1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalIFunc.h" 32 #include "llvm/IR/GlobalObject.h" 33 #include "llvm/IR/InlineAsm.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/IR/ValueSymbolTable.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SaveAndRestore.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstring> 52 #include <iterator> 53 #include <vector> 54 55 using namespace llvm; 56 57 static std::string getTypeString(Type *T) { 58 std::string Result; 59 raw_string_ostream Tmp(Result); 60 Tmp << *T; 61 return Tmp.str(); 62 } 63 64 /// Run: module ::= toplevelentity* 65 bool LLParser::Run() { 66 // Prime the lexer. 67 Lex.Lex(); 68 69 if (Context.shouldDiscardValueNames()) 70 return Error( 71 Lex.getLoc(), 72 "Can't read textual IR with a Context that discards named Values"); 73 74 return ParseTopLevelEntities() || ValidateEndOfModule() || 75 ValidateEndOfIndex(); 76 } 77 78 bool LLParser::parseStandaloneConstantValue(Constant *&C, 79 const SlotMapping *Slots) { 80 restoreParsingState(Slots); 81 Lex.Lex(); 82 83 Type *Ty = nullptr; 84 if (ParseType(Ty) || parseConstantValue(Ty, C)) 85 return true; 86 if (Lex.getKind() != lltok::Eof) 87 return Error(Lex.getLoc(), "expected end of string"); 88 return false; 89 } 90 91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 92 const SlotMapping *Slots) { 93 restoreParsingState(Slots); 94 Lex.Lex(); 95 96 Read = 0; 97 SMLoc Start = Lex.getLoc(); 98 Ty = nullptr; 99 if (ParseType(Ty)) 100 return true; 101 SMLoc End = Lex.getLoc(); 102 Read = End.getPointer() - Start.getPointer(); 103 104 return false; 105 } 106 107 void LLParser::restoreParsingState(const SlotMapping *Slots) { 108 if (!Slots) 109 return; 110 NumberedVals = Slots->GlobalValues; 111 NumberedMetadata = Slots->MetadataNodes; 112 for (const auto &I : Slots->NamedTypes) 113 NamedTypes.insert( 114 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 115 for (const auto &I : Slots->Types) 116 NumberedTypes.insert( 117 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 118 } 119 120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 121 /// module. 122 bool LLParser::ValidateEndOfModule() { 123 if (!M) 124 return false; 125 // Handle any function attribute group forward references. 126 for (const auto &RAG : ForwardRefAttrGroups) { 127 Value *V = RAG.first; 128 const std::vector<unsigned> &Attrs = RAG.second; 129 AttrBuilder B; 130 131 for (const auto &Attr : Attrs) 132 B.merge(NumberedAttrBuilders[Attr]); 133 134 if (Function *Fn = dyn_cast<Function>(V)) { 135 AttributeList AS = Fn->getAttributes(); 136 AttrBuilder FnAttrs(AS.getFnAttributes()); 137 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 138 139 FnAttrs.merge(B); 140 141 // If the alignment was parsed as an attribute, move to the alignment 142 // field. 143 if (FnAttrs.hasAlignmentAttr()) { 144 Fn->setAlignment(FnAttrs.getAlignment()); 145 FnAttrs.removeAttribute(Attribute::Alignment); 146 } 147 148 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 149 AttributeSet::get(Context, FnAttrs)); 150 Fn->setAttributes(AS); 151 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 152 AttributeList AS = CI->getAttributes(); 153 AttrBuilder FnAttrs(AS.getFnAttributes()); 154 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 155 FnAttrs.merge(B); 156 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 157 AttributeSet::get(Context, FnAttrs)); 158 CI->setAttributes(AS); 159 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 160 AttributeList AS = II->getAttributes(); 161 AttrBuilder FnAttrs(AS.getFnAttributes()); 162 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 163 FnAttrs.merge(B); 164 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 165 AttributeSet::get(Context, FnAttrs)); 166 II->setAttributes(AS); 167 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 168 AttrBuilder Attrs(GV->getAttributes()); 169 Attrs.merge(B); 170 GV->setAttributes(AttributeSet::get(Context,Attrs)); 171 } else { 172 llvm_unreachable("invalid object with forward attribute group reference"); 173 } 174 } 175 176 // If there are entries in ForwardRefBlockAddresses at this point, the 177 // function was never defined. 178 if (!ForwardRefBlockAddresses.empty()) 179 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 180 "expected function name in blockaddress"); 181 182 for (const auto &NT : NumberedTypes) 183 if (NT.second.second.isValid()) 184 return Error(NT.second.second, 185 "use of undefined type '%" + Twine(NT.first) + "'"); 186 187 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 188 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 189 if (I->second.second.isValid()) 190 return Error(I->second.second, 191 "use of undefined type named '" + I->getKey() + "'"); 192 193 if (!ForwardRefComdats.empty()) 194 return Error(ForwardRefComdats.begin()->second, 195 "use of undefined comdat '$" + 196 ForwardRefComdats.begin()->first + "'"); 197 198 if (!ForwardRefVals.empty()) 199 return Error(ForwardRefVals.begin()->second.second, 200 "use of undefined value '@" + ForwardRefVals.begin()->first + 201 "'"); 202 203 if (!ForwardRefValIDs.empty()) 204 return Error(ForwardRefValIDs.begin()->second.second, 205 "use of undefined value '@" + 206 Twine(ForwardRefValIDs.begin()->first) + "'"); 207 208 if (!ForwardRefMDNodes.empty()) 209 return Error(ForwardRefMDNodes.begin()->second.second, 210 "use of undefined metadata '!" + 211 Twine(ForwardRefMDNodes.begin()->first) + "'"); 212 213 // Resolve metadata cycles. 214 for (auto &N : NumberedMetadata) { 215 if (N.second && !N.second->isResolved()) 216 N.second->resolveCycles(); 217 } 218 219 for (auto *Inst : InstsWithTBAATag) { 220 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 221 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 222 auto *UpgradedMD = UpgradeTBAANode(*MD); 223 if (MD != UpgradedMD) 224 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 225 } 226 227 // Look for intrinsic functions and CallInst that need to be upgraded 228 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 229 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 230 231 // Some types could be renamed during loading if several modules are 232 // loaded in the same LLVMContext (LTO scenario). In this case we should 233 // remangle intrinsics names as well. 234 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 235 Function *F = &*FI++; 236 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 237 F->replaceAllUsesWith(Remangled.getValue()); 238 F->eraseFromParent(); 239 } 240 } 241 242 if (UpgradeDebugInfo) 243 llvm::UpgradeDebugInfo(*M); 244 245 UpgradeModuleFlags(*M); 246 UpgradeSectionAttributes(*M); 247 248 if (!Slots) 249 return false; 250 // Initialize the slot mapping. 251 // Because by this point we've parsed and validated everything, we can "steal" 252 // the mapping from LLParser as it doesn't need it anymore. 253 Slots->GlobalValues = std::move(NumberedVals); 254 Slots->MetadataNodes = std::move(NumberedMetadata); 255 for (const auto &I : NamedTypes) 256 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 257 for (const auto &I : NumberedTypes) 258 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 259 260 return false; 261 } 262 263 /// Do final validity and sanity checks at the end of the index. 264 bool LLParser::ValidateEndOfIndex() { 265 if (!Index) 266 return false; 267 268 if (!ForwardRefValueInfos.empty()) 269 return Error(ForwardRefValueInfos.begin()->second.front().second, 270 "use of undefined summary '^" + 271 Twine(ForwardRefValueInfos.begin()->first) + "'"); 272 273 if (!ForwardRefAliasees.empty()) 274 return Error(ForwardRefAliasees.begin()->second.front().second, 275 "use of undefined summary '^" + 276 Twine(ForwardRefAliasees.begin()->first) + "'"); 277 278 if (!ForwardRefTypeIds.empty()) 279 return Error(ForwardRefTypeIds.begin()->second.front().second, 280 "use of undefined type id summary '^" + 281 Twine(ForwardRefTypeIds.begin()->first) + "'"); 282 283 return false; 284 } 285 286 //===----------------------------------------------------------------------===// 287 // Top-Level Entities 288 //===----------------------------------------------------------------------===// 289 290 bool LLParser::ParseTopLevelEntities() { 291 // If there is no Module, then parse just the summary index entries. 292 if (!M) { 293 while (true) { 294 switch (Lex.getKind()) { 295 case lltok::Eof: 296 return false; 297 case lltok::SummaryID: 298 if (ParseSummaryEntry()) 299 return true; 300 break; 301 case lltok::kw_source_filename: 302 if (ParseSourceFileName()) 303 return true; 304 break; 305 default: 306 // Skip everything else 307 Lex.Lex(); 308 } 309 } 310 } 311 while (true) { 312 switch (Lex.getKind()) { 313 default: return TokError("expected top-level entity"); 314 case lltok::Eof: return false; 315 case lltok::kw_declare: if (ParseDeclare()) return true; break; 316 case lltok::kw_define: if (ParseDefine()) return true; break; 317 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 318 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 319 case lltok::kw_source_filename: 320 if (ParseSourceFileName()) 321 return true; 322 break; 323 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 324 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 325 case lltok::LocalVar: if (ParseNamedType()) return true; break; 326 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 327 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 328 case lltok::ComdatVar: if (parseComdat()) return true; break; 329 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 330 case lltok::SummaryID: 331 if (ParseSummaryEntry()) 332 return true; 333 break; 334 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 335 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 336 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 337 case lltok::kw_uselistorder_bb: 338 if (ParseUseListOrderBB()) 339 return true; 340 break; 341 } 342 } 343 } 344 345 /// toplevelentity 346 /// ::= 'module' 'asm' STRINGCONSTANT 347 bool LLParser::ParseModuleAsm() { 348 assert(Lex.getKind() == lltok::kw_module); 349 Lex.Lex(); 350 351 std::string AsmStr; 352 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 353 ParseStringConstant(AsmStr)) return true; 354 355 M->appendModuleInlineAsm(AsmStr); 356 return false; 357 } 358 359 /// toplevelentity 360 /// ::= 'target' 'triple' '=' STRINGCONSTANT 361 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 362 bool LLParser::ParseTargetDefinition() { 363 assert(Lex.getKind() == lltok::kw_target); 364 std::string Str; 365 switch (Lex.Lex()) { 366 default: return TokError("unknown target property"); 367 case lltok::kw_triple: 368 Lex.Lex(); 369 if (ParseToken(lltok::equal, "expected '=' after target triple") || 370 ParseStringConstant(Str)) 371 return true; 372 M->setTargetTriple(Str); 373 return false; 374 case lltok::kw_datalayout: 375 Lex.Lex(); 376 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 377 ParseStringConstant(Str)) 378 return true; 379 if (DataLayoutStr.empty()) 380 M->setDataLayout(Str); 381 return false; 382 } 383 } 384 385 /// toplevelentity 386 /// ::= 'source_filename' '=' STRINGCONSTANT 387 bool LLParser::ParseSourceFileName() { 388 assert(Lex.getKind() == lltok::kw_source_filename); 389 Lex.Lex(); 390 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 391 ParseStringConstant(SourceFileName)) 392 return true; 393 if (M) 394 M->setSourceFileName(SourceFileName); 395 return false; 396 } 397 398 /// toplevelentity 399 /// ::= 'deplibs' '=' '[' ']' 400 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 401 /// FIXME: Remove in 4.0. Currently parse, but ignore. 402 bool LLParser::ParseDepLibs() { 403 assert(Lex.getKind() == lltok::kw_deplibs); 404 Lex.Lex(); 405 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 406 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 407 return true; 408 409 if (EatIfPresent(lltok::rsquare)) 410 return false; 411 412 do { 413 std::string Str; 414 if (ParseStringConstant(Str)) return true; 415 } while (EatIfPresent(lltok::comma)); 416 417 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 418 } 419 420 /// ParseUnnamedType: 421 /// ::= LocalVarID '=' 'type' type 422 bool LLParser::ParseUnnamedType() { 423 LocTy TypeLoc = Lex.getLoc(); 424 unsigned TypeID = Lex.getUIntVal(); 425 Lex.Lex(); // eat LocalVarID; 426 427 if (ParseToken(lltok::equal, "expected '=' after name") || 428 ParseToken(lltok::kw_type, "expected 'type' after '='")) 429 return true; 430 431 Type *Result = nullptr; 432 if (ParseStructDefinition(TypeLoc, "", 433 NumberedTypes[TypeID], Result)) return true; 434 435 if (!isa<StructType>(Result)) { 436 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 437 if (Entry.first) 438 return Error(TypeLoc, "non-struct types may not be recursive"); 439 Entry.first = Result; 440 Entry.second = SMLoc(); 441 } 442 443 return false; 444 } 445 446 /// toplevelentity 447 /// ::= LocalVar '=' 'type' type 448 bool LLParser::ParseNamedType() { 449 std::string Name = Lex.getStrVal(); 450 LocTy NameLoc = Lex.getLoc(); 451 Lex.Lex(); // eat LocalVar. 452 453 if (ParseToken(lltok::equal, "expected '=' after name") || 454 ParseToken(lltok::kw_type, "expected 'type' after name")) 455 return true; 456 457 Type *Result = nullptr; 458 if (ParseStructDefinition(NameLoc, Name, 459 NamedTypes[Name], Result)) return true; 460 461 if (!isa<StructType>(Result)) { 462 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 463 if (Entry.first) 464 return Error(NameLoc, "non-struct types may not be recursive"); 465 Entry.first = Result; 466 Entry.second = SMLoc(); 467 } 468 469 return false; 470 } 471 472 /// toplevelentity 473 /// ::= 'declare' FunctionHeader 474 bool LLParser::ParseDeclare() { 475 assert(Lex.getKind() == lltok::kw_declare); 476 Lex.Lex(); 477 478 std::vector<std::pair<unsigned, MDNode *>> MDs; 479 while (Lex.getKind() == lltok::MetadataVar) { 480 unsigned MDK; 481 MDNode *N; 482 if (ParseMetadataAttachment(MDK, N)) 483 return true; 484 MDs.push_back({MDK, N}); 485 } 486 487 Function *F; 488 if (ParseFunctionHeader(F, false)) 489 return true; 490 for (auto &MD : MDs) 491 F->addMetadata(MD.first, *MD.second); 492 return false; 493 } 494 495 /// toplevelentity 496 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 497 bool LLParser::ParseDefine() { 498 assert(Lex.getKind() == lltok::kw_define); 499 Lex.Lex(); 500 501 Function *F; 502 return ParseFunctionHeader(F, true) || 503 ParseOptionalFunctionMetadata(*F) || 504 ParseFunctionBody(*F); 505 } 506 507 /// ParseGlobalType 508 /// ::= 'constant' 509 /// ::= 'global' 510 bool LLParser::ParseGlobalType(bool &IsConstant) { 511 if (Lex.getKind() == lltok::kw_constant) 512 IsConstant = true; 513 else if (Lex.getKind() == lltok::kw_global) 514 IsConstant = false; 515 else { 516 IsConstant = false; 517 return TokError("expected 'global' or 'constant'"); 518 } 519 Lex.Lex(); 520 return false; 521 } 522 523 bool LLParser::ParseOptionalUnnamedAddr( 524 GlobalVariable::UnnamedAddr &UnnamedAddr) { 525 if (EatIfPresent(lltok::kw_unnamed_addr)) 526 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 527 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 528 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 529 else 530 UnnamedAddr = GlobalValue::UnnamedAddr::None; 531 return false; 532 } 533 534 /// ParseUnnamedGlobal: 535 /// OptionalVisibility (ALIAS | IFUNC) ... 536 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 537 /// OptionalDLLStorageClass 538 /// ... -> global variable 539 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 540 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 541 /// OptionalDLLStorageClass 542 /// ... -> global variable 543 bool LLParser::ParseUnnamedGlobal() { 544 unsigned VarID = NumberedVals.size(); 545 std::string Name; 546 LocTy NameLoc = Lex.getLoc(); 547 548 // Handle the GlobalID form. 549 if (Lex.getKind() == lltok::GlobalID) { 550 if (Lex.getUIntVal() != VarID) 551 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 552 Twine(VarID) + "'"); 553 Lex.Lex(); // eat GlobalID; 554 555 if (ParseToken(lltok::equal, "expected '=' after name")) 556 return true; 557 } 558 559 bool HasLinkage; 560 unsigned Linkage, Visibility, DLLStorageClass; 561 bool DSOLocal; 562 GlobalVariable::ThreadLocalMode TLM; 563 GlobalVariable::UnnamedAddr UnnamedAddr; 564 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 565 DSOLocal) || 566 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 567 return true; 568 569 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 570 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 571 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 572 573 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 574 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 575 } 576 577 /// ParseNamedGlobal: 578 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 579 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 580 /// OptionalVisibility OptionalDLLStorageClass 581 /// ... -> global variable 582 bool LLParser::ParseNamedGlobal() { 583 assert(Lex.getKind() == lltok::GlobalVar); 584 LocTy NameLoc = Lex.getLoc(); 585 std::string Name = Lex.getStrVal(); 586 Lex.Lex(); 587 588 bool HasLinkage; 589 unsigned Linkage, Visibility, DLLStorageClass; 590 bool DSOLocal; 591 GlobalVariable::ThreadLocalMode TLM; 592 GlobalVariable::UnnamedAddr UnnamedAddr; 593 if (ParseToken(lltok::equal, "expected '=' in global variable") || 594 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 595 DSOLocal) || 596 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 597 return true; 598 599 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 600 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 601 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 602 603 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 604 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 605 } 606 607 bool LLParser::parseComdat() { 608 assert(Lex.getKind() == lltok::ComdatVar); 609 std::string Name = Lex.getStrVal(); 610 LocTy NameLoc = Lex.getLoc(); 611 Lex.Lex(); 612 613 if (ParseToken(lltok::equal, "expected '=' here")) 614 return true; 615 616 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 617 return TokError("expected comdat type"); 618 619 Comdat::SelectionKind SK; 620 switch (Lex.getKind()) { 621 default: 622 return TokError("unknown selection kind"); 623 case lltok::kw_any: 624 SK = Comdat::Any; 625 break; 626 case lltok::kw_exactmatch: 627 SK = Comdat::ExactMatch; 628 break; 629 case lltok::kw_largest: 630 SK = Comdat::Largest; 631 break; 632 case lltok::kw_noduplicates: 633 SK = Comdat::NoDuplicates; 634 break; 635 case lltok::kw_samesize: 636 SK = Comdat::SameSize; 637 break; 638 } 639 Lex.Lex(); 640 641 // See if the comdat was forward referenced, if so, use the comdat. 642 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 643 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 644 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 645 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 646 647 Comdat *C; 648 if (I != ComdatSymTab.end()) 649 C = &I->second; 650 else 651 C = M->getOrInsertComdat(Name); 652 C->setSelectionKind(SK); 653 654 return false; 655 } 656 657 // MDString: 658 // ::= '!' STRINGCONSTANT 659 bool LLParser::ParseMDString(MDString *&Result) { 660 std::string Str; 661 if (ParseStringConstant(Str)) return true; 662 Result = MDString::get(Context, Str); 663 return false; 664 } 665 666 // MDNode: 667 // ::= '!' MDNodeNumber 668 bool LLParser::ParseMDNodeID(MDNode *&Result) { 669 // !{ ..., !42, ... } 670 LocTy IDLoc = Lex.getLoc(); 671 unsigned MID = 0; 672 if (ParseUInt32(MID)) 673 return true; 674 675 // If not a forward reference, just return it now. 676 if (NumberedMetadata.count(MID)) { 677 Result = NumberedMetadata[MID]; 678 return false; 679 } 680 681 // Otherwise, create MDNode forward reference. 682 auto &FwdRef = ForwardRefMDNodes[MID]; 683 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 684 685 Result = FwdRef.first.get(); 686 NumberedMetadata[MID].reset(Result); 687 return false; 688 } 689 690 /// ParseNamedMetadata: 691 /// !foo = !{ !1, !2 } 692 bool LLParser::ParseNamedMetadata() { 693 assert(Lex.getKind() == lltok::MetadataVar); 694 std::string Name = Lex.getStrVal(); 695 Lex.Lex(); 696 697 if (ParseToken(lltok::equal, "expected '=' here") || 698 ParseToken(lltok::exclaim, "Expected '!' here") || 699 ParseToken(lltok::lbrace, "Expected '{' here")) 700 return true; 701 702 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 703 if (Lex.getKind() != lltok::rbrace) 704 do { 705 MDNode *N = nullptr; 706 // Parse DIExpressions inline as a special case. They are still MDNodes, 707 // so they can still appear in named metadata. Remove this logic if they 708 // become plain Metadata. 709 if (Lex.getKind() == lltok::MetadataVar && 710 Lex.getStrVal() == "DIExpression") { 711 if (ParseDIExpression(N, /*IsDistinct=*/false)) 712 return true; 713 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 714 ParseMDNodeID(N)) { 715 return true; 716 } 717 NMD->addOperand(N); 718 } while (EatIfPresent(lltok::comma)); 719 720 return ParseToken(lltok::rbrace, "expected end of metadata node"); 721 } 722 723 /// ParseStandaloneMetadata: 724 /// !42 = !{...} 725 bool LLParser::ParseStandaloneMetadata() { 726 assert(Lex.getKind() == lltok::exclaim); 727 Lex.Lex(); 728 unsigned MetadataID = 0; 729 730 MDNode *Init; 731 if (ParseUInt32(MetadataID) || 732 ParseToken(lltok::equal, "expected '=' here")) 733 return true; 734 735 // Detect common error, from old metadata syntax. 736 if (Lex.getKind() == lltok::Type) 737 return TokError("unexpected type in metadata definition"); 738 739 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 740 if (Lex.getKind() == lltok::MetadataVar) { 741 if (ParseSpecializedMDNode(Init, IsDistinct)) 742 return true; 743 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 744 ParseMDTuple(Init, IsDistinct)) 745 return true; 746 747 // See if this was forward referenced, if so, handle it. 748 auto FI = ForwardRefMDNodes.find(MetadataID); 749 if (FI != ForwardRefMDNodes.end()) { 750 FI->second.first->replaceAllUsesWith(Init); 751 ForwardRefMDNodes.erase(FI); 752 753 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 754 } else { 755 if (NumberedMetadata.count(MetadataID)) 756 return TokError("Metadata id is already used"); 757 NumberedMetadata[MetadataID].reset(Init); 758 } 759 760 return false; 761 } 762 763 // Skips a single module summary entry. 764 bool LLParser::SkipModuleSummaryEntry() { 765 // Each module summary entry consists of a tag for the entry 766 // type, followed by a colon, then the fields surrounded by nested sets of 767 // parentheses. The "tag:" looks like a Label. Once parsing support is 768 // in place we will look for the tokens corresponding to the expected tags. 769 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 770 Lex.getKind() != lltok::kw_typeid) 771 return TokError( 772 "Expected 'gv', 'module', or 'typeid' at the start of summary entry"); 773 Lex.Lex(); 774 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 775 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 776 return true; 777 // Now walk through the parenthesized entry, until the number of open 778 // parentheses goes back down to 0 (the first '(' was parsed above). 779 unsigned NumOpenParen = 1; 780 do { 781 switch (Lex.getKind()) { 782 case lltok::lparen: 783 NumOpenParen++; 784 break; 785 case lltok::rparen: 786 NumOpenParen--; 787 break; 788 case lltok::Eof: 789 return TokError("found end of file while parsing summary entry"); 790 default: 791 // Skip everything in between parentheses. 792 break; 793 } 794 Lex.Lex(); 795 } while (NumOpenParen > 0); 796 return false; 797 } 798 799 /// SummaryEntry 800 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 801 bool LLParser::ParseSummaryEntry() { 802 assert(Lex.getKind() == lltok::SummaryID); 803 unsigned SummaryID = Lex.getUIntVal(); 804 805 // For summary entries, colons should be treated as distinct tokens, 806 // not an indication of the end of a label token. 807 Lex.setIgnoreColonInIdentifiers(true); 808 809 Lex.Lex(); 810 if (ParseToken(lltok::equal, "expected '=' here")) 811 return true; 812 813 // If we don't have an index object, skip the summary entry. 814 if (!Index) 815 return SkipModuleSummaryEntry(); 816 817 switch (Lex.getKind()) { 818 case lltok::kw_gv: 819 return ParseGVEntry(SummaryID); 820 case lltok::kw_module: 821 return ParseModuleEntry(SummaryID); 822 case lltok::kw_typeid: 823 return ParseTypeIdEntry(SummaryID); 824 break; 825 default: 826 return Error(Lex.getLoc(), "unexpected summary kind"); 827 } 828 Lex.setIgnoreColonInIdentifiers(false); 829 return false; 830 } 831 832 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 833 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 834 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 835 } 836 837 // If there was an explicit dso_local, update GV. In the absence of an explicit 838 // dso_local we keep the default value. 839 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 840 if (DSOLocal) 841 GV.setDSOLocal(true); 842 } 843 844 /// parseIndirectSymbol: 845 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 846 /// OptionalVisibility OptionalDLLStorageClass 847 /// OptionalThreadLocal OptionalUnnamedAddr 848 // 'alias|ifunc' IndirectSymbol 849 /// 850 /// IndirectSymbol 851 /// ::= TypeAndValue 852 /// 853 /// Everything through OptionalUnnamedAddr has already been parsed. 854 /// 855 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 856 unsigned L, unsigned Visibility, 857 unsigned DLLStorageClass, bool DSOLocal, 858 GlobalVariable::ThreadLocalMode TLM, 859 GlobalVariable::UnnamedAddr UnnamedAddr) { 860 bool IsAlias; 861 if (Lex.getKind() == lltok::kw_alias) 862 IsAlias = true; 863 else if (Lex.getKind() == lltok::kw_ifunc) 864 IsAlias = false; 865 else 866 llvm_unreachable("Not an alias or ifunc!"); 867 Lex.Lex(); 868 869 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 870 871 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 872 return Error(NameLoc, "invalid linkage type for alias"); 873 874 if (!isValidVisibilityForLinkage(Visibility, L)) 875 return Error(NameLoc, 876 "symbol with local linkage must have default visibility"); 877 878 Type *Ty; 879 LocTy ExplicitTypeLoc = Lex.getLoc(); 880 if (ParseType(Ty) || 881 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 882 return true; 883 884 Constant *Aliasee; 885 LocTy AliaseeLoc = Lex.getLoc(); 886 if (Lex.getKind() != lltok::kw_bitcast && 887 Lex.getKind() != lltok::kw_getelementptr && 888 Lex.getKind() != lltok::kw_addrspacecast && 889 Lex.getKind() != lltok::kw_inttoptr) { 890 if (ParseGlobalTypeAndValue(Aliasee)) 891 return true; 892 } else { 893 // The bitcast dest type is not present, it is implied by the dest type. 894 ValID ID; 895 if (ParseValID(ID)) 896 return true; 897 if (ID.Kind != ValID::t_Constant) 898 return Error(AliaseeLoc, "invalid aliasee"); 899 Aliasee = ID.ConstantVal; 900 } 901 902 Type *AliaseeType = Aliasee->getType(); 903 auto *PTy = dyn_cast<PointerType>(AliaseeType); 904 if (!PTy) 905 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 906 unsigned AddrSpace = PTy->getAddressSpace(); 907 908 if (IsAlias && Ty != PTy->getElementType()) 909 return Error( 910 ExplicitTypeLoc, 911 "explicit pointee type doesn't match operand's pointee type"); 912 913 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 914 return Error( 915 ExplicitTypeLoc, 916 "explicit pointee type should be a function type"); 917 918 GlobalValue *GVal = nullptr; 919 920 // See if the alias was forward referenced, if so, prepare to replace the 921 // forward reference. 922 if (!Name.empty()) { 923 GVal = M->getNamedValue(Name); 924 if (GVal) { 925 if (!ForwardRefVals.erase(Name)) 926 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 927 } 928 } else { 929 auto I = ForwardRefValIDs.find(NumberedVals.size()); 930 if (I != ForwardRefValIDs.end()) { 931 GVal = I->second.first; 932 ForwardRefValIDs.erase(I); 933 } 934 } 935 936 // Okay, create the alias but do not insert it into the module yet. 937 std::unique_ptr<GlobalIndirectSymbol> GA; 938 if (IsAlias) 939 GA.reset(GlobalAlias::create(Ty, AddrSpace, 940 (GlobalValue::LinkageTypes)Linkage, Name, 941 Aliasee, /*Parent*/ nullptr)); 942 else 943 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 944 (GlobalValue::LinkageTypes)Linkage, Name, 945 Aliasee, /*Parent*/ nullptr)); 946 GA->setThreadLocalMode(TLM); 947 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 948 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 949 GA->setUnnamedAddr(UnnamedAddr); 950 maybeSetDSOLocal(DSOLocal, *GA); 951 952 if (Name.empty()) 953 NumberedVals.push_back(GA.get()); 954 955 if (GVal) { 956 // Verify that types agree. 957 if (GVal->getType() != GA->getType()) 958 return Error( 959 ExplicitTypeLoc, 960 "forward reference and definition of alias have different types"); 961 962 // If they agree, just RAUW the old value with the alias and remove the 963 // forward ref info. 964 GVal->replaceAllUsesWith(GA.get()); 965 GVal->eraseFromParent(); 966 } 967 968 // Insert into the module, we know its name won't collide now. 969 if (IsAlias) 970 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 971 else 972 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 973 assert(GA->getName() == Name && "Should not be a name conflict!"); 974 975 // The module owns this now 976 GA.release(); 977 978 return false; 979 } 980 981 /// ParseGlobal 982 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 983 /// OptionalVisibility OptionalDLLStorageClass 984 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 985 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 986 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 987 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 988 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 989 /// Const OptionalAttrs 990 /// 991 /// Everything up to and including OptionalUnnamedAddr has been parsed 992 /// already. 993 /// 994 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 995 unsigned Linkage, bool HasLinkage, 996 unsigned Visibility, unsigned DLLStorageClass, 997 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 998 GlobalVariable::UnnamedAddr UnnamedAddr) { 999 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1000 return Error(NameLoc, 1001 "symbol with local linkage must have default visibility"); 1002 1003 unsigned AddrSpace; 1004 bool IsConstant, IsExternallyInitialized; 1005 LocTy IsExternallyInitializedLoc; 1006 LocTy TyLoc; 1007 1008 Type *Ty = nullptr; 1009 if (ParseOptionalAddrSpace(AddrSpace) || 1010 ParseOptionalToken(lltok::kw_externally_initialized, 1011 IsExternallyInitialized, 1012 &IsExternallyInitializedLoc) || 1013 ParseGlobalType(IsConstant) || 1014 ParseType(Ty, TyLoc)) 1015 return true; 1016 1017 // If the linkage is specified and is external, then no initializer is 1018 // present. 1019 Constant *Init = nullptr; 1020 if (!HasLinkage || 1021 !GlobalValue::isValidDeclarationLinkage( 1022 (GlobalValue::LinkageTypes)Linkage)) { 1023 if (ParseGlobalValue(Ty, Init)) 1024 return true; 1025 } 1026 1027 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1028 return Error(TyLoc, "invalid type for global variable"); 1029 1030 GlobalValue *GVal = nullptr; 1031 1032 // See if the global was forward referenced, if so, use the global. 1033 if (!Name.empty()) { 1034 GVal = M->getNamedValue(Name); 1035 if (GVal) { 1036 if (!ForwardRefVals.erase(Name)) 1037 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1038 } 1039 } else { 1040 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1041 if (I != ForwardRefValIDs.end()) { 1042 GVal = I->second.first; 1043 ForwardRefValIDs.erase(I); 1044 } 1045 } 1046 1047 GlobalVariable *GV; 1048 if (!GVal) { 1049 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1050 Name, nullptr, GlobalVariable::NotThreadLocal, 1051 AddrSpace); 1052 } else { 1053 if (GVal->getValueType() != Ty) 1054 return Error(TyLoc, 1055 "forward reference and definition of global have different types"); 1056 1057 GV = cast<GlobalVariable>(GVal); 1058 1059 // Move the forward-reference to the correct spot in the module. 1060 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1061 } 1062 1063 if (Name.empty()) 1064 NumberedVals.push_back(GV); 1065 1066 // Set the parsed properties on the global. 1067 if (Init) 1068 GV->setInitializer(Init); 1069 GV->setConstant(IsConstant); 1070 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1071 maybeSetDSOLocal(DSOLocal, *GV); 1072 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1073 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1074 GV->setExternallyInitialized(IsExternallyInitialized); 1075 GV->setThreadLocalMode(TLM); 1076 GV->setUnnamedAddr(UnnamedAddr); 1077 1078 // Parse attributes on the global. 