1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalIFunc.h"
32 #include "llvm/IR/GlobalObject.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/IR/ValueSymbolTable.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/SaveAndRestore.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstring>
52 #include <iterator>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 static std::string getTypeString(Type *T) {
58   std::string Result;
59   raw_string_ostream Tmp(Result);
60   Tmp << *T;
61   return Tmp.str();
62 }
63 
64 /// Run: module ::= toplevelentity*
65 bool LLParser::Run() {
66   // Prime the lexer.
67   Lex.Lex();
68 
69   if (Context.shouldDiscardValueNames())
70     return Error(
71         Lex.getLoc(),
72         "Can't read textual IR with a Context that discards named Values");
73 
74   return ParseTopLevelEntities() || ValidateEndOfModule() ||
75          ValidateEndOfIndex();
76 }
77 
78 bool LLParser::parseStandaloneConstantValue(Constant *&C,
79                                             const SlotMapping *Slots) {
80   restoreParsingState(Slots);
81   Lex.Lex();
82 
83   Type *Ty = nullptr;
84   if (ParseType(Ty) || parseConstantValue(Ty, C))
85     return true;
86   if (Lex.getKind() != lltok::Eof)
87     return Error(Lex.getLoc(), "expected end of string");
88   return false;
89 }
90 
91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
92                                     const SlotMapping *Slots) {
93   restoreParsingState(Slots);
94   Lex.Lex();
95 
96   Read = 0;
97   SMLoc Start = Lex.getLoc();
98   Ty = nullptr;
99   if (ParseType(Ty))
100     return true;
101   SMLoc End = Lex.getLoc();
102   Read = End.getPointer() - Start.getPointer();
103 
104   return false;
105 }
106 
107 void LLParser::restoreParsingState(const SlotMapping *Slots) {
108   if (!Slots)
109     return;
110   NumberedVals = Slots->GlobalValues;
111   NumberedMetadata = Slots->MetadataNodes;
112   for (const auto &I : Slots->NamedTypes)
113     NamedTypes.insert(
114         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
115   for (const auto &I : Slots->Types)
116     NumberedTypes.insert(
117         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
118 }
119 
120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
121 /// module.
122 bool LLParser::ValidateEndOfModule() {
123   if (!M)
124     return false;
125   // Handle any function attribute group forward references.
126   for (const auto &RAG : ForwardRefAttrGroups) {
127     Value *V = RAG.first;
128     const std::vector<unsigned> &Attrs = RAG.second;
129     AttrBuilder B;
130 
131     for (const auto &Attr : Attrs)
132       B.merge(NumberedAttrBuilders[Attr]);
133 
134     if (Function *Fn = dyn_cast<Function>(V)) {
135       AttributeList AS = Fn->getAttributes();
136       AttrBuilder FnAttrs(AS.getFnAttributes());
137       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
138 
139       FnAttrs.merge(B);
140 
141       // If the alignment was parsed as an attribute, move to the alignment
142       // field.
143       if (FnAttrs.hasAlignmentAttr()) {
144         Fn->setAlignment(FnAttrs.getAlignment());
145         FnAttrs.removeAttribute(Attribute::Alignment);
146       }
147 
148       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
149                             AttributeSet::get(Context, FnAttrs));
150       Fn->setAttributes(AS);
151     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
152       AttributeList AS = CI->getAttributes();
153       AttrBuilder FnAttrs(AS.getFnAttributes());
154       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
155       FnAttrs.merge(B);
156       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
157                             AttributeSet::get(Context, FnAttrs));
158       CI->setAttributes(AS);
159     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
160       AttributeList AS = II->getAttributes();
161       AttrBuilder FnAttrs(AS.getFnAttributes());
162       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
163       FnAttrs.merge(B);
164       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
165                             AttributeSet::get(Context, FnAttrs));
166       II->setAttributes(AS);
167     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
168       AttrBuilder Attrs(GV->getAttributes());
169       Attrs.merge(B);
170       GV->setAttributes(AttributeSet::get(Context,Attrs));
171     } else {
172       llvm_unreachable("invalid object with forward attribute group reference");
173     }
174   }
175 
176   // If there are entries in ForwardRefBlockAddresses at this point, the
177   // function was never defined.
178   if (!ForwardRefBlockAddresses.empty())
179     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
180                  "expected function name in blockaddress");
181 
182   for (const auto &NT : NumberedTypes)
183     if (NT.second.second.isValid())
184       return Error(NT.second.second,
185                    "use of undefined type '%" + Twine(NT.first) + "'");
186 
187   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
188        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
189     if (I->second.second.isValid())
190       return Error(I->second.second,
191                    "use of undefined type named '" + I->getKey() + "'");
192 
193   if (!ForwardRefComdats.empty())
194     return Error(ForwardRefComdats.begin()->second,
195                  "use of undefined comdat '$" +
196                      ForwardRefComdats.begin()->first + "'");
197 
198   if (!ForwardRefVals.empty())
199     return Error(ForwardRefVals.begin()->second.second,
200                  "use of undefined value '@" + ForwardRefVals.begin()->first +
201                  "'");
202 
203   if (!ForwardRefValIDs.empty())
204     return Error(ForwardRefValIDs.begin()->second.second,
205                  "use of undefined value '@" +
206                  Twine(ForwardRefValIDs.begin()->first) + "'");
207 
208   if (!ForwardRefMDNodes.empty())
209     return Error(ForwardRefMDNodes.begin()->second.second,
210                  "use of undefined metadata '!" +
211                  Twine(ForwardRefMDNodes.begin()->first) + "'");
212 
213   // Resolve metadata cycles.
214   for (auto &N : NumberedMetadata) {
215     if (N.second && !N.second->isResolved())
216       N.second->resolveCycles();
217   }
218 
219   for (auto *Inst : InstsWithTBAATag) {
220     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
221     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
222     auto *UpgradedMD = UpgradeTBAANode(*MD);
223     if (MD != UpgradedMD)
224       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
225   }
226 
227   // Look for intrinsic functions and CallInst that need to be upgraded
228   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
229     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
230 
231   // Some types could be renamed during loading if several modules are
232   // loaded in the same LLVMContext (LTO scenario). In this case we should
233   // remangle intrinsics names as well.
234   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
235     Function *F = &*FI++;
236     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
237       F->replaceAllUsesWith(Remangled.getValue());
238       F->eraseFromParent();
239     }
240   }
241 
242   if (UpgradeDebugInfo)
243     llvm::UpgradeDebugInfo(*M);
244 
245   UpgradeModuleFlags(*M);
246   UpgradeSectionAttributes(*M);
247 
248   if (!Slots)
249     return false;
250   // Initialize the slot mapping.
251   // Because by this point we've parsed and validated everything, we can "steal"
252   // the mapping from LLParser as it doesn't need it anymore.
253   Slots->GlobalValues = std::move(NumberedVals);
254   Slots->MetadataNodes = std::move(NumberedMetadata);
255   for (const auto &I : NamedTypes)
256     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
257   for (const auto &I : NumberedTypes)
258     Slots->Types.insert(std::make_pair(I.first, I.second.first));
259 
260   return false;
261 }
262 
263 /// Do final validity and sanity checks at the end of the index.
264 bool LLParser::ValidateEndOfIndex() {
265   if (!Index)
266     return false;
267 
268   if (!ForwardRefValueInfos.empty())
269     return Error(ForwardRefValueInfos.begin()->second.front().second,
270                  "use of undefined summary '^" +
271                      Twine(ForwardRefValueInfos.begin()->first) + "'");
272 
273   if (!ForwardRefAliasees.empty())
274     return Error(ForwardRefAliasees.begin()->second.front().second,
275                  "use of undefined summary '^" +
276                      Twine(ForwardRefAliasees.begin()->first) + "'");
277 
278   if (!ForwardRefTypeIds.empty())
279     return Error(ForwardRefTypeIds.begin()->second.front().second,
280                  "use of undefined type id summary '^" +
281                      Twine(ForwardRefTypeIds.begin()->first) + "'");
282 
283   return false;
284 }
285 
286 //===----------------------------------------------------------------------===//
287 // Top-Level Entities
288 //===----------------------------------------------------------------------===//
289 
290 bool LLParser::ParseTopLevelEntities() {
291   // If there is no Module, then parse just the summary index entries.
292   if (!M) {
293     while (true) {
294       switch (Lex.getKind()) {
295       case lltok::Eof:
296         return false;
297       case lltok::SummaryID:
298         if (ParseSummaryEntry())
299           return true;
300         break;
301       case lltok::kw_source_filename:
302         if (ParseSourceFileName())
303           return true;
304         break;
305       default:
306         // Skip everything else
307         Lex.Lex();
308       }
309     }
310   }
311   while (true) {
312     switch (Lex.getKind()) {
313     default:         return TokError("expected top-level entity");
314     case lltok::Eof: return false;
315     case lltok::kw_declare: if (ParseDeclare()) return true; break;
316     case lltok::kw_define:  if (ParseDefine()) return true; break;
317     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
318     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
319     case lltok::kw_source_filename:
320       if (ParseSourceFileName())
321         return true;
322       break;
323     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
324     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
325     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
326     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
327     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
328     case lltok::ComdatVar:  if (parseComdat()) return true; break;
329     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
330     case lltok::SummaryID:
331       if (ParseSummaryEntry())
332         return true;
333       break;
334     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
335     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
336     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
337     case lltok::kw_uselistorder_bb:
338       if (ParseUseListOrderBB())
339         return true;
340       break;
341     }
342   }
343 }
344 
345 /// toplevelentity
346 ///   ::= 'module' 'asm' STRINGCONSTANT
347 bool LLParser::ParseModuleAsm() {
348   assert(Lex.getKind() == lltok::kw_module);
349   Lex.Lex();
350 
351   std::string AsmStr;
352   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
353       ParseStringConstant(AsmStr)) return true;
354 
355   M->appendModuleInlineAsm(AsmStr);
356   return false;
357 }
358 
359 /// toplevelentity
360 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
361 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
362 bool LLParser::ParseTargetDefinition() {
363   assert(Lex.getKind() == lltok::kw_target);
364   std::string Str;
365   switch (Lex.Lex()) {
366   default: return TokError("unknown target property");
367   case lltok::kw_triple:
368     Lex.Lex();
369     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
370         ParseStringConstant(Str))
371       return true;
372     M->setTargetTriple(Str);
373     return false;
374   case lltok::kw_datalayout:
375     Lex.Lex();
376     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
377         ParseStringConstant(Str))
378       return true;
379     if (DataLayoutStr.empty())
380       M->setDataLayout(Str);
381     return false;
382   }
383 }
384 
385 /// toplevelentity
386 ///   ::= 'source_filename' '=' STRINGCONSTANT
387 bool LLParser::ParseSourceFileName() {
388   assert(Lex.getKind() == lltok::kw_source_filename);
389   Lex.Lex();
390   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
391       ParseStringConstant(SourceFileName))
392     return true;
393   if (M)
394     M->setSourceFileName(SourceFileName);
395   return false;
396 }
397 
398 /// toplevelentity
399 ///   ::= 'deplibs' '=' '[' ']'
400 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
401 /// FIXME: Remove in 4.0. Currently parse, but ignore.
402 bool LLParser::ParseDepLibs() {
403   assert(Lex.getKind() == lltok::kw_deplibs);
404   Lex.Lex();
405   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
406       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
407     return true;
408 
409   if (EatIfPresent(lltok::rsquare))
410     return false;
411 
412   do {
413     std::string Str;
414     if (ParseStringConstant(Str)) return true;
415   } while (EatIfPresent(lltok::comma));
416 
417   return ParseToken(lltok::rsquare, "expected ']' at end of list");
418 }
419 
420 /// ParseUnnamedType:
421 ///   ::= LocalVarID '=' 'type' type
422 bool LLParser::ParseUnnamedType() {
423   LocTy TypeLoc = Lex.getLoc();
424   unsigned TypeID = Lex.getUIntVal();
425   Lex.Lex(); // eat LocalVarID;
426 
427   if (ParseToken(lltok::equal, "expected '=' after name") ||
428       ParseToken(lltok::kw_type, "expected 'type' after '='"))
429     return true;
430 
431   Type *Result = nullptr;
432   if (ParseStructDefinition(TypeLoc, "",
433                             NumberedTypes[TypeID], Result)) return true;
434 
435   if (!isa<StructType>(Result)) {
436     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
437     if (Entry.first)
438       return Error(TypeLoc, "non-struct types may not be recursive");
439     Entry.first = Result;
440     Entry.second = SMLoc();
441   }
442 
443   return false;
444 }
445 
446 /// toplevelentity
447 ///   ::= LocalVar '=' 'type' type
448 bool LLParser::ParseNamedType() {
449   std::string Name = Lex.getStrVal();
450   LocTy NameLoc = Lex.getLoc();
451   Lex.Lex();  // eat LocalVar.
452 
453   if (ParseToken(lltok::equal, "expected '=' after name") ||
454       ParseToken(lltok::kw_type, "expected 'type' after name"))
455     return true;
456 
457   Type *Result = nullptr;
458   if (ParseStructDefinition(NameLoc, Name,
459                             NamedTypes[Name], Result)) return true;
460 
461   if (!isa<StructType>(Result)) {
462     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
463     if (Entry.first)
464       return Error(NameLoc, "non-struct types may not be recursive");
465     Entry.first = Result;
466     Entry.second = SMLoc();
467   }
468 
469   return false;
470 }
471 
472 /// toplevelentity
473 ///   ::= 'declare' FunctionHeader
474 bool LLParser::ParseDeclare() {
475   assert(Lex.getKind() == lltok::kw_declare);
476   Lex.Lex();
477 
478   std::vector<std::pair<unsigned, MDNode *>> MDs;
479   while (Lex.getKind() == lltok::MetadataVar) {
480     unsigned MDK;
481     MDNode *N;
482     if (ParseMetadataAttachment(MDK, N))
483       return true;
484     MDs.push_back({MDK, N});
485   }
486 
487   Function *F;
488   if (ParseFunctionHeader(F, false))
489     return true;
490   for (auto &MD : MDs)
491     F->addMetadata(MD.first, *MD.second);
492   return false;
493 }
494 
495 /// toplevelentity
496 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
497 bool LLParser::ParseDefine() {
498   assert(Lex.getKind() == lltok::kw_define);
499   Lex.Lex();
500 
501   Function *F;
502   return ParseFunctionHeader(F, true) ||
503          ParseOptionalFunctionMetadata(*F) ||
504          ParseFunctionBody(*F);
505 }
506 
507 /// ParseGlobalType
508 ///   ::= 'constant'
509 ///   ::= 'global'
510 bool LLParser::ParseGlobalType(bool &IsConstant) {
511   if (Lex.getKind() == lltok::kw_constant)
512     IsConstant = true;
513   else if (Lex.getKind() == lltok::kw_global)
514     IsConstant = false;
515   else {
516     IsConstant = false;
517     return TokError("expected 'global' or 'constant'");
518   }
519   Lex.Lex();
520   return false;
521 }
522 
523 bool LLParser::ParseOptionalUnnamedAddr(
524     GlobalVariable::UnnamedAddr &UnnamedAddr) {
525   if (EatIfPresent(lltok::kw_unnamed_addr))
526     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
527   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
528     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
529   else
530     UnnamedAddr = GlobalValue::UnnamedAddr::None;
531   return false;
532 }
533 
534 /// ParseUnnamedGlobal:
535 ///   OptionalVisibility (ALIAS | IFUNC) ...
536 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
537 ///   OptionalDLLStorageClass
538 ///                                                     ...   -> global variable
539 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
540 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
541 ///                OptionalDLLStorageClass
542 ///                                                     ...   -> global variable
543 bool LLParser::ParseUnnamedGlobal() {
544   unsigned VarID = NumberedVals.size();
545   std::string Name;
546   LocTy NameLoc = Lex.getLoc();
547 
548   // Handle the GlobalID form.
549   if (Lex.getKind() == lltok::GlobalID) {
550     if (Lex.getUIntVal() != VarID)
551       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
552                    Twine(VarID) + "'");
553     Lex.Lex(); // eat GlobalID;
554 
555     if (ParseToken(lltok::equal, "expected '=' after name"))
556       return true;
557   }
558 
559   bool HasLinkage;
560   unsigned Linkage, Visibility, DLLStorageClass;
561   bool DSOLocal;
562   GlobalVariable::ThreadLocalMode TLM;
563   GlobalVariable::UnnamedAddr UnnamedAddr;
564   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
565                            DSOLocal) ||
566       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
567     return true;
568 
569   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
570     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
571                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
572 
573   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
574                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
575 }
576 
577 /// ParseNamedGlobal:
578 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
579 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
580 ///                 OptionalVisibility OptionalDLLStorageClass
581 ///                                                     ...   -> global variable
582 bool LLParser::ParseNamedGlobal() {
583   assert(Lex.getKind() == lltok::GlobalVar);
584   LocTy NameLoc = Lex.getLoc();
585   std::string Name = Lex.getStrVal();
586   Lex.Lex();
587 
588   bool HasLinkage;
589   unsigned Linkage, Visibility, DLLStorageClass;
590   bool DSOLocal;
591   GlobalVariable::ThreadLocalMode TLM;
592   GlobalVariable::UnnamedAddr UnnamedAddr;
593   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
594       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
595                            DSOLocal) ||
596       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
597     return true;
598 
599   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
600     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
601                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
602 
603   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
604                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
605 }
606 
607 bool LLParser::parseComdat() {
608   assert(Lex.getKind() == lltok::ComdatVar);
609   std::string Name = Lex.getStrVal();
610   LocTy NameLoc = Lex.getLoc();
611   Lex.Lex();
612 
613   if (ParseToken(lltok::equal, "expected '=' here"))
614     return true;
615 
616   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
617     return TokError("expected comdat type");
618 
619   Comdat::SelectionKind SK;
620   switch (Lex.getKind()) {
621   default:
622     return TokError("unknown selection kind");
623   case lltok::kw_any:
624     SK = Comdat::Any;
625     break;
626   case lltok::kw_exactmatch:
627     SK = Comdat::ExactMatch;
628     break;
629   case lltok::kw_largest:
630     SK = Comdat::Largest;
631     break;
632   case lltok::kw_noduplicates:
633     SK = Comdat::NoDuplicates;
634     break;
635   case lltok::kw_samesize:
636     SK = Comdat::SameSize;
637     break;
638   }
639   Lex.Lex();
640 
641   // See if the comdat was forward referenced, if so, use the comdat.
642   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
643   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
644   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
645     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
646 
647   Comdat *C;
648   if (I != ComdatSymTab.end())
649     C = &I->second;
650   else
651     C = M->getOrInsertComdat(Name);
652   C->setSelectionKind(SK);
653 
654   return false;
655 }
656 
657 // MDString:
658 //   ::= '!' STRINGCONSTANT
659 bool LLParser::ParseMDString(MDString *&Result) {
660   std::string Str;
661   if (ParseStringConstant(Str)) return true;
662   Result = MDString::get(Context, Str);
663   return false;
664 }
665 
666 // MDNode:
667 //   ::= '!' MDNodeNumber
668 bool LLParser::ParseMDNodeID(MDNode *&Result) {
669   // !{ ..., !42, ... }
670   LocTy IDLoc = Lex.getLoc();
671   unsigned MID = 0;
672   if (ParseUInt32(MID))
673     return true;
674 
675   // If not a forward reference, just return it now.
676   if (NumberedMetadata.count(MID)) {
677     Result = NumberedMetadata[MID];
678     return false;
679   }
680 
681   // Otherwise, create MDNode forward reference.
682   auto &FwdRef = ForwardRefMDNodes[MID];
683   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
684 
685   Result = FwdRef.first.get();
686   NumberedMetadata[MID].reset(Result);
687   return false;
688 }
689 
690 /// ParseNamedMetadata:
691 ///   !foo = !{ !1, !2 }
692 bool LLParser::ParseNamedMetadata() {
693   assert(Lex.getKind() == lltok::MetadataVar);
694   std::string Name = Lex.getStrVal();
695   Lex.Lex();
696 
697   if (ParseToken(lltok::equal, "expected '=' here") ||
698       ParseToken(lltok::exclaim, "Expected '!' here") ||
699       ParseToken(lltok::lbrace, "Expected '{' here"))
700     return true;
701 
702   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
703   if (Lex.getKind() != lltok::rbrace)
704     do {
705       MDNode *N = nullptr;
706       // Parse DIExpressions inline as a special case. They are still MDNodes,
707       // so they can still appear in named metadata. Remove this logic if they
708       // become plain Metadata.
709       if (Lex.getKind() == lltok::MetadataVar &&
710           Lex.getStrVal() == "DIExpression") {
711         if (ParseDIExpression(N, /*IsDistinct=*/false))
712           return true;
713       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
714                  ParseMDNodeID(N)) {
715         return true;
716       }
717       NMD->addOperand(N);
718     } while (EatIfPresent(lltok::comma));
719 
720   return ParseToken(lltok::rbrace, "expected end of metadata node");
721 }
722 
723 /// ParseStandaloneMetadata:
724 ///   !42 = !{...}
725 bool LLParser::ParseStandaloneMetadata() {
726   assert(Lex.getKind() == lltok::exclaim);
727   Lex.Lex();
728   unsigned MetadataID = 0;
729 
730   MDNode *Init;
731   if (ParseUInt32(MetadataID) ||
732       ParseToken(lltok::equal, "expected '=' here"))
733     return true;
734 
735   // Detect common error, from old metadata syntax.
736   if (Lex.getKind() == lltok::Type)
737     return TokError("unexpected type in metadata definition");
738 
739   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
740   if (Lex.getKind() == lltok::MetadataVar) {
741     if (ParseSpecializedMDNode(Init, IsDistinct))
742       return true;
743   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
744              ParseMDTuple(Init, IsDistinct))
745     return true;
746 
747   // See if this was forward referenced, if so, handle it.
748   auto FI = ForwardRefMDNodes.find(MetadataID);
749   if (FI != ForwardRefMDNodes.end()) {
750     FI->second.first->replaceAllUsesWith(Init);
751     ForwardRefMDNodes.erase(FI);
752 
753     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
754   } else {
755     if (NumberedMetadata.count(MetadataID))
756       return TokError("Metadata id is already used");
757     NumberedMetadata[MetadataID].reset(Init);
758   }
759 
760   return false;
761 }
762 
763 // Skips a single module summary entry.
764 bool LLParser::SkipModuleSummaryEntry() {
765   // Each module summary entry consists of a tag for the entry
766   // type, followed by a colon, then the fields surrounded by nested sets of
767   // parentheses. The "tag:" looks like a Label. Once parsing support is
768   // in place we will look for the tokens corresponding to the expected tags.
769   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
770       Lex.getKind() != lltok::kw_typeid)
771     return TokError(
772         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
773   Lex.Lex();
774   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
775       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
776     return true;
777   // Now walk through the parenthesized entry, until the number of open
778   // parentheses goes back down to 0 (the first '(' was parsed above).
779   unsigned NumOpenParen = 1;
780   do {
781     switch (Lex.getKind()) {
782     case lltok::lparen:
783       NumOpenParen++;
784       break;
785     case lltok::rparen:
786       NumOpenParen--;
787       break;
788     case lltok::Eof:
789       return TokError("found end of file while parsing summary entry");
790     default:
791       // Skip everything in between parentheses.
792       break;
793     }
794     Lex.Lex();
795   } while (NumOpenParen > 0);
796   return false;
797 }
798 
799 /// SummaryEntry
800 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
801 bool LLParser::ParseSummaryEntry() {
802   assert(Lex.getKind() == lltok::SummaryID);
803   unsigned SummaryID = Lex.getUIntVal();
804 
805   // For summary entries, colons should be treated as distinct tokens,
806   // not an indication of the end of a label token.
807   Lex.setIgnoreColonInIdentifiers(true);
808 
809   Lex.Lex();
810   if (ParseToken(lltok::equal, "expected '=' here"))
811     return true;
812 
813   // If we don't have an index object, skip the summary entry.
814   if (!Index)
815     return SkipModuleSummaryEntry();
816 
817   switch (Lex.getKind()) {
818   case lltok::kw_gv:
819     return ParseGVEntry(SummaryID);
820   case lltok::kw_module:
821     return ParseModuleEntry(SummaryID);
822   case lltok::kw_typeid:
823     return ParseTypeIdEntry(SummaryID);
824     break;
825   default:
826     return Error(Lex.getLoc(), "unexpected summary kind");
827   }
828   Lex.setIgnoreColonInIdentifiers(false);
829   return false;
830 }
831 
832 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
833   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
834          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
835 }
836 
837 // If there was an explicit dso_local, update GV. In the absence of an explicit
838 // dso_local we keep the default value.
839 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
840   if (DSOLocal)
841     GV.setDSOLocal(true);
842 }
843 
844 /// parseIndirectSymbol:
845 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
846 ///                     OptionalVisibility OptionalDLLStorageClass
847 ///                     OptionalThreadLocal OptionalUnnamedAddr
848 //                      'alias|ifunc' IndirectSymbol
849 ///
850 /// IndirectSymbol
851 ///   ::= TypeAndValue
852 ///
853 /// Everything through OptionalUnnamedAddr has already been parsed.
854 ///
855 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
856                                    unsigned L, unsigned Visibility,
857                                    unsigned DLLStorageClass, bool DSOLocal,
858                                    GlobalVariable::ThreadLocalMode TLM,
859                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
860   bool IsAlias;
861   if (Lex.getKind() == lltok::kw_alias)
862     IsAlias = true;
863   else if (Lex.getKind() == lltok::kw_ifunc)
864     IsAlias = false;
865   else
866     llvm_unreachable("Not an alias or ifunc!");
867   Lex.Lex();
868 
869   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
870 
871   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
872     return Error(NameLoc, "invalid linkage type for alias");
873 
874   if (!isValidVisibilityForLinkage(Visibility, L))
875     return Error(NameLoc,
876                  "symbol with local linkage must have default visibility");
877 
878   Type *Ty;
879   LocTy ExplicitTypeLoc = Lex.getLoc();
880   if (ParseType(Ty) ||
881       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
882     return true;
883 
884   Constant *Aliasee;
885   LocTy AliaseeLoc = Lex.getLoc();
886   if (Lex.getKind() != lltok::kw_bitcast &&
887       Lex.getKind() != lltok::kw_getelementptr &&
888       Lex.getKind() != lltok::kw_addrspacecast &&
889       Lex.getKind() != lltok::kw_inttoptr) {
890     if (ParseGlobalTypeAndValue(Aliasee))
891       return true;
892   } else {
893     // The bitcast dest type is not present, it is implied by the dest type.
894     ValID ID;
895     if (ParseValID(ID))
896       return true;
897     if (ID.Kind != ValID::t_Constant)
898       return Error(AliaseeLoc, "invalid aliasee");
899     Aliasee = ID.ConstantVal;
900   }
901 
902   Type *AliaseeType = Aliasee->getType();
903   auto *PTy = dyn_cast<PointerType>(AliaseeType);
904   if (!PTy)
905     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
906   unsigned AddrSpace = PTy->getAddressSpace();
907 
908   if (IsAlias && Ty != PTy->getElementType())
909     return Error(
910         ExplicitTypeLoc,
911         "explicit pointee type doesn't match operand's pointee type");
912 
913   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
914     return Error(
915         ExplicitTypeLoc,
916         "explicit pointee type should be a function type");
917 
918   GlobalValue *GVal = nullptr;
919 
920   // See if the alias was forward referenced, if so, prepare to replace the
921   // forward reference.
922   if (!Name.empty()) {
923     GVal = M->getNamedValue(Name);
924     if (GVal) {
925       if (!ForwardRefVals.erase(Name))
926         return Error(NameLoc, "redefinition of global '@" + Name + "'");
927     }
928   } else {
929     auto I = ForwardRefValIDs.find(NumberedVals.size());
930     if (I != ForwardRefValIDs.end()) {
931       GVal = I->second.first;
932       ForwardRefValIDs.erase(I);
933     }
934   }
935 
936   // Okay, create the alias but do not insert it into the module yet.
937   std::unique_ptr<GlobalIndirectSymbol> GA;
938   if (IsAlias)
939     GA.reset(GlobalAlias::create(Ty, AddrSpace,
940                                  (GlobalValue::LinkageTypes)Linkage, Name,
941                                  Aliasee, /*Parent*/ nullptr));
942   else
943     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
944                                  (GlobalValue::LinkageTypes)Linkage, Name,
945                                  Aliasee, /*Parent*/ nullptr));
946   GA->setThreadLocalMode(TLM);
947   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
948   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
949   GA->setUnnamedAddr(UnnamedAddr);
950   maybeSetDSOLocal(DSOLocal, *GA);
951 
952   if (Name.empty())
953     NumberedVals.push_back(GA.get());
954 
955   if (GVal) {
956     // Verify that types agree.
957     if (GVal->getType() != GA->getType())
958       return Error(
959           ExplicitTypeLoc,
960           "forward reference and definition of alias have different types");
961 
962     // If they agree, just RAUW the old value with the alias and remove the
963     // forward ref info.
964     GVal->replaceAllUsesWith(GA.get());
965     GVal->eraseFromParent();
966   }
967 
968   // Insert into the module, we know its name won't collide now.
969   if (IsAlias)
970     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
971   else
972     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
973   assert(GA->getName() == Name && "Should not be a name conflict!");
974 
975   // The module owns this now
976   GA.release();
977 
978   return false;
979 }
980 
981 /// ParseGlobal
982 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
983 ///       OptionalVisibility OptionalDLLStorageClass
984 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
985 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
986 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
987 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
988 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
989 ///       Const OptionalAttrs
990 ///
991 /// Everything up to and including OptionalUnnamedAddr has been parsed
992 /// already.
993 ///
994 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
995                            unsigned Linkage, bool HasLinkage,
996                            unsigned Visibility, unsigned DLLStorageClass,
997                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
998                            GlobalVariable::UnnamedAddr UnnamedAddr) {
999   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1000     return Error(NameLoc,
1001                  "symbol with local linkage must have default visibility");
1002 
1003   unsigned AddrSpace;
1004   bool IsConstant, IsExternallyInitialized;
1005   LocTy IsExternallyInitializedLoc;
1006   LocTy TyLoc;
1007 
1008   Type *Ty = nullptr;
1009   if (ParseOptionalAddrSpace(AddrSpace) ||
1010       ParseOptionalToken(lltok::kw_externally_initialized,
1011                          IsExternallyInitialized,
1012                          &IsExternallyInitializedLoc) ||
1013       ParseGlobalType(IsConstant) ||
1014       ParseType(Ty, TyLoc))
1015     return true;
1016 
1017   // If the linkage is specified and is external, then no initializer is
1018   // present.
1019   Constant *Init = nullptr;
1020   if (!HasLinkage ||
1021       !GlobalValue::isValidDeclarationLinkage(
1022           (GlobalValue::LinkageTypes)Linkage)) {
1023     if (ParseGlobalValue(Ty, Init))
1024       return true;
1025   }
1026 
1027   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1028     return Error(TyLoc, "invalid type for global variable");
1029 
1030   GlobalValue *GVal = nullptr;
1031 
1032   // See if the global was forward referenced, if so, use the global.
1033   if (!Name.empty()) {
1034     GVal = M->getNamedValue(Name);
1035     if (GVal) {
1036       if (!ForwardRefVals.erase(Name))
1037         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1038     }
1039   } else {
1040     auto I = ForwardRefValIDs.find(NumberedVals.size());
1041     if (I != ForwardRefValIDs.end()) {
1042       GVal = I->second.first;
1043       ForwardRefValIDs.erase(I);
1044     }
1045   }
1046 
1047   GlobalVariable *GV;
1048   if (!GVal) {
1049     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1050                             Name, nullptr, GlobalVariable::NotThreadLocal,
1051                             AddrSpace);
1052   } else {
1053     if (GVal->getValueType() != Ty)
1054       return Error(TyLoc,
1055             "forward reference and definition of global have different types");
1056 
1057     GV = cast<GlobalVariable>(GVal);
1058 
1059     // Move the forward-reference to the correct spot in the module.
1060     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1061   }
1062 
1063   if (Name.empty())
1064     NumberedVals.push_back(GV);
1065 
1066   // Set the parsed properties on the global.
