
3507 
3508     // Try to find the function (but skip it if it's forward-referenced).
3509     GlobalValue *GV = nullptr;
3510     if (Fn.Kind == ValID::t_GlobalID) {
3511       if (Fn.UIntVal < NumberedVals.size())
3512         GV = NumberedVals[Fn.UIntVal];
3513     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3514       GV = M->getNamedValue(Fn.StrVal);
3515     }
3516     Function *F = nullptr;
3517     if (GV) {
3518       // Confirm that it's actually a function with a definition.
3519       if (!isa<Function>(GV))
3520         return error(Fn.Loc, "expected function name in blockaddress");
3521       F = cast<Function>(GV);
3522       if (F->isDeclaration())
3523         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3524     }
3525 
3526     if (!F) {
3527       // Make a global variable as a placeholder for this reference.
3528       GlobalValue *&FwdRef =
3529           ForwardRefBlockAddresses.insert(std::make_pair(
3530                                               std::move(Fn),
3531                                               std::map<ValID, GlobalValue *>()))
3532               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3533               .first->second;
3534       if (!FwdRef) {
3535         unsigned FwdDeclAS;
3536         if (ExpectedTy) {
3537           // If we know the type that the blockaddress is being assigned to,
3538           // we can use the address space of that type.
3539           if (!ExpectedTy->isPointerTy())
3540             return error(ID.Loc,
3541                          "type of blockaddress must be a pointer and not '" +
3542                              getTypeString(ExpectedTy) + "'");
3543           FwdDeclAS = ExpectedTy->getPointerAddressSpace();
3544         } else if (PFS) {
3545           // Otherwise, we default the address space of the current function.
3546           FwdDeclAS = PFS->getFunction().getAddressSpace();
3547         } else {
3548           llvm_unreachable("Unknown address space for blockaddress");
3549         }
3550         FwdRef = new GlobalVariable(
3551             *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
3552             nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
3553       }
3554 
3555       ID.ConstantVal = FwdRef;
3556       ID.Kind = ValID::t_Constant;
3557       return false;
3558     }
3559 
3560     // We found the function; now find the basic block.  Don't use PFS, since we
3561     // might be inside a constant expression.
3562     BasicBlock *BB;
3563     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3564       if (Label.Kind == ValID::t_LocalID)
3565         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3566       else
3567         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3568       if (!BB)
3569         return error(Label.Loc, "referenced value is not a basic block");
3570     } else {
3571       if (Label.Kind == ValID::t_LocalID)
3572         return error(Label.Loc, "cannot take address of numeric label after "
3573                                 "the function is defined");
3574       BB = dyn_cast_or_null<BasicBlock>(
3575           F->getValueSymbolTable()->lookup(Label.StrVal));
3576       if (!BB)
3577         return error(Label.Loc, "referenced value is not a basic block");
3578     }
3579 
3580     ID.ConstantVal = BlockAddress::get(F, BB);
3581     ID.Kind = ValID::t_Constant;
3582     return false;
3583   }
3584 
3585   case lltok::kw_dso_local_equivalent: {
3586     // ValID ::= 'dso_local_equivalent' @foo
3587     Lex.Lex();
3588 
3589     ValID Fn;
3590 
3591     if (parseValID(Fn, PFS))
3592       return true;
3593 
3594     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3595       return error(Fn.Loc,
3596                    "expected global value name in dso_local_equivalent");
3597 
3598     // Try to find the function (but skip it if it's forward-referenced).
3599     GlobalValue *GV = nullptr;
3600     if (Fn.Kind == ValID::t_GlobalID) {
3601       if (Fn.UIntVal < NumberedVals.size())
3602         GV = NumberedVals[Fn.UIntVal];
3603     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3604       GV = M->getNamedValue(Fn.StrVal);
3605     }
3606 
3607     assert(GV && "Could not find a corresponding global variable");
3608 
3609     if (!GV->getValueType()->isFunctionTy())
3610       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3611                            "in dso_local_equivalent");
3612 
3613     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3614     ID.Kind = ValID::t_Constant;
3615     return false;
3616   }
3617 
3618   case lltok::kw_trunc:
3619   case lltok::kw_zext:
3620   case lltok::kw_sext:
3621   case lltok::kw_fptrunc:
3622   case lltok::kw_fpext:
3623   case lltok::kw_bitcast:
3624   case lltok::kw_addrspacecast:
3625   case lltok::kw_uitofp:
3626   case lltok::kw_sitofp:
3627   case lltok::kw_fptoui:
3628   case lltok::kw_fptosi:
3629   case lltok::kw_inttoptr:
3630   case lltok::kw_ptrtoint: {
3631     unsigned Opc = Lex.getUIntVal();
3632     Type *DestTy = nullptr;
3633     Constant *SrcVal;
3634     Lex.Lex();
3635     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3636         parseGlobalTypeAndValue(SrcVal) ||
3637         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3638         parseType(DestTy) ||
3639         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3640       return true;
3641     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3642       return error(ID.Loc, "invalid cast opcode for cast from '" +
3643                                getTypeString(SrcVal->getType()) + "' to '" +
3644                                getTypeString(DestTy) + "'");
3645     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3646                                                  SrcVal, DestTy);
3647     ID.Kind = ValID::t_Constant;
3648     return false;
3649   }
3650   case lltok::kw_extractvalue: {
3651     Lex.Lex();
3652     Constant *Val;
3653     SmallVector<unsigned, 4> Indices;
3654     if (parseToken(lltok::lparen,
3655                    "expected '(' in extractvalue constantexpr") ||
3656         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3657         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3658       return true;
3659 
3660     if (!Val->getType()->isAggregateType())
3661       return error(ID.Loc, "extractvalue operand must be aggregate type");
3662     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3663       return error(ID.Loc, "invalid indices for extractvalue");
3664     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3665     ID.Kind = ValID::t_Constant;
3666     return false;
3667   }
3668   case lltok::kw_insertvalue: {
3669     Lex.Lex();
3670     Constant *Val0, *Val1;
3671     SmallVector<unsigned, 4> Indices;
3672     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3673         parseGlobalTypeAndValue(Val0) ||
3674         parseToken(lltok::comma,
3675                    "expected comma in insertvalue constantexpr") ||
3676         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3677         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3678       return true;
3679     if (!Val0->getType()->isAggregateType())
3680       return error(ID.Loc, "insertvalue operand must be aggregate type");
3681     Type *IndexedType =
3682         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3683     if (!IndexedType)
3684       return error(ID.Loc, "invalid indices for insertvalue");
3685     if (IndexedType != Val1->getType())
3686       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3687                                getTypeString(Val1->getType()) +
3688                                "' instead of '" + getTypeString(IndexedType) +
3689                                "'");
3690     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3691     ID.Kind = ValID::t_Constant;
3692     return false;
3693   }
3694   case lltok::kw_icmp:
3695   case lltok::kw_fcmp: {
3696     unsigned PredVal, Opc = Lex.getUIntVal();
3697     Constant *Val0, *Val1;
3698     Lex.Lex();
3699     if (parseCmpPredicate(PredVal, Opc) ||
3700         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3701         parseGlobalTypeAndValue(Val0) ||
3702         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3703         parseGlobalTypeAndValue(Val1) ||
3704         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3705       return true;
3706 
3707     if (Val0->getType() != Val1->getType())
3708       return error(ID.Loc, "compare operands must have the same type");
3709 
3710     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3711 
3712     if (Opc == Instruction::FCmp) {
3713       if (!Val0->getType()->isFPOrFPVectorTy())
3714         return error(ID.Loc, "fcmp requires floating point operands");
3715       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3716     } else {
3717       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3718       if (!Val0->getType()->isIntOrIntVectorTy() &&
3719           !Val0->getType()->isPtrOrPtrVectorTy())
3720         return error(ID.Loc, "icmp requires pointer or integer operands");
3721       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3722     }
3723     ID.Kind = ValID::t_Constant;
3724     return false;
3725   }
3726 
3727   // Unary Operators.
3728   case lltok::kw_fneg: {
3729     unsigned Opc = Lex.getUIntVal();
3730     Constant *Val;
3731     Lex.Lex();
3732     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3733         parseGlobalTypeAndValue(Val) ||
3734         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3735       return true;
3736 
3737     // Check that the type is valid for the operator.
3738     switch (Opc) {
3739     case Instruction::FNeg:
3740       if (!Val->getType()->isFPOrFPVectorTy())
3741         return error(ID.Loc, "constexpr requires fp operands");
3742       break;
3743     default: llvm_unreachable("Unknown unary operator!");
3744     }
3745     unsigned Flags = 0;
3746     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3747     ID.ConstantVal = C;
3748     ID.Kind = ValID::t_Constant;
3749     return false;
3750   }
3751   // Binary Operators.
3752   case lltok::kw_add:
3753   case lltok::kw_fadd:
3754   case lltok::kw_sub:
3755   case lltok::kw_fsub:
3756   case lltok::kw_mul:
3757   case lltok::kw_fmul:
3758   case lltok::kw_udiv:
3759   case lltok::kw_sdiv:
3760   case lltok::kw_fdiv:
3761   case lltok::kw_urem:
3762   case lltok::kw_srem:
3763   case lltok::kw_frem:
3764   case lltok::kw_shl:
3765   case lltok::kw_lshr:
3766   case lltok::kw_ashr: {
3767     bool NUW = false;
3768     bool NSW = false;
3769     bool Exact = false;
3770     unsigned Opc = Lex.getUIntVal();
3771     Constant *Val0, *Val1;
3772     Lex.Lex();
3773     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3774         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3775       if (EatIfPresent(lltok::kw_nuw))
3776         NUW = true;
3777       if (EatIfPresent(lltok::kw_nsw)) {
3778         NSW = true;
3779         if (EatIfPresent(lltok::kw_nuw))
3780           NUW = true;
3781       }
3782     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3783                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3784       if (EatIfPresent(lltok::kw_exact))
3785         Exact = true;
3786     }
3787     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3788         parseGlobalTypeAndValue(Val0) ||
3789         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3790         parseGlobalTypeAndValue(Val1) ||
3791         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3792       return true;
3793     if (Val0->getType() != Val1->getType())
3794       return error(ID.Loc, "operands of constexpr must have same type");
3795     // Check that the type is valid for the operator.
3796     switch (Opc) {
3797     case Instruction::Add:
3798     case Instruction::Sub:
3799     case Instruction::Mul:
3800     case Instruction::UDiv:
3801     case Instruction::SDiv:
3802     case Instruction::URem:
3803     case Instruction::SRem:
3804     case Instruction::Shl:
3805     case Instruction::AShr:
3806     case Instruction::LShr:
3807       if (!Val0->getType()->isIntOrIntVectorTy())
3808         return error(ID.Loc, "constexpr requires integer operands");
3809       break;
3810     case Instruction::FAdd:
3811     case Instruction::FSub:
3812     case Instruction::FMul:
3813     case Instruction::FDiv:
3814     case Instruction::FRem:
3815       if (!Val0->getType()->isFPOrFPVectorTy())
3816         return error(ID.Loc, "constexpr requires fp operands");
3817       break;
3818     default: llvm_unreachable("Unknown binary operator!");
3819     }
3820     unsigned Flags = 0;
3821     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3822     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3823     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3824     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3825     ID.ConstantVal = C;
3826     ID.Kind = ValID::t_Constant;
3827     return false;
3828   }
3829 
3830   // Logical Operations
3831   case lltok::kw_and:
3832   case lltok::kw_or:
3833   case lltok::kw_xor: {
3834     unsigned Opc = Lex.getUIntVal();
3835     Constant *Val0, *Val1;
3836     Lex.Lex();
3837     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3838         parseGlobalTypeAndValue(Val0) ||
3839         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3840         parseGlobalTypeAndValue(Val1) ||
3841         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3842       return true;
3843     if (Val0->getType() != Val1->getType())
3844       return error(ID.Loc, "operands of constexpr must have same type");
3845     if (!Val0->getType()->isIntOrIntVectorTy())
3846       return error(ID.Loc,
3847                    "constexpr requires integer or integer vector operands");
3848     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3849     ID.Kind = ValID::t_Constant;
3850     return false;
3851   }
3852 
3853   case lltok::kw_getelementptr:
3854   case lltok::kw_shufflevector:
3855   case lltok::kw_insertelement:
3856   case lltok::kw_extractelement:
3857   case lltok::kw_select: {
3858     unsigned Opc = Lex.getUIntVal();
3859     SmallVector<Constant*, 16> Elts;
3860     bool InBounds = false;
3861     Type *Ty;
3862     Lex.Lex();
3863 
3864     if (Opc == Instruction::GetElementPtr)
3865       InBounds = EatIfPresent(lltok::kw_inbounds);
3866 
3867     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3868       return true;
3869 
3870     LocTy ExplicitTypeLoc = Lex.getLoc();
3871     if (Opc == Instruction::GetElementPtr) {
3872       if (parseType(Ty) ||
3873           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3874         return true;
3875     }
3876 
3877     Optional<unsigned> InRangeOp;
3878     if (parseGlobalValueVector(
3879             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3880         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3881       return true;
3882 
3883     if (Opc == Instruction::GetElementPtr) {
3884       if (Elts.size() == 0 ||
3885           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3886         return error(ID.Loc, "base of getelementptr must be a pointer");
3887 
3888       Type *BaseType = Elts[0]->getType();
3889       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3890       if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
3891         return error(
3892             ExplicitTypeLoc,
3893             typeComparisonErrorMessage(
3894                 "explicit pointee type doesn't match operand's pointee type",
3895                 Ty, BasePointerType->getElementType()));
3896       }
3897 
3898       unsigned GEPWidth =
3899           BaseType->isVectorTy()
3900               ? cast<FixedVectorType>(BaseType)->getNumElements()
3901               : 0;
3902 
3903       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3904       for (Constant *Val : Indices) {
3905         Type *ValTy = Val->getType();
3906         if (!ValTy->isIntOrIntVectorTy())
3907           return error(ID.Loc, "getelementptr index must be an integer");
3908         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3909           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3910           if (GEPWidth && (ValNumEl != GEPWidth))
3911             return error(
3912                 ID.Loc,
3913                 "getelementptr vector index has a wrong number of elements");
3914           // GEPWidth may have been unknown because the base is a scalar,
3915           // but it is known now.
3916           GEPWidth = ValNumEl;
3917         }
3918       }
3919 
3920       SmallPtrSet<Type*, 4> Visited;
3921       if (!Indices.empty() && !Ty->isSized(&Visited))
3922         return error(ID.Loc, "base element of getelementptr must be sized");
3923 
3924       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3925         return error(ID.Loc, "invalid getelementptr indices");
3926 
3927       if (InRangeOp) {
3928         if (*InRangeOp == 0)
3929           return error(ID.Loc,
3930                        "inrange keyword may not appear on pointer operand");
3931         --*InRangeOp;
3932       }
3933 
3934       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3935                                                       InBounds, InRangeOp);
3936     } else if (Opc == Instruction::Select) {
3937       if (Elts.size() != 3)
3938         return error(ID.Loc, "expected three operands to select");
3939       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3940                                                               Elts[2]))
3941         return error(ID.Loc, Reason);
3942       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3943     } else if (Opc == Instruction::ShuffleVector) {
3944       if (Elts.size() != 3)
3945         return error(ID.Loc, "expected three operands to shufflevector");
3946       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3947         return error(ID.Loc, "invalid operands to shufflevector");
3948       SmallVector<int, 16> Mask;
3949       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3950       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3951     } else if (Opc == Instruction::ExtractElement) {
3952       if (Elts.size() != 2)
3953         return error(ID.Loc, "expected two operands to extractelement");
3954       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3955         return error(ID.Loc, "invalid extractelement operands");
3956       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3957     } else {
3958       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3959       if (Elts.size() != 3)
3960         return error(ID.Loc, "expected three operands to insertelement");
3961       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3962         return error(ID.Loc, "invalid insertelement operands");
3963       ID.ConstantVal =
3964                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3965     }
3966 
3967     ID.Kind = ValID::t_Constant;
3968     return false;
3969   }
3970   }
3971 
3972   Lex.Lex();
3973   return false;
3974 }
3975 
3976 /// parseGlobalValue - parse a global value with the specified type.
3977 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3978   C = nullptr;
3979   ValID ID;
3980   Value *V = nullptr;
3981   bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
3982                 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3983   if (V && !(C = dyn_cast<Constant>(V)))
3984     return error(ID.Loc, "global values must be constants");
3985   return Parsed;
3986 }
3987 
3988 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3989   Type *Ty = nullptr;
3990   return parseType(Ty) || parseGlobalValue(Ty, V);
3991 }
3992 
3993 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3994   C = nullptr;
3995 
3996   LocTy KwLoc = Lex.getLoc();
3997   if (!EatIfPresent(lltok::kw_comdat))
3998     return false;
3999 
4000   if (EatIfPresent(lltok::lparen)) {
4001     if (Lex.getKind() != lltok::ComdatVar)
4002       return tokError("expected comdat variable");
4003     C = getComdat(Lex.getStrVal(), Lex.getLoc());
4004     Lex.Lex();
4005     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
4006       return true;
4007   } else {
4008     if (GlobalName.empty())
4009       return tokError("comdat cannot be unnamed");
4010     C = getComdat(std::string(GlobalName), KwLoc);
4011   }
4012 
4013   return false;
4014 }
4015 
4016 /// parseGlobalValueVector
4017 ///   ::= /*empty*/
4018 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
4019 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
4020                                       Optional<unsigned> *InRangeOp) {
4021   // Empty list.
4022   if (Lex.getKind() == lltok::rbrace ||
4023       Lex.getKind() == lltok::rsquare ||
4024       Lex.getKind() == lltok::greater ||
4025       Lex.getKind() == lltok::rparen)
4026     return false;
4027 
4028   do {
4029     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
4030       *InRangeOp = Elts.size();
4031 
4032     Constant *C;
4033     if (parseGlobalTypeAndValue(C))
4034       return true;
4035     Elts.push_back(C);
4036   } while (EatIfPresent(lltok::comma));
4037 
4038   return false;
4039 }
4040 
4041 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
4042   SmallVector<Metadata *, 16> Elts;
4043   if (parseMDNodeVector(Elts))
4044     return true;
4045 
4046   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
4047   return false;
4048 }
4049 
4050 /// MDNode:
4051 ///  ::= !{ ... }
4052 ///  ::= !7
4053 ///  ::= !DILocation(...)
4054 bool LLParser::parseMDNode(MDNode *&N) {
4055   if (Lex.getKind() == lltok::MetadataVar)
4056     return parseSpecializedMDNode(N);
4057 
4058   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
4059 }
4060 
4061 bool LLParser::parseMDNodeTail(MDNode *&N) {
4062   // !{ ... }
4063   if (Lex.getKind() == lltok::lbrace)
4064     return parseMDTuple(N);
4065 
4066   // !42
4067   return parseMDNodeID(N);
4068 }
4069 
4070 namespace {
4071 
4072 /// Structure to represent an optional metadata field.
4073 template <class FieldTy> struct MDFieldImpl {
4074   typedef MDFieldImpl ImplTy;
4075   FieldTy Val;
4076   bool Seen;
4077 
4078   void assign(FieldTy Val) {
4079     Seen = true;
4080     this->Val = std::move(Val);
4081   }
4082 
4083   explicit MDFieldImpl(FieldTy Default)
4084       : Val(std::move(Default)), Seen(false) {}
4085 };
4086 
4087 /// Structure to represent an optional metadata field that
4088 /// can be of either type (A or B) and encapsulates the
4089 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
4090 /// to reimplement the specifics for representing each Field.
4091 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
4092   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
4093   FieldTypeA A;
4094   FieldTypeB B;
4095   bool Seen;
4096 
4097   enum {
4098     IsInvalid = 0,
4099     IsTypeA = 1,
4100     IsTypeB = 2
4101   } WhatIs;
4102 
4103   void assign(FieldTypeA A) {
4104     Seen = true;
4105     this->A = std::move(A);
4106     WhatIs = IsTypeA;
4107   }
4108 
4109   void assign(FieldTypeB B) {
4110     Seen = true;
4111     this->B = std::move(B);
4112     WhatIs = IsTypeB;
4113   }
4114 
4115   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
4116       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
4117         WhatIs(IsInvalid) {}
4118 };
4119 
4120 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
4121   uint64_t Max;
4122 
4123   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
4124       : ImplTy(Default), Max(Max) {}
4125 };
4126 
4127 struct LineField : public MDUnsignedField {
4128   LineField() : MDUnsignedField(0, UINT32_MAX) {}
4129 };
4130 
4131 struct ColumnField : public MDUnsignedField {
4132   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
4133 };
4134 
4135 struct DwarfTagField : public MDUnsignedField {
4136   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
4137   DwarfTagField(dwarf::Tag DefaultTag)
4138       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
4139 };
4140 
4141 struct DwarfMacinfoTypeField : public MDUnsignedField {
4142   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
4143   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
4144     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
4145 };
4146 
4147 struct DwarfAttEncodingField : public MDUnsignedField {
4148   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
4149 };
4150 
4151 struct DwarfVirtualityField : public MDUnsignedField {
4152   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
4153 };
4154 
4155 struct DwarfLangField : public MDUnsignedField {
4156   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
4157 };
4158 
4159 struct DwarfCCField : public MDUnsignedField {
4160   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
4161 };
4162 
4163 struct EmissionKindField : public MDUnsignedField {
4164   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
4165 };
4166 
4167 struct NameTableKindField : public MDUnsignedField {
4168   NameTableKindField()
4169       : MDUnsignedField(
4170             0, (unsigned)
4171                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
4172 };
4173 
4174 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
4175   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4176 };
4177 
4178 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
4179   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4180 };
4181 
4182 struct MDAPSIntField : public MDFieldImpl<APSInt> {
4183   MDAPSIntField() : ImplTy(APSInt()) {}
4184 };
4185 
4186 struct MDSignedField : public MDFieldImpl<int64_t> {
4187   int64_t Min;
4188   int64_t Max;
4189 
4190   MDSignedField(int64_t Default = 0)
4191       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
4192   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4193       : ImplTy(Default), Min(Min), Max(Max) {}
4194 };
4195 
4196 struct MDBoolField : public MDFieldImpl<bool> {
4197   MDBoolField(bool Default = false) : ImplTy(Default) {}
4198 };
4199 
4200 struct MDField : public MDFieldImpl<Metadata *> {
4201   bool AllowNull;
4202 
4203   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4204 };
4205 
4206 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
4207   MDConstant() : ImplTy(nullptr) {}
4208 };
4209 
4210 struct MDStringField : public MDFieldImpl<MDString *> {
4211   bool AllowEmpty;
4212   MDStringField(bool AllowEmpty = true)
4213       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4214 };
4215 
4216 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4217   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4218 };
4219 
4220 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4221   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4222 };
4223 
4224 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4225   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4226       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4227 
4228   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4229                     bool AllowNull = true)
4230       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4231 
4232   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4233   bool isMDField() const { return WhatIs == IsTypeB; }
4234   int64_t getMDSignedValue() const {
4235     assert(isMDSignedField() && "Wrong field type");
4236     return A.Val;
4237   }
4238   Metadata *getMDFieldValue() const {
4239     assert(isMDField() && "Wrong field type");
4240     return B.Val;
4241   }
4242 };
4243 
4244 struct MDSignedOrUnsignedField
4245     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
4246   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
4247 
4248   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4249   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
4250   int64_t getMDSignedValue() const {
4251     assert(isMDSignedField() && "Wrong field type");
4252     return A.Val;
4253   }
4254   uint64_t getMDUnsignedValue() const {
4255     assert(isMDUnsignedField() && "Wrong field type");
4256     return B.Val;
4257   }
4258 };
4259 
4260 } // end anonymous namespace
4261 
4262 namespace llvm {
4263 
4264 template <>
4265 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4266   if (Lex.getKind() != lltok::APSInt)
4267     return tokError("expected integer");
4268 
4269   Result.assign(Lex.getAPSIntVal());
4270   Lex.Lex();
4271   return false;
4272 }
4273 
4274 template <>
4275 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4276                             MDUnsignedField &Result) {
4277   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4278     return tokError("expected unsigned integer");
4279 
4280   auto &U = Lex.getAPSIntVal();
4281   if (U.ugt(Result.Max))
4282     return tokError("value for '" + Name + "' too large, limit is " +
4283                     Twine(Result.Max));
4284   Result.assign(U.getZExtValue());
4285   assert(Result.Val <= Result.Max && "Expected value in range");
4286   Lex.Lex();
4287   return false;
4288 }
4289 
4290 template <>
4291 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4292   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4293 }
4294 template <>
4295 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4296   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4297 }
4298 
4299 template <>
4300 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4301   if (Lex.getKind() == lltok::APSInt)
4302     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4303 
4304   if (Lex.getKind() != lltok::DwarfTag)
4305     return tokError("expected DWARF tag");
4306 
4307   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4308   if (Tag == dwarf::DW_TAG_invalid)
4309     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4310   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4311 
4312   Result.assign(Tag);
4313   Lex.Lex();
4314   return false;
4315 }
4316 
4317 template <>
4318 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4319                             DwarfMacinfoTypeField &Result) {
4320   if (Lex.getKind() == lltok::APSInt)
4321     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4322 
4323   if (Lex.getKind() != lltok::DwarfMacinfo)
4324     return tokError("expected DWARF macinfo type");
4325 
4326   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4327   if (Macinfo == dwarf::DW_MACINFO_invalid)
4328     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4329                     Lex.getStrVal() + "'");
4330   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4331 
4332   Result.assign(Macinfo);
4333   Lex.Lex();
4334   return false;
4335 }
4336 
4337 template <>
4338 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4339                             DwarfVirtualityField &Result) {
4340   if (Lex.getKind() == lltok::APSInt)
4341     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4342 
4343   if (Lex.getKind() != lltok::DwarfVirtuality)
4344     return tokError("expected DWARF virtuality code");
4345 
4346   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4347   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4348     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4349                     Lex.getStrVal() + "'");
4350   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4351   Result.assign(Virtuality);
4352   Lex.Lex();
4353   return false;
4354 }
4355 
4356 template <>
4357 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4358   if (Lex.getKind() == lltok::APSInt)
4359     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4360 
4361   if (Lex.getKind() != lltok::DwarfLang)
4362     return tokError("expected DWARF language");
4363 
4364   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4365   if (!Lang)
4366     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4367                     "'");
4368   assert(Lang <= Result.Max && "Expected valid DWARF language");
4369   Result.assign(Lang);
4370   Lex.Lex();
4371   return false;
4372 }
4373 
4374 template <>
4375 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4376   if (Lex.getKind() == lltok::APSInt)
4377     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4378 
4379   if (Lex.getKind() != lltok::DwarfCC)
4380     return tokError("expected DWARF calling convention");
4381 
4382   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4383   if (!CC)
4384     return tokError("invalid DWARF calling convention" + Twine(" '") +
4385                     Lex.getStrVal() + "'");
4386   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4387   Result.assign(CC);
4388   Lex.Lex();
4389   return false;
4390 }
4391 
4392 template <>
4393 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4394                             EmissionKindField &Result) {
4395   if (Lex.getKind() == lltok::APSInt)
4396     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4397 
4398   if (Lex.getKind() != lltok::EmissionKind)
4399     return tokError("expected emission kind");
4400 
4401   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4402   if (!Kind)
4403     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4404                     "'");
4405   assert(*Kind <= Result.Max && "Expected valid emission kind");
4406   Result.assign(*Kind);
4407   Lex.Lex();
4408   return false;
4409 }
4410 
4411 template <>
4412 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4413                             NameTableKindField &Result) {
4414   if (Lex.getKind() == lltok::APSInt)
4415     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4416 
4417   if (Lex.getKind() != lltok::NameTableKind)
4418     return tokError("expected nameTable kind");
4419 
4420   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4421   if (!Kind)
4422     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4423                     "'");
4424   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4425   Result.assign((unsigned)*Kind);
4426   Lex.Lex();
4427   return false;
4428 }
4429 
4430 template <>
4431 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4432                             DwarfAttEncodingField &Result) {
4433   if (Lex.getKind() == lltok::APSInt)
4434     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4435 
4436   if (Lex.getKind() != lltok::DwarfAttEncoding)
4437     return tokError("expected DWARF type attribute encoding");
4438 
4439   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4440   if (!Encoding)
4441     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4442                     Lex.getStrVal() + "'");
4443   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4444   Result.assign(Encoding);
4445   Lex.Lex();
4446   return false;
4447 }
4448 
4449 /// DIFlagField
4450 ///  ::= uint32
4451 ///  ::= DIFlagVector
4452 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4453 template <>
4454 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4455 
4456   // parser for a single flag.