1079 while (Lex.getKind() == lltok::comma) { 1080 Lex.Lex(); 1081 1082 if (Lex.getKind() == lltok::kw_section) { 1083 Lex.Lex(); 1084 GV->setSection(Lex.getStrVal()); 1085 if (ParseToken(lltok::StringConstant, "expected global section string")) 1086 return true; 1087 } else if (Lex.getKind() == lltok::kw_align) { 1088 unsigned Alignment; 1089 if (ParseOptionalAlignment(Alignment)) return true; 1090 GV->setAlignment(Alignment); 1091 } else if (Lex.getKind() == lltok::MetadataVar) { 1092 if (ParseGlobalObjectMetadataAttachment(*GV)) 1093 return true; 1094 } else { 1095 Comdat *C; 1096 if (parseOptionalComdat(Name, C)) 1097 return true; 1098 if (C) 1099 GV->setComdat(C); 1100 else 1101 return TokError("unknown global variable property!"); 1102 } 1103 } 1104 1105 AttrBuilder Attrs; 1106 LocTy BuiltinLoc; 1107 std::vector<unsigned> FwdRefAttrGrps; 1108 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1109 return true; 1110 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1111 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1112 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1113 } 1114 1115 return false; 1116 } 1117 1118 /// ParseUnnamedAttrGrp 1119 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1120 bool LLParser::ParseUnnamedAttrGrp() { 1121 assert(Lex.getKind() == lltok::kw_attributes); 1122 LocTy AttrGrpLoc = Lex.getLoc(); 1123 Lex.Lex(); 1124 1125 if (Lex.getKind() != lltok::AttrGrpID) 1126 return TokError("expected attribute group id"); 1127 1128 unsigned VarID = Lex.getUIntVal(); 1129 std::vector<unsigned> unused; 1130 LocTy BuiltinLoc; 1131 Lex.Lex(); 1132 1133 if (ParseToken(lltok::equal, "expected '=' here") || 1134 ParseToken(lltok::lbrace, "expected '{' here") || 1135 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1136 BuiltinLoc) || 1137 ParseToken(lltok::rbrace, "expected end of attribute group")) 1138 return true; 1139 1140 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1141 return Error(AttrGrpLoc, "attribute group has no attributes"); 1142 1143 return false; 1144 } 1145 1146 /// ParseFnAttributeValuePairs 1147 /// ::= <attr> | <attr> '=' <value> 1148 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1149 std::vector<unsigned> &FwdRefAttrGrps, 1150 bool inAttrGrp, LocTy &BuiltinLoc) { 1151 bool HaveError = false; 1152 1153 B.clear(); 1154 1155 while (true) { 1156 lltok::Kind Token = Lex.getKind(); 1157 if (Token == lltok::kw_builtin) 1158 BuiltinLoc = Lex.getLoc(); 1159 switch (Token) { 1160 default: 1161 if (!inAttrGrp) return HaveError; 1162 return Error(Lex.getLoc(), "unterminated attribute group"); 1163 case lltok::rbrace: 1164 // Finished. 1165 return false; 1166 1167 case lltok::AttrGrpID: { 1168 // Allow a function to reference an attribute group: 1169 // 1170 // define void @foo() #1 { ... } 1171 if (inAttrGrp) 1172 HaveError |= 1173 Error(Lex.getLoc(), 1174 "cannot have an attribute group reference in an attribute group"); 1175 1176 unsigned AttrGrpNum = Lex.getUIntVal(); 1177 if (inAttrGrp) break; 1178 1179 // Save the reference to the attribute group. We'll fill it in later. 1180 FwdRefAttrGrps.push_back(AttrGrpNum); 1181 break; 1182 } 1183 // Target-dependent attributes: 1184 case lltok::StringConstant: { 1185 if (ParseStringAttribute(B)) 1186 return true; 1187 continue; 1188 } 1189 1190 // Target-independent attributes: 1191 case lltok::kw_align: { 1192 // As a hack, we allow function alignment to be initially parsed as an 1193 // attribute on a function declaration/definition or added to an attribute 1194 // group and later moved to the alignment field. 1195 unsigned Alignment; 1196 if (inAttrGrp) { 1197 Lex.Lex(); 1198 if (ParseToken(lltok::equal, "expected '=' here") || 1199 ParseUInt32(Alignment)) 1200 return true; 1201 } else { 1202 if (ParseOptionalAlignment(Alignment)) 1203 return true; 1204 } 1205 B.addAlignmentAttr(Alignment); 1206 continue; 1207 } 1208 case lltok::kw_alignstack: { 1209 unsigned Alignment; 1210 if (inAttrGrp) { 1211 Lex.Lex(); 1212 if (ParseToken(lltok::equal, "expected '=' here") || 1213 ParseUInt32(Alignment)) 1214 return true; 1215 } else { 1216 if (ParseOptionalStackAlignment(Alignment)) 1217 return true; 1218 } 1219 B.addStackAlignmentAttr(Alignment); 1220 continue; 1221 } 1222 case lltok::kw_allocsize: { 1223 unsigned ElemSizeArg; 1224 Optional<unsigned> NumElemsArg; 1225 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1226 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1227 return true; 1228 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1229 continue; 1230 } 1231 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1232 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1233 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1234 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1235 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1236 case lltok::kw_inaccessiblememonly: 1237 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1238 case lltok::kw_inaccessiblemem_or_argmemonly: 1239 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1240 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1241 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1242 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1243 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1244 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1245 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1246 case lltok::kw_noimplicitfloat: 1247 B.addAttribute(Attribute::NoImplicitFloat); break; 1248 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1249 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1250 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1251 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1252 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1253 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1254 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1255 case lltok::kw_optforfuzzing: 1256 B.addAttribute(Attribute::OptForFuzzing); break; 1257 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1258 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1259 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1260 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1261 case lltok::kw_returns_twice: 1262 B.addAttribute(Attribute::ReturnsTwice); break; 1263 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1264 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1265 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1266 case lltok::kw_sspstrong: 1267 B.addAttribute(Attribute::StackProtectStrong); break; 1268 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1269 case lltok::kw_shadowcallstack: 1270 B.addAttribute(Attribute::ShadowCallStack); break; 1271 case lltok::kw_sanitize_address: 1272 B.addAttribute(Attribute::SanitizeAddress); break; 1273 case lltok::kw_sanitize_hwaddress: 1274 B.addAttribute(Attribute::SanitizeHWAddress); break; 1275 case lltok::kw_sanitize_thread: 1276 B.addAttribute(Attribute::SanitizeThread); break; 1277 case lltok::kw_sanitize_memory: 1278 B.addAttribute(Attribute::SanitizeMemory); break; 1279 case lltok::kw_speculative_load_hardening: 1280 B.addAttribute(Attribute::SpeculativeLoadHardening); 1281 break; 1282 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1283 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1284 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1285 1286 // Error handling. 1287 case lltok::kw_inreg: 1288 case lltok::kw_signext: 1289 case lltok::kw_zeroext: 1290 HaveError |= 1291 Error(Lex.getLoc(), 1292 "invalid use of attribute on a function"); 1293 break; 1294 case lltok::kw_byval: 1295 case lltok::kw_dereferenceable: 1296 case lltok::kw_dereferenceable_or_null: 1297 case lltok::kw_inalloca: 1298 case lltok::kw_nest: 1299 case lltok::kw_noalias: 1300 case lltok::kw_nocapture: 1301 case lltok::kw_nonnull: 1302 case lltok::kw_returned: 1303 case lltok::kw_sret: 1304 case lltok::kw_swifterror: 1305 case lltok::kw_swiftself: 1306 HaveError |= 1307 Error(Lex.getLoc(), 1308 "invalid use of parameter-only attribute on a function"); 1309 break; 1310 } 1311 1312 Lex.Lex(); 1313 } 1314 } 1315 1316 //===----------------------------------------------------------------------===// 1317 // GlobalValue Reference/Resolution Routines. 1318 //===----------------------------------------------------------------------===// 1319 1320 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1321 const std::string &Name) { 1322 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1323 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1324 PTy->getAddressSpace(), Name, M); 1325 else 1326 return new GlobalVariable(*M, PTy->getElementType(), false, 1327 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1328 nullptr, GlobalVariable::NotThreadLocal, 1329 PTy->getAddressSpace()); 1330 } 1331 1332 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1333 Value *Val, bool IsCall) { 1334 if (Val->getType() == Ty) 1335 return Val; 1336 // For calls we also accept variables in the program address space. 1337 Type *SuggestedTy = Ty; 1338 if (IsCall && isa<PointerType>(Ty)) { 1339 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1340 M->getDataLayout().getProgramAddressSpace()); 1341 SuggestedTy = TyInProgAS; 1342 if (Val->getType() == TyInProgAS) 1343 return Val; 1344 } 1345 if (Ty->isLabelTy()) 1346 Error(Loc, "'" + Name + "' is not a basic block"); 1347 else 1348 Error(Loc, "'" + Name + "' defined with type '" + 1349 getTypeString(Val->getType()) + "' but expected '" + 1350 getTypeString(SuggestedTy) + "'"); 1351 return nullptr; 1352 } 1353 1354 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1355 /// forward reference record if needed. This can return null if the value 1356 /// exists but does not have the right type. 1357 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1358 LocTy Loc, bool IsCall) { 1359 PointerType *PTy = dyn_cast<PointerType>(Ty); 1360 if (!PTy) { 1361 Error(Loc, "global variable reference must have pointer type"); 1362 return nullptr; 1363 } 1364 1365 // Look this name up in the normal function symbol table. 1366 GlobalValue *Val = 1367 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1368 1369 // If this is a forward reference for the value, see if we already created a 1370 // forward ref record. 1371 if (!Val) { 1372 auto I = ForwardRefVals.find(Name); 1373 if (I != ForwardRefVals.end()) 1374 Val = I->second.first; 1375 } 1376 1377 // If we have the value in the symbol table or fwd-ref table, return it. 1378 if (Val) 1379 return cast_or_null<GlobalValue>( 1380 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1381 1382 // Otherwise, create a new forward reference for this value and remember it. 1383 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1384 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1385 return FwdVal; 1386 } 1387 1388 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1389 bool IsCall) { 1390 PointerType *PTy = dyn_cast<PointerType>(Ty); 1391 if (!PTy) { 1392 Error(Loc, "global variable reference must have pointer type"); 1393 return nullptr; 1394 } 1395 1396 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1397 1398 // If this is a forward reference for the value, see if we already created a 1399 // forward ref record. 1400 if (!Val) { 1401 auto I = ForwardRefValIDs.find(ID); 1402 if (I != ForwardRefValIDs.end()) 1403 Val = I->second.first; 1404 } 1405 1406 // If we have the value in the symbol table or fwd-ref table, return it. 1407 if (Val) 1408 return cast_or_null<GlobalValue>( 1409 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1410 1411 // Otherwise, create a new forward reference for this value and remember it. 1412 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1413 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1414 return FwdVal; 1415 } 1416 1417 //===----------------------------------------------------------------------===// 1418 // Comdat Reference/Resolution Routines. 1419 //===----------------------------------------------------------------------===// 1420 1421 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1422 // Look this name up in the comdat symbol table. 1423 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1424 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1425 if (I != ComdatSymTab.end()) 1426 return &I->second; 1427 1428 // Otherwise, create a new forward reference for this value and remember it. 1429 Comdat *C = M->getOrInsertComdat(Name); 1430 ForwardRefComdats[Name] = Loc; 1431 return C; 1432 } 1433 1434 //===----------------------------------------------------------------------===// 1435 // Helper Routines. 1436 //===----------------------------------------------------------------------===// 1437 1438 /// ParseToken - If the current token has the specified kind, eat it and return 1439 /// success. Otherwise, emit the specified error and return failure. 1440 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1441 if (Lex.getKind() != T) 1442 return TokError(ErrMsg); 1443 Lex.Lex(); 1444 return false; 1445 } 1446 1447 /// ParseStringConstant 1448 /// ::= StringConstant 1449 bool LLParser::ParseStringConstant(std::string &Result) { 1450 if (Lex.getKind() != lltok::StringConstant) 1451 return TokError("expected string constant"); 1452 Result = Lex.getStrVal(); 1453 Lex.Lex(); 1454 return false; 1455 } 1456 1457 /// ParseUInt32 1458 /// ::= uint32 1459 bool LLParser::ParseUInt32(uint32_t &Val) { 1460 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1461 return TokError("expected integer"); 1462 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1463 if (Val64 != unsigned(Val64)) 1464 return TokError("expected 32-bit integer (too large)"); 1465 Val = Val64; 1466 Lex.Lex(); 1467 return false; 1468 } 1469 1470 /// ParseUInt64 1471 /// ::= uint64 1472 bool LLParser::ParseUInt64(uint64_t &Val) { 1473 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1474 return TokError("expected integer"); 1475 Val = Lex.getAPSIntVal().getLimitedValue(); 1476 Lex.Lex(); 1477 return false; 1478 } 1479 1480 /// ParseTLSModel 1481 /// := 'localdynamic' 1482 /// := 'initialexec' 1483 /// := 'localexec' 1484 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1485 switch (Lex.getKind()) { 1486 default: 1487 return TokError("expected localdynamic, initialexec or localexec"); 1488 case lltok::kw_localdynamic: 1489 TLM = GlobalVariable::LocalDynamicTLSModel; 1490 break; 1491 case lltok::kw_initialexec: 1492 TLM = GlobalVariable::InitialExecTLSModel; 1493 break; 1494 case lltok::kw_localexec: 1495 TLM = GlobalVariable::LocalExecTLSModel; 1496 break; 1497 } 1498 1499 Lex.Lex(); 1500 return false; 1501 } 1502 1503 /// ParseOptionalThreadLocal 1504 /// := /*empty*/ 1505 /// := 'thread_local' 1506 /// := 'thread_local' '(' tlsmodel ')' 1507 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1508 TLM = GlobalVariable::NotThreadLocal; 1509 if (!EatIfPresent(lltok::kw_thread_local)) 1510 return false; 1511 1512 TLM = GlobalVariable::GeneralDynamicTLSModel; 1513 if (Lex.getKind() == lltok::lparen) { 1514 Lex.Lex(); 1515 return ParseTLSModel(TLM) || 1516 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1517 } 1518 return false; 1519 } 1520 1521 /// ParseOptionalAddrSpace 1522 /// := /*empty*/ 1523 /// := 'addrspace' '(' uint32 ')' 1524 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1525 AddrSpace = DefaultAS; 1526 if (!EatIfPresent(lltok::kw_addrspace)) 1527 return false; 1528 return ParseToken(lltok::lparen, "expected '(' in address space") || 1529 ParseUInt32(AddrSpace) || 1530 ParseToken(lltok::rparen, "expected ')' in address space"); 1531 } 1532 1533 /// ParseStringAttribute 1534 /// := StringConstant 1535 /// := StringConstant '=' StringConstant 1536 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1537 std::string Attr = Lex.getStrVal(); 1538 Lex.Lex(); 1539 std::string Val; 1540 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1541 return true; 1542 B.addAttribute(Attr, Val); 1543 return false; 1544 } 1545 1546 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1547 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1548 bool HaveError = false; 1549 1550 B.clear(); 1551 1552 while (true) { 1553 lltok::Kind Token = Lex.getKind(); 1554 switch (Token) { 1555 default: // End of attributes. 1556 return HaveError; 1557 case lltok::StringConstant: { 1558 if (ParseStringAttribute(B)) 1559 return true; 1560 continue; 1561 } 1562 case lltok::kw_align: { 1563 unsigned Alignment; 1564 if (ParseOptionalAlignment(Alignment)) 1565 return true; 1566 B.addAlignmentAttr(Alignment); 1567 continue; 1568 } 1569 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1570 case lltok::kw_dereferenceable: { 1571 uint64_t Bytes; 1572 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1573 return true; 1574 B.addDereferenceableAttr(Bytes); 1575 continue; 1576 } 1577 case lltok::kw_dereferenceable_or_null: { 1578 uint64_t Bytes; 1579 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1580 return true; 1581 B.addDereferenceableOrNullAttr(Bytes); 1582 continue; 1583 } 1584 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1585 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1586 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1587 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1588 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1589 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1590 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1591 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1592 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1593 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1594 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1595 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1596 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1597 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1598 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1599 1600 case lltok::kw_alignstack: 1601 case lltok::kw_alwaysinline: 1602 case lltok::kw_argmemonly: 1603 case lltok::kw_builtin: 1604 case lltok::kw_inlinehint: 1605 case lltok::kw_jumptable: 1606 case lltok::kw_minsize: 1607 case lltok::kw_naked: 1608 case lltok::kw_nobuiltin: 1609 case lltok::kw_noduplicate: 1610 case lltok::kw_noimplicitfloat: 1611 case lltok::kw_noinline: 1612 case lltok::kw_nonlazybind: 1613 case lltok::kw_noredzone: 1614 case lltok::kw_noreturn: 1615 case lltok::kw_nocf_check: 1616 case lltok::kw_nounwind: 1617 case lltok::kw_optforfuzzing: 1618 case lltok::kw_optnone: 1619 case lltok::kw_optsize: 1620 case lltok::kw_returns_twice: 1621 case lltok::kw_sanitize_address: 1622 case lltok::kw_sanitize_hwaddress: 1623 case lltok::kw_sanitize_memory: 1624 case lltok::kw_sanitize_thread: 1625 case lltok::kw_speculative_load_hardening: 1626 case lltok::kw_ssp: 1627 case lltok::kw_sspreq: 1628 case lltok::kw_sspstrong: 1629 case lltok::kw_safestack: 1630 case lltok::kw_shadowcallstack: 1631 case lltok::kw_strictfp: 1632 case lltok::kw_uwtable: 1633 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1634 break; 1635 } 1636 1637 Lex.Lex(); 1638 } 1639 } 1640 1641 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1642 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1643 bool HaveError = false; 1644 1645 B.clear(); 1646 1647 while (true) { 1648 lltok::Kind Token = Lex.getKind(); 1649 switch (Token) { 1650 default: // End of attributes. 1651 return HaveError; 1652 case lltok::StringConstant: { 1653 if (ParseStringAttribute(B)) 1654 return true; 1655 continue; 1656 } 1657 case lltok::kw_dereferenceable: { 1658 uint64_t Bytes; 1659 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1660 return true; 1661 B.addDereferenceableAttr(Bytes); 1662 continue; 1663 } 1664 case lltok::kw_dereferenceable_or_null: { 1665 uint64_t Bytes; 1666 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1667 return true; 1668 B.addDereferenceableOrNullAttr(Bytes); 1669 continue; 1670 } 1671 case lltok::kw_align: { 1672 unsigned Alignment; 1673 if (ParseOptionalAlignment(Alignment)) 1674 return true; 1675 B.addAlignmentAttr(Alignment); 1676 continue; 1677 } 1678 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1679 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1680 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1681 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1682 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1683 1684 // Error handling. 1685 case lltok::kw_byval: 1686 case lltok::kw_inalloca: 1687 case lltok::kw_nest: 1688 case lltok::kw_nocapture: 1689 case lltok::kw_returned: 1690 case lltok::kw_sret: 1691 case lltok::kw_swifterror: 1692 case lltok::kw_swiftself: 1693 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1694 break; 1695 1696 case lltok::kw_alignstack: 1697 case lltok::kw_alwaysinline: 1698 case lltok::kw_argmemonly: 1699 case lltok::kw_builtin: 1700 case lltok::kw_cold: 1701 case lltok::kw_inlinehint: 1702 case lltok::kw_jumptable: 1703 case lltok::kw_minsize: 1704 case lltok::kw_naked: 1705 case lltok::kw_nobuiltin: 1706 case lltok::kw_noduplicate: 1707 case lltok::kw_noimplicitfloat: 1708 case lltok::kw_noinline: 1709 case lltok::kw_nonlazybind: 1710 case lltok::kw_noredzone: 1711 case lltok::kw_noreturn: 1712 case lltok::kw_nocf_check: 1713 case lltok::kw_nounwind: 1714 case lltok::kw_optforfuzzing: 1715 case lltok::kw_optnone: 1716 case lltok::kw_optsize: 1717 case lltok::kw_returns_twice: 1718 case lltok::kw_sanitize_address: 1719 case lltok::kw_sanitize_hwaddress: 1720 case lltok::kw_sanitize_memory: 1721 case lltok::kw_sanitize_thread: 1722 case lltok::kw_speculative_load_hardening: 1723 case lltok::kw_ssp: 1724 case lltok::kw_sspreq: 1725 case lltok::kw_sspstrong: 1726 case lltok::kw_safestack: 1727 case lltok::kw_shadowcallstack: 1728 case lltok::kw_strictfp: 1729 case lltok::kw_uwtable: 1730 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1731 break; 1732 1733 case lltok::kw_readnone: 1734 case lltok::kw_readonly: 1735 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1736 } 1737 1738 Lex.Lex(); 1739 } 1740 } 1741 1742 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1743 HasLinkage = true; 1744 switch (Kind) { 1745 default: 1746 HasLinkage = false; 1747 return GlobalValue::ExternalLinkage; 1748 case lltok::kw_private: 1749 return GlobalValue::PrivateLinkage; 1750 case lltok::kw_internal: 1751 return GlobalValue::InternalLinkage; 1752 case lltok::kw_weak: 1753 return GlobalValue::WeakAnyLinkage; 1754 case lltok::kw_weak_odr: 1755 return GlobalValue::WeakODRLinkage; 1756 case lltok::kw_linkonce: 1757 return GlobalValue::LinkOnceAnyLinkage; 1758 case lltok::kw_linkonce_odr: 1759 return GlobalValue::LinkOnceODRLinkage; 1760 case lltok::kw_available_externally: 1761 return GlobalValue::AvailableExternallyLinkage; 1762 case lltok::kw_appending: 1763 return GlobalValue::AppendingLinkage; 1764 case lltok::kw_common: 1765 return GlobalValue::CommonLinkage; 1766 case lltok::kw_extern_weak: 1767 return GlobalValue::ExternalWeakLinkage; 1768 case lltok::kw_external: 1769 return GlobalValue::ExternalLinkage; 1770 } 1771 } 1772 1773 /// ParseOptionalLinkage 1774 /// ::= /*empty*/ 1775 /// ::= 'private' 1776 /// ::= 'internal' 1777 /// ::= 'weak' 1778 /// ::= 'weak_odr' 1779 /// ::= 'linkonce' 1780 /// ::= 'linkonce_odr' 1781 /// ::= 'available_externally' 1782 /// ::= 'appending' 1783 /// ::= 'common' 1784 /// ::= 'extern_weak' 1785 /// ::= 'external' 1786 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1787 unsigned &Visibility, 1788 unsigned &DLLStorageClass, 1789 bool &DSOLocal) { 1790 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1791 if (HasLinkage) 1792 Lex.Lex(); 1793 ParseOptionalDSOLocal(DSOLocal); 1794 ParseOptionalVisibility(Visibility); 1795 ParseOptionalDLLStorageClass(DLLStorageClass); 1796 1797 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1798 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1799 } 1800 1801 return false; 1802 } 1803 1804 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1805 switch (Lex.getKind()) { 1806 default: 1807 DSOLocal = false; 1808 break; 1809 case lltok::kw_dso_local: 1810 DSOLocal = true; 1811 Lex.Lex(); 1812 break; 1813 case lltok::kw_dso_preemptable: 1814 DSOLocal = false; 1815 Lex.Lex(); 1816 break; 1817 } 1818 } 1819 1820 /// ParseOptionalVisibility 1821 /// ::= /*empty*/ 1822 /// ::= 'default' 1823 /// ::= 'hidden' 1824 /// ::= 'protected' 1825 /// 1826 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1827 switch (Lex.getKind()) { 1828 default: 1829 Res = GlobalValue::DefaultVisibility; 1830 return; 1831 case lltok::kw_default: 1832 Res = GlobalValue::DefaultVisibility; 1833 break; 1834 case lltok::kw_hidden: 1835 Res = GlobalValue::HiddenVisibility; 1836 break; 1837 case lltok::kw_protected: 1838 Res = GlobalValue::ProtectedVisibility; 1839 break; 1840 } 1841 Lex.Lex(); 1842 } 1843 1844 /// ParseOptionalDLLStorageClass 1845 /// ::= /*empty*/ 1846 /// ::= 'dllimport' 1847 /// ::= 'dllexport' 1848 /// 1849 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1850 switch (Lex.getKind()) { 1851 default: 1852 Res = GlobalValue::DefaultStorageClass; 1853 return; 1854 case lltok::kw_dllimport: 1855 Res = GlobalValue::DLLImportStorageClass; 1856 break; 1857 case lltok::kw_dllexport: 1858 Res = GlobalValue::DLLExportStorageClass; 1859 break; 1860 } 1861 Lex.Lex(); 1862 } 1863 1864 /// ParseOptionalCallingConv 1865 /// ::= /*empty*/ 1866 /// ::= 'ccc' 1867 /// ::= 'fastcc' 1868 /// ::= 'intel_ocl_bicc' 1869 /// ::= 'coldcc' 1870 /// ::= 'x86_stdcallcc' 1871 /// ::= 'x86_fastcallcc' 1872 /// ::= 'x86_thiscallcc' 1873 /// ::= 'x86_vectorcallcc' 1874 /// ::= 'arm_apcscc' 1875 /// ::= 'arm_aapcscc' 1876 /// ::= 'arm_aapcs_vfpcc' 1877 /// ::= 'aarch64_vector_pcs' 1878 /// ::= 'msp430_intrcc' 1879 /// ::= 'avr_intrcc' 1880 /// ::= 'avr_signalcc' 1881 /// ::= 'ptx_kernel' 1882 /// ::= 'ptx_device' 1883 /// ::= 'spir_func' 1884 /// ::= 'spir_kernel' 1885 /// ::= 'x86_64_sysvcc' 1886 /// ::= 'win64cc' 1887 /// ::= 'webkit_jscc' 1888 /// ::= 'anyregcc' 1889 /// ::= 'preserve_mostcc' 1890 /// ::= 'preserve_allcc' 1891 /// ::= 'ghccc' 1892 /// ::= 'swiftcc' 1893 /// ::= 'x86_intrcc' 1894 /// ::= 'hhvmcc' 1895 /// ::= 'hhvm_ccc' 1896 /// ::= 'cxx_fast_tlscc' 1897 /// ::= 'amdgpu_vs' 1898 /// ::= 'amdgpu_ls' 1899 /// ::= 'amdgpu_hs' 1900 /// ::= 'amdgpu_es' 1901 /// ::= 'amdgpu_gs' 1902 /// ::= 'amdgpu_ps' 1903 /// ::= 'amdgpu_cs' 1904 /// ::= 'amdgpu_kernel' 1905 /// ::= 'cc' UINT 1906 /// 1907 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1908 switch (Lex.getKind()) { 1909 default: CC = CallingConv::C; return false; 1910 case lltok::kw_ccc: CC = CallingConv::C; break; 1911 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1912 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1913 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1914 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1915 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1916 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1917 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1918 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1919 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1920 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1921 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1922 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1923 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1924 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1925 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1926 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1927 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1928 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1929 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1930 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1931 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1932 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1933 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1934 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1935 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1936 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1937 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1938 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1939 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1940 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1941 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1942 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1943 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1944 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1945 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1946 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1947 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1948 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1949 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1950 case lltok::kw_cc: { 1951 Lex.Lex(); 1952 return ParseUInt32(CC); 1953 } 1954 } 1955 1956 Lex.Lex(); 1957 return false; 1958 } 1959 1960 /// ParseMetadataAttachment 1961 /// ::= !dbg !42 1962 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1963 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1964 1965 std::string Name = Lex.getStrVal(); 1966 Kind = M->getMDKindID(Name); 1967 Lex.Lex(); 1968 1969 return ParseMDNode(MD); 1970 } 1971 1972 /// ParseInstructionMetadata 1973 /// ::= !dbg !42 (',' !dbg !57)* 1974 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1975 do { 1976 if (Lex.getKind() != lltok::MetadataVar) 1977 return TokError("expected metadata after comma"); 1978 1979 unsigned MDK; 1980 MDNode *N; 1981 if (ParseMetadataAttachment(MDK, N)) 1982 return true; 1983 1984 Inst.setMetadata(MDK, N); 1985 if (MDK == LLVMContext::MD_tbaa) 1986 InstsWithTBAATag.push_back(&Inst); 1987 1988 // If this is the end of the list, we're done. 1989 } while (EatIfPresent(lltok::comma)); 1990 return false; 1991 } 1992 1993 /// ParseGlobalObjectMetadataAttachment 1994 /// ::= !dbg !57 1995 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1996 unsigned MDK; 1997 MDNode *N; 1998 if (ParseMetadataAttachment(MDK, N)) 1999 return true; 2000 2001 GO.addMetadata(MDK, *N); 2002 return false; 2003 } 2004 2005 /// ParseOptionalFunctionMetadata 2006 /// ::= (!dbg !57)* 2007 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 2008 while (Lex.getKind() == lltok::MetadataVar) 2009 if (ParseGlobalObjectMetadataAttachment(F)) 2010 return true; 2011 return false; 2012 } 2013 2014 /// ParseOptionalAlignment 2015 /// ::= /* empty */ 2016 /// ::= 'align' 4 2017 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 2018 Alignment = 0; 2019 if (!EatIfPresent(lltok::kw_align)) 2020 return false; 2021 LocTy AlignLoc = Lex.getLoc(); 2022 if (ParseUInt32(Alignment)) return true; 2023 if (!isPowerOf2_32(Alignment)) 2024 return Error(AlignLoc, "alignment is not a power of two"); 2025 if (Alignment > Value::MaximumAlignment) 2026 return Error(AlignLoc, "huge alignments are not supported yet"); 2027 return false; 2028 } 2029 2030 /// ParseOptionalDerefAttrBytes 2031 /// ::= /* empty */ 2032 /// ::= AttrKind '(' 4 ')' 2033 /// 2034 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2035 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2036 uint64_t &Bytes) { 2037 assert((AttrKind == lltok::kw_dereferenceable || 2038 AttrKind == lltok::kw_dereferenceable_or_null) && 2039 "contract!"); 2040 2041 Bytes = 0; 2042 if (!EatIfPresent(AttrKind)) 2043 return false; 2044 LocTy ParenLoc = Lex.getLoc(); 2045 if (!EatIfPresent(lltok::lparen)) 2046 return Error(ParenLoc, "expected '('"); 2047 LocTy DerefLoc = Lex.getLoc(); 2048 if (ParseUInt64(Bytes)) return true; 2049 ParenLoc = Lex.getLoc(); 2050 if (!EatIfPresent(lltok::rparen)) 2051 return Error(ParenLoc, "expected ')'"); 2052 if (!Bytes) 2053 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2054 return false; 2055 } 2056 2057 /// ParseOptionalCommaAlign 2058 /// ::= 2059 /// ::= ',' align 4 2060 /// 2061 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2062 /// end. 2063 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 2064 bool &AteExtraComma) { 2065 AteExtraComma = false; 2066 while (EatIfPresent(lltok::comma)) { 2067 // Metadata at the end is an early exit. 2068 if (Lex.getKind() == lltok::MetadataVar) { 2069 AteExtraComma = true; 2070 return false; 2071 } 2072 2073 if (Lex.getKind() != lltok::kw_align) 2074 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2075 2076 if (ParseOptionalAlignment(Alignment)) return true; 2077 } 2078 2079 return false; 2080 } 2081 2082 /// ParseOptionalCommaAddrSpace 2083 /// ::= 2084 /// ::= ',' addrspace(1) 2085 /// 2086 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2087 /// end. 2088 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2089 LocTy &Loc, 2090 bool &AteExtraComma) { 2091 AteExtraComma = false; 2092 while (EatIfPresent(lltok::comma)) { 2093 // Metadata at the end is an early exit. 2094 if (Lex.getKind() == lltok::MetadataVar) { 2095 AteExtraComma = true; 2096 return false; 2097 } 2098 2099 Loc = Lex.getLoc(); 2100 if (Lex.getKind() != lltok::kw_addrspace) 2101 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2102 2103 if (ParseOptionalAddrSpace(AddrSpace)) 2104 return true; 2105 } 2106 2107 return false; 2108 } 2109 2110 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2111 Optional<unsigned> &HowManyArg) { 2112 Lex.Lex(); 2113 2114 auto StartParen = Lex.getLoc(); 2115 if (!EatIfPresent(lltok::lparen)) 2116 return Error(StartParen, "expected '('"); 2117 2118 if (ParseUInt32(BaseSizeArg)) 2119 return true; 2120 2121 if (EatIfPresent(lltok::comma)) { 2122 auto HowManyAt = Lex.getLoc(); 2123 unsigned HowMany; 2124 if (ParseUInt32(HowMany)) 2125 return true; 2126 if (HowMany == BaseSizeArg) 2127 return Error(HowManyAt, 2128 "'allocsize' indices can't refer to the same parameter"); 2129 HowManyArg = HowMany; 2130 } else 2131 HowManyArg = None; 2132 2133 auto EndParen = Lex.getLoc(); 2134 if (!EatIfPresent(lltok::rparen)) 2135 return Error(EndParen, "expected ')'"); 2136 return false; 2137 } 2138 2139 /// ParseScopeAndOrdering 2140 /// if isAtomic: ::= SyncScope? AtomicOrdering 2141 /// else: ::= 2142 /// 2143 /// This sets Scope and Ordering to the parsed values. 2144 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2145 AtomicOrdering &Ordering) { 2146 if (!isAtomic) 2147 return false; 2148 2149 return ParseScope(SSID) || ParseOrdering(Ordering); 2150 } 2151 2152 /// ParseScope 2153 /// ::= syncscope("singlethread" | "<target scope>")? 2154 /// 2155 /// This sets synchronization scope ID to the ID of the parsed value. 