1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/IR/ValueSymbolTable.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/SaveAndRestore.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstring>
50 #include <iterator>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 static std::string getTypeString(Type *T) {
56   std::string Result;
57   raw_string_ostream Tmp(Result);
58   Tmp << *T;
59   return Tmp.str();
60 }
61 
62 /// Run: module ::= toplevelentity*
63 bool LLParser::Run(bool UpgradeDebugInfo,
64                    DataLayoutCallbackTy DataLayoutCallback) {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   if (M) {
74     if (parseTargetDefinitions())
75       return true;
76 
77     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
78       M->setDataLayout(*LayoutOverride);
79   }
80 
81   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
82          validateEndOfIndex();
83 }
84 
85 bool LLParser::parseStandaloneConstantValue(Constant *&C,
86                                             const SlotMapping *Slots) {
87   restoreParsingState(Slots);
88   Lex.Lex();
89 
90   Type *Ty = nullptr;
91   if (parseType(Ty) || parseConstantValue(Ty, C))
92     return true;
93   if (Lex.getKind() != lltok::Eof)
94     return error(Lex.getLoc(), "expected end of string");
95   return false;
96 }
97 
98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
99                                     const SlotMapping *Slots) {
100   restoreParsingState(Slots);
101   Lex.Lex();
102 
103   Read = 0;
104   SMLoc Start = Lex.getLoc();
105   Ty = nullptr;
106   if (parseType(Ty))
107     return true;
108   SMLoc End = Lex.getLoc();
109   Read = End.getPointer() - Start.getPointer();
110 
111   return false;
112 }
113 
114 void LLParser::restoreParsingState(const SlotMapping *Slots) {
115   if (!Slots)
116     return;
117   NumberedVals = Slots->GlobalValues;
118   NumberedMetadata = Slots->MetadataNodes;
119   for (const auto &I : Slots->NamedTypes)
120     NamedTypes.insert(
121         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
122   for (const auto &I : Slots->Types)
123     NumberedTypes.insert(
124         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
125 }
126 
127 /// validateEndOfModule - Do final validity and basic correctness checks at the
128 /// end of the module.
129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
130   if (!M)
131     return false;
132   // Handle any function attribute group forward references.
133   for (const auto &RAG : ForwardRefAttrGroups) {
134     Value *V = RAG.first;
135     const std::vector<unsigned> &Attrs = RAG.second;
136     AttrBuilder B(Context);
137 
138     for (const auto &Attr : Attrs) {
139       auto R = NumberedAttrBuilders.find(Attr);
140       if (R != NumberedAttrBuilders.end())
141         B.merge(R->second);
142     }
143 
144     if (Function *Fn = dyn_cast<Function>(V)) {
145       AttributeList AS = Fn->getAttributes();
146       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
147       AS = AS.removeFnAttributes(Context);
148 
149       FnAttrs.merge(B);
150 
151       // If the alignment was parsed as an attribute, move to the alignment
152       // field.
153       if (FnAttrs.hasAlignmentAttr()) {
154         Fn->setAlignment(FnAttrs.getAlignment());
155         FnAttrs.removeAttribute(Attribute::Alignment);
156       }
157 
158       AS = AS.addFnAttributes(Context, FnAttrs);
159       Fn->setAttributes(AS);
160     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
161       AttributeList AS = CI->getAttributes();
162       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
163       AS = AS.removeFnAttributes(Context);
164       FnAttrs.merge(B);
165       AS = AS.addFnAttributes(Context, FnAttrs);
166       CI->setAttributes(AS);
167     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
168       AttributeList AS = II->getAttributes();
169       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
170       AS = AS.removeFnAttributes(Context);
171       FnAttrs.merge(B);
172       AS = AS.addFnAttributes(Context, FnAttrs);
173       II->setAttributes(AS);
174     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
175       AttributeList AS = CBI->getAttributes();
176       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
177       AS = AS.removeFnAttributes(Context);
178       FnAttrs.merge(B);
179       AS = AS.addFnAttributes(Context, FnAttrs);
180       CBI->setAttributes(AS);
181     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
182       AttrBuilder Attrs(M->getContext(), GV->getAttributes());
183       Attrs.merge(B);
184       GV->setAttributes(AttributeSet::get(Context,Attrs));
185     } else {
186       llvm_unreachable("invalid object with forward attribute group reference");
187     }
188   }
189 
190   // If there are entries in ForwardRefBlockAddresses at this point, the
191   // function was never defined.
192   if (!ForwardRefBlockAddresses.empty())
193     return error(ForwardRefBlockAddresses.begin()->first.Loc,
194                  "expected function name in blockaddress");
195 
196   for (const auto &NT : NumberedTypes)
197     if (NT.second.second.isValid())
198       return error(NT.second.second,
199                    "use of undefined type '%" + Twine(NT.first) + "'");
200 
201   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
202        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
203     if (I->second.second.isValid())
204       return error(I->second.second,
205                    "use of undefined type named '" + I->getKey() + "'");
206 
207   if (!ForwardRefComdats.empty())
208     return error(ForwardRefComdats.begin()->second,
209                  "use of undefined comdat '$" +
210                      ForwardRefComdats.begin()->first + "'");
211 
212   if (!ForwardRefVals.empty())
213     return error(ForwardRefVals.begin()->second.second,
214                  "use of undefined value '@" + ForwardRefVals.begin()->first +
215                      "'");
216 
217   if (!ForwardRefValIDs.empty())
218     return error(ForwardRefValIDs.begin()->second.second,
219                  "use of undefined value '@" +
220                      Twine(ForwardRefValIDs.begin()->first) + "'");
221 
222   if (!ForwardRefMDNodes.empty())
223     return error(ForwardRefMDNodes.begin()->second.second,
224                  "use of undefined metadata '!" +
225                      Twine(ForwardRefMDNodes.begin()->first) + "'");
226 
227   // Resolve metadata cycles.
228   for (auto &N : NumberedMetadata) {
229     if (N.second && !N.second->isResolved())
230       N.second->resolveCycles();
231   }
232 
233   for (auto *Inst : InstsWithTBAATag) {
234     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
235     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
236     auto *UpgradedMD = UpgradeTBAANode(*MD);
237     if (MD != UpgradedMD)
238       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
239   }
240 
241   // Look for intrinsic functions and CallInst that need to be upgraded.  We use
242   // make_early_inc_range here because we may remove some functions.
243   for (Function &F : llvm::make_early_inc_range(*M))
244     UpgradeCallsToIntrinsic(&F);
245 
246   // Some types could be renamed during loading if several modules are
247   // loaded in the same LLVMContext (LTO scenario). In this case we should
248   // remangle intrinsics names as well.
249   for (Function &F : llvm::make_early_inc_range(*M)) {
250     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) {
251       F.replaceAllUsesWith(Remangled.getValue());
252       F.eraseFromParent();
253     }
254   }
255 
256   if (UpgradeDebugInfo)
257     llvm::UpgradeDebugInfo(*M);
258 
259   UpgradeModuleFlags(*M);
260   UpgradeSectionAttributes(*M);
261 
262   if (!Slots)
263     return false;
264   // Initialize the slot mapping.
265   // Because by this point we've parsed and validated everything, we can "steal"
266   // the mapping from LLParser as it doesn't need it anymore.
267   Slots->GlobalValues = std::move(NumberedVals);
268   Slots->MetadataNodes = std::move(NumberedMetadata);
269   for (const auto &I : NamedTypes)
270     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
271   for (const auto &I : NumberedTypes)
272     Slots->Types.insert(std::make_pair(I.first, I.second.first));
273 
274   return false;
275 }
276 
277 /// Do final validity and basic correctness checks at the end of the index.
278 bool LLParser::validateEndOfIndex() {
279   if (!Index)
280     return false;
281 
282   if (!ForwardRefValueInfos.empty())
283     return error(ForwardRefValueInfos.begin()->second.front().second,
284                  "use of undefined summary '^" +
285                      Twine(ForwardRefValueInfos.begin()->first) + "'");
286 
287   if (!ForwardRefAliasees.empty())
288     return error(ForwardRefAliasees.begin()->second.front().second,
289                  "use of undefined summary '^" +
290                      Twine(ForwardRefAliasees.begin()->first) + "'");
291 
292   if (!ForwardRefTypeIds.empty())
293     return error(ForwardRefTypeIds.begin()->second.front().second,
294                  "use of undefined type id summary '^" +
295                      Twine(ForwardRefTypeIds.begin()->first) + "'");
296 
297   return false;
298 }
299 
300 //===----------------------------------------------------------------------===//
301 // Top-Level Entities
302 //===----------------------------------------------------------------------===//
303 
304 bool LLParser::parseTargetDefinitions() {
305   while (true) {
306     switch (Lex.getKind()) {
307     case lltok::kw_target:
308       if (parseTargetDefinition())
309         return true;
310       break;
311     case lltok::kw_source_filename:
312       if (parseSourceFileName())
313         return true;
314       break;
315     default:
316       return false;
317     }
318   }
319 }
320 
321 bool LLParser::parseTopLevelEntities() {
322   // If there is no Module, then parse just the summary index entries.
323   if (!M) {
324     while (true) {
325       switch (Lex.getKind()) {
326       case lltok::Eof:
327         return false;
328       case lltok::SummaryID:
329         if (parseSummaryEntry())
330           return true;
331         break;
332       case lltok::kw_source_filename:
333         if (parseSourceFileName())
334           return true;
335         break;
336       default:
337         // Skip everything else
338         Lex.Lex();
339       }
340     }
341   }
342   while (true) {
343     switch (Lex.getKind()) {
344     default:
345       return tokError("expected top-level entity");
346     case lltok::Eof: return false;
347     case lltok::kw_declare:
348       if (parseDeclare())
349         return true;
350       break;
351     case lltok::kw_define:
352       if (parseDefine())
353         return true;
354       break;
355     case lltok::kw_module:
356       if (parseModuleAsm())
357         return true;
358       break;
359     case lltok::LocalVarID:
360       if (parseUnnamedType())
361         return true;
362       break;
363     case lltok::LocalVar:
364       if (parseNamedType())
365         return true;
366       break;
367     case lltok::GlobalID:
368       if (parseUnnamedGlobal())
369         return true;
370       break;
371     case lltok::GlobalVar:
372       if (parseNamedGlobal())
373         return true;
374       break;
375     case lltok::ComdatVar:  if (parseComdat()) return true; break;
376     case lltok::exclaim:
377       if (parseStandaloneMetadata())
378         return true;
379       break;
380     case lltok::SummaryID:
381       if (parseSummaryEntry())
382         return true;
383       break;
384     case lltok::MetadataVar:
385       if (parseNamedMetadata())
386         return true;
387       break;
388     case lltok::kw_attributes:
389       if (parseUnnamedAttrGrp())
390         return true;
391       break;
392     case lltok::kw_uselistorder:
393       if (parseUseListOrder())
394         return true;
395       break;
396     case lltok::kw_uselistorder_bb:
397       if (parseUseListOrderBB())
398         return true;
399       break;
400     }
401   }
402 }
403 
404 /// toplevelentity
405 ///   ::= 'module' 'asm' STRINGCONSTANT
406 bool LLParser::parseModuleAsm() {
407   assert(Lex.getKind() == lltok::kw_module);
408   Lex.Lex();
409 
410   std::string AsmStr;
411   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
412       parseStringConstant(AsmStr))
413     return true;
414 
415   M->appendModuleInlineAsm(AsmStr);
416   return false;
417 }
418 
419 /// toplevelentity
420 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
421 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
422 bool LLParser::parseTargetDefinition() {
423   assert(Lex.getKind() == lltok::kw_target);
424   std::string Str;
425   switch (Lex.Lex()) {
426   default:
427     return tokError("unknown target property");
428   case lltok::kw_triple:
429     Lex.Lex();
430     if (parseToken(lltok::equal, "expected '=' after target triple") ||
431         parseStringConstant(Str))
432       return true;
433     M->setTargetTriple(Str);
434     return false;
435   case lltok::kw_datalayout:
436     Lex.Lex();
437     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
438         parseStringConstant(Str))
439       return true;
440     M->setDataLayout(Str);
441     return false;
442   }
443 }
444 
445 /// toplevelentity
446 ///   ::= 'source_filename' '=' STRINGCONSTANT
447 bool LLParser::parseSourceFileName() {
448   assert(Lex.getKind() == lltok::kw_source_filename);
449   Lex.Lex();
450   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
451       parseStringConstant(SourceFileName))
452     return true;
453   if (M)
454     M->setSourceFileName(SourceFileName);
455   return false;
456 }
457 
458 /// parseUnnamedType:
459 ///   ::= LocalVarID '=' 'type' type
460 bool LLParser::parseUnnamedType() {
461   LocTy TypeLoc = Lex.getLoc();
462   unsigned TypeID = Lex.getUIntVal();
463   Lex.Lex(); // eat LocalVarID;
464 
465   if (parseToken(lltok::equal, "expected '=' after name") ||
466       parseToken(lltok::kw_type, "expected 'type' after '='"))
467     return true;
468 
469   Type *Result = nullptr;
470   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
471     return true;
472 
473   if (!isa<StructType>(Result)) {
474     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
475     if (Entry.first)
476       return error(TypeLoc, "non-struct types may not be recursive");
477     Entry.first = Result;
478     Entry.second = SMLoc();
479   }
480 
481   return false;
482 }
483 
484 /// toplevelentity
485 ///   ::= LocalVar '=' 'type' type
486 bool LLParser::parseNamedType() {
487   std::string Name = Lex.getStrVal();
488   LocTy NameLoc = Lex.getLoc();
489   Lex.Lex();  // eat LocalVar.
490 
491   if (parseToken(lltok::equal, "expected '=' after name") ||
492       parseToken(lltok::kw_type, "expected 'type' after name"))
493     return true;
494 
495   Type *Result = nullptr;
496   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
497     return true;
498 
499   if (!isa<StructType>(Result)) {
500     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
501     if (Entry.first)
502       return error(NameLoc, "non-struct types may not be recursive");
503     Entry.first = Result;
504     Entry.second = SMLoc();
505   }
506 
507   return false;
508 }
509 
510 /// toplevelentity
511 ///   ::= 'declare' FunctionHeader
512 bool LLParser::parseDeclare() {
513   assert(Lex.getKind() == lltok::kw_declare);
514   Lex.Lex();
515 
516   std::vector<std::pair<unsigned, MDNode *>> MDs;
517   while (Lex.getKind() == lltok::MetadataVar) {
518     unsigned MDK;
519     MDNode *N;
520     if (parseMetadataAttachment(MDK, N))
521       return true;
522     MDs.push_back({MDK, N});
523   }
524 
525   Function *F;
526   if (parseFunctionHeader(F, false))
527     return true;
528   for (auto &MD : MDs)
529     F->addMetadata(MD.first, *MD.second);
530   return false;
531 }
532 
533 /// toplevelentity
534 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
535 bool LLParser::parseDefine() {
536   assert(Lex.getKind() == lltok::kw_define);
537   Lex.Lex();
538 
539   Function *F;
540   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
541          parseFunctionBody(*F);
542 }
543 
544 /// parseGlobalType
545 ///   ::= 'constant'
546 ///   ::= 'global'
547 bool LLParser::parseGlobalType(bool &IsConstant) {
548   if (Lex.getKind() == lltok::kw_constant)
549     IsConstant = true;
550   else if (Lex.getKind() == lltok::kw_global)
551     IsConstant = false;
552   else {
553     IsConstant = false;
554     return tokError("expected 'global' or 'constant'");
555   }
556   Lex.Lex();
557   return false;
558 }
559 
560 bool LLParser::parseOptionalUnnamedAddr(
561     GlobalVariable::UnnamedAddr &UnnamedAddr) {
562   if (EatIfPresent(lltok::kw_unnamed_addr))
563     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
564   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
565     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
566   else
567     UnnamedAddr = GlobalValue::UnnamedAddr::None;
568   return false;
569 }
570 
571 /// parseUnnamedGlobal:
572 ///   OptionalVisibility (ALIAS | IFUNC) ...
573 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
574 ///   OptionalDLLStorageClass
575 ///                                                     ...   -> global variable
576 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
577 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
578 ///   OptionalVisibility
579 ///                OptionalDLLStorageClass
580 ///                                                     ...   -> global variable
581 bool LLParser::parseUnnamedGlobal() {
582   unsigned VarID = NumberedVals.size();
583   std::string Name;
584   LocTy NameLoc = Lex.getLoc();
585 
586   // Handle the GlobalID form.
587   if (Lex.getKind() == lltok::GlobalID) {
588     if (Lex.getUIntVal() != VarID)
589       return error(Lex.getLoc(),
590                    "variable expected to be numbered '%" + Twine(VarID) + "'");
591     Lex.Lex(); // eat GlobalID;
592 
593     if (parseToken(lltok::equal, "expected '=' after name"))
594       return true;
595   }
596 
597   bool HasLinkage;
598   unsigned Linkage, Visibility, DLLStorageClass;
599   bool DSOLocal;
600   GlobalVariable::ThreadLocalMode TLM;
601   GlobalVariable::UnnamedAddr UnnamedAddr;
602   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
603                            DSOLocal) ||
604       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
605     return true;
606 
607   switch (Lex.getKind()) {
608   default:
609     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
610                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
611   case lltok::kw_alias:
612   case lltok::kw_ifunc:
613     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
614                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
615   }
616 }
617 
618 /// parseNamedGlobal:
619 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
620 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
621 ///                 OptionalVisibility OptionalDLLStorageClass
622 ///                                                     ...   -> global variable
623 bool LLParser::parseNamedGlobal() {
624   assert(Lex.getKind() == lltok::GlobalVar);
625   LocTy NameLoc = Lex.getLoc();
626   std::string Name = Lex.getStrVal();
627   Lex.Lex();
628 
629   bool HasLinkage;
630   unsigned Linkage, Visibility, DLLStorageClass;
631   bool DSOLocal;
632   GlobalVariable::ThreadLocalMode TLM;
633   GlobalVariable::UnnamedAddr UnnamedAddr;
634   if (parseToken(lltok::equal, "expected '=' in global variable") ||
635       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
636                            DSOLocal) ||
637       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
638     return true;
639 
640   switch (Lex.getKind()) {
641   default:
642     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
643                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
644   case lltok::kw_alias:
645   case lltok::kw_ifunc:
646     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
647                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
648   }
649 }
650 
651 bool LLParser::parseComdat() {
652   assert(Lex.getKind() == lltok::ComdatVar);
653   std::string Name = Lex.getStrVal();
654   LocTy NameLoc = Lex.getLoc();
655   Lex.Lex();
656 
657   if (parseToken(lltok::equal, "expected '=' here"))
658     return true;
659 
660   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
661     return tokError("expected comdat type");
662 
663   Comdat::SelectionKind SK;
664   switch (Lex.getKind()) {
665   default:
666     return tokError("unknown selection kind");
667   case lltok::kw_any:
668     SK = Comdat::Any;
669     break;
670   case lltok::kw_exactmatch:
671     SK = Comdat::ExactMatch;
672     break;
673   case lltok::kw_largest:
674     SK = Comdat::Largest;
675     break;
676   case lltok::kw_nodeduplicate:
677     SK = Comdat::NoDeduplicate;
678     break;
679   case lltok::kw_samesize:
680     SK = Comdat::SameSize;
681     break;
682   }
683   Lex.Lex();
684 
685   // See if the comdat was forward referenced, if so, use the comdat.
