1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/AsmParser/LLParser.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/LLToken.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/IR/ValueSymbolTable.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/SaveAndRestore.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstring> 50 #include <iterator> 51 #include <vector> 52 53 using namespace llvm; 54 55 static std::string getTypeString(Type *T) { 56 std::string Result; 57 raw_string_ostream Tmp(Result); 58 Tmp << *T; 59 return Tmp.str(); 60 } 61 62 /// Run: module ::= toplevelentity* 63 bool LLParser::Run(bool UpgradeDebugInfo, 64 DataLayoutCallbackTy DataLayoutCallback) { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 if (M) { 74 if (parseTargetDefinitions()) 75 return true; 76 77 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 78 M->setDataLayout(*LayoutOverride); 79 } 80 81 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 82 validateEndOfIndex(); 83 } 84 85 bool LLParser::parseStandaloneConstantValue(Constant *&C, 86 const SlotMapping *Slots) { 87 restoreParsingState(Slots); 88 Lex.Lex(); 89 90 Type *Ty = nullptr; 91 if (parseType(Ty) || parseConstantValue(Ty, C)) 92 return true; 93 if (Lex.getKind() != lltok::Eof) 94 return error(Lex.getLoc(), "expected end of string"); 95 return false; 96 } 97 98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 99 const SlotMapping *Slots) { 100 restoreParsingState(Slots); 101 Lex.Lex(); 102 103 Read = 0; 104 SMLoc Start = Lex.getLoc(); 105 Ty = nullptr; 106 if (parseType(Ty)) 107 return true; 108 SMLoc End = Lex.getLoc(); 109 Read = End.getPointer() - Start.getPointer(); 110 111 return false; 112 } 113 114 void LLParser::restoreParsingState(const SlotMapping *Slots) { 115 if (!Slots) 116 return; 117 NumberedVals = Slots->GlobalValues; 118 NumberedMetadata = Slots->MetadataNodes; 119 for (const auto &I : Slots->NamedTypes) 120 NamedTypes.insert( 121 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 122 for (const auto &I : Slots->Types) 123 NumberedTypes.insert( 124 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 125 } 126 127 /// validateEndOfModule - Do final validity and sanity checks at the end of the 128 /// module. 129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 130 if (!M) 131 return false; 132 // Handle any function attribute group forward references. 133 for (const auto &RAG : ForwardRefAttrGroups) { 134 Value *V = RAG.first; 135 const std::vector<unsigned> &Attrs = RAG.second; 136 AttrBuilder B; 137 138 for (const auto &Attr : Attrs) 139 B.merge(NumberedAttrBuilders[Attr]); 140 141 if (Function *Fn = dyn_cast<Function>(V)) { 142 AttributeList AS = Fn->getAttributes(); 143 AttrBuilder FnAttrs(AS.getFnAttrs()); 144 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 145 146 FnAttrs.merge(B); 147 148 // If the alignment was parsed as an attribute, move to the alignment 149 // field. 150 if (FnAttrs.hasAlignmentAttr()) { 151 Fn->setAlignment(FnAttrs.getAlignment()); 152 FnAttrs.removeAttribute(Attribute::Alignment); 153 } 154 155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 156 AttributeSet::get(Context, FnAttrs)); 157 Fn->setAttributes(AS); 158 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 159 AttributeList AS = CI->getAttributes(); 160 AttrBuilder FnAttrs(AS.getFnAttrs()); 161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 162 FnAttrs.merge(B); 163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 164 AttributeSet::get(Context, FnAttrs)); 165 CI->setAttributes(AS); 166 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 167 AttributeList AS = II->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttrs()); 169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 170 FnAttrs.merge(B); 171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 172 AttributeSet::get(Context, FnAttrs)); 173 II->setAttributes(AS); 174 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 175 AttributeList AS = CBI->getAttributes(); 176 AttrBuilder FnAttrs(AS.getFnAttrs()); 177 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 178 FnAttrs.merge(B); 179 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 180 AttributeSet::get(Context, FnAttrs)); 181 CBI->setAttributes(AS); 182 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 183 AttrBuilder Attrs(GV->getAttributes()); 184 Attrs.merge(B); 185 GV->setAttributes(AttributeSet::get(Context,Attrs)); 186 } else { 187 llvm_unreachable("invalid object with forward attribute group reference"); 188 } 189 } 190 191 // If there are entries in ForwardRefBlockAddresses at this point, the 192 // function was never defined. 193 if (!ForwardRefBlockAddresses.empty()) 194 return error(ForwardRefBlockAddresses.begin()->first.Loc, 195 "expected function name in blockaddress"); 196 197 for (const auto &NT : NumberedTypes) 198 if (NT.second.second.isValid()) 199 return error(NT.second.second, 200 "use of undefined type '%" + Twine(NT.first) + "'"); 201 202 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 203 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 204 if (I->second.second.isValid()) 205 return error(I->second.second, 206 "use of undefined type named '" + I->getKey() + "'"); 207 208 if (!ForwardRefComdats.empty()) 209 return error(ForwardRefComdats.begin()->second, 210 "use of undefined comdat '$" + 211 ForwardRefComdats.begin()->first + "'"); 212 213 if (!ForwardRefVals.empty()) 214 return error(ForwardRefVals.begin()->second.second, 215 "use of undefined value '@" + ForwardRefVals.begin()->first + 216 "'"); 217 218 if (!ForwardRefValIDs.empty()) 219 return error(ForwardRefValIDs.begin()->second.second, 220 "use of undefined value '@" + 221 Twine(ForwardRefValIDs.begin()->first) + "'"); 222 223 if (!ForwardRefMDNodes.empty()) 224 return error(ForwardRefMDNodes.begin()->second.second, 225 "use of undefined metadata '!" + 226 Twine(ForwardRefMDNodes.begin()->first) + "'"); 227 228 // Resolve metadata cycles. 229 for (auto &N : NumberedMetadata) { 230 if (N.second && !N.second->isResolved()) 231 N.second->resolveCycles(); 232 } 233 234 for (auto *Inst : InstsWithTBAATag) { 235 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 236 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 237 auto *UpgradedMD = UpgradeTBAANode(*MD); 238 if (MD != UpgradedMD) 239 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 240 } 241 242 // Look for intrinsic functions and CallInst that need to be upgraded 243 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 244 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 245 246 // Some types could be renamed during loading if several modules are 247 // loaded in the same LLVMContext (LTO scenario). In this case we should 248 // remangle intrinsics names as well. 249 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 250 Function *F = &*FI++; 251 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 252 F->replaceAllUsesWith(Remangled.getValue()); 253 F->eraseFromParent(); 254 } 255 } 256 257 if (UpgradeDebugInfo) 258 llvm::UpgradeDebugInfo(*M); 259 260 UpgradeModuleFlags(*M); 261 UpgradeSectionAttributes(*M); 262 263 if (!Slots) 264 return false; 265 // Initialize the slot mapping. 266 // Because by this point we've parsed and validated everything, we can "steal" 267 // the mapping from LLParser as it doesn't need it anymore. 268 Slots->GlobalValues = std::move(NumberedVals); 269 Slots->MetadataNodes = std::move(NumberedMetadata); 270 for (const auto &I : NamedTypes) 271 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 272 for (const auto &I : NumberedTypes) 273 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 274 275 return false; 276 } 277 278 /// Do final validity and sanity checks at the end of the index. 279 bool LLParser::validateEndOfIndex() { 280 if (!Index) 281 return false; 282 283 if (!ForwardRefValueInfos.empty()) 284 return error(ForwardRefValueInfos.begin()->second.front().second, 285 "use of undefined summary '^" + 286 Twine(ForwardRefValueInfos.begin()->first) + "'"); 287 288 if (!ForwardRefAliasees.empty()) 289 return error(ForwardRefAliasees.begin()->second.front().second, 290 "use of undefined summary '^" + 291 Twine(ForwardRefAliasees.begin()->first) + "'"); 292 293 if (!ForwardRefTypeIds.empty()) 294 return error(ForwardRefTypeIds.begin()->second.front().second, 295 "use of undefined type id summary '^" + 296 Twine(ForwardRefTypeIds.begin()->first) + "'"); 297 298 return false; 299 } 300 301 //===----------------------------------------------------------------------===// 302 // Top-Level Entities 303 //===----------------------------------------------------------------------===// 304 305 bool LLParser::parseTargetDefinitions() { 306 while (true) { 307 switch (Lex.getKind()) { 308 case lltok::kw_target: 309 if (parseTargetDefinition()) 310 return true; 311 break; 312 case lltok::kw_source_filename: 313 if (parseSourceFileName()) 314 return true; 315 break; 316 default: 317 return false; 318 } 319 } 320 } 321 322 bool LLParser::parseTopLevelEntities() { 323 // If there is no Module, then parse just the summary index entries. 324 if (!M) { 325 while (true) { 326 switch (Lex.getKind()) { 327 case lltok::Eof: 328 return false; 329 case lltok::SummaryID: 330 if (parseSummaryEntry()) 331 return true; 332 break; 333 case lltok::kw_source_filename: 334 if (parseSourceFileName()) 335 return true; 336 break; 337 default: 338 // Skip everything else 339 Lex.Lex(); 340 } 341 } 342 } 343 while (true) { 344 switch (Lex.getKind()) { 345 default: 346 return tokError("expected top-level entity"); 347 case lltok::Eof: return false; 348 case lltok::kw_declare: 349 if (parseDeclare()) 350 return true; 351 break; 352 case lltok::kw_define: 353 if (parseDefine()) 354 return true; 355 break; 356 case lltok::kw_module: 357 if (parseModuleAsm()) 358 return true; 359 break; 360 case lltok::LocalVarID: 361 if (parseUnnamedType()) 362 return true; 363 break; 364 case lltok::LocalVar: 365 if (parseNamedType()) 366 return true; 367 break; 368 case lltok::GlobalID: 369 if (parseUnnamedGlobal()) 370 return true; 371 break; 372 case lltok::GlobalVar: 373 if (parseNamedGlobal()) 374 return true; 375 break; 376 case lltok::ComdatVar: if (parseComdat()) return true; break; 377 case lltok::exclaim: 378 if (parseStandaloneMetadata()) 379 return true; 380 break; 381 case lltok::SummaryID: 382 if (parseSummaryEntry()) 383 return true; 384 break; 385 case lltok::MetadataVar: 386 if (parseNamedMetadata()) 387 return true; 388 break; 389 case lltok::kw_attributes: 390 if (parseUnnamedAttrGrp()) 391 return true; 392 break; 393 case lltok::kw_uselistorder: 394 if (parseUseListOrder()) 395 return true; 396 break; 397 case lltok::kw_uselistorder_bb: 398 if (parseUseListOrderBB()) 399 return true; 400 break; 401 } 402 } 403 } 404 405 /// toplevelentity 406 /// ::= 'module' 'asm' STRINGCONSTANT 407 bool LLParser::parseModuleAsm() { 408 assert(Lex.getKind() == lltok::kw_module); 409 Lex.Lex(); 410 411 std::string AsmStr; 412 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 413 parseStringConstant(AsmStr)) 414 return true; 415 416 M->appendModuleInlineAsm(AsmStr); 417 return false; 418 } 419 420 /// toplevelentity 421 /// ::= 'target' 'triple' '=' STRINGCONSTANT 422 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 423 bool LLParser::parseTargetDefinition() { 424 assert(Lex.getKind() == lltok::kw_target); 425 std::string Str; 426 switch (Lex.Lex()) { 427 default: 428 return tokError("unknown target property"); 429 case lltok::kw_triple: 430 Lex.Lex(); 431 if (parseToken(lltok::equal, "expected '=' after target triple") || 432 parseStringConstant(Str)) 433 return true; 434 M->setTargetTriple(Str); 435 return false; 436 case lltok::kw_datalayout: 437 Lex.Lex(); 438 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 439 parseStringConstant(Str)) 440 return true; 441 M->setDataLayout(Str); 442 return false; 443 } 444 } 445 446 /// toplevelentity 447 /// ::= 'source_filename' '=' STRINGCONSTANT 448 bool LLParser::parseSourceFileName() { 449 assert(Lex.getKind() == lltok::kw_source_filename); 450 Lex.Lex(); 451 if (parseToken(lltok::equal, "expected '=' after source_filename") || 452 parseStringConstant(SourceFileName)) 453 return true; 454 if (M) 455 M->setSourceFileName(SourceFileName); 456 return false; 457 } 458 459 /// parseUnnamedType: 460 /// ::= LocalVarID '=' 'type' type 461 bool LLParser::parseUnnamedType() { 462 LocTy TypeLoc = Lex.getLoc(); 463 unsigned TypeID = Lex.getUIntVal(); 464 Lex.Lex(); // eat LocalVarID; 465 466 if (parseToken(lltok::equal, "expected '=' after name") || 467 parseToken(lltok::kw_type, "expected 'type' after '='")) 468 return true; 469 470 Type *Result = nullptr; 471 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 472 return true; 473 474 if (!isa<StructType>(Result)) { 475 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 476 if (Entry.first) 477 return error(TypeLoc, "non-struct types may not be recursive"); 478 Entry.first = Result; 479 Entry.second = SMLoc(); 480 } 481 482 return false; 483 } 484 485 /// toplevelentity 486 /// ::= LocalVar '=' 'type' type 487 bool LLParser::parseNamedType() { 488 std::string Name = Lex.getStrVal(); 489 LocTy NameLoc = Lex.getLoc(); 490 Lex.Lex(); // eat LocalVar. 491 492 if (parseToken(lltok::equal, "expected '=' after name") || 493 parseToken(lltok::kw_type, "expected 'type' after name")) 494 return true; 495 496 Type *Result = nullptr; 497 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 498 return true; 499 500 if (!isa<StructType>(Result)) { 501 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 502 if (Entry.first) 503 return error(NameLoc, "non-struct types may not be recursive"); 504 Entry.first = Result; 505 Entry.second = SMLoc(); 506 } 507 508 return false; 509 } 510 511 /// toplevelentity 512 /// ::= 'declare' FunctionHeader 513 bool LLParser::parseDeclare() { 514 assert(Lex.getKind() == lltok::kw_declare); 515 Lex.Lex(); 516 517 std::vector<std::pair<unsigned, MDNode *>> MDs; 518 while (Lex.getKind() == lltok::MetadataVar) { 519 unsigned MDK; 520 MDNode *N; 521 if (parseMetadataAttachment(MDK, N)) 522 return true; 523 MDs.push_back({MDK, N}); 524 } 525 526 Function *F; 527 if (parseFunctionHeader(F, false)) 528 return true; 529 for (auto &MD : MDs) 530 F->addMetadata(MD.first, *MD.second); 531 return false; 532 } 533 534 /// toplevelentity 535 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 536 bool LLParser::parseDefine() { 537 assert(Lex.getKind() == lltok::kw_define); 538 Lex.Lex(); 539 540 Function *F; 541 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 542 parseFunctionBody(*F); 543 } 544 545 /// parseGlobalType 546 /// ::= 'constant' 547 /// ::= 'global' 548 bool LLParser::parseGlobalType(bool &IsConstant) { 549 if (Lex.getKind() == lltok::kw_constant) 550 IsConstant = true; 551 else if (Lex.getKind() == lltok::kw_global) 552 IsConstant = false; 553 else { 554 IsConstant = false; 555 return tokError("expected 'global' or 'constant'"); 556 } 557 Lex.Lex(); 558 return false; 559 } 560 561 bool LLParser::parseOptionalUnnamedAddr( 562 GlobalVariable::UnnamedAddr &UnnamedAddr) { 563 if (EatIfPresent(lltok::kw_unnamed_addr)) 564 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 565 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 566 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 567 else 568 UnnamedAddr = GlobalValue::UnnamedAddr::None; 569 return false; 570 } 571 572 /// parseUnnamedGlobal: 573 /// OptionalVisibility (ALIAS | IFUNC) ... 574 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 575 /// OptionalDLLStorageClass 576 /// ... -> global variable 577 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 578 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 579 /// OptionalVisibility 580 /// OptionalDLLStorageClass 581 /// ... -> global variable 582 bool LLParser::parseUnnamedGlobal() { 583 unsigned VarID = NumberedVals.size(); 584 std::string Name; 585 LocTy NameLoc = Lex.getLoc(); 586 587 // Handle the GlobalID form. 588 if (Lex.getKind() == lltok::GlobalID) { 589 if (Lex.getUIntVal() != VarID) 590 return error(Lex.getLoc(), 591 "variable expected to be numbered '%" + Twine(VarID) + "'"); 592 Lex.Lex(); // eat GlobalID; 593 594 if (parseToken(lltok::equal, "expected '=' after name")) 595 return true; 596 } 597 598 bool HasLinkage; 599 unsigned Linkage, Visibility, DLLStorageClass; 600 bool DSOLocal; 601 GlobalVariable::ThreadLocalMode TLM; 602 GlobalVariable::UnnamedAddr UnnamedAddr; 603 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 604 DSOLocal) || 605 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 606 return true; 607 608 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 609 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 610 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 611 612 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 613 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 614 } 615 616 /// parseNamedGlobal: 617 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 618 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 619 /// OptionalVisibility OptionalDLLStorageClass 620 /// ... -> global variable 621 bool LLParser::parseNamedGlobal() { 622 assert(Lex.getKind() == lltok::GlobalVar); 623 LocTy NameLoc = Lex.getLoc(); 624 std::string Name = Lex.getStrVal(); 625 Lex.Lex(); 626 627 bool HasLinkage; 628 unsigned Linkage, Visibility, DLLStorageClass; 629 bool DSOLocal; 630 GlobalVariable::ThreadLocalMode TLM; 631 GlobalVariable::UnnamedAddr UnnamedAddr; 632 if (parseToken(lltok::equal, "expected '=' in global variable") || 633 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 634 DSOLocal) || 635 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 636 return true; 637 638 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 639 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 640 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 641 642 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 643 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 644 } 645 646 bool LLParser::parseComdat() { 647 assert(Lex.getKind() == lltok::ComdatVar); 648 std::string Name = Lex.getStrVal(); 649 LocTy NameLoc = Lex.getLoc(); 650 Lex.Lex(); 651 652 if (parseToken(lltok::equal, "expected '=' here")) 653 return true; 654 655 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 656 return tokError("expected comdat type"); 657 658 Comdat::SelectionKind SK; 659 switch (Lex.getKind()) { 660 default: 661 return tokError("unknown selection kind"); 662 case lltok::kw_any: 663 SK = Comdat::Any; 664 break; 665 case lltok::kw_exactmatch: 666 SK = Comdat::ExactMatch; 667 break; 668 case lltok::kw_largest: 669 SK = Comdat::Largest; 670 break; 671 case lltok::kw_nodeduplicate: 672 SK = Comdat::NoDeduplicate; 673 break; 674 case lltok::kw_samesize: 675 SK = Comdat::SameSize; 676 break; 677 } 678 Lex.Lex(); 679 680 // See if the comdat was forward referenced, if so, use the comdat. 681 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 682 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 683 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 684 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 685 686 Comdat *C; 687 if (I != ComdatSymTab.end()) 688 C = &I->second; 689 else 690 C = M->getOrInsertComdat(Name); 691 C->setSelectionKind(SK); 692 693 return false; 694 } 695 696 // MDString: 697 // ::= '!' STRINGCONSTANT 698 bool LLParser::parseMDString(MDString *&Result) { 699 std::string Str; 700 if (parseStringConstant(Str)) 701 return true; 702 Result = MDString::get(Context, Str); 703 return false; 704 } 705 706 // MDNode: 707 // ::= '!' MDNodeNumber 708 bool LLParser::parseMDNodeID(MDNode *&Result) { 709 // !{ ..., !42, ... } 710 LocTy IDLoc = Lex.getLoc(); 711 unsigned MID = 0; 712 if (parseUInt32(MID)) 713 return true; 714 715 // If not a forward reference, just return it now. 716 if (NumberedMetadata.count(MID)) { 717 Result = NumberedMetadata[MID]; 718 return false; 719 } 720 721 // Otherwise, create MDNode forward reference. 722 auto &FwdRef = ForwardRefMDNodes[MID]; 723 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 724 725 Result = FwdRef.first.get(); 726 NumberedMetadata[MID].reset(Result); 727 return false; 728 } 729 730 /// parseNamedMetadata: 731 /// !foo = !{ !1, !2 } 732 bool LLParser::parseNamedMetadata() { 733 assert(Lex.getKind() == lltok::MetadataVar); 734 std::string Name = Lex.getStrVal(); 735 Lex.Lex(); 736 737 if (parseToken(lltok::equal, "expected '=' here") || 738 parseToken(lltok::exclaim, "Expected '!' here") || 739 parseToken(lltok::lbrace, "Expected '{' here")) 740 return true; 741 742 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 743 if (Lex.getKind() != lltok::rbrace) 744 do { 745 MDNode *N = nullptr; 746 // parse DIExpressions inline as a special case. They are still MDNodes, 747 // so they can still appear in named metadata. Remove this logic if they 748 // become plain Metadata. 749 if (Lex.getKind() == lltok::MetadataVar && 750 Lex.getStrVal() == "DIExpression") { 751 if (parseDIExpression(N, /*IsDistinct=*/false)) 752 return true; 753 // DIArgLists should only appear inline in a function, as they may 754 // contain LocalAsMetadata arguments which require a function context. 755 } else if (Lex.getKind() == lltok::MetadataVar && 756 Lex.getStrVal() == "DIArgList") { 757 return tokError("found DIArgList outside of function"); 758 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 759 parseMDNodeID(N)) { 760 return true; 761 } 762 NMD->addOperand(N); 763 } while (EatIfPresent(lltok::comma)); 764 765 return parseToken(lltok::rbrace, "expected end of metadata node"); 766 } 767 768 /// parseStandaloneMetadata: 769 /// !42 = !{...} 770 bool LLParser::parseStandaloneMetadata() { 771 assert(Lex.getKind() == lltok::exclaim); 772 Lex.Lex(); 773 unsigned MetadataID = 0; 774 775 MDNode *Init; 776 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 777 return true; 778 779 // Detect common error, from old metadata syntax. 780 if (Lex.getKind() == lltok::Type) 781 return tokError("unexpected type in metadata definition"); 782 783 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 784 if (Lex.getKind() == lltok::MetadataVar) { 785 if (parseSpecializedMDNode(Init, IsDistinct)) 786 return true; 787 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 788 parseMDTuple(Init, IsDistinct)) 789 return true; 790 791 // See if this was forward referenced, if so, handle it. 792 auto FI = ForwardRefMDNodes.find(MetadataID); 793 if (FI != ForwardRefMDNodes.end()) { 794 FI->second.first->replaceAllUsesWith(Init); 795 ForwardRefMDNodes.erase(FI); 796 797 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 798 } else { 799 if (NumberedMetadata.count(MetadataID)) 800 return tokError("Metadata id is already used"); 801 NumberedMetadata[MetadataID].reset(Init); 802 } 803 804 return false; 805 } 806 807 // Skips a single module summary entry. 808 bool LLParser::skipModuleSummaryEntry() { 809 // Each module summary entry consists of a tag for the entry 810 // type, followed by a colon, then the fields which may be surrounded by 811 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 812 // support is in place we will look for the tokens corresponding to the 813 // expected tags. 814 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 815 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 816 Lex.getKind() != lltok::kw_blockcount) 817 return tokError( 818 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 819 "start of summary entry"); 820 if (Lex.getKind() == lltok::kw_flags) 821 return parseSummaryIndexFlags(); 822 if (Lex.getKind() == lltok::kw_blockcount) 823 return parseBlockCount(); 824 Lex.Lex(); 825 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 826 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 827 return true; 828 // Now walk through the parenthesized entry, until the number of open 829 // parentheses goes back down to 0 (the first '(' was parsed above). 830 unsigned NumOpenParen = 1; 831 do { 832 switch (Lex.getKind()) { 833 case lltok::lparen: 834 NumOpenParen++; 835 break; 836 case lltok::rparen: 837 NumOpenParen--; 838 break; 839 case lltok::Eof: 840 return tokError("found end of file while parsing summary entry"); 841 default: 842 // Skip everything in between parentheses. 843 break; 844 } 845 Lex.Lex(); 846 } while (NumOpenParen > 0); 847 return false; 848 } 849 850 /// SummaryEntry 851 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 852 bool LLParser::parseSummaryEntry() { 853 assert(Lex.getKind() == lltok::SummaryID); 854 unsigned SummaryID = Lex.getUIntVal(); 855 856 // For summary entries, colons should be treated as distinct tokens, 857 // not an indication of the end of a label token. 858 Lex.setIgnoreColonInIdentifiers(true); 859 860 Lex.Lex(); 861 if (parseToken(lltok::equal, "expected '=' here")) 862 return true; 863 864 // If we don't have an index object, skip the summary entry. 865 if (!Index) 866 return skipModuleSummaryEntry(); 867 868 bool result = false; 869 switch (Lex.getKind()) { 870 case lltok::kw_gv: 871 result = parseGVEntry(SummaryID); 872 break; 873 case lltok::kw_module: 874 result = parseModuleEntry(SummaryID); 875 break; 876 case lltok::kw_typeid: 877 result = parseTypeIdEntry(SummaryID); 878 break; 879 case lltok::kw_typeidCompatibleVTable: 880 result = parseTypeIdCompatibleVtableEntry(SummaryID); 881 break; 882 case lltok::kw_flags: 883 result = parseSummaryIndexFlags(); 884 break; 885 case lltok::kw_blockcount: 886 result = parseBlockCount(); 887 break; 888 default: 889 result = error(Lex.getLoc(), "unexpected summary kind"); 890 break; 891 } 892 Lex.setIgnoreColonInIdentifiers(false); 893 return result; 894 } 895 896 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 897 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 898 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 899 } 900 901 // If there was an explicit dso_local, update GV. In the absence of an explicit 902 // dso_local we keep the default value. 903 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 904 if (DSOLocal) 905 GV.setDSOLocal(true); 906 } 907 908 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1, 909 Type *Ty2) { 910 std::string ErrString; 911 raw_string_ostream ErrOS(ErrString); 912 ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")"; 913 return ErrOS.str(); 914 } 915 916 /// parseIndirectSymbol: 917 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 918 /// OptionalVisibility OptionalDLLStorageClass 919 /// OptionalThreadLocal OptionalUnnamedAddr 920 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 921 /// 922 /// IndirectSymbol 923 /// ::= TypeAndValue 924 /// 925 /// IndirectSymbolAttr 926 /// ::= ',' 'partition' StringConstant 927 /// 928 /// Everything through OptionalUnnamedAddr has already been parsed. 929 /// 930 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 931 unsigned L, unsigned Visibility, 932 unsigned DLLStorageClass, bool DSOLocal, 933 GlobalVariable::ThreadLocalMode TLM, 934 GlobalVariable::UnnamedAddr UnnamedAddr) { 935 bool IsAlias; 936 if (Lex.getKind() == lltok::kw_alias) 937 IsAlias = true; 938 else if (Lex.getKind() == lltok::kw_ifunc) 939 IsAlias = false; 940 else 941 llvm_unreachable("Not an alias or ifunc!"); 942 Lex.Lex(); 943 944 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 945 946 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 947 return error(NameLoc, "invalid linkage type for alias"); 948 949 if (!isValidVisibilityForLinkage(Visibility, L)) 950 return error(NameLoc, 951 "symbol with local linkage must have default visibility"); 952 953 Type *Ty; 954 LocTy ExplicitTypeLoc = Lex.getLoc(); 955 if (parseType(Ty) || 956 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 957 return true; 958 959 Constant *Aliasee; 960 LocTy AliaseeLoc = Lex.getLoc(); 961 if (Lex.getKind() != lltok::kw_bitcast && 962 Lex.getKind() != lltok::kw_getelementptr && 963 Lex.getKind() != lltok::kw_addrspacecast && 964 Lex.getKind() != lltok::kw_inttoptr) { 965 if (parseGlobalTypeAndValue(Aliasee)) 966 return true; 967 } else { 968 // The bitcast dest type is not present, it is implied by the dest type. 969 ValID ID; 970 if (parseValID(ID, /*PFS=*/nullptr)) 971 return true; 972 if (ID.Kind != ValID::t_Constant) 973 return error(AliaseeLoc, "invalid aliasee"); 974 Aliasee = ID.ConstantVal; 975 } 976 977 Type *AliaseeType = Aliasee->getType(); 978 auto *PTy = dyn_cast<PointerType>(AliaseeType); 979 if (!PTy) 980 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 981 unsigned AddrSpace = PTy->getAddressSpace(); 982 983 if (IsAlias && !PTy->isOpaqueOrPointeeTypeMatches(Ty)) { 984 return error( 985 ExplicitTypeLoc, 986 typeComparisonErrorMessage( 987 "explicit pointee type doesn't match operand's pointee type", Ty, 988 PTy->getElementType())); 989 } 990 991 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) { 992 return error(ExplicitTypeLoc, 993 "explicit pointee type should be a function type"); 994 } 995 996 GlobalValue *GVal = nullptr; 997 998 // See if the alias was forward referenced, if so, prepare to replace the 999 // forward reference. 1000 if (!Name.empty()) { 1001 auto I = ForwardRefVals.find(Name); 1002 if (I != ForwardRefVals.end()) { 1003 GVal = I->second.first; 1004 ForwardRefVals.erase(Name); 1005 } else if (M->getNamedValue(Name)) { 1006 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1007 } 1008 } else { 1009 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1010 if (I != ForwardRefValIDs.end()) { 1011 GVal = I->second.first; 1012 ForwardRefValIDs.erase(I); 1013 } 1014 } 1015 1016 // Okay, create the alias but do not insert it into the module yet. 1017 std::unique_ptr<GlobalIndirectSymbol> GA; 1018 if (IsAlias) 1019 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1020 (GlobalValue::LinkageTypes)Linkage, Name, 1021 Aliasee, /*Parent*/ nullptr)); 1022 else 1023 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 1024 (GlobalValue::LinkageTypes)Linkage, Name, 1025 Aliasee, /*Parent*/ nullptr)); 1026 GA->setThreadLocalMode(TLM); 1027 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1028 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1029 GA->setUnnamedAddr(UnnamedAddr); 1030 maybeSetDSOLocal(DSOLocal, *GA); 1031 1032 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1033 // Now parse them if there are any. 1034 while (Lex.getKind() == lltok::comma) { 1035 Lex.Lex(); 1036 1037 if (Lex.getKind() == lltok::kw_partition) { 1038 Lex.Lex(); 1039 GA->setPartition(Lex.getStrVal()); 1040 if (parseToken(lltok::StringConstant, "expected partition string")) 1041 return true; 1042 } else { 1043 return tokError("unknown alias or ifunc property!"); 1044 } 1045 } 1046 1047 if (Name.empty()) 1048 NumberedVals.push_back(GA.get()); 1049 1050 if (GVal) { 1051 // Verify that types agree. 1052 if (GVal->getType() != GA->getType()) 1053 return error( 1054 ExplicitTypeLoc, 1055 "forward reference and definition of alias have different types"); 1056 1057 // If they agree, just RAUW the old value with the alias and remove the 1058 // forward ref info. 1059 GVal->replaceAllUsesWith(GA.get()); 1060 GVal->eraseFromParent(); 1061 } 1062 1063 // Insert into the module, we know its name won't collide now. 1064 if (IsAlias) 1065 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1066 else 1067 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1068 assert(GA->getName() == Name && "Should not be a name conflict!"); 1069 1070 // The module owns this now 1071 GA.release(); 1072 1073 return false; 1074 } 1075 1076 /// parseGlobal 1077 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1078 /// OptionalVisibility OptionalDLLStorageClass 1079 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1080 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1081 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1082 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1083 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1084 /// Const OptionalAttrs 1085 /// 1086 /// Everything up to and including OptionalUnnamedAddr has been parsed 1087 /// already. 1088 /// 1089 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1090 unsigned Linkage, bool HasLinkage, 1091 unsigned Visibility, unsigned DLLStorageClass, 1092 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1093 GlobalVariable::UnnamedAddr UnnamedAddr) { 1094 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1095 return error(NameLoc, 1096 "symbol with local linkage must have default visibility"); 1097 1098 unsigned AddrSpace; 1099 bool IsConstant, IsExternallyInitialized; 1100 LocTy IsExternallyInitializedLoc; 1101 LocTy TyLoc; 1102 1103 Type *Ty = nullptr; 1104 if (parseOptionalAddrSpace(AddrSpace) || 1105 parseOptionalToken(lltok::kw_externally_initialized, 1106 IsExternallyInitialized, 1107 &IsExternallyInitializedLoc) || 1108 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1109 return true; 1110 1111 // If the linkage is specified and is external, then no initializer is 1112 // present. 1113 Constant *Init = nullptr; 1114 if (!HasLinkage || 1115 !GlobalValue::isValidDeclarationLinkage( 1116 (GlobalValue::LinkageTypes)Linkage)) { 1117 if (parseGlobalValue(Ty, Init)) 1118 return true; 1119 } 1120 1121 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1122 return error(TyLoc, "invalid type for global variable"); 1123 1124 GlobalValue *GVal = nullptr; 1125 1126 // See if the global was forward referenced, if so, use the global. 1127 if (!Name.empty()) { 1128 auto I = ForwardRefVals.find(Name); 1129 if (I != ForwardRefVals.end()) { 1130 GVal = I->second.first; 1131 ForwardRefVals.erase(I); 1132 } else if (M->getNamedValue(Name)) { 1133 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1134 } 1135 } else { 1136 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1137 if (I != ForwardRefValIDs.end()) { 1138 GVal = I->second.first; 1139 ForwardRefValIDs.erase(I); 1140 } 1141 } 1142 1143 GlobalVariable *GV = new GlobalVariable( 1144 *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr, 1145 GlobalVariable::NotThreadLocal, AddrSpace); 1146 1147 if (Name.empty()) 1148 NumberedVals.push_back(GV); 1149 1150 // Set the parsed properties on the global. 1151 if (Init) 1152 GV->setInitializer(Init); 1153 GV->setConstant(IsConstant); 1154 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1155 maybeSetDSOLocal(DSOLocal, *GV); 1156 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1157 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1158 GV->setExternallyInitialized(IsExternallyInitialized); 1159 GV->setThreadLocalMode(TLM); 1160 GV->setUnnamedAddr(UnnamedAddr); 1161 1162 if (GVal) { 1163 if (!GVal->getType()->isOpaque() && GVal->getValueType() != Ty) 1164 return error( 1165 TyLoc, 1166 "forward reference and definition of global have different types"); 1167 1168 GVal->replaceAllUsesWith(GV); 1169 GVal->eraseFromParent(); 1170 } 1171 1172 // parse attributes on the global. 1173 while (Lex.getKind() == lltok::comma) { 1174 Lex.Lex(); 1175 1176 if (Lex.getKind() == lltok::kw_section) { 1177 Lex.Lex(); 1178 GV->setSection(Lex.getStrVal()); 1179 if (parseToken(lltok::StringConstant, "expected global section string")) 1180 return true; 1181 } else if (Lex.getKind() == lltok::kw_partition) { 1182 Lex.Lex(); 1183 GV->setPartition(Lex.getStrVal()); 1184 if (parseToken(lltok::StringConstant, "expected partition string")) 1185 return true; 1186 } else if (Lex.getKind() == lltok::kw_align) { 1187 MaybeAlign Alignment; 1188 if (parseOptionalAlignment(Alignment)) 1189 return true; 1190 GV->setAlignment(Alignment); 1191 } else if (Lex.getKind() == lltok::MetadataVar) { 1192 if (parseGlobalObjectMetadataAttachment(*GV)) 1193 return true; 1194 } else { 1195 Comdat *C; 1196 if (parseOptionalComdat(Name, C)) 1197 return true; 1198 if (C) 1199 GV->setComdat(C); 1200 else 1201 return tokError("unknown global variable property!"); 1202 } 1203 } 1204 1205 AttrBuilder Attrs; 1206 LocTy BuiltinLoc; 1207 std::vector<unsigned> FwdRefAttrGrps; 1208 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1209 return true; 1210 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1211 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1212 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1213 } 1214 1215 return false; 1216 } 1217 1218 /// parseUnnamedAttrGrp 1219 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1220 bool LLParser::parseUnnamedAttrGrp() { 1221 assert(Lex.getKind() == lltok::kw_attributes); 1222 LocTy AttrGrpLoc = Lex.getLoc(); 1223 Lex.Lex(); 1224 1225 if (Lex.getKind() != lltok::AttrGrpID) 1226 return tokError("expected attribute group id"); 1227 1228 unsigned VarID = Lex.getUIntVal(); 1229 std::vector<unsigned> unused; 1230 LocTy BuiltinLoc; 1231 Lex.Lex(); 1232 1233 if (parseToken(lltok::equal, "expected '=' here") || 1234 parseToken(lltok::lbrace, "expected '{' here") || 1235 parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1236 BuiltinLoc) || 1237 parseToken(lltok::rbrace, "expected end of attribute group")) 1238 return true; 1239 1240 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1241 return error(AttrGrpLoc, "attribute group has no attributes"); 1242 1243 return false; 1244 } 1245 1246 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) { 1247 switch (Kind) { 1248 #define GET_ATTR_NAMES 1249 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ 1250 case lltok::kw_##DISPLAY_NAME: \ 1251 return Attribute::ENUM_NAME; 1252 #include "llvm/IR/Attributes.inc" 1253 default: 1254 return Attribute::None; 1255 } 1256 } 1257 1258 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B, 1259 bool InAttrGroup) { 1260 if (Attribute::isTypeAttrKind(Attr)) 1261 return parseRequiredTypeAttr(B, Lex.getKind(), Attr); 1262 1263 switch (Attr) { 1264 case Attribute::Alignment: { 1265 MaybeAlign Alignment; 1266 if (InAttrGroup) { 1267 uint32_t Value = 0; 1268 Lex.Lex(); 1269 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1270 return true; 1271 Alignment = Align(Value); 1272 } else { 1273 if (parseOptionalAlignment(Alignment, true)) 1274 return true; 1275 } 1276 B.addAlignmentAttr(Alignment); 1277 return false; 1278 } 1279 case Attribute::StackAlignment: { 1280 unsigned Alignment; 1281 if (InAttrGroup) { 1282 Lex.Lex(); 1283 if (parseToken(lltok::equal, "expected '=' here") || 1284 parseUInt32(Alignment)) 1285 return true; 1286 } else { 1287 if (parseOptionalStackAlignment(Alignment)) 1288 return true; 1289 } 1290 B.addStackAlignmentAttr(Alignment); 1291 return false; 1292 } 1293 case Attribute::AllocSize: { 1294 unsigned ElemSizeArg; 1295 Optional<unsigned> NumElemsArg; 1296 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1297 return true; 1298 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1299 return false; 1300 } 1301 case Attribute::VScaleRange: { 1302 unsigned MinValue, MaxValue; 1303 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1304 return true; 1305 B.addVScaleRangeAttr(MinValue, MaxValue); 1306 return false; 1307 } 1308 case Attribute::Dereferenceable: { 1309 uint64_t Bytes; 1310 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1311 return true; 1312 B.addDereferenceableAttr(Bytes); 1313 return false; 1314 } 1315 case Attribute::DereferenceableOrNull: { 1316 uint64_t Bytes; 1317 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1318 return true; 1319 B.addDereferenceableOrNullAttr(Bytes); 1320 return false; 1321 } 1322 default: 1323 B.addAttribute(Attr); 1324 Lex.Lex(); 1325 return false; 1326 } 1327 } 1328 1329 /// parseFnAttributeValuePairs 1330 /// ::= <attr> | <attr> '=' <value> 1331 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1332 std::vector<unsigned> &FwdRefAttrGrps, 1333 bool InAttrGrp, LocTy &BuiltinLoc) { 1334 bool HaveError = false; 1335 1336 B.clear(); 1337 1338 while (true) { 1339 lltok::Kind Token = Lex.getKind(); 1340 if (Token == lltok::rbrace) 1341 return HaveError; // Finished. 