2156 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2157 SSID = SyncScope::System; 2158 if (EatIfPresent(lltok::kw_syncscope)) { 2159 auto StartParenAt = Lex.getLoc(); 2160 if (!EatIfPresent(lltok::lparen)) 2161 return Error(StartParenAt, "Expected '(' in syncscope"); 2162 2163 std::string SSN; 2164 auto SSNAt = Lex.getLoc(); 2165 if (ParseStringConstant(SSN)) 2166 return Error(SSNAt, "Expected synchronization scope name"); 2167 2168 auto EndParenAt = Lex.getLoc(); 2169 if (!EatIfPresent(lltok::rparen)) 2170 return Error(EndParenAt, "Expected ')' in syncscope"); 2171 2172 SSID = Context.getOrInsertSyncScopeID(SSN); 2173 } 2174 2175 return false; 2176 } 2177 2178 /// ParseOrdering 2179 /// ::= AtomicOrdering 2180 /// 2181 /// This sets Ordering to the parsed value. 2182 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2183 switch (Lex.getKind()) { 2184 default: return TokError("Expected ordering on atomic instruction"); 2185 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2186 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2187 // Not specified yet: 2188 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2189 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2190 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2191 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2192 case lltok::kw_seq_cst: 2193 Ordering = AtomicOrdering::SequentiallyConsistent; 2194 break; 2195 } 2196 Lex.Lex(); 2197 return false; 2198 } 2199 2200 /// ParseOptionalStackAlignment 2201 /// ::= /* empty */ 2202 /// ::= 'alignstack' '(' 4 ')' 2203 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2204 Alignment = 0; 2205 if (!EatIfPresent(lltok::kw_alignstack)) 2206 return false; 2207 LocTy ParenLoc = Lex.getLoc(); 2208 if (!EatIfPresent(lltok::lparen)) 2209 return Error(ParenLoc, "expected '('"); 2210 LocTy AlignLoc = Lex.getLoc(); 2211 if (ParseUInt32(Alignment)) return true; 2212 ParenLoc = Lex.getLoc(); 2213 if (!EatIfPresent(lltok::rparen)) 2214 return Error(ParenLoc, "expected ')'"); 2215 if (!isPowerOf2_32(Alignment)) 2216 return Error(AlignLoc, "stack alignment is not a power of two"); 2217 return false; 2218 } 2219 2220 /// ParseIndexList - This parses the index list for an insert/extractvalue 2221 /// instruction. This sets AteExtraComma in the case where we eat an extra 2222 /// comma at the end of the line and find that it is followed by metadata. 2223 /// Clients that don't allow metadata can call the version of this function that 2224 /// only takes one argument. 2225 /// 2226 /// ParseIndexList 2227 /// ::= (',' uint32)+ 2228 /// 2229 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2230 bool &AteExtraComma) { 2231 AteExtraComma = false; 2232 2233 if (Lex.getKind() != lltok::comma) 2234 return TokError("expected ',' as start of index list"); 2235 2236 while (EatIfPresent(lltok::comma)) { 2237 if (Lex.getKind() == lltok::MetadataVar) { 2238 if (Indices.empty()) return TokError("expected index"); 2239 AteExtraComma = true; 2240 return false; 2241 } 2242 unsigned Idx = 0; 2243 if (ParseUInt32(Idx)) return true; 2244 Indices.push_back(Idx); 2245 } 2246 2247 return false; 2248 } 2249 2250 //===----------------------------------------------------------------------===// 2251 // Type Parsing. 2252 //===----------------------------------------------------------------------===// 2253 2254 /// ParseType - Parse a type. 2255 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2256 SMLoc TypeLoc = Lex.getLoc(); 2257 switch (Lex.getKind()) { 2258 default: 2259 return TokError(Msg); 2260 case lltok::Type: 2261 // Type ::= 'float' | 'void' (etc) 2262 Result = Lex.getTyVal(); 2263 Lex.Lex(); 2264 break; 2265 case lltok::lbrace: 2266 // Type ::= StructType 2267 if (ParseAnonStructType(Result, false)) 2268 return true; 2269 break; 2270 case lltok::lsquare: 2271 // Type ::= '[' ... ']' 2272 Lex.Lex(); // eat the lsquare. 2273 if (ParseArrayVectorType(Result, false)) 2274 return true; 2275 break; 2276 case lltok::less: // Either vector or packed struct. 2277 // Type ::= '<' ... '>' 2278 Lex.Lex(); 2279 if (Lex.getKind() == lltok::lbrace) { 2280 if (ParseAnonStructType(Result, true) || 2281 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2282 return true; 2283 } else if (ParseArrayVectorType(Result, true)) 2284 return true; 2285 break; 2286 case lltok::LocalVar: { 2287 // Type ::= %foo 2288 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2289 2290 // If the type hasn't been defined yet, create a forward definition and 2291 // remember where that forward def'n was seen (in case it never is defined). 2292 if (!Entry.first) { 2293 Entry.first = StructType::create(Context, Lex.getStrVal()); 2294 Entry.second = Lex.getLoc(); 2295 } 2296 Result = Entry.first; 2297 Lex.Lex(); 2298 break; 2299 } 2300 2301 case lltok::LocalVarID: { 2302 // Type ::= %4 2303 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2304 2305 // If the type hasn't been defined yet, create a forward definition and 2306 // remember where that forward def'n was seen (in case it never is defined). 2307 if (!Entry.first) { 2308 Entry.first = StructType::create(Context); 2309 Entry.second = Lex.getLoc(); 2310 } 2311 Result = Entry.first; 2312 Lex.Lex(); 2313 break; 2314 } 2315 } 2316 2317 // Parse the type suffixes. 2318 while (true) { 2319 switch (Lex.getKind()) { 2320 // End of type. 2321 default: 2322 if (!AllowVoid && Result->isVoidTy()) 2323 return Error(TypeLoc, "void type only allowed for function results"); 2324 return false; 2325 2326 // Type ::= Type '*' 2327 case lltok::star: 2328 if (Result->isLabelTy()) 2329 return TokError("basic block pointers are invalid"); 2330 if (Result->isVoidTy()) 2331 return TokError("pointers to void are invalid - use i8* instead"); 2332 if (!PointerType::isValidElementType(Result)) 2333 return TokError("pointer to this type is invalid"); 2334 Result = PointerType::getUnqual(Result); 2335 Lex.Lex(); 2336 break; 2337 2338 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2339 case lltok::kw_addrspace: { 2340 if (Result->isLabelTy()) 2341 return TokError("basic block pointers are invalid"); 2342 if (Result->isVoidTy()) 2343 return TokError("pointers to void are invalid; use i8* instead"); 2344 if (!PointerType::isValidElementType(Result)) 2345 return TokError("pointer to this type is invalid"); 2346 unsigned AddrSpace; 2347 if (ParseOptionalAddrSpace(AddrSpace) || 2348 ParseToken(lltok::star, "expected '*' in address space")) 2349 return true; 2350 2351 Result = PointerType::get(Result, AddrSpace); 2352 break; 2353 } 2354 2355 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2356 case lltok::lparen: 2357 if (ParseFunctionType(Result)) 2358 return true; 2359 break; 2360 } 2361 } 2362 } 2363 2364 /// ParseParameterList 2365 /// ::= '(' ')' 2366 /// ::= '(' Arg (',' Arg)* ')' 2367 /// Arg 2368 /// ::= Type OptionalAttributes Value OptionalAttributes 2369 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2370 PerFunctionState &PFS, bool IsMustTailCall, 2371 bool InVarArgsFunc) { 2372 if (ParseToken(lltok::lparen, "expected '(' in call")) 2373 return true; 2374 2375 while (Lex.getKind() != lltok::rparen) { 2376 // If this isn't the first argument, we need a comma. 2377 if (!ArgList.empty() && 2378 ParseToken(lltok::comma, "expected ',' in argument list")) 2379 return true; 2380 2381 // Parse an ellipsis if this is a musttail call in a variadic function. 2382 if (Lex.getKind() == lltok::dotdotdot) { 2383 const char *Msg = "unexpected ellipsis in argument list for "; 2384 if (!IsMustTailCall) 2385 return TokError(Twine(Msg) + "non-musttail call"); 2386 if (!InVarArgsFunc) 2387 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2388 Lex.Lex(); // Lex the '...', it is purely for readability. 2389 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2390 } 2391 2392 // Parse the argument. 2393 LocTy ArgLoc; 2394 Type *ArgTy = nullptr; 2395 AttrBuilder ArgAttrs; 2396 Value *V; 2397 if (ParseType(ArgTy, ArgLoc)) 2398 return true; 2399 2400 if (ArgTy->isMetadataTy()) { 2401 if (ParseMetadataAsValue(V, PFS)) 2402 return true; 2403 } else { 2404 // Otherwise, handle normal operands. 2405 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2406 return true; 2407 } 2408 ArgList.push_back(ParamInfo( 2409 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2410 } 2411 2412 if (IsMustTailCall && InVarArgsFunc) 2413 return TokError("expected '...' at end of argument list for musttail call " 2414 "in varargs function"); 2415 2416 Lex.Lex(); // Lex the ')'. 2417 return false; 2418 } 2419 2420 /// ParseOptionalOperandBundles 2421 /// ::= /*empty*/ 2422 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2423 /// 2424 /// OperandBundle 2425 /// ::= bundle-tag '(' ')' 2426 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2427 /// 2428 /// bundle-tag ::= String Constant 2429 bool LLParser::ParseOptionalOperandBundles( 2430 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2431 LocTy BeginLoc = Lex.getLoc(); 2432 if (!EatIfPresent(lltok::lsquare)) 2433 return false; 2434 2435 while (Lex.getKind() != lltok::rsquare) { 2436 // If this isn't the first operand bundle, we need a comma. 2437 if (!BundleList.empty() && 2438 ParseToken(lltok::comma, "expected ',' in input list")) 2439 return true; 2440 2441 std::string Tag; 2442 if (ParseStringConstant(Tag)) 2443 return true; 2444 2445 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2446 return true; 2447 2448 std::vector<Value *> Inputs; 2449 while (Lex.getKind() != lltok::rparen) { 2450 // If this isn't the first input, we need a comma. 2451 if (!Inputs.empty() && 2452 ParseToken(lltok::comma, "expected ',' in input list")) 2453 return true; 2454 2455 Type *Ty = nullptr; 2456 Value *Input = nullptr; 2457 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2458 return true; 2459 Inputs.push_back(Input); 2460 } 2461 2462 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2463 2464 Lex.Lex(); // Lex the ')'. 2465 } 2466 2467 if (BundleList.empty()) 2468 return Error(BeginLoc, "operand bundle set must not be empty"); 2469 2470 Lex.Lex(); // Lex the ']'. 2471 return false; 2472 } 2473 2474 /// ParseArgumentList - Parse the argument list for a function type or function 2475 /// prototype. 2476 /// ::= '(' ArgTypeListI ')' 2477 /// ArgTypeListI 2478 /// ::= /*empty*/ 2479 /// ::= '...' 2480 /// ::= ArgTypeList ',' '...' 2481 /// ::= ArgType (',' ArgType)* 2482 /// 2483 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2484 bool &isVarArg){ 2485 isVarArg = false; 2486 assert(Lex.getKind() == lltok::lparen); 2487 Lex.Lex(); // eat the (. 2488 2489 if (Lex.getKind() == lltok::rparen) { 2490 // empty 2491 } else if (Lex.getKind() == lltok::dotdotdot) { 2492 isVarArg = true; 2493 Lex.Lex(); 2494 } else { 2495 LocTy TypeLoc = Lex.getLoc(); 2496 Type *ArgTy = nullptr; 2497 AttrBuilder Attrs; 2498 std::string Name; 2499 2500 if (ParseType(ArgTy) || 2501 ParseOptionalParamAttrs(Attrs)) return true; 2502 2503 if (ArgTy->isVoidTy()) 2504 return Error(TypeLoc, "argument can not have void type"); 2505 2506 if (Lex.getKind() == lltok::LocalVar) { 2507 Name = Lex.getStrVal(); 2508 Lex.Lex(); 2509 } 2510 2511 if (!FunctionType::isValidArgumentType(ArgTy)) 2512 return Error(TypeLoc, "invalid type for function argument"); 2513 2514 ArgList.emplace_back(TypeLoc, ArgTy, 2515 AttributeSet::get(ArgTy->getContext(), Attrs), 2516 std::move(Name)); 2517 2518 while (EatIfPresent(lltok::comma)) { 2519 // Handle ... at end of arg list. 2520 if (EatIfPresent(lltok::dotdotdot)) { 2521 isVarArg = true; 2522 break; 2523 } 2524 2525 // Otherwise must be an argument type. 2526 TypeLoc = Lex.getLoc(); 2527 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2528 2529 if (ArgTy->isVoidTy()) 2530 return Error(TypeLoc, "argument can not have void type"); 2531 2532 if (Lex.getKind() == lltok::LocalVar) { 2533 Name = Lex.getStrVal(); 2534 Lex.Lex(); 2535 } else { 2536 Name = ""; 2537 } 2538 2539 if (!ArgTy->isFirstClassType()) 2540 return Error(TypeLoc, "invalid type for function argument"); 2541 2542 ArgList.emplace_back(TypeLoc, ArgTy, 2543 AttributeSet::get(ArgTy->getContext(), Attrs), 2544 std::move(Name)); 2545 } 2546 } 2547 2548 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2549 } 2550 2551 /// ParseFunctionType 2552 /// ::= Type ArgumentList OptionalAttrs 2553 bool LLParser::ParseFunctionType(Type *&Result) { 2554 assert(Lex.getKind() == lltok::lparen); 2555 2556 if (!FunctionType::isValidReturnType(Result)) 2557 return TokError("invalid function return type"); 2558 2559 SmallVector<ArgInfo, 8> ArgList; 2560 bool isVarArg; 2561 if (ParseArgumentList(ArgList, isVarArg)) 2562 return true; 2563 2564 // Reject names on the arguments lists. 2565 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2566 if (!ArgList[i].Name.empty()) 2567 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2568 if (ArgList[i].Attrs.hasAttributes()) 2569 return Error(ArgList[i].Loc, 2570 "argument attributes invalid in function type"); 2571 } 2572 2573 SmallVector<Type*, 16> ArgListTy; 2574 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2575 ArgListTy.push_back(ArgList[i].Ty); 2576 2577 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2578 return false; 2579 } 2580 2581 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2582 /// other structs. 2583 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2584 SmallVector<Type*, 8> Elts; 2585 if (ParseStructBody(Elts)) return true; 2586 2587 Result = StructType::get(Context, Elts, Packed); 2588 return false; 2589 } 2590 2591 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2592 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2593 std::pair<Type*, LocTy> &Entry, 2594 Type *&ResultTy) { 2595 // If the type was already defined, diagnose the redefinition. 2596 if (Entry.first && !Entry.second.isValid()) 2597 return Error(TypeLoc, "redefinition of type"); 2598 2599 // If we have opaque, just return without filling in the definition for the 2600 // struct. This counts as a definition as far as the .ll file goes. 2601 if (EatIfPresent(lltok::kw_opaque)) { 2602 // This type is being defined, so clear the location to indicate this. 2603 Entry.second = SMLoc(); 2604 2605 // If this type number has never been uttered, create it. 2606 if (!Entry.first) 2607 Entry.first = StructType::create(Context, Name); 2608 ResultTy = Entry.first; 2609 return false; 2610 } 2611 2612 // If the type starts with '<', then it is either a packed struct or a vector. 2613 bool isPacked = EatIfPresent(lltok::less); 2614 2615 // If we don't have a struct, then we have a random type alias, which we 2616 // accept for compatibility with old files. These types are not allowed to be 2617 // forward referenced and not allowed to be recursive. 2618 if (Lex.getKind() != lltok::lbrace) { 2619 if (Entry.first) 2620 return Error(TypeLoc, "forward references to non-struct type"); 2621 2622 ResultTy = nullptr; 2623 if (isPacked) 2624 return ParseArrayVectorType(ResultTy, true); 2625 return ParseType(ResultTy); 2626 } 2627 2628 // This type is being defined, so clear the location to indicate this. 2629 Entry.second = SMLoc(); 2630 2631 // If this type number has never been uttered, create it. 2632 if (!Entry.first) 2633 Entry.first = StructType::create(Context, Name); 2634 2635 StructType *STy = cast<StructType>(Entry.first); 2636 2637 SmallVector<Type*, 8> Body; 2638 if (ParseStructBody(Body) || 2639 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2640 return true; 2641 2642 STy->setBody(Body, isPacked); 2643 ResultTy = STy; 2644 return false; 2645 } 2646 2647 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2648 /// StructType 2649 /// ::= '{' '}' 2650 /// ::= '{' Type (',' Type)* '}' 2651 /// ::= '<' '{' '}' '>' 2652 /// ::= '<' '{' Type (',' Type)* '}' '>' 2653 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2654 assert(Lex.getKind() == lltok::lbrace); 2655 Lex.Lex(); // Consume the '{' 2656 2657 // Handle the empty struct. 2658 if (EatIfPresent(lltok::rbrace)) 2659 return false; 2660 2661 LocTy EltTyLoc = Lex.getLoc(); 2662 Type *Ty = nullptr; 2663 if (ParseType(Ty)) return true; 2664 Body.push_back(Ty); 2665 2666 if (!StructType::isValidElementType(Ty)) 2667 return Error(EltTyLoc, "invalid element type for struct"); 2668 2669 while (EatIfPresent(lltok::comma)) { 2670 EltTyLoc = Lex.getLoc(); 2671 if (ParseType(Ty)) return true; 2672 2673 if (!StructType::isValidElementType(Ty)) 2674 return Error(EltTyLoc, "invalid element type for struct"); 2675 2676 Body.push_back(Ty); 2677 } 2678 2679 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2680 } 2681 2682 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2683 /// token has already been consumed. 2684 /// Type 2685 /// ::= '[' APSINTVAL 'x' Types ']' 2686 /// ::= '<' APSINTVAL 'x' Types '>' 2687 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2688 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2689 Lex.getAPSIntVal().getBitWidth() > 64) 2690 return TokError("expected number in address space"); 2691 2692 LocTy SizeLoc = Lex.getLoc(); 2693 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2694 Lex.Lex(); 2695 2696 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2697 return true; 2698 2699 LocTy TypeLoc = Lex.getLoc(); 2700 Type *EltTy = nullptr; 2701 if (ParseType(EltTy)) return true; 2702 2703 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2704 "expected end of sequential type")) 2705 return true; 2706 2707 if (isVector) { 2708 if (Size == 0) 2709 return Error(SizeLoc, "zero element vector is illegal"); 2710 if ((unsigned)Size != Size) 2711 return Error(SizeLoc, "size too large for vector"); 2712 if (!VectorType::isValidElementType(EltTy)) 2713 return Error(TypeLoc, "invalid vector element type"); 2714 Result = VectorType::get(EltTy, unsigned(Size)); 2715 } else { 2716 if (!ArrayType::isValidElementType(EltTy)) 2717 return Error(TypeLoc, "invalid array element type"); 2718 Result = ArrayType::get(EltTy, Size); 2719 } 2720 return false; 2721 } 2722 2723 //===----------------------------------------------------------------------===// 2724 // Function Semantic Analysis. 2725 //===----------------------------------------------------------------------===// 2726 2727 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2728 int functionNumber) 2729 : P(p), F(f), FunctionNumber(functionNumber) { 2730 2731 // Insert unnamed arguments into the NumberedVals list. 2732 for (Argument &A : F.args()) 2733 if (!A.hasName()) 2734 NumberedVals.push_back(&A); 2735 } 2736 2737 LLParser::PerFunctionState::~PerFunctionState() { 2738 // If there were any forward referenced non-basicblock values, delete them. 2739 2740 for (const auto &P : ForwardRefVals) { 2741 if (isa<BasicBlock>(P.second.first)) 2742 continue; 2743 P.second.first->replaceAllUsesWith( 2744 UndefValue::get(P.second.first->getType())); 2745 P.second.first->deleteValue(); 2746 } 2747 2748 for (const auto &P : ForwardRefValIDs) { 2749 if (isa<BasicBlock>(P.second.first)) 2750 continue; 2751 P.second.first->replaceAllUsesWith( 2752 UndefValue::get(P.second.first->getType())); 2753 P.second.first->deleteValue(); 2754 } 2755 } 2756 2757 bool LLParser::PerFunctionState::FinishFunction() { 2758 if (!ForwardRefVals.empty()) 2759 return P.Error(ForwardRefVals.begin()->second.second, 2760 "use of undefined value '%" + ForwardRefVals.begin()->first + 2761 "'"); 2762 if (!ForwardRefValIDs.empty()) 2763 return P.Error(ForwardRefValIDs.begin()->second.second, 2764 "use of undefined value '%" + 2765 Twine(ForwardRefValIDs.begin()->first) + "'"); 2766 return false; 2767 } 2768 2769 /// GetVal - Get a value with the specified name or ID, creating a 2770 /// forward reference record if needed. This can return null if the value 2771 /// exists but does not have the right type. 2772 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2773 LocTy Loc, bool IsCall) { 2774 // Look this name up in the normal function symbol table. 2775 Value *Val = F.getValueSymbolTable()->lookup(Name); 2776 2777 // If this is a forward reference for the value, see if we already created a 2778 // forward ref record. 2779 if (!Val) { 2780 auto I = ForwardRefVals.find(Name); 2781 if (I != ForwardRefVals.end()) 2782 Val = I->second.first; 2783 } 2784 2785 // If we have the value in the symbol table or fwd-ref table, return it. 2786 if (Val) 2787 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2788 2789 // Don't make placeholders with invalid type. 2790 if (!Ty->isFirstClassType()) { 2791 P.Error(Loc, "invalid use of a non-first-class type"); 2792 return nullptr; 2793 } 2794 2795 // Otherwise, create a new forward reference for this value and remember it. 2796 Value *FwdVal; 2797 if (Ty->isLabelTy()) { 2798 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2799 } else { 2800 FwdVal = new Argument(Ty, Name); 2801 } 2802 2803 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2804 return FwdVal; 2805 } 2806 2807 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2808 bool IsCall) { 2809 // Look this name up in the normal function symbol table. 2810 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2811 2812 // If this is a forward reference for the value, see if we already created a 2813 // forward ref record. 2814 if (!Val) { 2815 auto I = ForwardRefValIDs.find(ID); 2816 if (I != ForwardRefValIDs.end()) 2817 Val = I->second.first; 2818 } 2819 2820 // If we have the value in the symbol table or fwd-ref table, return it. 2821 if (Val) 2822 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 2823 2824 if (!Ty->isFirstClassType()) { 2825 P.Error(Loc, "invalid use of a non-first-class type"); 2826 return nullptr; 2827 } 2828 2829 // Otherwise, create a new forward reference for this value and remember it. 2830 Value *FwdVal; 2831 if (Ty->isLabelTy()) { 2832 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2833 } else { 2834 FwdVal = new Argument(Ty); 2835 } 2836 2837 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2838 return FwdVal; 2839 } 2840 2841 /// SetInstName - After an instruction is parsed and inserted into its 2842 /// basic block, this installs its name. 2843 bool LLParser::PerFunctionState::SetInstName(int NameID, 2844 const std::string &NameStr, 2845 LocTy NameLoc, Instruction *Inst) { 2846 // If this instruction has void type, it cannot have a name or ID specified. 2847 if (Inst->getType()->isVoidTy()) { 2848 if (NameID != -1 || !NameStr.empty()) 2849 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2850 return false; 2851 } 2852 2853 // If this was a numbered instruction, verify that the instruction is the 2854 // expected value and resolve any forward references. 2855 if (NameStr.empty()) { 2856 // If neither a name nor an ID was specified, just use the next ID. 2857 if (NameID == -1) 2858 NameID = NumberedVals.size(); 2859 2860 if (unsigned(NameID) != NumberedVals.size()) 2861 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2862 Twine(NumberedVals.size()) + "'"); 2863 2864 auto FI = ForwardRefValIDs.find(NameID); 2865 if (FI != ForwardRefValIDs.end()) { 2866 Value *Sentinel = FI->second.first; 2867 if (Sentinel->getType() != Inst->getType()) 2868 return P.Error(NameLoc, "instruction forward referenced with type '" + 2869 getTypeString(FI->second.first->getType()) + "'"); 2870 2871 Sentinel->replaceAllUsesWith(Inst); 2872 Sentinel->deleteValue(); 2873 ForwardRefValIDs.erase(FI); 2874 } 2875 2876 NumberedVals.push_back(Inst); 2877 return false; 2878 } 2879 2880 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2881 auto FI = ForwardRefVals.find(NameStr); 2882 if (FI != ForwardRefVals.end()) { 2883 Value *Sentinel = FI->second.first; 2884 if (Sentinel->getType() != Inst->getType()) 2885 return P.Error(NameLoc, "instruction forward referenced with type '" + 2886 getTypeString(FI->second.first->getType()) + "'"); 2887 2888 Sentinel->replaceAllUsesWith(Inst); 2889 Sentinel->deleteValue(); 2890 ForwardRefVals.erase(FI); 2891 } 2892 2893 // Set the name on the instruction. 2894 Inst->setName(NameStr); 2895 2896 if (Inst->getName() != NameStr) 2897 return P.Error(NameLoc, "multiple definition of local value named '" + 2898 NameStr + "'"); 2899 return false; 2900 } 2901 2902 /// GetBB - Get a basic block with the specified name or ID, creating a 2903 /// forward reference record if needed. 2904 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2905 LocTy Loc) { 2906 return dyn_cast_or_null<BasicBlock>( 2907 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2908 } 2909 2910 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2911 return dyn_cast_or_null<BasicBlock>( 2912 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2913 } 2914 2915 /// DefineBB - Define the specified basic block, which is either named or 2916 /// unnamed. If there is an error, this returns null otherwise it returns 2917 /// the block being defined. 2918 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2919 LocTy Loc) { 2920 BasicBlock *BB; 2921 if (Name.empty()) 2922 BB = GetBB(NumberedVals.size(), Loc); 2923 else 2924 BB = GetBB(Name, Loc); 2925 if (!BB) return nullptr; // Already diagnosed error. 2926 2927 // Move the block to the end of the function. Forward ref'd blocks are 2928 // inserted wherever they happen to be referenced. 2929 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2930 2931 // Remove the block from forward ref sets. 2932 if (Name.empty()) { 2933 ForwardRefValIDs.erase(NumberedVals.size()); 2934 NumberedVals.push_back(BB); 2935 } else { 2936 // BB forward references are already in the function symbol table. 2937 ForwardRefVals.erase(Name); 2938 } 2939 2940 return BB; 2941 } 2942 2943 //===----------------------------------------------------------------------===// 2944 // Constants. 2945 //===----------------------------------------------------------------------===// 2946 2947 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2948 /// type implied. For example, if we parse "4" we don't know what integer type 2949 /// it has. The value will later be combined with its type and checked for 2950 /// sanity. PFS is used to convert function-local operands of metadata (since 2951 /// metadata operands are not just parsed here but also converted to values). 2952 /// PFS can be null when we are not parsing metadata values inside a function. 2953 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2954 ID.Loc = Lex.getLoc(); 2955 switch (Lex.getKind()) { 2956 default: return TokError("expected value token"); 2957 case lltok::GlobalID: // @42 2958 ID.UIntVal = Lex.getUIntVal(); 2959 ID.Kind = ValID::t_GlobalID; 2960 break; 2961 case lltok::GlobalVar: // @foo 2962 ID.StrVal = Lex.getStrVal(); 2963 ID.Kind = ValID::t_GlobalName; 2964 break; 2965 case lltok::LocalVarID: // %42 2966 ID.UIntVal = Lex.getUIntVal(); 2967 ID.Kind = ValID::t_LocalID; 2968 break; 2969 case lltok::LocalVar: // %foo 2970 ID.StrVal = Lex.getStrVal(); 2971 ID.Kind = ValID::t_LocalName; 2972 break; 2973 case lltok::APSInt: 2974 ID.APSIntVal = Lex.getAPSIntVal(); 2975 ID.Kind = ValID::t_APSInt; 2976 break; 2977 case lltok::APFloat: 2978 ID.APFloatVal = Lex.getAPFloatVal(); 2979 ID.Kind = ValID::t_APFloat; 2980 break; 2981 case lltok::kw_true: 2982 ID.ConstantVal = ConstantInt::getTrue(Context); 2983 ID.Kind = ValID::t_Constant; 2984 break; 2985 case lltok::kw_false: 2986 ID.ConstantVal = ConstantInt::getFalse(Context); 2987 ID.Kind = ValID::t_Constant; 2988 break; 2989 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2990 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2991 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2992 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2993 2994 case lltok::lbrace: { 2995 // ValID ::= '{' ConstVector '}' 2996 Lex.Lex(); 2997 SmallVector<Constant*, 16> Elts; 2998 if (ParseGlobalValueVector(Elts) || 2999 ParseToken(lltok::rbrace, "expected end of struct constant")) 3000 return true; 3001 3002 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3003 ID.UIntVal = Elts.size(); 3004 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3005 Elts.size() * sizeof(Elts[0])); 3006 ID.Kind = ValID::t_ConstantStruct; 3007 return false; 3008 } 3009 case lltok::less: { 3010 // ValID ::= '<' ConstVector '>' --> Vector. 3011 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3012 Lex.Lex(); 3013 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3014 3015 SmallVector<Constant*, 16> Elts; 3016 LocTy FirstEltLoc = Lex.getLoc(); 3017 if (ParseGlobalValueVector(Elts) || 3018 (isPackedStruct && 3019 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3020 ParseToken(lltok::greater, "expected end of constant")) 3021 return true; 3022 3023 if (isPackedStruct) { 3024 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3025 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3026 Elts.size() * sizeof(Elts[0])); 3027 ID.UIntVal = Elts.size(); 3028 ID.Kind = ValID::t_PackedConstantStruct; 3029 return false; 3030 } 3031 3032 if (Elts.empty()) 3033 return Error(ID.Loc, "constant vector must not be empty"); 3034 3035 if (!Elts[0]->getType()->isIntegerTy() && 3036 !Elts[0]->getType()->isFloatingPointTy() && 3037 !Elts[0]->getType()->isPointerTy()) 3038 return Error(FirstEltLoc, 3039 "vector elements must have integer, pointer or floating point type"); 3040 3041 // Verify that all the vector elements have the same type. 3042 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3043 if (Elts[i]->getType() != Elts[0]->getType()) 3044 return Error(FirstEltLoc, 3045 "vector element #" + Twine(i) + 3046 " is not of type '" + getTypeString(Elts[0]->getType())); 3047 3048 ID.ConstantVal = ConstantVector::get(Elts); 3049 ID.Kind = ValID::t_Constant; 3050 return false; 3051 } 3052 case lltok::lsquare: { // Array Constant 3053 Lex.Lex(); 3054 SmallVector<Constant*, 16> Elts; 3055 LocTy FirstEltLoc = Lex.getLoc(); 3056 if (ParseGlobalValueVector(Elts) || 3057 ParseToken(lltok::rsquare, "expected end of array constant")) 3058 return true; 3059 3060 // Handle empty element. 3061 if (Elts.empty()) { 3062 // Use undef instead of an array because it's inconvenient to determine 3063 // the element type at this point, there being no elements to examine. 3064 ID.Kind = ValID::t_EmptyArray; 3065 return false; 3066 } 3067 3068 if (!Elts[0]->getType()->isFirstClassType()) 3069 return Error(FirstEltLoc, "invalid array element type: " + 3070 getTypeString(Elts[0]->getType())); 3071 3072 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3073 3074 // Verify all elements are correct type! 3075 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3076 if (Elts[i]->getType() != Elts[0]->getType()) 3077 return Error(FirstEltLoc, 3078 "array element #" + Twine(i) + 3079 " is not of type '" + getTypeString(Elts[0]->getType())); 3080 } 3081 3082 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3083 ID.Kind = ValID::t_Constant; 3084 return false; 3085 } 3086 case lltok::kw_c: // c "foo" 3087 Lex.Lex(); 3088 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3089 false); 3090 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3091 ID.Kind = ValID::t_Constant; 3092 return false; 3093 3094 case lltok::kw_asm: { 3095 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3096 // STRINGCONSTANT 3097 bool HasSideEffect, AlignStack, AsmDialect; 3098 Lex.Lex(); 3099 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3100 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3101 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3102 ParseStringConstant(ID.StrVal) || 3103 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3104 ParseToken(lltok::StringConstant, "expected constraint string")) 3105 return true; 3106 ID.StrVal2 = Lex.getStrVal(); 3107 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3108 (unsigned(AsmDialect)<<2); 3109 ID.Kind = ValID::t_InlineAsm; 3110 return false; 3111 } 3112 3113 case lltok::kw_blockaddress: { 3114 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3115 Lex.Lex(); 3116 3117 ValID Fn, Label; 3118 3119 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3120 ParseValID(Fn) || 3121 ParseToken(lltok::comma, "expected comma in block address expression")|| 3122 ParseValID(Label) || 3123 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3124 return true; 3125 3126 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3127 return Error(Fn.Loc, "expected function name in blockaddress"); 3128 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3129 return Error(Label.Loc, "expected basic block name in blockaddress"); 3130 3131 // Try to find the function (but skip it if it's forward-referenced). 3132 GlobalValue *GV = nullptr; 3133 if (Fn.Kind == ValID::t_GlobalID) { 3134 if (Fn.UIntVal < NumberedVals.size()) 3135 GV = NumberedVals[Fn.UIntVal]; 3136 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3137 GV = M->getNamedValue(Fn.StrVal); 3138 } 3139 Function *F = nullptr; 3140 if (GV) { 3141 // Confirm that it's actually a function with a definition. 3142 if (!isa<Function>(GV)) 3143 return Error(Fn.Loc, "expected function name in blockaddress"); 3144 F = cast<Function>(GV); 3145 if (F->isDeclaration()) 3146 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3147 } 3148 3149 if (!F) { 3150 // Make a global variable as a placeholder for this reference. 3151 GlobalValue *&FwdRef = 3152 ForwardRefBlockAddresses.insert(std::make_pair( 3153 std::move(Fn), 3154 std::map<ValID, GlobalValue *>())) 3155 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3156 .first->second; 3157 if (!FwdRef) 3158 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3159 GlobalValue::InternalLinkage, nullptr, ""); 3160 ID.ConstantVal = FwdRef; 3161 ID.Kind = ValID::t_Constant; 3162 return false; 3163 } 3164 3165 // We found the function; now find the basic block. Don't use PFS, since we 3166 // might be inside a constant expression. 