686   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
687   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
688   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
689     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
690 
691   Comdat *C;
692   if (I != ComdatSymTab.end())
693     C = &I->second;
694   else
695     C = M->getOrInsertComdat(Name);
696   C->setSelectionKind(SK);
697 
698   return false;
699 }
700 
701 // MDString:
702 //   ::= '!' STRINGCONSTANT
703 bool LLParser::parseMDString(MDString *&Result) {
704   std::string Str;
705   if (parseStringConstant(Str))
706     return true;
707   Result = MDString::get(Context, Str);
708   return false;
709 }
710 
711 // MDNode:
712 //   ::= '!' MDNodeNumber
713 bool LLParser::parseMDNodeID(MDNode *&Result) {
714   // !{ ..., !42, ... }
715   LocTy IDLoc = Lex.getLoc();
716   unsigned MID = 0;
717   if (parseUInt32(MID))
718     return true;
719 
720   // If not a forward reference, just return it now.
721   if (NumberedMetadata.count(MID)) {
722     Result = NumberedMetadata[MID];
723     return false;
724   }
725 
726   // Otherwise, create MDNode forward reference.
727   auto &FwdRef = ForwardRefMDNodes[MID];
728   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
729 
730   Result = FwdRef.first.get();
731   NumberedMetadata[MID].reset(Result);
732   return false;
733 }
734 
735 /// parseNamedMetadata:
736 ///   !foo = !{ !1, !2 }
737 bool LLParser::parseNamedMetadata() {
738   assert(Lex.getKind() == lltok::MetadataVar);
739   std::string Name = Lex.getStrVal();
740   Lex.Lex();
741 
742   if (parseToken(lltok::equal, "expected '=' here") ||
743       parseToken(lltok::exclaim, "Expected '!' here") ||
744       parseToken(lltok::lbrace, "Expected '{' here"))
745     return true;
746 
747   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
748   if (Lex.getKind() != lltok::rbrace)
749     do {
750       MDNode *N = nullptr;
751       // parse DIExpressions inline as a special case. They are still MDNodes,
752       // so they can still appear in named metadata. Remove this logic if they
753       // become plain Metadata.
754       if (Lex.getKind() == lltok::MetadataVar &&
755           Lex.getStrVal() == "DIExpression") {
756         if (parseDIExpression(N, /*IsDistinct=*/false))
757           return true;
758         // DIArgLists should only appear inline in a function, as they may
759         // contain LocalAsMetadata arguments which require a function context.
760       } else if (Lex.getKind() == lltok::MetadataVar &&
761                  Lex.getStrVal() == "DIArgList") {
762         return tokError("found DIArgList outside of function");
763       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
764                  parseMDNodeID(N)) {
765         return true;
766       }
767       NMD->addOperand(N);
768     } while (EatIfPresent(lltok::comma));
769 
770   return parseToken(lltok::rbrace, "expected end of metadata node");
771 }
772 
773 /// parseStandaloneMetadata:
774 ///   !42 = !{...}
775 bool LLParser::parseStandaloneMetadata() {
776   assert(Lex.getKind() == lltok::exclaim);
777   Lex.Lex();
778   unsigned MetadataID = 0;
779 
780   MDNode *Init;
781   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
782     return true;
783 
784   // Detect common error, from old metadata syntax.
785   if (Lex.getKind() == lltok::Type)
786     return tokError("unexpected type in metadata definition");
787 
788   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
789   if (Lex.getKind() == lltok::MetadataVar) {
790     if (parseSpecializedMDNode(Init, IsDistinct))
791       return true;
792   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
793              parseMDTuple(Init, IsDistinct))
794     return true;
795 
796   // See if this was forward referenced, if so, handle it.
797   auto FI = ForwardRefMDNodes.find(MetadataID);
798   if (FI != ForwardRefMDNodes.end()) {
799     FI->second.first->replaceAllUsesWith(Init);
800     ForwardRefMDNodes.erase(FI);
801 
802     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
803   } else {
804     if (NumberedMetadata.count(MetadataID))
805       return tokError("Metadata id is already used");
806     NumberedMetadata[MetadataID].reset(Init);
807   }
808 
809   return false;
810 }
811 
812 // Skips a single module summary entry.
813 bool LLParser::skipModuleSummaryEntry() {
814   // Each module summary entry consists of a tag for the entry
815   // type, followed by a colon, then the fields which may be surrounded by
816   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
817   // support is in place we will look for the tokens corresponding to the
818   // expected tags.
819   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
820       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
821       Lex.getKind() != lltok::kw_blockcount)
822     return tokError(
823         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
824         "start of summary entry");
825   if (Lex.getKind() == lltok::kw_flags)
826     return parseSummaryIndexFlags();
827   if (Lex.getKind() == lltok::kw_blockcount)
828     return parseBlockCount();
829   Lex.Lex();
830   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
831       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
832     return true;
833   // Now walk through the parenthesized entry, until the number of open
834   // parentheses goes back down to 0 (the first '(' was parsed above).
835   unsigned NumOpenParen = 1;
836   do {
837     switch (Lex.getKind()) {
838     case lltok::lparen:
839       NumOpenParen++;
840       break;
841     case lltok::rparen:
842       NumOpenParen--;
843       break;
844     case lltok::Eof:
845       return tokError("found end of file while parsing summary entry");
846     default:
847       // Skip everything in between parentheses.
848       break;
849     }
850     Lex.Lex();
851   } while (NumOpenParen > 0);
852   return false;
853 }
854 
855 /// SummaryEntry
856 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
857 bool LLParser::parseSummaryEntry() {
858   assert(Lex.getKind() == lltok::SummaryID);
859   unsigned SummaryID = Lex.getUIntVal();
860 
861   // For summary entries, colons should be treated as distinct tokens,
862   // not an indication of the end of a label token.
863   Lex.setIgnoreColonInIdentifiers(true);
864 
865   Lex.Lex();
866   if (parseToken(lltok::equal, "expected '=' here"))
867     return true;
868 
869   // If we don't have an index object, skip the summary entry.
870   if (!Index)
871     return skipModuleSummaryEntry();
872 
873   bool result = false;
874   switch (Lex.getKind()) {
875   case lltok::kw_gv:
876     result = parseGVEntry(SummaryID);
877     break;
878   case lltok::kw_module:
879     result = parseModuleEntry(SummaryID);
880     break;
881   case lltok::kw_typeid:
882     result = parseTypeIdEntry(SummaryID);
883     break;
884   case lltok::kw_typeidCompatibleVTable:
885     result = parseTypeIdCompatibleVtableEntry(SummaryID);
886     break;
887   case lltok::kw_flags:
888     result = parseSummaryIndexFlags();
889     break;
890   case lltok::kw_blockcount:
891     result = parseBlockCount();
892     break;
893   default:
894     result = error(Lex.getLoc(), "unexpected summary kind");
895     break;
896   }
897   Lex.setIgnoreColonInIdentifiers(false);
898   return result;
899 }
900 
901 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
902   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
903          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
904 }
905 
906 // If there was an explicit dso_local, update GV. In the absence of an explicit
907 // dso_local we keep the default value.
908 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
909   if (DSOLocal)
910     GV.setDSOLocal(true);
911 }
912 
913 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
914                                               Type *Ty2) {
915   std::string ErrString;
916   raw_string_ostream ErrOS(ErrString);
917   ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
918   return ErrOS.str();
919 }
920 
921 /// parseAliasOrIFunc:
922 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
923 ///                     OptionalVisibility OptionalDLLStorageClass
924 ///                     OptionalThreadLocal OptionalUnnamedAddr
925 ///                     'alias|ifunc' AliaseeOrResolver SymbolAttrs*
926 ///
927 /// AliaseeOrResolver
928 ///   ::= TypeAndValue
929 ///
930 /// SymbolAttrs
931 ///   ::= ',' 'partition' StringConstant
932 ///
933 /// Everything through OptionalUnnamedAddr has already been parsed.
934 ///
935 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc,
936                                  unsigned L, unsigned Visibility,
937                                  unsigned DLLStorageClass, bool DSOLocal,
938                                  GlobalVariable::ThreadLocalMode TLM,
939                                  GlobalVariable::UnnamedAddr UnnamedAddr) {
940   bool IsAlias;
941   if (Lex.getKind() == lltok::kw_alias)
942     IsAlias = true;
943   else if (Lex.getKind() == lltok::kw_ifunc)
944     IsAlias = false;
945   else
946     llvm_unreachable("Not an alias or ifunc!");
947   Lex.Lex();
948 
949   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
950 
951   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
952     return error(NameLoc, "invalid linkage type for alias");
953 
954   if (!isValidVisibilityForLinkage(Visibility, L))
955     return error(NameLoc,
956                  "symbol with local linkage must have default visibility");
957 
958   Type *Ty;
959   LocTy ExplicitTypeLoc = Lex.getLoc();
960   if (parseType(Ty) ||
961       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
962     return true;
963 
964   Constant *Aliasee;
965   LocTy AliaseeLoc = Lex.getLoc();
966   if (Lex.getKind() != lltok::kw_bitcast &&
967       Lex.getKind() != lltok::kw_getelementptr &&
968       Lex.getKind() != lltok::kw_addrspacecast &&
969       Lex.getKind() != lltok::kw_inttoptr) {
970     if (parseGlobalTypeAndValue(Aliasee))
971       return true;
972   } else {
973     // The bitcast dest type is not present, it is implied by the dest type.
974     ValID ID;
975     if (parseValID(ID, /*PFS=*/nullptr))
976       return true;
977     if (ID.Kind != ValID::t_Constant)
978       return error(AliaseeLoc, "invalid aliasee");
979     Aliasee = ID.ConstantVal;
980   }
981 
982   Type *AliaseeType = Aliasee->getType();
983   auto *PTy = dyn_cast<PointerType>(AliaseeType);
984   if (!PTy)
985     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
986   unsigned AddrSpace = PTy->getAddressSpace();
987 
988   if (IsAlias && !PTy->isOpaqueOrPointeeTypeMatches(Ty)) {
989     return error(
990         ExplicitTypeLoc,
991         typeComparisonErrorMessage(
992             "explicit pointee type doesn't match operand's pointee type", Ty,
993             PTy->getElementType()));
994   }
995 
996   if (!IsAlias && !PTy->getElementType()->isFunctionTy()) {
997     return error(ExplicitTypeLoc,
998                  "explicit pointee type should be a function type");
999   }
1000 
1001   GlobalValue *GVal = nullptr;
1002 
1003   // See if the alias was forward referenced, if so, prepare to replace the
1004   // forward reference.
1005   if (!Name.empty()) {
1006     auto I = ForwardRefVals.find(Name);
1007     if (I != ForwardRefVals.end()) {
1008       GVal = I->second.first;
1009       ForwardRefVals.erase(Name);
1010     } else if (M->getNamedValue(Name)) {
1011       return error(NameLoc, "redefinition of global '@" + Name + "'");
1012     }
1013   } else {
1014     auto I = ForwardRefValIDs.find(NumberedVals.size());
1015     if (I != ForwardRefValIDs.end()) {
1016       GVal = I->second.first;
1017       ForwardRefValIDs.erase(I);
1018     }
1019   }
1020 
1021   // Okay, create the alias/ifunc but do not insert it into the module yet.
1022   std::unique_ptr<GlobalAlias> GA;
1023   std::unique_ptr<GlobalIFunc> GI;
1024   GlobalValue *GV;
1025   if (IsAlias) {
1026     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1027                                  (GlobalValue::LinkageTypes)Linkage, Name,
1028                                  Aliasee, /*Parent*/ nullptr));
1029     GV = GA.get();
1030   } else {
1031     GI.reset(GlobalIFunc::create(Ty, AddrSpace,
1032                                  (GlobalValue::LinkageTypes)Linkage, Name,
1033                                  Aliasee, /*Parent*/ nullptr));
1034     GV = GI.get();
1035   }
1036   GV->setThreadLocalMode(TLM);
1037   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1038   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1039   GV->setUnnamedAddr(UnnamedAddr);
1040   maybeSetDSOLocal(DSOLocal, *GV);
1041 
1042   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1043   // Now parse them if there are any.
1044   while (Lex.getKind() == lltok::comma) {
1045     Lex.Lex();
1046 
1047     if (Lex.getKind() == lltok::kw_partition) {
1048       Lex.Lex();
1049       GV->setPartition(Lex.getStrVal());
1050       if (parseToken(lltok::StringConstant, "expected partition string"))
1051         return true;
1052     } else {
1053       return tokError("unknown alias or ifunc property!");
1054     }
1055   }
1056 
1057   if (Name.empty())
1058     NumberedVals.push_back(GV);
1059 
1060   if (GVal) {
1061     // Verify that types agree.
1062     if (GVal->getType() != GV->getType())
1063       return error(
1064           ExplicitTypeLoc,
1065           "forward reference and definition of alias have different types");
1066 
1067     // If they agree, just RAUW the old value with the alias and remove the
1068     // forward ref info.
1069     GVal->replaceAllUsesWith(GV);
1070     GVal->eraseFromParent();
1071   }
1072 
1073   // Insert into the module, we know its name won't collide now.
1074   if (IsAlias)
1075     M->getAliasList().push_back(GA.release());
1076   else
1077     M->getIFuncList().push_back(GI.release());
1078   assert(GV->getName() == Name && "Should not be a name conflict!");
1079 
1080   return false;
1081 }
1082 
1083 /// parseGlobal
1084 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1085 ///       OptionalVisibility OptionalDLLStorageClass
1086 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1087 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1088 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1089 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1090 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1091 ///       Const OptionalAttrs
1092 ///
1093 /// Everything up to and including OptionalUnnamedAddr has been parsed
1094 /// already.
1095 ///
1096 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1097                            unsigned Linkage, bool HasLinkage,
1098                            unsigned Visibility, unsigned DLLStorageClass,
1099                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1100                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1101   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1102     return error(NameLoc,
1103                  "symbol with local linkage must have default visibility");
1104 
1105   unsigned AddrSpace;
1106   bool IsConstant, IsExternallyInitialized;
1107   LocTy IsExternallyInitializedLoc;
1108   LocTy TyLoc;
1109 
1110   Type *Ty = nullptr;
1111   if (parseOptionalAddrSpace(AddrSpace) ||
1112       parseOptionalToken(lltok::kw_externally_initialized,
1113                          IsExternallyInitialized,
1114                          &IsExternallyInitializedLoc) ||
1115       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1116     return true;
1117 
1118   // If the linkage is specified and is external, then no initializer is
1119   // present.
1120   Constant *Init = nullptr;
1121   if (!HasLinkage ||
1122       !GlobalValue::isValidDeclarationLinkage(
1123           (GlobalValue::LinkageTypes)Linkage)) {
1124     if (parseGlobalValue(Ty, Init))
1125       return true;
1126   }
1127 
1128   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1129     return error(TyLoc, "invalid type for global variable");
1130 
1131   GlobalValue *GVal = nullptr;
1132 
1133   // See if the global was forward referenced, if so, use the global.
1134   if (!Name.empty()) {
1135     auto I = ForwardRefVals.find(Name);
1136     if (I != ForwardRefVals.end()) {
1137       GVal = I->second.first;
1138       ForwardRefVals.erase(I);
1139     } else if (M->getNamedValue(Name)) {
1140       return error(NameLoc, "redefinition of global '@" + Name + "'");
1141     }
1142   } else {
1143     auto I = ForwardRefValIDs.find(NumberedVals.size());
1144     if (I != ForwardRefValIDs.end()) {
1145       GVal = I->second.first;
1146       ForwardRefValIDs.erase(I);
1147     }
1148   }
1149 
1150   GlobalVariable *GV = new GlobalVariable(
1151       *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1152       GlobalVariable::NotThreadLocal, AddrSpace);
1153 
1154   if (Name.empty())
1155     NumberedVals.push_back(GV);
1156 
1157   // Set the parsed properties on the global.
1158   if (Init)
1159     GV->setInitializer(Init);
1160   GV->setConstant(IsConstant);
1161   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1162   maybeSetDSOLocal(DSOLocal, *GV);
1163   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1164   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1165   GV->setExternallyInitialized(IsExternallyInitialized);
1166   GV->setThreadLocalMode(TLM);
1167   GV->setUnnamedAddr(UnnamedAddr);
1168 
1169   if (GVal) {
1170     if (!GVal->getType()->isOpaque() && GVal->getValueType() != Ty)
1171       return error(
1172           TyLoc,
1173           "forward reference and definition of global have different types");
1174 
1175     GVal->replaceAllUsesWith(GV);
1176     GVal->eraseFromParent();
1177   }
1178 
1179   // parse attributes on the global.
1180   while (Lex.getKind() == lltok::comma) {
1181     Lex.Lex();
1182 
1183     if (Lex.getKind() == lltok::kw_section) {
1184       Lex.Lex();
1185       GV->setSection(Lex.getStrVal());
1186       if (parseToken(lltok::StringConstant, "expected global section string"))
1187         return true;
1188     } else if (Lex.getKind() == lltok::kw_partition) {
1189       Lex.Lex();
1190       GV->setPartition(Lex.getStrVal());
1191       if (parseToken(lltok::StringConstant, "expected partition string"))
1192         return true;
1193     } else if (Lex.getKind() == lltok::kw_align) {
1194       MaybeAlign Alignment;
1195       if (parseOptionalAlignment(Alignment))
1196         return true;
1197       GV->setAlignment(Alignment);
1198     } else if (Lex.getKind() == lltok::MetadataVar) {
1199       if (parseGlobalObjectMetadataAttachment(*GV))
1200         return true;
1201     } else {
1202       Comdat *C;
1203       if (parseOptionalComdat(Name, C))
1204         return true;
1205       if (C)
1206         GV->setComdat(C);
1207       else
1208         return tokError("unknown global variable property!");
1209     }
1210   }
1211 
1212   AttrBuilder Attrs(M->getContext());
1213   LocTy BuiltinLoc;
1214   std::vector<unsigned> FwdRefAttrGrps;
1215   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1216     return true;
1217   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1218     GV->setAttributes(AttributeSet::get(Context, Attrs));
1219     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1220   }
1221 
1222   return false;
1223 }
1224 
1225 /// parseUnnamedAttrGrp
1226 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1227 bool LLParser::parseUnnamedAttrGrp() {
1228   assert(Lex.getKind() == lltok::kw_attributes);
1229   LocTy AttrGrpLoc = Lex.getLoc();
1230   Lex.Lex();
1231 
1232   if (Lex.getKind() != lltok::AttrGrpID)
1233     return tokError("expected attribute group id");
1234 
1235   unsigned VarID = Lex.getUIntVal();
1236   std::vector<unsigned> unused;
1237   LocTy BuiltinLoc;
1238   Lex.Lex();
1239 
1240   if (parseToken(lltok::equal, "expected '=' here") ||
1241       parseToken(lltok::lbrace, "expected '{' here"))
1242     return true;
1243 
1244   auto R = NumberedAttrBuilders.find(VarID);
1245   if (R == NumberedAttrBuilders.end())
1246     R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first;
1247 
1248   if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) ||
1249       parseToken(lltok::rbrace, "expected end of attribute group"))
1250     return true;
1251 
1252   if (!R->second.hasAttributes())
1253     return error(AttrGrpLoc, "attribute group has no attributes");
1254 
1255   return false;
1256 }
1257 
1258 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
1259   switch (Kind) {
1260 #define GET_ATTR_NAMES
1261 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
1262   case lltok::kw_##DISPLAY_NAME: \
1263     return Attribute::ENUM_NAME;
1264 #include "llvm/IR/Attributes.inc"
1265   default:
1266     return Attribute::None;
1267   }
1268 }
1269 
1270 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
1271                                   bool InAttrGroup) {
1272   if (Attribute::isTypeAttrKind(Attr))
1273     return parseRequiredTypeAttr(B, Lex.getKind(), Attr);
1274 
1275   switch (Attr) {
1276   case Attribute::Alignment: {
1277     MaybeAlign Alignment;
1278     if (InAttrGroup) {
1279       uint32_t Value = 0;
1280       Lex.Lex();
1281       if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1282         return true;
1283       Alignment = Align(Value);
1284     } else {
1285       if (parseOptionalAlignment(Alignment, true))
1286         return true;
1287     }
1288     B.addAlignmentAttr(Alignment);
1289     return false;
1290   }
1291   case Attribute::StackAlignment: {
1292     unsigned Alignment;
1293     if (InAttrGroup) {
1294       Lex.Lex();
1295       if (parseToken(lltok::equal, "expected '=' here") ||
1296           parseUInt32(Alignment))
1297         return true;
1298     } else {
1299       if (parseOptionalStackAlignment(Alignment))
1300         return true;
1301     }
1302     B.addStackAlignmentAttr(Alignment);
1303     return false;
1304   }
1305   case Attribute::AllocSize: {
1306     unsigned ElemSizeArg;
1307     Optional<unsigned> NumElemsArg;
1308     if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1309       return true;
1310     B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1311     return false;
1312   }
1313   case Attribute::VScaleRange: {
1314     unsigned MinValue, MaxValue;
1315     if (parseVScaleRangeArguments(MinValue, MaxValue))
1316       return true;
1317     B.addVScaleRangeAttr(MinValue,
1318                          MaxValue > 0 ? MaxValue : Optional<unsigned>());
1319     return false;
1320   }
1321   case Attribute::Dereferenceable: {
1322     uint64_t Bytes;
1323     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1324       return true;
1325     B.addDereferenceableAttr(Bytes);
1326     return false;
1327   }
1328   case Attribute::DereferenceableOrNull: {
1329     uint64_t Bytes;
1330     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1331       return true;
1332     B.addDereferenceableOrNullAttr(Bytes);
1333     return false;
1334   }
1335   default:
1336     B.addAttribute(Attr);
1337     Lex.Lex();
1338     return false;
1339   }
1340 }
1341 
1342 /// parseFnAttributeValuePairs
1343 ///   ::= <attr> | <attr> '=' <value>
1344 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1345                                           std::vector<unsigned> &FwdRefAttrGrps,
1346                                           bool InAttrGrp, LocTy &BuiltinLoc) {
1347   bool HaveError = false;
1348 
1349   B.clear();
1350 
1351   while (true) {
1352     lltok::Kind Token = Lex.getKind();
1353     if (Token == lltok::rbrace)
1354       return HaveError; // Finished.