1342 1343 if (Token == lltok::StringConstant) { 1344 if (parseStringAttribute(B)) 1345 return true; 1346 continue; 1347 } 1348 1349 if (Token == lltok::AttrGrpID) { 1350 // Allow a function to reference an attribute group: 1351 // 1352 // define void @foo() #1 { ... } 1353 if (InAttrGrp) { 1354 HaveError |= error( 1355 Lex.getLoc(), 1356 "cannot have an attribute group reference in an attribute group"); 1357 } else { 1358 // Save the reference to the attribute group. We'll fill it in later. 1359 FwdRefAttrGrps.push_back(Lex.getUIntVal()); 1360 } 1361 Lex.Lex(); 1362 continue; 1363 } 1364 1365 SMLoc Loc = Lex.getLoc(); 1366 if (Token == lltok::kw_builtin) 1367 BuiltinLoc = Loc; 1368 1369 Attribute::AttrKind Attr = tokenToAttribute(Token); 1370 if (Attr == Attribute::None) { 1371 if (!InAttrGrp) 1372 return HaveError; 1373 return error(Lex.getLoc(), "unterminated attribute group"); 1374 } 1375 1376 if (parseEnumAttribute(Attr, B, InAttrGrp)) 1377 return true; 1378 1379 // As a hack, we allow function alignment to be initially parsed as an 1380 // attribute on a function declaration/definition or added to an attribute 1381 // group and later moved to the alignment field. 1382 if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment) 1383 HaveError |= error(Loc, "this attribute does not apply to functions"); 1384 } 1385 } 1386 1387 //===----------------------------------------------------------------------===// 1388 // GlobalValue Reference/Resolution Routines. 1389 //===----------------------------------------------------------------------===// 1390 1391 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) { 1392 // For opaque pointers, the used global type does not matter. We will later 1393 // RAUW it with a global/function of the correct type. 1394 if (PTy->isOpaque()) 1395 return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false, 1396 GlobalValue::ExternalWeakLinkage, nullptr, "", 1397 nullptr, GlobalVariable::NotThreadLocal, 1398 PTy->getAddressSpace()); 1399 1400 if (auto *FT = dyn_cast<FunctionType>(PTy->getPointerElementType())) 1401 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1402 PTy->getAddressSpace(), "", M); 1403 else 1404 return new GlobalVariable(*M, PTy->getPointerElementType(), false, 1405 GlobalValue::ExternalWeakLinkage, nullptr, "", 1406 nullptr, GlobalVariable::NotThreadLocal, 1407 PTy->getAddressSpace()); 1408 } 1409 1410 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1411 Value *Val, bool IsCall) { 1412 Type *ValTy = Val->getType(); 1413 if (ValTy == Ty) 1414 return Val; 1415 // For calls, we also allow opaque pointers. 1416 if (IsCall && ValTy == PointerType::get(Ty->getContext(), 1417 Ty->getPointerAddressSpace())) 1418 return Val; 1419 if (Ty->isLabelTy()) 1420 error(Loc, "'" + Name + "' is not a basic block"); 1421 else 1422 error(Loc, "'" + Name + "' defined with type '" + 1423 getTypeString(Val->getType()) + "' but expected '" + 1424 getTypeString(Ty) + "'"); 1425 return nullptr; 1426 } 1427 1428 /// getGlobalVal - Get a value with the specified name or ID, creating a 1429 /// forward reference record if needed. This can return null if the value 1430 /// exists but does not have the right type. 1431 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1432 LocTy Loc, bool IsCall) { 1433 PointerType *PTy = dyn_cast<PointerType>(Ty); 1434 if (!PTy) { 1435 error(Loc, "global variable reference must have pointer type"); 1436 return nullptr; 1437 } 1438 1439 // Look this name up in the normal function symbol table. 1440 GlobalValue *Val = 1441 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1442 1443 // If this is a forward reference for the value, see if we already created a 1444 // forward ref record. 1445 if (!Val) { 1446 auto I = ForwardRefVals.find(Name); 1447 if (I != ForwardRefVals.end()) 1448 Val = I->second.first; 1449 } 1450 1451 // If we have the value in the symbol table or fwd-ref table, return it. 1452 if (Val) 1453 return cast_or_null<GlobalValue>( 1454 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1455 1456 // Otherwise, create a new forward reference for this value and remember it. 1457 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1458 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1459 return FwdVal; 1460 } 1461 1462 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1463 bool IsCall) { 1464 PointerType *PTy = dyn_cast<PointerType>(Ty); 1465 if (!PTy) { 1466 error(Loc, "global variable reference must have pointer type"); 1467 return nullptr; 1468 } 1469 1470 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1471 1472 // If this is a forward reference for the value, see if we already created a 1473 // forward ref record. 1474 if (!Val) { 1475 auto I = ForwardRefValIDs.find(ID); 1476 if (I != ForwardRefValIDs.end()) 1477 Val = I->second.first; 1478 } 1479 1480 // If we have the value in the symbol table or fwd-ref table, return it. 1481 if (Val) 1482 return cast_or_null<GlobalValue>( 1483 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1484 1485 // Otherwise, create a new forward reference for this value and remember it. 1486 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1487 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1488 return FwdVal; 1489 } 1490 1491 //===----------------------------------------------------------------------===// 1492 // Comdat Reference/Resolution Routines. 1493 //===----------------------------------------------------------------------===// 1494 1495 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1496 // Look this name up in the comdat symbol table. 1497 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1498 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1499 if (I != ComdatSymTab.end()) 1500 return &I->second; 1501 1502 // Otherwise, create a new forward reference for this value and remember it. 1503 Comdat *C = M->getOrInsertComdat(Name); 1504 ForwardRefComdats[Name] = Loc; 1505 return C; 1506 } 1507 1508 //===----------------------------------------------------------------------===// 1509 // Helper Routines. 1510 //===----------------------------------------------------------------------===// 1511 1512 /// parseToken - If the current token has the specified kind, eat it and return 1513 /// success. Otherwise, emit the specified error and return failure. 1514 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1515 if (Lex.getKind() != T) 1516 return tokError(ErrMsg); 1517 Lex.Lex(); 1518 return false; 1519 } 1520 1521 /// parseStringConstant 1522 /// ::= StringConstant 1523 bool LLParser::parseStringConstant(std::string &Result) { 1524 if (Lex.getKind() != lltok::StringConstant) 1525 return tokError("expected string constant"); 1526 Result = Lex.getStrVal(); 1527 Lex.Lex(); 1528 return false; 1529 } 1530 1531 /// parseUInt32 1532 /// ::= uint32 1533 bool LLParser::parseUInt32(uint32_t &Val) { 1534 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1535 return tokError("expected integer"); 1536 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1537 if (Val64 != unsigned(Val64)) 1538 return tokError("expected 32-bit integer (too large)"); 1539 Val = Val64; 1540 Lex.Lex(); 1541 return false; 1542 } 1543 1544 /// parseUInt64 1545 /// ::= uint64 1546 bool LLParser::parseUInt64(uint64_t &Val) { 1547 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1548 return tokError("expected integer"); 1549 Val = Lex.getAPSIntVal().getLimitedValue(); 1550 Lex.Lex(); 1551 return false; 1552 } 1553 1554 /// parseTLSModel 1555 /// := 'localdynamic' 1556 /// := 'initialexec' 1557 /// := 'localexec' 1558 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1559 switch (Lex.getKind()) { 1560 default: 1561 return tokError("expected localdynamic, initialexec or localexec"); 1562 case lltok::kw_localdynamic: 1563 TLM = GlobalVariable::LocalDynamicTLSModel; 1564 break; 1565 case lltok::kw_initialexec: 1566 TLM = GlobalVariable::InitialExecTLSModel; 1567 break; 1568 case lltok::kw_localexec: 1569 TLM = GlobalVariable::LocalExecTLSModel; 1570 break; 1571 } 1572 1573 Lex.Lex(); 1574 return false; 1575 } 1576 1577 /// parseOptionalThreadLocal 1578 /// := /*empty*/ 1579 /// := 'thread_local' 1580 /// := 'thread_local' '(' tlsmodel ')' 1581 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1582 TLM = GlobalVariable::NotThreadLocal; 1583 if (!EatIfPresent(lltok::kw_thread_local)) 1584 return false; 1585 1586 TLM = GlobalVariable::GeneralDynamicTLSModel; 1587 if (Lex.getKind() == lltok::lparen) { 1588 Lex.Lex(); 1589 return parseTLSModel(TLM) || 1590 parseToken(lltok::rparen, "expected ')' after thread local model"); 1591 } 1592 return false; 1593 } 1594 1595 /// parseOptionalAddrSpace 1596 /// := /*empty*/ 1597 /// := 'addrspace' '(' uint32 ')' 1598 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1599 AddrSpace = DefaultAS; 1600 if (!EatIfPresent(lltok::kw_addrspace)) 1601 return false; 1602 return parseToken(lltok::lparen, "expected '(' in address space") || 1603 parseUInt32(AddrSpace) || 1604 parseToken(lltok::rparen, "expected ')' in address space"); 1605 } 1606 1607 /// parseStringAttribute 1608 /// := StringConstant 1609 /// := StringConstant '=' StringConstant 1610 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1611 std::string Attr = Lex.getStrVal(); 1612 Lex.Lex(); 1613 std::string Val; 1614 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1615 return true; 1616 B.addAttribute(Attr, Val); 1617 return false; 1618 } 1619 1620 /// Parse a potentially empty list of parameter or return attributes. 1621 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) { 1622 bool HaveError = false; 1623 1624 B.clear(); 1625 1626 while (true) { 1627 lltok::Kind Token = Lex.getKind(); 1628 if (Token == lltok::StringConstant) { 1629 if (parseStringAttribute(B)) 1630 return true; 1631 continue; 1632 } 1633 1634 SMLoc Loc = Lex.getLoc(); 1635 Attribute::AttrKind Attr = tokenToAttribute(Token); 1636 if (Attr == Attribute::None) 1637 return HaveError; 1638 1639 if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false)) 1640 return true; 1641 1642 if (IsParam && !Attribute::canUseAsParamAttr(Attr)) 1643 HaveError |= error(Loc, "this attribute does not apply to parameters"); 1644 if (!IsParam && !Attribute::canUseAsRetAttr(Attr)) 1645 HaveError |= error(Loc, "this attribute does not apply to return values"); 1646 } 1647 } 1648 1649 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1650 HasLinkage = true; 1651 switch (Kind) { 1652 default: 1653 HasLinkage = false; 1654 return GlobalValue::ExternalLinkage; 1655 case lltok::kw_private: 1656 return GlobalValue::PrivateLinkage; 1657 case lltok::kw_internal: 1658 return GlobalValue::InternalLinkage; 1659 case lltok::kw_weak: 1660 return GlobalValue::WeakAnyLinkage; 1661 case lltok::kw_weak_odr: 1662 return GlobalValue::WeakODRLinkage; 1663 case lltok::kw_linkonce: 1664 return GlobalValue::LinkOnceAnyLinkage; 1665 case lltok::kw_linkonce_odr: 1666 return GlobalValue::LinkOnceODRLinkage; 1667 case lltok::kw_available_externally: 1668 return GlobalValue::AvailableExternallyLinkage; 1669 case lltok::kw_appending: 1670 return GlobalValue::AppendingLinkage; 1671 case lltok::kw_common: 1672 return GlobalValue::CommonLinkage; 1673 case lltok::kw_extern_weak: 1674 return GlobalValue::ExternalWeakLinkage; 1675 case lltok::kw_external: 1676 return GlobalValue::ExternalLinkage; 1677 } 1678 } 1679 1680 /// parseOptionalLinkage 1681 /// ::= /*empty*/ 1682 /// ::= 'private' 1683 /// ::= 'internal' 1684 /// ::= 'weak' 1685 /// ::= 'weak_odr' 1686 /// ::= 'linkonce' 1687 /// ::= 'linkonce_odr' 1688 /// ::= 'available_externally' 1689 /// ::= 'appending' 1690 /// ::= 'common' 1691 /// ::= 'extern_weak' 1692 /// ::= 'external' 1693 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1694 unsigned &Visibility, 1695 unsigned &DLLStorageClass, bool &DSOLocal) { 1696 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1697 if (HasLinkage) 1698 Lex.Lex(); 1699 parseOptionalDSOLocal(DSOLocal); 1700 parseOptionalVisibility(Visibility); 1701 parseOptionalDLLStorageClass(DLLStorageClass); 1702 1703 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1704 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1705 } 1706 1707 return false; 1708 } 1709 1710 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 1711 switch (Lex.getKind()) { 1712 default: 1713 DSOLocal = false; 1714 break; 1715 case lltok::kw_dso_local: 1716 DSOLocal = true; 1717 Lex.Lex(); 1718 break; 1719 case lltok::kw_dso_preemptable: 1720 DSOLocal = false; 1721 Lex.Lex(); 1722 break; 1723 } 1724 } 1725 1726 /// parseOptionalVisibility 1727 /// ::= /*empty*/ 1728 /// ::= 'default' 1729 /// ::= 'hidden' 1730 /// ::= 'protected' 1731 /// 1732 void LLParser::parseOptionalVisibility(unsigned &Res) { 1733 switch (Lex.getKind()) { 1734 default: 1735 Res = GlobalValue::DefaultVisibility; 1736 return; 1737 case lltok::kw_default: 1738 Res = GlobalValue::DefaultVisibility; 1739 break; 1740 case lltok::kw_hidden: 1741 Res = GlobalValue::HiddenVisibility; 1742 break; 1743 case lltok::kw_protected: 1744 Res = GlobalValue::ProtectedVisibility; 1745 break; 1746 } 1747 Lex.Lex(); 1748 } 1749 1750 /// parseOptionalDLLStorageClass 1751 /// ::= /*empty*/ 1752 /// ::= 'dllimport' 1753 /// ::= 'dllexport' 1754 /// 1755 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 1756 switch (Lex.getKind()) { 1757 default: 1758 Res = GlobalValue::DefaultStorageClass; 1759 return; 1760 case lltok::kw_dllimport: 1761 Res = GlobalValue::DLLImportStorageClass; 1762 break; 1763 case lltok::kw_dllexport: 1764 Res = GlobalValue::DLLExportStorageClass; 1765 break; 1766 } 1767 Lex.Lex(); 1768 } 1769 1770 /// parseOptionalCallingConv 1771 /// ::= /*empty*/ 1772 /// ::= 'ccc' 1773 /// ::= 'fastcc' 1774 /// ::= 'intel_ocl_bicc' 1775 /// ::= 'coldcc' 1776 /// ::= 'cfguard_checkcc' 1777 /// ::= 'x86_stdcallcc' 1778 /// ::= 'x86_fastcallcc' 1779 /// ::= 'x86_thiscallcc' 1780 /// ::= 'x86_vectorcallcc' 1781 /// ::= 'arm_apcscc' 1782 /// ::= 'arm_aapcscc' 1783 /// ::= 'arm_aapcs_vfpcc' 1784 /// ::= 'aarch64_vector_pcs' 1785 /// ::= 'aarch64_sve_vector_pcs' 1786 /// ::= 'msp430_intrcc' 1787 /// ::= 'avr_intrcc' 1788 /// ::= 'avr_signalcc' 1789 /// ::= 'ptx_kernel' 1790 /// ::= 'ptx_device' 1791 /// ::= 'spir_func' 1792 /// ::= 'spir_kernel' 1793 /// ::= 'x86_64_sysvcc' 1794 /// ::= 'win64cc' 1795 /// ::= 'webkit_jscc' 1796 /// ::= 'anyregcc' 1797 /// ::= 'preserve_mostcc' 1798 /// ::= 'preserve_allcc' 1799 /// ::= 'ghccc' 1800 /// ::= 'swiftcc' 1801 /// ::= 'swifttailcc' 1802 /// ::= 'x86_intrcc' 1803 /// ::= 'hhvmcc' 1804 /// ::= 'hhvm_ccc' 1805 /// ::= 'cxx_fast_tlscc' 1806 /// ::= 'amdgpu_vs' 1807 /// ::= 'amdgpu_ls' 1808 /// ::= 'amdgpu_hs' 1809 /// ::= 'amdgpu_es' 1810 /// ::= 'amdgpu_gs' 1811 /// ::= 'amdgpu_ps' 1812 /// ::= 'amdgpu_cs' 1813 /// ::= 'amdgpu_kernel' 1814 /// ::= 'tailcc' 1815 /// ::= 'cc' UINT 1816 /// 1817 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 1818 switch (Lex.getKind()) { 1819 default: CC = CallingConv::C; return false; 1820 case lltok::kw_ccc: CC = CallingConv::C; break; 1821 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1822 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1823 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 1824 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1825 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1826 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1827 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1828 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1829 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1830 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1831 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1832 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1833 case lltok::kw_aarch64_sve_vector_pcs: 1834 CC = CallingConv::AArch64_SVE_VectorCall; 1835 break; 1836 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1837 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1838 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1839 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1840 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1841 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1842 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1843 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1844 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1845 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1846 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1847 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1848 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1849 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1850 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1851 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1852 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; 1853 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1854 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1855 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1856 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1857 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1858 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 1859 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1860 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1861 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1862 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1863 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1864 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1865 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1866 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 1867 case lltok::kw_cc: { 1868 Lex.Lex(); 1869 return parseUInt32(CC); 1870 } 1871 } 1872 1873 Lex.Lex(); 1874 return false; 1875 } 1876 1877 /// parseMetadataAttachment 1878 /// ::= !dbg !42 1879 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1880 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1881 1882 std::string Name = Lex.getStrVal(); 1883 Kind = M->getMDKindID(Name); 1884 Lex.Lex(); 1885 1886 return parseMDNode(MD); 1887 } 1888 1889 /// parseInstructionMetadata 1890 /// ::= !dbg !42 (',' !dbg !57)* 1891 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 1892 do { 1893 if (Lex.getKind() != lltok::MetadataVar) 1894 return tokError("expected metadata after comma"); 1895 1896 unsigned MDK; 1897 MDNode *N; 1898 if (parseMetadataAttachment(MDK, N)) 1899 return true; 1900 1901 Inst.setMetadata(MDK, N); 1902 if (MDK == LLVMContext::MD_tbaa) 1903 InstsWithTBAATag.push_back(&Inst); 1904 1905 // If this is the end of the list, we're done. 1906 } while (EatIfPresent(lltok::comma)); 1907 return false; 1908 } 1909 1910 /// parseGlobalObjectMetadataAttachment 1911 /// ::= !dbg !57 1912 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1913 unsigned MDK; 1914 MDNode *N; 1915 if (parseMetadataAttachment(MDK, N)) 1916 return true; 1917 1918 GO.addMetadata(MDK, *N); 1919 return false; 1920 } 1921 1922 /// parseOptionalFunctionMetadata 1923 /// ::= (!dbg !57)* 1924 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 1925 while (Lex.getKind() == lltok::MetadataVar) 1926 if (parseGlobalObjectMetadataAttachment(F)) 1927 return true; 1928 return false; 1929 } 1930 1931 /// parseOptionalAlignment 1932 /// ::= /* empty */ 1933 /// ::= 'align' 4 1934 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 1935 Alignment = None; 1936 if (!EatIfPresent(lltok::kw_align)) 1937 return false; 1938 LocTy AlignLoc = Lex.getLoc(); 1939 uint32_t Value = 0; 1940 1941 LocTy ParenLoc = Lex.getLoc(); 1942 bool HaveParens = false; 1943 if (AllowParens) { 1944 if (EatIfPresent(lltok::lparen)) 1945 HaveParens = true; 1946 } 1947 1948 if (parseUInt32(Value)) 1949 return true; 1950 1951 if (HaveParens && !EatIfPresent(lltok::rparen)) 1952 return error(ParenLoc, "expected ')'"); 1953 1954 if (!isPowerOf2_32(Value)) 1955 return error(AlignLoc, "alignment is not a power of two"); 1956 if (Value > Value::MaximumAlignment) 1957 return error(AlignLoc, "huge alignments are not supported yet"); 1958 Alignment = Align(Value); 1959 return false; 1960 } 1961 1962 /// parseOptionalDerefAttrBytes 1963 /// ::= /* empty */ 1964 /// ::= AttrKind '(' 4 ')' 1965 /// 1966 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1967 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1968 uint64_t &Bytes) { 1969 assert((AttrKind == lltok::kw_dereferenceable || 1970 AttrKind == lltok::kw_dereferenceable_or_null) && 1971 "contract!"); 1972 1973 Bytes = 0; 1974 if (!EatIfPresent(AttrKind)) 1975 return false; 1976 LocTy ParenLoc = Lex.getLoc(); 1977 if (!EatIfPresent(lltok::lparen)) 1978 return error(ParenLoc, "expected '('"); 1979 LocTy DerefLoc = Lex.getLoc(); 1980 if (parseUInt64(Bytes)) 1981 return true; 1982 ParenLoc = Lex.getLoc(); 1983 if (!EatIfPresent(lltok::rparen)) 1984 return error(ParenLoc, "expected ')'"); 1985 if (!Bytes) 1986 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 1987 return false; 1988 } 1989 1990 /// parseOptionalCommaAlign 1991 /// ::= 1992 /// ::= ',' align 4 1993 /// 1994 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1995 /// end. 1996 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 1997 bool &AteExtraComma) { 1998 AteExtraComma = false; 1999 while (EatIfPresent(lltok::comma)) { 2000 // Metadata at the end is an early exit. 2001 if (Lex.getKind() == lltok::MetadataVar) { 2002 AteExtraComma = true; 2003 return false; 2004 } 2005 2006 if (Lex.getKind() != lltok::kw_align) 2007 return error(Lex.getLoc(), "expected metadata or 'align'"); 2008 2009 if (parseOptionalAlignment(Alignment)) 2010 return true; 2011 } 2012 2013 return false; 2014 } 2015 2016 /// parseOptionalCommaAddrSpace 2017 /// ::= 2018 /// ::= ',' addrspace(1) 2019 /// 2020 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2021 /// end. 2022 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2023 bool &AteExtraComma) { 2024 AteExtraComma = false; 2025 while (EatIfPresent(lltok::comma)) { 2026 // Metadata at the end is an early exit. 2027 if (Lex.getKind() == lltok::MetadataVar) { 2028 AteExtraComma = true; 2029 return false; 2030 } 2031 2032 Loc = Lex.getLoc(); 2033 if (Lex.getKind() != lltok::kw_addrspace) 2034 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2035 2036 if (parseOptionalAddrSpace(AddrSpace)) 2037 return true; 2038 } 2039 2040 return false; 2041 } 2042 2043 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2044 Optional<unsigned> &HowManyArg) { 2045 Lex.Lex(); 2046 2047 auto StartParen = Lex.getLoc(); 2048 if (!EatIfPresent(lltok::lparen)) 2049 return error(StartParen, "expected '('"); 2050 2051 if (parseUInt32(BaseSizeArg)) 2052 return true; 2053 2054 if (EatIfPresent(lltok::comma)) { 2055 auto HowManyAt = Lex.getLoc(); 2056 unsigned HowMany; 2057 if (parseUInt32(HowMany)) 2058 return true; 2059 if (HowMany == BaseSizeArg) 2060 return error(HowManyAt, 2061 "'allocsize' indices can't refer to the same parameter"); 2062 HowManyArg = HowMany; 2063 } else 2064 HowManyArg = None; 2065 2066 auto EndParen = Lex.getLoc(); 2067 if (!EatIfPresent(lltok::rparen)) 2068 return error(EndParen, "expected ')'"); 2069 return false; 2070 } 2071 2072 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2073 unsigned &MaxValue) { 2074 Lex.Lex(); 2075 2076 auto StartParen = Lex.getLoc(); 2077 if (!EatIfPresent(lltok::lparen)) 2078 return error(StartParen, "expected '('"); 2079 2080 if (parseUInt32(MinValue)) 2081 return true; 2082 2083 if (EatIfPresent(lltok::comma)) { 2084 if (parseUInt32(MaxValue)) 2085 return true; 2086 } else 2087 MaxValue = MinValue; 2088 2089 auto EndParen = Lex.getLoc(); 2090 if (!EatIfPresent(lltok::rparen)) 2091 return error(EndParen, "expected ')'"); 2092 return false; 2093 } 2094 2095 /// parseScopeAndOrdering 2096 /// if isAtomic: ::= SyncScope? AtomicOrdering 2097 /// else: ::= 2098 /// 2099 /// This sets Scope and Ordering to the parsed values. 2100 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2101 AtomicOrdering &Ordering) { 2102 if (!IsAtomic) 2103 return false; 2104 2105 return parseScope(SSID) || parseOrdering(Ordering); 2106 } 2107 2108 /// parseScope 2109 /// ::= syncscope("singlethread" | "<target scope>")? 2110 /// 2111 /// This sets synchronization scope ID to the ID of the parsed value. 2112 bool LLParser::parseScope(SyncScope::ID &SSID) { 2113 SSID = SyncScope::System; 2114 if (EatIfPresent(lltok::kw_syncscope)) { 2115 auto StartParenAt = Lex.getLoc(); 2116 if (!EatIfPresent(lltok::lparen)) 2117 return error(StartParenAt, "Expected '(' in syncscope"); 2118 2119 std::string SSN; 2120 auto SSNAt = Lex.getLoc(); 2121 if (parseStringConstant(SSN)) 2122 return error(SSNAt, "Expected synchronization scope name"); 2123 2124 auto EndParenAt = Lex.getLoc(); 2125 if (!EatIfPresent(lltok::rparen)) 2126 return error(EndParenAt, "Expected ')' in syncscope"); 2127 2128 SSID = Context.getOrInsertSyncScopeID(SSN); 2129 } 2130 2131 return false; 2132 } 2133 2134 /// parseOrdering 2135 /// ::= AtomicOrdering 2136 /// 2137 /// This sets Ordering to the parsed value. 2138 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2139 switch (Lex.getKind()) { 2140 default: 2141 return tokError("Expected ordering on atomic instruction"); 2142 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2143 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2144 // Not specified yet: 2145 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2146 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2147 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2148 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2149 case lltok::kw_seq_cst: 2150 Ordering = AtomicOrdering::SequentiallyConsistent; 2151 break; 2152 } 2153 Lex.Lex(); 2154 return false; 2155 } 2156 2157 /// parseOptionalStackAlignment 2158 /// ::= /* empty */ 2159 /// ::= 'alignstack' '(' 4 ')' 2160 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2161 Alignment = 0; 2162 if (!EatIfPresent(lltok::kw_alignstack)) 2163 return false; 2164 LocTy ParenLoc = Lex.getLoc(); 2165 if (!EatIfPresent(lltok::lparen)) 2166 return error(ParenLoc, "expected '('"); 2167 LocTy AlignLoc = Lex.getLoc(); 2168 if (parseUInt32(Alignment)) 2169 return true; 2170 ParenLoc = Lex.getLoc(); 2171 if (!EatIfPresent(lltok::rparen)) 2172 return error(ParenLoc, "expected ')'"); 2173 if (!isPowerOf2_32(Alignment)) 2174 return error(AlignLoc, "stack alignment is not a power of two"); 2175 return false; 2176 } 2177 2178 /// parseIndexList - This parses the index list for an insert/extractvalue 2179 /// instruction. This sets AteExtraComma in the case where we eat an extra 2180 /// comma at the end of the line and find that it is followed by metadata. 2181 /// Clients that don't allow metadata can call the version of this function that 2182 /// only takes one argument. 2183 /// 2184 /// parseIndexList 2185 /// ::= (',' uint32)+ 2186 /// 2187 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2188 bool &AteExtraComma) { 2189 AteExtraComma = false; 2190 2191 if (Lex.getKind() != lltok::comma) 2192 return tokError("expected ',' as start of index list"); 2193 2194 while (EatIfPresent(lltok::comma)) { 2195 if (Lex.getKind() == lltok::MetadataVar) { 2196 if (Indices.empty()) 2197 return tokError("expected index"); 2198 AteExtraComma = true; 2199 return false; 2200 } 2201 unsigned Idx = 0; 2202 if (parseUInt32(Idx)) 2203 return true; 2204 Indices.push_back(Idx); 2205 } 2206 2207 return false; 2208 } 2209 2210 //===----------------------------------------------------------------------===// 2211 // Type Parsing. 2212 //===----------------------------------------------------------------------===// 2213 2214 /// parseType - parse a type. 2215 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2216 SMLoc TypeLoc = Lex.getLoc(); 2217 switch (Lex.getKind()) { 2218 default: 2219 return tokError(Msg); 2220 case lltok::Type: 2221 // Type ::= 'float' | 'void' (etc) 2222 Result = Lex.getTyVal(); 2223 Lex.Lex(); 2224 break; 2225 case lltok::lbrace: 2226 // Type ::= StructType 2227 if (parseAnonStructType(Result, false)) 2228 return true; 2229 break; 2230 case lltok::lsquare: 2231 // Type ::= '[' ... ']' 2232 Lex.Lex(); // eat the lsquare. 2233 if (parseArrayVectorType(Result, false)) 2234 return true; 2235 break; 2236 case lltok::less: // Either vector or packed struct. 2237 // Type ::= '<' ... '>' 2238 Lex.Lex(); 2239 if (Lex.getKind() == lltok::lbrace) { 2240 if (parseAnonStructType(Result, true) || 2241 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2242 return true; 2243 } else if (parseArrayVectorType(Result, true)) 2244 return true; 2245 break; 2246 case lltok::LocalVar: { 2247 // Type ::= %foo 2248 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2249 2250 // If the type hasn't been defined yet, create a forward definition and 2251 // remember where that forward def'n was seen (in case it never is defined). 2252 if (!Entry.first) { 2253 Entry.first = StructType::create(Context, Lex.getStrVal()); 2254 Entry.second = Lex.getLoc(); 2255 } 2256 Result = Entry.first; 2257 Lex.Lex(); 2258 break; 2259 } 2260 2261 case lltok::LocalVarID: { 2262 // Type ::= %4 2263 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2264 2265 // If the type hasn't been defined yet, create a forward definition and 2266 // remember where that forward def'n was seen (in case it never is defined). 2267 if (!Entry.first) { 2268 Entry.first = StructType::create(Context); 2269 Entry.second = Lex.getLoc(); 2270 } 2271 Result = Entry.first; 2272 Lex.Lex(); 2273 break; 2274 } 2275 } 2276 2277 // Handle (explicit) opaque pointer types (not --force-opaque-pointers). 2278 // 2279 // Type ::= ptr ('addrspace' '(' uint32 ')')? 2280 if (Result->isOpaquePointerTy()) { 2281 unsigned AddrSpace; 2282 if (parseOptionalAddrSpace(AddrSpace)) 2283 return true; 2284 Result = PointerType::get(getContext(), AddrSpace); 2285 2286 // Give a nice error for 'ptr*'. 2287 if (Lex.getKind() == lltok::star) 2288 return tokError("ptr* is invalid - use ptr instead"); 2289 2290 // Fall through to parsing the type suffixes only if this 'ptr' is a 2291 // function return. Otherwise, return success, implicitly rejecting other 2292 // suffixes. 2293 if (Lex.getKind() != lltok::lparen) 2294 return false; 2295 } 2296 2297 // parse the type suffixes. 2298 while (true) { 2299 switch (Lex.getKind()) { 2300 // End of type. 2301 default: 2302 if (!AllowVoid && Result->isVoidTy()) 2303 return error(TypeLoc, "void type only allowed for function results"); 2304 return false; 2305 2306 // Type ::= Type '*' 2307 case lltok::star: 2308 if (Result->isLabelTy()) 2309 return tokError("basic block pointers are invalid"); 2310 if (Result->isVoidTy()) 2311 return tokError("pointers to void are invalid - use i8* instead"); 2312 if (!PointerType::isValidElementType(Result)) 2313 return tokError("pointer to this type is invalid"); 2314 Result = PointerType::getUnqual(Result); 2315 Lex.Lex(); 2316 break; 2317 2318 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2319 case lltok::kw_addrspace: { 2320 if (Result->isLabelTy()) 2321 return tokError("basic block pointers are invalid"); 2322 if (Result->isVoidTy()) 2323 return tokError("pointers to void are invalid; use i8* instead"); 2324 if (!PointerType::isValidElementType(Result)) 2325 return tokError("pointer to this type is invalid"); 2326 unsigned AddrSpace; 2327 if (parseOptionalAddrSpace(AddrSpace) || 2328 parseToken(lltok::star, "expected '*' in address space")) 2329 return true; 2330 2331 Result = PointerType::get(Result, AddrSpace); 2332 break; 2333 } 2334 2335 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2336 case lltok::lparen: 2337 if (parseFunctionType(Result)) 2338 return true; 2339 break; 2340 } 2341 } 2342 } 2343 2344 /// parseParameterList 2345 /// ::= '(' ')' 2346 /// ::= '(' Arg (',' Arg)* ')' 2347 /// Arg 2348 /// ::= Type OptionalAttributes Value OptionalAttributes 2349 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2350 PerFunctionState &PFS, bool IsMustTailCall, 2351 bool InVarArgsFunc) { 2352 if (parseToken(lltok::lparen, "expected '(' in call")) 2353 return true; 2354 2355 while (Lex.getKind() != lltok::rparen) { 2356 // If this isn't the first argument, we need a comma. 2357 if (!ArgList.empty() && 2358 parseToken(lltok::comma, "expected ',' in argument list")) 2359 return true; 2360 2361 // parse an ellipsis if this is a musttail call in a variadic function. 2362 if (Lex.getKind() == lltok::dotdotdot) { 2363 const char *Msg = "unexpected ellipsis in argument list for "; 2364 if (!IsMustTailCall) 2365 return tokError(Twine(Msg) + "non-musttail call"); 2366 if (!InVarArgsFunc) 2367 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2368 Lex.Lex(); // Lex the '...', it is purely for readability. 2369 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2370 } 2371 2372 // parse the argument. 2373 LocTy ArgLoc; 2374 Type *ArgTy = nullptr; 2375 AttrBuilder ArgAttrs; 2376 Value *V; 2377 if (parseType(ArgTy, ArgLoc)) 2378 return true; 2379 2380 if (ArgTy->isMetadataTy()) { 2381 if (parseMetadataAsValue(V, PFS)) 2382 return true; 2383 } else { 2384 // Otherwise, handle normal operands. 2385 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2386 return true; 2387 } 2388 ArgList.push_back(ParamInfo( 2389 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2390 } 2391 2392 if (IsMustTailCall && InVarArgsFunc) 2393 return tokError("expected '...' at end of argument list for musttail call " 2394 "in varargs function"); 2395 2396 Lex.Lex(); // Lex the ')'. 2397 return false; 2398 } 2399 2400 /// parseRequiredTypeAttr 2401 /// ::= attrname(<ty>) 2402 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken, 2403 Attribute::AttrKind AttrKind) { 2404 Type *Ty = nullptr; 2405 if (!EatIfPresent(AttrToken)) 2406 return true; 2407 if (!EatIfPresent(lltok::lparen)) 2408 return error(Lex.getLoc(), "expected '('"); 2409 if (parseType(Ty)) 2410 return true; 2411 if (!EatIfPresent(lltok::rparen)) 2412 return error(Lex.getLoc(), "expected ')'"); 2413 2414 B.addTypeAttr(AttrKind, Ty); 2415 return false; 2416 } 2417 2418 /// parseOptionalOperandBundles 2419 /// ::= /*empty*/ 2420 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2421 /// 2422 /// OperandBundle 2423 /// ::= bundle-tag '(' ')' 2424 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2425 /// 2426 /// bundle-tag ::= String Constant 2427 bool LLParser::parseOptionalOperandBundles( 2428 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2429 LocTy BeginLoc = Lex.getLoc(); 2430 if (!EatIfPresent(lltok::lsquare)) 2431 return false; 2432 2433 while (Lex.getKind() != lltok::rsquare) { 2434 // If this isn't the first operand bundle, we need a comma. 2435 if (!BundleList.empty() && 2436 parseToken(lltok::comma, "expected ',' in input list")) 2437 return true; 2438 2439 std::string Tag; 2440 if (parseStringConstant(Tag)) 2441 return true; 2442 2443 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2444 return true; 2445 2446 std::vector<Value *> Inputs; 2447 while (Lex.getKind() != lltok::rparen) { 2448 // If this isn't the first input, we need a comma. 2449 if (!Inputs.empty() && 2450 parseToken(lltok::comma, "expected ',' in input list")) 2451 return true; 2452 2453 Type *Ty = nullptr; 2454 Value *Input = nullptr; 2455 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2456 return true; 2457 Inputs.push_back(Input); 2458 } 2459 2460 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2461 2462 Lex.Lex(); // Lex the ')'. 2463 } 2464 2465 if (BundleList.empty()) 2466 return error(BeginLoc, "operand bundle set must not be empty"); 2467 2468 Lex.Lex(); // Lex the ']'. 2469 return false; 2470 } 2471 2472 /// parseArgumentList - parse the argument list for a function type or function 2473 /// prototype. 2474 /// ::= '(' ArgTypeListI ')' 2475 /// ArgTypeListI 2476 /// ::= /*empty*/ 2477 /// ::= '...' 2478 /// ::= ArgTypeList ',' '...' 2479 /// ::= ArgType (',' ArgType)* 2480 /// 2481 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2482 bool &IsVarArg) { 2483 unsigned CurValID = 0; 2484 IsVarArg = false; 2485 assert(Lex.getKind() == lltok::lparen); 2486 Lex.Lex(); // eat the (. 