1067   if (Init)
1068     GV->setInitializer(Init);
1069   GV->setConstant(IsConstant);
1070   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1071   maybeSetDSOLocal(DSOLocal, *GV);
1072   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1073   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1074   GV->setExternallyInitialized(IsExternallyInitialized);
1075   GV->setThreadLocalMode(TLM);
1076   GV->setUnnamedAddr(UnnamedAddr);
1077 
1078   // Parse attributes on the global.
1079   while (Lex.getKind() == lltok::comma) {
1080     Lex.Lex();
1081 
1082     if (Lex.getKind() == lltok::kw_section) {
1083       Lex.Lex();
1084       GV->setSection(Lex.getStrVal());
1085       if (ParseToken(lltok::StringConstant, "expected global section string"))
1086         return true;
1087     } else if (Lex.getKind() == lltok::kw_align) {
1088       unsigned Alignment;
1089       if (ParseOptionalAlignment(Alignment)) return true;
1090       GV->setAlignment(Alignment);
1091     } else if (Lex.getKind() == lltok::MetadataVar) {
1092       if (ParseGlobalObjectMetadataAttachment(*GV))
1093         return true;
1094     } else {
1095       Comdat *C;
1096       if (parseOptionalComdat(Name, C))
1097         return true;
1098       if (C)
1099         GV->setComdat(C);
1100       else
1101         return TokError("unknown global variable property!");
1102     }
1103   }
1104 
1105   AttrBuilder Attrs;
1106   LocTy BuiltinLoc;
1107   std::vector<unsigned> FwdRefAttrGrps;
1108   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1109     return true;
1110   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1111     GV->setAttributes(AttributeSet::get(Context, Attrs));
1112     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1113   }
1114 
1115   return false;
1116 }
1117 
1118 /// ParseUnnamedAttrGrp
1119 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1120 bool LLParser::ParseUnnamedAttrGrp() {
1121   assert(Lex.getKind() == lltok::kw_attributes);
1122   LocTy AttrGrpLoc = Lex.getLoc();
1123   Lex.Lex();
1124 
1125   if (Lex.getKind() != lltok::AttrGrpID)
1126     return TokError("expected attribute group id");
1127 
1128   unsigned VarID = Lex.getUIntVal();
1129   std::vector<unsigned> unused;
1130   LocTy BuiltinLoc;
1131   Lex.Lex();
1132 
1133   if (ParseToken(lltok::equal, "expected '=' here") ||
1134       ParseToken(lltok::lbrace, "expected '{' here") ||
1135       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1136                                  BuiltinLoc) ||
1137       ParseToken(lltok::rbrace, "expected end of attribute group"))
1138     return true;
1139 
1140   if (!NumberedAttrBuilders[VarID].hasAttributes())
1141     return Error(AttrGrpLoc, "attribute group has no attributes");
1142 
1143   return false;
1144 }
1145 
1146 /// ParseFnAttributeValuePairs
1147 ///   ::= <attr> | <attr> '=' <value>
1148 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1149                                           std::vector<unsigned> &FwdRefAttrGrps,
1150                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1151   bool HaveError = false;
1152 
1153   B.clear();
1154 
1155   while (true) {
1156     lltok::Kind Token = Lex.getKind();
1157     if (Token == lltok::kw_builtin)
1158       BuiltinLoc = Lex.getLoc();
1159     switch (Token) {
1160     default:
1161       if (!inAttrGrp) return HaveError;
1162       return Error(Lex.getLoc(), "unterminated attribute group");
1163     case lltok::rbrace:
1164       // Finished.
1165       return false;
1166 
1167     case lltok::AttrGrpID: {
1168       // Allow a function to reference an attribute group:
1169       //
1170       //   define void @foo() #1 { ... }
1171       if (inAttrGrp)
1172         HaveError |=
1173           Error(Lex.getLoc(),
1174               "cannot have an attribute group reference in an attribute group");
1175 
1176       unsigned AttrGrpNum = Lex.getUIntVal();
1177       if (inAttrGrp) break;
1178 
1179       // Save the reference to the attribute group. We'll fill it in later.
1180       FwdRefAttrGrps.push_back(AttrGrpNum);
1181       break;
1182     }
1183     // Target-dependent attributes:
1184     case lltok::StringConstant: {
1185       if (ParseStringAttribute(B))
1186         return true;
1187       continue;
1188     }
1189 
1190     // Target-independent attributes:
1191     case lltok::kw_align: {
1192       // As a hack, we allow function alignment to be initially parsed as an
1193       // attribute on a function declaration/definition or added to an attribute
1194       // group and later moved to the alignment field.
1195       unsigned Alignment;
1196       if (inAttrGrp) {
1197         Lex.Lex();
1198         if (ParseToken(lltok::equal, "expected '=' here") ||
1199             ParseUInt32(Alignment))
1200           return true;
1201       } else {
1202         if (ParseOptionalAlignment(Alignment))
1203           return true;
1204       }
1205       B.addAlignmentAttr(Alignment);
1206       continue;
1207     }
1208     case lltok::kw_alignstack: {
1209       unsigned Alignment;
1210       if (inAttrGrp) {
1211         Lex.Lex();
1212         if (ParseToken(lltok::equal, "expected '=' here") ||
1213             ParseUInt32(Alignment))
1214           return true;
1215       } else {
1216         if (ParseOptionalStackAlignment(Alignment))
1217           return true;
1218       }
1219       B.addStackAlignmentAttr(Alignment);
1220       continue;
1221     }
1222     case lltok::kw_allocsize: {
1223       unsigned ElemSizeArg;
1224       Optional<unsigned> NumElemsArg;
1225       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1226       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1227         return true;
1228       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1229       continue;
1230     }
1231     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1232     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1233     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1234     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1235     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1236     case lltok::kw_inaccessiblememonly:
1237       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1238     case lltok::kw_inaccessiblemem_or_argmemonly:
1239       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1240     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1241     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1242     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1243     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1244     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1245     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1246     case lltok::kw_noimplicitfloat:
1247       B.addAttribute(Attribute::NoImplicitFloat); break;
1248     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1249     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1250     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1251     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1252     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1253     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1254     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1255     case lltok::kw_optforfuzzing:
1256       B.addAttribute(Attribute::OptForFuzzing); break;
1257     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1258     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1259     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1260     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1261     case lltok::kw_returns_twice:
1262       B.addAttribute(Attribute::ReturnsTwice); break;
1263     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1264     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1265     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1266     case lltok::kw_sspstrong:
1267       B.addAttribute(Attribute::StackProtectStrong); break;
1268     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1269     case lltok::kw_shadowcallstack:
1270       B.addAttribute(Attribute::ShadowCallStack); break;
1271     case lltok::kw_sanitize_address:
1272       B.addAttribute(Attribute::SanitizeAddress); break;
1273     case lltok::kw_sanitize_hwaddress:
1274       B.addAttribute(Attribute::SanitizeHWAddress); break;
1275     case lltok::kw_sanitize_thread:
1276       B.addAttribute(Attribute::SanitizeThread); break;
1277     case lltok::kw_sanitize_memory:
1278       B.addAttribute(Attribute::SanitizeMemory); break;
1279     case lltok::kw_speculative_load_hardening:
1280       B.addAttribute(Attribute::SpeculativeLoadHardening);
1281       break;
1282     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1283     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1284     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1285 
1286     // Error handling.
1287     case lltok::kw_inreg:
1288     case lltok::kw_signext:
1289     case lltok::kw_zeroext:
1290       HaveError |=
1291         Error(Lex.getLoc(),
1292               "invalid use of attribute on a function");
1293       break;
1294     case lltok::kw_byval:
1295     case lltok::kw_dereferenceable:
1296     case lltok::kw_dereferenceable_or_null:
1297     case lltok::kw_inalloca:
1298     case lltok::kw_nest:
1299     case lltok::kw_noalias:
1300     case lltok::kw_nocapture:
1301     case lltok::kw_nonnull:
1302     case lltok::kw_returned:
1303     case lltok::kw_sret:
1304     case lltok::kw_swifterror:
1305     case lltok::kw_swiftself:
1306       HaveError |=
1307         Error(Lex.getLoc(),
1308               "invalid use of parameter-only attribute on a function");
1309       break;
1310     }
1311 
1312     Lex.Lex();
1313   }
1314 }
1315 
1316 //===----------------------------------------------------------------------===//
1317 // GlobalValue Reference/Resolution Routines.
1318 //===----------------------------------------------------------------------===//
1319 
1320 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1321                                               const std::string &Name) {
1322   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1323     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1324                             PTy->getAddressSpace(), Name, M);
1325   else
1326     return new GlobalVariable(*M, PTy->getElementType(), false,
1327                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1328                               nullptr, GlobalVariable::NotThreadLocal,
1329                               PTy->getAddressSpace());
1330 }
1331 
1332 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1333                                         Value *Val, bool IsCall) {
1334   if (Val->getType() == Ty)
1335     return Val;
1336   // For calls we also accept variables in the program address space.
1337   Type *SuggestedTy = Ty;
1338   if (IsCall && isa<PointerType>(Ty)) {
1339     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1340         M->getDataLayout().getProgramAddressSpace());
1341     SuggestedTy = TyInProgAS;
1342     if (Val->getType() == TyInProgAS)
1343       return Val;
1344   }
1345   if (Ty->isLabelTy())
1346     Error(Loc, "'" + Name + "' is not a basic block");
1347   else
1348     Error(Loc, "'" + Name + "' defined with type '" +
1349                    getTypeString(Val->getType()) + "' but expected '" +
1350                    getTypeString(SuggestedTy) + "'");
1351   return nullptr;
1352 }
1353 
1354 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1355 /// forward reference record if needed.  This can return null if the value
1356 /// exists but does not have the right type.
1357 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1358                                     LocTy Loc, bool IsCall) {
1359   PointerType *PTy = dyn_cast<PointerType>(Ty);
1360   if (!PTy) {
1361     Error(Loc, "global variable reference must have pointer type");
1362     return nullptr;
1363   }
1364 
1365   // Look this name up in the normal function symbol table.
1366   GlobalValue *Val =
1367     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1368 
1369   // If this is a forward reference for the value, see if we already created a
1370   // forward ref record.
1371   if (!Val) {
1372     auto I = ForwardRefVals.find(Name);
1373     if (I != ForwardRefVals.end())
1374       Val = I->second.first;
1375   }
1376 
1377   // If we have the value in the symbol table or fwd-ref table, return it.
1378   if (Val)
1379     return cast_or_null<GlobalValue>(
1380         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1381 
1382   // Otherwise, create a new forward reference for this value and remember it.
1383   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1384   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1385   return FwdVal;
1386 }
1387 
1388 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1389                                     bool IsCall) {
1390   PointerType *PTy = dyn_cast<PointerType>(Ty);
1391   if (!PTy) {
1392     Error(Loc, "global variable reference must have pointer type");
1393     return nullptr;
1394   }
1395 
1396   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1397 
1398   // If this is a forward reference for the value, see if we already created a
1399   // forward ref record.
1400   if (!Val) {
1401     auto I = ForwardRefValIDs.find(ID);
1402     if (I != ForwardRefValIDs.end())
1403       Val = I->second.first;
1404   }
1405 
1406   // If we have the value in the symbol table or fwd-ref table, return it.
1407   if (Val)
1408     return cast_or_null<GlobalValue>(
1409         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1410 
1411   // Otherwise, create a new forward reference for this value and remember it.
1412   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1413   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1414   return FwdVal;
1415 }
1416 
1417 //===----------------------------------------------------------------------===//
1418 // Comdat Reference/Resolution Routines.
1419 //===----------------------------------------------------------------------===//
1420 
1421 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1422   // Look this name up in the comdat symbol table.
1423   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1424   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1425   if (I != ComdatSymTab.end())
1426     return &I->second;
1427 
1428   // Otherwise, create a new forward reference for this value and remember it.
1429   Comdat *C = M->getOrInsertComdat(Name);
1430   ForwardRefComdats[Name] = Loc;
1431   return C;
1432 }
1433 
1434 //===----------------------------------------------------------------------===//
1435 // Helper Routines.
1436 //===----------------------------------------------------------------------===//
1437 
1438 /// ParseToken - If the current token has the specified kind, eat it and return
1439 /// success.  Otherwise, emit the specified error and return failure.
1440 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1441   if (Lex.getKind() != T)
1442     return TokError(ErrMsg);
1443   Lex.Lex();
1444   return false;
1445 }
1446 
1447 /// ParseStringConstant
1448 ///   ::= StringConstant
1449 bool LLParser::ParseStringConstant(std::string &Result) {
1450   if (Lex.getKind() != lltok::StringConstant)
1451     return TokError("expected string constant");
1452   Result = Lex.getStrVal();
1453   Lex.Lex();
1454   return false;
1455 }
1456 
1457 /// ParseUInt32
1458 ///   ::= uint32
1459 bool LLParser::ParseUInt32(uint32_t &Val) {
1460   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1461     return TokError("expected integer");
1462   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1463   if (Val64 != unsigned(Val64))
1464     return TokError("expected 32-bit integer (too large)");
1465   Val = Val64;
1466   Lex.Lex();
1467   return false;
1468 }
1469 
1470 /// ParseUInt64
1471 ///   ::= uint64
1472 bool LLParser::ParseUInt64(uint64_t &Val) {
1473   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1474     return TokError("expected integer");
1475   Val = Lex.getAPSIntVal().getLimitedValue();
1476   Lex.Lex();
1477   return false;
1478 }
1479 
1480 /// ParseTLSModel
1481 ///   := 'localdynamic'
1482 ///   := 'initialexec'
1483 ///   := 'localexec'
1484 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1485   switch (Lex.getKind()) {
1486     default:
1487       return TokError("expected localdynamic, initialexec or localexec");
1488     case lltok::kw_localdynamic:
1489       TLM = GlobalVariable::LocalDynamicTLSModel;
1490       break;
1491     case lltok::kw_initialexec:
1492       TLM = GlobalVariable::InitialExecTLSModel;
1493       break;
1494     case lltok::kw_localexec:
1495       TLM = GlobalVariable::LocalExecTLSModel;
1496       break;
1497   }
1498 
1499   Lex.Lex();
1500   return false;
1501 }
1502 
1503 /// ParseOptionalThreadLocal
1504 ///   := /*empty*/
1505 ///   := 'thread_local'
1506 ///   := 'thread_local' '(' tlsmodel ')'
1507 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1508   TLM = GlobalVariable::NotThreadLocal;
1509   if (!EatIfPresent(lltok::kw_thread_local))
1510     return false;
1511 
1512   TLM = GlobalVariable::GeneralDynamicTLSModel;
1513   if (Lex.getKind() == lltok::lparen) {
1514     Lex.Lex();
1515     return ParseTLSModel(TLM) ||
1516       ParseToken(lltok::rparen, "expected ')' after thread local model");
1517   }
1518   return false;
1519 }
1520 
1521 /// ParseOptionalAddrSpace
1522 ///   := /*empty*/
1523 ///   := 'addrspace' '(' uint32 ')'
1524 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1525   AddrSpace = DefaultAS;
1526   if (!EatIfPresent(lltok::kw_addrspace))
1527     return false;
1528   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1529          ParseUInt32(AddrSpace) ||
1530          ParseToken(lltok::rparen, "expected ')' in address space");
1531 }
1532 
1533 /// ParseStringAttribute
1534 ///   := StringConstant
1535 ///   := StringConstant '=' StringConstant
1536 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1537   std::string Attr = Lex.getStrVal();
1538   Lex.Lex();
1539   std::string Val;
1540   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1541     return true;
1542   B.addAttribute(Attr, Val);
1543   return false;
1544 }
1545 
1546 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1547 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1548   bool HaveError = false;
1549 
1550   B.clear();
1551 
1552   while (true) {
1553     lltok::Kind Token = Lex.getKind();
1554     switch (Token) {
1555     default:  // End of attributes.
1556       return HaveError;
1557     case lltok::StringConstant: {
1558       if (ParseStringAttribute(B))
1559         return true;
1560       continue;
1561     }
1562     case lltok::kw_align: {
1563       unsigned Alignment;
1564       if (ParseOptionalAlignment(Alignment))
1565         return true;
1566       B.addAlignmentAttr(Alignment);
1567       continue;
1568     }
1569     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1570     case lltok::kw_dereferenceable: {
1571       uint64_t Bytes;
1572       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1573         return true;
1574       B.addDereferenceableAttr(Bytes);
1575       continue;
1576     }
1577     case lltok::kw_dereferenceable_or_null: {
1578       uint64_t Bytes;
1579       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1580         return true;
1581       B.addDereferenceableOrNullAttr(Bytes);
1582       continue;
1583     }
1584     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1585     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1586     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1587     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1588     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1589     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1590     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1591     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1592     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1593     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1594     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1595     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1596     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1597     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1598     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1599 
1600     case lltok::kw_alignstack:
1601     case lltok::kw_alwaysinline:
1602     case lltok::kw_argmemonly:
1603     case lltok::kw_builtin:
1604     case lltok::kw_inlinehint:
1605     case lltok::kw_jumptable:
1606     case lltok::kw_minsize:
1607     case lltok::kw_naked:
1608     case lltok::kw_nobuiltin:
1609     case lltok::kw_noduplicate:
1610     case lltok::kw_noimplicitfloat:
1611     case lltok::kw_noinline:
1612     case lltok::kw_nonlazybind:
1613     case lltok::kw_noredzone:
1614     case lltok::kw_noreturn:
1615     case lltok::kw_nocf_check:
1616     case lltok::kw_nounwind:
1617     case lltok::kw_optforfuzzing:
1618     case lltok::kw_optnone:
1619     case lltok::kw_optsize:
1620     case lltok::kw_returns_twice:
1621     case lltok::kw_sanitize_address:
1622     case lltok::kw_sanitize_hwaddress:
1623     case lltok::kw_sanitize_memory:
1624     case lltok::kw_sanitize_thread:
1625     case lltok::kw_speculative_load_hardening:
1626     case lltok::kw_ssp:
1627     case lltok::kw_sspreq:
1628     case lltok::kw_sspstrong:
1629     case lltok::kw_safestack:
1630     case lltok::kw_shadowcallstack:
1631     case lltok::kw_strictfp:
1632     case lltok::kw_uwtable:
1633       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1634       break;
1635     }
1636 
1637     Lex.Lex();
1638   }
1639 }
1640 
1641 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1642 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1643   bool HaveError = false;
1644 
1645   B.clear();
1646 
1647   while (true) {
1648     lltok::Kind Token = Lex.getKind();
1649     switch (Token) {
1650     default:  // End of attributes.
1651       return HaveError;
1652     case lltok::StringConstant: {
1653       if (ParseStringAttribute(B))
1654         return true;
1655       continue;
1656     }
1657     case lltok::kw_dereferenceable: {
1658       uint64_t Bytes;
1659       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1660         return true;
1661       B.addDereferenceableAttr(Bytes);
1662       continue;
1663     }
1664     case lltok::kw_dereferenceable_or_null: {
1665       uint64_t Bytes;
1666       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1667         return true;
1668       B.addDereferenceableOrNullAttr(Bytes);
1669       continue;
1670     }
1671     case lltok::kw_align: {
1672       unsigned Alignment;
1673       if (ParseOptionalAlignment(Alignment))
1674         return true;
1675       B.addAlignmentAttr(Alignment);
1676       continue;
1677     }
1678     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1679     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1680     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1681     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1682     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1683 
1684     // Error handling.
1685     case lltok::kw_byval:
1686     case lltok::kw_inalloca:
1687     case lltok::kw_nest:
1688     case lltok::kw_nocapture:
1689     case lltok::kw_returned:
1690     case lltok::kw_sret:
1691     case lltok::kw_swifterror:
1692     case lltok::kw_swiftself:
1693       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1694       break;
1695 
1696     case lltok::kw_alignstack:
1697     case lltok::kw_alwaysinline:
1698     case lltok::kw_argmemonly:
1699     case lltok::kw_builtin:
1700     case lltok::kw_cold:
1701     case lltok::kw_inlinehint:
1702     case lltok::kw_jumptable:
1703     case lltok::kw_minsize:
1704     case lltok::kw_naked:
1705     case lltok::kw_nobuiltin:
1706     case lltok::kw_noduplicate:
1707     case lltok::kw_noimplicitfloat:
1708     case lltok::kw_noinline:
1709     case lltok::kw_nonlazybind:
1710     case lltok::kw_noredzone:
1711     case lltok::kw_noreturn:
1712     case lltok::kw_nocf_check:
1713     case lltok::kw_nounwind:
1714     case lltok::kw_optforfuzzing:
1715     case lltok::kw_optnone:
1716     case lltok::kw_optsize:
1717     case lltok::kw_returns_twice:
1718     case lltok::kw_sanitize_address:
1719     case lltok::kw_sanitize_hwaddress:
1720     case lltok::kw_sanitize_memory:
1721     case lltok::kw_sanitize_thread:
1722     case lltok::kw_speculative_load_hardening:
1723     case lltok::kw_ssp:
1724     case lltok::kw_sspreq:
1725     case lltok::kw_sspstrong:
1726     case lltok::kw_safestack:
1727     case lltok::kw_shadowcallstack:
1728     case lltok::kw_strictfp:
1729     case lltok::kw_uwtable:
1730       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1731       break;
1732 
1733     case lltok::kw_readnone:
1734     case lltok::kw_readonly:
1735       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1736     }
1737 
1738     Lex.Lex();
1739   }
1740 }
1741 
1742 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1743   HasLinkage = true;
1744   switch (Kind) {
1745   default:
1746     HasLinkage = false;
1747     return GlobalValue::ExternalLinkage;
1748   case lltok::kw_private:
1749     return GlobalValue::PrivateLinkage;
1750   case lltok::kw_internal:
1751     return GlobalValue::InternalLinkage;
1752   case lltok::kw_weak:
1753     return GlobalValue::WeakAnyLinkage;
1754   case lltok::kw_weak_odr:
1755     return GlobalValue::WeakODRLinkage;
1756   case lltok::kw_linkonce:
1757     return GlobalValue::LinkOnceAnyLinkage;
1758   case lltok::kw_linkonce_odr:
1759     return GlobalValue::LinkOnceODRLinkage;
1760   case lltok::kw_available_externally:
1761     return GlobalValue::AvailableExternallyLinkage;
1762   case lltok::kw_appending:
1763     return GlobalValue::AppendingLinkage;
1764   case lltok::kw_common:
1765     return GlobalValue::CommonLinkage;
1766   case lltok::kw_extern_weak:
1767     return GlobalValue::ExternalWeakLinkage;
1768   case lltok::kw_external:
1769     return GlobalValue::ExternalLinkage;
1770   }
1771 }
1772 
1773 /// ParseOptionalLinkage
1774 ///   ::= /*empty*/
1775 ///   ::= 'private'
1776 ///   ::= 'internal'
1777 ///   ::= 'weak'
1778 ///   ::= 'weak_odr'
1779 ///   ::= 'linkonce'
1780 ///   ::= 'linkonce_odr'
1781 ///   ::= 'available_externally'
1782 ///   ::= 'appending'
1783 ///   ::= 'common'
1784 ///   ::= 'extern_weak'
1785 ///   ::= 'external'
1786 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1787                                     unsigned &Visibility,
1788                                     unsigned &DLLStorageClass,
1789                                     bool &DSOLocal) {
1790   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1791   if (HasLinkage)
1792     Lex.Lex();
1793   ParseOptionalDSOLocal(DSOLocal);
1794   ParseOptionalVisibility(Visibility);
1795   ParseOptionalDLLStorageClass(DLLStorageClass);
1796 
1797   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1798     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1799   }
1800 
1801   return false;
1802 }
1803 
1804 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1805   switch (Lex.getKind()) {
1806   default:
1807     DSOLocal = false;
1808     break;
1809   case lltok::kw_dso_local:
1810     DSOLocal = true;
1811     Lex.Lex();
1812     break;
1813   case lltok::kw_dso_preemptable:
1814     DSOLocal = false;
1815     Lex.Lex();
1816     break;
1817   }
1818 }
1819 
1820 /// ParseOptionalVisibility
1821 ///   ::= /*empty*/
1822 ///   ::= 'default'
1823 ///   ::= 'hidden'
1824 ///   ::= 'protected'
1825 ///
1826 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1827   switch (Lex.getKind()) {
1828   default:
1829     Res = GlobalValue::DefaultVisibility;
1830     return;
1831   case lltok::kw_default:
1832     Res = GlobalValue::DefaultVisibility;
1833     break;
1834   case lltok::kw_hidden:
1835     Res = GlobalValue::HiddenVisibility;
1836     break;
1837   case lltok::kw_protected:
1838     Res = GlobalValue::ProtectedVisibility;
1839     break;
1840   }
1841   Lex.Lex();
1842 }
1843 
1844 /// ParseOptionalDLLStorageClass
1845 ///   ::= /*empty*/
1846 ///   ::= 'dllimport'
1847 ///   ::= 'dllexport'
1848 ///
1849 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1850   switch (Lex.getKind()) {
1851   default:
1852     Res = GlobalValue::DefaultStorageClass;
1853     return;
1854   case lltok::kw_dllimport:
1855     Res = GlobalValue::DLLImportStorageClass;
1856     break;
1857   case lltok::kw_dllexport:
1858     Res = GlobalValue::DLLExportStorageClass;
1859     break;
1860   }
1861   Lex.Lex();
1862 }
1863 
1864 /// ParseOptionalCallingConv
1865 ///   ::= /*empty*/
1866 ///   ::= 'ccc'
1867 ///   ::= 'fastcc'
1868 ///   ::= 'intel_ocl_bicc'
1869 ///   ::= 'coldcc'
1870 ///   ::= 'x86_stdcallcc'
1871 ///   ::= 'x86_fastcallcc'
1872 ///   ::= 'x86_thiscallcc'
1873 ///   ::= 'x86_vectorcallcc'
1874 ///   ::= 'arm_apcscc'
1875 ///   ::= 'arm_aapcscc'
1876 ///   ::= 'arm_aapcs_vfpcc'
1877 ///   ::= 'aarch64_vector_pcs'
1878 ///   ::= 'msp430_intrcc'
1879 ///   ::= 'avr_intrcc'
1880 ///   ::= 'avr_signalcc'
1881 ///   ::= 'ptx_kernel'
1882 ///   ::= 'ptx_device'
1883 ///   ::= 'spir_func'
1884 ///   ::= 'spir_kernel'
1885 ///   ::= 'x86_64_sysvcc'
1886 ///   ::= 'win64cc'
1887 ///   ::= 'webkit_jscc'
1888 ///   ::= 'anyregcc'
1889 ///   ::= 'preserve_mostcc'
1890 ///   ::= 'preserve_allcc'
1891 ///   ::= 'ghccc'
1892 ///   ::= 'swiftcc'
1893 ///   ::= 'x86_intrcc'
1894 ///   ::= 'hhvmcc'
1895 ///   ::= 'hhvm_ccc'
1896 ///   ::= 'cxx_fast_tlscc'
1897 ///   ::= 'amdgpu_vs'
1898 ///   ::= 'amdgpu_ls'
1899 ///   ::= 'amdgpu_hs'
1900 ///   ::= 'amdgpu_es'
1901 ///   ::= 'amdgpu_gs'
1902 ///   ::= 'amdgpu_ps'
1903 ///   ::= 'amdgpu_cs'
1904 ///   ::= 'amdgpu_kernel'
1905 ///   ::= 'cc' UINT
1906 ///
1907 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1908   switch (Lex.getKind()) {
1909   default:                       CC = CallingConv::C; return false;
1910   case lltok::kw_ccc:            CC = CallingConv::C; break;
1911   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1912   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1913   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1914   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1915   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1916   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1917   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1918   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1919   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1920   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1921   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1922   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1923   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1924   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1925   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1926   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1927   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1928   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1929   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1930   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1931   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1932   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1933   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1934   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1935   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1936   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1937   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1938   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1939   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1940   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1941   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1942   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1943   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1944   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1945   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1946   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1947   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1948   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1949   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1950   case lltok::kw_cc: {
1951       Lex.Lex();
1952       return ParseUInt32(CC);
1953     }
1954   }
1955 
1956   Lex.Lex();
1957   return false;
1958 }
1959 
1960 /// ParseMetadataAttachment
1961 ///   ::= !dbg !42
1962 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1963   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1964 
1965   std::string Name = Lex.getStrVal();
1966   Kind = M->getMDKindID(Name);
1967   Lex.Lex();
1968 
1969   return ParseMDNode(MD);
1970 }
1971 
1972 /// ParseInstructionMetadata
1973 ///   ::= !dbg !42 (',' !dbg !57)*
1974 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1975   do {
1976     if (Lex.getKind() != lltok::MetadataVar)
1977       return TokError("expected metadata after comma");
1978 
1979     unsigned MDK;
1980     MDNode *N;
1981     if (ParseMetadataAttachment(MDK, N))
1982       return true;
1983 
1984     Inst.setMetadata(MDK, N);
1985     if (MDK == LLVMContext::MD_tbaa)
1986       InstsWithTBAATag.push_back(&Inst);
1987 
1988     // If this is the end of the list, we're done.
1989   } while (EatIfPresent(lltok::comma));
1990   return false;
1991 }
1992 
1993 /// ParseGlobalObjectMetadataAttachment
1994 ///   ::= !dbg !57
1995 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1996   unsigned MDK;
1997   MDNode *N;
1998   if (ParseMetadataAttachment(MDK, N))
1999     return true;
2000 
2001   GO.addMetadata(MDK, *N);
2002   return false;
2003 }
2004 
2005 /// ParseOptionalFunctionMetadata
2006 ///   ::= (!dbg !57)*
2007 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2008   while (Lex.getKind() == lltok::MetadataVar)
2009     if (ParseGlobalObjectMetadataAttachment(F))
2010       return true;
2011   return false;
2012 }
2013 
2014 /// ParseOptionalAlignment
2015 ///   ::= /* empty */
2016 ///   ::= 'align' 4
2017 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
2018   Alignment = 0;
2019   if (!EatIfPresent(lltok::kw_align))
2020     return false;
2021   LocTy AlignLoc = Lex.getLoc();
2022   if (ParseUInt32(Alignment)) return true;
2023   if (!isPowerOf2_32(Alignment))
2024     return Error(AlignLoc, "alignment is not a power of two");
2025   if (Alignment > Value::MaximumAlignment)
2026     return Error(AlignLoc, "huge alignments are not supported yet");
2027   return false;
2028 }
2029 
2030 /// ParseOptionalDerefAttrBytes
2031 ///   ::= /* empty */
2032 ///   ::= AttrKind '(' 4 ')'
2033 ///
2034 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2035 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2036                                            uint64_t &Bytes) {
2037   assert((AttrKind == lltok::kw_dereferenceable ||
2038           AttrKind == lltok::kw_dereferenceable_or_null) &&
2039          "contract!");
2040 
2041   Bytes = 0;
2042   if (!EatIfPresent(AttrKind))
2043     return false;
2044   LocTy ParenLoc = Lex.getLoc();
2045   if (!EatIfPresent(lltok::lparen))
2046     return Error(ParenLoc, "expected '('");
2047   LocTy DerefLoc = Lex.getLoc();
2048   if (ParseUInt64(Bytes)) return true;
2049   ParenLoc = Lex.getLoc();
2050   if (!EatIfPresent(lltok::rparen))
2051     return Error(ParenLoc, "expected ')'");
2052   if (!Bytes)
2053     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2054   return false;
2055 }
2056 
2057 /// ParseOptionalCommaAlign
2058 ///   ::=
2059 ///   ::= ',' align 4
2060 ///
2061 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2062 /// end.
2063 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2064                                        bool &AteExtraComma) {
2065   AteExtraComma = false;
2066   while (EatIfPresent(lltok::comma)) {
2067     // Metadata at the end is an early exit.
2068     if (Lex.getKind() == lltok::MetadataVar) {
2069       AteExtraComma = true;
2070       return false;
2071     }
2072 
2073     if (Lex.getKind() != lltok::kw_align)
2074       return Error(Lex.getLoc(), "expected metadata or 'align'");
2075 
2076     if (ParseOptionalAlignment(Alignment)) return true;
2077   }
2078 
2079   return false;
2080 }
2081 
2082 /// ParseOptionalCommaAddrSpace
2083 ///   ::=
2084 ///   ::= ',' addrspace(1)
2085 ///
2086 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2087 /// end.