4457   auto parseFlag = [&](DINode::DIFlags &Val) {
4458     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4459       uint32_t TempVal = static_cast<uint32_t>(Val);
4460       bool Res = parseUInt32(TempVal);
4461       Val = static_cast<DINode::DIFlags>(TempVal);
4462       return Res;
4463     }
4464 
4465     if (Lex.getKind() != lltok::DIFlag)
4466       return tokError("expected debug info flag");
4467 
4468     Val = DINode::getFlag(Lex.getStrVal());
4469     if (!Val)
4470       return tokError(Twine("invalid debug info flag flag '") +
4471                       Lex.getStrVal() + "'");
4472     Lex.Lex();
4473     return false;
4474   };
4475 
4476   // parse the flags and combine them together.
4477   DINode::DIFlags Combined = DINode::FlagZero;
4478   do {
4479     DINode::DIFlags Val;
4480     if (parseFlag(Val))
4481       return true;
4482     Combined |= Val;
4483   } while (EatIfPresent(lltok::bar));
4484 
4485   Result.assign(Combined);
4486   return false;
4487 }
4488 
4489 /// DISPFlagField
4490 ///  ::= uint32
4491 ///  ::= DISPFlagVector
4492 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4493 template <>
4494 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4495 
4496   // parser for a single flag.
4497   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4498     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4499       uint32_t TempVal = static_cast<uint32_t>(Val);
4500       bool Res = parseUInt32(TempVal);
4501       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4502       return Res;
4503     }
4504 
4505     if (Lex.getKind() != lltok::DISPFlag)
4506       return tokError("expected debug info flag");
4507 
4508     Val = DISubprogram::getFlag(Lex.getStrVal());
4509     if (!Val)
4510       return tokError(Twine("invalid subprogram debug info flag '") +
4511                       Lex.getStrVal() + "'");
4512     Lex.Lex();
4513     return false;
4514   };
4515 
4516   // parse the flags and combine them together.
4517   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4518   do {
4519     DISubprogram::DISPFlags Val;
4520     if (parseFlag(Val))
4521       return true;
4522     Combined |= Val;
4523   } while (EatIfPresent(lltok::bar));
4524 
4525   Result.assign(Combined);
4526   return false;
4527 }
4528 
4529 template <>
4530 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4531   if (Lex.getKind() != lltok::APSInt)
4532     return tokError("expected signed integer");
4533 
4534   auto &S = Lex.getAPSIntVal();
4535   if (S < Result.Min)
4536     return tokError("value for '" + Name + "' too small, limit is " +
4537                     Twine(Result.Min));
4538   if (S > Result.Max)
4539     return tokError("value for '" + Name + "' too large, limit is " +
4540                     Twine(Result.Max));
4541   Result.assign(S.getExtValue());
4542   assert(Result.Val >= Result.Min && "Expected value in range");
4543   assert(Result.Val <= Result.Max && "Expected value in range");
4544   Lex.Lex();
4545   return false;
4546 }
4547 
4548 template <>
4549 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4550   switch (Lex.getKind()) {
4551   default:
4552     return tokError("expected 'true' or 'false'");
4553   case lltok::kw_true:
4554     Result.assign(true);
4555     break;
4556   case lltok::kw_false:
4557     Result.assign(false);
4558     break;
4559   }
4560   Lex.Lex();
4561   return false;
4562 }
4563 
4564 template <>
4565 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4566   if (Lex.getKind() == lltok::kw_null) {
4567     if (!Result.AllowNull)
4568       return tokError("'" + Name + "' cannot be null");
4569     Lex.Lex();
4570     Result.assign(nullptr);
4571     return false;
4572   }
4573 
4574   Metadata *MD;
4575   if (parseMetadata(MD, nullptr))
4576     return true;
4577 
4578   Result.assign(MD);
4579   return false;
4580 }
4581 
4582 template <>
4583 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4584                             MDSignedOrMDField &Result) {
4585   // Try to parse a signed int.
4586   if (Lex.getKind() == lltok::APSInt) {
4587     MDSignedField Res = Result.A;
4588     if (!parseMDField(Loc, Name, Res)) {
4589       Result.assign(Res);
4590       return false;
4591     }
4592     return true;
4593   }
4594 
4595   // Otherwise, try to parse as an MDField.
4596   MDField Res = Result.B;
4597   if (!parseMDField(Loc, Name, Res)) {
4598     Result.assign(Res);
4599     return false;
4600   }
4601 
4602   return true;
4603 }
4604 
4605 template <>
4606 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4607   LocTy ValueLoc = Lex.getLoc();
4608   std::string S;
4609   if (parseStringConstant(S))
4610     return true;
4611 
4612   if (!Result.AllowEmpty && S.empty())
4613     return error(ValueLoc, "'" + Name + "' cannot be empty");
4614 
4615   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4616   return false;
4617 }
4618 
4619 template <>
4620 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4621   SmallVector<Metadata *, 4> MDs;
4622   if (parseMDNodeVector(MDs))
4623     return true;
4624 
4625   Result.assign(std::move(MDs));
4626   return false;
4627 }
4628 
4629 template <>
4630 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4631                             ChecksumKindField &Result) {
4632   Optional<DIFile::ChecksumKind> CSKind =
4633       DIFile::getChecksumKind(Lex.getStrVal());
4634 
4635   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4636     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4637                     "'");
4638 
4639   Result.assign(*CSKind);
4640   Lex.Lex();
4641   return false;
4642 }
4643 
4644 } // end namespace llvm
4645 
4646 template <class ParserTy>
4647 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4648   do {
4649     if (Lex.getKind() != lltok::LabelStr)
4650       return tokError("expected field label here");
4651 
4652     if (ParseField())
4653       return true;
4654   } while (EatIfPresent(lltok::comma));
4655 
4656   return false;
4657 }
4658 
4659 template <class ParserTy>
4660 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4661   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4662   Lex.Lex();
4663 
4664   if (parseToken(lltok::lparen, "expected '(' here"))
4665     return true;
4666   if (Lex.getKind() != lltok::rparen)
4667     if (parseMDFieldsImplBody(ParseField))
4668       return true;
4669 
4670   ClosingLoc = Lex.getLoc();
4671   return parseToken(lltok::rparen, "expected ')' here");
4672 }
4673 
4674 template <class FieldTy>
4675 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4676   if (Result.Seen)
4677     return tokError("field '" + Name + "' cannot be specified more than once");
4678 
4679   LocTy Loc = Lex.getLoc();
4680   Lex.Lex();
4681   return parseMDField(Loc, Name, Result);
4682 }
4683 
4684 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct,
4685                                       LocTy DistinctLoc) {
4686   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4687 
4688 #define HANDLE_SPECIALIZED_MDNODE_LEAF_UNIQUABLE(CLASS)                        \
4689   if (Lex.getStrVal() == #CLASS)                                               \
4690     return parse##CLASS(N, IsDistinct);
4691 #define HANDLE_SPECIALIZED_MDNODE_LEAF_UNIQUED(CLASS)                          \
4692   if (Lex.getStrVal() == #CLASS) {                                             \
4693     if (IsDistinct)                                                            \
4694       return error(DistinctLoc, "'distinct' not allowed for !" #CLASS);        \
4695     return parse##CLASS(N, IsDistinct);                                        \
4696   }
4697 #define HANDLE_SPECIALIZED_MDNODE_LEAF_DISTINCT(CLASS)                         \
4698   if (Lex.getStrVal() == #CLASS) {                                             \
4699     if (!IsDistinct)                                                           \
4700       return error(DistinctLoc, "missing 'distinct', required for !" #CLASS);  \
4701     return parse##CLASS(N, IsDistinct);                                        \
4702   }
4703 #include "llvm/IR/Metadata.def"
4704 
4705   return tokError("expected metadata type");
4706 }
4707 
4708 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4709 #define NOP_FIELD(NAME, TYPE, INIT)
4710 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4711   if (!NAME.Seen)                                                              \
4712     return error(ClosingLoc, "missing required field '" #NAME "'");
4713 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4714   if (Lex.getStrVal() == #NAME)                                                \
4715     return parseMDField(#NAME, NAME);
4716 #define PARSE_MD_FIELDS()                                                      \
4717   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4718   do {                                                                         \
4719     LocTy ClosingLoc;                                                          \
4720     if (parseMDFieldsImpl(                                                     \
4721             [&]() -> bool {                                                    \
4722               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4723               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4724                               "'");                                            \
4725             },                                                                 \
4726             ClosingLoc))                                                       \
4727       return true;                                                             \
4728     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4729   } while (false)
4730 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4731   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4732 
4733 /// parseDILocationFields:
4734 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4735 ///   isImplicitCode: true)
4736 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4737 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4738   OPTIONAL(line, LineField, );                                                 \
4739   OPTIONAL(column, ColumnField, );                                             \
4740   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4741   OPTIONAL(inlinedAt, MDField, );                                              \
4742   OPTIONAL(isImplicitCode, MDBoolField, (false));
4743   PARSE_MD_FIELDS();
4744 #undef VISIT_MD_FIELDS
4745 
4746   Result =
4747       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4748                                    inlinedAt.Val, isImplicitCode.Val));
4749   return false;
4750 }
4751 
4752 /// parseGenericDINode:
4753 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4754 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4755 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4756   REQUIRED(tag, DwarfTagField, );                                              \
4757   OPTIONAL(header, MDStringField, );                                           \
4758   OPTIONAL(operands, MDFieldList, );
4759   PARSE_MD_FIELDS();
4760 #undef VISIT_MD_FIELDS
4761 
4762   Result = GET_OR_DISTINCT(GenericDINode,
4763                            (Context, tag.Val, header.Val, operands.Val));
4764   return false;
4765 }
4766 
4767 /// parseDISubrange:
4768 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4769 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4770 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4771 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4772 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4773   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4774   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4775   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4776   OPTIONAL(stride, MDSignedOrMDField, );
4777   PARSE_MD_FIELDS();
4778 #undef VISIT_MD_FIELDS
4779 
4780   Metadata *Count = nullptr;
4781   Metadata *LowerBound = nullptr;
4782   Metadata *UpperBound = nullptr;
4783   Metadata *Stride = nullptr;
4784 
4785   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4786     if (Bound.isMDSignedField())
4787       return ConstantAsMetadata::get(ConstantInt::getSigned(
4788           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4789     if (Bound.isMDField())
4790       return Bound.getMDFieldValue();
4791     return nullptr;
4792   };
4793 
4794   Count = convToMetadata(count);
4795   LowerBound = convToMetadata(lowerBound);
4796   UpperBound = convToMetadata(upperBound);
4797   Stride = convToMetadata(stride);
4798 
4799   Result = GET_OR_DISTINCT(DISubrange,
4800                            (Context, Count, LowerBound, UpperBound, Stride));
4801 
4802   return false;
4803 }
4804 
4805 /// parseDIGenericSubrange:
4806 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4807 ///   !node3)
4808 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4809 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4810   OPTIONAL(count, MDSignedOrMDField, );                                        \
4811   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4812   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4813   OPTIONAL(stride, MDSignedOrMDField, );
4814   PARSE_MD_FIELDS();
4815 #undef VISIT_MD_FIELDS
4816 
4817   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4818     if (Bound.isMDSignedField())
4819       return DIExpression::get(
4820           Context, {dwarf::DW_OP_consts,
4821                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4822     if (Bound.isMDField())
4823       return Bound.getMDFieldValue();
4824     return nullptr;
4825   };
4826 
4827   Metadata *Count = ConvToMetadata(count);
4828   Metadata *LowerBound = ConvToMetadata(lowerBound);
4829   Metadata *UpperBound = ConvToMetadata(upperBound);
4830   Metadata *Stride = ConvToMetadata(stride);
4831 
4832   Result = GET_OR_DISTINCT(DIGenericSubrange,
4833                            (Context, Count, LowerBound, UpperBound, Stride));
4834 
4835   return false;
4836 }
4837 
4838 /// parseDIEnumerator:
4839 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4840 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4841 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4842   REQUIRED(name, MDStringField, );                                             \
4843   REQUIRED(value, MDAPSIntField, );                                            \
4844   OPTIONAL(isUnsigned, MDBoolField, (false));
4845   PARSE_MD_FIELDS();
4846 #undef VISIT_MD_FIELDS
4847 
4848   if (isUnsigned.Val && value.Val.isNegative())
4849     return tokError("unsigned enumerator with negative value");
4850 
4851   APSInt Value(value.Val);
4852   // Add a leading zero so that unsigned values with the msb set are not
4853   // mistaken for negative values when used for signed enumerators.
4854   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4855     Value = Value.zext(Value.getBitWidth() + 1);
4856 
4857   Result =
4858       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4859 
4860   return false;
4861 }
4862 
4863 /// parseDIBasicType:
4864 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4865 ///                    encoding: DW_ATE_encoding, flags: 0)
4866 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4867 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4868   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4869   OPTIONAL(name, MDStringField, );                                             \
4870   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4871   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4872   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4873   OPTIONAL(flags, DIFlagField, );
4874   PARSE_MD_FIELDS();
4875 #undef VISIT_MD_FIELDS
4876 
4877   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4878                                          align.Val, encoding.Val, flags.Val));
4879   return false;
4880 }
4881 
4882 /// parseDIStringType:
4883 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4884 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4885 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4886   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4887   OPTIONAL(name, MDStringField, );                                             \
4888   OPTIONAL(stringLength, MDField, );                                           \
4889   OPTIONAL(stringLengthExpression, MDField, );                                 \
4890   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4891   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4892   OPTIONAL(encoding, DwarfAttEncodingField, );
4893   PARSE_MD_FIELDS();
4894 #undef VISIT_MD_FIELDS
4895 
4896   Result = GET_OR_DISTINCT(DIStringType,
4897                            (Context, tag.Val, name.Val, stringLength.Val,
4898                             stringLengthExpression.Val, size.Val, align.Val,
4899                             encoding.Val));
4900   return false;
4901 }
4902 
4903 /// parseDIDerivedType:
4904 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4905 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4906 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4907 ///                      dwarfAddressSpace: 3)
4908 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4909 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4910   REQUIRED(tag, DwarfTagField, );                                              \
4911   OPTIONAL(name, MDStringField, );                                             \
4912   OPTIONAL(file, MDField, );                                                   \
4913   OPTIONAL(line, LineField, );                                                 \
4914   OPTIONAL(scope, MDField, );                                                  \
4915   REQUIRED(baseType, MDField, );                                               \
4916   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4917   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4918   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4919   OPTIONAL(flags, DIFlagField, );                                              \
4920   OPTIONAL(extraData, MDField, );                                              \
4921   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4922   PARSE_MD_FIELDS();
4923 #undef VISIT_MD_FIELDS
4924 
4925   Optional<unsigned> DWARFAddressSpace;
4926   if (dwarfAddressSpace.Val != UINT32_MAX)
4927     DWARFAddressSpace = dwarfAddressSpace.Val;
4928 
4929   Result = GET_OR_DISTINCT(DIDerivedType,
4930                            (Context, tag.Val, name.Val, file.Val, line.Val,
4931                             scope.Val, baseType.Val, size.Val, align.Val,
4932                             offset.Val, DWARFAddressSpace, flags.Val,
4933                             extraData.Val));
4934   return false;
4935 }
4936 
4937 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4938 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4939   REQUIRED(tag, DwarfTagField, );                                              \
4940   OPTIONAL(name, MDStringField, );                                             \
4941   OPTIONAL(file, MDField, );                                                   \
4942   OPTIONAL(line, LineField, );                                                 \
4943   OPTIONAL(scope, MDField, );                                                  \
4944   OPTIONAL(baseType, MDField, );                                               \
4945   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4946   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4947   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4948   OPTIONAL(flags, DIFlagField, );                                              \
4949   OPTIONAL(elements, MDField, );                                               \
4950   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4951   OPTIONAL(vtableHolder, MDField, );                                           \
4952   OPTIONAL(templateParams, MDField, );                                         \
4953   OPTIONAL(identifier, MDStringField, );                                       \
4954   OPTIONAL(discriminator, MDField, );                                          \
4955   OPTIONAL(dataLocation, MDField, );                                           \
4956   OPTIONAL(associated, MDField, );                                             \
4957   OPTIONAL(allocated, MDField, );                                              \
4958   OPTIONAL(rank, MDSignedOrMDField, );
4959   PARSE_MD_FIELDS();
4960 #undef VISIT_MD_FIELDS
4961 
4962   Metadata *Rank = nullptr;
4963   if (rank.isMDSignedField())
4964     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4965         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4966   else if (rank.isMDField())
4967     Rank = rank.getMDFieldValue();
4968 
4969   // If this has an identifier try to build an ODR type.
4970   if (identifier.Val)
4971     if (auto *CT = DICompositeType::buildODRType(
4972             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4973             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4974             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4975             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4976             Rank)) {
4977       Result = CT;
4978       return false;
4979     }
4980 
4981   // Create a new node, and save it in the context if it belongs in the type
4982   // map.
4983   Result = GET_OR_DISTINCT(
4984       DICompositeType,
4985       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4986        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4987        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4988        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4989        Rank));
4990   return false;
4991 }
4992 
4993 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4994 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4995   OPTIONAL(flags, DIFlagField, );                                              \
4996   OPTIONAL(cc, DwarfCCField, );                                                \
4997   REQUIRED(types, MDField, );
4998   PARSE_MD_FIELDS();
4999 #undef VISIT_MD_FIELDS
5000 
5001   Result = GET_OR_DISTINCT(DISubroutineType,
5002                            (Context, flags.Val, cc.Val, types.Val));
5003   return false;
5004 }
5005 
5006 /// parseDIFileType:
5007 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
5008 ///                   checksumkind: CSK_MD5,
5009 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
5010 ///                   source: "source file contents")
5011 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
5012   // The default constructed value for checksumkind is required, but will never
5013   // be used, as the parser checks if the field was actually Seen before using
5014   // the Val.
5015 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5016   REQUIRED(filename, MDStringField, );                                         \
5017   REQUIRED(directory, MDStringField, );                                        \
5018   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
5019   OPTIONAL(checksum, MDStringField, );                                         \
5020   OPTIONAL(source, MDStringField, );
5021   PARSE_MD_FIELDS();
5022 #undef VISIT_MD_FIELDS
5023 
5024   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
5025   if (checksumkind.Seen && checksum.Seen)
5026     OptChecksum.emplace(checksumkind.Val, checksum.Val);
5027   else if (checksumkind.Seen || checksum.Seen)
5028     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
5029 
5030   Optional<MDString *> OptSource;
5031   if (source.Seen)
5032     OptSource = source.Val;
5033   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
5034                                     OptChecksum, OptSource));
5035   return false;
5036 }
5037 
5038 /// parseDICompileUnit:
5039 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
5040 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
5041 ///                      splitDebugFilename: "abc.debug",
5042 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
5043 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
5044 ///                      sysroot: "/", sdk: "MacOSX.sdk")
5045 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
5046 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5047   REQUIRED(language, DwarfLangField, );                                        \
5048   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
5049   OPTIONAL(producer, MDStringField, );                                         \
5050   OPTIONAL(isOptimized, MDBoolField, );                                        \
5051   OPTIONAL(flags, MDStringField, );                                            \
5052   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
5053   OPTIONAL(splitDebugFilename, MDStringField, );                               \
5054   OPTIONAL(emissionKind, EmissionKindField, );                                 \
5055   OPTIONAL(enums, MDField, );                                                  \
5056   OPTIONAL(retainedTypes, MDField, );                                          \
5057   OPTIONAL(globals, MDField, );                                                \
5058   OPTIONAL(imports, MDField, );                                                \
5059   OPTIONAL(macros, MDField, );                                                 \
5060   OPTIONAL(dwoId, MDUnsignedField, );                                          \
5061   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
5062   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
5063   OPTIONAL(nameTableKind, NameTableKindField, );                               \
5064   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
5065   OPTIONAL(sysroot, MDStringField, );                                          \
5066   OPTIONAL(sdk, MDStringField, );
5067   PARSE_MD_FIELDS();
5068 #undef VISIT_MD_FIELDS
5069 
5070   Result = DICompileUnit::getDistinct(
5071       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
5072       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
5073       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
5074       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
5075       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
5076   return false;
5077 }
5078 
5079 /// parseDISubprogram:
5080 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
5081 ///                     file: !1, line: 7, type: !2, isLocal: false,
5082 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
5083 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
5084 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
5085 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
5086 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
5087 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
5088   auto Loc = Lex.getLoc();
5089 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5090   OPTIONAL(scope, MDField, );                                                  \
5091   OPTIONAL(name, MDStringField, );                                             \
5092   OPTIONAL(linkageName, MDStringField, );                                      \
5093   OPTIONAL(file, MDField, );                                                   \
5094   OPTIONAL(line, LineField, );                                                 \
5095   OPTIONAL(type, MDField, );                                                   \
5096   OPTIONAL(isLocal, MDBoolField, );                                            \
5097   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5098   OPTIONAL(scopeLine, LineField, );                                            \
5099   OPTIONAL(containingType, MDField, );                                         \
5100   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
5101   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
5102   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
5103   OPTIONAL(flags, DIFlagField, );                                              \
5104   OPTIONAL(spFlags, DISPFlagField, );                                          \
5105   OPTIONAL(isOptimized, MDBoolField, );                                        \
5106   OPTIONAL(unit, MDField, );                                                   \
5107   OPTIONAL(templateParams, MDField, );                                         \
5108   OPTIONAL(declaration, MDField, );                                            \
5109   OPTIONAL(retainedNodes, MDField, );                                          \
5110   OPTIONAL(thrownTypes, MDField, );
5111   PARSE_MD_FIELDS();
5112 #undef VISIT_MD_FIELDS
5113 
5114   // An explicit spFlags field takes precedence over individual fields in
5115   // older IR versions.
