1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "LLToken.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueSymbolTable.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/SaveAndRestore.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstring>
49 #include <iterator>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 static std::string getTypeString(Type *T) {
55   std::string Result;
56   raw_string_ostream Tmp(Result);
57   Tmp << *T;
58   return Tmp.str();
59 }
60 
61 /// Run: module ::= toplevelentity*
62 bool LLParser::Run(bool UpgradeDebugInfo,
63                    DataLayoutCallbackTy DataLayoutCallback) {
64   // Prime the lexer.
65   Lex.Lex();
66 
67   if (Context.shouldDiscardValueNames())
68     return error(
69         Lex.getLoc(),
70         "Can't read textual IR with a Context that discards named Values");
71 
72   if (M) {
73     if (parseTargetDefinitions())
74       return true;
75 
76     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
77       M->setDataLayout(*LayoutOverride);
78   }
79 
80   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
81          validateEndOfIndex();
82 }
83 
84 bool LLParser::parseStandaloneConstantValue(Constant *&C,
85                                             const SlotMapping *Slots) {
86   restoreParsingState(Slots);
87   Lex.Lex();
88 
89   Type *Ty = nullptr;
90   if (parseType(Ty) || parseConstantValue(Ty, C))
91     return true;
92   if (Lex.getKind() != lltok::Eof)
93     return error(Lex.getLoc(), "expected end of string");
94   return false;
95 }
96 
97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
98                                     const SlotMapping *Slots) {
99   restoreParsingState(Slots);
100   Lex.Lex();
101 
102   Read = 0;
103   SMLoc Start = Lex.getLoc();
104   Ty = nullptr;
105   if (parseType(Ty))
106     return true;
107   SMLoc End = Lex.getLoc();
108   Read = End.getPointer() - Start.getPointer();
109 
110   return false;
111 }
112 
113 void LLParser::restoreParsingState(const SlotMapping *Slots) {
114   if (!Slots)
115     return;
116   NumberedVals = Slots->GlobalValues;
117   NumberedMetadata = Slots->MetadataNodes;
118   for (const auto &I : Slots->NamedTypes)
119     NamedTypes.insert(
120         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
121   for (const auto &I : Slots->Types)
122     NumberedTypes.insert(
123         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
124 }
125 
126 /// validateEndOfModule - Do final validity and sanity checks at the end of the
127 /// module.
128 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
129   if (!M)
130     return false;
131   // Handle any function attribute group forward references.
132   for (const auto &RAG : ForwardRefAttrGroups) {
133     Value *V = RAG.first;
134     const std::vector<unsigned> &Attrs = RAG.second;
135     AttrBuilder B;
136 
137     for (const auto &Attr : Attrs)
138       B.merge(NumberedAttrBuilders[Attr]);
139 
140     if (Function *Fn = dyn_cast<Function>(V)) {
141       AttributeList AS = Fn->getAttributes();
142       AttrBuilder FnAttrs(AS.getFnAttributes());
143       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
144 
145       FnAttrs.merge(B);
146 
147       // If the alignment was parsed as an attribute, move to the alignment
148       // field.
149       if (FnAttrs.hasAlignmentAttr()) {
150         Fn->setAlignment(FnAttrs.getAlignment());
151         FnAttrs.removeAttribute(Attribute::Alignment);
152       }
153 
154       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
155                             AttributeSet::get(Context, FnAttrs));
156       Fn->setAttributes(AS);
157     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
158       AttributeList AS = CI->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttributes());
160       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
161       FnAttrs.merge(B);
162       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
163                             AttributeSet::get(Context, FnAttrs));
164       CI->setAttributes(AS);
165     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
166       AttributeList AS = II->getAttributes();
167       AttrBuilder FnAttrs(AS.getFnAttributes());
168       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
169       FnAttrs.merge(B);
170       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
171                             AttributeSet::get(Context, FnAttrs));
172       II->setAttributes(AS);
173     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
174       AttributeList AS = CBI->getAttributes();
175       AttrBuilder FnAttrs(AS.getFnAttributes());
176       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
177       FnAttrs.merge(B);
178       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
179                             AttributeSet::get(Context, FnAttrs));
180       CBI->setAttributes(AS);
181     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
182       AttrBuilder Attrs(GV->getAttributes());
183       Attrs.merge(B);
184       GV->setAttributes(AttributeSet::get(Context,Attrs));
185     } else {
186       llvm_unreachable("invalid object with forward attribute group reference");
187     }
188   }
189 
190   // If there are entries in ForwardRefBlockAddresses at this point, the
191   // function was never defined.
192   if (!ForwardRefBlockAddresses.empty())
193     return error(ForwardRefBlockAddresses.begin()->first.Loc,
194                  "expected function name in blockaddress");
195 
196   for (const auto &NT : NumberedTypes)
197     if (NT.second.second.isValid())
198       return error(NT.second.second,
199                    "use of undefined type '%" + Twine(NT.first) + "'");
200 
201   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
202        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
203     if (I->second.second.isValid())
204       return error(I->second.second,
205                    "use of undefined type named '" + I->getKey() + "'");
206 
207   if (!ForwardRefComdats.empty())
208     return error(ForwardRefComdats.begin()->second,
209                  "use of undefined comdat '$" +
210                      ForwardRefComdats.begin()->first + "'");
211 
212   if (!ForwardRefVals.empty())
213     return error(ForwardRefVals.begin()->second.second,
214                  "use of undefined value '@" + ForwardRefVals.begin()->first +
215                      "'");
216 
217   if (!ForwardRefValIDs.empty())
218     return error(ForwardRefValIDs.begin()->second.second,
219                  "use of undefined value '@" +
220                      Twine(ForwardRefValIDs.begin()->first) + "'");
221 
222   if (!ForwardRefMDNodes.empty())
223     return error(ForwardRefMDNodes.begin()->second.second,
224                  "use of undefined metadata '!" +
225                      Twine(ForwardRefMDNodes.begin()->first) + "'");
226 
227   // Resolve metadata cycles.
228   for (auto &N : NumberedMetadata) {
229     if (N.second && !N.second->isResolved())
230       N.second->resolveCycles();
231   }
232 
233   for (auto *Inst : InstsWithTBAATag) {
234     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
235     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
236     auto *UpgradedMD = UpgradeTBAANode(*MD);
237     if (MD != UpgradedMD)
238       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
239   }
240 
241   // Look for intrinsic functions and CallInst that need to be upgraded
242   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
243     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
244 
245   // Some types could be renamed during loading if several modules are
246   // loaded in the same LLVMContext (LTO scenario). In this case we should
247   // remangle intrinsics names as well.
248   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
249     Function *F = &*FI++;
250     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
251       F->replaceAllUsesWith(Remangled.getValue());
252       F->eraseFromParent();
253     }
254   }
255 
256   if (UpgradeDebugInfo)
257     llvm::UpgradeDebugInfo(*M);
258 
259   UpgradeModuleFlags(*M);
260   UpgradeSectionAttributes(*M);
261 
262   if (!Slots)
263     return false;
264   // Initialize the slot mapping.
265   // Because by this point we've parsed and validated everything, we can "steal"
266   // the mapping from LLParser as it doesn't need it anymore.
267   Slots->GlobalValues = std::move(NumberedVals);
268   Slots->MetadataNodes = std::move(NumberedMetadata);
269   for (const auto &I : NamedTypes)
270     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
271   for (const auto &I : NumberedTypes)
272     Slots->Types.insert(std::make_pair(I.first, I.second.first));
273 
274   return false;
275 }
276 
277 /// Do final validity and sanity checks at the end of the index.
278 bool LLParser::validateEndOfIndex() {
279   if (!Index)
280     return false;
281 
282   if (!ForwardRefValueInfos.empty())
283     return error(ForwardRefValueInfos.begin()->second.front().second,
284                  "use of undefined summary '^" +
285                      Twine(ForwardRefValueInfos.begin()->first) + "'");
286 
287   if (!ForwardRefAliasees.empty())
288     return error(ForwardRefAliasees.begin()->second.front().second,
289                  "use of undefined summary '^" +
290                      Twine(ForwardRefAliasees.begin()->first) + "'");
291 
292   if (!ForwardRefTypeIds.empty())
293     return error(ForwardRefTypeIds.begin()->second.front().second,
294                  "use of undefined type id summary '^" +
295                      Twine(ForwardRefTypeIds.begin()->first) + "'");
296 
297   return false;
298 }
299 
300 //===----------------------------------------------------------------------===//
301 // Top-Level Entities
302 //===----------------------------------------------------------------------===//
303 
304 bool LLParser::parseTargetDefinitions() {
305   while (true) {
306     switch (Lex.getKind()) {
307     case lltok::kw_target:
308       if (parseTargetDefinition())
309         return true;
310       break;
311     case lltok::kw_source_filename:
312       if (parseSourceFileName())
313         return true;
314       break;
315     default:
316       return false;
317     }
318   }
319 }
320 
321 bool LLParser::parseTopLevelEntities() {
322   // If there is no Module, then parse just the summary index entries.
323   if (!M) {
324     while (true) {
325       switch (Lex.getKind()) {
326       case lltok::Eof:
327         return false;
328       case lltok::SummaryID:
329         if (parseSummaryEntry())
330           return true;
331         break;
332       case lltok::kw_source_filename:
333         if (parseSourceFileName())
334           return true;
335         break;
336       default:
337         // Skip everything else
338         Lex.Lex();
339       }
340     }
341   }
342   while (true) {
343     switch (Lex.getKind()) {
344     default:
345       return tokError("expected top-level entity");
346     case lltok::Eof: return false;
347     case lltok::kw_declare:
348       if (parseDeclare())
349         return true;
350       break;
351     case lltok::kw_define:
352       if (parseDefine())
353         return true;
354       break;
355     case lltok::kw_module:
356       if (parseModuleAsm())
357         return true;
358       break;
359     case lltok::kw_deplibs:
360       if (parseDepLibs())
361         return true;
362       break;
363     case lltok::LocalVarID:
364       if (parseUnnamedType())
365         return true;
366       break;
367     case lltok::LocalVar:
368       if (parseNamedType())
369         return true;
370       break;
371     case lltok::GlobalID:
372       if (parseUnnamedGlobal())
373         return true;
374       break;
375     case lltok::GlobalVar:
376       if (parseNamedGlobal())
377         return true;
378       break;
379     case lltok::ComdatVar:  if (parseComdat()) return true; break;
380     case lltok::exclaim:
381       if (parseStandaloneMetadata())
382         return true;
383       break;
384     case lltok::SummaryID:
385       if (parseSummaryEntry())
386         return true;
387       break;
388     case lltok::MetadataVar:
389       if (parseNamedMetadata())
390         return true;
391       break;
392     case lltok::kw_attributes:
393       if (parseUnnamedAttrGrp())
394         return true;
395       break;
396     case lltok::kw_uselistorder:
397       if (parseUseListOrder())
398         return true;
399       break;
400     case lltok::kw_uselistorder_bb:
401       if (parseUseListOrderBB())
402         return true;
403       break;
404     }
405   }
406 }
407 
408 /// toplevelentity
409 ///   ::= 'module' 'asm' STRINGCONSTANT
410 bool LLParser::parseModuleAsm() {
411   assert(Lex.getKind() == lltok::kw_module);
412   Lex.Lex();
413 
414   std::string AsmStr;
415   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
416       parseStringConstant(AsmStr))
417     return true;
418 
419   M->appendModuleInlineAsm(AsmStr);
420   return false;
421 }
422 
423 /// toplevelentity
424 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
425 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
426 bool LLParser::parseTargetDefinition() {
427   assert(Lex.getKind() == lltok::kw_target);
428   std::string Str;
429   switch (Lex.Lex()) {
430   default:
431     return tokError("unknown target property");
432   case lltok::kw_triple:
433     Lex.Lex();
434     if (parseToken(lltok::equal, "expected '=' after target triple") ||
435         parseStringConstant(Str))
436       return true;
437     M->setTargetTriple(Str);
438     return false;
439   case lltok::kw_datalayout:
440     Lex.Lex();
441     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
442         parseStringConstant(Str))
443       return true;
444     M->setDataLayout(Str);
445     return false;
446   }
447 }
448 
449 /// toplevelentity
450 ///   ::= 'source_filename' '=' STRINGCONSTANT
451 bool LLParser::parseSourceFileName() {
452   assert(Lex.getKind() == lltok::kw_source_filename);
453   Lex.Lex();
454   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
455       parseStringConstant(SourceFileName))
456     return true;
457   if (M)
458     M->setSourceFileName(SourceFileName);
459   return false;
460 }
461 
462 /// toplevelentity
463 ///   ::= 'deplibs' '=' '[' ']'
464 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
465 /// FIXME: Remove in 4.0. Currently parse, but ignore.
466 bool LLParser::parseDepLibs() {
467   assert(Lex.getKind() == lltok::kw_deplibs);
468   Lex.Lex();
469   if (parseToken(lltok::equal, "expected '=' after deplibs") ||
470       parseToken(lltok::lsquare, "expected '=' after deplibs"))
471     return true;
472 
473   if (EatIfPresent(lltok::rsquare))
474     return false;
475 
476   do {
477     std::string Str;
478     if (parseStringConstant(Str))
479       return true;
480   } while (EatIfPresent(lltok::comma));
481 
482   return parseToken(lltok::rsquare, "expected ']' at end of list");
483 }
484 
485 /// parseUnnamedType:
486 ///   ::= LocalVarID '=' 'type' type
487 bool LLParser::parseUnnamedType() {
488   LocTy TypeLoc = Lex.getLoc();
489   unsigned TypeID = Lex.getUIntVal();
490   Lex.Lex(); // eat LocalVarID;
491 
492   if (parseToken(lltok::equal, "expected '=' after name") ||
493       parseToken(lltok::kw_type, "expected 'type' after '='"))
494     return true;
495 
496   Type *Result = nullptr;
497   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
498     return true;
499 
500   if (!isa<StructType>(Result)) {
501     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
502     if (Entry.first)
503       return error(TypeLoc, "non-struct types may not be recursive");
504     Entry.first = Result;
505     Entry.second = SMLoc();
506   }
507 
508   return false;
509 }
510 
511 /// toplevelentity
512 ///   ::= LocalVar '=' 'type' type
513 bool LLParser::parseNamedType() {
514   std::string Name = Lex.getStrVal();
515   LocTy NameLoc = Lex.getLoc();
516   Lex.Lex();  // eat LocalVar.
517 
518   if (parseToken(lltok::equal, "expected '=' after name") ||
519       parseToken(lltok::kw_type, "expected 'type' after name"))
520     return true;
521 
522   Type *Result = nullptr;
523   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
524     return true;
525 
526   if (!isa<StructType>(Result)) {
527     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
528     if (Entry.first)
529       return error(NameLoc, "non-struct types may not be recursive");
530     Entry.first = Result;
531     Entry.second = SMLoc();
532   }
533 
534   return false;
535 }
536 
537 /// toplevelentity
538 ///   ::= 'declare' FunctionHeader
539 bool LLParser::parseDeclare() {
540   assert(Lex.getKind() == lltok::kw_declare);
541   Lex.Lex();
542 
543   std::vector<std::pair<unsigned, MDNode *>> MDs;
544   while (Lex.getKind() == lltok::MetadataVar) {
545     unsigned MDK;
546     MDNode *N;
547     if (parseMetadataAttachment(MDK, N))
548       return true;
549     MDs.push_back({MDK, N});
550   }
551 
552   Function *F;
553   if (parseFunctionHeader(F, false))
554     return true;
555   for (auto &MD : MDs)
556     F->addMetadata(MD.first, *MD.second);
557   return false;
558 }
559 
560 /// toplevelentity
561 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
562 bool LLParser::parseDefine() {
563   assert(Lex.getKind() == lltok::kw_define);
564   Lex.Lex();
565 
566   Function *F;
567   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
568          parseFunctionBody(*F);
569 }
570 
571 /// parseGlobalType
572 ///   ::= 'constant'
573 ///   ::= 'global'
574 bool LLParser::parseGlobalType(bool &IsConstant) {
575   if (Lex.getKind() == lltok::kw_constant)
576     IsConstant = true;
577   else if (Lex.getKind() == lltok::kw_global)
578     IsConstant = false;
579   else {
580     IsConstant = false;
581     return tokError("expected 'global' or 'constant'");
582   }
583   Lex.Lex();
584   return false;
585 }
586 
587 bool LLParser::parseOptionalUnnamedAddr(
588     GlobalVariable::UnnamedAddr &UnnamedAddr) {
589   if (EatIfPresent(lltok::kw_unnamed_addr))
590     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
591   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
592     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
593   else
594     UnnamedAddr = GlobalValue::UnnamedAddr::None;
595   return false;
596 }
597 
598 /// parseUnnamedGlobal:
599 ///   OptionalVisibility (ALIAS | IFUNC) ...
600 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
601 ///   OptionalDLLStorageClass
602 ///                                                     ...   -> global variable
603 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
604 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
605 ///   OptionalVisibility
606 ///                OptionalDLLStorageClass
607 ///                                                     ...   -> global variable
608 bool LLParser::parseUnnamedGlobal() {
609   unsigned VarID = NumberedVals.size();
610   std::string Name;
611   LocTy NameLoc = Lex.getLoc();
612 
613   // Handle the GlobalID form.
614   if (Lex.getKind() == lltok::GlobalID) {
615     if (Lex.getUIntVal() != VarID)
616       return error(Lex.getLoc(),
617                    "variable expected to be numbered '%" + Twine(VarID) + "'");
618     Lex.Lex(); // eat GlobalID;
619 
620     if (parseToken(lltok::equal, "expected '=' after name"))
621       return true;
622   }
623 
624   bool HasLinkage;
625   unsigned Linkage, Visibility, DLLStorageClass;
626   bool DSOLocal;
627   GlobalVariable::ThreadLocalMode TLM;
628   GlobalVariable::UnnamedAddr UnnamedAddr;
629   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
630                            DSOLocal) ||
631       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
632     return true;
633 
634   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
635     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
636                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
637 
638   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
639                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
640 }
641 
642 /// parseNamedGlobal:
643 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
644 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
645 ///                 OptionalVisibility OptionalDLLStorageClass
646 ///                                                     ...   -> global variable
647 bool LLParser::parseNamedGlobal() {
648   assert(Lex.getKind() == lltok::GlobalVar);
649   LocTy NameLoc = Lex.getLoc();
650   std::string Name = Lex.getStrVal();
651   Lex.Lex();
652 
653   bool HasLinkage;
654   unsigned Linkage, Visibility, DLLStorageClass;
655   bool DSOLocal;
656   GlobalVariable::ThreadLocalMode TLM;
657   GlobalVariable::UnnamedAddr UnnamedAddr;
658   if (parseToken(lltok::equal, "expected '=' in global variable") ||
659       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
660                            DSOLocal) ||
661       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
662     return true;
663 
664   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
665     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
666                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
667 
668   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
669                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
670 }
671 
672 bool LLParser::parseComdat() {
673   assert(Lex.getKind() == lltok::ComdatVar);
674   std::string Name = Lex.getStrVal();
675   LocTy NameLoc = Lex.getLoc();
676   Lex.Lex();
677 
678   if (parseToken(lltok::equal, "expected '=' here"))
679     return true;
680 
681   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
682     return tokError("expected comdat type");
683 
684   Comdat::SelectionKind SK;
685   switch (Lex.getKind()) {
686   default:
687     return tokError("unknown selection kind");
688   case lltok::kw_any:
689     SK = Comdat::Any;
690     break;
691   case lltok::kw_exactmatch:
692     SK = Comdat::ExactMatch;
693     break;
694   case lltok::kw_largest:
695     SK = Comdat::Largest;
696     break;
697   case lltok::kw_noduplicates:
698     SK = Comdat::NoDuplicates;
699     break;
700   case lltok::kw_samesize:
701     SK = Comdat::SameSize;
702     break;
703   }
704   Lex.Lex();
705 
706   // See if the comdat was forward referenced, if so, use the comdat.
707   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
708   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
709   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
710     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
711 
712   Comdat *C;
713   if (I != ComdatSymTab.end())
714     C = &I->second;
715   else
716     C = M->getOrInsertComdat(Name);
717   C->setSelectionKind(SK);
718 
719   return false;
720 }
721 
722 // MDString:
723 //   ::= '!' STRINGCONSTANT
724 bool LLParser::parseMDString(MDString *&Result) {
725   std::string Str;
726   if (parseStringConstant(Str))
727     return true;
728   Result = MDString::get(Context, Str);
729   return false;
730 }
731 
732 // MDNode:
733 //   ::= '!' MDNodeNumber
734 bool LLParser::parseMDNodeID(MDNode *&Result) {
735   // !{ ..., !42, ... }
736   LocTy IDLoc = Lex.getLoc();
737   unsigned MID = 0;
738   if (parseUInt32(MID))
739     return true;
740 
741   // If not a forward reference, just return it now.
742   if (NumberedMetadata.count(MID)) {
743     Result = NumberedMetadata[MID];
744     return false;
745   }
746 
747   // Otherwise, create MDNode forward reference.
748   auto &FwdRef = ForwardRefMDNodes[MID];
749   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
750 
751   Result = FwdRef.first.get();
752   NumberedMetadata[MID].reset(Result);
753   return false;
754 }
755 
756 /// parseNamedMetadata:
757 ///   !foo = !{ !1, !2 }
758 bool LLParser::parseNamedMetadata() {
759   assert(Lex.getKind() == lltok::MetadataVar);
760   std::string Name = Lex.getStrVal();
761   Lex.Lex();
762 
763   if (parseToken(lltok::equal, "expected '=' here") ||
764       parseToken(lltok::exclaim, "Expected '!' here") ||
765       parseToken(lltok::lbrace, "Expected '{' here"))
766     return true;
767 
768   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
769   if (Lex.getKind() != lltok::rbrace)
770     do {
771       MDNode *N = nullptr;
772       // parse DIExpressions inline as a special case. They are still MDNodes,
773       // so they can still appear in named metadata. Remove this logic if they
774       // become plain Metadata.
775       if (Lex.getKind() == lltok::MetadataVar &&
776           Lex.getStrVal() == "DIExpression") {
777         if (parseDIExpression(N, /*IsDistinct=*/false))
778           return true;
779         // DIArgLists should only appear inline in a function, as they may
780         // contain LocalAsMetadata arguments which require a function context.
781       } else if (Lex.getKind() == lltok::MetadataVar &&
782                  Lex.getStrVal() == "DIArgList") {
783         return tokError("found DIArgList outside of function");
784       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
785                  parseMDNodeID(N)) {
786         return true;
787       }
788       NMD->addOperand(N);
789     } while (EatIfPresent(lltok::comma));
790 
791   return parseToken(lltok::rbrace, "expected end of metadata node");
792 }
793 
794 /// parseStandaloneMetadata:
795 ///   !42 = !{...}
796 bool LLParser::parseStandaloneMetadata() {
797   assert(Lex.getKind() == lltok::exclaim);
798   Lex.Lex();
799   unsigned MetadataID = 0;
800 
801   MDNode *Init;
802   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
803     return true;
804 
805   // Detect common error, from old metadata syntax.
806   if (Lex.getKind() == lltok::Type)
807     return tokError("unexpected type in metadata definition");
808 
809   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
810   if (Lex.getKind() == lltok::MetadataVar) {
811     if (parseSpecializedMDNode(Init, IsDistinct))
812       return true;
813   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
814              parseMDTuple(Init, IsDistinct))
815     return true;
816 
817   // See if this was forward referenced, if so, handle it.
818   auto FI = ForwardRefMDNodes.find(MetadataID);
819   if (FI != ForwardRefMDNodes.end()) {
820     FI->second.first->replaceAllUsesWith(Init);
821     ForwardRefMDNodes.erase(FI);
822 
823     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
824   } else {
825     if (NumberedMetadata.count(MetadataID))
826       return tokError("Metadata id is already used");
827     NumberedMetadata[MetadataID].reset(Init);
828   }
829 
830   return false;
831 }
832 
833 // Skips a single module summary entry.
834 bool LLParser::skipModuleSummaryEntry() {
835   // Each module summary entry consists of a tag for the entry
836   // type, followed by a colon, then the fields which may be surrounded by
837   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
838   // support is in place we will look for the tokens corresponding to the
839   // expected tags.
840   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
841       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
842       Lex.getKind() != lltok::kw_blockcount)
843     return tokError(
844         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
845         "start of summary entry");
846   if (Lex.getKind() == lltok::kw_flags)
847     return parseSummaryIndexFlags();
848   if (Lex.getKind() == lltok::kw_blockcount)
849     return parseBlockCount();
850   Lex.Lex();
851   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
852       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
853     return true;
854   // Now walk through the parenthesized entry, until the number of open
855   // parentheses goes back down to 0 (the first '(' was parsed above).
856   unsigned NumOpenParen = 1;
857   do {
858     switch (Lex.getKind()) {
859     case lltok::lparen:
860       NumOpenParen++;
861       break;
862     case lltok::rparen:
863       NumOpenParen--;
864       break;
865     case lltok::Eof:
866       return tokError("found end of file while parsing summary entry");
867     default:
868       // Skip everything in between parentheses.
869       break;
870     }
871     Lex.Lex();
872   } while (NumOpenParen > 0);
873   return false;
874 }
875 
876 /// SummaryEntry
877 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
878 bool LLParser::parseSummaryEntry() {
879   assert(Lex.getKind() == lltok::SummaryID);
880   unsigned SummaryID = Lex.getUIntVal();
881 
882   // For summary entries, colons should be treated as distinct tokens,
883   // not an indication of the end of a label token.
884   Lex.setIgnoreColonInIdentifiers(true);
885 
886   Lex.Lex();
887   if (parseToken(lltok::equal, "expected '=' here"))
888     return true;
889 
890   // If we don't have an index object, skip the summary entry.
891   if (!Index)
892     return skipModuleSummaryEntry();
893 
894   bool result = false;
895   switch (Lex.getKind()) {
896   case lltok::kw_gv:
897     result = parseGVEntry(SummaryID);
898     break;
899   case lltok::kw_module:
900     result = parseModuleEntry(SummaryID);
901     break;
902   case lltok::kw_typeid:
903     result = parseTypeIdEntry(SummaryID);
904     break;
905   case lltok::kw_typeidCompatibleVTable:
906     result = parseTypeIdCompatibleVtableEntry(SummaryID);
907     break;
908   case lltok::kw_flags:
909     result = parseSummaryIndexFlags();
910     break;
911   case lltok::kw_blockcount:
912     result = parseBlockCount();
913     break;
914   default:
915     result = error(Lex.getLoc(), "unexpected summary kind");
916     break;
917   }
918   Lex.setIgnoreColonInIdentifiers(false);
919   return result;
920 }
921 
922 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
923   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
924          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
925 }
926 
927 // If there was an explicit dso_local, update GV. In the absence of an explicit
928 // dso_local we keep the default value.
929 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
930   if (DSOLocal)
931     GV.setDSOLocal(true);
932 }
933 
934 /// parseIndirectSymbol:
935 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
936 ///                     OptionalVisibility OptionalDLLStorageClass
937 ///                     OptionalThreadLocal OptionalUnnamedAddr
938 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
939 ///
940 /// IndirectSymbol
941 ///   ::= TypeAndValue
942 ///
943 /// IndirectSymbolAttr
944 ///   ::= ',' 'partition' StringConstant
945 ///
946 /// Everything through OptionalUnnamedAddr has already been parsed.
947 ///
948 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
949                                    unsigned L, unsigned Visibility,
950                                    unsigned DLLStorageClass, bool DSOLocal,
951                                    GlobalVariable::ThreadLocalMode TLM,
952                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
953   bool IsAlias;
954   if (Lex.getKind() == lltok::kw_alias)
955     IsAlias = true;
956   else if (Lex.getKind() == lltok::kw_ifunc)
957     IsAlias = false;
958   else
959     llvm_unreachable("Not an alias or ifunc!");
960   Lex.Lex();
961 
962   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
963 
964   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
965     return error(NameLoc, "invalid linkage type for alias");
966 
967   if (!isValidVisibilityForLinkage(Visibility, L))
968     return error(NameLoc,
969                  "symbol with local linkage must have default visibility");
970 
971   Type *Ty;
972   LocTy ExplicitTypeLoc = Lex.getLoc();
973   if (parseType(Ty) ||
974       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
975     return true;
976 
977   Constant *Aliasee;
978   LocTy AliaseeLoc = Lex.getLoc();
979   if (Lex.getKind() != lltok::kw_bitcast &&
980       Lex.getKind() != lltok::kw_getelementptr &&
981       Lex.getKind() != lltok::kw_addrspacecast &&
982       Lex.getKind() != lltok::kw_inttoptr) {
983     if (parseGlobalTypeAndValue(Aliasee))
984       return true;
985   } else {
986     // The bitcast dest type is not present, it is implied by the dest type.
987     ValID ID;
988     if (parseValID(ID))
989       return true;
990     if (ID.Kind != ValID::t_Constant)
991       return error(AliaseeLoc, "invalid aliasee");
992     Aliasee = ID.ConstantVal;
993   }
994 
995   Type *AliaseeType = Aliasee->getType();
996   auto *PTy = dyn_cast<PointerType>(AliaseeType);
997   if (!PTy)
998     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
999   unsigned AddrSpace = PTy->getAddressSpace();
1000 
1001   if (IsAlias && Ty != PTy->getElementType())
1002     return error(ExplicitTypeLoc,
1003                  "explicit pointee type doesn't match operand's pointee type");
1004 
1005   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
1006     return error(ExplicitTypeLoc,
1007                  "explicit pointee type should be a function type");
1008 
1009   GlobalValue *GVal = nullptr;
1010 
1011   // See if the alias was forward referenced, if so, prepare to replace the
1012   // forward reference.
1013   if (!Name.empty()) {
1014     GVal = M->getNamedValue(Name);
1015     if (GVal) {
1016       if (!ForwardRefVals.erase(Name))
1017         return error(NameLoc, "redefinition of global '@" + Name + "'");
1018     }
1019   } else {
1020     auto I = ForwardRefValIDs.find(NumberedVals.size());
1021     if (I != ForwardRefValIDs.end()) {
1022       GVal = I->second.first;
1023       ForwardRefValIDs.erase(I);
1024     }
1025   }
1026 
1027   // Okay, create the alias but do not insert it into the module yet.
1028   std::unique_ptr<GlobalIndirectSymbol> GA;
1029   if (IsAlias)
1030     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1031                                  (GlobalValue::LinkageTypes)Linkage, Name,
1032                                  Aliasee, /*Parent*/ nullptr));
1033   else
1034     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
1035                                  (GlobalValue::LinkageTypes)Linkage, Name,
1036                                  Aliasee, /*Parent*/ nullptr));
1037   GA->setThreadLocalMode(TLM);
1038   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1039   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1040   GA->setUnnamedAddr(UnnamedAddr);
1041   maybeSetDSOLocal(DSOLocal, *GA);
1042 
1043   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1044   // Now parse them if there are any.
1045   while (Lex.getKind() == lltok::comma) {
1046     Lex.Lex();
1047 
1048     if (Lex.getKind() == lltok::kw_partition) {
1049       Lex.Lex();
1050       GA->setPartition(Lex.getStrVal());
1051       if (parseToken(lltok::StringConstant, "expected partition string"))
1052         return true;
1053     } else {
1054       return tokError("unknown alias or ifunc property!");
1055     }
1056   }
1057 
1058   if (Name.empty())
1059     NumberedVals.push_back(GA.get());
1060 
1061   if (GVal) {
1062     // Verify that types agree.
1063     if (GVal->getType() != GA->getType())
1064       return error(
1065           ExplicitTypeLoc,
1066           "forward reference and definition of alias have different types");
1067 
1068     // If they agree, just RAUW the old value with the alias and remove the
1069     // forward ref info.
1070     GVal->replaceAllUsesWith(GA.get());
1071     GVal->eraseFromParent();
1072   }
1073 
1074   // Insert into the module, we know its name won't collide now.
1075   if (IsAlias)
1076     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1077   else
1078     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1079   assert(GA->getName() == Name && "Should not be a name conflict!");
1080 
1081   // The module owns this now
1082   GA.release();
1083 
1084   return false;
1085 }
1086 
1087 /// parseGlobal
1088 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1089 ///       OptionalVisibility OptionalDLLStorageClass
1090 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1091 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1092 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1093 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1094 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1095 ///       Const OptionalAttrs
1096 ///
1097 /// Everything up to and including OptionalUnnamedAddr has been parsed
1098 /// already.
1099 ///
1100 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1101                            unsigned Linkage, bool HasLinkage,
1102                            unsigned Visibility, unsigned DLLStorageClass,
1103                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1104                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1105   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1106     return error(NameLoc,
1107                  "symbol with local linkage must have default visibility");
1108 
1109   unsigned AddrSpace;
1110   bool IsConstant, IsExternallyInitialized;
1111   LocTy IsExternallyInitializedLoc;
1112   LocTy TyLoc;
1113 
1114   Type *Ty = nullptr;
1115   if (parseOptionalAddrSpace(AddrSpace) ||
1116       parseOptionalToken(lltok::kw_externally_initialized,
1117                          IsExternallyInitialized,
1118                          &IsExternallyInitializedLoc) ||
1119       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1120     return true;
1121 
1122   // If the linkage is specified and is external, then no initializer is
1123   // present.
1124   Constant *Init = nullptr;
1125   if (!HasLinkage ||
1126       !GlobalValue::isValidDeclarationLinkage(
1127           (GlobalValue::LinkageTypes)Linkage)) {
1128     if (parseGlobalValue(Ty, Init))
1129       return true;
1130   }
1131 
1132   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1133     return error(TyLoc, "invalid type for global variable");
1134 
1135   GlobalValue *GVal = nullptr;
1136 
1137   // See if the global was forward referenced, if so, use the global.
1138   if (!Name.empty()) {
1139     GVal = M->getNamedValue(Name);
1140     if (GVal) {
1141       if (!ForwardRefVals.erase(Name))
1142         return error(NameLoc, "redefinition of global '@" + Name + "'");
1143     }
1144   } else {
1145     auto I = ForwardRefValIDs.find(NumberedVals.size());
1146     if (I != ForwardRefValIDs.end()) {
1147       GVal = I->second.first;
1148       ForwardRefValIDs.erase(I);
1149     }
1150   }
1151 
1152   GlobalVariable *GV;
1153   if (!GVal) {
1154     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1155                             Name, nullptr, GlobalVariable::NotThreadLocal,
1156                             AddrSpace);
1157   } else {
1158     if (GVal->getValueType() != Ty)
1159       return error(
1160           TyLoc,
1161           "forward reference and definition of global have different types");
1162 
1163     GV = cast<GlobalVariable>(GVal);
1164 
1165     // Move the forward-reference to the correct spot in the module.
1166     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1167   }
1168 
1169   if (Name.empty())
1170     NumberedVals.push_back(GV);
1171 
1172   // Set the parsed properties on the global.
1173   if (Init)
1174     GV->setInitializer(Init);
1175   GV->setConstant(IsConstant);
1176   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1177   maybeSetDSOLocal(DSOLocal, *GV);
1178   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1179   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1180   GV->setExternallyInitialized(IsExternallyInitialized);
1181   GV->setThreadLocalMode(TLM);
1182   GV->setUnnamedAddr(UnnamedAddr);
1183 
1184   // parse attributes on the global.
1185   while (Lex.getKind() == lltok::comma) {
1186     Lex.Lex();
1187 
1188     if (Lex.getKind() == lltok::kw_section) {
1189       Lex.Lex();
1190       GV->setSection(Lex.getStrVal());
1191       if (parseToken(lltok::StringConstant, "expected global section string"))
1192         return true;
1193     } else if (Lex.getKind() == lltok::kw_partition) {
1194       Lex.Lex();
1195       GV->setPartition(Lex.getStrVal());
1196       if (parseToken(lltok::StringConstant, "expected partition string"))
1197         return true;
1198     } else if (Lex.getKind() == lltok::kw_align) {
1199       MaybeAlign Alignment;
1200       if (parseOptionalAlignment(Alignment))
1201         return true;
1202       GV->setAlignment(Alignment);
1203     } else if (Lex.getKind() == lltok::MetadataVar) {
1204       if (parseGlobalObjectMetadataAttachment(*GV))
1205         return true;
1206     } else {
1207       Comdat *C;
1208       if (parseOptionalComdat(Name, C))
1209         return true;
1210       if (C)
1211         GV->setComdat(C);
1212       else
1213         return tokError("unknown global variable property!");
1214     }
1215   }
1216 
1217   AttrBuilder Attrs;
1218   LocTy BuiltinLoc;
1219   std::vector<unsigned> FwdRefAttrGrps;
1220   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1221     return true;
1222   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1223     GV->setAttributes(AttributeSet::get(Context, Attrs));
1224     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1225   }
1226 
1227   return false;
1228 }
1229 
1230 /// parseUnnamedAttrGrp
1231 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1232 bool LLParser::parseUnnamedAttrGrp() {
1233   assert(Lex.getKind() == lltok::kw_attributes);
1234   LocTy AttrGrpLoc = Lex.getLoc();
1235   Lex.Lex();
1236 
1237   if (Lex.getKind() != lltok::AttrGrpID)
1238     return tokError("expected attribute group id");
1239 
1240   unsigned VarID = Lex.getUIntVal();
1241   std::vector<unsigned> unused;
1242   LocTy BuiltinLoc;
1243   Lex.Lex();
1244 
1245   if (parseToken(lltok::equal, "expected '=' here") ||
1246       parseToken(lltok::lbrace, "expected '{' here") ||
1247       parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1248                                  BuiltinLoc) ||
1249       parseToken(lltok::rbrace, "expected end of attribute group"))
1250     return true;
1251 
1252   if (!NumberedAttrBuilders[VarID].hasAttributes())
1253     return error(AttrGrpLoc, "attribute group has no attributes");
1254 
1255   return false;
1256 }
1257 
1258 /// parseFnAttributeValuePairs
1259 ///   ::= <attr> | <attr> '=' <value>
1260 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1261                                           std::vector<unsigned> &FwdRefAttrGrps,
1262                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1263   bool HaveError = false;
1264 
1265   B.clear();
1266 
1267   while (true) {
1268     lltok::Kind Token = Lex.getKind();
1269     if (Token == lltok::kw_builtin)
1270       BuiltinLoc = Lex.getLoc();
1271     switch (Token) {
1272     default:
1273       if (!inAttrGrp) return HaveError;
1274       return error(Lex.getLoc(), "unterminated attribute group");
1275     case lltok::rbrace:
1276       // Finished.