3167 BasicBlock *BB; 3168 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3169 if (Label.Kind == ValID::t_LocalID) 3170 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3171 else 3172 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3173 if (!BB) 3174 return Error(Label.Loc, "referenced value is not a basic block"); 3175 } else { 3176 if (Label.Kind == ValID::t_LocalID) 3177 return Error(Label.Loc, "cannot take address of numeric label after " 3178 "the function is defined"); 3179 BB = dyn_cast_or_null<BasicBlock>( 3180 F->getValueSymbolTable()->lookup(Label.StrVal)); 3181 if (!BB) 3182 return Error(Label.Loc, "referenced value is not a basic block"); 3183 } 3184 3185 ID.ConstantVal = BlockAddress::get(F, BB); 3186 ID.Kind = ValID::t_Constant; 3187 return false; 3188 } 3189 3190 case lltok::kw_trunc: 3191 case lltok::kw_zext: 3192 case lltok::kw_sext: 3193 case lltok::kw_fptrunc: 3194 case lltok::kw_fpext: 3195 case lltok::kw_bitcast: 3196 case lltok::kw_addrspacecast: 3197 case lltok::kw_uitofp: 3198 case lltok::kw_sitofp: 3199 case lltok::kw_fptoui: 3200 case lltok::kw_fptosi: 3201 case lltok::kw_inttoptr: 3202 case lltok::kw_ptrtoint: { 3203 unsigned Opc = Lex.getUIntVal(); 3204 Type *DestTy = nullptr; 3205 Constant *SrcVal; 3206 Lex.Lex(); 3207 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3208 ParseGlobalTypeAndValue(SrcVal) || 3209 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3210 ParseType(DestTy) || 3211 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3212 return true; 3213 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3214 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3215 getTypeString(SrcVal->getType()) + "' to '" + 3216 getTypeString(DestTy) + "'"); 3217 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3218 SrcVal, DestTy); 3219 ID.Kind = ValID::t_Constant; 3220 return false; 3221 } 3222 case lltok::kw_extractvalue: { 3223 Lex.Lex(); 3224 Constant *Val; 3225 SmallVector<unsigned, 4> Indices; 3226 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3227 ParseGlobalTypeAndValue(Val) || 3228 ParseIndexList(Indices) || 3229 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3230 return true; 3231 3232 if (!Val->getType()->isAggregateType()) 3233 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3234 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3235 return Error(ID.Loc, "invalid indices for extractvalue"); 3236 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3237 ID.Kind = ValID::t_Constant; 3238 return false; 3239 } 3240 case lltok::kw_insertvalue: { 3241 Lex.Lex(); 3242 Constant *Val0, *Val1; 3243 SmallVector<unsigned, 4> Indices; 3244 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3245 ParseGlobalTypeAndValue(Val0) || 3246 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3247 ParseGlobalTypeAndValue(Val1) || 3248 ParseIndexList(Indices) || 3249 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3250 return true; 3251 if (!Val0->getType()->isAggregateType()) 3252 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3253 Type *IndexedType = 3254 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3255 if (!IndexedType) 3256 return Error(ID.Loc, "invalid indices for insertvalue"); 3257 if (IndexedType != Val1->getType()) 3258 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3259 getTypeString(Val1->getType()) + 3260 "' instead of '" + getTypeString(IndexedType) + 3261 "'"); 3262 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3263 ID.Kind = ValID::t_Constant; 3264 return false; 3265 } 3266 case lltok::kw_icmp: 3267 case lltok::kw_fcmp: { 3268 unsigned PredVal, Opc = Lex.getUIntVal(); 3269 Constant *Val0, *Val1; 3270 Lex.Lex(); 3271 if (ParseCmpPredicate(PredVal, Opc) || 3272 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3273 ParseGlobalTypeAndValue(Val0) || 3274 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3275 ParseGlobalTypeAndValue(Val1) || 3276 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3277 return true; 3278 3279 if (Val0->getType() != Val1->getType()) 3280 return Error(ID.Loc, "compare operands must have the same type"); 3281 3282 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3283 3284 if (Opc == Instruction::FCmp) { 3285 if (!Val0->getType()->isFPOrFPVectorTy()) 3286 return Error(ID.Loc, "fcmp requires floating point operands"); 3287 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3288 } else { 3289 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3290 if (!Val0->getType()->isIntOrIntVectorTy() && 3291 !Val0->getType()->isPtrOrPtrVectorTy()) 3292 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3293 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3294 } 3295 ID.Kind = ValID::t_Constant; 3296 return false; 3297 } 3298 3299 // Binary Operators. 3300 case lltok::kw_add: 3301 case lltok::kw_fadd: 3302 case lltok::kw_sub: 3303 case lltok::kw_fsub: 3304 case lltok::kw_mul: 3305 case lltok::kw_fmul: 3306 case lltok::kw_udiv: 3307 case lltok::kw_sdiv: 3308 case lltok::kw_fdiv: 3309 case lltok::kw_urem: 3310 case lltok::kw_srem: 3311 case lltok::kw_frem: 3312 case lltok::kw_shl: 3313 case lltok::kw_lshr: 3314 case lltok::kw_ashr: { 3315 bool NUW = false; 3316 bool NSW = false; 3317 bool Exact = false; 3318 unsigned Opc = Lex.getUIntVal(); 3319 Constant *Val0, *Val1; 3320 Lex.Lex(); 3321 LocTy ModifierLoc = Lex.getLoc(); 3322 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3323 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3324 if (EatIfPresent(lltok::kw_nuw)) 3325 NUW = true; 3326 if (EatIfPresent(lltok::kw_nsw)) { 3327 NSW = true; 3328 if (EatIfPresent(lltok::kw_nuw)) 3329 NUW = true; 3330 } 3331 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3332 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3333 if (EatIfPresent(lltok::kw_exact)) 3334 Exact = true; 3335 } 3336 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3337 ParseGlobalTypeAndValue(Val0) || 3338 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3339 ParseGlobalTypeAndValue(Val1) || 3340 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3341 return true; 3342 if (Val0->getType() != Val1->getType()) 3343 return Error(ID.Loc, "operands of constexpr must have same type"); 3344 if (!Val0->getType()->isIntOrIntVectorTy()) { 3345 if (NUW) 3346 return Error(ModifierLoc, "nuw only applies to integer operations"); 3347 if (NSW) 3348 return Error(ModifierLoc, "nsw only applies to integer operations"); 3349 } 3350 // Check that the type is valid for the operator. 3351 switch (Opc) { 3352 case Instruction::Add: 3353 case Instruction::Sub: 3354 case Instruction::Mul: 3355 case Instruction::UDiv: 3356 case Instruction::SDiv: 3357 case Instruction::URem: 3358 case Instruction::SRem: 3359 case Instruction::Shl: 3360 case Instruction::AShr: 3361 case Instruction::LShr: 3362 if (!Val0->getType()->isIntOrIntVectorTy()) 3363 return Error(ID.Loc, "constexpr requires integer operands"); 3364 break; 3365 case Instruction::FAdd: 3366 case Instruction::FSub: 3367 case Instruction::FMul: 3368 case Instruction::FDiv: 3369 case Instruction::FRem: 3370 if (!Val0->getType()->isFPOrFPVectorTy()) 3371 return Error(ID.Loc, "constexpr requires fp operands"); 3372 break; 3373 default: llvm_unreachable("Unknown binary operator!"); 3374 } 3375 unsigned Flags = 0; 3376 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3377 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3378 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3379 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3380 ID.ConstantVal = C; 3381 ID.Kind = ValID::t_Constant; 3382 return false; 3383 } 3384 3385 // Logical Operations 3386 case lltok::kw_and: 3387 case lltok::kw_or: 3388 case lltok::kw_xor: { 3389 unsigned Opc = Lex.getUIntVal(); 3390 Constant *Val0, *Val1; 3391 Lex.Lex(); 3392 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3393 ParseGlobalTypeAndValue(Val0) || 3394 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3395 ParseGlobalTypeAndValue(Val1) || 3396 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3397 return true; 3398 if (Val0->getType() != Val1->getType()) 3399 return Error(ID.Loc, "operands of constexpr must have same type"); 3400 if (!Val0->getType()->isIntOrIntVectorTy()) 3401 return Error(ID.Loc, 3402 "constexpr requires integer or integer vector operands"); 3403 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3404 ID.Kind = ValID::t_Constant; 3405 return false; 3406 } 3407 3408 case lltok::kw_getelementptr: 3409 case lltok::kw_shufflevector: 3410 case lltok::kw_insertelement: 3411 case lltok::kw_extractelement: 3412 case lltok::kw_select: { 3413 unsigned Opc = Lex.getUIntVal(); 3414 SmallVector<Constant*, 16> Elts; 3415 bool InBounds = false; 3416 Type *Ty; 3417 Lex.Lex(); 3418 3419 if (Opc == Instruction::GetElementPtr) 3420 InBounds = EatIfPresent(lltok::kw_inbounds); 3421 3422 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3423 return true; 3424 3425 LocTy ExplicitTypeLoc = Lex.getLoc(); 3426 if (Opc == Instruction::GetElementPtr) { 3427 if (ParseType(Ty) || 3428 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3429 return true; 3430 } 3431 3432 Optional<unsigned> InRangeOp; 3433 if (ParseGlobalValueVector( 3434 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3435 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3436 return true; 3437 3438 if (Opc == Instruction::GetElementPtr) { 3439 if (Elts.size() == 0 || 3440 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3441 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3442 3443 Type *BaseType = Elts[0]->getType(); 3444 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3445 if (Ty != BasePointerType->getElementType()) 3446 return Error( 3447 ExplicitTypeLoc, 3448 "explicit pointee type doesn't match operand's pointee type"); 3449 3450 unsigned GEPWidth = 3451 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3452 3453 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3454 for (Constant *Val : Indices) { 3455 Type *ValTy = Val->getType(); 3456 if (!ValTy->isIntOrIntVectorTy()) 3457 return Error(ID.Loc, "getelementptr index must be an integer"); 3458 if (ValTy->isVectorTy()) { 3459 unsigned ValNumEl = ValTy->getVectorNumElements(); 3460 if (GEPWidth && (ValNumEl != GEPWidth)) 3461 return Error( 3462 ID.Loc, 3463 "getelementptr vector index has a wrong number of elements"); 3464 // GEPWidth may have been unknown because the base is a scalar, 3465 // but it is known now. 3466 GEPWidth = ValNumEl; 3467 } 3468 } 3469 3470 SmallPtrSet<Type*, 4> Visited; 3471 if (!Indices.empty() && !Ty->isSized(&Visited)) 3472 return Error(ID.Loc, "base element of getelementptr must be sized"); 3473 3474 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3475 return Error(ID.Loc, "invalid getelementptr indices"); 3476 3477 if (InRangeOp) { 3478 if (*InRangeOp == 0) 3479 return Error(ID.Loc, 3480 "inrange keyword may not appear on pointer operand"); 3481 --*InRangeOp; 3482 } 3483 3484 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3485 InBounds, InRangeOp); 3486 } else if (Opc == Instruction::Select) { 3487 if (Elts.size() != 3) 3488 return Error(ID.Loc, "expected three operands to select"); 3489 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3490 Elts[2])) 3491 return Error(ID.Loc, Reason); 3492 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3493 } else if (Opc == Instruction::ShuffleVector) { 3494 if (Elts.size() != 3) 3495 return Error(ID.Loc, "expected three operands to shufflevector"); 3496 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3497 return Error(ID.Loc, "invalid operands to shufflevector"); 3498 ID.ConstantVal = 3499 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3500 } else if (Opc == Instruction::ExtractElement) { 3501 if (Elts.size() != 2) 3502 return Error(ID.Loc, "expected two operands to extractelement"); 3503 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3504 return Error(ID.Loc, "invalid extractelement operands"); 3505 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3506 } else { 3507 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3508 if (Elts.size() != 3) 3509 return Error(ID.Loc, "expected three operands to insertelement"); 3510 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3511 return Error(ID.Loc, "invalid insertelement operands"); 3512 ID.ConstantVal = 3513 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3514 } 3515 3516 ID.Kind = ValID::t_Constant; 3517 return false; 3518 } 3519 } 3520 3521 Lex.Lex(); 3522 return false; 3523 } 3524 3525 /// ParseGlobalValue - Parse a global value with the specified type. 3526 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3527 C = nullptr; 3528 ValID ID; 3529 Value *V = nullptr; 3530 bool Parsed = ParseValID(ID) || 3531 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3532 if (V && !(C = dyn_cast<Constant>(V))) 3533 return Error(ID.Loc, "global values must be constants"); 3534 return Parsed; 3535 } 3536 3537 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3538 Type *Ty = nullptr; 3539 return ParseType(Ty) || 3540 ParseGlobalValue(Ty, V); 3541 } 3542 3543 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3544 C = nullptr; 3545 3546 LocTy KwLoc = Lex.getLoc(); 3547 if (!EatIfPresent(lltok::kw_comdat)) 3548 return false; 3549 3550 if (EatIfPresent(lltok::lparen)) { 3551 if (Lex.getKind() != lltok::ComdatVar) 3552 return TokError("expected comdat variable"); 3553 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3554 Lex.Lex(); 3555 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3556 return true; 3557 } else { 3558 if (GlobalName.empty()) 3559 return TokError("comdat cannot be unnamed"); 3560 C = getComdat(GlobalName, KwLoc); 3561 } 3562 3563 return false; 3564 } 3565 3566 /// ParseGlobalValueVector 3567 /// ::= /*empty*/ 3568 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3569 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3570 Optional<unsigned> *InRangeOp) { 3571 // Empty list. 3572 if (Lex.getKind() == lltok::rbrace || 3573 Lex.getKind() == lltok::rsquare || 3574 Lex.getKind() == lltok::greater || 3575 Lex.getKind() == lltok::rparen) 3576 return false; 3577 3578 do { 3579 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3580 *InRangeOp = Elts.size(); 3581 3582 Constant *C; 3583 if (ParseGlobalTypeAndValue(C)) return true; 3584 Elts.push_back(C); 3585 } while (EatIfPresent(lltok::comma)); 3586 3587 return false; 3588 } 3589 3590 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3591 SmallVector<Metadata *, 16> Elts; 3592 if (ParseMDNodeVector(Elts)) 3593 return true; 3594 3595 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3596 return false; 3597 } 3598 3599 /// MDNode: 3600 /// ::= !{ ... } 3601 /// ::= !7 3602 /// ::= !DILocation(...) 3603 bool LLParser::ParseMDNode(MDNode *&N) { 3604 if (Lex.getKind() == lltok::MetadataVar) 3605 return ParseSpecializedMDNode(N); 3606 3607 return ParseToken(lltok::exclaim, "expected '!' here") || 3608 ParseMDNodeTail(N); 3609 } 3610 3611 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3612 // !{ ... } 3613 if (Lex.getKind() == lltok::lbrace) 3614 return ParseMDTuple(N); 3615 3616 // !42 3617 return ParseMDNodeID(N); 3618 } 3619 3620 namespace { 3621 3622 /// Structure to represent an optional metadata field. 3623 template <class FieldTy> struct MDFieldImpl { 3624 typedef MDFieldImpl ImplTy; 3625 FieldTy Val; 3626 bool Seen; 3627 3628 void assign(FieldTy Val) { 3629 Seen = true; 3630 this->Val = std::move(Val); 3631 } 3632 3633 explicit MDFieldImpl(FieldTy Default) 3634 : Val(std::move(Default)), Seen(false) {} 3635 }; 3636 3637 /// Structure to represent an optional metadata field that 3638 /// can be of either type (A or B) and encapsulates the 3639 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3640 /// to reimplement the specifics for representing each Field. 3641 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3642 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3643 FieldTypeA A; 3644 FieldTypeB B; 3645 bool Seen; 3646 3647 enum { 3648 IsInvalid = 0, 3649 IsTypeA = 1, 3650 IsTypeB = 2 3651 } WhatIs; 3652 3653 void assign(FieldTypeA A) { 3654 Seen = true; 3655 this->A = std::move(A); 3656 WhatIs = IsTypeA; 3657 } 3658 3659 void assign(FieldTypeB B) { 3660 Seen = true; 3661 this->B = std::move(B); 3662 WhatIs = IsTypeB; 3663 } 3664 3665 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3666 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3667 WhatIs(IsInvalid) {} 3668 }; 3669 3670 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3671 uint64_t Max; 3672 3673 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3674 : ImplTy(Default), Max(Max) {} 3675 }; 3676 3677 struct LineField : public MDUnsignedField { 3678 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3679 }; 3680 3681 struct ColumnField : public MDUnsignedField { 3682 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3683 }; 3684 3685 struct DwarfTagField : public MDUnsignedField { 3686 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3687 DwarfTagField(dwarf::Tag DefaultTag) 3688 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3689 }; 3690 3691 struct DwarfMacinfoTypeField : public MDUnsignedField { 3692 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3693 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3694 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3695 }; 3696 3697 struct DwarfAttEncodingField : public MDUnsignedField { 3698 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3699 }; 3700 3701 struct DwarfVirtualityField : public MDUnsignedField { 3702 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3703 }; 3704 3705 struct DwarfLangField : public MDUnsignedField { 3706 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3707 }; 3708 3709 struct DwarfCCField : public MDUnsignedField { 3710 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3711 }; 3712 3713 struct EmissionKindField : public MDUnsignedField { 3714 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3715 }; 3716 3717 struct NameTableKindField : public MDUnsignedField { 3718 NameTableKindField() 3719 : MDUnsignedField( 3720 0, (unsigned) 3721 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3722 }; 3723 3724 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3725 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3726 }; 3727 3728 struct MDSignedField : public MDFieldImpl<int64_t> { 3729 int64_t Min; 3730 int64_t Max; 3731 3732 MDSignedField(int64_t Default = 0) 3733 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3734 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3735 : ImplTy(Default), Min(Min), Max(Max) {} 3736 }; 3737 3738 struct MDBoolField : public MDFieldImpl<bool> { 3739 MDBoolField(bool Default = false) : ImplTy(Default) {} 3740 }; 3741 3742 struct MDField : public MDFieldImpl<Metadata *> { 3743 bool AllowNull; 3744 3745 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3746 }; 3747 3748 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3749 MDConstant() : ImplTy(nullptr) {} 3750 }; 3751 3752 struct MDStringField : public MDFieldImpl<MDString *> { 3753 bool AllowEmpty; 3754 MDStringField(bool AllowEmpty = true) 3755 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3756 }; 3757 3758 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3759 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3760 }; 3761 3762 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3763 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3764 }; 3765 3766 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3767 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3768 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3769 3770 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3771 bool AllowNull = true) 3772 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3773 3774 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3775 bool isMDField() const { return WhatIs == IsTypeB; } 3776 int64_t getMDSignedValue() const { 3777 assert(isMDSignedField() && "Wrong field type"); 3778 return A.Val; 3779 } 3780 Metadata *getMDFieldValue() const { 3781 assert(isMDField() && "Wrong field type"); 3782 return B.Val; 3783 } 3784 }; 3785 3786 struct MDSignedOrUnsignedField 3787 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3788 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3789 3790 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3791 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3792 int64_t getMDSignedValue() const { 3793 assert(isMDSignedField() && "Wrong field type"); 3794 return A.Val; 3795 } 3796 uint64_t getMDUnsignedValue() const { 3797 assert(isMDUnsignedField() && "Wrong field type"); 3798 return B.Val; 3799 } 3800 }; 3801 3802 } // end anonymous namespace 3803 3804 namespace llvm { 3805 3806 template <> 3807 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3808 MDUnsignedField &Result) { 3809 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3810 return TokError("expected unsigned integer"); 3811 3812 auto &U = Lex.getAPSIntVal(); 3813 if (U.ugt(Result.Max)) 3814 return TokError("value for '" + Name + "' too large, limit is " + 3815 Twine(Result.Max)); 3816 Result.assign(U.getZExtValue()); 3817 assert(Result.Val <= Result.Max && "Expected value in range"); 3818 Lex.Lex(); 3819 return false; 3820 } 3821 3822 template <> 3823 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3824 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3825 } 3826 template <> 3827 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3828 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3829 } 3830 3831 template <> 3832 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3833 if (Lex.getKind() == lltok::APSInt) 3834 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3835 3836 if (Lex.getKind() != lltok::DwarfTag) 3837 return TokError("expected DWARF tag"); 3838 3839 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3840 if (Tag == dwarf::DW_TAG_invalid) 3841 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3842 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3843 3844 Result.assign(Tag); 3845 Lex.Lex(); 3846 return false; 3847 } 3848 3849 template <> 3850 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3851 DwarfMacinfoTypeField &Result) { 3852 if (Lex.getKind() == lltok::APSInt) 3853 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3854 3855 if (Lex.getKind() != lltok::DwarfMacinfo) 3856 return TokError("expected DWARF macinfo type"); 3857 3858 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3859 if (Macinfo == dwarf::DW_MACINFO_invalid) 3860 return TokError( 3861 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3862 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3863 3864 Result.assign(Macinfo); 3865 Lex.Lex(); 3866 return false; 3867 } 3868 3869 template <> 3870 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3871 DwarfVirtualityField &Result) { 3872 if (Lex.getKind() == lltok::APSInt) 3873 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3874 3875 if (Lex.getKind() != lltok::DwarfVirtuality) 3876 return TokError("expected DWARF virtuality code"); 3877 3878 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3879 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3880 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3881 Lex.getStrVal() + "'"); 3882 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3883 Result.assign(Virtuality); 3884 Lex.Lex(); 3885 return false; 3886 } 3887 3888 template <> 3889 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3890 if (Lex.getKind() == lltok::APSInt) 3891 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3892 3893 if (Lex.getKind() != lltok::DwarfLang) 3894 return TokError("expected DWARF language"); 3895 3896 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3897 if (!Lang) 3898 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3899 "'"); 3900 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3901 Result.assign(Lang); 3902 Lex.Lex(); 3903 return false; 3904 } 3905 3906 template <> 3907 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3908 if (Lex.getKind() == lltok::APSInt) 3909 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3910 3911 if (Lex.getKind() != lltok::DwarfCC) 3912 return TokError("expected DWARF calling convention"); 3913 3914 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3915 if (!CC) 3916 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3917 "'"); 3918 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3919 Result.assign(CC); 3920 Lex.Lex(); 3921 return false; 3922 } 3923 3924 template <> 3925 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3926 if (Lex.getKind() == lltok::APSInt) 3927 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3928 3929 if (Lex.getKind() != lltok::EmissionKind) 3930 return TokError("expected emission kind"); 3931 3932 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3933 if (!Kind) 3934 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3935 "'"); 3936 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3937 Result.assign(*Kind); 3938 Lex.Lex(); 3939 return false; 3940 } 3941 3942 template <> 3943 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3944 NameTableKindField &Result) { 3945 if (Lex.getKind() == lltok::APSInt) 3946 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3947 3948 if (Lex.getKind() != lltok::NameTableKind) 3949 return TokError("expected nameTable kind"); 3950 3951 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 3952 if (!Kind) 3953 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 3954 "'"); 3955 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 3956 Result.assign((unsigned)*Kind); 3957 Lex.Lex(); 3958 return false; 3959 } 3960 3961 template <> 3962 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3963 DwarfAttEncodingField &Result) { 3964 if (Lex.getKind() == lltok::APSInt) 3965 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3966 3967 if (Lex.getKind() != lltok::DwarfAttEncoding) 3968 return TokError("expected DWARF type attribute encoding"); 3969 3970 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3971 if (!Encoding) 3972 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3973 Lex.getStrVal() + "'"); 3974 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3975 Result.assign(Encoding); 3976 Lex.Lex(); 3977 return false; 3978 } 3979 3980 /// DIFlagField 3981 /// ::= uint32 3982 /// ::= DIFlagVector 3983 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3984 template <> 3985 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3986 3987 // Parser for a single flag. 3988 auto parseFlag = [&](DINode::DIFlags &Val) { 3989 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 3990 uint32_t TempVal = static_cast<uint32_t>(Val); 3991 bool Res = ParseUInt32(TempVal); 3992 Val = static_cast<DINode::DIFlags>(TempVal); 3993 return Res; 3994 } 3995 3996 if (Lex.getKind() != lltok::DIFlag) 3997 return TokError("expected debug info flag"); 3998 3999 Val = DINode::getFlag(Lex.getStrVal()); 4000 if (!Val) 4001 return TokError(Twine("invalid debug info flag flag '") + 4002 Lex.getStrVal() + "'"); 4003 Lex.Lex(); 4004 return false; 4005 }; 4006 4007 // Parse the flags and combine them together. 4008 DINode::DIFlags Combined = DINode::FlagZero; 4009 do { 4010 DINode::DIFlags Val; 4011 if (parseFlag(Val)) 4012 return true; 4013 Combined |= Val; 4014 } while (EatIfPresent(lltok::bar)); 4015 4016 Result.assign(Combined); 4017 return false; 4018 } 4019 4020 template <> 4021 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4022 MDSignedField &Result) { 4023 if (Lex.getKind() != lltok::APSInt) 4024 return TokError("expected signed integer"); 4025 4026 auto &S = Lex.getAPSIntVal(); 4027 if (S < Result.Min) 4028 return TokError("value for '" + Name + "' too small, limit is " + 4029 Twine(Result.Min)); 4030 if (S > Result.Max) 4031 return TokError("value for '" + Name + "' too large, limit is " + 4032 Twine(Result.Max)); 4033 Result.assign(S.getExtValue()); 4034 assert(Result.Val >= Result.Min && "Expected value in range"); 4035 assert(Result.Val <= Result.Max && "Expected value in range"); 4036 Lex.Lex(); 4037 return false; 4038 } 4039 4040 template <> 4041 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4042 switch (Lex.getKind()) { 4043 default: 4044 return TokError("expected 'true' or 'false'"); 4045 case lltok::kw_true: 4046 Result.assign(true); 4047 break; 4048 case lltok::kw_false: 4049 Result.assign(false); 4050 break; 4051 } 4052 Lex.Lex(); 4053 return false; 4054 } 4055 4056 template <> 4057 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4058 if (Lex.getKind() == lltok::kw_null) { 4059 if (!Result.AllowNull) 4060 return TokError("'" + Name + "' cannot be null"); 4061 Lex.Lex(); 4062 Result.assign(nullptr); 4063 return false; 4064 } 4065 4066 Metadata *MD; 4067 if (ParseMetadata(MD, nullptr)) 4068 return true; 4069 4070 Result.assign(MD); 4071 return false; 4072 } 4073 4074 template <> 4075 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4076 MDSignedOrMDField &Result) { 4077 // Try to parse a signed int. 4078 if (Lex.getKind() == lltok::APSInt) { 4079 MDSignedField Res = Result.A; 4080 if (!ParseMDField(Loc, Name, Res)) { 4081 Result.assign(Res); 4082 return false; 4083 } 4084 return true; 4085 } 4086 4087 // Otherwise, try to parse as an MDField. 4088 MDField Res = Result.B; 4089 if (!ParseMDField(Loc, Name, Res)) { 4090 Result.assign(Res); 4091 return false; 4092 } 4093 4094 return true; 4095 } 4096 4097 template <> 4098 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4099 MDSignedOrUnsignedField &Result) { 4100 if (Lex.getKind() != lltok::APSInt) 4101 return false; 4102 4103 if (Lex.getAPSIntVal().isSigned()) { 4104 MDSignedField Res = Result.A; 4105 if (ParseMDField(Loc, Name, Res)) 4106 return true; 4107 Result.assign(Res); 4108 return false; 4109 } 4110 4111 MDUnsignedField Res = Result.B; 4112 if (ParseMDField(Loc, Name, Res)) 4113 return true; 4114 Result.assign(Res); 4115 return false; 4116 } 4117 4118 template <> 4119 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4120 LocTy ValueLoc = Lex.getLoc(); 4121 std::string S; 4122 if (ParseStringConstant(S)) 4123 return true; 4124 4125 if (!Result.AllowEmpty && S.empty()) 4126 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4127 4128 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4129 return false; 4130 } 4131 4132 template <> 4133 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4134 SmallVector<Metadata *, 4> MDs; 4135 if (ParseMDNodeVector(MDs)) 4136 return true; 4137 4138 Result.assign(std::move(MDs)); 4139 return false; 4140 } 4141 4142 template <> 4143 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4144 ChecksumKindField &Result) { 4145 Optional<DIFile::ChecksumKind> CSKind = 4146 DIFile::getChecksumKind(Lex.getStrVal()); 4147 4148 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4149 return TokError( 4150 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4151 4152 Result.assign(*CSKind); 4153 Lex.Lex(); 4154 return false; 4155 } 4156 4157 } // end namespace llvm 4158 4159 template <class ParserTy> 4160 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4161 do { 4162 if (Lex.getKind() != lltok::LabelStr) 4163 return TokError("expected field label here"); 4164 4165 if (parseField()) 4166 return true; 4167 } while (EatIfPresent(lltok::comma)); 4168 4169 return false; 4170 } 4171 4172 template <class ParserTy> 4173 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4174 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4175 Lex.Lex(); 4176 4177 if (ParseToken(lltok::lparen, "expected '(' here")) 4178 return true; 4179 if (Lex.getKind() != lltok::rparen) 4180 if (ParseMDFieldsImplBody(parseField)) 4181 return true; 4182 4183 ClosingLoc = Lex.getLoc(); 4184 return ParseToken(lltok::rparen, "expected ')' here"); 4185 } 4186 4187 template <class FieldTy> 4188 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4189 if (Result.Seen) 4190 return TokError("field '" + Name + "' cannot be specified more than once"); 4191 4192 LocTy Loc = Lex.getLoc(); 4193 Lex.Lex(); 4194 return ParseMDField(Loc, Name, Result); 4195 } 4196 4197 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4198 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4199 4200 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4201 if (Lex.getStrVal() == #CLASS) \ 4202 return Parse##CLASS(N, IsDistinct); 4203 #include "llvm/IR/Metadata.def" 4204 4205 return TokError("expected metadata type"); 4206 } 4207 4208 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4209 #define NOP_FIELD(NAME, TYPE, INIT) 4210 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4211 if (!NAME.Seen) \ 4212 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4213 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4214 if (Lex.getStrVal() == #NAME) \ 4215 return ParseMDField(#NAME, NAME); 4216 #define PARSE_MD_FIELDS() \ 4217 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4218 do { \ 4219 LocTy ClosingLoc; \ 4220 if (ParseMDFieldsImpl([&]() -> bool { \ 4221 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4222 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4223 }, ClosingLoc)) \ 4224 return true; \ 4225 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4226 } while (false) 4227 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4228 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4229 4230 /// ParseDILocationFields: 4231 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4232 /// isImplicitCode: true) 4233 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4234 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4235 OPTIONAL(line, LineField, ); \ 4236 OPTIONAL(column, ColumnField, ); \ 4237 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4238 OPTIONAL(inlinedAt, MDField, ); \ 4239 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4240 PARSE_MD_FIELDS(); 4241 #undef VISIT_MD_FIELDS 4242 4243 Result = 4244 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4245 inlinedAt.Val, isImplicitCode.Val)); 4246 return false; 4247 } 4248 4249 /// ParseGenericDINode: 4250 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4251 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4252 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4253 REQUIRED(tag, DwarfTagField, ); \ 4254 OPTIONAL(header, MDStringField, ); \ 4255 OPTIONAL(operands, MDFieldList, ); 4256 PARSE_MD_FIELDS(); 4257 #undef VISIT_MD_FIELDS 