5116   DISubprogram::DISPFlags SPFlags =
5117       spFlags.Seen ? spFlags.Val
5118                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
5119                                              isOptimized.Val, virtuality.Val);
5120   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
5121     return Lex.Error(
5122         Loc,
5123         "missing 'distinct', required for !DISubprogram that is a Definition");
5124   Result = GET_OR_DISTINCT(
5125       DISubprogram,
5126       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
5127        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
5128        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
5129        declaration.Val, retainedNodes.Val, thrownTypes.Val));
5130   return false;
5131 }
5132 
5133 /// parseDILexicalBlock:
5134 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
5135 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
5136 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5137   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5138   OPTIONAL(file, MDField, );                                                   \
5139   OPTIONAL(line, LineField, );                                                 \
5140   OPTIONAL(column, ColumnField, );
5141   PARSE_MD_FIELDS();
5142 #undef VISIT_MD_FIELDS
5143 
5144   Result = GET_OR_DISTINCT(
5145       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
5146   return false;
5147 }
5148 
5149 /// parseDILexicalBlockFile:
5150 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
5151 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
5152 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5153   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5154   OPTIONAL(file, MDField, );                                                   \
5155   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
5156   PARSE_MD_FIELDS();
5157 #undef VISIT_MD_FIELDS
5158 
5159   Result = GET_OR_DISTINCT(DILexicalBlockFile,
5160                            (Context, scope.Val, file.Val, discriminator.Val));
5161   return false;
5162 }
5163 
5164 /// parseDICommonBlock:
5165 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
5166 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
5167 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5168   REQUIRED(scope, MDField, );                                                  \
5169   OPTIONAL(declaration, MDField, );                                            \
5170   OPTIONAL(name, MDStringField, );                                             \
5171   OPTIONAL(file, MDField, );                                                   \
5172   OPTIONAL(line, LineField, );
5173   PARSE_MD_FIELDS();
5174 #undef VISIT_MD_FIELDS
5175 
5176   Result = GET_OR_DISTINCT(DICommonBlock,
5177                            (Context, scope.Val, declaration.Val, name.Val,
5178                             file.Val, line.Val));
5179   return false;
5180 }
5181 
5182 /// parseDINamespace:
5183 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
5184 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
5185 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5186   REQUIRED(scope, MDField, );                                                  \
5187   OPTIONAL(name, MDStringField, );                                             \
5188   OPTIONAL(exportSymbols, MDBoolField, );
5189   PARSE_MD_FIELDS();
5190 #undef VISIT_MD_FIELDS
5191 
5192   Result = GET_OR_DISTINCT(DINamespace,
5193                            (Context, scope.Val, name.Val, exportSymbols.Val));
5194   return false;
5195 }
5196 
5197 /// parseDIMacro:
5198 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5199 ///   "SomeValue")
5200 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5201 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5202   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
5203   OPTIONAL(line, LineField, );                                                 \
5204   REQUIRED(name, MDStringField, );                                             \
5205   OPTIONAL(value, MDStringField, );
5206   PARSE_MD_FIELDS();
5207 #undef VISIT_MD_FIELDS
5208 
5209   Result = GET_OR_DISTINCT(DIMacro,
5210                            (Context, type.Val, line.Val, name.Val, value.Val));
5211   return false;
5212 }
5213 
5214 /// parseDIMacroFile:
5215 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
5216 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5217 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5218   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
5219   OPTIONAL(line, LineField, );                                                 \
5220   REQUIRED(file, MDField, );                                                   \
5221   OPTIONAL(nodes, MDField, );
5222   PARSE_MD_FIELDS();
5223 #undef VISIT_MD_FIELDS
5224 
5225   Result = GET_OR_DISTINCT(DIMacroFile,
5226                            (Context, type.Val, line.Val, file.Val, nodes.Val));
5227   return false;
5228 }
5229 
5230 /// parseDIModule:
5231 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5232 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5233 ///   file: !1, line: 4, isDecl: false)
5234 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5235 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5236   REQUIRED(scope, MDField, );                                                  \
5237   REQUIRED(name, MDStringField, );                                             \
5238   OPTIONAL(configMacros, MDStringField, );                                     \
5239   OPTIONAL(includePath, MDStringField, );                                      \
5240   OPTIONAL(apinotes, MDStringField, );                                         \
5241   OPTIONAL(file, MDField, );                                                   \
5242   OPTIONAL(line, LineField, );                                                 \
5243   OPTIONAL(isDecl, MDBoolField, );
5244   PARSE_MD_FIELDS();
5245 #undef VISIT_MD_FIELDS
5246 
5247   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5248                                       configMacros.Val, includePath.Val,
5249                                       apinotes.Val, line.Val, isDecl.Val));
5250   return false;
5251 }
5252 
5253 /// parseDITemplateTypeParameter:
5254 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5255 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5256 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5257   OPTIONAL(name, MDStringField, );                                             \
5258   REQUIRED(type, MDField, );                                                   \
5259   OPTIONAL(defaulted, MDBoolField, );
5260   PARSE_MD_FIELDS();
5261 #undef VISIT_MD_FIELDS
5262 
5263   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5264                            (Context, name.Val, type.Val, defaulted.Val));
5265   return false;
5266 }
5267 
5268 /// parseDITemplateValueParameter:
5269 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5270 ///                                 name: "V", type: !1, defaulted: false,
5271 ///                                 value: i32 7)
5272 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5273 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5274   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5275   OPTIONAL(name, MDStringField, );                                             \
5276   OPTIONAL(type, MDField, );                                                   \
5277   OPTIONAL(defaulted, MDBoolField, );                                          \
5278   REQUIRED(value, MDField, );
5279 
5280   PARSE_MD_FIELDS();
5281 #undef VISIT_MD_FIELDS
5282 
5283   Result = GET_OR_DISTINCT(
5284       DITemplateValueParameter,
5285       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5286   return false;
5287 }
5288 
5289 /// parseDIGlobalVariable:
5290 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5291 ///                         file: !1, line: 7, type: !2, isLocal: false,
5292 ///                         isDefinition: true, templateParams: !3,
5293 ///                         declaration: !4, align: 8)
5294 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5295 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5296   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
5297   OPTIONAL(scope, MDField, );                                                  \
5298   OPTIONAL(linkageName, MDStringField, );                                      \
5299   OPTIONAL(file, MDField, );                                                   \
5300   OPTIONAL(line, LineField, );                                                 \
5301   OPTIONAL(type, MDField, );                                                   \
5302   OPTIONAL(isLocal, MDBoolField, );                                            \
5303   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5304   OPTIONAL(templateParams, MDField, );                                         \
5305   OPTIONAL(declaration, MDField, );                                            \
5306   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5307   PARSE_MD_FIELDS();
5308 #undef VISIT_MD_FIELDS
5309 
5310   Result =
5311       GET_OR_DISTINCT(DIGlobalVariable,
5312                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5313                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5314                        declaration.Val, templateParams.Val, align.Val));
5315   return false;
5316 }
5317 
5318 /// parseDILocalVariable:
5319 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5320 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5321 ///                        align: 8)
5322 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5323 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5324 ///                        align: 8)
5325 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5326 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5327   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5328   OPTIONAL(name, MDStringField, );                                             \
5329   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5330   OPTIONAL(file, MDField, );                                                   \
5331   OPTIONAL(line, LineField, );                                                 \
5332   OPTIONAL(type, MDField, );                                                   \
5333   OPTIONAL(flags, DIFlagField, );                                              \
5334   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5335   PARSE_MD_FIELDS();
5336 #undef VISIT_MD_FIELDS
5337 
5338   Result = GET_OR_DISTINCT(DILocalVariable,
5339                            (Context, scope.Val, name.Val, file.Val, line.Val,
5340                             type.Val, arg.Val, flags.Val, align.Val));
5341   return false;
5342 }
5343 
5344 /// parseDILabel:
5345 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5346 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5347 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5348   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5349   REQUIRED(name, MDStringField, );                                             \
5350   REQUIRED(file, MDField, );                                                   \
5351   REQUIRED(line, LineField, );
5352   PARSE_MD_FIELDS();
5353 #undef VISIT_MD_FIELDS
5354 
5355   Result = GET_OR_DISTINCT(DILabel,
5356                            (Context, scope.Val, name.Val, file.Val, line.Val));
5357   return false;
5358 }
5359 
5360 /// parseDIExpression:
5361 ///   ::= !DIExpression(0, 7, -1)
5362 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5363   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5364   Lex.Lex();
5365 
5366   if (parseToken(lltok::lparen, "expected '(' here"))
5367     return true;
5368 
5369   SmallVector<uint64_t, 8> Elements;
5370   if (Lex.getKind() != lltok::rparen)
5371     do {
5372       if (Lex.getKind() == lltok::DwarfOp) {
5373         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5374           Lex.Lex();
5375           Elements.push_back(Op);
5376           continue;
5377         }
5378         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5379       }
5380 
5381       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5382         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5383           Lex.Lex();
5384           Elements.push_back(Op);
5385           continue;
5386         }
5387         return tokError(Twine("invalid DWARF attribute encoding '") +
5388                         Lex.getStrVal() + "'");
5389       }
5390 
5391       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5392         return tokError("expected unsigned integer");
5393 
5394       auto &U = Lex.getAPSIntVal();
5395       if (U.ugt(UINT64_MAX))
5396         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5397       Elements.push_back(U.getZExtValue());
5398       Lex.Lex();
5399     } while (EatIfPresent(lltok::comma));
5400 
5401   if (parseToken(lltok::rparen, "expected ')' here"))
5402     return true;
5403 
5404   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5405   return false;
5406 }
5407 
5408 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5409   return tokError("!DIArgList cannot appear outside of a function");
5410 }
5411 /// ParseDIArgList:
5412 ///   ::= !DIArgList(i32 7, i64 %0)
5413 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5414                               PerFunctionState *PFS) {
5415   assert(PFS && "Expected valid function state");
5416   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5417   Lex.Lex();
5418 
5419   if (parseToken(lltok::lparen, "expected '(' here"))
5420     return true;
5421 
5422   SmallVector<ValueAsMetadata *, 4> Args;
5423   if (Lex.getKind() != lltok::rparen)
5424     do {
5425       Metadata *MD;
5426       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5427         return true;
5428       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5429     } while (EatIfPresent(lltok::comma));
5430 
5431   if (parseToken(lltok::rparen, "expected ')' here"))
5432     return true;
5433 
5434   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5435   return false;
5436 }
5437 
5438 /// parseDIGlobalVariableExpression:
5439 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5440 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5441                                                bool IsDistinct) {
5442 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5443   REQUIRED(var, MDField, );                                                    \
5444   REQUIRED(expr, MDField, );
5445   PARSE_MD_FIELDS();
5446 #undef VISIT_MD_FIELDS
5447 
5448   Result =
5449       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5450   return false;
5451 }
5452 
5453 /// parseDIObjCProperty:
5454 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5455 ///                       getter: "getFoo", attributes: 7, type: !2)
5456 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5457 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5458   OPTIONAL(name, MDStringField, );                                             \
5459   OPTIONAL(file, MDField, );                                                   \
5460   OPTIONAL(line, LineField, );                                                 \
5461   OPTIONAL(setter, MDStringField, );                                           \
5462   OPTIONAL(getter, MDStringField, );                                           \
5463   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5464   OPTIONAL(type, MDField, );
5465   PARSE_MD_FIELDS();
5466 #undef VISIT_MD_FIELDS
5467 
5468   Result = GET_OR_DISTINCT(DIObjCProperty,
5469                            (Context, name.Val, file.Val, line.Val, setter.Val,
5470                             getter.Val, attributes.Val, type.Val));
5471   return false;
5472 }
5473 
5474 /// parseDIImportedEntity:
5475 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5476 ///                         line: 7, name: "foo")
5477 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5478 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5479   REQUIRED(tag, DwarfTagField, );                                              \
5480   REQUIRED(scope, MDField, );                                                  \
5481   OPTIONAL(entity, MDField, );                                                 \
5482   OPTIONAL(file, MDField, );                                                   \
5483   OPTIONAL(line, LineField, );                                                 \
5484   OPTIONAL(name, MDStringField, );
5485   PARSE_MD_FIELDS();
5486 #undef VISIT_MD_FIELDS
5487 
5488   Result = GET_OR_DISTINCT(
5489       DIImportedEntity,
5490       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5491   return false;
5492 }
5493 
5494 #undef PARSE_MD_FIELD
5495 #undef NOP_FIELD
5496 #undef REQUIRE_FIELD
5497 #undef DECLARE_FIELD
5498 
5499 /// parseMetadataAsValue
5500 ///  ::= metadata i32 %local
5501 ///  ::= metadata i32 @global
5502 ///  ::= metadata i32 7
5503 ///  ::= metadata !0
5504 ///  ::= metadata !{...}
5505 ///  ::= metadata !"string"
5506 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5507   // Note: the type 'metadata' has already been parsed.
5508   Metadata *MD;
5509   if (parseMetadata(MD, &PFS))
5510     return true;
5511 
5512   V = MetadataAsValue::get(Context, MD);
5513   return false;
5514 }
5515 
5516 /// parseValueAsMetadata
5517 ///  ::= i32 %local
5518 ///  ::= i32 @global
5519 ///  ::= i32 7
5520 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5521                                     PerFunctionState *PFS) {
5522   Type *Ty;
5523   LocTy Loc;
5524   if (parseType(Ty, TypeMsg, Loc))
5525     return true;
5526   if (Ty->isMetadataTy())
5527     return error(Loc, "invalid metadata-value-metadata roundtrip");
5528 
5529   Value *V;
5530   if (parseValue(Ty, V, PFS))
5531     return true;
5532 
5533   MD = ValueAsMetadata::get(V);
5534   return false;
5535 }
5536 
5537 /// parseMetadata
5538 ///  ::= i32 %local
5539 ///  ::= i32 @global
5540 ///  ::= i32 7
5541 ///  ::= !42
5542 ///  ::= !{...}
5543 ///  ::= !"string"
5544 ///  ::= !DILocation(...)
5545 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5546   if (Lex.getKind() == lltok::MetadataVar) {
5547     MDNode *N;
5548     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5549     // so parsing this requires a Function State.
5550     if (Lex.getStrVal() == "DIArgList") {
5551       if (parseDIArgList(N, false, PFS))
5552         return true;
5553     } else if (parseSpecializedMDNode(N)) {
5554       return true;
5555     }
5556     MD = N;
5557     return false;
5558   }
5559 
5560   // ValueAsMetadata:
5561   // <type> <value>
5562   if (Lex.getKind() != lltok::exclaim)
5563     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5564 
5565   // '!'.
5566   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5567   Lex.Lex();
5568 
5569   // MDString:
5570   //   ::= '!' STRINGCONSTANT
5571   if (Lex.getKind() == lltok::StringConstant) {
5572     MDString *S;
5573     if (parseMDString(S))
5574       return true;
5575     MD = S;
5576     return false;
5577   }
5578 
5579   // MDNode:
5580   // !{ ... }
5581   // !7
5582   MDNode *N;
5583   if (parseMDNodeTail(N))
5584     return true;
5585   MD = N;
5586   return false;
5587 }
5588 
5589 //===----------------------------------------------------------------------===//
5590 // Function Parsing.
5591 //===----------------------------------------------------------------------===//
5592 
5593 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5594                                    PerFunctionState *PFS, bool IsCall) {
5595   if (Ty->isFunctionTy())
5596     return error(ID.Loc, "functions are not values, refer to them as pointers");
5597 
5598   switch (ID.Kind) {
5599   case ValID::t_LocalID:
5600     if (!PFS)
5601       return error(ID.Loc, "invalid use of function-local name");
5602     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5603     return V == nullptr;
5604   case ValID::t_LocalName:
5605     if (!PFS)
5606       return error(ID.Loc, "invalid use of function-local name");
5607     V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall);
5608     return V == nullptr;
5609   case ValID::t_InlineAsm: {
5610     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5611       return error(ID.Loc, "invalid type for inline asm constraint string");
5612     V = InlineAsm::get(
5613         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5614         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5615     return false;
5616   }
5617   case ValID::t_GlobalName:
5618     V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5619     return V == nullptr;
5620   case ValID::t_GlobalID:
5621     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5622     return V == nullptr;
5623   case ValID::t_APSInt:
5624     if (!Ty->isIntegerTy())
5625       return error(ID.Loc, "integer constant must have integer type");
5626     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5627     V = ConstantInt::get(Context, ID.APSIntVal);
5628     return false;
5629   case ValID::t_APFloat:
5630     if (!Ty->isFloatingPointTy() ||
5631         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5632       return error(ID.Loc, "floating point constant invalid for type");
5633 
5634     // The lexer has no type info, so builds all half, bfloat, float, and double
5635     // FP constants as double.  Fix this here.  Long double does not need this.
5636     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5637       // Check for signaling before potentially converting and losing that info.
5638       bool IsSNAN = ID.APFloatVal.isSignaling();
5639       bool Ignored;
5640       if (Ty->isHalfTy())
5641         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5642                               &Ignored);
5643       else if (Ty->isBFloatTy())
5644         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5645                               &Ignored);
5646       else if (Ty->isFloatTy())
5647         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5648                               &Ignored);
5649       if (IsSNAN) {
5650         // The convert call above may quiet an SNaN, so manufacture another
5651         // SNaN. The bitcast works because the payload (significand) parameter
5652         // is truncated to fit.
5653         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5654         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5655                                          ID.APFloatVal.isNegative(), &Payload);
5656       }
5657     }
5658     V = ConstantFP::get(Context, ID.APFloatVal);
5659 
5660     if (V->getType() != Ty)
5661       return error(ID.Loc, "floating point constant does not have type '" +
5662                                getTypeString(Ty) + "'");
5663 
5664     return false;
5665   case ValID::t_Null:
5666     if (!Ty->isPointerTy())
5667       return error(ID.Loc, "null must be a pointer type");
5668     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5669     return false;
5670   case ValID::t_Undef:
5671     // FIXME: LabelTy should not be a first-class type.
5672     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5673       return error(ID.Loc, "invalid type for undef constant");
5674     V = UndefValue::get(Ty);
5675     return false;
5676   case ValID::t_EmptyArray:
5677     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5678       return error(ID.Loc, "invalid empty array initializer");
5679     V = UndefValue::get(Ty);
5680     return false;
5681   case ValID::t_Zero:
5682     // FIXME: LabelTy should not be a first-class type.
5683     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5684       return error(ID.Loc, "invalid type for null constant");
5685     V = Constant::getNullValue(Ty);
5686     return false;
5687   case ValID::t_None:
5688     if (!Ty->isTokenTy())
5689       return error(ID.Loc, "invalid type for none constant");
5690     V = Constant::getNullValue(Ty);
5691     return false;
5692   case ValID::t_Poison:
5693     // FIXME: LabelTy should not be a first-class type.
5694     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5695       return error(ID.Loc, "invalid type for poison constant");
5696     V = PoisonValue::get(Ty);
5697     return false;
5698   case ValID::t_Constant:
5699     if (ID.ConstantVal->getType() != Ty)
5700       return error(ID.Loc, "constant expression type mismatch: got type '" +
5701                                getTypeString(ID.ConstantVal->getType()) +
5702                                "' but expected '" + getTypeString(Ty) + "'");
5703     V = ID.ConstantVal;
5704     return false;
5705   case ValID::t_ConstantStruct:
5706   case ValID::t_PackedConstantStruct:
5707     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5708       if (ST->getNumElements() != ID.UIntVal)
5709         return error(ID.Loc,
5710                      "initializer with struct type has wrong # elements");
5711       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5712         return error(ID.Loc, "packed'ness of initializer and type don't match");
5713 
5714       // Verify that the elements are compatible with the structtype.
5715       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5716         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5717           return error(
5718               ID.Loc,
5719               "element " + Twine(i) +
5720                   " of struct initializer doesn't match struct element type");
5721 
5722       V = ConstantStruct::get(
5723           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5724     } else
5725       return error(ID.Loc, "constant expression type mismatch");
5726     return false;
5727   }
5728   llvm_unreachable("Invalid ValID");
5729 }
5730 
5731 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5732   C = nullptr;
5733   ValID ID;
5734   auto Loc = Lex.getLoc();
5735   if (parseValID(ID, /*PFS=*/nullptr))
5736     return true;
5737   switch (ID.Kind) {
5738   case ValID::t_APSInt:
5739   case ValID::t_APFloat:
5740   case ValID::t_Undef:
5741   case ValID::t_Constant:
5742   case ValID::t_ConstantStruct:
5743   case ValID::t_PackedConstantStruct: {
5744     Value *V;
5745     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5746       return true;
5747     assert(isa<Constant>(V) && "Expected a constant value");
5748     C = cast<Constant>(V);
5749     return false;
5750   }
5751   case ValID::t_Null:
5752     C = Constant::getNullValue(Ty);
5753     return false;
5754   default:
5755     return error(Loc, "expected a constant value");
5756   }
5757 }
5758 
5759 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5760   V = nullptr;
5761   ValID ID;
5762   return parseValID(ID, PFS, Ty) ||
5763          convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5764 }
5765 
5766 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5767   Type *Ty = nullptr;
5768   return parseType(Ty) || parseValue(Ty, V, PFS);
5769 }
5770 
5771 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5772                                       PerFunctionState &PFS) {
5773   Value *V;
5774   Loc = Lex.getLoc();
5775   if (parseTypeAndValue(V, PFS))
5776     return true;
5777   if (!isa<BasicBlock>(V))
5778     return error(Loc, "expected a basic block");
5779   BB = cast<BasicBlock>(V);
5780   return false;
5781 }
5782 
5783 /// FunctionHeader
5784 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5785 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5786 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5787 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5788 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5789   // parse the linkage.
5790   LocTy LinkageLoc = Lex.getLoc();
5791   unsigned Linkage;
5792   unsigned Visibility;
5793   unsigned DLLStorageClass;
5794   bool DSOLocal;
5795   AttrBuilder RetAttrs;
5796   unsigned CC;
5797   bool HasLinkage;
5798   Type *RetType = nullptr;
5799   LocTy RetTypeLoc = Lex.getLoc();
5800   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5801                            DSOLocal) ||
5802       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5803       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5804     return true;
5805 
5806   // Verify that the linkage is ok.
5807   switch ((GlobalValue::LinkageTypes)Linkage) {
5808   case GlobalValue::ExternalLinkage:
5809     break; // always ok.