1355 
1356     if (Token == lltok::StringConstant) {
1357       if (parseStringAttribute(B))
1358         return true;
1359       continue;
1360     }
1361 
1362     if (Token == lltok::AttrGrpID) {
1363       // Allow a function to reference an attribute group:
1364       //
1365       //   define void @foo() #1 { ... }
1366       if (InAttrGrp) {
1367         HaveError |= error(
1368             Lex.getLoc(),
1369             "cannot have an attribute group reference in an attribute group");
1370       } else {
1371         // Save the reference to the attribute group. We'll fill it in later.
1372         FwdRefAttrGrps.push_back(Lex.getUIntVal());
1373       }
1374       Lex.Lex();
1375       continue;
1376     }
1377 
1378     SMLoc Loc = Lex.getLoc();
1379     if (Token == lltok::kw_builtin)
1380       BuiltinLoc = Loc;
1381 
1382     Attribute::AttrKind Attr = tokenToAttribute(Token);
1383     if (Attr == Attribute::None) {
1384       if (!InAttrGrp)
1385         return HaveError;
1386       return error(Lex.getLoc(), "unterminated attribute group");
1387     }
1388 
1389     if (parseEnumAttribute(Attr, B, InAttrGrp))
1390       return true;
1391 
1392     // As a hack, we allow function alignment to be initially parsed as an
1393     // attribute on a function declaration/definition or added to an attribute
1394     // group and later moved to the alignment field.
1395     if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment)
1396       HaveError |= error(Loc, "this attribute does not apply to functions");
1397   }
1398 }
1399 
1400 //===----------------------------------------------------------------------===//
1401 // GlobalValue Reference/Resolution Routines.
1402 //===----------------------------------------------------------------------===//
1403 
1404 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1405   // For opaque pointers, the used global type does not matter. We will later
1406   // RAUW it with a global/function of the correct type.
1407   if (PTy->isOpaque())
1408     return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1409                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1410                               nullptr, GlobalVariable::NotThreadLocal,
1411                               PTy->getAddressSpace());
1412 
1413   if (auto *FT = dyn_cast<FunctionType>(PTy->getPointerElementType()))
1414     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1415                             PTy->getAddressSpace(), "", M);
1416   else
1417     return new GlobalVariable(*M, PTy->getPointerElementType(), false,
1418                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1419                               nullptr, GlobalVariable::NotThreadLocal,
1420                               PTy->getAddressSpace());
1421 }
1422 
1423 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1424                                         Value *Val) {
1425   Type *ValTy = Val->getType();
1426   if (ValTy == Ty)
1427     return Val;
1428   if (Ty->isLabelTy())
1429     error(Loc, "'" + Name + "' is not a basic block");
1430   else
1431     error(Loc, "'" + Name + "' defined with type '" +
1432                    getTypeString(Val->getType()) + "' but expected '" +
1433                    getTypeString(Ty) + "'");
1434   return nullptr;
1435 }
1436 
1437 /// getGlobalVal - Get a value with the specified name or ID, creating a
1438 /// forward reference record if needed.  This can return null if the value
1439 /// exists but does not have the right type.
1440 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1441                                     LocTy Loc) {
1442   PointerType *PTy = dyn_cast<PointerType>(Ty);
1443   if (!PTy) {
1444     error(Loc, "global variable reference must have pointer type");
1445     return nullptr;
1446   }
1447 
1448   // Look this name up in the normal function symbol table.
1449   GlobalValue *Val =
1450     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1451 
1452   // If this is a forward reference for the value, see if we already created a
1453   // forward ref record.
1454   if (!Val) {
1455     auto I = ForwardRefVals.find(Name);
1456     if (I != ForwardRefVals.end())
1457       Val = I->second.first;
1458   }
1459 
1460   // If we have the value in the symbol table or fwd-ref table, return it.
1461   if (Val)
1462     return cast_or_null<GlobalValue>(
1463         checkValidVariableType(Loc, "@" + Name, Ty, Val));
1464 
1465   // Otherwise, create a new forward reference for this value and remember it.
1466   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1467   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1468   return FwdVal;
1469 }
1470 
1471 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1472   PointerType *PTy = dyn_cast<PointerType>(Ty);
1473   if (!PTy) {
1474     error(Loc, "global variable reference must have pointer type");
1475     return nullptr;
1476   }
1477 
1478   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1479 
1480   // If this is a forward reference for the value, see if we already created a
1481   // forward ref record.
1482   if (!Val) {
1483     auto I = ForwardRefValIDs.find(ID);
1484     if (I != ForwardRefValIDs.end())
1485       Val = I->second.first;
1486   }
1487 
1488   // If we have the value in the symbol table or fwd-ref table, return it.
1489   if (Val)
1490     return cast_or_null<GlobalValue>(
1491         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val));
1492 
1493   // Otherwise, create a new forward reference for this value and remember it.
1494   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1495   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1496   return FwdVal;
1497 }
1498 
1499 //===----------------------------------------------------------------------===//
1500 // Comdat Reference/Resolution Routines.
1501 //===----------------------------------------------------------------------===//
1502 
1503 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1504   // Look this name up in the comdat symbol table.
1505   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1506   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1507   if (I != ComdatSymTab.end())
1508     return &I->second;
1509 
1510   // Otherwise, create a new forward reference for this value and remember it.
1511   Comdat *C = M->getOrInsertComdat(Name);
1512   ForwardRefComdats[Name] = Loc;
1513   return C;
1514 }
1515 
1516 //===----------------------------------------------------------------------===//
1517 // Helper Routines.
1518 //===----------------------------------------------------------------------===//
1519 
1520 /// parseToken - If the current token has the specified kind, eat it and return
1521 /// success.  Otherwise, emit the specified error and return failure.
1522 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1523   if (Lex.getKind() != T)
1524     return tokError(ErrMsg);
1525   Lex.Lex();
1526   return false;
1527 }
1528 
1529 /// parseStringConstant
1530 ///   ::= StringConstant
1531 bool LLParser::parseStringConstant(std::string &Result) {
1532   if (Lex.getKind() != lltok::StringConstant)
1533     return tokError("expected string constant");
1534   Result = Lex.getStrVal();
1535   Lex.Lex();
1536   return false;
1537 }
1538 
1539 /// parseUInt32
1540 ///   ::= uint32
1541 bool LLParser::parseUInt32(uint32_t &Val) {
1542   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1543     return tokError("expected integer");
1544   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1545   if (Val64 != unsigned(Val64))
1546     return tokError("expected 32-bit integer (too large)");
1547   Val = Val64;
1548   Lex.Lex();
1549   return false;
1550 }
1551 
1552 /// parseUInt64
1553 ///   ::= uint64
1554 bool LLParser::parseUInt64(uint64_t &Val) {
1555   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1556     return tokError("expected integer");
1557   Val = Lex.getAPSIntVal().getLimitedValue();
1558   Lex.Lex();
1559   return false;
1560 }
1561 
1562 /// parseTLSModel
1563 ///   := 'localdynamic'
1564 ///   := 'initialexec'
1565 ///   := 'localexec'
1566 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1567   switch (Lex.getKind()) {
1568     default:
1569       return tokError("expected localdynamic, initialexec or localexec");
1570     case lltok::kw_localdynamic:
1571       TLM = GlobalVariable::LocalDynamicTLSModel;
1572       break;
1573     case lltok::kw_initialexec:
1574       TLM = GlobalVariable::InitialExecTLSModel;
1575       break;
1576     case lltok::kw_localexec:
1577       TLM = GlobalVariable::LocalExecTLSModel;
1578       break;
1579   }
1580 
1581   Lex.Lex();
1582   return false;
1583 }
1584 
1585 /// parseOptionalThreadLocal
1586 ///   := /*empty*/
1587 ///   := 'thread_local'
1588 ///   := 'thread_local' '(' tlsmodel ')'
1589 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1590   TLM = GlobalVariable::NotThreadLocal;
1591   if (!EatIfPresent(lltok::kw_thread_local))
1592     return false;
1593 
1594   TLM = GlobalVariable::GeneralDynamicTLSModel;
1595   if (Lex.getKind() == lltok::lparen) {
1596     Lex.Lex();
1597     return parseTLSModel(TLM) ||
1598            parseToken(lltok::rparen, "expected ')' after thread local model");
1599   }
1600   return false;
1601 }
1602 
1603 /// parseOptionalAddrSpace
1604 ///   := /*empty*/
1605 ///   := 'addrspace' '(' uint32 ')'
1606 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1607   AddrSpace = DefaultAS;
1608   if (!EatIfPresent(lltok::kw_addrspace))
1609     return false;
1610   return parseToken(lltok::lparen, "expected '(' in address space") ||
1611          parseUInt32(AddrSpace) ||
1612          parseToken(lltok::rparen, "expected ')' in address space");
1613 }
1614 
1615 /// parseStringAttribute
1616 ///   := StringConstant
1617 ///   := StringConstant '=' StringConstant
1618 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1619   std::string Attr = Lex.getStrVal();
1620   Lex.Lex();
1621   std::string Val;
1622   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1623     return true;
1624   B.addAttribute(Attr, Val);
1625   return false;
1626 }
1627 
1628 /// Parse a potentially empty list of parameter or return attributes.
1629 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
1630   bool HaveError = false;
1631 
1632   B.clear();
1633 
1634   while (true) {
1635     lltok::Kind Token = Lex.getKind();
1636     if (Token == lltok::StringConstant) {
1637       if (parseStringAttribute(B))
1638         return true;
1639       continue;
1640     }
1641 
1642     SMLoc Loc = Lex.getLoc();
1643     Attribute::AttrKind Attr = tokenToAttribute(Token);
1644     if (Attr == Attribute::None)
1645       return HaveError;
1646 
1647     if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
1648       return true;
1649 
1650     if (IsParam && !Attribute::canUseAsParamAttr(Attr))
1651       HaveError |= error(Loc, "this attribute does not apply to parameters");
1652     if (!IsParam && !Attribute::canUseAsRetAttr(Attr))
1653       HaveError |= error(Loc, "this attribute does not apply to return values");
1654   }
1655 }
1656 
1657 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1658   HasLinkage = true;
1659   switch (Kind) {
1660   default:
1661     HasLinkage = false;
1662     return GlobalValue::ExternalLinkage;
1663   case lltok::kw_private:
1664     return GlobalValue::PrivateLinkage;
1665   case lltok::kw_internal:
1666     return GlobalValue::InternalLinkage;
1667   case lltok::kw_weak:
1668     return GlobalValue::WeakAnyLinkage;
1669   case lltok::kw_weak_odr:
1670     return GlobalValue::WeakODRLinkage;
1671   case lltok::kw_linkonce:
1672     return GlobalValue::LinkOnceAnyLinkage;
1673   case lltok::kw_linkonce_odr:
1674     return GlobalValue::LinkOnceODRLinkage;
1675   case lltok::kw_available_externally:
1676     return GlobalValue::AvailableExternallyLinkage;
1677   case lltok::kw_appending:
1678     return GlobalValue::AppendingLinkage;
1679   case lltok::kw_common:
1680     return GlobalValue::CommonLinkage;
1681   case lltok::kw_extern_weak:
1682     return GlobalValue::ExternalWeakLinkage;
1683   case lltok::kw_external:
1684     return GlobalValue::ExternalLinkage;
1685   }
1686 }
1687 
1688 /// parseOptionalLinkage
1689 ///   ::= /*empty*/
1690 ///   ::= 'private'
1691 ///   ::= 'internal'
1692 ///   ::= 'weak'
1693 ///   ::= 'weak_odr'
1694 ///   ::= 'linkonce'
1695 ///   ::= 'linkonce_odr'
1696 ///   ::= 'available_externally'
1697 ///   ::= 'appending'
1698 ///   ::= 'common'
1699 ///   ::= 'extern_weak'
1700 ///   ::= 'external'
1701 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1702                                     unsigned &Visibility,
1703                                     unsigned &DLLStorageClass, bool &DSOLocal) {
1704   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1705   if (HasLinkage)
1706     Lex.Lex();
1707   parseOptionalDSOLocal(DSOLocal);
1708   parseOptionalVisibility(Visibility);
1709   parseOptionalDLLStorageClass(DLLStorageClass);
1710 
1711   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1712     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1713   }
1714 
1715   return false;
1716 }
1717 
1718 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
1719   switch (Lex.getKind()) {
1720   default:
1721     DSOLocal = false;
1722     break;
1723   case lltok::kw_dso_local:
1724     DSOLocal = true;
1725     Lex.Lex();
1726     break;
1727   case lltok::kw_dso_preemptable:
1728     DSOLocal = false;
1729     Lex.Lex();
1730     break;
1731   }
1732 }
1733 
1734 /// parseOptionalVisibility
1735 ///   ::= /*empty*/
1736 ///   ::= 'default'
1737 ///   ::= 'hidden'
1738 ///   ::= 'protected'
1739 ///
1740 void LLParser::parseOptionalVisibility(unsigned &Res) {
1741   switch (Lex.getKind()) {
1742   default:
1743     Res = GlobalValue::DefaultVisibility;
1744     return;
1745   case lltok::kw_default:
1746     Res = GlobalValue::DefaultVisibility;
1747     break;
1748   case lltok::kw_hidden:
1749     Res = GlobalValue::HiddenVisibility;
1750     break;
1751   case lltok::kw_protected:
1752     Res = GlobalValue::ProtectedVisibility;
1753     break;
1754   }
1755   Lex.Lex();
1756 }
1757 
1758 /// parseOptionalDLLStorageClass
1759 ///   ::= /*empty*/
1760 ///   ::= 'dllimport'
1761 ///   ::= 'dllexport'
1762 ///
1763 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
1764   switch (Lex.getKind()) {
1765   default:
1766     Res = GlobalValue::DefaultStorageClass;
1767     return;
1768   case lltok::kw_dllimport:
1769     Res = GlobalValue::DLLImportStorageClass;
1770     break;
1771   case lltok::kw_dllexport:
1772     Res = GlobalValue::DLLExportStorageClass;
1773     break;
1774   }
1775   Lex.Lex();
1776 }
1777 
1778 /// parseOptionalCallingConv
1779 ///   ::= /*empty*/
1780 ///   ::= 'ccc'
1781 ///   ::= 'fastcc'
1782 ///   ::= 'intel_ocl_bicc'
1783 ///   ::= 'coldcc'
1784 ///   ::= 'cfguard_checkcc'
1785 ///   ::= 'x86_stdcallcc'
1786 ///   ::= 'x86_fastcallcc'
1787 ///   ::= 'x86_thiscallcc'
1788 ///   ::= 'x86_vectorcallcc'
1789 ///   ::= 'arm_apcscc'
1790 ///   ::= 'arm_aapcscc'
1791 ///   ::= 'arm_aapcs_vfpcc'
1792 ///   ::= 'aarch64_vector_pcs'
1793 ///   ::= 'aarch64_sve_vector_pcs'
1794 ///   ::= 'msp430_intrcc'
1795 ///   ::= 'avr_intrcc'
1796 ///   ::= 'avr_signalcc'
1797 ///   ::= 'ptx_kernel'
1798 ///   ::= 'ptx_device'
1799 ///   ::= 'spir_func'
1800 ///   ::= 'spir_kernel'
1801 ///   ::= 'x86_64_sysvcc'
1802 ///   ::= 'win64cc'
1803 ///   ::= 'webkit_jscc'
1804 ///   ::= 'anyregcc'
1805 ///   ::= 'preserve_mostcc'
1806 ///   ::= 'preserve_allcc'
1807 ///   ::= 'ghccc'
1808 ///   ::= 'swiftcc'
1809 ///   ::= 'swifttailcc'
1810 ///   ::= 'x86_intrcc'
1811 ///   ::= 'hhvmcc'
1812 ///   ::= 'hhvm_ccc'
1813 ///   ::= 'cxx_fast_tlscc'
1814 ///   ::= 'amdgpu_vs'
1815 ///   ::= 'amdgpu_ls'
1816 ///   ::= 'amdgpu_hs'
1817 ///   ::= 'amdgpu_es'
1818 ///   ::= 'amdgpu_gs'
1819 ///   ::= 'amdgpu_ps'
1820 ///   ::= 'amdgpu_cs'
1821 ///   ::= 'amdgpu_kernel'
1822 ///   ::= 'tailcc'
1823 ///   ::= 'cc' UINT
1824 ///
1825 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
1826   switch (Lex.getKind()) {
1827   default:                       CC = CallingConv::C; return false;
1828   case lltok::kw_ccc:            CC = CallingConv::C; break;
1829   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1830   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1831   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
1832   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1833   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1834   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1835   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1836   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1837   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1838   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1839   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1840   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1841   case lltok::kw_aarch64_sve_vector_pcs:
1842     CC = CallingConv::AArch64_SVE_VectorCall;
1843     break;
1844   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1845   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1846   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1847   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1848   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1849   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1850   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1851   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1852   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1853   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1854   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1855   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1856   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1857   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1858   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1859   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1860   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
1861   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1862   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1863   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1864   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1865   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1866   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
1867   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1868   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1869   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1870   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1871   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1872   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1873   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1874   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
1875   case lltok::kw_cc: {
1876       Lex.Lex();
1877       return parseUInt32(CC);
1878     }
1879   }
1880 
1881   Lex.Lex();
1882   return false;
1883 }
1884 
1885 /// parseMetadataAttachment
1886 ///   ::= !dbg !42
1887 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1888   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1889 
1890   std::string Name = Lex.getStrVal();
1891   Kind = M->getMDKindID(Name);
1892   Lex.Lex();
1893 
1894   return parseMDNode(MD);
1895 }
1896 
1897 /// parseInstructionMetadata
1898 ///   ::= !dbg !42 (',' !dbg !57)*
1899 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
1900   do {
1901     if (Lex.getKind() != lltok::MetadataVar)
1902       return tokError("expected metadata after comma");
1903 
1904     unsigned MDK;
1905     MDNode *N;
1906     if (parseMetadataAttachment(MDK, N))
1907       return true;
1908 
1909     Inst.setMetadata(MDK, N);
1910     if (MDK == LLVMContext::MD_tbaa)
1911       InstsWithTBAATag.push_back(&Inst);
1912 
1913     // If this is the end of the list, we're done.