1277       return false;
1278 
1279     case lltok::AttrGrpID: {
1280       // Allow a function to reference an attribute group:
1281       //
1282       //   define void @foo() #1 { ... }
1283       if (inAttrGrp)
1284         HaveError |= error(
1285             Lex.getLoc(),
1286             "cannot have an attribute group reference in an attribute group");
1287 
1288       unsigned AttrGrpNum = Lex.getUIntVal();
1289       if (inAttrGrp) break;
1290 
1291       // Save the reference to the attribute group. We'll fill it in later.
1292       FwdRefAttrGrps.push_back(AttrGrpNum);
1293       break;
1294     }
1295     // Target-dependent attributes:
1296     case lltok::StringConstant: {
1297       if (parseStringAttribute(B))
1298         return true;
1299       continue;
1300     }
1301 
1302     // Target-independent attributes:
1303     case lltok::kw_align: {
1304       // As a hack, we allow function alignment to be initially parsed as an
1305       // attribute on a function declaration/definition or added to an attribute
1306       // group and later moved to the alignment field.
1307       MaybeAlign Alignment;
1308       if (inAttrGrp) {
1309         Lex.Lex();
1310         uint32_t Value = 0;
1311         if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1312           return true;
1313         Alignment = Align(Value);
1314       } else {
1315         if (parseOptionalAlignment(Alignment))
1316           return true;
1317       }
1318       B.addAlignmentAttr(Alignment);
1319       continue;
1320     }
1321     case lltok::kw_alignstack: {
1322       unsigned Alignment;
1323       if (inAttrGrp) {
1324         Lex.Lex();
1325         if (parseToken(lltok::equal, "expected '=' here") ||
1326             parseUInt32(Alignment))
1327           return true;
1328       } else {
1329         if (parseOptionalStackAlignment(Alignment))
1330           return true;
1331       }
1332       B.addStackAlignmentAttr(Alignment);
1333       continue;
1334     }
1335     case lltok::kw_allocsize: {
1336       unsigned ElemSizeArg;
1337       Optional<unsigned> NumElemsArg;
1338       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1339       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1340         return true;
1341       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1342       continue;
1343     }
1344     case lltok::kw_vscale_range: {
1345       unsigned MinValue, MaxValue;
1346       // inAttrGrp doesn't matter; we only support vscale_range(a[, b])
1347       if (parseVScaleRangeArguments(MinValue, MaxValue))
1348         return true;
1349       B.addVScaleRangeAttr(MinValue, MaxValue);
1350       continue;
1351     }
1352     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1353     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1354     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1355     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1356     case lltok::kw_hot: B.addAttribute(Attribute::Hot); break;
1357     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1358     case lltok::kw_inaccessiblememonly:
1359       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1360     case lltok::kw_inaccessiblemem_or_argmemonly:
1361       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1362     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1363     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1364     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1365     case lltok::kw_mustprogress:
1366       B.addAttribute(Attribute::MustProgress);
1367       break;
1368     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1369     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1370     case lltok::kw_nocallback:
1371       B.addAttribute(Attribute::NoCallback);
1372       break;
1373     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1374     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1375     case lltok::kw_noimplicitfloat:
1376       B.addAttribute(Attribute::NoImplicitFloat); break;
1377     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1378     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1379     case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break;
1380     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1381     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1382     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1383     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1384     case lltok::kw_noprofile: B.addAttribute(Attribute::NoProfile); break;
1385     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1386     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1387     case lltok::kw_null_pointer_is_valid:
1388       B.addAttribute(Attribute::NullPointerIsValid); break;
1389     case lltok::kw_optforfuzzing:
1390       B.addAttribute(Attribute::OptForFuzzing); break;
1391     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1392     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1393     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1394     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1395     case lltok::kw_returns_twice:
1396       B.addAttribute(Attribute::ReturnsTwice); break;
1397     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1398     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1399     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1400     case lltok::kw_sspstrong:
1401       B.addAttribute(Attribute::StackProtectStrong); break;
1402     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1403     case lltok::kw_shadowcallstack:
1404       B.addAttribute(Attribute::ShadowCallStack); break;
1405     case lltok::kw_sanitize_address:
1406       B.addAttribute(Attribute::SanitizeAddress); break;
1407     case lltok::kw_sanitize_hwaddress:
1408       B.addAttribute(Attribute::SanitizeHWAddress); break;
1409     case lltok::kw_sanitize_memtag:
1410       B.addAttribute(Attribute::SanitizeMemTag); break;
1411     case lltok::kw_sanitize_thread:
1412       B.addAttribute(Attribute::SanitizeThread); break;
1413     case lltok::kw_sanitize_memory:
1414       B.addAttribute(Attribute::SanitizeMemory); break;
1415     case lltok::kw_speculative_load_hardening:
1416       B.addAttribute(Attribute::SpeculativeLoadHardening);
1417       break;
1418     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1419     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1420     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1421     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1422     case lltok::kw_preallocated: {
1423       Type *Ty;
1424       if (parsePreallocated(Ty))
1425         return true;
1426       B.addPreallocatedAttr(Ty);
1427       break;
1428     }
1429 
1430     // error handling.
1431     case lltok::kw_inreg:
1432     case lltok::kw_signext:
1433     case lltok::kw_zeroext:
1434       HaveError |=
1435           error(Lex.getLoc(), "invalid use of attribute on a function");
1436       break;
1437     case lltok::kw_byval:
1438     case lltok::kw_dereferenceable:
1439     case lltok::kw_dereferenceable_or_null:
1440     case lltok::kw_inalloca:
1441     case lltok::kw_nest:
1442     case lltok::kw_noalias:
1443     case lltok::kw_noundef:
1444     case lltok::kw_nocapture:
1445     case lltok::kw_nonnull:
1446     case lltok::kw_returned:
1447     case lltok::kw_sret:
1448     case lltok::kw_swifterror:
1449     case lltok::kw_swiftself:
1450     case lltok::kw_immarg:
1451     case lltok::kw_byref:
1452       HaveError |=
1453           error(Lex.getLoc(),
1454                 "invalid use of parameter-only attribute on a function");
1455       break;
1456     }
1457 
1458     // parsePreallocated() consumes token
1459     if (Token != lltok::kw_preallocated)
1460       Lex.Lex();
1461   }
1462 }
1463 
1464 //===----------------------------------------------------------------------===//
1465 // GlobalValue Reference/Resolution Routines.
1466 //===----------------------------------------------------------------------===//
1467 
1468 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1469                                               const std::string &Name) {
1470   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1471     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1472                             PTy->getAddressSpace(), Name, M);
1473   else
1474     return new GlobalVariable(*M, PTy->getElementType(), false,
1475                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1476                               nullptr, GlobalVariable::NotThreadLocal,
1477                               PTy->getAddressSpace());
1478 }
1479 
1480 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1481                                         Value *Val, bool IsCall) {
1482   if (Val->getType() == Ty)
1483     return Val;
1484   // For calls we also accept variables in the program address space.
1485   Type *SuggestedTy = Ty;
1486   if (IsCall && isa<PointerType>(Ty)) {
1487     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1488         M->getDataLayout().getProgramAddressSpace());
1489     SuggestedTy = TyInProgAS;
1490     if (Val->getType() == TyInProgAS)
1491       return Val;
1492   }
1493   if (Ty->isLabelTy())
1494     error(Loc, "'" + Name + "' is not a basic block");
1495   else
1496     error(Loc, "'" + Name + "' defined with type '" +
1497                    getTypeString(Val->getType()) + "' but expected '" +
1498                    getTypeString(SuggestedTy) + "'");
1499   return nullptr;
1500 }
1501 
1502 /// getGlobalVal - Get a value with the specified name or ID, creating a
1503 /// forward reference record if needed.  This can return null if the value
1504 /// exists but does not have the right type.
1505 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1506                                     LocTy Loc, bool IsCall) {
1507   PointerType *PTy = dyn_cast<PointerType>(Ty);
1508   if (!PTy) {
1509     error(Loc, "global variable reference must have pointer type");
1510     return nullptr;
1511   }
1512 
1513   // Look this name up in the normal function symbol table.
1514   GlobalValue *Val =
1515     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1516 
1517   // If this is a forward reference for the value, see if we already created a
1518   // forward ref record.
1519   if (!Val) {
1520     auto I = ForwardRefVals.find(Name);
1521     if (I != ForwardRefVals.end())
1522       Val = I->second.first;
1523   }
1524 
1525   // If we have the value in the symbol table or fwd-ref table, return it.
1526   if (Val)
1527     return cast_or_null<GlobalValue>(
1528         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1529 
1530   // Otherwise, create a new forward reference for this value and remember it.
1531   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1532   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1533   return FwdVal;
1534 }
1535 
1536 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1537                                     bool IsCall) {
1538   PointerType *PTy = dyn_cast<PointerType>(Ty);
1539   if (!PTy) {
1540     error(Loc, "global variable reference must have pointer type");
1541     return nullptr;
1542   }
1543 
1544   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1545 
1546   // If this is a forward reference for the value, see if we already created a
1547   // forward ref record.
1548   if (!Val) {
1549     auto I = ForwardRefValIDs.find(ID);
1550     if (I != ForwardRefValIDs.end())
1551       Val = I->second.first;
1552   }
1553 
1554   // If we have the value in the symbol table or fwd-ref table, return it.
1555   if (Val)
1556     return cast_or_null<GlobalValue>(
1557         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1558 
1559   // Otherwise, create a new forward reference for this value and remember it.
1560   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1561   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1562   return FwdVal;
1563 }
1564 
1565 //===----------------------------------------------------------------------===//
1566 // Comdat Reference/Resolution Routines.
1567 //===----------------------------------------------------------------------===//
1568 
1569 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1570   // Look this name up in the comdat symbol table.
1571   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1572   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1573   if (I != ComdatSymTab.end())
1574     return &I->second;
1575 
1576   // Otherwise, create a new forward reference for this value and remember it.
1577   Comdat *C = M->getOrInsertComdat(Name);
1578   ForwardRefComdats[Name] = Loc;
1579   return C;
1580 }
1581 
1582 //===----------------------------------------------------------------------===//
1583 // Helper Routines.
1584 //===----------------------------------------------------------------------===//
1585 
1586 /// parseToken - If the current token has the specified kind, eat it and return
1587 /// success.  Otherwise, emit the specified error and return failure.
1588 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1589   if (Lex.getKind() != T)
1590     return tokError(ErrMsg);
1591   Lex.Lex();
1592   return false;
1593 }
1594 
1595 /// parseStringConstant
1596 ///   ::= StringConstant
1597 bool LLParser::parseStringConstant(std::string &Result) {
1598   if (Lex.getKind() != lltok::StringConstant)
1599     return tokError("expected string constant");
1600   Result = Lex.getStrVal();
1601   Lex.Lex();
1602   return false;
1603 }
1604 
1605 /// parseUInt32
1606 ///   ::= uint32
1607 bool LLParser::parseUInt32(uint32_t &Val) {
1608   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1609     return tokError("expected integer");
1610   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1611   if (Val64 != unsigned(Val64))
1612     return tokError("expected 32-bit integer (too large)");
1613   Val = Val64;
1614   Lex.Lex();
1615   return false;
1616 }
1617 
1618 /// parseUInt64
1619 ///   ::= uint64
1620 bool LLParser::parseUInt64(uint64_t &Val) {
1621   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1622     return tokError("expected integer");
1623   Val = Lex.getAPSIntVal().getLimitedValue();
1624   Lex.Lex();
1625   return false;
1626 }
1627 
1628 /// parseTLSModel
1629 ///   := 'localdynamic'
1630 ///   := 'initialexec'
1631 ///   := 'localexec'
1632 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1633   switch (Lex.getKind()) {
1634     default:
1635       return tokError("expected localdynamic, initialexec or localexec");
1636     case lltok::kw_localdynamic:
1637       TLM = GlobalVariable::LocalDynamicTLSModel;
1638       break;
1639     case lltok::kw_initialexec:
1640       TLM = GlobalVariable::InitialExecTLSModel;
1641       break;
1642     case lltok::kw_localexec:
1643       TLM = GlobalVariable::LocalExecTLSModel;
1644       break;
1645   }
1646 
1647   Lex.Lex();
1648   return false;
1649 }
1650 
1651 /// parseOptionalThreadLocal
1652 ///   := /*empty*/
1653 ///   := 'thread_local'
1654 ///   := 'thread_local' '(' tlsmodel ')'
1655 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1656   TLM = GlobalVariable::NotThreadLocal;
1657   if (!EatIfPresent(lltok::kw_thread_local))
1658     return false;
1659 
1660   TLM = GlobalVariable::GeneralDynamicTLSModel;
1661   if (Lex.getKind() == lltok::lparen) {
1662     Lex.Lex();
1663     return parseTLSModel(TLM) ||
1664            parseToken(lltok::rparen, "expected ')' after thread local model");
1665   }
1666   return false;
1667 }
1668 
1669 /// parseOptionalAddrSpace
1670 ///   := /*empty*/
1671 ///   := 'addrspace' '(' uint32 ')'
1672 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1673   AddrSpace = DefaultAS;
1674   if (!EatIfPresent(lltok::kw_addrspace))
1675     return false;
1676   return parseToken(lltok::lparen, "expected '(' in address space") ||
1677          parseUInt32(AddrSpace) ||
1678          parseToken(lltok::rparen, "expected ')' in address space");
1679 }
1680 
1681 /// parseStringAttribute
1682 ///   := StringConstant
1683 ///   := StringConstant '=' StringConstant
1684 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1685   std::string Attr = Lex.getStrVal();
1686   Lex.Lex();
1687   std::string Val;
1688   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1689     return true;
1690   B.addAttribute(Attr, Val);
1691   return false;
1692 }
1693 
1694 /// parseOptionalParamAttrs - parse a potentially empty list of parameter
1695 /// attributes.
1696 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) {
1697   bool HaveError = false;
1698 
1699   B.clear();
1700 
1701   while (true) {
1702     lltok::Kind Token = Lex.getKind();
1703     switch (Token) {
1704     default:  // End of attributes.
1705       return HaveError;
1706     case lltok::StringConstant: {
1707       if (parseStringAttribute(B))
1708         return true;
1709       continue;
1710     }
1711     case lltok::kw_align: {
1712       MaybeAlign Alignment;
1713       if (parseOptionalAlignment(Alignment, true))
1714         return true;
1715       B.addAlignmentAttr(Alignment);
1716       continue;
1717     }
1718     case lltok::kw_byval: {
1719       Type *Ty;
1720       if (parseRequiredTypeAttr(Ty, lltok::kw_byval))
1721         return true;
1722       B.addByValAttr(Ty);
1723       continue;
1724     }
1725     case lltok::kw_sret: {
1726       Type *Ty;
1727       if (parseRequiredTypeAttr(Ty, lltok::kw_sret))
1728         return true;
1729       B.addStructRetAttr(Ty);
1730       continue;
1731     }
1732     case lltok::kw_preallocated: {
1733       Type *Ty;
1734       if (parsePreallocated(Ty))
1735         return true;
1736       B.addPreallocatedAttr(Ty);
1737       continue;
1738     }
1739     case lltok::kw_inalloca: {
1740       Type *Ty;
1741       if (parseInalloca(Ty))
1742         return true;
1743       B.addInAllocaAttr(Ty);
1744       continue;
1745     }
1746     case lltok::kw_dereferenceable: {
1747       uint64_t Bytes;
1748       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1749         return true;
1750       B.addDereferenceableAttr(Bytes);
1751       continue;
1752     }
1753     case lltok::kw_dereferenceable_or_null: {
1754       uint64_t Bytes;
1755       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1756         return true;
1757       B.addDereferenceableOrNullAttr(Bytes);
1758       continue;
1759     }
1760     case lltok::kw_byref: {
1761       Type *Ty;
1762       if (parseByRef(Ty))
1763         return true;
1764       B.addByRefAttr(Ty);
1765       continue;
1766     }
1767     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1768     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1769     case lltok::kw_noundef:
1770       B.addAttribute(Attribute::NoUndef);
1771       break;
1772     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1773     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1774     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1775     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1776     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1777     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1778     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1779     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1780     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1781     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1782     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1783     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1784     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1785 
1786     case lltok::kw_alignstack:
1787     case lltok::kw_alwaysinline:
1788     case lltok::kw_argmemonly:
1789     case lltok::kw_builtin:
1790     case lltok::kw_inlinehint:
1791     case lltok::kw_jumptable:
1792     case lltok::kw_minsize:
1793     case lltok::kw_mustprogress:
1794     case lltok::kw_naked:
1795     case lltok::kw_nobuiltin:
1796     case lltok::kw_noduplicate:
1797     case lltok::kw_noimplicitfloat:
1798     case lltok::kw_noinline:
1799     case lltok::kw_nonlazybind:
1800     case lltok::kw_nomerge:
1801     case lltok::kw_noprofile:
1802     case lltok::kw_noredzone:
1803     case lltok::kw_noreturn:
1804     case lltok::kw_nocf_check:
1805     case lltok::kw_nounwind:
1806     case lltok::kw_optforfuzzing:
1807     case lltok::kw_optnone:
1808     case lltok::kw_optsize:
1809     case lltok::kw_returns_twice:
1810     case lltok::kw_sanitize_address:
1811     case lltok::kw_sanitize_hwaddress:
1812     case lltok::kw_sanitize_memtag:
1813     case lltok::kw_sanitize_memory:
1814     case lltok::kw_sanitize_thread:
1815     case lltok::kw_speculative_load_hardening:
1816     case lltok::kw_ssp:
1817     case lltok::kw_sspreq:
1818     case lltok::kw_sspstrong:
1819     case lltok::kw_safestack:
1820     case lltok::kw_shadowcallstack:
1821     case lltok::kw_strictfp:
1822     case lltok::kw_uwtable:
1823     case lltok::kw_vscale_range:
1824       HaveError |=
1825           error(Lex.getLoc(), "invalid use of function-only attribute");
1826       break;
1827     }
1828 
1829     Lex.Lex();
1830   }
1831 }
1832 
1833 /// parseOptionalReturnAttrs - parse a potentially empty list of return
1834 /// attributes.
1835 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) {
1836   bool HaveError = false;
1837 
1838   B.clear();
1839 
1840   while (true) {
1841     lltok::Kind Token = Lex.getKind();
1842     switch (Token) {
1843     default:  // End of attributes.
1844       return HaveError;
1845     case lltok::StringConstant: {
1846       if (parseStringAttribute(B))
1847         return true;
1848       continue;
1849     }
1850     case lltok::kw_dereferenceable: {
1851       uint64_t Bytes;
1852       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1853         return true;
1854       B.addDereferenceableAttr(Bytes);
1855       continue;
1856     }
1857     case lltok::kw_dereferenceable_or_null: {
1858       uint64_t Bytes;
1859       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1860         return true;
1861       B.addDereferenceableOrNullAttr(Bytes);
1862       continue;
1863     }
1864     case lltok::kw_align: {
1865       MaybeAlign Alignment;
1866       if (parseOptionalAlignment(Alignment))
1867         return true;
1868       B.addAlignmentAttr(Alignment);
1869       continue;
1870     }
1871     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1872     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1873     case lltok::kw_noundef:
1874       B.addAttribute(Attribute::NoUndef);
1875       break;
1876     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1877     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1878     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1879 
1880     // error handling.
1881     case lltok::kw_byval:
1882     case lltok::kw_inalloca:
1883     case lltok::kw_nest:
1884     case lltok::kw_nocapture:
1885     case lltok::kw_returned:
1886     case lltok::kw_sret:
1887     case lltok::kw_swifterror:
1888     case lltok::kw_swiftself:
1889     case lltok::kw_immarg:
1890     case lltok::kw_byref:
1891       HaveError |=
1892           error(Lex.getLoc(), "invalid use of parameter-only attribute");
1893       break;
1894 
1895     case lltok::kw_alignstack:
1896     case lltok::kw_alwaysinline:
1897     case lltok::kw_argmemonly:
1898     case lltok::kw_builtin:
1899     case lltok::kw_cold:
1900     case lltok::kw_inlinehint:
1901     case lltok::kw_jumptable:
1902     case lltok::kw_minsize:
1903     case lltok::kw_mustprogress:
1904     case lltok::kw_naked:
1905     case lltok::kw_nobuiltin:
1906     case lltok::kw_noduplicate:
1907     case lltok::kw_noimplicitfloat:
1908     case lltok::kw_noinline:
1909     case lltok::kw_nonlazybind:
1910     case lltok::kw_nomerge:
1911     case lltok::kw_noprofile:
1912     case lltok::kw_noredzone:
1913     case lltok::kw_noreturn:
1914     case lltok::kw_nocf_check:
1915     case lltok::kw_nounwind:
1916     case lltok::kw_optforfuzzing:
1917     case lltok::kw_optnone:
1918     case lltok::kw_optsize:
1919     case lltok::kw_returns_twice:
1920     case lltok::kw_sanitize_address:
1921     case lltok::kw_sanitize_hwaddress:
1922     case lltok::kw_sanitize_memtag:
1923     case lltok::kw_sanitize_memory:
1924     case lltok::kw_sanitize_thread:
1925     case lltok::kw_speculative_load_hardening:
1926     case lltok::kw_ssp:
1927     case lltok::kw_sspreq:
1928     case lltok::kw_sspstrong:
1929     case lltok::kw_safestack:
1930     case lltok::kw_shadowcallstack:
1931     case lltok::kw_strictfp:
1932     case lltok::kw_uwtable:
1933     case lltok::kw_vscale_range:
1934       HaveError |=
1935           error(Lex.getLoc(), "invalid use of function-only attribute");
1936       break;
1937     case lltok::kw_readnone:
1938     case lltok::kw_readonly:
1939       HaveError |=
1940           error(Lex.getLoc(), "invalid use of attribute on return type");
1941       break;
1942     case lltok::kw_preallocated:
1943       HaveError |=
1944           error(Lex.getLoc(),
1945                 "invalid use of parameter-only/call site-only attribute");
1946       break;
1947     }
1948 
1949     Lex.Lex();
1950   }
1951 }
1952 
1953 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1954   HasLinkage = true;
1955   switch (Kind) {
1956   default:
1957     HasLinkage = false;
1958     return GlobalValue::ExternalLinkage;
1959   case lltok::kw_private:
1960     return GlobalValue::PrivateLinkage;
1961   case lltok::kw_internal:
1962     return GlobalValue::InternalLinkage;
1963   case lltok::kw_weak:
1964     return GlobalValue::WeakAnyLinkage;
1965   case lltok::kw_weak_odr:
1966     return GlobalValue::WeakODRLinkage;
1967   case lltok::kw_linkonce:
1968     return GlobalValue::LinkOnceAnyLinkage;
1969   case lltok::kw_linkonce_odr:
1970     return GlobalValue::LinkOnceODRLinkage;
1971   case lltok::kw_available_externally:
1972     return GlobalValue::AvailableExternallyLinkage;
1973   case lltok::kw_appending:
1974     return GlobalValue::AppendingLinkage;
1975   case lltok::kw_common:
1976     return GlobalValue::CommonLinkage;
1977   case lltok::kw_extern_weak:
1978     return GlobalValue::ExternalWeakLinkage;
1979   case lltok::kw_external:
1980     return GlobalValue::ExternalLinkage;
1981   }
1982 }
1983 
1984 /// parseOptionalLinkage
1985 ///   ::= /*empty*/
1986 ///   ::= 'private'
1987 ///   ::= 'internal'
1988 ///   ::= 'weak'
1989 ///   ::= 'weak_odr'
1990 ///   ::= 'linkonce'
1991 ///   ::= 'linkonce_odr'
1992 ///   ::= 'available_externally'
1993 ///   ::= 'appending'
1994 ///   ::= 'common'
1995 ///   ::= 'extern_weak'
1996 ///   ::= 'external'
1997 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1998                                     unsigned &Visibility,
1999                                     unsigned &DLLStorageClass, bool &DSOLocal) {
2000   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
2001   if (HasLinkage)
2002     Lex.Lex();
2003   parseOptionalDSOLocal(DSOLocal);
2004   parseOptionalVisibility(Visibility);
2005   parseOptionalDLLStorageClass(DLLStorageClass);
2006 
2007   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
2008     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
2009   }
2010 
2011   return false;
2012 }
2013 
2014 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
2015   switch (Lex.getKind()) {
2016   default:
2017     DSOLocal = false;
2018     break;
2019   case lltok::kw_dso_local:
2020     DSOLocal = true;
2021     Lex.Lex();
2022     break;
2023   case lltok::kw_dso_preemptable:
2024     DSOLocal = false;
2025     Lex.Lex();
2026     break;
2027   }
2028 }
2029 
2030 /// parseOptionalVisibility
2031 ///   ::= /*empty*/
2032 ///   ::= 'default'
2033 ///   ::= 'hidden'
2034 ///   ::= 'protected'
2035 ///
2036 void LLParser::parseOptionalVisibility(unsigned &Res) {
2037   switch (Lex.getKind()) {
2038   default:
2039     Res = GlobalValue::DefaultVisibility;
2040     return;
2041   case lltok::kw_default:
2042     Res = GlobalValue::DefaultVisibility;
2043     break;
2044   case lltok::kw_hidden:
2045     Res = GlobalValue::HiddenVisibility;
2046     break;
2047   case lltok::kw_protected:
2048     Res = GlobalValue::ProtectedVisibility;
2049     break;
2050   }
2051   Lex.Lex();
2052 }
2053 
2054 /// parseOptionalDLLStorageClass
2055 ///   ::= /*empty*/
2056 ///   ::= 'dllimport'
2057 ///   ::= 'dllexport'
2058 ///
2059 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
2060   switch (Lex.getKind()) {
2061   default:
2062     Res = GlobalValue::DefaultStorageClass;
2063     return;
2064   case lltok::kw_dllimport:
2065     Res = GlobalValue::DLLImportStorageClass;
2066     break;
2067   case lltok::kw_dllexport:
2068     Res = GlobalValue::DLLExportStorageClass;
2069     break;
2070   }
2071   Lex.Lex();
2072 }
2073 
2074 /// parseOptionalCallingConv
2075 ///   ::= /*empty*/
2076 ///   ::= 'ccc'
2077 ///   ::= 'fastcc'
2078 ///   ::= 'intel_ocl_bicc'
2079 ///   ::= 'coldcc'
2080 ///   ::= 'cfguard_checkcc'
2081 ///   ::= 'x86_stdcallcc'
2082 ///   ::= 'x86_fastcallcc'
2083 ///   ::= 'x86_thiscallcc'
2084 ///   ::= 'x86_vectorcallcc'
2085 ///   ::= 'arm_apcscc'
2086 ///   ::= 'arm_aapcscc'
2087 ///   ::= 'arm_aapcs_vfpcc'
2088 ///   ::= 'aarch64_vector_pcs'
2089 ///   ::= 'aarch64_sve_vector_pcs'
2090 ///   ::= 'msp430_intrcc'
2091 ///   ::= 'avr_intrcc'
2092 ///   ::= 'avr_signalcc'
2093 ///   ::= 'ptx_kernel'
2094 ///   ::= 'ptx_device'
2095 ///   ::= 'spir_func'
2096 ///   ::= 'spir_kernel'
2097 ///   ::= 'x86_64_sysvcc'
2098 ///   ::= 'win64cc'
2099 ///   ::= 'webkit_jscc'
2100 ///   ::= 'anyregcc'
2101 ///   ::= 'preserve_mostcc'
2102 ///   ::= 'preserve_allcc'
2103 ///   ::= 'ghccc'
2104 ///   ::= 'swiftcc'
2105 ///   ::= 'x86_intrcc'
2106 ///   ::= 'hhvmcc'
2107 ///   ::= 'hhvm_ccc'
2108 ///   ::= 'cxx_fast_tlscc'
2109 ///   ::= 'amdgpu_vs'
2110 ///   ::= 'amdgpu_ls'
2111 ///   ::= 'amdgpu_hs'
2112 ///   ::= 'amdgpu_es'
2113 ///   ::= 'amdgpu_gs'
2114 ///   ::= 'amdgpu_ps'
2115 ///   ::= 'amdgpu_cs'
2116 ///   ::= 'amdgpu_kernel'
2117 ///   ::= 'tailcc'
2118 ///   ::= 'cc' UINT
2119 ///
2120 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
2121   switch (Lex.getKind()) {
2122   default:                       CC = CallingConv::C; return false;
2123   case lltok::kw_ccc:            CC = CallingConv::C; break;
2124   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2125   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2126   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2127   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2128   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2129   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2130   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2131   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2132   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2133   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2134   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2135   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2136   case lltok::kw_aarch64_sve_vector_pcs:
2137     CC = CallingConv::AArch64_SVE_VectorCall;
2138     break;
2139   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2140   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2141   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2142   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2143   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2144   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2145   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2146   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2147   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2148   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2149   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2150   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2151   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2152   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2153   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2154   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2155   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2156   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2157   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2158   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2159   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2160   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
2161   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2162   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2163   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2164   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2165   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2166   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2167   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2168   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2169   case lltok::kw_cc: {
2170       Lex.Lex();
2171       return parseUInt32(CC);
2172     }
2173   }
2174 
2175   Lex.Lex();
2176   return false;
2177 }
2178 
2179 /// parseMetadataAttachment
2180 ///   ::= !dbg !42
2181 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2182   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2183 
2184   std::string Name = Lex.getStrVal();
2185   Kind = M->getMDKindID(Name);
2186   Lex.Lex();
2187 
2188   return parseMDNode(MD);
2189 }
2190 
2191 /// parseInstructionMetadata
2192 ///   ::= !dbg !42 (',' !dbg !57)*
2193 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
2194   do {
2195     if (Lex.getKind() != lltok::MetadataVar)
2196       return tokError("expected metadata after comma");
2197 
2198     unsigned MDK;
2199     MDNode *N;
2200     if (parseMetadataAttachment(MDK, N))
2201       return true;
2202 
2203     Inst.setMetadata(MDK, N);
2204     if (MDK == LLVMContext::MD_tbaa)
2205       InstsWithTBAATag.push_back(&Inst);
2206 
2207     // If this is the end of the list, we're done.
2208   } while (EatIfPresent(lltok::comma));
2209   return false;
2210 }
2211 
2212 /// parseGlobalObjectMetadataAttachment
2213 ///   ::= !dbg !57
2214 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2215   unsigned MDK;
2216   MDNode *N;
2217   if (parseMetadataAttachment(MDK, N))
2218     return true;
2219 
2220   GO.addMetadata(MDK, *N);
2221   return false;
2222 }
2223 
2224 /// parseOptionalFunctionMetadata
2225 ///   ::= (!dbg !57)*
2226 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2227   while (Lex.getKind() == lltok::MetadataVar)
2228     if (parseGlobalObjectMetadataAttachment(F))
2229       return true;
2230   return false;
2231 }
2232 
2233 /// parseOptionalAlignment
2234 ///   ::= /* empty */
2235 ///   ::= 'align' 4
2236 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2237   Alignment = None;
2238   if (!EatIfPresent(lltok::kw_align))
2239     return false;
2240   LocTy AlignLoc = Lex.getLoc();
2241   uint32_t Value = 0;
2242 
2243   LocTy ParenLoc = Lex.getLoc();
2244   bool HaveParens = false;
2245   if (AllowParens) {
2246     if (EatIfPresent(lltok::lparen))
2247       HaveParens = true;
2248   }
2249 
2250   if (parseUInt32(Value))
2251     return true;
2252 
2253   if (HaveParens && !EatIfPresent(lltok::rparen))
2254     return error(ParenLoc, "expected ')'");
2255 
2256   if (!isPowerOf2_32(Value))
2257     return error(AlignLoc, "alignment is not a power of two");
2258   if (Value > Value::MaximumAlignment)
2259     return error(AlignLoc, "huge alignments are not supported yet");
2260   Alignment = Align(Value);
2261   return false;
2262 }
2263 
2264 /// parseOptionalDerefAttrBytes
2265 ///   ::= /* empty */
2266 ///   ::= AttrKind '(' 4 ')'
2267 ///
2268 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2269 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2270                                            uint64_t &Bytes) {
2271   assert((AttrKind == lltok::kw_dereferenceable ||
2272           AttrKind == lltok::kw_dereferenceable_or_null) &&
2273          "contract!");
2274 
2275   Bytes = 0;
2276   if (!EatIfPresent(AttrKind))
2277     return false;
2278   LocTy ParenLoc = Lex.getLoc();
2279   if (!EatIfPresent(lltok::lparen))
2280     return error(ParenLoc, "expected '('");
2281   LocTy DerefLoc = Lex.getLoc();
2282   if (parseUInt64(Bytes))
2283     return true;
2284   ParenLoc = Lex.getLoc();
2285   if (!EatIfPresent(lltok::rparen))
2286     return error(ParenLoc, "expected ')'");
2287   if (!Bytes)
2288     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2289   return false;
2290 }
2291 
2292 /// parseOptionalCommaAlign
2293 ///   ::=
2294 ///   ::= ',' align 4
2295 ///
2296 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2297 /// end.
2298 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2299                                        bool &AteExtraComma) {
2300   AteExtraComma = false;
2301   while (EatIfPresent(lltok::comma)) {
2302     // Metadata at the end is an early exit.
2303     if (Lex.getKind() == lltok::MetadataVar) {
2304       AteExtraComma = true;
2305       return false;
2306     }
2307 
2308     if (Lex.getKind() != lltok::kw_align)
2309       return error(Lex.getLoc(), "expected metadata or 'align'");
2310 
2311     if (parseOptionalAlignment(Alignment))
2312       return true;
2313   }
2314 
2315   return false;
2316 }
2317 
2318 /// parseOptionalCommaAddrSpace
2319 ///   ::=
2320 ///   ::= ',' addrspace(1)
2321 ///
2322 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2323 /// end.
2324 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2325                                            bool &AteExtraComma) {
2326   AteExtraComma = false;
2327   while (EatIfPresent(lltok::comma)) {
2328     // Metadata at the end is an early exit.
2329     if (Lex.getKind() == lltok::MetadataVar) {
2330       AteExtraComma = true;
2331       return false;
2332     }
2333 
2334     Loc = Lex.getLoc();
2335     if (Lex.getKind() != lltok::kw_addrspace)
2336       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2337 
2338     if (parseOptionalAddrSpace(AddrSpace))
2339       return true;
2340   }
2341 
2342   return false;
2343 }
2344 
2345 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2346                                        Optional<unsigned> &HowManyArg) {
2347   Lex.Lex();
2348 
2349   auto StartParen = Lex.getLoc();
2350   if (!EatIfPresent(lltok::lparen))
2351     return error(StartParen, "expected '('");
2352 
2353   if (parseUInt32(BaseSizeArg))
2354     return true;
2355 
2356   if (EatIfPresent(lltok::comma)) {
2357     auto HowManyAt = Lex.getLoc();
2358     unsigned HowMany;
2359     if (parseUInt32(HowMany))
2360       return true;
2361     if (HowMany == BaseSizeArg)
2362       return error(HowManyAt,
2363                    "'allocsize' indices can't refer to the same parameter");
2364     HowManyArg = HowMany;
2365   } else
2366     HowManyArg = None;
2367 
2368   auto EndParen = Lex.getLoc();
2369   if (!EatIfPresent(lltok::rparen))
2370     return error(EndParen, "expected ')'");
2371   return false;
2372 }
2373 
2374 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2375                                          unsigned &MaxValue) {
2376   Lex.Lex();
2377 
2378   auto StartParen = Lex.getLoc();
2379   if (!EatIfPresent(lltok::lparen))
2380     return error(StartParen, "expected '('");
2381 
2382   if (parseUInt32(MinValue))
2383     return true;
2384 
2385   if (EatIfPresent(lltok::comma)) {
2386     if (parseUInt32(MaxValue))
2387       return true;
2388   } else
2389     MaxValue = MinValue;
2390 
2391   auto EndParen = Lex.getLoc();
2392   if (!EatIfPresent(lltok::rparen))
2393     return error(EndParen, "expected ')'");
2394   return false;
2395 }
2396 
2397 /// parseScopeAndOrdering
2398 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2399 ///   else: ::=
2400 ///
2401 /// This sets Scope and Ordering to the parsed values.
2402 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2403                                      AtomicOrdering &Ordering) {
2404   if (!IsAtomic)
2405     return false;
2406 
2407   return parseScope(SSID) || parseOrdering(Ordering);
2408 }
2409 
2410 /// parseScope
2411 ///   ::= syncscope("singlethread" | "<target scope>")?
2412 ///
2413 /// This sets synchronization scope ID to the ID of the parsed value.
2414 bool LLParser::parseScope(SyncScope::ID &SSID) {
2415   SSID = SyncScope::System;
2416   if (EatIfPresent(lltok::kw_syncscope)) {
2417     auto StartParenAt = Lex.getLoc();
2418     if (!EatIfPresent(lltok::lparen))
2419       return error(StartParenAt, "Expected '(' in syncscope");
2420 
2421     std::string SSN;
2422     auto SSNAt = Lex.getLoc();
2423     if (parseStringConstant(SSN))
2424       return error(SSNAt, "Expected synchronization scope name");
2425 
2426     auto EndParenAt = Lex.getLoc();
2427     if (!EatIfPresent(lltok::rparen))
2428       return error(EndParenAt, "Expected ')' in syncscope");
2429 
2430     SSID = Context.getOrInsertSyncScopeID(SSN);
2431   }
2432 
2433   return false;
2434 }
2435 
2436 /// parseOrdering
2437 ///   ::= AtomicOrdering
2438 ///
2439 /// This sets Ordering to the parsed value.