5810   case GlobalValue::ExternalWeakLinkage:
5811     if (IsDefine)
5812       return error(LinkageLoc, "invalid linkage for function definition");
5813     break;
5814   case GlobalValue::PrivateLinkage:
5815   case GlobalValue::InternalLinkage:
5816   case GlobalValue::AvailableExternallyLinkage:
5817   case GlobalValue::LinkOnceAnyLinkage:
5818   case GlobalValue::LinkOnceODRLinkage:
5819   case GlobalValue::WeakAnyLinkage:
5820   case GlobalValue::WeakODRLinkage:
5821     if (!IsDefine)
5822       return error(LinkageLoc, "invalid linkage for function declaration");
5823     break;
5824   case GlobalValue::AppendingLinkage:
5825   case GlobalValue::CommonLinkage:
5826     return error(LinkageLoc, "invalid function linkage type");
5827   }
5828 
5829   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5830     return error(LinkageLoc,
5831                  "symbol with local linkage must have default visibility");
5832 
5833   if (!FunctionType::isValidReturnType(RetType))
5834     return error(RetTypeLoc, "invalid function return type");
5835 
5836   LocTy NameLoc = Lex.getLoc();
5837 
5838   std::string FunctionName;
5839   if (Lex.getKind() == lltok::GlobalVar) {
5840     FunctionName = Lex.getStrVal();
5841   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5842     unsigned NameID = Lex.getUIntVal();
5843 
5844     if (NameID != NumberedVals.size())
5845       return tokError("function expected to be numbered '%" +
5846                       Twine(NumberedVals.size()) + "'");
5847   } else {
5848     return tokError("expected function name");
5849   }
5850 
5851   Lex.Lex();
5852 
5853   if (Lex.getKind() != lltok::lparen)
5854     return tokError("expected '(' in function argument list");
5855 
5856   SmallVector<ArgInfo, 8> ArgList;
5857   bool IsVarArg;
5858   AttrBuilder FuncAttrs;
5859   std::vector<unsigned> FwdRefAttrGrps;
5860   LocTy BuiltinLoc;
5861   std::string Section;
5862   std::string Partition;
5863   MaybeAlign Alignment;
5864   std::string GC;
5865   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5866   unsigned AddrSpace = 0;
5867   Constant *Prefix = nullptr;
5868   Constant *Prologue = nullptr;
5869   Constant *PersonalityFn = nullptr;
5870   Comdat *C;
5871 
5872   if (parseArgumentList(ArgList, IsVarArg) ||
5873       parseOptionalUnnamedAddr(UnnamedAddr) ||
5874       parseOptionalProgramAddrSpace(AddrSpace) ||
5875       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5876                                  BuiltinLoc) ||
5877       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5878       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5879       parseOptionalComdat(FunctionName, C) ||
5880       parseOptionalAlignment(Alignment) ||
5881       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5882       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5883       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5884       (EatIfPresent(lltok::kw_personality) &&
5885        parseGlobalTypeAndValue(PersonalityFn)))
5886     return true;
5887 
5888   if (FuncAttrs.contains(Attribute::Builtin))
5889     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5890 
5891   // If the alignment was parsed as an attribute, move to the alignment field.
5892   if (FuncAttrs.hasAlignmentAttr()) {
5893     Alignment = FuncAttrs.getAlignment();
5894     FuncAttrs.removeAttribute(Attribute::Alignment);
5895   }
5896 
5897   // Okay, if we got here, the function is syntactically valid.  Convert types
5898   // and do semantic checks.
5899   std::vector<Type*> ParamTypeList;
5900   SmallVector<AttributeSet, 8> Attrs;
5901 
5902   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5903     ParamTypeList.push_back(ArgList[i].Ty);
5904     Attrs.push_back(ArgList[i].Attrs);
5905   }
5906 
5907   AttributeList PAL =
5908       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5909                          AttributeSet::get(Context, RetAttrs), Attrs);
5910 
5911   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5912     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5913 
5914   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5915   PointerType *PFT = PointerType::get(FT, AddrSpace);
5916 
5917   Fn = nullptr;
5918   GlobalValue *FwdFn = nullptr;
5919   if (!FunctionName.empty()) {
5920     // If this was a definition of a forward reference, remove the definition
5921     // from the forward reference table and fill in the forward ref.
5922     auto FRVI = ForwardRefVals.find(FunctionName);
5923     if (FRVI != ForwardRefVals.end()) {
5924       FwdFn = FRVI->second.first;
5925       if (!FwdFn->getType()->isOpaque()) {
5926         if (!FwdFn->getType()->getPointerElementType()->isFunctionTy())
5927           return error(FRVI->second.second, "invalid forward reference to "
5928                                             "function as global value!");
5929         if (FwdFn->getType() != PFT)
5930           return error(FRVI->second.second,
5931                        "invalid forward reference to "
5932                        "function '" +
5933                            FunctionName +
5934                            "' with wrong type: "
5935                            "expected '" +
5936                            getTypeString(PFT) + "' but was '" +
5937                            getTypeString(FwdFn->getType()) + "'");
5938       }
5939       ForwardRefVals.erase(FRVI);
5940     } else if ((Fn = M->getFunction(FunctionName))) {
5941       // Reject redefinitions.
5942       return error(NameLoc,
5943                    "invalid redefinition of function '" + FunctionName + "'");
5944     } else if (M->getNamedValue(FunctionName)) {
5945       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5946     }
5947 
5948   } else {
5949     // If this is a definition of a forward referenced function, make sure the
5950     // types agree.
5951     auto I = ForwardRefValIDs.find(NumberedVals.size());
5952     if (I != ForwardRefValIDs.end()) {
5953       FwdFn = cast<Function>(I->second.first);
5954       if (!FwdFn->getType()->isOpaque() && FwdFn->getType() != PFT)
5955         return error(NameLoc, "type of definition and forward reference of '@" +
5956                                   Twine(NumberedVals.size()) +
5957                                   "' disagree: "
5958                                   "expected '" +
5959                                   getTypeString(PFT) + "' but was '" +
5960                                   getTypeString(FwdFn->getType()) + "'");
5961       ForwardRefValIDs.erase(I);
5962     }
5963   }
5964 
5965   Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5966                         FunctionName, M);
5967 
5968   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5969 
5970   if (FunctionName.empty())
5971     NumberedVals.push_back(Fn);
5972 
5973   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5974   maybeSetDSOLocal(DSOLocal, *Fn);
5975   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5976   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5977   Fn->setCallingConv(CC);
5978   Fn->setAttributes(PAL);
5979   Fn->setUnnamedAddr(UnnamedAddr);
5980   Fn->setAlignment(MaybeAlign(Alignment));
5981   Fn->setSection(Section);
5982   Fn->setPartition(Partition);
5983   Fn->setComdat(C);
5984   Fn->setPersonalityFn(PersonalityFn);
5985   if (!GC.empty()) Fn->setGC(GC);
5986   Fn->setPrefixData(Prefix);
5987   Fn->setPrologueData(Prologue);
5988   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5989 
5990   // Add all of the arguments we parsed to the function.
5991   Function::arg_iterator ArgIt = Fn->arg_begin();
5992   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5993     // If the argument has a name, insert it into the argument symbol table.
5994     if (ArgList[i].Name.empty()) continue;
5995 
5996     // Set the name, if it conflicted, it will be auto-renamed.
5997     ArgIt->setName(ArgList[i].Name);
5998 
5999     if (ArgIt->getName() != ArgList[i].Name)
6000       return error(ArgList[i].Loc,
6001                    "redefinition of argument '%" + ArgList[i].Name + "'");
6002   }
6003 
6004   if (FwdFn) {
6005     FwdFn->replaceAllUsesWith(Fn);
6006     FwdFn->eraseFromParent();
6007   }
6008 
6009   if (IsDefine)
6010     return false;
6011 
6012   // Check the declaration has no block address forward references.
6013   ValID ID;
6014   if (FunctionName.empty()) {
6015     ID.Kind = ValID::t_GlobalID;
6016     ID.UIntVal = NumberedVals.size() - 1;
6017   } else {
6018     ID.Kind = ValID::t_GlobalName;
6019     ID.StrVal = FunctionName;
6020   }
6021   auto Blocks = ForwardRefBlockAddresses.find(ID);
6022   if (Blocks != ForwardRefBlockAddresses.end())
6023     return error(Blocks->first.Loc,
6024                  "cannot take blockaddress inside a declaration");
6025   return false;
6026 }
6027 
6028 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
6029   ValID ID;
6030   if (FunctionNumber == -1) {
6031     ID.Kind = ValID::t_GlobalName;
6032     ID.StrVal = std::string(F.getName());
6033   } else {
6034     ID.Kind = ValID::t_GlobalID;
6035     ID.UIntVal = FunctionNumber;
6036   }
6037 
6038   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
6039   if (Blocks == P.ForwardRefBlockAddresses.end())
6040     return false;
6041 
6042   for (const auto &I : Blocks->second) {
6043     const ValID &BBID = I.first;
6044     GlobalValue *GV = I.second;
6045 
6046     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
6047            "Expected local id or name");
6048     BasicBlock *BB;
6049     if (BBID.Kind == ValID::t_LocalName)
6050       BB = getBB(BBID.StrVal, BBID.Loc);
6051     else
6052       BB = getBB(BBID.UIntVal, BBID.Loc);
6053     if (!BB)
6054       return P.error(BBID.Loc, "referenced value is not a basic block");
6055 
6056     Value *ResolvedVal = BlockAddress::get(&F, BB);
6057     ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
6058                                            ResolvedVal, false);
6059     if (!ResolvedVal)
6060       return true;
6061     GV->replaceAllUsesWith(ResolvedVal);
6062     GV->eraseFromParent();
6063   }
6064 
6065   P.ForwardRefBlockAddresses.erase(Blocks);
6066   return false;
6067 }
6068 
6069 /// parseFunctionBody
6070 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
6071 bool LLParser::parseFunctionBody(Function &Fn) {
6072   if (Lex.getKind() != lltok::lbrace)
6073     return tokError("expected '{' in function body");
6074   Lex.Lex();  // eat the {.
6075 
6076   int FunctionNumber = -1;
6077   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
6078 
6079   PerFunctionState PFS(*this, Fn, FunctionNumber);
6080 
6081   // Resolve block addresses and allow basic blocks to be forward-declared
6082   // within this function.
6083   if (PFS.resolveForwardRefBlockAddresses())
6084     return true;
6085   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
6086 
6087   // We need at least one basic block.
6088   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
6089     return tokError("function body requires at least one basic block");
6090 
6091   while (Lex.getKind() != lltok::rbrace &&
6092          Lex.getKind() != lltok::kw_uselistorder)
6093     if (parseBasicBlock(PFS))
6094       return true;
6095 
6096   while (Lex.getKind() != lltok::rbrace)
6097     if (parseUseListOrder(&PFS))
6098       return true;
6099 
6100   // Eat the }.
6101   Lex.Lex();
6102 
6103   // Verify function is ok.
6104   return PFS.finishFunction();
6105 }
6106 
6107 /// parseBasicBlock
6108 ///   ::= (LabelStr|LabelID)? Instruction*
6109 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
6110   // If this basic block starts out with a name, remember it.
6111   std::string Name;
6112   int NameID = -1;
6113   LocTy NameLoc = Lex.getLoc();
6114   if (Lex.getKind() == lltok::LabelStr) {
6115     Name = Lex.getStrVal();
6116     Lex.Lex();
6117   } else if (Lex.getKind() == lltok::LabelID) {
6118     NameID = Lex.getUIntVal();
6119     Lex.Lex();
6120   }
6121 
6122   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
6123   if (!BB)
6124     return true;
6125 
6126   std::string NameStr;
6127 
6128   // parse the instructions in this block until we get a terminator.
6129   Instruction *Inst;
6130   do {
6131     // This instruction may have three possibilities for a name: a) none
6132     // specified, b) name specified "%foo =", c) number specified: "%4 =".
6133     LocTy NameLoc = Lex.getLoc();
6134     int NameID = -1;
6135     NameStr = "";
6136 
6137     if (Lex.getKind() == lltok::LocalVarID) {
6138       NameID = Lex.getUIntVal();
6139       Lex.Lex();
6140       if (parseToken(lltok::equal, "expected '=' after instruction id"))
6141         return true;
6142     } else if (Lex.getKind() == lltok::LocalVar) {
6143       NameStr = Lex.getStrVal();
6144       Lex.Lex();
6145       if (parseToken(lltok::equal, "expected '=' after instruction name"))
6146         return true;
6147     }
6148 
6149     switch (parseInstruction(Inst, BB, PFS)) {
6150     default:
6151       llvm_unreachable("Unknown parseInstruction result!");
6152     case InstError: return true;
6153     case InstNormal:
6154       BB->getInstList().push_back(Inst);
6155 
6156       // With a normal result, we check to see if the instruction is followed by
6157       // a comma and metadata.
6158       if (EatIfPresent(lltok::comma))
6159         if (parseInstructionMetadata(*Inst))
6160           return true;
6161       break;
6162     case InstExtraComma:
6163       BB->getInstList().push_back(Inst);
6164 
6165       // If the instruction parser ate an extra comma at the end of it, it
6166       // *must* be followed by metadata.
6167       if (parseInstructionMetadata(*Inst))
6168         return true;
6169       break;
6170     }
6171 
6172     // Set the name on the instruction.
6173     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
6174       return true;
6175   } while (!Inst->isTerminator());
6176 
6177   return false;
6178 }
6179 
6180 //===----------------------------------------------------------------------===//
6181 // Instruction Parsing.
6182 //===----------------------------------------------------------------------===//
6183 
6184 /// parseInstruction - parse one of the many different instructions.
6185 ///
6186 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
6187                                PerFunctionState &PFS) {
6188   lltok::Kind Token = Lex.getKind();
6189   if (Token == lltok::Eof)
6190     return tokError("found end of file when expecting more instructions");
6191   LocTy Loc = Lex.getLoc();
6192   unsigned KeywordVal = Lex.getUIntVal();
6193   Lex.Lex();  // Eat the keyword.
6194 
6195   switch (Token) {
6196   default:
6197     return error(Loc, "expected instruction opcode");
6198   // Terminator Instructions.
6199   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6200   case lltok::kw_ret:
6201     return parseRet(Inst, BB, PFS);
6202   case lltok::kw_br:
6203     return parseBr(Inst, PFS);
6204   case lltok::kw_switch:
6205     return parseSwitch(Inst, PFS);
6206   case lltok::kw_indirectbr:
6207     return parseIndirectBr(Inst, PFS);
6208   case lltok::kw_invoke:
6209     return parseInvoke(Inst, PFS);
6210   case lltok::kw_resume:
6211     return parseResume(Inst, PFS);
6212   case lltok::kw_cleanupret:
6213     return parseCleanupRet(Inst, PFS);
6214   case lltok::kw_catchret:
6215     return parseCatchRet(Inst, PFS);
6216   case lltok::kw_catchswitch:
6217     return parseCatchSwitch(Inst, PFS);
6218   case lltok::kw_catchpad:
6219     return parseCatchPad(Inst, PFS);
6220   case lltok::kw_cleanuppad:
6221     return parseCleanupPad(Inst, PFS);
6222   case lltok::kw_callbr:
6223     return parseCallBr(Inst, PFS);
6224   // Unary Operators.
6225   case lltok::kw_fneg: {
6226     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6227     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6228     if (Res != 0)
6229       return Res;
6230     if (FMF.any())
6231       Inst->setFastMathFlags(FMF);
6232     return false;
6233   }
6234   // Binary Operators.
6235   case lltok::kw_add:
6236   case lltok::kw_sub:
6237   case lltok::kw_mul:
6238   case lltok::kw_shl: {
6239     bool NUW = EatIfPresent(lltok::kw_nuw);
6240     bool NSW = EatIfPresent(lltok::kw_nsw);
6241     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6242 
6243     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6244       return true;
6245 
6246     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6247     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6248     return false;
6249   }
6250   case lltok::kw_fadd:
6251   case lltok::kw_fsub:
6252   case lltok::kw_fmul:
6253   case lltok::kw_fdiv:
6254   case lltok::kw_frem: {
6255     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6256     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6257     if (Res != 0)
6258       return Res;
6259     if (FMF.any())
6260       Inst->setFastMathFlags(FMF);
6261     return 0;
6262   }
6263 
6264   case lltok::kw_sdiv:
6265   case lltok::kw_udiv:
6266   case lltok::kw_lshr:
6267   case lltok::kw_ashr: {
6268     bool Exact = EatIfPresent(lltok::kw_exact);
6269 
6270     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6271       return true;
6272     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6273     return false;
6274   }
6275 
6276   case lltok::kw_urem:
6277   case lltok::kw_srem:
6278     return parseArithmetic(Inst, PFS, KeywordVal,
6279                            /*IsFP*/ false);
6280   case lltok::kw_and:
6281   case lltok::kw_or:
6282   case lltok::kw_xor:
6283     return parseLogical(Inst, PFS, KeywordVal);
6284   case lltok::kw_icmp:
6285     return parseCompare(Inst, PFS, KeywordVal);
6286   case lltok::kw_fcmp: {
6287     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6288     int Res = parseCompare(Inst, PFS, KeywordVal);
6289     if (Res != 0)
6290       return Res;
6291     if (FMF.any())
6292       Inst->setFastMathFlags(FMF);
6293     return 0;
6294   }
6295 
6296   // Casts.
6297   case lltok::kw_trunc:
6298   case lltok::kw_zext:
6299   case lltok::kw_sext:
6300   case lltok::kw_fptrunc:
6301   case lltok::kw_fpext:
6302   case lltok::kw_bitcast:
6303   case lltok::kw_addrspacecast:
6304   case lltok::kw_uitofp:
6305   case lltok::kw_sitofp:
6306   case lltok::kw_fptoui:
6307   case lltok::kw_fptosi:
6308   case lltok::kw_inttoptr:
6309   case lltok::kw_ptrtoint:
6310     return parseCast(Inst, PFS, KeywordVal);
6311   // Other.
6312   case lltok::kw_select: {
6313     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6314     int Res = parseSelect(Inst, PFS);
6315     if (Res != 0)
6316       return Res;
6317     if (FMF.any()) {
6318       if (!isa<FPMathOperator>(Inst))
6319         return error(Loc, "fast-math-flags specified for select without "
6320                           "floating-point scalar or vector return type");
6321       Inst->setFastMathFlags(FMF);
6322     }
6323     return 0;
6324   }
6325   case lltok::kw_va_arg:
6326     return parseVAArg(Inst, PFS);
6327   case lltok::kw_extractelement:
6328     return parseExtractElement(Inst, PFS);
6329   case lltok::kw_insertelement:
6330     return parseInsertElement(Inst, PFS);
6331   case lltok::kw_shufflevector:
6332     return parseShuffleVector(Inst, PFS);
6333   case lltok::kw_phi: {
6334     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6335     int Res = parsePHI(Inst, PFS);
6336     if (Res != 0)
6337       return Res;
6338     if (FMF.any()) {
6339       if (!isa<FPMathOperator>(Inst))
6340         return error(Loc, "fast-math-flags specified for phi without "
6341                           "floating-point scalar or vector return type");
6342       Inst->setFastMathFlags(FMF);
6343     }
6344     return 0;
6345   }
6346   case lltok::kw_landingpad:
6347     return parseLandingPad(Inst, PFS);
6348   case lltok::kw_freeze:
6349     return parseFreeze(Inst, PFS);
6350   // Call.
6351   case lltok::kw_call:
6352     return parseCall(Inst, PFS, CallInst::TCK_None);
6353   case lltok::kw_tail:
6354     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6355   case lltok::kw_musttail:
6356     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6357   case lltok::kw_notail:
6358     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6359   // Memory.
6360   case lltok::kw_alloca:
6361     return parseAlloc(Inst, PFS);
6362   case lltok::kw_load:
6363     return parseLoad(Inst, PFS);
6364   case lltok::kw_store:
6365     return parseStore(Inst, PFS);
6366   case lltok::kw_cmpxchg:
6367     return parseCmpXchg(Inst, PFS);
6368   case lltok::kw_atomicrmw:
6369     return parseAtomicRMW(Inst, PFS);
6370   case lltok::kw_fence:
6371     return parseFence(Inst, PFS);
6372   case lltok::kw_getelementptr:
6373     return parseGetElementPtr(Inst, PFS);
6374   case lltok::kw_extractvalue:
6375     return parseExtractValue(Inst, PFS);
6376   case lltok::kw_insertvalue:
6377     return parseInsertValue(Inst, PFS);
6378   }
6379 }
6380 
6381 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6382 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6383   if (Opc == Instruction::FCmp) {
6384     switch (Lex.getKind()) {
6385     default:
6386       return tokError("expected fcmp predicate (e.g. 'oeq')");
6387     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6388     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6389     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6390     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6391     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6392     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6393     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6394     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6395     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6396     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6397     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6398     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6399     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6400     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6401     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6402     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6403     }
6404   } else {
6405     switch (Lex.getKind()) {
6406     default:
6407       return tokError("expected icmp predicate (e.g. 'eq')");
6408     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6409     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6410     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6411     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6412     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6413     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6414     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6415     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6416     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6417     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6418     }
6419   }
6420   Lex.Lex();
6421   return false;
6422 }
6423 
6424 //===----------------------------------------------------------------------===//
6425 // Terminator Instructions.
6426 //===----------------------------------------------------------------------===//
6427 
6428 /// parseRet - parse a return instruction.
6429 ///   ::= 'ret' void (',' !dbg, !1)*
6430 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6431 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6432                         PerFunctionState &PFS) {
6433   SMLoc TypeLoc = Lex.getLoc();
6434   Type *Ty = nullptr;
6435   if (parseType(Ty, true /*void allowed*/))
6436     return true;
6437 
6438   Type *ResType = PFS.getFunction().getReturnType();
6439 
6440   if (Ty->isVoidTy()) {
6441     if (!ResType->isVoidTy())
6442       return error(TypeLoc, "value doesn't match function result type '" +
6443                                 getTypeString(ResType) + "'");
6444 
6445     Inst = ReturnInst::Create(Context);
6446     return false;
6447   }
6448 
6449   Value *RV;
6450   if (parseValue(Ty, RV, PFS))
6451     return true;
6452 
6453   if (ResType != RV->getType())
6454     return error(TypeLoc, "value doesn't match function result type '" +
6455                               getTypeString(ResType) + "'");
6456 
6457   Inst = ReturnInst::Create(Context, RV);
6458   return false;
6459 }
6460 
6461 /// parseBr
6462 ///   ::= 'br' TypeAndValue
6463 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6464 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6465   LocTy Loc, Loc2;
6466   Value *Op0;
6467   BasicBlock *Op1, *Op2;
6468   if (parseTypeAndValue(Op0, Loc, PFS))
6469     return true;
6470 
6471   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6472     Inst = BranchInst::Create(BB);
6473     return false;
6474   }
6475 
6476   if (Op0->getType() != Type::getInt1Ty(Context))
6477     return error(Loc, "branch condition must have 'i1' type");
6478 
6479   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6480       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6481       parseToken(lltok::comma, "expected ',' after true destination") ||
6482       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6483     return true;
6484 
6485   Inst = BranchInst::Create(Op1, Op2, Op0);
6486   return false;
6487 }
6488 
6489 /// parseSwitch
6490 ///  Instruction
6491 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6492 ///  JumpTable
6493 ///    ::= (TypeAndValue ',' TypeAndValue)*
6494 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6495   LocTy CondLoc, BBLoc;
6496   Value *Cond;
6497   BasicBlock *DefaultBB;
6498   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6499       parseToken(lltok::comma, "expected ',' after switch condition") ||
6500       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6501       parseToken(lltok::lsquare, "expected '[' with switch table"))
6502     return true;
6503 
6504   if (!Cond->getType()->isIntegerTy())
6505     return error(CondLoc, "switch condition must have integer type");
6506 
6507   // parse the jump table pairs.
6508   SmallPtrSet<Value*, 32> SeenCases;
6509   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6510   while (Lex.getKind() != lltok::rsquare) {
6511     Value *Constant;
6512     BasicBlock *DestBB;
6513 
6514     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6515         parseToken(lltok::comma, "expected ',' after case value") ||
6516         parseTypeAndBasicBlock(DestBB, PFS))
6517       return true;
6518 
6519     if (!SeenCases.insert(Constant).second)
6520       return error(CondLoc, "duplicate case value in switch");
6521     if (!isa<ConstantInt>(Constant))
6522       return error(CondLoc, "case value is not a constant integer");
6523 
6524     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6525   }
6526 
6527   Lex.Lex();  // Eat the ']'.
6528 
6529   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6530   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6531     SI->addCase(Table[i].first, Table[i].second);
6532   Inst = SI;
6533   return false;
6534 }
6535 
6536 /// parseIndirectBr
6537 ///  Instruction
6538 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6539 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6540   LocTy AddrLoc;
6541   Value *Address;
6542   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6543       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6544       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6545     return true;
6546 
6547   if (!Address->getType()->isPointerTy())
6548     return error(AddrLoc, "indirectbr address must have pointer type");
6549 
6550   // parse the destination list.