2088 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2089                                            LocTy &Loc,
2090                                            bool &AteExtraComma) {
2091   AteExtraComma = false;
2092   while (EatIfPresent(lltok::comma)) {
2093     // Metadata at the end is an early exit.
2094     if (Lex.getKind() == lltok::MetadataVar) {
2095       AteExtraComma = true;
2096       return false;
2097     }
2098 
2099     Loc = Lex.getLoc();
2100     if (Lex.getKind() != lltok::kw_addrspace)
2101       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2102 
2103     if (ParseOptionalAddrSpace(AddrSpace))
2104       return true;
2105   }
2106 
2107   return false;
2108 }
2109 
2110 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2111                                        Optional<unsigned> &HowManyArg) {
2112   Lex.Lex();
2113 
2114   auto StartParen = Lex.getLoc();
2115   if (!EatIfPresent(lltok::lparen))
2116     return Error(StartParen, "expected '('");
2117 
2118   if (ParseUInt32(BaseSizeArg))
2119     return true;
2120 
2121   if (EatIfPresent(lltok::comma)) {
2122     auto HowManyAt = Lex.getLoc();
2123     unsigned HowMany;
2124     if (ParseUInt32(HowMany))
2125       return true;
2126     if (HowMany == BaseSizeArg)
2127       return Error(HowManyAt,
2128                    "'allocsize' indices can't refer to the same parameter");
2129     HowManyArg = HowMany;
2130   } else
2131     HowManyArg = None;
2132 
2133   auto EndParen = Lex.getLoc();
2134   if (!EatIfPresent(lltok::rparen))
2135     return Error(EndParen, "expected ')'");
2136   return false;
2137 }
2138 
2139 /// ParseScopeAndOrdering
2140 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2141 ///   else: ::=
2142 ///
2143 /// This sets Scope and Ordering to the parsed values.
2144 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2145                                      AtomicOrdering &Ordering) {
2146   if (!isAtomic)
2147     return false;
2148 
2149   return ParseScope(SSID) || ParseOrdering(Ordering);
2150 }
2151 
2152 /// ParseScope
2153 ///   ::= syncscope("singlethread" | "<target scope>")?
2154 ///
2155 /// This sets synchronization scope ID to the ID of the parsed value.
2156 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2157   SSID = SyncScope::System;
2158   if (EatIfPresent(lltok::kw_syncscope)) {
2159     auto StartParenAt = Lex.getLoc();
2160     if (!EatIfPresent(lltok::lparen))
2161       return Error(StartParenAt, "Expected '(' in syncscope");
2162 
2163     std::string SSN;
2164     auto SSNAt = Lex.getLoc();
2165     if (ParseStringConstant(SSN))
2166       return Error(SSNAt, "Expected synchronization scope name");
2167 
2168     auto EndParenAt = Lex.getLoc();
2169     if (!EatIfPresent(lltok::rparen))
2170       return Error(EndParenAt, "Expected ')' in syncscope");
2171 
2172     SSID = Context.getOrInsertSyncScopeID(SSN);
2173   }
2174 
2175   return false;
2176 }
2177 
2178 /// ParseOrdering
2179 ///   ::= AtomicOrdering
2180 ///
2181 /// This sets Ordering to the parsed value.
2182 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2183   switch (Lex.getKind()) {
2184   default: return TokError("Expected ordering on atomic instruction");
2185   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2186   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2187   // Not specified yet:
2188   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2189   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2190   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2191   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2192   case lltok::kw_seq_cst:
2193     Ordering = AtomicOrdering::SequentiallyConsistent;
2194     break;
2195   }
2196   Lex.Lex();
2197   return false;
2198 }
2199 
2200 /// ParseOptionalStackAlignment
2201 ///   ::= /* empty */
2202 ///   ::= 'alignstack' '(' 4 ')'
2203 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2204   Alignment = 0;
2205   if (!EatIfPresent(lltok::kw_alignstack))
2206     return false;
2207   LocTy ParenLoc = Lex.getLoc();
2208   if (!EatIfPresent(lltok::lparen))
2209     return Error(ParenLoc, "expected '('");
2210   LocTy AlignLoc = Lex.getLoc();
2211   if (ParseUInt32(Alignment)) return true;
2212   ParenLoc = Lex.getLoc();
2213   if (!EatIfPresent(lltok::rparen))
2214     return Error(ParenLoc, "expected ')'");
2215   if (!isPowerOf2_32(Alignment))
2216     return Error(AlignLoc, "stack alignment is not a power of two");
2217   return false;
2218 }
2219 
2220 /// ParseIndexList - This parses the index list for an insert/extractvalue
2221 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2222 /// comma at the end of the line and find that it is followed by metadata.
2223 /// Clients that don't allow metadata can call the version of this function that
2224 /// only takes one argument.
2225 ///
2226 /// ParseIndexList
2227 ///    ::=  (',' uint32)+
2228 ///
2229 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2230                               bool &AteExtraComma) {
2231   AteExtraComma = false;
2232 
2233   if (Lex.getKind() != lltok::comma)
2234     return TokError("expected ',' as start of index list");
2235 
2236   while (EatIfPresent(lltok::comma)) {
2237     if (Lex.getKind() == lltok::MetadataVar) {
2238       if (Indices.empty()) return TokError("expected index");
2239       AteExtraComma = true;
2240       return false;
2241     }
2242     unsigned Idx = 0;
2243     if (ParseUInt32(Idx)) return true;
2244     Indices.push_back(Idx);
2245   }
2246 
2247   return false;
2248 }
2249 
2250 //===----------------------------------------------------------------------===//
2251 // Type Parsing.
2252 //===----------------------------------------------------------------------===//
2253 
2254 /// ParseType - Parse a type.
2255 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2256   SMLoc TypeLoc = Lex.getLoc();
2257   switch (Lex.getKind()) {
2258   default:
2259     return TokError(Msg);
2260   case lltok::Type:
2261     // Type ::= 'float' | 'void' (etc)
2262     Result = Lex.getTyVal();
2263     Lex.Lex();
2264     break;
2265   case lltok::lbrace:
2266     // Type ::= StructType
2267     if (ParseAnonStructType(Result, false))
2268       return true;
2269     break;
2270   case lltok::lsquare:
2271     // Type ::= '[' ... ']'
2272     Lex.Lex(); // eat the lsquare.
2273     if (ParseArrayVectorType(Result, false))
2274       return true;
2275     break;
2276   case lltok::less: // Either vector or packed struct.
2277     // Type ::= '<' ... '>'
2278     Lex.Lex();
2279     if (Lex.getKind() == lltok::lbrace) {
2280       if (ParseAnonStructType(Result, true) ||
2281           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2282         return true;
2283     } else if (ParseArrayVectorType(Result, true))
2284       return true;
2285     break;
2286   case lltok::LocalVar: {
2287     // Type ::= %foo
2288     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2289 
2290     // If the type hasn't been defined yet, create a forward definition and
2291     // remember where that forward def'n was seen (in case it never is defined).
2292     if (!Entry.first) {
2293       Entry.first = StructType::create(Context, Lex.getStrVal());
2294       Entry.second = Lex.getLoc();
2295     }
2296     Result = Entry.first;
2297     Lex.Lex();
2298     break;
2299   }
2300 
2301   case lltok::LocalVarID: {
2302     // Type ::= %4
2303     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2304 
2305     // If the type hasn't been defined yet, create a forward definition and
2306     // remember where that forward def'n was seen (in case it never is defined).
2307     if (!Entry.first) {
2308       Entry.first = StructType::create(Context);
2309       Entry.second = Lex.getLoc();
2310     }
2311     Result = Entry.first;
2312     Lex.Lex();
2313     break;
2314   }
2315   }
2316 
2317   // Parse the type suffixes.
2318   while (true) {
2319     switch (Lex.getKind()) {
2320     // End of type.
2321     default:
2322       if (!AllowVoid && Result->isVoidTy())
2323         return Error(TypeLoc, "void type only allowed for function results");
2324       return false;
2325 
2326     // Type ::= Type '*'
2327     case lltok::star:
2328       if (Result->isLabelTy())
2329         return TokError("basic block pointers are invalid");
2330       if (Result->isVoidTy())
2331         return TokError("pointers to void are invalid - use i8* instead");
2332       if (!PointerType::isValidElementType(Result))
2333         return TokError("pointer to this type is invalid");
2334       Result = PointerType::getUnqual(Result);
2335       Lex.Lex();
2336       break;
2337 
2338     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2339     case lltok::kw_addrspace: {
2340       if (Result->isLabelTy())
2341         return TokError("basic block pointers are invalid");
2342       if (Result->isVoidTy())
2343         return TokError("pointers to void are invalid; use i8* instead");
2344       if (!PointerType::isValidElementType(Result))
2345         return TokError("pointer to this type is invalid");
2346       unsigned AddrSpace;
2347       if (ParseOptionalAddrSpace(AddrSpace) ||
2348           ParseToken(lltok::star, "expected '*' in address space"))
2349         return true;
2350 
2351       Result = PointerType::get(Result, AddrSpace);
2352       break;
2353     }
2354 
2355     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2356     case lltok::lparen:
2357       if (ParseFunctionType(Result))
2358         return true;
2359       break;
2360     }
2361   }
2362 }
2363 
2364 /// ParseParameterList
2365 ///    ::= '(' ')'
2366 ///    ::= '(' Arg (',' Arg)* ')'
2367 ///  Arg
2368 ///    ::= Type OptionalAttributes Value OptionalAttributes
2369 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2370                                   PerFunctionState &PFS, bool IsMustTailCall,
2371                                   bool InVarArgsFunc) {
2372   if (ParseToken(lltok::lparen, "expected '(' in call"))
2373     return true;
2374 
2375   while (Lex.getKind() != lltok::rparen) {
2376     // If this isn't the first argument, we need a comma.
2377     if (!ArgList.empty() &&
2378         ParseToken(lltok::comma, "expected ',' in argument list"))
2379       return true;
2380 
2381     // Parse an ellipsis if this is a musttail call in a variadic function.
2382     if (Lex.getKind() == lltok::dotdotdot) {
2383       const char *Msg = "unexpected ellipsis in argument list for ";
2384       if (!IsMustTailCall)
2385         return TokError(Twine(Msg) + "non-musttail call");
2386       if (!InVarArgsFunc)
2387         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2388       Lex.Lex();  // Lex the '...', it is purely for readability.
2389       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2390     }
2391 
2392     // Parse the argument.
2393     LocTy ArgLoc;
2394     Type *ArgTy = nullptr;
2395     AttrBuilder ArgAttrs;
2396     Value *V;
2397     if (ParseType(ArgTy, ArgLoc))
2398       return true;
2399 
2400     if (ArgTy->isMetadataTy()) {
2401       if (ParseMetadataAsValue(V, PFS))
2402         return true;
2403     } else {
2404       // Otherwise, handle normal operands.
2405       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2406         return true;
2407     }
2408     ArgList.push_back(ParamInfo(
2409         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2410   }
2411 
2412   if (IsMustTailCall && InVarArgsFunc)
2413     return TokError("expected '...' at end of argument list for musttail call "
2414                     "in varargs function");
2415 
2416   Lex.Lex();  // Lex the ')'.
2417   return false;
2418 }
2419 
2420 /// ParseOptionalOperandBundles
2421 ///    ::= /*empty*/
2422 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2423 ///
2424 /// OperandBundle
2425 ///    ::= bundle-tag '(' ')'
2426 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2427 ///
2428 /// bundle-tag ::= String Constant
2429 bool LLParser::ParseOptionalOperandBundles(
2430     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2431   LocTy BeginLoc = Lex.getLoc();
2432   if (!EatIfPresent(lltok::lsquare))
2433     return false;
2434 
2435   while (Lex.getKind() != lltok::rsquare) {
2436     // If this isn't the first operand bundle, we need a comma.
2437     if (!BundleList.empty() &&
2438         ParseToken(lltok::comma, "expected ',' in input list"))
2439       return true;
2440 
2441     std::string Tag;
2442     if (ParseStringConstant(Tag))
2443       return true;
2444 
2445     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2446       return true;
2447 
2448     std::vector<Value *> Inputs;
2449     while (Lex.getKind() != lltok::rparen) {
2450       // If this isn't the first input, we need a comma.
2451       if (!Inputs.empty() &&
2452           ParseToken(lltok::comma, "expected ',' in input list"))
2453         return true;
2454 
2455       Type *Ty = nullptr;
2456       Value *Input = nullptr;
2457       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2458         return true;
2459       Inputs.push_back(Input);
2460     }
2461 
2462     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2463 
2464     Lex.Lex(); // Lex the ')'.
2465   }
2466 
2467   if (BundleList.empty())
2468     return Error(BeginLoc, "operand bundle set must not be empty");
2469 
2470   Lex.Lex(); // Lex the ']'.
2471   return false;
2472 }
2473 
2474 /// ParseArgumentList - Parse the argument list for a function type or function
2475 /// prototype.
2476 ///   ::= '(' ArgTypeListI ')'
2477 /// ArgTypeListI
2478 ///   ::= /*empty*/
2479 ///   ::= '...'
2480 ///   ::= ArgTypeList ',' '...'
2481 ///   ::= ArgType (',' ArgType)*
2482 ///
2483 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2484                                  bool &isVarArg){
2485   isVarArg = false;
2486   assert(Lex.getKind() == lltok::lparen);
2487   Lex.Lex(); // eat the (.
2488 
2489   if (Lex.getKind() == lltok::rparen) {
2490     // empty
2491   } else if (Lex.getKind() == lltok::dotdotdot) {
2492     isVarArg = true;
2493     Lex.Lex();
2494   } else {
2495     LocTy TypeLoc = Lex.getLoc();
2496     Type *ArgTy = nullptr;
2497     AttrBuilder Attrs;
2498     std::string Name;
2499 
2500     if (ParseType(ArgTy) ||
2501         ParseOptionalParamAttrs(Attrs)) return true;
2502 
2503     if (ArgTy->isVoidTy())
2504       return Error(TypeLoc, "argument can not have void type");
2505 
2506     if (Lex.getKind() == lltok::LocalVar) {
2507       Name = Lex.getStrVal();
2508       Lex.Lex();
2509     }
2510 
2511     if (!FunctionType::isValidArgumentType(ArgTy))
2512       return Error(TypeLoc, "invalid type for function argument");
2513 
2514     ArgList.emplace_back(TypeLoc, ArgTy,
2515                          AttributeSet::get(ArgTy->getContext(), Attrs),
2516                          std::move(Name));
2517 
2518     while (EatIfPresent(lltok::comma)) {
2519       // Handle ... at end of arg list.
2520       if (EatIfPresent(lltok::dotdotdot)) {
2521         isVarArg = true;
2522         break;
2523       }
2524 
2525       // Otherwise must be an argument type.
2526       TypeLoc = Lex.getLoc();
2527       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2528 
2529       if (ArgTy->isVoidTy())
2530         return Error(TypeLoc, "argument can not have void type");
2531 
2532       if (Lex.getKind() == lltok::LocalVar) {
2533         Name = Lex.getStrVal();
2534         Lex.Lex();
2535       } else {
2536         Name = "";
2537       }
2538 
2539       if (!ArgTy->isFirstClassType())
2540         return Error(TypeLoc, "invalid type for function argument");
2541 
2542       ArgList.emplace_back(TypeLoc, ArgTy,
2543                            AttributeSet::get(ArgTy->getContext(), Attrs),
2544                            std::move(Name));
2545     }
2546   }
2547 
2548   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2549 }
2550 
2551 /// ParseFunctionType
2552 ///  ::= Type ArgumentList OptionalAttrs
2553 bool LLParser::ParseFunctionType(Type *&Result) {
2554   assert(Lex.getKind() == lltok::lparen);
2555 
2556   if (!FunctionType::isValidReturnType(Result))
2557     return TokError("invalid function return type");
2558 
2559   SmallVector<ArgInfo, 8> ArgList;
2560   bool isVarArg;
2561   if (ParseArgumentList(ArgList, isVarArg))
2562     return true;
2563 
2564   // Reject names on the arguments lists.
2565   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2566     if (!ArgList[i].Name.empty())
2567       return Error(ArgList[i].Loc, "argument name invalid in function type");
2568     if (ArgList[i].Attrs.hasAttributes())
2569       return Error(ArgList[i].Loc,
2570                    "argument attributes invalid in function type");
2571   }
2572 
2573   SmallVector<Type*, 16> ArgListTy;
2574   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2575     ArgListTy.push_back(ArgList[i].Ty);
2576 
2577   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2578   return false;
2579 }
2580 
2581 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2582 /// other structs.
2583 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2584   SmallVector<Type*, 8> Elts;
2585   if (ParseStructBody(Elts)) return true;
2586 
2587   Result = StructType::get(Context, Elts, Packed);
2588   return false;
2589 }
2590 
2591 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2592 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2593                                      std::pair<Type*, LocTy> &Entry,
2594                                      Type *&ResultTy) {
2595   // If the type was already defined, diagnose the redefinition.
2596   if (Entry.first && !Entry.second.isValid())
2597     return Error(TypeLoc, "redefinition of type");
2598 
2599   // If we have opaque, just return without filling in the definition for the
2600   // struct.  This counts as a definition as far as the .ll file goes.
2601   if (EatIfPresent(lltok::kw_opaque)) {
2602     // This type is being defined, so clear the location to indicate this.
2603     Entry.second = SMLoc();
2604 
2605     // If this type number has never been uttered, create it.
2606     if (!Entry.first)
2607       Entry.first = StructType::create(Context, Name);
2608     ResultTy = Entry.first;
2609     return false;
2610   }
2611 
2612   // If the type starts with '<', then it is either a packed struct or a vector.
2613   bool isPacked = EatIfPresent(lltok::less);
2614 
2615   // If we don't have a struct, then we have a random type alias, which we
2616   // accept for compatibility with old files.  These types are not allowed to be
2617   // forward referenced and not allowed to be recursive.
2618   if (Lex.getKind() != lltok::lbrace) {
2619     if (Entry.first)
2620       return Error(TypeLoc, "forward references to non-struct type");
2621 
2622     ResultTy = nullptr;
2623     if (isPacked)
2624       return ParseArrayVectorType(ResultTy, true);
2625     return ParseType(ResultTy);
2626   }
2627 
2628   // This type is being defined, so clear the location to indicate this.
2629   Entry.second = SMLoc();
2630 
2631   // If this type number has never been uttered, create it.
2632   if (!Entry.first)
2633     Entry.first = StructType::create(Context, Name);
2634 
2635   StructType *STy = cast<StructType>(Entry.first);
2636 
2637   SmallVector<Type*, 8> Body;
2638   if (ParseStructBody(Body) ||
2639       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2640     return true;
2641 
2642   STy->setBody(Body, isPacked);
2643   ResultTy = STy;
2644   return false;
2645 }
2646 
2647 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2648 ///   StructType
2649 ///     ::= '{' '}'
2650 ///     ::= '{' Type (',' Type)* '}'
2651 ///     ::= '<' '{' '}' '>'
2652 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2653 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2654   assert(Lex.getKind() == lltok::lbrace);
2655   Lex.Lex(); // Consume the '{'
2656 
2657   // Handle the empty struct.
2658   if (EatIfPresent(lltok::rbrace))
2659     return false;
2660 
2661   LocTy EltTyLoc = Lex.getLoc();
2662   Type *Ty = nullptr;
2663   if (ParseType(Ty)) return true;
2664   Body.push_back(Ty);
2665 
2666   if (!StructType::isValidElementType(Ty))
2667     return Error(EltTyLoc, "invalid element type for struct");
2668 
2669   while (EatIfPresent(lltok::comma)) {
2670     EltTyLoc = Lex.getLoc();
2671     if (ParseType(Ty)) return true;
2672 
2673     if (!StructType::isValidElementType(Ty))
2674       return Error(EltTyLoc, "invalid element type for struct");
2675 
2676     Body.push_back(Ty);
2677   }
2678 
2679   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2680 }
2681 
2682 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2683 /// token has already been consumed.
2684 ///   Type
2685 ///     ::= '[' APSINTVAL 'x' Types ']'
2686 ///     ::= '<' APSINTVAL 'x' Types '>'
2687 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2688   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2689       Lex.getAPSIntVal().getBitWidth() > 64)
2690     return TokError("expected number in address space");
2691 
2692   LocTy SizeLoc = Lex.getLoc();
2693   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2694   Lex.Lex();
2695 
2696   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2697       return true;
2698 
2699   LocTy TypeLoc = Lex.getLoc();
2700   Type *EltTy = nullptr;
2701   if (ParseType(EltTy)) return true;
2702 
2703   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2704                  "expected end of sequential type"))
2705     return true;
2706 
2707   if (isVector) {
2708     if (Size == 0)
2709       return Error(SizeLoc, "zero element vector is illegal");
2710     if ((unsigned)Size != Size)
2711       return Error(SizeLoc, "size too large for vector");
2712     if (!VectorType::isValidElementType(EltTy))
2713       return Error(TypeLoc, "invalid vector element type");
2714     Result = VectorType::get(EltTy, unsigned(Size));
2715   } else {
2716     if (!ArrayType::isValidElementType(EltTy))
2717       return Error(TypeLoc, "invalid array element type");
2718     Result = ArrayType::get(EltTy, Size);
2719   }
2720   return false;
2721 }
2722 
2723 //===----------------------------------------------------------------------===//
2724 // Function Semantic Analysis.
2725 //===----------------------------------------------------------------------===//
2726 
2727 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2728                                              int functionNumber)
2729   : P(p), F(f), FunctionNumber(functionNumber) {
2730 
2731   // Insert unnamed arguments into the NumberedVals list.
2732   for (Argument &A : F.args())
2733     if (!A.hasName())
2734       NumberedVals.push_back(&A);
2735 }
2736 
2737 LLParser::PerFunctionState::~PerFunctionState() {
2738   // If there were any forward referenced non-basicblock values, delete them.
2739 
2740   for (const auto &P : ForwardRefVals) {
2741     if (isa<BasicBlock>(P.second.first))
2742       continue;
2743     P.second.first->replaceAllUsesWith(
2744         UndefValue::get(P.second.first->getType()));
2745     P.second.first->deleteValue();
2746   }
2747 
2748   for (const auto &P : ForwardRefValIDs) {
2749     if (isa<BasicBlock>(P.second.first))
2750       continue;
2751     P.second.first->replaceAllUsesWith(
2752         UndefValue::get(P.second.first->getType()));
2753     P.second.first->deleteValue();
2754   }
2755 }
2756 
2757 bool LLParser::PerFunctionState::FinishFunction() {
2758   if (!ForwardRefVals.empty())
2759     return P.Error(ForwardRefVals.begin()->second.second,
2760                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2761                    "'");
2762   if (!ForwardRefValIDs.empty())
2763     return P.Error(ForwardRefValIDs.begin()->second.second,
2764                    "use of undefined value '%" +
2765                    Twine(ForwardRefValIDs.begin()->first) + "'");
2766   return false;
2767 }
2768 
2769 /// GetVal - Get a value with the specified name or ID, creating a
2770 /// forward reference record if needed.  This can return null if the value
2771 /// exists but does not have the right type.
2772 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2773                                           LocTy Loc, bool IsCall) {
2774   // Look this name up in the normal function symbol table.
2775   Value *Val = F.getValueSymbolTable()->lookup(Name);
2776 
2777   // If this is a forward reference for the value, see if we already created a
2778   // forward ref record.
2779   if (!Val) {
2780     auto I = ForwardRefVals.find(Name);
2781     if (I != ForwardRefVals.end())
2782       Val = I->second.first;
2783   }
2784 
2785   // If we have the value in the symbol table or fwd-ref table, return it.
2786   if (Val)
2787     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2788 
2789   // Don't make placeholders with invalid type.
2790   if (!Ty->isFirstClassType()) {
2791     P.Error(Loc, "invalid use of a non-first-class type");
2792     return nullptr;
2793   }
2794 
2795   // Otherwise, create a new forward reference for this value and remember it.
2796   Value *FwdVal;
2797   if (Ty->isLabelTy()) {
2798     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2799   } else {
2800     FwdVal = new Argument(Ty, Name);
2801   }
2802 
2803   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2804   return FwdVal;
2805 }
2806 
2807 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2808                                           bool IsCall) {
2809   // Look this name up in the normal function symbol table.
2810   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2811 
2812   // If this is a forward reference for the value, see if we already created a
2813   // forward ref record.
2814   if (!Val) {
2815     auto I = ForwardRefValIDs.find(ID);
2816     if (I != ForwardRefValIDs.end())
2817       Val = I->second.first;
2818   }
2819 
2820   // If we have the value in the symbol table or fwd-ref table, return it.
2821   if (Val)
2822     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2823 
2824   if (!Ty->isFirstClassType()) {
2825     P.Error(Loc, "invalid use of a non-first-class type");
2826     return nullptr;
2827   }
2828 
2829   // Otherwise, create a new forward reference for this value and remember it.
2830   Value *FwdVal;
2831   if (Ty->isLabelTy()) {
2832     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2833   } else {
2834     FwdVal = new Argument(Ty);
2835   }
2836 
2837   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2838   return FwdVal;
2839 }
2840 
2841 /// SetInstName - After an instruction is parsed and inserted into its
2842 /// basic block, this installs its name.
2843 bool LLParser::PerFunctionState::SetInstName(int NameID,
2844                                              const std::string &NameStr,
2845                                              LocTy NameLoc, Instruction *Inst) {
2846   // If this instruction has void type, it cannot have a name or ID specified.
2847   if (Inst->getType()->isVoidTy()) {
2848     if (NameID != -1 || !NameStr.empty())
2849       return P.Error(NameLoc, "instructions returning void cannot have a name");
2850     return false;
2851   }
2852 
2853   // If this was a numbered instruction, verify that the instruction is the
2854   // expected value and resolve any forward references.
2855   if (NameStr.empty()) {
2856     // If neither a name nor an ID was specified, just use the next ID.
2857     if (NameID == -1)
2858       NameID = NumberedVals.size();
2859 
2860     if (unsigned(NameID) != NumberedVals.size())
2861       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2862                      Twine(NumberedVals.size()) + "'");
2863 
2864     auto FI = ForwardRefValIDs.find(NameID);
2865     if (FI != ForwardRefValIDs.end()) {
2866       Value *Sentinel = FI->second.first;
2867       if (Sentinel->getType() != Inst->getType())
2868         return P.Error(NameLoc, "instruction forward referenced with type '" +
2869                        getTypeString(FI->second.first->getType()) + "'");
2870 
2871       Sentinel->replaceAllUsesWith(Inst);
2872       Sentinel->deleteValue();
2873       ForwardRefValIDs.erase(FI);
2874     }
2875 
2876     NumberedVals.push_back(Inst);
2877     return false;
2878   }
2879 
2880   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2881   auto FI = ForwardRefVals.find(NameStr);
2882   if (FI != ForwardRefVals.end()) {
2883     Value *Sentinel = FI->second.first;
2884     if (Sentinel->getType() != Inst->getType())
2885       return P.Error(NameLoc, "instruction forward referenced with type '" +
2886                      getTypeString(FI->second.first->getType()) + "'");
2887 
2888     Sentinel->replaceAllUsesWith(Inst);
2889     Sentinel->deleteValue();
2890     ForwardRefVals.erase(FI);
2891   }
2892 
2893   // Set the name on the instruction.
2894   Inst->setName(NameStr);
2895 
2896   if (Inst->getName() != NameStr)
2897     return P.Error(NameLoc, "multiple definition of local value named '" +
2898                    NameStr + "'");
2899   return false;
2900 }
2901 
2902 /// GetBB - Get a basic block with the specified name or ID, creating a
2903 /// forward reference record if needed.
2904 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2905                                               LocTy Loc) {
2906   return dyn_cast_or_null<BasicBlock>(
2907       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2908 }
2909 
2910 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2911   return dyn_cast_or_null<BasicBlock>(
2912       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2913 }
2914 
2915 /// DefineBB - Define the specified basic block, which is either named or
2916 /// unnamed.  If there is an error, this returns null otherwise it returns
2917 /// the block being defined.
2918 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2919                                                  LocTy Loc) {
2920   BasicBlock *BB;
2921   if (Name.empty())
2922     BB = GetBB(NumberedVals.size(), Loc);
2923   else
2924     BB = GetBB(Name, Loc);
2925   if (!BB) return nullptr; // Already diagnosed error.
2926 
2927   // Move the block to the end of the function.  Forward ref'd blocks are
2928   // inserted wherever they happen to be referenced.
2929   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2930 
2931   // Remove the block from forward ref sets.
2932   if (Name.empty()) {
2933     ForwardRefValIDs.erase(NumberedVals.size());
2934     NumberedVals.push_back(BB);
2935   } else {
2936     // BB forward references are already in the function symbol table.
2937     ForwardRefVals.erase(Name);
2938   }
2939 
2940   return BB;
2941 }
2942 
2943 //===----------------------------------------------------------------------===//
2944 // Constants.
2945 //===----------------------------------------------------------------------===//
2946 
2947 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2948 /// type implied.  For example, if we parse "4" we don't know what integer type
2949 /// it has.  The value will later be combined with its type and checked for
2950 /// sanity.  PFS is used to convert function-local operands of metadata (since
2951 /// metadata operands are not just parsed here but also converted to values).
2952 /// PFS can be null when we are not parsing metadata values inside a function.
2953 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2954   ID.Loc = Lex.getLoc();
2955   switch (Lex.getKind()) {
2956   default: return TokError("expected value token");
2957   case lltok::GlobalID:  // @42
2958     ID.UIntVal = Lex.getUIntVal();
2959     ID.Kind = ValID::t_GlobalID;
2960     break;
2961   case lltok::GlobalVar:  // @foo
2962     ID.StrVal = Lex.getStrVal();
2963     ID.Kind = ValID::t_GlobalName;
2964     break;
2965   case lltok::LocalVarID:  // %42
2966     ID.UIntVal = Lex.getUIntVal();
2967     ID.Kind = ValID::t_LocalID;
2968     break;
2969   case lltok::LocalVar:  // %foo
2970     ID.StrVal = Lex.getStrVal();
2971     ID.Kind = ValID::t_LocalName;
2972     break;
2973   case lltok::APSInt:
2974     ID.APSIntVal = Lex.getAPSIntVal();
2975     ID.Kind = ValID::t_APSInt;
2976     break;
2977   case lltok::APFloat:
2978     ID.APFloatVal = Lex.getAPFloatVal();
2979     ID.Kind = ValID::t_APFloat;
2980     break;
2981   case lltok::kw_true:
2982     ID.ConstantVal = ConstantInt::getTrue(Context);
2983     ID.Kind = ValID::t_Constant;
2984     break;
2985   case lltok::kw_false:
2986     ID.ConstantVal = ConstantInt::getFalse(Context);
2987     ID.Kind = ValID::t_Constant;
2988     break;
2989   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2990   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2991   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2992   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2993 
2994   case lltok::lbrace: {
2995     // ValID ::= '{' ConstVector '}'
2996     Lex.Lex();
2997     SmallVector<Constant*, 16> Elts;
2998     if (ParseGlobalValueVector(Elts) ||
2999         ParseToken(lltok::rbrace, "expected end of struct constant"))
3000       return true;
3001 
3002     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3003     ID.UIntVal = Elts.size();
3004     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3005            Elts.size() * sizeof(Elts[0]));
3006     ID.Kind = ValID::t_ConstantStruct;
3007     return false;
3008   }
3009   case lltok::less: {
3010     // ValID ::= '<' ConstVector '>'         --> Vector.