2487 2488 if (Lex.getKind() == lltok::rparen) { 2489 // empty 2490 } else if (Lex.getKind() == lltok::dotdotdot) { 2491 IsVarArg = true; 2492 Lex.Lex(); 2493 } else { 2494 LocTy TypeLoc = Lex.getLoc(); 2495 Type *ArgTy = nullptr; 2496 AttrBuilder Attrs; 2497 std::string Name; 2498 2499 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2500 return true; 2501 2502 if (ArgTy->isVoidTy()) 2503 return error(TypeLoc, "argument can not have void type"); 2504 2505 if (Lex.getKind() == lltok::LocalVar) { 2506 Name = Lex.getStrVal(); 2507 Lex.Lex(); 2508 } else if (Lex.getKind() == lltok::LocalVarID) { 2509 if (Lex.getUIntVal() != CurValID) 2510 return error(TypeLoc, "argument expected to be numbered '%" + 2511 Twine(CurValID) + "'"); 2512 ++CurValID; 2513 Lex.Lex(); 2514 } 2515 2516 if (!FunctionType::isValidArgumentType(ArgTy)) 2517 return error(TypeLoc, "invalid type for function argument"); 2518 2519 ArgList.emplace_back(TypeLoc, ArgTy, 2520 AttributeSet::get(ArgTy->getContext(), Attrs), 2521 std::move(Name)); 2522 2523 while (EatIfPresent(lltok::comma)) { 2524 // Handle ... at end of arg list. 2525 if (EatIfPresent(lltok::dotdotdot)) { 2526 IsVarArg = true; 2527 break; 2528 } 2529 2530 // Otherwise must be an argument type. 2531 TypeLoc = Lex.getLoc(); 2532 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2533 return true; 2534 2535 if (ArgTy->isVoidTy()) 2536 return error(TypeLoc, "argument can not have void type"); 2537 2538 if (Lex.getKind() == lltok::LocalVar) { 2539 Name = Lex.getStrVal(); 2540 Lex.Lex(); 2541 } else { 2542 if (Lex.getKind() == lltok::LocalVarID) { 2543 if (Lex.getUIntVal() != CurValID) 2544 return error(TypeLoc, "argument expected to be numbered '%" + 2545 Twine(CurValID) + "'"); 2546 Lex.Lex(); 2547 } 2548 ++CurValID; 2549 Name = ""; 2550 } 2551 2552 if (!ArgTy->isFirstClassType()) 2553 return error(TypeLoc, "invalid type for function argument"); 2554 2555 ArgList.emplace_back(TypeLoc, ArgTy, 2556 AttributeSet::get(ArgTy->getContext(), Attrs), 2557 std::move(Name)); 2558 } 2559 } 2560 2561 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2562 } 2563 2564 /// parseFunctionType 2565 /// ::= Type ArgumentList OptionalAttrs 2566 bool LLParser::parseFunctionType(Type *&Result) { 2567 assert(Lex.getKind() == lltok::lparen); 2568 2569 if (!FunctionType::isValidReturnType(Result)) 2570 return tokError("invalid function return type"); 2571 2572 SmallVector<ArgInfo, 8> ArgList; 2573 bool IsVarArg; 2574 if (parseArgumentList(ArgList, IsVarArg)) 2575 return true; 2576 2577 // Reject names on the arguments lists. 2578 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2579 if (!ArgList[i].Name.empty()) 2580 return error(ArgList[i].Loc, "argument name invalid in function type"); 2581 if (ArgList[i].Attrs.hasAttributes()) 2582 return error(ArgList[i].Loc, 2583 "argument attributes invalid in function type"); 2584 } 2585 2586 SmallVector<Type*, 16> ArgListTy; 2587 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2588 ArgListTy.push_back(ArgList[i].Ty); 2589 2590 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2591 return false; 2592 } 2593 2594 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2595 /// other structs. 2596 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2597 SmallVector<Type*, 8> Elts; 2598 if (parseStructBody(Elts)) 2599 return true; 2600 2601 Result = StructType::get(Context, Elts, Packed); 2602 return false; 2603 } 2604 2605 /// parseStructDefinition - parse a struct in a 'type' definition. 2606 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2607 std::pair<Type *, LocTy> &Entry, 2608 Type *&ResultTy) { 2609 // If the type was already defined, diagnose the redefinition. 2610 if (Entry.first && !Entry.second.isValid()) 2611 return error(TypeLoc, "redefinition of type"); 2612 2613 // If we have opaque, just return without filling in the definition for the 2614 // struct. This counts as a definition as far as the .ll file goes. 2615 if (EatIfPresent(lltok::kw_opaque)) { 2616 // This type is being defined, so clear the location to indicate this. 2617 Entry.second = SMLoc(); 2618 2619 // If this type number has never been uttered, create it. 2620 if (!Entry.first) 2621 Entry.first = StructType::create(Context, Name); 2622 ResultTy = Entry.first; 2623 return false; 2624 } 2625 2626 // If the type starts with '<', then it is either a packed struct or a vector. 2627 bool isPacked = EatIfPresent(lltok::less); 2628 2629 // If we don't have a struct, then we have a random type alias, which we 2630 // accept for compatibility with old files. These types are not allowed to be 2631 // forward referenced and not allowed to be recursive. 2632 if (Lex.getKind() != lltok::lbrace) { 2633 if (Entry.first) 2634 return error(TypeLoc, "forward references to non-struct type"); 2635 2636 ResultTy = nullptr; 2637 if (isPacked) 2638 return parseArrayVectorType(ResultTy, true); 2639 return parseType(ResultTy); 2640 } 2641 2642 // This type is being defined, so clear the location to indicate this. 2643 Entry.second = SMLoc(); 2644 2645 // If this type number has never been uttered, create it. 2646 if (!Entry.first) 2647 Entry.first = StructType::create(Context, Name); 2648 2649 StructType *STy = cast<StructType>(Entry.first); 2650 2651 SmallVector<Type*, 8> Body; 2652 if (parseStructBody(Body) || 2653 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2654 return true; 2655 2656 STy->setBody(Body, isPacked); 2657 ResultTy = STy; 2658 return false; 2659 } 2660 2661 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2662 /// StructType 2663 /// ::= '{' '}' 2664 /// ::= '{' Type (',' Type)* '}' 2665 /// ::= '<' '{' '}' '>' 2666 /// ::= '<' '{' Type (',' Type)* '}' '>' 2667 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2668 assert(Lex.getKind() == lltok::lbrace); 2669 Lex.Lex(); // Consume the '{' 2670 2671 // Handle the empty struct. 2672 if (EatIfPresent(lltok::rbrace)) 2673 return false; 2674 2675 LocTy EltTyLoc = Lex.getLoc(); 2676 Type *Ty = nullptr; 2677 if (parseType(Ty)) 2678 return true; 2679 Body.push_back(Ty); 2680 2681 if (!StructType::isValidElementType(Ty)) 2682 return error(EltTyLoc, "invalid element type for struct"); 2683 2684 while (EatIfPresent(lltok::comma)) { 2685 EltTyLoc = Lex.getLoc(); 2686 if (parseType(Ty)) 2687 return true; 2688 2689 if (!StructType::isValidElementType(Ty)) 2690 return error(EltTyLoc, "invalid element type for struct"); 2691 2692 Body.push_back(Ty); 2693 } 2694 2695 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 2696 } 2697 2698 /// parseArrayVectorType - parse an array or vector type, assuming the first 2699 /// token has already been consumed. 2700 /// Type 2701 /// ::= '[' APSINTVAL 'x' Types ']' 2702 /// ::= '<' APSINTVAL 'x' Types '>' 2703 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2704 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 2705 bool Scalable = false; 2706 2707 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 2708 Lex.Lex(); // consume the 'vscale' 2709 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 2710 return true; 2711 2712 Scalable = true; 2713 } 2714 2715 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2716 Lex.getAPSIntVal().getBitWidth() > 64) 2717 return tokError("expected number in address space"); 2718 2719 LocTy SizeLoc = Lex.getLoc(); 2720 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2721 Lex.Lex(); 2722 2723 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 2724 return true; 2725 2726 LocTy TypeLoc = Lex.getLoc(); 2727 Type *EltTy = nullptr; 2728 if (parseType(EltTy)) 2729 return true; 2730 2731 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 2732 "expected end of sequential type")) 2733 return true; 2734 2735 if (IsVector) { 2736 if (Size == 0) 2737 return error(SizeLoc, "zero element vector is illegal"); 2738 if ((unsigned)Size != Size) 2739 return error(SizeLoc, "size too large for vector"); 2740 if (!VectorType::isValidElementType(EltTy)) 2741 return error(TypeLoc, "invalid vector element type"); 2742 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2743 } else { 2744 if (!ArrayType::isValidElementType(EltTy)) 2745 return error(TypeLoc, "invalid array element type"); 2746 Result = ArrayType::get(EltTy, Size); 2747 } 2748 return false; 2749 } 2750 2751 //===----------------------------------------------------------------------===// 2752 // Function Semantic Analysis. 2753 //===----------------------------------------------------------------------===// 2754 2755 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2756 int functionNumber) 2757 : P(p), F(f), FunctionNumber(functionNumber) { 2758 2759 // Insert unnamed arguments into the NumberedVals list. 2760 for (Argument &A : F.args()) 2761 if (!A.hasName()) 2762 NumberedVals.push_back(&A); 2763 } 2764 2765 LLParser::PerFunctionState::~PerFunctionState() { 2766 // If there were any forward referenced non-basicblock values, delete them. 2767 2768 for (const auto &P : ForwardRefVals) { 2769 if (isa<BasicBlock>(P.second.first)) 2770 continue; 2771 P.second.first->replaceAllUsesWith( 2772 UndefValue::get(P.second.first->getType())); 2773 P.second.first->deleteValue(); 2774 } 2775 2776 for (const auto &P : ForwardRefValIDs) { 2777 if (isa<BasicBlock>(P.second.first)) 2778 continue; 2779 P.second.first->replaceAllUsesWith( 2780 UndefValue::get(P.second.first->getType())); 2781 P.second.first->deleteValue(); 2782 } 2783 } 2784 2785 bool LLParser::PerFunctionState::finishFunction() { 2786 if (!ForwardRefVals.empty()) 2787 return P.error(ForwardRefVals.begin()->second.second, 2788 "use of undefined value '%" + ForwardRefVals.begin()->first + 2789 "'"); 2790 if (!ForwardRefValIDs.empty()) 2791 return P.error(ForwardRefValIDs.begin()->second.second, 2792 "use of undefined value '%" + 2793 Twine(ForwardRefValIDs.begin()->first) + "'"); 2794 return false; 2795 } 2796 2797 /// getVal - Get a value with the specified name or ID, creating a 2798 /// forward reference record if needed. This can return null if the value 2799 /// exists but does not have the right type. 2800 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 2801 LocTy Loc, bool IsCall) { 2802 // Look this name up in the normal function symbol table. 2803 Value *Val = F.getValueSymbolTable()->lookup(Name); 2804 2805 // If this is a forward reference for the value, see if we already created a 2806 // forward ref record. 2807 if (!Val) { 2808 auto I = ForwardRefVals.find(Name); 2809 if (I != ForwardRefVals.end()) 2810 Val = I->second.first; 2811 } 2812 2813 // If we have the value in the symbol table or fwd-ref table, return it. 2814 if (Val) 2815 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2816 2817 // Don't make placeholders with invalid type. 2818 if (!Ty->isFirstClassType()) { 2819 P.error(Loc, "invalid use of a non-first-class type"); 2820 return nullptr; 2821 } 2822 2823 // Otherwise, create a new forward reference for this value and remember it. 2824 Value *FwdVal; 2825 if (Ty->isLabelTy()) { 2826 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2827 } else { 2828 FwdVal = new Argument(Ty, Name); 2829 } 2830 2831 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2832 return FwdVal; 2833 } 2834 2835 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc, 2836 bool IsCall) { 2837 // Look this name up in the normal function symbol table. 2838 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2839 2840 // If this is a forward reference for the value, see if we already created a 2841 // forward ref record. 2842 if (!Val) { 2843 auto I = ForwardRefValIDs.find(ID); 2844 if (I != ForwardRefValIDs.end()) 2845 Val = I->second.first; 2846 } 2847 2848 // If we have the value in the symbol table or fwd-ref table, return it. 2849 if (Val) 2850 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 2851 2852 if (!Ty->isFirstClassType()) { 2853 P.error(Loc, "invalid use of a non-first-class type"); 2854 return nullptr; 2855 } 2856 2857 // Otherwise, create a new forward reference for this value and remember it. 2858 Value *FwdVal; 2859 if (Ty->isLabelTy()) { 2860 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2861 } else { 2862 FwdVal = new Argument(Ty); 2863 } 2864 2865 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2866 return FwdVal; 2867 } 2868 2869 /// setInstName - After an instruction is parsed and inserted into its 2870 /// basic block, this installs its name. 2871 bool LLParser::PerFunctionState::setInstName(int NameID, 2872 const std::string &NameStr, 2873 LocTy NameLoc, Instruction *Inst) { 2874 // If this instruction has void type, it cannot have a name or ID specified. 2875 if (Inst->getType()->isVoidTy()) { 2876 if (NameID != -1 || !NameStr.empty()) 2877 return P.error(NameLoc, "instructions returning void cannot have a name"); 2878 return false; 2879 } 2880 2881 // If this was a numbered instruction, verify that the instruction is the 2882 // expected value and resolve any forward references. 2883 if (NameStr.empty()) { 2884 // If neither a name nor an ID was specified, just use the next ID. 2885 if (NameID == -1) 2886 NameID = NumberedVals.size(); 2887 2888 if (unsigned(NameID) != NumberedVals.size()) 2889 return P.error(NameLoc, "instruction expected to be numbered '%" + 2890 Twine(NumberedVals.size()) + "'"); 2891 2892 auto FI = ForwardRefValIDs.find(NameID); 2893 if (FI != ForwardRefValIDs.end()) { 2894 Value *Sentinel = FI->second.first; 2895 if (Sentinel->getType() != Inst->getType()) 2896 return P.error(NameLoc, "instruction forward referenced with type '" + 2897 getTypeString(FI->second.first->getType()) + 2898 "'"); 2899 2900 Sentinel->replaceAllUsesWith(Inst); 2901 Sentinel->deleteValue(); 2902 ForwardRefValIDs.erase(FI); 2903 } 2904 2905 NumberedVals.push_back(Inst); 2906 return false; 2907 } 2908 2909 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2910 auto FI = ForwardRefVals.find(NameStr); 2911 if (FI != ForwardRefVals.end()) { 2912 Value *Sentinel = FI->second.first; 2913 if (Sentinel->getType() != Inst->getType()) 2914 return P.error(NameLoc, "instruction forward referenced with type '" + 2915 getTypeString(FI->second.first->getType()) + 2916 "'"); 2917 2918 Sentinel->replaceAllUsesWith(Inst); 2919 Sentinel->deleteValue(); 2920 ForwardRefVals.erase(FI); 2921 } 2922 2923 // Set the name on the instruction. 2924 Inst->setName(NameStr); 2925 2926 if (Inst->getName() != NameStr) 2927 return P.error(NameLoc, "multiple definition of local value named '" + 2928 NameStr + "'"); 2929 return false; 2930 } 2931 2932 /// getBB - Get a basic block with the specified name or ID, creating a 2933 /// forward reference record if needed. 2934 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 2935 LocTy Loc) { 2936 return dyn_cast_or_null<BasicBlock>( 2937 getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2938 } 2939 2940 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 2941 return dyn_cast_or_null<BasicBlock>( 2942 getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2943 } 2944 2945 /// defineBB - Define the specified basic block, which is either named or 2946 /// unnamed. If there is an error, this returns null otherwise it returns 2947 /// the block being defined. 2948 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 2949 int NameID, LocTy Loc) { 2950 BasicBlock *BB; 2951 if (Name.empty()) { 2952 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 2953 P.error(Loc, "label expected to be numbered '" + 2954 Twine(NumberedVals.size()) + "'"); 2955 return nullptr; 2956 } 2957 BB = getBB(NumberedVals.size(), Loc); 2958 if (!BB) { 2959 P.error(Loc, "unable to create block numbered '" + 2960 Twine(NumberedVals.size()) + "'"); 2961 return nullptr; 2962 } 2963 } else { 2964 BB = getBB(Name, Loc); 2965 if (!BB) { 2966 P.error(Loc, "unable to create block named '" + Name + "'"); 2967 return nullptr; 2968 } 2969 } 2970 2971 // Move the block to the end of the function. Forward ref'd blocks are 2972 // inserted wherever they happen to be referenced. 2973 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2974 2975 // Remove the block from forward ref sets. 2976 if (Name.empty()) { 2977 ForwardRefValIDs.erase(NumberedVals.size()); 2978 NumberedVals.push_back(BB); 2979 } else { 2980 // BB forward references are already in the function symbol table. 2981 ForwardRefVals.erase(Name); 2982 } 2983 2984 return BB; 2985 } 2986 2987 //===----------------------------------------------------------------------===// 2988 // Constants. 2989 //===----------------------------------------------------------------------===// 2990 2991 /// parseValID - parse an abstract value that doesn't necessarily have a 2992 /// type implied. For example, if we parse "4" we don't know what integer type 2993 /// it has. The value will later be combined with its type and checked for 2994 /// sanity. PFS is used to convert function-local operands of metadata (since 2995 /// metadata operands are not just parsed here but also converted to values). 2996 /// PFS can be null when we are not parsing metadata values inside a function. 2997 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) { 2998 ID.Loc = Lex.getLoc(); 2999 switch (Lex.getKind()) { 3000 default: 3001 return tokError("expected value token"); 3002 case lltok::GlobalID: // @42 3003 ID.UIntVal = Lex.getUIntVal(); 3004 ID.Kind = ValID::t_GlobalID; 3005 break; 3006 case lltok::GlobalVar: // @foo 3007 ID.StrVal = Lex.getStrVal(); 3008 ID.Kind = ValID::t_GlobalName; 3009 break; 3010 case lltok::LocalVarID: // %42 3011 ID.UIntVal = Lex.getUIntVal(); 3012 ID.Kind = ValID::t_LocalID; 3013 break; 3014 case lltok::LocalVar: // %foo 3015 ID.StrVal = Lex.getStrVal(); 3016 ID.Kind = ValID::t_LocalName; 3017 break; 3018 case lltok::APSInt: 3019 ID.APSIntVal = Lex.getAPSIntVal(); 3020 ID.Kind = ValID::t_APSInt; 3021 break; 3022 case lltok::APFloat: 3023 ID.APFloatVal = Lex.getAPFloatVal(); 3024 ID.Kind = ValID::t_APFloat; 3025 break; 3026 case lltok::kw_true: 3027 ID.ConstantVal = ConstantInt::getTrue(Context); 3028 ID.Kind = ValID::t_Constant; 3029 break; 3030 case lltok::kw_false: 3031 ID.ConstantVal = ConstantInt::getFalse(Context); 3032 ID.Kind = ValID::t_Constant; 3033 break; 3034 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3035 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3036 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3037 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3038 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3039 3040 case lltok::lbrace: { 3041 // ValID ::= '{' ConstVector '}' 3042 Lex.Lex(); 3043 SmallVector<Constant*, 16> Elts; 3044 if (parseGlobalValueVector(Elts) || 3045 parseToken(lltok::rbrace, "expected end of struct constant")) 3046 return true; 3047 3048 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3049 ID.UIntVal = Elts.size(); 3050 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3051 Elts.size() * sizeof(Elts[0])); 3052 ID.Kind = ValID::t_ConstantStruct; 3053 return false; 3054 } 3055 case lltok::less: { 3056 // ValID ::= '<' ConstVector '>' --> Vector. 3057 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3058 Lex.Lex(); 3059 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3060 3061 SmallVector<Constant*, 16> Elts; 3062 LocTy FirstEltLoc = Lex.getLoc(); 3063 if (parseGlobalValueVector(Elts) || 3064 (isPackedStruct && 3065 parseToken(lltok::rbrace, "expected end of packed struct")) || 3066 parseToken(lltok::greater, "expected end of constant")) 3067 return true; 3068 3069 if (isPackedStruct) { 3070 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3071 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3072 Elts.size() * sizeof(Elts[0])); 3073 ID.UIntVal = Elts.size(); 3074 ID.Kind = ValID::t_PackedConstantStruct; 3075 return false; 3076 } 3077 3078 if (Elts.empty()) 3079 return error(ID.Loc, "constant vector must not be empty"); 3080 3081 if (!Elts[0]->getType()->isIntegerTy() && 3082 !Elts[0]->getType()->isFloatingPointTy() && 3083 !Elts[0]->getType()->isPointerTy()) 3084 return error( 3085 FirstEltLoc, 3086 "vector elements must have integer, pointer or floating point type"); 3087 3088 // Verify that all the vector elements have the same type. 3089 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3090 if (Elts[i]->getType() != Elts[0]->getType()) 3091 return error(FirstEltLoc, "vector element #" + Twine(i) + 3092 " is not of type '" + 3093 getTypeString(Elts[0]->getType())); 3094 3095 ID.ConstantVal = ConstantVector::get(Elts); 3096 ID.Kind = ValID::t_Constant; 3097 return false; 3098 } 3099 case lltok::lsquare: { // Array Constant 3100 Lex.Lex(); 3101 SmallVector<Constant*, 16> Elts; 3102 LocTy FirstEltLoc = Lex.getLoc(); 3103 if (parseGlobalValueVector(Elts) || 3104 parseToken(lltok::rsquare, "expected end of array constant")) 3105 return true; 3106 3107 // Handle empty element. 3108 if (Elts.empty()) { 3109 // Use undef instead of an array because it's inconvenient to determine 3110 // the element type at this point, there being no elements to examine. 3111 ID.Kind = ValID::t_EmptyArray; 3112 return false; 3113 } 3114 3115 if (!Elts[0]->getType()->isFirstClassType()) 3116 return error(FirstEltLoc, "invalid array element type: " + 3117 getTypeString(Elts[0]->getType())); 3118 3119 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3120 3121 // Verify all elements are correct type! 3122 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3123 if (Elts[i]->getType() != Elts[0]->getType()) 3124 return error(FirstEltLoc, "array element #" + Twine(i) + 3125 " is not of type '" + 3126 getTypeString(Elts[0]->getType())); 3127 } 3128 3129 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3130 ID.Kind = ValID::t_Constant; 3131 return false; 3132 } 3133 case lltok::kw_c: // c "foo" 3134 Lex.Lex(); 3135 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3136 false); 3137 if (parseToken(lltok::StringConstant, "expected string")) 3138 return true; 3139 ID.Kind = ValID::t_Constant; 3140 return false; 3141 3142 case lltok::kw_asm: { 3143 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3144 // STRINGCONSTANT 3145 bool HasSideEffect, AlignStack, AsmDialect, CanThrow; 3146 Lex.Lex(); 3147 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3148 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3149 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3150 parseOptionalToken(lltok::kw_unwind, CanThrow) || 3151 parseStringConstant(ID.StrVal) || 3152 parseToken(lltok::comma, "expected comma in inline asm expression") || 3153 parseToken(lltok::StringConstant, "expected constraint string")) 3154 return true; 3155 ID.StrVal2 = Lex.getStrVal(); 3156 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | 3157 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); 3158 ID.Kind = ValID::t_InlineAsm; 3159 return false; 3160 } 3161 3162 case lltok::kw_blockaddress: { 3163 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3164 Lex.Lex(); 3165 3166 ValID Fn, Label; 3167 3168 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3169 parseValID(Fn, PFS) || 3170 parseToken(lltok::comma, 3171 "expected comma in block address expression") || 3172 parseValID(Label, PFS) || 3173 parseToken(lltok::rparen, "expected ')' in block address expression")) 3174 return true; 3175 3176 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3177 return error(Fn.Loc, "expected function name in blockaddress"); 3178 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3179 return error(Label.Loc, "expected basic block name in blockaddress"); 3180 3181 // Try to find the function (but skip it if it's forward-referenced). 3182 GlobalValue *GV = nullptr; 3183 if (Fn.Kind == ValID::t_GlobalID) { 3184 if (Fn.UIntVal < NumberedVals.size()) 3185 GV = NumberedVals[Fn.UIntVal]; 3186 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3187 GV = M->getNamedValue(Fn.StrVal); 3188 } 3189 Function *F = nullptr; 3190 if (GV) { 3191 // Confirm that it's actually a function with a definition. 3192 if (!isa<Function>(GV)) 3193 return error(Fn.Loc, "expected function name in blockaddress"); 3194 F = cast<Function>(GV); 3195 if (F->isDeclaration()) 3196 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3197 } 3198 3199 if (!F) { 3200 // Make a global variable as a placeholder for this reference. 3201 GlobalValue *&FwdRef = 3202 ForwardRefBlockAddresses.insert(std::make_pair( 3203 std::move(Fn), 3204 std::map<ValID, GlobalValue *>())) 3205 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3206 .first->second; 3207 if (!FwdRef) { 3208 unsigned FwdDeclAS; 3209 if (ExpectedTy) { 3210 // If we know the type that the blockaddress is being assigned to, 3211 // we can use the address space of that type. 3212 if (!ExpectedTy->isPointerTy()) 3213 return error(ID.Loc, 3214 "type of blockaddress must be a pointer and not '" + 3215 getTypeString(ExpectedTy) + "'"); 3216 FwdDeclAS = ExpectedTy->getPointerAddressSpace(); 3217 } else if (PFS) { 3218 // Otherwise, we default the address space of the current function. 3219 FwdDeclAS = PFS->getFunction().getAddressSpace(); 3220 } else { 3221 llvm_unreachable("Unknown address space for blockaddress"); 3222 } 3223 FwdRef = new GlobalVariable( 3224 *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage, 3225 nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS); 3226 } 3227 3228 ID.ConstantVal = FwdRef; 3229 ID.Kind = ValID::t_Constant; 3230 return false; 3231 } 3232 3233 // We found the function; now find the basic block. Don't use PFS, since we 3234 // might be inside a constant expression. 3235 BasicBlock *BB; 3236 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3237 if (Label.Kind == ValID::t_LocalID) 3238 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3239 else 3240 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3241 if (!BB) 3242 return error(Label.Loc, "referenced value is not a basic block"); 3243 } else { 3244 if (Label.Kind == ValID::t_LocalID) 3245 return error(Label.Loc, "cannot take address of numeric label after " 3246 "the function is defined"); 3247 BB = dyn_cast_or_null<BasicBlock>( 3248 F->getValueSymbolTable()->lookup(Label.StrVal)); 3249 if (!BB) 3250 return error(Label.Loc, "referenced value is not a basic block"); 3251 } 3252 3253 ID.ConstantVal = BlockAddress::get(F, BB); 3254 ID.Kind = ValID::t_Constant; 3255 return false; 3256 } 3257 3258 case lltok::kw_dso_local_equivalent: { 3259 // ValID ::= 'dso_local_equivalent' @foo 3260 Lex.Lex(); 3261 3262 ValID Fn; 3263 3264 if (parseValID(Fn, PFS)) 3265 return true; 3266 3267 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3268 return error(Fn.Loc, 3269 "expected global value name in dso_local_equivalent"); 3270 3271 // Try to find the function (but skip it if it's forward-referenced). 3272 GlobalValue *GV = nullptr; 3273 if (Fn.Kind == ValID::t_GlobalID) { 3274 if (Fn.UIntVal < NumberedVals.size()) 3275 GV = NumberedVals[Fn.UIntVal]; 3276 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3277 GV = M->getNamedValue(Fn.StrVal); 3278 } 3279 3280 assert(GV && "Could not find a corresponding global variable"); 3281 3282 if (!GV->getValueType()->isFunctionTy()) 3283 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3284 "in dso_local_equivalent"); 3285 3286 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3287 ID.Kind = ValID::t_Constant; 3288 return false; 3289 } 3290 3291 case lltok::kw_trunc: 3292 case lltok::kw_zext: 3293 case lltok::kw_sext: 3294 case lltok::kw_fptrunc: 3295 case lltok::kw_fpext: 3296 case lltok::kw_bitcast: 3297 case lltok::kw_addrspacecast: 3298 case lltok::kw_uitofp: 3299 case lltok::kw_sitofp: 3300 case lltok::kw_fptoui: 3301 case lltok::kw_fptosi: 3302 case lltok::kw_inttoptr: 3303 case lltok::kw_ptrtoint: { 3304 unsigned Opc = Lex.getUIntVal(); 3305 Type *DestTy = nullptr; 3306 Constant *SrcVal; 3307 Lex.Lex(); 3308 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3309 parseGlobalTypeAndValue(SrcVal) || 3310 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3311 parseType(DestTy) || 3312 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3313 return true; 3314 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3315 return error(ID.Loc, "invalid cast opcode for cast from '" + 3316 getTypeString(SrcVal->getType()) + "' to '" + 3317 getTypeString(DestTy) + "'"); 3318 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3319 SrcVal, DestTy); 3320 ID.Kind = ValID::t_Constant; 3321 return false; 3322 } 3323 case lltok::kw_extractvalue: { 3324 Lex.Lex(); 3325 Constant *Val; 3326 SmallVector<unsigned, 4> Indices; 3327 if (parseToken(lltok::lparen, 3328 "expected '(' in extractvalue constantexpr") || 3329 parseGlobalTypeAndValue(Val) || parseIndexList(Indices) || 3330 parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3331 return true; 3332 3333 if (!Val->getType()->isAggregateType()) 3334 return error(ID.Loc, "extractvalue operand must be aggregate type"); 3335 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3336 return error(ID.Loc, "invalid indices for extractvalue"); 3337 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3338 ID.Kind = ValID::t_Constant; 3339 return false; 3340 } 3341 case lltok::kw_insertvalue: { 3342 Lex.Lex(); 3343 Constant *Val0, *Val1; 3344 SmallVector<unsigned, 4> Indices; 3345 if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") || 3346 parseGlobalTypeAndValue(Val0) || 3347 parseToken(lltok::comma, 3348 "expected comma in insertvalue constantexpr") || 3349 parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) || 3350 parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3351 return true; 3352 if (!Val0->getType()->isAggregateType()) 3353 return error(ID.Loc, "insertvalue operand must be aggregate type"); 3354 Type *IndexedType = 3355 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3356 if (!IndexedType) 3357 return error(ID.Loc, "invalid indices for insertvalue"); 3358 if (IndexedType != Val1->getType()) 3359 return error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3360 getTypeString(Val1->getType()) + 3361 "' instead of '" + getTypeString(IndexedType) + 3362 "'"); 3363 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3364 ID.Kind = ValID::t_Constant; 3365 return false; 3366 } 3367 case lltok::kw_icmp: 3368 case lltok::kw_fcmp: { 3369 unsigned PredVal, Opc = Lex.getUIntVal(); 3370 Constant *Val0, *Val1; 3371 Lex.Lex(); 3372 if (parseCmpPredicate(PredVal, Opc) || 3373 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3374 parseGlobalTypeAndValue(Val0) || 3375 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3376 parseGlobalTypeAndValue(Val1) || 3377 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3378 return true; 3379 3380 if (Val0->getType() != Val1->getType()) 3381 return error(ID.Loc, "compare operands must have the same type"); 3382 3383 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3384 3385 if (Opc == Instruction::FCmp) { 3386 if (!Val0->getType()->isFPOrFPVectorTy()) 3387 return error(ID.Loc, "fcmp requires floating point operands"); 3388 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3389 } else { 3390 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3391 if (!Val0->getType()->isIntOrIntVectorTy() && 3392 !Val0->getType()->isPtrOrPtrVectorTy()) 3393 return error(ID.Loc, "icmp requires pointer or integer operands"); 3394 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3395 } 3396 ID.Kind = ValID::t_Constant; 3397 return false; 3398 } 3399 3400 // Unary Operators. 3401 case lltok::kw_fneg: { 3402 unsigned Opc = Lex.getUIntVal(); 3403 Constant *Val; 3404 Lex.Lex(); 3405 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3406 parseGlobalTypeAndValue(Val) || 3407 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3408 return true; 3409 3410 // Check that the type is valid for the operator. 3411 switch (Opc) { 3412 case Instruction::FNeg: 3413 if (!Val->getType()->isFPOrFPVectorTy()) 3414 return error(ID.Loc, "constexpr requires fp operands"); 3415 break; 3416 default: llvm_unreachable("Unknown unary operator!"); 3417 } 3418 unsigned Flags = 0; 3419 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3420 ID.ConstantVal = C; 3421 ID.Kind = ValID::t_Constant; 3422 return false; 3423 } 3424 // Binary Operators. 3425 case lltok::kw_add: 3426 case lltok::kw_fadd: 3427 case lltok::kw_sub: 3428 case lltok::kw_fsub: 3429 case lltok::kw_mul: 3430 case lltok::kw_fmul: 3431 case lltok::kw_udiv: 3432 case lltok::kw_sdiv: 3433 case lltok::kw_fdiv: 3434 case lltok::kw_urem: 3435 case lltok::kw_srem: 3436 case lltok::kw_frem: 3437 case lltok::kw_shl: 3438 case lltok::kw_lshr: 3439 case lltok::kw_ashr: { 3440 bool NUW = false; 3441 bool NSW = false; 3442 bool Exact = false; 3443 unsigned Opc = Lex.getUIntVal(); 3444 Constant *Val0, *Val1; 3445 Lex.Lex(); 3446 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3447 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3448 if (EatIfPresent(lltok::kw_nuw)) 3449 NUW = true; 3450 if (EatIfPresent(lltok::kw_nsw)) { 3451 NSW = true; 3452 if (EatIfPresent(lltok::kw_nuw)) 3453 NUW = true; 3454 } 3455 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3456 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3457 if (EatIfPresent(lltok::kw_exact)) 3458 Exact = true; 3459 } 3460 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3461 parseGlobalTypeAndValue(Val0) || 3462 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3463 parseGlobalTypeAndValue(Val1) || 3464 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3465 return true; 3466 if (Val0->getType() != Val1->getType()) 3467 return error(ID.Loc, "operands of constexpr must have same type"); 3468 // Check that the type is valid for the operator. 3469 switch (Opc) { 3470 case Instruction::Add: 3471 case Instruction::Sub: 3472 case Instruction::Mul: 3473 case Instruction::UDiv: 3474 case Instruction::SDiv: 3475 case Instruction::URem: 3476 case Instruction::SRem: 3477 case Instruction::Shl: 3478 case Instruction::AShr: 3479 case Instruction::LShr: 3480 if (!Val0->getType()->isIntOrIntVectorTy()) 3481 return error(ID.Loc, "constexpr requires integer operands"); 3482 break; 3483 case Instruction::FAdd: 3484 case Instruction::FSub: 3485 case Instruction::FMul: 3486 case Instruction::FDiv: 3487 case Instruction::FRem: 3488 if (!Val0->getType()->isFPOrFPVectorTy()) 3489 return error(ID.Loc, "constexpr requires fp operands"); 3490 break; 3491 default: llvm_unreachable("Unknown binary operator!"); 3492 } 3493 unsigned Flags = 0; 3494 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3495 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3496 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3497 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3498 ID.ConstantVal = C; 3499 ID.Kind = ValID::t_Constant; 3500 return false; 3501 } 3502 3503 // Logical Operations 3504 case lltok::kw_and: 3505 case lltok::kw_or: 3506 case lltok::kw_xor: { 3507 unsigned Opc = Lex.getUIntVal(); 3508 Constant *Val0, *Val1; 3509 Lex.Lex(); 3510 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3511 parseGlobalTypeAndValue(Val0) || 3512 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3513 parseGlobalTypeAndValue(Val1) || 3514 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3515 return true; 3516 if (Val0->getType() != Val1->getType()) 3517 return error(ID.Loc, "operands of constexpr must have same type"); 3518 if (!Val0->getType()->isIntOrIntVectorTy()) 3519 return error(ID.Loc, 3520 "constexpr requires integer or integer vector operands"); 3521 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3522 ID.Kind = ValID::t_Constant; 3523 return false; 3524 } 3525 3526 case lltok::kw_getelementptr: 3527 case lltok::kw_shufflevector: 3528 case lltok::kw_insertelement: 3529 case lltok::kw_extractelement: 3530 case lltok::kw_select: { 3531 unsigned Opc = Lex.getUIntVal(); 3532 SmallVector<Constant*, 16> Elts; 3533 bool InBounds = false; 3534 Type *Ty; 3535 Lex.Lex(); 3536 3537 if (Opc == Instruction::GetElementPtr) 3538 InBounds = EatIfPresent(lltok::kw_inbounds); 3539 3540 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3541 return true; 3542 3543 LocTy ExplicitTypeLoc = Lex.getLoc(); 3544 if (Opc == Instruction::GetElementPtr) { 3545 if (parseType(Ty) || 3546 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3547 return true; 3548 } 3549 3550 Optional<unsigned> InRangeOp; 3551 if (parseGlobalValueVector( 3552 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3553 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3554 return true; 3555 3556 if (Opc == Instruction::GetElementPtr) { 3557 if (Elts.size() == 0 || 3558 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3559 return error(ID.Loc, "base of getelementptr must be a pointer"); 3560 3561 Type *BaseType = Elts[0]->getType(); 3562 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3563 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 3564 return error( 3565 ExplicitTypeLoc, 3566 typeComparisonErrorMessage( 3567 "explicit pointee type doesn't match operand's pointee type", 3568 Ty, BasePointerType->getElementType())); 3569 } 3570 3571 unsigned GEPWidth = 3572 BaseType->isVectorTy() 3573 ? cast<FixedVectorType>(BaseType)->getNumElements() 3574 : 0; 3575 3576 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3577 for (Constant *Val : Indices) { 3578 Type *ValTy = Val->getType(); 3579 if (!ValTy->isIntOrIntVectorTy()) 3580 return error(ID.Loc, "getelementptr index must be an integer"); 3581 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3582 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3583 if (GEPWidth && (ValNumEl != GEPWidth)) 3584 return error( 3585 ID.Loc, 3586 "getelementptr vector index has a wrong number of elements"); 3587 // GEPWidth may have been unknown because the base is a scalar, 3588 // but it is known now. 3589 GEPWidth = ValNumEl; 3590 } 3591 } 3592 3593 SmallPtrSet<Type*, 4> Visited; 3594 if (!Indices.empty() && !Ty->isSized(&Visited)) 3595 return error(ID.Loc, "base element of getelementptr must be sized"); 3596 3597 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3598 return error(ID.Loc, "invalid getelementptr indices"); 3599 3600 if (InRangeOp) { 3601 if (*InRangeOp == 0) 3602 return error(ID.Loc, 3603 "inrange keyword may not appear on pointer operand"); 3604 --*InRangeOp; 3605 } 3606 3607 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3608 InBounds, InRangeOp); 3609 } else if (Opc == Instruction::Select) { 3610 if (Elts.size() != 3) 3611 return error(ID.Loc, "expected three operands to select"); 3612 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3613 Elts[2])) 3614 return error(ID.Loc, Reason); 3615 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3616 } else if (Opc == Instruction::ShuffleVector) { 3617 if (Elts.size() != 3) 3618 return error(ID.Loc, "expected three operands to shufflevector"); 3619 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3620 return error(ID.Loc, "invalid operands to shufflevector"); 3621 SmallVector<int, 16> Mask; 3622 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3623 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3624 } else if (Opc == Instruction::ExtractElement) { 3625 if (Elts.size() != 2) 3626 return error(ID.Loc, "expected two operands to extractelement"); 3627 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3628 return error(ID.Loc, "invalid extractelement operands"); 3629 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3630 } else { 3631 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3632 if (Elts.size() != 3) 3633 return error(ID.Loc, "expected three operands to insertelement"); 3634 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3635 return error(ID.Loc, "invalid insertelement operands"); 3636 ID.ConstantVal = 3637 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3638 } 3639 3640 ID.Kind = ValID::t_Constant; 3641 return false; 3642 } 3643 } 3644 3645 Lex.Lex(); 3646 return false; 3647 } 3648 3649 /// parseGlobalValue - parse a global value with the specified type. 3650 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3651 C = nullptr; 3652 ValID ID; 3653 Value *V = nullptr; 3654 bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) || 3655 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3656 if (V && !