6551   SmallVector<BasicBlock*, 16> DestList;
6552 
6553   if (Lex.getKind() != lltok::rsquare) {
6554     BasicBlock *DestBB;
6555     if (parseTypeAndBasicBlock(DestBB, PFS))
6556       return true;
6557     DestList.push_back(DestBB);
6558 
6559     while (EatIfPresent(lltok::comma)) {
6560       if (parseTypeAndBasicBlock(DestBB, PFS))
6561         return true;
6562       DestList.push_back(DestBB);
6563     }
6564   }
6565 
6566   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6567     return true;
6568 
6569   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6570   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6571     IBI->addDestination(DestList[i]);
6572   Inst = IBI;
6573   return false;
6574 }
6575 
6576 /// parseInvoke
6577 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6578 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6579 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6580   LocTy CallLoc = Lex.getLoc();
6581   AttrBuilder RetAttrs, FnAttrs;
6582   std::vector<unsigned> FwdRefAttrGrps;
6583   LocTy NoBuiltinLoc;
6584   unsigned CC;
6585   unsigned InvokeAddrSpace;
6586   Type *RetType = nullptr;
6587   LocTy RetTypeLoc;
6588   ValID CalleeID;
6589   SmallVector<ParamInfo, 16> ArgList;
6590   SmallVector<OperandBundleDef, 2> BundleList;
6591 
6592   BasicBlock *NormalBB, *UnwindBB;
6593   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6594       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6595       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6596       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6597       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6598                                  NoBuiltinLoc) ||
6599       parseOptionalOperandBundles(BundleList, PFS) ||
6600       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6601       parseTypeAndBasicBlock(NormalBB, PFS) ||
6602       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6603       parseTypeAndBasicBlock(UnwindBB, PFS))
6604     return true;
6605 
6606   // If RetType is a non-function pointer type, then this is the short syntax
6607   // for the call, which means that RetType is just the return type.  Infer the
6608   // rest of the function argument types from the arguments that are present.
6609   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6610   if (!Ty) {
6611     // Pull out the types of all of the arguments...
6612     std::vector<Type*> ParamTypes;
6613     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6614       ParamTypes.push_back(ArgList[i].V->getType());
6615 
6616     if (!FunctionType::isValidReturnType(RetType))
6617       return error(RetTypeLoc, "Invalid result type for LLVM function");
6618 
6619     Ty = FunctionType::get(RetType, ParamTypes, false);
6620   }
6621 
6622   CalleeID.FTy = Ty;
6623 
6624   // Look up the callee.
6625   Value *Callee;
6626   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6627                           Callee, &PFS, /*IsCall=*/true))
6628     return true;
6629 
6630   // Set up the Attribute for the function.
6631   SmallVector<Value *, 8> Args;
6632   SmallVector<AttributeSet, 8> ArgAttrs;
6633 
6634   // Loop through FunctionType's arguments and ensure they are specified
6635   // correctly.  Also, gather any parameter attributes.
6636   FunctionType::param_iterator I = Ty->param_begin();
6637   FunctionType::param_iterator E = Ty->param_end();
6638   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6639     Type *ExpectedTy = nullptr;
6640     if (I != E) {
6641       ExpectedTy = *I++;
6642     } else if (!Ty->isVarArg()) {
6643       return error(ArgList[i].Loc, "too many arguments specified");
6644     }
6645 
6646     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6647       return error(ArgList[i].Loc, "argument is not of expected type '" +
6648                                        getTypeString(ExpectedTy) + "'");
6649     Args.push_back(ArgList[i].V);
6650     ArgAttrs.push_back(ArgList[i].Attrs);
6651   }
6652 
6653   if (I != E)
6654     return error(CallLoc, "not enough parameters specified for call");
6655 
6656   if (FnAttrs.hasAlignmentAttr())
6657     return error(CallLoc, "invoke instructions may not have an alignment");
6658 
6659   // Finish off the Attribute and check them
6660   AttributeList PAL =
6661       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6662                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6663 
6664   InvokeInst *II =
6665       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6666   II->setCallingConv(CC);
6667   II->setAttributes(PAL);
6668   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6669   Inst = II;
6670   return false;
6671 }
6672 
6673 /// parseResume
6674 ///   ::= 'resume' TypeAndValue
6675 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6676   Value *Exn; LocTy ExnLoc;
6677   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6678     return true;
6679 
6680   ResumeInst *RI = ResumeInst::Create(Exn);
6681   Inst = RI;
6682   return false;
6683 }
6684 
6685 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6686                                   PerFunctionState &PFS) {
6687   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6688     return true;
6689 
6690   while (Lex.getKind() != lltok::rsquare) {
6691     // If this isn't the first argument, we need a comma.
6692     if (!Args.empty() &&
6693         parseToken(lltok::comma, "expected ',' in argument list"))
6694       return true;
6695 
6696     // parse the argument.
6697     LocTy ArgLoc;
6698     Type *ArgTy = nullptr;
6699     if (parseType(ArgTy, ArgLoc))
6700       return true;
6701 
6702     Value *V;
6703     if (ArgTy->isMetadataTy()) {
6704       if (parseMetadataAsValue(V, PFS))
6705         return true;
6706     } else {
6707       if (parseValue(ArgTy, V, PFS))
6708         return true;
6709     }
6710     Args.push_back(V);
6711   }
6712 
6713   Lex.Lex();  // Lex the ']'.
6714   return false;
6715 }
6716 
6717 /// parseCleanupRet
6718 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6719 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6720   Value *CleanupPad = nullptr;
6721 
6722   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6723     return true;
6724 
6725   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6726     return true;
6727 
6728   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6729     return true;
6730 
6731   BasicBlock *UnwindBB = nullptr;
6732   if (Lex.getKind() == lltok::kw_to) {
6733     Lex.Lex();
6734     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6735       return true;
6736   } else {
6737     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6738       return true;
6739     }
6740   }
6741 
6742   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6743   return false;
6744 }
6745 
6746 /// parseCatchRet
6747 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6748 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6749   Value *CatchPad = nullptr;
6750 
6751   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6752     return true;
6753 
6754   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6755     return true;
6756 
6757   BasicBlock *BB;
6758   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6759       parseTypeAndBasicBlock(BB, PFS))
6760     return true;
6761 
6762   Inst = CatchReturnInst::Create(CatchPad, BB);
6763   return false;
6764 }
6765 
6766 /// parseCatchSwitch
6767 ///   ::= 'catchswitch' within Parent
6768 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6769   Value *ParentPad;
6770 
6771   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6772     return true;
6773 
6774   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6775       Lex.getKind() != lltok::LocalVarID)
6776     return tokError("expected scope value for catchswitch");
6777 
6778   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6779     return true;
6780 
6781   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6782     return true;
6783 
6784   SmallVector<BasicBlock *, 32> Table;
6785   do {
6786     BasicBlock *DestBB;
6787     if (parseTypeAndBasicBlock(DestBB, PFS))
6788       return true;
6789     Table.push_back(DestBB);
6790   } while (EatIfPresent(lltok::comma));
6791 
6792   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6793     return true;
6794 
6795   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6796     return true;
6797 
6798   BasicBlock *UnwindBB = nullptr;
6799   if (EatIfPresent(lltok::kw_to)) {
6800     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6801       return true;
6802   } else {
6803     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6804       return true;
6805   }
6806 
6807   auto *CatchSwitch =
6808       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6809   for (BasicBlock *DestBB : Table)
6810     CatchSwitch->addHandler(DestBB);
6811   Inst = CatchSwitch;
6812   return false;
6813 }
6814 
6815 /// parseCatchPad
6816 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6817 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6818   Value *CatchSwitch = nullptr;
6819 
6820   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6821     return true;
6822 
6823   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6824     return tokError("expected scope value for catchpad");
6825 
6826   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6827     return true;
6828 
6829   SmallVector<Value *, 8> Args;
6830   if (parseExceptionArgs(Args, PFS))
6831     return true;
6832 
6833   Inst = CatchPadInst::Create(CatchSwitch, Args);
6834   return false;
6835 }
6836 
6837 /// parseCleanupPad
6838 ///   ::= 'cleanuppad' within Parent ParamList
6839 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6840   Value *ParentPad = nullptr;
6841 
6842   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6843     return true;
6844 
6845   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6846       Lex.getKind() != lltok::LocalVarID)
6847     return tokError("expected scope value for cleanuppad");
6848 
6849   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6850     return true;
6851 
6852   SmallVector<Value *, 8> Args;
6853   if (parseExceptionArgs(Args, PFS))
6854     return true;
6855 
6856   Inst = CleanupPadInst::Create(ParentPad, Args);
6857   return false;
6858 }
6859 
6860 //===----------------------------------------------------------------------===//
6861 // Unary Operators.
6862 //===----------------------------------------------------------------------===//
6863 
6864 /// parseUnaryOp
6865 ///  ::= UnaryOp TypeAndValue ',' Value
6866 ///
6867 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6868 /// operand is allowed.
6869 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6870                             unsigned Opc, bool IsFP) {
6871   LocTy Loc; Value *LHS;
6872   if (parseTypeAndValue(LHS, Loc, PFS))
6873     return true;
6874 
6875   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6876                     : LHS->getType()->isIntOrIntVectorTy();
6877 
6878   if (!Valid)
6879     return error(Loc, "invalid operand type for instruction");
6880 
6881   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6882   return false;
6883 }
6884 
6885 /// parseCallBr
6886 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6887 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6888 ///       '[' LabelList ']'
6889 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6890   LocTy CallLoc = Lex.getLoc();
6891   AttrBuilder RetAttrs, FnAttrs;
6892   std::vector<unsigned> FwdRefAttrGrps;
6893   LocTy NoBuiltinLoc;
6894   unsigned CC;
6895   Type *RetType = nullptr;
6896   LocTy RetTypeLoc;
6897   ValID CalleeID;
6898   SmallVector<ParamInfo, 16> ArgList;
6899   SmallVector<OperandBundleDef, 2> BundleList;
6900 
6901   BasicBlock *DefaultDest;
6902   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6903       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6904       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6905       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6906                                  NoBuiltinLoc) ||
6907       parseOptionalOperandBundles(BundleList, PFS) ||
6908       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6909       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6910       parseToken(lltok::lsquare, "expected '[' in callbr"))
6911     return true;
6912 
6913   // parse the destination list.
6914   SmallVector<BasicBlock *, 16> IndirectDests;
6915 
6916   if (Lex.getKind() != lltok::rsquare) {
6917     BasicBlock *DestBB;
6918     if (parseTypeAndBasicBlock(DestBB, PFS))
6919       return true;
6920     IndirectDests.push_back(DestBB);
6921 
6922     while (EatIfPresent(lltok::comma)) {
6923       if (parseTypeAndBasicBlock(DestBB, PFS))
6924         return true;
6925       IndirectDests.push_back(DestBB);
6926     }
6927   }
6928 
6929   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6930     return true;
6931 
6932   // If RetType is a non-function pointer type, then this is the short syntax
6933   // for the call, which means that RetType is just the return type.  Infer the
6934   // rest of the function argument types from the arguments that are present.
6935   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6936   if (!Ty) {
6937     // Pull out the types of all of the arguments...
6938     std::vector<Type *> ParamTypes;
6939     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6940       ParamTypes.push_back(ArgList[i].V->getType());
6941 
6942     if (!FunctionType::isValidReturnType(RetType))
6943       return error(RetTypeLoc, "Invalid result type for LLVM function");
6944 
6945     Ty = FunctionType::get(RetType, ParamTypes, false);
6946   }
6947 
6948   CalleeID.FTy = Ty;
6949 
6950   // Look up the callee.
6951   Value *Callee;
6952   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6953                           /*IsCall=*/true))
6954     return true;
6955 
6956   // Set up the Attribute for the function.
6957   SmallVector<Value *, 8> Args;
6958   SmallVector<AttributeSet, 8> ArgAttrs;
6959 
6960   // Loop through FunctionType's arguments and ensure they are specified
6961   // correctly.  Also, gather any parameter attributes.
6962   FunctionType::param_iterator I = Ty->param_begin();
6963   FunctionType::param_iterator E = Ty->param_end();
6964   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6965     Type *ExpectedTy = nullptr;
6966     if (I != E) {
6967       ExpectedTy = *I++;
6968     } else if (!Ty->isVarArg()) {
6969       return error(ArgList[i].Loc, "too many arguments specified");
6970     }
6971 
6972     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6973       return error(ArgList[i].Loc, "argument is not of expected type '" +
6974                                        getTypeString(ExpectedTy) + "'");
6975     Args.push_back(ArgList[i].V);
6976     ArgAttrs.push_back(ArgList[i].Attrs);
6977   }
6978 
6979   if (I != E)
6980     return error(CallLoc, "not enough parameters specified for call");
6981 
6982   if (FnAttrs.hasAlignmentAttr())
6983     return error(CallLoc, "callbr instructions may not have an alignment");
6984 
6985   // Finish off the Attribute and check them
6986   AttributeList PAL =
6987       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6988                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6989 
6990   CallBrInst *CBI =
6991       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6992                          BundleList);
6993   CBI->setCallingConv(CC);
6994   CBI->setAttributes(PAL);
6995   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6996   Inst = CBI;
6997   return false;
6998 }
6999 
7000 //===----------------------------------------------------------------------===//
7001 // Binary Operators.
7002 //===----------------------------------------------------------------------===//
7003 
7004 /// parseArithmetic
7005 ///  ::= ArithmeticOps TypeAndValue ',' Value
7006 ///
7007 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
7008 /// operand is allowed.
7009 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
7010                                unsigned Opc, bool IsFP) {
7011   LocTy Loc; Value *LHS, *RHS;
7012   if (parseTypeAndValue(LHS, Loc, PFS) ||
7013       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
7014       parseValue(LHS->getType(), RHS, PFS))
7015     return true;
7016 
7017   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
7018                     : LHS->getType()->isIntOrIntVectorTy();
7019 
7020   if (!Valid)
7021     return error(Loc, "invalid operand type for instruction");
7022 
7023   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
7024   return false;
7025 }
7026 
7027 /// parseLogical
7028 ///  ::= ArithmeticOps TypeAndValue ',' Value {
7029 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
7030                             unsigned Opc) {
7031   LocTy Loc; Value *LHS, *RHS;
7032   if (parseTypeAndValue(LHS, Loc, PFS) ||
7033       parseToken(lltok::comma, "expected ',' in logical operation") ||
7034       parseValue(LHS->getType(), RHS, PFS))
7035     return true;
7036 
7037   if (!LHS->getType()->isIntOrIntVectorTy())
7038     return error(Loc,
7039                  "instruction requires integer or integer vector operands");
7040 
7041   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
7042   return false;
7043 }
7044 
7045 /// parseCompare
7046 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
7047 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
7048 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
7049                             unsigned Opc) {
7050   // parse the integer/fp comparison predicate.
7051   LocTy Loc;
7052   unsigned Pred;
7053   Value *LHS, *RHS;
7054   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
7055       parseToken(lltok::comma, "expected ',' after compare value") ||
7056       parseValue(LHS->getType(), RHS, PFS))
7057     return true;
7058 
7059   if (Opc == Instruction::FCmp) {
7060     if (!LHS->getType()->isFPOrFPVectorTy())
7061       return error(Loc, "fcmp requires floating point operands");
7062     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7063   } else {
7064     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
7065     if (!LHS->getType()->isIntOrIntVectorTy() &&
7066         !LHS->getType()->isPtrOrPtrVectorTy())
7067       return error(Loc, "icmp requires integer operands");
7068     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7069   }
7070   return false;
7071 }
7072 
7073 //===----------------------------------------------------------------------===//
7074 // Other Instructions.
7075 //===----------------------------------------------------------------------===//
7076 
7077 /// parseCast
7078 ///   ::= CastOpc TypeAndValue 'to' Type
7079 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
7080                          unsigned Opc) {
7081   LocTy Loc;
7082   Value *Op;
7083   Type *DestTy = nullptr;
7084   if (parseTypeAndValue(Op, Loc, PFS) ||
7085       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
7086       parseType(DestTy))
7087     return true;
7088 
7089   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
7090     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
7091     return error(Loc, "invalid cast opcode for cast from '" +
7092                           getTypeString(Op->getType()) + "' to '" +
7093                           getTypeString(DestTy) + "'");
7094   }
7095   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
7096   return false;
7097 }
7098 
7099 /// parseSelect
7100 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7101 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
7102   LocTy Loc;
7103   Value *Op0, *Op1, *Op2;
7104   if (parseTypeAndValue(Op0, Loc, PFS) ||
7105       parseToken(lltok::comma, "expected ',' after select condition") ||
7106       parseTypeAndValue(Op1, PFS) ||
7107       parseToken(lltok::comma, "expected ',' after select value") ||
7108       parseTypeAndValue(Op2, PFS))
7109     return true;
7110 
7111   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
7112     return error(Loc, Reason);
7113 
7114   Inst = SelectInst::Create(Op0, Op1, Op2);
7115   return false;
7116 }
7117 
7118 /// parseVAArg
7119 ///   ::= 'va_arg' TypeAndValue ',' Type
7120 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
7121   Value *Op;
7122   Type *EltTy = nullptr;
7123   LocTy TypeLoc;
7124   if (parseTypeAndValue(Op, PFS) ||
7125       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
7126       parseType(EltTy, TypeLoc))
7127     return true;
7128 
7129   if (!EltTy->isFirstClassType())
7130     return error(TypeLoc, "va_arg requires operand with first class type");
7131 
7132   Inst = new VAArgInst(Op, EltTy);
7133   return false;
7134 }
7135 
7136 /// parseExtractElement
7137 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
7138 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
7139   LocTy Loc;
7140   Value *Op0, *Op1;
7141   if (parseTypeAndValue(Op0, Loc, PFS) ||
7142       parseToken(lltok::comma, "expected ',' after extract value") ||
7143       parseTypeAndValue(Op1, PFS))
7144     return true;
7145 
7146   if (!ExtractElementInst::isValidOperands(Op0, Op1))
7147     return error(Loc, "invalid extractelement operands");
7148 
7149   Inst = ExtractElementInst::Create(Op0, Op1);
7150   return false;
7151 }
7152 
7153 /// parseInsertElement
7154 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7155 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
7156   LocTy Loc;
7157   Value *Op0, *Op1, *Op2;
7158   if (parseTypeAndValue(Op0, Loc, PFS) ||
7159       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7160       parseTypeAndValue(Op1, PFS) ||
7161       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7162       parseTypeAndValue(Op2, PFS))
7163     return true;
7164 
7165   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
7166     return error(Loc, "invalid insertelement operands");
7167 
7168   Inst = InsertElementInst::Create(Op0, Op1, Op2);
7169   return false;
7170 }
7171 
7172 /// parseShuffleVector
7173 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7174 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
7175   LocTy Loc;
7176   Value *Op0, *Op1, *Op2;
7177   if (parseTypeAndValue(Op0, Loc, PFS) ||
7178       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
7179       parseTypeAndValue(Op1, PFS) ||
7180       parseToken(lltok::comma, "expected ',' after shuffle value") ||
7181       parseTypeAndValue(Op2, PFS))
7182     return true;
7183 
7184   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
7185     return error(Loc, "invalid shufflevector operands");
7186 
7187   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
7188   return false;
7189 }
7190 
7191 /// parsePHI
7192 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
7193 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7194   Type *Ty = nullptr;  LocTy TypeLoc;
7195   Value *Op0, *Op1;
7196 
7197   if (parseType(Ty, TypeLoc) ||
7198       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7199       parseValue(Ty, Op0, PFS) ||
7200       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7201       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7202       parseToken(lltok::rsquare, "expected ']' in phi value list"))
7203     return true;
7204 
7205   bool AteExtraComma = false;
7206   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7207 
7208   while (true) {
7209     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
7210 
7211     if (!EatIfPresent(lltok::comma))
7212       break;
7213 
7214     if (Lex.getKind() == lltok::MetadataVar) {
7215       AteExtraComma = true;
7216       break;
7217     }
7218 
7219     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7220         parseValue(Ty, Op0, PFS) ||
7221         parseToken(lltok::comma, "expected ',' after insertelement value") ||
7222         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7223         parseToken(lltok::rsquare, "expected ']' in phi value list"))
7224       return true;
7225   }
7226 
7227   if (!Ty->isFirstClassType())
7228     return error(TypeLoc, "phi node must have first class type");
7229 
7230   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7231   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7232     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7233   Inst = PN;
7234   return AteExtraComma ? InstExtraComma : InstNormal;
7235 }
7236 
7237 /// parseLandingPad
7238 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7239 /// Clause
7240 ///   ::= 'catch' TypeAndValue
7241 ///   ::= 'filter'
7242 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
7243 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7244   Type *Ty = nullptr; LocTy TyLoc;
7245 
7246   if (parseType(Ty, TyLoc))
7247     return true;
7248 
7249   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7250   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7251 
7252   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7253     LandingPadInst::ClauseType CT;
7254     if (EatIfPresent(lltok::kw_catch))
7255       CT = LandingPadInst::Catch;
7256     else if (EatIfPresent(lltok::kw_filter))
7257       CT = LandingPadInst::Filter;
7258     else
7259       return tokError("expected 'catch' or 'filter' clause type");
7260 
7261     Value *V;
7262     LocTy VLoc;
7263     if (parseTypeAndValue(V, VLoc, PFS))
7264       return true;
7265 
7266     // A 'catch' type expects a non-array constant. A filter clause expects an
7267     // array constant.
7268     if (CT == LandingPadInst::Catch) {
7269       if (isa<ArrayType>(V->getType()))
7270         error(VLoc, "'catch' clause has an invalid type");
7271     } else {
7272       if (!isa<ArrayType>(V->getType()))
7273         error(VLoc, "'filter' clause has an invalid type");
7274     }
7275 
7276     Constant *CV = dyn_cast<Constant>(V);
7277     if (!CV)
7278       return error(VLoc, "clause argument must be a constant");
7279     LP->addClause(CV);
7280   }
7281 
7282   Inst = LP.release();
7283   return false;
7284 }
7285 
7286 /// parseFreeze
7287 ///   ::= 'freeze' Type Value
7288 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7289   LocTy Loc;
7290   Value *Op;
7291   if (parseTypeAndValue(Op, Loc, PFS))
7292     return true;
7293 
7294   Inst = new FreezeInst(Op);
7295   return false;
7296 }
7297 
7298 /// parseCall
7299 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7300 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7301 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7302 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7303 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7304 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7305 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7306 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7307 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7308                          CallInst::TailCallKind TCK) {
7309   AttrBuilder RetAttrs, FnAttrs;
7310   std::vector<unsigned> FwdRefAttrGrps;
7311   LocTy BuiltinLoc;
7312   unsigned CallAddrSpace;
7313   unsigned CC;
7314   Type *RetType = nullptr;
7315   LocTy RetTypeLoc;
7316   ValID CalleeID;
7317   SmallVector<ParamInfo, 16> ArgList;
7318   SmallVector<OperandBundleDef, 2> BundleList;
7319   LocTy CallLoc = Lex.getLoc();
7320 
7321   if (TCK != CallInst::TCK_None &&
7322       parseToken(lltok::kw_call,
7323                  "expected 'tail call', 'musttail call', or 'notail call'"))
7324     return true;
7325 
7326   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7327 
7328   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7329       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7330       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7331       parseValID(CalleeID, &PFS) ||
7332       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7333                          PFS.getFunction().isVarArg()) ||
7334       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7335       parseOptionalOperandBundles(BundleList, PFS))
7336     return true;
7337 
7338   // If RetType is a non-function pointer type, then this is the short syntax
7339   // for the call, which means that RetType is just the return type.  Infer the
7340   // rest of the function argument types from the arguments that are present.
7341   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7342   if (!Ty) {
7343     // Pull out the types of all of the arguments...
7344     std::vector<Type*> ParamTypes;
7345     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7346       ParamTypes.push_back(ArgList[i].V->getType());
7347 
7348     if (!FunctionType::isValidReturnType(RetType))
7349       return error(RetTypeLoc, "Invalid result type for LLVM function");
7350 
7351     Ty = FunctionType::get(RetType, ParamTypes, false);
7352   }
7353 
7354   CalleeID.FTy = Ty;
7355 
7356   // Look up the callee.
7357   Value *Callee;
7358   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7359                           &PFS, /*IsCall=*/true))
7360     return true;
7361 
7362   // Set up the Attribute for the function.
7363   SmallVector<AttributeSet, 8> Attrs;
7364 
7365   SmallVector<Value*, 8> Args;
7366 
7367   // Loop through FunctionType's arguments and ensure they are specified
7368   // correctly.  Also, gather any parameter attributes.