4258 4259 Result = GET_OR_DISTINCT(GenericDINode, 4260 (Context, tag.Val, header.Val, operands.Val)); 4261 return false; 4262 } 4263 4264 /// ParseDISubrange: 4265 /// ::= !DISubrange(count: 30, lowerBound: 2) 4266 /// ::= !DISubrange(count: !node, lowerBound: 2) 4267 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4268 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4269 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4270 OPTIONAL(lowerBound, MDSignedField, ); 4271 PARSE_MD_FIELDS(); 4272 #undef VISIT_MD_FIELDS 4273 4274 if (count.isMDSignedField()) 4275 Result = GET_OR_DISTINCT( 4276 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4277 else if (count.isMDField()) 4278 Result = GET_OR_DISTINCT( 4279 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4280 else 4281 return true; 4282 4283 return false; 4284 } 4285 4286 /// ParseDIEnumerator: 4287 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4288 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4289 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4290 REQUIRED(name, MDStringField, ); \ 4291 REQUIRED(value, MDSignedOrUnsignedField, ); \ 4292 OPTIONAL(isUnsigned, MDBoolField, (false)); 4293 PARSE_MD_FIELDS(); 4294 #undef VISIT_MD_FIELDS 4295 4296 if (isUnsigned.Val && value.isMDSignedField()) 4297 return TokError("unsigned enumerator with negative value"); 4298 4299 int64_t Value = value.isMDSignedField() 4300 ? value.getMDSignedValue() 4301 : static_cast<int64_t>(value.getMDUnsignedValue()); 4302 Result = 4303 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4304 4305 return false; 4306 } 4307 4308 /// ParseDIBasicType: 4309 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4310 /// encoding: DW_ATE_encoding, flags: 0) 4311 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4312 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4313 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4314 OPTIONAL(name, MDStringField, ); \ 4315 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4316 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4317 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4318 OPTIONAL(flags, DIFlagField, ); 4319 PARSE_MD_FIELDS(); 4320 #undef VISIT_MD_FIELDS 4321 4322 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4323 align.Val, encoding.Val, flags.Val)); 4324 return false; 4325 } 4326 4327 /// ParseDIDerivedType: 4328 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4329 /// line: 7, scope: !1, baseType: !2, size: 32, 4330 /// align: 32, offset: 0, flags: 0, extraData: !3, 4331 /// dwarfAddressSpace: 3) 4332 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4333 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4334 REQUIRED(tag, DwarfTagField, ); \ 4335 OPTIONAL(name, MDStringField, ); \ 4336 OPTIONAL(file, MDField, ); \ 4337 OPTIONAL(line, LineField, ); \ 4338 OPTIONAL(scope, MDField, ); \ 4339 REQUIRED(baseType, MDField, ); \ 4340 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4341 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4342 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4343 OPTIONAL(flags, DIFlagField, ); \ 4344 OPTIONAL(extraData, MDField, ); \ 4345 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4346 PARSE_MD_FIELDS(); 4347 #undef VISIT_MD_FIELDS 4348 4349 Optional<unsigned> DWARFAddressSpace; 4350 if (dwarfAddressSpace.Val != UINT32_MAX) 4351 DWARFAddressSpace = dwarfAddressSpace.Val; 4352 4353 Result = GET_OR_DISTINCT(DIDerivedType, 4354 (Context, tag.Val, name.Val, file.Val, line.Val, 4355 scope.Val, baseType.Val, size.Val, align.Val, 4356 offset.Val, DWARFAddressSpace, flags.Val, 4357 extraData.Val)); 4358 return false; 4359 } 4360 4361 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4362 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4363 REQUIRED(tag, DwarfTagField, ); \ 4364 OPTIONAL(name, MDStringField, ); \ 4365 OPTIONAL(file, MDField, ); \ 4366 OPTIONAL(line, LineField, ); \ 4367 OPTIONAL(scope, MDField, ); \ 4368 OPTIONAL(baseType, MDField, ); \ 4369 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4370 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4371 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4372 OPTIONAL(flags, DIFlagField, ); \ 4373 OPTIONAL(elements, MDField, ); \ 4374 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4375 OPTIONAL(vtableHolder, MDField, ); \ 4376 OPTIONAL(templateParams, MDField, ); \ 4377 OPTIONAL(identifier, MDStringField, ); \ 4378 OPTIONAL(discriminator, MDField, ); 4379 PARSE_MD_FIELDS(); 4380 #undef VISIT_MD_FIELDS 4381 4382 // If this has an identifier try to build an ODR type. 4383 if (identifier.Val) 4384 if (auto *CT = DICompositeType::buildODRType( 4385 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4386 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4387 elements.Val, runtimeLang.Val, vtableHolder.Val, 4388 templateParams.Val, discriminator.Val)) { 4389 Result = CT; 4390 return false; 4391 } 4392 4393 // Create a new node, and save it in the context if it belongs in the type 4394 // map. 4395 Result = GET_OR_DISTINCT( 4396 DICompositeType, 4397 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4398 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4399 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4400 discriminator.Val)); 4401 return false; 4402 } 4403 4404 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4405 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4406 OPTIONAL(flags, DIFlagField, ); \ 4407 OPTIONAL(cc, DwarfCCField, ); \ 4408 REQUIRED(types, MDField, ); 4409 PARSE_MD_FIELDS(); 4410 #undef VISIT_MD_FIELDS 4411 4412 Result = GET_OR_DISTINCT(DISubroutineType, 4413 (Context, flags.Val, cc.Val, types.Val)); 4414 return false; 4415 } 4416 4417 /// ParseDIFileType: 4418 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4419 /// checksumkind: CSK_MD5, 4420 /// checksum: "000102030405060708090a0b0c0d0e0f", 4421 /// source: "source file contents") 4422 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4423 // The default constructed value for checksumkind is required, but will never 4424 // be used, as the parser checks if the field was actually Seen before using 4425 // the Val. 4426 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4427 REQUIRED(filename, MDStringField, ); \ 4428 REQUIRED(directory, MDStringField, ); \ 4429 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4430 OPTIONAL(checksum, MDStringField, ); \ 4431 OPTIONAL(source, MDStringField, ); 4432 PARSE_MD_FIELDS(); 4433 #undef VISIT_MD_FIELDS 4434 4435 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4436 if (checksumkind.Seen && checksum.Seen) 4437 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4438 else if (checksumkind.Seen || checksum.Seen) 4439 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4440 4441 Optional<MDString *> OptSource; 4442 if (source.Seen) 4443 OptSource = source.Val; 4444 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4445 OptChecksum, OptSource)); 4446 return false; 4447 } 4448 4449 /// ParseDICompileUnit: 4450 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4451 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4452 /// splitDebugFilename: "abc.debug", 4453 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4454 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4455 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4456 if (!IsDistinct) 4457 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4458 4459 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4460 REQUIRED(language, DwarfLangField, ); \ 4461 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4462 OPTIONAL(producer, MDStringField, ); \ 4463 OPTIONAL(isOptimized, MDBoolField, ); \ 4464 OPTIONAL(flags, MDStringField, ); \ 4465 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4466 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4467 OPTIONAL(emissionKind, EmissionKindField, ); \ 4468 OPTIONAL(enums, MDField, ); \ 4469 OPTIONAL(retainedTypes, MDField, ); \ 4470 OPTIONAL(globals, MDField, ); \ 4471 OPTIONAL(imports, MDField, ); \ 4472 OPTIONAL(macros, MDField, ); \ 4473 OPTIONAL(dwoId, MDUnsignedField, ); \ 4474 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4475 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4476 OPTIONAL(nameTableKind, NameTableKindField, ); 4477 PARSE_MD_FIELDS(); 4478 #undef VISIT_MD_FIELDS 4479 4480 Result = DICompileUnit::getDistinct( 4481 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4482 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4483 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4484 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val); 4485 return false; 4486 } 4487 4488 /// ParseDISubprogram: 4489 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4490 /// file: !1, line: 7, type: !2, isLocal: false, 4491 /// isDefinition: true, scopeLine: 8, containingType: !3, 4492 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4493 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4494 /// isOptimized: false, templateParams: !4, declaration: !5, 4495 /// retainedNodes: !6, thrownTypes: !7) 4496 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4497 auto Loc = Lex.getLoc(); 4498 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4499 OPTIONAL(scope, MDField, ); \ 4500 OPTIONAL(name, MDStringField, ); \ 4501 OPTIONAL(linkageName, MDStringField, ); \ 4502 OPTIONAL(file, MDField, ); \ 4503 OPTIONAL(line, LineField, ); \ 4504 OPTIONAL(type, MDField, ); \ 4505 OPTIONAL(isLocal, MDBoolField, ); \ 4506 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4507 OPTIONAL(scopeLine, LineField, ); \ 4508 OPTIONAL(containingType, MDField, ); \ 4509 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4510 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4511 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4512 OPTIONAL(flags, DIFlagField, ); \ 4513 OPTIONAL(isOptimized, MDBoolField, ); \ 4514 OPTIONAL(unit, MDField, ); \ 4515 OPTIONAL(templateParams, MDField, ); \ 4516 OPTIONAL(declaration, MDField, ); \ 4517 OPTIONAL(retainedNodes, MDField, ); \ 4518 OPTIONAL(thrownTypes, MDField, ); 4519 PARSE_MD_FIELDS(); 4520 #undef VISIT_MD_FIELDS 4521 4522 if (isDefinition.Val && !IsDistinct) 4523 return Lex.Error( 4524 Loc, 4525 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 4526 4527 Result = GET_OR_DISTINCT( 4528 DISubprogram, 4529 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4530 type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val, 4531 containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val, 4532 flags.Val, isOptimized.Val, unit.Val, templateParams.Val, 4533 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4534 return false; 4535 } 4536 4537 /// ParseDILexicalBlock: 4538 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4539 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4540 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4541 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4542 OPTIONAL(file, MDField, ); \ 4543 OPTIONAL(line, LineField, ); \ 4544 OPTIONAL(column, ColumnField, ); 4545 PARSE_MD_FIELDS(); 4546 #undef VISIT_MD_FIELDS 4547 4548 Result = GET_OR_DISTINCT( 4549 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4550 return false; 4551 } 4552 4553 /// ParseDILexicalBlockFile: 4554 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4555 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4556 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4557 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4558 OPTIONAL(file, MDField, ); \ 4559 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4560 PARSE_MD_FIELDS(); 4561 #undef VISIT_MD_FIELDS 4562 4563 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4564 (Context, scope.Val, file.Val, discriminator.Val)); 4565 return false; 4566 } 4567 4568 /// ParseDINamespace: 4569 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4570 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4571 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4572 REQUIRED(scope, MDField, ); \ 4573 OPTIONAL(name, MDStringField, ); \ 4574 OPTIONAL(exportSymbols, MDBoolField, ); 4575 PARSE_MD_FIELDS(); 4576 #undef VISIT_MD_FIELDS 4577 4578 Result = GET_OR_DISTINCT(DINamespace, 4579 (Context, scope.Val, name.Val, exportSymbols.Val)); 4580 return false; 4581 } 4582 4583 /// ParseDIMacro: 4584 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4585 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4586 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4587 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4588 OPTIONAL(line, LineField, ); \ 4589 REQUIRED(name, MDStringField, ); \ 4590 OPTIONAL(value, MDStringField, ); 4591 PARSE_MD_FIELDS(); 4592 #undef VISIT_MD_FIELDS 4593 4594 Result = GET_OR_DISTINCT(DIMacro, 4595 (Context, type.Val, line.Val, name.Val, value.Val)); 4596 return false; 4597 } 4598 4599 /// ParseDIMacroFile: 4600 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4601 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4602 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4603 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4604 OPTIONAL(line, LineField, ); \ 4605 REQUIRED(file, MDField, ); \ 4606 OPTIONAL(nodes, MDField, ); 4607 PARSE_MD_FIELDS(); 4608 #undef VISIT_MD_FIELDS 4609 4610 Result = GET_OR_DISTINCT(DIMacroFile, 4611 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4612 return false; 4613 } 4614 4615 /// ParseDIModule: 4616 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4617 /// includePath: "/usr/include", isysroot: "/") 4618 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4619 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4620 REQUIRED(scope, MDField, ); \ 4621 REQUIRED(name, MDStringField, ); \ 4622 OPTIONAL(configMacros, MDStringField, ); \ 4623 OPTIONAL(includePath, MDStringField, ); \ 4624 OPTIONAL(isysroot, MDStringField, ); 4625 PARSE_MD_FIELDS(); 4626 #undef VISIT_MD_FIELDS 4627 4628 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4629 configMacros.Val, includePath.Val, isysroot.Val)); 4630 return false; 4631 } 4632 4633 /// ParseDITemplateTypeParameter: 4634 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4635 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4636 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4637 OPTIONAL(name, MDStringField, ); \ 4638 REQUIRED(type, MDField, ); 4639 PARSE_MD_FIELDS(); 4640 #undef VISIT_MD_FIELDS 4641 4642 Result = 4643 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4644 return false; 4645 } 4646 4647 /// ParseDITemplateValueParameter: 4648 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4649 /// name: "V", type: !1, value: i32 7) 4650 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4651 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4652 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4653 OPTIONAL(name, MDStringField, ); \ 4654 OPTIONAL(type, MDField, ); \ 4655 REQUIRED(value, MDField, ); 4656 PARSE_MD_FIELDS(); 4657 #undef VISIT_MD_FIELDS 4658 4659 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4660 (Context, tag.Val, name.Val, type.Val, value.Val)); 4661 return false; 4662 } 4663 4664 /// ParseDIGlobalVariable: 4665 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4666 /// file: !1, line: 7, type: !2, isLocal: false, 4667 /// isDefinition: true, templateParams: !3, 4668 /// declaration: !4, align: 8) 4669 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4670 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4671 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4672 OPTIONAL(scope, MDField, ); \ 4673 OPTIONAL(linkageName, MDStringField, ); \ 4674 OPTIONAL(file, MDField, ); \ 4675 OPTIONAL(line, LineField, ); \ 4676 OPTIONAL(type, MDField, ); \ 4677 OPTIONAL(isLocal, MDBoolField, ); \ 4678 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4679 OPTIONAL(templateParams, MDField, ); \ 4680 OPTIONAL(declaration, MDField, ); \ 4681 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4682 PARSE_MD_FIELDS(); 4683 #undef VISIT_MD_FIELDS 4684 4685 Result = 4686 GET_OR_DISTINCT(DIGlobalVariable, 4687 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4688 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4689 declaration.Val, templateParams.Val, align.Val)); 4690 return false; 4691 } 4692 4693 /// ParseDILocalVariable: 4694 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4695 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4696 /// align: 8) 4697 /// ::= !DILocalVariable(scope: !0, name: "foo", 4698 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4699 /// align: 8) 4700 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4701 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4702 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4703 OPTIONAL(name, MDStringField, ); \ 4704 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4705 OPTIONAL(file, MDField, ); \ 4706 OPTIONAL(line, LineField, ); \ 4707 OPTIONAL(type, MDField, ); \ 4708 OPTIONAL(flags, DIFlagField, ); \ 4709 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4710 PARSE_MD_FIELDS(); 4711 #undef VISIT_MD_FIELDS 4712 4713 Result = GET_OR_DISTINCT(DILocalVariable, 4714 (Context, scope.Val, name.Val, file.Val, line.Val, 4715 type.Val, arg.Val, flags.Val, align.Val)); 4716 return false; 4717 } 4718 4719 /// ParseDILabel: 4720 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4721 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 4722 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4723 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4724 REQUIRED(name, MDStringField, ); \ 4725 REQUIRED(file, MDField, ); \ 4726 REQUIRED(line, LineField, ); 4727 PARSE_MD_FIELDS(); 4728 #undef VISIT_MD_FIELDS 4729 4730 Result = GET_OR_DISTINCT(DILabel, 4731 (Context, scope.Val, name.Val, file.Val, line.Val)); 4732 return false; 4733 } 4734 4735 /// ParseDIExpression: 4736 /// ::= !DIExpression(0, 7, -1) 4737 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4738 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4739 Lex.Lex(); 4740 4741 if (ParseToken(lltok::lparen, "expected '(' here")) 4742 return true; 4743 4744 SmallVector<uint64_t, 8> Elements; 4745 if (Lex.getKind() != lltok::rparen) 4746 do { 4747 if (Lex.getKind() == lltok::DwarfOp) { 4748 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4749 Lex.Lex(); 4750 Elements.push_back(Op); 4751 continue; 4752 } 4753 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4754 } 4755 4756 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4757 return TokError("expected unsigned integer"); 4758 4759 auto &U = Lex.getAPSIntVal(); 4760 if (U.ugt(UINT64_MAX)) 4761 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4762 Elements.push_back(U.getZExtValue()); 4763 Lex.Lex(); 4764 } while (EatIfPresent(lltok::comma)); 4765 4766 if (ParseToken(lltok::rparen, "expected ')' here")) 4767 return true; 4768 4769 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4770 return false; 4771 } 4772 4773 /// ParseDIGlobalVariableExpression: 4774 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4775 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4776 bool IsDistinct) { 4777 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4778 REQUIRED(var, MDField, ); \ 4779 REQUIRED(expr, MDField, ); 4780 PARSE_MD_FIELDS(); 4781 #undef VISIT_MD_FIELDS 4782 4783 Result = 4784 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4785 return false; 4786 } 4787 4788 /// ParseDIObjCProperty: 4789 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4790 /// getter: "getFoo", attributes: 7, type: !2) 4791 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4792 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4793 OPTIONAL(name, MDStringField, ); \ 4794 OPTIONAL(file, MDField, ); \ 4795 OPTIONAL(line, LineField, ); \ 4796 OPTIONAL(setter, MDStringField, ); \ 4797 OPTIONAL(getter, MDStringField, ); \ 4798 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4799 OPTIONAL(type, MDField, ); 4800 PARSE_MD_FIELDS(); 4801 #undef VISIT_MD_FIELDS 4802 4803 Result = GET_OR_DISTINCT(DIObjCProperty, 4804 (Context, name.Val, file.Val, line.Val, setter.Val, 4805 getter.Val, attributes.Val, type.Val)); 4806 return false; 4807 } 4808 4809 /// ParseDIImportedEntity: 4810 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4811 /// line: 7, name: "foo") 4812 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4813 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4814 REQUIRED(tag, DwarfTagField, ); \ 4815 REQUIRED(scope, MDField, ); \ 4816 OPTIONAL(entity, MDField, ); \ 4817 OPTIONAL(file, MDField, ); \ 4818 OPTIONAL(line, LineField, ); \ 4819 OPTIONAL(name, MDStringField, ); 4820 PARSE_MD_FIELDS(); 4821 #undef VISIT_MD_FIELDS 4822 4823 Result = GET_OR_DISTINCT( 4824 DIImportedEntity, 4825 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 4826 return false; 4827 } 4828 4829 #undef PARSE_MD_FIELD 4830 #undef NOP_FIELD 4831 #undef REQUIRE_FIELD 4832 #undef DECLARE_FIELD 4833 4834 /// ParseMetadataAsValue 4835 /// ::= metadata i32 %local 4836 /// ::= metadata i32 @global 4837 /// ::= metadata i32 7 4838 /// ::= metadata !0 4839 /// ::= metadata !{...} 4840 /// ::= metadata !"string" 4841 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4842 // Note: the type 'metadata' has already been parsed. 4843 Metadata *MD; 4844 if (ParseMetadata(MD, &PFS)) 4845 return true; 4846 4847 V = MetadataAsValue::get(Context, MD); 4848 return false; 4849 } 4850 4851 /// ParseValueAsMetadata 4852 /// ::= i32 %local 4853 /// ::= i32 @global 4854 /// ::= i32 7 4855 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4856 PerFunctionState *PFS) { 4857 Type *Ty; 4858 LocTy Loc; 4859 if (ParseType(Ty, TypeMsg, Loc)) 4860 return true; 4861 if (Ty->isMetadataTy()) 4862 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4863 4864 Value *V; 4865 if (ParseValue(Ty, V, PFS)) 4866 return true; 4867 4868 MD = ValueAsMetadata::get(V); 4869 return false; 4870 } 4871 4872 /// ParseMetadata 4873 /// ::= i32 %local 4874 /// ::= i32 @global 4875 /// ::= i32 7 4876 /// ::= !42 4877 /// ::= !{...} 4878 /// ::= !"string" 4879 /// ::= !DILocation(...) 4880 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4881 if (Lex.getKind() == lltok::MetadataVar) { 4882 MDNode *N; 4883 if (ParseSpecializedMDNode(N)) 4884 return true; 4885 MD = N; 4886 return false; 4887 } 4888 4889 // ValueAsMetadata: 4890 // <type> <value> 4891 if (Lex.getKind() != lltok::exclaim) 4892 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4893 4894 // '!'. 4895 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4896 Lex.Lex(); 4897 4898 // MDString: 4899 // ::= '!' STRINGCONSTANT 4900 if (Lex.getKind() == lltok::StringConstant) { 4901 MDString *S; 4902 if (ParseMDString(S)) 4903 return true; 4904 MD = S; 4905 return false; 4906 } 4907 4908 // MDNode: 4909 // !{ ... } 4910 // !7 4911 MDNode *N; 4912 if (ParseMDNodeTail(N)) 4913 return true; 4914 MD = N; 4915 return false; 4916 } 4917 4918 //===----------------------------------------------------------------------===// 4919 // Function Parsing. 4920 //===----------------------------------------------------------------------===// 4921 4922 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4923 PerFunctionState *PFS, bool IsCall) { 4924 if (Ty->isFunctionTy()) 4925 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4926 4927 switch (ID.Kind) { 4928 case ValID::t_LocalID: 4929 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4930 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 4931 return V == nullptr; 4932 case ValID::t_LocalName: 4933 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4934 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 4935 return V == nullptr; 4936 case ValID::t_InlineAsm: { 4937 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4938 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4939 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4940 (ID.UIntVal >> 1) & 1, 4941 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4942 return false; 4943 } 4944 case ValID::t_GlobalName: 4945 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 4946 return V == nullptr; 4947 case ValID::t_GlobalID: 4948 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 4949 return V == nullptr; 4950 case ValID::t_APSInt: 4951 if (!Ty->isIntegerTy()) 4952 return Error(ID.Loc, "integer constant must have integer type"); 4953 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4954 V = ConstantInt::get(Context, ID.APSIntVal); 4955 return false; 4956 case ValID::t_APFloat: 4957 if (!Ty->isFloatingPointTy() || 4958 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4959 return Error(ID.Loc, "floating point constant invalid for type"); 4960 4961 // The lexer has no type info, so builds all half, float, and double FP 4962 // constants as double. Fix this here. Long double does not need this. 4963 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 4964 bool Ignored; 4965 if (Ty->isHalfTy()) 4966 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 4967 &Ignored); 4968 else if (Ty->isFloatTy()) 4969 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 4970 &Ignored); 4971 } 4972 V = ConstantFP::get(Context, ID.APFloatVal); 4973 4974 if (V->getType() != Ty) 4975 return Error(ID.Loc, "floating point constant does not have type '" + 4976 getTypeString(Ty) + "'"); 4977 4978 return false; 4979 case ValID::t_Null: 4980 if (!Ty->isPointerTy()) 4981 return Error(ID.Loc, "null must be a pointer type"); 4982 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4983 return false; 4984 case ValID::t_Undef: 4985 // FIXME: LabelTy should not be a first-class type. 4986 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4987 return Error(ID.Loc, "invalid type for undef constant"); 4988 V = UndefValue::get(Ty); 4989 return false; 4990 case ValID::t_EmptyArray: 4991 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4992 return Error(ID.Loc, "invalid empty array initializer"); 4993 V = UndefValue::get(Ty); 4994 return false; 4995 case ValID::t_Zero: 4996 // FIXME: LabelTy should not be a first-class type. 4997 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4998 return Error(ID.Loc, "invalid type for null constant"); 4999 V = Constant::getNullValue(Ty); 5000 return false; 5001 case ValID::t_None: 5002 if (!Ty->isTokenTy()) 5003 return Error(ID.Loc, "invalid type for none constant"); 5004 V = Constant::getNullValue(Ty); 5005 return false; 5006 case ValID::t_Constant: 5007 if (ID.ConstantVal->getType() != Ty) 5008 return Error(ID.Loc, "constant expression type mismatch"); 5009 5010 V = ID.ConstantVal; 5011 return false; 5012 case ValID::t_ConstantStruct: 5013 case ValID::t_PackedConstantStruct: 5014 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5015 if (ST->getNumElements() != ID.UIntVal) 5016 return Error(ID.Loc, 5017 "initializer with struct type has wrong # elements"); 5018 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5019 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 5020 5021 // Verify that the elements are compatible with the structtype. 5022 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5023 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5024 return Error(ID.Loc, "element " + Twine(i) + 5025 " of struct initializer doesn't match struct element type"); 5026 5027 V = ConstantStruct::get( 5028 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5029 } else 5030 return Error(ID.Loc, "constant expression type mismatch"); 5031 return false; 5032 } 5033 llvm_unreachable("Invalid ValID"); 5034 } 5035 5036 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5037 C = nullptr; 5038 ValID ID; 5039 auto Loc = Lex.getLoc(); 5040 if (ParseValID(ID, /*PFS=*/nullptr)) 5041 return true; 5042 switch (ID.Kind) { 5043 case ValID::t_APSInt: 5044 case ValID::t_APFloat: 5045 case ValID::t_Undef: 5046 case ValID::t_Constant: 5047 case ValID::t_ConstantStruct: 5048 case ValID::t_PackedConstantStruct: { 5049 Value *V; 5050 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5051 return true; 5052 assert(isa<Constant>(V) && "Expected a constant value"); 5053 C = cast<Constant>(V); 5054 return false; 5055 } 5056 case ValID::t_Null: 5057 C = Constant::getNullValue(Ty); 5058 return false; 5059 default: 5060 return Error(Loc, "expected a constant value"); 5061 } 5062 } 5063 5064 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5065 V = nullptr; 5066 ValID ID; 5067 return ParseValID(ID, PFS) || 5068 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5069 } 5070 5071 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5072 Type *Ty = nullptr; 5073 return ParseType(Ty) || 5074 ParseValue(Ty, V, PFS); 5075 } 5076 5077 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5078 PerFunctionState &PFS) { 5079 Value *V; 5080 Loc = Lex.getLoc(); 5081 if (ParseTypeAndValue(V, PFS)) return true; 5082 if (!isa<BasicBlock>(V)) 5083 return Error(Loc, "expected a basic block"); 5084 BB = cast<BasicBlock>(V); 5085 return false; 5086 } 5087 5088 /// FunctionHeader 5089 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5090 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5091 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5092 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5093 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5094 // Parse the linkage. 5095 LocTy LinkageLoc = Lex.getLoc(); 5096 unsigned Linkage; 5097 unsigned Visibility; 5098 unsigned DLLStorageClass; 5099 bool DSOLocal; 5100 AttrBuilder RetAttrs; 5101 unsigned CC; 5102 bool HasLinkage; 5103 Type *RetType = nullptr; 5104 LocTy RetTypeLoc = Lex.getLoc(); 5105 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5106 DSOLocal) || 5107 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5108 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5109 return true; 5110 5111 // Verify that the linkage is ok. 5112 switch ((GlobalValue::LinkageTypes)Linkage) { 5113 case GlobalValue::ExternalLinkage: 5114 break; // always ok. 5115 case GlobalValue::ExternalWeakLinkage: 5116 if (isDefine) 5117 return Error(LinkageLoc, "invalid linkage for function definition"); 5118 break; 5119 case GlobalValue::PrivateLinkage: 5120 case GlobalValue::InternalLinkage: 5121 case GlobalValue::AvailableExternallyLinkage: 5122 case GlobalValue::LinkOnceAnyLinkage: 5123 case GlobalValue::LinkOnceODRLinkage: 5124 case GlobalValue::WeakAnyLinkage: 5125 case GlobalValue::WeakODRLinkage: 5126 if (!isDefine) 5127 return Error(LinkageLoc, "invalid linkage for function declaration"); 5128 break; 5129 case GlobalValue::AppendingLinkage: 5130 case GlobalValue::CommonLinkage: 5131 return Error(LinkageLoc, "invalid function linkage type"); 5132 } 5133 5134 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5135 return Error(LinkageLoc, 5136 "symbol with local linkage must have default visibility"); 5137 5138 if (!FunctionType::isValidReturnType(RetType)) 5139 return Error(RetTypeLoc, "invalid function return type"); 5140 5141 LocTy NameLoc = Lex.getLoc(); 5142 5143 std::string FunctionName; 5144 if (Lex.getKind() == lltok::GlobalVar) { 5145 FunctionName = Lex.getStrVal(); 5146 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5147 unsigned NameID = Lex.getUIntVal(); 5148 5149 if (NameID != NumberedVals.size()) 5150 return TokError("function expected to be numbered '%" + 5151 Twine(NumberedVals.size()) + "'"); 5152 } else { 5153 return TokError("expected function name"); 5154 } 5155 5156 Lex.Lex(); 5157 5158 if (Lex.getKind() != lltok::lparen) 5159 return TokError("expected '(' in function argument list"); 5160 5161 SmallVector<ArgInfo, 8> ArgList; 5162 bool isVarArg; 5163 AttrBuilder FuncAttrs; 5164 std::vector<unsigned> FwdRefAttrGrps; 5165 LocTy BuiltinLoc; 5166 std::string Section; 5167 unsigned Alignment; 5168 std::string GC; 5169 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5170 unsigned AddrSpace = 0; 5171 Constant *Prefix = nullptr; 5172 Constant *Prologue = nullptr; 5173 Constant *PersonalityFn = nullptr; 5174 Comdat *C; 5175 5176 if (ParseArgumentList(ArgList, isVarArg) || 5177 ParseOptionalUnnamedAddr(UnnamedAddr) || 5178 ParseOptionalProgramAddrSpace(AddrSpace) || 5179 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5180 BuiltinLoc) || 5181 (EatIfPresent(lltok::kw_section) && 5182 ParseStringConstant(Section)) || 5183 parseOptionalComdat(FunctionName, C) || 5184 ParseOptionalAlignment(Alignment) || 5185 (EatIfPresent(lltok::kw_gc) && 5186 ParseStringConstant(GC)) || 5187 (EatIfPresent(lltok::kw_prefix) && 5188 ParseGlobalTypeAndValue(Prefix)) || 5189 (EatIfPresent(lltok::kw_prologue) && 5190 ParseGlobalTypeAndValue(Prologue)) || 5191 (EatIfPresent(lltok::kw_personality) && 5192 ParseGlobalTypeAndValue(PersonalityFn))) 5193 return true; 5194 5195 if (FuncAttrs.contains(Attribute::Builtin)) 5196 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5197 5198 // If the alignment was parsed as an attribute, move to the alignment field. 5199 if (FuncAttrs.hasAlignmentAttr()) { 5200 Alignment = FuncAttrs.getAlignment(); 5201 FuncAttrs.removeAttribute(Attribute::Alignment); 5202 } 5203 5204 // Okay, if we got here, the function is syntactically valid. Convert types 5205 // and do semantic checks. 5206 std::vector<Type*> ParamTypeList; 5207 SmallVector<AttributeSet, 8> Attrs; 5208 5209 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5210 ParamTypeList.push_back(ArgList[i].Ty); 5211 Attrs.push_back(ArgList[i].Attrs); 5212 } 5213 5214 AttributeList PAL = 5215 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5216 AttributeSet::get(Context, RetAttrs), Attrs); 5217 5218 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5219 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5220 5221 FunctionType *FT = 5222 FunctionType::get(RetType, ParamTypeList, isVarArg); 5223 PointerType *PFT = PointerType::get(FT, AddrSpace); 5224 5225 Fn = nullptr; 5226 if (!FunctionName.empty()) { 5227 // If this was a definition of a forward reference, remove the definition 5228 // from the forward reference table and fill in the forward ref. 5229 auto FRVI = ForwardRefVals.find(FunctionName); 5230 if (FRVI != ForwardRefVals.end()) { 5231 Fn = M->getFunction(FunctionName); 5232 if (!Fn) 5233 return Error(FRVI->second.second, "invalid forward reference to " 5234 "function as global value!"); 5235 if (Fn->getType() != PFT) 5236 return Error(FRVI->second.second, "invalid forward reference to " 5237 "function '" + FunctionName + "' with wrong type: " 5238 "expected '" + getTypeString(PFT) + "' but was '" + 5239 getTypeString(Fn->getType()) + "'"); 5240 ForwardRefVals.erase(FRVI); 5241 } else if ((Fn = M->getFunction(FunctionName))) { 5242 // Reject redefinitions. 