1914   } while (EatIfPresent(lltok::comma));
1915   return false;
1916 }
1917 
1918 /// parseGlobalObjectMetadataAttachment
1919 ///   ::= !dbg !57
1920 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1921   unsigned MDK;
1922   MDNode *N;
1923   if (parseMetadataAttachment(MDK, N))
1924     return true;
1925 
1926   GO.addMetadata(MDK, *N);
1927   return false;
1928 }
1929 
1930 /// parseOptionalFunctionMetadata
1931 ///   ::= (!dbg !57)*
1932 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
1933   while (Lex.getKind() == lltok::MetadataVar)
1934     if (parseGlobalObjectMetadataAttachment(F))
1935       return true;
1936   return false;
1937 }
1938 
1939 /// parseOptionalAlignment
1940 ///   ::= /* empty */
1941 ///   ::= 'align' 4
1942 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
1943   Alignment = None;
1944   if (!EatIfPresent(lltok::kw_align))
1945     return false;
1946   LocTy AlignLoc = Lex.getLoc();
1947   uint64_t Value = 0;
1948 
1949   LocTy ParenLoc = Lex.getLoc();
1950   bool HaveParens = false;
1951   if (AllowParens) {
1952     if (EatIfPresent(lltok::lparen))
1953       HaveParens = true;
1954   }
1955 
1956   if (parseUInt64(Value))
1957     return true;
1958 
1959   if (HaveParens && !EatIfPresent(lltok::rparen))
1960     return error(ParenLoc, "expected ')'");
1961 
1962   if (!isPowerOf2_64(Value))
1963     return error(AlignLoc, "alignment is not a power of two");
1964   if (Value > Value::MaximumAlignment)
1965     return error(AlignLoc, "huge alignments are not supported yet");
1966   Alignment = Align(Value);
1967   return false;
1968 }
1969 
1970 /// parseOptionalDerefAttrBytes
1971 ///   ::= /* empty */
1972 ///   ::= AttrKind '(' 4 ')'
1973 ///
1974 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1975 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1976                                            uint64_t &Bytes) {
1977   assert((AttrKind == lltok::kw_dereferenceable ||
1978           AttrKind == lltok::kw_dereferenceable_or_null) &&
1979          "contract!");
1980 
1981   Bytes = 0;
1982   if (!EatIfPresent(AttrKind))
1983     return false;
1984   LocTy ParenLoc = Lex.getLoc();
1985   if (!EatIfPresent(lltok::lparen))
1986     return error(ParenLoc, "expected '('");
1987   LocTy DerefLoc = Lex.getLoc();
1988   if (parseUInt64(Bytes))
1989     return true;
1990   ParenLoc = Lex.getLoc();
1991   if (!EatIfPresent(lltok::rparen))
1992     return error(ParenLoc, "expected ')'");
1993   if (!Bytes)
1994     return error(DerefLoc, "dereferenceable bytes must be non-zero");
1995   return false;
1996 }
1997 
1998 /// parseOptionalCommaAlign
1999 ///   ::=
2000 ///   ::= ',' align 4
2001 ///
2002 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2003 /// end.
2004 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2005                                        bool &AteExtraComma) {
2006   AteExtraComma = false;
2007   while (EatIfPresent(lltok::comma)) {
2008     // Metadata at the end is an early exit.
2009     if (Lex.getKind() == lltok::MetadataVar) {
2010       AteExtraComma = true;
2011       return false;
2012     }
2013 
2014     if (Lex.getKind() != lltok::kw_align)
2015       return error(Lex.getLoc(), "expected metadata or 'align'");
2016 
2017     if (parseOptionalAlignment(Alignment))
2018       return true;
2019   }
2020 
2021   return false;
2022 }
2023 
2024 /// parseOptionalCommaAddrSpace
2025 ///   ::=
2026 ///   ::= ',' addrspace(1)
2027 ///
2028 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2029 /// end.
2030 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2031                                            bool &AteExtraComma) {
2032   AteExtraComma = false;
2033   while (EatIfPresent(lltok::comma)) {
2034     // Metadata at the end is an early exit.
2035     if (Lex.getKind() == lltok::MetadataVar) {
2036       AteExtraComma = true;
2037       return false;
2038     }
2039 
2040     Loc = Lex.getLoc();
2041     if (Lex.getKind() != lltok::kw_addrspace)
2042       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2043 
2044     if (parseOptionalAddrSpace(AddrSpace))
2045       return true;
2046   }
2047 
2048   return false;
2049 }
2050 
2051 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2052                                        Optional<unsigned> &HowManyArg) {
2053   Lex.Lex();
2054 
2055   auto StartParen = Lex.getLoc();
2056   if (!EatIfPresent(lltok::lparen))
2057     return error(StartParen, "expected '('");
2058 
2059   if (parseUInt32(BaseSizeArg))
2060     return true;
2061 
2062   if (EatIfPresent(lltok::comma)) {
2063     auto HowManyAt = Lex.getLoc();
2064     unsigned HowMany;
2065     if (parseUInt32(HowMany))
2066       return true;
2067     if (HowMany == BaseSizeArg)
2068       return error(HowManyAt,
2069                    "'allocsize' indices can't refer to the same parameter");
2070     HowManyArg = HowMany;
2071   } else
2072     HowManyArg = None;
2073 
2074   auto EndParen = Lex.getLoc();
2075   if (!EatIfPresent(lltok::rparen))
2076     return error(EndParen, "expected ')'");
2077   return false;
2078 }
2079 
2080 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2081                                          unsigned &MaxValue) {
2082   Lex.Lex();
2083 
2084   auto StartParen = Lex.getLoc();
2085   if (!EatIfPresent(lltok::lparen))
2086     return error(StartParen, "expected '('");
2087 
2088   if (parseUInt32(MinValue))
2089     return true;
2090 
2091   if (EatIfPresent(lltok::comma)) {
2092     if (parseUInt32(MaxValue))
2093       return true;
2094   } else
2095     MaxValue = MinValue;
2096 
2097   auto EndParen = Lex.getLoc();
2098   if (!EatIfPresent(lltok::rparen))
2099     return error(EndParen, "expected ')'");
2100   return false;
2101 }
2102 
2103 /// parseScopeAndOrdering
2104 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2105 ///   else: ::=
2106 ///
2107 /// This sets Scope and Ordering to the parsed values.
2108 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2109                                      AtomicOrdering &Ordering) {
2110   if (!IsAtomic)
2111     return false;
2112 
2113   return parseScope(SSID) || parseOrdering(Ordering);
2114 }
2115 
2116 /// parseScope
2117 ///   ::= syncscope("singlethread" | "<target scope>")?
2118 ///
2119 /// This sets synchronization scope ID to the ID of the parsed value.
2120 bool LLParser::parseScope(SyncScope::ID &SSID) {
2121   SSID = SyncScope::System;
2122   if (EatIfPresent(lltok::kw_syncscope)) {
2123     auto StartParenAt = Lex.getLoc();
2124     if (!EatIfPresent(lltok::lparen))
2125       return error(StartParenAt, "Expected '(' in syncscope");
2126 
2127     std::string SSN;
2128     auto SSNAt = Lex.getLoc();
2129     if (parseStringConstant(SSN))
2130       return error(SSNAt, "Expected synchronization scope name");
2131 
2132     auto EndParenAt = Lex.getLoc();
2133     if (!EatIfPresent(lltok::rparen))
2134       return error(EndParenAt, "Expected ')' in syncscope");
2135 
2136     SSID = Context.getOrInsertSyncScopeID(SSN);
2137   }
2138 
2139   return false;
2140 }
2141 
2142 /// parseOrdering
2143 ///   ::= AtomicOrdering
2144 ///
2145 /// This sets Ordering to the parsed value.
2146 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2147   switch (Lex.getKind()) {
2148   default:
2149     return tokError("Expected ordering on atomic instruction");
2150   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2151   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2152   // Not specified yet:
2153   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2154   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2155   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2156   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2157   case lltok::kw_seq_cst:
2158     Ordering = AtomicOrdering::SequentiallyConsistent;
2159     break;
2160   }
2161   Lex.Lex();
2162   return false;
2163 }
2164 
2165 /// parseOptionalStackAlignment
2166 ///   ::= /* empty */
2167 ///   ::= 'alignstack' '(' 4 ')'
2168 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2169   Alignment = 0;
2170   if (!EatIfPresent(lltok::kw_alignstack))
2171     return false;
2172   LocTy ParenLoc = Lex.getLoc();
2173   if (!EatIfPresent(lltok::lparen))
2174     return error(ParenLoc, "expected '('");
2175   LocTy AlignLoc = Lex.getLoc();
2176   if (parseUInt32(Alignment))
2177     return true;
2178   ParenLoc = Lex.getLoc();
2179   if (!EatIfPresent(lltok::rparen))
2180     return error(ParenLoc, "expected ')'");
2181   if (!isPowerOf2_32(Alignment))
2182     return error(AlignLoc, "stack alignment is not a power of two");
2183   return false;
2184 }
2185 
2186 /// parseIndexList - This parses the index list for an insert/extractvalue
2187 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2188 /// comma at the end of the line and find that it is followed by metadata.
2189 /// Clients that don't allow metadata can call the version of this function that
2190 /// only takes one argument.
2191 ///
2192 /// parseIndexList
2193 ///    ::=  (',' uint32)+
2194 ///
2195 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2196                               bool &AteExtraComma) {
2197   AteExtraComma = false;
2198 
2199   if (Lex.getKind() != lltok::comma)
2200     return tokError("expected ',' as start of index list");
2201 
2202   while (EatIfPresent(lltok::comma)) {
2203     if (Lex.getKind() == lltok::MetadataVar) {
2204       if (Indices.empty())
2205         return tokError("expected index");
2206       AteExtraComma = true;
2207       return false;
2208     }
2209     unsigned Idx = 0;
2210     if (parseUInt32(Idx))
2211       return true;
2212     Indices.push_back(Idx);
2213   }
2214 
2215   return false;
2216 }
2217 
2218 //===----------------------------------------------------------------------===//
2219 // Type Parsing.
2220 //===----------------------------------------------------------------------===//
2221 
2222 /// parseType - parse a type.
2223 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2224   SMLoc TypeLoc = Lex.getLoc();
2225   switch (Lex.getKind()) {
2226   default:
2227     return tokError(Msg);
2228   case lltok::Type:
2229     // Type ::= 'float' | 'void' (etc)
2230     Result = Lex.getTyVal();
2231     Lex.Lex();
2232 
2233     // Handle "ptr" opaque pointer type.
2234     //
2235     // Type ::= ptr ('addrspace' '(' uint32 ')')?
2236     if (Result->isOpaquePointerTy()) {
2237       unsigned AddrSpace;
2238       if (parseOptionalAddrSpace(AddrSpace))
2239         return true;
2240       Result = PointerType::get(getContext(), AddrSpace);
2241 
2242       // Give a nice error for 'ptr*'.
2243       if (Lex.getKind() == lltok::star)
2244         return tokError("ptr* is invalid - use ptr instead");
2245 
2246       // Fall through to parsing the type suffixes only if this 'ptr' is a
2247       // function return. Otherwise, return success, implicitly rejecting other
2248       // suffixes.
2249       if (Lex.getKind() != lltok::lparen)
2250         return false;
2251     }
2252     break;
2253   case lltok::lbrace:
2254     // Type ::= StructType
2255     if (parseAnonStructType(Result, false))
2256       return true;
2257     break;
2258   case lltok::lsquare:
2259     // Type ::= '[' ... ']'
2260     Lex.Lex(); // eat the lsquare.
2261     if (parseArrayVectorType(Result, false))
2262       return true;
2263     break;
2264   case lltok::less: // Either vector or packed struct.
2265     // Type ::= '<' ... '>'
2266     Lex.Lex();
2267     if (Lex.getKind() == lltok::lbrace) {
2268       if (parseAnonStructType(Result, true) ||
2269           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2270         return true;
2271     } else if (parseArrayVectorType(Result, true))
2272       return true;
2273     break;
2274   case lltok::LocalVar: {
2275     // Type ::= %foo
2276     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2277 
2278     // If the type hasn't been defined yet, create a forward definition and
2279     // remember where that forward def'n was seen (in case it never is defined).
2280     if (!Entry.first) {
2281       Entry.first = StructType::create(Context, Lex.getStrVal());
2282       Entry.second = Lex.getLoc();
2283     }
2284     Result = Entry.first;
2285     Lex.Lex();
2286     break;
2287   }
2288 
2289   case lltok::LocalVarID: {
2290     // Type ::= %4
2291     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2292 
2293     // If the type hasn't been defined yet, create a forward definition and
2294     // remember where that forward def'n was seen (in case it never is defined).
2295     if (!Entry.first) {
2296       Entry.first = StructType::create(Context);
2297       Entry.second = Lex.getLoc();
2298     }
2299     Result = Entry.first;
2300     Lex.Lex();
2301     break;
2302   }
2303   }
2304 
2305   // parse the type suffixes.
2306   while (true) {
2307     switch (Lex.getKind()) {
2308     // End of type.
2309     default:
2310       if (!AllowVoid && Result->isVoidTy())
2311         return error(TypeLoc, "void type only allowed for function results");
2312       return false;
2313 
2314     // Type ::= Type '*'
2315     case lltok::star:
2316       if (Result->isLabelTy())
2317         return tokError("basic block pointers are invalid");
2318       if (Result->isVoidTy())
2319         return tokError("pointers to void are invalid - use i8* instead");
2320       if (!PointerType::isValidElementType(Result))
2321         return tokError("pointer to this type is invalid");
2322       Result = PointerType::getUnqual(Result);
2323       Lex.Lex();
2324       break;
2325 
2326     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2327     case lltok::kw_addrspace: {
2328       if (Result->isLabelTy())
2329         return tokError("basic block pointers are invalid");
2330       if (Result->isVoidTy())
2331         return tokError("pointers to void are invalid; use i8* instead");
2332       if (!PointerType::isValidElementType(Result))
2333         return tokError("pointer to this type is invalid");
2334       unsigned AddrSpace;
2335       if (parseOptionalAddrSpace(AddrSpace) ||
2336           parseToken(lltok::star, "expected '*' in address space"))
2337         return true;
2338 
2339       Result = PointerType::get(Result, AddrSpace);
2340       break;
2341     }
2342 
2343     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2344     case lltok::lparen:
2345       if (parseFunctionType(Result))
2346         return true;
2347       break;
2348     }
2349   }
2350 }
2351 
2352 /// parseParameterList
2353 ///    ::= '(' ')'
2354 ///    ::= '(' Arg (',' Arg)* ')'
2355 ///  Arg
2356 ///    ::= Type OptionalAttributes Value OptionalAttributes
2357 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2358                                   PerFunctionState &PFS, bool IsMustTailCall,
2359                                   bool InVarArgsFunc) {
2360   if (parseToken(lltok::lparen, "expected '(' in call"))
2361     return true;
2362 
2363   while (Lex.getKind() != lltok::rparen) {
2364     // If this isn't the first argument, we need a comma.
2365     if (!ArgList.empty() &&
2366         parseToken(lltok::comma, "expected ',' in argument list"))
2367       return true;
2368 
2369     // parse an ellipsis if this is a musttail call in a variadic function.
2370     if (Lex.getKind() == lltok::dotdotdot) {
2371       const char *Msg = "unexpected ellipsis in argument list for ";
2372       if (!IsMustTailCall)
2373         return tokError(Twine(Msg) + "non-musttail call");
2374       if (!InVarArgsFunc)
2375         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2376       Lex.Lex();  // Lex the '...', it is purely for readability.
2377       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2378     }
2379 
2380     // parse the argument.
2381     LocTy ArgLoc;
2382     Type *ArgTy = nullptr;
2383     Value *V;
2384     if (parseType(ArgTy, ArgLoc))
2385       return true;
2386 
2387     AttrBuilder ArgAttrs(M->getContext());
2388 
2389     if (ArgTy->isMetadataTy()) {
2390       if (parseMetadataAsValue(V, PFS))
2391         return true;
2392     } else {
2393       // Otherwise, handle normal operands.
2394       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2395         return true;
2396     }
2397     ArgList.push_back(ParamInfo(
2398         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2399   }
2400 
2401   if (IsMustTailCall && InVarArgsFunc)
2402     return tokError("expected '...' at end of argument list for musttail call "
2403                     "in varargs function");
2404 
2405   Lex.Lex();  // Lex the ')'.
2406   return false;
2407 }
2408 
2409 /// parseRequiredTypeAttr
2410 ///   ::= attrname(<ty>)
2411 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
2412                                      Attribute::AttrKind AttrKind) {
2413   Type *Ty = nullptr;
2414   if (!EatIfPresent(AttrToken))
2415     return true;
2416   if (!EatIfPresent(lltok::lparen))
2417     return error(Lex.getLoc(), "expected '('");
2418   if (parseType(Ty))
2419     return true;
2420   if (!EatIfPresent(lltok::rparen))
2421     return error(Lex.getLoc(), "expected ')'");
2422 
2423   B.addTypeAttr(AttrKind, Ty);
2424   return false;
2425 }
2426 
2427 /// parseOptionalOperandBundles
2428 ///    ::= /*empty*/
2429 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2430 ///
2431 /// OperandBundle
2432 ///    ::= bundle-tag '(' ')'
2433 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2434 ///
2435 /// bundle-tag ::= String Constant
2436 bool LLParser::parseOptionalOperandBundles(
2437     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2438   LocTy BeginLoc = Lex.getLoc();
2439   if (!EatIfPresent(lltok::lsquare))
2440     return false;
2441 
2442   while (Lex.getKind() != lltok::rsquare) {
2443     // If this isn't the first operand bundle, we need a comma.
2444     if (!BundleList.empty() &&
2445         parseToken(lltok::comma, "expected ',' in input list"))
2446       return true;
2447 
2448     std::string Tag;
2449     if (parseStringConstant(Tag))
2450       return true;
2451 
2452     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2453       return true;
2454 
2455     std::vector<Value *> Inputs;
2456     while (Lex.getKind() != lltok::rparen) {
2457       // If this isn't the first input, we need a comma.