7369   FunctionType::param_iterator I = Ty->param_begin();
7370   FunctionType::param_iterator E = Ty->param_end();
7371   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7372     Type *ExpectedTy = nullptr;
7373     if (I != E) {
7374       ExpectedTy = *I++;
7375     } else if (!Ty->isVarArg()) {
7376       return error(ArgList[i].Loc, "too many arguments specified");
7377     }
7378 
7379     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7380       return error(ArgList[i].Loc, "argument is not of expected type '" +
7381                                        getTypeString(ExpectedTy) + "'");
7382     Args.push_back(ArgList[i].V);
7383     Attrs.push_back(ArgList[i].Attrs);
7384   }
7385 
7386   if (I != E)
7387     return error(CallLoc, "not enough parameters specified for call");
7388 
7389   if (FnAttrs.hasAlignmentAttr())
7390     return error(CallLoc, "call instructions may not have an alignment");
7391 
7392   // Finish off the Attribute and check them
7393   AttributeList PAL =
7394       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7395                          AttributeSet::get(Context, RetAttrs), Attrs);
7396 
7397   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7398   CI->setTailCallKind(TCK);
7399   CI->setCallingConv(CC);
7400   if (FMF.any()) {
7401     if (!isa<FPMathOperator>(CI)) {
7402       CI->deleteValue();
7403       return error(CallLoc, "fast-math-flags specified for call without "
7404                             "floating-point scalar or vector return type");
7405     }
7406     CI->setFastMathFlags(FMF);
7407   }
7408   CI->setAttributes(PAL);
7409   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7410   Inst = CI;
7411   return false;
7412 }
7413 
7414 //===----------------------------------------------------------------------===//
7415 // Memory Instructions.
7416 //===----------------------------------------------------------------------===//
7417 
7418 /// parseAlloc
7419 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7420 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7421 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7422   Value *Size = nullptr;
7423   LocTy SizeLoc, TyLoc, ASLoc;
7424   MaybeAlign Alignment;
7425   unsigned AddrSpace = 0;
7426   Type *Ty = nullptr;
7427 
7428   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7429   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7430 
7431   if (parseType(Ty, TyLoc))
7432     return true;
7433 
7434   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7435     return error(TyLoc, "invalid type for alloca");
7436 
7437   bool AteExtraComma = false;
7438   if (EatIfPresent(lltok::comma)) {
7439     if (Lex.getKind() == lltok::kw_align) {
7440       if (parseOptionalAlignment(Alignment))
7441         return true;
7442       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7443         return true;
7444     } else if (Lex.getKind() == lltok::kw_addrspace) {
7445       ASLoc = Lex.getLoc();
7446       if (parseOptionalAddrSpace(AddrSpace))
7447         return true;
7448     } else if (Lex.getKind() == lltok::MetadataVar) {
7449       AteExtraComma = true;
7450     } else {
7451       if (parseTypeAndValue(Size, SizeLoc, PFS))
7452         return true;
7453       if (EatIfPresent(lltok::comma)) {
7454         if (Lex.getKind() == lltok::kw_align) {
7455           if (parseOptionalAlignment(Alignment))
7456             return true;
7457           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7458             return true;
7459         } else if (Lex.getKind() == lltok::kw_addrspace) {
7460           ASLoc = Lex.getLoc();
7461           if (parseOptionalAddrSpace(AddrSpace))
7462             return true;
7463         } else if (Lex.getKind() == lltok::MetadataVar) {
7464           AteExtraComma = true;
7465         }
7466       }
7467     }
7468   }
7469 
7470   if (Size && !Size->getType()->isIntegerTy())
7471     return error(SizeLoc, "element count must have integer type");
7472 
7473   SmallPtrSet<Type *, 4> Visited;
7474   if (!Alignment && !Ty->isSized(&Visited))
7475     return error(TyLoc, "Cannot allocate unsized type");
7476   if (!Alignment)
7477     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7478   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7479   AI->setUsedWithInAlloca(IsInAlloca);
7480   AI->setSwiftError(IsSwiftError);
7481   Inst = AI;
7482   return AteExtraComma ? InstExtraComma : InstNormal;
7483 }
7484 
7485 /// parseLoad
7486 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7487 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7488 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7489 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7490   Value *Val; LocTy Loc;
7491   MaybeAlign Alignment;
7492   bool AteExtraComma = false;
7493   bool isAtomic = false;
7494   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7495   SyncScope::ID SSID = SyncScope::System;
7496 
7497   if (Lex.getKind() == lltok::kw_atomic) {
7498     isAtomic = true;
7499     Lex.Lex();
7500   }
7501 
7502   bool isVolatile = false;
7503   if (Lex.getKind() == lltok::kw_volatile) {
7504     isVolatile = true;
7505     Lex.Lex();
7506   }
7507 
7508   Type *Ty;
7509   LocTy ExplicitTypeLoc = Lex.getLoc();
7510   if (parseType(Ty) ||
7511       parseToken(lltok::comma, "expected comma after load's type") ||
7512       parseTypeAndValue(Val, Loc, PFS) ||
7513       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7514       parseOptionalCommaAlign(Alignment, AteExtraComma))
7515     return true;
7516 
7517   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7518     return error(Loc, "load operand must be a pointer to a first class type");
7519   if (isAtomic && !Alignment)
7520     return error(Loc, "atomic load must have explicit non-zero alignment");
7521   if (Ordering == AtomicOrdering::Release ||
7522       Ordering == AtomicOrdering::AcquireRelease)
7523     return error(Loc, "atomic load cannot use Release ordering");
7524 
7525   if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
7526     return error(
7527         ExplicitTypeLoc,
7528         typeComparisonErrorMessage(
7529             "explicit pointee type doesn't match operand's pointee type", Ty,
7530             cast<PointerType>(Val->getType())->getElementType()));
7531   }
7532   SmallPtrSet<Type *, 4> Visited;
7533   if (!Alignment && !Ty->isSized(&Visited))
7534     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7535   if (!Alignment)
7536     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7537   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7538   return AteExtraComma ? InstExtraComma : InstNormal;
7539 }
7540 
7541 /// parseStore
7542 
7543 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7544 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7545 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7546 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7547   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7548   MaybeAlign Alignment;
7549   bool AteExtraComma = false;
7550   bool isAtomic = false;
7551   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7552   SyncScope::ID SSID = SyncScope::System;
7553 
7554   if (Lex.getKind() == lltok::kw_atomic) {
7555     isAtomic = true;
7556     Lex.Lex();
7557   }
7558 
7559   bool isVolatile = false;
7560   if (Lex.getKind() == lltok::kw_volatile) {
7561     isVolatile = true;
7562     Lex.Lex();
7563   }
7564 
7565   if (parseTypeAndValue(Val, Loc, PFS) ||
7566       parseToken(lltok::comma, "expected ',' after store operand") ||
7567       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7568       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7569       parseOptionalCommaAlign(Alignment, AteExtraComma))
7570     return true;
7571 
7572   if (!Ptr->getType()->isPointerTy())
7573     return error(PtrLoc, "store operand must be a pointer");
7574   if (!Val->getType()->isFirstClassType())
7575     return error(Loc, "store operand must be a first class value");
7576   if (!cast<PointerType>(Ptr->getType())
7577            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7578     return error(Loc, "stored value and pointer type do not match");
7579   if (isAtomic && !Alignment)
7580     return error(Loc, "atomic store must have explicit non-zero alignment");
7581   if (Ordering == AtomicOrdering::Acquire ||
7582       Ordering == AtomicOrdering::AcquireRelease)
7583     return error(Loc, "atomic store cannot use Acquire ordering");
7584   SmallPtrSet<Type *, 4> Visited;
7585   if (!Alignment && !Val->getType()->isSized(&Visited))
7586     return error(Loc, "storing unsized types is not allowed");
7587   if (!Alignment)
7588     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7589 
7590   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7591   return AteExtraComma ? InstExtraComma : InstNormal;
7592 }
7593 
7594 /// parseCmpXchg
7595 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7596 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7597 ///       'Align'?
7598 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7599   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7600   bool AteExtraComma = false;
7601   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7602   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7603   SyncScope::ID SSID = SyncScope::System;
7604   bool isVolatile = false;
7605   bool isWeak = false;
7606   MaybeAlign Alignment;
7607 
7608   if (EatIfPresent(lltok::kw_weak))
7609     isWeak = true;
7610 
7611   if (EatIfPresent(lltok::kw_volatile))
7612     isVolatile = true;
7613 
7614   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7615       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7616       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7617       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7618       parseTypeAndValue(New, NewLoc, PFS) ||
7619       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7620       parseOrdering(FailureOrdering) ||
7621       parseOptionalCommaAlign(Alignment, AteExtraComma))
7622     return true;
7623 
7624   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7625     return tokError("invalid cmpxchg success ordering");
7626   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7627     return tokError("invalid cmpxchg failure ordering");
7628   if (!Ptr->getType()->isPointerTy())
7629     return error(PtrLoc, "cmpxchg operand must be a pointer");
7630   if (!cast<PointerType>(Ptr->getType())
7631            ->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
7632     return error(CmpLoc, "compare value and pointer type do not match");
7633   if (!cast<PointerType>(Ptr->getType())
7634            ->isOpaqueOrPointeeTypeMatches(New->getType()))
7635     return error(NewLoc, "new value and pointer type do not match");
7636   if (Cmp->getType() != New->getType())
7637     return error(NewLoc, "compare value and new value type do not match");
7638   if (!New->getType()->isFirstClassType())
7639     return error(NewLoc, "cmpxchg operand must be a first class value");
7640 
7641   const Align DefaultAlignment(
7642       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7643           Cmp->getType()));
7644 
7645   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7646       Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
7647       FailureOrdering, SSID);
7648   CXI->setVolatile(isVolatile);
7649   CXI->setWeak(isWeak);
7650 
7651   Inst = CXI;
7652   return AteExtraComma ? InstExtraComma : InstNormal;
7653 }
7654 
7655 /// parseAtomicRMW
7656 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7657 ///       'singlethread'? AtomicOrdering
7658 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7659   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7660   bool AteExtraComma = false;
7661   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7662   SyncScope::ID SSID = SyncScope::System;
7663   bool isVolatile = false;
7664   bool IsFP = false;
7665   AtomicRMWInst::BinOp Operation;
7666   MaybeAlign Alignment;
7667 
7668   if (EatIfPresent(lltok::kw_volatile))
7669     isVolatile = true;
7670 
7671   switch (Lex.getKind()) {
7672   default:
7673     return tokError("expected binary operation in atomicrmw");
7674   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7675   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7676   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7677   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7678   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7679   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7680   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7681   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7682   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7683   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7684   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7685   case lltok::kw_fadd:
7686     Operation = AtomicRMWInst::FAdd;
7687     IsFP = true;
7688     break;
7689   case lltok::kw_fsub:
7690     Operation = AtomicRMWInst::FSub;
7691     IsFP = true;
7692     break;
7693   }
7694   Lex.Lex();  // Eat the operation.
7695 
7696   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7697       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7698       parseTypeAndValue(Val, ValLoc, PFS) ||
7699       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7700       parseOptionalCommaAlign(Alignment, AteExtraComma))
7701     return true;
7702 
7703   if (Ordering == AtomicOrdering::Unordered)
7704     return tokError("atomicrmw cannot be unordered");
7705   if (!Ptr->getType()->isPointerTy())
7706     return error(PtrLoc, "atomicrmw operand must be a pointer");
7707   if (!cast<PointerType>(Ptr->getType())
7708            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7709     return error(ValLoc, "atomicrmw value and pointer type do not match");
7710 
7711   if (Operation == AtomicRMWInst::Xchg) {
7712     if (!Val->getType()->isIntegerTy() &&
7713         !Val->getType()->isFloatingPointTy()) {
7714       return error(ValLoc,
7715                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7716                        " operand must be an integer or floating point type");
7717     }
7718   } else if (IsFP) {
7719     if (!Val->getType()->isFloatingPointTy()) {
7720       return error(ValLoc, "atomicrmw " +
7721                                AtomicRMWInst::getOperationName(Operation) +
7722                                " operand must be a floating point type");
7723     }
7724   } else {
7725     if (!Val->getType()->isIntegerTy()) {
7726       return error(ValLoc, "atomicrmw " +
7727                                AtomicRMWInst::getOperationName(Operation) +
7728                                " operand must be an integer");
7729     }
7730   }
7731 
7732   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7733   if (Size < 8 || (Size & (Size - 1)))
7734     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7735                          " integer");
7736   const Align DefaultAlignment(
7737       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7738           Val->getType()));
7739   AtomicRMWInst *RMWI =
7740       new AtomicRMWInst(Operation, Ptr, Val,
7741                         Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
7742   RMWI->setVolatile(isVolatile);
7743   Inst = RMWI;
7744   return AteExtraComma ? InstExtraComma : InstNormal;
7745 }
7746 
7747 /// parseFence
7748 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7749 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7750   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7751   SyncScope::ID SSID = SyncScope::System;
7752   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7753     return true;
7754 
7755   if (Ordering == AtomicOrdering::Unordered)
7756     return tokError("fence cannot be unordered");
7757   if (Ordering == AtomicOrdering::Monotonic)
7758     return tokError("fence cannot be monotonic");
7759 
7760   Inst = new FenceInst(Context, Ordering, SSID);
7761   return InstNormal;
7762 }
7763 
7764 /// parseGetElementPtr
7765 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7766 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7767   Value *Ptr = nullptr;
7768   Value *Val = nullptr;
7769   LocTy Loc, EltLoc;
7770 
7771   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7772 
7773   Type *Ty = nullptr;
7774   LocTy ExplicitTypeLoc = Lex.getLoc();
7775   if (parseType(Ty) ||
7776       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7777       parseTypeAndValue(Ptr, Loc, PFS))
7778     return true;
7779 
7780   Type *BaseType = Ptr->getType();
7781   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7782   if (!BasePointerType)
7783     return error(Loc, "base of getelementptr must be a pointer");
7784 
7785   if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
7786     return error(
7787         ExplicitTypeLoc,
7788         typeComparisonErrorMessage(
7789             "explicit pointee type doesn't match operand's pointee type", Ty,
7790             BasePointerType->getElementType()));
7791   }
7792 
7793   SmallVector<Value*, 16> Indices;
7794   bool AteExtraComma = false;
7795   // GEP returns a vector of pointers if at least one of parameters is a vector.
7796   // All vector parameters should have the same vector width.
7797   ElementCount GEPWidth = BaseType->isVectorTy()
7798                               ? cast<VectorType>(BaseType)->getElementCount()
7799                               : ElementCount::getFixed(0);
7800 
7801   while (EatIfPresent(lltok::comma)) {
7802     if (Lex.getKind() == lltok::MetadataVar) {
7803       AteExtraComma = true;
7804       break;
7805     }
7806     if (parseTypeAndValue(Val, EltLoc, PFS))
7807       return true;
7808     if (!Val->getType()->isIntOrIntVectorTy())
7809       return error(EltLoc, "getelementptr index must be an integer");
7810 
7811     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7812       ElementCount ValNumEl = ValVTy->getElementCount();
7813       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7814         return error(
7815             EltLoc,
7816             "getelementptr vector index has a wrong number of elements");
7817       GEPWidth = ValNumEl;
7818     }
7819     Indices.push_back(Val);
7820   }
7821 
7822   SmallPtrSet<Type*, 4> Visited;
7823   if (!Indices.empty() && !Ty->isSized(&Visited))
7824     return error(Loc, "base element of getelementptr must be sized");
7825 
7826   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7827     return error(Loc, "invalid getelementptr indices");
7828   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7829   if (InBounds)
7830     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7831   return AteExtraComma ? InstExtraComma : InstNormal;
7832 }
7833 
7834 /// parseExtractValue
7835 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7836 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7837   Value *Val; LocTy Loc;
7838   SmallVector<unsigned, 4> Indices;
7839   bool AteExtraComma;
7840   if (parseTypeAndValue(Val, Loc, PFS) ||
7841       parseIndexList(Indices, AteExtraComma))
7842     return true;
7843 
7844   if (!Val->getType()->isAggregateType())
7845     return error(Loc, "extractvalue operand must be aggregate type");
7846 
7847   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7848     return error(Loc, "invalid indices for extractvalue");
7849   Inst = ExtractValueInst::Create(Val, Indices);
7850   return AteExtraComma ? InstExtraComma : InstNormal;
7851 }
7852 
7853 /// parseInsertValue
7854 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7855 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7856   Value *Val0, *Val1; LocTy Loc0, Loc1;
7857   SmallVector<unsigned, 4> Indices;
7858   bool AteExtraComma;
7859   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7860       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7861       parseTypeAndValue(Val1, Loc1, PFS) ||
7862       parseIndexList(Indices, AteExtraComma))
7863     return true;
7864 
7865   if (!Val0->getType()->isAggregateType())
7866     return error(Loc0, "insertvalue operand must be aggregate type");
7867 
7868   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7869   if (!IndexedType)
7870     return error(Loc0, "invalid indices for insertvalue");
7871   if (IndexedType != Val1->getType())
7872     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7873                            getTypeString(Val1->getType()) + "' instead of '" +
7874                            getTypeString(IndexedType) + "'");
7875   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7876   return AteExtraComma ? InstExtraComma : InstNormal;
7877 }
7878 
7879 //===----------------------------------------------------------------------===//
7880 // Embedded metadata.
7881 //===----------------------------------------------------------------------===//
7882 
7883 /// parseMDNodeVector
7884 ///   ::= { Element (',' Element)* }
7885 /// Element
7886 ///   ::= 'null' | TypeAndValue
7887 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7888   if (parseToken(lltok::lbrace, "expected '{' here"))
7889     return true;
7890 
7891   // Check for an empty list.
7892   if (EatIfPresent(lltok::rbrace))
7893     return false;
7894 
7895   do {
7896     // Null is a special case since it is typeless.
7897     if (EatIfPresent(lltok::kw_null)) {
7898       Elts.push_back(nullptr);
7899       continue;
7900     }
7901 
7902     Metadata *MD;
7903     if (parseMetadata(MD, nullptr))
7904       return true;
7905     Elts.push_back(MD);
7906   } while (EatIfPresent(lltok::comma));
7907 
7908   return parseToken(lltok::rbrace, "expected end of metadata node");
7909 }
7910 
7911 //===----------------------------------------------------------------------===//
7912 // Use-list order directives.
7913 //===----------------------------------------------------------------------===//
7914 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7915                                 SMLoc Loc) {
7916   if (V->use_empty())
7917     return error(Loc, "value has no uses");
7918 
7919   unsigned NumUses = 0;
7920   SmallDenseMap<const Use *, unsigned, 16> Order;
7921   for (const Use &U : V->uses()) {
7922     if (++NumUses > Indexes.size())
7923       break;
7924     Order[&U] = Indexes[NumUses - 1];
7925   }
7926   if (NumUses < 2)
7927     return error(Loc, "value only has one use");
7928   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7929     return error(Loc,
7930                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7931 
7932   V->sortUseList([&](const Use &L, const Use &R) {
7933     return Order.lookup(&L) < Order.lookup(&R);
7934   });
7935   return false;
7936 }
7937 
7938 /// parseUseListOrderIndexes
7939 ///   ::= '{' uint32 (',' uint32)+ '}'
7940 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7941   SMLoc Loc = Lex.getLoc();
7942   if (parseToken(lltok::lbrace, "expected '{' here"))
7943     return true;
7944   if (Lex.getKind() == lltok::rbrace)
7945     return Lex.Error("expected non-empty list of uselistorder indexes");
7946 
7947   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7948   // indexes should be distinct numbers in the range [0, size-1], and should
7949   // not be in order.
7950   unsigned Offset = 0;
7951   unsigned Max = 0;
7952   bool IsOrdered = true;
7953   assert(Indexes.empty() && "Expected empty order vector");
7954   do {
7955     unsigned Index;
7956     if (parseUInt32(Index))
7957       return true;
7958 
7959     // Update consistency checks.
7960     Offset += Index - Indexes.size();
7961     Max = std::max(Max, Index);
7962     IsOrdered &= Index == Indexes.size();
7963 
7964     Indexes.push_back(Index);
7965   } while (EatIfPresent(lltok::comma));
7966 
7967   if (parseToken(lltok::rbrace, "expected '}' here"))
7968     return true;
7969 
7970   if (Indexes.size() < 2)
7971     return error(Loc, "expected >= 2 uselistorder indexes");
7972   if (Offset != 0 || Max >= Indexes.size())
7973     return error(Loc,
7974                  "expected distinct uselistorder indexes in range [0, size)");
7975   if (IsOrdered)
7976     return error(Loc, "expected uselistorder indexes to change the order");
7977 
7978   return false;
7979 }
7980 
7981 /// parseUseListOrder
7982 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7983 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7984   SMLoc Loc = Lex.getLoc();
7985   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7986     return true;
7987 
7988   Value *V;
7989   SmallVector<unsigned, 16> Indexes;
7990   if (parseTypeAndValue(V, PFS) ||
7991       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7992       parseUseListOrderIndexes(Indexes))
7993     return true;
7994 
7995   return sortUseListOrder(V, Indexes, Loc);
7996 }
7997 
7998 /// parseUseListOrderBB
7999 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
8000 bool LLParser::parseUseListOrderBB() {
8001   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
8002   SMLoc Loc = Lex.getLoc();
8003   Lex.Lex();
8004 
8005   ValID Fn, Label;
8006   SmallVector<unsigned, 16> Indexes;
8007   if (parseValID(Fn, /*PFS=*/nullptr) ||
8008       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
8009       parseValID(Label, /*PFS=*/nullptr) ||
8010       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
8011       parseUseListOrderIndexes(Indexes))
8012     return true;
8013 
8014   // Check the function.
8015   GlobalValue *GV;
8016   if (Fn.Kind == ValID::t_GlobalName)
8017     GV = M->getNamedValue(Fn.StrVal);
8018   else if (Fn.Kind == ValID::t_GlobalID)
8019     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
8020   else
8021     return error(Fn.Loc, "expected function name in uselistorder_bb");
8022   if (!GV)
8023     return error(Fn.Loc,
8024                  "invalid function forward reference in uselistorder_bb");
8025   auto *F = dyn_cast<Function>(GV);
8026   if (!F)
8027     return error(Fn.Loc, "expected function name in uselistorder_bb");
8028   if (F->isDeclaration())
8029     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
8030 
8031   // Check the basic block.
8032   if (Label.Kind == ValID::t_LocalID)
8033     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
8034   if (Label.Kind != ValID::t_LocalName)
8035     return error(Label.Loc, "expected basic block name in uselistorder_bb");
8036   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
8037   if (!V)
8038     return error(Label.Loc, "invalid basic block in uselistorder_bb");
8039   if (!isa<BasicBlock>(V))
8040     return error(Label.Loc, "expected basic block in uselistorder_bb");
8041 
8042   return sortUseListOrder(V, Indexes, Loc);
8043 }
8044 
8045 /// ModuleEntry
8046 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
8047 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
8048 bool LLParser::parseModuleEntry(unsigned ID) {
8049   assert(Lex.getKind() == lltok::kw_module);
8050   Lex.Lex();
8051 
8052   std::string Path;
8053   if (parseToken(lltok::colon, "expected ':' here") ||
8054       parseToken(lltok::lparen, "expected '(' here") ||
8055       parseToken(lltok::kw_path, "expected 'path' here") ||
8056       parseToken(lltok::colon, "expected ':' here") ||
8057       parseStringConstant(Path) ||
8058       parseToken(lltok::comma, "expected ',' here") ||
8059       parseToken(lltok::kw_hash, "expected 'hash' here") ||
8060       parseToken(lltok::colon, "expected ':' here") ||
8061       parseToken(lltok::lparen, "expected '(' here"))
8062     return true;
8063 
8064   ModuleHash Hash;
8065   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
8066       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
8067       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
8068       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
8069       parseUInt32(Hash[4]))
8070     return true;
8071 
8072   if (parseToken(lltok::rparen, "expected ')' here") ||
8073       parseToken(lltok::rparen, "expected ')' here"))
8074     return true;
8075 
8076   auto ModuleEntry = Index->addModule(Path, ID, Hash);
8077   ModuleIdMap[ID] = ModuleEntry->first();
8078 
8079   return false;
8080 }
8081 
8082 /// TypeIdEntry
8083 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
8084 bool LLParser::parseTypeIdEntry(unsigned ID) {
8085   assert(Lex.getKind() == lltok::kw_typeid);
8086   Lex.Lex();
8087 
8088   std::string Name;
8089   if (parseToken(lltok::colon, "expected ':' here") ||
8090       parseToken(lltok::lparen, "expected '(' here") ||
8091       parseToken(lltok::kw_name, "expected 'name' here") ||
8092       parseToken(lltok::colon, "expected ':' here") ||
8093       parseStringConstant(Name))
8094     return true;
8095 
8096   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
8097   if (parseToken(lltok::comma, "expected ',' here") ||
8098       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
8099     return true;
8100 
8101   // Check if this ID was forward referenced, and if so, update the
8102   // corresponding GUIDs.