3011     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3012     Lex.Lex();
3013     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3014 
3015     SmallVector<Constant*, 16> Elts;
3016     LocTy FirstEltLoc = Lex.getLoc();
3017     if (ParseGlobalValueVector(Elts) ||
3018         (isPackedStruct &&
3019          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3020         ParseToken(lltok::greater, "expected end of constant"))
3021       return true;
3022 
3023     if (isPackedStruct) {
3024       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3025       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3026              Elts.size() * sizeof(Elts[0]));
3027       ID.UIntVal = Elts.size();
3028       ID.Kind = ValID::t_PackedConstantStruct;
3029       return false;
3030     }
3031 
3032     if (Elts.empty())
3033       return Error(ID.Loc, "constant vector must not be empty");
3034 
3035     if (!Elts[0]->getType()->isIntegerTy() &&
3036         !Elts[0]->getType()->isFloatingPointTy() &&
3037         !Elts[0]->getType()->isPointerTy())
3038       return Error(FirstEltLoc,
3039             "vector elements must have integer, pointer or floating point type");
3040 
3041     // Verify that all the vector elements have the same type.
3042     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3043       if (Elts[i]->getType() != Elts[0]->getType())
3044         return Error(FirstEltLoc,
3045                      "vector element #" + Twine(i) +
3046                     " is not of type '" + getTypeString(Elts[0]->getType()));
3047 
3048     ID.ConstantVal = ConstantVector::get(Elts);
3049     ID.Kind = ValID::t_Constant;
3050     return false;
3051   }
3052   case lltok::lsquare: {   // Array Constant
3053     Lex.Lex();
3054     SmallVector<Constant*, 16> Elts;
3055     LocTy FirstEltLoc = Lex.getLoc();
3056     if (ParseGlobalValueVector(Elts) ||
3057         ParseToken(lltok::rsquare, "expected end of array constant"))
3058       return true;
3059 
3060     // Handle empty element.
3061     if (Elts.empty()) {
3062       // Use undef instead of an array because it's inconvenient to determine
3063       // the element type at this point, there being no elements to examine.
3064       ID.Kind = ValID::t_EmptyArray;
3065       return false;
3066     }
3067 
3068     if (!Elts[0]->getType()->isFirstClassType())
3069       return Error(FirstEltLoc, "invalid array element type: " +
3070                    getTypeString(Elts[0]->getType()));
3071 
3072     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3073 
3074     // Verify all elements are correct type!
3075     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3076       if (Elts[i]->getType() != Elts[0]->getType())
3077         return Error(FirstEltLoc,
3078                      "array element #" + Twine(i) +
3079                      " is not of type '" + getTypeString(Elts[0]->getType()));
3080     }
3081 
3082     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3083     ID.Kind = ValID::t_Constant;
3084     return false;
3085   }
3086   case lltok::kw_c:  // c "foo"
3087     Lex.Lex();
3088     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3089                                                   false);
3090     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3091     ID.Kind = ValID::t_Constant;
3092     return false;
3093 
3094   case lltok::kw_asm: {
3095     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3096     //             STRINGCONSTANT
3097     bool HasSideEffect, AlignStack, AsmDialect;
3098     Lex.Lex();
3099     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3100         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3101         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3102         ParseStringConstant(ID.StrVal) ||
3103         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3104         ParseToken(lltok::StringConstant, "expected constraint string"))
3105       return true;
3106     ID.StrVal2 = Lex.getStrVal();
3107     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3108       (unsigned(AsmDialect)<<2);
3109     ID.Kind = ValID::t_InlineAsm;
3110     return false;
3111   }
3112 
3113   case lltok::kw_blockaddress: {
3114     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3115     Lex.Lex();
3116 
3117     ValID Fn, Label;
3118 
3119     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3120         ParseValID(Fn) ||
3121         ParseToken(lltok::comma, "expected comma in block address expression")||
3122         ParseValID(Label) ||
3123         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3124       return true;
3125 
3126     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3127       return Error(Fn.Loc, "expected function name in blockaddress");
3128     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3129       return Error(Label.Loc, "expected basic block name in blockaddress");
3130 
3131     // Try to find the function (but skip it if it's forward-referenced).
3132     GlobalValue *GV = nullptr;
3133     if (Fn.Kind == ValID::t_GlobalID) {
3134       if (Fn.UIntVal < NumberedVals.size())
3135         GV = NumberedVals[Fn.UIntVal];
3136     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3137       GV = M->getNamedValue(Fn.StrVal);
3138     }
3139     Function *F = nullptr;
3140     if (GV) {
3141       // Confirm that it's actually a function with a definition.
3142       if (!isa<Function>(GV))
3143         return Error(Fn.Loc, "expected function name in blockaddress");
3144       F = cast<Function>(GV);
3145       if (F->isDeclaration())
3146         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3147     }
3148 
3149     if (!F) {
3150       // Make a global variable as a placeholder for this reference.
3151       GlobalValue *&FwdRef =
3152           ForwardRefBlockAddresses.insert(std::make_pair(
3153                                               std::move(Fn),
3154                                               std::map<ValID, GlobalValue *>()))
3155               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3156               .first->second;
3157       if (!FwdRef)
3158         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3159                                     GlobalValue::InternalLinkage, nullptr, "");
3160       ID.ConstantVal = FwdRef;
3161       ID.Kind = ValID::t_Constant;
3162       return false;
3163     }
3164 
3165     // We found the function; now find the basic block.  Don't use PFS, since we
3166     // might be inside a constant expression.
3167     BasicBlock *BB;
3168     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3169       if (Label.Kind == ValID::t_LocalID)
3170         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3171       else
3172         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3173       if (!BB)
3174         return Error(Label.Loc, "referenced value is not a basic block");
3175     } else {
3176       if (Label.Kind == ValID::t_LocalID)
3177         return Error(Label.Loc, "cannot take address of numeric label after "
3178                                 "the function is defined");
3179       BB = dyn_cast_or_null<BasicBlock>(
3180           F->getValueSymbolTable()->lookup(Label.StrVal));
3181       if (!BB)
3182         return Error(Label.Loc, "referenced value is not a basic block");
3183     }
3184 
3185     ID.ConstantVal = BlockAddress::get(F, BB);
3186     ID.Kind = ValID::t_Constant;
3187     return false;
3188   }
3189 
3190   case lltok::kw_trunc:
3191   case lltok::kw_zext:
3192   case lltok::kw_sext:
3193   case lltok::kw_fptrunc:
3194   case lltok::kw_fpext:
3195   case lltok::kw_bitcast:
3196   case lltok::kw_addrspacecast:
3197   case lltok::kw_uitofp:
3198   case lltok::kw_sitofp:
3199   case lltok::kw_fptoui:
3200   case lltok::kw_fptosi:
3201   case lltok::kw_inttoptr:
3202   case lltok::kw_ptrtoint: {
3203     unsigned Opc = Lex.getUIntVal();
3204     Type *DestTy = nullptr;
3205     Constant *SrcVal;
3206     Lex.Lex();
3207     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3208         ParseGlobalTypeAndValue(SrcVal) ||
3209         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3210         ParseType(DestTy) ||
3211         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3212       return true;
3213     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3214       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3215                    getTypeString(SrcVal->getType()) + "' to '" +
3216                    getTypeString(DestTy) + "'");
3217     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3218                                                  SrcVal, DestTy);
3219     ID.Kind = ValID::t_Constant;
3220     return false;
3221   }
3222   case lltok::kw_extractvalue: {
3223     Lex.Lex();
3224     Constant *Val;
3225     SmallVector<unsigned, 4> Indices;
3226     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3227         ParseGlobalTypeAndValue(Val) ||
3228         ParseIndexList(Indices) ||
3229         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3230       return true;
3231 
3232     if (!Val->getType()->isAggregateType())
3233       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3234     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3235       return Error(ID.Loc, "invalid indices for extractvalue");
3236     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3237     ID.Kind = ValID::t_Constant;
3238     return false;
3239   }
3240   case lltok::kw_insertvalue: {
3241     Lex.Lex();
3242     Constant *Val0, *Val1;
3243     SmallVector<unsigned, 4> Indices;
3244     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3245         ParseGlobalTypeAndValue(Val0) ||
3246         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3247         ParseGlobalTypeAndValue(Val1) ||
3248         ParseIndexList(Indices) ||
3249         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3250       return true;
3251     if (!Val0->getType()->isAggregateType())
3252       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3253     Type *IndexedType =
3254         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3255     if (!IndexedType)
3256       return Error(ID.Loc, "invalid indices for insertvalue");
3257     if (IndexedType != Val1->getType())
3258       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3259                                getTypeString(Val1->getType()) +
3260                                "' instead of '" + getTypeString(IndexedType) +
3261                                "'");
3262     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3263     ID.Kind = ValID::t_Constant;
3264     return false;
3265   }
3266   case lltok::kw_icmp:
3267   case lltok::kw_fcmp: {
3268     unsigned PredVal, Opc = Lex.getUIntVal();
3269     Constant *Val0, *Val1;
3270     Lex.Lex();
3271     if (ParseCmpPredicate(PredVal, Opc) ||
3272         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3273         ParseGlobalTypeAndValue(Val0) ||
3274         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3275         ParseGlobalTypeAndValue(Val1) ||
3276         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3277       return true;
3278 
3279     if (Val0->getType() != Val1->getType())
3280       return Error(ID.Loc, "compare operands must have the same type");
3281 
3282     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3283 
3284     if (Opc == Instruction::FCmp) {
3285       if (!Val0->getType()->isFPOrFPVectorTy())
3286         return Error(ID.Loc, "fcmp requires floating point operands");
3287       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3288     } else {
3289       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3290       if (!Val0->getType()->isIntOrIntVectorTy() &&
3291           !Val0->getType()->isPtrOrPtrVectorTy())
3292         return Error(ID.Loc, "icmp requires pointer or integer operands");
3293       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3294     }
3295     ID.Kind = ValID::t_Constant;
3296     return false;
3297   }
3298 
3299   // Binary Operators.
3300   case lltok::kw_add:
3301   case lltok::kw_fadd:
3302   case lltok::kw_sub:
3303   case lltok::kw_fsub:
3304   case lltok::kw_mul:
3305   case lltok::kw_fmul:
3306   case lltok::kw_udiv:
3307   case lltok::kw_sdiv:
3308   case lltok::kw_fdiv:
3309   case lltok::kw_urem:
3310   case lltok::kw_srem:
3311   case lltok::kw_frem:
3312   case lltok::kw_shl:
3313   case lltok::kw_lshr:
3314   case lltok::kw_ashr: {
3315     bool NUW = false;
3316     bool NSW = false;
3317     bool Exact = false;
3318     unsigned Opc = Lex.getUIntVal();
3319     Constant *Val0, *Val1;
3320     Lex.Lex();
3321     LocTy ModifierLoc = Lex.getLoc();
3322     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3323         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3324       if (EatIfPresent(lltok::kw_nuw))
3325         NUW = true;
3326       if (EatIfPresent(lltok::kw_nsw)) {
3327         NSW = true;
3328         if (EatIfPresent(lltok::kw_nuw))
3329           NUW = true;
3330       }
3331     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3332                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3333       if (EatIfPresent(lltok::kw_exact))
3334         Exact = true;
3335     }
3336     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3337         ParseGlobalTypeAndValue(Val0) ||
3338         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3339         ParseGlobalTypeAndValue(Val1) ||
3340         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3341       return true;
3342     if (Val0->getType() != Val1->getType())
3343       return Error(ID.Loc, "operands of constexpr must have same type");
3344     if (!Val0->getType()->isIntOrIntVectorTy()) {
3345       if (NUW)
3346         return Error(ModifierLoc, "nuw only applies to integer operations");
3347       if (NSW)
3348         return Error(ModifierLoc, "nsw only applies to integer operations");
3349     }
3350     // Check that the type is valid for the operator.
3351     switch (Opc) {
3352     case Instruction::Add:
3353     case Instruction::Sub:
3354     case Instruction::Mul:
3355     case Instruction::UDiv:
3356     case Instruction::SDiv:
3357     case Instruction::URem:
3358     case Instruction::SRem:
3359     case Instruction::Shl:
3360     case Instruction::AShr:
3361     case Instruction::LShr:
3362       if (!Val0->getType()->isIntOrIntVectorTy())
3363         return Error(ID.Loc, "constexpr requires integer operands");
3364       break;
3365     case Instruction::FAdd:
3366     case Instruction::FSub:
3367     case Instruction::FMul:
3368     case Instruction::FDiv:
3369     case Instruction::FRem:
3370       if (!Val0->getType()->isFPOrFPVectorTy())
3371         return Error(ID.Loc, "constexpr requires fp operands");
3372       break;
3373     default: llvm_unreachable("Unknown binary operator!");
3374     }
3375     unsigned Flags = 0;
3376     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3377     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3378     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3379     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3380     ID.ConstantVal = C;
3381     ID.Kind = ValID::t_Constant;
3382     return false;
3383   }
3384 
3385   // Logical Operations
3386   case lltok::kw_and:
3387   case lltok::kw_or:
3388   case lltok::kw_xor: {
3389     unsigned Opc = Lex.getUIntVal();
3390     Constant *Val0, *Val1;
3391     Lex.Lex();
3392     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3393         ParseGlobalTypeAndValue(Val0) ||
3394         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3395         ParseGlobalTypeAndValue(Val1) ||
3396         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3397       return true;
3398     if (Val0->getType() != Val1->getType())
3399       return Error(ID.Loc, "operands of constexpr must have same type");
3400     if (!Val0->getType()->isIntOrIntVectorTy())
3401       return Error(ID.Loc,
3402                    "constexpr requires integer or integer vector operands");
3403     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3404     ID.Kind = ValID::t_Constant;
3405     return false;
3406   }
3407 
3408   case lltok::kw_getelementptr:
3409   case lltok::kw_shufflevector:
3410   case lltok::kw_insertelement:
3411   case lltok::kw_extractelement:
3412   case lltok::kw_select: {
3413     unsigned Opc = Lex.getUIntVal();
3414     SmallVector<Constant*, 16> Elts;
3415     bool InBounds = false;
3416     Type *Ty;
3417     Lex.Lex();
3418 
3419     if (Opc == Instruction::GetElementPtr)
3420       InBounds = EatIfPresent(lltok::kw_inbounds);
3421 
3422     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3423       return true;
3424 
3425     LocTy ExplicitTypeLoc = Lex.getLoc();
3426     if (Opc == Instruction::GetElementPtr) {
3427       if (ParseType(Ty) ||
3428           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3429         return true;
3430     }
3431 
3432     Optional<unsigned> InRangeOp;
3433     if (ParseGlobalValueVector(
3434             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3435         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3436       return true;
3437 
3438     if (Opc == Instruction::GetElementPtr) {
3439       if (Elts.size() == 0 ||
3440           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3441         return Error(ID.Loc, "base of getelementptr must be a pointer");
3442 
3443       Type *BaseType = Elts[0]->getType();
3444       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3445       if (Ty != BasePointerType->getElementType())
3446         return Error(
3447             ExplicitTypeLoc,
3448             "explicit pointee type doesn't match operand's pointee type");
3449 
3450       unsigned GEPWidth =
3451           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3452 
3453       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3454       for (Constant *Val : Indices) {
3455         Type *ValTy = Val->getType();
3456         if (!ValTy->isIntOrIntVectorTy())
3457           return Error(ID.Loc, "getelementptr index must be an integer");
3458         if (ValTy->isVectorTy()) {
3459           unsigned ValNumEl = ValTy->getVectorNumElements();
3460           if (GEPWidth && (ValNumEl != GEPWidth))
3461             return Error(
3462                 ID.Loc,
3463                 "getelementptr vector index has a wrong number of elements");
3464           // GEPWidth may have been unknown because the base is a scalar,
3465           // but it is known now.
3466           GEPWidth = ValNumEl;
3467         }
3468       }
3469 
3470       SmallPtrSet<Type*, 4> Visited;
3471       if (!Indices.empty() && !Ty->isSized(&Visited))
3472         return Error(ID.Loc, "base element of getelementptr must be sized");
3473 
3474       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3475         return Error(ID.Loc, "invalid getelementptr indices");
3476 
3477       if (InRangeOp) {
3478         if (*InRangeOp == 0)
3479           return Error(ID.Loc,
3480                        "inrange keyword may not appear on pointer operand");
3481         --*InRangeOp;
3482       }
3483 
3484       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3485                                                       InBounds, InRangeOp);
3486     } else if (Opc == Instruction::Select) {
3487       if (Elts.size() != 3)
3488         return Error(ID.Loc, "expected three operands to select");
3489       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3490                                                               Elts[2]))
3491         return Error(ID.Loc, Reason);
3492       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3493     } else if (Opc == Instruction::ShuffleVector) {
3494       if (Elts.size() != 3)
3495         return Error(ID.Loc, "expected three operands to shufflevector");
3496       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3497         return Error(ID.Loc, "invalid operands to shufflevector");
3498       ID.ConstantVal =
3499                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3500     } else if (Opc == Instruction::ExtractElement) {
3501       if (Elts.size() != 2)
3502         return Error(ID.Loc, "expected two operands to extractelement");
3503       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3504         return Error(ID.Loc, "invalid extractelement operands");
3505       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3506     } else {
3507       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3508       if (Elts.size() != 3)
3509       return Error(ID.Loc, "expected three operands to insertelement");
3510       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3511         return Error(ID.Loc, "invalid insertelement operands");
3512       ID.ConstantVal =
3513                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3514     }
3515 
3516     ID.Kind = ValID::t_Constant;
3517     return false;
3518   }
3519   }
3520 
3521   Lex.Lex();
3522   return false;
3523 }
3524 
3525 /// ParseGlobalValue - Parse a global value with the specified type.
3526 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3527   C = nullptr;
3528   ValID ID;
3529   Value *V = nullptr;
3530   bool Parsed = ParseValID(ID) ||
3531                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3532   if (V && !(C = dyn_cast<Constant>(V)))
3533     return Error(ID.Loc, "global values must be constants");
3534   return Parsed;
3535 }
3536 
3537 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3538   Type *Ty = nullptr;
3539   return ParseType(Ty) ||
3540          ParseGlobalValue(Ty, V);
3541 }
3542 
3543 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3544   C = nullptr;
3545 
3546   LocTy KwLoc = Lex.getLoc();
3547   if (!EatIfPresent(lltok::kw_comdat))
3548     return false;
3549 
3550   if (EatIfPresent(lltok::lparen)) {
3551     if (Lex.getKind() != lltok::ComdatVar)
3552       return TokError("expected comdat variable");
3553     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3554     Lex.Lex();
3555     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3556       return true;
3557   } else {
3558     if (GlobalName.empty())
3559       return TokError("comdat cannot be unnamed");
3560     C = getComdat(GlobalName, KwLoc);
3561   }
3562 
3563   return false;
3564 }
3565 
3566 /// ParseGlobalValueVector
3567 ///   ::= /*empty*/
3568 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3569 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3570                                       Optional<unsigned> *InRangeOp) {
3571   // Empty list.
3572   if (Lex.getKind() == lltok::rbrace ||
3573       Lex.getKind() == lltok::rsquare ||
3574       Lex.getKind() == lltok::greater ||
3575       Lex.getKind() == lltok::rparen)
3576     return false;
3577 
3578   do {
3579     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3580       *InRangeOp = Elts.size();
3581 
3582     Constant *C;
3583     if (ParseGlobalTypeAndValue(C)) return true;
3584     Elts.push_back(C);
3585   } while (EatIfPresent(lltok::comma));
3586 
3587   return false;
3588 }
3589 
3590 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3591   SmallVector<Metadata *, 16> Elts;
3592   if (ParseMDNodeVector(Elts))
3593     return true;
3594 
3595   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3596   return false;
3597 }
3598 
3599 /// MDNode:
3600 ///  ::= !{ ... }
3601 ///  ::= !7
3602 ///  ::= !DILocation(...)
3603 bool LLParser::ParseMDNode(MDNode *&N) {
3604   if (Lex.getKind() == lltok::MetadataVar)
3605     return ParseSpecializedMDNode(N);
3606 
3607   return ParseToken(lltok::exclaim, "expected '!' here") ||
3608          ParseMDNodeTail(N);
3609 }
3610 
3611 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3612   // !{ ... }
3613   if (Lex.getKind() == lltok::lbrace)
3614     return ParseMDTuple(N);
3615 
3616   // !42
3617   return ParseMDNodeID(N);
3618 }
3619 
3620 namespace {
3621 
3622 /// Structure to represent an optional metadata field.
3623 template <class FieldTy> struct MDFieldImpl {
3624   typedef MDFieldImpl ImplTy;
3625   FieldTy Val;
3626   bool Seen;
3627 
3628   void assign(FieldTy Val) {
3629     Seen = true;
3630     this->Val = std::move(Val);
3631   }
3632 
3633   explicit MDFieldImpl(FieldTy Default)
3634       : Val(std::move(Default)), Seen(false) {}
3635 };
3636 
3637 /// Structure to represent an optional metadata field that
3638 /// can be of either type (A or B) and encapsulates the
3639 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3640 /// to reimplement the specifics for representing each Field.
3641 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3642   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3643   FieldTypeA A;
3644   FieldTypeB B;
3645   bool Seen;
3646 
3647   enum {
3648     IsInvalid = 0,
3649     IsTypeA = 1,
3650     IsTypeB = 2
3651   } WhatIs;
3652 
3653   void assign(FieldTypeA A) {
3654     Seen = true;
3655     this->A = std::move(A);
3656     WhatIs = IsTypeA;
3657   }
3658 
3659   void assign(FieldTypeB B) {
3660     Seen = true;
3661     this->B = std::move(B);
3662     WhatIs = IsTypeB;
3663   }
3664 
3665   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3666       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3667         WhatIs(IsInvalid) {}
3668 };
3669 
3670 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3671   uint64_t Max;
3672 
3673   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3674       : ImplTy(Default), Max(Max) {}
3675 };
3676 
3677 struct LineField : public MDUnsignedField {
3678   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3679 };
3680 
3681 struct ColumnField : public MDUnsignedField {
3682   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3683 };
3684 
3685 struct DwarfTagField : public MDUnsignedField {
3686   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3687   DwarfTagField(dwarf::Tag DefaultTag)
3688       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3689 };
3690 
3691 struct DwarfMacinfoTypeField : public MDUnsignedField {
3692   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3693   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3694     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3695 };
3696 
3697 struct DwarfAttEncodingField : public MDUnsignedField {
3698   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3699 };
3700 
3701 struct DwarfVirtualityField : public MDUnsignedField {
3702   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3703 };
3704 
3705 struct DwarfLangField : public MDUnsignedField {
3706   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3707 };
3708 
3709 struct DwarfCCField : public MDUnsignedField {
3710   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3711 };
3712 
3713 struct EmissionKindField : public MDUnsignedField {
3714   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3715 };
3716 
3717 struct NameTableKindField : public MDUnsignedField {
3718   NameTableKindField()
3719       : MDUnsignedField(
3720             0, (unsigned)
3721                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3722 };
3723 
3724 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3725   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3726 };
3727 
3728 struct MDSignedField : public MDFieldImpl<int64_t> {
3729   int64_t Min;
3730   int64_t Max;
3731 
3732   MDSignedField(int64_t Default = 0)
3733       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3734   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3735       : ImplTy(Default), Min(Min), Max(Max) {}
3736 };
3737 
3738 struct MDBoolField : public MDFieldImpl<bool> {
3739   MDBoolField(bool Default = false) : ImplTy(Default) {}
3740 };
3741 
3742 struct MDField : public MDFieldImpl<Metadata *> {
3743   bool AllowNull;
3744 
3745   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3746 };
3747 
3748 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3749   MDConstant() : ImplTy(nullptr) {}
3750 };
3751 
3752 struct MDStringField : public MDFieldImpl<MDString *> {
3753   bool AllowEmpty;
3754   MDStringField(bool AllowEmpty = true)
3755       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3756 };
3757 
3758 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3759   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3760 };
3761 
3762 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3763   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3764 };
3765 
3766 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3767   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3768       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3769 
3770   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3771                     bool AllowNull = true)
3772       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3773 
3774   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3775   bool isMDField() const { return WhatIs == IsTypeB; }
3776   int64_t getMDSignedValue() const {
3777     assert(isMDSignedField() && "Wrong field type");
3778     return A.Val;
3779   }
3780   Metadata *getMDFieldValue() const {
3781     assert(isMDField() && "Wrong field type");
3782     return B.Val;
3783   }
3784 };
3785 
3786 struct MDSignedOrUnsignedField
3787     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3788   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3789 
3790   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3791   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3792   int64_t getMDSignedValue() const {
3793     assert(isMDSignedField() && "Wrong field type");
3794     return A.Val;
3795   }
3796   uint64_t getMDUnsignedValue() const {
3797     assert(isMDUnsignedField() && "Wrong field type");
3798     return B.Val;
3799   }
3800 };
3801 
3802 } // end anonymous namespace
3803 
3804 namespace llvm {
3805 
3806 template <>
3807 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3808                             MDUnsignedField &Result) {
3809   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3810     return TokError("expected unsigned integer");
3811 
3812   auto &U = Lex.getAPSIntVal();
3813   if (U.ugt(Result.Max))
3814     return TokError("value for '" + Name + "' too large, limit is " +
3815                     Twine(Result.Max));
3816   Result.assign(U.getZExtValue());
3817   assert(Result.Val <= Result.Max && "Expected value in range");
3818   Lex.Lex();
3819   return false;
3820 }
3821 
3822 template <>
3823 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3824   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3825 }
3826 template <>
3827 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3828   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3829 }
3830 
3831 template <>
3832 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3833   if (Lex.getKind() == lltok::APSInt)
3834     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3835 
3836   if (Lex.getKind() != lltok::DwarfTag)
3837     return TokError("expected DWARF tag");
3838 
3839   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3840   if (Tag == dwarf::DW_TAG_invalid)
3841     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3842   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3843 
3844   Result.assign(Tag);
3845   Lex.Lex();
3846   return false;
3847 }
3848 
3849 template <>
3850 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3851                             DwarfMacinfoTypeField &Result) {
3852   if (Lex.getKind() == lltok::APSInt)
3853     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3854 
3855   if (Lex.getKind() != lltok::DwarfMacinfo)
3856     return TokError("expected DWARF macinfo type");
3857 
3858   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3859   if (Macinfo == dwarf::DW_MACINFO_invalid)
3860     return TokError(
3861         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3862   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3863 
3864   Result.assign(Macinfo);
3865   Lex.Lex();
3866   return false;
3867 }
3868 
3869 template <>
3870 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3871                             DwarfVirtualityField &Result) {
3872   if (Lex.getKind() == lltok::APSInt)
3873     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3874 
3875   if (Lex.getKind() != lltok::DwarfVirtuality)
3876     return TokError("expected DWARF virtuality code");
3877 
3878   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3879   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3880     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3881                     Lex.getStrVal() + "'");
3882   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3883   Result.assign(Virtuality);
3884   Lex.Lex();
3885   return false;
3886 }
3887 
3888 template <>
3889 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3890   if (Lex.getKind() == lltok::APSInt)
3891     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3892 
3893   if (Lex.getKind() != lltok::DwarfLang)
3894     return TokError("expected DWARF language");
3895 
3896   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3897   if (!Lang)
3898     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3899                     "'");
3900   assert(Lang <= Result.Max && "Expected valid DWARF language");
3901   Result.assign(Lang);
3902   Lex.Lex();
3903   return false;
3904 }
3905 
3906 template <>
3907 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3908   if (Lex.getKind() == lltok::APSInt)
3909     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3910 
3911   if (Lex.getKind() != lltok::DwarfCC)
3912     return TokError("expected DWARF calling convention");
3913 
3914   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3915   if (!CC)
3916     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3917                     "'");
3918   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3919   Result.assign(CC);
3920   Lex.Lex();
3921   return false;
3922 }
3923 
3924 template <>
3925 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3926   if (Lex.getKind() == lltok::APSInt)
3927     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3928 
3929   if (Lex.getKind() != lltok::EmissionKind)
3930     return TokError("expected emission kind");
3931 
3932   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3933   if (!Kind)
3934     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3935                     "'");
3936   assert(*Kind <= Result.Max && "Expected valid emission kind");
3937   Result.assign(*Kind);
3938   Lex.Lex();
3939   return false;
3940 }
3941 
3942 template <>
3943 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3944                             NameTableKindField &Result) {
3945   if (Lex.getKind() == lltok::APSInt)
3946     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3947 
3948   if (Lex.getKind() != lltok::NameTableKind)
3949     return TokError("expected nameTable kind");
3950 
3951   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
3952   if (!Kind)
3953     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
3954                     "'");
3955   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
3956   Result.assign((unsigned)*Kind);
3957   Lex.Lex();
3958   return false;
3959 }
3960 
3961 template <>
3962 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3963                             DwarfAttEncodingField &Result) {
3964   if (Lex.getKind() == lltok::APSInt)
3965     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3966 
3967   if (Lex.getKind() != lltok::DwarfAttEncoding)
3968     return TokError("expected DWARF type attribute encoding");
3969 
3970   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3971   if (!Encoding)
3972     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3973                     Lex.getStrVal() + "'");
3974   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3975   Result.assign(Encoding);
3976   Lex.Lex();
3977   return false;
3978 }
3979 
3980 /// DIFlagField
3981 ///  ::= uint32
3982 ///  ::= DIFlagVector
3983 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3984 template <>
3985 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3986 
3987   // Parser for a single flag.
3988   auto parseFlag = [&](DINode::DIFlags &Val) {
3989     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
3990       uint32_t TempVal = static_cast<uint32_t>(Val);
3991       bool Res = ParseUInt32(TempVal);
3992       Val = static_cast<DINode::DIFlags>(TempVal);
3993       return Res;
3994     }
3995 
3996     if (Lex.getKind() != lltok::DIFlag)
3997       return TokError("expected debug info flag");
3998 
3999     Val = DINode::getFlag(Lex.getStrVal());
4000     if (!Val)
4001       return TokError(Twine("invalid debug info flag flag '") +
4002                       Lex.getStrVal() + "'");
4003     Lex.Lex();
4004     return false;
4005   };
4006 
4007   // Parse the flags and combine them together.
4008   DINode::DIFlags Combined = DINode::FlagZero;
4009   do {
4010     DINode::DIFlags Val;
4011     if (parseFlag(Val))
4012       return true;
4013     Combined |= Val;
4014   } while (EatIfPresent(lltok::bar));
4015 
4016   Result.assign(Combined);
4017   return false;
4018 }
4019 
4020 template <>
4021 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4022                             MDSignedField &Result) {
4023   if (Lex.getKind() != lltok::APSInt)
4024     return TokError("expected signed integer");
4025 
4026   auto &S = Lex.getAPSIntVal();
4027   if (S < Result.Min)
4028     return TokError("value for '" + Name + "' too small, limit is " +
4029                     Twine(Result.Min));
4030   if (S > Result.Max)
4031     return TokError("value for '" + Name + "' too large, limit is " +
4032                     Twine(Result.Max));
4033   Result.assign(S.getExtValue());
4034   assert(Result.Val >= Result.Min && "Expected value in range");
4035   assert(Result.Val <= Result.Max && "Expected value in range");
4036   Lex.Lex();
4037   return false;
4038 }
4039 
4040 template <>
4041 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4042   switch (Lex.getKind()) {
4043   default:
4044     return TokError("expected 'true' or 'false'");
4045   case lltok::kw_true:
4046     Result.assign(true);
4047     break;
4048   case lltok::kw_false:
4049     Result.assign(false);
4050     break;
4051   }
4052   Lex.Lex();
4053   return false;
4054 }
4055 
4056 template <>
4057 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4058   if (Lex.getKind() == lltok::kw_null) {
4059     if (!Result.AllowNull)
4060       return TokError("'" + Name + "' cannot be null");
4061     Lex.Lex();
4062     Result.assign(nullptr);
4063     return false;
4064   }
4065 
4066   Metadata *MD;
4067   if (ParseMetadata(MD, nullptr))
4068     return true;
4069 
4070   Result.assign(MD);
4071   return false;
4072 }
4073 
4074 template <>
4075 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4076                             MDSignedOrMDField &Result) {
4077   // Try to parse a signed int.
4078   if (Lex.getKind() == lltok::APSInt) {
4079     MDSignedField Res = Result.A;
4080     if (!ParseMDField(Loc, Name, Res)) {
4081       Result.assign(Res);
4082       return false;
4083     }
4084     return true;
4085   }
4086 
4087   // Otherwise, try to parse as an MDField.