2440 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2441   switch (Lex.getKind()) {
2442   default:
2443     return tokError("Expected ordering on atomic instruction");
2444   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2445   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2446   // Not specified yet:
2447   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2448   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2449   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2450   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2451   case lltok::kw_seq_cst:
2452     Ordering = AtomicOrdering::SequentiallyConsistent;
2453     break;
2454   }
2455   Lex.Lex();
2456   return false;
2457 }
2458 
2459 /// parseOptionalStackAlignment
2460 ///   ::= /* empty */
2461 ///   ::= 'alignstack' '(' 4 ')'
2462 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2463   Alignment = 0;
2464   if (!EatIfPresent(lltok::kw_alignstack))
2465     return false;
2466   LocTy ParenLoc = Lex.getLoc();
2467   if (!EatIfPresent(lltok::lparen))
2468     return error(ParenLoc, "expected '('");
2469   LocTy AlignLoc = Lex.getLoc();
2470   if (parseUInt32(Alignment))
2471     return true;
2472   ParenLoc = Lex.getLoc();
2473   if (!EatIfPresent(lltok::rparen))
2474     return error(ParenLoc, "expected ')'");
2475   if (!isPowerOf2_32(Alignment))
2476     return error(AlignLoc, "stack alignment is not a power of two");
2477   return false;
2478 }
2479 
2480 /// parseIndexList - This parses the index list for an insert/extractvalue
2481 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2482 /// comma at the end of the line and find that it is followed by metadata.
2483 /// Clients that don't allow metadata can call the version of this function that
2484 /// only takes one argument.
2485 ///
2486 /// parseIndexList
2487 ///    ::=  (',' uint32)+
2488 ///
2489 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2490                               bool &AteExtraComma) {
2491   AteExtraComma = false;
2492 
2493   if (Lex.getKind() != lltok::comma)
2494     return tokError("expected ',' as start of index list");
2495 
2496   while (EatIfPresent(lltok::comma)) {
2497     if (Lex.getKind() == lltok::MetadataVar) {
2498       if (Indices.empty())
2499         return tokError("expected index");
2500       AteExtraComma = true;
2501       return false;
2502     }
2503     unsigned Idx = 0;
2504     if (parseUInt32(Idx))
2505       return true;
2506     Indices.push_back(Idx);
2507   }
2508 
2509   return false;
2510 }
2511 
2512 //===----------------------------------------------------------------------===//
2513 // Type Parsing.
2514 //===----------------------------------------------------------------------===//
2515 
2516 /// parseType - parse a type.
2517 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2518   SMLoc TypeLoc = Lex.getLoc();
2519   switch (Lex.getKind()) {
2520   default:
2521     return tokError(Msg);
2522   case lltok::Type:
2523     // Type ::= 'float' | 'void' (etc)
2524     Result = Lex.getTyVal();
2525     Lex.Lex();
2526     break;
2527   case lltok::lbrace:
2528     // Type ::= StructType
2529     if (parseAnonStructType(Result, false))
2530       return true;
2531     break;
2532   case lltok::lsquare:
2533     // Type ::= '[' ... ']'
2534     Lex.Lex(); // eat the lsquare.
2535     if (parseArrayVectorType(Result, false))
2536       return true;
2537     break;
2538   case lltok::less: // Either vector or packed struct.
2539     // Type ::= '<' ... '>'
2540     Lex.Lex();
2541     if (Lex.getKind() == lltok::lbrace) {
2542       if (parseAnonStructType(Result, true) ||
2543           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2544         return true;
2545     } else if (parseArrayVectorType(Result, true))
2546       return true;
2547     break;
2548   case lltok::LocalVar: {
2549     // Type ::= %foo
2550     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2551 
2552     // If the type hasn't been defined yet, create a forward definition and
2553     // remember where that forward def'n was seen (in case it never is defined).
2554     if (!Entry.first) {
2555       Entry.first = StructType::create(Context, Lex.getStrVal());
2556       Entry.second = Lex.getLoc();
2557     }
2558     Result = Entry.first;
2559     Lex.Lex();
2560     break;
2561   }
2562 
2563   case lltok::LocalVarID: {
2564     // Type ::= %4
2565     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2566 
2567     // If the type hasn't been defined yet, create a forward definition and
2568     // remember where that forward def'n was seen (in case it never is defined).
2569     if (!Entry.first) {
2570       Entry.first = StructType::create(Context);
2571       Entry.second = Lex.getLoc();
2572     }
2573     Result = Entry.first;
2574     Lex.Lex();
2575     break;
2576   }
2577   }
2578 
2579   // parse the type suffixes.
2580   while (true) {
2581     switch (Lex.getKind()) {
2582     // End of type.
2583     default:
2584       if (!AllowVoid && Result->isVoidTy())
2585         return error(TypeLoc, "void type only allowed for function results");
2586       return false;
2587 
2588     // Type ::= Type '*'
2589     case lltok::star:
2590       if (Result->isLabelTy())
2591         return tokError("basic block pointers are invalid");
2592       if (Result->isVoidTy())
2593         return tokError("pointers to void are invalid - use i8* instead");
2594       if (!PointerType::isValidElementType(Result))
2595         return tokError("pointer to this type is invalid");
2596       Result = PointerType::getUnqual(Result);
2597       Lex.Lex();
2598       break;
2599 
2600     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2601     case lltok::kw_addrspace: {
2602       if (Result->isLabelTy())
2603         return tokError("basic block pointers are invalid");
2604       if (Result->isVoidTy())
2605         return tokError("pointers to void are invalid; use i8* instead");
2606       if (!PointerType::isValidElementType(Result))
2607         return tokError("pointer to this type is invalid");
2608       unsigned AddrSpace;
2609       if (parseOptionalAddrSpace(AddrSpace) ||
2610           parseToken(lltok::star, "expected '*' in address space"))
2611         return true;
2612 
2613       Result = PointerType::get(Result, AddrSpace);
2614       break;
2615     }
2616 
2617     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2618     case lltok::lparen:
2619       if (parseFunctionType(Result))
2620         return true;
2621       break;
2622     }
2623   }
2624 }
2625 
2626 /// parseParameterList
2627 ///    ::= '(' ')'
2628 ///    ::= '(' Arg (',' Arg)* ')'
2629 ///  Arg
2630 ///    ::= Type OptionalAttributes Value OptionalAttributes
2631 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2632                                   PerFunctionState &PFS, bool IsMustTailCall,
2633                                   bool InVarArgsFunc) {
2634   if (parseToken(lltok::lparen, "expected '(' in call"))
2635     return true;
2636 
2637   while (Lex.getKind() != lltok::rparen) {
2638     // If this isn't the first argument, we need a comma.
2639     if (!ArgList.empty() &&
2640         parseToken(lltok::comma, "expected ',' in argument list"))
2641       return true;
2642 
2643     // parse an ellipsis if this is a musttail call in a variadic function.
2644     if (Lex.getKind() == lltok::dotdotdot) {
2645       const char *Msg = "unexpected ellipsis in argument list for ";
2646       if (!IsMustTailCall)
2647         return tokError(Twine(Msg) + "non-musttail call");
2648       if (!InVarArgsFunc)
2649         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2650       Lex.Lex();  // Lex the '...', it is purely for readability.
2651       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2652     }
2653 
2654     // parse the argument.
2655     LocTy ArgLoc;
2656     Type *ArgTy = nullptr;
2657     AttrBuilder ArgAttrs;
2658     Value *V;
2659     if (parseType(ArgTy, ArgLoc))
2660       return true;
2661 
2662     if (ArgTy->isMetadataTy()) {
2663       if (parseMetadataAsValue(V, PFS))
2664         return true;
2665     } else {
2666       // Otherwise, handle normal operands.
2667       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2668         return true;
2669     }
2670     ArgList.push_back(ParamInfo(
2671         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2672   }
2673 
2674   if (IsMustTailCall && InVarArgsFunc)
2675     return tokError("expected '...' at end of argument list for musttail call "
2676                     "in varargs function");
2677 
2678   Lex.Lex();  // Lex the ')'.
2679   return false;
2680 }
2681 
2682 /// parseRequiredTypeAttr
2683 ///   ::= attrname(<ty>)
2684 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) {
2685   Result = nullptr;
2686   if (!EatIfPresent(AttrName))
2687     return true;
2688   if (!EatIfPresent(lltok::lparen))
2689     return error(Lex.getLoc(), "expected '('");
2690   if (parseType(Result))
2691     return true;
2692   if (!EatIfPresent(lltok::rparen))
2693     return error(Lex.getLoc(), "expected ')'");
2694   return false;
2695 }
2696 
2697 /// parsePreallocated
2698 ///   ::= preallocated(<ty>)
2699 bool LLParser::parsePreallocated(Type *&Result) {
2700   return parseRequiredTypeAttr(Result, lltok::kw_preallocated);
2701 }
2702 
2703 /// parseInalloca
2704 ///   ::= inalloca(<ty>)
2705 bool LLParser::parseInalloca(Type *&Result) {
2706   return parseRequiredTypeAttr(Result, lltok::kw_inalloca);
2707 }
2708 
2709 /// parseByRef
2710 ///   ::= byref(<type>)
2711 bool LLParser::parseByRef(Type *&Result) {
2712   return parseRequiredTypeAttr(Result, lltok::kw_byref);
2713 }
2714 
2715 /// parseOptionalOperandBundles
2716 ///    ::= /*empty*/
2717 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2718 ///
2719 /// OperandBundle
2720 ///    ::= bundle-tag '(' ')'
2721 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2722 ///
2723 /// bundle-tag ::= String Constant
2724 bool LLParser::parseOptionalOperandBundles(
2725     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2726   LocTy BeginLoc = Lex.getLoc();
2727   if (!EatIfPresent(lltok::lsquare))
2728     return false;
2729 
2730   while (Lex.getKind() != lltok::rsquare) {
2731     // If this isn't the first operand bundle, we need a comma.
2732     if (!BundleList.empty() &&
2733         parseToken(lltok::comma, "expected ',' in input list"))
2734       return true;
2735 
2736     std::string Tag;
2737     if (parseStringConstant(Tag))
2738       return true;
2739 
2740     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2741       return true;
2742 
2743     std::vector<Value *> Inputs;
2744     while (Lex.getKind() != lltok::rparen) {
2745       // If this isn't the first input, we need a comma.
2746       if (!Inputs.empty() &&
2747           parseToken(lltok::comma, "expected ',' in input list"))
2748         return true;
2749 
2750       Type *Ty = nullptr;
2751       Value *Input = nullptr;
2752       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2753         return true;
2754       Inputs.push_back(Input);
2755     }
2756 
2757     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2758 
2759     Lex.Lex(); // Lex the ')'.
2760   }
2761 
2762   if (BundleList.empty())
2763     return error(BeginLoc, "operand bundle set must not be empty");
2764 
2765   Lex.Lex(); // Lex the ']'.
2766   return false;
2767 }
2768 
2769 /// parseArgumentList - parse the argument list for a function type or function
2770 /// prototype.
2771 ///   ::= '(' ArgTypeListI ')'
2772 /// ArgTypeListI
2773 ///   ::= /*empty*/
2774 ///   ::= '...'
2775 ///   ::= ArgTypeList ',' '...'
2776 ///   ::= ArgType (',' ArgType)*
2777 ///
2778 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2779                                  bool &IsVarArg) {
2780   unsigned CurValID = 0;
2781   IsVarArg = false;
2782   assert(Lex.getKind() == lltok::lparen);
2783   Lex.Lex(); // eat the (.
2784 
2785   if (Lex.getKind() == lltok::rparen) {
2786     // empty
2787   } else if (Lex.getKind() == lltok::dotdotdot) {
2788     IsVarArg = true;
2789     Lex.Lex();
2790   } else {
2791     LocTy TypeLoc = Lex.getLoc();
2792     Type *ArgTy = nullptr;
2793     AttrBuilder Attrs;
2794     std::string Name;
2795 
2796     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2797       return true;
2798 
2799     if (ArgTy->isVoidTy())
2800       return error(TypeLoc, "argument can not have void type");
2801 
2802     if (Lex.getKind() == lltok::LocalVar) {
2803       Name = Lex.getStrVal();
2804       Lex.Lex();
2805     } else if (Lex.getKind() == lltok::LocalVarID) {
2806       if (Lex.getUIntVal() != CurValID)
2807         return error(TypeLoc, "argument expected to be numbered '%" +
2808                                   Twine(CurValID) + "'");
2809       ++CurValID;
2810       Lex.Lex();
2811     }
2812 
2813     if (!FunctionType::isValidArgumentType(ArgTy))
2814       return error(TypeLoc, "invalid type for function argument");
2815 
2816     ArgList.emplace_back(TypeLoc, ArgTy,
2817                          AttributeSet::get(ArgTy->getContext(), Attrs),
2818                          std::move(Name));
2819 
2820     while (EatIfPresent(lltok::comma)) {
2821       // Handle ... at end of arg list.
2822       if (EatIfPresent(lltok::dotdotdot)) {
2823         IsVarArg = true;
2824         break;
2825       }
2826 
2827       // Otherwise must be an argument type.
2828       TypeLoc = Lex.getLoc();
2829       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2830         return true;
2831 
2832       if (ArgTy->isVoidTy())
2833         return error(TypeLoc, "argument can not have void type");
2834 
2835       if (Lex.getKind() == lltok::LocalVar) {
2836         Name = Lex.getStrVal();
2837         Lex.Lex();
2838       } else {
2839         if (Lex.getKind() == lltok::LocalVarID) {
2840           if (Lex.getUIntVal() != CurValID)
2841             return error(TypeLoc, "argument expected to be numbered '%" +
2842                                       Twine(CurValID) + "'");
2843           Lex.Lex();
2844         }
2845         ++CurValID;
2846         Name = "";
2847       }
2848 
2849       if (!ArgTy->isFirstClassType())
2850         return error(TypeLoc, "invalid type for function argument");
2851 
2852       ArgList.emplace_back(TypeLoc, ArgTy,
2853                            AttributeSet::get(ArgTy->getContext(), Attrs),
2854                            std::move(Name));
2855     }
2856   }
2857 
2858   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2859 }
2860 
2861 /// parseFunctionType
2862 ///  ::= Type ArgumentList OptionalAttrs
2863 bool LLParser::parseFunctionType(Type *&Result) {
2864   assert(Lex.getKind() == lltok::lparen);
2865 
2866   if (!FunctionType::isValidReturnType(Result))
2867     return tokError("invalid function return type");
2868 
2869   SmallVector<ArgInfo, 8> ArgList;
2870   bool IsVarArg;
2871   if (parseArgumentList(ArgList, IsVarArg))
2872     return true;
2873 
2874   // Reject names on the arguments lists.
2875   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2876     if (!ArgList[i].Name.empty())
2877       return error(ArgList[i].Loc, "argument name invalid in function type");
2878     if (ArgList[i].Attrs.hasAttributes())
2879       return error(ArgList[i].Loc,
2880                    "argument attributes invalid in function type");
2881   }
2882 
2883   SmallVector<Type*, 16> ArgListTy;
2884   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2885     ArgListTy.push_back(ArgList[i].Ty);
2886 
2887   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2888   return false;
2889 }
2890 
2891 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2892 /// other structs.
2893 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2894   SmallVector<Type*, 8> Elts;
2895   if (parseStructBody(Elts))
2896     return true;
2897 
2898   Result = StructType::get(Context, Elts, Packed);
2899   return false;
2900 }
2901 
2902 /// parseStructDefinition - parse a struct in a 'type' definition.
2903 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2904                                      std::pair<Type *, LocTy> &Entry,
2905                                      Type *&ResultTy) {
2906   // If the type was already defined, diagnose the redefinition.
2907   if (Entry.first && !Entry.second.isValid())
2908     return error(TypeLoc, "redefinition of type");
2909 
2910   // If we have opaque, just return without filling in the definition for the
2911   // struct.  This counts as a definition as far as the .ll file goes.
2912   if (EatIfPresent(lltok::kw_opaque)) {
2913     // This type is being defined, so clear the location to indicate this.
2914     Entry.second = SMLoc();
2915 
2916     // If this type number has never been uttered, create it.
2917     if (!Entry.first)
2918       Entry.first = StructType::create(Context, Name);
2919     ResultTy = Entry.first;
2920     return false;
2921   }
2922 
2923   // If the type starts with '<', then it is either a packed struct or a vector.
2924   bool isPacked = EatIfPresent(lltok::less);
2925 
2926   // If we don't have a struct, then we have a random type alias, which we
2927   // accept for compatibility with old files.  These types are not allowed to be
2928   // forward referenced and not allowed to be recursive.
2929   if (Lex.getKind() != lltok::lbrace) {
2930     if (Entry.first)
2931       return error(TypeLoc, "forward references to non-struct type");
2932 
2933     ResultTy = nullptr;
2934     if (isPacked)
2935       return parseArrayVectorType(ResultTy, true);
2936     return parseType(ResultTy);
2937   }
2938 
2939   // This type is being defined, so clear the location to indicate this.
2940   Entry.second = SMLoc();
2941 
2942   // If this type number has never been uttered, create it.
2943   if (!Entry.first)
2944     Entry.first = StructType::create(Context, Name);
2945 
2946   StructType *STy = cast<StructType>(Entry.first);
2947 
2948   SmallVector<Type*, 8> Body;
2949   if (parseStructBody(Body) ||
2950       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2951     return true;
2952 
2953   STy->setBody(Body, isPacked);
2954   ResultTy = STy;
2955   return false;
2956 }
2957 
2958 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2959 ///   StructType
2960 ///     ::= '{' '}'
2961 ///     ::= '{' Type (',' Type)* '}'
2962 ///     ::= '<' '{' '}' '>'
2963 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2964 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2965   assert(Lex.getKind() == lltok::lbrace);
2966   Lex.Lex(); // Consume the '{'
2967 
2968   // Handle the empty struct.
2969   if (EatIfPresent(lltok::rbrace))
2970     return false;
2971 
2972   LocTy EltTyLoc = Lex.getLoc();
2973   Type *Ty = nullptr;
2974   if (parseType(Ty))
2975     return true;
2976   Body.push_back(Ty);
2977 
2978   if (!StructType::isValidElementType(Ty))
2979     return error(EltTyLoc, "invalid element type for struct");
2980 
2981   while (EatIfPresent(lltok::comma)) {
2982     EltTyLoc = Lex.getLoc();
2983     if (parseType(Ty))
2984       return true;
2985 
2986     if (!StructType::isValidElementType(Ty))
2987       return error(EltTyLoc, "invalid element type for struct");
2988 
2989     Body.push_back(Ty);
2990   }
2991 
2992   return parseToken(lltok::rbrace, "expected '}' at end of struct");
2993 }
2994 
2995 /// parseArrayVectorType - parse an array or vector type, assuming the first
2996 /// token has already been consumed.
2997 ///   Type
2998 ///     ::= '[' APSINTVAL 'x' Types ']'
2999 ///     ::= '<' APSINTVAL 'x' Types '>'
3000 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
3001 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
3002   bool Scalable = false;
3003 
3004   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
3005     Lex.Lex(); // consume the 'vscale'
3006     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
3007       return true;
3008 
3009     Scalable = true;
3010   }
3011 
3012   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
3013       Lex.getAPSIntVal().getBitWidth() > 64)
3014     return tokError("expected number in address space");
3015 
3016   LocTy SizeLoc = Lex.getLoc();
3017   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
3018   Lex.Lex();
3019 
3020   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
3021     return true;
3022 
3023   LocTy TypeLoc = Lex.getLoc();
3024   Type *EltTy = nullptr;
3025   if (parseType(EltTy))
3026     return true;
3027 
3028   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
3029                  "expected end of sequential type"))
3030     return true;
3031 
3032   if (IsVector) {
3033     if (Size == 0)
3034       return error(SizeLoc, "zero element vector is illegal");
3035     if ((unsigned)Size != Size)
3036       return error(SizeLoc, "size too large for vector");
3037     if (!VectorType::isValidElementType(EltTy))
3038       return error(TypeLoc, "invalid vector element type");
3039     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
3040   } else {
3041     if (!ArrayType::isValidElementType(EltTy))
3042       return error(TypeLoc, "invalid array element type");
3043     Result = ArrayType::get(EltTy, Size);
3044   }
3045   return false;
3046 }
3047 
3048 //===----------------------------------------------------------------------===//
3049 // Function Semantic Analysis.
3050 //===----------------------------------------------------------------------===//
3051 
3052 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
3053                                              int functionNumber)
3054   : P(p), F(f), FunctionNumber(functionNumber) {
3055 
3056   // Insert unnamed arguments into the NumberedVals list.
3057   for (Argument &A : F.args())
3058     if (!A.hasName())
3059       NumberedVals.push_back(&A);
3060 }
3061 
3062 LLParser::PerFunctionState::~PerFunctionState() {
3063   // If there were any forward referenced non-basicblock values, delete them.
3064 
3065   for (const auto &P : ForwardRefVals) {
3066     if (isa<BasicBlock>(P.second.first))
3067       continue;
3068     P.second.first->replaceAllUsesWith(
3069         UndefValue::get(P.second.first->getType()));
3070     P.second.first->deleteValue();
3071   }
3072 
3073   for (const auto &P : ForwardRefValIDs) {
3074     if (isa<BasicBlock>(P.second.first))
3075       continue;
3076     P.second.first->replaceAllUsesWith(
3077         UndefValue::get(P.second.first->getType()));
3078     P.second.first->deleteValue();
3079   }
3080 }
3081 
3082 bool LLParser::PerFunctionState::finishFunction() {
3083   if (!ForwardRefVals.empty())
3084     return P.error(ForwardRefVals.begin()->second.second,
3085                    "use of undefined value '%" + ForwardRefVals.begin()->first +
3086                        "'");
3087   if (!ForwardRefValIDs.empty())
3088     return P.error(ForwardRefValIDs.begin()->second.second,
3089                    "use of undefined value '%" +
3090                        Twine(ForwardRefValIDs.begin()->first) + "'");
3091   return false;
3092 }
3093 
3094 /// getVal - Get a value with the specified name or ID, creating a
3095 /// forward reference record if needed.  This can return null if the value
3096 /// exists but does not have the right type.
3097 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
3098                                           LocTy Loc, bool IsCall) {
3099   // Look this name up in the normal function symbol table.
3100   Value *Val = F.getValueSymbolTable()->lookup(Name);
3101 
3102   // If this is a forward reference for the value, see if we already created a
3103   // forward ref record.
3104   if (!Val) {
3105     auto I = ForwardRefVals.find(Name);
3106     if (I != ForwardRefVals.end())
3107       Val = I->second.first;
3108   }
3109 
3110   // If we have the value in the symbol table or fwd-ref table, return it.
3111   if (Val)
3112     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
3113 
3114   // Don't make placeholders with invalid type.
3115   if (!Ty->isFirstClassType()) {
3116     P.error(Loc, "invalid use of a non-first-class type");
3117     return nullptr;
3118   }
3119 
3120   // Otherwise, create a new forward reference for this value and remember it.
3121   Value *FwdVal;
3122   if (Ty->isLabelTy()) {
3123     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3124   } else {
3125     FwdVal = new Argument(Ty, Name);
3126   }
3127 
3128   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3129   return FwdVal;
3130 }
3131 
3132 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc,
3133                                           bool IsCall) {
3134   // Look this name up in the normal function symbol table.
3135   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
3136 
3137   // If this is a forward reference for the value, see if we already created a
3138   // forward ref record.
3139   if (!Val) {
3140     auto I = ForwardRefValIDs.find(ID);
3141     if (I != ForwardRefValIDs.end())
3142       Val = I->second.first;
3143   }
3144 
3145   // If we have the value in the symbol table or fwd-ref table, return it.
3146   if (Val)
3147     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
3148 
3149   if (!Ty->isFirstClassType()) {
3150     P.error(Loc, "invalid use of a non-first-class type");
3151     return nullptr;
3152   }
3153 
3154   // Otherwise, create a new forward reference for this value and remember it.
3155   Value *FwdVal;
3156   if (Ty->isLabelTy()) {
3157     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3158   } else {
3159     FwdVal = new Argument(Ty);
3160   }
3161 
3162   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3163   return FwdVal;
3164 }
3165 
3166 /// setInstName - After an instruction is parsed and inserted into its
3167 /// basic block, this installs its name.
3168 bool LLParser::PerFunctionState::setInstName(int NameID,
3169                                              const std::string &NameStr,
3170                                              LocTy NameLoc, Instruction *Inst) {
3171   // If this instruction has void type, it cannot have a name or ID specified.
3172   if (Inst->getType()->isVoidTy()) {
3173     if (NameID != -1 || !NameStr.empty())
3174       return P.error(NameLoc, "instructions returning void cannot have a name");
3175     return false;
3176   }
3177 
3178   // If this was a numbered instruction, verify that the instruction is the
3179   // expected value and resolve any forward references.
3180   if (NameStr.empty()) {
3181     // If neither a name nor an ID was specified, just use the next ID.
3182     if (NameID == -1)
3183       NameID = NumberedVals.size();
3184 
3185     if (unsigned(NameID) != NumberedVals.size())
3186       return P.error(NameLoc, "instruction expected to be numbered '%" +
3187                                   Twine(NumberedVals.size()) + "'");
3188 
3189     auto FI = ForwardRefValIDs.find(NameID);
3190     if (FI != ForwardRefValIDs.end()) {
3191       Value *Sentinel = FI->second.first;
3192       if (Sentinel->getType() != Inst->getType())
3193         return P.error(NameLoc, "instruction forward referenced with type '" +
3194                                     getTypeString(FI->second.first->getType()) +
3195                                     "'");
3196 
3197       Sentinel->replaceAllUsesWith(Inst);
3198       Sentinel->deleteValue();
3199       ForwardRefValIDs.erase(FI);
3200     }
3201 
3202     NumberedVals.push_back(Inst);
3203     return false;
3204   }
3205 
3206   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3207   auto FI = ForwardRefVals.find(NameStr);
3208   if (FI != ForwardRefVals.end()) {
3209     Value *Sentinel = FI->second.first;
3210     if (Sentinel->getType() != Inst->getType())
3211       return P.error(NameLoc, "instruction forward referenced with type '" +
3212                                   getTypeString(FI->second.first->getType()) +
3213                                   "'");
3214 
3215     Sentinel->replaceAllUsesWith(Inst);
3216     Sentinel->deleteValue();
3217     ForwardRefVals.erase(FI);
3218   }
3219 
3220   // Set the name on the instruction.
3221   Inst->setName(NameStr);
3222 
3223   if (Inst->getName() != NameStr)
3224     return P.error(NameLoc, "multiple definition of local value named '" +
3225                                 NameStr + "'");
3226   return false;
3227 }
3228 
3229 /// getBB - Get a basic block with the specified name or ID, creating a
3230 /// forward reference record if needed.
3231 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3232                                               LocTy Loc) {
3233   return dyn_cast_or_null<BasicBlock>(
3234       getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3235 }
3236 
3237 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3238   return dyn_cast_or_null<BasicBlock>(
3239       getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3240 }
3241 
3242 /// defineBB - Define the specified basic block, which is either named or
3243 /// unnamed.  If there is an error, this returns null otherwise it returns
3244 /// the block being defined.
3245 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3246                                                  int NameID, LocTy Loc) {
3247   BasicBlock *BB;
3248   if (Name.empty()) {
3249     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3250       P.error(Loc, "label expected to be numbered '" +
3251                        Twine(NumberedVals.size()) + "'");
3252       return nullptr;
3253     }
3254     BB = getBB(NumberedVals.size(), Loc);
3255     if (!BB) {
3256       P.error(Loc, "unable to create block numbered '" +
3257                        Twine(NumberedVals.size()) + "'");
3258       return nullptr;
3259     }
3260   } else {
3261     BB = getBB(Name, Loc);
3262     if (!BB) {
3263       P.error(Loc, "unable to create block named '" + Name + "'");
3264       return nullptr;
3265     }
3266   }
3267 
3268   // Move the block to the end of the function.  Forward ref'd blocks are
3269   // inserted wherever they happen to be referenced.
3270   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3271 
3272   // Remove the block from forward ref sets.
3273   if (Name.empty()) {
3274     ForwardRefValIDs.erase(NumberedVals.size());
3275     NumberedVals.push_back(BB);
3276   } else {
3277     // BB forward references are already in the function symbol table.
3278     ForwardRefVals.erase(Name);
3279   }
3280 
3281   return BB;
3282 }
3283 
3284 //===----------------------------------------------------------------------===//
3285 // Constants.
3286 //===----------------------------------------------------------------------===//
3287 
3288 /// parseValID - parse an abstract value that doesn't necessarily have a
3289 /// type implied.  For example, if we parse "4" we don't know what integer type
3290 /// it has.  The value will later be combined with its type and checked for
3291 /// sanity.  PFS is used to convert function-local operands of metadata (since
3292 /// metadata operands are not just parsed here but also converted to values).
3293 /// PFS can be null when we are not parsing metadata values inside a function.
3294 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) {
3295   ID.Loc = Lex.getLoc();
3296   switch (Lex.getKind()) {
3297   default:
3298     return tokError("expected value token");
3299   case lltok::GlobalID:  // @42
3300     ID.UIntVal = Lex.getUIntVal();
3301     ID.Kind = ValID::t_GlobalID;
3302     break;
3303   case lltok::GlobalVar:  // @foo
3304     ID.StrVal = Lex.getStrVal();
3305     ID.Kind = ValID::t_GlobalName;
3306     break;
3307   case lltok::LocalVarID:  // %42
3308     ID.UIntVal = Lex.getUIntVal();
3309     ID.Kind = ValID::t_LocalID;
3310     break;
3311   case lltok::LocalVar:  // %foo
3312     ID.StrVal = Lex.getStrVal();
3313     ID.Kind = ValID::t_LocalName;
3314     break;
3315   case lltok::APSInt:
3316     ID.APSIntVal = Lex.getAPSIntVal();
3317     ID.Kind = ValID::t_APSInt;
3318     break;
3319   case lltok::APFloat:
3320     ID.APFloatVal = Lex.getAPFloatVal();
3321     ID.Kind = ValID::t_APFloat;
3322     break;
3323   case lltok::kw_true:
3324     ID.ConstantVal = ConstantInt::getTrue(Context);
3325     ID.Kind = ValID::t_Constant;
3326     break;
3327   case lltok::kw_false:
3328     ID.ConstantVal = ConstantInt::getFalse(Context);
3329     ID.Kind = ValID::t_Constant;
3330     break;
3331   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3332   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3333   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3334   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3335   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3336 
3337   case lltok::lbrace: {
3338     // ValID ::= '{' ConstVector '}'
3339     Lex.Lex();
3340     SmallVector<Constant*, 16> Elts;
3341     if (parseGlobalValueVector(Elts) ||
3342         parseToken(lltok::rbrace, "expected end of struct constant"))
3343       return true;
3344 
3345     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3346     ID.UIntVal = Elts.size();
3347     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3348            Elts.size() * sizeof(Elts[0]));
3349     ID.Kind = ValID::t_ConstantStruct;
3350     return false;
3351   }
3352   case lltok::less: {
3353     // ValID ::= '<' ConstVector '>'         --> Vector.
3354     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3355     Lex.Lex();
3356     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3357 
3358     SmallVector<Constant*, 16> Elts;
3359     LocTy FirstEltLoc = Lex.getLoc();
3360     if (parseGlobalValueVector(Elts) ||
3361         (isPackedStruct &&
3362          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3363         parseToken(lltok::greater, "expected end of constant"))
3364       return true;
3365 
3366     if (isPackedStruct) {
3367       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3368       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3369              Elts.size() * sizeof(Elts[0]));
3370       ID.UIntVal = Elts.size();
3371       ID.Kind = ValID::t_PackedConstantStruct;
3372       return false;
3373     }
3374 
3375     if (Elts.empty())
3376       return error(ID.Loc, "constant vector must not be empty");
3377 
3378     if (!Elts[0]->getType()->isIntegerTy() &&
3379         !Elts[0]->getType()->isFloatingPointTy() &&
3380         !Elts[0]->getType()->isPointerTy())
3381       return error(
3382           FirstEltLoc,
3383           "vector elements must have integer, pointer or floating point type");
3384 
3385     // Verify that all the vector elements have the same type.
3386     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3387       if (Elts[i]->getType() != Elts[0]->getType())
3388         return error(FirstEltLoc, "vector element #" + Twine(i) +
3389                                       " is not of type '" +
3390                                       getTypeString(Elts[0]->getType()));
3391 
3392     ID.ConstantVal = ConstantVector::get(Elts);
3393     ID.Kind = ValID::t_Constant;
3394     return false;
3395   }
3396   case lltok::lsquare: {   // Array Constant
3397     Lex.Lex();
3398     SmallVector<Constant*, 16> Elts;
3399     LocTy FirstEltLoc = Lex.getLoc();
3400     if (parseGlobalValueVector(Elts) ||
3401         parseToken(lltok::rsquare, "expected end of array constant"))
3402       return true;
3403 
3404     // Handle empty element.
3405     if (Elts.empty()) {
3406       // Use undef instead of an array because it's inconvenient to determine
3407       // the element type at this point, there being no elements to examine.
3408       ID.Kind = ValID::t_EmptyArray;
3409       return false;
3410     }
3411 
3412     if (!Elts[0]->getType()->isFirstClassType())
3413       return error(FirstEltLoc, "invalid array element type: " +
3414                                     getTypeString(Elts[0]->getType()));
3415 
3416     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3417 
3418     // Verify all elements are correct type!
3419     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3420       if (Elts[i]->getType() != Elts[0]->getType())
3421         return error(FirstEltLoc, "array element #" + Twine(i) +
3422                                       " is not of type '" +
3423                                       getTypeString(Elts[0]->getType()));
3424     }
3425 
3426     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3427     ID.Kind = ValID::t_Constant;
3428     return false;
3429   }
3430   case lltok::kw_c:  // c "foo"
3431     Lex.Lex();
3432     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3433                                                   false);
3434     if (parseToken(lltok::StringConstant, "expected string"))
3435       return true;
3436     ID.Kind = ValID::t_Constant;
3437     return false;
3438 
3439   case lltok::kw_asm: {
3440     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3441     //             STRINGCONSTANT
3442     bool HasSideEffect, AlignStack, AsmDialect;
3443     Lex.Lex();
3444     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3445         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3446         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3447         parseStringConstant(ID.StrVal) ||
3448         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3449         parseToken(lltok::StringConstant, "expected constraint string"))
3450       return true;
3451     ID.StrVal2 = Lex.getStrVal();
3452     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3453       (unsigned(AsmDialect)<<2);
3454     ID.Kind = ValID::t_InlineAsm;
3455     return false;
3456   }
3457 
3458   case lltok::kw_blockaddress: {
3459     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3460     Lex.Lex();
3461 
3462     ValID Fn, Label;
3463 
3464     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3465         parseValID(Fn) ||
3466         parseToken(lltok::comma,
3467                    "expected comma in block address expression") ||
3468         parseValID(Label) ||
3469         parseToken(lltok::rparen, "expected ')' in block address expression"))
3470       return true;
3471 
3472     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3473       return error(Fn.Loc, "expected function name in blockaddress");
3474     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3475       return error(Label.Loc, "expected basic block name in blockaddress");
3476 
3477     // Try to find the function (but skip it if it's forward-referenced).
3478     GlobalValue *GV = nullptr;
3479     if (Fn.Kind == ValID::t_GlobalID) {
3480       if (Fn.UIntVal < NumberedVals.size())
3481         GV = NumberedVals[Fn.UIntVal];
3482     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3483       GV = M->getNamedValue(Fn.StrVal);
3484     }
3485     Function *F = nullptr;
3486     if (GV) {
3487       // Confirm that it's actually a function with a definition.
3488       if (!isa<Function>(GV))
3489         return error(Fn.Loc, "expected function name in blockaddress");
3490       F = cast<Function>(GV);
3491       if (F->isDeclaration())
3492         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3493     }
3494 
3495     if (!F) {
3496       // Make a global variable as a placeholder for this reference.
3497       GlobalValue *&FwdRef =
3498           ForwardRefBlockAddresses.insert(std::make_pair(
3499                                               std::move(Fn),
3500                                               std::map<ValID, GlobalValue *>()))
3501               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3502               .first->second;
3503       if (!FwdRef)
3504         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3505                                     GlobalValue::InternalLinkage, nullptr, "");
3506       ID.ConstantVal = FwdRef;
3507       ID.Kind = ValID::t_Constant;
3508       return false;
3509     }
3510 
3511     // We found the function; now find the basic block.  Don't use PFS, since we
3512     // might be inside a constant expression.
3513     BasicBlock *BB;
3514     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3515       if (Label.Kind == ValID::t_LocalID)
3516         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3517       else
3518         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3519       if (!BB)
3520         return error(Label.Loc, "referenced value is not a basic block");
3521     } else {
3522       if (Label.Kind == ValID::t_LocalID)
3523         return error(Label.Loc, "cannot take address of numeric label after "
3524                                 "the function is defined");
3525       BB = dyn_cast_or_null<BasicBlock>(
3526           F->getValueSymbolTable()->lookup(Label.StrVal));
3527       if (!BB)
3528         return error(Label.Loc, "referenced value is not a basic block");
3529     }
3530 
3531     ID.ConstantVal = BlockAddress::get(F, BB);
3532     ID.Kind = ValID::t_Constant;
3533     return false;
3534   }
3535 
3536   case lltok::kw_dso_local_equivalent: {
3537     // ValID ::= 'dso_local_equivalent' @foo
3538     Lex.Lex();
3539 
3540     ValID Fn;
3541 
3542     if (parseValID(Fn))
3543       return true;
3544 
3545     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3546       return error(Fn.Loc,
3547                    "expected global value name in dso_local_equivalent");
3548 
3549     // Try to find the function (but skip it if it's forward-referenced).