5243 return Error(NameLoc, "invalid redefinition of function '" + 5244 FunctionName + "'"); 5245 } else if (M->getNamedValue(FunctionName)) { 5246 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5247 } 5248 5249 } else { 5250 // If this is a definition of a forward referenced function, make sure the 5251 // types agree. 5252 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5253 if (I != ForwardRefValIDs.end()) { 5254 Fn = cast<Function>(I->second.first); 5255 if (Fn->getType() != PFT) 5256 return Error(NameLoc, "type of definition and forward reference of '@" + 5257 Twine(NumberedVals.size()) + "' disagree: " 5258 "expected '" + getTypeString(PFT) + "' but was '" + 5259 getTypeString(Fn->getType()) + "'"); 5260 ForwardRefValIDs.erase(I); 5261 } 5262 } 5263 5264 if (!Fn) 5265 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5266 FunctionName, M); 5267 else // Move the forward-reference to the correct spot in the module. 5268 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5269 5270 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5271 5272 if (FunctionName.empty()) 5273 NumberedVals.push_back(Fn); 5274 5275 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5276 maybeSetDSOLocal(DSOLocal, *Fn); 5277 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5278 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5279 Fn->setCallingConv(CC); 5280 Fn->setAttributes(PAL); 5281 Fn->setUnnamedAddr(UnnamedAddr); 5282 Fn->setAlignment(Alignment); 5283 Fn->setSection(Section); 5284 Fn->setComdat(C); 5285 Fn->setPersonalityFn(PersonalityFn); 5286 if (!GC.empty()) Fn->setGC(GC); 5287 Fn->setPrefixData(Prefix); 5288 Fn->setPrologueData(Prologue); 5289 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5290 5291 // Add all of the arguments we parsed to the function. 5292 Function::arg_iterator ArgIt = Fn->arg_begin(); 5293 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5294 // If the argument has a name, insert it into the argument symbol table. 5295 if (ArgList[i].Name.empty()) continue; 5296 5297 // Set the name, if it conflicted, it will be auto-renamed. 5298 ArgIt->setName(ArgList[i].Name); 5299 5300 if (ArgIt->getName() != ArgList[i].Name) 5301 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5302 ArgList[i].Name + "'"); 5303 } 5304 5305 if (isDefine) 5306 return false; 5307 5308 // Check the declaration has no block address forward references. 5309 ValID ID; 5310 if (FunctionName.empty()) { 5311 ID.Kind = ValID::t_GlobalID; 5312 ID.UIntVal = NumberedVals.size() - 1; 5313 } else { 5314 ID.Kind = ValID::t_GlobalName; 5315 ID.StrVal = FunctionName; 5316 } 5317 auto Blocks = ForwardRefBlockAddresses.find(ID); 5318 if (Blocks != ForwardRefBlockAddresses.end()) 5319 return Error(Blocks->first.Loc, 5320 "cannot take blockaddress inside a declaration"); 5321 return false; 5322 } 5323 5324 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5325 ValID ID; 5326 if (FunctionNumber == -1) { 5327 ID.Kind = ValID::t_GlobalName; 5328 ID.StrVal = F.getName(); 5329 } else { 5330 ID.Kind = ValID::t_GlobalID; 5331 ID.UIntVal = FunctionNumber; 5332 } 5333 5334 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5335 if (Blocks == P.ForwardRefBlockAddresses.end()) 5336 return false; 5337 5338 for (const auto &I : Blocks->second) { 5339 const ValID &BBID = I.first; 5340 GlobalValue *GV = I.second; 5341 5342 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5343 "Expected local id or name"); 5344 BasicBlock *BB; 5345 if (BBID.Kind == ValID::t_LocalName) 5346 BB = GetBB(BBID.StrVal, BBID.Loc); 5347 else 5348 BB = GetBB(BBID.UIntVal, BBID.Loc); 5349 if (!BB) 5350 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5351 5352 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5353 GV->eraseFromParent(); 5354 } 5355 5356 P.ForwardRefBlockAddresses.erase(Blocks); 5357 return false; 5358 } 5359 5360 /// ParseFunctionBody 5361 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5362 bool LLParser::ParseFunctionBody(Function &Fn) { 5363 if (Lex.getKind() != lltok::lbrace) 5364 return TokError("expected '{' in function body"); 5365 Lex.Lex(); // eat the {. 5366 5367 int FunctionNumber = -1; 5368 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5369 5370 PerFunctionState PFS(*this, Fn, FunctionNumber); 5371 5372 // Resolve block addresses and allow basic blocks to be forward-declared 5373 // within this function. 5374 if (PFS.resolveForwardRefBlockAddresses()) 5375 return true; 5376 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5377 5378 // We need at least one basic block. 5379 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5380 return TokError("function body requires at least one basic block"); 5381 5382 while (Lex.getKind() != lltok::rbrace && 5383 Lex.getKind() != lltok::kw_uselistorder) 5384 if (ParseBasicBlock(PFS)) return true; 5385 5386 while (Lex.getKind() != lltok::rbrace) 5387 if (ParseUseListOrder(&PFS)) 5388 return true; 5389 5390 // Eat the }. 5391 Lex.Lex(); 5392 5393 // Verify function is ok. 5394 return PFS.FinishFunction(); 5395 } 5396 5397 /// ParseBasicBlock 5398 /// ::= LabelStr? Instruction* 5399 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5400 // If this basic block starts out with a name, remember it. 5401 std::string Name; 5402 LocTy NameLoc = Lex.getLoc(); 5403 if (Lex.getKind() == lltok::LabelStr) { 5404 Name = Lex.getStrVal(); 5405 Lex.Lex(); 5406 } 5407 5408 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 5409 if (!BB) 5410 return Error(NameLoc, 5411 "unable to create block named '" + Name + "'"); 5412 5413 std::string NameStr; 5414 5415 // Parse the instructions in this block until we get a terminator. 5416 Instruction *Inst; 5417 do { 5418 // This instruction may have three possibilities for a name: a) none 5419 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5420 LocTy NameLoc = Lex.getLoc(); 5421 int NameID = -1; 5422 NameStr = ""; 5423 5424 if (Lex.getKind() == lltok::LocalVarID) { 5425 NameID = Lex.getUIntVal(); 5426 Lex.Lex(); 5427 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5428 return true; 5429 } else if (Lex.getKind() == lltok::LocalVar) { 5430 NameStr = Lex.getStrVal(); 5431 Lex.Lex(); 5432 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5433 return true; 5434 } 5435 5436 switch (ParseInstruction(Inst, BB, PFS)) { 5437 default: llvm_unreachable("Unknown ParseInstruction result!"); 5438 case InstError: return true; 5439 case InstNormal: 5440 BB->getInstList().push_back(Inst); 5441 5442 // With a normal result, we check to see if the instruction is followed by 5443 // a comma and metadata. 5444 if (EatIfPresent(lltok::comma)) 5445 if (ParseInstructionMetadata(*Inst)) 5446 return true; 5447 break; 5448 case InstExtraComma: 5449 BB->getInstList().push_back(Inst); 5450 5451 // If the instruction parser ate an extra comma at the end of it, it 5452 // *must* be followed by metadata. 5453 if (ParseInstructionMetadata(*Inst)) 5454 return true; 5455 break; 5456 } 5457 5458 // Set the name on the instruction. 5459 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5460 } while (!Inst->isTerminator()); 5461 5462 return false; 5463 } 5464 5465 //===----------------------------------------------------------------------===// 5466 // Instruction Parsing. 5467 //===----------------------------------------------------------------------===// 5468 5469 /// ParseInstruction - Parse one of the many different instructions. 5470 /// 5471 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5472 PerFunctionState &PFS) { 5473 lltok::Kind Token = Lex.getKind(); 5474 if (Token == lltok::Eof) 5475 return TokError("found end of file when expecting more instructions"); 5476 LocTy Loc = Lex.getLoc(); 5477 unsigned KeywordVal = Lex.getUIntVal(); 5478 Lex.Lex(); // Eat the keyword. 5479 5480 switch (Token) { 5481 default: return Error(Loc, "expected instruction opcode"); 5482 // Terminator Instructions. 5483 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5484 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5485 case lltok::kw_br: return ParseBr(Inst, PFS); 5486 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5487 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5488 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5489 case lltok::kw_resume: return ParseResume(Inst, PFS); 5490 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5491 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5492 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5493 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5494 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5495 // Binary Operators. 5496 case lltok::kw_add: 5497 case lltok::kw_sub: 5498 case lltok::kw_mul: 5499 case lltok::kw_shl: { 5500 bool NUW = EatIfPresent(lltok::kw_nuw); 5501 bool NSW = EatIfPresent(lltok::kw_nsw); 5502 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5503 5504 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5505 5506 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5507 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5508 return false; 5509 } 5510 case lltok::kw_fadd: 5511 case lltok::kw_fsub: 5512 case lltok::kw_fmul: 5513 case lltok::kw_fdiv: 5514 case lltok::kw_frem: { 5515 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5516 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 5517 if (Res != 0) 5518 return Res; 5519 if (FMF.any()) 5520 Inst->setFastMathFlags(FMF); 5521 return 0; 5522 } 5523 5524 case lltok::kw_sdiv: 5525 case lltok::kw_udiv: 5526 case lltok::kw_lshr: 5527 case lltok::kw_ashr: { 5528 bool Exact = EatIfPresent(lltok::kw_exact); 5529 5530 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5531 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5532 return false; 5533 } 5534 5535 case lltok::kw_urem: 5536 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5537 case lltok::kw_and: 5538 case lltok::kw_or: 5539 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5540 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5541 case lltok::kw_fcmp: { 5542 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5543 int Res = ParseCompare(Inst, PFS, KeywordVal); 5544 if (Res != 0) 5545 return Res; 5546 if (FMF.any()) 5547 Inst->setFastMathFlags(FMF); 5548 return 0; 5549 } 5550 5551 // Casts. 5552 case lltok::kw_trunc: 5553 case lltok::kw_zext: 5554 case lltok::kw_sext: 5555 case lltok::kw_fptrunc: 5556 case lltok::kw_fpext: 5557 case lltok::kw_bitcast: 5558 case lltok::kw_addrspacecast: 5559 case lltok::kw_uitofp: 5560 case lltok::kw_sitofp: 5561 case lltok::kw_fptoui: 5562 case lltok::kw_fptosi: 5563 case lltok::kw_inttoptr: 5564 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5565 // Other. 5566 case lltok::kw_select: return ParseSelect(Inst, PFS); 5567 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5568 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5569 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5570 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5571 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5572 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5573 // Call. 5574 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5575 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5576 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5577 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5578 // Memory. 5579 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5580 case lltok::kw_load: return ParseLoad(Inst, PFS); 5581 case lltok::kw_store: return ParseStore(Inst, PFS); 5582 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5583 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5584 case lltok::kw_fence: return ParseFence(Inst, PFS); 5585 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5586 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5587 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5588 } 5589 } 5590 5591 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5592 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5593 if (Opc == Instruction::FCmp) { 5594 switch (Lex.getKind()) { 5595 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5596 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5597 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5598 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5599 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5600 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5601 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5602 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5603 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5604 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5605 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5606 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5607 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5608 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5609 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5610 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5611 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5612 } 5613 } else { 5614 switch (Lex.getKind()) { 5615 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5616 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5617 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5618 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5619 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5620 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5621 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5622 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5623 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5624 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5625 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5626 } 5627 } 5628 Lex.Lex(); 5629 return false; 5630 } 5631 5632 //===----------------------------------------------------------------------===// 5633 // Terminator Instructions. 5634 //===----------------------------------------------------------------------===// 5635 5636 /// ParseRet - Parse a return instruction. 5637 /// ::= 'ret' void (',' !dbg, !1)* 5638 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5639 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5640 PerFunctionState &PFS) { 5641 SMLoc TypeLoc = Lex.getLoc(); 5642 Type *Ty = nullptr; 5643 if (ParseType(Ty, true /*void allowed*/)) return true; 5644 5645 Type *ResType = PFS.getFunction().getReturnType(); 5646 5647 if (Ty->isVoidTy()) { 5648 if (!ResType->isVoidTy()) 5649 return Error(TypeLoc, "value doesn't match function result type '" + 5650 getTypeString(ResType) + "'"); 5651 5652 Inst = ReturnInst::Create(Context); 5653 return false; 5654 } 5655 5656 Value *RV; 5657 if (ParseValue(Ty, RV, PFS)) return true; 5658 5659 if (ResType != RV->getType()) 5660 return Error(TypeLoc, "value doesn't match function result type '" + 5661 getTypeString(ResType) + "'"); 5662 5663 Inst = ReturnInst::Create(Context, RV); 5664 return false; 5665 } 5666 5667 /// ParseBr 5668 /// ::= 'br' TypeAndValue 5669 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5670 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5671 LocTy Loc, Loc2; 5672 Value *Op0; 5673 BasicBlock *Op1, *Op2; 5674 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5675 5676 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5677 Inst = BranchInst::Create(BB); 5678 return false; 5679 } 5680 5681 if (Op0->getType() != Type::getInt1Ty(Context)) 5682 return Error(Loc, "branch condition must have 'i1' type"); 5683 5684 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5685 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5686 ParseToken(lltok::comma, "expected ',' after true destination") || 5687 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5688 return true; 5689 5690 Inst = BranchInst::Create(Op1, Op2, Op0); 5691 return false; 5692 } 5693 5694 /// ParseSwitch 5695 /// Instruction 5696 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5697 /// JumpTable 5698 /// ::= (TypeAndValue ',' TypeAndValue)* 5699 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5700 LocTy CondLoc, BBLoc; 5701 Value *Cond; 5702 BasicBlock *DefaultBB; 5703 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5704 ParseToken(lltok::comma, "expected ',' after switch condition") || 5705 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5706 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5707 return true; 5708 5709 if (!Cond->getType()->isIntegerTy()) 5710 return Error(CondLoc, "switch condition must have integer type"); 5711 5712 // Parse the jump table pairs. 5713 SmallPtrSet<Value*, 32> SeenCases; 5714 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5715 while (Lex.getKind() != lltok::rsquare) { 5716 Value *Constant; 5717 BasicBlock *DestBB; 5718 5719 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5720 ParseToken(lltok::comma, "expected ',' after case value") || 5721 ParseTypeAndBasicBlock(DestBB, PFS)) 5722 return true; 5723 5724 if (!SeenCases.insert(Constant).second) 5725 return Error(CondLoc, "duplicate case value in switch"); 5726 if (!isa<ConstantInt>(Constant)) 5727 return Error(CondLoc, "case value is not a constant integer"); 5728 5729 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5730 } 5731 5732 Lex.Lex(); // Eat the ']'. 5733 5734 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5735 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5736 SI->addCase(Table[i].first, Table[i].second); 5737 Inst = SI; 5738 return false; 5739 } 5740 5741 /// ParseIndirectBr 5742 /// Instruction 5743 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5744 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5745 LocTy AddrLoc; 5746 Value *Address; 5747 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5748 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5749 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5750 return true; 5751 5752 if (!Address->getType()->isPointerTy()) 5753 return Error(AddrLoc, "indirectbr address must have pointer type"); 5754 5755 // Parse the destination list. 5756 SmallVector<BasicBlock*, 16> DestList; 5757 5758 if (Lex.getKind() != lltok::rsquare) { 5759 BasicBlock *DestBB; 5760 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5761 return true; 5762 DestList.push_back(DestBB); 5763 5764 while (EatIfPresent(lltok::comma)) { 5765 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5766 return true; 5767 DestList.push_back(DestBB); 5768 } 5769 } 5770 5771 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5772 return true; 5773 5774 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5775 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5776 IBI->addDestination(DestList[i]); 5777 Inst = IBI; 5778 return false; 5779 } 5780 5781 /// ParseInvoke 5782 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5783 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5784 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5785 LocTy CallLoc = Lex.getLoc(); 5786 AttrBuilder RetAttrs, FnAttrs; 5787 std::vector<unsigned> FwdRefAttrGrps; 5788 LocTy NoBuiltinLoc; 5789 unsigned CC; 5790 unsigned InvokeAddrSpace; 5791 Type *RetType = nullptr; 5792 LocTy RetTypeLoc; 5793 ValID CalleeID; 5794 SmallVector<ParamInfo, 16> ArgList; 5795 SmallVector<OperandBundleDef, 2> BundleList; 5796 5797 BasicBlock *NormalBB, *UnwindBB; 5798 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5799 ParseOptionalProgramAddrSpace(InvokeAddrSpace) || 5800 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5801 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5802 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5803 NoBuiltinLoc) || 5804 ParseOptionalOperandBundles(BundleList, PFS) || 5805 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5806 ParseTypeAndBasicBlock(NormalBB, PFS) || 5807 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5808 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5809 return true; 5810 5811 // If RetType is a non-function pointer type, then this is the short syntax 5812 // for the call, which means that RetType is just the return type. Infer the 5813 // rest of the function argument types from the arguments that are present. 5814 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5815 if (!Ty) { 5816 // Pull out the types of all of the arguments... 5817 std::vector<Type*> ParamTypes; 5818 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5819 ParamTypes.push_back(ArgList[i].V->getType()); 5820 5821 if (!FunctionType::isValidReturnType(RetType)) 5822 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5823 5824 Ty = FunctionType::get(RetType, ParamTypes, false); 5825 } 5826 5827 CalleeID.FTy = Ty; 5828 5829 // Look up the callee. 5830 Value *Callee; 5831 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 5832 Callee, &PFS, /*IsCall=*/true)) 5833 return true; 5834 5835 // Set up the Attribute for the function. 5836 SmallVector<Value *, 8> Args; 5837 SmallVector<AttributeSet, 8> ArgAttrs; 5838 5839 // Loop through FunctionType's arguments and ensure they are specified 5840 // correctly. Also, gather any parameter attributes. 5841 FunctionType::param_iterator I = Ty->param_begin(); 5842 FunctionType::param_iterator E = Ty->param_end(); 5843 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5844 Type *ExpectedTy = nullptr; 5845 if (I != E) { 5846 ExpectedTy = *I++; 5847 } else if (!Ty->isVarArg()) { 5848 return Error(ArgList[i].Loc, "too many arguments specified"); 5849 } 5850 5851 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5852 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5853 getTypeString(ExpectedTy) + "'"); 5854 Args.push_back(ArgList[i].V); 5855 ArgAttrs.push_back(ArgList[i].Attrs); 5856 } 5857 5858 if (I != E) 5859 return Error(CallLoc, "not enough parameters specified for call"); 5860 5861 if (FnAttrs.hasAlignmentAttr()) 5862 return Error(CallLoc, "invoke instructions may not have an alignment"); 5863 5864 // Finish off the Attribute and check them 5865 AttributeList PAL = 5866 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 5867 AttributeSet::get(Context, RetAttrs), ArgAttrs); 5868 5869 InvokeInst *II = 5870 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5871 II->setCallingConv(CC); 5872 II->setAttributes(PAL); 5873 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5874 Inst = II; 5875 return false; 5876 } 5877 5878 /// ParseResume 5879 /// ::= 'resume' TypeAndValue 5880 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5881 Value *Exn; LocTy ExnLoc; 5882 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5883 return true; 5884 5885 ResumeInst *RI = ResumeInst::Create(Exn); 5886 Inst = RI; 5887 return false; 5888 } 5889 5890 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5891 PerFunctionState &PFS) { 5892 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5893 return true; 5894 5895 while (Lex.getKind() != lltok::rsquare) { 5896 // If this isn't the first argument, we need a comma. 5897 if (!Args.empty() && 5898 ParseToken(lltok::comma, "expected ',' in argument list")) 5899 return true; 5900 5901 // Parse the argument. 5902 LocTy ArgLoc; 5903 Type *ArgTy = nullptr; 5904 if (ParseType(ArgTy, ArgLoc)) 5905 return true; 5906 5907 Value *V; 5908 if (ArgTy->isMetadataTy()) { 5909 if (ParseMetadataAsValue(V, PFS)) 5910 return true; 5911 } else { 5912 if (ParseValue(ArgTy, V, PFS)) 5913 return true; 5914 } 5915 Args.push_back(V); 5916 } 5917 5918 Lex.Lex(); // Lex the ']'. 5919 return false; 5920 } 5921 5922 /// ParseCleanupRet 5923 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5924 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5925 Value *CleanupPad = nullptr; 5926 5927 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5928 return true; 5929 5930 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5931 return true; 5932 5933 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5934 return true; 5935 5936 BasicBlock *UnwindBB = nullptr; 5937 if (Lex.getKind() == lltok::kw_to) { 5938 Lex.Lex(); 5939 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5940 return true; 5941 } else { 5942 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5943 return true; 5944 } 5945 } 5946 5947 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5948 return false; 5949 } 5950 5951 /// ParseCatchRet 5952 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5953 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5954 Value *CatchPad = nullptr; 5955 5956 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5957 return true; 5958 5959 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5960 return true; 5961 5962 BasicBlock *BB; 5963 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5964 ParseTypeAndBasicBlock(BB, PFS)) 5965 return true; 5966 5967 Inst = CatchReturnInst::Create(CatchPad, BB); 5968 return false; 5969 } 5970 5971 /// ParseCatchSwitch 5972 /// ::= 'catchswitch' within Parent 5973 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5974 Value *ParentPad; 5975 5976 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5977 return true; 5978 5979 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5980 Lex.getKind() != lltok::LocalVarID) 5981 return TokError("expected scope value for catchswitch"); 5982 5983 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5984 return true; 5985 5986 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5987 return true; 5988 5989 SmallVector<BasicBlock *, 32> Table; 5990 do { 5991 BasicBlock *DestBB; 5992 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5993 return true; 5994 Table.push_back(DestBB); 5995 } while (EatIfPresent(lltok::comma)); 5996 5997 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5998 return true; 5999 6000 if (ParseToken(lltok::kw_unwind, 6001 "expected 'unwind' after catchswitch scope")) 6002 return true; 6003 6004 BasicBlock *UnwindBB = nullptr; 6005 if (EatIfPresent(lltok::kw_to)) { 6006 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6007 return true; 6008 } else { 6009 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 6010 return true; 6011 } 6012 6013 auto *CatchSwitch = 6014 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6015 for (BasicBlock *DestBB : Table) 6016 CatchSwitch->addHandler(DestBB); 6017 Inst = CatchSwitch; 6018 return false; 6019 } 6020 6021 /// ParseCatchPad 6022 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6023 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6024 Value *CatchSwitch = nullptr; 6025 6026 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 6027 return true; 6028 6029 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6030 return TokError("expected scope value for catchpad"); 6031 6032 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6033 return true; 6034 6035 SmallVector<Value *, 8> Args; 6036 if (ParseExceptionArgs(Args, PFS)) 6037 return true; 6038 6039 Inst = CatchPadInst::Create(CatchSwitch, Args); 6040 return false; 6041 } 6042 6043 /// ParseCleanupPad 6044 /// ::= 'cleanuppad' within Parent ParamList 6045 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6046 Value *ParentPad = nullptr; 6047 6048 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6049 return true; 6050 6051 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6052 Lex.getKind() != lltok::LocalVarID) 6053 return TokError("expected scope value for cleanuppad"); 6054 6055 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6056 return true; 6057 6058 SmallVector<Value *, 8> Args; 6059 if (ParseExceptionArgs(Args, PFS)) 6060 return true; 6061 6062 Inst = CleanupPadInst::Create(ParentPad, Args); 6063 return false; 6064 } 6065 6066 //===----------------------------------------------------------------------===// 6067 // Binary Operators. 6068 //===----------------------------------------------------------------------===// 6069 6070 /// ParseArithmetic 6071 /// ::= ArithmeticOps TypeAndValue ',' Value 6072 /// 6073 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 6074 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 6075 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6076 unsigned Opc, unsigned OperandType) { 6077 LocTy Loc; Value *LHS, *RHS; 6078 if (ParseTypeAndValue(LHS, Loc, PFS) || 6079 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6080 ParseValue(LHS->getType(), RHS, PFS)) 6081 return true; 6082 6083 bool Valid; 6084 switch (OperandType) { 6085 default: llvm_unreachable("Unknown operand type!"); 6086 case 0: // int or FP. 6087 Valid = LHS->getType()->isIntOrIntVectorTy() || 6088 LHS->getType()->isFPOrFPVectorTy(); 6089 break; 6090 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 6091 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 6092 } 6093 6094 if (!Valid) 6095 return Error(Loc, "invalid operand type for instruction"); 6096 6097 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6098 return false; 6099 } 6100 6101 /// ParseLogical 6102 /// ::= ArithmeticOps TypeAndValue ',' Value { 6103 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6104 unsigned Opc) { 6105 LocTy Loc; Value *LHS, *RHS; 6106 if (ParseTypeAndValue(LHS, Loc, PFS) || 6107 ParseToken(lltok::comma, "expected ',' in logical operation") || 6108 ParseValue(LHS->getType(), RHS, PFS)) 6109 return true; 6110 6111 if (!LHS->getType()->isIntOrIntVectorTy()) 6112 return Error(Loc,"instruction requires integer or integer vector operands"); 6113 6114 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6115 return false; 6116 } 6117 6118 /// ParseCompare 6119 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6120 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6121 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6122 unsigned Opc) { 6123 // Parse the integer/fp comparison predicate. 6124 LocTy Loc; 6125 unsigned Pred; 6126 Value *LHS, *RHS; 6127 if (ParseCmpPredicate(Pred, Opc) || 6128 ParseTypeAndValue(LHS, Loc, PFS) || 6129 ParseToken(lltok::comma, "expected ',' after compare value") || 6130 ParseValue(LHS->getType(), RHS, PFS)) 6131 return true; 6132 6133 if (Opc == Instruction::FCmp) { 6134 if (!LHS->getType()->isFPOrFPVectorTy()) 6135 return Error(Loc, "fcmp requires floating point operands"); 6136 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6137 } else { 6138 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6139 if (!LHS->getType()->isIntOrIntVectorTy() && 6140 !LHS->getType()->isPtrOrPtrVectorTy()) 6141 return Error(Loc, "icmp requires integer operands"); 6142 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6143 } 6144 return false; 6145 } 6146 6147 //===----------------------------------------------------------------------===// 6148 // Other Instructions. 