8103   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8104   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8105     for (auto TIDRef : FwdRefTIDs->second) {
8106       assert(!*TIDRef.first &&
8107              "Forward referenced type id GUID expected to be 0");
8108       *TIDRef.first = GlobalValue::getGUID(Name);
8109     }
8110     ForwardRefTypeIds.erase(FwdRefTIDs);
8111   }
8112 
8113   return false;
8114 }
8115 
8116 /// TypeIdSummary
8117 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
8118 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
8119   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
8120       parseToken(lltok::colon, "expected ':' here") ||
8121       parseToken(lltok::lparen, "expected '(' here") ||
8122       parseTypeTestResolution(TIS.TTRes))
8123     return true;
8124 
8125   if (EatIfPresent(lltok::comma)) {
8126     // Expect optional wpdResolutions field
8127     if (parseOptionalWpdResolutions(TIS.WPDRes))
8128       return true;
8129   }
8130 
8131   if (parseToken(lltok::rparen, "expected ')' here"))
8132     return true;
8133 
8134   return false;
8135 }
8136 
8137 static ValueInfo EmptyVI =
8138     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
8139 
8140 /// TypeIdCompatibleVtableEntry
8141 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
8142 ///   TypeIdCompatibleVtableInfo
8143 ///   ')'
8144 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
8145   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
8146   Lex.Lex();
8147 
8148   std::string Name;
8149   if (parseToken(lltok::colon, "expected ':' here") ||
8150       parseToken(lltok::lparen, "expected '(' here") ||
8151       parseToken(lltok::kw_name, "expected 'name' here") ||
8152       parseToken(lltok::colon, "expected ':' here") ||
8153       parseStringConstant(Name))
8154     return true;
8155 
8156   TypeIdCompatibleVtableInfo &TI =
8157       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
8158   if (parseToken(lltok::comma, "expected ',' here") ||
8159       parseToken(lltok::kw_summary, "expected 'summary' here") ||
8160       parseToken(lltok::colon, "expected ':' here") ||
8161       parseToken(lltok::lparen, "expected '(' here"))
8162     return true;
8163 
8164   IdToIndexMapType IdToIndexMap;
8165   // parse each call edge
8166   do {
8167     uint64_t Offset;
8168     if (parseToken(lltok::lparen, "expected '(' here") ||
8169         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8170         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8171         parseToken(lltok::comma, "expected ',' here"))
8172       return true;
8173 
8174     LocTy Loc = Lex.getLoc();
8175     unsigned GVId;
8176     ValueInfo VI;
8177     if (parseGVReference(VI, GVId))
8178       return true;
8179 
8180     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
8181     // forward reference. We will save the location of the ValueInfo needing an
8182     // update, but can only do so once the std::vector is finalized.
8183     if (VI == EmptyVI)
8184       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
8185     TI.push_back({Offset, VI});
8186 
8187     if (parseToken(lltok::rparen, "expected ')' in call"))
8188       return true;
8189   } while (EatIfPresent(lltok::comma));
8190 
8191   // Now that the TI vector is finalized, it is safe to save the locations
8192   // of any forward GV references that need updating later.
8193   for (auto I : IdToIndexMap) {
8194     auto &Infos = ForwardRefValueInfos[I.first];
8195     for (auto P : I.second) {
8196       assert(TI[P.first].VTableVI == EmptyVI &&
8197              "Forward referenced ValueInfo expected to be empty");
8198       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
8199     }
8200   }
8201 
8202   if (parseToken(lltok::rparen, "expected ')' here") ||
8203       parseToken(lltok::rparen, "expected ')' here"))
8204     return true;
8205 
8206   // Check if this ID was forward referenced, and if so, update the
8207   // corresponding GUIDs.
8208   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8209   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8210     for (auto TIDRef : FwdRefTIDs->second) {
8211       assert(!*TIDRef.first &&
8212              "Forward referenced type id GUID expected to be 0");
8213       *TIDRef.first = GlobalValue::getGUID(Name);
8214     }
8215     ForwardRefTypeIds.erase(FwdRefTIDs);
8216   }
8217 
8218   return false;
8219 }
8220 
8221 /// TypeTestResolution
8222 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
8223 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8224 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8225 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8226 ///         [',' 'inlinesBits' ':' UInt64]? ')'
8227 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8228   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8229       parseToken(lltok::colon, "expected ':' here") ||
8230       parseToken(lltok::lparen, "expected '(' here") ||
8231       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8232       parseToken(lltok::colon, "expected ':' here"))
8233     return true;
8234 
8235   switch (Lex.getKind()) {
8236   case lltok::kw_unknown:
8237     TTRes.TheKind = TypeTestResolution::Unknown;
8238     break;
8239   case lltok::kw_unsat:
8240     TTRes.TheKind = TypeTestResolution::Unsat;
8241     break;
8242   case lltok::kw_byteArray:
8243     TTRes.TheKind = TypeTestResolution::ByteArray;
8244     break;
8245   case lltok::kw_inline:
8246     TTRes.TheKind = TypeTestResolution::Inline;
8247     break;
8248   case lltok::kw_single:
8249     TTRes.TheKind = TypeTestResolution::Single;
8250     break;
8251   case lltok::kw_allOnes:
8252     TTRes.TheKind = TypeTestResolution::AllOnes;
8253     break;
8254   default:
8255     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8256   }
8257   Lex.Lex();
8258 
8259   if (parseToken(lltok::comma, "expected ',' here") ||
8260       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8261       parseToken(lltok::colon, "expected ':' here") ||
8262       parseUInt32(TTRes.SizeM1BitWidth))
8263     return true;
8264 
8265   // parse optional fields
8266   while (EatIfPresent(lltok::comma)) {
8267     switch (Lex.getKind()) {
8268     case lltok::kw_alignLog2:
8269       Lex.Lex();
8270       if (parseToken(lltok::colon, "expected ':'") ||
8271           parseUInt64(TTRes.AlignLog2))
8272         return true;
8273       break;
8274     case lltok::kw_sizeM1:
8275       Lex.Lex();
8276       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8277         return true;
8278       break;
8279     case lltok::kw_bitMask: {
8280       unsigned Val;
8281       Lex.Lex();
8282       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8283         return true;
8284       assert(Val <= 0xff);
8285       TTRes.BitMask = (uint8_t)Val;
8286       break;
8287     }
8288     case lltok::kw_inlineBits:
8289       Lex.Lex();
8290       if (parseToken(lltok::colon, "expected ':'") ||
8291           parseUInt64(TTRes.InlineBits))
8292         return true;
8293       break;
8294     default:
8295       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8296     }
8297   }
8298 
8299   if (parseToken(lltok::rparen, "expected ')' here"))
8300     return true;
8301 
8302   return false;
8303 }
8304 
8305 /// OptionalWpdResolutions
8306 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8307 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8308 bool LLParser::parseOptionalWpdResolutions(
8309     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8310   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8311       parseToken(lltok::colon, "expected ':' here") ||
8312       parseToken(lltok::lparen, "expected '(' here"))
8313     return true;
8314 
8315   do {
8316     uint64_t Offset;
8317     WholeProgramDevirtResolution WPDRes;
8318     if (parseToken(lltok::lparen, "expected '(' here") ||
8319         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8320         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8321         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8322         parseToken(lltok::rparen, "expected ')' here"))
8323       return true;
8324     WPDResMap[Offset] = WPDRes;
8325   } while (EatIfPresent(lltok::comma));
8326 
8327   if (parseToken(lltok::rparen, "expected ')' here"))
8328     return true;
8329 
8330   return false;
8331 }
8332 
8333 /// WpdRes
8334 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8335 ///         [',' OptionalResByArg]? ')'
8336 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8337 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8338 ///         [',' OptionalResByArg]? ')'
8339 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8340 ///         [',' OptionalResByArg]? ')'
8341 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8342   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8343       parseToken(lltok::colon, "expected ':' here") ||
8344       parseToken(lltok::lparen, "expected '(' here") ||
8345       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8346       parseToken(lltok::colon, "expected ':' here"))
8347     return true;
8348 
8349   switch (Lex.getKind()) {
8350   case lltok::kw_indir:
8351     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8352     break;
8353   case lltok::kw_singleImpl:
8354     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8355     break;
8356   case lltok::kw_branchFunnel:
8357     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8358     break;
8359   default:
8360     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8361   }
8362   Lex.Lex();
8363 
8364   // parse optional fields
8365   while (EatIfPresent(lltok::comma)) {
8366     switch (Lex.getKind()) {
8367     case lltok::kw_singleImplName:
8368       Lex.Lex();
8369       if (parseToken(lltok::colon, "expected ':' here") ||
8370           parseStringConstant(WPDRes.SingleImplName))
8371         return true;
8372       break;
8373     case lltok::kw_resByArg:
8374       if (parseOptionalResByArg(WPDRes.ResByArg))
8375         return true;
8376       break;
8377     default:
8378       return error(Lex.getLoc(),
8379                    "expected optional WholeProgramDevirtResolution field");
8380     }
8381   }
8382 
8383   if (parseToken(lltok::rparen, "expected ')' here"))
8384     return true;
8385 
8386   return false;
8387 }
8388 
8389 /// OptionalResByArg
8390 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8391 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8392 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8393 ///                  'virtualConstProp' )
8394 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8395 ///                [',' 'bit' ':' UInt32]? ')'
8396 bool LLParser::parseOptionalResByArg(
8397     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8398         &ResByArg) {
8399   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8400       parseToken(lltok::colon, "expected ':' here") ||
8401       parseToken(lltok::lparen, "expected '(' here"))
8402     return true;
8403 
8404   do {
8405     std::vector<uint64_t> Args;
8406     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8407         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8408         parseToken(lltok::colon, "expected ':' here") ||
8409         parseToken(lltok::lparen, "expected '(' here") ||
8410         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8411         parseToken(lltok::colon, "expected ':' here"))
8412       return true;
8413 
8414     WholeProgramDevirtResolution::ByArg ByArg;
8415     switch (Lex.getKind()) {
8416     case lltok::kw_indir:
8417       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8418       break;
8419     case lltok::kw_uniformRetVal:
8420       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8421       break;
8422     case lltok::kw_uniqueRetVal:
8423       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8424       break;
8425     case lltok::kw_virtualConstProp:
8426       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8427       break;
8428     default:
8429       return error(Lex.getLoc(),
8430                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8431     }
8432     Lex.Lex();
8433 
8434     // parse optional fields
8435     while (EatIfPresent(lltok::comma)) {
8436       switch (Lex.getKind()) {
8437       case lltok::kw_info:
8438         Lex.Lex();
8439         if (parseToken(lltok::colon, "expected ':' here") ||
8440             parseUInt64(ByArg.Info))
8441           return true;
8442         break;
8443       case lltok::kw_byte:
8444         Lex.Lex();
8445         if (parseToken(lltok::colon, "expected ':' here") ||
8446             parseUInt32(ByArg.Byte))
8447           return true;
8448         break;
8449       case lltok::kw_bit:
8450         Lex.Lex();
8451         if (parseToken(lltok::colon, "expected ':' here") ||
8452             parseUInt32(ByArg.Bit))
8453           return true;
8454         break;
8455       default:
8456         return error(Lex.getLoc(),
8457                      "expected optional whole program devirt field");
8458       }
8459     }
8460 
8461     if (parseToken(lltok::rparen, "expected ')' here"))
8462       return true;
8463 
8464     ResByArg[Args] = ByArg;
8465   } while (EatIfPresent(lltok::comma));
8466 
8467   if (parseToken(lltok::rparen, "expected ')' here"))
8468     return true;
8469 
8470   return false;
8471 }
8472 
8473 /// OptionalResByArg
8474 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8475 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8476   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8477       parseToken(lltok::colon, "expected ':' here") ||
8478       parseToken(lltok::lparen, "expected '(' here"))
8479     return true;
8480 
8481   do {
8482     uint64_t Val;
8483     if (parseUInt64(Val))
8484       return true;
8485     Args.push_back(Val);
8486   } while (EatIfPresent(lltok::comma));
8487 
8488   if (parseToken(lltok::rparen, "expected ')' here"))
8489     return true;
8490 
8491   return false;
8492 }
8493 
8494 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8495 
8496 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8497   bool ReadOnly = Fwd->isReadOnly();
8498   bool WriteOnly = Fwd->isWriteOnly();
8499   assert(!(ReadOnly && WriteOnly));
8500   *Fwd = Resolved;
8501   if (ReadOnly)
8502     Fwd->setReadOnly();
8503   if (WriteOnly)
8504     Fwd->setWriteOnly();
8505 }
8506 
8507 /// Stores the given Name/GUID and associated summary into the Index.
8508 /// Also updates any forward references to the associated entry ID.
8509 void LLParser::addGlobalValueToIndex(
8510     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8511     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8512   // First create the ValueInfo utilizing the Name or GUID.
8513   ValueInfo VI;
8514   if (GUID != 0) {
8515     assert(Name.empty());
8516     VI = Index->getOrInsertValueInfo(GUID);
8517   } else {
8518     assert(!Name.empty());
8519     if (M) {
8520       auto *GV = M->getNamedValue(Name);
8521       assert(GV);
8522       VI = Index->getOrInsertValueInfo(GV);
8523     } else {
8524       assert(
8525           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8526           "Need a source_filename to compute GUID for local");
8527       GUID = GlobalValue::getGUID(
8528           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8529       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8530     }
8531   }
8532 
8533   // Resolve forward references from calls/refs
8534   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8535   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8536     for (auto VIRef : FwdRefVIs->second) {
8537       assert(VIRef.first->getRef() == FwdVIRef &&
8538              "Forward referenced ValueInfo expected to be empty");
8539       resolveFwdRef(VIRef.first, VI);
8540     }
8541     ForwardRefValueInfos.erase(FwdRefVIs);
8542   }
8543 
8544   // Resolve forward references from aliases
8545   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8546   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8547     for (auto AliaseeRef : FwdRefAliasees->second) {
8548       assert(!AliaseeRef.first->hasAliasee() &&
8549              "Forward referencing alias already has aliasee");
8550       assert(Summary && "Aliasee must be a definition");
8551       AliaseeRef.first->setAliasee(VI, Summary.get());
8552     }
8553     ForwardRefAliasees.erase(FwdRefAliasees);
8554   }
8555 
8556   // Add the summary if one was provided.
8557   if (Summary)
8558     Index->addGlobalValueSummary(VI, std::move(Summary));
8559 
8560   // Save the associated ValueInfo for use in later references by ID.
8561   if (ID == NumberedValueInfos.size())
8562     NumberedValueInfos.push_back(VI);
8563   else {
8564     // Handle non-continuous numbers (to make test simplification easier).
8565     if (ID > NumberedValueInfos.size())
8566       NumberedValueInfos.resize(ID + 1);
8567     NumberedValueInfos[ID] = VI;
8568   }
8569 }
8570 
8571 /// parseSummaryIndexFlags
8572 ///   ::= 'flags' ':' UInt64
8573 bool LLParser::parseSummaryIndexFlags() {
8574   assert(Lex.getKind() == lltok::kw_flags);
8575   Lex.Lex();
8576 
8577   if (parseToken(lltok::colon, "expected ':' here"))
8578     return true;
8579   uint64_t Flags;
8580   if (parseUInt64(Flags))
8581     return true;
8582   if (Index)
8583     Index->setFlags(Flags);
8584   return false;
8585 }
8586 
8587 /// parseBlockCount
8588 ///   ::= 'blockcount' ':' UInt64
8589 bool LLParser::parseBlockCount() {
8590   assert(Lex.getKind() == lltok::kw_blockcount);
8591   Lex.Lex();
8592 
8593   if (parseToken(lltok::colon, "expected ':' here"))
8594     return true;
8595   uint64_t BlockCount;
8596   if (parseUInt64(BlockCount))
8597     return true;
8598   if (Index)
8599     Index->setBlockCount(BlockCount);
8600   return false;
8601 }
8602 
8603 /// parseGVEntry
8604 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8605 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8606 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8607 bool LLParser::parseGVEntry(unsigned ID) {
8608   assert(Lex.getKind() == lltok::kw_gv);
8609   Lex.Lex();
8610 
8611   if (parseToken(lltok::colon, "expected ':' here") ||
8612       parseToken(lltok::lparen, "expected '(' here"))
8613     return true;
8614 
8615   std::string Name;
8616   GlobalValue::GUID GUID = 0;
8617   switch (Lex.getKind()) {
8618   case lltok::kw_name:
8619     Lex.Lex();
8620     if (parseToken(lltok::colon, "expected ':' here") ||
8621         parseStringConstant(Name))
8622       return true;
8623     // Can't create GUID/ValueInfo until we have the linkage.
8624     break;
8625   case lltok::kw_guid:
8626     Lex.Lex();
8627     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8628       return true;
8629     break;
8630   default:
8631     return error(Lex.getLoc(), "expected name or guid tag");
8632   }
8633 
8634   if (!EatIfPresent(lltok::comma)) {
8635     // No summaries. Wrap up.
8636     if (parseToken(lltok::rparen, "expected ')' here"))
8637       return true;
8638     // This was created for a call to an external or indirect target.
8639     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8640     // created for indirect calls with VP. A Name with no GUID came from
8641     // an external definition. We pass ExternalLinkage since that is only
8642     // used when the GUID must be computed from Name, and in that case
8643     // the symbol must have external linkage.
8644     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8645                           nullptr);
8646     return false;
8647   }
8648 
8649   // Have a list of summaries
8650   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8651       parseToken(lltok::colon, "expected ':' here") ||
8652       parseToken(lltok::lparen, "expected '(' here"))
8653     return true;
8654   do {
8655     switch (Lex.getKind()) {
8656     case lltok::kw_function:
8657       if (parseFunctionSummary(Name, GUID, ID))
8658         return true;
8659       break;
8660     case lltok::kw_variable:
8661       if (parseVariableSummary(Name, GUID, ID))
8662         return true;
8663       break;
8664     case lltok::kw_alias:
8665       if (parseAliasSummary(Name, GUID, ID))
8666         return true;
8667       break;
8668     default:
8669       return error(Lex.getLoc(), "expected summary type");
8670     }
8671   } while (EatIfPresent(lltok::comma));
8672 
8673   if (parseToken(lltok::rparen, "expected ')' here") ||
8674       parseToken(lltok::rparen, "expected ')' here"))
8675     return true;
8676 
8677   return false;
8678 }
8679 
8680 /// FunctionSummary
8681 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8682 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8683 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8684 ///         [',' OptionalRefs]? ')'
8685 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8686                                     unsigned ID) {
8687   assert(Lex.getKind() == lltok::kw_function);
8688   Lex.Lex();
8689 
8690   StringRef ModulePath;
8691   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8692       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8693       /*NotEligibleToImport=*/false,
8694       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8695   unsigned InstCount;
8696   std::vector<FunctionSummary::EdgeTy> Calls;
8697   FunctionSummary::TypeIdInfo TypeIdInfo;
8698   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8699   std::vector<ValueInfo> Refs;
8700   // Default is all-zeros (conservative values).
8701   FunctionSummary::FFlags FFlags = {};
8702   if (parseToken(lltok::colon, "expected ':' here") ||
8703       parseToken(lltok::lparen, "expected '(' here") ||
8704       parseModuleReference(ModulePath) ||
8705       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8706       parseToken(lltok::comma, "expected ',' here") ||
8707       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8708       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8709     return true;
8710 
8711   // parse optional fields
8712   while (EatIfPresent(lltok::comma)) {
8713     switch (Lex.getKind()) {
8714     case lltok::kw_funcFlags:
8715       if (parseOptionalFFlags(FFlags))
8716         return true;
8717       break;
8718     case lltok::kw_calls:
8719       if (parseOptionalCalls(Calls))
8720         return true;
8721       break;
8722     case lltok::kw_typeIdInfo:
8723       if (parseOptionalTypeIdInfo(TypeIdInfo))
8724         return true;
8725       break;
8726     case lltok::kw_refs:
8727       if (parseOptionalRefs(Refs))
8728         return true;
8729       break;
8730     case lltok::kw_params:
8731       if (parseOptionalParamAccesses(ParamAccesses))
8732         return true;
8733       break;
8734     default:
8735       return error(Lex.getLoc(), "expected optional function summary field");
8736     }
8737   }
8738 
8739   if (parseToken(lltok::rparen, "expected ')' here"))
8740     return true;
8741 
8742   auto FS = std::make_unique<FunctionSummary>(
8743       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8744       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8745       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8746       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8747       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8748       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8749       std::move(ParamAccesses));
8750 
8751   FS->setModulePath(ModulePath);
8752 
8753   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8754                         ID, std::move(FS));
8755 
8756   return false;
8757 }
8758 
8759 /// VariableSummary
8760 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8761 ///         [',' OptionalRefs]? ')'
8762 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8763                                     unsigned ID) {
8764   assert(Lex.getKind() == lltok::kw_variable);
8765   Lex.Lex();
8766 
8767   StringRef ModulePath;
8768   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8769       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8770       /*NotEligibleToImport=*/false,
8771       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8772   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8773                                         /* WriteOnly */ false,
8774                                         /* Constant */ false,
8775                                         GlobalObject::VCallVisibilityPublic);
8776   std::vector<ValueInfo> Refs;
8777   VTableFuncList VTableFuncs;
8778   if (parseToken(lltok::colon, "expected ':' here") ||
8779       parseToken(lltok::lparen, "expected '(' here") ||
8780       parseModuleReference(ModulePath) ||
8781       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8782       parseToken(lltok::comma, "expected ',' here") ||
8783       parseGVarFlags(GVarFlags))
8784     return true;
8785 
8786   // parse optional fields
8787   while (EatIfPresent(lltok::comma)) {
8788     switch (Lex.getKind()) {
8789     case lltok::kw_vTableFuncs:
8790       if (parseOptionalVTableFuncs(VTableFuncs))
8791         return true;
8792       break;
8793     case lltok::kw_refs:
8794       if (parseOptionalRefs(Refs))
8795         return true;
8796       break;
8797     default:
8798       return error(Lex.getLoc(), "expected optional variable summary field");
8799     }
8800   }
8801 
8802   if (parseToken(lltok::rparen, "expected ')' here"))
8803     return true;
8804 
8805   auto GS =
8806       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8807 
8808   GS->setModulePath(ModulePath);
8809   GS->setVTableFuncs(std::move(VTableFuncs));
8810 
8811   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8812                         ID, std::move(GS));
8813 
8814   return false;
8815 }
8816 
8817 /// AliasSummary
8818 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8819 ///         'aliasee' ':' GVReference ')'
8820 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8821                                  unsigned ID) {
8822   assert(Lex.getKind() == lltok::kw_alias);
8823   LocTy Loc = Lex.getLoc();
8824   Lex.Lex();
8825 
8826   StringRef ModulePath;
8827   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8828       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8829       /*NotEligibleToImport=*/false,
8830       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8831   if (parseToken(lltok::colon, "expected ':' here") ||
8832       parseToken(lltok::lparen, "expected '(' here") ||
8833       parseModuleReference(ModulePath) ||
8834       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8835       parseToken(lltok::comma, "expected ',' here") ||
8836       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8837       parseToken(lltok::colon, "expected ':' here"))
8838     return true;
8839 
8840   ValueInfo AliaseeVI;
8841   unsigned GVId;
8842   if (parseGVReference(AliaseeVI, GVId))
8843     return true;
8844 
8845   if (parseToken(lltok::rparen, "expected ')' here"))
8846     return true;
8847 
8848   auto AS = std::make_unique<AliasSummary>(GVFlags);
8849 
8850   AS->setModulePath(ModulePath);
8851 
8852   // Record forward reference if the aliasee is not parsed yet.