3550     GlobalValue *GV = nullptr;
3551     if (Fn.Kind == ValID::t_GlobalID) {
3552       if (Fn.UIntVal < NumberedVals.size())
3553         GV = NumberedVals[Fn.UIntVal];
3554     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3555       GV = M->getNamedValue(Fn.StrVal);
3556     }
3557 
3558     assert(GV && "Could not find a corresponding global variable");
3559 
3560     if (!GV->getValueType()->isFunctionTy())
3561       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3562                            "in dso_local_equivalent");
3563 
3564     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3565     ID.Kind = ValID::t_Constant;
3566     return false;
3567   }
3568 
3569   case lltok::kw_trunc:
3570   case lltok::kw_zext:
3571   case lltok::kw_sext:
3572   case lltok::kw_fptrunc:
3573   case lltok::kw_fpext:
3574   case lltok::kw_bitcast:
3575   case lltok::kw_addrspacecast:
3576   case lltok::kw_uitofp:
3577   case lltok::kw_sitofp:
3578   case lltok::kw_fptoui:
3579   case lltok::kw_fptosi:
3580   case lltok::kw_inttoptr:
3581   case lltok::kw_ptrtoint: {
3582     unsigned Opc = Lex.getUIntVal();
3583     Type *DestTy = nullptr;
3584     Constant *SrcVal;
3585     Lex.Lex();
3586     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3587         parseGlobalTypeAndValue(SrcVal) ||
3588         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3589         parseType(DestTy) ||
3590         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3591       return true;
3592     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3593       return error(ID.Loc, "invalid cast opcode for cast from '" +
3594                                getTypeString(SrcVal->getType()) + "' to '" +
3595                                getTypeString(DestTy) + "'");
3596     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3597                                                  SrcVal, DestTy);
3598     ID.Kind = ValID::t_Constant;
3599     return false;
3600   }
3601   case lltok::kw_extractvalue: {
3602     Lex.Lex();
3603     Constant *Val;
3604     SmallVector<unsigned, 4> Indices;
3605     if (parseToken(lltok::lparen,
3606                    "expected '(' in extractvalue constantexpr") ||
3607         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3608         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3609       return true;
3610 
3611     if (!Val->getType()->isAggregateType())
3612       return error(ID.Loc, "extractvalue operand must be aggregate type");
3613     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3614       return error(ID.Loc, "invalid indices for extractvalue");
3615     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3616     ID.Kind = ValID::t_Constant;
3617     return false;
3618   }
3619   case lltok::kw_insertvalue: {
3620     Lex.Lex();
3621     Constant *Val0, *Val1;
3622     SmallVector<unsigned, 4> Indices;
3623     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3624         parseGlobalTypeAndValue(Val0) ||
3625         parseToken(lltok::comma,
3626                    "expected comma in insertvalue constantexpr") ||
3627         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3628         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3629       return true;
3630     if (!Val0->getType()->isAggregateType())
3631       return error(ID.Loc, "insertvalue operand must be aggregate type");
3632     Type *IndexedType =
3633         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3634     if (!IndexedType)
3635       return error(ID.Loc, "invalid indices for insertvalue");
3636     if (IndexedType != Val1->getType())
3637       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3638                                getTypeString(Val1->getType()) +
3639                                "' instead of '" + getTypeString(IndexedType) +
3640                                "'");
3641     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3642     ID.Kind = ValID::t_Constant;
3643     return false;
3644   }
3645   case lltok::kw_icmp:
3646   case lltok::kw_fcmp: {
3647     unsigned PredVal, Opc = Lex.getUIntVal();
3648     Constant *Val0, *Val1;
3649     Lex.Lex();
3650     if (parseCmpPredicate(PredVal, Opc) ||
3651         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3652         parseGlobalTypeAndValue(Val0) ||
3653         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3654         parseGlobalTypeAndValue(Val1) ||
3655         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3656       return true;
3657 
3658     if (Val0->getType() != Val1->getType())
3659       return error(ID.Loc, "compare operands must have the same type");
3660 
3661     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3662 
3663     if (Opc == Instruction::FCmp) {
3664       if (!Val0->getType()->isFPOrFPVectorTy())
3665         return error(ID.Loc, "fcmp requires floating point operands");
3666       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3667     } else {
3668       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3669       if (!Val0->getType()->isIntOrIntVectorTy() &&
3670           !Val0->getType()->isPtrOrPtrVectorTy())
3671         return error(ID.Loc, "icmp requires pointer or integer operands");
3672       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3673     }
3674     ID.Kind = ValID::t_Constant;
3675     return false;
3676   }
3677 
3678   // Unary Operators.
3679   case lltok::kw_fneg: {
3680     unsigned Opc = Lex.getUIntVal();
3681     Constant *Val;
3682     Lex.Lex();
3683     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3684         parseGlobalTypeAndValue(Val) ||
3685         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3686       return true;
3687 
3688     // Check that the type is valid for the operator.
3689     switch (Opc) {
3690     case Instruction::FNeg:
3691       if (!Val->getType()->isFPOrFPVectorTy())
3692         return error(ID.Loc, "constexpr requires fp operands");
3693       break;
3694     default: llvm_unreachable("Unknown unary operator!");
3695     }
3696     unsigned Flags = 0;
3697     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3698     ID.ConstantVal = C;
3699     ID.Kind = ValID::t_Constant;
3700     return false;
3701   }
3702   // Binary Operators.
3703   case lltok::kw_add:
3704   case lltok::kw_fadd:
3705   case lltok::kw_sub:
3706   case lltok::kw_fsub:
3707   case lltok::kw_mul:
3708   case lltok::kw_fmul:
3709   case lltok::kw_udiv:
3710   case lltok::kw_sdiv:
3711   case lltok::kw_fdiv:
3712   case lltok::kw_urem:
3713   case lltok::kw_srem:
3714   case lltok::kw_frem:
3715   case lltok::kw_shl:
3716   case lltok::kw_lshr:
3717   case lltok::kw_ashr: {
3718     bool NUW = false;
3719     bool NSW = false;
3720     bool Exact = false;
3721     unsigned Opc = Lex.getUIntVal();
3722     Constant *Val0, *Val1;
3723     Lex.Lex();
3724     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3725         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3726       if (EatIfPresent(lltok::kw_nuw))
3727         NUW = true;
3728       if (EatIfPresent(lltok::kw_nsw)) {
3729         NSW = true;
3730         if (EatIfPresent(lltok::kw_nuw))
3731           NUW = true;
3732       }
3733     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3734                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3735       if (EatIfPresent(lltok::kw_exact))
3736         Exact = true;
3737     }
3738     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3739         parseGlobalTypeAndValue(Val0) ||
3740         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3741         parseGlobalTypeAndValue(Val1) ||
3742         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3743       return true;
3744     if (Val0->getType() != Val1->getType())
3745       return error(ID.Loc, "operands of constexpr must have same type");
3746     // Check that the type is valid for the operator.
3747     switch (Opc) {
3748     case Instruction::Add:
3749     case Instruction::Sub:
3750     case Instruction::Mul:
3751     case Instruction::UDiv:
3752     case Instruction::SDiv:
3753     case Instruction::URem:
3754     case Instruction::SRem:
3755     case Instruction::Shl:
3756     case Instruction::AShr:
3757     case Instruction::LShr:
3758       if (!Val0->getType()->isIntOrIntVectorTy())
3759         return error(ID.Loc, "constexpr requires integer operands");
3760       break;
3761     case Instruction::FAdd:
3762     case Instruction::FSub:
3763     case Instruction::FMul:
3764     case Instruction::FDiv:
3765     case Instruction::FRem:
3766       if (!Val0->getType()->isFPOrFPVectorTy())
3767         return error(ID.Loc, "constexpr requires fp operands");
3768       break;
3769     default: llvm_unreachable("Unknown binary operator!");
3770     }
3771     unsigned Flags = 0;
3772     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3773     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3774     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3775     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3776     ID.ConstantVal = C;
3777     ID.Kind = ValID::t_Constant;
3778     return false;
3779   }
3780 
3781   // Logical Operations
3782   case lltok::kw_and:
3783   case lltok::kw_or:
3784   case lltok::kw_xor: {
3785     unsigned Opc = Lex.getUIntVal();
3786     Constant *Val0, *Val1;
3787     Lex.Lex();
3788     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3789         parseGlobalTypeAndValue(Val0) ||
3790         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3791         parseGlobalTypeAndValue(Val1) ||
3792         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3793       return true;
3794     if (Val0->getType() != Val1->getType())
3795       return error(ID.Loc, "operands of constexpr must have same type");
3796     if (!Val0->getType()->isIntOrIntVectorTy())
3797       return error(ID.Loc,
3798                    "constexpr requires integer or integer vector operands");
3799     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3800     ID.Kind = ValID::t_Constant;
3801     return false;
3802   }
3803 
3804   case lltok::kw_getelementptr:
3805   case lltok::kw_shufflevector:
3806   case lltok::kw_insertelement:
3807   case lltok::kw_extractelement:
3808   case lltok::kw_select: {
3809     unsigned Opc = Lex.getUIntVal();
3810     SmallVector<Constant*, 16> Elts;
3811     bool InBounds = false;
3812     Type *Ty;
3813     Lex.Lex();
3814 
3815     if (Opc == Instruction::GetElementPtr)
3816       InBounds = EatIfPresent(lltok::kw_inbounds);
3817 
3818     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3819       return true;
3820 
3821     LocTy ExplicitTypeLoc = Lex.getLoc();
3822     if (Opc == Instruction::GetElementPtr) {
3823       if (parseType(Ty) ||
3824           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3825         return true;
3826     }
3827 
3828     Optional<unsigned> InRangeOp;
3829     if (parseGlobalValueVector(
3830             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3831         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3832       return true;
3833 
3834     if (Opc == Instruction::GetElementPtr) {
3835       if (Elts.size() == 0 ||
3836           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3837         return error(ID.Loc, "base of getelementptr must be a pointer");
3838 
3839       Type *BaseType = Elts[0]->getType();
3840       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3841       if (Ty != BasePointerType->getElementType())
3842         return error(
3843             ExplicitTypeLoc,
3844             "explicit pointee type doesn't match operand's pointee type");
3845 
3846       unsigned GEPWidth =
3847           BaseType->isVectorTy()
3848               ? cast<FixedVectorType>(BaseType)->getNumElements()
3849               : 0;
3850 
3851       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3852       for (Constant *Val : Indices) {
3853         Type *ValTy = Val->getType();
3854         if (!ValTy->isIntOrIntVectorTy())
3855           return error(ID.Loc, "getelementptr index must be an integer");
3856         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3857           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3858           if (GEPWidth && (ValNumEl != GEPWidth))
3859             return error(
3860                 ID.Loc,
3861                 "getelementptr vector index has a wrong number of elements");
3862           // GEPWidth may have been unknown because the base is a scalar,
3863           // but it is known now.
3864           GEPWidth = ValNumEl;
3865         }
3866       }
3867 
3868       SmallPtrSet<Type*, 4> Visited;
3869       if (!Indices.empty() && !Ty->isSized(&Visited))
3870         return error(ID.Loc, "base element of getelementptr must be sized");
3871 
3872       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3873         return error(ID.Loc, "invalid getelementptr indices");
3874 
3875       if (InRangeOp) {
3876         if (*InRangeOp == 0)
3877           return error(ID.Loc,
3878                        "inrange keyword may not appear on pointer operand");
3879         --*InRangeOp;
3880       }
3881 
3882       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3883                                                       InBounds, InRangeOp);
3884     } else if (Opc == Instruction::Select) {
3885       if (Elts.size() != 3)
3886         return error(ID.Loc, "expected three operands to select");
3887       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3888                                                               Elts[2]))
3889         return error(ID.Loc, Reason);
3890       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3891     } else if (Opc == Instruction::ShuffleVector) {
3892       if (Elts.size() != 3)
3893         return error(ID.Loc, "expected three operands to shufflevector");
3894       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3895         return error(ID.Loc, "invalid operands to shufflevector");
3896       SmallVector<int, 16> Mask;
3897       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3898       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3899     } else if (Opc == Instruction::ExtractElement) {
3900       if (Elts.size() != 2)
3901         return error(ID.Loc, "expected two operands to extractelement");
3902       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3903         return error(ID.Loc, "invalid extractelement operands");
3904       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3905     } else {
3906       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3907       if (Elts.size() != 3)
3908         return error(ID.Loc, "expected three operands to insertelement");
3909       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3910         return error(ID.Loc, "invalid insertelement operands");
3911       ID.ConstantVal =
3912                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3913     }
3914 
3915     ID.Kind = ValID::t_Constant;
3916     return false;
3917   }
3918   }
3919 
3920   Lex.Lex();
3921   return false;
3922 }
3923 
3924 /// parseGlobalValue - parse a global value with the specified type.
3925 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3926   C = nullptr;
3927   ValID ID;
3928   Value *V = nullptr;
3929   bool Parsed = parseValID(ID) ||
3930                 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3931   if (V && !(C = dyn_cast<Constant>(V)))
3932     return error(ID.Loc, "global values must be constants");
3933   return Parsed;
3934 }
3935 
3936 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3937   Type *Ty = nullptr;
3938   return parseType(Ty) || parseGlobalValue(Ty, V);
3939 }
3940 
3941 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3942   C = nullptr;
3943 
3944   LocTy KwLoc = Lex.getLoc();
3945   if (!EatIfPresent(lltok::kw_comdat))
3946     return false;
3947 
3948   if (EatIfPresent(lltok::lparen)) {
3949     if (Lex.getKind() != lltok::ComdatVar)
3950       return tokError("expected comdat variable");
3951     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3952     Lex.Lex();
3953     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3954       return true;
3955   } else {
3956     if (GlobalName.empty())
3957       return tokError("comdat cannot be unnamed");
3958     C = getComdat(std::string(GlobalName), KwLoc);
3959   }
3960 
3961   return false;
3962 }
3963 
3964 /// parseGlobalValueVector
3965 ///   ::= /*empty*/
3966 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3967 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3968                                       Optional<unsigned> *InRangeOp) {
3969   // Empty list.
3970   if (Lex.getKind() == lltok::rbrace ||
3971       Lex.getKind() == lltok::rsquare ||
3972       Lex.getKind() == lltok::greater ||
3973       Lex.getKind() == lltok::rparen)
3974     return false;
3975 
3976   do {
3977     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3978       *InRangeOp = Elts.size();
3979 
3980     Constant *C;
3981     if (parseGlobalTypeAndValue(C))
3982       return true;
3983     Elts.push_back(C);
3984   } while (EatIfPresent(lltok::comma));
3985 
3986   return false;
3987 }
3988 
3989 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
3990   SmallVector<Metadata *, 16> Elts;
3991   if (parseMDNodeVector(Elts))
3992     return true;
3993 
3994   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3995   return false;
3996 }
3997 
3998 /// MDNode:
3999 ///  ::= !{ ... }
4000 ///  ::= !7
4001 ///  ::= !DILocation(...)
4002 bool LLParser::parseMDNode(MDNode *&N) {
4003   if (Lex.getKind() == lltok::MetadataVar)
4004     return parseSpecializedMDNode(N);
4005 
4006   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
4007 }
4008 
4009 bool LLParser::parseMDNodeTail(MDNode *&N) {
4010   // !{ ... }
4011   if (Lex.getKind() == lltok::lbrace)
4012     return parseMDTuple(N);
4013 
4014   // !42
4015   return parseMDNodeID(N);
4016 }
4017 
4018 namespace {
4019 
4020 /// Structure to represent an optional metadata field.
4021 template <class FieldTy> struct MDFieldImpl {
4022   typedef MDFieldImpl ImplTy;
4023   FieldTy Val;
4024   bool Seen;
4025 
4026   void assign(FieldTy Val) {
4027     Seen = true;
4028     this->Val = std::move(Val);
4029   }
4030 
4031   explicit MDFieldImpl(FieldTy Default)
4032       : Val(std::move(Default)), Seen(false) {}
4033 };
4034 
4035 /// Structure to represent an optional metadata field that
4036 /// can be of either type (A or B) and encapsulates the
4037 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
4038 /// to reimplement the specifics for representing each Field.
4039 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
4040   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
4041   FieldTypeA A;
4042   FieldTypeB B;
4043   bool Seen;
4044 
4045   enum {
4046     IsInvalid = 0,
4047     IsTypeA = 1,
4048     IsTypeB = 2
4049   } WhatIs;
4050 
4051   void assign(FieldTypeA A) {
4052     Seen = true;
4053     this->A = std::move(A);
4054     WhatIs = IsTypeA;
4055   }
4056 
4057   void assign(FieldTypeB B) {
4058     Seen = true;
4059     this->B = std::move(B);
4060     WhatIs = IsTypeB;
4061   }
4062 
4063   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
4064       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
4065         WhatIs(IsInvalid) {}
4066 };
4067 
4068 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
4069   uint64_t Max;
4070 
4071   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
4072       : ImplTy(Default), Max(Max) {}
4073 };
4074 
4075 struct LineField : public MDUnsignedField {
4076   LineField() : MDUnsignedField(0, UINT32_MAX) {}
4077 };
4078 
4079 struct ColumnField : public MDUnsignedField {
4080   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
4081 };
4082 
4083 struct DwarfTagField : public MDUnsignedField {
4084   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
4085   DwarfTagField(dwarf::Tag DefaultTag)
4086       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
4087 };
4088 
4089 struct DwarfMacinfoTypeField : public MDUnsignedField {
4090   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
4091   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
4092     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
4093 };
4094 
4095 struct DwarfAttEncodingField : public MDUnsignedField {
4096   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
4097 };
4098 
4099 struct DwarfVirtualityField : public MDUnsignedField {
4100   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
4101 };
4102 
4103 struct DwarfLangField : public MDUnsignedField {
4104   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
4105 };
4106 
4107 struct DwarfCCField : public MDUnsignedField {
4108   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
4109 };
4110 
4111 struct EmissionKindField : public MDUnsignedField {
4112   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
4113 };
4114 
4115 struct NameTableKindField : public MDUnsignedField {
4116   NameTableKindField()
4117       : MDUnsignedField(
4118             0, (unsigned)
4119                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
4120 };
4121 
4122 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
4123   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4124 };
4125 
4126 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
4127   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4128 };
4129 
4130 struct MDAPSIntField : public MDFieldImpl<APSInt> {
4131   MDAPSIntField() : ImplTy(APSInt()) {}
4132 };
4133 
4134 struct MDSignedField : public MDFieldImpl<int64_t> {
4135   int64_t Min;
4136   int64_t Max;
4137 
4138   MDSignedField(int64_t Default = 0)
4139       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
4140   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4141       : ImplTy(Default), Min(Min), Max(Max) {}
4142 };
4143 
4144 struct MDBoolField : public MDFieldImpl<bool> {
4145   MDBoolField(bool Default = false) : ImplTy(Default) {}
4146 };
4147 
4148 struct MDField : public MDFieldImpl<Metadata *> {
4149   bool AllowNull;
4150 
4151   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4152 };
4153 
4154 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
4155   MDConstant() : ImplTy(nullptr) {}
4156 };
4157 
4158 struct MDStringField : public MDFieldImpl<MDString *> {
4159   bool AllowEmpty;
4160   MDStringField(bool AllowEmpty = true)
4161       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4162 };
4163 
4164 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4165   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4166 };
4167 
4168 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4169   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4170 };
4171 
4172 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4173   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4174       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4175 
4176   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4177                     bool AllowNull = true)
4178       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4179 
4180   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4181   bool isMDField() const { return WhatIs == IsTypeB; }
4182   int64_t getMDSignedValue() const {
4183     assert(isMDSignedField() && "Wrong field type");
4184     return A.Val;
4185   }
4186   Metadata *getMDFieldValue() const {
4187     assert(isMDField() && "Wrong field type");
4188     return B.Val;
4189   }
4190 };
4191 
4192 struct MDSignedOrUnsignedField
4193     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
4194   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
4195 
4196   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4197   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
4198   int64_t getMDSignedValue() const {
4199     assert(isMDSignedField() && "Wrong field type");
4200     return A.Val;
4201   }
4202   uint64_t getMDUnsignedValue() const {
4203     assert(isMDUnsignedField() && "Wrong field type");
4204     return B.Val;
4205   }
4206 };
4207 
4208 } // end anonymous namespace
4209 
4210 namespace llvm {
4211 
4212 template <>
4213 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4214   if (Lex.getKind() != lltok::APSInt)
4215     return tokError("expected integer");
4216 
4217   Result.assign(Lex.getAPSIntVal());
4218   Lex.Lex();
4219   return false;
4220 }
4221 
4222 template <>
4223 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4224                             MDUnsignedField &Result) {
4225   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4226     return tokError("expected unsigned integer");
4227 
4228   auto &U = Lex.getAPSIntVal();
4229   if (U.ugt(Result.Max))
4230     return tokError("value for '" + Name + "' too large, limit is " +
4231                     Twine(Result.Max));
4232   Result.assign(U.getZExtValue());
4233   assert(Result.Val <= Result.Max && "Expected value in range");
4234   Lex.Lex();
4235   return false;
4236 }
4237 
4238 template <>
4239 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4240   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4241 }
4242 template <>
4243 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4244   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4245 }
4246 
4247 template <>
4248 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4249   if (Lex.getKind() == lltok::APSInt)
4250     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4251 
4252   if (Lex.getKind() != lltok::DwarfTag)
4253     return tokError("expected DWARF tag");
4254 
4255   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4256   if (Tag == dwarf::DW_TAG_invalid)
4257     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4258   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4259 
4260   Result.assign(Tag);
4261   Lex.Lex();
4262   return false;
4263 }
4264 
4265 template <>
4266 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4267                             DwarfMacinfoTypeField &Result) {
4268   if (Lex.getKind() == lltok::APSInt)
4269     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4270 
4271   if (Lex.getKind() != lltok::DwarfMacinfo)
4272     return tokError("expected DWARF macinfo type");
4273 
4274   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4275   if (Macinfo == dwarf::DW_MACINFO_invalid)
4276     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4277                     Lex.getStrVal() + "'");
4278   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4279 
4280   Result.assign(Macinfo);
4281   Lex.Lex();
4282   return false;
4283 }
4284 
4285 template <>
4286 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4287                             DwarfVirtualityField &Result) {
4288   if (Lex.getKind() == lltok::APSInt)
4289     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4290 
4291   if (Lex.getKind() != lltok::DwarfVirtuality)
4292     return tokError("expected DWARF virtuality code");
4293 
4294   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4295   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4296     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4297                     Lex.getStrVal() + "'");
4298   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4299   Result.assign(Virtuality);
4300   Lex.Lex();
4301   return false;
4302 }
4303 
4304 template <>
4305 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4306   if (Lex.getKind() == lltok::APSInt)
4307     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4308 
4309   if (Lex.getKind() != lltok::DwarfLang)
4310     return tokError("expected DWARF language");
4311 
4312   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4313   if (!Lang)
4314     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4315                     "'");
4316   assert(Lang <= Result.Max && "Expected valid DWARF language");
4317   Result.assign(Lang);
4318   Lex.Lex();
4319   return false;
4320 }
4321 
4322 template <>
4323 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4324   if (Lex.getKind() == lltok::APSInt)
4325     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4326 
4327   if (Lex.getKind() != lltok::DwarfCC)
4328     return tokError("expected DWARF calling convention");
4329 
4330   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4331   if (!CC)
4332     return tokError("invalid DWARF calling convention" + Twine(" '") +
4333                     Lex.getStrVal() + "'");
4334   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4335   Result.assign(CC);
4336   Lex.Lex();
4337   return false;
4338 }
4339 
4340 template <>
4341 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4342                             EmissionKindField &Result) {
4343   if (Lex.getKind() == lltok::APSInt)
4344     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4345 
4346   if (Lex.getKind() != lltok::EmissionKind)
4347     return tokError("expected emission kind");
4348 
4349   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4350   if (!Kind)
4351     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4352                     "'");
4353   assert(*Kind <= Result.Max && "Expected valid emission kind");
4354   Result.assign(*Kind);
4355   Lex.Lex();
4356   return false;
4357 }
4358 
4359 template <>
4360 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4361                             NameTableKindField &Result) {
4362   if (Lex.getKind() == lltok::APSInt)
4363     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4364 
4365   if (Lex.getKind() != lltok::NameTableKind)
4366     return tokError("expected nameTable kind");
4367 
4368   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4369   if (!Kind)
4370     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4371                     "'");
4372   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4373   Result.assign((unsigned)*Kind);
4374   Lex.Lex();
4375   return false;
4376 }
4377 
4378 template <>
4379 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4380                             DwarfAttEncodingField &Result) {
4381   if (Lex.getKind() == lltok::APSInt)
4382     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4383 
4384   if (Lex.getKind() != lltok::DwarfAttEncoding)
4385     return tokError("expected DWARF type attribute encoding");
4386 
4387   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4388   if (!Encoding)
4389     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4390                     Lex.getStrVal() + "'");
4391   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4392   Result.assign(Encoding);
4393   Lex.Lex();
4394   return false;
4395 }
4396 
4397 /// DIFlagField
4398 ///  ::= uint32
4399 ///  ::= DIFlagVector
4400 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4401 template <>
4402 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4403 
4404   // parser for a single flag.
4405   auto parseFlag = [&](DINode::DIFlags &Val) {
4406     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4407       uint32_t TempVal = static_cast<uint32_t>(Val);
4408       bool Res = parseUInt32(TempVal);
4409       Val = static_cast<DINode::DIFlags>(TempVal);
4410       return Res;
4411     }
4412 
4413     if (Lex.getKind() != lltok::DIFlag)
4414       return tokError("expected debug info flag");
4415 
4416     Val = DINode::getFlag(Lex.getStrVal());
4417     if (!Val)
4418       return tokError(Twine("invalid debug info flag flag '") +
4419                       Lex.getStrVal() + "'");
4420     Lex.Lex();
4421     return false;
4422   };
4423 
4424   // parse the flags and combine them together.
4425   DINode::DIFlags Combined = DINode::FlagZero;
4426   do {
4427     DINode::DIFlags Val;
4428     if (parseFlag(Val))
4429       return true;
4430     Combined |= Val;
4431   } while (EatIfPresent(lltok::bar));
4432 
4433   Result.assign(Combined);
4434   return false;
4435 }
4436 
4437 /// DISPFlagField
4438 ///  ::= uint32
4439 ///  ::= DISPFlagVector
4440 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4441 template <>
4442 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4443 
4444   // parser for a single flag.
4445   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4446     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4447       uint32_t TempVal = static_cast<uint32_t>(Val);
4448       bool Res = parseUInt32(TempVal);
4449       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4450       return Res;
4451     }
4452 
4453     if (Lex.getKind() != lltok::DISPFlag)
4454       return tokError("expected debug info flag");
4455 
4456     Val = DISubprogram::getFlag(Lex.getStrVal());
4457     if (!Val)
4458       return tokError(Twine("invalid subprogram debug info flag '") +
4459                       Lex.getStrVal() + "'");
4460     Lex.Lex();
4461     return false;
4462   };
4463 
4464   // parse the flags and combine them together.
4465   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4466   do {
4467     DISubprogram::DISPFlags Val;
4468     if (parseFlag(Val))
4469       return true;
4470     Combined |= Val;
4471   } while (EatIfPresent(lltok::bar));
4472 
4473   Result.assign(Combined);
4474   return false;
4475 }
4476 
4477 template <>
4478 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4479   if (Lex.getKind() != lltok::APSInt)
4480     return tokError("expected signed integer");
4481 
4482   auto &S = Lex.getAPSIntVal();
4483   if (S < Result.Min)
4484     return tokError("value for '" + Name + "' too small, limit is " +
4485                     Twine(Result.Min));
4486   if (S > Result.Max)
4487     return tokError("value for '" + Name + "' too large, limit is " +
4488                     Twine(Result.Max));
4489   Result.assign(S.getExtValue());
4490   assert(Result.Val >= Result.Min && "Expected value in range");
4491   assert(Result.Val <= Result.Max && "Expected value in range");
4492   Lex.Lex();
4493   return false;
4494 }
4495 
4496 template <>
4497 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4498   switch (Lex.getKind()) {
4499   default:
4500     return tokError("expected 'true' or 'false'");
4501   case lltok::kw_true:
4502     Result.assign(true);
4503     break;
4504   case lltok::kw_false:
4505     Result.assign(false);
4506     break;
4507   }
4508   Lex.Lex();
4509   return false;
4510 }
4511 
4512 template <>
4513 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4514   if (Lex.getKind() == lltok::kw_null) {
4515     if (!Result.AllowNull)
4516       return tokError("'" + Name + "' cannot be null");
4517     Lex.Lex();
4518     Result.assign(nullptr);
4519     return false;
4520   }
4521 
4522   Metadata *MD;
4523   if (parseMetadata(MD, nullptr))
4524     return true;
4525 
4526   Result.assign(MD);
4527   return false;
4528 }
4529 
4530 template <>
4531 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4532                             MDSignedOrMDField &Result) {
4533   // Try to parse a signed int.
4534   if (Lex.getKind() == lltok::APSInt) {
4535     MDSignedField Res = Result.A;
4536     if (!parseMDField(Loc, Name, Res)) {
4537       Result.assign(Res);
4538       return false;
4539     }
4540     return true;
4541   }
4542 
4543   // Otherwise, try to parse as an MDField.
4544   MDField Res = Result.B;
4545   if (!parseMDField(Loc, Name, Res)) {
4546     Result.assign(Res);
4547     return false;
4548   }
4549 
4550   return true;
4551 }
4552 
4553 template <>
4554 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4555   LocTy ValueLoc = Lex.getLoc();
4556   std::string S;
4557   if (parseStringConstant(S))
4558     return true;
4559 
4560   if (!Result.AllowEmpty && S.empty())
4561     return error(ValueLoc, "'" + Name + "' cannot be empty");
4562 
4563   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4564   return false;
4565 }
4566 
4567 template <>
4568 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4569   SmallVector<Metadata *, 4> MDs;
4570   if (parseMDNodeVector(MDs))
4571     return true;
4572 
4573   Result.assign(std::move(MDs));
4574   return false;
4575 }
4576 
4577 template <>
4578 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4579                             ChecksumKindField &Result) {
4580   Optional<DIFile::ChecksumKind> CSKind =
4581       DIFile::getChecksumKind(Lex.getStrVal());
4582 
4583   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4584     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4585                     "'");
4586 
4587   Result.assign(*CSKind);
4588   Lex.Lex();
4589   return false;
4590 }
4591 
4592 } // end namespace llvm
4593 
4594 template <class ParserTy>
4595 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4596   do {
4597     if (Lex.getKind() != lltok::LabelStr)
4598       return tokError("expected field label here");
4599 
4600     if (ParseField())
4601       return true;
4602   } while (EatIfPresent(lltok::comma));
4603 
4604   return false;
4605 }
4606 
4607 template <class ParserTy>
4608 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4609   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4610   Lex.Lex();
4611 
4612   if (parseToken(lltok::lparen, "expected '(' here"))
4613     return true;
4614   if (Lex.getKind() != lltok::rparen)
4615     if (parseMDFieldsImplBody(ParseField))
4616       return true;
4617 
4618   ClosingLoc = Lex.getLoc();
4619   return parseToken(lltok::rparen, "expected ')' here");
4620 }
4621 
4622 template <class FieldTy>
4623 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4624   if (Result.Seen)
4625     return tokError("field '" + Name + "' cannot be specified more than once");
4626 
4627   LocTy Loc = Lex.getLoc();
4628   Lex.Lex();
4629   return parseMDField(Loc, Name, Result);
4630 }
4631 
4632 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4633   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4634 
4635 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4636   if (Lex.getStrVal() == #CLASS)                                               \
4637     return parse##CLASS(N, IsDistinct);
4638 #include "llvm/IR/Metadata.def"
4639 
4640   return tokError("expected metadata type");
4641 }
4642 
4643 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4644 #define NOP_FIELD(NAME, TYPE, INIT)
4645 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4646   if (!NAME.Seen)                                                              \
4647     return error(ClosingLoc, "missing required field '" #NAME "'");
4648 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4649   if (Lex.getStrVal() == #NAME)                                                \
4650     return parseMDField(#NAME, NAME);
4651 #define PARSE_MD_FIELDS()                                                      \
4652   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4653   do {                                                                         \
4654     LocTy ClosingLoc;                                                          \
4655     if (parseMDFieldsImpl(                                                     \
4656             [&]() -> bool {                                                    \
4657               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4658               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4659                               "'");                                            \
4660             },                                                                 \
4661             ClosingLoc))                                                       \
4662       return true;                                                             \
4663     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4664   } while (false)
4665 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4666   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4667 
4668 /// parseDILocationFields:
4669 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4670 ///   isImplicitCode: true)
4671 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4672 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4673   OPTIONAL(line, LineField, );                                                 \
4674   OPTIONAL(column, ColumnField, );                                             \
4675   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4676   OPTIONAL(inlinedAt, MDField, );                                              \
4677   OPTIONAL(isImplicitCode, MDBoolField, (false));
4678   PARSE_MD_FIELDS();
4679 #undef VISIT_MD_FIELDS
4680 
4681   Result =
4682       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4683                                    inlinedAt.Val, isImplicitCode.Val));
4684   return false;
4685 }
4686 
4687 /// parseGenericDINode:
4688 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4689 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4690 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4691   REQUIRED(tag, DwarfTagField, );                                              \
4692   OPTIONAL(header, MDStringField, );                                           \
4693   OPTIONAL(operands, MDFieldList, );
4694   PARSE_MD_FIELDS();
4695 #undef VISIT_MD_FIELDS
4696 
4697   Result = GET_OR_DISTINCT(GenericDINode,
4698                            (Context, tag.Val, header.Val, operands.Val));
4699   return false;
4700 }
4701 
4702 /// parseDISubrange:
4703 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4704 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4705 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4706 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4707 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4708   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4709   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4710   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4711   OPTIONAL(stride, MDSignedOrMDField, );
4712   PARSE_MD_FIELDS();
4713 #undef VISIT_MD_FIELDS
4714 
4715   Metadata *Count = nullptr;
4716   Metadata *LowerBound = nullptr;
4717   Metadata *UpperBound = nullptr;
4718   Metadata *Stride = nullptr;
4719   if (count.isMDSignedField())
4720     Count = ConstantAsMetadata::get(ConstantInt::getSigned(
4721         Type::getInt64Ty(Context), count.getMDSignedValue()));
4722   else if (count.isMDField())
4723     Count = count.getMDFieldValue();
4724 
4725   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4726     if (Bound.isMDSignedField())
4727       return ConstantAsMetadata::get(ConstantInt::getSigned(
4728           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4729     if (Bound.isMDField())
4730       return Bound.getMDFieldValue();
4731     return nullptr;
4732   };
4733 
4734   LowerBound = convToMetadata(lowerBound);
4735   UpperBound = convToMetadata(upperBound);
4736   Stride = convToMetadata(stride);
4737 
4738   Result = GET_OR_DISTINCT(DISubrange,
4739                            (Context, Count, LowerBound, UpperBound, Stride));
4740 
4741   return false;
4742 }
4743 
4744 /// parseDIGenericSubrange:
4745 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4746 ///   !node3)
4747 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4748 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4749   OPTIONAL(count, MDSignedOrMDField, );                                        \
4750   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4751   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4752   OPTIONAL(stride, MDSignedOrMDField, );
4753   PARSE_MD_FIELDS();
4754 #undef VISIT_MD_FIELDS
4755 
4756   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4757     if (Bound.isMDSignedField())
4758       return DIExpression::get(
4759           Context, {dwarf::DW_OP_consts,
4760                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4761     if (Bound.isMDField())
4762       return Bound.getMDFieldValue();
4763     return nullptr;
4764   };
4765 
4766   Metadata *Count = ConvToMetadata(count);
4767   Metadata *LowerBound = ConvToMetadata(lowerBound);
4768   Metadata *UpperBound = ConvToMetadata(upperBound);
4769   Metadata *Stride = ConvToMetadata(stride);
4770 
4771   Result = GET_OR_DISTINCT(DIGenericSubrange,
4772                            (Context, Count, LowerBound, UpperBound, Stride));
4773 
4774   return false;
4775 }
4776 
4777 /// parseDIEnumerator:
4778 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4779 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4780 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4781   REQUIRED(name, MDStringField, );                                             \
4782   REQUIRED(value, MDAPSIntField, );                                            \
4783   OPTIONAL(isUnsigned, MDBoolField, (false));
4784   PARSE_MD_FIELDS();
4785 #undef VISIT_MD_FIELDS
4786 
4787   if (isUnsigned.Val && value.Val.isNegative())
4788     return tokError("unsigned enumerator with negative value");
4789 
4790   APSInt Value(value.Val);
4791   // Add a leading zero so that unsigned values with the msb set are not
4792   // mistaken for negative values when used for signed enumerators.