2458       if (!Inputs.empty() &&
2459           parseToken(lltok::comma, "expected ',' in input list"))
2460         return true;
2461 
2462       Type *Ty = nullptr;
2463       Value *Input = nullptr;
2464       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2465         return true;
2466       Inputs.push_back(Input);
2467     }
2468 
2469     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2470 
2471     Lex.Lex(); // Lex the ')'.
2472   }
2473 
2474   if (BundleList.empty())
2475     return error(BeginLoc, "operand bundle set must not be empty");
2476 
2477   Lex.Lex(); // Lex the ']'.
2478   return false;
2479 }
2480 
2481 /// parseArgumentList - parse the argument list for a function type or function
2482 /// prototype.
2483 ///   ::= '(' ArgTypeListI ')'
2484 /// ArgTypeListI
2485 ///   ::= /*empty*/
2486 ///   ::= '...'
2487 ///   ::= ArgTypeList ',' '...'
2488 ///   ::= ArgType (',' ArgType)*
2489 ///
2490 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2491                                  bool &IsVarArg) {
2492   unsigned CurValID = 0;
2493   IsVarArg = false;
2494   assert(Lex.getKind() == lltok::lparen);
2495   Lex.Lex(); // eat the (.
2496 
2497   if (Lex.getKind() == lltok::rparen) {
2498     // empty
2499   } else if (Lex.getKind() == lltok::dotdotdot) {
2500     IsVarArg = true;
2501     Lex.Lex();
2502   } else {
2503     LocTy TypeLoc = Lex.getLoc();
2504     Type *ArgTy = nullptr;
2505     AttrBuilder Attrs(M->getContext());
2506     std::string Name;
2507 
2508     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2509       return true;
2510 
2511     if (ArgTy->isVoidTy())
2512       return error(TypeLoc, "argument can not have void type");
2513 
2514     if (Lex.getKind() == lltok::LocalVar) {
2515       Name = Lex.getStrVal();
2516       Lex.Lex();
2517     } else if (Lex.getKind() == lltok::LocalVarID) {
2518       if (Lex.getUIntVal() != CurValID)
2519         return error(TypeLoc, "argument expected to be numbered '%" +
2520                                   Twine(CurValID) + "'");
2521       ++CurValID;
2522       Lex.Lex();
2523     }
2524 
2525     if (!FunctionType::isValidArgumentType(ArgTy))
2526       return error(TypeLoc, "invalid type for function argument");
2527 
2528     ArgList.emplace_back(TypeLoc, ArgTy,
2529                          AttributeSet::get(ArgTy->getContext(), Attrs),
2530                          std::move(Name));
2531 
2532     while (EatIfPresent(lltok::comma)) {
2533       // Handle ... at end of arg list.
2534       if (EatIfPresent(lltok::dotdotdot)) {
2535         IsVarArg = true;
2536         break;
2537       }
2538 
2539       // Otherwise must be an argument type.
2540       TypeLoc = Lex.getLoc();
2541       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2542         return true;
2543 
2544       if (ArgTy->isVoidTy())
2545         return error(TypeLoc, "argument can not have void type");
2546 
2547       if (Lex.getKind() == lltok::LocalVar) {
2548         Name = Lex.getStrVal();
2549         Lex.Lex();
2550       } else {
2551         if (Lex.getKind() == lltok::LocalVarID) {
2552           if (Lex.getUIntVal() != CurValID)
2553             return error(TypeLoc, "argument expected to be numbered '%" +
2554                                       Twine(CurValID) + "'");
2555           Lex.Lex();
2556         }
2557         ++CurValID;
2558         Name = "";
2559       }
2560 
2561       if (!ArgTy->isFirstClassType())
2562         return error(TypeLoc, "invalid type for function argument");
2563 
2564       ArgList.emplace_back(TypeLoc, ArgTy,
2565                            AttributeSet::get(ArgTy->getContext(), Attrs),
2566                            std::move(Name));
2567     }
2568   }
2569 
2570   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2571 }
2572 
2573 /// parseFunctionType
2574 ///  ::= Type ArgumentList OptionalAttrs
2575 bool LLParser::parseFunctionType(Type *&Result) {
2576   assert(Lex.getKind() == lltok::lparen);
2577 
2578   if (!FunctionType::isValidReturnType(Result))
2579     return tokError("invalid function return type");
2580 
2581   SmallVector<ArgInfo, 8> ArgList;
2582   bool IsVarArg;
2583   if (parseArgumentList(ArgList, IsVarArg))
2584     return true;
2585 
2586   // Reject names on the arguments lists.
2587   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2588     if (!ArgList[i].Name.empty())
2589       return error(ArgList[i].Loc, "argument name invalid in function type");
2590     if (ArgList[i].Attrs.hasAttributes())
2591       return error(ArgList[i].Loc,
2592                    "argument attributes invalid in function type");
2593   }
2594 
2595   SmallVector<Type*, 16> ArgListTy;
2596   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2597     ArgListTy.push_back(ArgList[i].Ty);
2598 
2599   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2600   return false;
2601 }
2602 
2603 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2604 /// other structs.
2605 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2606   SmallVector<Type*, 8> Elts;
2607   if (parseStructBody(Elts))
2608     return true;
2609 
2610   Result = StructType::get(Context, Elts, Packed);
2611   return false;
2612 }
2613 
2614 /// parseStructDefinition - parse a struct in a 'type' definition.
2615 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2616                                      std::pair<Type *, LocTy> &Entry,
2617                                      Type *&ResultTy) {
2618   // If the type was already defined, diagnose the redefinition.
2619   if (Entry.first && !Entry.second.isValid())
2620     return error(TypeLoc, "redefinition of type");
2621 
2622   // If we have opaque, just return without filling in the definition for the
2623   // struct.  This counts as a definition as far as the .ll file goes.
2624   if (EatIfPresent(lltok::kw_opaque)) {
2625     // This type is being defined, so clear the location to indicate this.
2626     Entry.second = SMLoc();
2627 
2628     // If this type number has never been uttered, create it.
2629     if (!Entry.first)
2630       Entry.first = StructType::create(Context, Name);
2631     ResultTy = Entry.first;
2632     return false;
2633   }
2634 
2635   // If the type starts with '<', then it is either a packed struct or a vector.
2636   bool isPacked = EatIfPresent(lltok::less);
2637 
2638   // If we don't have a struct, then we have a random type alias, which we
2639   // accept for compatibility with old files.  These types are not allowed to be
2640   // forward referenced and not allowed to be recursive.
2641   if (Lex.getKind() != lltok::lbrace) {
2642     if (Entry.first)
2643       return error(TypeLoc, "forward references to non-struct type");
2644 
2645     ResultTy = nullptr;
2646     if (isPacked)
2647       return parseArrayVectorType(ResultTy, true);
2648     return parseType(ResultTy);
2649   }
2650 
2651   // This type is being defined, so clear the location to indicate this.
2652   Entry.second = SMLoc();
2653 
2654   // If this type number has never been uttered, create it.
2655   if (!Entry.first)
2656     Entry.first = StructType::create(Context, Name);
2657 
2658   StructType *STy = cast<StructType>(Entry.first);
2659 
2660   SmallVector<Type*, 8> Body;
2661   if (parseStructBody(Body) ||
2662       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2663     return true;
2664 
2665   STy->setBody(Body, isPacked);
2666   ResultTy = STy;
2667   return false;
2668 }
2669 
2670 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2671 ///   StructType
2672 ///     ::= '{' '}'
2673 ///     ::= '{' Type (',' Type)* '}'
2674 ///     ::= '<' '{' '}' '>'
2675 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2676 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2677   assert(Lex.getKind() == lltok::lbrace);
2678   Lex.Lex(); // Consume the '{'
2679 
2680   // Handle the empty struct.
2681   if (EatIfPresent(lltok::rbrace))
2682     return false;
2683 
2684   LocTy EltTyLoc = Lex.getLoc();
2685   Type *Ty = nullptr;
2686   if (parseType(Ty))
2687     return true;
2688   Body.push_back(Ty);
2689 
2690   if (!StructType::isValidElementType(Ty))
2691     return error(EltTyLoc, "invalid element type for struct");
2692 
2693   while (EatIfPresent(lltok::comma)) {
2694     EltTyLoc = Lex.getLoc();
2695     if (parseType(Ty))
2696       return true;
2697 
2698     if (!StructType::isValidElementType(Ty))
2699       return error(EltTyLoc, "invalid element type for struct");
2700 
2701     Body.push_back(Ty);
2702   }
2703 
2704   return parseToken(lltok::rbrace, "expected '}' at end of struct");
2705 }
2706 
2707 /// parseArrayVectorType - parse an array or vector type, assuming the first
2708 /// token has already been consumed.
2709 ///   Type
2710 ///     ::= '[' APSINTVAL 'x' Types ']'
2711 ///     ::= '<' APSINTVAL 'x' Types '>'
2712 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2713 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
2714   bool Scalable = false;
2715 
2716   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
2717     Lex.Lex(); // consume the 'vscale'
2718     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
2719       return true;
2720 
2721     Scalable = true;
2722   }
2723 
2724   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2725       Lex.getAPSIntVal().getBitWidth() > 64)
2726     return tokError("expected number in address space");
2727 
2728   LocTy SizeLoc = Lex.getLoc();
2729   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2730   Lex.Lex();
2731 
2732   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
2733     return true;
2734 
2735   LocTy TypeLoc = Lex.getLoc();
2736   Type *EltTy = nullptr;
2737   if (parseType(EltTy))
2738     return true;
2739 
2740   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
2741                  "expected end of sequential type"))
2742     return true;
2743 
2744   if (IsVector) {
2745     if (Size == 0)
2746       return error(SizeLoc, "zero element vector is illegal");
2747     if ((unsigned)Size != Size)
2748       return error(SizeLoc, "size too large for vector");
2749     if (!VectorType::isValidElementType(EltTy))
2750       return error(TypeLoc, "invalid vector element type");
2751     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2752   } else {
2753     if (!ArrayType::isValidElementType(EltTy))
2754       return error(TypeLoc, "invalid array element type");
2755     Result = ArrayType::get(EltTy, Size);
2756   }
2757   return false;
2758 }
2759 
2760 //===----------------------------------------------------------------------===//
2761 // Function Semantic Analysis.
2762 //===----------------------------------------------------------------------===//
2763 
2764 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2765                                              int functionNumber)
2766   : P(p), F(f), FunctionNumber(functionNumber) {
2767 
2768   // Insert unnamed arguments into the NumberedVals list.
2769   for (Argument &A : F.args())
2770     if (!A.hasName())
2771       NumberedVals.push_back(&A);
2772 }
2773 
2774 LLParser::PerFunctionState::~PerFunctionState() {
2775   // If there were any forward referenced non-basicblock values, delete them.
2776 
2777   for (const auto &P : ForwardRefVals) {
2778     if (isa<BasicBlock>(P.second.first))
2779       continue;
2780     P.second.first->replaceAllUsesWith(
2781         UndefValue::get(P.second.first->getType()));
2782     P.second.first->deleteValue();
2783   }
2784 
2785   for (const auto &P : ForwardRefValIDs) {
2786     if (isa<BasicBlock>(P.second.first))
2787       continue;
2788     P.second.first->replaceAllUsesWith(
2789         UndefValue::get(P.second.first->getType()));
2790     P.second.first->deleteValue();
2791   }
2792 }
2793 
2794 bool LLParser::PerFunctionState::finishFunction() {
2795   if (!ForwardRefVals.empty())
2796     return P.error(ForwardRefVals.begin()->second.second,
2797                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2798                        "'");
2799   if (!ForwardRefValIDs.empty())
2800     return P.error(ForwardRefValIDs.begin()->second.second,
2801                    "use of undefined value '%" +
2802                        Twine(ForwardRefValIDs.begin()->first) + "'");
2803   return false;
2804 }
2805 
2806 /// getVal - Get a value with the specified name or ID, creating a
2807 /// forward reference record if needed.  This can return null if the value
2808 /// exists but does not have the right type.
2809 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
2810                                           LocTy Loc) {
2811   // Look this name up in the normal function symbol table.
2812   Value *Val = F.getValueSymbolTable()->lookup(Name);
2813 
2814   // If this is a forward reference for the value, see if we already created a
2815   // forward ref record.
2816   if (!Val) {
2817     auto I = ForwardRefVals.find(Name);
2818     if (I != ForwardRefVals.end())
2819       Val = I->second.first;
2820   }
2821 
2822   // If we have the value in the symbol table or fwd-ref table, return it.
2823   if (Val)
2824     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val);
2825 
2826   // Don't make placeholders with invalid type.
2827   if (!Ty->isFirstClassType()) {
2828     P.error(Loc, "invalid use of a non-first-class type");
2829     return nullptr;
2830   }
2831 
2832   // Otherwise, create a new forward reference for this value and remember it.
2833   Value *FwdVal;
2834   if (Ty->isLabelTy()) {
2835     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2836   } else {
2837     FwdVal = new Argument(Ty, Name);
2838   }
2839 
2840   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2841   return FwdVal;
2842 }
2843 
2844 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) {
2845   // Look this name up in the normal function symbol table.
2846   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2847 
2848   // If this is a forward reference for the value, see if we already created a
2849   // forward ref record.
2850   if (!Val) {
2851     auto I = ForwardRefValIDs.find(ID);
2852     if (I != ForwardRefValIDs.end())
2853       Val = I->second.first;
2854   }
2855 
2856   // If we have the value in the symbol table or fwd-ref table, return it.
2857   if (Val)
2858     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val);
2859 
2860   if (!Ty->isFirstClassType()) {
2861     P.error(Loc, "invalid use of a non-first-class type");
2862     return nullptr;
2863   }
2864 
2865   // Otherwise, create a new forward reference for this value and remember it.
2866   Value *FwdVal;
2867   if (Ty->isLabelTy()) {
2868     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2869   } else {
2870     FwdVal = new Argument(Ty);
2871   }
2872 
2873   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2874   return FwdVal;
2875 }
2876 
2877 /// setInstName - After an instruction is parsed and inserted into its
2878 /// basic block, this installs its name.
2879 bool LLParser::PerFunctionState::setInstName(int NameID,
2880                                              const std::string &NameStr,
2881                                              LocTy NameLoc, Instruction *Inst) {
2882   // If this instruction has void type, it cannot have a name or ID specified.
2883   if (Inst->getType()->isVoidTy()) {
2884     if (NameID != -1 || !NameStr.empty())
2885       return P.error(NameLoc, "instructions returning void cannot have a name");
2886     return false;
2887   }
2888 
2889   // If this was a numbered instruction, verify that the instruction is the
2890   // expected value and resolve any forward references.
2891   if (NameStr.empty()) {
2892     // If neither a name nor an ID was specified, just use the next ID.
2893     if (NameID == -1)
2894       NameID = NumberedVals.size();
2895 
2896     if (unsigned(NameID) != NumberedVals.size())
2897       return P.error(NameLoc, "instruction expected to be numbered '%" +
2898                                   Twine(NumberedVals.size()) + "'");
2899 
2900     auto FI = ForwardRefValIDs.find(NameID);
2901     if (FI != ForwardRefValIDs.end()) {
2902       Value *Sentinel = FI->second.first;
2903       if (Sentinel->getType() != Inst->getType())
2904         return P.error(NameLoc, "instruction forward referenced with type '" +
2905                                     getTypeString(FI->second.first->getType()) +
2906                                     "'");
2907 
2908       Sentinel->replaceAllUsesWith(Inst);
2909       Sentinel->deleteValue();
2910       ForwardRefValIDs.erase(FI);
2911     }
2912 
2913     NumberedVals.push_back(Inst);
2914     return false;
2915   }
2916 
2917   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2918   auto FI = ForwardRefVals.find(NameStr);
2919   if (FI != ForwardRefVals.end()) {
2920     Value *Sentinel = FI->second.first;
2921     if (Sentinel->getType() != Inst->getType())
2922       return P.error(NameLoc, "instruction forward referenced with type '" +
2923                                   getTypeString(FI->second.first->getType()) +
2924                                   "'");
2925 
2926     Sentinel->replaceAllUsesWith(Inst);
2927     Sentinel->deleteValue();
2928     ForwardRefVals.erase(FI);
2929   }
2930 
2931   // Set the name on the instruction.
2932   Inst->setName(NameStr);
2933 
2934   if (Inst->getName() != NameStr)
2935     return P.error(NameLoc, "multiple definition of local value named '" +
2936                                 NameStr + "'");
2937   return false;
2938 }
2939 
2940 /// getBB - Get a basic block with the specified name or ID, creating a
2941 /// forward reference record if needed.
2942 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
2943                                               LocTy Loc) {
2944   return dyn_cast_or_null<BasicBlock>(
2945       getVal(Name, Type::getLabelTy(F.getContext()), Loc));
2946 }
2947 
2948 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
2949   return dyn_cast_or_null<BasicBlock>(
2950       getVal(ID, Type::getLabelTy(F.getContext()), Loc));
2951 }
2952 
2953 /// defineBB - Define the specified basic block, which is either named or
2954 /// unnamed.  If there is an error, this returns null otherwise it returns
2955 /// the block being defined.
2956 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
2957                                                  int NameID, LocTy Loc) {
2958   BasicBlock *BB;
2959   if (Name.empty()) {
2960     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
2961       P.error(Loc, "label expected to be numbered '" +
2962                        Twine(NumberedVals.size()) + "'");
2963       return nullptr;
2964     }
2965     BB = getBB(NumberedVals.size(), Loc);
2966     if (!BB) {
2967       P.error(Loc, "unable to create block numbered '" +
2968                        Twine(NumberedVals.size()) + "'");
2969       return nullptr;
2970     }
2971   } else {
2972     BB = getBB(Name, Loc);
2973     if (!BB) {
2974       P.error(Loc, "unable to create block named '" + Name + "'");
2975       return nullptr;
2976     }
2977   }
2978 
2979   // Move the block to the end of the function.  Forward ref'd blocks are
2980   // inserted wherever they happen to be referenced.
2981   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2982 
2983   // Remove the block from forward ref sets.
2984   if (Name.empty()) {
2985     ForwardRefValIDs.erase(NumberedVals.size());
2986     NumberedVals.push_back(BB);
2987   } else {
2988     // BB forward references are already in the function symbol table.
2989     ForwardRefVals.erase(Name);
2990   }
2991 
2992   return BB;
2993 }
2994 
2995 //===----------------------------------------------------------------------===//
2996 // Constants.
2997 //===----------------------------------------------------------------------===//
2998 
2999 /// parseValID - parse an abstract value that doesn't necessarily have a
3000 /// type implied.  For example, if we parse "4" we don't know what integer type
3001 /// it has.  The value will later be combined with its type and checked for
3002 /// basic correctness.  PFS is used to convert function-local operands of
3003 /// metadata (since metadata operands are not just parsed here but also
3004 /// converted to values). PFS can be null when we are not parsing metadata
3005 /// values inside a function.