4088   MDField Res = Result.B;
4089   if (!ParseMDField(Loc, Name, Res)) {
4090     Result.assign(Res);
4091     return false;
4092   }
4093 
4094   return true;
4095 }
4096 
4097 template <>
4098 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4099                             MDSignedOrUnsignedField &Result) {
4100   if (Lex.getKind() != lltok::APSInt)
4101     return false;
4102 
4103   if (Lex.getAPSIntVal().isSigned()) {
4104     MDSignedField Res = Result.A;
4105     if (ParseMDField(Loc, Name, Res))
4106       return true;
4107     Result.assign(Res);
4108     return false;
4109   }
4110 
4111   MDUnsignedField Res = Result.B;
4112   if (ParseMDField(Loc, Name, Res))
4113     return true;
4114   Result.assign(Res);
4115   return false;
4116 }
4117 
4118 template <>
4119 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4120   LocTy ValueLoc = Lex.getLoc();
4121   std::string S;
4122   if (ParseStringConstant(S))
4123     return true;
4124 
4125   if (!Result.AllowEmpty && S.empty())
4126     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4127 
4128   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4129   return false;
4130 }
4131 
4132 template <>
4133 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4134   SmallVector<Metadata *, 4> MDs;
4135   if (ParseMDNodeVector(MDs))
4136     return true;
4137 
4138   Result.assign(std::move(MDs));
4139   return false;
4140 }
4141 
4142 template <>
4143 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4144                             ChecksumKindField &Result) {
4145   Optional<DIFile::ChecksumKind> CSKind =
4146       DIFile::getChecksumKind(Lex.getStrVal());
4147 
4148   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4149     return TokError(
4150         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4151 
4152   Result.assign(*CSKind);
4153   Lex.Lex();
4154   return false;
4155 }
4156 
4157 } // end namespace llvm
4158 
4159 template <class ParserTy>
4160 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4161   do {
4162     if (Lex.getKind() != lltok::LabelStr)
4163       return TokError("expected field label here");
4164 
4165     if (parseField())
4166       return true;
4167   } while (EatIfPresent(lltok::comma));
4168 
4169   return false;
4170 }
4171 
4172 template <class ParserTy>
4173 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4174   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4175   Lex.Lex();
4176 
4177   if (ParseToken(lltok::lparen, "expected '(' here"))
4178     return true;
4179   if (Lex.getKind() != lltok::rparen)
4180     if (ParseMDFieldsImplBody(parseField))
4181       return true;
4182 
4183   ClosingLoc = Lex.getLoc();
4184   return ParseToken(lltok::rparen, "expected ')' here");
4185 }
4186 
4187 template <class FieldTy>
4188 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4189   if (Result.Seen)
4190     return TokError("field '" + Name + "' cannot be specified more than once");
4191 
4192   LocTy Loc = Lex.getLoc();
4193   Lex.Lex();
4194   return ParseMDField(Loc, Name, Result);
4195 }
4196 
4197 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4198   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4199 
4200 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4201   if (Lex.getStrVal() == #CLASS)                                               \
4202     return Parse##CLASS(N, IsDistinct);
4203 #include "llvm/IR/Metadata.def"
4204 
4205   return TokError("expected metadata type");
4206 }
4207 
4208 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4209 #define NOP_FIELD(NAME, TYPE, INIT)
4210 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4211   if (!NAME.Seen)                                                              \
4212     return Error(ClosingLoc, "missing required field '" #NAME "'");
4213 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4214   if (Lex.getStrVal() == #NAME)                                                \
4215     return ParseMDField(#NAME, NAME);
4216 #define PARSE_MD_FIELDS()                                                      \
4217   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4218   do {                                                                         \
4219     LocTy ClosingLoc;                                                          \
4220     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4221       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4222       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4223     }, ClosingLoc))                                                            \
4224       return true;                                                             \
4225     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4226   } while (false)
4227 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4228   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4229 
4230 /// ParseDILocationFields:
4231 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4232 ///   isImplicitCode: true)
4233 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4234 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4235   OPTIONAL(line, LineField, );                                                 \
4236   OPTIONAL(column, ColumnField, );                                             \
4237   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4238   OPTIONAL(inlinedAt, MDField, );                                              \
4239   OPTIONAL(isImplicitCode, MDBoolField, (false));
4240   PARSE_MD_FIELDS();
4241 #undef VISIT_MD_FIELDS
4242 
4243   Result =
4244       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4245                                    inlinedAt.Val, isImplicitCode.Val));
4246   return false;
4247 }
4248 
4249 /// ParseGenericDINode:
4250 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4251 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4252 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4253   REQUIRED(tag, DwarfTagField, );                                              \
4254   OPTIONAL(header, MDStringField, );                                           \
4255   OPTIONAL(operands, MDFieldList, );
4256   PARSE_MD_FIELDS();
4257 #undef VISIT_MD_FIELDS
4258 
4259   Result = GET_OR_DISTINCT(GenericDINode,
4260                            (Context, tag.Val, header.Val, operands.Val));
4261   return false;
4262 }
4263 
4264 /// ParseDISubrange:
4265 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4266 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4267 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4268 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4269   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4270   OPTIONAL(lowerBound, MDSignedField, );
4271   PARSE_MD_FIELDS();
4272 #undef VISIT_MD_FIELDS
4273 
4274   if (count.isMDSignedField())
4275     Result = GET_OR_DISTINCT(
4276         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4277   else if (count.isMDField())
4278     Result = GET_OR_DISTINCT(
4279         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4280   else
4281     return true;
4282 
4283   return false;
4284 }
4285 
4286 /// ParseDIEnumerator:
4287 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4288 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4289 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4290   REQUIRED(name, MDStringField, );                                             \
4291   REQUIRED(value, MDSignedOrUnsignedField, );                                  \
4292   OPTIONAL(isUnsigned, MDBoolField, (false));
4293   PARSE_MD_FIELDS();
4294 #undef VISIT_MD_FIELDS
4295 
4296   if (isUnsigned.Val && value.isMDSignedField())
4297     return TokError("unsigned enumerator with negative value");
4298 
4299   int64_t Value = value.isMDSignedField()
4300                       ? value.getMDSignedValue()
4301                       : static_cast<int64_t>(value.getMDUnsignedValue());
4302   Result =
4303       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4304 
4305   return false;
4306 }
4307 
4308 /// ParseDIBasicType:
4309 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4310 ///                    encoding: DW_ATE_encoding, flags: 0)
4311 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4312 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4313   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4314   OPTIONAL(name, MDStringField, );                                             \
4315   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4316   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4317   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4318   OPTIONAL(flags, DIFlagField, );
4319   PARSE_MD_FIELDS();
4320 #undef VISIT_MD_FIELDS
4321 
4322   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4323                                          align.Val, encoding.Val, flags.Val));
4324   return false;
4325 }
4326 
4327 /// ParseDIDerivedType:
4328 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4329 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4330 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4331 ///                      dwarfAddressSpace: 3)
4332 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4333 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4334   REQUIRED(tag, DwarfTagField, );                                              \
4335   OPTIONAL(name, MDStringField, );                                             \
4336   OPTIONAL(file, MDField, );                                                   \
4337   OPTIONAL(line, LineField, );                                                 \
4338   OPTIONAL(scope, MDField, );                                                  \
4339   REQUIRED(baseType, MDField, );                                               \
4340   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4341   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4342   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4343   OPTIONAL(flags, DIFlagField, );                                              \
4344   OPTIONAL(extraData, MDField, );                                              \
4345   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4346   PARSE_MD_FIELDS();
4347 #undef VISIT_MD_FIELDS
4348 
4349   Optional<unsigned> DWARFAddressSpace;
4350   if (dwarfAddressSpace.Val != UINT32_MAX)
4351     DWARFAddressSpace = dwarfAddressSpace.Val;
4352 
4353   Result = GET_OR_DISTINCT(DIDerivedType,
4354                            (Context, tag.Val, name.Val, file.Val, line.Val,
4355                             scope.Val, baseType.Val, size.Val, align.Val,
4356                             offset.Val, DWARFAddressSpace, flags.Val,
4357                             extraData.Val));
4358   return false;
4359 }
4360 
4361 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4362 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4363   REQUIRED(tag, DwarfTagField, );                                              \
4364   OPTIONAL(name, MDStringField, );                                             \
4365   OPTIONAL(file, MDField, );                                                   \
4366   OPTIONAL(line, LineField, );                                                 \
4367   OPTIONAL(scope, MDField, );                                                  \
4368   OPTIONAL(baseType, MDField, );                                               \
4369   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4370   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4371   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4372   OPTIONAL(flags, DIFlagField, );                                              \
4373   OPTIONAL(elements, MDField, );                                               \
4374   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4375   OPTIONAL(vtableHolder, MDField, );                                           \
4376   OPTIONAL(templateParams, MDField, );                                         \
4377   OPTIONAL(identifier, MDStringField, );                                       \
4378   OPTIONAL(discriminator, MDField, );
4379   PARSE_MD_FIELDS();
4380 #undef VISIT_MD_FIELDS
4381 
4382   // If this has an identifier try to build an ODR type.
4383   if (identifier.Val)
4384     if (auto *CT = DICompositeType::buildODRType(
4385             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4386             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4387             elements.Val, runtimeLang.Val, vtableHolder.Val,
4388             templateParams.Val, discriminator.Val)) {
4389       Result = CT;
4390       return false;
4391     }
4392 
4393   // Create a new node, and save it in the context if it belongs in the type
4394   // map.
4395   Result = GET_OR_DISTINCT(
4396       DICompositeType,
4397       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4398        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4399        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4400        discriminator.Val));
4401   return false;
4402 }
4403 
4404 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4405 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4406   OPTIONAL(flags, DIFlagField, );                                              \
4407   OPTIONAL(cc, DwarfCCField, );                                                \
4408   REQUIRED(types, MDField, );
4409   PARSE_MD_FIELDS();
4410 #undef VISIT_MD_FIELDS
4411 
4412   Result = GET_OR_DISTINCT(DISubroutineType,
4413                            (Context, flags.Val, cc.Val, types.Val));
4414   return false;
4415 }
4416 
4417 /// ParseDIFileType:
4418 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4419 ///                   checksumkind: CSK_MD5,
4420 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4421 ///                   source: "source file contents")
4422 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4423   // The default constructed value for checksumkind is required, but will never
4424   // be used, as the parser checks if the field was actually Seen before using
4425   // the Val.
4426 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4427   REQUIRED(filename, MDStringField, );                                         \
4428   REQUIRED(directory, MDStringField, );                                        \
4429   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4430   OPTIONAL(checksum, MDStringField, );                                         \
4431   OPTIONAL(source, MDStringField, );
4432   PARSE_MD_FIELDS();
4433 #undef VISIT_MD_FIELDS
4434 
4435   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4436   if (checksumkind.Seen && checksum.Seen)
4437     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4438   else if (checksumkind.Seen || checksum.Seen)
4439     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4440 
4441   Optional<MDString *> OptSource;
4442   if (source.Seen)
4443     OptSource = source.Val;
4444   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4445                                     OptChecksum, OptSource));
4446   return false;
4447 }
4448 
4449 /// ParseDICompileUnit:
4450 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4451 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4452 ///                      splitDebugFilename: "abc.debug",
4453 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4454 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4455 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4456   if (!IsDistinct)
4457     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4458 
4459 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4460   REQUIRED(language, DwarfLangField, );                                        \
4461   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4462   OPTIONAL(producer, MDStringField, );                                         \
4463   OPTIONAL(isOptimized, MDBoolField, );                                        \
4464   OPTIONAL(flags, MDStringField, );                                            \
4465   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4466   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4467   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4468   OPTIONAL(enums, MDField, );                                                  \
4469   OPTIONAL(retainedTypes, MDField, );                                          \
4470   OPTIONAL(globals, MDField, );                                                \
4471   OPTIONAL(imports, MDField, );                                                \
4472   OPTIONAL(macros, MDField, );                                                 \
4473   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4474   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4475   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4476   OPTIONAL(nameTableKind, NameTableKindField, );
4477   PARSE_MD_FIELDS();
4478 #undef VISIT_MD_FIELDS
4479 
4480   Result = DICompileUnit::getDistinct(
4481       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4482       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4483       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4484       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val);
4485   return false;
4486 }
4487 
4488 /// ParseDISubprogram:
4489 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4490 ///                     file: !1, line: 7, type: !2, isLocal: false,
4491 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4492 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4493 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4494 ///                     isOptimized: false, templateParams: !4, declaration: !5,
4495 ///                     retainedNodes: !6, thrownTypes: !7)
4496 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4497   auto Loc = Lex.getLoc();
4498 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4499   OPTIONAL(scope, MDField, );                                                  \
4500   OPTIONAL(name, MDStringField, );                                             \
4501   OPTIONAL(linkageName, MDStringField, );                                      \
4502   OPTIONAL(file, MDField, );                                                   \
4503   OPTIONAL(line, LineField, );                                                 \
4504   OPTIONAL(type, MDField, );                                                   \
4505   OPTIONAL(isLocal, MDBoolField, );                                            \
4506   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4507   OPTIONAL(scopeLine, LineField, );                                            \
4508   OPTIONAL(containingType, MDField, );                                         \
4509   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4510   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4511   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4512   OPTIONAL(flags, DIFlagField, );                                              \
4513   OPTIONAL(isOptimized, MDBoolField, );                                        \
4514   OPTIONAL(unit, MDField, );                                                   \
4515   OPTIONAL(templateParams, MDField, );                                         \
4516   OPTIONAL(declaration, MDField, );                                            \
4517   OPTIONAL(retainedNodes, MDField, );                                              \
4518   OPTIONAL(thrownTypes, MDField, );
4519   PARSE_MD_FIELDS();
4520 #undef VISIT_MD_FIELDS
4521 
4522   if (isDefinition.Val && !IsDistinct)
4523     return Lex.Error(
4524         Loc,
4525         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
4526 
4527   Result = GET_OR_DISTINCT(
4528       DISubprogram,
4529       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4530        type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val,
4531        containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val,
4532        flags.Val, isOptimized.Val, unit.Val, templateParams.Val,
4533        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4534   return false;
4535 }
4536 
4537 /// ParseDILexicalBlock:
4538 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4539 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4540 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4541   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4542   OPTIONAL(file, MDField, );                                                   \
4543   OPTIONAL(line, LineField, );                                                 \
4544   OPTIONAL(column, ColumnField, );
4545   PARSE_MD_FIELDS();
4546 #undef VISIT_MD_FIELDS
4547 
4548   Result = GET_OR_DISTINCT(
4549       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4550   return false;
4551 }
4552 
4553 /// ParseDILexicalBlockFile:
4554 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4555 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4556 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4557   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4558   OPTIONAL(file, MDField, );                                                   \
4559   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4560   PARSE_MD_FIELDS();
4561 #undef VISIT_MD_FIELDS
4562 
4563   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4564                            (Context, scope.Val, file.Val, discriminator.Val));
4565   return false;
4566 }
4567 
4568 /// ParseDINamespace:
4569 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4570 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4571 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4572   REQUIRED(scope, MDField, );                                                  \
4573   OPTIONAL(name, MDStringField, );                                             \
4574   OPTIONAL(exportSymbols, MDBoolField, );
4575   PARSE_MD_FIELDS();
4576 #undef VISIT_MD_FIELDS
4577 
4578   Result = GET_OR_DISTINCT(DINamespace,
4579                            (Context, scope.Val, name.Val, exportSymbols.Val));
4580   return false;
4581 }
4582 
4583 /// ParseDIMacro:
4584 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4585 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4586 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4587   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4588   OPTIONAL(line, LineField, );                                                 \
4589   REQUIRED(name, MDStringField, );                                             \
4590   OPTIONAL(value, MDStringField, );
4591   PARSE_MD_FIELDS();
4592 #undef VISIT_MD_FIELDS
4593 
4594   Result = GET_OR_DISTINCT(DIMacro,
4595                            (Context, type.Val, line.Val, name.Val, value.Val));
4596   return false;
4597 }
4598 
4599 /// ParseDIMacroFile:
4600 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4601 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4602 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4603   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4604   OPTIONAL(line, LineField, );                                                 \
4605   REQUIRED(file, MDField, );                                                   \
4606   OPTIONAL(nodes, MDField, );
4607   PARSE_MD_FIELDS();
4608 #undef VISIT_MD_FIELDS
4609 
4610   Result = GET_OR_DISTINCT(DIMacroFile,
4611                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4612   return false;
4613 }
4614 
4615 /// ParseDIModule:
4616 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4617 ///                 includePath: "/usr/include", isysroot: "/")
4618 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4619 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4620   REQUIRED(scope, MDField, );                                                  \
4621   REQUIRED(name, MDStringField, );                                             \
4622   OPTIONAL(configMacros, MDStringField, );                                     \
4623   OPTIONAL(includePath, MDStringField, );                                      \
4624   OPTIONAL(isysroot, MDStringField, );
4625   PARSE_MD_FIELDS();
4626 #undef VISIT_MD_FIELDS
4627 
4628   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4629                            configMacros.Val, includePath.Val, isysroot.Val));
4630   return false;
4631 }
4632 
4633 /// ParseDITemplateTypeParameter:
4634 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4635 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4636 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4637   OPTIONAL(name, MDStringField, );                                             \
4638   REQUIRED(type, MDField, );
4639   PARSE_MD_FIELDS();
4640 #undef VISIT_MD_FIELDS
4641 
4642   Result =
4643       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4644   return false;
4645 }
4646 
4647 /// ParseDITemplateValueParameter:
4648 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4649 ///                                 name: "V", type: !1, value: i32 7)
4650 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4651 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4652   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4653   OPTIONAL(name, MDStringField, );                                             \
4654   OPTIONAL(type, MDField, );                                                   \
4655   REQUIRED(value, MDField, );
4656   PARSE_MD_FIELDS();
4657 #undef VISIT_MD_FIELDS
4658 
4659   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4660                            (Context, tag.Val, name.Val, type.Val, value.Val));
4661   return false;
4662 }
4663 
4664 /// ParseDIGlobalVariable:
4665 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4666 ///                         file: !1, line: 7, type: !2, isLocal: false,
4667 ///                         isDefinition: true, templateParams: !3,
4668 ///                         declaration: !4, align: 8)
4669 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4670 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4671   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4672   OPTIONAL(scope, MDField, );                                                  \
4673   OPTIONAL(linkageName, MDStringField, );                                      \
4674   OPTIONAL(file, MDField, );                                                   \
4675   OPTIONAL(line, LineField, );                                                 \
4676   OPTIONAL(type, MDField, );                                                   \
4677   OPTIONAL(isLocal, MDBoolField, );                                            \
4678   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4679   OPTIONAL(templateParams, MDField, );                                         \
4680   OPTIONAL(declaration, MDField, );                                            \
4681   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4682   PARSE_MD_FIELDS();
4683 #undef VISIT_MD_FIELDS
4684 
4685   Result =
4686       GET_OR_DISTINCT(DIGlobalVariable,
4687                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4688                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4689                        declaration.Val, templateParams.Val, align.Val));
4690   return false;
4691 }
4692 
4693 /// ParseDILocalVariable:
4694 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4695 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4696 ///                        align: 8)
4697 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4698 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4699 ///                        align: 8)
4700 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4701 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4702   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4703   OPTIONAL(name, MDStringField, );                                             \
4704   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4705   OPTIONAL(file, MDField, );                                                   \
4706   OPTIONAL(line, LineField, );                                                 \
4707   OPTIONAL(type, MDField, );                                                   \
4708   OPTIONAL(flags, DIFlagField, );                                              \
4709   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4710   PARSE_MD_FIELDS();
4711 #undef VISIT_MD_FIELDS
4712 
4713   Result = GET_OR_DISTINCT(DILocalVariable,
4714                            (Context, scope.Val, name.Val, file.Val, line.Val,
4715                             type.Val, arg.Val, flags.Val, align.Val));
4716   return false;
4717 }
4718 
4719 /// ParseDILabel:
4720 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4721 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4722 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4723   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4724   REQUIRED(name, MDStringField, );                                             \
4725   REQUIRED(file, MDField, );                                                   \
4726   REQUIRED(line, LineField, );
4727   PARSE_MD_FIELDS();
4728 #undef VISIT_MD_FIELDS
4729 
4730   Result = GET_OR_DISTINCT(DILabel,
4731                            (Context, scope.Val, name.Val, file.Val, line.Val));
4732   return false;
4733 }
4734 
4735 /// ParseDIExpression:
4736 ///   ::= !DIExpression(0, 7, -1)
4737 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4738   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4739   Lex.Lex();
4740 
4741   if (ParseToken(lltok::lparen, "expected '(' here"))
4742     return true;
4743 
4744   SmallVector<uint64_t, 8> Elements;
4745   if (Lex.getKind() != lltok::rparen)
4746     do {
4747       if (Lex.getKind() == lltok::DwarfOp) {
4748         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4749           Lex.Lex();
4750           Elements.push_back(Op);
4751           continue;
4752         }
4753         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4754       }
4755 
4756       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4757         return TokError("expected unsigned integer");
4758 
4759       auto &U = Lex.getAPSIntVal();
4760       if (U.ugt(UINT64_MAX))
4761         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4762       Elements.push_back(U.getZExtValue());
4763       Lex.Lex();
4764     } while (EatIfPresent(lltok::comma));
4765 
4766   if (ParseToken(lltok::rparen, "expected ')' here"))
4767     return true;
4768 
4769   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4770   return false;
4771 }
4772 
4773 /// ParseDIGlobalVariableExpression:
4774 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4775 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4776                                                bool IsDistinct) {
4777 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4778   REQUIRED(var, MDField, );                                                    \
4779   REQUIRED(expr, MDField, );
4780   PARSE_MD_FIELDS();
4781 #undef VISIT_MD_FIELDS
4782 
4783   Result =
4784       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4785   return false;
4786 }
4787 
4788 /// ParseDIObjCProperty:
4789 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4790 ///                       getter: "getFoo", attributes: 7, type: !2)
4791 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4792 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4793   OPTIONAL(name, MDStringField, );                                             \
4794   OPTIONAL(file, MDField, );                                                   \
4795   OPTIONAL(line, LineField, );                                                 \
4796   OPTIONAL(setter, MDStringField, );                                           \
4797   OPTIONAL(getter, MDStringField, );                                           \
4798   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4799   OPTIONAL(type, MDField, );
4800   PARSE_MD_FIELDS();
4801 #undef VISIT_MD_FIELDS
4802 
4803   Result = GET_OR_DISTINCT(DIObjCProperty,
4804                            (Context, name.Val, file.Val, line.Val, setter.Val,
4805                             getter.Val, attributes.Val, type.Val));
4806   return false;
4807 }
4808 
4809 /// ParseDIImportedEntity:
4810 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4811 ///                         line: 7, name: "foo")
4812 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4813 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4814   REQUIRED(tag, DwarfTagField, );                                              \
4815   REQUIRED(scope, MDField, );                                                  \
4816   OPTIONAL(entity, MDField, );                                                 \
4817   OPTIONAL(file, MDField, );                                                   \
4818   OPTIONAL(line, LineField, );                                                 \
4819   OPTIONAL(name, MDStringField, );
4820   PARSE_MD_FIELDS();
4821 #undef VISIT_MD_FIELDS
4822 
4823   Result = GET_OR_DISTINCT(
4824       DIImportedEntity,
4825       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4826   return false;
4827 }
4828 
4829 #undef PARSE_MD_FIELD
4830 #undef NOP_FIELD
4831 #undef REQUIRE_FIELD
4832 #undef DECLARE_FIELD
4833 
4834 /// ParseMetadataAsValue
4835 ///  ::= metadata i32 %local
4836 ///  ::= metadata i32 @global
4837 ///  ::= metadata i32 7
4838 ///  ::= metadata !0
4839 ///  ::= metadata !{...}
4840 ///  ::= metadata !"string"
4841 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4842   // Note: the type 'metadata' has already been parsed.
4843   Metadata *MD;
4844   if (ParseMetadata(MD, &PFS))
4845     return true;
4846 
4847   V = MetadataAsValue::get(Context, MD);
4848   return false;
4849 }
4850 
4851 /// ParseValueAsMetadata
4852 ///  ::= i32 %local
4853 ///  ::= i32 @global
4854 ///  ::= i32 7
4855 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4856                                     PerFunctionState *PFS) {
4857   Type *Ty;
4858   LocTy Loc;
4859   if (ParseType(Ty, TypeMsg, Loc))
4860     return true;
4861   if (Ty->isMetadataTy())
4862     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4863 
4864   Value *V;
4865   if (ParseValue(Ty, V, PFS))
4866     return true;
4867 
4868   MD = ValueAsMetadata::get(V);
4869   return false;
4870 }
4871 
4872 /// ParseMetadata
4873 ///  ::= i32 %local
4874 ///  ::= i32 @global
4875 ///  ::= i32 7
4876 ///  ::= !42
4877 ///  ::= !{...}
4878 ///  ::= !"string"
4879 ///  ::= !DILocation(...)
4880 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4881   if (Lex.getKind() == lltok::MetadataVar) {
4882     MDNode *N;
4883     if (ParseSpecializedMDNode(N))
4884       return true;
4885     MD = N;
4886     return false;
4887   }
4888 
4889   // ValueAsMetadata:
4890   // <type> <value>
4891   if (Lex.getKind() != lltok::exclaim)
4892     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4893 
4894   // '!'.
4895   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4896   Lex.Lex();
4897 
4898   // MDString:
4899   //   ::= '!' STRINGCONSTANT
4900   if (Lex.getKind() == lltok::StringConstant) {
4901     MDString *S;
4902     if (ParseMDString(S))
4903       return true;
4904     MD = S;
4905     return false;
4906   }
4907 
4908   // MDNode:
4909   // !{ ... }
4910   // !7
4911   MDNode *N;
4912   if (ParseMDNodeTail(N))
4913     return true;
4914   MD = N;
4915   return false;
4916 }
4917 
4918 //===----------------------------------------------------------------------===//
4919 // Function Parsing.
4920 //===----------------------------------------------------------------------===//
4921 
4922 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4923                                    PerFunctionState *PFS, bool IsCall) {
4924   if (Ty->isFunctionTy())
4925     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4926 
4927   switch (ID.Kind) {
4928   case ValID::t_LocalID:
4929     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4930     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
4931     return V == nullptr;
4932   case ValID::t_LocalName:
4933     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4934     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
4935     return V == nullptr;
4936   case ValID::t_InlineAsm: {
4937     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4938       return Error(ID.Loc, "invalid type for inline asm constraint string");
4939     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4940                        (ID.UIntVal >> 1) & 1,
4941                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4942     return false;
4943   }
4944   case ValID::t_GlobalName:
4945     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
4946     return V == nullptr;
4947   case ValID::t_GlobalID:
4948     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
4949     return V == nullptr;
4950   case ValID::t_APSInt:
4951     if (!Ty->isIntegerTy())
4952       return Error(ID.Loc, "integer constant must have integer type");
4953     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4954     V = ConstantInt::get(Context, ID.APSIntVal);
4955     return false;
4956   case ValID::t_APFloat:
4957     if (!Ty->isFloatingPointTy() ||
4958         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4959       return Error(ID.Loc, "floating point constant invalid for type");
4960 
4961     // The lexer has no type info, so builds all half, float, and double FP
4962     // constants as double.  Fix this here.  Long double does not need this.
4963     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
4964       bool Ignored;
4965       if (Ty->isHalfTy())
4966         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
4967                               &Ignored);
4968       else if (Ty->isFloatTy())
4969         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
4970                               &Ignored);
4971     }
4972     V = ConstantFP::get(Context, ID.APFloatVal);
4973 
4974     if (V->getType() != Ty)
4975       return Error(ID.Loc, "floating point constant does not have type '" +
4976                    getTypeString(Ty) + "'");
4977 
4978     return false;
4979   case ValID::t_Null:
4980     if (!Ty->isPointerTy())
4981       return Error(ID.Loc, "null must be a pointer type");
4982     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4983     return false;
4984   case ValID::t_Undef:
4985     // FIXME: LabelTy should not be a first-class type.
4986     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4987       return Error(ID.Loc, "invalid type for undef constant");
4988     V = UndefValue::get(Ty);
4989     return false;
4990   case ValID::t_EmptyArray:
4991     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4992       return Error(ID.Loc, "invalid empty array initializer");
4993     V = UndefValue::get(Ty);
4994     return false;
4995   case ValID::t_Zero:
4996     // FIXME: LabelTy should not be a first-class type.
4997     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4998       return Error(ID.Loc, "invalid type for null constant");
4999     V = Constant::getNullValue(Ty);
5000     return false;
5001   case ValID::t_None:
5002     if (!Ty->isTokenTy())
5003       return Error(ID.Loc, "invalid type for none constant");
5004     V = Constant::getNullValue(Ty);
5005     return false;
5006   case ValID::t_Constant:
5007     if (ID.ConstantVal->getType() != Ty)
5008       return Error(ID.Loc, "constant expression type mismatch");
5009 
5010     V = ID.ConstantVal;
5011     return false;
5012   case ValID::t_ConstantStruct:
5013   case ValID::t_PackedConstantStruct:
5014     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5015       if (ST->getNumElements() != ID.UIntVal)
5016         return Error(ID.Loc,
5017                      "initializer with struct type has wrong # elements");
5018       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5019         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5020 
5021       // Verify that the elements are compatible with the structtype.
5022       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5023         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5024           return Error(ID.Loc, "element " + Twine(i) +
5025                     " of struct initializer doesn't match struct element type");
5026 
5027       V = ConstantStruct::get(
5028           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5029     } else
5030       return Error(ID.Loc, "constant expression type mismatch");
5031     return false;
5032   }
5033   llvm_unreachable("Invalid ValID");
5034 }
5035 
5036 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5037   C = nullptr;
5038   ValID ID;
5039   auto Loc = Lex.getLoc();
5040   if (ParseValID(ID, /*PFS=*/nullptr))
5041     return true;
5042   switch (ID.Kind) {
5043   case ValID::t_APSInt:
5044   case ValID::t_APFloat:
5045   case ValID::t_Undef:
5046   case ValID::t_Constant:
5047   case ValID::t_ConstantStruct:
5048   case ValID::t_PackedConstantStruct: {
5049     Value *V;
5050     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5051       return true;
5052     assert(isa<Constant>(V) && "Expected a constant value");
5053     C = cast<Constant>(V);
5054     return false;
5055   }
5056   case ValID::t_Null:
5057     C = Constant::getNullValue(Ty);
5058     return false;
5059   default:
5060     return Error(Loc, "expected a constant value");
5061   }
5062 }
5063 
5064 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5065   V = nullptr;
5066   ValID ID;
5067   return ParseValID(ID, PFS) ||
5068          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5069 }
5070 
5071 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5072   Type *Ty = nullptr;
5073   return ParseType(Ty) ||
5074          ParseValue(Ty, V, PFS);
5075 }
5076 
5077 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5078                                       PerFunctionState &PFS) {
5079   Value *V;
5080   Loc = Lex.getLoc();
5081   if (ParseTypeAndValue(V, PFS)) return true;
5082   if (!isa<BasicBlock>(V))
5083     return Error(Loc, "expected a basic block");
5084   BB = cast<BasicBlock>(V);
5085   return false;
5086 }
5087 
5088 /// FunctionHeader
5089 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5090 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5091 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5092 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5093 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5094   // Parse the linkage.
5095   LocTy LinkageLoc = Lex.getLoc();
5096   unsigned Linkage;
5097   unsigned Visibility;
5098   unsigned DLLStorageClass;
5099   bool DSOLocal;
5100   AttrBuilder RetAttrs;
5101   unsigned CC;
5102   bool HasLinkage;
5103   Type *RetType = nullptr;
5104   LocTy RetTypeLoc = Lex.getLoc();
5105   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5106                            DSOLocal) ||
5107       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5108       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5109     return true;
5110 
5111   // Verify that the linkage is ok.
5112   switch ((GlobalValue::LinkageTypes)Linkage) {
5113   case GlobalValue::ExternalLinkage:
5114     break; // always ok.