4793   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4794     Value = Value.zext(Value.getBitWidth() + 1);
4795 
4796   Result =
4797       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4798 
4799   return false;
4800 }
4801 
4802 /// parseDIBasicType:
4803 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4804 ///                    encoding: DW_ATE_encoding, flags: 0)
4805 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4806 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4807   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4808   OPTIONAL(name, MDStringField, );                                             \
4809   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4810   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4811   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4812   OPTIONAL(flags, DIFlagField, );
4813   PARSE_MD_FIELDS();
4814 #undef VISIT_MD_FIELDS
4815 
4816   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4817                                          align.Val, encoding.Val, flags.Val));
4818   return false;
4819 }
4820 
4821 /// parseDIStringType:
4822 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4823 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4824 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4825   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4826   OPTIONAL(name, MDStringField, );                                             \
4827   OPTIONAL(stringLength, MDField, );                                           \
4828   OPTIONAL(stringLengthExpression, MDField, );                                 \
4829   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4830   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4831   OPTIONAL(encoding, DwarfAttEncodingField, );
4832   PARSE_MD_FIELDS();
4833 #undef VISIT_MD_FIELDS
4834 
4835   Result = GET_OR_DISTINCT(DIStringType,
4836                            (Context, tag.Val, name.Val, stringLength.Val,
4837                             stringLengthExpression.Val, size.Val, align.Val,
4838                             encoding.Val));
4839   return false;
4840 }
4841 
4842 /// parseDIDerivedType:
4843 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4844 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4845 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4846 ///                      dwarfAddressSpace: 3)
4847 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4848 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4849   REQUIRED(tag, DwarfTagField, );                                              \
4850   OPTIONAL(name, MDStringField, );                                             \
4851   OPTIONAL(file, MDField, );                                                   \
4852   OPTIONAL(line, LineField, );                                                 \
4853   OPTIONAL(scope, MDField, );                                                  \
4854   REQUIRED(baseType, MDField, );                                               \
4855   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4856   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4857   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4858   OPTIONAL(flags, DIFlagField, );                                              \
4859   OPTIONAL(extraData, MDField, );                                              \
4860   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4861   PARSE_MD_FIELDS();
4862 #undef VISIT_MD_FIELDS
4863 
4864   Optional<unsigned> DWARFAddressSpace;
4865   if (dwarfAddressSpace.Val != UINT32_MAX)
4866     DWARFAddressSpace = dwarfAddressSpace.Val;
4867 
4868   Result = GET_OR_DISTINCT(DIDerivedType,
4869                            (Context, tag.Val, name.Val, file.Val, line.Val,
4870                             scope.Val, baseType.Val, size.Val, align.Val,
4871                             offset.Val, DWARFAddressSpace, flags.Val,
4872                             extraData.Val));
4873   return false;
4874 }
4875 
4876 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4877 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4878   REQUIRED(tag, DwarfTagField, );                                              \
4879   OPTIONAL(name, MDStringField, );                                             \
4880   OPTIONAL(file, MDField, );                                                   \
4881   OPTIONAL(line, LineField, );                                                 \
4882   OPTIONAL(scope, MDField, );                                                  \
4883   OPTIONAL(baseType, MDField, );                                               \
4884   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4885   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4886   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4887   OPTIONAL(flags, DIFlagField, );                                              \
4888   OPTIONAL(elements, MDField, );                                               \
4889   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4890   OPTIONAL(vtableHolder, MDField, );                                           \
4891   OPTIONAL(templateParams, MDField, );                                         \
4892   OPTIONAL(identifier, MDStringField, );                                       \
4893   OPTIONAL(discriminator, MDField, );                                          \
4894   OPTIONAL(dataLocation, MDField, );                                           \
4895   OPTIONAL(associated, MDField, );                                             \
4896   OPTIONAL(allocated, MDField, );                                              \
4897   OPTIONAL(rank, MDSignedOrMDField, );
4898   PARSE_MD_FIELDS();
4899 #undef VISIT_MD_FIELDS
4900 
4901   Metadata *Rank = nullptr;
4902   if (rank.isMDSignedField())
4903     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4904         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4905   else if (rank.isMDField())
4906     Rank = rank.getMDFieldValue();
4907 
4908   // If this has an identifier try to build an ODR type.
4909   if (identifier.Val)
4910     if (auto *CT = DICompositeType::buildODRType(
4911             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4912             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4913             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4914             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4915             Rank)) {
4916       Result = CT;
4917       return false;
4918     }
4919 
4920   // Create a new node, and save it in the context if it belongs in the type
4921   // map.
4922   Result = GET_OR_DISTINCT(
4923       DICompositeType,
4924       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4925        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4926        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4927        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4928        Rank));
4929   return false;
4930 }
4931 
4932 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4933 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4934   OPTIONAL(flags, DIFlagField, );                                              \
4935   OPTIONAL(cc, DwarfCCField, );                                                \
4936   REQUIRED(types, MDField, );
4937   PARSE_MD_FIELDS();
4938 #undef VISIT_MD_FIELDS
4939 
4940   Result = GET_OR_DISTINCT(DISubroutineType,
4941                            (Context, flags.Val, cc.Val, types.Val));
4942   return false;
4943 }
4944 
4945 /// parseDIFileType:
4946 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4947 ///                   checksumkind: CSK_MD5,
4948 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4949 ///                   source: "source file contents")
4950 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4951   // The default constructed value for checksumkind is required, but will never
4952   // be used, as the parser checks if the field was actually Seen before using
4953   // the Val.
4954 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4955   REQUIRED(filename, MDStringField, );                                         \
4956   REQUIRED(directory, MDStringField, );                                        \
4957   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4958   OPTIONAL(checksum, MDStringField, );                                         \
4959   OPTIONAL(source, MDStringField, );
4960   PARSE_MD_FIELDS();
4961 #undef VISIT_MD_FIELDS
4962 
4963   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4964   if (checksumkind.Seen && checksum.Seen)
4965     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4966   else if (checksumkind.Seen || checksum.Seen)
4967     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4968 
4969   Optional<MDString *> OptSource;
4970   if (source.Seen)
4971     OptSource = source.Val;
4972   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4973                                     OptChecksum, OptSource));
4974   return false;
4975 }
4976 
4977 /// parseDICompileUnit:
4978 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4979 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4980 ///                      splitDebugFilename: "abc.debug",
4981 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4982 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4983 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4984 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4985   if (!IsDistinct)
4986     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4987 
4988 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4989   REQUIRED(language, DwarfLangField, );                                        \
4990   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4991   OPTIONAL(producer, MDStringField, );                                         \
4992   OPTIONAL(isOptimized, MDBoolField, );                                        \
4993   OPTIONAL(flags, MDStringField, );                                            \
4994   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4995   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4996   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4997   OPTIONAL(enums, MDField, );                                                  \
4998   OPTIONAL(retainedTypes, MDField, );                                          \
4999   OPTIONAL(globals, MDField, );                                                \
5000   OPTIONAL(imports, MDField, );                                                \
5001   OPTIONAL(macros, MDField, );                                                 \
5002   OPTIONAL(dwoId, MDUnsignedField, );                                          \
5003   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
5004   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
5005   OPTIONAL(nameTableKind, NameTableKindField, );                               \
5006   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
5007   OPTIONAL(sysroot, MDStringField, );                                          \
5008   OPTIONAL(sdk, MDStringField, );
5009   PARSE_MD_FIELDS();
5010 #undef VISIT_MD_FIELDS
5011 
5012   Result = DICompileUnit::getDistinct(
5013       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
5014       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
5015       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
5016       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
5017       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
5018   return false;
5019 }
5020 
5021 /// parseDISubprogram:
5022 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
5023 ///                     file: !1, line: 7, type: !2, isLocal: false,
5024 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
5025 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
5026 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
5027 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
5028 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
5029 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
5030   auto Loc = Lex.getLoc();
5031 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5032   OPTIONAL(scope, MDField, );                                                  \
5033   OPTIONAL(name, MDStringField, );                                             \
5034   OPTIONAL(linkageName, MDStringField, );                                      \
5035   OPTIONAL(file, MDField, );                                                   \
5036   OPTIONAL(line, LineField, );                                                 \
5037   OPTIONAL(type, MDField, );                                                   \
5038   OPTIONAL(isLocal, MDBoolField, );                                            \
5039   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5040   OPTIONAL(scopeLine, LineField, );                                            \
5041   OPTIONAL(containingType, MDField, );                                         \
5042   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
5043   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
5044   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
5045   OPTIONAL(flags, DIFlagField, );                                              \
5046   OPTIONAL(spFlags, DISPFlagField, );                                          \
5047   OPTIONAL(isOptimized, MDBoolField, );                                        \
5048   OPTIONAL(unit, MDField, );                                                   \
5049   OPTIONAL(templateParams, MDField, );                                         \
5050   OPTIONAL(declaration, MDField, );                                            \
5051   OPTIONAL(retainedNodes, MDField, );                                          \
5052   OPTIONAL(thrownTypes, MDField, );
5053   PARSE_MD_FIELDS();
5054 #undef VISIT_MD_FIELDS
5055 
5056   // An explicit spFlags field takes precedence over individual fields in
5057   // older IR versions.
5058   DISubprogram::DISPFlags SPFlags =
5059       spFlags.Seen ? spFlags.Val
5060                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
5061                                              isOptimized.Val, virtuality.Val);
5062   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
5063     return Lex.Error(
5064         Loc,
5065         "missing 'distinct', required for !DISubprogram that is a Definition");
5066   Result = GET_OR_DISTINCT(
5067       DISubprogram,
5068       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
5069        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
5070        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
5071        declaration.Val, retainedNodes.Val, thrownTypes.Val));
5072   return false;
5073 }
5074 
5075 /// parseDILexicalBlock:
5076 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
5077 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
5078 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5079   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5080   OPTIONAL(file, MDField, );                                                   \
5081   OPTIONAL(line, LineField, );                                                 \
5082   OPTIONAL(column, ColumnField, );
5083   PARSE_MD_FIELDS();
5084 #undef VISIT_MD_FIELDS
5085 
5086   Result = GET_OR_DISTINCT(
5087       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
5088   return false;
5089 }
5090 
5091 /// parseDILexicalBlockFile:
5092 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
5093 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
5094 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5095   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5096   OPTIONAL(file, MDField, );                                                   \
5097   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
5098   PARSE_MD_FIELDS();
5099 #undef VISIT_MD_FIELDS
5100 
5101   Result = GET_OR_DISTINCT(DILexicalBlockFile,
5102                            (Context, scope.Val, file.Val, discriminator.Val));
5103   return false;
5104 }
5105 
5106 /// parseDICommonBlock:
5107 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
5108 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
5109 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5110   REQUIRED(scope, MDField, );                                                  \
5111   OPTIONAL(declaration, MDField, );                                            \
5112   OPTIONAL(name, MDStringField, );                                             \
5113   OPTIONAL(file, MDField, );                                                   \
5114   OPTIONAL(line, LineField, );
5115   PARSE_MD_FIELDS();
5116 #undef VISIT_MD_FIELDS
5117 
5118   Result = GET_OR_DISTINCT(DICommonBlock,
5119                            (Context, scope.Val, declaration.Val, name.Val,
5120                             file.Val, line.Val));
5121   return false;
5122 }
5123 
5124 /// parseDINamespace:
5125 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
5126 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
5127 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5128   REQUIRED(scope, MDField, );                                                  \
5129   OPTIONAL(name, MDStringField, );                                             \
5130   OPTIONAL(exportSymbols, MDBoolField, );
5131   PARSE_MD_FIELDS();
5132 #undef VISIT_MD_FIELDS
5133 
5134   Result = GET_OR_DISTINCT(DINamespace,
5135                            (Context, scope.Val, name.Val, exportSymbols.Val));
5136   return false;
5137 }
5138 
5139 /// parseDIMacro:
5140 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5141 ///   "SomeValue")
5142 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5143 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5144   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
5145   OPTIONAL(line, LineField, );                                                 \
5146   REQUIRED(name, MDStringField, );                                             \
5147   OPTIONAL(value, MDStringField, );
5148   PARSE_MD_FIELDS();
5149 #undef VISIT_MD_FIELDS
5150 
5151   Result = GET_OR_DISTINCT(DIMacro,
5152                            (Context, type.Val, line.Val, name.Val, value.Val));
5153   return false;
5154 }
5155 
5156 /// parseDIMacroFile:
5157 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
5158 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5159 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5160   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
5161   OPTIONAL(line, LineField, );                                                 \
5162   REQUIRED(file, MDField, );                                                   \
5163   OPTIONAL(nodes, MDField, );
5164   PARSE_MD_FIELDS();
5165 #undef VISIT_MD_FIELDS
5166 
5167   Result = GET_OR_DISTINCT(DIMacroFile,
5168                            (Context, type.Val, line.Val, file.Val, nodes.Val));
5169   return false;
5170 }
5171 
5172 /// parseDIModule:
5173 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5174 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5175 ///   file: !1, line: 4, isDecl: false)
5176 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5177 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5178   REQUIRED(scope, MDField, );                                                  \
5179   REQUIRED(name, MDStringField, );                                             \
5180   OPTIONAL(configMacros, MDStringField, );                                     \
5181   OPTIONAL(includePath, MDStringField, );                                      \
5182   OPTIONAL(apinotes, MDStringField, );                                         \
5183   OPTIONAL(file, MDField, );                                                   \
5184   OPTIONAL(line, LineField, );                                                 \
5185   OPTIONAL(isDecl, MDBoolField, );
5186   PARSE_MD_FIELDS();
5187 #undef VISIT_MD_FIELDS
5188 
5189   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5190                                       configMacros.Val, includePath.Val,
5191                                       apinotes.Val, line.Val, isDecl.Val));
5192   return false;
5193 }
5194 
5195 /// parseDITemplateTypeParameter:
5196 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5197 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5198 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5199   OPTIONAL(name, MDStringField, );                                             \
5200   REQUIRED(type, MDField, );                                                   \
5201   OPTIONAL(defaulted, MDBoolField, );
5202   PARSE_MD_FIELDS();
5203 #undef VISIT_MD_FIELDS
5204 
5205   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5206                            (Context, name.Val, type.Val, defaulted.Val));
5207   return false;
5208 }
5209 
5210 /// parseDITemplateValueParameter:
5211 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5212 ///                                 name: "V", type: !1, defaulted: false,
5213 ///                                 value: i32 7)
5214 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5215 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5216   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5217   OPTIONAL(name, MDStringField, );                                             \
5218   OPTIONAL(type, MDField, );                                                   \
5219   OPTIONAL(defaulted, MDBoolField, );                                          \
5220   REQUIRED(value, MDField, );
5221 
5222   PARSE_MD_FIELDS();
5223 #undef VISIT_MD_FIELDS
5224 
5225   Result = GET_OR_DISTINCT(
5226       DITemplateValueParameter,
5227       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5228   return false;
5229 }
5230 
5231 /// parseDIGlobalVariable:
5232 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5233 ///                         file: !1, line: 7, type: !2, isLocal: false,
5234 ///                         isDefinition: true, templateParams: !3,
5235 ///                         declaration: !4, align: 8)
5236 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5237 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5238   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
5239   OPTIONAL(scope, MDField, );                                                  \
5240   OPTIONAL(linkageName, MDStringField, );                                      \
5241   OPTIONAL(file, MDField, );                                                   \
5242   OPTIONAL(line, LineField, );                                                 \
5243   OPTIONAL(type, MDField, );                                                   \
5244   OPTIONAL(isLocal, MDBoolField, );                                            \
5245   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5246   OPTIONAL(templateParams, MDField, );                                         \
5247   OPTIONAL(declaration, MDField, );                                            \
5248   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5249   PARSE_MD_FIELDS();
5250 #undef VISIT_MD_FIELDS
5251 
5252   Result =
5253       GET_OR_DISTINCT(DIGlobalVariable,
5254                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5255                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5256                        declaration.Val, templateParams.Val, align.Val));
5257   return false;
5258 }
5259 
5260 /// parseDILocalVariable:
5261 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5262 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5263 ///                        align: 8)
5264 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5265 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5266 ///                        align: 8)
5267 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5268 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5269   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5270   OPTIONAL(name, MDStringField, );                                             \
5271   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5272   OPTIONAL(file, MDField, );                                                   \
5273   OPTIONAL(line, LineField, );                                                 \
5274   OPTIONAL(type, MDField, );                                                   \
5275   OPTIONAL(flags, DIFlagField, );                                              \
5276   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5277   PARSE_MD_FIELDS();
5278 #undef VISIT_MD_FIELDS
5279 
5280   Result = GET_OR_DISTINCT(DILocalVariable,
5281                            (Context, scope.Val, name.Val, file.Val, line.Val,
5282                             type.Val, arg.Val, flags.Val, align.Val));
5283   return false;
5284 }
5285 
5286 /// parseDILabel:
5287 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5288 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5289 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5290   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5291   REQUIRED(name, MDStringField, );                                             \
5292   REQUIRED(file, MDField, );                                                   \
5293   REQUIRED(line, LineField, );
5294   PARSE_MD_FIELDS();
5295 #undef VISIT_MD_FIELDS
5296 
5297   Result = GET_OR_DISTINCT(DILabel,
5298                            (Context, scope.Val, name.Val, file.Val, line.Val));
5299   return false;
5300 }
5301 
5302 /// parseDIExpression:
5303 ///   ::= !DIExpression(0, 7, -1)
5304 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5305   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5306   Lex.Lex();
5307 
5308   if (parseToken(lltok::lparen, "expected '(' here"))
5309     return true;
5310 
5311   SmallVector<uint64_t, 8> Elements;
5312   if (Lex.getKind() != lltok::rparen)
5313     do {
5314       if (Lex.getKind() == lltok::DwarfOp) {
5315         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5316           Lex.Lex();
5317           Elements.push_back(Op);
5318           continue;
5319         }
5320         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5321       }
5322 
5323       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5324         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5325           Lex.Lex();
5326           Elements.push_back(Op);
5327           continue;
5328         }
5329         return tokError(Twine("invalid DWARF attribute encoding '") +
5330                         Lex.getStrVal() + "'");
5331       }
5332 
5333       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5334         return tokError("expected unsigned integer");
5335 
5336       auto &U = Lex.getAPSIntVal();
5337       if (U.ugt(UINT64_MAX))
5338         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5339       Elements.push_back(U.getZExtValue());
5340       Lex.Lex();
5341     } while (EatIfPresent(lltok::comma));
5342 
5343   if (parseToken(lltok::rparen, "expected ')' here"))
5344     return true;
5345 
5346   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5347   return false;
5348 }
5349 
5350 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5351   return parseDIArgList(Result, IsDistinct, nullptr);
5352 }
5353 /// ParseDIArgList:
5354 ///   ::= !DIArgList(i32 7, i64 %0)
5355 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5356                               PerFunctionState *PFS) {
5357   assert(PFS && "Expected valid function state");
5358   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5359   Lex.Lex();
5360 
5361   if (parseToken(lltok::lparen, "expected '(' here"))
5362     return true;
5363 
5364   SmallVector<ValueAsMetadata *, 4> Args;
5365   if (Lex.getKind() != lltok::rparen)
5366     do {
5367       Metadata *MD;
5368       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5369         return true;
5370       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5371     } while (EatIfPresent(lltok::comma));
5372 
5373   if (parseToken(lltok::rparen, "expected ')' here"))
5374     return true;
5375 
5376   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5377   return false;
5378 }
5379 
5380 /// parseDIGlobalVariableExpression:
5381 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5382 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5383                                                bool IsDistinct) {
5384 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5385   REQUIRED(var, MDField, );                                                    \
5386   REQUIRED(expr, MDField, );
5387   PARSE_MD_FIELDS();
5388 #undef VISIT_MD_FIELDS
5389 
5390   Result =
5391       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5392   return false;
5393 }
5394 
5395 /// parseDIObjCProperty:
5396 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5397 ///                       getter: "getFoo", attributes: 7, type: !2)
5398 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5399 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5400   OPTIONAL(name, MDStringField, );                                             \
5401   OPTIONAL(file, MDField, );                                                   \
5402   OPTIONAL(line, LineField, );                                                 \
5403   OPTIONAL(setter, MDStringField, );                                           \
5404   OPTIONAL(getter, MDStringField, );                                           \
5405   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5406   OPTIONAL(type, MDField, );
5407   PARSE_MD_FIELDS();
5408 #undef VISIT_MD_FIELDS
5409 
5410   Result = GET_OR_DISTINCT(DIObjCProperty,
5411                            (Context, name.Val, file.Val, line.Val, setter.Val,
5412                             getter.Val, attributes.Val, type.Val));
5413   return false;
5414 }
5415 
5416 /// parseDIImportedEntity:
5417 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5418 ///                         line: 7, name: "foo")
5419 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5420 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5421   REQUIRED(tag, DwarfTagField, );                                              \
5422   REQUIRED(scope, MDField, );                                                  \
5423   OPTIONAL(entity, MDField, );                                                 \
5424   OPTIONAL(file, MDField, );                                                   \
5425   OPTIONAL(line, LineField, );                                                 \
5426   OPTIONAL(name, MDStringField, );
5427   PARSE_MD_FIELDS();
5428 #undef VISIT_MD_FIELDS
5429 
5430   Result = GET_OR_DISTINCT(
5431       DIImportedEntity,
5432       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5433   return false;
5434 }
5435 
5436 #undef PARSE_MD_FIELD
5437 #undef NOP_FIELD
5438 #undef REQUIRE_FIELD
5439 #undef DECLARE_FIELD
5440 
5441 /// parseMetadataAsValue
5442 ///  ::= metadata i32 %local
5443 ///  ::= metadata i32 @global
5444 ///  ::= metadata i32 7
5445 ///  ::= metadata !0
5446 ///  ::= metadata !{...}
5447 ///  ::= metadata !"string"
5448 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5449   // Note: the type 'metadata' has already been parsed.
5450   Metadata *MD;
5451   if (parseMetadata(MD, &PFS))
5452     return true;
5453 
5454   V = MetadataAsValue::get(Context, MD);
5455   return false;
5456 }
5457 
5458 /// parseValueAsMetadata
5459 ///  ::= i32 %local
5460 ///  ::= i32 @global
5461 ///  ::= i32 7
5462 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5463                                     PerFunctionState *PFS) {
5464   Type *Ty;
5465   LocTy Loc;
5466   if (parseType(Ty, TypeMsg, Loc))
5467     return true;
5468   if (Ty->isMetadataTy())
5469     return error(Loc, "invalid metadata-value-metadata roundtrip");
5470 
5471   Value *V;
5472   if (parseValue(Ty, V, PFS))
5473     return true;
5474 
5475   MD = ValueAsMetadata::get(V);
5476   return false;
5477 }
5478 
5479 /// parseMetadata
5480 ///  ::= i32 %local
5481 ///  ::= i32 @global
5482 ///  ::= i32 7
5483 ///  ::= !42
5484 ///  ::= !{...}
5485 ///  ::= !"string"
5486 ///  ::= !DILocation(...)
5487 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5488   if (Lex.getKind() == lltok::MetadataVar) {
5489     MDNode *N;
5490     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5491     // so parsing this requires a Function State.
5492     if (Lex.getStrVal() == "DIArgList") {
5493       if (parseDIArgList(N, false, PFS))
5494         return true;
5495     } else if (parseSpecializedMDNode(N)) {
5496       return true;
5497     }
5498     MD = N;
5499     return false;
5500   }
5501 
5502   // ValueAsMetadata:
5503   // <type> <value>
5504   if (Lex.getKind() != lltok::exclaim)
5505     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5506 
5507   // '!'.
5508   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5509   Lex.Lex();
5510 
5511   // MDString:
5512   //   ::= '!' STRINGCONSTANT
5513   if (Lex.getKind() == lltok::StringConstant) {
5514     MDString *S;
5515     if (parseMDString(S))
5516       return true;
5517     MD = S;
5518     return false;
5519   }
5520 
5521   // MDNode:
5522   // !{ ... }
5523   // !7
5524   MDNode *N;
5525   if (parseMDNodeTail(N))
5526     return true;
5527   MD = N;
5528   return false;
5529 }
5530 
5531 //===----------------------------------------------------------------------===//
5532 // Function Parsing.
5533 //===----------------------------------------------------------------------===//
5534 
5535 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5536                                    PerFunctionState *PFS, bool IsCall) {
5537   if (Ty->isFunctionTy())
5538     return error(ID.Loc, "functions are not values, refer to them as pointers");
5539 
5540   switch (ID.Kind) {
5541   case ValID::t_LocalID:
5542     if (!PFS)
5543       return error(ID.Loc, "invalid use of function-local name");
5544     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5545     return V == nullptr;
5546   case ValID::t_LocalName:
5547     if (!PFS)
5548       return error(ID.Loc, "invalid use of function-local name");
5549     V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall);
5550     return V == nullptr;
5551   case ValID::t_InlineAsm: {
5552     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5553       return error(ID.Loc, "invalid type for inline asm constraint string");
5554     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5555                        (ID.UIntVal >> 1) & 1,
5556                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5557     return false;
5558   }
5559   case ValID::t_GlobalName:
5560     V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5561     return V == nullptr;
5562   case ValID::t_GlobalID:
5563     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5564     return V == nullptr;
5565   case ValID::t_APSInt:
5566     if (!Ty->isIntegerTy())
5567       return error(ID.Loc, "integer constant must have integer type");
5568     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5569     V = ConstantInt::get(Context, ID.APSIntVal);
5570     return false;
5571   case ValID::t_APFloat:
5572     if (!Ty->isFloatingPointTy() ||
5573         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5574       return error(ID.Loc, "floating point constant invalid for type");
5575 
5576     // The lexer has no type info, so builds all half, bfloat, float, and double
5577     // FP constants as double.  Fix this here.  Long double does not need this.
5578     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5579       // Check for signaling before potentially converting and losing that info.
5580       bool IsSNAN = ID.APFloatVal.isSignaling();
5581       bool Ignored;
5582       if (Ty->isHalfTy())
5583         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5584                               &Ignored);
5585       else if (Ty->isBFloatTy())
5586         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5587                               &Ignored);
5588       else if (Ty->isFloatTy())
5589         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5590                               &Ignored);
5591       if (IsSNAN) {
5592         // The convert call above may quiet an SNaN, so manufacture another
5593         // SNaN. The bitcast works because the payload (significand) parameter
5594         // is truncated to fit.
5595         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5596         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5597                                          ID.APFloatVal.isNegative(), &Payload);
5598       }
5599     }
5600     V = ConstantFP::get(Context, ID.APFloatVal);
5601 
5602     if (V->getType() != Ty)
5603       return error(ID.Loc, "floating point constant does not have type '" +
5604                                getTypeString(Ty) + "'");
5605 
5606     return false;
5607   case ValID::t_Null:
5608     if (!Ty->isPointerTy())
5609       return error(ID.Loc, "null must be a pointer type");
5610     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5611     return false;
5612   case ValID::t_Undef:
5613     // FIXME: LabelTy should not be a first-class type.
5614     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5615       return error(ID.Loc, "invalid type for undef constant");
5616     V = UndefValue::get(Ty);
5617     return false;
5618   case ValID::t_EmptyArray:
5619     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5620       return error(ID.Loc, "invalid empty array initializer");
5621     V = UndefValue::get(Ty);
5622     return false;
5623   case ValID::t_Zero:
5624     // FIXME: LabelTy should not be a first-class type.
5625     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5626       return error(ID.Loc, "invalid type for null constant");
5627     V = Constant::getNullValue(Ty);
5628     return false;
5629   case ValID::t_None:
5630     if (!Ty->isTokenTy())
5631       return error(ID.Loc, "invalid type for none constant");
5632     V = Constant::getNullValue(Ty);
5633     return false;
5634   case ValID::t_Poison:
5635     // FIXME: LabelTy should not be a first-class type.
5636     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5637       return error(ID.Loc, "invalid type for poison constant");
5638     V = PoisonValue::get(Ty);
5639     return false;
5640   case ValID::t_Constant:
5641     if (ID.ConstantVal->getType() != Ty)
5642       return error(ID.Loc, "constant expression type mismatch");
5643     V = ID.ConstantVal;
5644     return false;
5645   case ValID::t_ConstantStruct:
5646   case ValID::t_PackedConstantStruct:
5647     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5648       if (ST->getNumElements() != ID.UIntVal)
5649         return error(ID.Loc,
5650                      "initializer with struct type has wrong # elements");
5651       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5652         return error(ID.Loc, "packed'ness of initializer and type don't match");
5653 
5654       // Verify that the elements are compatible with the structtype.
5655       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5656         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5657           return error(
5658               ID.Loc,
5659               "element " + Twine(i) +
5660                   " of struct initializer doesn't match struct element type");
5661 
5662       V = ConstantStruct::get(
5663           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5664     } else
5665       return error(ID.Loc, "constant expression type mismatch");
5666     return false;
5667   }
5668   llvm_unreachable("Invalid ValID");
5669 }
5670 
5671 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5672   C = nullptr;
5673   ValID ID;
5674   auto Loc = Lex.getLoc();
5675   if (parseValID(ID, /*PFS=*/nullptr))
5676     return true;
5677   switch (ID.Kind) {
5678   case ValID::t_APSInt:
5679   case ValID::t_APFloat:
5680   case ValID::t_Undef:
5681   case ValID::t_Constant:
5682   case ValID::t_ConstantStruct:
5683   case ValID::t_PackedConstantStruct: {
5684     Value *V;
5685     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5686       return true;
5687     assert(isa<Constant>(V) && "Expected a constant value");
5688     C = cast<Constant>(V);
5689     return false;
5690   }
5691   case ValID::t_Null:
5692     C = Constant::getNullValue(Ty);
5693     return false;
5694   default:
5695     return error(Loc, "expected a constant value");
5696   }
5697 }
5698 
5699 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5700   V = nullptr;
5701   ValID ID;
5702   return parseValID(ID, PFS) ||
5703          convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5704 }
5705 
5706 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5707   Type *Ty = nullptr;
5708   return parseType(Ty) || parseValue(Ty, V, PFS);
5709 }
5710 
5711 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5712                                       PerFunctionState &PFS) {
5713   Value *V;
5714   Loc = Lex.getLoc();
5715   if (parseTypeAndValue(V, PFS))
5716     return true;
5717   if (!isa<BasicBlock>(V))
5718     return error(Loc, "expected a basic block");
5719   BB = cast<BasicBlock>(V);
5720   return false;
5721 }
5722 
5723 /// FunctionHeader
5724 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5725 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5726 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5727 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5728 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5729   // parse the linkage.
5730   LocTy LinkageLoc = Lex.getLoc();
5731   unsigned Linkage;
5732   unsigned Visibility;
5733   unsigned DLLStorageClass;
5734   bool DSOLocal;
5735   AttrBuilder RetAttrs;
5736   unsigned CC;
5737   bool HasLinkage;
5738   Type *RetType = nullptr;
5739   LocTy RetTypeLoc = Lex.getLoc();
5740   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5741                            DSOLocal) ||
5742       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5743       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5744     return true;
5745 
5746   // Verify that the linkage is ok.
5747   switch ((GlobalValue::LinkageTypes)Linkage) {
5748   case GlobalValue::ExternalLinkage:
5749     break; // always ok.
5750   case GlobalValue::ExternalWeakLinkage:
5751     if (IsDefine)
5752       return error(LinkageLoc, "invalid linkage for function definition");
5753     break;
5754   case GlobalValue::PrivateLinkage:
5755   case GlobalValue::InternalLinkage:
5756   case GlobalValue::AvailableExternallyLinkage:
5757   case GlobalValue::LinkOnceAnyLinkage:
5758   case GlobalValue::LinkOnceODRLinkage:
5759   case GlobalValue::WeakAnyLinkage:
5760   case GlobalValue::WeakODRLinkage:
5761     if (!IsDefine)
5762       return error(LinkageLoc, "invalid linkage for function declaration");
5763     break;
5764   case GlobalValue::AppendingLinkage:
5765   case GlobalValue::CommonLinkage:
5766     return error(LinkageLoc, "invalid function linkage type");
5767   }
5768 
5769   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5770     return error(LinkageLoc,
5771                  "symbol with local linkage must have default visibility");
5772 
5773   if (!FunctionType::isValidReturnType(RetType))
5774     return error(RetTypeLoc, "invalid function return type");
5775 
5776   LocTy NameLoc = Lex.getLoc();
5777 
5778   std::string FunctionName;
5779   if (Lex.getKind() == lltok::GlobalVar) {
5780     FunctionName = Lex.getStrVal();
5781   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5782     unsigned NameID = Lex.getUIntVal();
5783 
5784     if (NameID != NumberedVals.size())
5785       return tokError("function expected to be numbered '%" +
5786                       Twine(NumberedVals.size()) + "'");
5787   } else {
5788     return tokError("expected function name");
5789   }
5790 
5791   Lex.Lex();
5792 
5793   if (Lex.getKind() != lltok::lparen)
5794     return tokError("expected '(' in function argument list");
5795 
5796   SmallVector<ArgInfo, 8> ArgList;
5797   bool IsVarArg;
5798   AttrBuilder FuncAttrs;
5799   std::vector<unsigned> FwdRefAttrGrps;
5800   LocTy BuiltinLoc;
5801   std::string Section;
5802   std::string Partition;
5803   MaybeAlign Alignment;
5804   std::string GC;
5805   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5806   unsigned AddrSpace = 0;
5807   Constant *Prefix = nullptr;
5808   Constant *Prologue = nullptr;
5809   Constant *PersonalityFn = nullptr;
5810   Comdat *C;
5811 
5812   if (parseArgumentList(ArgList, IsVarArg) ||
5813       parseOptionalUnnamedAddr(UnnamedAddr) ||
5814       parseOptionalProgramAddrSpace(AddrSpace) ||
5815       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5816                                  BuiltinLoc) ||
5817       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5818       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5819       parseOptionalComdat(FunctionName, C) ||
5820       parseOptionalAlignment(Alignment) ||
5821       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5822       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5823       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5824       (EatIfPresent(lltok::kw_personality) &&
5825        parseGlobalTypeAndValue(PersonalityFn)))
5826     return true;
5827 
5828   if (FuncAttrs.contains(Attribute::Builtin))
5829     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5830 
5831   // If the alignment was parsed as an attribute, move to the alignment field.
5832   if (FuncAttrs.hasAlignmentAttr()) {
5833     Alignment = FuncAttrs.getAlignment();
5834     FuncAttrs.removeAttribute(Attribute::Alignment);
5835   }
5836 
5837   // Okay, if we got here, the function is syntactically valid.  Convert types
5838   // and do semantic checks.
5839   std::vector<Type*> ParamTypeList;
5840   SmallVector<AttributeSet, 8> Attrs;
5841 
5842   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5843     ParamTypeList.push_back(ArgList[i].Ty);
5844     Attrs.push_back(ArgList[i].Attrs);
5845   }
5846 
5847   AttributeList PAL =
5848       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5849                          AttributeSet::get(Context, RetAttrs), Attrs);
5850 
5851   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5852     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5853 
5854   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5855   PointerType *PFT = PointerType::get(FT, AddrSpace);
5856 
5857   Fn = nullptr;
5858   if (!FunctionName.empty()) {
5859     // If this was a definition of a forward reference, remove the definition
5860     // from the forward reference table and fill in the forward ref.
5861     auto FRVI = ForwardRefVals.find(FunctionName);
5862     if (FRVI != ForwardRefVals.end()) {
5863       Fn = M->getFunction(FunctionName);
5864       if (!Fn)
5865         return error(FRVI->second.second, "invalid forward reference to "
5866                                           "function as global value!");
5867       if (Fn->getType() != PFT)
5868         return error(FRVI->second.second,
5869                      "invalid forward reference to "
5870                      "function '" +
5871                          FunctionName +
5872                          "' with wrong type: "
5873                          "expected '" +
5874                          getTypeString(PFT) + "' but was '" +
5875                          getTypeString(Fn->getType()) + "'");
5876       ForwardRefVals.erase(FRVI);
5877     } else if ((Fn = M->getFunction(FunctionName))) {
5878       // Reject redefinitions.
5879       return error(NameLoc,
5880                    "invalid redefinition of function '" + FunctionName + "'");
5881     } else if (M->getNamedValue(FunctionName)) {
5882       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5883     }
5884 
5885   } else {
5886     // If this is a definition of a forward referenced function, make sure the
5887     // types agree.
5888     auto I = ForwardRefValIDs.find(NumberedVals.size());
5889     if (I != ForwardRefValIDs.end()) {
5890       Fn = cast<Function>(I->second.first);
5891       if (Fn->getType() != PFT)
5892         return error(NameLoc, "type of definition and forward reference of '@" +
5893                                   Twine(NumberedVals.size()) +
5894                                   "' disagree: "
5895                                   "expected '" +
5896                                   getTypeString(PFT) + "' but was '" +
5897                                   getTypeString(Fn->getType()) + "'");
5898       ForwardRefValIDs.erase(I);
5899     }
5900   }
5901 
5902   if (!Fn)
5903     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5904                           FunctionName, M);
5905   else // Move the forward-reference to the correct spot in the module.
5906     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5907 
5908   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5909 
5910   if (FunctionName.empty())
5911     NumberedVals.push_back(Fn);
5912 
5913   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5914   maybeSetDSOLocal(DSOLocal, *Fn);
5915   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5916   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5917   Fn->setCallingConv(CC);
5918   Fn->setAttributes(PAL);
5919   Fn->setUnnamedAddr(UnnamedAddr);
5920   Fn->setAlignment(MaybeAlign(Alignment));
5921   Fn->setSection(Section);
5922   Fn->setPartition(Partition);
5923   Fn->setComdat(C);
5924   Fn->setPersonalityFn(PersonalityFn);
5925   if (!GC.empty()) Fn->setGC(GC);
5926   Fn->setPrefixData(Prefix);
5927   Fn->setPrologueData(Prologue);
5928   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5929 
5930   // Add all of the arguments we parsed to the function.
5931   Function::arg_iterator ArgIt = Fn->arg_begin();
5932   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5933     // If the argument has a name, insert it into the argument symbol table.
5934     if (ArgList[i].Name.empty()) continue;
5935 
5936     // Set the name, if it conflicted, it will be auto-renamed.
5937     ArgIt->setName(ArgList[i].Name);
5938 
5939     if (ArgIt->getName() != ArgList[i].Name)
5940       return error(ArgList[i].Loc,
5941                    "redefinition of argument '%" + ArgList[i].Name + "'");
5942   }
5943 
5944   if (IsDefine)
5945     return false;
5946 
5947   // Check the declaration has no block address forward references.