(C = dyn_cast<Constant>(V))) 3657 return error(ID.Loc, "global values must be constants"); 3658 return Parsed; 3659 } 3660 3661 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3662 Type *Ty = nullptr; 3663 return parseType(Ty) || parseGlobalValue(Ty, V); 3664 } 3665 3666 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3667 C = nullptr; 3668 3669 LocTy KwLoc = Lex.getLoc(); 3670 if (!EatIfPresent(lltok::kw_comdat)) 3671 return false; 3672 3673 if (EatIfPresent(lltok::lparen)) { 3674 if (Lex.getKind() != lltok::ComdatVar) 3675 return tokError("expected comdat variable"); 3676 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3677 Lex.Lex(); 3678 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3679 return true; 3680 } else { 3681 if (GlobalName.empty()) 3682 return tokError("comdat cannot be unnamed"); 3683 C = getComdat(std::string(GlobalName), KwLoc); 3684 } 3685 3686 return false; 3687 } 3688 3689 /// parseGlobalValueVector 3690 /// ::= /*empty*/ 3691 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3692 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3693 Optional<unsigned> *InRangeOp) { 3694 // Empty list. 3695 if (Lex.getKind() == lltok::rbrace || 3696 Lex.getKind() == lltok::rsquare || 3697 Lex.getKind() == lltok::greater || 3698 Lex.getKind() == lltok::rparen) 3699 return false; 3700 3701 do { 3702 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3703 *InRangeOp = Elts.size(); 3704 3705 Constant *C; 3706 if (parseGlobalTypeAndValue(C)) 3707 return true; 3708 Elts.push_back(C); 3709 } while (EatIfPresent(lltok::comma)); 3710 3711 return false; 3712 } 3713 3714 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 3715 SmallVector<Metadata *, 16> Elts; 3716 if (parseMDNodeVector(Elts)) 3717 return true; 3718 3719 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3720 return false; 3721 } 3722 3723 /// MDNode: 3724 /// ::= !{ ... } 3725 /// ::= !7 3726 /// ::= !DILocation(...) 3727 bool LLParser::parseMDNode(MDNode *&N) { 3728 if (Lex.getKind() == lltok::MetadataVar) 3729 return parseSpecializedMDNode(N); 3730 3731 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 3732 } 3733 3734 bool LLParser::parseMDNodeTail(MDNode *&N) { 3735 // !{ ... } 3736 if (Lex.getKind() == lltok::lbrace) 3737 return parseMDTuple(N); 3738 3739 // !42 3740 return parseMDNodeID(N); 3741 } 3742 3743 namespace { 3744 3745 /// Structure to represent an optional metadata field. 3746 template <class FieldTy> struct MDFieldImpl { 3747 typedef MDFieldImpl ImplTy; 3748 FieldTy Val; 3749 bool Seen; 3750 3751 void assign(FieldTy Val) { 3752 Seen = true; 3753 this->Val = std::move(Val); 3754 } 3755 3756 explicit MDFieldImpl(FieldTy Default) 3757 : Val(std::move(Default)), Seen(false) {} 3758 }; 3759 3760 /// Structure to represent an optional metadata field that 3761 /// can be of either type (A or B) and encapsulates the 3762 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3763 /// to reimplement the specifics for representing each Field. 3764 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3765 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3766 FieldTypeA A; 3767 FieldTypeB B; 3768 bool Seen; 3769 3770 enum { 3771 IsInvalid = 0, 3772 IsTypeA = 1, 3773 IsTypeB = 2 3774 } WhatIs; 3775 3776 void assign(FieldTypeA A) { 3777 Seen = true; 3778 this->A = std::move(A); 3779 WhatIs = IsTypeA; 3780 } 3781 3782 void assign(FieldTypeB B) { 3783 Seen = true; 3784 this->B = std::move(B); 3785 WhatIs = IsTypeB; 3786 } 3787 3788 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3789 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3790 WhatIs(IsInvalid) {} 3791 }; 3792 3793 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3794 uint64_t Max; 3795 3796 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3797 : ImplTy(Default), Max(Max) {} 3798 }; 3799 3800 struct LineField : public MDUnsignedField { 3801 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3802 }; 3803 3804 struct ColumnField : public MDUnsignedField { 3805 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3806 }; 3807 3808 struct DwarfTagField : public MDUnsignedField { 3809 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3810 DwarfTagField(dwarf::Tag DefaultTag) 3811 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3812 }; 3813 3814 struct DwarfMacinfoTypeField : public MDUnsignedField { 3815 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3816 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3817 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3818 }; 3819 3820 struct DwarfAttEncodingField : public MDUnsignedField { 3821 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3822 }; 3823 3824 struct DwarfVirtualityField : public MDUnsignedField { 3825 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3826 }; 3827 3828 struct DwarfLangField : public MDUnsignedField { 3829 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3830 }; 3831 3832 struct DwarfCCField : public MDUnsignedField { 3833 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3834 }; 3835 3836 struct EmissionKindField : public MDUnsignedField { 3837 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3838 }; 3839 3840 struct NameTableKindField : public MDUnsignedField { 3841 NameTableKindField() 3842 : MDUnsignedField( 3843 0, (unsigned) 3844 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3845 }; 3846 3847 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3848 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3849 }; 3850 3851 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3852 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3853 }; 3854 3855 struct MDAPSIntField : public MDFieldImpl<APSInt> { 3856 MDAPSIntField() : ImplTy(APSInt()) {} 3857 }; 3858 3859 struct MDSignedField : public MDFieldImpl<int64_t> { 3860 int64_t Min; 3861 int64_t Max; 3862 3863 MDSignedField(int64_t Default = 0) 3864 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3865 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3866 : ImplTy(Default), Min(Min), Max(Max) {} 3867 }; 3868 3869 struct MDBoolField : public MDFieldImpl<bool> { 3870 MDBoolField(bool Default = false) : ImplTy(Default) {} 3871 }; 3872 3873 struct MDField : public MDFieldImpl<Metadata *> { 3874 bool AllowNull; 3875 3876 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3877 }; 3878 3879 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3880 MDConstant() : ImplTy(nullptr) {} 3881 }; 3882 3883 struct MDStringField : public MDFieldImpl<MDString *> { 3884 bool AllowEmpty; 3885 MDStringField(bool AllowEmpty = true) 3886 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3887 }; 3888 3889 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3890 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3891 }; 3892 3893 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3894 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3895 }; 3896 3897 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3898 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3899 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3900 3901 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3902 bool AllowNull = true) 3903 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3904 3905 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3906 bool isMDField() const { return WhatIs == IsTypeB; } 3907 int64_t getMDSignedValue() const { 3908 assert(isMDSignedField() && "Wrong field type"); 3909 return A.Val; 3910 } 3911 Metadata *getMDFieldValue() const { 3912 assert(isMDField() && "Wrong field type"); 3913 return B.Val; 3914 } 3915 }; 3916 3917 } // end anonymous namespace 3918 3919 namespace llvm { 3920 3921 template <> 3922 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 3923 if (Lex.getKind() != lltok::APSInt) 3924 return tokError("expected integer"); 3925 3926 Result.assign(Lex.getAPSIntVal()); 3927 Lex.Lex(); 3928 return false; 3929 } 3930 3931 template <> 3932 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 3933 MDUnsignedField &Result) { 3934 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3935 return tokError("expected unsigned integer"); 3936 3937 auto &U = Lex.getAPSIntVal(); 3938 if (U.ugt(Result.Max)) 3939 return tokError("value for '" + Name + "' too large, limit is " + 3940 Twine(Result.Max)); 3941 Result.assign(U.getZExtValue()); 3942 assert(Result.Val <= Result.Max && "Expected value in range"); 3943 Lex.Lex(); 3944 return false; 3945 } 3946 3947 template <> 3948 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3949 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3950 } 3951 template <> 3952 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3953 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3954 } 3955 3956 template <> 3957 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3958 if (Lex.getKind() == lltok::APSInt) 3959 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3960 3961 if (Lex.getKind() != lltok::DwarfTag) 3962 return tokError("expected DWARF tag"); 3963 3964 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3965 if (Tag == dwarf::DW_TAG_invalid) 3966 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3967 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3968 3969 Result.assign(Tag); 3970 Lex.Lex(); 3971 return false; 3972 } 3973 3974 template <> 3975 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 3976 DwarfMacinfoTypeField &Result) { 3977 if (Lex.getKind() == lltok::APSInt) 3978 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3979 3980 if (Lex.getKind() != lltok::DwarfMacinfo) 3981 return tokError("expected DWARF macinfo type"); 3982 3983 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3984 if (Macinfo == dwarf::DW_MACINFO_invalid) 3985 return tokError("invalid DWARF macinfo type" + Twine(" '") + 3986 Lex.getStrVal() + "'"); 3987 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3988 3989 Result.assign(Macinfo); 3990 Lex.Lex(); 3991 return false; 3992 } 3993 3994 template <> 3995 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 3996 DwarfVirtualityField &Result) { 3997 if (Lex.getKind() == lltok::APSInt) 3998 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3999 4000 if (Lex.getKind() != lltok::DwarfVirtuality) 4001 return tokError("expected DWARF virtuality code"); 4002 4003 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4004 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4005 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4006 Lex.getStrVal() + "'"); 4007 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4008 Result.assign(Virtuality); 4009 Lex.Lex(); 4010 return false; 4011 } 4012 4013 template <> 4014 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4015 if (Lex.getKind() == lltok::APSInt) 4016 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4017 4018 if (Lex.getKind() != lltok::DwarfLang) 4019 return tokError("expected DWARF language"); 4020 4021 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4022 if (!Lang) 4023 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4024 "'"); 4025 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4026 Result.assign(Lang); 4027 Lex.Lex(); 4028 return false; 4029 } 4030 4031 template <> 4032 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4033 if (Lex.getKind() == lltok::APSInt) 4034 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4035 4036 if (Lex.getKind() != lltok::DwarfCC) 4037 return tokError("expected DWARF calling convention"); 4038 4039 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4040 if (!CC) 4041 return tokError("invalid DWARF calling convention" + Twine(" '") + 4042 Lex.getStrVal() + "'"); 4043 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4044 Result.assign(CC); 4045 Lex.Lex(); 4046 return false; 4047 } 4048 4049 template <> 4050 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4051 EmissionKindField &Result) { 4052 if (Lex.getKind() == lltok::APSInt) 4053 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4054 4055 if (Lex.getKind() != lltok::EmissionKind) 4056 return tokError("expected emission kind"); 4057 4058 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4059 if (!Kind) 4060 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4061 "'"); 4062 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4063 Result.assign(*Kind); 4064 Lex.Lex(); 4065 return false; 4066 } 4067 4068 template <> 4069 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4070 NameTableKindField &Result) { 4071 if (Lex.getKind() == lltok::APSInt) 4072 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4073 4074 if (Lex.getKind() != lltok::NameTableKind) 4075 return tokError("expected nameTable kind"); 4076 4077 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4078 if (!Kind) 4079 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4080 "'"); 4081 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4082 Result.assign((unsigned)*Kind); 4083 Lex.Lex(); 4084 return false; 4085 } 4086 4087 template <> 4088 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4089 DwarfAttEncodingField &Result) { 4090 if (Lex.getKind() == lltok::APSInt) 4091 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4092 4093 if (Lex.getKind() != lltok::DwarfAttEncoding) 4094 return tokError("expected DWARF type attribute encoding"); 4095 4096 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4097 if (!Encoding) 4098 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4099 Lex.getStrVal() + "'"); 4100 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4101 Result.assign(Encoding); 4102 Lex.Lex(); 4103 return false; 4104 } 4105 4106 /// DIFlagField 4107 /// ::= uint32 4108 /// ::= DIFlagVector 4109 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4110 template <> 4111 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4112 4113 // parser for a single flag. 4114 auto parseFlag = [&](DINode::DIFlags &Val) { 4115 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4116 uint32_t TempVal = static_cast<uint32_t>(Val); 4117 bool Res = parseUInt32(TempVal); 4118 Val = static_cast<DINode::DIFlags>(TempVal); 4119 return Res; 4120 } 4121 4122 if (Lex.getKind() != lltok::DIFlag) 4123 return tokError("expected debug info flag"); 4124 4125 Val = DINode::getFlag(Lex.getStrVal()); 4126 if (!Val) 4127 return tokError(Twine("invalid debug info flag flag '") + 4128 Lex.getStrVal() + "'"); 4129 Lex.Lex(); 4130 return false; 4131 }; 4132 4133 // parse the flags and combine them together. 4134 DINode::DIFlags Combined = DINode::FlagZero; 4135 do { 4136 DINode::DIFlags Val; 4137 if (parseFlag(Val)) 4138 return true; 4139 Combined |= Val; 4140 } while (EatIfPresent(lltok::bar)); 4141 4142 Result.assign(Combined); 4143 return false; 4144 } 4145 4146 /// DISPFlagField 4147 /// ::= uint32 4148 /// ::= DISPFlagVector 4149 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4150 template <> 4151 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4152 4153 // parser for a single flag. 4154 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4155 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4156 uint32_t TempVal = static_cast<uint32_t>(Val); 4157 bool Res = parseUInt32(TempVal); 4158 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4159 return Res; 4160 } 4161 4162 if (Lex.getKind() != lltok::DISPFlag) 4163 return tokError("expected debug info flag"); 4164 4165 Val = DISubprogram::getFlag(Lex.getStrVal()); 4166 if (!Val) 4167 return tokError(Twine("invalid subprogram debug info flag '") + 4168 Lex.getStrVal() + "'"); 4169 Lex.Lex(); 4170 return false; 4171 }; 4172 4173 // parse the flags and combine them together. 4174 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4175 do { 4176 DISubprogram::DISPFlags Val; 4177 if (parseFlag(Val)) 4178 return true; 4179 Combined |= Val; 4180 } while (EatIfPresent(lltok::bar)); 4181 4182 Result.assign(Combined); 4183 return false; 4184 } 4185 4186 template <> 4187 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4188 if (Lex.getKind() != lltok::APSInt) 4189 return tokError("expected signed integer"); 4190 4191 auto &S = Lex.getAPSIntVal(); 4192 if (S < Result.Min) 4193 return tokError("value for '" + Name + "' too small, limit is " + 4194 Twine(Result.Min)); 4195 if (S > Result.Max) 4196 return tokError("value for '" + Name + "' too large, limit is " + 4197 Twine(Result.Max)); 4198 Result.assign(S.getExtValue()); 4199 assert(Result.Val >= Result.Min && "Expected value in range"); 4200 assert(Result.Val <= Result.Max && "Expected value in range"); 4201 Lex.Lex(); 4202 return false; 4203 } 4204 4205 template <> 4206 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4207 switch (Lex.getKind()) { 4208 default: 4209 return tokError("expected 'true' or 'false'"); 4210 case lltok::kw_true: 4211 Result.assign(true); 4212 break; 4213 case lltok::kw_false: 4214 Result.assign(false); 4215 break; 4216 } 4217 Lex.Lex(); 4218 return false; 4219 } 4220 4221 template <> 4222 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4223 if (Lex.getKind() == lltok::kw_null) { 4224 if (!Result.AllowNull) 4225 return tokError("'" + Name + "' cannot be null"); 4226 Lex.Lex(); 4227 Result.assign(nullptr); 4228 return false; 4229 } 4230 4231 Metadata *MD; 4232 if (parseMetadata(MD, nullptr)) 4233 return true; 4234 4235 Result.assign(MD); 4236 return false; 4237 } 4238 4239 template <> 4240 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4241 MDSignedOrMDField &Result) { 4242 // Try to parse a signed int. 4243 if (Lex.getKind() == lltok::APSInt) { 4244 MDSignedField Res = Result.A; 4245 if (!parseMDField(Loc, Name, Res)) { 4246 Result.assign(Res); 4247 return false; 4248 } 4249 return true; 4250 } 4251 4252 // Otherwise, try to parse as an MDField. 4253 MDField Res = Result.B; 4254 if (!parseMDField(Loc, Name, Res)) { 4255 Result.assign(Res); 4256 return false; 4257 } 4258 4259 return true; 4260 } 4261 4262 template <> 4263 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4264 LocTy ValueLoc = Lex.getLoc(); 4265 std::string S; 4266 if (parseStringConstant(S)) 4267 return true; 4268 4269 if (!Result.AllowEmpty && S.empty()) 4270 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4271 4272 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4273 return false; 4274 } 4275 4276 template <> 4277 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4278 SmallVector<Metadata *, 4> MDs; 4279 if (parseMDNodeVector(MDs)) 4280 return true; 4281 4282 Result.assign(std::move(MDs)); 4283 return false; 4284 } 4285 4286 template <> 4287 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4288 ChecksumKindField &Result) { 4289 Optional<DIFile::ChecksumKind> CSKind = 4290 DIFile::getChecksumKind(Lex.getStrVal()); 4291 4292 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4293 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4294 "'"); 4295 4296 Result.assign(*CSKind); 4297 Lex.Lex(); 4298 return false; 4299 } 4300 4301 } // end namespace llvm 4302 4303 template <class ParserTy> 4304 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4305 do { 4306 if (Lex.getKind() != lltok::LabelStr) 4307 return tokError("expected field label here"); 4308 4309 if (ParseField()) 4310 return true; 4311 } while (EatIfPresent(lltok::comma)); 4312 4313 return false; 4314 } 4315 4316 template <class ParserTy> 4317 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4318 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4319 Lex.Lex(); 4320 4321 if (parseToken(lltok::lparen, "expected '(' here")) 4322 return true; 4323 if (Lex.getKind() != lltok::rparen) 4324 if (parseMDFieldsImplBody(ParseField)) 4325 return true; 4326 4327 ClosingLoc = Lex.getLoc(); 4328 return parseToken(lltok::rparen, "expected ')' here"); 4329 } 4330 4331 template <class FieldTy> 4332 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4333 if (Result.Seen) 4334 return tokError("field '" + Name + "' cannot be specified more than once"); 4335 4336 LocTy Loc = Lex.getLoc(); 4337 Lex.Lex(); 4338 return parseMDField(Loc, Name, Result); 4339 } 4340 4341 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4342 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4343 4344 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4345 if (Lex.getStrVal() == #CLASS) \ 4346 return parse##CLASS(N, IsDistinct); 4347 #include "llvm/IR/Metadata.def" 4348 4349 return tokError("expected metadata type"); 4350 } 4351 4352 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4353 #define NOP_FIELD(NAME, TYPE, INIT) 4354 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4355 if (!NAME.Seen) \ 4356 return error(ClosingLoc, "missing required field '" #NAME "'"); 4357 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4358 if (Lex.getStrVal() == #NAME) \ 4359 return parseMDField(#NAME, NAME); 4360 #define PARSE_MD_FIELDS() \ 4361 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4362 do { \ 4363 LocTy ClosingLoc; \ 4364 if (parseMDFieldsImpl( \ 4365 [&]() -> bool { \ 4366 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4367 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4368 "'"); \ 4369 }, \ 4370 ClosingLoc)) \ 4371 return true; \ 4372 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4373 } while (false) 4374 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4375 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4376 4377 /// parseDILocationFields: 4378 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4379 /// isImplicitCode: true) 4380 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4381 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4382 OPTIONAL(line, LineField, ); \ 4383 OPTIONAL(column, ColumnField, ); \ 4384 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4385 OPTIONAL(inlinedAt, MDField, ); \ 4386 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4387 PARSE_MD_FIELDS(); 4388 #undef VISIT_MD_FIELDS 4389 4390 Result = 4391 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4392 inlinedAt.Val, isImplicitCode.Val)); 4393 return false; 4394 } 4395 4396 /// parseGenericDINode: 4397 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4398 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4399 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4400 REQUIRED(tag, DwarfTagField, ); \ 4401 OPTIONAL(header, MDStringField, ); \ 4402 OPTIONAL(operands, MDFieldList, ); 4403 PARSE_MD_FIELDS(); 4404 #undef VISIT_MD_FIELDS 4405 4406 Result = GET_OR_DISTINCT(GenericDINode, 4407 (Context, tag.Val, header.Val, operands.Val)); 4408 return false; 4409 } 4410 4411 /// parseDISubrange: 4412 /// ::= !DISubrange(count: 30, lowerBound: 2) 4413 /// ::= !DISubrange(count: !node, lowerBound: 2) 4414 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4415 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4416 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4417 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4418 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4419 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4420 OPTIONAL(stride, MDSignedOrMDField, ); 4421 PARSE_MD_FIELDS(); 4422 #undef VISIT_MD_FIELDS 4423 4424 Metadata *Count = nullptr; 4425 Metadata *LowerBound = nullptr; 4426 Metadata *UpperBound = nullptr; 4427 Metadata *Stride = nullptr; 4428 4429 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4430 if (Bound.isMDSignedField()) 4431 return ConstantAsMetadata::get(ConstantInt::getSigned( 4432 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4433 if (Bound.isMDField()) 4434 return Bound.getMDFieldValue(); 4435 return nullptr; 4436 }; 4437 4438 Count = convToMetadata(count); 4439 LowerBound = convToMetadata(lowerBound); 4440 UpperBound = convToMetadata(upperBound); 4441 Stride = convToMetadata(stride); 4442 4443 Result = GET_OR_DISTINCT(DISubrange, 4444 (Context, Count, LowerBound, UpperBound, Stride)); 4445 4446 return false; 4447 } 4448 4449 /// parseDIGenericSubrange: 4450 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4451 /// !node3) 4452 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4453 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4454 OPTIONAL(count, MDSignedOrMDField, ); \ 4455 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4456 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4457 OPTIONAL(stride, MDSignedOrMDField, ); 4458 PARSE_MD_FIELDS(); 4459 #undef VISIT_MD_FIELDS 4460 4461 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4462 if (Bound.isMDSignedField()) 4463 return DIExpression::get( 4464 Context, {dwarf::DW_OP_consts, 4465 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4466 if (Bound.isMDField()) 4467 return Bound.getMDFieldValue(); 4468 return nullptr; 4469 }; 4470 4471 Metadata *Count = ConvToMetadata(count); 4472 Metadata *LowerBound = ConvToMetadata(lowerBound); 4473 Metadata *UpperBound = ConvToMetadata(upperBound); 4474 Metadata *Stride = ConvToMetadata(stride); 4475 4476 Result = GET_OR_DISTINCT(DIGenericSubrange, 4477 (Context, Count, LowerBound, UpperBound, Stride)); 4478 4479 return false; 4480 } 4481 4482 /// parseDIEnumerator: 4483 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4484 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4485 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4486 REQUIRED(name, MDStringField, ); \ 4487 REQUIRED(value, MDAPSIntField, ); \ 4488 OPTIONAL(isUnsigned, MDBoolField, (false)); 4489 PARSE_MD_FIELDS(); 4490 #undef VISIT_MD_FIELDS 4491 4492 if (isUnsigned.Val && value.Val.isNegative()) 4493 return tokError("unsigned enumerator with negative value"); 4494 4495 APSInt Value(value.Val); 4496 // Add a leading zero so that unsigned values with the msb set are not 4497 // mistaken for negative values when used for signed enumerators. 4498 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4499 Value = Value.zext(Value.getBitWidth() + 1); 4500 4501 Result = 4502 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4503 4504 return false; 4505 } 4506 4507 /// parseDIBasicType: 4508 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4509 /// encoding: DW_ATE_encoding, flags: 0) 4510 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4511 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4512 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4513 OPTIONAL(name, MDStringField, ); \ 4514 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4515 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4516 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4517 OPTIONAL(flags, DIFlagField, ); 4518 PARSE_MD_FIELDS(); 4519 #undef VISIT_MD_FIELDS 4520 4521 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4522 align.Val, encoding.Val, flags.Val)); 4523 return false; 4524 } 4525 4526 /// parseDIStringType: 4527 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4528 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4529 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4530 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4531 OPTIONAL(name, MDStringField, ); \ 4532 OPTIONAL(stringLength, MDField, ); \ 4533 OPTIONAL(stringLengthExpression, MDField, ); \ 4534 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4535 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4536 OPTIONAL(encoding, DwarfAttEncodingField, ); 4537 PARSE_MD_FIELDS(); 4538 #undef VISIT_MD_FIELDS 4539 4540 Result = GET_OR_DISTINCT(DIStringType, 4541 (Context, tag.Val, name.Val, stringLength.Val, 4542 stringLengthExpression.Val, size.Val, align.Val, 4543 encoding.Val)); 4544 return false; 4545 } 4546 4547 /// parseDIDerivedType: 4548 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4549 /// line: 7, scope: !1, baseType: !2, size: 32, 4550 /// align: 32, offset: 0, flags: 0, extraData: !3, 4551 /// dwarfAddressSpace: 3) 4552 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4553 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4554 REQUIRED(tag, DwarfTagField, ); \ 4555 OPTIONAL(name, MDStringField, ); \ 4556 OPTIONAL(file, MDField, ); \ 4557 OPTIONAL(line, LineField, ); \ 4558 OPTIONAL(scope, MDField, ); \ 4559 REQUIRED(baseType, MDField, ); \ 4560 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4561 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4562 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4563 OPTIONAL(flags, DIFlagField, ); \ 4564 OPTIONAL(extraData, MDField, ); \ 4565 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4566 PARSE_MD_FIELDS(); 4567 #undef VISIT_MD_FIELDS 4568 4569 Optional<unsigned> DWARFAddressSpace; 4570 if (dwarfAddressSpace.Val != UINT32_MAX) 4571 DWARFAddressSpace = dwarfAddressSpace.Val; 4572 4573 Result = GET_OR_DISTINCT(DIDerivedType, 4574 (Context, tag.Val, name.Val, file.Val, line.Val, 4575 scope.Val, baseType.Val, size.Val, align.Val, 4576 offset.Val, DWARFAddressSpace, flags.Val, 4577 extraData.Val)); 4578 return false; 4579 } 4580 4581 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4582 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4583 REQUIRED(tag, DwarfTagField, ); \ 4584 OPTIONAL(name, MDStringField, ); \ 4585 OPTIONAL(file, MDField, ); \ 4586 OPTIONAL(line, LineField, ); \ 4587 OPTIONAL(scope, MDField, ); \ 4588 OPTIONAL(baseType, MDField, ); \ 4589 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4590 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4591 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4592 OPTIONAL(flags, DIFlagField, ); \ 4593 OPTIONAL(elements, MDField, ); \ 4594 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4595 OPTIONAL(vtableHolder, MDField, ); \ 4596 OPTIONAL(templateParams, MDField, ); \ 4597 OPTIONAL(identifier, MDStringField, ); \ 4598 OPTIONAL(discriminator, MDField, ); \ 4599 OPTIONAL(dataLocation, MDField, ); \ 4600 OPTIONAL(associated, MDField, ); \ 4601 OPTIONAL(allocated, MDField, ); \ 4602 OPTIONAL(rank, MDSignedOrMDField, ); 4603 PARSE_MD_FIELDS(); 4604 #undef VISIT_MD_FIELDS 4605 4606 Metadata *Rank = nullptr; 4607 if (rank.isMDSignedField()) 4608 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4609 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4610 else if (rank.isMDField()) 4611 Rank = rank.getMDFieldValue(); 4612 4613 // If this has an identifier try to build an ODR type. 4614 if (identifier.Val) 4615 if (auto *CT = DICompositeType::buildODRType( 4616 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4617 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4618 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4619 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4620 Rank)) { 4621 Result = CT; 4622 return false; 4623 } 4624 4625 // Create a new node, and save it in the context if it belongs in the type 4626 // map. 4627 Result = GET_OR_DISTINCT( 4628 DICompositeType, 4629 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4630 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4631 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4632 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4633 Rank)); 4634 return false; 4635 } 4636 4637 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4638 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4639 OPTIONAL(flags, DIFlagField, ); \ 4640 OPTIONAL(cc, DwarfCCField, ); \ 4641 REQUIRED(types, MDField, ); 4642 PARSE_MD_FIELDS(); 4643 #undef VISIT_MD_FIELDS 4644 4645 Result = GET_OR_DISTINCT(DISubroutineType, 4646 (Context, flags.Val, cc.Val, types.Val)); 4647 return false; 4648 } 4649 4650 /// parseDIFileType: 4651 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4652 /// checksumkind: CSK_MD5, 4653 /// checksum: "000102030405060708090a0b0c0d0e0f", 4654 /// source: "source file contents") 4655 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4656 // The default constructed value for checksumkind is required, but will never 4657 // be used, as the parser checks if the field was actually Seen before using 4658 // the Val. 4659 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4660 REQUIRED(filename, MDStringField, ); \ 4661 REQUIRED(directory, MDStringField, ); \ 4662 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4663 OPTIONAL(checksum, MDStringField, ); \ 4664 OPTIONAL(source, MDStringField, ); 4665 PARSE_MD_FIELDS(); 4666 #undef VISIT_MD_FIELDS 4667 4668 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4669 if (checksumkind.Seen && checksum.Seen) 4670 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4671 else if (checksumkind.Seen || checksum.Seen) 4672 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4673 4674 Optional<MDString *> OptSource; 4675 if (source.Seen) 4676 OptSource = source.Val; 4677 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4678 OptChecksum, OptSource)); 4679 return false; 4680 } 4681 4682 /// parseDICompileUnit: 4683 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4684 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4685 /// splitDebugFilename: "abc.debug", 4686 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4687 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 4688 /// sysroot: "/", sdk: "MacOSX.sdk") 4689 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4690 if (!IsDistinct) 4691 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4692 4693 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4694 REQUIRED(language, DwarfLangField, ); \ 4695 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4696 OPTIONAL(producer, MDStringField, ); \ 4697 OPTIONAL(isOptimized, MDBoolField, ); \ 4698 OPTIONAL(flags, MDStringField, ); \ 4699 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4700 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4701 OPTIONAL(emissionKind, EmissionKindField, ); \ 4702 OPTIONAL(enums, MDField, ); \ 4703 OPTIONAL(retainedTypes, MDField, ); \ 4704 OPTIONAL(globals, MDField, ); \ 4705 OPTIONAL(imports, MDField, ); \ 4706 OPTIONAL(macros, MDField, ); \ 4707 OPTIONAL(dwoId, MDUnsignedField, ); \ 4708 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4709 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4710 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4711 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 4712 OPTIONAL(sysroot, MDStringField, ); \ 4713 OPTIONAL(sdk, MDStringField, ); 4714 PARSE_MD_FIELDS(); 4715 #undef VISIT_MD_FIELDS 4716 4717 Result = DICompileUnit::getDistinct( 4718 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4719 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4720 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4721 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4722 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 4723 return false; 4724 } 4725 4726 /// parseDISubprogram: 4727 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4728 /// file: !1, line: 7, type: !2, isLocal: false, 4729 /// isDefinition: true, scopeLine: 8, containingType: !3, 4730 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4731 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4732 /// spFlags: 10, isOptimized: false, templateParams: !4, 4733 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4734 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 4735 auto Loc = Lex.getLoc(); 4736 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4737 OPTIONAL(scope, MDField, ); \ 4738 OPTIONAL(name, MDStringField, ); \ 4739 OPTIONAL(linkageName, MDStringField, ); \ 4740 OPTIONAL(file, MDField, ); \ 4741 OPTIONAL(line, LineField, ); \ 4742 OPTIONAL(type, MDField, ); \ 4743 OPTIONAL(isLocal, MDBoolField, ); \ 4744 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4745 OPTIONAL(scopeLine, LineField, ); \ 4746 OPTIONAL(containingType, MDField, ); \ 4747 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4748 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4749 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4750 OPTIONAL(flags, DIFlagField, ); \ 4751 OPTIONAL(spFlags, DISPFlagField, ); \ 4752 OPTIONAL(isOptimized, MDBoolField, ); \ 4753 OPTIONAL(unit, MDField, ); \ 4754 OPTIONAL(templateParams, MDField, ); \ 4755 OPTIONAL(declaration, MDField, ); \ 4756 OPTIONAL(retainedNodes, MDField, ); \ 4757 OPTIONAL(thrownTypes, MDField, ); 4758 PARSE_MD_FIELDS(); 4759 #undef VISIT_MD_FIELDS 4760 4761 // An explicit spFlags field takes precedence over individual fields in 4762 // older IR versions. 