3006 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
3007   ID.Loc = Lex.getLoc();
3008   switch (Lex.getKind()) {
3009   default:
3010     return tokError("expected value token");
3011   case lltok::GlobalID:  // @42
3012     ID.UIntVal = Lex.getUIntVal();
3013     ID.Kind = ValID::t_GlobalID;
3014     break;
3015   case lltok::GlobalVar:  // @foo
3016     ID.StrVal = Lex.getStrVal();
3017     ID.Kind = ValID::t_GlobalName;
3018     break;
3019   case lltok::LocalVarID:  // %42
3020     ID.UIntVal = Lex.getUIntVal();
3021     ID.Kind = ValID::t_LocalID;
3022     break;
3023   case lltok::LocalVar:  // %foo
3024     ID.StrVal = Lex.getStrVal();
3025     ID.Kind = ValID::t_LocalName;
3026     break;
3027   case lltok::APSInt:
3028     ID.APSIntVal = Lex.getAPSIntVal();
3029     ID.Kind = ValID::t_APSInt;
3030     break;
3031   case lltok::APFloat:
3032     ID.APFloatVal = Lex.getAPFloatVal();
3033     ID.Kind = ValID::t_APFloat;
3034     break;
3035   case lltok::kw_true:
3036     ID.ConstantVal = ConstantInt::getTrue(Context);
3037     ID.Kind = ValID::t_Constant;
3038     break;
3039   case lltok::kw_false:
3040     ID.ConstantVal = ConstantInt::getFalse(Context);
3041     ID.Kind = ValID::t_Constant;
3042     break;
3043   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3044   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3045   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3046   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3047   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3048 
3049   case lltok::lbrace: {
3050     // ValID ::= '{' ConstVector '}'
3051     Lex.Lex();
3052     SmallVector<Constant*, 16> Elts;
3053     if (parseGlobalValueVector(Elts) ||
3054         parseToken(lltok::rbrace, "expected end of struct constant"))
3055       return true;
3056 
3057     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3058     ID.UIntVal = Elts.size();
3059     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3060            Elts.size() * sizeof(Elts[0]));
3061     ID.Kind = ValID::t_ConstantStruct;
3062     return false;
3063   }
3064   case lltok::less: {
3065     // ValID ::= '<' ConstVector '>'         --> Vector.
3066     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3067     Lex.Lex();
3068     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3069 
3070     SmallVector<Constant*, 16> Elts;
3071     LocTy FirstEltLoc = Lex.getLoc();
3072     if (parseGlobalValueVector(Elts) ||
3073         (isPackedStruct &&
3074          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3075         parseToken(lltok::greater, "expected end of constant"))
3076       return true;
3077 
3078     if (isPackedStruct) {
3079       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3080       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3081              Elts.size() * sizeof(Elts[0]));
3082       ID.UIntVal = Elts.size();
3083       ID.Kind = ValID::t_PackedConstantStruct;
3084       return false;
3085     }
3086 
3087     if (Elts.empty())
3088       return error(ID.Loc, "constant vector must not be empty");
3089 
3090     if (!Elts[0]->getType()->isIntegerTy() &&
3091         !Elts[0]->getType()->isFloatingPointTy() &&
3092         !Elts[0]->getType()->isPointerTy())
3093       return error(
3094           FirstEltLoc,
3095           "vector elements must have integer, pointer or floating point type");
3096 
3097     // Verify that all the vector elements have the same type.
3098     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3099       if (Elts[i]->getType() != Elts[0]->getType())
3100         return error(FirstEltLoc, "vector element #" + Twine(i) +
3101                                       " is not of type '" +
3102                                       getTypeString(Elts[0]->getType()));
3103 
3104     ID.ConstantVal = ConstantVector::get(Elts);
3105     ID.Kind = ValID::t_Constant;
3106     return false;
3107   }
3108   case lltok::lsquare: {   // Array Constant
3109     Lex.Lex();
3110     SmallVector<Constant*, 16> Elts;
3111     LocTy FirstEltLoc = Lex.getLoc();
3112     if (parseGlobalValueVector(Elts) ||
3113         parseToken(lltok::rsquare, "expected end of array constant"))
3114       return true;
3115 
3116     // Handle empty element.
3117     if (Elts.empty()) {
3118       // Use undef instead of an array because it's inconvenient to determine
3119       // the element type at this point, there being no elements to examine.
3120       ID.Kind = ValID::t_EmptyArray;
3121       return false;
3122     }
3123 
3124     if (!Elts[0]->getType()->isFirstClassType())
3125       return error(FirstEltLoc, "invalid array element type: " +
3126                                     getTypeString(Elts[0]->getType()));
3127 
3128     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3129 
3130     // Verify all elements are correct type!
3131     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3132       if (Elts[i]->getType() != Elts[0]->getType())
3133         return error(FirstEltLoc, "array element #" + Twine(i) +
3134                                       " is not of type '" +
3135                                       getTypeString(Elts[0]->getType()));
3136     }
3137 
3138     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3139     ID.Kind = ValID::t_Constant;
3140     return false;
3141   }
3142   case lltok::kw_c:  // c "foo"
3143     Lex.Lex();
3144     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3145                                                   false);
3146     if (parseToken(lltok::StringConstant, "expected string"))
3147       return true;
3148     ID.Kind = ValID::t_Constant;
3149     return false;
3150 
3151   case lltok::kw_asm: {
3152     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3153     //             STRINGCONSTANT
3154     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3155     Lex.Lex();
3156     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3157         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3158         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3159         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3160         parseStringConstant(ID.StrVal) ||
3161         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3162         parseToken(lltok::StringConstant, "expected constraint string"))
3163       return true;
3164     ID.StrVal2 = Lex.getStrVal();
3165     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3166                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3167     ID.Kind = ValID::t_InlineAsm;
3168     return false;
3169   }
3170 
3171   case lltok::kw_blockaddress: {
3172     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3173     Lex.Lex();
3174 
3175     ValID Fn, Label;
3176 
3177     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3178         parseValID(Fn, PFS) ||
3179         parseToken(lltok::comma,
3180                    "expected comma in block address expression") ||
3181         parseValID(Label, PFS) ||
3182         parseToken(lltok::rparen, "expected ')' in block address expression"))
3183       return true;
3184 
3185     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3186       return error(Fn.Loc, "expected function name in blockaddress");
3187     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3188       return error(Label.Loc, "expected basic block name in blockaddress");
3189 
3190     // Try to find the function (but skip it if it's forward-referenced).
3191     GlobalValue *GV = nullptr;
3192     if (Fn.Kind == ValID::t_GlobalID) {
3193       if (Fn.UIntVal < NumberedVals.size())
3194         GV = NumberedVals[Fn.UIntVal];
3195     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3196       GV = M->getNamedValue(Fn.StrVal);
3197     }
3198     Function *F = nullptr;
3199     if (GV) {
3200       // Confirm that it's actually a function with a definition.
3201       if (!isa<Function>(GV))
3202         return error(Fn.Loc, "expected function name in blockaddress");
3203       F = cast<Function>(GV);
3204       if (F->isDeclaration())
3205         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3206     }
3207 
3208     if (!F) {
3209       // Make a global variable as a placeholder for this reference.
3210       GlobalValue *&FwdRef =
3211           ForwardRefBlockAddresses.insert(std::make_pair(
3212                                               std::move(Fn),
3213                                               std::map<ValID, GlobalValue *>()))
3214               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3215               .first->second;
3216       if (!FwdRef) {
3217         unsigned FwdDeclAS;
3218         if (ExpectedTy) {
3219           // If we know the type that the blockaddress is being assigned to,
3220           // we can use the address space of that type.
3221           if (!ExpectedTy->isPointerTy())
3222             return error(ID.Loc,
3223                          "type of blockaddress must be a pointer and not '" +
3224                              getTypeString(ExpectedTy) + "'");
3225           FwdDeclAS = ExpectedTy->getPointerAddressSpace();
3226         } else if (PFS) {
3227           // Otherwise, we default the address space of the current function.
3228           FwdDeclAS = PFS->getFunction().getAddressSpace();
3229         } else {
3230           llvm_unreachable("Unknown address space for blockaddress");
3231         }
3232         FwdRef = new GlobalVariable(
3233             *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
3234             nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
3235       }
3236 
3237       ID.ConstantVal = FwdRef;
3238       ID.Kind = ValID::t_Constant;
3239       return false;
3240     }
3241 
3242     // We found the function; now find the basic block.  Don't use PFS, since we
3243     // might be inside a constant expression.
3244     BasicBlock *BB;
3245     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3246       if (Label.Kind == ValID::t_LocalID)
3247         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3248       else
3249         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3250       if (!BB)
3251         return error(Label.Loc, "referenced value is not a basic block");
3252     } else {
3253       if (Label.Kind == ValID::t_LocalID)
3254         return error(Label.Loc, "cannot take address of numeric label after "
3255                                 "the function is defined");
3256       BB = dyn_cast_or_null<BasicBlock>(
3257           F->getValueSymbolTable()->lookup(Label.StrVal));
3258       if (!BB)
3259         return error(Label.Loc, "referenced value is not a basic block");
3260     }
3261 
3262     ID.ConstantVal = BlockAddress::get(F, BB);
3263     ID.Kind = ValID::t_Constant;
3264     return false;
3265   }
3266 
3267   case lltok::kw_dso_local_equivalent: {
3268     // ValID ::= 'dso_local_equivalent' @foo
3269     Lex.Lex();
3270 
3271     ValID Fn;
3272 
3273     if (parseValID(Fn, PFS))
3274       return true;
3275 
3276     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3277       return error(Fn.Loc,
3278                    "expected global value name in dso_local_equivalent");
3279 
3280     // Try to find the function (but skip it if it's forward-referenced).
3281     GlobalValue *GV = nullptr;
3282     if (Fn.Kind == ValID::t_GlobalID) {
3283       if (Fn.UIntVal < NumberedVals.size())
3284         GV = NumberedVals[Fn.UIntVal];
3285     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3286       GV = M->getNamedValue(Fn.StrVal);
3287     }
3288 
3289     assert(GV && "Could not find a corresponding global variable");
3290 
3291     if (!GV->getValueType()->isFunctionTy())
3292       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3293                            "in dso_local_equivalent");
3294 
3295     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3296     ID.Kind = ValID::t_Constant;
3297     return false;
3298   }
3299 
3300   case lltok::kw_no_cfi: {
3301     // ValID ::= 'no_cfi' @foo
3302     Lex.Lex();
3303 
3304     if (parseValID(ID, PFS))
3305       return true;
3306 
3307     if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName)
3308       return error(ID.Loc, "expected global value name in no_cfi");
3309 
3310     ID.NoCFI = true;
3311     return false;
3312   }
3313 
3314   case lltok::kw_trunc:
3315   case lltok::kw_zext:
3316   case lltok::kw_sext:
3317   case lltok::kw_fptrunc:
3318   case lltok::kw_fpext:
3319   case lltok::kw_bitcast:
3320   case lltok::kw_addrspacecast:
3321   case lltok::kw_uitofp:
3322   case lltok::kw_sitofp:
3323   case lltok::kw_fptoui:
3324   case lltok::kw_fptosi:
3325   case lltok::kw_inttoptr:
3326   case lltok::kw_ptrtoint: {
3327     unsigned Opc = Lex.getUIntVal();
3328     Type *DestTy = nullptr;
3329     Constant *SrcVal;
3330     Lex.Lex();
3331     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3332         parseGlobalTypeAndValue(SrcVal) ||
3333         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3334         parseType(DestTy) ||
3335         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3336       return true;
3337     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3338       return error(ID.Loc, "invalid cast opcode for cast from '" +
3339                                getTypeString(SrcVal->getType()) + "' to '" +
3340                                getTypeString(DestTy) + "'");
3341     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3342                                                  SrcVal, DestTy);
3343     ID.Kind = ValID::t_Constant;
3344     return false;
3345   }
3346   case lltok::kw_extractvalue: {
3347     Lex.Lex();
3348     Constant *Val;
3349     SmallVector<unsigned, 4> Indices;
3350     if (parseToken(lltok::lparen,
3351                    "expected '(' in extractvalue constantexpr") ||
3352         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3353         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3354       return true;
3355 
3356     if (!Val->getType()->isAggregateType())
3357       return error(ID.Loc, "extractvalue operand must be aggregate type");
3358     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3359       return error(ID.Loc, "invalid indices for extractvalue");
3360     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3361     ID.Kind = ValID::t_Constant;
3362     return false;
3363   }
3364   case lltok::kw_insertvalue: {
3365     Lex.Lex();
3366     Constant *Val0, *Val1;
3367     SmallVector<unsigned, 4> Indices;
3368     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3369         parseGlobalTypeAndValue(Val0) ||
3370         parseToken(lltok::comma,
3371                    "expected comma in insertvalue constantexpr") ||
3372         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3373         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3374       return true;
3375     if (!Val0->getType()->isAggregateType())
3376       return error(ID.Loc, "insertvalue operand must be aggregate type");
3377     Type *IndexedType =
3378         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3379     if (!IndexedType)
3380       return error(ID.Loc, "invalid indices for insertvalue");
3381     if (IndexedType != Val1->getType())
3382       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3383                                getTypeString(Val1->getType()) +
3384                                "' instead of '" + getTypeString(IndexedType) +
3385                                "'");
3386     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3387     ID.Kind = ValID::t_Constant;
3388     return false;
3389   }
3390   case lltok::kw_icmp:
3391   case lltok::kw_fcmp: {
3392     unsigned PredVal, Opc = Lex.getUIntVal();
3393     Constant *Val0, *Val1;
3394     Lex.Lex();
3395     if (parseCmpPredicate(PredVal, Opc) ||
3396         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3397         parseGlobalTypeAndValue(Val0) ||
3398         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3399         parseGlobalTypeAndValue(Val1) ||
3400         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3401       return true;
3402 
3403     if (Val0->getType() != Val1->getType())
3404       return error(ID.Loc, "compare operands must have the same type");
3405 
3406     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3407 
3408     if (Opc == Instruction::FCmp) {
3409       if (!Val0->getType()->isFPOrFPVectorTy())
3410         return error(ID.Loc, "fcmp requires floating point operands");
3411       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3412     } else {
3413       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3414       if (!Val0->getType()->isIntOrIntVectorTy() &&
3415           !Val0->getType()->isPtrOrPtrVectorTy())
3416         return error(ID.Loc, "icmp requires pointer or integer operands");
3417       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3418     }
3419     ID.Kind = ValID::t_Constant;
3420     return false;
3421   }
3422 
3423   // Unary Operators.
3424   case lltok::kw_fneg: {
3425     unsigned Opc = Lex.getUIntVal();
3426     Constant *Val;
3427     Lex.Lex();
3428     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3429         parseGlobalTypeAndValue(Val) ||
3430         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3431       return true;
3432 
3433     // Check that the type is valid for the operator.
3434     switch (Opc) {
3435     case Instruction::FNeg:
3436       if (!Val->getType()->isFPOrFPVectorTy())
3437         return error(ID.Loc, "constexpr requires fp operands");
3438       break;
3439     default: llvm_unreachable("Unknown unary operator!");
3440     }
3441     unsigned Flags = 0;
3442     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3443     ID.ConstantVal = C;
3444     ID.Kind = ValID::t_Constant;
3445     return false;
3446   }
3447   // Binary Operators.
3448   case lltok::kw_add:
3449   case lltok::kw_fadd:
3450   case lltok::kw_sub:
3451   case lltok::kw_fsub:
3452   case lltok::kw_mul:
3453   case lltok::kw_fmul:
3454   case lltok::kw_udiv:
3455   case lltok::kw_sdiv:
3456   case lltok::kw_fdiv:
3457   case lltok::kw_urem:
3458   case lltok::kw_srem:
3459   case lltok::kw_frem:
3460   case lltok::kw_shl:
3461   case lltok::kw_lshr:
3462   case lltok::kw_ashr: {
3463     bool NUW = false;
3464     bool NSW = false;
3465     bool Exact = false;
3466     unsigned Opc = Lex.getUIntVal();
3467     Constant *Val0, *Val1;
3468     Lex.Lex();
3469     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3470         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3471       if (EatIfPresent(lltok::kw_nuw))
3472         NUW = true;
3473       if (EatIfPresent(lltok::kw_nsw)) {
3474         NSW = true;
3475         if (EatIfPresent(lltok::kw_nuw))
3476           NUW = true;
3477       }
3478     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3479                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3480       if (EatIfPresent(lltok::kw_exact))
3481         Exact = true;
3482     }
3483     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3484         parseGlobalTypeAndValue(Val0) ||
3485         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3486         parseGlobalTypeAndValue(Val1) ||
3487         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3488       return true;
3489     if (Val0->getType() != Val1->getType())
3490       return error(ID.Loc, "operands of constexpr must have same type");
3491     // Check that the type is valid for the operator.
3492     switch (Opc) {
3493     case Instruction::Add:
3494     case Instruction::Sub:
3495     case Instruction::Mul:
3496     case Instruction::UDiv:
3497     case Instruction::SDiv:
3498     case Instruction::URem:
3499     case Instruction::SRem:
3500     case Instruction::Shl:
3501     case Instruction::AShr:
3502     case Instruction::LShr:
3503       if (!Val0->getType()->isIntOrIntVectorTy())
3504         return error(ID.Loc, "constexpr requires integer operands");
3505       break;
3506     case Instruction::FAdd:
3507     case Instruction::FSub:
3508     case Instruction::FMul:
3509     case Instruction::FDiv:
3510     case Instruction::FRem:
3511       if (!Val0->getType()->isFPOrFPVectorTy())
3512         return error(ID.Loc, "constexpr requires fp operands");
3513       break;
3514     default: llvm_unreachable("Unknown binary operator!");
3515     }
3516     unsigned Flags = 0;
3517     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3518     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3519     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3520     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3521     ID.ConstantVal = C;
3522     ID.Kind = ValID::t_Constant;
3523     return false;
3524   }
3525 
3526   // Logical Operations
3527   case lltok::kw_and:
3528   case lltok::kw_or:
3529   case lltok::kw_xor: {
3530     unsigned Opc = Lex.getUIntVal();
3531     Constant *Val0, *Val1;
3532     Lex.Lex();
3533     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3534         parseGlobalTypeAndValue(Val0) ||
3535         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3536         parseGlobalTypeAndValue(Val1) ||
3537         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3538       return true;
3539     if (Val0->getType() != Val1->getType())
3540       return error(ID.Loc, "operands of constexpr must have same type");
3541     if (!Val0->getType()->isIntOrIntVectorTy())
3542       return error(ID.Loc,
3543                    "constexpr requires integer or integer vector operands");
3544     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3545     ID.Kind = ValID::t_Constant;
3546     return false;
3547   }
3548 
3549   case lltok::kw_getelementptr:
3550   case lltok::kw_shufflevector:
3551   case lltok::kw_insertelement:
3552   case lltok::kw_extractelement:
3553   case lltok::kw_select: {
3554     unsigned Opc = Lex.getUIntVal();
3555     SmallVector<Constant*, 16> Elts;
3556     bool InBounds = false;
3557     Type *Ty;
3558     Lex.Lex();
3559 
3560     if (Opc == Instruction::GetElementPtr)
3561       InBounds = EatIfPresent(lltok::kw_inbounds);
3562 
3563     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3564       return true;
3565 
3566     LocTy ExplicitTypeLoc = Lex.getLoc();
3567     if (Opc == Instruction::GetElementPtr) {
3568       if (parseType(Ty) ||
3569           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3570         return true;
3571     }
3572 
3573     Optional<unsigned> InRangeOp;
3574     if (parseGlobalValueVector(
3575             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3576         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3577       return true;
3578 
3579     if (Opc == Instruction::GetElementPtr) {
3580       if (Elts.size() == 0 ||
3581           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3582         return error(ID.Loc, "base of getelementptr must be a pointer");
3583 
3584       Type *BaseType = Elts[0]->getType();
3585       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3586       if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
3587         return error(
3588             ExplicitTypeLoc,
3589             typeComparisonErrorMessage(
3590                 "explicit pointee type doesn't match operand's pointee type",
3591                 Ty, BasePointerType->getElementType()));
3592       }
3593 
3594       unsigned GEPWidth =
3595           BaseType->isVectorTy()
3596               ? cast<FixedVectorType>(BaseType)->getNumElements()
3597               : 0;
3598 
3599       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3600       for (Constant *Val : Indices) {
3601         Type *ValTy = Val->getType();
3602         if (!ValTy->isIntOrIntVectorTy())
3603           return error(ID.Loc, "getelementptr index must be an integer");
3604         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3605           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3606           if (GEPWidth && (ValNumEl != GEPWidth))
3607             return error(
3608                 ID.Loc,
3609                 "getelementptr vector index has a wrong number of elements");
3610           // GEPWidth may have been unknown because the base is a scalar,
3611           // but it is known now.