6149 //===----------------------------------------------------------------------===// 6150 6151 6152 /// ParseCast 6153 /// ::= CastOpc TypeAndValue 'to' Type 6154 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6155 unsigned Opc) { 6156 LocTy Loc; 6157 Value *Op; 6158 Type *DestTy = nullptr; 6159 if (ParseTypeAndValue(Op, Loc, PFS) || 6160 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6161 ParseType(DestTy)) 6162 return true; 6163 6164 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6165 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6166 return Error(Loc, "invalid cast opcode for cast from '" + 6167 getTypeString(Op->getType()) + "' to '" + 6168 getTypeString(DestTy) + "'"); 6169 } 6170 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6171 return false; 6172 } 6173 6174 /// ParseSelect 6175 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6176 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6177 LocTy Loc; 6178 Value *Op0, *Op1, *Op2; 6179 if (ParseTypeAndValue(Op0, Loc, PFS) || 6180 ParseToken(lltok::comma, "expected ',' after select condition") || 6181 ParseTypeAndValue(Op1, PFS) || 6182 ParseToken(lltok::comma, "expected ',' after select value") || 6183 ParseTypeAndValue(Op2, PFS)) 6184 return true; 6185 6186 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6187 return Error(Loc, Reason); 6188 6189 Inst = SelectInst::Create(Op0, Op1, Op2); 6190 return false; 6191 } 6192 6193 /// ParseVA_Arg 6194 /// ::= 'va_arg' TypeAndValue ',' Type 6195 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6196 Value *Op; 6197 Type *EltTy = nullptr; 6198 LocTy TypeLoc; 6199 if (ParseTypeAndValue(Op, PFS) || 6200 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6201 ParseType(EltTy, TypeLoc)) 6202 return true; 6203 6204 if (!EltTy->isFirstClassType()) 6205 return Error(TypeLoc, "va_arg requires operand with first class type"); 6206 6207 Inst = new VAArgInst(Op, EltTy); 6208 return false; 6209 } 6210 6211 /// ParseExtractElement 6212 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6213 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6214 LocTy Loc; 6215 Value *Op0, *Op1; 6216 if (ParseTypeAndValue(Op0, Loc, PFS) || 6217 ParseToken(lltok::comma, "expected ',' after extract value") || 6218 ParseTypeAndValue(Op1, PFS)) 6219 return true; 6220 6221 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6222 return Error(Loc, "invalid extractelement operands"); 6223 6224 Inst = ExtractElementInst::Create(Op0, Op1); 6225 return false; 6226 } 6227 6228 /// ParseInsertElement 6229 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6230 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6231 LocTy Loc; 6232 Value *Op0, *Op1, *Op2; 6233 if (ParseTypeAndValue(Op0, Loc, PFS) || 6234 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6235 ParseTypeAndValue(Op1, PFS) || 6236 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6237 ParseTypeAndValue(Op2, PFS)) 6238 return true; 6239 6240 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6241 return Error(Loc, "invalid insertelement operands"); 6242 6243 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6244 return false; 6245 } 6246 6247 /// ParseShuffleVector 6248 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6249 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6250 LocTy Loc; 6251 Value *Op0, *Op1, *Op2; 6252 if (ParseTypeAndValue(Op0, Loc, PFS) || 6253 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6254 ParseTypeAndValue(Op1, PFS) || 6255 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6256 ParseTypeAndValue(Op2, PFS)) 6257 return true; 6258 6259 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6260 return Error(Loc, "invalid shufflevector operands"); 6261 6262 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6263 return false; 6264 } 6265 6266 /// ParsePHI 6267 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6268 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6269 Type *Ty = nullptr; LocTy TypeLoc; 6270 Value *Op0, *Op1; 6271 6272 if (ParseType(Ty, TypeLoc) || 6273 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6274 ParseValue(Ty, Op0, PFS) || 6275 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6276 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6277 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6278 return true; 6279 6280 bool AteExtraComma = false; 6281 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6282 6283 while (true) { 6284 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6285 6286 if (!EatIfPresent(lltok::comma)) 6287 break; 6288 6289 if (Lex.getKind() == lltok::MetadataVar) { 6290 AteExtraComma = true; 6291 break; 6292 } 6293 6294 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6295 ParseValue(Ty, Op0, PFS) || 6296 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6297 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6298 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6299 return true; 6300 } 6301 6302 if (!Ty->isFirstClassType()) 6303 return Error(TypeLoc, "phi node must have first class type"); 6304 6305 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6306 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6307 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6308 Inst = PN; 6309 return AteExtraComma ? InstExtraComma : InstNormal; 6310 } 6311 6312 /// ParseLandingPad 6313 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6314 /// Clause 6315 /// ::= 'catch' TypeAndValue 6316 /// ::= 'filter' 6317 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6318 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6319 Type *Ty = nullptr; LocTy TyLoc; 6320 6321 if (ParseType(Ty, TyLoc)) 6322 return true; 6323 6324 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6325 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6326 6327 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6328 LandingPadInst::ClauseType CT; 6329 if (EatIfPresent(lltok::kw_catch)) 6330 CT = LandingPadInst::Catch; 6331 else if (EatIfPresent(lltok::kw_filter)) 6332 CT = LandingPadInst::Filter; 6333 else 6334 return TokError("expected 'catch' or 'filter' clause type"); 6335 6336 Value *V; 6337 LocTy VLoc; 6338 if (ParseTypeAndValue(V, VLoc, PFS)) 6339 return true; 6340 6341 // A 'catch' type expects a non-array constant. A filter clause expects an 6342 // array constant. 6343 if (CT == LandingPadInst::Catch) { 6344 if (isa<ArrayType>(V->getType())) 6345 Error(VLoc, "'catch' clause has an invalid type"); 6346 } else { 6347 if (!isa<ArrayType>(V->getType())) 6348 Error(VLoc, "'filter' clause has an invalid type"); 6349 } 6350 6351 Constant *CV = dyn_cast<Constant>(V); 6352 if (!CV) 6353 return Error(VLoc, "clause argument must be a constant"); 6354 LP->addClause(CV); 6355 } 6356 6357 Inst = LP.release(); 6358 return false; 6359 } 6360 6361 /// ParseCall 6362 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6363 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6364 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6365 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6366 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6367 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6368 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6369 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6370 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6371 CallInst::TailCallKind TCK) { 6372 AttrBuilder RetAttrs, FnAttrs; 6373 std::vector<unsigned> FwdRefAttrGrps; 6374 LocTy BuiltinLoc; 6375 unsigned CallAddrSpace; 6376 unsigned CC; 6377 Type *RetType = nullptr; 6378 LocTy RetTypeLoc; 6379 ValID CalleeID; 6380 SmallVector<ParamInfo, 16> ArgList; 6381 SmallVector<OperandBundleDef, 2> BundleList; 6382 LocTy CallLoc = Lex.getLoc(); 6383 6384 if (TCK != CallInst::TCK_None && 6385 ParseToken(lltok::kw_call, 6386 "expected 'tail call', 'musttail call', or 'notail call'")) 6387 return true; 6388 6389 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6390 6391 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6392 ParseOptionalProgramAddrSpace(CallAddrSpace) || 6393 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6394 ParseValID(CalleeID) || 6395 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6396 PFS.getFunction().isVarArg()) || 6397 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6398 ParseOptionalOperandBundles(BundleList, PFS)) 6399 return true; 6400 6401 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 6402 return Error(CallLoc, "fast-math-flags specified for call without " 6403 "floating-point scalar or vector return type"); 6404 6405 // If RetType is a non-function pointer type, then this is the short syntax 6406 // for the call, which means that RetType is just the return type. Infer the 6407 // rest of the function argument types from the arguments that are present. 6408 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6409 if (!Ty) { 6410 // Pull out the types of all of the arguments... 6411 std::vector<Type*> ParamTypes; 6412 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6413 ParamTypes.push_back(ArgList[i].V->getType()); 6414 6415 if (!FunctionType::isValidReturnType(RetType)) 6416 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6417 6418 Ty = FunctionType::get(RetType, ParamTypes, false); 6419 } 6420 6421 CalleeID.FTy = Ty; 6422 6423 // Look up the callee. 6424 Value *Callee; 6425 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 6426 &PFS, /*IsCall=*/true)) 6427 return true; 6428 6429 // Set up the Attribute for the function. 6430 SmallVector<AttributeSet, 8> Attrs; 6431 6432 SmallVector<Value*, 8> Args; 6433 6434 // Loop through FunctionType's arguments and ensure they are specified 6435 // correctly. Also, gather any parameter attributes. 6436 FunctionType::param_iterator I = Ty->param_begin(); 6437 FunctionType::param_iterator E = Ty->param_end(); 6438 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6439 Type *ExpectedTy = nullptr; 6440 if (I != E) { 6441 ExpectedTy = *I++; 6442 } else if (!Ty->isVarArg()) { 6443 return Error(ArgList[i].Loc, "too many arguments specified"); 6444 } 6445 6446 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6447 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6448 getTypeString(ExpectedTy) + "'"); 6449 Args.push_back(ArgList[i].V); 6450 Attrs.push_back(ArgList[i].Attrs); 6451 } 6452 6453 if (I != E) 6454 return Error(CallLoc, "not enough parameters specified for call"); 6455 6456 if (FnAttrs.hasAlignmentAttr()) 6457 return Error(CallLoc, "call instructions may not have an alignment"); 6458 6459 // Finish off the Attribute and check them 6460 AttributeList PAL = 6461 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6462 AttributeSet::get(Context, RetAttrs), Attrs); 6463 6464 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6465 CI->setTailCallKind(TCK); 6466 CI->setCallingConv(CC); 6467 if (FMF.any()) 6468 CI->setFastMathFlags(FMF); 6469 CI->setAttributes(PAL); 6470 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6471 Inst = CI; 6472 return false; 6473 } 6474 6475 //===----------------------------------------------------------------------===// 6476 // Memory Instructions. 6477 //===----------------------------------------------------------------------===// 6478 6479 /// ParseAlloc 6480 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6481 /// (',' 'align' i32)? (',', 'addrspace(n))? 6482 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6483 Value *Size = nullptr; 6484 LocTy SizeLoc, TyLoc, ASLoc; 6485 unsigned Alignment = 0; 6486 unsigned AddrSpace = 0; 6487 Type *Ty = nullptr; 6488 6489 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6490 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6491 6492 if (ParseType(Ty, TyLoc)) return true; 6493 6494 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6495 return Error(TyLoc, "invalid type for alloca"); 6496 6497 bool AteExtraComma = false; 6498 if (EatIfPresent(lltok::comma)) { 6499 if (Lex.getKind() == lltok::kw_align) { 6500 if (ParseOptionalAlignment(Alignment)) 6501 return true; 6502 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6503 return true; 6504 } else if (Lex.getKind() == lltok::kw_addrspace) { 6505 ASLoc = Lex.getLoc(); 6506 if (ParseOptionalAddrSpace(AddrSpace)) 6507 return true; 6508 } else if (Lex.getKind() == lltok::MetadataVar) { 6509 AteExtraComma = true; 6510 } else { 6511 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6512 return true; 6513 if (EatIfPresent(lltok::comma)) { 6514 if (Lex.getKind() == lltok::kw_align) { 6515 if (ParseOptionalAlignment(Alignment)) 6516 return true; 6517 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6518 return true; 6519 } else if (Lex.getKind() == lltok::kw_addrspace) { 6520 ASLoc = Lex.getLoc(); 6521 if (ParseOptionalAddrSpace(AddrSpace)) 6522 return true; 6523 } else if (Lex.getKind() == lltok::MetadataVar) { 6524 AteExtraComma = true; 6525 } 6526 } 6527 } 6528 } 6529 6530 if (Size && !Size->getType()->isIntegerTy()) 6531 return Error(SizeLoc, "element count must have integer type"); 6532 6533 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6534 AI->setUsedWithInAlloca(IsInAlloca); 6535 AI->setSwiftError(IsSwiftError); 6536 Inst = AI; 6537 return AteExtraComma ? InstExtraComma : InstNormal; 6538 } 6539 6540 /// ParseLoad 6541 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6542 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6543 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6544 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6545 Value *Val; LocTy Loc; 6546 unsigned Alignment = 0; 6547 bool AteExtraComma = false; 6548 bool isAtomic = false; 6549 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6550 SyncScope::ID SSID = SyncScope::System; 6551 6552 if (Lex.getKind() == lltok::kw_atomic) { 6553 isAtomic = true; 6554 Lex.Lex(); 6555 } 6556 6557 bool isVolatile = false; 6558 if (Lex.getKind() == lltok::kw_volatile) { 6559 isVolatile = true; 6560 Lex.Lex(); 6561 } 6562 6563 Type *Ty; 6564 LocTy ExplicitTypeLoc = Lex.getLoc(); 6565 if (ParseType(Ty) || 6566 ParseToken(lltok::comma, "expected comma after load's type") || 6567 ParseTypeAndValue(Val, Loc, PFS) || 6568 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6569 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6570 return true; 6571 6572 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6573 return Error(Loc, "load operand must be a pointer to a first class type"); 6574 if (isAtomic && !Alignment) 6575 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6576 if (Ordering == AtomicOrdering::Release || 6577 Ordering == AtomicOrdering::AcquireRelease) 6578 return Error(Loc, "atomic load cannot use Release ordering"); 6579 6580 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6581 return Error(ExplicitTypeLoc, 6582 "explicit pointee type doesn't match operand's pointee type"); 6583 6584 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6585 return AteExtraComma ? InstExtraComma : InstNormal; 6586 } 6587 6588 /// ParseStore 6589 6590 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6591 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6592 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6593 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6594 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6595 unsigned Alignment = 0; 6596 bool AteExtraComma = false; 6597 bool isAtomic = false; 6598 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6599 SyncScope::ID SSID = SyncScope::System; 6600 6601 if (Lex.getKind() == lltok::kw_atomic) { 6602 isAtomic = true; 6603 Lex.Lex(); 6604 } 6605 6606 bool isVolatile = false; 6607 if (Lex.getKind() == lltok::kw_volatile) { 6608 isVolatile = true; 6609 Lex.Lex(); 6610 } 6611 6612 if (ParseTypeAndValue(Val, Loc, PFS) || 6613 ParseToken(lltok::comma, "expected ',' after store operand") || 6614 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6615 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6616 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6617 return true; 6618 6619 if (!Ptr->getType()->isPointerTy()) 6620 return Error(PtrLoc, "store operand must be a pointer"); 6621 if (!Val->getType()->isFirstClassType()) 6622 return Error(Loc, "store operand must be a first class value"); 6623 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6624 return Error(Loc, "stored value and pointer type do not match"); 6625 if (isAtomic && !Alignment) 6626 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6627 if (Ordering == AtomicOrdering::Acquire || 6628 Ordering == AtomicOrdering::AcquireRelease) 6629 return Error(Loc, "atomic store cannot use Acquire ordering"); 6630 6631 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 6632 return AteExtraComma ? InstExtraComma : InstNormal; 6633 } 6634 6635 /// ParseCmpXchg 6636 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6637 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6638 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6639 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6640 bool AteExtraComma = false; 6641 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6642 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6643 SyncScope::ID SSID = SyncScope::System; 6644 bool isVolatile = false; 6645 bool isWeak = false; 6646 6647 if (EatIfPresent(lltok::kw_weak)) 6648 isWeak = true; 6649 6650 if (EatIfPresent(lltok::kw_volatile)) 6651 isVolatile = true; 6652 6653 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6654 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6655 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6656 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6657 ParseTypeAndValue(New, NewLoc, PFS) || 6658 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 6659 ParseOrdering(FailureOrdering)) 6660 return true; 6661 6662 if (SuccessOrdering == AtomicOrdering::Unordered || 6663 FailureOrdering == AtomicOrdering::Unordered) 6664 return TokError("cmpxchg cannot be unordered"); 6665 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6666 return TokError("cmpxchg failure argument shall be no stronger than the " 6667 "success argument"); 6668 if (FailureOrdering == AtomicOrdering::Release || 6669 FailureOrdering == AtomicOrdering::AcquireRelease) 6670 return TokError( 6671 "cmpxchg failure ordering cannot include release semantics"); 6672 if (!Ptr->getType()->isPointerTy()) 6673 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6674 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6675 return Error(CmpLoc, "compare value and pointer type do not match"); 6676 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6677 return Error(NewLoc, "new value and pointer type do not match"); 6678 if (!New->getType()->isFirstClassType()) 6679 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6680 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6681 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 6682 CXI->setVolatile(isVolatile); 6683 CXI->setWeak(isWeak); 6684 Inst = CXI; 6685 return AteExtraComma ? InstExtraComma : InstNormal; 6686 } 6687 6688 /// ParseAtomicRMW 6689 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6690 /// 'singlethread'? AtomicOrdering 6691 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6692 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6693 bool AteExtraComma = false; 6694 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6695 SyncScope::ID SSID = SyncScope::System; 6696 bool isVolatile = false; 6697 AtomicRMWInst::BinOp Operation; 6698 6699 if (EatIfPresent(lltok::kw_volatile)) 6700 isVolatile = true; 6701 6702 switch (Lex.getKind()) { 6703 default: return TokError("expected binary operation in atomicrmw"); 6704 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6705 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6706 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6707 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6708 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6709 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6710 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6711 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6712 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6713 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6714 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6715 } 6716 Lex.Lex(); // Eat the operation. 6717 6718 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6719 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6720 ParseTypeAndValue(Val, ValLoc, PFS) || 6721 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6722 return true; 6723 6724 if (Ordering == AtomicOrdering::Unordered) 6725 return TokError("atomicrmw cannot be unordered"); 6726 if (!Ptr->getType()->isPointerTy()) 6727 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6728 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6729 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6730 6731 if (!Val->getType()->isIntegerTy()) { 6732 return Error(ValLoc, "atomicrmw " + 6733 AtomicRMWInst::getOperationName(Operation) + 6734 " operand must be an integer"); 6735 } 6736 6737 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6738 if (Size < 8 || (Size & (Size - 1))) 6739 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6740 " integer"); 6741 6742 AtomicRMWInst *RMWI = 6743 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 6744 RMWI->setVolatile(isVolatile); 6745 Inst = RMWI; 6746 return AteExtraComma ? InstExtraComma : InstNormal; 6747 } 6748 6749 /// ParseFence 6750 /// ::= 'fence' 'singlethread'? AtomicOrdering 6751 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6752 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6753 SyncScope::ID SSID = SyncScope::System; 6754 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6755 return true; 6756 6757 if (Ordering == AtomicOrdering::Unordered) 6758 return TokError("fence cannot be unordered"); 6759 if (Ordering == AtomicOrdering::Monotonic) 6760 return TokError("fence cannot be monotonic"); 6761 6762 Inst = new FenceInst(Context, Ordering, SSID); 6763 return InstNormal; 6764 } 6765 6766 /// ParseGetElementPtr 6767 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6768 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6769 Value *Ptr = nullptr; 6770 Value *Val = nullptr; 6771 LocTy Loc, EltLoc; 6772 6773 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6774 6775 Type *Ty = nullptr; 6776 LocTy ExplicitTypeLoc = Lex.getLoc(); 6777 if (ParseType(Ty) || 6778 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6779 ParseTypeAndValue(Ptr, Loc, PFS)) 6780 return true; 6781 6782 Type *BaseType = Ptr->getType(); 6783 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6784 if (!BasePointerType) 6785 return Error(Loc, "base of getelementptr must be a pointer"); 6786 6787 if (Ty != BasePointerType->getElementType()) 6788 return Error(ExplicitTypeLoc, 6789 "explicit pointee type doesn't match operand's pointee type"); 6790 6791 SmallVector<Value*, 16> Indices; 6792 bool AteExtraComma = false; 6793 // GEP returns a vector of pointers if at least one of parameters is a vector. 6794 // All vector parameters should have the same vector width. 6795 unsigned GEPWidth = BaseType->isVectorTy() ? 6796 BaseType->getVectorNumElements() : 0; 6797 6798 while (EatIfPresent(lltok::comma)) { 6799 if (Lex.getKind() == lltok::MetadataVar) { 6800 AteExtraComma = true; 6801 break; 6802 } 6803 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6804 if (!Val->getType()->isIntOrIntVectorTy()) 6805 return Error(EltLoc, "getelementptr index must be an integer"); 6806 6807 if (Val->getType()->isVectorTy()) { 6808 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6809 if (GEPWidth && GEPWidth != ValNumEl) 6810 return Error(EltLoc, 6811 "getelementptr vector index has a wrong number of elements"); 6812 GEPWidth = ValNumEl; 6813 } 6814 Indices.push_back(Val); 6815 } 6816 6817 SmallPtrSet<Type*, 4> Visited; 6818 if (!Indices.empty() && !Ty->isSized(&Visited)) 6819 return Error(Loc, "base element of getelementptr must be sized"); 6820 6821 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6822 return Error(Loc, "invalid getelementptr indices"); 6823 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6824 if (InBounds) 6825 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6826 return AteExtraComma ? InstExtraComma : InstNormal; 6827 } 6828 6829 /// ParseExtractValue 6830 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6831 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6832 Value *Val; LocTy Loc; 6833 SmallVector<unsigned, 4> Indices; 6834 bool AteExtraComma; 6835 if (ParseTypeAndValue(Val, Loc, PFS) || 6836 ParseIndexList(Indices, AteExtraComma)) 6837 return true; 6838 6839 if (!Val->getType()->isAggregateType()) 6840 return Error(Loc, "extractvalue operand must be aggregate type"); 6841 6842 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6843 return Error(Loc, "invalid indices for extractvalue"); 6844 Inst = ExtractValueInst::Create(Val, Indices); 6845 return AteExtraComma ? InstExtraComma : InstNormal; 6846 } 6847 6848 /// ParseInsertValue 6849 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6850 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6851 Value *Val0, *Val1; LocTy Loc0, Loc1; 6852 SmallVector<unsigned, 4> Indices; 6853 bool AteExtraComma; 6854 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6855 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6856 ParseTypeAndValue(Val1, Loc1, PFS) || 6857 ParseIndexList(Indices, AteExtraComma)) 6858 return true; 6859 6860 if (!Val0->getType()->isAggregateType()) 6861 return Error(Loc0, "insertvalue operand must be aggregate type"); 6862 6863 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6864 if (!IndexedType) 6865 return Error(Loc0, "invalid indices for insertvalue"); 6866 if (IndexedType != Val1->getType()) 6867 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6868 getTypeString(Val1->getType()) + "' instead of '" + 6869 getTypeString(IndexedType) + "'"); 6870 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6871 return AteExtraComma ? InstExtraComma : InstNormal; 6872 } 6873 6874 //===----------------------------------------------------------------------===// 6875 // Embedded metadata. 6876 //===----------------------------------------------------------------------===// 6877 6878 /// ParseMDNodeVector 6879 /// ::= { Element (',' Element)* } 6880 /// Element 6881 /// ::= 'null' | TypeAndValue 6882 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6883 if (ParseToken(lltok::lbrace, "expected '{' here")) 6884 return true; 6885 6886 // Check for an empty list. 6887 if (EatIfPresent(lltok::rbrace)) 6888 return false; 6889 6890 do { 6891 // Null is a special case since it is typeless. 6892 if (EatIfPresent(lltok::kw_null)) { 6893 Elts.push_back(nullptr); 6894 continue; 6895 } 6896 6897 Metadata *MD; 6898 if (ParseMetadata(MD, nullptr)) 6899 return true; 6900 Elts.push_back(MD); 6901 } while (EatIfPresent(lltok::comma)); 6902 6903 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6904 } 6905 6906 //===----------------------------------------------------------------------===// 6907 // Use-list order directives. 6908 //===----------------------------------------------------------------------===// 6909 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6910 SMLoc Loc) { 6911 if (V->use_empty()) 6912 return Error(Loc, "value has no uses"); 6913 6914 unsigned NumUses = 0; 6915 SmallDenseMap<const Use *, unsigned, 16> Order; 6916 for (const Use &U : V->uses()) { 6917 if (++NumUses > Indexes.size()) 6918 break; 6919 Order[&U] = Indexes[NumUses - 1]; 6920 } 6921 if (NumUses < 2) 6922 return Error(Loc, "value only has one use"); 6923 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6924 return Error(Loc, 6925 "wrong number of indexes, expected " + Twine(V->getNumUses())); 6926 6927 V->sortUseList([&](const Use &L, const Use &R) { 6928 return Order.lookup(&L) < Order.lookup(&R); 6929 }); 6930 return false; 6931 } 6932 6933 /// ParseUseListOrderIndexes 6934 /// ::= '{' uint32 (',' uint32)+ '}' 6935 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6936 SMLoc Loc = Lex.getLoc(); 6937 if (ParseToken(lltok::lbrace, "expected '{' here")) 6938 return true; 6939 if (Lex.getKind() == lltok::rbrace) 6940 return Lex.Error("expected non-empty list of uselistorder indexes"); 6941 6942 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6943 // indexes should be distinct numbers in the range [0, size-1], and should 6944 // not be in order. 6945 unsigned Offset = 0; 6946 unsigned Max = 0; 6947 bool IsOrdered = true; 6948 assert(Indexes.empty() && "Expected empty order vector"); 6949 do { 6950 unsigned Index; 6951 if (ParseUInt32(Index)) 6952 return true; 6953 6954 // Update consistency checks. 6955 Offset += Index - Indexes.size(); 6956 Max = std::max(Max, Index); 6957 IsOrdered &= Index == Indexes.size(); 6958 6959 Indexes.push_back(Index); 6960 } while (EatIfPresent(lltok::comma)); 6961 6962 if (ParseToken(lltok::rbrace, "expected '}' here")) 6963 return true; 6964 6965 if (Indexes.size() < 2) 6966 return Error(Loc, "expected >= 2 uselistorder indexes"); 6967 if (Offset != 0 || Max >= Indexes.size()) 6968 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6969 if (IsOrdered) 6970 return Error(Loc, "expected uselistorder indexes to change the order"); 6971 6972 return false; 6973 } 6974 6975 /// ParseUseListOrder 6976 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6977 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6978 SMLoc Loc = Lex.getLoc(); 6979 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6980 return true; 6981 6982 Value *V; 6983 SmallVector<unsigned, 16> Indexes; 6984 if (ParseTypeAndValue(V, PFS) || 6985 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6986 ParseUseListOrderIndexes(Indexes)) 6987 return true; 6988 6989 return sortUseListOrder(V, Indexes, Loc); 6990 } 6991 6992 /// ParseUseListOrderBB 6993 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6994 bool LLParser::ParseUseListOrderBB() { 6995 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6996 SMLoc Loc = Lex.getLoc(); 6997 Lex.Lex(); 6998 6999 ValID Fn, Label; 7000 SmallVector<unsigned, 16> Indexes; 7001 if (ParseValID(Fn) || 7002 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7003 ParseValID(Label) || 7004 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7005 ParseUseListOrderIndexes(Indexes)) 7006 return true; 7007 7008 // Check the function. 7009 GlobalValue *GV; 7010 if (Fn.Kind == ValID::t_GlobalName) 7011 GV = M->getNamedValue(Fn.StrVal); 7012 else if (Fn.Kind == ValID::t_GlobalID) 7013 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7014 else 7015 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7016 if (!GV) 7017 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 7018 auto *F = dyn_cast<Function>(GV); 7019 if (!F) 7020 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7021 if (F->isDeclaration()) 7022 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7023 7024 // Check the basic block. 7025 if (Label.Kind == ValID::t_LocalID) 7026 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7027 if (Label.Kind != ValID::t_LocalName) 7028 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 7029 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7030 if (!V) 7031 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 7032 if (!isa<BasicBlock>(V)) 7033 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 7034 7035 return sortUseListOrder(V, Indexes, Loc); 7036 } 7037 7038 /// ModuleEntry 7039 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7040 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7041 bool LLParser::ParseModuleEntry(unsigned ID) { 7042 assert(Lex.getKind() == lltok::kw_module); 7043 Lex.Lex(); 7044 7045 std::string Path; 7046 if (ParseToken(lltok::colon, "expected ':' here") || 7047 ParseToken(lltok::lparen, "expected '(' here") || 7048 ParseToken(lltok::kw_path, "expected 'path' here") || 7049 ParseToken(lltok::colon, "expected ':' here") || 7050 ParseStringConstant(Path) || 7051 ParseToken(lltok::comma, "expected ',' here") || 7052 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7053 ParseToken(lltok::colon, "expected ':' here") || 7054 ParseToken(lltok::lparen, "expected '(' here")) 7055 return true; 7056 7057 ModuleHash Hash; 7058 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7059 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7060 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7061 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7062 ParseUInt32(Hash[4])) 7063 return true; 7064 7065 if (ParseToken(lltok::rparen, "expected ')' here") || 7066 ParseToken(lltok::rparen, "expected ')' here")) 7067 return true; 7068 7069 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7070 ModuleIdMap[ID] = ModuleEntry->first(); 7071 7072 return false; 7073 } 7074 7075 /// TypeIdEntry 7076 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7077 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7078 assert(Lex.getKind() == lltok::kw_typeid); 7079 Lex.Lex(); 7080 7081 std::string Name; 7082 if (ParseToken(lltok::colon, "expected ':' here") || 7083 ParseToken(lltok::lparen, "expected '(' here") || 7084 ParseToken(lltok::kw_name, "expected 'name' here") || 7085 ParseToken(lltok::colon, "expected ':' here") || 7086 ParseStringConstant(Name)) 7087 return true; 7088 7089 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7090 if (ParseToken(lltok::comma, "expected ',' here") || 7091 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7092 return true; 7093 7094 // Check if this ID was forward referenced, and if so, update the 7095 // corresponding GUIDs. 7096 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7097 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7098 for (auto TIDRef : FwdRefTIDs->second) { 7099 assert(!