5948   ValID ID;
5949   if (FunctionName.empty()) {
5950     ID.Kind = ValID::t_GlobalID;
5951     ID.UIntVal = NumberedVals.size() - 1;
5952   } else {
5953     ID.Kind = ValID::t_GlobalName;
5954     ID.StrVal = FunctionName;
5955   }
5956   auto Blocks = ForwardRefBlockAddresses.find(ID);
5957   if (Blocks != ForwardRefBlockAddresses.end())
5958     return error(Blocks->first.Loc,
5959                  "cannot take blockaddress inside a declaration");
5960   return false;
5961 }
5962 
5963 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5964   ValID ID;
5965   if (FunctionNumber == -1) {
5966     ID.Kind = ValID::t_GlobalName;
5967     ID.StrVal = std::string(F.getName());
5968   } else {
5969     ID.Kind = ValID::t_GlobalID;
5970     ID.UIntVal = FunctionNumber;
5971   }
5972 
5973   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5974   if (Blocks == P.ForwardRefBlockAddresses.end())
5975     return false;
5976 
5977   for (const auto &I : Blocks->second) {
5978     const ValID &BBID = I.first;
5979     GlobalValue *GV = I.second;
5980 
5981     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5982            "Expected local id or name");
5983     BasicBlock *BB;
5984     if (BBID.Kind == ValID::t_LocalName)
5985       BB = getBB(BBID.StrVal, BBID.Loc);
5986     else
5987       BB = getBB(BBID.UIntVal, BBID.Loc);
5988     if (!BB)
5989       return P.error(BBID.Loc, "referenced value is not a basic block");
5990 
5991     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5992     GV->eraseFromParent();
5993   }
5994 
5995   P.ForwardRefBlockAddresses.erase(Blocks);
5996   return false;
5997 }
5998 
5999 /// parseFunctionBody
6000 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
6001 bool LLParser::parseFunctionBody(Function &Fn) {
6002   if (Lex.getKind() != lltok::lbrace)
6003     return tokError("expected '{' in function body");
6004   Lex.Lex();  // eat the {.
6005 
6006   int FunctionNumber = -1;
6007   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
6008 
6009   PerFunctionState PFS(*this, Fn, FunctionNumber);
6010 
6011   // Resolve block addresses and allow basic blocks to be forward-declared
6012   // within this function.
6013   if (PFS.resolveForwardRefBlockAddresses())
6014     return true;
6015   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
6016 
6017   // We need at least one basic block.
6018   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
6019     return tokError("function body requires at least one basic block");
6020 
6021   while (Lex.getKind() != lltok::rbrace &&
6022          Lex.getKind() != lltok::kw_uselistorder)
6023     if (parseBasicBlock(PFS))
6024       return true;
6025 
6026   while (Lex.getKind() != lltok::rbrace)
6027     if (parseUseListOrder(&PFS))
6028       return true;
6029 
6030   // Eat the }.
6031   Lex.Lex();
6032 
6033   // Verify function is ok.
6034   return PFS.finishFunction();
6035 }
6036 
6037 /// parseBasicBlock
6038 ///   ::= (LabelStr|LabelID)? Instruction*
6039 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
6040   // If this basic block starts out with a name, remember it.
6041   std::string Name;
6042   int NameID = -1;
6043   LocTy NameLoc = Lex.getLoc();
6044   if (Lex.getKind() == lltok::LabelStr) {
6045     Name = Lex.getStrVal();
6046     Lex.Lex();
6047   } else if (Lex.getKind() == lltok::LabelID) {
6048     NameID = Lex.getUIntVal();
6049     Lex.Lex();
6050   }
6051 
6052   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
6053   if (!BB)
6054     return true;
6055 
6056   std::string NameStr;
6057 
6058   // parse the instructions in this block until we get a terminator.
6059   Instruction *Inst;
6060   do {
6061     // This instruction may have three possibilities for a name: a) none
6062     // specified, b) name specified "%foo =", c) number specified: "%4 =".
6063     LocTy NameLoc = Lex.getLoc();
6064     int NameID = -1;
6065     NameStr = "";
6066 
6067     if (Lex.getKind() == lltok::LocalVarID) {
6068       NameID = Lex.getUIntVal();
6069       Lex.Lex();
6070       if (parseToken(lltok::equal, "expected '=' after instruction id"))
6071         return true;
6072     } else if (Lex.getKind() == lltok::LocalVar) {
6073       NameStr = Lex.getStrVal();
6074       Lex.Lex();
6075       if (parseToken(lltok::equal, "expected '=' after instruction name"))
6076         return true;
6077     }
6078 
6079     switch (parseInstruction(Inst, BB, PFS)) {
6080     default:
6081       llvm_unreachable("Unknown parseInstruction result!");
6082     case InstError: return true;
6083     case InstNormal:
6084       BB->getInstList().push_back(Inst);
6085 
6086       // With a normal result, we check to see if the instruction is followed by
6087       // a comma and metadata.
6088       if (EatIfPresent(lltok::comma))
6089         if (parseInstructionMetadata(*Inst))
6090           return true;
6091       break;
6092     case InstExtraComma:
6093       BB->getInstList().push_back(Inst);
6094 
6095       // If the instruction parser ate an extra comma at the end of it, it
6096       // *must* be followed by metadata.
6097       if (parseInstructionMetadata(*Inst))
6098         return true;
6099       break;
6100     }
6101 
6102     // Set the name on the instruction.
6103     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
6104       return true;
6105   } while (!Inst->isTerminator());
6106 
6107   return false;
6108 }
6109 
6110 //===----------------------------------------------------------------------===//
6111 // Instruction Parsing.
6112 //===----------------------------------------------------------------------===//
6113 
6114 /// parseInstruction - parse one of the many different instructions.
6115 ///
6116 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
6117                                PerFunctionState &PFS) {
6118   lltok::Kind Token = Lex.getKind();
6119   if (Token == lltok::Eof)
6120     return tokError("found end of file when expecting more instructions");
6121   LocTy Loc = Lex.getLoc();
6122   unsigned KeywordVal = Lex.getUIntVal();
6123   Lex.Lex();  // Eat the keyword.
6124 
6125   switch (Token) {
6126   default:
6127     return error(Loc, "expected instruction opcode");
6128   // Terminator Instructions.
6129   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6130   case lltok::kw_ret:
6131     return parseRet(Inst, BB, PFS);
6132   case lltok::kw_br:
6133     return parseBr(Inst, PFS);
6134   case lltok::kw_switch:
6135     return parseSwitch(Inst, PFS);
6136   case lltok::kw_indirectbr:
6137     return parseIndirectBr(Inst, PFS);
6138   case lltok::kw_invoke:
6139     return parseInvoke(Inst, PFS);
6140   case lltok::kw_resume:
6141     return parseResume(Inst, PFS);
6142   case lltok::kw_cleanupret:
6143     return parseCleanupRet(Inst, PFS);
6144   case lltok::kw_catchret:
6145     return parseCatchRet(Inst, PFS);
6146   case lltok::kw_catchswitch:
6147     return parseCatchSwitch(Inst, PFS);
6148   case lltok::kw_catchpad:
6149     return parseCatchPad(Inst, PFS);
6150   case lltok::kw_cleanuppad:
6151     return parseCleanupPad(Inst, PFS);
6152   case lltok::kw_callbr:
6153     return parseCallBr(Inst, PFS);
6154   // Unary Operators.
6155   case lltok::kw_fneg: {
6156     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6157     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6158     if (Res != 0)
6159       return Res;
6160     if (FMF.any())
6161       Inst->setFastMathFlags(FMF);
6162     return false;
6163   }
6164   // Binary Operators.
6165   case lltok::kw_add:
6166   case lltok::kw_sub:
6167   case lltok::kw_mul:
6168   case lltok::kw_shl: {
6169     bool NUW = EatIfPresent(lltok::kw_nuw);
6170     bool NSW = EatIfPresent(lltok::kw_nsw);
6171     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6172 
6173     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6174       return true;
6175 
6176     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6177     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6178     return false;
6179   }
6180   case lltok::kw_fadd:
6181   case lltok::kw_fsub:
6182   case lltok::kw_fmul:
6183   case lltok::kw_fdiv:
6184   case lltok::kw_frem: {
6185     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6186     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6187     if (Res != 0)
6188       return Res;
6189     if (FMF.any())
6190       Inst->setFastMathFlags(FMF);
6191     return 0;
6192   }
6193 
6194   case lltok::kw_sdiv:
6195   case lltok::kw_udiv:
6196   case lltok::kw_lshr:
6197   case lltok::kw_ashr: {
6198     bool Exact = EatIfPresent(lltok::kw_exact);
6199 
6200     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6201       return true;
6202     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6203     return false;
6204   }
6205 
6206   case lltok::kw_urem:
6207   case lltok::kw_srem:
6208     return parseArithmetic(Inst, PFS, KeywordVal,
6209                            /*IsFP*/ false);
6210   case lltok::kw_and:
6211   case lltok::kw_or:
6212   case lltok::kw_xor:
6213     return parseLogical(Inst, PFS, KeywordVal);
6214   case lltok::kw_icmp:
6215     return parseCompare(Inst, PFS, KeywordVal);
6216   case lltok::kw_fcmp: {
6217     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6218     int Res = parseCompare(Inst, PFS, KeywordVal);
6219     if (Res != 0)
6220       return Res;
6221     if (FMF.any())
6222       Inst->setFastMathFlags(FMF);
6223     return 0;
6224   }
6225 
6226   // Casts.
6227   case lltok::kw_trunc:
6228   case lltok::kw_zext:
6229   case lltok::kw_sext:
6230   case lltok::kw_fptrunc:
6231   case lltok::kw_fpext:
6232   case lltok::kw_bitcast:
6233   case lltok::kw_addrspacecast:
6234   case lltok::kw_uitofp:
6235   case lltok::kw_sitofp:
6236   case lltok::kw_fptoui:
6237   case lltok::kw_fptosi:
6238   case lltok::kw_inttoptr:
6239   case lltok::kw_ptrtoint:
6240     return parseCast(Inst, PFS, KeywordVal);
6241   // Other.
6242   case lltok::kw_select: {
6243     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6244     int Res = parseSelect(Inst, PFS);
6245     if (Res != 0)
6246       return Res;
6247     if (FMF.any()) {
6248       if (!isa<FPMathOperator>(Inst))
6249         return error(Loc, "fast-math-flags specified for select without "
6250                           "floating-point scalar or vector return type");
6251       Inst->setFastMathFlags(FMF);
6252     }
6253     return 0;
6254   }
6255   case lltok::kw_va_arg:
6256     return parseVAArg(Inst, PFS);
6257   case lltok::kw_extractelement:
6258     return parseExtractElement(Inst, PFS);
6259   case lltok::kw_insertelement:
6260     return parseInsertElement(Inst, PFS);
6261   case lltok::kw_shufflevector:
6262     return parseShuffleVector(Inst, PFS);
6263   case lltok::kw_phi: {
6264     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6265     int Res = parsePHI(Inst, PFS);
6266     if (Res != 0)
6267       return Res;
6268     if (FMF.any()) {
6269       if (!isa<FPMathOperator>(Inst))
6270         return error(Loc, "fast-math-flags specified for phi without "
6271                           "floating-point scalar or vector return type");
6272       Inst->setFastMathFlags(FMF);
6273     }
6274     return 0;
6275   }
6276   case lltok::kw_landingpad:
6277     return parseLandingPad(Inst, PFS);
6278   case lltok::kw_freeze:
6279     return parseFreeze(Inst, PFS);
6280   // Call.
6281   case lltok::kw_call:
6282     return parseCall(Inst, PFS, CallInst::TCK_None);
6283   case lltok::kw_tail:
6284     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6285   case lltok::kw_musttail:
6286     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6287   case lltok::kw_notail:
6288     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6289   // Memory.
6290   case lltok::kw_alloca:
6291     return parseAlloc(Inst, PFS);
6292   case lltok::kw_load:
6293     return parseLoad(Inst, PFS);
6294   case lltok::kw_store:
6295     return parseStore(Inst, PFS);
6296   case lltok::kw_cmpxchg:
6297     return parseCmpXchg(Inst, PFS);
6298   case lltok::kw_atomicrmw:
6299     return parseAtomicRMW(Inst, PFS);
6300   case lltok::kw_fence:
6301     return parseFence(Inst, PFS);
6302   case lltok::kw_getelementptr:
6303     return parseGetElementPtr(Inst, PFS);
6304   case lltok::kw_extractvalue:
6305     return parseExtractValue(Inst, PFS);
6306   case lltok::kw_insertvalue:
6307     return parseInsertValue(Inst, PFS);
6308   }
6309 }
6310 
6311 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6312 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6313   if (Opc == Instruction::FCmp) {
6314     switch (Lex.getKind()) {
6315     default:
6316       return tokError("expected fcmp predicate (e.g. 'oeq')");
6317     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6318     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6319     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6320     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6321     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6322     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6323     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6324     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6325     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6326     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6327     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6328     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6329     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6330     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6331     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6332     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6333     }
6334   } else {
6335     switch (Lex.getKind()) {
6336     default:
6337       return tokError("expected icmp predicate (e.g. 'eq')");
6338     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6339     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6340     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6341     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6342     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6343     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6344     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6345     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6346     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6347     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6348     }
6349   }
6350   Lex.Lex();
6351   return false;
6352 }
6353 
6354 //===----------------------------------------------------------------------===//
6355 // Terminator Instructions.
6356 //===----------------------------------------------------------------------===//
6357 
6358 /// parseRet - parse a return instruction.
6359 ///   ::= 'ret' void (',' !dbg, !1)*
6360 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6361 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6362                         PerFunctionState &PFS) {
6363   SMLoc TypeLoc = Lex.getLoc();
6364   Type *Ty = nullptr;
6365   if (parseType(Ty, true /*void allowed*/))
6366     return true;
6367 
6368   Type *ResType = PFS.getFunction().getReturnType();
6369 
6370   if (Ty->isVoidTy()) {
6371     if (!ResType->isVoidTy())
6372       return error(TypeLoc, "value doesn't match function result type '" +
6373                                 getTypeString(ResType) + "'");
6374 
6375     Inst = ReturnInst::Create(Context);
6376     return false;
6377   }
6378 
6379   Value *RV;
6380   if (parseValue(Ty, RV, PFS))
6381     return true;
6382 
6383   if (ResType != RV->getType())
6384     return error(TypeLoc, "value doesn't match function result type '" +
6385                               getTypeString(ResType) + "'");
6386 
6387   Inst = ReturnInst::Create(Context, RV);
6388   return false;
6389 }
6390 
6391 /// parseBr
6392 ///   ::= 'br' TypeAndValue
6393 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6394 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6395   LocTy Loc, Loc2;
6396   Value *Op0;
6397   BasicBlock *Op1, *Op2;
6398   if (parseTypeAndValue(Op0, Loc, PFS))
6399     return true;
6400 
6401   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6402     Inst = BranchInst::Create(BB);
6403     return false;
6404   }
6405 
6406   if (Op0->getType() != Type::getInt1Ty(Context))
6407     return error(Loc, "branch condition must have 'i1' type");
6408 
6409   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6410       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6411       parseToken(lltok::comma, "expected ',' after true destination") ||
6412       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6413     return true;
6414 
6415   Inst = BranchInst::Create(Op1, Op2, Op0);
6416   return false;
6417 }
6418 
6419 /// parseSwitch
6420 ///  Instruction
6421 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6422 ///  JumpTable
6423 ///    ::= (TypeAndValue ',' TypeAndValue)*
6424 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6425   LocTy CondLoc, BBLoc;
6426   Value *Cond;
6427   BasicBlock *DefaultBB;
6428   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6429       parseToken(lltok::comma, "expected ',' after switch condition") ||
6430       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6431       parseToken(lltok::lsquare, "expected '[' with switch table"))
6432     return true;
6433 
6434   if (!Cond->getType()->isIntegerTy())
6435     return error(CondLoc, "switch condition must have integer type");
6436 
6437   // parse the jump table pairs.
6438   SmallPtrSet<Value*, 32> SeenCases;
6439   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6440   while (Lex.getKind() != lltok::rsquare) {
6441     Value *Constant;
6442     BasicBlock *DestBB;
6443 
6444     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6445         parseToken(lltok::comma, "expected ',' after case value") ||
6446         parseTypeAndBasicBlock(DestBB, PFS))
6447       return true;
6448 
6449     if (!SeenCases.insert(Constant).second)
6450       return error(CondLoc, "duplicate case value in switch");
6451     if (!isa<ConstantInt>(Constant))
6452       return error(CondLoc, "case value is not a constant integer");
6453 
6454     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6455   }
6456 
6457   Lex.Lex();  // Eat the ']'.
6458 
6459   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6460   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6461     SI->addCase(Table[i].first, Table[i].second);
6462   Inst = SI;
6463   return false;
6464 }
6465 
6466 /// parseIndirectBr
6467 ///  Instruction
6468 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6469 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6470   LocTy AddrLoc;
6471   Value *Address;
6472   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6473       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6474       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6475     return true;
6476 
6477   if (!Address->getType()->isPointerTy())
6478     return error(AddrLoc, "indirectbr address must have pointer type");
6479 
6480   // parse the destination list.
6481   SmallVector<BasicBlock*, 16> DestList;
6482 
6483   if (Lex.getKind() != lltok::rsquare) {
6484     BasicBlock *DestBB;
6485     if (parseTypeAndBasicBlock(DestBB, PFS))
6486       return true;
6487     DestList.push_back(DestBB);
6488 
6489     while (EatIfPresent(lltok::comma)) {
6490       if (parseTypeAndBasicBlock(DestBB, PFS))
6491         return true;
6492       DestList.push_back(DestBB);
6493     }
6494   }
6495 
6496   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6497     return true;
6498 
6499   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6500   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6501     IBI->addDestination(DestList[i]);
6502   Inst = IBI;
6503   return false;
6504 }
6505 
6506 /// parseInvoke
6507 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6508 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6509 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6510   LocTy CallLoc = Lex.getLoc();
6511   AttrBuilder RetAttrs, FnAttrs;
6512   std::vector<unsigned> FwdRefAttrGrps;
6513   LocTy NoBuiltinLoc;
6514   unsigned CC;
6515   unsigned InvokeAddrSpace;
6516   Type *RetType = nullptr;
6517   LocTy RetTypeLoc;
6518   ValID CalleeID;
6519   SmallVector<ParamInfo, 16> ArgList;
6520   SmallVector<OperandBundleDef, 2> BundleList;
6521 
6522   BasicBlock *NormalBB, *UnwindBB;
6523   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6524       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6525       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6526       parseValID(CalleeID) || parseParameterList(ArgList, PFS) ||
6527       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6528                                  NoBuiltinLoc) ||
6529       parseOptionalOperandBundles(BundleList, PFS) ||
6530       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6531       parseTypeAndBasicBlock(NormalBB, PFS) ||
6532       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6533       parseTypeAndBasicBlock(UnwindBB, PFS))
6534     return true;
6535 
6536   // If RetType is a non-function pointer type, then this is the short syntax
6537   // for the call, which means that RetType is just the return type.  Infer the
6538   // rest of the function argument types from the arguments that are present.
6539   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6540   if (!Ty) {
6541     // Pull out the types of all of the arguments...
6542     std::vector<Type*> ParamTypes;
6543     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6544       ParamTypes.push_back(ArgList[i].V->getType());
6545 
6546     if (!FunctionType::isValidReturnType(RetType))
6547       return error(RetTypeLoc, "Invalid result type for LLVM function");
6548 
6549     Ty = FunctionType::get(RetType, ParamTypes, false);
6550   }
6551 
6552   CalleeID.FTy = Ty;
6553 
6554   // Look up the callee.
6555   Value *Callee;
6556   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6557                           Callee, &PFS, /*IsCall=*/true))
6558     return true;
6559 
6560   // Set up the Attribute for the function.
6561   SmallVector<Value *, 8> Args;
6562   SmallVector<AttributeSet, 8> ArgAttrs;
6563 
6564   // Loop through FunctionType's arguments and ensure they are specified
6565   // correctly.  Also, gather any parameter attributes.
6566   FunctionType::param_iterator I = Ty->param_begin();
6567   FunctionType::param_iterator E = Ty->param_end();
6568   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6569     Type *ExpectedTy = nullptr;
6570     if (I != E) {
6571       ExpectedTy = *I++;
6572     } else if (!Ty->isVarArg()) {
6573       return error(ArgList[i].Loc, "too many arguments specified");
6574     }
6575 
6576     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6577       return error(ArgList[i].Loc, "argument is not of expected type '" +
6578                                        getTypeString(ExpectedTy) + "'");
6579     Args.push_back(ArgList[i].V);
6580     ArgAttrs.push_back(ArgList[i].Attrs);
6581   }
6582 
6583   if (I != E)
6584     return error(CallLoc, "not enough parameters specified for call");
6585 
6586   if (FnAttrs.hasAlignmentAttr())
6587     return error(CallLoc, "invoke instructions may not have an alignment");
6588 
6589   // Finish off the Attribute and check them
6590   AttributeList PAL =
6591       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6592                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6593 
6594   InvokeInst *II =
6595       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6596   II->setCallingConv(CC);
6597   II->setAttributes(PAL);
6598   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6599   Inst = II;
6600   return false;
6601 }
6602 
6603 /// parseResume
6604 ///   ::= 'resume' TypeAndValue
6605 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6606   Value *Exn; LocTy ExnLoc;
6607   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6608     return true;
6609 
6610   ResumeInst *RI = ResumeInst::Create(Exn);
6611   Inst = RI;
6612   return false;
6613 }
6614 
6615 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6616                                   PerFunctionState &PFS) {
6617   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6618     return true;
6619 
6620   while (Lex.getKind() != lltok::rsquare) {
6621     // If this isn't the first argument, we need a comma.
6622     if (!Args.empty() &&
6623         parseToken(lltok::comma, "expected ',' in argument list"))
6624       return true;
6625 
6626     // parse the argument.
6627     LocTy ArgLoc;
6628     Type *ArgTy = nullptr;
6629     if (parseType(ArgTy, ArgLoc))
6630       return true;
6631 
6632     Value *V;
6633     if (ArgTy->isMetadataTy()) {
6634       if (parseMetadataAsValue(V, PFS))
6635         return true;
6636     } else {
6637       if (parseValue(ArgTy, V, PFS))
6638         return true;
6639     }
6640     Args.push_back(V);
6641   }
6642 
6643   Lex.Lex();  // Lex the ']'.
6644   return false;
6645 }
6646 
6647 /// parseCleanupRet
6648 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6649 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6650   Value *CleanupPad = nullptr;
6651 
6652   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6653     return true;
6654 
6655   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6656     return true;
6657 
6658   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6659     return true;
6660 
6661   BasicBlock *UnwindBB = nullptr;
6662   if (Lex.getKind() == lltok::kw_to) {
6663     Lex.Lex();
6664     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6665       return true;
6666   } else {
6667     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6668       return true;
6669     }
6670   }
6671 
6672   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6673   return false;
6674 }
6675 
6676 /// parseCatchRet
6677 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6678 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6679   Value *CatchPad = nullptr;
6680 
6681   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6682     return true;
6683 
6684   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6685     return true;
6686 
6687   BasicBlock *BB;
6688   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6689       parseTypeAndBasicBlock(BB, PFS))
6690     return true;
6691 
6692   Inst = CatchReturnInst::Create(CatchPad, BB);
6693   return false;
6694 }
6695 
6696 /// parseCatchSwitch
6697 ///   ::= 'catchswitch' within Parent
6698 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6699   Value *ParentPad;
6700 
6701   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6702     return true;
6703 
6704   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6705       Lex.getKind() != lltok::LocalVarID)
6706     return tokError("expected scope value for catchswitch");
6707 
6708   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6709     return true;
6710 
6711   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6712     return true;
6713 
6714   SmallVector<BasicBlock *, 32> Table;
6715   do {
6716     BasicBlock *DestBB;
6717     if (parseTypeAndBasicBlock(DestBB, PFS))
6718       return true;
6719     Table.push_back(DestBB);
6720   } while (EatIfPresent(lltok::comma));
6721 
6722   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6723     return true;
6724 
6725   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6726     return true;
6727 
6728   BasicBlock *UnwindBB = nullptr;
6729   if (EatIfPresent(lltok::kw_to)) {
6730     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6731       return true;
6732   } else {
6733     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6734       return true;
6735   }
6736 
6737   auto *CatchSwitch =
6738       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6739   for (BasicBlock *DestBB : Table)
6740     CatchSwitch->addHandler(DestBB);
6741   Inst = CatchSwitch;
6742   return false;
6743 }
6744 
6745 /// parseCatchPad
6746 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6747 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6748   Value *CatchSwitch = nullptr;
6749 
6750   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6751     return true;
6752 
6753   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6754     return tokError("expected scope value for catchpad");
6755 
6756   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6757     return true;
6758 
6759   SmallVector<Value *, 8> Args;
6760   if (parseExceptionArgs(Args, PFS))
6761     return true;
6762 
6763   Inst = CatchPadInst::Create(CatchSwitch, Args);
6764   return false;
6765 }
6766 
6767 /// parseCleanupPad
6768 ///   ::= 'cleanuppad' within Parent ParamList
6769 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6770   Value *ParentPad = nullptr;
6771 
6772   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6773     return true;
6774 
6775   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6776       Lex.getKind() != lltok::LocalVarID)
6777     return tokError("expected scope value for cleanuppad");
6778 
6779   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6780     return true;
6781 
6782   SmallVector<Value *, 8> Args;
6783   if (parseExceptionArgs(Args, PFS))
6784     return true;
6785 
6786   Inst = CleanupPadInst::Create(ParentPad, Args);
6787   return false;
6788 }
6789 
6790 //===----------------------------------------------------------------------===//
6791 // Unary Operators.
6792 //===----------------------------------------------------------------------===//
6793 
6794 /// parseUnaryOp
6795 ///  ::= UnaryOp TypeAndValue ',' Value
6796 ///
6797 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6798 /// operand is allowed.
6799 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6800                             unsigned Opc, bool IsFP) {
6801   LocTy Loc; Value *LHS;
6802   if (parseTypeAndValue(LHS, Loc, PFS))
6803     return true;
6804 
6805   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6806                     : LHS->getType()->isIntOrIntVectorTy();
6807 
6808   if (!Valid)
6809     return error(Loc, "invalid operand type for instruction");
6810 
6811   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6812   return false;
6813 }
6814 
6815 /// parseCallBr
6816 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6817 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6818 ///       '[' LabelList ']'
6819 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6820   LocTy CallLoc = Lex.getLoc();
6821   AttrBuilder RetAttrs, FnAttrs;
6822   std::vector<unsigned> FwdRefAttrGrps;
6823   LocTy NoBuiltinLoc;
6824   unsigned CC;
6825   Type *RetType = nullptr;
6826   LocTy RetTypeLoc;
6827   ValID CalleeID;
6828   SmallVector<ParamInfo, 16> ArgList;
6829   SmallVector<OperandBundleDef, 2> BundleList;
6830 
6831   BasicBlock *DefaultDest;
6832   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6833       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6834       parseValID(CalleeID) || parseParameterList(ArgList, PFS) ||
6835       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6836                                  NoBuiltinLoc) ||
6837       parseOptionalOperandBundles(BundleList, PFS) ||
6838       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6839       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6840       parseToken(lltok::lsquare, "expected '[' in callbr"))
6841     return true;
6842 
6843   // parse the destination list.
6844   SmallVector<BasicBlock *, 16> IndirectDests;
6845 
6846   if (Lex.getKind() != lltok::rsquare) {
6847     BasicBlock *DestBB;
6848     if (parseTypeAndBasicBlock(DestBB, PFS))
6849       return true;
6850     IndirectDests.push_back(DestBB);
6851 
6852     while (EatIfPresent(lltok::comma)) {
6853       if (parseTypeAndBasicBlock(DestBB, PFS))
6854         return true;
6855       IndirectDests.push_back(DestBB);
6856     }
6857   }
6858 
6859   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6860     return true;
6861 
6862   // If RetType is a non-function pointer type, then this is the short syntax
6863   // for the call, which means that RetType is just the return type.  Infer the
6864   // rest of the function argument types from the arguments that are present.
6865   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6866   if (!Ty) {
6867     // Pull out the types of all of the arguments...
6868     std::vector<Type *> ParamTypes;
6869     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6870       ParamTypes.push_back(ArgList[i].V->getType());
6871 
6872     if (!FunctionType::isValidReturnType(RetType))
6873       return error(RetTypeLoc, "Invalid result type for LLVM function");
6874 
6875     Ty = FunctionType::get(RetType, ParamTypes, false);
6876   }
6877 
6878   CalleeID.FTy = Ty;
6879 
6880   // Look up the callee.
6881   Value *Callee;
6882   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6883                           /*IsCall=*/true))
6884     return true;
6885 
6886   // Set up the Attribute for the function.
6887   SmallVector<Value *, 8> Args;
6888   SmallVector<AttributeSet, 8> ArgAttrs;
6889 
6890   // Loop through FunctionType's arguments and ensure they are specified
6891   // correctly.  Also, gather any parameter attributes.
6892   FunctionType::param_iterator I = Ty->param_begin();
6893   FunctionType::param_iterator E = Ty->param_end();
6894   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6895     Type *ExpectedTy = nullptr;
6896     if (I != E) {
6897       ExpectedTy = *I++;
6898     } else if (!Ty->isVarArg()) {
6899       return error(ArgList[i].Loc, "too many arguments specified");
6900     }
6901 
6902     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6903       return error(ArgList[i].Loc, "argument is not of expected type '" +
6904                                        getTypeString(ExpectedTy) + "'");
6905     Args.push_back(ArgList[i].V);
6906     ArgAttrs.push_back(ArgList[i].Attrs);
6907   }
6908 
6909   if (I != E)
6910     return error(CallLoc, "not enough parameters specified for call");
6911 
6912   if (FnAttrs.hasAlignmentAttr())
6913     return error(CallLoc, "callbr instructions may not have an alignment");
6914 
6915   // Finish off the Attribute and check them
6916   AttributeList PAL =
6917       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6918                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6919 
6920   CallBrInst *CBI =
6921       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6922                          BundleList);
6923   CBI->setCallingConv(CC);
6924   CBI->setAttributes(PAL);
6925   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6926   Inst = CBI;
6927   return false;
6928 }
6929 
6930 //===----------------------------------------------------------------------===//
6931 // Binary Operators.
6932 //===----------------------------------------------------------------------===//
6933 
6934 /// parseArithmetic
6935 ///  ::= ArithmeticOps TypeAndValue ',' Value
6936 ///
6937 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6938 /// operand is allowed.
6939 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6940                                unsigned Opc, bool IsFP) {
6941   LocTy Loc; Value *LHS, *RHS;
6942   if (parseTypeAndValue(LHS, Loc, PFS) ||
6943       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6944       parseValue(LHS->getType(), RHS, PFS))
6945     return true;
6946 
6947   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6948                     : LHS->getType()->isIntOrIntVectorTy();
6949 
6950   if (!Valid)
6951     return error(Loc, "invalid operand type for instruction");
6952 
6953   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6954   return false;
6955 }
6956 
6957 /// parseLogical
6958 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6959 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6960                             unsigned Opc) {
6961   LocTy Loc; Value *LHS, *RHS;
6962   if (parseTypeAndValue(LHS, Loc, PFS) ||
6963       parseToken(lltok::comma, "expected ',' in logical operation") ||
6964       parseValue(LHS->getType(), RHS, PFS))
6965     return true;
6966 
6967   if (!LHS->getType()->isIntOrIntVectorTy())
6968     return error(Loc,
6969                  "instruction requires integer or integer vector operands");
6970 
6971   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6972   return false;
6973 }
6974 
6975 /// parseCompare
6976 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6977 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6978 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
6979                             unsigned Opc) {
6980   // parse the integer/fp comparison predicate.
6981   LocTy Loc;
6982   unsigned Pred;
6983   Value *LHS, *RHS;
6984   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
6985       parseToken(lltok::comma, "expected ',' after compare value") ||
6986       parseValue(LHS->getType(), RHS, PFS))
6987     return true;
6988 
6989   if (Opc == Instruction::FCmp) {
6990     if (!LHS->getType()->isFPOrFPVectorTy())
6991       return error(Loc, "fcmp requires floating point operands");
6992     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6993   } else {
6994     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6995     if (!LHS->getType()->isIntOrIntVectorTy() &&
6996         !LHS->getType()->isPtrOrPtrVectorTy())
6997       return error(Loc, "icmp requires integer operands");
6998     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6999   }
7000   return false;
7001 }
7002 
7003 //===----------------------------------------------------------------------===//
7004 // Other Instructions.
7005 //===----------------------------------------------------------------------===//
7006 
7007 /// parseCast
7008 ///   ::= CastOpc TypeAndValue 'to' Type
7009 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
7010                          unsigned Opc) {
7011   LocTy Loc;
7012   Value *Op;
7013   Type *DestTy = nullptr;
7014   if (parseTypeAndValue(Op, Loc, PFS) ||
7015       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
7016       parseType(DestTy))
7017     return true;
7018 
7019   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
7020     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
7021     return error(Loc, "invalid cast opcode for cast from '" +
7022                           getTypeString(Op->getType()) + "' to '" +
7023                           getTypeString(DestTy) + "'");
7024   }
7025   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
7026   return false;
7027 }
7028 
7029 /// parseSelect
7030 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7031 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
7032   LocTy Loc;
7033   Value *Op0, *Op1, *Op2;
7034   if (parseTypeAndValue(Op0, Loc, PFS) ||
7035       parseToken(lltok::comma, "expected ',' after select condition") ||
7036       parseTypeAndValue(Op1, PFS) ||
7037       parseToken(lltok::comma, "expected ',' after select value") ||
7038       parseTypeAndValue(Op2, PFS))
7039     return true;
7040 
7041   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
7042     return error(Loc, Reason);
7043 
7044   Inst = SelectInst::Create(Op0, Op1, Op2);
7045   return false;
7046 }
7047 
7048 /// parseVAArg
7049 ///   ::= 'va_arg' TypeAndValue ',' Type
7050 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
7051   Value *Op;
7052   Type *EltTy = nullptr;
7053   LocTy TypeLoc;
7054   if (parseTypeAndValue(Op, PFS) ||
7055       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
7056       parseType(EltTy, TypeLoc))
7057     return true;
7058 
7059   if (!EltTy->isFirstClassType())
7060     return error(TypeLoc, "va_arg requires operand with first class type");
7061 
7062   Inst = new VAArgInst(Op, EltTy);
7063   return false;
7064 }
7065 
7066 /// parseExtractElement
7067 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
7068 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
7069   LocTy Loc;
7070   Value *Op0, *Op1;
7071   if (parseTypeAndValue(Op0, Loc, PFS) ||
7072       parseToken(lltok::comma, "expected ',' after extract value") ||
7073       parseTypeAndValue(Op1, PFS))
7074     return true;
7075 
7076   if (!ExtractElementInst::isValidOperands(Op0, Op1))
7077     return error(Loc, "invalid extractelement operands");
7078 
7079   Inst = ExtractElementInst::Create(Op0, Op1);
7080   return false;
7081 }
7082 
7083 /// parseInsertElement
7084 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7085 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
7086   LocTy Loc;
7087   Value *Op0, *Op1, *Op2;
7088   if (parseTypeAndValue(Op0, Loc, PFS) ||
7089       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7090       parseTypeAndValue(Op1, PFS) ||
7091       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7092       parseTypeAndValue(Op2, PFS))
7093     return true;
7094 
7095   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
7096     return error(Loc, "invalid insertelement operands");
7097 
7098   Inst = InsertElementInst::Create(Op0, Op1, Op2);
7099   return false;
7100 }
7101 
7102 /// parseShuffleVector
7103 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7104 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
7105   LocTy Loc;
7106   Value *Op0, *Op1, *Op2;
7107   if (parseTypeAndValue(Op0, Loc, PFS) ||
7108       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
7109       parseTypeAndValue(Op1, PFS) ||
7110       parseToken(lltok::comma, "expected ',' after shuffle value") ||
7111       parseTypeAndValue(Op2, PFS))
7112     return true;
7113 
7114   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
7115     return error(Loc, "invalid shufflevector operands");
7116 
7117   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
7118   return false;
7119 }
7120 
7121 /// parsePHI
7122 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
7123 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7124   Type *Ty = nullptr;  LocTy TypeLoc;
7125   Value *Op0, *Op1;
7126 
7127   if (parseType(Ty, TypeLoc) ||
7128       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7129       parseValue(Ty, Op0, PFS) ||
7130       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7131       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7132       parseToken(lltok::rsquare, "expected ']' in phi value list"))
7133     return true;
7134 
7135   bool AteExtraComma = false;
7136   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7137 
7138   while (true) {
7139     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
7140 
7141     if (!EatIfPresent(lltok::comma))
7142       break;
7143 
7144     if (Lex.getKind() == lltok::MetadataVar) {
7145       AteExtraComma = true;
7146       break;
7147     }
7148 
7149     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7150         parseValue(Ty, Op0, PFS) ||
7151         parseToken(lltok::comma, "expected ',' after insertelement value") ||
7152         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7153         parseToken(lltok::rsquare, "expected ']' in phi value list"))
7154       return true;
7155   }
7156 
7157   if (!Ty->isFirstClassType())
7158     return error(TypeLoc, "phi node must have first class type");
7159 
7160   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7161   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7162     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7163   Inst = PN;
7164   return AteExtraComma ? InstExtraComma : InstNormal;
7165 }
7166 
7167 /// parseLandingPad
7168 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7169 /// Clause
7170 ///   ::= 'catch' TypeAndValue
7171 ///   ::= 'filter'
7172 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
7173 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7174   Type *Ty = nullptr; LocTy TyLoc;
7175 
7176   if (parseType(Ty, TyLoc))
7177     return true;
7178 
7179   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7180   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7181 
7182   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7183     LandingPadInst::ClauseType CT;
7184     if (EatIfPresent(lltok::kw_catch))
7185       CT = LandingPadInst::Catch;
7186     else if (EatIfPresent(lltok::kw_filter))
7187       CT = LandingPadInst::Filter;
7188     else
7189       return tokError("expected 'catch' or 'filter' clause type");
7190 
7191     Value *V;
7192     LocTy VLoc;
7193     if (parseTypeAndValue(V, VLoc, PFS))
7194       return true;
7195 
7196     // A 'catch' type expects a non-array constant. A filter clause expects an
7197     // array constant.