3612           GEPWidth = ValNumEl;
3613         }
3614       }
3615 
3616       SmallPtrSet<Type*, 4> Visited;
3617       if (!Indices.empty() && !Ty->isSized(&Visited))
3618         return error(ID.Loc, "base element of getelementptr must be sized");
3619 
3620       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3621         return error(ID.Loc, "invalid getelementptr indices");
3622 
3623       if (InRangeOp) {
3624         if (*InRangeOp == 0)
3625           return error(ID.Loc,
3626                        "inrange keyword may not appear on pointer operand");
3627         --*InRangeOp;
3628       }
3629 
3630       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3631                                                       InBounds, InRangeOp);
3632     } else if (Opc == Instruction::Select) {
3633       if (Elts.size() != 3)
3634         return error(ID.Loc, "expected three operands to select");
3635       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3636                                                               Elts[2]))
3637         return error(ID.Loc, Reason);
3638       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3639     } else if (Opc == Instruction::ShuffleVector) {
3640       if (Elts.size() != 3)
3641         return error(ID.Loc, "expected three operands to shufflevector");
3642       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3643         return error(ID.Loc, "invalid operands to shufflevector");
3644       SmallVector<int, 16> Mask;
3645       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3646       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3647     } else if (Opc == Instruction::ExtractElement) {
3648       if (Elts.size() != 2)
3649         return error(ID.Loc, "expected two operands to extractelement");
3650       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3651         return error(ID.Loc, "invalid extractelement operands");
3652       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3653     } else {
3654       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3655       if (Elts.size() != 3)
3656         return error(ID.Loc, "expected three operands to insertelement");
3657       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3658         return error(ID.Loc, "invalid insertelement operands");
3659       ID.ConstantVal =
3660                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3661     }
3662 
3663     ID.Kind = ValID::t_Constant;
3664     return false;
3665   }
3666   }
3667 
3668   Lex.Lex();
3669   return false;
3670 }
3671 
3672 /// parseGlobalValue - parse a global value with the specified type.
3673 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3674   C = nullptr;
3675   ValID ID;
3676   Value *V = nullptr;
3677   bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
3678                 convertValIDToValue(Ty, ID, V, nullptr);
3679   if (V && !(C = dyn_cast<Constant>(V)))
3680     return error(ID.Loc, "global values must be constants");
3681   return Parsed;
3682 }
3683 
3684 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3685   Type *Ty = nullptr;
3686   return parseType(Ty) || parseGlobalValue(Ty, V);
3687 }
3688 
3689 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3690   C = nullptr;
3691 
3692   LocTy KwLoc = Lex.getLoc();
3693   if (!EatIfPresent(lltok::kw_comdat))
3694     return false;
3695 
3696   if (EatIfPresent(lltok::lparen)) {
3697     if (Lex.getKind() != lltok::ComdatVar)
3698       return tokError("expected comdat variable");
3699     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3700     Lex.Lex();
3701     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3702       return true;
3703   } else {
3704     if (GlobalName.empty())
3705       return tokError("comdat cannot be unnamed");
3706     C = getComdat(std::string(GlobalName), KwLoc);
3707   }
3708 
3709   return false;
3710 }
3711 
3712 /// parseGlobalValueVector
3713 ///   ::= /*empty*/
3714 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3715 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3716                                       Optional<unsigned> *InRangeOp) {
3717   // Empty list.
3718   if (Lex.getKind() == lltok::rbrace ||
3719       Lex.getKind() == lltok::rsquare ||
3720       Lex.getKind() == lltok::greater ||
3721       Lex.getKind() == lltok::rparen)
3722     return false;
3723 
3724   do {
3725     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3726       *InRangeOp = Elts.size();
3727 
3728     Constant *C;
3729     if (parseGlobalTypeAndValue(C))
3730       return true;
3731     Elts.push_back(C);
3732   } while (EatIfPresent(lltok::comma));
3733 
3734   return false;
3735 }
3736 
3737 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
3738   SmallVector<Metadata *, 16> Elts;
3739   if (parseMDNodeVector(Elts))
3740     return true;
3741 
3742   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3743   return false;
3744 }
3745 
3746 /// MDNode:
3747 ///  ::= !{ ... }
3748 ///  ::= !7
3749 ///  ::= !DILocation(...)
3750 bool LLParser::parseMDNode(MDNode *&N) {
3751   if (Lex.getKind() == lltok::MetadataVar)
3752     return parseSpecializedMDNode(N);
3753 
3754   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
3755 }
3756 
3757 bool LLParser::parseMDNodeTail(MDNode *&N) {
3758   // !{ ... }
3759   if (Lex.getKind() == lltok::lbrace)
3760     return parseMDTuple(N);
3761 
3762   // !42
3763   return parseMDNodeID(N);
3764 }
3765 
3766 namespace {
3767 
3768 /// Structure to represent an optional metadata field.
3769 template <class FieldTy> struct MDFieldImpl {
3770   typedef MDFieldImpl ImplTy;
3771   FieldTy Val;
3772   bool Seen;
3773 
3774   void assign(FieldTy Val) {
3775     Seen = true;
3776     this->Val = std::move(Val);
3777   }
3778 
3779   explicit MDFieldImpl(FieldTy Default)
3780       : Val(std::move(Default)), Seen(false) {}
3781 };
3782 
3783 /// Structure to represent an optional metadata field that
3784 /// can be of either type (A or B) and encapsulates the
3785 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3786 /// to reimplement the specifics for representing each Field.
3787 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3788   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3789   FieldTypeA A;
3790   FieldTypeB B;
3791   bool Seen;
3792 
3793   enum {
3794     IsInvalid = 0,
3795     IsTypeA = 1,
3796     IsTypeB = 2
3797   } WhatIs;
3798 
3799   void assign(FieldTypeA A) {
3800     Seen = true;
3801     this->A = std::move(A);
3802     WhatIs = IsTypeA;
3803   }
3804 
3805   void assign(FieldTypeB B) {
3806     Seen = true;
3807     this->B = std::move(B);
3808     WhatIs = IsTypeB;
3809   }
3810 
3811   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3812       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3813         WhatIs(IsInvalid) {}
3814 };
3815 
3816 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3817   uint64_t Max;
3818 
3819   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3820       : ImplTy(Default), Max(Max) {}
3821 };
3822 
3823 struct LineField : public MDUnsignedField {
3824   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3825 };
3826 
3827 struct ColumnField : public MDUnsignedField {
3828   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3829 };
3830 
3831 struct DwarfTagField : public MDUnsignedField {
3832   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3833   DwarfTagField(dwarf::Tag DefaultTag)
3834       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3835 };
3836 
3837 struct DwarfMacinfoTypeField : public MDUnsignedField {
3838   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3839   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3840     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3841 };
3842 
3843 struct DwarfAttEncodingField : public MDUnsignedField {
3844   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3845 };
3846 
3847 struct DwarfVirtualityField : public MDUnsignedField {
3848   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3849 };
3850 
3851 struct DwarfLangField : public MDUnsignedField {
3852   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3853 };
3854 
3855 struct DwarfCCField : public MDUnsignedField {
3856   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3857 };
3858 
3859 struct EmissionKindField : public MDUnsignedField {
3860   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3861 };
3862 
3863 struct NameTableKindField : public MDUnsignedField {
3864   NameTableKindField()
3865       : MDUnsignedField(
3866             0, (unsigned)
3867                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3868 };
3869 
3870 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3871   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3872 };
3873 
3874 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3875   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3876 };
3877 
3878 struct MDAPSIntField : public MDFieldImpl<APSInt> {
3879   MDAPSIntField() : ImplTy(APSInt()) {}
3880 };
3881 
3882 struct MDSignedField : public MDFieldImpl<int64_t> {
3883   int64_t Min;
3884   int64_t Max;
3885 
3886   MDSignedField(int64_t Default = 0)
3887       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3888   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3889       : ImplTy(Default), Min(Min), Max(Max) {}
3890 };
3891 
3892 struct MDBoolField : public MDFieldImpl<bool> {
3893   MDBoolField(bool Default = false) : ImplTy(Default) {}
3894 };
3895 
3896 struct MDField : public MDFieldImpl<Metadata *> {
3897   bool AllowNull;
3898 
3899   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3900 };
3901 
3902 struct MDStringField : public MDFieldImpl<MDString *> {
3903   bool AllowEmpty;
3904   MDStringField(bool AllowEmpty = true)
3905       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3906 };
3907 
3908 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3909   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3910 };
3911 
3912 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3913   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3914 };
3915 
3916 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3917   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3918       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3919 
3920   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3921                     bool AllowNull = true)
3922       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3923 
3924   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3925   bool isMDField() const { return WhatIs == IsTypeB; }
3926   int64_t getMDSignedValue() const {
3927     assert(isMDSignedField() && "Wrong field type");
3928     return A.Val;
3929   }
3930   Metadata *getMDFieldValue() const {
3931     assert(isMDField() && "Wrong field type");
3932     return B.Val;
3933   }
3934 };
3935 
3936 } // end anonymous namespace
3937 
3938 namespace llvm {
3939 
3940 template <>
3941 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
3942   if (Lex.getKind() != lltok::APSInt)
3943     return tokError("expected integer");
3944 
3945   Result.assign(Lex.getAPSIntVal());
3946   Lex.Lex();
3947   return false;
3948 }
3949 
3950 template <>
3951 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
3952                             MDUnsignedField &Result) {
3953   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3954     return tokError("expected unsigned integer");
3955 
3956   auto &U = Lex.getAPSIntVal();
3957   if (U.ugt(Result.Max))
3958     return tokError("value for '" + Name + "' too large, limit is " +
3959                     Twine(Result.Max));
3960   Result.assign(U.getZExtValue());
3961   assert(Result.Val <= Result.Max && "Expected value in range");
3962   Lex.Lex();
3963   return false;
3964 }
3965 
3966 template <>
3967 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3968   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3969 }
3970 template <>
3971 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3972   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3973 }
3974 
3975 template <>
3976 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3977   if (Lex.getKind() == lltok::APSInt)
3978     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3979 
3980   if (Lex.getKind() != lltok::DwarfTag)
3981     return tokError("expected DWARF tag");
3982 
3983   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3984   if (Tag == dwarf::DW_TAG_invalid)
3985     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3986   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3987 
3988   Result.assign(Tag);
3989   Lex.Lex();
3990   return false;
3991 }
3992 
3993 template <>
3994 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
3995                             DwarfMacinfoTypeField &Result) {
3996   if (Lex.getKind() == lltok::APSInt)
3997     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3998 
3999   if (Lex.getKind() != lltok::DwarfMacinfo)
4000     return tokError("expected DWARF macinfo type");
4001 
4002   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4003   if (Macinfo == dwarf::DW_MACINFO_invalid)
4004     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4005                     Lex.getStrVal() + "'");
4006   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4007 
4008   Result.assign(Macinfo);
4009   Lex.Lex();
4010   return false;
4011 }
4012 
4013 template <>
4014 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4015                             DwarfVirtualityField &Result) {
4016   if (Lex.getKind() == lltok::APSInt)
4017     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4018 
4019   if (Lex.getKind() != lltok::DwarfVirtuality)
4020     return tokError("expected DWARF virtuality code");
4021 
4022   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4023   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4024     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4025                     Lex.getStrVal() + "'");
4026   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4027   Result.assign(Virtuality);
4028   Lex.Lex();
4029   return false;
4030 }
4031 
4032 template <>
4033 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4034   if (Lex.getKind() == lltok::APSInt)
4035     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4036 
4037   if (Lex.getKind() != lltok::DwarfLang)
4038     return tokError("expected DWARF language");
4039 
4040   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4041   if (!Lang)
4042     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4043                     "'");
4044   assert(Lang <= Result.Max && "Expected valid DWARF language");
4045   Result.assign(Lang);
4046   Lex.Lex();
4047   return false;
4048 }
4049 
4050 template <>
4051 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4052   if (Lex.getKind() == lltok::APSInt)
4053     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4054 
4055   if (Lex.getKind() != lltok::DwarfCC)
4056     return tokError("expected DWARF calling convention");
4057 
4058   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4059   if (!CC)
4060     return tokError("invalid DWARF calling convention" + Twine(" '") +
4061                     Lex.getStrVal() + "'");
4062   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4063   Result.assign(CC);
4064   Lex.Lex();
4065   return false;
4066 }
4067 
4068 template <>
4069 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4070                             EmissionKindField &Result) {
4071   if (Lex.getKind() == lltok::APSInt)
4072     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4073 
4074   if (Lex.getKind() != lltok::EmissionKind)
4075     return tokError("expected emission kind");
4076 
4077   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4078   if (!Kind)
4079     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4080                     "'");
4081   assert(*Kind <= Result.Max && "Expected valid emission kind");
4082   Result.assign(*Kind);
4083   Lex.Lex();
4084   return false;
4085 }
4086 
4087 template <>
4088 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4089                             NameTableKindField &Result) {
4090   if (Lex.getKind() == lltok::APSInt)
4091     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4092 
4093   if (Lex.getKind() != lltok::NameTableKind)
4094     return tokError("expected nameTable kind");
4095 
4096   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4097   if (!Kind)
4098     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4099                     "'");
4100   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4101   Result.assign((unsigned)*Kind);
4102   Lex.Lex();
4103   return false;
4104 }
4105 
4106 template <>
4107 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4108                             DwarfAttEncodingField &Result) {
4109   if (Lex.getKind() == lltok::APSInt)
4110     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4111 
4112   if (Lex.getKind() != lltok::DwarfAttEncoding)
4113     return tokError("expected DWARF type attribute encoding");
4114 
4115   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4116   if (!Encoding)
4117     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4118                     Lex.getStrVal() + "'");
4119   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4120   Result.assign(Encoding);
4121   Lex.Lex();
4122   return false;
4123 }
4124 
4125 /// DIFlagField
4126 ///  ::= uint32
4127 ///  ::= DIFlagVector
4128 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4129 template <>
4130 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4131 
4132   // parser for a single flag.
4133   auto parseFlag = [&](DINode::DIFlags &Val) {
4134     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4135       uint32_t TempVal = static_cast<uint32_t>(Val);
4136       bool Res = parseUInt32(TempVal);
4137       Val = static_cast<DINode::DIFlags>(TempVal);
4138       return Res;
4139     }
4140 
4141     if (Lex.getKind() != lltok::DIFlag)
4142       return tokError("expected debug info flag");
4143 
4144     Val = DINode::getFlag(Lex.getStrVal());
4145     if (!Val)
4146       return tokError(Twine("invalid debug info flag flag '") +
4147                       Lex.getStrVal() + "'");
4148     Lex.Lex();
4149     return false;
4150   };
4151 
4152   // parse the flags and combine them together.
4153   DINode::DIFlags Combined = DINode::FlagZero;
4154   do {
4155     DINode::DIFlags Val;
4156     if (parseFlag(Val))
4157       return true;
4158     Combined |= Val;
4159   } while (EatIfPresent(lltok::bar));
4160 
4161   Result.assign(Combined);
4162   return false;
4163 }
4164 
4165 /// DISPFlagField
4166 ///  ::= uint32
4167 ///  ::= DISPFlagVector
4168 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4169 template <>
4170 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4171 
4172   // parser for a single flag.
4173   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4174     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4175       uint32_t TempVal = static_cast<uint32_t>(Val);
4176       bool Res = parseUInt32(TempVal);
4177       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4178       return Res;
4179     }
4180 
4181     if (Lex.getKind() != lltok::DISPFlag)
4182       return tokError("expected debug info flag");
4183 
4184     Val = DISubprogram::getFlag(Lex.getStrVal());
4185     if (!Val)
4186       return tokError(Twine("invalid subprogram debug info flag '") +
4187                       Lex.getStrVal() + "'");
4188     Lex.Lex();
4189     return false;
4190   };
4191 
4192   // parse the flags and combine them together.
4193   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4194   do {
4195     DISubprogram::DISPFlags Val;
4196     if (parseFlag(Val))
4197       return true;
4198     Combined |= Val;
4199   } while (EatIfPresent(lltok::bar));
4200 
4201   Result.assign(Combined);
4202   return false;
4203 }
4204 
4205 template <>
4206 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4207   if (Lex.getKind() != lltok::APSInt)
4208     return tokError("expected signed integer");
4209 
4210   auto &S = Lex.getAPSIntVal();
4211   if (S < Result.Min)
4212     return tokError("value for '" + Name + "' too small, limit is " +
4213                     Twine(Result.Min));
4214   if (S > Result.Max)
4215     return tokError("value for '" + Name + "' too large, limit is " +
4216                     Twine(Result.Max));
4217   Result.assign(S.getExtValue());
4218   assert(Result.Val >= Result.Min && "Expected value in range");
4219   assert(Result.Val <= Result.Max && "Expected value in range");
4220   Lex.Lex();
4221   return false;
4222 }
4223 
4224 template <>
4225 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4226   switch (Lex.getKind()) {
4227   default:
4228     return tokError("expected 'true' or 'false'");
4229   case lltok::kw_true:
4230     Result.assign(true);
4231     break;
4232   case lltok::kw_false:
4233     Result.assign(false);
4234     break;
4235   }
4236   Lex.Lex();
4237   return false;
4238 }
4239 
4240 template <>
4241 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4242   if (Lex.getKind() == lltok::kw_null) {
4243     if (!Result.AllowNull)
4244       return tokError("'" + Name + "' cannot be null");
4245     Lex.Lex();
4246     Result.assign(nullptr);
4247     return false;
4248   }
4249 
4250   Metadata *MD;
4251   if (parseMetadata(MD, nullptr))
4252     return true;
4253 
4254   Result.assign(MD);
4255   return false;
4256 }
4257 
4258 template <>
4259 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4260                             MDSignedOrMDField &Result) {
4261   // Try to parse a signed int.
4262   if (Lex.getKind() == lltok::APSInt) {
4263     MDSignedField Res = Result.A;
4264     if (!parseMDField(Loc, Name, Res)) {
4265       Result.assign(Res);
4266       return false;
4267     }
4268     return true;
4269   }
4270 
4271   // Otherwise, try to parse as an MDField.