5115   case GlobalValue::ExternalWeakLinkage:
5116     if (isDefine)
5117       return Error(LinkageLoc, "invalid linkage for function definition");
5118     break;
5119   case GlobalValue::PrivateLinkage:
5120   case GlobalValue::InternalLinkage:
5121   case GlobalValue::AvailableExternallyLinkage:
5122   case GlobalValue::LinkOnceAnyLinkage:
5123   case GlobalValue::LinkOnceODRLinkage:
5124   case GlobalValue::WeakAnyLinkage:
5125   case GlobalValue::WeakODRLinkage:
5126     if (!isDefine)
5127       return Error(LinkageLoc, "invalid linkage for function declaration");
5128     break;
5129   case GlobalValue::AppendingLinkage:
5130   case GlobalValue::CommonLinkage:
5131     return Error(LinkageLoc, "invalid function linkage type");
5132   }
5133 
5134   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5135     return Error(LinkageLoc,
5136                  "symbol with local linkage must have default visibility");
5137 
5138   if (!FunctionType::isValidReturnType(RetType))
5139     return Error(RetTypeLoc, "invalid function return type");
5140 
5141   LocTy NameLoc = Lex.getLoc();
5142 
5143   std::string FunctionName;
5144   if (Lex.getKind() == lltok::GlobalVar) {
5145     FunctionName = Lex.getStrVal();
5146   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5147     unsigned NameID = Lex.getUIntVal();
5148 
5149     if (NameID != NumberedVals.size())
5150       return TokError("function expected to be numbered '%" +
5151                       Twine(NumberedVals.size()) + "'");
5152   } else {
5153     return TokError("expected function name");
5154   }
5155 
5156   Lex.Lex();
5157 
5158   if (Lex.getKind() != lltok::lparen)
5159     return TokError("expected '(' in function argument list");
5160 
5161   SmallVector<ArgInfo, 8> ArgList;
5162   bool isVarArg;
5163   AttrBuilder FuncAttrs;
5164   std::vector<unsigned> FwdRefAttrGrps;
5165   LocTy BuiltinLoc;
5166   std::string Section;
5167   unsigned Alignment;
5168   std::string GC;
5169   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5170   unsigned AddrSpace = 0;
5171   Constant *Prefix = nullptr;
5172   Constant *Prologue = nullptr;
5173   Constant *PersonalityFn = nullptr;
5174   Comdat *C;
5175 
5176   if (ParseArgumentList(ArgList, isVarArg) ||
5177       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5178       ParseOptionalProgramAddrSpace(AddrSpace) ||
5179       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5180                                  BuiltinLoc) ||
5181       (EatIfPresent(lltok::kw_section) &&
5182        ParseStringConstant(Section)) ||
5183       parseOptionalComdat(FunctionName, C) ||
5184       ParseOptionalAlignment(Alignment) ||
5185       (EatIfPresent(lltok::kw_gc) &&
5186        ParseStringConstant(GC)) ||
5187       (EatIfPresent(lltok::kw_prefix) &&
5188        ParseGlobalTypeAndValue(Prefix)) ||
5189       (EatIfPresent(lltok::kw_prologue) &&
5190        ParseGlobalTypeAndValue(Prologue)) ||
5191       (EatIfPresent(lltok::kw_personality) &&
5192        ParseGlobalTypeAndValue(PersonalityFn)))
5193     return true;
5194 
5195   if (FuncAttrs.contains(Attribute::Builtin))
5196     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5197 
5198   // If the alignment was parsed as an attribute, move to the alignment field.
5199   if (FuncAttrs.hasAlignmentAttr()) {
5200     Alignment = FuncAttrs.getAlignment();
5201     FuncAttrs.removeAttribute(Attribute::Alignment);
5202   }
5203 
5204   // Okay, if we got here, the function is syntactically valid.  Convert types
5205   // and do semantic checks.
5206   std::vector<Type*> ParamTypeList;
5207   SmallVector<AttributeSet, 8> Attrs;
5208 
5209   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5210     ParamTypeList.push_back(ArgList[i].Ty);
5211     Attrs.push_back(ArgList[i].Attrs);
5212   }
5213 
5214   AttributeList PAL =
5215       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5216                          AttributeSet::get(Context, RetAttrs), Attrs);
5217 
5218   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5219     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5220 
5221   FunctionType *FT =
5222     FunctionType::get(RetType, ParamTypeList, isVarArg);
5223   PointerType *PFT = PointerType::get(FT, AddrSpace);
5224 
5225   Fn = nullptr;
5226   if (!FunctionName.empty()) {
5227     // If this was a definition of a forward reference, remove the definition
5228     // from the forward reference table and fill in the forward ref.
5229     auto FRVI = ForwardRefVals.find(FunctionName);
5230     if (FRVI != ForwardRefVals.end()) {
5231       Fn = M->getFunction(FunctionName);
5232       if (!Fn)
5233         return Error(FRVI->second.second, "invalid forward reference to "
5234                      "function as global value!");
5235       if (Fn->getType() != PFT)
5236         return Error(FRVI->second.second, "invalid forward reference to "
5237                      "function '" + FunctionName + "' with wrong type: "
5238                      "expected '" + getTypeString(PFT) + "' but was '" +
5239                      getTypeString(Fn->getType()) + "'");
5240       ForwardRefVals.erase(FRVI);
5241     } else if ((Fn = M->getFunction(FunctionName))) {
5242       // Reject redefinitions.
5243       return Error(NameLoc, "invalid redefinition of function '" +
5244                    FunctionName + "'");
5245     } else if (M->getNamedValue(FunctionName)) {
5246       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5247     }
5248 
5249   } else {
5250     // If this is a definition of a forward referenced function, make sure the
5251     // types agree.
5252     auto I = ForwardRefValIDs.find(NumberedVals.size());
5253     if (I != ForwardRefValIDs.end()) {
5254       Fn = cast<Function>(I->second.first);
5255       if (Fn->getType() != PFT)
5256         return Error(NameLoc, "type of definition and forward reference of '@" +
5257                      Twine(NumberedVals.size()) + "' disagree: "
5258                      "expected '" + getTypeString(PFT) + "' but was '" +
5259                      getTypeString(Fn->getType()) + "'");
5260       ForwardRefValIDs.erase(I);
5261     }
5262   }
5263 
5264   if (!Fn)
5265     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5266                           FunctionName, M);
5267   else // Move the forward-reference to the correct spot in the module.
5268     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5269 
5270   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5271 
5272   if (FunctionName.empty())
5273     NumberedVals.push_back(Fn);
5274 
5275   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5276   maybeSetDSOLocal(DSOLocal, *Fn);
5277   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5278   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5279   Fn->setCallingConv(CC);
5280   Fn->setAttributes(PAL);
5281   Fn->setUnnamedAddr(UnnamedAddr);
5282   Fn->setAlignment(Alignment);
5283   Fn->setSection(Section);
5284   Fn->setComdat(C);
5285   Fn->setPersonalityFn(PersonalityFn);
5286   if (!GC.empty()) Fn->setGC(GC);
5287   Fn->setPrefixData(Prefix);
5288   Fn->setPrologueData(Prologue);
5289   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5290 
5291   // Add all of the arguments we parsed to the function.
5292   Function::arg_iterator ArgIt = Fn->arg_begin();
5293   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5294     // If the argument has a name, insert it into the argument symbol table.
5295     if (ArgList[i].Name.empty()) continue;
5296 
5297     // Set the name, if it conflicted, it will be auto-renamed.
5298     ArgIt->setName(ArgList[i].Name);
5299 
5300     if (ArgIt->getName() != ArgList[i].Name)
5301       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5302                    ArgList[i].Name + "'");
5303   }
5304 
5305   if (isDefine)
5306     return false;
5307 
5308   // Check the declaration has no block address forward references.
5309   ValID ID;
5310   if (FunctionName.empty()) {
5311     ID.Kind = ValID::t_GlobalID;
5312     ID.UIntVal = NumberedVals.size() - 1;
5313   } else {
5314     ID.Kind = ValID::t_GlobalName;
5315     ID.StrVal = FunctionName;
5316   }
5317   auto Blocks = ForwardRefBlockAddresses.find(ID);
5318   if (Blocks != ForwardRefBlockAddresses.end())
5319     return Error(Blocks->first.Loc,
5320                  "cannot take blockaddress inside a declaration");
5321   return false;
5322 }
5323 
5324 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5325   ValID ID;
5326   if (FunctionNumber == -1) {
5327     ID.Kind = ValID::t_GlobalName;
5328     ID.StrVal = F.getName();
5329   } else {
5330     ID.Kind = ValID::t_GlobalID;
5331     ID.UIntVal = FunctionNumber;
5332   }
5333 
5334   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5335   if (Blocks == P.ForwardRefBlockAddresses.end())
5336     return false;
5337 
5338   for (const auto &I : Blocks->second) {
5339     const ValID &BBID = I.first;
5340     GlobalValue *GV = I.second;
5341 
5342     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5343            "Expected local id or name");
5344     BasicBlock *BB;
5345     if (BBID.Kind == ValID::t_LocalName)
5346       BB = GetBB(BBID.StrVal, BBID.Loc);
5347     else
5348       BB = GetBB(BBID.UIntVal, BBID.Loc);
5349     if (!BB)
5350       return P.Error(BBID.Loc, "referenced value is not a basic block");
5351 
5352     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5353     GV->eraseFromParent();
5354   }
5355 
5356   P.ForwardRefBlockAddresses.erase(Blocks);
5357   return false;
5358 }
5359 
5360 /// ParseFunctionBody
5361 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5362 bool LLParser::ParseFunctionBody(Function &Fn) {
5363   if (Lex.getKind() != lltok::lbrace)
5364     return TokError("expected '{' in function body");
5365   Lex.Lex();  // eat the {.
5366 
5367   int FunctionNumber = -1;
5368   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5369 
5370   PerFunctionState PFS(*this, Fn, FunctionNumber);
5371 
5372   // Resolve block addresses and allow basic blocks to be forward-declared
5373   // within this function.
5374   if (PFS.resolveForwardRefBlockAddresses())
5375     return true;
5376   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5377 
5378   // We need at least one basic block.
5379   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5380     return TokError("function body requires at least one basic block");
5381 
5382   while (Lex.getKind() != lltok::rbrace &&
5383          Lex.getKind() != lltok::kw_uselistorder)
5384     if (ParseBasicBlock(PFS)) return true;
5385 
5386   while (Lex.getKind() != lltok::rbrace)
5387     if (ParseUseListOrder(&PFS))
5388       return true;
5389 
5390   // Eat the }.
5391   Lex.Lex();
5392 
5393   // Verify function is ok.
5394   return PFS.FinishFunction();
5395 }
5396 
5397 /// ParseBasicBlock
5398 ///   ::= LabelStr? Instruction*
5399 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5400   // If this basic block starts out with a name, remember it.
5401   std::string Name;
5402   LocTy NameLoc = Lex.getLoc();
5403   if (Lex.getKind() == lltok::LabelStr) {
5404     Name = Lex.getStrVal();
5405     Lex.Lex();
5406   }
5407 
5408   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
5409   if (!BB)
5410     return Error(NameLoc,
5411                  "unable to create block named '" + Name + "'");
5412 
5413   std::string NameStr;
5414 
5415   // Parse the instructions in this block until we get a terminator.
5416   Instruction *Inst;
5417   do {
5418     // This instruction may have three possibilities for a name: a) none
5419     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5420     LocTy NameLoc = Lex.getLoc();
5421     int NameID = -1;
5422     NameStr = "";
5423 
5424     if (Lex.getKind() == lltok::LocalVarID) {
5425       NameID = Lex.getUIntVal();
5426       Lex.Lex();
5427       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5428         return true;
5429     } else if (Lex.getKind() == lltok::LocalVar) {
5430       NameStr = Lex.getStrVal();
5431       Lex.Lex();
5432       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5433         return true;
5434     }
5435 
5436     switch (ParseInstruction(Inst, BB, PFS)) {
5437     default: llvm_unreachable("Unknown ParseInstruction result!");
5438     case InstError: return true;
5439     case InstNormal:
5440       BB->getInstList().push_back(Inst);
5441 
5442       // With a normal result, we check to see if the instruction is followed by
5443       // a comma and metadata.
5444       if (EatIfPresent(lltok::comma))
5445         if (ParseInstructionMetadata(*Inst))
5446           return true;
5447       break;
5448     case InstExtraComma:
5449       BB->getInstList().push_back(Inst);
5450 
5451       // If the instruction parser ate an extra comma at the end of it, it
5452       // *must* be followed by metadata.
5453       if (ParseInstructionMetadata(*Inst))
5454         return true;
5455       break;
5456     }
5457 
5458     // Set the name on the instruction.
5459     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5460   } while (!Inst->isTerminator());
5461 
5462   return false;
5463 }
5464 
5465 //===----------------------------------------------------------------------===//
5466 // Instruction Parsing.
5467 //===----------------------------------------------------------------------===//
5468 
5469 /// ParseInstruction - Parse one of the many different instructions.
5470 ///
5471 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5472                                PerFunctionState &PFS) {
5473   lltok::Kind Token = Lex.getKind();
5474   if (Token == lltok::Eof)
5475     return TokError("found end of file when expecting more instructions");
5476   LocTy Loc = Lex.getLoc();
5477   unsigned KeywordVal = Lex.getUIntVal();
5478   Lex.Lex();  // Eat the keyword.
5479 
5480   switch (Token) {
5481   default:                    return Error(Loc, "expected instruction opcode");
5482   // Terminator Instructions.
5483   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5484   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5485   case lltok::kw_br:          return ParseBr(Inst, PFS);
5486   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5487   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5488   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5489   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5490   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5491   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5492   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5493   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5494   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5495   // Binary Operators.
5496   case lltok::kw_add:
5497   case lltok::kw_sub:
5498   case lltok::kw_mul:
5499   case lltok::kw_shl: {
5500     bool NUW = EatIfPresent(lltok::kw_nuw);
5501     bool NSW = EatIfPresent(lltok::kw_nsw);
5502     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5503 
5504     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5505 
5506     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5507     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5508     return false;
5509   }
5510   case lltok::kw_fadd:
5511   case lltok::kw_fsub:
5512   case lltok::kw_fmul:
5513   case lltok::kw_fdiv:
5514   case lltok::kw_frem: {
5515     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5516     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5517     if (Res != 0)
5518       return Res;
5519     if (FMF.any())
5520       Inst->setFastMathFlags(FMF);
5521     return 0;
5522   }
5523 
5524   case lltok::kw_sdiv:
5525   case lltok::kw_udiv:
5526   case lltok::kw_lshr:
5527   case lltok::kw_ashr: {
5528     bool Exact = EatIfPresent(lltok::kw_exact);
5529 
5530     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5531     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5532     return false;
5533   }
5534 
5535   case lltok::kw_urem:
5536   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5537   case lltok::kw_and:
5538   case lltok::kw_or:
5539   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5540   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5541   case lltok::kw_fcmp: {
5542     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5543     int Res = ParseCompare(Inst, PFS, KeywordVal);
5544     if (Res != 0)
5545       return Res;
5546     if (FMF.any())
5547       Inst->setFastMathFlags(FMF);
5548     return 0;
5549   }
5550 
5551   // Casts.
5552   case lltok::kw_trunc:
5553   case lltok::kw_zext:
5554   case lltok::kw_sext:
5555   case lltok::kw_fptrunc:
5556   case lltok::kw_fpext:
5557   case lltok::kw_bitcast:
5558   case lltok::kw_addrspacecast:
5559   case lltok::kw_uitofp:
5560   case lltok::kw_sitofp:
5561   case lltok::kw_fptoui:
5562   case lltok::kw_fptosi:
5563   case lltok::kw_inttoptr:
5564   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5565   // Other.
5566   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5567   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5568   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5569   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5570   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5571   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5572   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5573   // Call.
5574   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5575   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5576   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5577   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5578   // Memory.
5579   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5580   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5581   case lltok::kw_store:          return ParseStore(Inst, PFS);
5582   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5583   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5584   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5585   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5586   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5587   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5588   }
5589 }
5590 
5591 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5592 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5593   if (Opc == Instruction::FCmp) {
5594     switch (Lex.getKind()) {
5595     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5596     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5597     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5598     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5599     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5600     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5601     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5602     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5603     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5604     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5605     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5606     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5607     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5608     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5609     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5610     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5611     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5612     }
5613   } else {
5614     switch (Lex.getKind()) {
5615     default: return TokError("expected icmp predicate (e.g. 'eq')");
5616     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5617     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5618     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5619     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5620     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5621     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5622     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5623     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5624     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5625     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5626     }
5627   }
5628   Lex.Lex();
5629   return false;
5630 }
5631 
5632 //===----------------------------------------------------------------------===//
5633 // Terminator Instructions.
5634 //===----------------------------------------------------------------------===//
5635 
5636 /// ParseRet - Parse a return instruction.
5637 ///   ::= 'ret' void (',' !dbg, !1)*
5638 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5639 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5640                         PerFunctionState &PFS) {
5641   SMLoc TypeLoc = Lex.getLoc();
5642   Type *Ty = nullptr;
5643   if (ParseType(Ty, true /*void allowed*/)) return true;
5644 
5645   Type *ResType = PFS.getFunction().getReturnType();
5646 
5647   if (Ty->isVoidTy()) {
5648     if (!ResType->isVoidTy())
5649       return Error(TypeLoc, "value doesn't match function result type '" +
5650                    getTypeString(ResType) + "'");
5651 
5652     Inst = ReturnInst::Create(Context);
5653     return false;
5654   }
5655 
5656   Value *RV;
5657   if (ParseValue(Ty, RV, PFS)) return true;
5658 
5659   if (ResType != RV->getType())
5660     return Error(TypeLoc, "value doesn't match function result type '" +
5661                  getTypeString(ResType) + "'");
5662 
5663   Inst = ReturnInst::Create(Context, RV);
5664   return false;
5665 }
5666 
5667 /// ParseBr
5668 ///   ::= 'br' TypeAndValue
5669 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5670 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5671   LocTy Loc, Loc2;
5672   Value *Op0;
5673   BasicBlock *Op1, *Op2;
5674   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5675 
5676   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5677     Inst = BranchInst::Create(BB);
5678     return false;
5679   }
5680 
5681   if (Op0->getType() != Type::getInt1Ty(Context))
5682     return Error(Loc, "branch condition must have 'i1' type");
5683 
5684   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5685       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5686       ParseToken(lltok::comma, "expected ',' after true destination") ||
5687       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5688     return true;
5689 
5690   Inst = BranchInst::Create(Op1, Op2, Op0);
5691   return false;
5692 }
5693 
5694 /// ParseSwitch
5695 ///  Instruction
5696 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5697 ///  JumpTable
5698 ///    ::= (TypeAndValue ',' TypeAndValue)*
5699 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5700   LocTy CondLoc, BBLoc;
5701   Value *Cond;
5702   BasicBlock *DefaultBB;
5703   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5704       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5705       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5706       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5707     return true;
5708 
5709   if (!Cond->getType()->isIntegerTy())
5710     return Error(CondLoc, "switch condition must have integer type");
5711 
5712   // Parse the jump table pairs.
5713   SmallPtrSet<Value*, 32> SeenCases;
5714   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5715   while (Lex.getKind() != lltok::rsquare) {
5716     Value *Constant;
5717     BasicBlock *DestBB;
5718 
5719     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5720         ParseToken(lltok::comma, "expected ',' after case value") ||
5721         ParseTypeAndBasicBlock(DestBB, PFS))
5722       return true;
5723 
5724     if (!SeenCases.insert(Constant).second)
5725       return Error(CondLoc, "duplicate case value in switch");
5726     if (!isa<ConstantInt>(Constant))
5727       return Error(CondLoc, "case value is not a constant integer");
5728 
5729     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5730   }
5731 
5732   Lex.Lex();  // Eat the ']'.
5733 
5734   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5735   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5736     SI->addCase(Table[i].first, Table[i].second);
5737   Inst = SI;
5738   return false;
5739 }
5740 
5741 /// ParseIndirectBr
5742 ///  Instruction
5743 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5744 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5745   LocTy AddrLoc;
5746   Value *Address;
5747   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5748       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5749       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5750     return true;
5751 
5752   if (!Address->getType()->isPointerTy())
5753     return Error(AddrLoc, "indirectbr address must have pointer type");
5754 
5755   // Parse the destination list.
5756   SmallVector<BasicBlock*, 16> DestList;
5757 
5758   if (Lex.getKind() != lltok::rsquare) {
5759     BasicBlock *DestBB;
5760     if (ParseTypeAndBasicBlock(DestBB, PFS))
5761       return true;
5762     DestList.push_back(DestBB);
5763 
5764     while (EatIfPresent(lltok::comma)) {
5765       if (ParseTypeAndBasicBlock(DestBB, PFS))
5766         return true;
5767       DestList.push_back(DestBB);
5768     }
5769   }
5770 
5771   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5772     return true;
5773 
5774   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5775   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5776     IBI->addDestination(DestList[i]);
5777   Inst = IBI;
5778   return false;
5779 }
5780 
5781 /// ParseInvoke
5782 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5783 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5784 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5785   LocTy CallLoc = Lex.getLoc();
5786   AttrBuilder RetAttrs, FnAttrs;
5787   std::vector<unsigned> FwdRefAttrGrps;
5788   LocTy NoBuiltinLoc;
5789   unsigned CC;
5790   unsigned InvokeAddrSpace;
5791   Type *RetType = nullptr;
5792   LocTy RetTypeLoc;
5793   ValID CalleeID;
5794   SmallVector<ParamInfo, 16> ArgList;
5795   SmallVector<OperandBundleDef, 2> BundleList;
5796 
5797   BasicBlock *NormalBB, *UnwindBB;
5798   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5799       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
5800       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5801       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5802       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5803                                  NoBuiltinLoc) ||
5804       ParseOptionalOperandBundles(BundleList, PFS) ||
5805       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5806       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5807       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5808       ParseTypeAndBasicBlock(UnwindBB, PFS))
5809     return true;
5810 
5811   // If RetType is a non-function pointer type, then this is the short syntax
5812   // for the call, which means that RetType is just the return type.  Infer the
5813   // rest of the function argument types from the arguments that are present.
5814   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5815   if (!Ty) {
5816     // Pull out the types of all of the arguments...
5817     std::vector<Type*> ParamTypes;
5818     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5819       ParamTypes.push_back(ArgList[i].V->getType());
5820 
5821     if (!FunctionType::isValidReturnType(RetType))
5822       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5823 
5824     Ty = FunctionType::get(RetType, ParamTypes, false);
5825   }
5826 
5827   CalleeID.FTy = Ty;
5828 
5829   // Look up the callee.
5830   Value *Callee;
5831   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
5832                           Callee, &PFS, /*IsCall=*/true))
5833     return true;
5834 
5835   // Set up the Attribute for the function.
5836   SmallVector<Value *, 8> Args;
5837   SmallVector<AttributeSet, 8> ArgAttrs;
5838 
5839   // Loop through FunctionType's arguments and ensure they are specified
5840   // correctly.  Also, gather any parameter attributes.
5841   FunctionType::param_iterator I = Ty->param_begin();
5842   FunctionType::param_iterator E = Ty->param_end();
5843   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5844     Type *ExpectedTy = nullptr;
5845     if (I != E) {
5846       ExpectedTy = *I++;
5847     } else if (!Ty->isVarArg()) {
5848       return Error(ArgList[i].Loc, "too many arguments specified");
5849     }
5850 
5851     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5852       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5853                    getTypeString(ExpectedTy) + "'");
5854     Args.push_back(ArgList[i].V);
5855     ArgAttrs.push_back(ArgList[i].Attrs);
5856   }
5857 
5858   if (I != E)
5859     return Error(CallLoc, "not enough parameters specified for call");
5860 
5861   if (FnAttrs.hasAlignmentAttr())
5862     return Error(CallLoc, "invoke instructions may not have an alignment");
5863 
5864   // Finish off the Attribute and check them
5865   AttributeList PAL =
5866       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
5867                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
5868 
5869   InvokeInst *II =
5870       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5871   II->setCallingConv(CC);
5872   II->setAttributes(PAL);
5873   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5874   Inst = II;
5875   return false;
5876 }
5877 
5878 /// ParseResume
5879 ///   ::= 'resume' TypeAndValue
5880 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5881   Value *Exn; LocTy ExnLoc;
5882   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5883     return true;
5884 
5885   ResumeInst *RI = ResumeInst::Create(Exn);
5886   Inst = RI;
5887   return false;
5888 }
5889 
5890 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5891                                   PerFunctionState &PFS) {
5892   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5893     return true;
5894 
5895   while (Lex.getKind() != lltok::rsquare) {
5896     // If this isn't the first argument, we need a comma.
5897     if (!Args.empty() &&
5898         ParseToken(lltok::comma, "expected ',' in argument list"))
5899       return true;
5900 
5901     // Parse the argument.
5902     LocTy ArgLoc;
5903     Type *ArgTy = nullptr;
5904     if (ParseType(ArgTy, ArgLoc))
5905       return true;
5906 
5907     Value *V;
5908     if (ArgTy->isMetadataTy()) {
5909       if (ParseMetadataAsValue(V, PFS))
5910         return true;
5911     } else {
5912       if (ParseValue(ArgTy, V, PFS))
5913         return true;
5914     }
5915     Args.push_back(V);
5916   }
5917 
5918   Lex.Lex();  // Lex the ']'.
5919   return false;
5920 }
5921 
5922 /// ParseCleanupRet
5923 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
5924 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5925   Value *CleanupPad = nullptr;
5926 
5927   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5928     return true;
5929 
5930   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5931     return true;
5932 
5933   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5934     return true;
5935 
5936   BasicBlock *UnwindBB = nullptr;
5937   if (Lex.getKind() == lltok::kw_to) {
5938     Lex.Lex();
5939     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5940       return true;
5941   } else {
5942     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5943       return true;
5944     }
5945   }
5946 
5947   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5948   return false;
5949 }
5950 
5951 /// ParseCatchRet
5952 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
5953 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5954   Value *CatchPad = nullptr;
5955 
5956   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5957     return true;
5958 
5959   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5960     return true;
5961 
5962   BasicBlock *BB;
5963   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5964       ParseTypeAndBasicBlock(BB, PFS))
5965       return true;
5966 
5967   Inst = CatchReturnInst::Create(CatchPad, BB);
5968   return false;
5969 }
5970 
5971 /// ParseCatchSwitch
5972 ///   ::= 'catchswitch' within Parent
5973 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5974   Value *ParentPad;
5975 
5976   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5977     return true;
5978 
5979   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5980       Lex.getKind() != lltok::LocalVarID)
5981     return TokError("expected scope value for catchswitch");
5982 
5983   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5984     return true;
5985 
5986   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5987     return true;
5988 
5989   SmallVector<BasicBlock *, 32> Table;
5990   do {
5991     BasicBlock *DestBB;
5992     if (ParseTypeAndBasicBlock(DestBB, PFS))
5993       return true;
5994     Table.push_back(DestBB);
5995   } while (EatIfPresent(lltok::comma));
5996 
5997   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5998     return true;
5999 
6000   if (ParseToken(lltok::kw_unwind,
6001                  "expected 'unwind' after catchswitch scope"))
6002     return true;
6003 
6004   BasicBlock *UnwindBB = nullptr;
6005   if (EatIfPresent(lltok::kw_to)) {
6006     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6007       return true;
6008   } else {
6009     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6010       return true;
6011   }
6012 
6013   auto *CatchSwitch =
6014       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6015   for (BasicBlock *DestBB : Table)
6016     CatchSwitch->addHandler(DestBB);
6017   Inst = CatchSwitch;
6018   return false;
6019 }
6020 
6021 /// ParseCatchPad
6022 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6023 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6024   Value *CatchSwitch = nullptr;
6025 
6026   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6027     return true;
6028 
6029   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6030     return TokError("expected scope value for catchpad");
6031 
6032   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6033     return true;
6034 
6035   SmallVector<Value *, 8> Args;
6036   if (ParseExceptionArgs(Args, PFS))
6037     return true;
6038 
6039   Inst = CatchPadInst::Create(CatchSwitch, Args);
6040   return false;
6041 }
6042 
6043 /// ParseCleanupPad
6044 ///   ::= 'cleanuppad' within Parent ParamList
6045 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6046   Value *ParentPad = nullptr;
6047 
6048   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6049     return true;
6050 
6051   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6052       Lex.getKind() != lltok::LocalVarID)
6053     return TokError("expected scope value for cleanuppad");
6054 
6055   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6056     return true;
6057 
6058   SmallVector<Value *, 8> Args;
6059   if (ParseExceptionArgs(Args, PFS))
6060     return true;
6061 
6062   Inst = CleanupPadInst::Create(ParentPad, Args);
6063   return false;
6064 }
6065 
6066 //===----------------------------------------------------------------------===//
6067 // Binary Operators.
6068 //===----------------------------------------------------------------------===//
6069 
6070 /// ParseArithmetic
6071 ///  ::= ArithmeticOps TypeAndValue ',' Value
6072 ///
6073 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
6074 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
6075 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6076                                unsigned Opc, unsigned OperandType) {
6077   LocTy Loc; Value *LHS, *RHS;
6078   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6079       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6080       ParseValue(LHS->getType(), RHS, PFS))
6081     return true;
6082 
6083   bool Valid;
6084   switch (OperandType) {
6085   default: llvm_unreachable("Unknown operand type!");
6086   case 0: // int or FP.
6087     Valid = LHS->getType()->isIntOrIntVectorTy() ||
6088             LHS->getType()->isFPOrFPVectorTy();
6089     break;
6090   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
6091   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
6092   }
6093 
6094   if (!Valid)
6095     return Error(Loc, "invalid operand type for instruction");
6096 
6097   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6098   return false;
6099 }
6100 
6101 /// ParseLogical
6102 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6103 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6104                             unsigned Opc) {
6105   LocTy Loc; Value *LHS, *RHS;
6106   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6107       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6108       ParseValue(LHS->getType(), RHS, PFS))
6109     return true;
6110 
6111   if (!LHS->getType()->isIntOrIntVectorTy())
6112     return Error(Loc,"instruction requires integer or integer vector operands");
6113 
6114   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6115   return false;
6116 }
6117 
6118 /// ParseCompare
6119 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6120 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6121 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6122                             unsigned Opc) {
6123   // Parse the integer/fp comparison predicate.
6124   LocTy Loc;
6125   unsigned Pred;
6126   Value *LHS, *RHS;
6127   if (ParseCmpPredicate(Pred, Opc) ||
6128       ParseTypeAndValue(LHS, Loc, PFS) ||
6129       ParseToken(lltok::comma, "expected ',' after compare value") ||
6130       ParseValue(LHS->getType(), RHS, PFS))
6131     return true;
6132 
6133   if (Opc == Instruction::FCmp) {
6134     if (!LHS->getType()->isFPOrFPVectorTy())
6135       return Error(Loc, "fcmp requires floating point operands");
6136     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6137   } else {
6138     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6139     if (!LHS->getType()->isIntOrIntVectorTy() &&
6140         !LHS->getType()->isPtrOrPtrVectorTy())
6141       return Error(Loc, "icmp requires integer operands");
6142     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6143   }
6144   return false;
6145 }
6146 
6147 //===----------------------------------------------------------------------===//
6148 // Other Instructions.