4763 DISubprogram::DISPFlags SPFlags = 4764 spFlags.Seen ? spFlags.Val 4765 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4766 isOptimized.Val, virtuality.Val); 4767 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4768 return Lex.Error( 4769 Loc, 4770 "missing 'distinct', required for !DISubprogram that is a Definition"); 4771 Result = GET_OR_DISTINCT( 4772 DISubprogram, 4773 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4774 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4775 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4776 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4777 return false; 4778 } 4779 4780 /// parseDILexicalBlock: 4781 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4782 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4783 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4784 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4785 OPTIONAL(file, MDField, ); \ 4786 OPTIONAL(line, LineField, ); \ 4787 OPTIONAL(column, ColumnField, ); 4788 PARSE_MD_FIELDS(); 4789 #undef VISIT_MD_FIELDS 4790 4791 Result = GET_OR_DISTINCT( 4792 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4793 return false; 4794 } 4795 4796 /// parseDILexicalBlockFile: 4797 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4798 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4799 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4800 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4801 OPTIONAL(file, MDField, ); \ 4802 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4803 PARSE_MD_FIELDS(); 4804 #undef VISIT_MD_FIELDS 4805 4806 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4807 (Context, scope.Val, file.Val, discriminator.Val)); 4808 return false; 4809 } 4810 4811 /// parseDICommonBlock: 4812 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4813 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4814 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4815 REQUIRED(scope, MDField, ); \ 4816 OPTIONAL(declaration, MDField, ); \ 4817 OPTIONAL(name, MDStringField, ); \ 4818 OPTIONAL(file, MDField, ); \ 4819 OPTIONAL(line, LineField, ); 4820 PARSE_MD_FIELDS(); 4821 #undef VISIT_MD_FIELDS 4822 4823 Result = GET_OR_DISTINCT(DICommonBlock, 4824 (Context, scope.Val, declaration.Val, name.Val, 4825 file.Val, line.Val)); 4826 return false; 4827 } 4828 4829 /// parseDINamespace: 4830 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4831 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 4832 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4833 REQUIRED(scope, MDField, ); \ 4834 OPTIONAL(name, MDStringField, ); \ 4835 OPTIONAL(exportSymbols, MDBoolField, ); 4836 PARSE_MD_FIELDS(); 4837 #undef VISIT_MD_FIELDS 4838 4839 Result = GET_OR_DISTINCT(DINamespace, 4840 (Context, scope.Val, name.Val, exportSymbols.Val)); 4841 return false; 4842 } 4843 4844 /// parseDIMacro: 4845 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 4846 /// "SomeValue") 4847 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 4848 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4849 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4850 OPTIONAL(line, LineField, ); \ 4851 REQUIRED(name, MDStringField, ); \ 4852 OPTIONAL(value, MDStringField, ); 4853 PARSE_MD_FIELDS(); 4854 #undef VISIT_MD_FIELDS 4855 4856 Result = GET_OR_DISTINCT(DIMacro, 4857 (Context, type.Val, line.Val, name.Val, value.Val)); 4858 return false; 4859 } 4860 4861 /// parseDIMacroFile: 4862 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4863 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4864 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4865 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4866 OPTIONAL(line, LineField, ); \ 4867 REQUIRED(file, MDField, ); \ 4868 OPTIONAL(nodes, MDField, ); 4869 PARSE_MD_FIELDS(); 4870 #undef VISIT_MD_FIELDS 4871 4872 Result = GET_OR_DISTINCT(DIMacroFile, 4873 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4874 return false; 4875 } 4876 4877 /// parseDIModule: 4878 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 4879 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 4880 /// file: !1, line: 4, isDecl: false) 4881 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 4882 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4883 REQUIRED(scope, MDField, ); \ 4884 REQUIRED(name, MDStringField, ); \ 4885 OPTIONAL(configMacros, MDStringField, ); \ 4886 OPTIONAL(includePath, MDStringField, ); \ 4887 OPTIONAL(apinotes, MDStringField, ); \ 4888 OPTIONAL(file, MDField, ); \ 4889 OPTIONAL(line, LineField, ); \ 4890 OPTIONAL(isDecl, MDBoolField, ); 4891 PARSE_MD_FIELDS(); 4892 #undef VISIT_MD_FIELDS 4893 4894 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 4895 configMacros.Val, includePath.Val, 4896 apinotes.Val, line.Val, isDecl.Val)); 4897 return false; 4898 } 4899 4900 /// parseDITemplateTypeParameter: 4901 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 4902 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4903 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4904 OPTIONAL(name, MDStringField, ); \ 4905 REQUIRED(type, MDField, ); \ 4906 OPTIONAL(defaulted, MDBoolField, ); 4907 PARSE_MD_FIELDS(); 4908 #undef VISIT_MD_FIELDS 4909 4910 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 4911 (Context, name.Val, type.Val, defaulted.Val)); 4912 return false; 4913 } 4914 4915 /// parseDITemplateValueParameter: 4916 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4917 /// name: "V", type: !1, defaulted: false, 4918 /// value: i32 7) 4919 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4920 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4921 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4922 OPTIONAL(name, MDStringField, ); \ 4923 OPTIONAL(type, MDField, ); \ 4924 OPTIONAL(defaulted, MDBoolField, ); \ 4925 REQUIRED(value, MDField, ); 4926 4927 PARSE_MD_FIELDS(); 4928 #undef VISIT_MD_FIELDS 4929 4930 Result = GET_OR_DISTINCT( 4931 DITemplateValueParameter, 4932 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 4933 return false; 4934 } 4935 4936 /// parseDIGlobalVariable: 4937 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4938 /// file: !1, line: 7, type: !2, isLocal: false, 4939 /// isDefinition: true, templateParams: !3, 4940 /// declaration: !4, align: 8) 4941 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4942 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4943 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4944 OPTIONAL(scope, MDField, ); \ 4945 OPTIONAL(linkageName, MDStringField, ); \ 4946 OPTIONAL(file, MDField, ); \ 4947 OPTIONAL(line, LineField, ); \ 4948 OPTIONAL(type, MDField, ); \ 4949 OPTIONAL(isLocal, MDBoolField, ); \ 4950 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4951 OPTIONAL(templateParams, MDField, ); \ 4952 OPTIONAL(declaration, MDField, ); \ 4953 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4954 PARSE_MD_FIELDS(); 4955 #undef VISIT_MD_FIELDS 4956 4957 Result = 4958 GET_OR_DISTINCT(DIGlobalVariable, 4959 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4960 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4961 declaration.Val, templateParams.Val, align.Val)); 4962 return false; 4963 } 4964 4965 /// parseDILocalVariable: 4966 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4967 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4968 /// align: 8) 4969 /// ::= !DILocalVariable(scope: !0, name: "foo", 4970 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4971 /// align: 8) 4972 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4973 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4974 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4975 OPTIONAL(name, MDStringField, ); \ 4976 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4977 OPTIONAL(file, MDField, ); \ 4978 OPTIONAL(line, LineField, ); \ 4979 OPTIONAL(type, MDField, ); \ 4980 OPTIONAL(flags, DIFlagField, ); \ 4981 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4982 PARSE_MD_FIELDS(); 4983 #undef VISIT_MD_FIELDS 4984 4985 Result = GET_OR_DISTINCT(DILocalVariable, 4986 (Context, scope.Val, name.Val, file.Val, line.Val, 4987 type.Val, arg.Val, flags.Val, align.Val)); 4988 return false; 4989 } 4990 4991 /// parseDILabel: 4992 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4993 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 4994 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4995 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4996 REQUIRED(name, MDStringField, ); \ 4997 REQUIRED(file, MDField, ); \ 4998 REQUIRED(line, LineField, ); 4999 PARSE_MD_FIELDS(); 5000 #undef VISIT_MD_FIELDS 5001 5002 Result = GET_OR_DISTINCT(DILabel, 5003 (Context, scope.Val, name.Val, file.Val, line.Val)); 5004 return false; 5005 } 5006 5007 /// parseDIExpression: 5008 /// ::= !DIExpression(0, 7, -1) 5009 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5010 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5011 Lex.Lex(); 5012 5013 if (parseToken(lltok::lparen, "expected '(' here")) 5014 return true; 5015 5016 SmallVector<uint64_t, 8> Elements; 5017 if (Lex.getKind() != lltok::rparen) 5018 do { 5019 if (Lex.getKind() == lltok::DwarfOp) { 5020 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5021 Lex.Lex(); 5022 Elements.push_back(Op); 5023 continue; 5024 } 5025 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5026 } 5027 5028 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5029 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5030 Lex.Lex(); 5031 Elements.push_back(Op); 5032 continue; 5033 } 5034 return tokError(Twine("invalid DWARF attribute encoding '") + 5035 Lex.getStrVal() + "'"); 5036 } 5037 5038 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5039 return tokError("expected unsigned integer"); 5040 5041 auto &U = Lex.getAPSIntVal(); 5042 if (U.ugt(UINT64_MAX)) 5043 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5044 Elements.push_back(U.getZExtValue()); 5045 Lex.Lex(); 5046 } while (EatIfPresent(lltok::comma)); 5047 5048 if (parseToken(lltok::rparen, "expected ')' here")) 5049 return true; 5050 5051 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5052 return false; 5053 } 5054 5055 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) { 5056 return parseDIArgList(Result, IsDistinct, nullptr); 5057 } 5058 /// ParseDIArgList: 5059 /// ::= !DIArgList(i32 7, i64 %0) 5060 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct, 5061 PerFunctionState *PFS) { 5062 assert(PFS && "Expected valid function state"); 5063 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5064 Lex.Lex(); 5065 5066 if (parseToken(lltok::lparen, "expected '(' here")) 5067 return true; 5068 5069 SmallVector<ValueAsMetadata *, 4> Args; 5070 if (Lex.getKind() != lltok::rparen) 5071 do { 5072 Metadata *MD; 5073 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5074 return true; 5075 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5076 } while (EatIfPresent(lltok::comma)); 5077 5078 if (parseToken(lltok::rparen, "expected ')' here")) 5079 return true; 5080 5081 Result = GET_OR_DISTINCT(DIArgList, (Context, Args)); 5082 return false; 5083 } 5084 5085 /// parseDIGlobalVariableExpression: 5086 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5087 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5088 bool IsDistinct) { 5089 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5090 REQUIRED(var, MDField, ); \ 5091 REQUIRED(expr, MDField, ); 5092 PARSE_MD_FIELDS(); 5093 #undef VISIT_MD_FIELDS 5094 5095 Result = 5096 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5097 return false; 5098 } 5099 5100 /// parseDIObjCProperty: 5101 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5102 /// getter: "getFoo", attributes: 7, type: !2) 5103 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5104 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5105 OPTIONAL(name, MDStringField, ); \ 5106 OPTIONAL(file, MDField, ); \ 5107 OPTIONAL(line, LineField, ); \ 5108 OPTIONAL(setter, MDStringField, ); \ 5109 OPTIONAL(getter, MDStringField, ); \ 5110 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5111 OPTIONAL(type, MDField, ); 5112 PARSE_MD_FIELDS(); 5113 #undef VISIT_MD_FIELDS 5114 5115 Result = GET_OR_DISTINCT(DIObjCProperty, 5116 (Context, name.Val, file.Val, line.Val, setter.Val, 5117 getter.Val, attributes.Val, type.Val)); 5118 return false; 5119 } 5120 5121 /// parseDIImportedEntity: 5122 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5123 /// line: 7, name: "foo") 5124 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5125 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5126 REQUIRED(tag, DwarfTagField, ); \ 5127 REQUIRED(scope, MDField, ); \ 5128 OPTIONAL(entity, MDField, ); \ 5129 OPTIONAL(file, MDField, ); \ 5130 OPTIONAL(line, LineField, ); \ 5131 OPTIONAL(name, MDStringField, ); 5132 PARSE_MD_FIELDS(); 5133 #undef VISIT_MD_FIELDS 5134 5135 Result = GET_OR_DISTINCT( 5136 DIImportedEntity, 5137 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5138 return false; 5139 } 5140 5141 #undef PARSE_MD_FIELD 5142 #undef NOP_FIELD 5143 #undef REQUIRE_FIELD 5144 #undef DECLARE_FIELD 5145 5146 /// parseMetadataAsValue 5147 /// ::= metadata i32 %local 5148 /// ::= metadata i32 @global 5149 /// ::= metadata i32 7 5150 /// ::= metadata !0 5151 /// ::= metadata !{...} 5152 /// ::= metadata !"string" 5153 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5154 // Note: the type 'metadata' has already been parsed. 5155 Metadata *MD; 5156 if (parseMetadata(MD, &PFS)) 5157 return true; 5158 5159 V = MetadataAsValue::get(Context, MD); 5160 return false; 5161 } 5162 5163 /// parseValueAsMetadata 5164 /// ::= i32 %local 5165 /// ::= i32 @global 5166 /// ::= i32 7 5167 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5168 PerFunctionState *PFS) { 5169 Type *Ty; 5170 LocTy Loc; 5171 if (parseType(Ty, TypeMsg, Loc)) 5172 return true; 5173 if (Ty->isMetadataTy()) 5174 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5175 5176 Value *V; 5177 if (parseValue(Ty, V, PFS)) 5178 return true; 5179 5180 MD = ValueAsMetadata::get(V); 5181 return false; 5182 } 5183 5184 /// parseMetadata 5185 /// ::= i32 %local 5186 /// ::= i32 @global 5187 /// ::= i32 7 5188 /// ::= !42 5189 /// ::= !{...} 5190 /// ::= !"string" 5191 /// ::= !DILocation(...) 5192 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5193 if (Lex.getKind() == lltok::MetadataVar) { 5194 MDNode *N; 5195 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5196 // so parsing this requires a Function State. 5197 if (Lex.getStrVal() == "DIArgList") { 5198 if (parseDIArgList(N, false, PFS)) 5199 return true; 5200 } else if (parseSpecializedMDNode(N)) { 5201 return true; 5202 } 5203 MD = N; 5204 return false; 5205 } 5206 5207 // ValueAsMetadata: 5208 // <type> <value> 5209 if (Lex.getKind() != lltok::exclaim) 5210 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5211 5212 // '!'. 5213 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5214 Lex.Lex(); 5215 5216 // MDString: 5217 // ::= '!' STRINGCONSTANT 5218 if (Lex.getKind() == lltok::StringConstant) { 5219 MDString *S; 5220 if (parseMDString(S)) 5221 return true; 5222 MD = S; 5223 return false; 5224 } 5225 5226 // MDNode: 5227 // !{ ... } 5228 // !7 5229 MDNode *N; 5230 if (parseMDNodeTail(N)) 5231 return true; 5232 MD = N; 5233 return false; 5234 } 5235 5236 //===----------------------------------------------------------------------===// 5237 // Function Parsing. 5238 //===----------------------------------------------------------------------===// 5239 5240 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5241 PerFunctionState *PFS, bool IsCall) { 5242 if (Ty->isFunctionTy()) 5243 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5244 5245 switch (ID.Kind) { 5246 case ValID::t_LocalID: 5247 if (!PFS) 5248 return error(ID.Loc, "invalid use of function-local name"); 5249 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5250 return V == nullptr; 5251 case ValID::t_LocalName: 5252 if (!PFS) 5253 return error(ID.Loc, "invalid use of function-local name"); 5254 V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall); 5255 return V == nullptr; 5256 case ValID::t_InlineAsm: { 5257 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5258 return error(ID.Loc, "invalid type for inline asm constraint string"); 5259 V = InlineAsm::get( 5260 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, 5261 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); 5262 return false; 5263 } 5264 case ValID::t_GlobalName: 5265 V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5266 return V == nullptr; 5267 case ValID::t_GlobalID: 5268 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5269 return V == nullptr; 5270 case ValID::t_APSInt: 5271 if (!Ty->isIntegerTy()) 5272 return error(ID.Loc, "integer constant must have integer type"); 5273 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5274 V = ConstantInt::get(Context, ID.APSIntVal); 5275 return false; 5276 case ValID::t_APFloat: 5277 if (!Ty->isFloatingPointTy() || 5278 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5279 return error(ID.Loc, "floating point constant invalid for type"); 5280 5281 // The lexer has no type info, so builds all half, bfloat, float, and double 5282 // FP constants as double. Fix this here. Long double does not need this. 5283 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5284 // Check for signaling before potentially converting and losing that info. 5285 bool IsSNAN = ID.APFloatVal.isSignaling(); 5286 bool Ignored; 5287 if (Ty->isHalfTy()) 5288 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5289 &Ignored); 5290 else if (Ty->isBFloatTy()) 5291 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5292 &Ignored); 5293 else if (Ty->isFloatTy()) 5294 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5295 &Ignored); 5296 if (IsSNAN) { 5297 // The convert call above may quiet an SNaN, so manufacture another 5298 // SNaN. The bitcast works because the payload (significand) parameter 5299 // is truncated to fit. 5300 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5301 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5302 ID.APFloatVal.isNegative(), &Payload); 5303 } 5304 } 5305 V = ConstantFP::get(Context, ID.APFloatVal); 5306 5307 if (V->getType() != Ty) 5308 return error(ID.Loc, "floating point constant does not have type '" + 5309 getTypeString(Ty) + "'"); 5310 5311 return false; 5312 case ValID::t_Null: 5313 if (!Ty->isPointerTy()) 5314 return error(ID.Loc, "null must be a pointer type"); 5315 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5316 return false; 5317 case ValID::t_Undef: 5318 // FIXME: LabelTy should not be a first-class type. 5319 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5320 return error(ID.Loc, "invalid type for undef constant"); 5321 V = UndefValue::get(Ty); 5322 return false; 5323 case ValID::t_EmptyArray: 5324 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5325 return error(ID.Loc, "invalid empty array initializer"); 5326 V = UndefValue::get(Ty); 5327 return false; 5328 case ValID::t_Zero: 5329 // FIXME: LabelTy should not be a first-class type. 5330 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5331 return error(ID.Loc, "invalid type for null constant"); 5332 V = Constant::getNullValue(Ty); 5333 return false; 5334 case ValID::t_None: 5335 if (!Ty->isTokenTy()) 5336 return error(ID.Loc, "invalid type for none constant"); 5337 V = Constant::getNullValue(Ty); 5338 return false; 5339 case ValID::t_Poison: 5340 // FIXME: LabelTy should not be a first-class type. 5341 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5342 return error(ID.Loc, "invalid type for poison constant"); 5343 V = PoisonValue::get(Ty); 5344 return false; 5345 case ValID::t_Constant: 5346 if (ID.ConstantVal->getType() != Ty) 5347 return error(ID.Loc, "constant expression type mismatch: got type '" + 5348 getTypeString(ID.ConstantVal->getType()) + 5349 "' but expected '" + getTypeString(Ty) + "'"); 5350 V = ID.ConstantVal; 5351 return false; 5352 case ValID::t_ConstantStruct: 5353 case ValID::t_PackedConstantStruct: 5354 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5355 if (ST->getNumElements() != ID.UIntVal) 5356 return error(ID.Loc, 5357 "initializer with struct type has wrong # elements"); 5358 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5359 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5360 5361 // Verify that the elements are compatible with the structtype. 5362 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5363 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5364 return error( 5365 ID.Loc, 5366 "element " + Twine(i) + 5367 " of struct initializer doesn't match struct element type"); 5368 5369 V = ConstantStruct::get( 5370 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5371 } else 5372 return error(ID.Loc, "constant expression type mismatch"); 5373 return false; 5374 } 5375 llvm_unreachable("Invalid ValID"); 5376 } 5377 5378 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5379 C = nullptr; 5380 ValID ID; 5381 auto Loc = Lex.getLoc(); 5382 if (parseValID(ID, /*PFS=*/nullptr)) 5383 return true; 5384 switch (ID.Kind) { 5385 case ValID::t_APSInt: 5386 case ValID::t_APFloat: 5387 case ValID::t_Undef: 5388 case ValID::t_Constant: 5389 case ValID::t_ConstantStruct: 5390 case ValID::t_PackedConstantStruct: { 5391 Value *V; 5392 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5393 return true; 5394 assert(isa<Constant>(V) && "Expected a constant value"); 5395 C = cast<Constant>(V); 5396 return false; 5397 } 5398 case ValID::t_Null: 5399 C = Constant::getNullValue(Ty); 5400 return false; 5401 default: 5402 return error(Loc, "expected a constant value"); 5403 } 5404 } 5405 5406 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5407 V = nullptr; 5408 ValID ID; 5409 return parseValID(ID, PFS, Ty) || 5410 convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5411 } 5412 5413 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5414 Type *Ty = nullptr; 5415 return parseType(Ty) || parseValue(Ty, V, PFS); 5416 } 5417 5418 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5419 PerFunctionState &PFS) { 5420 Value *V; 5421 Loc = Lex.getLoc(); 5422 if (parseTypeAndValue(V, PFS)) 5423 return true; 5424 if (!isa<BasicBlock>(V)) 5425 return error(Loc, "expected a basic block"); 5426 BB = cast<BasicBlock>(V); 5427 return false; 5428 } 5429 5430 /// FunctionHeader 5431 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5432 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5433 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5434 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5435 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5436 // parse the linkage. 5437 LocTy LinkageLoc = Lex.getLoc(); 5438 unsigned Linkage; 5439 unsigned Visibility; 5440 unsigned DLLStorageClass; 5441 bool DSOLocal; 5442 AttrBuilder RetAttrs; 5443 unsigned CC; 5444 bool HasLinkage; 5445 Type *RetType = nullptr; 5446 LocTy RetTypeLoc = Lex.getLoc(); 5447 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5448 DSOLocal) || 5449 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5450 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5451 return true; 5452 5453 // Verify that the linkage is ok. 5454 switch ((GlobalValue::LinkageTypes)Linkage) { 5455 case GlobalValue::ExternalLinkage: 5456 break; // always ok. 5457 case GlobalValue::ExternalWeakLinkage: 5458 if (IsDefine) 5459 return error(LinkageLoc, "invalid linkage for function definition"); 5460 break; 5461 case GlobalValue::PrivateLinkage: 5462 case GlobalValue::InternalLinkage: 5463 case GlobalValue::AvailableExternallyLinkage: 5464 case GlobalValue::LinkOnceAnyLinkage: 5465 case GlobalValue::LinkOnceODRLinkage: 5466 case GlobalValue::WeakAnyLinkage: 5467 case GlobalValue::WeakODRLinkage: 5468 if (!IsDefine) 5469 return error(LinkageLoc, "invalid linkage for function declaration"); 5470 break; 5471 case GlobalValue::AppendingLinkage: 5472 case GlobalValue::CommonLinkage: 5473 return error(LinkageLoc, "invalid function linkage type"); 5474 } 5475 5476 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5477 return error(LinkageLoc, 5478 "symbol with local linkage must have default visibility"); 5479 5480 if (!FunctionType::isValidReturnType(RetType)) 5481 return error(RetTypeLoc, "invalid function return type"); 5482 5483 LocTy NameLoc = Lex.getLoc(); 5484 5485 std::string FunctionName; 5486 if (Lex.getKind() == lltok::GlobalVar) { 5487 FunctionName = Lex.getStrVal(); 5488 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5489 unsigned NameID = Lex.getUIntVal(); 5490 5491 if (NameID != NumberedVals.size()) 5492 return tokError("function expected to be numbered '%" + 5493 Twine(NumberedVals.size()) + "'"); 5494 } else { 5495 return tokError("expected function name"); 5496 } 5497 5498 Lex.Lex(); 5499 5500 if (Lex.getKind() != lltok::lparen) 5501 return tokError("expected '(' in function argument list"); 5502 5503 SmallVector<ArgInfo, 8> ArgList; 5504 bool IsVarArg; 5505 AttrBuilder FuncAttrs; 5506 std::vector<unsigned> FwdRefAttrGrps; 5507 LocTy BuiltinLoc; 5508 std::string Section; 5509 std::string Partition; 5510 MaybeAlign Alignment; 5511 std::string GC; 5512 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5513 unsigned AddrSpace = 0; 5514 Constant *Prefix = nullptr; 5515 Constant *Prologue = nullptr; 5516 Constant *PersonalityFn = nullptr; 5517 Comdat *C; 5518 5519 if (parseArgumentList(ArgList, IsVarArg) || 5520 parseOptionalUnnamedAddr(UnnamedAddr) || 5521 parseOptionalProgramAddrSpace(AddrSpace) || 5522 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5523 BuiltinLoc) || 5524 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5525 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5526 parseOptionalComdat(FunctionName, C) || 5527 parseOptionalAlignment(Alignment) || 5528 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5529 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5530 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5531 (EatIfPresent(lltok::kw_personality) && 5532 parseGlobalTypeAndValue(PersonalityFn))) 5533 return true; 5534 5535 if (FuncAttrs.contains(Attribute::Builtin)) 5536 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5537 5538 // If the alignment was parsed as an attribute, move to the alignment field. 5539 if (FuncAttrs.hasAlignmentAttr()) { 5540 Alignment = FuncAttrs.getAlignment(); 5541 FuncAttrs.removeAttribute(Attribute::Alignment); 5542 } 5543 5544 // Okay, if we got here, the function is syntactically valid. Convert types 5545 // and do semantic checks. 5546 std::vector<Type*> ParamTypeList; 5547 SmallVector<AttributeSet, 8> Attrs; 5548 5549 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5550 ParamTypeList.push_back(ArgList[i].Ty); 5551 Attrs.push_back(ArgList[i].Attrs); 5552 } 5553 5554 AttributeList PAL = 5555 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5556 AttributeSet::get(Context, RetAttrs), Attrs); 5557 5558 if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy()) 5559 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5560 5561 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5562 PointerType *PFT = PointerType::get(FT, AddrSpace); 5563 5564 Fn = nullptr; 5565 GlobalValue *FwdFn = nullptr; 5566 if (!FunctionName.empty()) { 5567 // If this was a definition of a forward reference, remove the definition 5568 // from the forward reference table and fill in the forward ref. 5569 auto FRVI = ForwardRefVals.find(FunctionName); 5570 if (FRVI != ForwardRefVals.end()) { 5571 FwdFn = FRVI->second.first; 5572 if (!FwdFn->getType()->isOpaque()) { 5573 if (!FwdFn->getType()->getPointerElementType()->isFunctionTy()) 5574 return error(FRVI->second.second, "invalid forward reference to " 5575 "function as global value!"); 5576 if (FwdFn->getType() != PFT) 5577 return error(FRVI->second.second, 5578 "invalid forward reference to " 5579 "function '" + 5580 FunctionName + 5581 "' with wrong type: " 5582 "expected '" + 5583 getTypeString(PFT) + "' but was '" + 5584 getTypeString(FwdFn->getType()) + "'"); 5585 } 5586 ForwardRefVals.erase(FRVI); 5587 } else if ((Fn = M->getFunction(FunctionName))) { 5588 // Reject redefinitions. 5589 return error(NameLoc, 5590 "invalid redefinition of function '" + FunctionName + "'"); 5591 } else if (M->getNamedValue(FunctionName)) { 5592 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5593 } 5594 5595 } else { 5596 // If this is a definition of a forward referenced function, make sure the 5597 // types agree. 5598 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5599 if (I != ForwardRefValIDs.end()) { 5600 FwdFn = cast<Function>(I->second.first); 5601 if (!FwdFn->getType()->isOpaque() && FwdFn->getType() != PFT) 5602 return error(NameLoc, "type of definition and forward reference of '@" + 5603 Twine(NumberedVals.size()) + 5604 "' disagree: " 5605 "expected '" + 5606 getTypeString(PFT) + "' but was '" + 5607 getTypeString(FwdFn->getType()) + "'"); 5608 ForwardRefValIDs.erase(I); 5609 } 5610 } 5611 5612 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5613 FunctionName, M); 5614 5615 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5616 5617 if (FunctionName.empty()) 5618 NumberedVals.push_back(Fn); 5619 5620 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5621 maybeSetDSOLocal(DSOLocal, *Fn); 5622 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5623 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5624 Fn->setCallingConv(CC); 5625 Fn->setAttributes(PAL); 5626 Fn->setUnnamedAddr(UnnamedAddr); 5627 Fn->setAlignment(MaybeAlign(Alignment)); 5628 Fn->setSection(Section); 5629 Fn->setPartition(Partition); 5630 Fn->setComdat(C); 5631 Fn->setPersonalityFn(PersonalityFn); 5632 if (!GC.empty()) Fn->setGC(GC); 5633 Fn->setPrefixData(Prefix); 5634 Fn->setPrologueData(Prologue); 5635 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5636 5637 // Add all of the arguments we parsed to the function. 5638 Function::arg_iterator ArgIt = Fn->arg_begin(); 5639 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5640 // If the argument has a name, insert it into the argument symbol table. 5641 if (ArgList[i].Name.empty()) continue; 5642 5643 // Set the name, if it conflicted, it will be auto-renamed. 5644 ArgIt->setName(ArgList[i].Name); 5645 5646 if (ArgIt->getName() != ArgList[i].Name) 5647 return error(ArgList[i].Loc, 5648 "redefinition of argument '%" + ArgList[i].Name + "'"); 5649 } 5650 5651 if (FwdFn) { 5652 FwdFn->replaceAllUsesWith(Fn); 5653 FwdFn->eraseFromParent(); 5654 } 5655 5656 if (IsDefine) 5657 return false; 5658 5659 // Check the declaration has no block address forward references. 5660 ValID ID; 5661 if (FunctionName.empty()) { 5662 ID.Kind = ValID::t_GlobalID; 5663 ID.UIntVal = NumberedVals.size() - 1; 5664 } else { 5665 ID.Kind = ValID::t_GlobalName; 5666 ID.StrVal = FunctionName; 5667 } 5668 auto Blocks = ForwardRefBlockAddresses.find(ID); 5669 if (Blocks != ForwardRefBlockAddresses.end()) 5670 return error(Blocks->first.Loc, 5671 "cannot take blockaddress inside a declaration"); 5672 return false; 5673 } 5674 5675 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5676 ValID ID; 5677 if (FunctionNumber == -1) { 5678 ID.Kind = ValID::t_GlobalName; 5679 ID.StrVal = std::string(F.getName()); 5680 } else { 5681 ID.Kind = ValID::t_GlobalID; 5682 ID.UIntVal = FunctionNumber; 5683 } 5684 5685 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5686 if (Blocks == P.ForwardRefBlockAddresses.end()) 5687 return false; 5688 5689 for (const auto &I : Blocks->second) { 5690 const ValID &BBID = I.first; 5691 GlobalValue *GV = I.second; 5692 5693 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5694 "Expected local id or name"); 5695 BasicBlock *BB; 5696 if (BBID.Kind == ValID::t_LocalName) 5697 BB = getBB(BBID.StrVal, BBID.Loc); 5698 else 5699 BB = getBB(BBID.UIntVal, BBID.Loc); 5700 if (!BB) 5701 return P.error(BBID.Loc, "referenced value is not a basic block"); 5702 5703 Value *ResolvedVal = BlockAddress::get(&F, BB); 5704 ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(), 5705 ResolvedVal, false); 5706 if (!ResolvedVal) 5707 return true; 5708 GV->replaceAllUsesWith(ResolvedVal); 5709 GV->eraseFromParent(); 5710 } 5711 5712 P.ForwardRefBlockAddresses.erase(Blocks); 5713 return false; 5714 } 5715 5716 /// parseFunctionBody 5717 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5718 bool LLParser::parseFunctionBody(Function &Fn) { 5719 if (Lex.getKind() != lltok::lbrace) 5720 return tokError("expected '{' in function body"); 5721 Lex.Lex(); // eat the {. 5722 5723 int FunctionNumber = -1; 5724 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5725 5726 PerFunctionState PFS(*this, Fn, FunctionNumber); 5727 5728 // Resolve block addresses and allow basic blocks to be forward-declared 5729 // within this function. 5730 if (PFS.resolveForwardRefBlockAddresses()) 5731 return true; 5732 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5733 5734 // We need at least one basic block. 5735 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5736 return tokError("function body requires at least one basic block"); 5737 5738 while (Lex.getKind() != lltok::rbrace && 5739 Lex.getKind() != lltok::kw_uselistorder) 5740 if (parseBasicBlock(PFS)) 5741 return true; 5742 5743 while (Lex.getKind() != lltok::rbrace) 5744 if (parseUseListOrder(&PFS)) 5745 return true; 5746 5747 // Eat the }. 5748 Lex.Lex(); 5749 5750 // Verify function is ok. 5751 return PFS.finishFunction(); 5752 } 5753 5754 /// parseBasicBlock 5755 /// ::= (LabelStr|LabelID)? Instruction* 5756 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 5757 // If this basic block starts out with a name, remember it. 5758 std::string Name; 5759 int NameID = -1; 5760 LocTy NameLoc = Lex.getLoc(); 5761 if (Lex.getKind() == lltok::LabelStr) { 5762 Name = Lex.getStrVal(); 5763 Lex.Lex(); 5764 } else if (Lex.getKind() == lltok::LabelID) { 5765 NameID = Lex.getUIntVal(); 5766 Lex.Lex(); 5767 } 5768 5769 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 5770 if (!BB) 5771 return true; 5772 5773 std::string NameStr; 5774 5775 // parse the instructions in this block until we get a terminator. 5776 Instruction *Inst; 5777 do { 5778 // This instruction may have three possibilities for a name: a) none 5779 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5780 LocTy NameLoc = Lex.getLoc(); 5781 int NameID = -1; 5782 NameStr = ""; 5783 5784 if (Lex.getKind() == lltok::LocalVarID) { 5785 NameID = Lex.getUIntVal(); 5786 Lex.Lex(); 5787 if (parseToken(lltok::equal, "expected '=' after instruction id")) 5788 return true; 5789 } else if (Lex.getKind() == lltok::LocalVar) { 5790 NameStr = Lex.getStrVal(); 5791 Lex.Lex(); 5792 if (parseToken(lltok::equal, "expected '=' after instruction name")) 5793 return true; 5794 } 5795 5796 switch (parseInstruction(Inst, BB, PFS)) { 5797 default: 5798 llvm_unreachable("Unknown parseInstruction result!"); 5799 case InstError: return true; 5800 case InstNormal: 5801 BB->getInstList().push_back(Inst); 5802 5803 // With a normal result, we check to see if the instruction is followed by 5804 // a comma and metadata. 5805 if (EatIfPresent(lltok::comma)) 5806 if (parseInstructionMetadata(*Inst)) 5807 return true; 5808 break; 5809 case InstExtraComma: 5810 BB->getInstList().push_back(Inst); 5811 5812 // If the instruction parser ate an extra comma at the end of it, it 5813 // *must* be followed by metadata. 5814 if (parseInstructionMetadata(*Inst)) 5815 return true; 5816 break; 5817 } 5818 5819 // Set the name on the instruction. 5820 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 5821 return true; 5822 } while (!Inst->isTerminator()); 5823 5824 return false; 5825 } 5826 5827 //===----------------------------------------------------------------------===// 5828 // Instruction Parsing. 5829 //===----------------------------------------------------------------------===// 5830 5831 /// parseInstruction - parse one of the many different instructions. 5832 /// 5833 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 5834 PerFunctionState &PFS) { 5835 lltok::Kind Token = Lex.getKind(); 5836 if (Token == lltok::Eof) 5837 return tokError("found end of file when expecting more instructions"); 5838 LocTy Loc = Lex.getLoc(); 5839 unsigned KeywordVal = Lex.getUIntVal(); 5840 Lex.Lex(); // Eat the keyword. 5841 5842 switch (Token) { 5843 default: 5844 return error(Loc, "expected instruction opcode"); 5845 // Terminator Instructions. 5846 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5847 case lltok::kw_ret: 5848 return parseRet(Inst, BB, PFS); 5849 case lltok::kw_br: 5850 return parseBr(Inst, PFS); 5851 case lltok::kw_switch: 5852 return parseSwitch(Inst, PFS); 5853 case lltok::kw_indirectbr: 5854 return parseIndirectBr(Inst, PFS); 5855 case lltok::kw_invoke: 5856 return parseInvoke(Inst, PFS); 5857 case lltok::kw_resume: 5858 return parseResume(Inst, PFS); 5859 case lltok::kw_cleanupret: 5860 return parseCleanupRet(Inst, PFS); 5861 case lltok::kw_catchret: 5862 return parseCatchRet(Inst, PFS); 5863 case lltok::kw_catchswitch: 5864 return parseCatchSwitch(Inst, PFS); 5865 case lltok::kw_catchpad: 5866 return parseCatchPad(Inst, PFS); 5867 case lltok::kw_cleanuppad: 5868 return parseCleanupPad(Inst, PFS); 5869 case lltok::kw_callbr: 5870 return parseCallBr(Inst, PFS); 5871 // Unary Operators. 5872 case lltok::kw_fneg: { 5873 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5874 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 5875 if (Res != 0) 5876 return Res; 5877 if (FMF.any()) 5878 Inst->setFastMathFlags(FMF); 5879 return false; 5880 } 5881 // Binary Operators. 