*TIDRef.first && 7100 "Forward referenced type id GUID expected to be 0"); 7101 *TIDRef.first = GlobalValue::getGUID(Name); 7102 } 7103 ForwardRefTypeIds.erase(FwdRefTIDs); 7104 } 7105 7106 return false; 7107 } 7108 7109 /// TypeIdSummary 7110 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7111 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7112 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7113 ParseToken(lltok::colon, "expected ':' here") || 7114 ParseToken(lltok::lparen, "expected '(' here") || 7115 ParseTypeTestResolution(TIS.TTRes)) 7116 return true; 7117 7118 if (EatIfPresent(lltok::comma)) { 7119 // Expect optional wpdResolutions field 7120 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7121 return true; 7122 } 7123 7124 if (ParseToken(lltok::rparen, "expected ')' here")) 7125 return true; 7126 7127 return false; 7128 } 7129 7130 /// TypeTestResolution 7131 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7132 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7133 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7134 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7135 /// [',' 'inlinesBits' ':' UInt64]? ')' 7136 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7137 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7138 ParseToken(lltok::colon, "expected ':' here") || 7139 ParseToken(lltok::lparen, "expected '(' here") || 7140 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7141 ParseToken(lltok::colon, "expected ':' here")) 7142 return true; 7143 7144 switch (Lex.getKind()) { 7145 case lltok::kw_unsat: 7146 TTRes.TheKind = TypeTestResolution::Unsat; 7147 break; 7148 case lltok::kw_byteArray: 7149 TTRes.TheKind = TypeTestResolution::ByteArray; 7150 break; 7151 case lltok::kw_inline: 7152 TTRes.TheKind = TypeTestResolution::Inline; 7153 break; 7154 case lltok::kw_single: 7155 TTRes.TheKind = TypeTestResolution::Single; 7156 break; 7157 case lltok::kw_allOnes: 7158 TTRes.TheKind = TypeTestResolution::AllOnes; 7159 break; 7160 default: 7161 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7162 } 7163 Lex.Lex(); 7164 7165 if (ParseToken(lltok::comma, "expected ',' here") || 7166 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7167 ParseToken(lltok::colon, "expected ':' here") || 7168 ParseUInt32(TTRes.SizeM1BitWidth)) 7169 return true; 7170 7171 // Parse optional fields 7172 while (EatIfPresent(lltok::comma)) { 7173 switch (Lex.getKind()) { 7174 case lltok::kw_alignLog2: 7175 Lex.Lex(); 7176 if (ParseToken(lltok::colon, "expected ':'") || 7177 ParseUInt64(TTRes.AlignLog2)) 7178 return true; 7179 break; 7180 case lltok::kw_sizeM1: 7181 Lex.Lex(); 7182 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7183 return true; 7184 break; 7185 case lltok::kw_bitMask: { 7186 unsigned Val; 7187 Lex.Lex(); 7188 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7189 return true; 7190 assert(Val <= 0xff); 7191 TTRes.BitMask = (uint8_t)Val; 7192 break; 7193 } 7194 case lltok::kw_inlineBits: 7195 Lex.Lex(); 7196 if (ParseToken(lltok::colon, "expected ':'") || 7197 ParseUInt64(TTRes.InlineBits)) 7198 return true; 7199 break; 7200 default: 7201 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7202 } 7203 } 7204 7205 if (ParseToken(lltok::rparen, "expected ')' here")) 7206 return true; 7207 7208 return false; 7209 } 7210 7211 /// OptionalWpdResolutions 7212 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7213 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7214 bool LLParser::ParseOptionalWpdResolutions( 7215 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7216 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7217 ParseToken(lltok::colon, "expected ':' here") || 7218 ParseToken(lltok::lparen, "expected '(' here")) 7219 return true; 7220 7221 do { 7222 uint64_t Offset; 7223 WholeProgramDevirtResolution WPDRes; 7224 if (ParseToken(lltok::lparen, "expected '(' here") || 7225 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7226 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7227 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7228 ParseToken(lltok::rparen, "expected ')' here")) 7229 return true; 7230 WPDResMap[Offset] = WPDRes; 7231 } while (EatIfPresent(lltok::comma)); 7232 7233 if (ParseToken(lltok::rparen, "expected ')' here")) 7234 return true; 7235 7236 return false; 7237 } 7238 7239 /// WpdRes 7240 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7241 /// [',' OptionalResByArg]? ')' 7242 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7243 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7244 /// [',' OptionalResByArg]? ')' 7245 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7246 /// [',' OptionalResByArg]? ')' 7247 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7248 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7249 ParseToken(lltok::colon, "expected ':' here") || 7250 ParseToken(lltok::lparen, "expected '(' here") || 7251 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7252 ParseToken(lltok::colon, "expected ':' here")) 7253 return true; 7254 7255 switch (Lex.getKind()) { 7256 case lltok::kw_indir: 7257 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7258 break; 7259 case lltok::kw_singleImpl: 7260 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7261 break; 7262 case lltok::kw_branchFunnel: 7263 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7264 break; 7265 default: 7266 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 7267 } 7268 Lex.Lex(); 7269 7270 // Parse optional fields 7271 while (EatIfPresent(lltok::comma)) { 7272 switch (Lex.getKind()) { 7273 case lltok::kw_singleImplName: 7274 Lex.Lex(); 7275 if (ParseToken(lltok::colon, "expected ':' here") || 7276 ParseStringConstant(WPDRes.SingleImplName)) 7277 return true; 7278 break; 7279 case lltok::kw_resByArg: 7280 if (ParseOptionalResByArg(WPDRes.ResByArg)) 7281 return true; 7282 break; 7283 default: 7284 return Error(Lex.getLoc(), 7285 "expected optional WholeProgramDevirtResolution field"); 7286 } 7287 } 7288 7289 if (ParseToken(lltok::rparen, "expected ')' here")) 7290 return true; 7291 7292 return false; 7293 } 7294 7295 /// OptionalResByArg 7296 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 7297 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 7298 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 7299 /// 'virtualConstProp' ) 7300 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 7301 /// [',' 'bit' ':' UInt32]? ')' 7302 bool LLParser::ParseOptionalResByArg( 7303 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 7304 &ResByArg) { 7305 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 7306 ParseToken(lltok::colon, "expected ':' here") || 7307 ParseToken(lltok::lparen, "expected '(' here")) 7308 return true; 7309 7310 do { 7311 std::vector<uint64_t> Args; 7312 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 7313 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 7314 ParseToken(lltok::colon, "expected ':' here") || 7315 ParseToken(lltok::lparen, "expected '(' here") || 7316 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7317 ParseToken(lltok::colon, "expected ':' here")) 7318 return true; 7319 7320 WholeProgramDevirtResolution::ByArg ByArg; 7321 switch (Lex.getKind()) { 7322 case lltok::kw_indir: 7323 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 7324 break; 7325 case lltok::kw_uniformRetVal: 7326 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 7327 break; 7328 case lltok::kw_uniqueRetVal: 7329 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 7330 break; 7331 case lltok::kw_virtualConstProp: 7332 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 7333 break; 7334 default: 7335 return Error(Lex.getLoc(), 7336 "unexpected WholeProgramDevirtResolution::ByArg kind"); 7337 } 7338 Lex.Lex(); 7339 7340 // Parse optional fields 7341 while (EatIfPresent(lltok::comma)) { 7342 switch (Lex.getKind()) { 7343 case lltok::kw_info: 7344 Lex.Lex(); 7345 if (ParseToken(lltok::colon, "expected ':' here") || 7346 ParseUInt64(ByArg.Info)) 7347 return true; 7348 break; 7349 case lltok::kw_byte: 7350 Lex.Lex(); 7351 if (ParseToken(lltok::colon, "expected ':' here") || 7352 ParseUInt32(ByArg.Byte)) 7353 return true; 7354 break; 7355 case lltok::kw_bit: 7356 Lex.Lex(); 7357 if (ParseToken(lltok::colon, "expected ':' here") || 7358 ParseUInt32(ByArg.Bit)) 7359 return true; 7360 break; 7361 default: 7362 return Error(Lex.getLoc(), 7363 "expected optional whole program devirt field"); 7364 } 7365 } 7366 7367 if (ParseToken(lltok::rparen, "expected ')' here")) 7368 return true; 7369 7370 ResByArg[Args] = ByArg; 7371 } while (EatIfPresent(lltok::comma)); 7372 7373 if (ParseToken(lltok::rparen, "expected ')' here")) 7374 return true; 7375 7376 return false; 7377 } 7378 7379 /// OptionalResByArg 7380 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 7381 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 7382 if (ParseToken(lltok::kw_args, "expected 'args' here") || 7383 ParseToken(lltok::colon, "expected ':' here") || 7384 ParseToken(lltok::lparen, "expected '(' here")) 7385 return true; 7386 7387 do { 7388 uint64_t Val; 7389 if (ParseUInt64(Val)) 7390 return true; 7391 Args.push_back(Val); 7392 } while (EatIfPresent(lltok::comma)); 7393 7394 if (ParseToken(lltok::rparen, "expected ')' here")) 7395 return true; 7396 7397 return false; 7398 } 7399 7400 static ValueInfo EmptyVI = 7401 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7402 7403 /// Stores the given Name/GUID and associated summary into the Index. 7404 /// Also updates any forward references to the associated entry ID. 7405 void LLParser::AddGlobalValueToIndex( 7406 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 7407 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 7408 // First create the ValueInfo utilizing the Name or GUID. 7409 ValueInfo VI; 7410 if (GUID != 0) { 7411 assert(Name.empty()); 7412 VI = Index->getOrInsertValueInfo(GUID); 7413 } else { 7414 assert(!Name.empty()); 7415 if (M) { 7416 auto *GV = M->getNamedValue(Name); 7417 assert(GV); 7418 VI = Index->getOrInsertValueInfo(GV); 7419 } else { 7420 assert( 7421 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 7422 "Need a source_filename to compute GUID for local"); 7423 GUID = GlobalValue::getGUID( 7424 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 7425 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 7426 } 7427 } 7428 7429 // Add the summary if one was provided. 7430 if (Summary) 7431 Index->addGlobalValueSummary(VI, std::move(Summary)); 7432 7433 // Resolve forward references from calls/refs 7434 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 7435 if (FwdRefVIs != ForwardRefValueInfos.end()) { 7436 for (auto VIRef : FwdRefVIs->second) { 7437 assert(*VIRef.first == EmptyVI && 7438 "Forward referenced ValueInfo expected to be empty"); 7439 *VIRef.first = VI; 7440 } 7441 ForwardRefValueInfos.erase(FwdRefVIs); 7442 } 7443 7444 // Resolve forward references from aliases 7445 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 7446 if (FwdRefAliasees != ForwardRefAliasees.end()) { 7447 for (auto AliaseeRef : FwdRefAliasees->second) { 7448 assert(!AliaseeRef.first->hasAliasee() && 7449 "Forward referencing alias already has aliasee"); 7450 AliaseeRef.first->setAliasee(VI.getSummaryList().front().get()); 7451 } 7452 ForwardRefAliasees.erase(FwdRefAliasees); 7453 } 7454 7455 // Save the associated ValueInfo for use in later references by ID. 7456 if (ID == NumberedValueInfos.size()) 7457 NumberedValueInfos.push_back(VI); 7458 else { 7459 // Handle non-continuous numbers (to make test simplification easier). 7460 if (ID > NumberedValueInfos.size()) 7461 NumberedValueInfos.resize(ID + 1); 7462 NumberedValueInfos[ID] = VI; 7463 } 7464 } 7465 7466 /// ParseGVEntry 7467 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 7468 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 7469 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 7470 bool LLParser::ParseGVEntry(unsigned ID) { 7471 assert(Lex.getKind() == lltok::kw_gv); 7472 Lex.Lex(); 7473 7474 if (ParseToken(lltok::colon, "expected ':' here") || 7475 ParseToken(lltok::lparen, "expected '(' here")) 7476 return true; 7477 7478 std::string Name; 7479 GlobalValue::GUID GUID = 0; 7480 switch (Lex.getKind()) { 7481 case lltok::kw_name: 7482 Lex.Lex(); 7483 if (ParseToken(lltok::colon, "expected ':' here") || 7484 ParseStringConstant(Name)) 7485 return true; 7486 // Can't create GUID/ValueInfo until we have the linkage. 7487 break; 7488 case lltok::kw_guid: 7489 Lex.Lex(); 7490 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 7491 return true; 7492 break; 7493 default: 7494 return Error(Lex.getLoc(), "expected name or guid tag"); 7495 } 7496 7497 if (!EatIfPresent(lltok::comma)) { 7498 // No summaries. Wrap up. 7499 if (ParseToken(lltok::rparen, "expected ')' here")) 7500 return true; 7501 // This was created for a call to an external or indirect target. 7502 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 7503 // created for indirect calls with VP. A Name with no GUID came from 7504 // an external definition. We pass ExternalLinkage since that is only 7505 // used when the GUID must be computed from Name, and in that case 7506 // the symbol must have external linkage. 7507 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 7508 nullptr); 7509 return false; 7510 } 7511 7512 // Have a list of summaries 7513 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 7514 ParseToken(lltok::colon, "expected ':' here")) 7515 return true; 7516 7517 do { 7518 if (ParseToken(lltok::lparen, "expected '(' here")) 7519 return true; 7520 switch (Lex.getKind()) { 7521 case lltok::kw_function: 7522 if (ParseFunctionSummary(Name, GUID, ID)) 7523 return true; 7524 break; 7525 case lltok::kw_variable: 7526 if (ParseVariableSummary(Name, GUID, ID)) 7527 return true; 7528 break; 7529 case lltok::kw_alias: 7530 if (ParseAliasSummary(Name, GUID, ID)) 7531 return true; 7532 break; 7533 default: 7534 return Error(Lex.getLoc(), "expected summary type"); 7535 } 7536 if (ParseToken(lltok::rparen, "expected ')' here")) 7537 return true; 7538 } while (EatIfPresent(lltok::comma)); 7539 7540 if (ParseToken(lltok::rparen, "expected ')' here")) 7541 return true; 7542 7543 return false; 7544 } 7545 7546 /// FunctionSummary 7547 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7548 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 7549 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')' 7550 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 7551 unsigned ID) { 7552 assert(Lex.getKind() == lltok::kw_function); 7553 Lex.Lex(); 7554 7555 StringRef ModulePath; 7556 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7557 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7558 /*Live=*/false, /*IsLocal=*/false); 7559 unsigned InstCount; 7560 std::vector<FunctionSummary::EdgeTy> Calls; 7561 FunctionSummary::TypeIdInfo TypeIdInfo; 7562 std::vector<ValueInfo> Refs; 7563 // Default is all-zeros (conservative values). 7564 FunctionSummary::FFlags FFlags = {}; 7565 if (ParseToken(lltok::colon, "expected ':' here") || 7566 ParseToken(lltok::lparen, "expected '(' here") || 7567 ParseModuleReference(ModulePath) || 7568 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7569 ParseToken(lltok::comma, "expected ',' here") || 7570 ParseToken(lltok::kw_insts, "expected 'insts' here") || 7571 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 7572 return true; 7573 7574 // Parse optional fields 7575 while (EatIfPresent(lltok::comma)) { 7576 switch (Lex.getKind()) { 7577 case lltok::kw_funcFlags: 7578 if (ParseOptionalFFlags(FFlags)) 7579 return true; 7580 break; 7581 case lltok::kw_calls: 7582 if (ParseOptionalCalls(Calls)) 7583 return true; 7584 break; 7585 case lltok::kw_typeIdInfo: 7586 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 7587 return true; 7588 break; 7589 case lltok::kw_refs: 7590 if (ParseOptionalRefs(Refs)) 7591 return true; 7592 break; 7593 default: 7594 return Error(Lex.getLoc(), "expected optional function summary field"); 7595 } 7596 } 7597 7598 if (ParseToken(lltok::rparen, "expected ')' here")) 7599 return true; 7600 7601 auto FS = llvm::make_unique<FunctionSummary>( 7602 GVFlags, InstCount, FFlags, std::move(Refs), std::move(Calls), 7603 std::move(TypeIdInfo.TypeTests), 7604 std::move(TypeIdInfo.TypeTestAssumeVCalls), 7605 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 7606 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 7607 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls)); 7608 7609 FS->setModulePath(ModulePath); 7610 7611 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7612 ID, std::move(FS)); 7613 7614 return false; 7615 } 7616 7617 /// VariableSummary 7618 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7619 /// [',' OptionalRefs]? ')' 7620 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 7621 unsigned ID) { 7622 assert(Lex.getKind() == lltok::kw_variable); 7623 Lex.Lex(); 7624 7625 StringRef ModulePath; 7626 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7627 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7628 /*Live=*/false, /*IsLocal=*/false); 7629 std::vector<ValueInfo> Refs; 7630 if (ParseToken(lltok::colon, "expected ':' here") || 7631 ParseToken(lltok::lparen, "expected '(' here") || 7632 ParseModuleReference(ModulePath) || 7633 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags)) 7634 return true; 7635 7636 // Parse optional refs field 7637 if (EatIfPresent(lltok::comma)) { 7638 if (ParseOptionalRefs(Refs)) 7639 return true; 7640 } 7641 7642 if (ParseToken(lltok::rparen, "expected ')' here")) 7643 return true; 7644 7645 auto GS = llvm::make_unique<GlobalVarSummary>( 7646 GVFlags, GlobalVarSummary::GVarFlags(), std::move(Refs)); 7647 7648 GS->setModulePath(ModulePath); 7649 7650 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7651 ID, std::move(GS)); 7652 7653 return false; 7654 } 7655 7656 /// AliasSummary 7657 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 7658 /// 'aliasee' ':' GVReference ')' 7659 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 7660 unsigned ID) { 7661 assert(Lex.getKind() == lltok::kw_alias); 7662 LocTy Loc = Lex.getLoc(); 7663 Lex.Lex(); 7664 7665 StringRef ModulePath; 7666 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7667 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7668 /*Live=*/false, /*IsLocal=*/false); 7669 if (ParseToken(lltok::colon, "expected ':' here") || 7670 ParseToken(lltok::lparen, "expected '(' here") || 7671 ParseModuleReference(ModulePath) || 7672 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7673 ParseToken(lltok::comma, "expected ',' here") || 7674 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 7675 ParseToken(lltok::colon, "expected ':' here")) 7676 return true; 7677 7678 ValueInfo AliaseeVI; 7679 unsigned GVId; 7680 if (ParseGVReference(AliaseeVI, GVId)) 7681 return true; 7682 7683 if (ParseToken(lltok::rparen, "expected ')' here")) 7684 return true; 7685 7686 auto AS = llvm::make_unique<AliasSummary>(GVFlags); 7687 7688 AS->setModulePath(ModulePath); 7689 7690 // Record forward reference if the aliasee is not parsed yet. 7691 if (AliaseeVI == EmptyVI) { 7692 auto FwdRef = ForwardRefAliasees.insert( 7693 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>())); 7694 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc)); 7695 } else 7696 AS->setAliasee(AliaseeVI.getSummaryList().front().get()); 7697 7698 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7699 ID, std::move(AS)); 7700 7701 return false; 7702 } 7703 7704 /// Flag 7705 /// ::= [0|1] 7706 bool LLParser::ParseFlag(unsigned &Val) { 7707 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 7708 return TokError("expected integer"); 7709 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 7710 Lex.Lex(); 7711 return false; 7712 } 7713 7714 /// OptionalFFlags 7715 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 7716 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 7717 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 7718 /// [',' 'noInline' ':' Flag]? ')' 7719 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 7720 assert(Lex.getKind() == lltok::kw_funcFlags); 7721 Lex.Lex(); 7722 7723 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 7724 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 7725 return true; 7726 7727 do { 7728 unsigned Val; 7729 switch (Lex.getKind()) { 7730 case lltok::kw_readNone: 7731 Lex.Lex(); 7732 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7733 return true; 7734 FFlags.ReadNone = Val; 7735 break; 7736 case lltok::kw_readOnly: 7737 Lex.Lex(); 7738 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7739 return true; 7740 FFlags.ReadOnly = Val; 7741 break; 7742 case lltok::kw_noRecurse: 7743 Lex.Lex(); 7744 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7745 return true; 7746 FFlags.NoRecurse = Val; 7747 break; 7748 case lltok::kw_returnDoesNotAlias: 7749 Lex.Lex(); 7750 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7751 return true; 7752 FFlags.ReturnDoesNotAlias = Val; 7753 break; 7754 case lltok::kw_noInline: 7755 Lex.Lex(); 7756 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7757 return true; 7758 FFlags.NoInline = Val; 7759 break; 7760 default: 7761 return Error(Lex.getLoc(), "expected function flag type"); 7762 } 7763 } while (EatIfPresent(lltok::comma)); 7764 7765 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 7766 return true; 7767 7768 return false; 7769 } 7770 7771 /// OptionalCalls 7772 /// := 'calls' ':' '(' Call [',' Call]* ')' 7773 /// Call ::= '(' 'callee' ':' GVReference 7774 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 7775 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 7776 assert(Lex.getKind() == lltok::kw_calls); 7777 Lex.Lex(); 7778 7779 if (ParseToken(lltok::colon, "expected ':' in calls") | 7780 ParseToken(lltok::lparen, "expected '(' in calls")) 7781 return true; 7782 7783 IdToIndexMapType IdToIndexMap; 7784 // Parse each call edge 7785 do { 7786 ValueInfo VI; 7787 if (ParseToken(lltok::lparen, "expected '(' in call") || 7788 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 7789 ParseToken(lltok::colon, "expected ':'")) 7790 return true; 7791 7792 LocTy Loc = Lex.getLoc(); 7793 unsigned GVId; 7794 if (ParseGVReference(VI, GVId)) 7795 return true; 7796 7797 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7798 unsigned RelBF = 0; 7799 if (EatIfPresent(lltok::comma)) { 7800 // Expect either hotness or relbf 7801 if (EatIfPresent(lltok::kw_hotness)) { 7802 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 7803 return true; 7804 } else { 7805 if (ParseToken(lltok::kw_relbf, "expected relbf") || 7806 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 7807 return true; 7808 } 7809 } 7810 // Keep track of the Call array index needing a forward reference. 7811 // We will save the location of the ValueInfo needing an update, but 7812 // can only do so once the std::vector is finalized. 7813 if (VI == EmptyVI) 7814 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 7815 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 7816 7817 if (ParseToken(lltok::rparen, "expected ')' in call")) 7818 return true; 7819 } while (EatIfPresent(lltok::comma)); 7820 7821 // Now that the Calls vector is finalized, it is safe to save the locations 7822 // of any forward GV references that need updating later. 7823 for (auto I : IdToIndexMap) { 7824 for (auto P : I.second) { 7825 assert(Calls[P.first].first == EmptyVI && 7826 "Forward referenced ValueInfo expected to be empty"); 7827 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 7828 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 7829 FwdRef.first->second.push_back( 7830 std::make_pair(&Calls[P.first].first, P.second)); 7831 } 7832 } 7833 7834 if (ParseToken(lltok::rparen, "expected ')' in calls")) 7835 return true; 7836 7837 return false; 7838 } 7839 7840 /// Hotness 7841 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 7842 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 7843 switch (Lex.getKind()) { 7844 case lltok::kw_unknown: 7845 Hotness = CalleeInfo::HotnessType::Unknown; 7846 break; 7847 case lltok::kw_cold: 7848 Hotness = CalleeInfo::HotnessType::Cold; 7849 break; 7850 case lltok::kw_none: 7851 Hotness = CalleeInfo::HotnessType::None; 7852 break; 7853 case lltok::kw_hot: 7854 Hotness = CalleeInfo::HotnessType::Hot; 7855 break; 7856 case lltok::kw_critical: 7857 Hotness = CalleeInfo::HotnessType::Critical; 7858 break; 7859 default: 7860 return Error(Lex.getLoc(), "invalid call edge hotness"); 7861 } 7862 Lex.Lex(); 7863 return false; 7864 } 7865 7866 /// OptionalRefs 7867 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 7868 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 7869 assert(Lex.getKind() == lltok::kw_refs); 7870 Lex.Lex(); 7871 7872 if (ParseToken(lltok::colon, "expected ':' in refs") | 7873 ParseToken(lltok::lparen, "expected '(' in refs")) 7874 return true; 7875 7876 IdToIndexMapType IdToIndexMap; 7877 // Parse each ref edge 7878 do { 7879 ValueInfo VI; 7880 LocTy Loc = Lex.getLoc(); 7881 unsigned GVId; 7882 if (ParseGVReference(VI, GVId)) 7883 return true; 7884 7885 // Keep track of the Refs array index needing a forward reference. 7886 // We will save the location of the ValueInfo needing an update, but 7887 // can only do so once the std::vector is finalized. 7888 if (VI == EmptyVI) 7889 IdToIndexMap[GVId].push_back(std::make_pair(Refs.size(), Loc)); 7890 Refs.push_back(VI); 7891 } while (EatIfPresent(lltok::comma)); 7892 7893 // Now that the Refs vector is finalized, it is safe to save the locations 7894 // of any forward GV references that need updating later. 7895 for (auto I : IdToIndexMap) { 7896 for (auto P : I.second) { 7897 assert(Refs[P.first] == EmptyVI && 7898 "Forward referenced ValueInfo expected to be empty"); 7899 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 7900 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 7901 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second)); 7902 } 7903 } 7904 7905 if (ParseToken(lltok::rparen, "expected ')' in refs")) 7906 return true; 7907 7908 return false; 7909 } 7910 7911 /// OptionalTypeIdInfo 7912 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 7913 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 7914 /// [',' TypeCheckedLoadConstVCalls]? ')' 7915 bool LLParser::ParseOptionalTypeIdInfo( 7916 FunctionSummary::TypeIdInfo &TypeIdInfo) { 7917 assert(Lex.getKind() == lltok::kw_typeIdInfo); 7918 Lex.Lex(); 7919 7920 if (ParseToken(lltok::colon, "expected ':' here") || 7921 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 7922 return true; 7923 7924 do { 7925 switch (Lex.getKind()) { 7926 case lltok::kw_typeTests: 7927 if (ParseTypeTests(TypeIdInfo.TypeTests)) 7928 return true; 7929 break; 7930 case lltok::kw_typeTestAssumeVCalls: 7931 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 7932 TypeIdInfo.TypeTestAssumeVCalls)) 7933 return true; 7934 break; 7935 case lltok::kw_typeCheckedLoadVCalls: 7936 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 7937 TypeIdInfo.TypeCheckedLoadVCalls)) 7938 return true; 7939 break; 7940 case lltok::kw_typeTestAssumeConstVCalls: 7941 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 7942 TypeIdInfo.TypeTestAssumeConstVCalls)) 7943 return true; 7944 break; 7945 case lltok::kw_typeCheckedLoadConstVCalls: 7946 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 7947 TypeIdInfo.TypeCheckedLoadConstVCalls)) 7948 return true; 7949 break; 7950 default: 7951 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 7952 } 7953 } while (EatIfPresent(lltok::comma)); 7954 7955 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 7956 return true; 7957 7958 return false; 7959 } 7960 7961 /// TypeTests 7962 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 7963 /// [',' (SummaryID | UInt64)]* ')' 7964 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 7965 assert(Lex.getKind() == lltok::kw_typeTests); 7966 Lex.Lex(); 7967 7968 if (ParseToken(lltok::colon, "expected ':' here") || 7969 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 7970 return true; 7971 7972 IdToIndexMapType IdToIndexMap; 7973 do { 7974 GlobalValue::GUID GUID = 0; 7975 if (Lex.getKind() == lltok::SummaryID) { 7976 unsigned ID = Lex.getUIntVal(); 7977 LocTy Loc = Lex.getLoc(); 7978 // Keep track of the TypeTests array index needing a forward reference. 7979 // We will save the location of the GUID needing an update, but 7980 // can only do so once the std::vector is finalized. 7981 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 7982 Lex.Lex(); 7983 } else if (ParseUInt64(GUID)) 7984 return true; 7985 TypeTests.push_back(GUID); 7986 } while (EatIfPresent(lltok::comma)); 7987 7988 // Now that the TypeTests vector is finalized, it is safe to save the 7989 // locations of any forward GV references that need updating later. 7990 for (auto I : IdToIndexMap) { 7991 for (auto P : I.second) { 7992 assert(TypeTests[P.first] == 0 && 7993 "Forward referenced type id GUID expected to be 0"); 7994 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 7995 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 7996 FwdRef.first->second.push_back( 7997 std::make_pair(&TypeTests[P.first], P.second)); 7998 } 7999 } 8000 8001 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8002 return true; 8003 8004 return false; 8005 } 8006 8007 /// VFuncIdList 8008 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 8009 bool LLParser::ParseVFuncIdList( 8010 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 8011 assert(Lex.getKind() == Kind); 8012 Lex.Lex(); 8013 8014 if (ParseToken(lltok::colon, "expected ':' here") || 8015 ParseToken(lltok::lparen, "expected '(' here")) 8016 return true; 8017 8018 IdToIndexMapType IdToIndexMap; 8019 do { 8020 FunctionSummary::VFuncId VFuncId; 8021 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 8022 return true; 8023 VFuncIdList.push_back(VFuncId); 8024 } while (EatIfPresent(lltok::comma)); 8025 8026 if (ParseToken(lltok::rparen, "expected ')' here")) 8027 return true; 8028 8029 // Now that the VFuncIdList vector is finalized, it is safe to save the 8030 // locations of any forward GV references that need updating later. 8031 for (auto I : IdToIndexMap) { 8032 for (auto P : I.second) { 8033 assert(VFuncIdList[P.first].GUID == 0 && 8034 "Forward referenced type id GUID expected to be 0"); 8035 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8036 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8037 FwdRef.first->second.push_back( 8038 std::make_pair(&VFuncIdList[P.first].GUID, P.second)); 8039 } 8040 } 8041 8042 return false; 8043 } 8044 8045 /// ConstVCallList 8046 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 8047 bool LLParser::ParseConstVCallList( 8048 lltok::Kind Kind, 8049 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 8050 assert(Lex.getKind() == Kind); 8051 Lex.Lex(); 8052 8053 if (ParseToken(lltok::colon, "expected ':' here") || 8054 ParseToken(lltok::lparen, "expected '(' here")) 8055 return true; 8056 8057 IdToIndexMapType IdToIndexMap; 8058 do { 8059 FunctionSummary::ConstVCall ConstVCall; 8060 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 8061 return true; 8062 ConstVCallList.push_back(ConstVCall); 8063 } while (EatIfPresent(lltok::comma)); 8064 8065 if (ParseToken(lltok::rparen, "expected ')' here")) 8066 return true; 8067 8068 // Now that the ConstVCallList vector is finalized, it is safe to save the 8069 // locations of any forward GV references that need updating later. 8070 for (auto I : IdToIndexMap) { 8071 for (auto P : I.second) { 8072 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 8073 "Forward referenced type id GUID expected to be 0"); 8074 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8075 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8076 FwdRef.first->second.push_back( 8077 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second)); 8078 } 8079 } 8080 8081 return false; 8082 } 8083 8084 /// ConstVCall 8085 /// ::= '(' VFuncId ',' Args ')' 8086 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 8087 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8088 if (ParseToken(lltok::lparen, "expected '(' here") || 8089 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 8090 return true; 8091 8092 if (EatIfPresent(lltok::comma)) 8093 if (ParseArgs(ConstVCall.Args)) 8094 return true; 8095 8096 if (ParseToken(lltok::rparen, "expected ')' here")) 8097 return true; 8098 8099 return false; 8100 } 8101 8102 /// VFuncId 8103 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 8104 /// 'offset' ':' UInt64 ')' 8105 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 8106 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8107 assert(Lex.getKind() == lltok::kw_vFuncId); 8108 Lex.Lex(); 8109 8110 if (ParseToken(lltok::colon, "expected ':' here") || 8111 ParseToken(lltok::lparen, "expected '(' here")) 8112 return true; 8113 8114 if (Lex.getKind() == lltok::SummaryID) { 8115 VFuncId.GUID = 0; 8116 unsigned ID = Lex.getUIntVal(); 8117 LocTy Loc = Lex.getLoc(); 8118 // Keep track of the array index needing a forward reference. 8119 // We will save the location of the GUID needing an update, but 8120 // can only do so once the caller's std::vector is finalized. 8121 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 8122 Lex.Lex(); 8123 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 8124 ParseToken(lltok::colon, "expected ':' here") || 8125 ParseUInt64(VFuncId.GUID)) 8126 return true; 8127 8128 if (ParseToken(lltok::comma, "expected ',' here") || 8129 ParseToken(lltok::kw_offset, "expected 'offset' here") || 8130 ParseToken(lltok::colon, "expected ':' here") || 8131 ParseUInt64(VFuncId.Offset) || 8132 ParseToken(lltok::rparen, "expected ')' here")) 8133 return true; 8134 8135 return false; 8136 } 8137 8138 /// GVFlags 8139 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 8140 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 8141 /// 'dsoLocal' ':' Flag ')' 8142 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 8143 assert(Lex.getKind() == lltok::kw_flags); 8144 Lex.Lex(); 8145 8146 bool HasLinkage; 8147 if (ParseToken(lltok::colon, "expected ':' here") || 8148 ParseToken(lltok::lparen, "expected '(' here") || 8149 ParseToken(lltok::kw_linkage, "expected 'linkage' here") || 8150 ParseToken(lltok::colon, "expected ':' here")) 8151 return true; 8152 8153 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 8154 assert(HasLinkage && "Linkage not optional in summary entry"); 8155 Lex.Lex(); 8156 8157 unsigned Flag; 8158 if (ParseToken(lltok::comma, "expected ',' here") || 8159 ParseToken(lltok::kw_notEligibleToImport, 8160 "expected 'notEligibleToImport' here") || 8161 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8162 return true; 8163 GVFlags.NotEligibleToImport = Flag; 8164 8165 if (ParseToken(lltok::comma, "expected ',' here") || 8166 ParseToken(lltok::kw_live, "expected 'live' here") || 8167 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8168 return true; 8169 GVFlags.Live = Flag; 8170 8171 if (ParseToken(lltok::comma, "expected ',' here") || 8172 ParseToken(lltok::kw_dsoLocal, "expected 'dsoLocal' here") || 8173 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8174 return true; 8175 GVFlags.DSOLocal = Flag; 8176 8177 if (ParseToken(lltok::rparen, "expected ')' here")) 8178 return true; 8179 8180 return false; 8181 } 8182 8183 /// ModuleReference 8184 /// ::= 'module' ':' UInt 8185 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 8186 // Parse module id. 8187 if (ParseToken(lltok::kw_module, "expected 'module' here") || 8188 ParseToken(lltok::colon, "expected ':' here") || 8189 ParseToken(lltok::SummaryID, "expected module ID")) 8190 return true; 8191 8192 unsigned ModuleID = Lex.getUIntVal(); 8193 auto I = ModuleIdMap.find(ModuleID); 8194 // We should have already parsed all module IDs 8195 assert(I != ModuleIdMap.end()); 8196 ModulePath = I->second; 8197 return false; 8198 } 8199 8200 /// GVReference 8201 /// ::= SummaryID 8202 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 8203 if (ParseToken(lltok::SummaryID, "expected GV ID")) 8204 return true; 8205 8206 GVId = Lex.getUIntVal(); 8207 8208 // Check if we already have a VI for this GV 8209 if (GVId < NumberedValueInfos.size()) { 8210 assert(NumberedValueInfos[GVId] != EmptyVI); 8211 VI = NumberedValueInfos[GVId]; 8212 } else 8213 // We will create a forward reference to the stored location. 8214 VI = EmptyVI; 8215 8216 return false; 8217 } 8218