6149 //===----------------------------------------------------------------------===//
6150 
6151 
6152 /// ParseCast
6153 ///   ::= CastOpc TypeAndValue 'to' Type
6154 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6155                          unsigned Opc) {
6156   LocTy Loc;
6157   Value *Op;
6158   Type *DestTy = nullptr;
6159   if (ParseTypeAndValue(Op, Loc, PFS) ||
6160       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6161       ParseType(DestTy))
6162     return true;
6163 
6164   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6165     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6166     return Error(Loc, "invalid cast opcode for cast from '" +
6167                  getTypeString(Op->getType()) + "' to '" +
6168                  getTypeString(DestTy) + "'");
6169   }
6170   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6171   return false;
6172 }
6173 
6174 /// ParseSelect
6175 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6176 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6177   LocTy Loc;
6178   Value *Op0, *Op1, *Op2;
6179   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6180       ParseToken(lltok::comma, "expected ',' after select condition") ||
6181       ParseTypeAndValue(Op1, PFS) ||
6182       ParseToken(lltok::comma, "expected ',' after select value") ||
6183       ParseTypeAndValue(Op2, PFS))
6184     return true;
6185 
6186   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6187     return Error(Loc, Reason);
6188 
6189   Inst = SelectInst::Create(Op0, Op1, Op2);
6190   return false;
6191 }
6192 
6193 /// ParseVA_Arg
6194 ///   ::= 'va_arg' TypeAndValue ',' Type
6195 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6196   Value *Op;
6197   Type *EltTy = nullptr;
6198   LocTy TypeLoc;
6199   if (ParseTypeAndValue(Op, PFS) ||
6200       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6201       ParseType(EltTy, TypeLoc))
6202     return true;
6203 
6204   if (!EltTy->isFirstClassType())
6205     return Error(TypeLoc, "va_arg requires operand with first class type");
6206 
6207   Inst = new VAArgInst(Op, EltTy);
6208   return false;
6209 }
6210 
6211 /// ParseExtractElement
6212 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6213 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6214   LocTy Loc;
6215   Value *Op0, *Op1;
6216   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6217       ParseToken(lltok::comma, "expected ',' after extract value") ||
6218       ParseTypeAndValue(Op1, PFS))
6219     return true;
6220 
6221   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6222     return Error(Loc, "invalid extractelement operands");
6223 
6224   Inst = ExtractElementInst::Create(Op0, Op1);
6225   return false;
6226 }
6227 
6228 /// ParseInsertElement
6229 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6230 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6231   LocTy Loc;
6232   Value *Op0, *Op1, *Op2;
6233   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6234       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6235       ParseTypeAndValue(Op1, PFS) ||
6236       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6237       ParseTypeAndValue(Op2, PFS))
6238     return true;
6239 
6240   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6241     return Error(Loc, "invalid insertelement operands");
6242 
6243   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6244   return false;
6245 }
6246 
6247 /// ParseShuffleVector
6248 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6249 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6250   LocTy Loc;
6251   Value *Op0, *Op1, *Op2;
6252   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6253       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6254       ParseTypeAndValue(Op1, PFS) ||
6255       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6256       ParseTypeAndValue(Op2, PFS))
6257     return true;
6258 
6259   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6260     return Error(Loc, "invalid shufflevector operands");
6261 
6262   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6263   return false;
6264 }
6265 
6266 /// ParsePHI
6267 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6268 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6269   Type *Ty = nullptr;  LocTy TypeLoc;
6270   Value *Op0, *Op1;
6271 
6272   if (ParseType(Ty, TypeLoc) ||
6273       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6274       ParseValue(Ty, Op0, PFS) ||
6275       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6276       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6277       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6278     return true;
6279 
6280   bool AteExtraComma = false;
6281   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6282 
6283   while (true) {
6284     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6285 
6286     if (!EatIfPresent(lltok::comma))
6287       break;
6288 
6289     if (Lex.getKind() == lltok::MetadataVar) {
6290       AteExtraComma = true;
6291       break;
6292     }
6293 
6294     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6295         ParseValue(Ty, Op0, PFS) ||
6296         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6297         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6298         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6299       return true;
6300   }
6301 
6302   if (!Ty->isFirstClassType())
6303     return Error(TypeLoc, "phi node must have first class type");
6304 
6305   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6306   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6307     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6308   Inst = PN;
6309   return AteExtraComma ? InstExtraComma : InstNormal;
6310 }
6311 
6312 /// ParseLandingPad
6313 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6314 /// Clause
6315 ///   ::= 'catch' TypeAndValue
6316 ///   ::= 'filter'
6317 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6318 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6319   Type *Ty = nullptr; LocTy TyLoc;
6320 
6321   if (ParseType(Ty, TyLoc))
6322     return true;
6323 
6324   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6325   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6326 
6327   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6328     LandingPadInst::ClauseType CT;
6329     if (EatIfPresent(lltok::kw_catch))
6330       CT = LandingPadInst::Catch;
6331     else if (EatIfPresent(lltok::kw_filter))
6332       CT = LandingPadInst::Filter;
6333     else
6334       return TokError("expected 'catch' or 'filter' clause type");
6335 
6336     Value *V;
6337     LocTy VLoc;
6338     if (ParseTypeAndValue(V, VLoc, PFS))
6339       return true;
6340 
6341     // A 'catch' type expects a non-array constant. A filter clause expects an
6342     // array constant.
6343     if (CT == LandingPadInst::Catch) {
6344       if (isa<ArrayType>(V->getType()))
6345         Error(VLoc, "'catch' clause has an invalid type");
6346     } else {
6347       if (!isa<ArrayType>(V->getType()))
6348         Error(VLoc, "'filter' clause has an invalid type");
6349     }
6350 
6351     Constant *CV = dyn_cast<Constant>(V);
6352     if (!CV)
6353       return Error(VLoc, "clause argument must be a constant");
6354     LP->addClause(CV);
6355   }
6356 
6357   Inst = LP.release();
6358   return false;
6359 }
6360 
6361 /// ParseCall
6362 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6363 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6364 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6365 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6366 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6367 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6368 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6369 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6370 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6371                          CallInst::TailCallKind TCK) {
6372   AttrBuilder RetAttrs, FnAttrs;
6373   std::vector<unsigned> FwdRefAttrGrps;
6374   LocTy BuiltinLoc;
6375   unsigned CallAddrSpace;
6376   unsigned CC;
6377   Type *RetType = nullptr;
6378   LocTy RetTypeLoc;
6379   ValID CalleeID;
6380   SmallVector<ParamInfo, 16> ArgList;
6381   SmallVector<OperandBundleDef, 2> BundleList;
6382   LocTy CallLoc = Lex.getLoc();
6383 
6384   if (TCK != CallInst::TCK_None &&
6385       ParseToken(lltok::kw_call,
6386                  "expected 'tail call', 'musttail call', or 'notail call'"))
6387     return true;
6388 
6389   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6390 
6391   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6392       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6393       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6394       ParseValID(CalleeID) ||
6395       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6396                          PFS.getFunction().isVarArg()) ||
6397       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6398       ParseOptionalOperandBundles(BundleList, PFS))
6399     return true;
6400 
6401   if (FMF.any() && !RetType->isFPOrFPVectorTy())
6402     return Error(CallLoc, "fast-math-flags specified for call without "
6403                           "floating-point scalar or vector return type");
6404 
6405   // If RetType is a non-function pointer type, then this is the short syntax
6406   // for the call, which means that RetType is just the return type.  Infer the
6407   // rest of the function argument types from the arguments that are present.
6408   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6409   if (!Ty) {
6410     // Pull out the types of all of the arguments...
6411     std::vector<Type*> ParamTypes;
6412     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6413       ParamTypes.push_back(ArgList[i].V->getType());
6414 
6415     if (!FunctionType::isValidReturnType(RetType))
6416       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6417 
6418     Ty = FunctionType::get(RetType, ParamTypes, false);
6419   }
6420 
6421   CalleeID.FTy = Ty;
6422 
6423   // Look up the callee.
6424   Value *Callee;
6425   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6426                           &PFS, /*IsCall=*/true))
6427     return true;
6428 
6429   // Set up the Attribute for the function.
6430   SmallVector<AttributeSet, 8> Attrs;
6431 
6432   SmallVector<Value*, 8> Args;
6433 
6434   // Loop through FunctionType's arguments and ensure they are specified
6435   // correctly.  Also, gather any parameter attributes.
6436   FunctionType::param_iterator I = Ty->param_begin();
6437   FunctionType::param_iterator E = Ty->param_end();
6438   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6439     Type *ExpectedTy = nullptr;
6440     if (I != E) {
6441       ExpectedTy = *I++;
6442     } else if (!Ty->isVarArg()) {
6443       return Error(ArgList[i].Loc, "too many arguments specified");
6444     }
6445 
6446     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6447       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6448                    getTypeString(ExpectedTy) + "'");
6449     Args.push_back(ArgList[i].V);
6450     Attrs.push_back(ArgList[i].Attrs);
6451   }
6452 
6453   if (I != E)
6454     return Error(CallLoc, "not enough parameters specified for call");
6455 
6456   if (FnAttrs.hasAlignmentAttr())
6457     return Error(CallLoc, "call instructions may not have an alignment");
6458 
6459   // Finish off the Attribute and check them
6460   AttributeList PAL =
6461       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6462                          AttributeSet::get(Context, RetAttrs), Attrs);
6463 
6464   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6465   CI->setTailCallKind(TCK);
6466   CI->setCallingConv(CC);
6467   if (FMF.any())
6468     CI->setFastMathFlags(FMF);
6469   CI->setAttributes(PAL);
6470   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6471   Inst = CI;
6472   return false;
6473 }
6474 
6475 //===----------------------------------------------------------------------===//
6476 // Memory Instructions.
6477 //===----------------------------------------------------------------------===//
6478 
6479 /// ParseAlloc
6480 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6481 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6482 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6483   Value *Size = nullptr;
6484   LocTy SizeLoc, TyLoc, ASLoc;
6485   unsigned Alignment = 0;
6486   unsigned AddrSpace = 0;
6487   Type *Ty = nullptr;
6488 
6489   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6490   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6491 
6492   if (ParseType(Ty, TyLoc)) return true;
6493 
6494   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6495     return Error(TyLoc, "invalid type for alloca");
6496 
6497   bool AteExtraComma = false;
6498   if (EatIfPresent(lltok::comma)) {
6499     if (Lex.getKind() == lltok::kw_align) {
6500       if (ParseOptionalAlignment(Alignment))
6501         return true;
6502       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6503         return true;
6504     } else if (Lex.getKind() == lltok::kw_addrspace) {
6505       ASLoc = Lex.getLoc();
6506       if (ParseOptionalAddrSpace(AddrSpace))
6507         return true;
6508     } else if (Lex.getKind() == lltok::MetadataVar) {
6509       AteExtraComma = true;
6510     } else {
6511       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6512         return true;
6513       if (EatIfPresent(lltok::comma)) {
6514         if (Lex.getKind() == lltok::kw_align) {
6515           if (ParseOptionalAlignment(Alignment))
6516             return true;
6517           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6518             return true;
6519         } else if (Lex.getKind() == lltok::kw_addrspace) {
6520           ASLoc = Lex.getLoc();
6521           if (ParseOptionalAddrSpace(AddrSpace))
6522             return true;
6523         } else if (Lex.getKind() == lltok::MetadataVar) {
6524           AteExtraComma = true;
6525         }
6526       }
6527     }
6528   }
6529 
6530   if (Size && !Size->getType()->isIntegerTy())
6531     return Error(SizeLoc, "element count must have integer type");
6532 
6533   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6534   AI->setUsedWithInAlloca(IsInAlloca);
6535   AI->setSwiftError(IsSwiftError);
6536   Inst = AI;
6537   return AteExtraComma ? InstExtraComma : InstNormal;
6538 }
6539 
6540 /// ParseLoad
6541 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6542 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6543 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6544 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6545   Value *Val; LocTy Loc;
6546   unsigned Alignment = 0;
6547   bool AteExtraComma = false;
6548   bool isAtomic = false;
6549   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6550   SyncScope::ID SSID = SyncScope::System;
6551 
6552   if (Lex.getKind() == lltok::kw_atomic) {
6553     isAtomic = true;
6554     Lex.Lex();
6555   }
6556 
6557   bool isVolatile = false;
6558   if (Lex.getKind() == lltok::kw_volatile) {
6559     isVolatile = true;
6560     Lex.Lex();
6561   }
6562 
6563   Type *Ty;
6564   LocTy ExplicitTypeLoc = Lex.getLoc();
6565   if (ParseType(Ty) ||
6566       ParseToken(lltok::comma, "expected comma after load's type") ||
6567       ParseTypeAndValue(Val, Loc, PFS) ||
6568       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6569       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6570     return true;
6571 
6572   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6573     return Error(Loc, "load operand must be a pointer to a first class type");
6574   if (isAtomic && !Alignment)
6575     return Error(Loc, "atomic load must have explicit non-zero alignment");
6576   if (Ordering == AtomicOrdering::Release ||
6577       Ordering == AtomicOrdering::AcquireRelease)
6578     return Error(Loc, "atomic load cannot use Release ordering");
6579 
6580   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6581     return Error(ExplicitTypeLoc,
6582                  "explicit pointee type doesn't match operand's pointee type");
6583 
6584   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6585   return AteExtraComma ? InstExtraComma : InstNormal;
6586 }
6587 
6588 /// ParseStore
6589 
6590 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6591 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6592 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6593 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6594   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6595   unsigned Alignment = 0;
6596   bool AteExtraComma = false;
6597   bool isAtomic = false;
6598   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6599   SyncScope::ID SSID = SyncScope::System;
6600 
6601   if (Lex.getKind() == lltok::kw_atomic) {
6602     isAtomic = true;
6603     Lex.Lex();
6604   }
6605 
6606   bool isVolatile = false;
6607   if (Lex.getKind() == lltok::kw_volatile) {
6608     isVolatile = true;
6609     Lex.Lex();
6610   }
6611 
6612   if (ParseTypeAndValue(Val, Loc, PFS) ||
6613       ParseToken(lltok::comma, "expected ',' after store operand") ||
6614       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6615       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6616       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6617     return true;
6618 
6619   if (!Ptr->getType()->isPointerTy())
6620     return Error(PtrLoc, "store operand must be a pointer");
6621   if (!Val->getType()->isFirstClassType())
6622     return Error(Loc, "store operand must be a first class value");
6623   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6624     return Error(Loc, "stored value and pointer type do not match");
6625   if (isAtomic && !Alignment)
6626     return Error(Loc, "atomic store must have explicit non-zero alignment");
6627   if (Ordering == AtomicOrdering::Acquire ||
6628       Ordering == AtomicOrdering::AcquireRelease)
6629     return Error(Loc, "atomic store cannot use Acquire ordering");
6630 
6631   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6632   return AteExtraComma ? InstExtraComma : InstNormal;
6633 }
6634 
6635 /// ParseCmpXchg
6636 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6637 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6638 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6639   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6640   bool AteExtraComma = false;
6641   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6642   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6643   SyncScope::ID SSID = SyncScope::System;
6644   bool isVolatile = false;
6645   bool isWeak = false;
6646 
6647   if (EatIfPresent(lltok::kw_weak))
6648     isWeak = true;
6649 
6650   if (EatIfPresent(lltok::kw_volatile))
6651     isVolatile = true;
6652 
6653   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6654       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6655       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6656       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6657       ParseTypeAndValue(New, NewLoc, PFS) ||
6658       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6659       ParseOrdering(FailureOrdering))
6660     return true;
6661 
6662   if (SuccessOrdering == AtomicOrdering::Unordered ||
6663       FailureOrdering == AtomicOrdering::Unordered)
6664     return TokError("cmpxchg cannot be unordered");
6665   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6666     return TokError("cmpxchg failure argument shall be no stronger than the "
6667                     "success argument");
6668   if (FailureOrdering == AtomicOrdering::Release ||
6669       FailureOrdering == AtomicOrdering::AcquireRelease)
6670     return TokError(
6671         "cmpxchg failure ordering cannot include release semantics");
6672   if (!Ptr->getType()->isPointerTy())
6673     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6674   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6675     return Error(CmpLoc, "compare value and pointer type do not match");
6676   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6677     return Error(NewLoc, "new value and pointer type do not match");
6678   if (!New->getType()->isFirstClassType())
6679     return Error(NewLoc, "cmpxchg operand must be a first class value");
6680   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6681       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
6682   CXI->setVolatile(isVolatile);
6683   CXI->setWeak(isWeak);
6684   Inst = CXI;
6685   return AteExtraComma ? InstExtraComma : InstNormal;
6686 }
6687 
6688 /// ParseAtomicRMW
6689 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6690 ///       'singlethread'? AtomicOrdering
6691 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6692   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6693   bool AteExtraComma = false;
6694   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6695   SyncScope::ID SSID = SyncScope::System;
6696   bool isVolatile = false;
6697   AtomicRMWInst::BinOp Operation;
6698 
6699   if (EatIfPresent(lltok::kw_volatile))
6700     isVolatile = true;
6701 
6702   switch (Lex.getKind()) {
6703   default: return TokError("expected binary operation in atomicrmw");
6704   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6705   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6706   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6707   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6708   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6709   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6710   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6711   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6712   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6713   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6714   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6715   }
6716   Lex.Lex();  // Eat the operation.
6717 
6718   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6719       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6720       ParseTypeAndValue(Val, ValLoc, PFS) ||
6721       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6722     return true;
6723 
6724   if (Ordering == AtomicOrdering::Unordered)
6725     return TokError("atomicrmw cannot be unordered");
6726   if (!Ptr->getType()->isPointerTy())
6727     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6728   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6729     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6730 
6731   if (!Val->getType()->isIntegerTy()) {
6732     return Error(ValLoc, "atomicrmw " +
6733                  AtomicRMWInst::getOperationName(Operation) +
6734                  " operand must be an integer");
6735   }
6736 
6737   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6738   if (Size < 8 || (Size & (Size - 1)))
6739     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6740                          " integer");
6741 
6742   AtomicRMWInst *RMWI =
6743     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
6744   RMWI->setVolatile(isVolatile);
6745   Inst = RMWI;
6746   return AteExtraComma ? InstExtraComma : InstNormal;
6747 }
6748 
6749 /// ParseFence
6750 ///   ::= 'fence' 'singlethread'? AtomicOrdering
6751 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6752   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6753   SyncScope::ID SSID = SyncScope::System;
6754   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6755     return true;
6756 
6757   if (Ordering == AtomicOrdering::Unordered)
6758     return TokError("fence cannot be unordered");
6759   if (Ordering == AtomicOrdering::Monotonic)
6760     return TokError("fence cannot be monotonic");
6761 
6762   Inst = new FenceInst(Context, Ordering, SSID);
6763   return InstNormal;
6764 }
6765 
6766 /// ParseGetElementPtr
6767 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
6768 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6769   Value *Ptr = nullptr;
6770   Value *Val = nullptr;
6771   LocTy Loc, EltLoc;
6772 
6773   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6774 
6775   Type *Ty = nullptr;
6776   LocTy ExplicitTypeLoc = Lex.getLoc();
6777   if (ParseType(Ty) ||
6778       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6779       ParseTypeAndValue(Ptr, Loc, PFS))
6780     return true;
6781 
6782   Type *BaseType = Ptr->getType();
6783   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6784   if (!BasePointerType)
6785     return Error(Loc, "base of getelementptr must be a pointer");
6786 
6787   if (Ty != BasePointerType->getElementType())
6788     return Error(ExplicitTypeLoc,
6789                  "explicit pointee type doesn't match operand's pointee type");
6790 
6791   SmallVector<Value*, 16> Indices;
6792   bool AteExtraComma = false;
6793   // GEP returns a vector of pointers if at least one of parameters is a vector.
6794   // All vector parameters should have the same vector width.
6795   unsigned GEPWidth = BaseType->isVectorTy() ?
6796     BaseType->getVectorNumElements() : 0;
6797 
6798   while (EatIfPresent(lltok::comma)) {
6799     if (Lex.getKind() == lltok::MetadataVar) {
6800       AteExtraComma = true;
6801       break;
6802     }
6803     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6804     if (!Val->getType()->isIntOrIntVectorTy())
6805       return Error(EltLoc, "getelementptr index must be an integer");
6806 
6807     if (Val->getType()->isVectorTy()) {
6808       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6809       if (GEPWidth && GEPWidth != ValNumEl)
6810         return Error(EltLoc,
6811           "getelementptr vector index has a wrong number of elements");
6812       GEPWidth = ValNumEl;
6813     }
6814     Indices.push_back(Val);
6815   }
6816 
6817   SmallPtrSet<Type*, 4> Visited;
6818   if (!Indices.empty() && !Ty->isSized(&Visited))
6819     return Error(Loc, "base element of getelementptr must be sized");
6820 
6821   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6822     return Error(Loc, "invalid getelementptr indices");
6823   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6824   if (InBounds)
6825     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6826   return AteExtraComma ? InstExtraComma : InstNormal;
6827 }
6828 
6829 /// ParseExtractValue
6830 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6831 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6832   Value *Val; LocTy Loc;
6833   SmallVector<unsigned, 4> Indices;
6834   bool AteExtraComma;
6835   if (ParseTypeAndValue(Val, Loc, PFS) ||
6836       ParseIndexList(Indices, AteExtraComma))
6837     return true;
6838 
6839   if (!Val->getType()->isAggregateType())
6840     return Error(Loc, "extractvalue operand must be aggregate type");
6841 
6842   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6843     return Error(Loc, "invalid indices for extractvalue");
6844   Inst = ExtractValueInst::Create(Val, Indices);
6845   return AteExtraComma ? InstExtraComma : InstNormal;
6846 }
6847 
6848 /// ParseInsertValue
6849 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6850 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6851   Value *Val0, *Val1; LocTy Loc0, Loc1;
6852   SmallVector<unsigned, 4> Indices;
6853   bool AteExtraComma;
6854   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6855       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6856       ParseTypeAndValue(Val1, Loc1, PFS) ||
6857       ParseIndexList(Indices, AteExtraComma))
6858     return true;
6859 
6860   if (!Val0->getType()->isAggregateType())
6861     return Error(Loc0, "insertvalue operand must be aggregate type");
6862 
6863   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6864   if (!IndexedType)
6865     return Error(Loc0, "invalid indices for insertvalue");
6866   if (IndexedType != Val1->getType())
6867     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6868                            getTypeString(Val1->getType()) + "' instead of '" +
6869                            getTypeString(IndexedType) + "'");
6870   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6871   return AteExtraComma ? InstExtraComma : InstNormal;
6872 }
6873 
6874 //===----------------------------------------------------------------------===//
6875 // Embedded metadata.
6876 //===----------------------------------------------------------------------===//
6877 
6878 /// ParseMDNodeVector
6879 ///   ::= { Element (',' Element)* }
6880 /// Element
6881 ///   ::= 'null' | TypeAndValue
6882 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6883   if (ParseToken(lltok::lbrace, "expected '{' here"))
6884     return true;
6885 
6886   // Check for an empty list.
6887   if (EatIfPresent(lltok::rbrace))
6888     return false;
6889 
6890   do {
6891     // Null is a special case since it is typeless.
6892     if (EatIfPresent(lltok::kw_null)) {
6893       Elts.push_back(nullptr);
6894       continue;
6895     }
6896 
6897     Metadata *MD;
6898     if (ParseMetadata(MD, nullptr))
6899       return true;
6900     Elts.push_back(MD);
6901   } while (EatIfPresent(lltok::comma));
6902 
6903   return ParseToken(lltok::rbrace, "expected end of metadata node");
6904 }
6905 
6906 //===----------------------------------------------------------------------===//
6907 // Use-list order directives.
6908 //===----------------------------------------------------------------------===//
6909 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6910                                 SMLoc Loc) {
6911   if (V->use_empty())
6912     return Error(Loc, "value has no uses");
6913 
6914   unsigned NumUses = 0;
6915   SmallDenseMap<const Use *, unsigned, 16> Order;
6916   for (const Use &U : V->uses()) {
6917     if (++NumUses > Indexes.size())
6918       break;
6919     Order[&U] = Indexes[NumUses - 1];
6920   }
6921   if (NumUses < 2)
6922     return Error(Loc, "value only has one use");
6923   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6924     return Error(Loc,
6925                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
6926 
6927   V->sortUseList([&](const Use &L, const Use &R) {
6928     return Order.lookup(&L) < Order.lookup(&R);
6929   });
6930   return false;
6931 }
6932 
6933 /// ParseUseListOrderIndexes
6934 ///   ::= '{' uint32 (',' uint32)+ '}'
6935 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6936   SMLoc Loc = Lex.getLoc();
6937   if (ParseToken(lltok::lbrace, "expected '{' here"))
6938     return true;
6939   if (Lex.getKind() == lltok::rbrace)
6940     return Lex.Error("expected non-empty list of uselistorder indexes");
6941 
6942   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6943   // indexes should be distinct numbers in the range [0, size-1], and should
6944   // not be in order.
6945   unsigned Offset = 0;
6946   unsigned Max = 0;
6947   bool IsOrdered = true;
6948   assert(Indexes.empty() && "Expected empty order vector");
6949   do {
6950     unsigned Index;
6951     if (ParseUInt32(Index))
6952       return true;
6953 
6954     // Update consistency checks.
6955     Offset += Index - Indexes.size();
6956     Max = std::max(Max, Index);
6957     IsOrdered &= Index == Indexes.size();
6958 
6959     Indexes.push_back(Index);
6960   } while (EatIfPresent(lltok::comma));
6961 
6962   if (ParseToken(lltok::rbrace, "expected '}' here"))
6963     return true;
6964 
6965   if (Indexes.size() < 2)
6966     return Error(Loc, "expected >= 2 uselistorder indexes");
6967   if (Offset != 0 || Max >= Indexes.size())
6968     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6969   if (IsOrdered)
6970     return Error(Loc, "expected uselistorder indexes to change the order");
6971 
6972   return false;
6973 }
6974 
6975 /// ParseUseListOrder
6976 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
6977 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6978   SMLoc Loc = Lex.getLoc();
6979   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6980     return true;
6981 
6982   Value *V;
6983   SmallVector<unsigned, 16> Indexes;
6984   if (ParseTypeAndValue(V, PFS) ||
6985       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6986       ParseUseListOrderIndexes(Indexes))
6987     return true;
6988 
6989   return sortUseListOrder(V, Indexes, Loc);
6990 }
6991 
6992 /// ParseUseListOrderBB
6993 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
6994 bool LLParser::ParseUseListOrderBB() {
6995   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6996   SMLoc Loc = Lex.getLoc();
6997   Lex.Lex();
6998 
6999   ValID Fn, Label;
7000   SmallVector<unsigned, 16> Indexes;
7001   if (ParseValID(Fn) ||
7002       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7003       ParseValID(Label) ||
7004       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7005       ParseUseListOrderIndexes(Indexes))
7006     return true;
7007 
7008   // Check the function.
7009   GlobalValue *GV;
7010   if (Fn.Kind == ValID::t_GlobalName)
7011     GV = M->getNamedValue(Fn.StrVal);
7012   else if (Fn.Kind == ValID::t_GlobalID)
7013     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7014   else
7015     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7016   if (!GV)
7017     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7018   auto *F = dyn_cast<Function>(GV);
7019   if (!F)
7020     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7021   if (F->isDeclaration())
7022     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7023 
7024   // Check the basic block.
7025   if (Label.Kind == ValID::t_LocalID)
7026     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7027   if (Label.Kind != ValID::t_LocalName)
7028     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7029   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7030   if (!V)
7031     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7032   if (!isa<BasicBlock>(V))
7033     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7034 
7035   return sortUseListOrder(V, Indexes, Loc);
7036 }
7037 
7038 /// ModuleEntry
7039 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7040 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7041 bool LLParser::ParseModuleEntry(unsigned ID) {
7042   assert(Lex.getKind() == lltok::kw_module);
7043   Lex.Lex();
7044 
7045   std::string Path;
7046   if (ParseToken(lltok::colon, "expected ':' here") ||
7047       ParseToken(lltok::lparen, "expected '(' here") ||
7048       ParseToken(lltok::kw_path, "expected 'path' here") ||
7049       ParseToken(lltok::colon, "expected ':' here") ||
7050       ParseStringConstant(Path) ||
7051       ParseToken(lltok::comma, "expected ',' here") ||
7052       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7053       ParseToken(lltok::colon, "expected ':' here") ||
7054       ParseToken(lltok::lparen, "expected '(' here"))
7055     return true;
7056 
7057   ModuleHash Hash;
7058   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7059       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7060       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7061       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7062       ParseUInt32(Hash[4]))
7063     return true;
7064 
7065   if (ParseToken(lltok::rparen, "expected ')' here") ||
7066       ParseToken(lltok::rparen, "expected ')' here"))
7067     return true;
7068 
7069   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7070   ModuleIdMap[ID] = ModuleEntry->first();
7071 
7072   return false;
7073 }
7074 
7075 /// TypeIdEntry
7076 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7077 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7078   assert(Lex.getKind() == lltok::kw_typeid);
7079   Lex.Lex();
7080 
7081   std::string Name;
7082   if (ParseToken(lltok::colon, "expected ':' here") ||
7083       ParseToken(lltok::lparen, "expected '(' here") ||
7084       ParseToken(lltok::kw_name, "expected 'name' here") ||
7085       ParseToken(lltok::colon, "expected ':' here") ||
7086       ParseStringConstant(Name))
7087     return true;
7088 
7089   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7090   if (ParseToken(lltok::comma, "expected ',' here") ||
7091       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7092     return true;
7093 
7094   // Check if this ID was forward referenced, and if so, update the
7095   // corresponding GUIDs.