5882 case lltok::kw_add: 5883 case lltok::kw_sub: 5884 case lltok::kw_mul: 5885 case lltok::kw_shl: { 5886 bool NUW = EatIfPresent(lltok::kw_nuw); 5887 bool NSW = EatIfPresent(lltok::kw_nsw); 5888 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5889 5890 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 5891 return true; 5892 5893 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5894 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5895 return false; 5896 } 5897 case lltok::kw_fadd: 5898 case lltok::kw_fsub: 5899 case lltok::kw_fmul: 5900 case lltok::kw_fdiv: 5901 case lltok::kw_frem: { 5902 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5903 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 5904 if (Res != 0) 5905 return Res; 5906 if (FMF.any()) 5907 Inst->setFastMathFlags(FMF); 5908 return 0; 5909 } 5910 5911 case lltok::kw_sdiv: 5912 case lltok::kw_udiv: 5913 case lltok::kw_lshr: 5914 case lltok::kw_ashr: { 5915 bool Exact = EatIfPresent(lltok::kw_exact); 5916 5917 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 5918 return true; 5919 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5920 return false; 5921 } 5922 5923 case lltok::kw_urem: 5924 case lltok::kw_srem: 5925 return parseArithmetic(Inst, PFS, KeywordVal, 5926 /*IsFP*/ false); 5927 case lltok::kw_and: 5928 case lltok::kw_or: 5929 case lltok::kw_xor: 5930 return parseLogical(Inst, PFS, KeywordVal); 5931 case lltok::kw_icmp: 5932 return parseCompare(Inst, PFS, KeywordVal); 5933 case lltok::kw_fcmp: { 5934 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5935 int Res = parseCompare(Inst, PFS, KeywordVal); 5936 if (Res != 0) 5937 return Res; 5938 if (FMF.any()) 5939 Inst->setFastMathFlags(FMF); 5940 return 0; 5941 } 5942 5943 // Casts. 5944 case lltok::kw_trunc: 5945 case lltok::kw_zext: 5946 case lltok::kw_sext: 5947 case lltok::kw_fptrunc: 5948 case lltok::kw_fpext: 5949 case lltok::kw_bitcast: 5950 case lltok::kw_addrspacecast: 5951 case lltok::kw_uitofp: 5952 case lltok::kw_sitofp: 5953 case lltok::kw_fptoui: 5954 case lltok::kw_fptosi: 5955 case lltok::kw_inttoptr: 5956 case lltok::kw_ptrtoint: 5957 return parseCast(Inst, PFS, KeywordVal); 5958 // Other. 5959 case lltok::kw_select: { 5960 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5961 int Res = parseSelect(Inst, PFS); 5962 if (Res != 0) 5963 return Res; 5964 if (FMF.any()) { 5965 if (!isa<FPMathOperator>(Inst)) 5966 return error(Loc, "fast-math-flags specified for select without " 5967 "floating-point scalar or vector return type"); 5968 Inst->setFastMathFlags(FMF); 5969 } 5970 return 0; 5971 } 5972 case lltok::kw_va_arg: 5973 return parseVAArg(Inst, PFS); 5974 case lltok::kw_extractelement: 5975 return parseExtractElement(Inst, PFS); 5976 case lltok::kw_insertelement: 5977 return parseInsertElement(Inst, PFS); 5978 case lltok::kw_shufflevector: 5979 return parseShuffleVector(Inst, PFS); 5980 case lltok::kw_phi: { 5981 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5982 int Res = parsePHI(Inst, PFS); 5983 if (Res != 0) 5984 return Res; 5985 if (FMF.any()) { 5986 if (!isa<FPMathOperator>(Inst)) 5987 return error(Loc, "fast-math-flags specified for phi without " 5988 "floating-point scalar or vector return type"); 5989 Inst->setFastMathFlags(FMF); 5990 } 5991 return 0; 5992 } 5993 case lltok::kw_landingpad: 5994 return parseLandingPad(Inst, PFS); 5995 case lltok::kw_freeze: 5996 return parseFreeze(Inst, PFS); 5997 // Call. 5998 case lltok::kw_call: 5999 return parseCall(Inst, PFS, CallInst::TCK_None); 6000 case lltok::kw_tail: 6001 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6002 case lltok::kw_musttail: 6003 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6004 case lltok::kw_notail: 6005 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6006 // Memory. 6007 case lltok::kw_alloca: 6008 return parseAlloc(Inst, PFS); 6009 case lltok::kw_load: 6010 return parseLoad(Inst, PFS); 6011 case lltok::kw_store: 6012 return parseStore(Inst, PFS); 6013 case lltok::kw_cmpxchg: 6014 return parseCmpXchg(Inst, PFS); 6015 case lltok::kw_atomicrmw: 6016 return parseAtomicRMW(Inst, PFS); 6017 case lltok::kw_fence: 6018 return parseFence(Inst, PFS); 6019 case lltok::kw_getelementptr: 6020 return parseGetElementPtr(Inst, PFS); 6021 case lltok::kw_extractvalue: 6022 return parseExtractValue(Inst, PFS); 6023 case lltok::kw_insertvalue: 6024 return parseInsertValue(Inst, PFS); 6025 } 6026 } 6027 6028 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6029 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6030 if (Opc == Instruction::FCmp) { 6031 switch (Lex.getKind()) { 6032 default: 6033 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6034 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6035 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6036 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6037 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6038 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6039 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6040 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6041 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6042 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6043 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6044 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6045 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6046 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6047 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6048 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6049 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6050 } 6051 } else { 6052 switch (Lex.getKind()) { 6053 default: 6054 return tokError("expected icmp predicate (e.g. 'eq')"); 6055 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6056 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6057 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6058 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6059 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6060 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6061 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6062 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6063 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6064 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6065 } 6066 } 6067 Lex.Lex(); 6068 return false; 6069 } 6070 6071 //===----------------------------------------------------------------------===// 6072 // Terminator Instructions. 6073 //===----------------------------------------------------------------------===// 6074 6075 /// parseRet - parse a return instruction. 6076 /// ::= 'ret' void (',' !dbg, !1)* 6077 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6078 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6079 PerFunctionState &PFS) { 6080 SMLoc TypeLoc = Lex.getLoc(); 6081 Type *Ty = nullptr; 6082 if (parseType(Ty, true /*void allowed*/)) 6083 return true; 6084 6085 Type *ResType = PFS.getFunction().getReturnType(); 6086 6087 if (Ty->isVoidTy()) { 6088 if (!ResType->isVoidTy()) 6089 return error(TypeLoc, "value doesn't match function result type '" + 6090 getTypeString(ResType) + "'"); 6091 6092 Inst = ReturnInst::Create(Context); 6093 return false; 6094 } 6095 6096 Value *RV; 6097 if (parseValue(Ty, RV, PFS)) 6098 return true; 6099 6100 if (ResType != RV->getType()) 6101 return error(TypeLoc, "value doesn't match function result type '" + 6102 getTypeString(ResType) + "'"); 6103 6104 Inst = ReturnInst::Create(Context, RV); 6105 return false; 6106 } 6107 6108 /// parseBr 6109 /// ::= 'br' TypeAndValue 6110 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6111 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6112 LocTy Loc, Loc2; 6113 Value *Op0; 6114 BasicBlock *Op1, *Op2; 6115 if (parseTypeAndValue(Op0, Loc, PFS)) 6116 return true; 6117 6118 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6119 Inst = BranchInst::Create(BB); 6120 return false; 6121 } 6122 6123 if (Op0->getType() != Type::getInt1Ty(Context)) 6124 return error(Loc, "branch condition must have 'i1' type"); 6125 6126 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6127 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6128 parseToken(lltok::comma, "expected ',' after true destination") || 6129 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6130 return true; 6131 6132 Inst = BranchInst::Create(Op1, Op2, Op0); 6133 return false; 6134 } 6135 6136 /// parseSwitch 6137 /// Instruction 6138 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6139 /// JumpTable 6140 /// ::= (TypeAndValue ',' TypeAndValue)* 6141 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6142 LocTy CondLoc, BBLoc; 6143 Value *Cond; 6144 BasicBlock *DefaultBB; 6145 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6146 parseToken(lltok::comma, "expected ',' after switch condition") || 6147 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6148 parseToken(lltok::lsquare, "expected '[' with switch table")) 6149 return true; 6150 6151 if (!Cond->getType()->isIntegerTy()) 6152 return error(CondLoc, "switch condition must have integer type"); 6153 6154 // parse the jump table pairs. 6155 SmallPtrSet<Value*, 32> SeenCases; 6156 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6157 while (Lex.getKind() != lltok::rsquare) { 6158 Value *Constant; 6159 BasicBlock *DestBB; 6160 6161 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6162 parseToken(lltok::comma, "expected ',' after case value") || 6163 parseTypeAndBasicBlock(DestBB, PFS)) 6164 return true; 6165 6166 if (!SeenCases.insert(Constant).second) 6167 return error(CondLoc, "duplicate case value in switch"); 6168 if (!isa<ConstantInt>(Constant)) 6169 return error(CondLoc, "case value is not a constant integer"); 6170 6171 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6172 } 6173 6174 Lex.Lex(); // Eat the ']'. 6175 6176 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6177 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6178 SI->addCase(Table[i].first, Table[i].second); 6179 Inst = SI; 6180 return false; 6181 } 6182 6183 /// parseIndirectBr 6184 /// Instruction 6185 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6186 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6187 LocTy AddrLoc; 6188 Value *Address; 6189 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6190 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6191 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6192 return true; 6193 6194 if (!Address->getType()->isPointerTy()) 6195 return error(AddrLoc, "indirectbr address must have pointer type"); 6196 6197 // parse the destination list. 6198 SmallVector<BasicBlock*, 16> DestList; 6199 6200 if (Lex.getKind() != lltok::rsquare) { 6201 BasicBlock *DestBB; 6202 if (parseTypeAndBasicBlock(DestBB, PFS)) 6203 return true; 6204 DestList.push_back(DestBB); 6205 6206 while (EatIfPresent(lltok::comma)) { 6207 if (parseTypeAndBasicBlock(DestBB, PFS)) 6208 return true; 6209 DestList.push_back(DestBB); 6210 } 6211 } 6212 6213 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6214 return true; 6215 6216 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6217 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6218 IBI->addDestination(DestList[i]); 6219 Inst = IBI; 6220 return false; 6221 } 6222 6223 /// parseInvoke 6224 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6225 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6226 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6227 LocTy CallLoc = Lex.getLoc(); 6228 AttrBuilder RetAttrs, FnAttrs; 6229 std::vector<unsigned> FwdRefAttrGrps; 6230 LocTy NoBuiltinLoc; 6231 unsigned CC; 6232 unsigned InvokeAddrSpace; 6233 Type *RetType = nullptr; 6234 LocTy RetTypeLoc; 6235 ValID CalleeID; 6236 SmallVector<ParamInfo, 16> ArgList; 6237 SmallVector<OperandBundleDef, 2> BundleList; 6238 6239 BasicBlock *NormalBB, *UnwindBB; 6240 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6241 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6242 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6243 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6244 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6245 NoBuiltinLoc) || 6246 parseOptionalOperandBundles(BundleList, PFS) || 6247 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6248 parseTypeAndBasicBlock(NormalBB, PFS) || 6249 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6250 parseTypeAndBasicBlock(UnwindBB, PFS)) 6251 return true; 6252 6253 // If RetType is a non-function pointer type, then this is the short syntax 6254 // for the call, which means that RetType is just the return type. Infer the 6255 // rest of the function argument types from the arguments that are present. 6256 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6257 if (!Ty) { 6258 // Pull out the types of all of the arguments... 6259 std::vector<Type*> ParamTypes; 6260 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6261 ParamTypes.push_back(ArgList[i].V->getType()); 6262 6263 if (!FunctionType::isValidReturnType(RetType)) 6264 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6265 6266 Ty = FunctionType::get(RetType, ParamTypes, false); 6267 } 6268 6269 CalleeID.FTy = Ty; 6270 6271 // Look up the callee. 6272 Value *Callee; 6273 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6274 Callee, &PFS, /*IsCall=*/true)) 6275 return true; 6276 6277 // Set up the Attribute for the function. 6278 SmallVector<Value *, 8> Args; 6279 SmallVector<AttributeSet, 8> ArgAttrs; 6280 6281 // Loop through FunctionType's arguments and ensure they are specified 6282 // correctly. Also, gather any parameter attributes. 6283 FunctionType::param_iterator I = Ty->param_begin(); 6284 FunctionType::param_iterator E = Ty->param_end(); 6285 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6286 Type *ExpectedTy = nullptr; 6287 if (I != E) { 6288 ExpectedTy = *I++; 6289 } else if (!Ty->isVarArg()) { 6290 return error(ArgList[i].Loc, "too many arguments specified"); 6291 } 6292 6293 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6294 return error(ArgList[i].Loc, "argument is not of expected type '" + 6295 getTypeString(ExpectedTy) + "'"); 6296 Args.push_back(ArgList[i].V); 6297 ArgAttrs.push_back(ArgList[i].Attrs); 6298 } 6299 6300 if (I != E) 6301 return error(CallLoc, "not enough parameters specified for call"); 6302 6303 if (FnAttrs.hasAlignmentAttr()) 6304 return error(CallLoc, "invoke instructions may not have an alignment"); 6305 6306 // Finish off the Attribute and check them 6307 AttributeList PAL = 6308 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6309 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6310 6311 InvokeInst *II = 6312 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6313 II->setCallingConv(CC); 6314 II->setAttributes(PAL); 6315 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6316 Inst = II; 6317 return false; 6318 } 6319 6320 /// parseResume 6321 /// ::= 'resume' TypeAndValue 6322 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6323 Value *Exn; LocTy ExnLoc; 6324 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6325 return true; 6326 6327 ResumeInst *RI = ResumeInst::Create(Exn); 6328 Inst = RI; 6329 return false; 6330 } 6331 6332 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6333 PerFunctionState &PFS) { 6334 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6335 return true; 6336 6337 while (Lex.getKind() != lltok::rsquare) { 6338 // If this isn't the first argument, we need a comma. 6339 if (!Args.empty() && 6340 parseToken(lltok::comma, "expected ',' in argument list")) 6341 return true; 6342 6343 // parse the argument. 6344 LocTy ArgLoc; 6345 Type *ArgTy = nullptr; 6346 if (parseType(ArgTy, ArgLoc)) 6347 return true; 6348 6349 Value *V; 6350 if (ArgTy->isMetadataTy()) { 6351 if (parseMetadataAsValue(V, PFS)) 6352 return true; 6353 } else { 6354 if (parseValue(ArgTy, V, PFS)) 6355 return true; 6356 } 6357 Args.push_back(V); 6358 } 6359 6360 Lex.Lex(); // Lex the ']'. 6361 return false; 6362 } 6363 6364 /// parseCleanupRet 6365 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6366 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6367 Value *CleanupPad = nullptr; 6368 6369 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6370 return true; 6371 6372 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6373 return true; 6374 6375 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6376 return true; 6377 6378 BasicBlock *UnwindBB = nullptr; 6379 if (Lex.getKind() == lltok::kw_to) { 6380 Lex.Lex(); 6381 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6382 return true; 6383 } else { 6384 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6385 return true; 6386 } 6387 } 6388 6389 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6390 return false; 6391 } 6392 6393 /// parseCatchRet 6394 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6395 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6396 Value *CatchPad = nullptr; 6397 6398 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6399 return true; 6400 6401 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6402 return true; 6403 6404 BasicBlock *BB; 6405 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6406 parseTypeAndBasicBlock(BB, PFS)) 6407 return true; 6408 6409 Inst = CatchReturnInst::Create(CatchPad, BB); 6410 return false; 6411 } 6412 6413 /// parseCatchSwitch 6414 /// ::= 'catchswitch' within Parent 6415 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6416 Value *ParentPad; 6417 6418 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6419 return true; 6420 6421 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6422 Lex.getKind() != lltok::LocalVarID) 6423 return tokError("expected scope value for catchswitch"); 6424 6425 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6426 return true; 6427 6428 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6429 return true; 6430 6431 SmallVector<BasicBlock *, 32> Table; 6432 do { 6433 BasicBlock *DestBB; 6434 if (parseTypeAndBasicBlock(DestBB, PFS)) 6435 return true; 6436 Table.push_back(DestBB); 6437 } while (EatIfPresent(lltok::comma)); 6438 6439 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6440 return true; 6441 6442 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6443 return true; 6444 6445 BasicBlock *UnwindBB = nullptr; 6446 if (EatIfPresent(lltok::kw_to)) { 6447 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6448 return true; 6449 } else { 6450 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6451 return true; 6452 } 6453 6454 auto *CatchSwitch = 6455 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6456 for (BasicBlock *DestBB : Table) 6457 CatchSwitch->addHandler(DestBB); 6458 Inst = CatchSwitch; 6459 return false; 6460 } 6461 6462 /// parseCatchPad 6463 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6464 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6465 Value *CatchSwitch = nullptr; 6466 6467 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6468 return true; 6469 6470 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6471 return tokError("expected scope value for catchpad"); 6472 6473 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6474 return true; 6475 6476 SmallVector<Value *, 8> Args; 6477 if (parseExceptionArgs(Args, PFS)) 6478 return true; 6479 6480 Inst = CatchPadInst::Create(CatchSwitch, Args); 6481 return false; 6482 } 6483 6484 /// parseCleanupPad 6485 /// ::= 'cleanuppad' within Parent ParamList 6486 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6487 Value *ParentPad = nullptr; 6488 6489 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6490 return true; 6491 6492 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6493 Lex.getKind() != lltok::LocalVarID) 6494 return tokError("expected scope value for cleanuppad"); 6495 6496 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6497 return true; 6498 6499 SmallVector<Value *, 8> Args; 6500 if (parseExceptionArgs(Args, PFS)) 6501 return true; 6502 6503 Inst = CleanupPadInst::Create(ParentPad, Args); 6504 return false; 6505 } 6506 6507 //===----------------------------------------------------------------------===// 6508 // Unary Operators. 6509 //===----------------------------------------------------------------------===// 6510 6511 /// parseUnaryOp 6512 /// ::= UnaryOp TypeAndValue ',' Value 6513 /// 6514 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6515 /// operand is allowed. 6516 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6517 unsigned Opc, bool IsFP) { 6518 LocTy Loc; Value *LHS; 6519 if (parseTypeAndValue(LHS, Loc, PFS)) 6520 return true; 6521 6522 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6523 : LHS->getType()->isIntOrIntVectorTy(); 6524 6525 if (!Valid) 6526 return error(Loc, "invalid operand type for instruction"); 6527 6528 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6529 return false; 6530 } 6531 6532 /// parseCallBr 6533 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6534 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6535 /// '[' LabelList ']' 6536 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6537 LocTy CallLoc = Lex.getLoc(); 6538 AttrBuilder RetAttrs, FnAttrs; 6539 std::vector<unsigned> FwdRefAttrGrps; 6540 LocTy NoBuiltinLoc; 6541 unsigned CC; 6542 Type *RetType = nullptr; 6543 LocTy RetTypeLoc; 6544 ValID CalleeID; 6545 SmallVector<ParamInfo, 16> ArgList; 6546 SmallVector<OperandBundleDef, 2> BundleList; 6547 6548 BasicBlock *DefaultDest; 6549 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6550 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6551 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6552 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6553 NoBuiltinLoc) || 6554 parseOptionalOperandBundles(BundleList, PFS) || 6555 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6556 parseTypeAndBasicBlock(DefaultDest, PFS) || 6557 parseToken(lltok::lsquare, "expected '[' in callbr")) 6558 return true; 6559 6560 // parse the destination list. 6561 SmallVector<BasicBlock *, 16> IndirectDests; 6562 6563 if (Lex.getKind() != lltok::rsquare) { 6564 BasicBlock *DestBB; 6565 if (parseTypeAndBasicBlock(DestBB, PFS)) 6566 return true; 6567 IndirectDests.push_back(DestBB); 6568 6569 while (EatIfPresent(lltok::comma)) { 6570 if (parseTypeAndBasicBlock(DestBB, PFS)) 6571 return true; 6572 IndirectDests.push_back(DestBB); 6573 } 6574 } 6575 6576 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6577 return true; 6578 6579 // If RetType is a non-function pointer type, then this is the short syntax 6580 // for the call, which means that RetType is just the return type. Infer the 6581 // rest of the function argument types from the arguments that are present. 6582 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6583 if (!Ty) { 6584 // Pull out the types of all of the arguments... 6585 std::vector<Type *> ParamTypes; 6586 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6587 ParamTypes.push_back(ArgList[i].V->getType()); 6588 6589 if (!FunctionType::isValidReturnType(RetType)) 6590 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6591 6592 Ty = FunctionType::get(RetType, ParamTypes, false); 6593 } 6594 6595 CalleeID.FTy = Ty; 6596 6597 // Look up the callee. 6598 Value *Callee; 6599 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6600 /*IsCall=*/true)) 6601 return true; 6602 6603 // Set up the Attribute for the function. 6604 SmallVector<Value *, 8> Args; 6605 SmallVector<AttributeSet, 8> ArgAttrs; 6606 6607 // Loop through FunctionType's arguments and ensure they are specified 6608 // correctly. Also, gather any parameter attributes. 6609 FunctionType::param_iterator I = Ty->param_begin(); 6610 FunctionType::param_iterator E = Ty->param_end(); 6611 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6612 Type *ExpectedTy = nullptr; 6613 if (I != E) { 6614 ExpectedTy = *I++; 6615 } else if (!Ty->isVarArg()) { 6616 return error(ArgList[i].Loc, "too many arguments specified"); 6617 } 6618 6619 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6620 return error(ArgList[i].Loc, "argument is not of expected type '" + 6621 getTypeString(ExpectedTy) + "'"); 6622 Args.push_back(ArgList[i].V); 6623 ArgAttrs.push_back(ArgList[i].Attrs); 6624 } 6625 6626 if (I != E) 6627 return error(CallLoc, "not enough parameters specified for call"); 6628 6629 if (FnAttrs.hasAlignmentAttr()) 6630 return error(CallLoc, "callbr instructions may not have an alignment"); 6631 6632 // Finish off the Attribute and check them 6633 AttributeList PAL = 6634 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6635 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6636 6637 CallBrInst *CBI = 6638 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6639 BundleList); 6640 CBI->setCallingConv(CC); 6641 CBI->setAttributes(PAL); 6642 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6643 Inst = CBI; 6644 return false; 6645 } 6646 6647 //===----------------------------------------------------------------------===// 6648 // Binary Operators. 6649 //===----------------------------------------------------------------------===// 6650 6651 /// parseArithmetic 6652 /// ::= ArithmeticOps TypeAndValue ',' Value 6653 /// 6654 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6655 /// operand is allowed. 6656 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6657 unsigned Opc, bool IsFP) { 6658 LocTy Loc; Value *LHS, *RHS; 6659 if (parseTypeAndValue(LHS, Loc, PFS) || 6660 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6661 parseValue(LHS->getType(), RHS, PFS)) 6662 return true; 6663 6664 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6665 : LHS->getType()->isIntOrIntVectorTy(); 6666 6667 if (!Valid) 6668 return error(Loc, "invalid operand type for instruction"); 6669 6670 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6671 return false; 6672 } 6673 6674 /// parseLogical 6675 /// ::= ArithmeticOps TypeAndValue ',' Value { 6676 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6677 unsigned Opc) { 6678 LocTy Loc; Value *LHS, *RHS; 6679 if (parseTypeAndValue(LHS, Loc, PFS) || 6680 parseToken(lltok::comma, "expected ',' in logical operation") || 6681 parseValue(LHS->getType(), RHS, PFS)) 6682 return true; 6683 6684 if (!LHS->getType()->isIntOrIntVectorTy()) 6685 return error(Loc, 6686 "instruction requires integer or integer vector operands"); 6687 6688 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6689 return false; 6690 } 6691 6692 /// parseCompare 6693 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6694 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6695 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 6696 unsigned Opc) { 6697 // parse the integer/fp comparison predicate. 6698 LocTy Loc; 6699 unsigned Pred; 6700 Value *LHS, *RHS; 6701 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 6702 parseToken(lltok::comma, "expected ',' after compare value") || 6703 parseValue(LHS->getType(), RHS, PFS)) 6704 return true; 6705 6706 if (Opc == Instruction::FCmp) { 6707 if (!LHS->getType()->isFPOrFPVectorTy()) 6708 return error(Loc, "fcmp requires floating point operands"); 6709 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6710 } else { 6711 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6712 if (!LHS->getType()->isIntOrIntVectorTy() && 6713 !LHS->getType()->isPtrOrPtrVectorTy()) 6714 return error(Loc, "icmp requires integer operands"); 6715 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6716 } 6717 return false; 6718 } 6719 6720 //===----------------------------------------------------------------------===// 6721 // Other Instructions. 6722 //===----------------------------------------------------------------------===// 6723 6724 /// parseCast 6725 /// ::= CastOpc TypeAndValue 'to' Type 6726 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 6727 unsigned Opc) { 6728 LocTy Loc; 6729 Value *Op; 6730 Type *DestTy = nullptr; 6731 if (parseTypeAndValue(Op, Loc, PFS) || 6732 parseToken(lltok::kw_to, "expected 'to' after cast value") || 6733 parseType(DestTy)) 6734 return true; 6735 6736 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6737 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6738 return error(Loc, "invalid cast opcode for cast from '" + 6739 getTypeString(Op->getType()) + "' to '" + 6740 getTypeString(DestTy) + "'"); 6741 } 6742 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6743 return false; 6744 } 6745 6746 /// parseSelect 6747 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6748 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6749 LocTy Loc; 6750 Value *Op0, *Op1, *Op2; 6751 if (parseTypeAndValue(Op0, Loc, PFS) || 6752 parseToken(lltok::comma, "expected ',' after select condition") || 6753 parseTypeAndValue(Op1, PFS) || 6754 parseToken(lltok::comma, "expected ',' after select value") || 6755 parseTypeAndValue(Op2, PFS)) 6756 return true; 6757 6758 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6759 return error(Loc, Reason); 6760 6761 Inst = SelectInst::Create(Op0, Op1, Op2); 6762 return false; 6763 } 6764 6765 /// parseVAArg 6766 /// ::= 'va_arg' TypeAndValue ',' Type 6767 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 6768 Value *Op; 6769 Type *EltTy = nullptr; 6770 LocTy TypeLoc; 6771 if (parseTypeAndValue(Op, PFS) || 6772 parseToken(lltok::comma, "expected ',' after vaarg operand") || 6773 parseType(EltTy, TypeLoc)) 6774 return true; 6775 6776 if (!EltTy->isFirstClassType()) 6777 return error(TypeLoc, "va_arg requires operand with first class type"); 6778 6779 Inst = new VAArgInst(Op, EltTy); 6780 return false; 6781 } 6782 6783 /// parseExtractElement 6784 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6785 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6786 LocTy Loc; 6787 Value *Op0, *Op1; 6788 if (parseTypeAndValue(Op0, Loc, PFS) || 6789 parseToken(lltok::comma, "expected ',' after extract value") || 6790 parseTypeAndValue(Op1, PFS)) 6791 return true; 6792 6793 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6794 return error(Loc, "invalid extractelement operands"); 6795 6796 Inst = ExtractElementInst::Create(Op0, Op1); 6797 return false; 6798 } 6799 6800 /// parseInsertElement 6801 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6802 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6803 LocTy Loc; 6804 Value *Op0, *Op1, *Op2; 6805 if (parseTypeAndValue(Op0, Loc, PFS) || 6806 parseToken(lltok::comma, "expected ',' after insertelement value") || 6807 parseTypeAndValue(Op1, PFS) || 6808 parseToken(lltok::comma, "expected ',' after insertelement value") || 6809 parseTypeAndValue(Op2, PFS)) 6810 return true; 6811 6812 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6813 return error(Loc, "invalid insertelement operands"); 6814 6815 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6816 return false; 6817 } 6818 6819 /// parseShuffleVector 6820 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6821 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6822 LocTy Loc; 6823 Value *Op0, *Op1, *Op2; 6824 if (parseTypeAndValue(Op0, Loc, PFS) || 6825 parseToken(lltok::comma, "expected ',' after shuffle mask") || 6826 parseTypeAndValue(Op1, PFS) || 6827 parseToken(lltok::comma, "expected ',' after shuffle value") || 6828 parseTypeAndValue(Op2, PFS)) 6829 return true; 6830 6831 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6832 return error(Loc, "invalid shufflevector operands"); 6833 6834 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6835 return false; 6836 } 6837 6838 /// parsePHI 6839 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6840 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6841 Type *Ty = nullptr; LocTy TypeLoc; 6842 Value *Op0, *Op1; 6843 6844 if (parseType(Ty, TypeLoc) || 6845 parseToken(lltok::lsquare, "expected '[' in phi value list") || 6846 parseValue(Ty, Op0, PFS) || 6847 parseToken(lltok::comma, "expected ',' after insertelement value") || 6848 parseValue(Type::getLabelTy(Context), Op1, PFS) || 6849 parseToken(lltok::rsquare, "expected ']' in phi value list")) 6850 return true; 6851 6852 bool AteExtraComma = false; 6853 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6854 6855 while (true) { 6856 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6857 6858 if (!EatIfPresent(lltok::comma)) 6859 break; 6860 6861 if (Lex.getKind() == lltok::MetadataVar) { 6862 AteExtraComma = true; 6863 break; 6864 } 6865 6866 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 6867 parseValue(Ty, Op0, PFS) || 6868 parseToken(lltok::comma, "expected ',' after insertelement value") || 6869 parseValue(Type::getLabelTy(Context), Op1, PFS) || 6870 parseToken(lltok::rsquare, "expected ']' in phi value list")) 6871 return true; 6872 } 6873 6874 if (!Ty->isFirstClassType()) 6875 return error(TypeLoc, "phi node must have first class type"); 6876 6877 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6878 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6879 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6880 Inst = PN; 6881 return AteExtraComma ? InstExtraComma : InstNormal; 6882 } 6883 6884 /// parseLandingPad 6885 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6886 /// Clause 6887 /// ::= 'catch' TypeAndValue 6888 /// ::= 'filter' 6889 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6890 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6891 Type *Ty = nullptr; LocTy TyLoc; 6892 6893 if (parseType(Ty, TyLoc)) 6894 return true; 6895 6896 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6897 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6898 6899 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6900 LandingPadInst::ClauseType CT; 6901 if (EatIfPresent(lltok::kw_catch)) 6902 CT = LandingPadInst::Catch; 6903 else if (EatIfPresent(lltok::kw_filter)) 6904 CT = LandingPadInst::Filter; 6905 else 6906 return tokError("expected 'catch' or 'filter' clause type"); 6907 6908 Value *V; 6909 LocTy VLoc; 6910 if (parseTypeAndValue(V, VLoc, PFS)) 6911 return true; 6912 6913 // A 'catch' type expects a non-array constant. A filter clause expects an 6914 // array constant. 6915 if (CT == LandingPadInst::Catch) { 6916 if (isa<ArrayType>(V->getType())) 6917 error(VLoc, "'catch' clause has an invalid type"); 6918 } else { 6919 if (!isa<ArrayType>(V->getType())) 6920 error(VLoc, "'filter' clause has an invalid type"); 6921 } 6922 6923 Constant *CV = dyn_cast<Constant>(V); 6924 if (!CV) 6925 return error(VLoc, "clause argument must be a constant"); 6926 LP->addClause(CV); 6927 } 6928 6929 Inst = LP.release(); 6930 return false; 6931 } 6932 6933 /// parseFreeze 6934 /// ::= 'freeze' Type Value 6935 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 6936 LocTy Loc; 6937 Value *Op; 6938 if (parseTypeAndValue(Op, Loc, PFS)) 6939 return true; 6940 6941 Inst = new FreezeInst(Op); 6942 return false; 6943 } 6944 6945 /// parseCall 6946 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6947 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6948 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6949 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6950 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6951 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6952 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6953 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6954 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 6955 CallInst::TailCallKind TCK) { 6956 AttrBuilder RetAttrs, FnAttrs; 6957 std::vector<unsigned> FwdRefAttrGrps; 6958 LocTy BuiltinLoc; 6959 unsigned CallAddrSpace; 6960 unsigned CC; 6961 Type *RetType = nullptr; 6962 LocTy RetTypeLoc; 6963 ValID CalleeID; 6964 SmallVector<ParamInfo, 16> ArgList; 6965 SmallVector<OperandBundleDef, 2> BundleList; 6966 LocTy CallLoc = Lex.getLoc(); 6967 6968 if (TCK != CallInst::TCK_None && 6969 parseToken(lltok::kw_call, 6970 "expected 'tail call', 'musttail call', or 'notail call'")) 6971 return true; 6972 6973 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6974 6975 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6976 parseOptionalProgramAddrSpace(CallAddrSpace) || 6977 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6978 parseValID(CalleeID, &PFS) || 6979 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6980 PFS.getFunction().isVarArg()) || 6981 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6982 parseOptionalOperandBundles(BundleList, PFS)) 6983 return true; 6984 6985 // If RetType is a non-function pointer type, then this is the short syntax 6986 // for the call, which means that RetType is just the return type. Infer the 6987 // rest of the function argument types from the arguments that are present. 6988 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6989 if (!Ty) { 6990 // Pull out the types of all of the arguments... 6991 std::vector<Type*> ParamTypes; 6992 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6993 ParamTypes.push_back(ArgList[i].V->getType()); 6994 6995 if (!FunctionType::isValidReturnType(RetType)) 6996 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6997 6998 Ty = FunctionType::get(RetType, ParamTypes, false); 6999 } 7000 7001 CalleeID.FTy = Ty; 7002 7003 // Look up the callee. 7004 Value *Callee; 7005 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7006 &PFS, /*IsCall=*/true)) 7007 return true; 7008 7009 // Set up the Attribute for the function. 7010 SmallVector<AttributeSet, 8> Attrs; 7011 7012 SmallVector<Value*, 8> Args; 7013 7014 // Loop through FunctionType's arguments and ensure they are specified 7015 // correctly. Also, gather any parameter attributes. 7016 FunctionType::param_iterator I = Ty->param_begin(); 7017 FunctionType::param_iterator E = Ty->param_end(); 7018 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7019 Type *ExpectedTy = nullptr; 7020 if (I != E) { 7021 ExpectedTy = *I++; 7022 } else if (!Ty->isVarArg()) { 7023 return error(ArgList[i].Loc, "too many arguments specified"); 7024 } 7025 7026 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7027 return error(ArgList[i].Loc, "argument is not of expected type '" + 7028 getTypeString(ExpectedTy) + "'"); 7029 Args.push_back(ArgList[i].V); 7030 Attrs.push_back(ArgList[i].Attrs); 7031 } 7032 7033 if (I != E) 7034 return error(CallLoc, "not enough parameters specified for call"); 7035 7036 if (FnAttrs.hasAlignmentAttr()) 7037 return error(CallLoc, "call instructions may not have an alignment"); 7038 7039 // Finish off the Attribute and check them 7040 AttributeList PAL = 7041 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7042 AttributeSet::get(Context, RetAttrs), Attrs); 7043 7044 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7045 CI->setTailCallKind(TCK); 7046 CI->setCallingConv(CC); 7047 if (FMF.any()) { 7048 if (!isa<FPMathOperator>(CI)) { 7049 CI->deleteValue(); 7050 return error(CallLoc, "fast-math-flags specified for call without " 7051 "floating-point scalar or vector return type"); 7052 } 7053 CI->setFastMathFlags(FMF); 7054 } 7055 CI->setAttributes(PAL); 7056 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7057 Inst = CI; 7058 return false; 7059 } 7060 7061 //===----------------------------------------------------------------------===// 7062 // Memory Instructions. 