8853   if (AliaseeVI.getRef() == FwdVIRef) {
8854     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8855   } else {
8856     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8857     assert(Summary && "Aliasee must be a definition");
8858     AS->setAliasee(AliaseeVI, Summary);
8859   }
8860 
8861   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8862                         ID, std::move(AS));
8863 
8864   return false;
8865 }
8866 
8867 /// Flag
8868 ///   ::= [0|1]
8869 bool LLParser::parseFlag(unsigned &Val) {
8870   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8871     return tokError("expected integer");
8872   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8873   Lex.Lex();
8874   return false;
8875 }
8876 
8877 /// OptionalFFlags
8878 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8879 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8880 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8881 ///        [',' 'noInline' ':' Flag]? ')'
8882 ///        [',' 'alwaysInline' ':' Flag]? ')'
8883 
8884 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8885   assert(Lex.getKind() == lltok::kw_funcFlags);
8886   Lex.Lex();
8887 
8888   if (parseToken(lltok::colon, "expected ':' in funcFlags") |
8889       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8890     return true;
8891 
8892   do {
8893     unsigned Val = 0;
8894     switch (Lex.getKind()) {
8895     case lltok::kw_readNone:
8896       Lex.Lex();
8897       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8898         return true;
8899       FFlags.ReadNone = Val;
8900       break;
8901     case lltok::kw_readOnly:
8902       Lex.Lex();
8903       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8904         return true;
8905       FFlags.ReadOnly = Val;
8906       break;
8907     case lltok::kw_noRecurse:
8908       Lex.Lex();
8909       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8910         return true;
8911       FFlags.NoRecurse = Val;
8912       break;
8913     case lltok::kw_returnDoesNotAlias:
8914       Lex.Lex();
8915       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8916         return true;
8917       FFlags.ReturnDoesNotAlias = Val;
8918       break;
8919     case lltok::kw_noInline:
8920       Lex.Lex();
8921       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8922         return true;
8923       FFlags.NoInline = Val;
8924       break;
8925     case lltok::kw_alwaysInline:
8926       Lex.Lex();
8927       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8928         return true;
8929       FFlags.AlwaysInline = Val;
8930       break;
8931     default:
8932       return error(Lex.getLoc(), "expected function flag type");
8933     }
8934   } while (EatIfPresent(lltok::comma));
8935 
8936   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8937     return true;
8938 
8939   return false;
8940 }
8941 
8942 /// OptionalCalls
8943 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8944 /// Call ::= '(' 'callee' ':' GVReference
8945 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8946 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8947   assert(Lex.getKind() == lltok::kw_calls);
8948   Lex.Lex();
8949 
8950   if (parseToken(lltok::colon, "expected ':' in calls") |
8951       parseToken(lltok::lparen, "expected '(' in calls"))
8952     return true;
8953 
8954   IdToIndexMapType IdToIndexMap;
8955   // parse each call edge
8956   do {
8957     ValueInfo VI;
8958     if (parseToken(lltok::lparen, "expected '(' in call") ||
8959         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8960         parseToken(lltok::colon, "expected ':'"))
8961       return true;
8962 
8963     LocTy Loc = Lex.getLoc();
8964     unsigned GVId;
8965     if (parseGVReference(VI, GVId))
8966       return true;
8967 
8968     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8969     unsigned RelBF = 0;
8970     if (EatIfPresent(lltok::comma)) {
8971       // Expect either hotness or relbf
8972       if (EatIfPresent(lltok::kw_hotness)) {
8973         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8974           return true;
8975       } else {
8976         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8977             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8978           return true;
8979       }
8980     }
8981     // Keep track of the Call array index needing a forward reference.
8982     // We will save the location of the ValueInfo needing an update, but
8983     // can only do so once the std::vector is finalized.
8984     if (VI.getRef() == FwdVIRef)
8985       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8986     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8987 
8988     if (parseToken(lltok::rparen, "expected ')' in call"))
8989       return true;
8990   } while (EatIfPresent(lltok::comma));
8991 
8992   // Now that the Calls vector is finalized, it is safe to save the locations
8993   // of any forward GV references that need updating later.
8994   for (auto I : IdToIndexMap) {
8995     auto &Infos = ForwardRefValueInfos[I.first];
8996     for (auto P : I.second) {
8997       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8998              "Forward referenced ValueInfo expected to be empty");
8999       Infos.emplace_back(&Calls[P.first].first, P.second);
9000     }
9001   }
9002 
9003   if (parseToken(lltok::rparen, "expected ')' in calls"))
9004     return true;
9005 
9006   return false;
9007 }
9008 
9009 /// Hotness
9010 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
9011 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
9012   switch (Lex.getKind()) {
9013   case lltok::kw_unknown:
9014     Hotness = CalleeInfo::HotnessType::Unknown;
9015     break;
9016   case lltok::kw_cold:
9017     Hotness = CalleeInfo::HotnessType::Cold;
9018     break;
9019   case lltok::kw_none:
9020     Hotness = CalleeInfo::HotnessType::None;
9021     break;
9022   case lltok::kw_hot:
9023     Hotness = CalleeInfo::HotnessType::Hot;
9024     break;
9025   case lltok::kw_critical:
9026     Hotness = CalleeInfo::HotnessType::Critical;
9027     break;
9028   default:
9029     return error(Lex.getLoc(), "invalid call edge hotness");
9030   }
9031   Lex.Lex();
9032   return false;
9033 }
9034 
9035 /// OptionalVTableFuncs
9036 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
9037 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
9038 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
9039   assert(Lex.getKind() == lltok::kw_vTableFuncs);
9040   Lex.Lex();
9041 
9042   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") |
9043       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
9044     return true;
9045 
9046   IdToIndexMapType IdToIndexMap;
9047   // parse each virtual function pair
9048   do {
9049     ValueInfo VI;
9050     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
9051         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
9052         parseToken(lltok::colon, "expected ':'"))
9053       return true;
9054 
9055     LocTy Loc = Lex.getLoc();
9056     unsigned GVId;
9057     if (parseGVReference(VI, GVId))
9058       return true;
9059 
9060     uint64_t Offset;
9061     if (parseToken(lltok::comma, "expected comma") ||
9062         parseToken(lltok::kw_offset, "expected offset") ||
9063         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
9064       return true;
9065 
9066     // Keep track of the VTableFuncs array index needing a forward reference.
9067     // We will save the location of the ValueInfo needing an update, but
9068     // can only do so once the std::vector is finalized.
9069     if (VI == EmptyVI)
9070       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
9071     VTableFuncs.push_back({VI, Offset});
9072 
9073     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
9074       return true;
9075   } while (EatIfPresent(lltok::comma));
9076 
9077   // Now that the VTableFuncs vector is finalized, it is safe to save the
9078   // locations of any forward GV references that need updating later.
9079   for (auto I : IdToIndexMap) {
9080     auto &Infos = ForwardRefValueInfos[I.first];
9081     for (auto P : I.second) {
9082       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
9083              "Forward referenced ValueInfo expected to be empty");
9084       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
9085     }
9086   }
9087 
9088   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
9089     return true;
9090 
9091   return false;
9092 }
9093 
9094 /// ParamNo := 'param' ':' UInt64
9095 bool LLParser::parseParamNo(uint64_t &ParamNo) {
9096   if (parseToken(lltok::kw_param, "expected 'param' here") ||
9097       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
9098     return true;
9099   return false;
9100 }
9101 
9102 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
9103 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
9104   APSInt Lower;
9105   APSInt Upper;
9106   auto ParseAPSInt = [&](APSInt &Val) {
9107     if (Lex.getKind() != lltok::APSInt)
9108       return tokError("expected integer");
9109     Val = Lex.getAPSIntVal();
9110     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
9111     Val.setIsSigned(true);
9112     Lex.Lex();
9113     return false;
9114   };
9115   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
9116       parseToken(lltok::colon, "expected ':' here") ||
9117       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
9118       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
9119       parseToken(lltok::rsquare, "expected ']' here"))
9120     return true;
9121 
9122   ++Upper;
9123   Range =
9124       (Lower == Upper && !Lower.isMaxValue())
9125           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
9126           : ConstantRange(Lower, Upper);
9127 
9128   return false;
9129 }
9130 
9131 /// ParamAccessCall
9132 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
9133 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
9134                                     IdLocListType &IdLocList) {
9135   if (parseToken(lltok::lparen, "expected '(' here") ||
9136       parseToken(lltok::kw_callee, "expected 'callee' here") ||
9137       parseToken(lltok::colon, "expected ':' here"))
9138     return true;
9139 
9140   unsigned GVId;
9141   ValueInfo VI;
9142   LocTy Loc = Lex.getLoc();
9143   if (parseGVReference(VI, GVId))
9144     return true;
9145 
9146   Call.Callee = VI;
9147   IdLocList.emplace_back(GVId, Loc);
9148 
9149   if (parseToken(lltok::comma, "expected ',' here") ||
9150       parseParamNo(Call.ParamNo) ||
9151       parseToken(lltok::comma, "expected ',' here") ||
9152       parseParamAccessOffset(Call.Offsets))
9153     return true;
9154 
9155   if (parseToken(lltok::rparen, "expected ')' here"))
9156     return true;
9157 
9158   return false;
9159 }
9160 
9161 /// ParamAccess
9162 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
9163 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
9164 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
9165                                 IdLocListType &IdLocList) {
9166   if (parseToken(lltok::lparen, "expected '(' here") ||
9167       parseParamNo(Param.ParamNo) ||
9168       parseToken(lltok::comma, "expected ',' here") ||
9169       parseParamAccessOffset(Param.Use))
9170     return true;
9171 
9172   if (EatIfPresent(lltok::comma)) {
9173     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
9174         parseToken(lltok::colon, "expected ':' here") ||
9175         parseToken(lltok::lparen, "expected '(' here"))
9176       return true;
9177     do {
9178       FunctionSummary::ParamAccess::Call Call;
9179       if (parseParamAccessCall(Call, IdLocList))
9180         return true;
9181       Param.Calls.push_back(Call);
9182     } while (EatIfPresent(lltok::comma));
9183 
9184     if (parseToken(lltok::rparen, "expected ')' here"))
9185       return true;
9186   }
9187 
9188   if (parseToken(lltok::rparen, "expected ')' here"))
9189     return true;
9190 
9191   return false;
9192 }
9193 
9194 /// OptionalParamAccesses
9195 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
9196 bool LLParser::parseOptionalParamAccesses(
9197     std::vector<FunctionSummary::ParamAccess> &Params) {
9198   assert(Lex.getKind() == lltok::kw_params);
9199   Lex.Lex();
9200 
9201   if (parseToken(lltok::colon, "expected ':' here") ||
9202       parseToken(lltok::lparen, "expected '(' here"))
9203     return true;
9204 
9205   IdLocListType VContexts;
9206   size_t CallsNum = 0;
9207   do {
9208     FunctionSummary::ParamAccess ParamAccess;
9209     if (parseParamAccess(ParamAccess, VContexts))
9210       return true;
9211     CallsNum += ParamAccess.Calls.size();
9212     assert(VContexts.size() == CallsNum);
9213     (void)CallsNum;
9214     Params.emplace_back(std::move(ParamAccess));
9215   } while (EatIfPresent(lltok::comma));
9216 
9217   if (parseToken(lltok::rparen, "expected ')' here"))
9218     return true;
9219 
9220   // Now that the Params is finalized, it is safe to save the locations
9221   // of any forward GV references that need updating later.
9222   IdLocListType::const_iterator ItContext = VContexts.begin();
9223   for (auto &PA : Params) {
9224     for (auto &C : PA.Calls) {
9225       if (C.Callee.getRef() == FwdVIRef)
9226         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9227                                                             ItContext->second);
9228       ++ItContext;
9229     }
9230   }
9231   assert(ItContext == VContexts.end());
9232 
9233   return false;
9234 }
9235 
9236 /// OptionalRefs
9237 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
9238 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9239   assert(Lex.getKind() == lltok::kw_refs);
9240   Lex.Lex();
9241 
9242   if (parseToken(lltok::colon, "expected ':' in refs") ||
9243       parseToken(lltok::lparen, "expected '(' in refs"))
9244     return true;
9245 
9246   struct ValueContext {
9247     ValueInfo VI;
9248     unsigned GVId;
9249     LocTy Loc;
9250   };
9251   std::vector<ValueContext> VContexts;
9252   // parse each ref edge
9253   do {
9254     ValueContext VC;
9255     VC.Loc = Lex.getLoc();
9256     if (parseGVReference(VC.VI, VC.GVId))
9257       return true;
9258     VContexts.push_back(VC);
9259   } while (EatIfPresent(lltok::comma));
9260 
9261   // Sort value contexts so that ones with writeonly
9262   // and readonly ValueInfo  are at the end of VContexts vector.
9263   // See FunctionSummary::specialRefCounts()
9264   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
9265     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9266   });
9267 
9268   IdToIndexMapType IdToIndexMap;
9269   for (auto &VC : VContexts) {
9270     // Keep track of the Refs array index needing a forward reference.
9271     // We will save the location of the ValueInfo needing an update, but
9272     // can only do so once the std::vector is finalized.
9273     if (VC.VI.getRef() == FwdVIRef)
9274       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9275     Refs.push_back(VC.VI);
9276   }
9277 
9278   // Now that the Refs vector is finalized, it is safe to save the locations
9279   // of any forward GV references that need updating later.
9280   for (auto I : IdToIndexMap) {
9281     auto &Infos = ForwardRefValueInfos[I.first];
9282     for (auto P : I.second) {
9283       assert(Refs[P.first].getRef() == FwdVIRef &&
9284              "Forward referenced ValueInfo expected to be empty");
9285       Infos.emplace_back(&Refs[P.first], P.second);
9286     }
9287   }
9288 
9289   if (parseToken(lltok::rparen, "expected ')' in refs"))
9290     return true;
9291 
9292   return false;
9293 }
9294 
9295 /// OptionalTypeIdInfo
9296 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9297 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9298 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9299 bool LLParser::parseOptionalTypeIdInfo(
9300     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9301   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9302   Lex.Lex();
9303 
9304   if (parseToken(lltok::colon, "expected ':' here") ||
9305       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9306     return true;
9307 
9308   do {
9309     switch (Lex.getKind()) {
9310     case lltok::kw_typeTests:
9311       if (parseTypeTests(TypeIdInfo.TypeTests))
9312         return true;
9313       break;
9314     case lltok::kw_typeTestAssumeVCalls:
9315       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9316                            TypeIdInfo.TypeTestAssumeVCalls))
9317         return true;
9318       break;
9319     case lltok::kw_typeCheckedLoadVCalls:
9320       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9321                            TypeIdInfo.TypeCheckedLoadVCalls))
9322         return true;
9323       break;
9324     case lltok::kw_typeTestAssumeConstVCalls:
9325       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9326                               TypeIdInfo.TypeTestAssumeConstVCalls))
9327         return true;
9328       break;
9329     case lltok::kw_typeCheckedLoadConstVCalls:
9330       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9331                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9332         return true;
9333       break;
9334     default:
9335       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9336     }
9337   } while (EatIfPresent(lltok::comma));
9338 
9339   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9340     return true;
9341 
9342   return false;
9343 }
9344 
9345 /// TypeTests
9346 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9347 ///         [',' (SummaryID | UInt64)]* ')'
9348 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9349   assert(Lex.getKind() == lltok::kw_typeTests);
9350   Lex.Lex();
9351 
9352   if (parseToken(lltok::colon, "expected ':' here") ||
9353       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9354     return true;
9355 
9356   IdToIndexMapType IdToIndexMap;
9357   do {
9358     GlobalValue::GUID GUID = 0;
9359     if (Lex.getKind() == lltok::SummaryID) {
9360       unsigned ID = Lex.getUIntVal();
9361       LocTy Loc = Lex.getLoc();
9362       // Keep track of the TypeTests array index needing a forward reference.
9363       // We will save the location of the GUID needing an update, but
9364       // can only do so once the std::vector is finalized.
9365       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9366       Lex.Lex();
9367     } else if (parseUInt64(GUID))
9368       return true;
9369     TypeTests.push_back(GUID);
9370   } while (EatIfPresent(lltok::comma));
9371 
9372   // Now that the TypeTests vector is finalized, it is safe to save the
9373   // locations of any forward GV references that need updating later.
9374   for (auto I : IdToIndexMap) {
9375     auto &Ids = ForwardRefTypeIds[I.first];
9376     for (auto P : I.second) {
9377       assert(TypeTests[P.first] == 0 &&
9378              "Forward referenced type id GUID expected to be 0");
9379       Ids.emplace_back(&TypeTests[P.first], P.second);
9380     }
9381   }
9382 
9383   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9384     return true;
9385 
9386   return false;
9387 }
9388 
9389 /// VFuncIdList
9390 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9391 bool LLParser::parseVFuncIdList(
9392     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9393   assert(Lex.getKind() == Kind);
9394   Lex.Lex();
9395 
9396   if (parseToken(lltok::colon, "expected ':' here") ||
9397       parseToken(lltok::lparen, "expected '(' here"))
9398     return true;
9399 
9400   IdToIndexMapType IdToIndexMap;
9401   do {
9402     FunctionSummary::VFuncId VFuncId;
9403     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9404       return true;
9405     VFuncIdList.push_back(VFuncId);
9406   } while (EatIfPresent(lltok::comma));
9407 
9408   if (parseToken(lltok::rparen, "expected ')' here"))
9409     return true;
9410 
9411   // Now that the VFuncIdList vector is finalized, it is safe to save the
9412   // locations of any forward GV references that need updating later.
9413   for (auto I : IdToIndexMap) {
9414     auto &Ids = ForwardRefTypeIds[I.first];
9415     for (auto P : I.second) {
9416       assert(VFuncIdList[P.first].GUID == 0 &&
9417              "Forward referenced type id GUID expected to be 0");
9418       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9419     }
9420   }
9421 
9422   return false;
9423 }
9424 
9425 /// ConstVCallList
9426 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9427 bool LLParser::parseConstVCallList(
9428     lltok::Kind Kind,
9429     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9430   assert(Lex.getKind() == Kind);
9431   Lex.Lex();
9432 
9433   if (parseToken(lltok::colon, "expected ':' here") ||
9434       parseToken(lltok::lparen, "expected '(' here"))
9435     return true;
9436 
9437   IdToIndexMapType IdToIndexMap;
9438   do {
9439     FunctionSummary::ConstVCall ConstVCall;
9440     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9441       return true;
9442     ConstVCallList.push_back(ConstVCall);
9443   } while (EatIfPresent(lltok::comma));
9444 
9445   if (parseToken(lltok::rparen, "expected ')' here"))
9446     return true;
9447 
9448   // Now that the ConstVCallList vector is finalized, it is safe to save the
9449   // locations of any forward GV references that need updating later.
9450   for (auto I : IdToIndexMap) {
9451     auto &Ids = ForwardRefTypeIds[I.first];
9452     for (auto P : I.second) {
9453       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9454              "Forward referenced type id GUID expected to be 0");
9455       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9456     }
9457   }
9458 
9459   return false;
9460 }
9461 
9462 /// ConstVCall
9463 ///   ::= '(' VFuncId ',' Args ')'
9464 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9465                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9466   if (parseToken(lltok::lparen, "expected '(' here") ||
9467       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9468     return true;
9469 
9470   if (EatIfPresent(lltok::comma))
9471     if (parseArgs(ConstVCall.Args))
9472       return true;
9473 
9474   if (parseToken(lltok::rparen, "expected ')' here"))
9475     return true;
9476 
9477   return false;
9478 }
9479 
9480 /// VFuncId
9481 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9482 ///         'offset' ':' UInt64 ')'
9483 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9484                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9485   assert(Lex.getKind() == lltok::kw_vFuncId);
9486   Lex.Lex();
9487 
9488   if (parseToken(lltok::colon, "expected ':' here") ||
9489       parseToken(lltok::lparen, "expected '(' here"))
9490     return true;
9491 
9492   if (Lex.getKind() == lltok::SummaryID) {
9493     VFuncId.GUID = 0;
9494     unsigned ID = Lex.getUIntVal();
9495     LocTy Loc = Lex.getLoc();
9496     // Keep track of the array index needing a forward reference.
9497     // We will save the location of the GUID needing an update, but
9498     // can only do so once the caller's std::vector is finalized.
9499     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9500     Lex.Lex();
9501   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9502              parseToken(lltok::colon, "expected ':' here") ||
9503              parseUInt64(VFuncId.GUID))
9504     return true;
9505 
9506   if (parseToken(lltok::comma, "expected ',' here") ||
9507       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9508       parseToken(lltok::colon, "expected ':' here") ||
9509       parseUInt64(VFuncId.Offset) ||
9510       parseToken(lltok::rparen, "expected ')' here"))
9511     return true;
9512 
9513   return false;
9514 }
9515 
9516 /// GVFlags
9517 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9518 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9519 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9520 ///         'canAutoHide' ':' Flag ',' ')'
9521 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9522   assert(Lex.getKind() == lltok::kw_flags);
9523   Lex.Lex();
9524 
9525   if (parseToken(lltok::colon, "expected ':' here") ||
9526       parseToken(lltok::lparen, "expected '(' here"))
9527     return true;
9528 
9529   do {
9530     unsigned Flag = 0;
9531     switch (Lex.getKind()) {
9532     case lltok::kw_linkage:
9533       Lex.Lex();
9534       if (parseToken(lltok::colon, "expected ':'"))
9535         return true;
9536       bool HasLinkage;
9537       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9538       assert(HasLinkage && "Linkage not optional in summary entry");
9539       Lex.Lex();
9540       break;
9541     case lltok::kw_visibility:
9542       Lex.Lex();
9543       if (parseToken(lltok::colon, "expected ':'"))
9544         return true;
9545       parseOptionalVisibility(Flag);
9546       GVFlags.Visibility = Flag;
9547       break;
9548     case lltok::kw_notEligibleToImport:
9549       Lex.Lex();
9550       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9551         return true;
9552       GVFlags.NotEligibleToImport = Flag;
9553       break;
9554     case lltok::kw_live:
9555       Lex.Lex();
9556       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9557         return true;
9558       GVFlags.Live = Flag;
9559       break;
9560     case lltok::kw_dsoLocal:
9561       Lex.Lex();
9562       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9563         return true;
9564       GVFlags.DSOLocal = Flag;
9565       break;
9566     case lltok::kw_canAutoHide:
9567       Lex.Lex();
9568       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9569         return true;
9570       GVFlags.CanAutoHide = Flag;
9571       break;
9572     default:
9573       return error(Lex.getLoc(), "expected gv flag type");
9574     }
9575   } while (EatIfPresent(lltok::comma));
9576 
9577   if (parseToken(lltok::rparen, "expected ')' here"))
9578     return true;
9579 
9580   return false;
9581 }
9582 
9583 /// GVarFlags
9584 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9585 ///                      ',' 'writeonly' ':' Flag
9586 ///                      ',' 'constant' ':' Flag ')'
9587 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9588   assert(Lex.getKind() == lltok::kw_varFlags);
9589   Lex.Lex();
9590 
9591   if (parseToken(lltok::colon, "expected ':' here") ||
9592       parseToken(lltok::lparen, "expected '(' here"))
9593     return true;
9594 
9595   auto ParseRest = [this](unsigned int &Val) {
9596     Lex.Lex();
9597     if (parseToken(lltok::colon, "expected ':'"))
9598       return true;
9599     return parseFlag(Val);
9600   };
9601 
9602   do {
9603     unsigned Flag = 0;
9604     switch (Lex.getKind()) {
9605     case lltok::kw_readonly:
9606       if (ParseRest(Flag))
9607         return true;
9608       GVarFlags.MaybeReadOnly = Flag;
9609       break;
9610     case lltok::kw_writeonly:
9611       if (ParseRest(Flag))
9612         return true;
9613       GVarFlags.MaybeWriteOnly = Flag;
9614       break;
9615     case lltok::kw_constant:
9616       if (ParseRest(Flag))
9617         return true;
9618       GVarFlags.Constant = Flag;
9619       break;
9620     case lltok::kw_vcall_visibility:
9621       if (ParseRest(Flag))
9622         return true;
9623       GVarFlags.VCallVisibility = Flag;
9624       break;
9625     default:
9626       return error(Lex.getLoc(), "expected gvar flag type");
9627     }
9628   } while (EatIfPresent(lltok::comma));
9629   return parseToken(lltok::rparen, "expected ')' here");
9630 }
9631 
9632 /// ModuleReference
9633 ///   ::= 'module' ':' UInt
9634 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9635   // parse module id.
9636   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9637       parseToken(lltok::colon, "expected ':' here") ||
9638       parseToken(lltok::SummaryID, "expected module ID"))
9639     return true;
9640 
9641   unsigned ModuleID = Lex.getUIntVal();
9642   auto I = ModuleIdMap.find(ModuleID);
9643   // We should have already parsed all module IDs
9644   assert(I != ModuleIdMap.end());
9645   ModulePath = I->second;
9646   return false;
9647 }
9648 
9649 /// GVReference
9650 ///   ::= SummaryID
9651 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9652   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9653   if (!ReadOnly)
9654     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9655   if (parseToken(lltok::SummaryID, "expected GV ID"))
9656     return true;
9657 
9658   GVId = Lex.getUIntVal();
9659   // Check if we already have a VI for this GV
9660   if (GVId < NumberedValueInfos.size()) {
9661     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9662     VI = NumberedValueInfos[GVId];
9663   } else
9664     // We will create a forward reference to the stored location.
9665     VI = ValueInfo(false, FwdVIRef);
9666 
9667   if (ReadOnly)
9668     VI.setReadOnly();
9669   if (WriteOnly)
9670     VI.setWriteOnly();
9671   return false;
9672 }
9673