7198     if (CT == LandingPadInst::Catch) {
7199       if (isa<ArrayType>(V->getType()))
7200         error(VLoc, "'catch' clause has an invalid type");
7201     } else {
7202       if (!isa<ArrayType>(V->getType()))
7203         error(VLoc, "'filter' clause has an invalid type");
7204     }
7205 
7206     Constant *CV = dyn_cast<Constant>(V);
7207     if (!CV)
7208       return error(VLoc, "clause argument must be a constant");
7209     LP->addClause(CV);
7210   }
7211 
7212   Inst = LP.release();
7213   return false;
7214 }
7215 
7216 /// parseFreeze
7217 ///   ::= 'freeze' Type Value
7218 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7219   LocTy Loc;
7220   Value *Op;
7221   if (parseTypeAndValue(Op, Loc, PFS))
7222     return true;
7223 
7224   Inst = new FreezeInst(Op);
7225   return false;
7226 }
7227 
7228 /// parseCall
7229 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7230 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7231 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7232 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7233 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7234 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7235 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7236 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7237 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7238                          CallInst::TailCallKind TCK) {
7239   AttrBuilder RetAttrs, FnAttrs;
7240   std::vector<unsigned> FwdRefAttrGrps;
7241   LocTy BuiltinLoc;
7242   unsigned CallAddrSpace;
7243   unsigned CC;
7244   Type *RetType = nullptr;
7245   LocTy RetTypeLoc;
7246   ValID CalleeID;
7247   SmallVector<ParamInfo, 16> ArgList;
7248   SmallVector<OperandBundleDef, 2> BundleList;
7249   LocTy CallLoc = Lex.getLoc();
7250 
7251   if (TCK != CallInst::TCK_None &&
7252       parseToken(lltok::kw_call,
7253                  "expected 'tail call', 'musttail call', or 'notail call'"))
7254     return true;
7255 
7256   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7257 
7258   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7259       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7260       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7261       parseValID(CalleeID) ||
7262       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7263                          PFS.getFunction().isVarArg()) ||
7264       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7265       parseOptionalOperandBundles(BundleList, PFS))
7266     return true;
7267 
7268   // If RetType is a non-function pointer type, then this is the short syntax
7269   // for the call, which means that RetType is just the return type.  Infer the
7270   // rest of the function argument types from the arguments that are present.
7271   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7272   if (!Ty) {
7273     // Pull out the types of all of the arguments...
7274     std::vector<Type*> ParamTypes;
7275     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7276       ParamTypes.push_back(ArgList[i].V->getType());
7277 
7278     if (!FunctionType::isValidReturnType(RetType))
7279       return error(RetTypeLoc, "Invalid result type for LLVM function");
7280 
7281     Ty = FunctionType::get(RetType, ParamTypes, false);
7282   }
7283 
7284   CalleeID.FTy = Ty;
7285 
7286   // Look up the callee.
7287   Value *Callee;
7288   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7289                           &PFS, /*IsCall=*/true))
7290     return true;
7291 
7292   // Set up the Attribute for the function.
7293   SmallVector<AttributeSet, 8> Attrs;
7294 
7295   SmallVector<Value*, 8> Args;
7296 
7297   // Loop through FunctionType's arguments and ensure they are specified
7298   // correctly.  Also, gather any parameter attributes.
7299   FunctionType::param_iterator I = Ty->param_begin();
7300   FunctionType::param_iterator E = Ty->param_end();
7301   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7302     Type *ExpectedTy = nullptr;
7303     if (I != E) {
7304       ExpectedTy = *I++;
7305     } else if (!Ty->isVarArg()) {
7306       return error(ArgList[i].Loc, "too many arguments specified");
7307     }
7308 
7309     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7310       return error(ArgList[i].Loc, "argument is not of expected type '" +
7311                                        getTypeString(ExpectedTy) + "'");
7312     Args.push_back(ArgList[i].V);
7313     Attrs.push_back(ArgList[i].Attrs);
7314   }
7315 
7316   if (I != E)
7317     return error(CallLoc, "not enough parameters specified for call");
7318 
7319   if (FnAttrs.hasAlignmentAttr())
7320     return error(CallLoc, "call instructions may not have an alignment");
7321 
7322   // Finish off the Attribute and check them
7323   AttributeList PAL =
7324       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7325                          AttributeSet::get(Context, RetAttrs), Attrs);
7326 
7327   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7328   CI->setTailCallKind(TCK);
7329   CI->setCallingConv(CC);
7330   if (FMF.any()) {
7331     if (!isa<FPMathOperator>(CI)) {
7332       CI->deleteValue();
7333       return error(CallLoc, "fast-math-flags specified for call without "
7334                             "floating-point scalar or vector return type");
7335     }
7336     CI->setFastMathFlags(FMF);
7337   }
7338   CI->setAttributes(PAL);
7339   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7340   Inst = CI;
7341   return false;
7342 }
7343 
7344 //===----------------------------------------------------------------------===//
7345 // Memory Instructions.
7346 //===----------------------------------------------------------------------===//
7347 
7348 /// parseAlloc
7349 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7350 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7351 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7352   Value *Size = nullptr;
7353   LocTy SizeLoc, TyLoc, ASLoc;
7354   MaybeAlign Alignment;
7355   unsigned AddrSpace = 0;
7356   Type *Ty = nullptr;
7357 
7358   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7359   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7360 
7361   if (parseType(Ty, TyLoc))
7362     return true;
7363 
7364   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7365     return error(TyLoc, "invalid type for alloca");
7366 
7367   bool AteExtraComma = false;
7368   if (EatIfPresent(lltok::comma)) {
7369     if (Lex.getKind() == lltok::kw_align) {
7370       if (parseOptionalAlignment(Alignment))
7371         return true;
7372       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7373         return true;
7374     } else if (Lex.getKind() == lltok::kw_addrspace) {
7375       ASLoc = Lex.getLoc();
7376       if (parseOptionalAddrSpace(AddrSpace))
7377         return true;
7378     } else if (Lex.getKind() == lltok::MetadataVar) {
7379       AteExtraComma = true;
7380     } else {
7381       if (parseTypeAndValue(Size, SizeLoc, PFS))
7382         return true;
7383       if (EatIfPresent(lltok::comma)) {
7384         if (Lex.getKind() == lltok::kw_align) {
7385           if (parseOptionalAlignment(Alignment))
7386             return true;
7387           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7388             return true;
7389         } else if (Lex.getKind() == lltok::kw_addrspace) {
7390           ASLoc = Lex.getLoc();
7391           if (parseOptionalAddrSpace(AddrSpace))
7392             return true;
7393         } else if (Lex.getKind() == lltok::MetadataVar) {
7394           AteExtraComma = true;
7395         }
7396       }
7397     }
7398   }
7399 
7400   if (Size && !Size->getType()->isIntegerTy())
7401     return error(SizeLoc, "element count must have integer type");
7402 
7403   SmallPtrSet<Type *, 4> Visited;
7404   if (!Alignment && !Ty->isSized(&Visited))
7405     return error(TyLoc, "Cannot allocate unsized type");
7406   if (!Alignment)
7407     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7408   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7409   AI->setUsedWithInAlloca(IsInAlloca);
7410   AI->setSwiftError(IsSwiftError);
7411   Inst = AI;
7412   return AteExtraComma ? InstExtraComma : InstNormal;
7413 }
7414 
7415 /// parseLoad
7416 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7417 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7418 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7419 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7420   Value *Val; LocTy Loc;
7421   MaybeAlign Alignment;
7422   bool AteExtraComma = false;
7423   bool isAtomic = false;
7424   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7425   SyncScope::ID SSID = SyncScope::System;
7426 
7427   if (Lex.getKind() == lltok::kw_atomic) {
7428     isAtomic = true;
7429     Lex.Lex();
7430   }
7431 
7432   bool isVolatile = false;
7433   if (Lex.getKind() == lltok::kw_volatile) {
7434     isVolatile = true;
7435     Lex.Lex();
7436   }
7437 
7438   Type *Ty;
7439   LocTy ExplicitTypeLoc = Lex.getLoc();
7440   if (parseType(Ty) ||
7441       parseToken(lltok::comma, "expected comma after load's type") ||
7442       parseTypeAndValue(Val, Loc, PFS) ||
7443       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7444       parseOptionalCommaAlign(Alignment, AteExtraComma))
7445     return true;
7446 
7447   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7448     return error(Loc, "load operand must be a pointer to a first class type");
7449   if (isAtomic && !Alignment)
7450     return error(Loc, "atomic load must have explicit non-zero alignment");
7451   if (Ordering == AtomicOrdering::Release ||
7452       Ordering == AtomicOrdering::AcquireRelease)
7453     return error(Loc, "atomic load cannot use Release ordering");
7454 
7455   if (Ty != cast<PointerType>(Val->getType())->getElementType())
7456     return error(ExplicitTypeLoc,
7457                  "explicit pointee type doesn't match operand's pointee type");
7458   SmallPtrSet<Type *, 4> Visited;
7459   if (!Alignment && !Ty->isSized(&Visited))
7460     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7461   if (!Alignment)
7462     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7463   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7464   return AteExtraComma ? InstExtraComma : InstNormal;
7465 }
7466 
7467 /// parseStore
7468 
7469 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7470 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7471 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7472 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7473   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7474   MaybeAlign Alignment;
7475   bool AteExtraComma = false;
7476   bool isAtomic = false;
7477   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7478   SyncScope::ID SSID = SyncScope::System;
7479 
7480   if (Lex.getKind() == lltok::kw_atomic) {
7481     isAtomic = true;
7482     Lex.Lex();
7483   }
7484 
7485   bool isVolatile = false;
7486   if (Lex.getKind() == lltok::kw_volatile) {
7487     isVolatile = true;
7488     Lex.Lex();
7489   }
7490 
7491   if (parseTypeAndValue(Val, Loc, PFS) ||
7492       parseToken(lltok::comma, "expected ',' after store operand") ||
7493       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7494       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7495       parseOptionalCommaAlign(Alignment, AteExtraComma))
7496     return true;
7497 
7498   if (!Ptr->getType()->isPointerTy())
7499     return error(PtrLoc, "store operand must be a pointer");
7500   if (!Val->getType()->isFirstClassType())
7501     return error(Loc, "store operand must be a first class value");
7502   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7503     return error(Loc, "stored value and pointer type do not match");
7504   if (isAtomic && !Alignment)
7505     return error(Loc, "atomic store must have explicit non-zero alignment");
7506   if (Ordering == AtomicOrdering::Acquire ||
7507       Ordering == AtomicOrdering::AcquireRelease)
7508     return error(Loc, "atomic store cannot use Acquire ordering");
7509   SmallPtrSet<Type *, 4> Visited;
7510   if (!Alignment && !Val->getType()->isSized(&Visited))
7511     return error(Loc, "storing unsized types is not allowed");
7512   if (!Alignment)
7513     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7514 
7515   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7516   return AteExtraComma ? InstExtraComma : InstNormal;
7517 }
7518 
7519 /// parseCmpXchg
7520 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7521 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7522 ///       'Align'?
7523 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7524   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7525   bool AteExtraComma = false;
7526   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7527   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7528   SyncScope::ID SSID = SyncScope::System;
7529   bool isVolatile = false;
7530   bool isWeak = false;
7531   MaybeAlign Alignment;
7532 
7533   if (EatIfPresent(lltok::kw_weak))
7534     isWeak = true;
7535 
7536   if (EatIfPresent(lltok::kw_volatile))
7537     isVolatile = true;
7538 
7539   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7540       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7541       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7542       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7543       parseTypeAndValue(New, NewLoc, PFS) ||
7544       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7545       parseOrdering(FailureOrdering) ||
7546       parseOptionalCommaAlign(Alignment, AteExtraComma))
7547     return true;
7548 
7549   if (SuccessOrdering == AtomicOrdering::Unordered ||
7550       FailureOrdering == AtomicOrdering::Unordered)
7551     return tokError("cmpxchg cannot be unordered");
7552   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7553     return tokError("cmpxchg failure argument shall be no stronger than the "
7554                     "success argument");
7555   if (FailureOrdering == AtomicOrdering::Release ||
7556       FailureOrdering == AtomicOrdering::AcquireRelease)
7557     return tokError(
7558         "cmpxchg failure ordering cannot include release semantics");
7559   if (!Ptr->getType()->isPointerTy())
7560     return error(PtrLoc, "cmpxchg operand must be a pointer");
7561   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7562     return error(CmpLoc, "compare value and pointer type do not match");
7563   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7564     return error(NewLoc, "new value and pointer type do not match");
7565   if (!New->getType()->isFirstClassType())
7566     return error(NewLoc, "cmpxchg operand must be a first class value");
7567 
7568   const Align DefaultAlignment(
7569       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7570           Cmp->getType()));
7571 
7572   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7573       Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
7574       FailureOrdering, SSID);
7575   CXI->setVolatile(isVolatile);
7576   CXI->setWeak(isWeak);
7577 
7578   Inst = CXI;
7579   return AteExtraComma ? InstExtraComma : InstNormal;
7580 }
7581 
7582 /// parseAtomicRMW
7583 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7584 ///       'singlethread'? AtomicOrdering
7585 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7586   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7587   bool AteExtraComma = false;
7588   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7589   SyncScope::ID SSID = SyncScope::System;
7590   bool isVolatile = false;
7591   bool IsFP = false;
7592   AtomicRMWInst::BinOp Operation;
7593   MaybeAlign Alignment;
7594 
7595   if (EatIfPresent(lltok::kw_volatile))
7596     isVolatile = true;
7597 
7598   switch (Lex.getKind()) {
7599   default:
7600     return tokError("expected binary operation in atomicrmw");
7601   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7602   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7603   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7604   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7605   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7606   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7607   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7608   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7609   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7610   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7611   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7612   case lltok::kw_fadd:
7613     Operation = AtomicRMWInst::FAdd;
7614     IsFP = true;
7615     break;
7616   case lltok::kw_fsub:
7617     Operation = AtomicRMWInst::FSub;
7618     IsFP = true;
7619     break;
7620   }
7621   Lex.Lex();  // Eat the operation.
7622 
7623   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7624       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7625       parseTypeAndValue(Val, ValLoc, PFS) ||
7626       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7627       parseOptionalCommaAlign(Alignment, AteExtraComma))
7628     return true;
7629 
7630   if (Ordering == AtomicOrdering::Unordered)
7631     return tokError("atomicrmw cannot be unordered");
7632   if (!Ptr->getType()->isPointerTy())
7633     return error(PtrLoc, "atomicrmw operand must be a pointer");
7634   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7635     return error(ValLoc, "atomicrmw value and pointer type do not match");
7636 
7637   if (Operation == AtomicRMWInst::Xchg) {
7638     if (!Val->getType()->isIntegerTy() &&
7639         !Val->getType()->isFloatingPointTy()) {
7640       return error(ValLoc,
7641                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7642                        " operand must be an integer or floating point type");
7643     }
7644   } else if (IsFP) {
7645     if (!Val->getType()->isFloatingPointTy()) {
7646       return error(ValLoc, "atomicrmw " +
7647                                AtomicRMWInst::getOperationName(Operation) +
7648                                " operand must be a floating point type");
7649     }
7650   } else {
7651     if (!Val->getType()->isIntegerTy()) {
7652       return error(ValLoc, "atomicrmw " +
7653                                AtomicRMWInst::getOperationName(Operation) +
7654                                " operand must be an integer");
7655     }
7656   }
7657 
7658   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7659   if (Size < 8 || (Size & (Size - 1)))
7660     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7661                          " integer");
7662   const Align DefaultAlignment(
7663       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7664           Val->getType()));
7665   AtomicRMWInst *RMWI =
7666       new AtomicRMWInst(Operation, Ptr, Val,
7667                         Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
7668   RMWI->setVolatile(isVolatile);
7669   Inst = RMWI;
7670   return AteExtraComma ? InstExtraComma : InstNormal;
7671 }
7672 
7673 /// parseFence
7674 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7675 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7676   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7677   SyncScope::ID SSID = SyncScope::System;
7678   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7679     return true;
7680 
7681   if (Ordering == AtomicOrdering::Unordered)
7682     return tokError("fence cannot be unordered");
7683   if (Ordering == AtomicOrdering::Monotonic)
7684     return tokError("fence cannot be monotonic");
7685 
7686   Inst = new FenceInst(Context, Ordering, SSID);
7687   return InstNormal;
7688 }
7689 
7690 /// parseGetElementPtr
7691 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7692 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7693   Value *Ptr = nullptr;
7694   Value *Val = nullptr;
7695   LocTy Loc, EltLoc;
7696 
7697   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7698 
7699   Type *Ty = nullptr;
7700   LocTy ExplicitTypeLoc = Lex.getLoc();
7701   if (parseType(Ty) ||
7702       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7703       parseTypeAndValue(Ptr, Loc, PFS))
7704     return true;
7705 
7706   Type *BaseType = Ptr->getType();
7707   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7708   if (!BasePointerType)
7709     return error(Loc, "base of getelementptr must be a pointer");
7710 
7711   if (Ty != BasePointerType->getElementType())
7712     return error(ExplicitTypeLoc,
7713                  "explicit pointee type doesn't match operand's pointee type");
7714 
7715   SmallVector<Value*, 16> Indices;
7716   bool AteExtraComma = false;
7717   // GEP returns a vector of pointers if at least one of parameters is a vector.
7718   // All vector parameters should have the same vector width.
7719   ElementCount GEPWidth = BaseType->isVectorTy()
7720                               ? cast<VectorType>(BaseType)->getElementCount()
7721                               : ElementCount::getFixed(0);
7722 
7723   while (EatIfPresent(lltok::comma)) {
7724     if (Lex.getKind() == lltok::MetadataVar) {
7725       AteExtraComma = true;
7726       break;
7727     }
7728     if (parseTypeAndValue(Val, EltLoc, PFS))
7729       return true;
7730     if (!Val->getType()->isIntOrIntVectorTy())
7731       return error(EltLoc, "getelementptr index must be an integer");
7732 
7733     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7734       ElementCount ValNumEl = ValVTy->getElementCount();
7735       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7736         return error(
7737             EltLoc,
7738             "getelementptr vector index has a wrong number of elements");
7739       GEPWidth = ValNumEl;
7740     }
7741     Indices.push_back(Val);
7742   }
7743 
7744   SmallPtrSet<Type*, 4> Visited;
7745   if (!Indices.empty() && !Ty->isSized(&Visited))
7746     return error(Loc, "base element of getelementptr must be sized");
7747 
7748   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7749     return error(Loc, "invalid getelementptr indices");
7750   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7751   if (InBounds)
7752     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7753   return AteExtraComma ? InstExtraComma : InstNormal;
7754 }
7755 
7756 /// parseExtractValue
7757 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7758 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7759   Value *Val; LocTy Loc;
7760   SmallVector<unsigned, 4> Indices;
7761   bool AteExtraComma;
7762   if (parseTypeAndValue(Val, Loc, PFS) ||
7763       parseIndexList(Indices, AteExtraComma))
7764     return true;
7765 
7766   if (!Val->getType()->isAggregateType())
7767     return error(Loc, "extractvalue operand must be aggregate type");
7768 
7769   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7770     return error(Loc, "invalid indices for extractvalue");
7771   Inst = ExtractValueInst::Create(Val, Indices);
7772   return AteExtraComma ? InstExtraComma : InstNormal;
7773 }
7774 
7775 /// parseInsertValue
7776 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7777 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7778   Value *Val0, *Val1; LocTy Loc0, Loc1;
7779   SmallVector<unsigned, 4> Indices;
7780   bool AteExtraComma;
7781   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7782       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7783       parseTypeAndValue(Val1, Loc1, PFS) ||
7784       parseIndexList(Indices, AteExtraComma))
7785     return true;
7786 
7787   if (!Val0->getType()->isAggregateType())
7788     return error(Loc0, "insertvalue operand must be aggregate type");
7789 
7790   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7791   if (!IndexedType)
7792     return error(Loc0, "invalid indices for insertvalue");
7793   if (IndexedType != Val1->getType())
7794     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7795                            getTypeString(Val1->getType()) + "' instead of '" +
7796                            getTypeString(IndexedType) + "'");
7797   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7798   return AteExtraComma ? InstExtraComma : InstNormal;
7799 }
7800 
7801 //===----------------------------------------------------------------------===//
7802 // Embedded metadata.
7803 //===----------------------------------------------------------------------===//
7804 
7805 /// parseMDNodeVector
7806 ///   ::= { Element (',' Element)* }
7807 /// Element
7808 ///   ::= 'null' | TypeAndValue
7809 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7810   if (parseToken(lltok::lbrace, "expected '{' here"))
7811     return true;
7812 
7813   // Check for an empty list.
7814   if (EatIfPresent(lltok::rbrace))
7815     return false;
7816 
7817   do {
7818     // Null is a special case since it is typeless.
7819     if (EatIfPresent(lltok::kw_null)) {
7820       Elts.push_back(nullptr);
7821       continue;
7822     }
7823 
7824     Metadata *MD;
7825     if (parseMetadata(MD, nullptr))
7826       return true;
7827     Elts.push_back(MD);
7828   } while (EatIfPresent(lltok::comma));
7829 
7830   return parseToken(lltok::rbrace, "expected end of metadata node");
7831 }
7832 
7833 //===----------------------------------------------------------------------===//
7834 // Use-list order directives.
7835 //===----------------------------------------------------------------------===//
7836 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7837                                 SMLoc Loc) {
7838   if (V->use_empty())
7839     return error(Loc, "value has no uses");
7840 
7841   unsigned NumUses = 0;
7842   SmallDenseMap<const Use *, unsigned, 16> Order;
7843   for (const Use &U : V->uses()) {
7844     if (++NumUses > Indexes.size())
7845       break;
7846     Order[&U] = Indexes[NumUses - 1];
7847   }
7848   if (NumUses < 2)
7849     return error(Loc, "value only has one use");
7850   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7851     return error(Loc,
7852                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7853 
7854   V->sortUseList([&](const Use &L, const Use &R) {
7855     return Order.lookup(&L) < Order.lookup(&R);
7856   });
7857   return false;
7858 }
7859 
7860 /// parseUseListOrderIndexes
7861 ///   ::= '{' uint32 (',' uint32)+ '}'
7862 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7863   SMLoc Loc = Lex.getLoc();
7864   if (parseToken(lltok::lbrace, "expected '{' here"))
7865     return true;
7866   if (Lex.getKind() == lltok::rbrace)
7867     return Lex.Error("expected non-empty list of uselistorder indexes");
7868 
7869   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7870   // indexes should be distinct numbers in the range [0, size-1], and should
7871   // not be in order.
7872   unsigned Offset = 0;
7873   unsigned Max = 0;
7874   bool IsOrdered = true;
7875   assert(Indexes.empty() && "Expected empty order vector");
7876   do {
7877     unsigned Index;
7878     if (parseUInt32(Index))
7879       return true;
7880 
7881     // Update consistency checks.
7882     Offset += Index - Indexes.size();
7883     Max = std::max(Max, Index);
7884     IsOrdered &= Index == Indexes.size();
7885 
7886     Indexes.push_back(Index);
7887   } while (EatIfPresent(lltok::comma));
7888 
7889   if (parseToken(lltok::rbrace, "expected '}' here"))
7890     return true;
7891 
7892   if (Indexes.size() < 2)
7893     return error(Loc, "expected >= 2 uselistorder indexes");
7894   if (Offset != 0 || Max >= Indexes.size())
7895     return error(Loc,
7896                  "expected distinct uselistorder indexes in range [0, size)");
7897   if (IsOrdered)
7898     return error(Loc, "expected uselistorder indexes to change the order");
7899 
7900   return false;
7901 }
7902 
7903 /// parseUseListOrder
7904 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7905 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7906   SMLoc Loc = Lex.getLoc();
7907   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7908     return true;
7909 
7910   Value *V;
7911   SmallVector<unsigned, 16> Indexes;
7912   if (parseTypeAndValue(V, PFS) ||
7913       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7914       parseUseListOrderIndexes(Indexes))
7915     return true;
7916 
7917   return sortUseListOrder(V, Indexes, Loc);
7918 }
7919 
7920 /// parseUseListOrderBB
7921 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7922 bool LLParser::parseUseListOrderBB() {
7923   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7924   SMLoc Loc = Lex.getLoc();
7925   Lex.Lex();
7926 
7927   ValID Fn, Label;
7928   SmallVector<unsigned, 16> Indexes;
7929   if (parseValID(Fn) ||
7930       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7931       parseValID(Label) ||
7932       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7933       parseUseListOrderIndexes(Indexes))
7934     return true;
7935 
7936   // Check the function.
7937   GlobalValue *GV;
7938   if (Fn.Kind == ValID::t_GlobalName)
7939     GV = M->getNamedValue(Fn.StrVal);
7940   else if (Fn.Kind == ValID::t_GlobalID)
7941     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7942   else
7943     return error(Fn.Loc, "expected function name in uselistorder_bb");
7944   if (!GV)
7945     return error(Fn.Loc,
7946                  "invalid function forward reference in uselistorder_bb");
7947   auto *F = dyn_cast<Function>(GV);
7948   if (!F)
7949     return error(Fn.Loc, "expected function name in uselistorder_bb");
7950   if (F->isDeclaration())
7951     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7952 
7953   // Check the basic block.
7954   if (Label.Kind == ValID::t_LocalID)
7955     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7956   if (Label.Kind != ValID::t_LocalName)
7957     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7958   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7959   if (!V)
7960     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7961   if (!isa<BasicBlock>(V))
7962     return error(Label.Loc, "expected basic block in uselistorder_bb");
7963 
7964   return sortUseListOrder(V, Indexes, Loc);
7965 }
7966 
7967 /// ModuleEntry
7968 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7969 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7970 bool LLParser::parseModuleEntry(unsigned ID) {
7971   assert(Lex.getKind() == lltok::kw_module);
7972   Lex.Lex();
7973 
7974   std::string Path;
7975   if (parseToken(lltok::colon, "expected ':' here") ||
7976       parseToken(lltok::lparen, "expected '(' here") ||
7977       parseToken(lltok::kw_path, "expected 'path' here") ||
7978       parseToken(lltok::colon, "expected ':' here") ||
7979       parseStringConstant(Path) ||
7980       parseToken(lltok::comma, "expected ',' here") ||
7981       parseToken(lltok::kw_hash, "expected 'hash' here") ||
7982       parseToken(lltok::colon, "expected ':' here") ||
7983       parseToken(lltok::lparen, "expected '(' here"))
7984     return true;
7985 
7986   ModuleHash Hash;
7987   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
7988       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
7989       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
7990       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
7991       parseUInt32(Hash[4]))
7992     return true;
7993 
7994   if (parseToken(lltok::rparen, "expected ')' here") ||
7995       parseToken(lltok::rparen, "expected ')' here"))
7996     return true;
7997 
7998   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7999   ModuleIdMap[ID] = ModuleEntry->first();
8000 
8001   return false;
8002 }
8003 
8004 /// TypeIdEntry
8005 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
8006 bool LLParser::parseTypeIdEntry(unsigned ID) {
8007   assert(Lex.getKind() == lltok::kw_typeid);
8008   Lex.Lex();
8009 
8010   std::string Name;
8011   if (parseToken(lltok::colon, "expected ':' here") ||
8012       parseToken(lltok::lparen, "expected '(' here") ||
8013       parseToken(lltok::kw_name, "expected 'name' here") ||
8014       parseToken(lltok::colon, "expected ':' here") ||
8015       parseStringConstant(Name))
8016     return true;
8017 
8018   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
8019   if (parseToken(lltok::comma, "expected ',' here") ||
8020       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
8021     return true;
8022 
8023   // Check if this ID was forward referenced, and if so, update the
8024   // corresponding GUIDs.
8025   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8026   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8027     for (auto TIDRef : FwdRefTIDs->second) {
8028       assert(!*TIDRef.first &&
8029              "Forward referenced type id GUID expected to be 0");
8030       *TIDRef.first = GlobalValue::getGUID(Name);
8031     }
8032     ForwardRefTypeIds.erase(FwdRefTIDs);
8033   }
8034 
8035   return false;
8036 }
8037 
8038 /// TypeIdSummary
8039 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
8040 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
8041   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
8042       parseToken(lltok::colon, "expected ':' here") ||
8043       parseToken(lltok::lparen, "expected '(' here") ||
8044       parseTypeTestResolution(TIS.TTRes))
8045     return true;
8046 
8047   if (EatIfPresent(lltok::comma)) {
8048     // Expect optional wpdResolutions field
8049     if (parseOptionalWpdResolutions(TIS.WPDRes))
8050       return true;
8051   }
8052 
8053   if (parseToken(lltok::rparen, "expected ')' here"))
8054     return true;
8055 
8056   return false;
8057 }
8058 
8059 static ValueInfo EmptyVI =
8060     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
8061 
8062 /// TypeIdCompatibleVtableEntry
8063 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
8064 ///   TypeIdCompatibleVtableInfo
8065 ///   ')'
8066 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
8067   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
8068   Lex.Lex();
8069 
8070   std::string Name;
8071   if (parseToken(lltok::colon, "expected ':' here") ||
8072       parseToken(lltok::lparen, "expected '(' here") ||
8073       parseToken(lltok::kw_name, "expected 'name' here") ||
8074       parseToken(lltok::colon, "expected ':' here") ||
8075       parseStringConstant(Name))
8076     return true;
8077 
8078   TypeIdCompatibleVtableInfo &TI =
8079       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
8080   if (parseToken(lltok::comma, "expected ',' here") ||
8081       parseToken(lltok::kw_summary, "expected 'summary' here") ||
8082       parseToken(lltok::colon, "expected ':' here") ||
8083       parseToken(lltok::lparen, "expected '(' here"))
8084     return true;
8085 
8086   IdToIndexMapType IdToIndexMap;
8087   // parse each call edge
8088   do {
8089     uint64_t Offset;
8090     if (parseToken(lltok::lparen, "expected '(' here") ||
8091         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8092         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8093         parseToken(lltok::comma, "expected ',' here"))
8094       return true;
8095 
8096     LocTy Loc = Lex.getLoc();
8097     unsigned GVId;
8098     ValueInfo VI;
8099     if (parseGVReference(VI, GVId))
8100       return true;
8101 
8102     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
8103     // forward reference. We will save the location of the ValueInfo needing an
8104     // update, but can only do so once the std::vector is finalized.
8105     if (VI == EmptyVI)
8106       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
8107     TI.push_back({Offset, VI});
8108 
8109     if (parseToken(lltok::rparen, "expected ')' in call"))
8110       return true;
8111   } while (EatIfPresent(lltok::comma));
8112 
8113   // Now that the TI vector is finalized, it is safe to save the locations
8114   // of any forward GV references that need updating later.
8115   for (auto I : IdToIndexMap) {
8116     auto &Infos = ForwardRefValueInfos[I.first];
8117     for (auto P : I.second) {
8118       assert(TI[P.first].VTableVI == EmptyVI &&
8119              "Forward referenced ValueInfo expected to be empty");
8120       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
8121     }
8122   }
8123 
8124   if (parseToken(lltok::rparen, "expected ')' here") ||
8125       parseToken(lltok::rparen, "expected ')' here"))
8126     return true;
8127 
8128   // Check if this ID was forward referenced, and if so, update the
8129   // corresponding GUIDs.
8130   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8131   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8132     for (auto TIDRef : FwdRefTIDs->second) {
8133       assert(!*TIDRef.first &&
8134              "Forward referenced type id GUID expected to be 0");
8135       *TIDRef.first = GlobalValue::getGUID(Name);
8136     }
8137     ForwardRefTypeIds.erase(FwdRefTIDs);
8138   }
8139 
8140   return false;
8141 }
8142 
8143 /// TypeTestResolution
8144 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
8145 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8146 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8147 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8148 ///         [',' 'inlinesBits' ':' UInt64]? ')'
8149 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8150   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8151       parseToken(lltok::colon, "expected ':' here") ||
8152       parseToken(lltok::lparen, "expected '(' here") ||
8153       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8154       parseToken(lltok::colon, "expected ':' here"))
8155     return true;
8156 
8157   switch (Lex.getKind()) {
8158   case lltok::kw_unknown:
8159     TTRes.TheKind = TypeTestResolution::Unknown;
8160     break;
8161   case lltok::kw_unsat:
8162     TTRes.TheKind = TypeTestResolution::Unsat;
8163     break;
8164   case lltok::kw_byteArray:
8165     TTRes.TheKind = TypeTestResolution::ByteArray;
8166     break;
8167   case lltok::kw_inline:
8168     TTRes.TheKind = TypeTestResolution::Inline;
8169     break;
8170   case lltok::kw_single:
8171     TTRes.TheKind = TypeTestResolution::Single;
8172     break;
8173   case lltok::kw_allOnes:
8174     TTRes.TheKind = TypeTestResolution::AllOnes;
8175     break;
8176   default:
8177     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8178   }
8179   Lex.Lex();
8180 
8181   if (parseToken(lltok::comma, "expected ',' here") ||
8182       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8183       parseToken(lltok::colon, "expected ':' here") ||
8184       parseUInt32(TTRes.SizeM1BitWidth))
8185     return true;
8186 
8187   // parse optional fields
8188   while (EatIfPresent(lltok::comma)) {
8189     switch (Lex.getKind()) {
8190     case lltok::kw_alignLog2:
8191       Lex.Lex();
8192       if (parseToken(lltok::colon, "expected ':'") ||
8193           parseUInt64(TTRes.AlignLog2))
8194         return true;
8195       break;
8196     case lltok::kw_sizeM1:
8197       Lex.Lex();
8198       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8199         return true;
8200       break;
8201     case lltok::kw_bitMask: {
8202       unsigned Val;
8203       Lex.Lex();
8204       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8205         return true;
8206       assert(Val <= 0xff);
8207       TTRes.BitMask = (uint8_t)Val;
8208       break;
8209     }
8210     case lltok::kw_inlineBits:
8211       Lex.Lex();
8212       if (parseToken(lltok::colon, "expected ':'") ||
8213           parseUInt64(TTRes.InlineBits))
8214         return true;
8215       break;
8216     default:
8217       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8218     }
8219   }
8220 
8221   if (parseToken(lltok::rparen, "expected ')' here"))
8222     return true;
8223 
8224   return false;
8225 }
8226 
8227 /// OptionalWpdResolutions
8228 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8229 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8230 bool LLParser::parseOptionalWpdResolutions(
8231     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8232   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8233       parseToken(lltok::colon, "expected ':' here") ||
8234       parseToken(lltok::lparen, "expected '(' here"))
8235     return true;
8236 
8237   do {
8238     uint64_t Offset;
8239     WholeProgramDevirtResolution WPDRes;
8240     if (parseToken(lltok::lparen, "expected '(' here") ||
8241         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8242         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8243         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8244         parseToken(lltok::rparen, "expected ')' here"))
8245       return true;
8246     WPDResMap[Offset] = WPDRes;
8247   } while (EatIfPresent(lltok::comma));
8248 
8249   if (parseToken(lltok::rparen, "expected ')' here"))
8250     return true;
8251 
8252   return false;
8253 }
8254 
8255 /// WpdRes
8256 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8257 ///         [',' OptionalResByArg]? ')'
8258 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8259 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8260 ///         [',' OptionalResByArg]? ')'
8261 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8262 ///         [',' OptionalResByArg]? ')'
8263 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8264   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8265       parseToken(lltok::colon, "expected ':' here") ||
8266       parseToken(lltok::lparen, "expected '(' here") ||
8267       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8268       parseToken(lltok::colon, "expected ':' here"))
8269     return true;
8270 
8271   switch (Lex.getKind()) {
8272   case lltok::kw_indir:
8273     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8274     break;
8275   case lltok::kw_singleImpl:
8276     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8277     break;
8278   case lltok::kw_branchFunnel:
8279     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8280     break;
8281   default:
8282     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8283   }
8284   Lex.Lex();
8285 
8286   // parse optional fields
8287   while (EatIfPresent(lltok::comma)) {
8288     switch (Lex.getKind()) {
8289     case lltok::kw_singleImplName:
8290       Lex.Lex();
8291       if (parseToken(lltok::colon, "expected ':' here") ||
8292           parseStringConstant(WPDRes.SingleImplName))
8293         return true;
8294       break;
8295     case lltok::kw_resByArg:
8296       if (parseOptionalResByArg(WPDRes.ResByArg))
8297         return true;
8298       break;
8299     default:
8300       return error(Lex.getLoc(),
8301                    "expected optional WholeProgramDevirtResolution field");
8302     }
8303   }
8304 
8305   if (parseToken(lltok::rparen, "expected ')' here"))
8306     return true;
8307 
8308   return false;
8309 }
8310 
8311 /// OptionalResByArg
8312 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8313 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8314 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8315 ///                  'virtualConstProp' )
8316 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8317 ///                [',' 'bit' ':' UInt32]? ')'
8318 bool LLParser::parseOptionalResByArg(
8319     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8320         &ResByArg) {
8321   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8322       parseToken(lltok::colon, "expected ':' here") ||
8323       parseToken(lltok::lparen, "expected '(' here"))
8324     return true;
8325 
8326   do {
8327     std::vector<uint64_t> Args;
8328     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8329         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8330         parseToken(lltok::colon, "expected ':' here") ||
8331         parseToken(lltok::lparen, "expected '(' here") ||
8332         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8333         parseToken(lltok::colon, "expected ':' here"))
8334       return true;
8335 
8336     WholeProgramDevirtResolution::ByArg ByArg;
8337     switch (Lex.getKind()) {
8338     case lltok::kw_indir:
8339       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8340       break;
8341     case lltok::kw_uniformRetVal:
8342       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8343       break;
8344     case lltok::kw_uniqueRetVal:
8345       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8346       break;
8347     case lltok::kw_virtualConstProp:
8348       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8349       break;
8350     default:
8351       return error(Lex.getLoc(),
8352                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8353     }
8354     Lex.Lex();
8355 
8356     // parse optional fields
8357     while (EatIfPresent(lltok::comma)) {
8358       switch (Lex.getKind()) {
8359       case lltok::kw_info:
8360         Lex.Lex();
8361         if (parseToken(lltok::colon, "expected ':' here") ||
8362             parseUInt64(ByArg.Info))
8363           return true;
8364         break;
8365       case lltok::kw_byte:
8366         Lex.Lex();
8367         if (parseToken(lltok::colon, "expected ':' here") ||
8368             parseUInt32(ByArg.Byte))
8369           return true;
8370         break;
8371       case lltok::kw_bit:
8372         Lex.Lex();
8373         if (parseToken(lltok::colon, "expected ':' here") ||
8374             parseUInt32(ByArg.Bit))
8375           return true;
8376         break;
8377       default:
8378         return error(Lex.getLoc(),
8379                      "expected optional whole program devirt field");
8380       }
8381     }
8382 
8383     if (parseToken(lltok::rparen, "expected ')' here"))
8384       return true;
8385 
8386     ResByArg[Args] = ByArg;
8387   } while (EatIfPresent(lltok::comma));
8388 
8389   if (parseToken(lltok::rparen, "expected ')' here"))
8390     return true;
8391 
8392   return false;
8393 }
8394 
8395 /// OptionalResByArg
8396 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8397 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8398   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8399       parseToken(lltok::colon, "expected ':' here") ||
8400       parseToken(lltok::lparen, "expected '(' here"))
8401     return true;
8402 
8403   do {
8404     uint64_t Val;
8405     if (parseUInt64(Val))
8406       return true;
8407     Args.push_back(Val);
8408   } while (EatIfPresent(lltok::comma));
8409 
8410   if (parseToken(lltok::rparen, "expected ')' here"))
8411     return true;
8412 
8413   return false;
8414 }
8415 
8416 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8417 
8418 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8419   bool ReadOnly = Fwd->isReadOnly();
8420   bool WriteOnly = Fwd->isWriteOnly();
8421   assert(!(ReadOnly && WriteOnly));
8422   *Fwd = Resolved;
8423   if (ReadOnly)
8424     Fwd->setReadOnly();
8425   if (WriteOnly)
8426     Fwd->setWriteOnly();
8427 }
8428 
8429 /// Stores the given Name/GUID and associated summary into the Index.