7063 //===----------------------------------------------------------------------===// 7064 7065 /// parseAlloc 7066 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7067 /// (',' 'align' i32)? (',', 'addrspace(n))? 7068 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7069 Value *Size = nullptr; 7070 LocTy SizeLoc, TyLoc, ASLoc; 7071 MaybeAlign Alignment; 7072 unsigned AddrSpace = 0; 7073 Type *Ty = nullptr; 7074 7075 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7076 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7077 7078 if (parseType(Ty, TyLoc)) 7079 return true; 7080 7081 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7082 return error(TyLoc, "invalid type for alloca"); 7083 7084 bool AteExtraComma = false; 7085 if (EatIfPresent(lltok::comma)) { 7086 if (Lex.getKind() == lltok::kw_align) { 7087 if (parseOptionalAlignment(Alignment)) 7088 return true; 7089 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7090 return true; 7091 } else if (Lex.getKind() == lltok::kw_addrspace) { 7092 ASLoc = Lex.getLoc(); 7093 if (parseOptionalAddrSpace(AddrSpace)) 7094 return true; 7095 } else if (Lex.getKind() == lltok::MetadataVar) { 7096 AteExtraComma = true; 7097 } else { 7098 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7099 return true; 7100 if (EatIfPresent(lltok::comma)) { 7101 if (Lex.getKind() == lltok::kw_align) { 7102 if (parseOptionalAlignment(Alignment)) 7103 return true; 7104 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7105 return true; 7106 } else if (Lex.getKind() == lltok::kw_addrspace) { 7107 ASLoc = Lex.getLoc(); 7108 if (parseOptionalAddrSpace(AddrSpace)) 7109 return true; 7110 } else if (Lex.getKind() == lltok::MetadataVar) { 7111 AteExtraComma = true; 7112 } 7113 } 7114 } 7115 } 7116 7117 if (Size && !Size->getType()->isIntegerTy()) 7118 return error(SizeLoc, "element count must have integer type"); 7119 7120 SmallPtrSet<Type *, 4> Visited; 7121 if (!Alignment && !Ty->isSized(&Visited)) 7122 return error(TyLoc, "Cannot allocate unsized type"); 7123 if (!Alignment) 7124 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7125 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7126 AI->setUsedWithInAlloca(IsInAlloca); 7127 AI->setSwiftError(IsSwiftError); 7128 Inst = AI; 7129 return AteExtraComma ? InstExtraComma : InstNormal; 7130 } 7131 7132 /// parseLoad 7133 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7134 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7135 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7136 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7137 Value *Val; LocTy Loc; 7138 MaybeAlign Alignment; 7139 bool AteExtraComma = false; 7140 bool isAtomic = false; 7141 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7142 SyncScope::ID SSID = SyncScope::System; 7143 7144 if (Lex.getKind() == lltok::kw_atomic) { 7145 isAtomic = true; 7146 Lex.Lex(); 7147 } 7148 7149 bool isVolatile = false; 7150 if (Lex.getKind() == lltok::kw_volatile) { 7151 isVolatile = true; 7152 Lex.Lex(); 7153 } 7154 7155 Type *Ty; 7156 LocTy ExplicitTypeLoc = Lex.getLoc(); 7157 if (parseType(Ty) || 7158 parseToken(lltok::comma, "expected comma after load's type") || 7159 parseTypeAndValue(Val, Loc, PFS) || 7160 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7161 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7162 return true; 7163 7164 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7165 return error(Loc, "load operand must be a pointer to a first class type"); 7166 if (isAtomic && !Alignment) 7167 return error(Loc, "atomic load must have explicit non-zero alignment"); 7168 if (Ordering == AtomicOrdering::Release || 7169 Ordering == AtomicOrdering::AcquireRelease) 7170 return error(Loc, "atomic load cannot use Release ordering"); 7171 7172 if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) { 7173 return error( 7174 ExplicitTypeLoc, 7175 typeComparisonErrorMessage( 7176 "explicit pointee type doesn't match operand's pointee type", Ty, 7177 cast<PointerType>(Val->getType())->getElementType())); 7178 } 7179 SmallPtrSet<Type *, 4> Visited; 7180 if (!Alignment && !Ty->isSized(&Visited)) 7181 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7182 if (!Alignment) 7183 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7184 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7185 return AteExtraComma ? InstExtraComma : InstNormal; 7186 } 7187 7188 /// parseStore 7189 7190 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7191 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7192 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7193 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7194 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7195 MaybeAlign Alignment; 7196 bool AteExtraComma = false; 7197 bool isAtomic = false; 7198 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7199 SyncScope::ID SSID = SyncScope::System; 7200 7201 if (Lex.getKind() == lltok::kw_atomic) { 7202 isAtomic = true; 7203 Lex.Lex(); 7204 } 7205 7206 bool isVolatile = false; 7207 if (Lex.getKind() == lltok::kw_volatile) { 7208 isVolatile = true; 7209 Lex.Lex(); 7210 } 7211 7212 if (parseTypeAndValue(Val, Loc, PFS) || 7213 parseToken(lltok::comma, "expected ',' after store operand") || 7214 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7215 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7216 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7217 return true; 7218 7219 if (!Ptr->getType()->isPointerTy()) 7220 return error(PtrLoc, "store operand must be a pointer"); 7221 if (!Val->getType()->isFirstClassType()) 7222 return error(Loc, "store operand must be a first class value"); 7223 if (!cast<PointerType>(Ptr->getType()) 7224 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7225 return error(Loc, "stored value and pointer type do not match"); 7226 if (isAtomic && !Alignment) 7227 return error(Loc, "atomic store must have explicit non-zero alignment"); 7228 if (Ordering == AtomicOrdering::Acquire || 7229 Ordering == AtomicOrdering::AcquireRelease) 7230 return error(Loc, "atomic store cannot use Acquire ordering"); 7231 SmallPtrSet<Type *, 4> Visited; 7232 if (!Alignment && !Val->getType()->isSized(&Visited)) 7233 return error(Loc, "storing unsized types is not allowed"); 7234 if (!Alignment) 7235 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7236 7237 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7238 return AteExtraComma ? InstExtraComma : InstNormal; 7239 } 7240 7241 /// parseCmpXchg 7242 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7243 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7244 /// 'Align'? 7245 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7246 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7247 bool AteExtraComma = false; 7248 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7249 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7250 SyncScope::ID SSID = SyncScope::System; 7251 bool isVolatile = false; 7252 bool isWeak = false; 7253 MaybeAlign Alignment; 7254 7255 if (EatIfPresent(lltok::kw_weak)) 7256 isWeak = true; 7257 7258 if (EatIfPresent(lltok::kw_volatile)) 7259 isVolatile = true; 7260 7261 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7262 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7263 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7264 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7265 parseTypeAndValue(New, NewLoc, PFS) || 7266 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7267 parseOrdering(FailureOrdering) || 7268 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7269 return true; 7270 7271 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 7272 return tokError("invalid cmpxchg success ordering"); 7273 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 7274 return tokError("invalid cmpxchg failure ordering"); 7275 if (!Ptr->getType()->isPointerTy()) 7276 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7277 if (!cast<PointerType>(Ptr->getType()) 7278 ->isOpaqueOrPointeeTypeMatches(Cmp->getType())) 7279 return error(CmpLoc, "compare value and pointer type do not match"); 7280 if (!cast<PointerType>(Ptr->getType()) 7281 ->isOpaqueOrPointeeTypeMatches(New->getType())) 7282 return error(NewLoc, "new value and pointer type do not match"); 7283 if (Cmp->getType() != New->getType()) 7284 return error(NewLoc, "compare value and new value type do not match"); 7285 if (!New->getType()->isFirstClassType()) 7286 return error(NewLoc, "cmpxchg operand must be a first class value"); 7287 7288 const Align DefaultAlignment( 7289 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7290 Cmp->getType())); 7291 7292 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7293 Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering, 7294 FailureOrdering, SSID); 7295 CXI->setVolatile(isVolatile); 7296 CXI->setWeak(isWeak); 7297 7298 Inst = CXI; 7299 return AteExtraComma ? InstExtraComma : InstNormal; 7300 } 7301 7302 /// parseAtomicRMW 7303 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7304 /// 'singlethread'? AtomicOrdering 7305 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7306 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7307 bool AteExtraComma = false; 7308 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7309 SyncScope::ID SSID = SyncScope::System; 7310 bool isVolatile = false; 7311 bool IsFP = false; 7312 AtomicRMWInst::BinOp Operation; 7313 MaybeAlign Alignment; 7314 7315 if (EatIfPresent(lltok::kw_volatile)) 7316 isVolatile = true; 7317 7318 switch (Lex.getKind()) { 7319 default: 7320 return tokError("expected binary operation in atomicrmw"); 7321 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7322 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7323 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7324 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7325 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7326 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7327 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7328 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7329 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7330 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7331 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7332 case lltok::kw_fadd: 7333 Operation = AtomicRMWInst::FAdd; 7334 IsFP = true; 7335 break; 7336 case lltok::kw_fsub: 7337 Operation = AtomicRMWInst::FSub; 7338 IsFP = true; 7339 break; 7340 } 7341 Lex.Lex(); // Eat the operation. 7342 7343 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7344 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7345 parseTypeAndValue(Val, ValLoc, PFS) || 7346 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7347 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7348 return true; 7349 7350 if (Ordering == AtomicOrdering::Unordered) 7351 return tokError("atomicrmw cannot be unordered"); 7352 if (!Ptr->getType()->isPointerTy()) 7353 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7354 if (!cast<PointerType>(Ptr->getType()) 7355 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7356 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7357 7358 if (Operation == AtomicRMWInst::Xchg) { 7359 if (!Val->getType()->isIntegerTy() && 7360 !Val->getType()->isFloatingPointTy()) { 7361 return error(ValLoc, 7362 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7363 " operand must be an integer or floating point type"); 7364 } 7365 } else if (IsFP) { 7366 if (!Val->getType()->isFloatingPointTy()) { 7367 return error(ValLoc, "atomicrmw " + 7368 AtomicRMWInst::getOperationName(Operation) + 7369 " operand must be a floating point type"); 7370 } 7371 } else { 7372 if (!Val->getType()->isIntegerTy()) { 7373 return error(ValLoc, "atomicrmw " + 7374 AtomicRMWInst::getOperationName(Operation) + 7375 " operand must be an integer"); 7376 } 7377 } 7378 7379 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7380 if (Size < 8 || (Size & (Size - 1))) 7381 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7382 " integer"); 7383 const Align DefaultAlignment( 7384 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7385 Val->getType())); 7386 AtomicRMWInst *RMWI = 7387 new AtomicRMWInst(Operation, Ptr, Val, 7388 Alignment.getValueOr(DefaultAlignment), Ordering, SSID); 7389 RMWI->setVolatile(isVolatile); 7390 Inst = RMWI; 7391 return AteExtraComma ? InstExtraComma : InstNormal; 7392 } 7393 7394 /// parseFence 7395 /// ::= 'fence' 'singlethread'? AtomicOrdering 7396 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7397 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7398 SyncScope::ID SSID = SyncScope::System; 7399 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7400 return true; 7401 7402 if (Ordering == AtomicOrdering::Unordered) 7403 return tokError("fence cannot be unordered"); 7404 if (Ordering == AtomicOrdering::Monotonic) 7405 return tokError("fence cannot be monotonic"); 7406 7407 Inst = new FenceInst(Context, Ordering, SSID); 7408 return InstNormal; 7409 } 7410 7411 /// parseGetElementPtr 7412 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7413 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7414 Value *Ptr = nullptr; 7415 Value *Val = nullptr; 7416 LocTy Loc, EltLoc; 7417 7418 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7419 7420 Type *Ty = nullptr; 7421 LocTy ExplicitTypeLoc = Lex.getLoc(); 7422 if (parseType(Ty) || 7423 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7424 parseTypeAndValue(Ptr, Loc, PFS)) 7425 return true; 7426 7427 Type *BaseType = Ptr->getType(); 7428 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7429 if (!BasePointerType) 7430 return error(Loc, "base of getelementptr must be a pointer"); 7431 7432 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 7433 return error( 7434 ExplicitTypeLoc, 7435 typeComparisonErrorMessage( 7436 "explicit pointee type doesn't match operand's pointee type", Ty, 7437 BasePointerType->getElementType())); 7438 } 7439 7440 SmallVector<Value*, 16> Indices; 7441 bool AteExtraComma = false; 7442 // GEP returns a vector of pointers if at least one of parameters is a vector. 7443 // All vector parameters should have the same vector width. 7444 ElementCount GEPWidth = BaseType->isVectorTy() 7445 ? cast<VectorType>(BaseType)->getElementCount() 7446 : ElementCount::getFixed(0); 7447 7448 while (EatIfPresent(lltok::comma)) { 7449 if (Lex.getKind() == lltok::MetadataVar) { 7450 AteExtraComma = true; 7451 break; 7452 } 7453 if (parseTypeAndValue(Val, EltLoc, PFS)) 7454 return true; 7455 if (!Val->getType()->isIntOrIntVectorTy()) 7456 return error(EltLoc, "getelementptr index must be an integer"); 7457 7458 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7459 ElementCount ValNumEl = ValVTy->getElementCount(); 7460 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7461 return error( 7462 EltLoc, 7463 "getelementptr vector index has a wrong number of elements"); 7464 GEPWidth = ValNumEl; 7465 } 7466 Indices.push_back(Val); 7467 } 7468 7469 SmallPtrSet<Type*, 4> Visited; 7470 if (!Indices.empty() && !Ty->isSized(&Visited)) 7471 return error(Loc, "base element of getelementptr must be sized"); 7472 7473 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7474 return error(Loc, "invalid getelementptr indices"); 7475 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7476 if (InBounds) 7477 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7478 return AteExtraComma ? InstExtraComma : InstNormal; 7479 } 7480 7481 /// parseExtractValue 7482 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7483 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7484 Value *Val; LocTy Loc; 7485 SmallVector<unsigned, 4> Indices; 7486 bool AteExtraComma; 7487 if (parseTypeAndValue(Val, Loc, PFS) || 7488 parseIndexList(Indices, AteExtraComma)) 7489 return true; 7490 7491 if (!Val->getType()->isAggregateType()) 7492 return error(Loc, "extractvalue operand must be aggregate type"); 7493 7494 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7495 return error(Loc, "invalid indices for extractvalue"); 7496 Inst = ExtractValueInst::Create(Val, Indices); 7497 return AteExtraComma ? InstExtraComma : InstNormal; 7498 } 7499 7500 /// parseInsertValue 7501 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7502 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7503 Value *Val0, *Val1; LocTy Loc0, Loc1; 7504 SmallVector<unsigned, 4> Indices; 7505 bool AteExtraComma; 7506 if (parseTypeAndValue(Val0, Loc0, PFS) || 7507 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7508 parseTypeAndValue(Val1, Loc1, PFS) || 7509 parseIndexList(Indices, AteExtraComma)) 7510 return true; 7511 7512 if (!Val0->getType()->isAggregateType()) 7513 return error(Loc0, "insertvalue operand must be aggregate type"); 7514 7515 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7516 if (!IndexedType) 7517 return error(Loc0, "invalid indices for insertvalue"); 7518 if (IndexedType != Val1->getType()) 7519 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7520 getTypeString(Val1->getType()) + "' instead of '" + 7521 getTypeString(IndexedType) + "'"); 7522 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7523 return AteExtraComma ? InstExtraComma : InstNormal; 7524 } 7525 7526 //===----------------------------------------------------------------------===// 7527 // Embedded metadata. 7528 //===----------------------------------------------------------------------===// 7529 7530 /// parseMDNodeVector 7531 /// ::= { Element (',' Element)* } 7532 /// Element 7533 /// ::= 'null' | TypeAndValue 7534 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7535 if (parseToken(lltok::lbrace, "expected '{' here")) 7536 return true; 7537 7538 // Check for an empty list. 7539 if (EatIfPresent(lltok::rbrace)) 7540 return false; 7541 7542 do { 7543 // Null is a special case since it is typeless. 7544 if (EatIfPresent(lltok::kw_null)) { 7545 Elts.push_back(nullptr); 7546 continue; 7547 } 7548 7549 Metadata *MD; 7550 if (parseMetadata(MD, nullptr)) 7551 return true; 7552 Elts.push_back(MD); 7553 } while (EatIfPresent(lltok::comma)); 7554 7555 return parseToken(lltok::rbrace, "expected end of metadata node"); 7556 } 7557 7558 //===----------------------------------------------------------------------===// 7559 // Use-list order directives. 7560 //===----------------------------------------------------------------------===// 7561 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7562 SMLoc Loc) { 7563 if (V->use_empty()) 7564 return error(Loc, "value has no uses"); 7565 7566 unsigned NumUses = 0; 7567 SmallDenseMap<const Use *, unsigned, 16> Order; 7568 for (const Use &U : V->uses()) { 7569 if (++NumUses > Indexes.size()) 7570 break; 7571 Order[&U] = Indexes[NumUses - 1]; 7572 } 7573 if (NumUses < 2) 7574 return error(Loc, "value only has one use"); 7575 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7576 return error(Loc, 7577 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7578 7579 V->sortUseList([&](const Use &L, const Use &R) { 7580 return Order.lookup(&L) < Order.lookup(&R); 7581 }); 7582 return false; 7583 } 7584 7585 /// parseUseListOrderIndexes 7586 /// ::= '{' uint32 (',' uint32)+ '}' 7587 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7588 SMLoc Loc = Lex.getLoc(); 7589 if (parseToken(lltok::lbrace, "expected '{' here")) 7590 return true; 7591 if (Lex.getKind() == lltok::rbrace) 7592 return Lex.Error("expected non-empty list of uselistorder indexes"); 7593 7594 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7595 // indexes should be distinct numbers in the range [0, size-1], and should 7596 // not be in order. 7597 unsigned Offset = 0; 7598 unsigned Max = 0; 7599 bool IsOrdered = true; 7600 assert(Indexes.empty() && "Expected empty order vector"); 7601 do { 7602 unsigned Index; 7603 if (parseUInt32(Index)) 7604 return true; 7605 7606 // Update consistency checks. 7607 Offset += Index - Indexes.size(); 7608 Max = std::max(Max, Index); 7609 IsOrdered &= Index == Indexes.size(); 7610 7611 Indexes.push_back(Index); 7612 } while (EatIfPresent(lltok::comma)); 7613 7614 if (parseToken(lltok::rbrace, "expected '}' here")) 7615 return true; 7616 7617 if (Indexes.size() < 2) 7618 return error(Loc, "expected >= 2 uselistorder indexes"); 7619 if (Offset != 0 || Max >= Indexes.size()) 7620 return error(Loc, 7621 "expected distinct uselistorder indexes in range [0, size)"); 7622 if (IsOrdered) 7623 return error(Loc, "expected uselistorder indexes to change the order"); 7624 7625 return false; 7626 } 7627 7628 /// parseUseListOrder 7629 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7630 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7631 SMLoc Loc = Lex.getLoc(); 7632 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7633 return true; 7634 7635 Value *V; 7636 SmallVector<unsigned, 16> Indexes; 7637 if (parseTypeAndValue(V, PFS) || 7638 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7639 parseUseListOrderIndexes(Indexes)) 7640 return true; 7641 7642 return sortUseListOrder(V, Indexes, Loc); 7643 } 7644 7645 /// parseUseListOrderBB 7646 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7647 bool LLParser::parseUseListOrderBB() { 7648 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7649 SMLoc Loc = Lex.getLoc(); 7650 Lex.Lex(); 7651 7652 ValID Fn, Label; 7653 SmallVector<unsigned, 16> Indexes; 7654 if (parseValID(Fn, /*PFS=*/nullptr) || 7655 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7656 parseValID(Label, /*PFS=*/nullptr) || 7657 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7658 parseUseListOrderIndexes(Indexes)) 7659 return true; 7660 7661 // Check the function. 7662 GlobalValue *GV; 7663 if (Fn.Kind == ValID::t_GlobalName) 7664 GV = M->getNamedValue(Fn.StrVal); 7665 else if (Fn.Kind == ValID::t_GlobalID) 7666 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7667 else 7668 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7669 if (!GV) 7670 return error(Fn.Loc, 7671 "invalid function forward reference in uselistorder_bb"); 7672 auto *F = dyn_cast<Function>(GV); 7673 if (!F) 7674 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7675 if (F->isDeclaration()) 7676 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7677 7678 // Check the basic block. 7679 if (Label.Kind == ValID::t_LocalID) 7680 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7681 if (Label.Kind != ValID::t_LocalName) 7682 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 7683 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7684 if (!V) 7685 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 7686 if (!isa<BasicBlock>(V)) 7687 return error(Label.Loc, "expected basic block in uselistorder_bb"); 7688 7689 return sortUseListOrder(V, Indexes, Loc); 7690 } 7691 7692 /// ModuleEntry 7693 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7694 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7695 bool LLParser::parseModuleEntry(unsigned ID) { 7696 assert(Lex.getKind() == lltok::kw_module); 7697 Lex.Lex(); 7698 7699 std::string Path; 7700 if (parseToken(lltok::colon, "expected ':' here") || 7701 parseToken(lltok::lparen, "expected '(' here") || 7702 parseToken(lltok::kw_path, "expected 'path' here") || 7703 parseToken(lltok::colon, "expected ':' here") || 7704 parseStringConstant(Path) || 7705 parseToken(lltok::comma, "expected ',' here") || 7706 parseToken(lltok::kw_hash, "expected 'hash' here") || 7707 parseToken(lltok::colon, "expected ':' here") || 7708 parseToken(lltok::lparen, "expected '(' here")) 7709 return true; 7710 7711 ModuleHash Hash; 7712 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 7713 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 7714 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 7715 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 7716 parseUInt32(Hash[4])) 7717 return true; 7718 7719 if (parseToken(lltok::rparen, "expected ')' here") || 7720 parseToken(lltok::rparen, "expected ')' here")) 7721 return true; 7722 7723 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7724 ModuleIdMap[ID] = ModuleEntry->first(); 7725 7726 return false; 7727 } 7728 7729 /// TypeIdEntry 7730 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7731 bool LLParser::parseTypeIdEntry(unsigned ID) { 7732 assert(Lex.getKind() == lltok::kw_typeid); 7733 Lex.Lex(); 7734 7735 std::string Name; 7736 if (parseToken(lltok::colon, "expected ':' here") || 7737 parseToken(lltok::lparen, "expected '(' here") || 7738 parseToken(lltok::kw_name, "expected 'name' here") || 7739 parseToken(lltok::colon, "expected ':' here") || 7740 parseStringConstant(Name)) 7741 return true; 7742 7743 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7744 if (parseToken(lltok::comma, "expected ',' here") || 7745 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 7746 return true; 7747 7748 // Check if this ID was forward referenced, and if so, update the 7749 // corresponding GUIDs. 7750 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7751 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7752 for (auto TIDRef : FwdRefTIDs->second) { 7753 assert(!*TIDRef.first && 7754 "Forward referenced type id GUID expected to be 0"); 7755 *TIDRef.first = GlobalValue::getGUID(Name); 7756 } 7757 ForwardRefTypeIds.erase(FwdRefTIDs); 7758 } 7759 7760 return false; 7761 } 7762 7763 /// TypeIdSummary 7764 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7765 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 7766 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 7767 parseToken(lltok::colon, "expected ':' here") || 7768 parseToken(lltok::lparen, "expected '(' here") || 7769 parseTypeTestResolution(TIS.TTRes)) 7770 return true; 7771 7772 if (EatIfPresent(lltok::comma)) { 7773 // Expect optional wpdResolutions field 7774 if (parseOptionalWpdResolutions(TIS.WPDRes)) 7775 return true; 7776 } 7777 7778 if (parseToken(lltok::rparen, "expected ')' here")) 7779 return true; 7780 7781 return false; 7782 } 7783 7784 static ValueInfo EmptyVI = 7785 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7786 7787 /// TypeIdCompatibleVtableEntry 7788 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7789 /// TypeIdCompatibleVtableInfo 7790 /// ')' 7791 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 7792 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7793 Lex.Lex(); 7794 7795 std::string Name; 7796 if (parseToken(lltok::colon, "expected ':' here") || 7797 parseToken(lltok::lparen, "expected '(' here") || 7798 parseToken(lltok::kw_name, "expected 'name' here") || 7799 parseToken(lltok::colon, "expected ':' here") || 7800 parseStringConstant(Name)) 7801 return true; 7802 7803 TypeIdCompatibleVtableInfo &TI = 7804 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7805 if (parseToken(lltok::comma, "expected ',' here") || 7806 parseToken(lltok::kw_summary, "expected 'summary' here") || 7807 parseToken(lltok::colon, "expected ':' here") || 7808 parseToken(lltok::lparen, "expected '(' here")) 7809 return true; 7810 7811 IdToIndexMapType IdToIndexMap; 7812 // parse each call edge 7813 do { 7814 uint64_t Offset; 7815 if (parseToken(lltok::lparen, "expected '(' here") || 7816 parseToken(lltok::kw_offset, "expected 'offset' here") || 7817 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7818 parseToken(lltok::comma, "expected ',' here")) 7819 return true; 7820 7821 LocTy Loc = Lex.getLoc(); 7822 unsigned GVId; 7823 ValueInfo VI; 7824 if (parseGVReference(VI, GVId)) 7825 return true; 7826 7827 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7828 // forward reference. We will save the location of the ValueInfo needing an 7829 // update, but can only do so once the std::vector is finalized. 7830 if (VI == EmptyVI) 7831 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7832 TI.push_back({Offset, VI}); 7833 7834 if (parseToken(lltok::rparen, "expected ')' in call")) 7835 return true; 7836 } while (EatIfPresent(lltok::comma)); 7837 7838 // Now that the TI vector is finalized, it is safe to save the locations 7839 // of any forward GV references that need updating later. 7840 for (auto I : IdToIndexMap) { 7841 auto &Infos = ForwardRefValueInfos[I.first]; 7842 for (auto P : I.second) { 7843 assert(TI[P.first].VTableVI == EmptyVI && 7844 "Forward referenced ValueInfo expected to be empty"); 7845 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 7846 } 7847 } 7848 7849 if (parseToken(lltok::rparen, "expected ')' here") || 7850 parseToken(lltok::rparen, "expected ')' here")) 7851 return true; 7852 7853 // Check if this ID was forward referenced, and if so, update the 7854 // corresponding GUIDs. 7855 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7856 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7857 for (auto TIDRef : FwdRefTIDs->second) { 7858 assert(!*TIDRef.first && 7859 "Forward referenced type id GUID expected to be 0"); 7860 *TIDRef.first = GlobalValue::getGUID(Name); 7861 } 7862 ForwardRefTypeIds.erase(FwdRefTIDs); 7863 } 7864 7865 return false; 7866 } 7867 7868 /// TypeTestResolution 7869 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7870 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7871 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7872 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7873 /// [',' 'inlinesBits' ':' UInt64]? ')' 7874 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 7875 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7876 parseToken(lltok::colon, "expected ':' here") || 7877 parseToken(lltok::lparen, "expected '(' here") || 7878 parseToken(lltok::kw_kind, "expected 'kind' here") || 7879 parseToken(lltok::colon, "expected ':' here")) 7880 return true; 7881 7882 switch (Lex.getKind()) { 7883 case lltok::kw_unknown: 7884 TTRes.TheKind = TypeTestResolution::Unknown; 7885 break; 7886 case lltok::kw_unsat: 7887 TTRes.TheKind = TypeTestResolution::Unsat; 7888 break; 7889 case lltok::kw_byteArray: 7890 TTRes.TheKind = TypeTestResolution::ByteArray; 7891 break; 7892 case lltok::kw_inline: 7893 TTRes.TheKind = TypeTestResolution::Inline; 7894 break; 7895 case lltok::kw_single: 7896 TTRes.TheKind = TypeTestResolution::Single; 7897 break; 7898 case lltok::kw_allOnes: 7899 TTRes.TheKind = TypeTestResolution::AllOnes; 7900 break; 7901 default: 7902 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7903 } 7904 Lex.Lex(); 7905 7906 if (parseToken(lltok::comma, "expected ',' here") || 7907 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7908 parseToken(lltok::colon, "expected ':' here") || 7909 parseUInt32(TTRes.SizeM1BitWidth)) 7910 return true; 7911 7912 // parse optional fields 7913 while (EatIfPresent(lltok::comma)) { 7914 switch (Lex.getKind()) { 7915 case lltok::kw_alignLog2: 7916 Lex.Lex(); 7917 if (parseToken(lltok::colon, "expected ':'") || 7918 parseUInt64(TTRes.AlignLog2)) 7919 return true; 7920 break; 7921 case lltok::kw_sizeM1: 7922 Lex.Lex(); 7923 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 7924 return true; 7925 break; 7926 case lltok::kw_bitMask: { 7927 unsigned Val; 7928 Lex.Lex(); 7929 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 7930 return true; 7931 assert(Val <= 0xff); 7932 TTRes.BitMask = (uint8_t)Val; 7933 break; 7934 } 7935 case lltok::kw_inlineBits: 7936 Lex.Lex(); 7937 if (parseToken(lltok::colon, "expected ':'") || 7938 parseUInt64(TTRes.InlineBits)) 7939 return true; 7940 break; 7941 default: 7942 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7943 } 7944 } 7945 7946 if (parseToken(lltok::rparen, "expected ')' here")) 7947 return true; 7948 7949 return false; 7950 } 7951 7952 /// OptionalWpdResolutions 7953 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7954 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7955 bool LLParser::parseOptionalWpdResolutions( 7956 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7957 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7958 parseToken(lltok::colon, "expected ':' here") || 7959 parseToken(lltok::lparen, "expected '(' here")) 7960 return true; 7961 7962 do { 7963 uint64_t Offset; 7964 WholeProgramDevirtResolution WPDRes; 7965 if (parseToken(lltok::lparen, "expected '(' here") || 7966 parseToken(lltok::kw_offset, "expected 'offset' here") || 7967 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7968 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 7969 parseToken(lltok::rparen, "expected ')' here")) 7970 return true; 7971 WPDResMap[Offset] = WPDRes; 7972 } while (EatIfPresent(lltok::comma)); 7973 7974 if (parseToken(lltok::rparen, "expected ')' here")) 7975 return true; 7976 7977 return false; 7978 } 7979 7980 /// WpdRes 7981 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7982 /// [',' OptionalResByArg]? ')' 7983 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7984 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7985 /// [',' OptionalResByArg]? ')' 7986 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7987 /// [',' OptionalResByArg]? ')' 7988 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7989 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7990 parseToken(lltok::colon, "expected ':' here") || 7991 parseToken(lltok::lparen, "expected '(' here") || 7992 parseToken(lltok::kw_kind, "expected 'kind' here") || 7993 parseToken(lltok::colon, "expected ':' here")) 7994 return true; 7995 7996 switch (Lex.getKind()) { 7997 case lltok::kw_indir: 7998 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7999 break; 8000 case lltok::kw_singleImpl: 8001 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8002 break; 8003 case lltok::kw_branchFunnel: 8004 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8005 break; 8006 default: 8007 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8008 } 8009 Lex.Lex(); 8010 8011 // parse optional fields 8012 while (EatIfPresent(lltok::comma)) { 8013 switch (Lex.getKind()) { 8014 case lltok::kw_singleImplName: 8015 Lex.Lex(); 8016 if (parseToken(lltok::colon, "expected ':' here") || 8017 parseStringConstant(WPDRes.SingleImplName)) 8018 return true; 8019 break; 8020 case lltok::kw_resByArg: 8021 if (parseOptionalResByArg(WPDRes.ResByArg)) 8022 return true; 8023 break; 8024 default: 8025 return error(Lex.getLoc(), 8026 "expected optional WholeProgramDevirtResolution field"); 8027 } 8028 } 8029 8030 if (parseToken(lltok::rparen, "expected ')' here")) 8031 return true; 8032 8033 return false; 8034 } 8035 8036 /// OptionalResByArg 8037 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8038 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8039 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8040 /// 'virtualConstProp' ) 8041 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8042 /// [',' 'bit' ':' UInt32]? ')' 8043 bool LLParser::parseOptionalResByArg( 8044 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8045 &ResByArg) { 8046 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8047 parseToken(lltok::colon, "expected ':' here") || 8048 parseToken(lltok::lparen, "expected '(' here")) 8049 return true; 8050 8051 do { 8052 std::vector<uint64_t> Args; 8053 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8054 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8055 parseToken(lltok::colon, "expected ':' here") || 8056 parseToken(lltok::lparen, "expected '(' here") || 8057 parseToken(lltok::kw_kind, "expected 'kind' here") || 8058 parseToken(lltok::colon, "expected ':' here")) 8059 return true; 8060 8061 WholeProgramDevirtResolution::ByArg ByArg; 8062 switch (Lex.getKind()) { 8063 case lltok::kw_indir: 8064 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8065 break; 8066 case lltok::kw_uniformRetVal: 8067 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8068 break; 8069 case lltok::kw_uniqueRetVal: 8070 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8071 break; 8072 case lltok::kw_virtualConstProp: 8073 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8074 break; 8075 default: 8076 return error(Lex.getLoc(), 8077 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8078 } 8079 Lex.Lex(); 8080 8081 // parse optional fields 8082 while (EatIfPresent(lltok::comma)) { 8083 switch (Lex.getKind()) { 8084 case lltok::kw_info: 8085 Lex.Lex(); 8086 if (parseToken(lltok::colon, "expected ':' here") || 8087 parseUInt64(ByArg.Info)) 8088 return true; 8089 break; 8090 case lltok::kw_byte: 8091 Lex.Lex(); 8092 if (parseToken(lltok::colon, "expected ':' here") || 8093 parseUInt32(ByArg.Byte)) 8094 return true; 8095 break; 8096 case lltok::kw_bit: 8097 Lex.Lex(); 8098 if (parseToken(lltok::colon, "expected ':' here") || 8099 parseUInt32(ByArg.Bit)) 8100 return true; 8101 break; 8102 default: 8103 return error(Lex.getLoc(), 8104 "expected optional whole program devirt field"); 8105 } 8106 } 8107 8108 if (parseToken(lltok::rparen, "expected ')' here")) 8109 return true; 8110 8111 ResByArg[Args] = ByArg; 8112 } while (EatIfPresent(lltok::comma)); 8113 8114 if (parseToken(lltok::rparen, "expected ')' here")) 8115 return true; 8116 8117 return false; 8118 } 8119 8120 /// OptionalResByArg 8121 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8122 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8123 if (parseToken(lltok::kw_args, "expected 'args' here") || 8124 parseToken(lltok::colon, "expected ':' here") || 8125 parseToken(lltok::lparen, "expected '(' here")) 8126 return true; 8127 8128 do { 8129 uint64_t Val; 8130 if (parseUInt64(Val)) 8131 return true; 8132 Args.push_back(Val); 8133 } while (EatIfPresent(lltok::comma)); 8134 8135 if (parseToken(lltok::rparen, "expected ')' here")) 8136 return true; 8137 8138 return false; 8139 } 8140 8141 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8142 8143 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8144 bool ReadOnly = Fwd->isReadOnly(); 8145 bool WriteOnly = Fwd->isWriteOnly(); 8146 assert(!