7096   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7097   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7098     for (auto TIDRef : FwdRefTIDs->second) {
7099       assert(!*TIDRef.first &&
7100              "Forward referenced type id GUID expected to be 0");
7101       *TIDRef.first = GlobalValue::getGUID(Name);
7102     }
7103     ForwardRefTypeIds.erase(FwdRefTIDs);
7104   }
7105 
7106   return false;
7107 }
7108 
7109 /// TypeIdSummary
7110 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7111 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7112   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7113       ParseToken(lltok::colon, "expected ':' here") ||
7114       ParseToken(lltok::lparen, "expected '(' here") ||
7115       ParseTypeTestResolution(TIS.TTRes))
7116     return true;
7117 
7118   if (EatIfPresent(lltok::comma)) {
7119     // Expect optional wpdResolutions field
7120     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7121       return true;
7122   }
7123 
7124   if (ParseToken(lltok::rparen, "expected ')' here"))
7125     return true;
7126 
7127   return false;
7128 }
7129 
7130 /// TypeTestResolution
7131 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7132 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7133 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7134 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7135 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7136 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7137   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7138       ParseToken(lltok::colon, "expected ':' here") ||
7139       ParseToken(lltok::lparen, "expected '(' here") ||
7140       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7141       ParseToken(lltok::colon, "expected ':' here"))
7142     return true;
7143 
7144   switch (Lex.getKind()) {
7145   case lltok::kw_unsat:
7146     TTRes.TheKind = TypeTestResolution::Unsat;
7147     break;
7148   case lltok::kw_byteArray:
7149     TTRes.TheKind = TypeTestResolution::ByteArray;
7150     break;
7151   case lltok::kw_inline:
7152     TTRes.TheKind = TypeTestResolution::Inline;
7153     break;
7154   case lltok::kw_single:
7155     TTRes.TheKind = TypeTestResolution::Single;
7156     break;
7157   case lltok::kw_allOnes:
7158     TTRes.TheKind = TypeTestResolution::AllOnes;
7159     break;
7160   default:
7161     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7162   }
7163   Lex.Lex();
7164 
7165   if (ParseToken(lltok::comma, "expected ',' here") ||
7166       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7167       ParseToken(lltok::colon, "expected ':' here") ||
7168       ParseUInt32(TTRes.SizeM1BitWidth))
7169     return true;
7170 
7171   // Parse optional fields
7172   while (EatIfPresent(lltok::comma)) {
7173     switch (Lex.getKind()) {
7174     case lltok::kw_alignLog2:
7175       Lex.Lex();
7176       if (ParseToken(lltok::colon, "expected ':'") ||
7177           ParseUInt64(TTRes.AlignLog2))
7178         return true;
7179       break;
7180     case lltok::kw_sizeM1:
7181       Lex.Lex();
7182       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7183         return true;
7184       break;
7185     case lltok::kw_bitMask: {
7186       unsigned Val;
7187       Lex.Lex();
7188       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7189         return true;
7190       assert(Val <= 0xff);
7191       TTRes.BitMask = (uint8_t)Val;
7192       break;
7193     }
7194     case lltok::kw_inlineBits:
7195       Lex.Lex();
7196       if (ParseToken(lltok::colon, "expected ':'") ||
7197           ParseUInt64(TTRes.InlineBits))
7198         return true;
7199       break;
7200     default:
7201       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7202     }
7203   }
7204 
7205   if (ParseToken(lltok::rparen, "expected ')' here"))
7206     return true;
7207 
7208   return false;
7209 }
7210 
7211 /// OptionalWpdResolutions
7212 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7213 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7214 bool LLParser::ParseOptionalWpdResolutions(
7215     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7216   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7217       ParseToken(lltok::colon, "expected ':' here") ||
7218       ParseToken(lltok::lparen, "expected '(' here"))
7219     return true;
7220 
7221   do {
7222     uint64_t Offset;
7223     WholeProgramDevirtResolution WPDRes;
7224     if (ParseToken(lltok::lparen, "expected '(' here") ||
7225         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7226         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7227         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7228         ParseToken(lltok::rparen, "expected ')' here"))
7229       return true;
7230     WPDResMap[Offset] = WPDRes;
7231   } while (EatIfPresent(lltok::comma));
7232 
7233   if (ParseToken(lltok::rparen, "expected ')' here"))
7234     return true;
7235 
7236   return false;
7237 }
7238 
7239 /// WpdRes
7240 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7241 ///         [',' OptionalResByArg]? ')'
7242 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7243 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7244 ///         [',' OptionalResByArg]? ')'
7245 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7246 ///         [',' OptionalResByArg]? ')'
7247 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7248   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7249       ParseToken(lltok::colon, "expected ':' here") ||
7250       ParseToken(lltok::lparen, "expected '(' here") ||
7251       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7252       ParseToken(lltok::colon, "expected ':' here"))
7253     return true;
7254 
7255   switch (Lex.getKind()) {
7256   case lltok::kw_indir:
7257     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7258     break;
7259   case lltok::kw_singleImpl:
7260     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7261     break;
7262   case lltok::kw_branchFunnel:
7263     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7264     break;
7265   default:
7266     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7267   }
7268   Lex.Lex();
7269 
7270   // Parse optional fields
7271   while (EatIfPresent(lltok::comma)) {
7272     switch (Lex.getKind()) {
7273     case lltok::kw_singleImplName:
7274       Lex.Lex();
7275       if (ParseToken(lltok::colon, "expected ':' here") ||
7276           ParseStringConstant(WPDRes.SingleImplName))
7277         return true;
7278       break;
7279     case lltok::kw_resByArg:
7280       if (ParseOptionalResByArg(WPDRes.ResByArg))
7281         return true;
7282       break;
7283     default:
7284       return Error(Lex.getLoc(),
7285                    "expected optional WholeProgramDevirtResolution field");
7286     }
7287   }
7288 
7289   if (ParseToken(lltok::rparen, "expected ')' here"))
7290     return true;
7291 
7292   return false;
7293 }
7294 
7295 /// OptionalResByArg
7296 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7297 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7298 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7299 ///                  'virtualConstProp' )
7300 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7301 ///                [',' 'bit' ':' UInt32]? ')'
7302 bool LLParser::ParseOptionalResByArg(
7303     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7304         &ResByArg) {
7305   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7306       ParseToken(lltok::colon, "expected ':' here") ||
7307       ParseToken(lltok::lparen, "expected '(' here"))
7308     return true;
7309 
7310   do {
7311     std::vector<uint64_t> Args;
7312     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7313         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7314         ParseToken(lltok::colon, "expected ':' here") ||
7315         ParseToken(lltok::lparen, "expected '(' here") ||
7316         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7317         ParseToken(lltok::colon, "expected ':' here"))
7318       return true;
7319 
7320     WholeProgramDevirtResolution::ByArg ByArg;
7321     switch (Lex.getKind()) {
7322     case lltok::kw_indir:
7323       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7324       break;
7325     case lltok::kw_uniformRetVal:
7326       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7327       break;
7328     case lltok::kw_uniqueRetVal:
7329       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7330       break;
7331     case lltok::kw_virtualConstProp:
7332       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7333       break;
7334     default:
7335       return Error(Lex.getLoc(),
7336                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7337     }
7338     Lex.Lex();
7339 
7340     // Parse optional fields
7341     while (EatIfPresent(lltok::comma)) {
7342       switch (Lex.getKind()) {
7343       case lltok::kw_info:
7344         Lex.Lex();
7345         if (ParseToken(lltok::colon, "expected ':' here") ||
7346             ParseUInt64(ByArg.Info))
7347           return true;
7348         break;
7349       case lltok::kw_byte:
7350         Lex.Lex();
7351         if (ParseToken(lltok::colon, "expected ':' here") ||
7352             ParseUInt32(ByArg.Byte))
7353           return true;
7354         break;
7355       case lltok::kw_bit:
7356         Lex.Lex();
7357         if (ParseToken(lltok::colon, "expected ':' here") ||
7358             ParseUInt32(ByArg.Bit))
7359           return true;
7360         break;
7361       default:
7362         return Error(Lex.getLoc(),
7363                      "expected optional whole program devirt field");
7364       }
7365     }
7366 
7367     if (ParseToken(lltok::rparen, "expected ')' here"))
7368       return true;
7369 
7370     ResByArg[Args] = ByArg;
7371   } while (EatIfPresent(lltok::comma));
7372 
7373   if (ParseToken(lltok::rparen, "expected ')' here"))
7374     return true;
7375 
7376   return false;
7377 }
7378 
7379 /// OptionalResByArg
7380 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7381 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7382   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7383       ParseToken(lltok::colon, "expected ':' here") ||
7384       ParseToken(lltok::lparen, "expected '(' here"))
7385     return true;
7386 
7387   do {
7388     uint64_t Val;
7389     if (ParseUInt64(Val))
7390       return true;
7391     Args.push_back(Val);
7392   } while (EatIfPresent(lltok::comma));
7393 
7394   if (ParseToken(lltok::rparen, "expected ')' here"))
7395     return true;
7396 
7397   return false;
7398 }
7399 
7400 static ValueInfo EmptyVI =
7401     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7402 
7403 /// Stores the given Name/GUID and associated summary into the Index.
7404 /// Also updates any forward references to the associated entry ID.
7405 void LLParser::AddGlobalValueToIndex(
7406     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7407     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7408   // First create the ValueInfo utilizing the Name or GUID.
7409   ValueInfo VI;
7410   if (GUID != 0) {
7411     assert(Name.empty());
7412     VI = Index->getOrInsertValueInfo(GUID);
7413   } else {
7414     assert(!Name.empty());
7415     if (M) {
7416       auto *GV = M->getNamedValue(Name);
7417       assert(GV);
7418       VI = Index->getOrInsertValueInfo(GV);
7419     } else {
7420       assert(
7421           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7422           "Need a source_filename to compute GUID for local");
7423       GUID = GlobalValue::getGUID(
7424           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7425       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7426     }
7427   }
7428 
7429   // Add the summary if one was provided.
7430   if (Summary)
7431     Index->addGlobalValueSummary(VI, std::move(Summary));
7432 
7433   // Resolve forward references from calls/refs
7434   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7435   if (FwdRefVIs != ForwardRefValueInfos.end()) {
7436     for (auto VIRef : FwdRefVIs->second) {
7437       assert(*VIRef.first == EmptyVI &&
7438              "Forward referenced ValueInfo expected to be empty");
7439       *VIRef.first = VI;
7440     }
7441     ForwardRefValueInfos.erase(FwdRefVIs);
7442   }
7443 
7444   // Resolve forward references from aliases
7445   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7446   if (FwdRefAliasees != ForwardRefAliasees.end()) {
7447     for (auto AliaseeRef : FwdRefAliasees->second) {
7448       assert(!AliaseeRef.first->hasAliasee() &&
7449              "Forward referencing alias already has aliasee");
7450       AliaseeRef.first->setAliasee(VI.getSummaryList().front().get());
7451     }
7452     ForwardRefAliasees.erase(FwdRefAliasees);
7453   }
7454 
7455   // Save the associated ValueInfo for use in later references by ID.
7456   if (ID == NumberedValueInfos.size())
7457     NumberedValueInfos.push_back(VI);
7458   else {
7459     // Handle non-continuous numbers (to make test simplification easier).
7460     if (ID > NumberedValueInfos.size())
7461       NumberedValueInfos.resize(ID + 1);
7462     NumberedValueInfos[ID] = VI;
7463   }
7464 }
7465 
7466 /// ParseGVEntry
7467 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7468 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7469 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
7470 bool LLParser::ParseGVEntry(unsigned ID) {
7471   assert(Lex.getKind() == lltok::kw_gv);
7472   Lex.Lex();
7473 
7474   if (ParseToken(lltok::colon, "expected ':' here") ||
7475       ParseToken(lltok::lparen, "expected '(' here"))
7476     return true;
7477 
7478   std::string Name;
7479   GlobalValue::GUID GUID = 0;
7480   switch (Lex.getKind()) {
7481   case lltok::kw_name:
7482     Lex.Lex();
7483     if (ParseToken(lltok::colon, "expected ':' here") ||
7484         ParseStringConstant(Name))
7485       return true;
7486     // Can't create GUID/ValueInfo until we have the linkage.
7487     break;
7488   case lltok::kw_guid:
7489     Lex.Lex();
7490     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
7491       return true;
7492     break;
7493   default:
7494     return Error(Lex.getLoc(), "expected name or guid tag");
7495   }
7496 
7497   if (!EatIfPresent(lltok::comma)) {
7498     // No summaries. Wrap up.
7499     if (ParseToken(lltok::rparen, "expected ')' here"))
7500       return true;
7501     // This was created for a call to an external or indirect target.
7502     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
7503     // created for indirect calls with VP. A Name with no GUID came from
7504     // an external definition. We pass ExternalLinkage since that is only
7505     // used when the GUID must be computed from Name, and in that case
7506     // the symbol must have external linkage.
7507     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
7508                           nullptr);
7509     return false;
7510   }
7511 
7512   // Have a list of summaries
7513   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
7514       ParseToken(lltok::colon, "expected ':' here"))
7515     return true;
7516 
7517   do {
7518     if (ParseToken(lltok::lparen, "expected '(' here"))
7519       return true;
7520     switch (Lex.getKind()) {
7521     case lltok::kw_function:
7522       if (ParseFunctionSummary(Name, GUID, ID))
7523         return true;
7524       break;
7525     case lltok::kw_variable:
7526       if (ParseVariableSummary(Name, GUID, ID))
7527         return true;
7528       break;
7529     case lltok::kw_alias:
7530       if (ParseAliasSummary(Name, GUID, ID))
7531         return true;
7532       break;
7533     default:
7534       return Error(Lex.getLoc(), "expected summary type");
7535     }
7536     if (ParseToken(lltok::rparen, "expected ')' here"))
7537       return true;
7538   } while (EatIfPresent(lltok::comma));
7539 
7540   if (ParseToken(lltok::rparen, "expected ')' here"))
7541     return true;
7542 
7543   return false;
7544 }
7545 
7546 /// FunctionSummary
7547 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7548 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
7549 ///         [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
7550 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
7551                                     unsigned ID) {
7552   assert(Lex.getKind() == lltok::kw_function);
7553   Lex.Lex();
7554 
7555   StringRef ModulePath;
7556   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7557       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7558       /*Live=*/false, /*IsLocal=*/false);
7559   unsigned InstCount;
7560   std::vector<FunctionSummary::EdgeTy> Calls;
7561   FunctionSummary::TypeIdInfo TypeIdInfo;
7562   std::vector<ValueInfo> Refs;
7563   // Default is all-zeros (conservative values).
7564   FunctionSummary::FFlags FFlags = {};
7565   if (ParseToken(lltok::colon, "expected ':' here") ||
7566       ParseToken(lltok::lparen, "expected '(' here") ||
7567       ParseModuleReference(ModulePath) ||
7568       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7569       ParseToken(lltok::comma, "expected ',' here") ||
7570       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
7571       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
7572     return true;
7573 
7574   // Parse optional fields
7575   while (EatIfPresent(lltok::comma)) {
7576     switch (Lex.getKind()) {
7577     case lltok::kw_funcFlags:
7578       if (ParseOptionalFFlags(FFlags))
7579         return true;
7580       break;
7581     case lltok::kw_calls:
7582       if (ParseOptionalCalls(Calls))
7583         return true;
7584       break;
7585     case lltok::kw_typeIdInfo:
7586       if (ParseOptionalTypeIdInfo(TypeIdInfo))
7587         return true;
7588       break;
7589     case lltok::kw_refs:
7590       if (ParseOptionalRefs(Refs))
7591         return true;
7592       break;
7593     default:
7594       return Error(Lex.getLoc(), "expected optional function summary field");
7595     }
7596   }
7597 
7598   if (ParseToken(lltok::rparen, "expected ')' here"))
7599     return true;
7600 
7601   auto FS = llvm::make_unique<FunctionSummary>(
7602       GVFlags, InstCount, FFlags, std::move(Refs), std::move(Calls),
7603       std::move(TypeIdInfo.TypeTests),
7604       std::move(TypeIdInfo.TypeTestAssumeVCalls),
7605       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
7606       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
7607       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
7608 
7609   FS->setModulePath(ModulePath);
7610 
7611   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7612                         ID, std::move(FS));
7613 
7614   return false;
7615 }
7616 
7617 /// VariableSummary
7618 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7619 ///         [',' OptionalRefs]? ')'
7620 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
7621                                     unsigned ID) {
7622   assert(Lex.getKind() == lltok::kw_variable);
7623   Lex.Lex();
7624 
7625   StringRef ModulePath;
7626   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7627       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7628       /*Live=*/false, /*IsLocal=*/false);
7629   std::vector<ValueInfo> Refs;
7630   if (ParseToken(lltok::colon, "expected ':' here") ||
7631       ParseToken(lltok::lparen, "expected '(' here") ||
7632       ParseModuleReference(ModulePath) ||
7633       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags))
7634     return true;
7635 
7636   // Parse optional refs field
7637   if (EatIfPresent(lltok::comma)) {
7638     if (ParseOptionalRefs(Refs))
7639       return true;
7640   }
7641 
7642   if (ParseToken(lltok::rparen, "expected ')' here"))
7643     return true;
7644 
7645   auto GS = llvm::make_unique<GlobalVarSummary>(
7646       GVFlags, GlobalVarSummary::GVarFlags(), std::move(Refs));
7647 
7648   GS->setModulePath(ModulePath);
7649 
7650   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7651                         ID, std::move(GS));
7652 
7653   return false;
7654 }
7655 
7656 /// AliasSummary
7657 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
7658 ///         'aliasee' ':' GVReference ')'
7659 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
7660                                  unsigned ID) {
7661   assert(Lex.getKind() == lltok::kw_alias);
7662   LocTy Loc = Lex.getLoc();
7663   Lex.Lex();
7664 
7665   StringRef ModulePath;
7666   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7667       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7668       /*Live=*/false, /*IsLocal=*/false);
7669   if (ParseToken(lltok::colon, "expected ':' here") ||
7670       ParseToken(lltok::lparen, "expected '(' here") ||
7671       ParseModuleReference(ModulePath) ||
7672       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7673       ParseToken(lltok::comma, "expected ',' here") ||
7674       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
7675       ParseToken(lltok::colon, "expected ':' here"))
7676     return true;
7677 
7678   ValueInfo AliaseeVI;
7679   unsigned GVId;
7680   if (ParseGVReference(AliaseeVI, GVId))
7681     return true;
7682 
7683   if (ParseToken(lltok::rparen, "expected ')' here"))
7684     return true;
7685 
7686   auto AS = llvm::make_unique<AliasSummary>(GVFlags);
7687 
7688   AS->setModulePath(ModulePath);
7689 
7690   // Record forward reference if the aliasee is not parsed yet.
7691   if (AliaseeVI == EmptyVI) {
7692     auto FwdRef = ForwardRefAliasees.insert(
7693         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
7694     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
7695   } else
7696     AS->setAliasee(AliaseeVI.getSummaryList().front().get());
7697 
7698   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7699                         ID, std::move(AS));
7700 
7701   return false;
7702 }
7703 
7704 /// Flag
7705 ///   ::= [0|1]
7706 bool LLParser::ParseFlag(unsigned &Val) {
7707   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
7708     return TokError("expected integer");
7709   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
7710   Lex.Lex();
7711   return false;
7712 }
7713 
7714 /// OptionalFFlags
7715 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
7716 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
7717 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
7718 ///        [',' 'noInline' ':' Flag]? ')'
7719 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
7720   assert(Lex.getKind() == lltok::kw_funcFlags);
7721   Lex.Lex();
7722 
7723   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
7724       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
7725     return true;
7726 
7727   do {
7728     unsigned Val;
7729     switch (Lex.getKind()) {
7730     case lltok::kw_readNone:
7731       Lex.Lex();
7732       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7733         return true;
7734       FFlags.ReadNone = Val;
7735       break;
7736     case lltok::kw_readOnly:
7737       Lex.Lex();
7738       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7739         return true;
7740       FFlags.ReadOnly = Val;
7741       break;
7742     case lltok::kw_noRecurse:
7743       Lex.Lex();
7744       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7745         return true;
7746       FFlags.NoRecurse = Val;
7747       break;
7748     case lltok::kw_returnDoesNotAlias:
7749       Lex.Lex();
7750       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7751         return true;
7752       FFlags.ReturnDoesNotAlias = Val;
7753       break;
7754     case lltok::kw_noInline:
7755       Lex.Lex();
7756       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7757         return true;
7758       FFlags.NoInline = Val;
7759       break;
7760     default:
7761       return Error(Lex.getLoc(), "expected function flag type");
7762     }
7763   } while (EatIfPresent(lltok::comma));
7764 
7765   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
7766     return true;
7767 
7768   return false;
7769 }
7770 
7771 /// OptionalCalls
7772 ///   := 'calls' ':' '(' Call [',' Call]* ')'
7773 /// Call ::= '(' 'callee' ':' GVReference
7774 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
7775 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
7776   assert(Lex.getKind() == lltok::kw_calls);
7777   Lex.Lex();
7778 
7779   if (ParseToken(lltok::colon, "expected ':' in calls") |
7780       ParseToken(lltok::lparen, "expected '(' in calls"))
7781     return true;
7782 
7783   IdToIndexMapType IdToIndexMap;
7784   // Parse each call edge
7785   do {
7786     ValueInfo VI;
7787     if (ParseToken(lltok::lparen, "expected '(' in call") ||
7788         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
7789         ParseToken(lltok::colon, "expected ':'"))
7790       return true;
7791 
7792     LocTy Loc = Lex.getLoc();
7793     unsigned GVId;
7794     if (ParseGVReference(VI, GVId))
7795       return true;
7796 
7797     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7798     unsigned RelBF = 0;
7799     if (EatIfPresent(lltok::comma)) {
7800       // Expect either hotness or relbf
7801       if (EatIfPresent(lltok::kw_hotness)) {
7802         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
7803           return true;
7804       } else {
7805         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
7806             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
7807           return true;
7808       }
7809     }
7810     // Keep track of the Call array index needing a forward reference.
7811     // We will save the location of the ValueInfo needing an update, but
7812     // can only do so once the std::vector is finalized.
7813     if (VI == EmptyVI)
7814       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
7815     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
7816 
7817     if (ParseToken(lltok::rparen, "expected ')' in call"))
7818       return true;
7819   } while (EatIfPresent(lltok::comma));
7820 
7821   // Now that the Calls vector is finalized, it is safe to save the locations
7822   // of any forward GV references that need updating later.
7823   for (auto I : IdToIndexMap) {
7824     for (auto P : I.second) {
7825       assert(Calls[P.first].first == EmptyVI &&
7826              "Forward referenced ValueInfo expected to be empty");
7827       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7828           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7829       FwdRef.first->second.push_back(
7830           std::make_pair(&Calls[P.first].first, P.second));
7831     }
7832   }
7833 
7834   if (ParseToken(lltok::rparen, "expected ')' in calls"))
7835     return true;
7836 
7837   return false;
7838 }
7839 
7840 /// Hotness
7841 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
7842 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
7843   switch (Lex.getKind()) {
7844   case lltok::kw_unknown:
7845     Hotness = CalleeInfo::HotnessType::Unknown;
7846     break;
7847   case lltok::kw_cold:
7848     Hotness = CalleeInfo::HotnessType::Cold;
7849     break;
7850   case lltok::kw_none:
7851     Hotness = CalleeInfo::HotnessType::None;
7852     break;
7853   case lltok::kw_hot:
7854     Hotness = CalleeInfo::HotnessType::Hot;
7855     break;
7856   case lltok::kw_critical:
7857     Hotness = CalleeInfo::HotnessType::Critical;
7858     break;
7859   default:
7860     return Error(Lex.getLoc(), "invalid call edge hotness");
7861   }
7862   Lex.Lex();
7863   return false;
7864 }
7865 
7866 /// OptionalRefs
7867 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
7868 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
7869   assert(Lex.getKind() == lltok::kw_refs);
7870   Lex.Lex();
7871 
7872   if (ParseToken(lltok::colon, "expected ':' in refs") |
7873       ParseToken(lltok::lparen, "expected '(' in refs"))
7874     return true;
7875 
7876   IdToIndexMapType IdToIndexMap;
7877   // Parse each ref edge
7878   do {
7879     ValueInfo VI;
7880     LocTy Loc = Lex.getLoc();
7881     unsigned GVId;
7882     if (ParseGVReference(VI, GVId))
7883       return true;
7884 
7885     // Keep track of the Refs array index needing a forward reference.
7886     // We will save the location of the ValueInfo needing an update, but
7887     // can only do so once the std::vector is finalized.
7888     if (VI == EmptyVI)
7889       IdToIndexMap[GVId].push_back(std::make_pair(Refs.size(), Loc));
7890     Refs.push_back(VI);
7891   } while (EatIfPresent(lltok::comma));
7892 
7893   // Now that the Refs vector is finalized, it is safe to save the locations
7894   // of any forward GV references that need updating later.
7895   for (auto I : IdToIndexMap) {
7896     for (auto P : I.second) {
7897       assert(Refs[P.first] == EmptyVI &&
7898              "Forward referenced ValueInfo expected to be empty");
7899       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7900           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7901       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
7902     }
7903   }
7904 
7905   if (ParseToken(lltok::rparen, "expected ')' in refs"))
7906     return true;
7907 
7908   return false;
7909 }
7910 
7911 /// OptionalTypeIdInfo
7912 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
7913 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
7914 ///         [',' TypeCheckedLoadConstVCalls]? ')'
7915 bool LLParser::ParseOptionalTypeIdInfo(
7916     FunctionSummary::TypeIdInfo &TypeIdInfo) {
7917   assert(Lex.getKind() == lltok::kw_typeIdInfo);
7918   Lex.Lex();
7919 
7920   if (ParseToken(lltok::colon, "expected ':' here") ||
7921       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
7922     return true;
7923 
7924   do {
7925     switch (Lex.getKind()) {
7926     case lltok::kw_typeTests:
7927       if (ParseTypeTests(TypeIdInfo.TypeTests))
7928         return true;
7929       break;
7930     case lltok::kw_typeTestAssumeVCalls:
7931       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
7932                            TypeIdInfo.TypeTestAssumeVCalls))
7933         return true;
7934       break;
7935     case lltok::kw_typeCheckedLoadVCalls:
7936       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
7937                            TypeIdInfo.TypeCheckedLoadVCalls))
7938         return true;
7939       break;
7940     case lltok::kw_typeTestAssumeConstVCalls:
7941       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
7942                               TypeIdInfo.TypeTestAssumeConstVCalls))
7943         return true;
7944       break;
7945     case lltok::kw_typeCheckedLoadConstVCalls:
7946       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
7947                               TypeIdInfo.TypeCheckedLoadConstVCalls))
7948         return true;
7949       break;
7950     default:
7951       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
7952     }
7953   } while (EatIfPresent(lltok::comma));
7954 
7955   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
7956     return true;
7957 
7958   return false;
7959 }
7960 
7961 /// TypeTests
7962 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
7963 ///         [',' (SummaryID | UInt64)]* ')'
7964 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
7965   assert(Lex.getKind() == lltok::kw_typeTests);
7966   Lex.Lex();
7967 
7968   if (ParseToken(lltok::colon, "expected ':' here") ||
7969       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
7970     return true;
7971 
7972   IdToIndexMapType IdToIndexMap;
7973   do {
7974     GlobalValue::GUID GUID = 0;
7975     if (Lex.getKind() == lltok::SummaryID) {
7976       unsigned ID = Lex.getUIntVal();
7977       LocTy Loc = Lex.getLoc();
7978       // Keep track of the TypeTests array index needing a forward reference.
7979       // We will save the location of the GUID needing an update, but
7980       // can only do so once the std::vector is finalized.
7981       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
7982       Lex.Lex();
7983     } else if (ParseUInt64(GUID))
7984       return true;
7985     TypeTests.push_back(GUID);
7986   } while (EatIfPresent(lltok::comma));
7987 
7988   // Now that the TypeTests vector is finalized, it is safe to save the
7989   // locations of any forward GV references that need updating later.
7990   for (auto I : IdToIndexMap) {
7991     for (auto P : I.second) {
7992       assert(TypeTests[P.first] == 0 &&
7993              "Forward referenced type id GUID expected to be 0");
7994       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
7995           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
7996       FwdRef.first->second.push_back(
7997           std::make_pair(&TypeTests[P.first], P.second));
7998     }
7999   }
8000 
8001   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8002     return true;
8003 
8004   return false;
8005 }
8006 
8007 /// VFuncIdList
8008 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8009 bool LLParser::ParseVFuncIdList(
8010     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8011   assert(Lex.getKind() == Kind);
8012   Lex.Lex();
8013 
8014   if (ParseToken(lltok::colon, "expected ':' here") ||
8015       ParseToken(lltok::lparen, "expected '(' here"))
8016     return true;
8017 
8018   IdToIndexMapType IdToIndexMap;
8019   do {
8020     FunctionSummary::VFuncId VFuncId;
8021     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8022       return true;
8023     VFuncIdList.push_back(VFuncId);
8024   } while (EatIfPresent(lltok::comma));
8025 
8026   if (ParseToken(lltok::rparen, "expected ')' here"))
8027     return true;
8028 
8029   // Now that the VFuncIdList vector is finalized, it is safe to save the
8030   // locations of any forward GV references that need updating later.
8031   for (auto I : IdToIndexMap) {
8032     for (auto P : I.second) {
8033       assert(VFuncIdList[P.first].GUID == 0 &&
8034              "Forward referenced type id GUID expected to be 0");
8035       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8036           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8037       FwdRef.first->second.push_back(
8038           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8039     }
8040   }
8041 
8042   return false;
8043 }
8044 
8045 /// ConstVCallList
8046 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8047 bool LLParser::ParseConstVCallList(
8048     lltok::Kind Kind,
8049     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8050   assert(Lex.getKind() == Kind);
8051   Lex.Lex();
8052 
8053   if (ParseToken(lltok::colon, "expected ':' here") ||
8054       ParseToken(lltok::lparen, "expected '(' here"))
8055     return true;
8056 
8057   IdToIndexMapType IdToIndexMap;
8058   do {
8059     FunctionSummary::ConstVCall ConstVCall;
8060     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8061       return true;
8062     ConstVCallList.push_back(ConstVCall);
8063   } while (EatIfPresent(lltok::comma));
8064 
8065   if (ParseToken(lltok::rparen, "expected ')' here"))
8066     return true;
8067 
8068   // Now that the ConstVCallList vector is finalized, it is safe to save the
8069   // locations of any forward GV references that need updating later.
8070   for (auto I : IdToIndexMap) {
8071     for (auto P : I.second) {
8072       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8073              "Forward referenced type id GUID expected to be 0");
8074       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8075           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8076       FwdRef.first->second.push_back(
8077           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8078     }
8079   }
8080 
8081   return false;
8082 }
8083 
8084 /// ConstVCall
8085 ///   ::= '(' VFuncId ',' Args ')'
8086 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8087                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8088   if (ParseToken(lltok::lparen, "expected '(' here") ||
8089       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8090     return true;
8091 
8092   if (EatIfPresent(lltok::comma))
8093     if (ParseArgs(ConstVCall.Args))
8094       return true;
8095 
8096   if (ParseToken(lltok::rparen, "expected ')' here"))
8097     return true;
8098 
8099   return false;
8100 }
8101 
8102 /// VFuncId
8103 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8104 ///         'offset' ':' UInt64 ')'
8105 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8106                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
8107   assert(Lex.getKind() == lltok::kw_vFuncId);
8108   Lex.Lex();
8109 
8110   if (ParseToken(lltok::colon, "expected ':' here") ||
8111       ParseToken(lltok::lparen, "expected '(' here"))
8112     return true;
8113 
8114   if (Lex.getKind() == lltok::SummaryID) {
8115     VFuncId.GUID = 0;
8116     unsigned ID = Lex.getUIntVal();
8117     LocTy Loc = Lex.getLoc();
8118     // Keep track of the array index needing a forward reference.
8119     // We will save the location of the GUID needing an update, but
8120     // can only do so once the caller's std::vector is finalized.
8121     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8122     Lex.Lex();
8123   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8124              ParseToken(lltok::colon, "expected ':' here") ||
8125              ParseUInt64(VFuncId.GUID))
8126     return true;
8127 
8128   if (ParseToken(lltok::comma, "expected ',' here") ||
8129       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8130       ParseToken(lltok::colon, "expected ':' here") ||
8131       ParseUInt64(VFuncId.Offset) ||
8132       ParseToken(lltok::rparen, "expected ')' here"))
8133     return true;
8134 
8135   return false;
8136 }
8137 
8138 /// GVFlags
8139 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8140 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8141 ///         'dsoLocal' ':' Flag ')'
8142 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8143   assert(Lex.getKind() == lltok::kw_flags);
8144   Lex.Lex();
8145 
8146   bool HasLinkage;
8147   if (ParseToken(lltok::colon, "expected ':' here") ||
8148       ParseToken(lltok::lparen, "expected '(' here") ||
8149       ParseToken(lltok::kw_linkage, "expected 'linkage' here") ||
8150       ParseToken(lltok::colon, "expected ':' here"))
8151     return true;
8152 
8153   GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8154   assert(HasLinkage && "Linkage not optional in summary entry");
8155   Lex.Lex();
8156 
8157   unsigned Flag;
8158   if (ParseToken(lltok::comma, "expected ',' here") ||
8159       ParseToken(lltok::kw_notEligibleToImport,
8160                  "expected 'notEligibleToImport' here") ||
8161       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8162     return true;
8163   GVFlags.NotEligibleToImport = Flag;
8164 
8165   if (ParseToken(lltok::comma, "expected ',' here") ||
8166       ParseToken(lltok::kw_live, "expected 'live' here") ||
8167       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8168     return true;
8169   GVFlags.Live = Flag;
8170 
8171   if (ParseToken(lltok::comma, "expected ',' here") ||
8172       ParseToken(lltok::kw_dsoLocal, "expected 'dsoLocal' here") ||
8173       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8174     return true;
8175   GVFlags.DSOLocal = Flag;
8176 
8177   if (ParseToken(lltok::rparen, "expected ')' here"))
8178     return true;
8179 
8180   return false;
8181 }
8182 
8183 /// ModuleReference
8184 ///   ::= 'module' ':' UInt
8185 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8186   // Parse module id.
8187   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8188       ParseToken(lltok::colon, "expected ':' here") ||
8189       ParseToken(lltok::SummaryID, "expected module ID"))
8190     return true;
8191 
8192   unsigned ModuleID = Lex.getUIntVal();
8193   auto I = ModuleIdMap.find(ModuleID);
8194   // We should have already parsed all module IDs
8195   assert(I != ModuleIdMap.end());
8196   ModulePath = I->second;
8197   return false;
8198 }
8199 
8200 /// GVReference
8201 ///   ::= SummaryID
8202 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8203   if (ParseToken(lltok::SummaryID, "expected GV ID"))
8204     return true;
8205 
8206   GVId = Lex.getUIntVal();
8207 
8208   // Check if we already have a VI for this GV
8209   if (GVId < NumberedValueInfos.size()) {
8210     assert(NumberedValueInfos[GVId] != EmptyVI);
8211     VI = NumberedValueInfos[GVId];
8212   } else
8213     // We will create a forward reference to the stored location.
8214     VI = EmptyVI;
8215 
8216   return false;
8217 }
8218