8430 /// Also updates any forward references to the associated entry ID.
8431 void LLParser::addGlobalValueToIndex(
8432     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8433     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8434   // First create the ValueInfo utilizing the Name or GUID.
8435   ValueInfo VI;
8436   if (GUID != 0) {
8437     assert(Name.empty());
8438     VI = Index->getOrInsertValueInfo(GUID);
8439   } else {
8440     assert(!Name.empty());
8441     if (M) {
8442       auto *GV = M->getNamedValue(Name);
8443       assert(GV);
8444       VI = Index->getOrInsertValueInfo(GV);
8445     } else {
8446       assert(
8447           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8448           "Need a source_filename to compute GUID for local");
8449       GUID = GlobalValue::getGUID(
8450           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8451       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8452     }
8453   }
8454 
8455   // Resolve forward references from calls/refs
8456   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8457   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8458     for (auto VIRef : FwdRefVIs->second) {
8459       assert(VIRef.first->getRef() == FwdVIRef &&
8460              "Forward referenced ValueInfo expected to be empty");
8461       resolveFwdRef(VIRef.first, VI);
8462     }
8463     ForwardRefValueInfos.erase(FwdRefVIs);
8464   }
8465 
8466   // Resolve forward references from aliases
8467   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8468   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8469     for (auto AliaseeRef : FwdRefAliasees->second) {
8470       assert(!AliaseeRef.first->hasAliasee() &&
8471              "Forward referencing alias already has aliasee");
8472       assert(Summary && "Aliasee must be a definition");
8473       AliaseeRef.first->setAliasee(VI, Summary.get());
8474     }
8475     ForwardRefAliasees.erase(FwdRefAliasees);
8476   }
8477 
8478   // Add the summary if one was provided.
8479   if (Summary)
8480     Index->addGlobalValueSummary(VI, std::move(Summary));
8481 
8482   // Save the associated ValueInfo for use in later references by ID.
8483   if (ID == NumberedValueInfos.size())
8484     NumberedValueInfos.push_back(VI);
8485   else {
8486     // Handle non-continuous numbers (to make test simplification easier).
8487     if (ID > NumberedValueInfos.size())
8488       NumberedValueInfos.resize(ID + 1);
8489     NumberedValueInfos[ID] = VI;
8490   }
8491 }
8492 
8493 /// parseSummaryIndexFlags
8494 ///   ::= 'flags' ':' UInt64
8495 bool LLParser::parseSummaryIndexFlags() {
8496   assert(Lex.getKind() == lltok::kw_flags);
8497   Lex.Lex();
8498 
8499   if (parseToken(lltok::colon, "expected ':' here"))
8500     return true;
8501   uint64_t Flags;
8502   if (parseUInt64(Flags))
8503     return true;
8504   if (Index)
8505     Index->setFlags(Flags);
8506   return false;
8507 }
8508 
8509 /// parseBlockCount
8510 ///   ::= 'blockcount' ':' UInt64
8511 bool LLParser::parseBlockCount() {
8512   assert(Lex.getKind() == lltok::kw_blockcount);
8513   Lex.Lex();
8514 
8515   if (parseToken(lltok::colon, "expected ':' here"))
8516     return true;
8517   uint64_t BlockCount;
8518   if (parseUInt64(BlockCount))
8519     return true;
8520   if (Index)
8521     Index->setBlockCount(BlockCount);
8522   return false;
8523 }
8524 
8525 /// parseGVEntry
8526 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8527 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8528 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8529 bool LLParser::parseGVEntry(unsigned ID) {
8530   assert(Lex.getKind() == lltok::kw_gv);
8531   Lex.Lex();
8532 
8533   if (parseToken(lltok::colon, "expected ':' here") ||
8534       parseToken(lltok::lparen, "expected '(' here"))
8535     return true;
8536 
8537   std::string Name;
8538   GlobalValue::GUID GUID = 0;
8539   switch (Lex.getKind()) {
8540   case lltok::kw_name:
8541     Lex.Lex();
8542     if (parseToken(lltok::colon, "expected ':' here") ||
8543         parseStringConstant(Name))
8544       return true;
8545     // Can't create GUID/ValueInfo until we have the linkage.
8546     break;
8547   case lltok::kw_guid:
8548     Lex.Lex();
8549     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8550       return true;
8551     break;
8552   default:
8553     return error(Lex.getLoc(), "expected name or guid tag");
8554   }
8555 
8556   if (!EatIfPresent(lltok::comma)) {
8557     // No summaries. Wrap up.
8558     if (parseToken(lltok::rparen, "expected ')' here"))
8559       return true;
8560     // This was created for a call to an external or indirect target.
8561     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8562     // created for indirect calls with VP. A Name with no GUID came from
8563     // an external definition. We pass ExternalLinkage since that is only
8564     // used when the GUID must be computed from Name, and in that case
8565     // the symbol must have external linkage.
8566     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8567                           nullptr);
8568     return false;
8569   }
8570 
8571   // Have a list of summaries
8572   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8573       parseToken(lltok::colon, "expected ':' here") ||
8574       parseToken(lltok::lparen, "expected '(' here"))
8575     return true;
8576   do {
8577     switch (Lex.getKind()) {
8578     case lltok::kw_function:
8579       if (parseFunctionSummary(Name, GUID, ID))
8580         return true;
8581       break;
8582     case lltok::kw_variable:
8583       if (parseVariableSummary(Name, GUID, ID))
8584         return true;
8585       break;
8586     case lltok::kw_alias:
8587       if (parseAliasSummary(Name, GUID, ID))
8588         return true;
8589       break;
8590     default:
8591       return error(Lex.getLoc(), "expected summary type");
8592     }
8593   } while (EatIfPresent(lltok::comma));
8594 
8595   if (parseToken(lltok::rparen, "expected ')' here") ||
8596       parseToken(lltok::rparen, "expected ')' here"))
8597     return true;
8598 
8599   return false;
8600 }
8601 
8602 /// FunctionSummary
8603 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8604 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8605 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8606 ///         [',' OptionalRefs]? ')'
8607 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8608                                     unsigned ID) {
8609   assert(Lex.getKind() == lltok::kw_function);
8610   Lex.Lex();
8611 
8612   StringRef ModulePath;
8613   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8614       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8615       /*NotEligibleToImport=*/false,
8616       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8617   unsigned InstCount;
8618   std::vector<FunctionSummary::EdgeTy> Calls;
8619   FunctionSummary::TypeIdInfo TypeIdInfo;
8620   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8621   std::vector<ValueInfo> Refs;
8622   // Default is all-zeros (conservative values).
8623   FunctionSummary::FFlags FFlags = {};
8624   if (parseToken(lltok::colon, "expected ':' here") ||
8625       parseToken(lltok::lparen, "expected '(' here") ||
8626       parseModuleReference(ModulePath) ||
8627       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8628       parseToken(lltok::comma, "expected ',' here") ||
8629       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8630       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8631     return true;
8632 
8633   // parse optional fields
8634   while (EatIfPresent(lltok::comma)) {
8635     switch (Lex.getKind()) {
8636     case lltok::kw_funcFlags:
8637       if (parseOptionalFFlags(FFlags))
8638         return true;
8639       break;
8640     case lltok::kw_calls:
8641       if (parseOptionalCalls(Calls))
8642         return true;
8643       break;
8644     case lltok::kw_typeIdInfo:
8645       if (parseOptionalTypeIdInfo(TypeIdInfo))
8646         return true;
8647       break;
8648     case lltok::kw_refs:
8649       if (parseOptionalRefs(Refs))
8650         return true;
8651       break;
8652     case lltok::kw_params:
8653       if (parseOptionalParamAccesses(ParamAccesses))
8654         return true;
8655       break;
8656     default:
8657       return error(Lex.getLoc(), "expected optional function summary field");
8658     }
8659   }
8660 
8661   if (parseToken(lltok::rparen, "expected ')' here"))
8662     return true;
8663 
8664   auto FS = std::make_unique<FunctionSummary>(
8665       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8666       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8667       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8668       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8669       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8670       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8671       std::move(ParamAccesses));
8672 
8673   FS->setModulePath(ModulePath);
8674 
8675   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8676                         ID, std::move(FS));
8677 
8678   return false;
8679 }
8680 
8681 /// VariableSummary
8682 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8683 ///         [',' OptionalRefs]? ')'
8684 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8685                                     unsigned ID) {
8686   assert(Lex.getKind() == lltok::kw_variable);
8687   Lex.Lex();
8688 
8689   StringRef ModulePath;
8690   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8691       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8692       /*NotEligibleToImport=*/false,
8693       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8694   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8695                                         /* WriteOnly */ false,
8696                                         /* Constant */ false,
8697                                         GlobalObject::VCallVisibilityPublic);
8698   std::vector<ValueInfo> Refs;
8699   VTableFuncList VTableFuncs;
8700   if (parseToken(lltok::colon, "expected ':' here") ||
8701       parseToken(lltok::lparen, "expected '(' here") ||
8702       parseModuleReference(ModulePath) ||
8703       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8704       parseToken(lltok::comma, "expected ',' here") ||
8705       parseGVarFlags(GVarFlags))
8706     return true;
8707 
8708   // parse optional fields
8709   while (EatIfPresent(lltok::comma)) {
8710     switch (Lex.getKind()) {
8711     case lltok::kw_vTableFuncs:
8712       if (parseOptionalVTableFuncs(VTableFuncs))
8713         return true;
8714       break;
8715     case lltok::kw_refs:
8716       if (parseOptionalRefs(Refs))
8717         return true;
8718       break;
8719     default:
8720       return error(Lex.getLoc(), "expected optional variable summary field");
8721     }
8722   }
8723 
8724   if (parseToken(lltok::rparen, "expected ')' here"))
8725     return true;
8726 
8727   auto GS =
8728       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8729 
8730   GS->setModulePath(ModulePath);
8731   GS->setVTableFuncs(std::move(VTableFuncs));
8732 
8733   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8734                         ID, std::move(GS));
8735 
8736   return false;
8737 }
8738 
8739 /// AliasSummary
8740 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8741 ///         'aliasee' ':' GVReference ')'
8742 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8743                                  unsigned ID) {
8744   assert(Lex.getKind() == lltok::kw_alias);
8745   LocTy Loc = Lex.getLoc();
8746   Lex.Lex();
8747 
8748   StringRef ModulePath;
8749   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8750       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8751       /*NotEligibleToImport=*/false,
8752       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8753   if (parseToken(lltok::colon, "expected ':' here") ||
8754       parseToken(lltok::lparen, "expected '(' here") ||
8755       parseModuleReference(ModulePath) ||
8756       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8757       parseToken(lltok::comma, "expected ',' here") ||
8758       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8759       parseToken(lltok::colon, "expected ':' here"))
8760     return true;
8761 
8762   ValueInfo AliaseeVI;
8763   unsigned GVId;
8764   if (parseGVReference(AliaseeVI, GVId))
8765     return true;
8766 
8767   if (parseToken(lltok::rparen, "expected ')' here"))
8768     return true;
8769 
8770   auto AS = std::make_unique<AliasSummary>(GVFlags);
8771 
8772   AS->setModulePath(ModulePath);
8773 
8774   // Record forward reference if the aliasee is not parsed yet.
8775   if (AliaseeVI.getRef() == FwdVIRef) {
8776     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8777   } else {
8778     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8779     assert(Summary && "Aliasee must be a definition");
8780     AS->setAliasee(AliaseeVI, Summary);
8781   }
8782 
8783   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8784                         ID, std::move(AS));
8785 
8786   return false;
8787 }
8788 
8789 /// Flag
8790 ///   ::= [0|1]
8791 bool LLParser::parseFlag(unsigned &Val) {
8792   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8793     return tokError("expected integer");
8794   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8795   Lex.Lex();
8796   return false;
8797 }
8798 
8799 /// OptionalFFlags
8800 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8801 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8802 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8803 ///        [',' 'noInline' ':' Flag]? ')'
8804 ///        [',' 'alwaysInline' ':' Flag]? ')'
8805 
8806 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8807   assert(Lex.getKind() == lltok::kw_funcFlags);
8808   Lex.Lex();
8809 
8810   if (parseToken(lltok::colon, "expected ':' in funcFlags") |
8811       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8812     return true;
8813 
8814   do {
8815     unsigned Val = 0;
8816     switch (Lex.getKind()) {
8817     case lltok::kw_readNone:
8818       Lex.Lex();
8819       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8820         return true;
8821       FFlags.ReadNone = Val;
8822       break;
8823     case lltok::kw_readOnly:
8824       Lex.Lex();
8825       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8826         return true;
8827       FFlags.ReadOnly = Val;
8828       break;
8829     case lltok::kw_noRecurse:
8830       Lex.Lex();
8831       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8832         return true;
8833       FFlags.NoRecurse = Val;
8834       break;
8835     case lltok::kw_returnDoesNotAlias:
8836       Lex.Lex();
8837       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8838         return true;
8839       FFlags.ReturnDoesNotAlias = Val;
8840       break;
8841     case lltok::kw_noInline:
8842       Lex.Lex();
8843       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8844         return true;
8845       FFlags.NoInline = Val;
8846       break;
8847     case lltok::kw_alwaysInline:
8848       Lex.Lex();
8849       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8850         return true;
8851       FFlags.AlwaysInline = Val;
8852       break;
8853     default:
8854       return error(Lex.getLoc(), "expected function flag type");
8855     }
8856   } while (EatIfPresent(lltok::comma));
8857 
8858   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8859     return true;
8860 
8861   return false;
8862 }
8863 
8864 /// OptionalCalls
8865 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8866 /// Call ::= '(' 'callee' ':' GVReference
8867 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8868 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8869   assert(Lex.getKind() == lltok::kw_calls);
8870   Lex.Lex();
8871 
8872   if (parseToken(lltok::colon, "expected ':' in calls") |
8873       parseToken(lltok::lparen, "expected '(' in calls"))
8874     return true;
8875 
8876   IdToIndexMapType IdToIndexMap;
8877   // parse each call edge
8878   do {
8879     ValueInfo VI;
8880     if (parseToken(lltok::lparen, "expected '(' in call") ||
8881         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8882         parseToken(lltok::colon, "expected ':'"))
8883       return true;
8884 
8885     LocTy Loc = Lex.getLoc();
8886     unsigned GVId;
8887     if (parseGVReference(VI, GVId))
8888       return true;
8889 
8890     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8891     unsigned RelBF = 0;
8892     if (EatIfPresent(lltok::comma)) {
8893       // Expect either hotness or relbf
8894       if (EatIfPresent(lltok::kw_hotness)) {
8895         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8896           return true;
8897       } else {
8898         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8899             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8900           return true;
8901       }
8902     }
8903     // Keep track of the Call array index needing a forward reference.
8904     // We will save the location of the ValueInfo needing an update, but
8905     // can only do so once the std::vector is finalized.
8906     if (VI.getRef() == FwdVIRef)
8907       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8908     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8909 
8910     if (parseToken(lltok::rparen, "expected ')' in call"))
8911       return true;
8912   } while (EatIfPresent(lltok::comma));
8913 
8914   // Now that the Calls vector is finalized, it is safe to save the locations
8915   // of any forward GV references that need updating later.
8916   for (auto I : IdToIndexMap) {
8917     auto &Infos = ForwardRefValueInfos[I.first];
8918     for (auto P : I.second) {
8919       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8920              "Forward referenced ValueInfo expected to be empty");
8921       Infos.emplace_back(&Calls[P.first].first, P.second);
8922     }
8923   }
8924 
8925   if (parseToken(lltok::rparen, "expected ')' in calls"))
8926     return true;
8927 
8928   return false;
8929 }
8930 
8931 /// Hotness
8932 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8933 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8934   switch (Lex.getKind()) {
8935   case lltok::kw_unknown:
8936     Hotness = CalleeInfo::HotnessType::Unknown;
8937     break;
8938   case lltok::kw_cold:
8939     Hotness = CalleeInfo::HotnessType::Cold;
8940     break;
8941   case lltok::kw_none:
8942     Hotness = CalleeInfo::HotnessType::None;
8943     break;
8944   case lltok::kw_hot:
8945     Hotness = CalleeInfo::HotnessType::Hot;
8946     break;
8947   case lltok::kw_critical:
8948     Hotness = CalleeInfo::HotnessType::Critical;
8949     break;
8950   default:
8951     return error(Lex.getLoc(), "invalid call edge hotness");
8952   }
8953   Lex.Lex();
8954   return false;
8955 }
8956 
8957 /// OptionalVTableFuncs
8958 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8959 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8960 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8961   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8962   Lex.Lex();
8963 
8964   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") |
8965       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8966     return true;
8967 
8968   IdToIndexMapType IdToIndexMap;
8969   // parse each virtual function pair
8970   do {
8971     ValueInfo VI;
8972     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8973         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8974         parseToken(lltok::colon, "expected ':'"))
8975       return true;
8976 
8977     LocTy Loc = Lex.getLoc();
8978     unsigned GVId;
8979     if (parseGVReference(VI, GVId))
8980       return true;
8981 
8982     uint64_t Offset;
8983     if (parseToken(lltok::comma, "expected comma") ||
8984         parseToken(lltok::kw_offset, "expected offset") ||
8985         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
8986       return true;
8987 
8988     // Keep track of the VTableFuncs array index needing a forward reference.
8989     // We will save the location of the ValueInfo needing an update, but
8990     // can only do so once the std::vector is finalized.
8991     if (VI == EmptyVI)
8992       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8993     VTableFuncs.push_back({VI, Offset});
8994 
8995     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
8996       return true;
8997   } while (EatIfPresent(lltok::comma));
8998 
8999   // Now that the VTableFuncs vector is finalized, it is safe to save the
9000   // locations of any forward GV references that need updating later.
9001   for (auto I : IdToIndexMap) {
9002     auto &Infos = ForwardRefValueInfos[I.first];
9003     for (auto P : I.second) {
9004       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
9005              "Forward referenced ValueInfo expected to be empty");
9006       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
9007     }
9008   }
9009 
9010   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
9011     return true;
9012 
9013   return false;
9014 }
9015 
9016 /// ParamNo := 'param' ':' UInt64
9017 bool LLParser::parseParamNo(uint64_t &ParamNo) {
9018   if (parseToken(lltok::kw_param, "expected 'param' here") ||
9019       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
9020     return true;
9021   return false;
9022 }
9023 
9024 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
9025 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
9026   APSInt Lower;
9027   APSInt Upper;
9028   auto ParseAPSInt = [&](APSInt &Val) {
9029     if (Lex.getKind() != lltok::APSInt)
9030       return tokError("expected integer");
9031     Val = Lex.getAPSIntVal();
9032     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
9033     Val.setIsSigned(true);
9034     Lex.Lex();
9035     return false;
9036   };
9037   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
9038       parseToken(lltok::colon, "expected ':' here") ||
9039       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
9040       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
9041       parseToken(lltok::rsquare, "expected ']' here"))
9042     return true;
9043 
9044   ++Upper;
9045   Range =
9046       (Lower == Upper && !Lower.isMaxValue())
9047           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
9048           : ConstantRange(Lower, Upper);
9049 
9050   return false;
9051 }
9052 
9053 /// ParamAccessCall
9054 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
9055 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
9056                                     IdLocListType &IdLocList) {
9057   if (parseToken(lltok::lparen, "expected '(' here") ||
9058       parseToken(lltok::kw_callee, "expected 'callee' here") ||
9059       parseToken(lltok::colon, "expected ':' here"))
9060     return true;
9061 
9062   unsigned GVId;
9063   ValueInfo VI;
9064   LocTy Loc = Lex.getLoc();
9065   if (parseGVReference(VI, GVId))
9066     return true;
9067 
9068   Call.Callee = VI;
9069   IdLocList.emplace_back(GVId, Loc);
9070 
9071   if (parseToken(lltok::comma, "expected ',' here") ||
9072       parseParamNo(Call.ParamNo) ||
9073       parseToken(lltok::comma, "expected ',' here") ||
9074       parseParamAccessOffset(Call.Offsets))
9075     return true;
9076 
9077   if (parseToken(lltok::rparen, "expected ')' here"))
9078     return true;
9079 
9080   return false;
9081 }
9082 
9083 /// ParamAccess
9084 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
9085 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
9086 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
9087                                 IdLocListType &IdLocList) {
9088   if (parseToken(lltok::lparen, "expected '(' here") ||
9089       parseParamNo(Param.ParamNo) ||
9090       parseToken(lltok::comma, "expected ',' here") ||
9091       parseParamAccessOffset(Param.Use))
9092     return true;
9093 
9094   if (EatIfPresent(lltok::comma)) {
9095     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
9096         parseToken(lltok::colon, "expected ':' here") ||
9097         parseToken(lltok::lparen, "expected '(' here"))
9098       return true;
9099     do {
9100       FunctionSummary::ParamAccess::Call Call;
9101       if (parseParamAccessCall(Call, IdLocList))
9102         return true;
9103       Param.Calls.push_back(Call);
9104     } while (EatIfPresent(lltok::comma));
9105 
9106     if (parseToken(lltok::rparen, "expected ')' here"))
9107       return true;
9108   }
9109 
9110   if (parseToken(lltok::rparen, "expected ')' here"))
9111     return true;
9112 
9113   return false;
9114 }
9115 
9116 /// OptionalParamAccesses
9117 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
9118 bool LLParser::parseOptionalParamAccesses(
9119     std::vector<FunctionSummary::ParamAccess> &Params) {
9120   assert(Lex.getKind() == lltok::kw_params);
9121   Lex.Lex();
9122 
9123   if (parseToken(lltok::colon, "expected ':' here") ||
9124       parseToken(lltok::lparen, "expected '(' here"))
9125     return true;
9126 
9127   IdLocListType VContexts;
9128   size_t CallsNum = 0;
9129   do {
9130     FunctionSummary::ParamAccess ParamAccess;
9131     if (parseParamAccess(ParamAccess, VContexts))
9132       return true;
9133     CallsNum += ParamAccess.Calls.size();
9134     assert(VContexts.size() == CallsNum);
9135     Params.emplace_back(std::move(ParamAccess));
9136   } while (EatIfPresent(lltok::comma));
9137 
9138   if (parseToken(lltok::rparen, "expected ')' here"))
9139     return true;
9140 
9141   // Now that the Params is finalized, it is safe to save the locations
9142   // of any forward GV references that need updating later.
9143   IdLocListType::const_iterator ItContext = VContexts.begin();
9144   for (auto &PA : Params) {
9145     for (auto &C : PA.Calls) {
9146       if (C.Callee.getRef() == FwdVIRef)
9147         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9148                                                             ItContext->second);
9149       ++ItContext;
9150     }
9151   }
9152   assert(ItContext == VContexts.end());
9153 
9154   return false;
9155 }
9156 
9157 /// OptionalRefs
9158 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
9159 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9160   assert(Lex.getKind() == lltok::kw_refs);
9161   Lex.Lex();
9162 
9163   if (parseToken(lltok::colon, "expected ':' in refs") ||
9164       parseToken(lltok::lparen, "expected '(' in refs"))
9165     return true;
9166 
9167   struct ValueContext {
9168     ValueInfo VI;
9169     unsigned GVId;
9170     LocTy Loc;
9171   };
9172   std::vector<ValueContext> VContexts;
9173   // parse each ref edge
9174   do {
9175     ValueContext VC;
9176     VC.Loc = Lex.getLoc();
9177     if (parseGVReference(VC.VI, VC.GVId))
9178       return true;
9179     VContexts.push_back(VC);
9180   } while (EatIfPresent(lltok::comma));
9181 
9182   // Sort value contexts so that ones with writeonly
9183   // and readonly ValueInfo  are at the end of VContexts vector.
9184   // See FunctionSummary::specialRefCounts()
9185   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
9186     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9187   });
9188 
9189   IdToIndexMapType IdToIndexMap;
9190   for (auto &VC : VContexts) {
9191     // Keep track of the Refs array index needing a forward reference.
9192     // We will save the location of the ValueInfo needing an update, but
9193     // can only do so once the std::vector is finalized.
9194     if (VC.VI.getRef() == FwdVIRef)
9195       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9196     Refs.push_back(VC.VI);
9197   }
9198 
9199   // Now that the Refs vector is finalized, it is safe to save the locations
9200   // of any forward GV references that need updating later.
9201   for (auto I : IdToIndexMap) {
9202     auto &Infos = ForwardRefValueInfos[I.first];
9203     for (auto P : I.second) {
9204       assert(Refs[P.first].getRef() == FwdVIRef &&
9205              "Forward referenced ValueInfo expected to be empty");
9206       Infos.emplace_back(&Refs[P.first], P.second);
9207     }
9208   }
9209 
9210   if (parseToken(lltok::rparen, "expected ')' in refs"))
9211     return true;
9212 
9213   return false;
9214 }
9215 
9216 /// OptionalTypeIdInfo
9217 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9218 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9219 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9220 bool LLParser::parseOptionalTypeIdInfo(
9221     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9222   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9223   Lex.Lex();
9224 
9225   if (parseToken(lltok::colon, "expected ':' here") ||
9226       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9227     return true;
9228 
9229   do {
9230     switch (Lex.getKind()) {
9231     case lltok::kw_typeTests:
9232       if (parseTypeTests(TypeIdInfo.TypeTests))
9233         return true;
9234       break;
9235     case lltok::kw_typeTestAssumeVCalls:
9236       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9237                            TypeIdInfo.TypeTestAssumeVCalls))
9238         return true;
9239       break;
9240     case lltok::kw_typeCheckedLoadVCalls:
9241       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9242                            TypeIdInfo.TypeCheckedLoadVCalls))
9243         return true;
9244       break;
9245     case lltok::kw_typeTestAssumeConstVCalls:
9246       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9247                               TypeIdInfo.TypeTestAssumeConstVCalls))
9248         return true;
9249       break;
9250     case lltok::kw_typeCheckedLoadConstVCalls:
9251       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9252                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9253         return true;
9254       break;
9255     default:
9256       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9257     }
9258   } while (EatIfPresent(lltok::comma));
9259 
9260   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9261     return true;
9262 
9263   return false;
9264 }
9265 
9266 /// TypeTests
9267 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9268 ///         [',' (SummaryID | UInt64)]* ')'
9269 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9270   assert(Lex.getKind() == lltok::kw_typeTests);
9271   Lex.Lex();
9272 
9273   if (parseToken(lltok::colon, "expected ':' here") ||
9274       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9275     return true;
9276 
9277   IdToIndexMapType IdToIndexMap;
9278   do {
9279     GlobalValue::GUID GUID = 0;
9280     if (Lex.getKind() == lltok::SummaryID) {
9281       unsigned ID = Lex.getUIntVal();
9282       LocTy Loc = Lex.getLoc();
9283       // Keep track of the TypeTests array index needing a forward reference.
9284       // We will save the location of the GUID needing an update, but
9285       // can only do so once the std::vector is finalized.
9286       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9287       Lex.Lex();
9288     } else if (parseUInt64(GUID))
9289       return true;
9290     TypeTests.push_back(GUID);
9291   } while (EatIfPresent(lltok::comma));
9292 
9293   // Now that the TypeTests vector is finalized, it is safe to save the
9294   // locations of any forward GV references that need updating later.
9295   for (auto I : IdToIndexMap) {
9296     auto &Ids = ForwardRefTypeIds[I.first];
9297     for (auto P : I.second) {
9298       assert(TypeTests[P.first] == 0 &&
9299              "Forward referenced type id GUID expected to be 0");
9300       Ids.emplace_back(&TypeTests[P.first], P.second);
9301     }
9302   }
9303 
9304   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9305     return true;
9306 
9307   return false;
9308 }
9309 
9310 /// VFuncIdList
9311 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9312 bool LLParser::parseVFuncIdList(
9313     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9314   assert(Lex.getKind() == Kind);
9315   Lex.Lex();
9316 
9317   if (parseToken(lltok::colon, "expected ':' here") ||
9318       parseToken(lltok::lparen, "expected '(' here"))
9319     return true;
9320 
9321   IdToIndexMapType IdToIndexMap;
9322   do {
9323     FunctionSummary::VFuncId VFuncId;
9324     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9325       return true;
9326     VFuncIdList.push_back(VFuncId);
9327   } while (EatIfPresent(lltok::comma));
9328 
9329   if (parseToken(lltok::rparen, "expected ')' here"))
9330     return true;
9331 
9332   // Now that the VFuncIdList vector is finalized, it is safe to save the
9333   // locations of any forward GV references that need updating later.
9334   for (auto I : IdToIndexMap) {
9335     auto &Ids = ForwardRefTypeIds[I.first];
9336     for (auto P : I.second) {
9337       assert(VFuncIdList[P.first].GUID == 0 &&
9338              "Forward referenced type id GUID expected to be 0");
9339       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9340     }
9341   }
9342 
9343   return false;
9344 }
9345 
9346 /// ConstVCallList
9347 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9348 bool LLParser::parseConstVCallList(
9349     lltok::Kind Kind,
9350     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9351   assert(Lex.getKind() == Kind);
9352   Lex.Lex();
9353 
9354   if (parseToken(lltok::colon, "expected ':' here") ||
9355       parseToken(lltok::lparen, "expected '(' here"))
9356     return true;
9357 
9358   IdToIndexMapType IdToIndexMap;
9359   do {
9360     FunctionSummary::ConstVCall ConstVCall;
9361     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9362       return true;
9363     ConstVCallList.push_back(ConstVCall);
9364   } while (EatIfPresent(lltok::comma));
9365 
9366   if (parseToken(lltok::rparen, "expected ')' here"))
9367     return true;
9368 
9369   // Now that the ConstVCallList vector is finalized, it is safe to save the
9370   // locations of any forward GV references that need updating later.
9371   for (auto I : IdToIndexMap) {
9372     auto &Ids = ForwardRefTypeIds[I.first];
9373     for (auto P : I.second) {
9374       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9375              "Forward referenced type id GUID expected to be 0");
9376       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9377     }
9378   }
9379 
9380   return false;
9381 }
9382 
9383 /// ConstVCall
9384 ///   ::= '(' VFuncId ',' Args ')'
9385 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9386                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9387   if (parseToken(lltok::lparen, "expected '(' here") ||
9388       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9389     return true;
9390 
9391   if (EatIfPresent(lltok::comma))
9392     if (parseArgs(ConstVCall.Args))
9393       return true;
9394 
9395   if (parseToken(lltok::rparen, "expected ')' here"))
9396     return true;
9397 
9398   return false;
9399 }
9400 
9401 /// VFuncId
9402 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9403 ///         'offset' ':' UInt64 ')'
9404 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9405                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9406   assert(Lex.getKind() == lltok::kw_vFuncId);
9407   Lex.Lex();
9408 
9409   if (parseToken(lltok::colon, "expected ':' here") ||
9410       parseToken(lltok::lparen, "expected '(' here"))
9411     return true;
9412 
9413   if (Lex.getKind() == lltok::SummaryID) {
9414     VFuncId.GUID = 0;
9415     unsigned ID = Lex.getUIntVal();
9416     LocTy Loc = Lex.getLoc();
9417     // Keep track of the array index needing a forward reference.
9418     // We will save the location of the GUID needing an update, but
9419     // can only do so once the caller's std::vector is finalized.
9420     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9421     Lex.Lex();
9422   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9423              parseToken(lltok::colon, "expected ':' here") ||
9424              parseUInt64(VFuncId.GUID))
9425     return true;
9426 
9427   if (parseToken(lltok::comma, "expected ',' here") ||
9428       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9429       parseToken(lltok::colon, "expected ':' here") ||
9430       parseUInt64(VFuncId.Offset) ||
9431       parseToken(lltok::rparen, "expected ')' here"))
9432     return true;
9433 
9434   return false;
9435 }
9436 
9437 /// GVFlags
9438 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9439 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9440 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9441 ///         'canAutoHide' ':' Flag ',' ')'
9442 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9443   assert(Lex.getKind() == lltok::kw_flags);
9444   Lex.Lex();
9445 
9446   if (parseToken(lltok::colon, "expected ':' here") ||
9447       parseToken(lltok::lparen, "expected '(' here"))
9448     return true;
9449 
9450   do {
9451     unsigned Flag = 0;
9452     switch (Lex.getKind()) {
9453     case lltok::kw_linkage:
9454       Lex.Lex();
9455       if (parseToken(lltok::colon, "expected ':'"))
9456         return true;
9457       bool HasLinkage;
9458       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9459       assert(HasLinkage && "Linkage not optional in summary entry");
9460       Lex.Lex();
9461       break;
9462     case lltok::kw_visibility:
9463       Lex.Lex();
9464       if (parseToken(lltok::colon, "expected ':'"))
9465         return true;
9466       parseOptionalVisibility(Flag);
9467       GVFlags.Visibility = Flag;
9468       break;
9469     case lltok::kw_notEligibleToImport:
9470       Lex.Lex();
9471       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9472         return true;
9473       GVFlags.NotEligibleToImport = Flag;
9474       break;
9475     case lltok::kw_live:
9476       Lex.Lex();
9477       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9478         return true;
9479       GVFlags.Live = Flag;
9480       break;
9481     case lltok::kw_dsoLocal:
9482       Lex.Lex();
9483       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9484         return true;
9485       GVFlags.DSOLocal = Flag;
9486       break;
9487     case lltok::kw_canAutoHide:
9488       Lex.Lex();
9489       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9490         return true;
9491       GVFlags.CanAutoHide = Flag;
9492       break;
9493     default:
9494       return error(Lex.getLoc(), "expected gv flag type");
9495     }
9496   } while (EatIfPresent(lltok::comma));
9497 
9498   if (parseToken(lltok::rparen, "expected ')' here"))
9499     return true;
9500 
9501   return false;
9502 }
9503 
9504 /// GVarFlags
9505 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9506 ///                      ',' 'writeonly' ':' Flag
9507 ///                      ',' 'constant' ':' Flag ')'
9508 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9509   assert(Lex.getKind() == lltok::kw_varFlags);
9510   Lex.Lex();
9511 
9512   if (parseToken(lltok::colon, "expected ':' here") ||
9513       parseToken(lltok::lparen, "expected '(' here"))
9514     return true;
9515 
9516   auto ParseRest = [this](unsigned int &Val) {
9517     Lex.Lex();
9518     if (parseToken(lltok::colon, "expected ':'"))
9519       return true;
9520     return parseFlag(Val);
9521   };
9522 
9523   do {
9524     unsigned Flag = 0;
9525     switch (Lex.getKind()) {
9526     case lltok::kw_readonly:
9527       if (ParseRest(Flag))
9528         return true;
9529       GVarFlags.MaybeReadOnly = Flag;
9530       break;
9531     case lltok::kw_writeonly:
9532       if (ParseRest(Flag))
9533         return true;
9534       GVarFlags.MaybeWriteOnly = Flag;
9535       break;
9536     case lltok::kw_constant:
9537       if (ParseRest(Flag))
9538         return true;
9539       GVarFlags.Constant = Flag;
9540       break;
9541     case lltok::kw_vcall_visibility:
9542       if (ParseRest(Flag))
9543         return true;
9544       GVarFlags.VCallVisibility = Flag;
9545       break;
9546     default:
9547       return error(Lex.getLoc(), "expected gvar flag type");
9548     }
9549   } while (EatIfPresent(lltok::comma));
9550   return parseToken(lltok::rparen, "expected ')' here");
9551 }
9552 
9553 /// ModuleReference
9554 ///   ::= 'module' ':' UInt
9555 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9556   // parse module id.
9557   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9558       parseToken(lltok::colon, "expected ':' here") ||
9559       parseToken(lltok::SummaryID, "expected module ID"))
9560     return true;
9561 
9562   unsigned ModuleID = Lex.getUIntVal();
9563   auto I = ModuleIdMap.find(ModuleID);
9564   // We should have already parsed all module IDs
9565   assert(I != ModuleIdMap.end());
9566   ModulePath = I->second;
9567   return false;
9568 }
9569 
9570 /// GVReference
9571 ///   ::= SummaryID
9572 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9573   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9574   if (!ReadOnly)
9575     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9576   if (parseToken(lltok::SummaryID, "expected GV ID"))
9577     return true;
9578 
9579   GVId = Lex.getUIntVal();
9580   // Check if we already have a VI for this GV
9581   if (GVId < NumberedValueInfos.size()) {
9582     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9583     VI = NumberedValueInfos[GVId];
9584   } else
9585     // We will create a forward reference to the stored location.
9586     VI = ValueInfo(false, FwdVIRef);
9587 
9588   if (ReadOnly)
9589     VI.setReadOnly();
9590   if (WriteOnly)
9591     VI.setWriteOnly();
9592   return false;
9593 }
9594