(ReadOnly && WriteOnly)); 8147 *Fwd = Resolved; 8148 if (ReadOnly) 8149 Fwd->setReadOnly(); 8150 if (WriteOnly) 8151 Fwd->setWriteOnly(); 8152 } 8153 8154 /// Stores the given Name/GUID and associated summary into the Index. 8155 /// Also updates any forward references to the associated entry ID. 8156 void LLParser::addGlobalValueToIndex( 8157 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8158 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8159 // First create the ValueInfo utilizing the Name or GUID. 8160 ValueInfo VI; 8161 if (GUID != 0) { 8162 assert(Name.empty()); 8163 VI = Index->getOrInsertValueInfo(GUID); 8164 } else { 8165 assert(!Name.empty()); 8166 if (M) { 8167 auto *GV = M->getNamedValue(Name); 8168 assert(GV); 8169 VI = Index->getOrInsertValueInfo(GV); 8170 } else { 8171 assert( 8172 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8173 "Need a source_filename to compute GUID for local"); 8174 GUID = GlobalValue::getGUID( 8175 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8176 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8177 } 8178 } 8179 8180 // Resolve forward references from calls/refs 8181 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8182 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8183 for (auto VIRef : FwdRefVIs->second) { 8184 assert(VIRef.first->getRef() == FwdVIRef && 8185 "Forward referenced ValueInfo expected to be empty"); 8186 resolveFwdRef(VIRef.first, VI); 8187 } 8188 ForwardRefValueInfos.erase(FwdRefVIs); 8189 } 8190 8191 // Resolve forward references from aliases 8192 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8193 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8194 for (auto AliaseeRef : FwdRefAliasees->second) { 8195 assert(!AliaseeRef.first->hasAliasee() && 8196 "Forward referencing alias already has aliasee"); 8197 assert(Summary && "Aliasee must be a definition"); 8198 AliaseeRef.first->setAliasee(VI, Summary.get()); 8199 } 8200 ForwardRefAliasees.erase(FwdRefAliasees); 8201 } 8202 8203 // Add the summary if one was provided. 8204 if (Summary) 8205 Index->addGlobalValueSummary(VI, std::move(Summary)); 8206 8207 // Save the associated ValueInfo for use in later references by ID. 8208 if (ID == NumberedValueInfos.size()) 8209 NumberedValueInfos.push_back(VI); 8210 else { 8211 // Handle non-continuous numbers (to make test simplification easier). 8212 if (ID > NumberedValueInfos.size()) 8213 NumberedValueInfos.resize(ID + 1); 8214 NumberedValueInfos[ID] = VI; 8215 } 8216 } 8217 8218 /// parseSummaryIndexFlags 8219 /// ::= 'flags' ':' UInt64 8220 bool LLParser::parseSummaryIndexFlags() { 8221 assert(Lex.getKind() == lltok::kw_flags); 8222 Lex.Lex(); 8223 8224 if (parseToken(lltok::colon, "expected ':' here")) 8225 return true; 8226 uint64_t Flags; 8227 if (parseUInt64(Flags)) 8228 return true; 8229 if (Index) 8230 Index->setFlags(Flags); 8231 return false; 8232 } 8233 8234 /// parseBlockCount 8235 /// ::= 'blockcount' ':' UInt64 8236 bool LLParser::parseBlockCount() { 8237 assert(Lex.getKind() == lltok::kw_blockcount); 8238 Lex.Lex(); 8239 8240 if (parseToken(lltok::colon, "expected ':' here")) 8241 return true; 8242 uint64_t BlockCount; 8243 if (parseUInt64(BlockCount)) 8244 return true; 8245 if (Index) 8246 Index->setBlockCount(BlockCount); 8247 return false; 8248 } 8249 8250 /// parseGVEntry 8251 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8252 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8253 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8254 bool LLParser::parseGVEntry(unsigned ID) { 8255 assert(Lex.getKind() == lltok::kw_gv); 8256 Lex.Lex(); 8257 8258 if (parseToken(lltok::colon, "expected ':' here") || 8259 parseToken(lltok::lparen, "expected '(' here")) 8260 return true; 8261 8262 std::string Name; 8263 GlobalValue::GUID GUID = 0; 8264 switch (Lex.getKind()) { 8265 case lltok::kw_name: 8266 Lex.Lex(); 8267 if (parseToken(lltok::colon, "expected ':' here") || 8268 parseStringConstant(Name)) 8269 return true; 8270 // Can't create GUID/ValueInfo until we have the linkage. 8271 break; 8272 case lltok::kw_guid: 8273 Lex.Lex(); 8274 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8275 return true; 8276 break; 8277 default: 8278 return error(Lex.getLoc(), "expected name or guid tag"); 8279 } 8280 8281 if (!EatIfPresent(lltok::comma)) { 8282 // No summaries. Wrap up. 8283 if (parseToken(lltok::rparen, "expected ')' here")) 8284 return true; 8285 // This was created for a call to an external or indirect target. 8286 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8287 // created for indirect calls with VP. A Name with no GUID came from 8288 // an external definition. We pass ExternalLinkage since that is only 8289 // used when the GUID must be computed from Name, and in that case 8290 // the symbol must have external linkage. 8291 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8292 nullptr); 8293 return false; 8294 } 8295 8296 // Have a list of summaries 8297 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8298 parseToken(lltok::colon, "expected ':' here") || 8299 parseToken(lltok::lparen, "expected '(' here")) 8300 return true; 8301 do { 8302 switch (Lex.getKind()) { 8303 case lltok::kw_function: 8304 if (parseFunctionSummary(Name, GUID, ID)) 8305 return true; 8306 break; 8307 case lltok::kw_variable: 8308 if (parseVariableSummary(Name, GUID, ID)) 8309 return true; 8310 break; 8311 case lltok::kw_alias: 8312 if (parseAliasSummary(Name, GUID, ID)) 8313 return true; 8314 break; 8315 default: 8316 return error(Lex.getLoc(), "expected summary type"); 8317 } 8318 } while (EatIfPresent(lltok::comma)); 8319 8320 if (parseToken(lltok::rparen, "expected ')' here") || 8321 parseToken(lltok::rparen, "expected ')' here")) 8322 return true; 8323 8324 return false; 8325 } 8326 8327 /// FunctionSummary 8328 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8329 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8330 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8331 /// [',' OptionalRefs]? ')' 8332 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8333 unsigned ID) { 8334 assert(Lex.getKind() == lltok::kw_function); 8335 Lex.Lex(); 8336 8337 StringRef ModulePath; 8338 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8339 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8340 /*NotEligibleToImport=*/false, 8341 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8342 unsigned InstCount; 8343 std::vector<FunctionSummary::EdgeTy> Calls; 8344 FunctionSummary::TypeIdInfo TypeIdInfo; 8345 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8346 std::vector<ValueInfo> Refs; 8347 // Default is all-zeros (conservative values). 8348 FunctionSummary::FFlags FFlags = {}; 8349 if (parseToken(lltok::colon, "expected ':' here") || 8350 parseToken(lltok::lparen, "expected '(' here") || 8351 parseModuleReference(ModulePath) || 8352 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8353 parseToken(lltok::comma, "expected ',' here") || 8354 parseToken(lltok::kw_insts, "expected 'insts' here") || 8355 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8356 return true; 8357 8358 // parse optional fields 8359 while (EatIfPresent(lltok::comma)) { 8360 switch (Lex.getKind()) { 8361 case lltok::kw_funcFlags: 8362 if (parseOptionalFFlags(FFlags)) 8363 return true; 8364 break; 8365 case lltok::kw_calls: 8366 if (parseOptionalCalls(Calls)) 8367 return true; 8368 break; 8369 case lltok::kw_typeIdInfo: 8370 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8371 return true; 8372 break; 8373 case lltok::kw_refs: 8374 if (parseOptionalRefs(Refs)) 8375 return true; 8376 break; 8377 case lltok::kw_params: 8378 if (parseOptionalParamAccesses(ParamAccesses)) 8379 return true; 8380 break; 8381 default: 8382 return error(Lex.getLoc(), "expected optional function summary field"); 8383 } 8384 } 8385 8386 if (parseToken(lltok::rparen, "expected ')' here")) 8387 return true; 8388 8389 auto FS = std::make_unique<FunctionSummary>( 8390 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8391 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8392 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8393 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8394 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8395 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8396 std::move(ParamAccesses)); 8397 8398 FS->setModulePath(ModulePath); 8399 8400 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8401 ID, std::move(FS)); 8402 8403 return false; 8404 } 8405 8406 /// VariableSummary 8407 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8408 /// [',' OptionalRefs]? ')' 8409 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8410 unsigned ID) { 8411 assert(Lex.getKind() == lltok::kw_variable); 8412 Lex.Lex(); 8413 8414 StringRef ModulePath; 8415 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8416 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8417 /*NotEligibleToImport=*/false, 8418 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8419 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8420 /* WriteOnly */ false, 8421 /* Constant */ false, 8422 GlobalObject::VCallVisibilityPublic); 8423 std::vector<ValueInfo> Refs; 8424 VTableFuncList VTableFuncs; 8425 if (parseToken(lltok::colon, "expected ':' here") || 8426 parseToken(lltok::lparen, "expected '(' here") || 8427 parseModuleReference(ModulePath) || 8428 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8429 parseToken(lltok::comma, "expected ',' here") || 8430 parseGVarFlags(GVarFlags)) 8431 return true; 8432 8433 // parse optional fields 8434 while (EatIfPresent(lltok::comma)) { 8435 switch (Lex.getKind()) { 8436 case lltok::kw_vTableFuncs: 8437 if (parseOptionalVTableFuncs(VTableFuncs)) 8438 return true; 8439 break; 8440 case lltok::kw_refs: 8441 if (parseOptionalRefs(Refs)) 8442 return true; 8443 break; 8444 default: 8445 return error(Lex.getLoc(), "expected optional variable summary field"); 8446 } 8447 } 8448 8449 if (parseToken(lltok::rparen, "expected ')' here")) 8450 return true; 8451 8452 auto GS = 8453 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8454 8455 GS->setModulePath(ModulePath); 8456 GS->setVTableFuncs(std::move(VTableFuncs)); 8457 8458 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8459 ID, std::move(GS)); 8460 8461 return false; 8462 } 8463 8464 /// AliasSummary 8465 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8466 /// 'aliasee' ':' GVReference ')' 8467 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8468 unsigned ID) { 8469 assert(Lex.getKind() == lltok::kw_alias); 8470 LocTy Loc = Lex.getLoc(); 8471 Lex.Lex(); 8472 8473 StringRef ModulePath; 8474 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8475 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8476 /*NotEligibleToImport=*/false, 8477 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8478 if (parseToken(lltok::colon, "expected ':' here") || 8479 parseToken(lltok::lparen, "expected '(' here") || 8480 parseModuleReference(ModulePath) || 8481 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8482 parseToken(lltok::comma, "expected ',' here") || 8483 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8484 parseToken(lltok::colon, "expected ':' here")) 8485 return true; 8486 8487 ValueInfo AliaseeVI; 8488 unsigned GVId; 8489 if (parseGVReference(AliaseeVI, GVId)) 8490 return true; 8491 8492 if (parseToken(lltok::rparen, "expected ')' here")) 8493 return true; 8494 8495 auto AS = std::make_unique<AliasSummary>(GVFlags); 8496 8497 AS->setModulePath(ModulePath); 8498 8499 // Record forward reference if the aliasee is not parsed yet. 8500 if (AliaseeVI.getRef() == FwdVIRef) { 8501 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8502 } else { 8503 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8504 assert(Summary && "Aliasee must be a definition"); 8505 AS->setAliasee(AliaseeVI, Summary); 8506 } 8507 8508 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8509 ID, std::move(AS)); 8510 8511 return false; 8512 } 8513 8514 /// Flag 8515 /// ::= [0|1] 8516 bool LLParser::parseFlag(unsigned &Val) { 8517 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8518 return tokError("expected integer"); 8519 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8520 Lex.Lex(); 8521 return false; 8522 } 8523 8524 /// OptionalFFlags 8525 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8526 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8527 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8528 /// [',' 'noInline' ':' Flag]? ')' 8529 /// [',' 'alwaysInline' ':' Flag]? ')' 8530 8531 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8532 assert(Lex.getKind() == lltok::kw_funcFlags); 8533 Lex.Lex(); 8534 8535 if (parseToken(lltok::colon, "expected ':' in funcFlags") | 8536 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8537 return true; 8538 8539 do { 8540 unsigned Val = 0; 8541 switch (Lex.getKind()) { 8542 case lltok::kw_readNone: 8543 Lex.Lex(); 8544 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8545 return true; 8546 FFlags.ReadNone = Val; 8547 break; 8548 case lltok::kw_readOnly: 8549 Lex.Lex(); 8550 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8551 return true; 8552 FFlags.ReadOnly = Val; 8553 break; 8554 case lltok::kw_noRecurse: 8555 Lex.Lex(); 8556 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8557 return true; 8558 FFlags.NoRecurse = Val; 8559 break; 8560 case lltok::kw_returnDoesNotAlias: 8561 Lex.Lex(); 8562 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8563 return true; 8564 FFlags.ReturnDoesNotAlias = Val; 8565 break; 8566 case lltok::kw_noInline: 8567 Lex.Lex(); 8568 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8569 return true; 8570 FFlags.NoInline = Val; 8571 break; 8572 case lltok::kw_alwaysInline: 8573 Lex.Lex(); 8574 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8575 return true; 8576 FFlags.AlwaysInline = Val; 8577 break; 8578 default: 8579 return error(Lex.getLoc(), "expected function flag type"); 8580 } 8581 } while (EatIfPresent(lltok::comma)); 8582 8583 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8584 return true; 8585 8586 return false; 8587 } 8588 8589 /// OptionalCalls 8590 /// := 'calls' ':' '(' Call [',' Call]* ')' 8591 /// Call ::= '(' 'callee' ':' GVReference 8592 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8593 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8594 assert(Lex.getKind() == lltok::kw_calls); 8595 Lex.Lex(); 8596 8597 if (parseToken(lltok::colon, "expected ':' in calls") | 8598 parseToken(lltok::lparen, "expected '(' in calls")) 8599 return true; 8600 8601 IdToIndexMapType IdToIndexMap; 8602 // parse each call edge 8603 do { 8604 ValueInfo VI; 8605 if (parseToken(lltok::lparen, "expected '(' in call") || 8606 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8607 parseToken(lltok::colon, "expected ':'")) 8608 return true; 8609 8610 LocTy Loc = Lex.getLoc(); 8611 unsigned GVId; 8612 if (parseGVReference(VI, GVId)) 8613 return true; 8614 8615 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8616 unsigned RelBF = 0; 8617 if (EatIfPresent(lltok::comma)) { 8618 // Expect either hotness or relbf 8619 if (EatIfPresent(lltok::kw_hotness)) { 8620 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8621 return true; 8622 } else { 8623 if (parseToken(lltok::kw_relbf, "expected relbf") || 8624 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8625 return true; 8626 } 8627 } 8628 // Keep track of the Call array index needing a forward reference. 8629 // We will save the location of the ValueInfo needing an update, but 8630 // can only do so once the std::vector is finalized. 8631 if (VI.getRef() == FwdVIRef) 8632 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8633 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8634 8635 if (parseToken(lltok::rparen, "expected ')' in call")) 8636 return true; 8637 } while (EatIfPresent(lltok::comma)); 8638 8639 // Now that the Calls vector is finalized, it is safe to save the locations 8640 // of any forward GV references that need updating later. 8641 for (auto I : IdToIndexMap) { 8642 auto &Infos = ForwardRefValueInfos[I.first]; 8643 for (auto P : I.second) { 8644 assert(Calls[P.first].first.getRef() == FwdVIRef && 8645 "Forward referenced ValueInfo expected to be empty"); 8646 Infos.emplace_back(&Calls[P.first].first, P.second); 8647 } 8648 } 8649 8650 if (parseToken(lltok::rparen, "expected ')' in calls")) 8651 return true; 8652 8653 return false; 8654 } 8655 8656 /// Hotness 8657 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8658 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8659 switch (Lex.getKind()) { 8660 case lltok::kw_unknown: 8661 Hotness = CalleeInfo::HotnessType::Unknown; 8662 break; 8663 case lltok::kw_cold: 8664 Hotness = CalleeInfo::HotnessType::Cold; 8665 break; 8666 case lltok::kw_none: 8667 Hotness = CalleeInfo::HotnessType::None; 8668 break; 8669 case lltok::kw_hot: 8670 Hotness = CalleeInfo::HotnessType::Hot; 8671 break; 8672 case lltok::kw_critical: 8673 Hotness = CalleeInfo::HotnessType::Critical; 8674 break; 8675 default: 8676 return error(Lex.getLoc(), "invalid call edge hotness"); 8677 } 8678 Lex.Lex(); 8679 return false; 8680 } 8681 8682 /// OptionalVTableFuncs 8683 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8684 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8685 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8686 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8687 Lex.Lex(); 8688 8689 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") | 8690 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8691 return true; 8692 8693 IdToIndexMapType IdToIndexMap; 8694 // parse each virtual function pair 8695 do { 8696 ValueInfo VI; 8697 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 8698 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8699 parseToken(lltok::colon, "expected ':'")) 8700 return true; 8701 8702 LocTy Loc = Lex.getLoc(); 8703 unsigned GVId; 8704 if (parseGVReference(VI, GVId)) 8705 return true; 8706 8707 uint64_t Offset; 8708 if (parseToken(lltok::comma, "expected comma") || 8709 parseToken(lltok::kw_offset, "expected offset") || 8710 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 8711 return true; 8712 8713 // Keep track of the VTableFuncs array index needing a forward reference. 8714 // We will save the location of the ValueInfo needing an update, but 8715 // can only do so once the std::vector is finalized. 8716 if (VI == EmptyVI) 8717 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8718 VTableFuncs.push_back({VI, Offset}); 8719 8720 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 8721 return true; 8722 } while (EatIfPresent(lltok::comma)); 8723 8724 // Now that the VTableFuncs vector is finalized, it is safe to save the 8725 // locations of any forward GV references that need updating later. 8726 for (auto I : IdToIndexMap) { 8727 auto &Infos = ForwardRefValueInfos[I.first]; 8728 for (auto P : I.second) { 8729 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8730 "Forward referenced ValueInfo expected to be empty"); 8731 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 8732 } 8733 } 8734 8735 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8736 return true; 8737 8738 return false; 8739 } 8740 8741 /// ParamNo := 'param' ':' UInt64 8742 bool LLParser::parseParamNo(uint64_t &ParamNo) { 8743 if (parseToken(lltok::kw_param, "expected 'param' here") || 8744 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 8745 return true; 8746 return false; 8747 } 8748 8749 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 8750 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 8751 APSInt Lower; 8752 APSInt Upper; 8753 auto ParseAPSInt = [&](APSInt &Val) { 8754 if (Lex.getKind() != lltok::APSInt) 8755 return tokError("expected integer"); 8756 Val = Lex.getAPSIntVal(); 8757 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 8758 Val.setIsSigned(true); 8759 Lex.Lex(); 8760 return false; 8761 }; 8762 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 8763 parseToken(lltok::colon, "expected ':' here") || 8764 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 8765 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 8766 parseToken(lltok::rsquare, "expected ']' here")) 8767 return true; 8768 8769 ++Upper; 8770 Range = 8771 (Lower == Upper && !Lower.isMaxValue()) 8772 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 8773 : ConstantRange(Lower, Upper); 8774 8775 return false; 8776 } 8777 8778 /// ParamAccessCall 8779 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 8780 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 8781 IdLocListType &IdLocList) { 8782 if (parseToken(lltok::lparen, "expected '(' here") || 8783 parseToken(lltok::kw_callee, "expected 'callee' here") || 8784 parseToken(lltok::colon, "expected ':' here")) 8785 return true; 8786 8787 unsigned GVId; 8788 ValueInfo VI; 8789 LocTy Loc = Lex.getLoc(); 8790 if (parseGVReference(VI, GVId)) 8791 return true; 8792 8793 Call.Callee = VI; 8794 IdLocList.emplace_back(GVId, Loc); 8795 8796 if (parseToken(lltok::comma, "expected ',' here") || 8797 parseParamNo(Call.ParamNo) || 8798 parseToken(lltok::comma, "expected ',' here") || 8799 parseParamAccessOffset(Call.Offsets)) 8800 return true; 8801 8802 if (parseToken(lltok::rparen, "expected ')' here")) 8803 return true; 8804 8805 return false; 8806 } 8807 8808 /// ParamAccess 8809 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 8810 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 8811 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 8812 IdLocListType &IdLocList) { 8813 if (parseToken(lltok::lparen, "expected '(' here") || 8814 parseParamNo(Param.ParamNo) || 8815 parseToken(lltok::comma, "expected ',' here") || 8816 parseParamAccessOffset(Param.Use)) 8817 return true; 8818 8819 if (EatIfPresent(lltok::comma)) { 8820 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 8821 parseToken(lltok::colon, "expected ':' here") || 8822 parseToken(lltok::lparen, "expected '(' here")) 8823 return true; 8824 do { 8825 FunctionSummary::ParamAccess::Call Call; 8826 if (parseParamAccessCall(Call, IdLocList)) 8827 return true; 8828 Param.Calls.push_back(Call); 8829 } while (EatIfPresent(lltok::comma)); 8830 8831 if (parseToken(lltok::rparen, "expected ')' here")) 8832 return true; 8833 } 8834 8835 if (parseToken(lltok::rparen, "expected ')' here")) 8836 return true; 8837 8838 return false; 8839 } 8840 8841 /// OptionalParamAccesses 8842 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 8843 bool LLParser::parseOptionalParamAccesses( 8844 std::vector<FunctionSummary::ParamAccess> &Params) { 8845 assert(Lex.getKind() == lltok::kw_params); 8846 Lex.Lex(); 8847 8848 if (parseToken(lltok::colon, "expected ':' here") || 8849 parseToken(lltok::lparen, "expected '(' here")) 8850 return true; 8851 8852 IdLocListType VContexts; 8853 size_t CallsNum = 0; 8854 do { 8855 FunctionSummary::ParamAccess ParamAccess; 8856 if (parseParamAccess(ParamAccess, VContexts)) 8857 return true; 8858 CallsNum += ParamAccess.Calls.size(); 8859 assert(VContexts.size() == CallsNum); 8860 (void)CallsNum; 8861 Params.emplace_back(std::move(ParamAccess)); 8862 } while (EatIfPresent(lltok::comma)); 8863 8864 if (parseToken(lltok::rparen, "expected ')' here")) 8865 return true; 8866 8867 // Now that the Params is finalized, it is safe to save the locations 8868 // of any forward GV references that need updating later. 8869 IdLocListType::const_iterator ItContext = VContexts.begin(); 8870 for (auto &PA : Params) { 8871 for (auto &C : PA.Calls) { 8872 if (C.Callee.getRef() == FwdVIRef) 8873 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 8874 ItContext->second); 8875 ++ItContext; 8876 } 8877 } 8878 assert(ItContext == VContexts.end()); 8879 8880 return false; 8881 } 8882 8883 /// OptionalRefs 8884 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8885 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 8886 assert(Lex.getKind() == lltok::kw_refs); 8887 Lex.Lex(); 8888 8889 if (parseToken(lltok::colon, "expected ':' in refs") || 8890 parseToken(lltok::lparen, "expected '(' in refs")) 8891 return true; 8892 8893 struct ValueContext { 8894 ValueInfo VI; 8895 unsigned GVId; 8896 LocTy Loc; 8897 }; 8898 std::vector<ValueContext> VContexts; 8899 // parse each ref edge 8900 do { 8901 ValueContext VC; 8902 VC.Loc = Lex.getLoc(); 8903 if (parseGVReference(VC.VI, VC.GVId)) 8904 return true; 8905 VContexts.push_back(VC); 8906 } while (EatIfPresent(lltok::comma)); 8907 8908 // Sort value contexts so that ones with writeonly 8909 // and readonly ValueInfo are at the end of VContexts vector. 8910 // See FunctionSummary::specialRefCounts() 8911 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8912 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 8913 }); 8914 8915 IdToIndexMapType IdToIndexMap; 8916 for (auto &VC : VContexts) { 8917 // Keep track of the Refs array index needing a forward reference. 8918 // We will save the location of the ValueInfo needing an update, but 8919 // can only do so once the std::vector is finalized. 8920 if (VC.VI.getRef() == FwdVIRef) 8921 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8922 Refs.push_back(VC.VI); 8923 } 8924 8925 // Now that the Refs vector is finalized, it is safe to save the locations 8926 // of any forward GV references that need updating later. 8927 for (auto I : IdToIndexMap) { 8928 auto &Infos = ForwardRefValueInfos[I.first]; 8929 for (auto P : I.second) { 8930 assert(Refs[P.first].getRef() == FwdVIRef && 8931 "Forward referenced ValueInfo expected to be empty"); 8932 Infos.emplace_back(&Refs[P.first], P.second); 8933 } 8934 } 8935 8936 if (parseToken(lltok::rparen, "expected ')' in refs")) 8937 return true; 8938 8939 return false; 8940 } 8941 8942 /// OptionalTypeIdInfo 8943 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8944 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8945 /// [',' TypeCheckedLoadConstVCalls]? ')' 8946 bool LLParser::parseOptionalTypeIdInfo( 8947 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8948 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8949 Lex.Lex(); 8950 8951 if (parseToken(lltok::colon, "expected ':' here") || 8952 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8953 return true; 8954 8955 do { 8956 switch (Lex.getKind()) { 8957 case lltok::kw_typeTests: 8958 if (parseTypeTests(TypeIdInfo.TypeTests)) 8959 return true; 8960 break; 8961 case lltok::kw_typeTestAssumeVCalls: 8962 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8963 TypeIdInfo.TypeTestAssumeVCalls)) 8964 return true; 8965 break; 8966 case lltok::kw_typeCheckedLoadVCalls: 8967 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8968 TypeIdInfo.TypeCheckedLoadVCalls)) 8969 return true; 8970 break; 8971 case lltok::kw_typeTestAssumeConstVCalls: 8972 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8973 TypeIdInfo.TypeTestAssumeConstVCalls)) 8974 return true; 8975 break; 8976 case lltok::kw_typeCheckedLoadConstVCalls: 8977 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8978 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8979 return true; 8980 break; 8981 default: 8982 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 8983 } 8984 } while (EatIfPresent(lltok::comma)); 8985 8986 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8987 return true; 8988 8989 return false; 8990 } 8991 8992 /// TypeTests 8993 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 8994 /// [',' (SummaryID | UInt64)]* ')' 8995 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 8996 assert(Lex.getKind() == lltok::kw_typeTests); 8997 Lex.Lex(); 8998 8999 if (parseToken(lltok::colon, "expected ':' here") || 9000 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9001 return true; 9002 9003 IdToIndexMapType IdToIndexMap; 9004 do { 9005 GlobalValue::GUID GUID = 0; 9006 if (Lex.getKind() == lltok::SummaryID) { 9007 unsigned ID = Lex.getUIntVal(); 9008 LocTy Loc = Lex.getLoc(); 9009 // Keep track of the TypeTests array index needing a forward reference. 9010 // We will save the location of the GUID needing an update, but 9011 // can only do so once the std::vector is finalized. 9012 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9013 Lex.Lex(); 9014 } else if (parseUInt64(GUID)) 9015 return true; 9016 TypeTests.push_back(GUID); 9017 } while (EatIfPresent(lltok::comma)); 9018 9019 // Now that the TypeTests vector is finalized, it is safe to save the 9020 // locations of any forward GV references that need updating later. 9021 for (auto I : IdToIndexMap) { 9022 auto &Ids = ForwardRefTypeIds[I.first]; 9023 for (auto P : I.second) { 9024 assert(TypeTests[P.first] == 0 && 9025 "Forward referenced type id GUID expected to be 0"); 9026 Ids.emplace_back(&TypeTests[P.first], P.second); 9027 } 9028 } 9029 9030 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9031 return true; 9032 9033 return false; 9034 } 9035 9036 /// VFuncIdList 9037 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9038 bool LLParser::parseVFuncIdList( 9039 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9040 assert(Lex.getKind() == Kind); 9041 Lex.Lex(); 9042 9043 if (parseToken(lltok::colon, "expected ':' here") || 9044 parseToken(lltok::lparen, "expected '(' here")) 9045 return true; 9046 9047 IdToIndexMapType IdToIndexMap; 9048 do { 9049 FunctionSummary::VFuncId VFuncId; 9050 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9051 return true; 9052 VFuncIdList.push_back(VFuncId); 9053 } while (EatIfPresent(lltok::comma)); 9054 9055 if (parseToken(lltok::rparen, "expected ')' here")) 9056 return true; 9057 9058 // Now that the VFuncIdList vector is finalized, it is safe to save the 9059 // locations of any forward GV references that need updating later. 9060 for (auto I : IdToIndexMap) { 9061 auto &Ids = ForwardRefTypeIds[I.first]; 9062 for (auto P : I.second) { 9063 assert(VFuncIdList[P.first].GUID == 0 && 9064 "Forward referenced type id GUID expected to be 0"); 9065 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9066 } 9067 } 9068 9069 return false; 9070 } 9071 9072 /// ConstVCallList 9073 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9074 bool LLParser::parseConstVCallList( 9075 lltok::Kind Kind, 9076 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9077 assert(Lex.getKind() == Kind); 9078 Lex.Lex(); 9079 9080 if (parseToken(lltok::colon, "expected ':' here") || 9081 parseToken(lltok::lparen, "expected '(' here")) 9082 return true; 9083 9084 IdToIndexMapType IdToIndexMap; 9085 do { 9086 FunctionSummary::ConstVCall ConstVCall; 9087 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9088 return true; 9089 ConstVCallList.push_back(ConstVCall); 9090 } while (EatIfPresent(lltok::comma)); 9091 9092 if (parseToken(lltok::rparen, "expected ')' here")) 9093 return true; 9094 9095 // Now that the ConstVCallList vector is finalized, it is safe to save the 9096 // locations of any forward GV references that need updating later. 9097 for (auto I : IdToIndexMap) { 9098 auto &Ids = ForwardRefTypeIds[I.first]; 9099 for (auto P : I.second) { 9100 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9101 "Forward referenced type id GUID expected to be 0"); 9102 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9103 } 9104 } 9105 9106 return false; 9107 } 9108 9109 /// ConstVCall 9110 /// ::= '(' VFuncId ',' Args ')' 9111 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9112 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9113 if (parseToken(lltok::lparen, "expected '(' here") || 9114 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9115 return true; 9116 9117 if (EatIfPresent(lltok::comma)) 9118 if (parseArgs(ConstVCall.Args)) 9119 return true; 9120 9121 if (parseToken(lltok::rparen, "expected ')' here")) 9122 return true; 9123 9124 return false; 9125 } 9126 9127 /// VFuncId 9128 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9129 /// 'offset' ':' UInt64 ')' 9130 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9131 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9132 assert(Lex.getKind() == lltok::kw_vFuncId); 9133 Lex.Lex(); 9134 9135 if (parseToken(lltok::colon, "expected ':' here") || 9136 parseToken(lltok::lparen, "expected '(' here")) 9137 return true; 9138 9139 if (Lex.getKind() == lltok::SummaryID) { 9140 VFuncId.GUID = 0; 9141 unsigned ID = Lex.getUIntVal(); 9142 LocTy Loc = Lex.getLoc(); 9143 // Keep track of the array index needing a forward reference. 9144 // We will save the location of the GUID needing an update, but 9145 // can only do so once the caller's std::vector is finalized. 9146 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9147 Lex.Lex(); 9148 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9149 parseToken(lltok::colon, "expected ':' here") || 9150 parseUInt64(VFuncId.GUID)) 9151 return true; 9152 9153 if (parseToken(lltok::comma, "expected ',' here") || 9154 parseToken(lltok::kw_offset, "expected 'offset' here") || 9155 parseToken(lltok::colon, "expected ':' here") || 9156 parseUInt64(VFuncId.Offset) || 9157 parseToken(lltok::rparen, "expected ')' here")) 9158 return true; 9159 9160 return false; 9161 } 9162 9163 /// GVFlags 9164 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9165 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9166 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9167 /// 'canAutoHide' ':' Flag ',' ')' 9168 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9169 assert(Lex.getKind() == lltok::kw_flags); 9170 Lex.Lex(); 9171 9172 if (parseToken(lltok::colon, "expected ':' here") || 9173 parseToken(lltok::lparen, "expected '(' here")) 9174 return true; 9175 9176 do { 9177 unsigned Flag = 0; 9178 switch (Lex.getKind()) { 9179 case lltok::kw_linkage: 9180 Lex.Lex(); 9181 if (parseToken(lltok::colon, "expected ':'")) 9182 return true; 9183 bool HasLinkage; 9184 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9185 assert(HasLinkage && "Linkage not optional in summary entry"); 9186 Lex.Lex(); 9187 break; 9188 case lltok::kw_visibility: 9189 Lex.Lex(); 9190 if (parseToken(lltok::colon, "expected ':'")) 9191 return true; 9192 parseOptionalVisibility(Flag); 9193 GVFlags.Visibility = Flag; 9194 break; 9195 case lltok::kw_notEligibleToImport: 9196 Lex.Lex(); 9197 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9198 return true; 9199 GVFlags.NotEligibleToImport = Flag; 9200 break; 9201 case lltok::kw_live: 9202 Lex.Lex(); 9203 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9204 return true; 9205 GVFlags.Live = Flag; 9206 break; 9207 case lltok::kw_dsoLocal: 9208 Lex.Lex(); 9209 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9210 return true; 9211 GVFlags.DSOLocal = Flag; 9212 break; 9213 case lltok::kw_canAutoHide: 9214 Lex.Lex(); 9215 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9216 return true; 9217 GVFlags.CanAutoHide = Flag; 9218 break; 9219 default: 9220 return error(Lex.getLoc(), "expected gv flag type"); 9221 } 9222 } while (EatIfPresent(lltok::comma)); 9223 9224 if (parseToken(lltok::rparen, "expected ')' here")) 9225 return true; 9226 9227 return false; 9228 } 9229 9230 /// GVarFlags 9231 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9232 /// ',' 'writeonly' ':' Flag 9233 /// ',' 'constant' ':' Flag ')' 9234 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9235 assert(Lex.getKind() == lltok::kw_varFlags); 9236 Lex.Lex(); 9237 9238 if (parseToken(lltok::colon, "expected ':' here") || 9239 parseToken(lltok::lparen, "expected '(' here")) 9240 return true; 9241 9242 auto ParseRest = [this](unsigned int &Val) { 9243 Lex.Lex(); 9244 if (parseToken(lltok::colon, "expected ':'")) 9245 return true; 9246 return parseFlag(Val); 9247 }; 9248 9249 do { 9250 unsigned Flag = 0; 9251 switch (Lex.getKind()) { 9252 case lltok::kw_readonly: 9253 if (ParseRest(Flag)) 9254 return true; 9255 GVarFlags.MaybeReadOnly = Flag; 9256 break; 9257 case lltok::kw_writeonly: 9258 if (ParseRest(Flag)) 9259 return true; 9260 GVarFlags.MaybeWriteOnly = Flag; 9261 break; 9262 case lltok::kw_constant: 9263 if (ParseRest(Flag)) 9264 return true; 9265 GVarFlags.Constant = Flag; 9266 break; 9267 case lltok::kw_vcall_visibility: 9268 if (ParseRest(Flag)) 9269 return true; 9270 GVarFlags.VCallVisibility = Flag; 9271 break; 9272 default: 9273 return error(Lex.getLoc(), "expected gvar flag type"); 9274 } 9275 } while (EatIfPresent(lltok::comma)); 9276 return parseToken(lltok::rparen, "expected ')' here"); 9277 } 9278 9279 /// ModuleReference 9280 /// ::= 'module' ':' UInt 9281 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9282 // parse module id. 9283 if (parseToken(lltok::kw_module, "expected 'module' here") || 9284 parseToken(lltok::colon, "expected ':' here") || 9285 parseToken(lltok::SummaryID, "expected module ID")) 9286 return true; 9287 9288 unsigned ModuleID = Lex.getUIntVal(); 9289 auto I = ModuleIdMap.find(ModuleID); 9290 // We should have already parsed all module IDs 9291 assert(I != ModuleIdMap.end()); 9292 ModulePath = I->second; 9293 return false; 9294 } 9295 9296 /// GVReference 9297 /// ::= SummaryID 9298 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9299 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9300 if (!ReadOnly) 9301 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9302 if (parseToken(lltok::SummaryID, "expected GV ID")) 9303 return true; 9304 9305 GVId = Lex.getUIntVal(); 9306 // Check if we already have a VI for this GV 9307 if (GVId < NumberedValueInfos.size()) { 9308 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9309 VI = NumberedValueInfos[GVId]; 9310 } else 9311 // We will create a forward reference to the stored location. 9312 VI = ValueInfo(false, FwdVIRef); 9313 9314 if (ReadOnly) 9315 VI.setReadOnly(); 9316 if (WriteOnly) 9317 VI.setWriteOnly(); 9318 return false; 9319 } 9320