4272   MDField Res = Result.B;
4273   if (!parseMDField(Loc, Name, Res)) {
4274     Result.assign(Res);
4275     return false;
4276   }
4277 
4278   return true;
4279 }
4280 
4281 template <>
4282 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4283   LocTy ValueLoc = Lex.getLoc();
4284   std::string S;
4285   if (parseStringConstant(S))
4286     return true;
4287 
4288   if (!Result.AllowEmpty && S.empty())
4289     return error(ValueLoc, "'" + Name + "' cannot be empty");
4290 
4291   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4292   return false;
4293 }
4294 
4295 template <>
4296 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4297   SmallVector<Metadata *, 4> MDs;
4298   if (parseMDNodeVector(MDs))
4299     return true;
4300 
4301   Result.assign(std::move(MDs));
4302   return false;
4303 }
4304 
4305 template <>
4306 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4307                             ChecksumKindField &Result) {
4308   Optional<DIFile::ChecksumKind> CSKind =
4309       DIFile::getChecksumKind(Lex.getStrVal());
4310 
4311   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4312     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4313                     "'");
4314 
4315   Result.assign(*CSKind);
4316   Lex.Lex();
4317   return false;
4318 }
4319 
4320 } // end namespace llvm
4321 
4322 template <class ParserTy>
4323 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4324   do {
4325     if (Lex.getKind() != lltok::LabelStr)
4326       return tokError("expected field label here");
4327 
4328     if (ParseField())
4329       return true;
4330   } while (EatIfPresent(lltok::comma));
4331 
4332   return false;
4333 }
4334 
4335 template <class ParserTy>
4336 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4337   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4338   Lex.Lex();
4339 
4340   if (parseToken(lltok::lparen, "expected '(' here"))
4341     return true;
4342   if (Lex.getKind() != lltok::rparen)
4343     if (parseMDFieldsImplBody(ParseField))
4344       return true;
4345 
4346   ClosingLoc = Lex.getLoc();
4347   return parseToken(lltok::rparen, "expected ')' here");
4348 }
4349 
4350 template <class FieldTy>
4351 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4352   if (Result.Seen)
4353     return tokError("field '" + Name + "' cannot be specified more than once");
4354 
4355   LocTy Loc = Lex.getLoc();
4356   Lex.Lex();
4357   return parseMDField(Loc, Name, Result);
4358 }
4359 
4360 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4361   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4362 
4363 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4364   if (Lex.getStrVal() == #CLASS)                                               \
4365     return parse##CLASS(N, IsDistinct);
4366 #include "llvm/IR/Metadata.def"
4367 
4368   return tokError("expected metadata type");
4369 }
4370 
4371 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4372 #define NOP_FIELD(NAME, TYPE, INIT)
4373 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4374   if (!NAME.Seen)                                                              \
4375     return error(ClosingLoc, "missing required field '" #NAME "'");
4376 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4377   if (Lex.getStrVal() == #NAME)                                                \
4378     return parseMDField(#NAME, NAME);
4379 #define PARSE_MD_FIELDS()                                                      \
4380   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4381   do {                                                                         \
4382     LocTy ClosingLoc;                                                          \
4383     if (parseMDFieldsImpl(                                                     \
4384             [&]() -> bool {                                                    \
4385               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4386               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4387                               "'");                                            \
4388             },                                                                 \
4389             ClosingLoc))                                                       \
4390       return true;                                                             \
4391     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4392   } while (false)
4393 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4394   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4395 
4396 /// parseDILocationFields:
4397 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4398 ///   isImplicitCode: true)
4399 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4400 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4401   OPTIONAL(line, LineField, );                                                 \
4402   OPTIONAL(column, ColumnField, );                                             \
4403   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4404   OPTIONAL(inlinedAt, MDField, );                                              \
4405   OPTIONAL(isImplicitCode, MDBoolField, (false));
4406   PARSE_MD_FIELDS();
4407 #undef VISIT_MD_FIELDS
4408 
4409   Result =
4410       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4411                                    inlinedAt.Val, isImplicitCode.Val));
4412   return false;
4413 }
4414 
4415 /// parseGenericDINode:
4416 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4417 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4418 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4419   REQUIRED(tag, DwarfTagField, );                                              \
4420   OPTIONAL(header, MDStringField, );                                           \
4421   OPTIONAL(operands, MDFieldList, );
4422   PARSE_MD_FIELDS();
4423 #undef VISIT_MD_FIELDS
4424 
4425   Result = GET_OR_DISTINCT(GenericDINode,
4426                            (Context, tag.Val, header.Val, operands.Val));
4427   return false;
4428 }
4429 
4430 /// parseDISubrange:
4431 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4432 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4433 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4434 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4435 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4436   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4437   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4438   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4439   OPTIONAL(stride, MDSignedOrMDField, );
4440   PARSE_MD_FIELDS();
4441 #undef VISIT_MD_FIELDS
4442 
4443   Metadata *Count = nullptr;
4444   Metadata *LowerBound = nullptr;
4445   Metadata *UpperBound = nullptr;
4446   Metadata *Stride = nullptr;
4447 
4448   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4449     if (Bound.isMDSignedField())
4450       return ConstantAsMetadata::get(ConstantInt::getSigned(
4451           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4452     if (Bound.isMDField())
4453       return Bound.getMDFieldValue();
4454     return nullptr;
4455   };
4456 
4457   Count = convToMetadata(count);
4458   LowerBound = convToMetadata(lowerBound);
4459   UpperBound = convToMetadata(upperBound);
4460   Stride = convToMetadata(stride);
4461 
4462   Result = GET_OR_DISTINCT(DISubrange,
4463                            (Context, Count, LowerBound, UpperBound, Stride));
4464 
4465   return false;
4466 }
4467 
4468 /// parseDIGenericSubrange:
4469 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4470 ///   !node3)
4471 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4472 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4473   OPTIONAL(count, MDSignedOrMDField, );                                        \
4474   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4475   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4476   OPTIONAL(stride, MDSignedOrMDField, );
4477   PARSE_MD_FIELDS();
4478 #undef VISIT_MD_FIELDS
4479 
4480   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4481     if (Bound.isMDSignedField())
4482       return DIExpression::get(
4483           Context, {dwarf::DW_OP_consts,
4484                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4485     if (Bound.isMDField())
4486       return Bound.getMDFieldValue();
4487     return nullptr;
4488   };
4489 
4490   Metadata *Count = ConvToMetadata(count);
4491   Metadata *LowerBound = ConvToMetadata(lowerBound);
4492   Metadata *UpperBound = ConvToMetadata(upperBound);
4493   Metadata *Stride = ConvToMetadata(stride);
4494 
4495   Result = GET_OR_DISTINCT(DIGenericSubrange,
4496                            (Context, Count, LowerBound, UpperBound, Stride));
4497 
4498   return false;
4499 }
4500 
4501 /// parseDIEnumerator:
4502 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4503 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4504 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4505   REQUIRED(name, MDStringField, );                                             \
4506   REQUIRED(value, MDAPSIntField, );                                            \
4507   OPTIONAL(isUnsigned, MDBoolField, (false));
4508   PARSE_MD_FIELDS();
4509 #undef VISIT_MD_FIELDS
4510 
4511   if (isUnsigned.Val && value.Val.isNegative())
4512     return tokError("unsigned enumerator with negative value");
4513 
4514   APSInt Value(value.Val);
4515   // Add a leading zero so that unsigned values with the msb set are not
4516   // mistaken for negative values when used for signed enumerators.
4517   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4518     Value = Value.zext(Value.getBitWidth() + 1);
4519 
4520   Result =
4521       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4522 
4523   return false;
4524 }
4525 
4526 /// parseDIBasicType:
4527 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4528 ///                    encoding: DW_ATE_encoding, flags: 0)
4529 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4530 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4531   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4532   OPTIONAL(name, MDStringField, );                                             \
4533   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4534   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4535   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4536   OPTIONAL(flags, DIFlagField, );
4537   PARSE_MD_FIELDS();
4538 #undef VISIT_MD_FIELDS
4539 
4540   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4541                                          align.Val, encoding.Val, flags.Val));
4542   return false;
4543 }
4544 
4545 /// parseDIStringType:
4546 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4547 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4548 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4549   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4550   OPTIONAL(name, MDStringField, );                                             \
4551   OPTIONAL(stringLength, MDField, );                                           \
4552   OPTIONAL(stringLengthExpression, MDField, );                                 \
4553   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4554   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4555   OPTIONAL(encoding, DwarfAttEncodingField, );
4556   PARSE_MD_FIELDS();
4557 #undef VISIT_MD_FIELDS
4558 
4559   Result = GET_OR_DISTINCT(DIStringType,
4560                            (Context, tag.Val, name.Val, stringLength.Val,
4561                             stringLengthExpression.Val, size.Val, align.Val,
4562                             encoding.Val));
4563   return false;
4564 }
4565 
4566 /// parseDIDerivedType:
4567 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4568 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4569 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4570 ///                      dwarfAddressSpace: 3)
4571 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4572 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4573   REQUIRED(tag, DwarfTagField, );                                              \
4574   OPTIONAL(name, MDStringField, );                                             \
4575   OPTIONAL(file, MDField, );                                                   \
4576   OPTIONAL(line, LineField, );                                                 \
4577   OPTIONAL(scope, MDField, );                                                  \
4578   REQUIRED(baseType, MDField, );                                               \
4579   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4580   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4581   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4582   OPTIONAL(flags, DIFlagField, );                                              \
4583   OPTIONAL(extraData, MDField, );                                              \
4584   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));      \
4585   OPTIONAL(annotations, MDField, );
4586   PARSE_MD_FIELDS();
4587 #undef VISIT_MD_FIELDS
4588 
4589   Optional<unsigned> DWARFAddressSpace;
4590   if (dwarfAddressSpace.Val != UINT32_MAX)
4591     DWARFAddressSpace = dwarfAddressSpace.Val;
4592 
4593   Result = GET_OR_DISTINCT(DIDerivedType,
4594                            (Context, tag.Val, name.Val, file.Val, line.Val,
4595                             scope.Val, baseType.Val, size.Val, align.Val,
4596                             offset.Val, DWARFAddressSpace, flags.Val,
4597                             extraData.Val, annotations.Val));
4598   return false;
4599 }
4600 
4601 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4602 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4603   REQUIRED(tag, DwarfTagField, );                                              \
4604   OPTIONAL(name, MDStringField, );                                             \
4605   OPTIONAL(file, MDField, );                                                   \
4606   OPTIONAL(line, LineField, );                                                 \
4607   OPTIONAL(scope, MDField, );                                                  \
4608   OPTIONAL(baseType, MDField, );                                               \
4609   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4610   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4611   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4612   OPTIONAL(flags, DIFlagField, );                                              \
4613   OPTIONAL(elements, MDField, );                                               \
4614   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4615   OPTIONAL(vtableHolder, MDField, );                                           \
4616   OPTIONAL(templateParams, MDField, );                                         \
4617   OPTIONAL(identifier, MDStringField, );                                       \
4618   OPTIONAL(discriminator, MDField, );                                          \
4619   OPTIONAL(dataLocation, MDField, );                                           \
4620   OPTIONAL(associated, MDField, );                                             \
4621   OPTIONAL(allocated, MDField, );                                              \
4622   OPTIONAL(rank, MDSignedOrMDField, );                                         \
4623   OPTIONAL(annotations, MDField, );
4624   PARSE_MD_FIELDS();
4625 #undef VISIT_MD_FIELDS
4626 
4627   Metadata *Rank = nullptr;
4628   if (rank.isMDSignedField())
4629     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4630         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4631   else if (rank.isMDField())
4632     Rank = rank.getMDFieldValue();
4633 
4634   // If this has an identifier try to build an ODR type.
4635   if (identifier.Val)
4636     if (auto *CT = DICompositeType::buildODRType(
4637             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4638             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4639             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4640             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4641             Rank, annotations.Val)) {
4642       Result = CT;
4643       return false;
4644     }
4645 
4646   // Create a new node, and save it in the context if it belongs in the type
4647   // map.
4648   Result = GET_OR_DISTINCT(
4649       DICompositeType,
4650       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4651        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4652        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4653        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank,
4654        annotations.Val));
4655   return false;
4656 }
4657 
4658 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4659 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4660   OPTIONAL(flags, DIFlagField, );                                              \
4661   OPTIONAL(cc, DwarfCCField, );                                                \
4662   REQUIRED(types, MDField, );
4663   PARSE_MD_FIELDS();
4664 #undef VISIT_MD_FIELDS
4665 
4666   Result = GET_OR_DISTINCT(DISubroutineType,
4667                            (Context, flags.Val, cc.Val, types.Val));
4668   return false;
4669 }
4670 
4671 /// parseDIFileType:
4672 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4673 ///                   checksumkind: CSK_MD5,
4674 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4675 ///                   source: "source file contents")
4676 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4677   // The default constructed value for checksumkind is required, but will never
4678   // be used, as the parser checks if the field was actually Seen before using
4679   // the Val.
4680 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4681   REQUIRED(filename, MDStringField, );                                         \
4682   REQUIRED(directory, MDStringField, );                                        \
4683   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4684   OPTIONAL(checksum, MDStringField, );                                         \
4685   OPTIONAL(source, MDStringField, );
4686   PARSE_MD_FIELDS();
4687 #undef VISIT_MD_FIELDS
4688 
4689   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4690   if (checksumkind.Seen && checksum.Seen)
4691     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4692   else if (checksumkind.Seen || checksum.Seen)
4693     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4694 
4695   Optional<MDString *> OptSource;
4696   if (source.Seen)
4697     OptSource = source.Val;
4698   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4699                                     OptChecksum, OptSource));
4700   return false;
4701 }
4702 
4703 /// parseDICompileUnit:
4704 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4705 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4706 ///                      splitDebugFilename: "abc.debug",
4707 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4708 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4709 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4710 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4711   if (!IsDistinct)
4712     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4713 
4714 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4715   REQUIRED(language, DwarfLangField, );                                        \
4716   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4717   OPTIONAL(producer, MDStringField, );                                         \
4718   OPTIONAL(isOptimized, MDBoolField, );                                        \
4719   OPTIONAL(flags, MDStringField, );                                            \
4720   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4721   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4722   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4723   OPTIONAL(enums, MDField, );                                                  \
4724   OPTIONAL(retainedTypes, MDField, );                                          \
4725   OPTIONAL(globals, MDField, );                                                \
4726   OPTIONAL(imports, MDField, );                                                \
4727   OPTIONAL(macros, MDField, );                                                 \
4728   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4729   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4730   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4731   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4732   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4733   OPTIONAL(sysroot, MDStringField, );                                          \
4734   OPTIONAL(sdk, MDStringField, );
4735   PARSE_MD_FIELDS();
4736 #undef VISIT_MD_FIELDS
4737 
4738   Result = DICompileUnit::getDistinct(
4739       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4740       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4741       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4742       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4743       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4744   return false;
4745 }
4746 
4747 /// parseDISubprogram:
4748 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4749 ///                     file: !1, line: 7, type: !2, isLocal: false,
4750 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4751 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4752 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4753 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4754 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7,
4755 ///                     annotations: !8)
4756 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
4757   auto Loc = Lex.getLoc();
4758 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4759   OPTIONAL(scope, MDField, );                                                  \
4760   OPTIONAL(name, MDStringField, );                                             \
4761   OPTIONAL(linkageName, MDStringField, );                                      \
4762   OPTIONAL(file, MDField, );                                                   \
4763   OPTIONAL(line, LineField, );                                                 \
4764   OPTIONAL(type, MDField, );                                                   \
4765   OPTIONAL(isLocal, MDBoolField, );                                            \
4766   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4767   OPTIONAL(scopeLine, LineField, );                                            \
4768   OPTIONAL(containingType, MDField, );                                         \
4769   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4770   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4771   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4772   OPTIONAL(flags, DIFlagField, );                                              \
4773   OPTIONAL(spFlags, DISPFlagField, );                                          \
4774   OPTIONAL(isOptimized, MDBoolField, );                                        \
4775   OPTIONAL(unit, MDField, );                                                   \
4776   OPTIONAL(templateParams, MDField, );                                         \
4777   OPTIONAL(declaration, MDField, );                                            \
4778   OPTIONAL(retainedNodes, MDField, );                                          \
4779   OPTIONAL(thrownTypes, MDField, );                                            \
4780   OPTIONAL(annotations, MDField, );
4781   PARSE_MD_FIELDS();
4782 #undef VISIT_MD_FIELDS
4783 
4784   // An explicit spFlags field takes precedence over individual fields in
4785   // older IR versions.
4786   DISubprogram::DISPFlags SPFlags =
4787       spFlags.Seen ? spFlags.Val
4788                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4789                                              isOptimized.Val, virtuality.Val);
4790   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4791     return Lex.Error(
4792         Loc,
4793         "missing 'distinct', required for !DISubprogram that is a Definition");
4794   Result = GET_OR_DISTINCT(
4795       DISubprogram,
4796       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4797        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4798        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4799        declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val));
4800   return false;
4801 }
4802 
4803 /// parseDILexicalBlock:
4804 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4805 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4806 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4807   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4808   OPTIONAL(file, MDField, );                                                   \
4809   OPTIONAL(line, LineField, );                                                 \
4810   OPTIONAL(column, ColumnField, );
4811   PARSE_MD_FIELDS();
4812 #undef VISIT_MD_FIELDS
4813 
4814   Result = GET_OR_DISTINCT(
4815       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4816   return false;
4817 }
4818 
4819 /// parseDILexicalBlockFile:
4820 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4821 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4822 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4823   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4824   OPTIONAL(file, MDField, );                                                   \
4825   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4826   PARSE_MD_FIELDS();
4827 #undef VISIT_MD_FIELDS
4828 
4829   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4830                            (Context, scope.Val, file.Val, discriminator.Val));
4831   return false;
4832 }
4833 
4834 /// parseDICommonBlock:
4835 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4836 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4837 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4838   REQUIRED(scope, MDField, );                                                  \
4839   OPTIONAL(declaration, MDField, );                                            \
4840   OPTIONAL(name, MDStringField, );                                             \
4841   OPTIONAL(file, MDField, );                                                   \
4842   OPTIONAL(line, LineField, );
4843   PARSE_MD_FIELDS();
4844 #undef VISIT_MD_FIELDS
4845 
4846   Result = GET_OR_DISTINCT(DICommonBlock,
4847                            (Context, scope.Val, declaration.Val, name.Val,
4848                             file.Val, line.Val));
4849   return false;
4850 }
4851 
4852 /// parseDINamespace:
4853 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4854 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
4855 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4856   REQUIRED(scope, MDField, );                                                  \
4857   OPTIONAL(name, MDStringField, );                                             \
4858   OPTIONAL(exportSymbols, MDBoolField, );
4859   PARSE_MD_FIELDS();
4860 #undef VISIT_MD_FIELDS
4861 
4862   Result = GET_OR_DISTINCT(DINamespace,
4863                            (Context, scope.Val, name.Val, exportSymbols.Val));
4864   return false;
4865 }
4866 
4867 /// parseDIMacro:
4868 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
4869 ///   "SomeValue")
4870 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
4871 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4872   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4873   OPTIONAL(line, LineField, );                                                 \
4874   REQUIRED(name, MDStringField, );                                             \
4875   OPTIONAL(value, MDStringField, );
4876   PARSE_MD_FIELDS();
4877 #undef VISIT_MD_FIELDS
4878 
4879   Result = GET_OR_DISTINCT(DIMacro,
4880                            (Context, type.Val, line.Val, name.Val, value.Val));
4881   return false;
4882 }
4883 
4884 /// parseDIMacroFile:
4885 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4886 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4887 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4888   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4889   OPTIONAL(line, LineField, );                                                 \
4890   REQUIRED(file, MDField, );                                                   \
4891   OPTIONAL(nodes, MDField, );
4892   PARSE_MD_FIELDS();
4893 #undef VISIT_MD_FIELDS
4894 
4895   Result = GET_OR_DISTINCT(DIMacroFile,
4896                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4897   return false;
4898 }
4899 
4900 /// parseDIModule:
4901 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
4902 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
4903 ///   file: !1, line: 4, isDecl: false)
4904 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
4905 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4906   REQUIRED(scope, MDField, );                                                  \
4907   REQUIRED(name, MDStringField, );                                             \
4908   OPTIONAL(configMacros, MDStringField, );                                     \
4909   OPTIONAL(includePath, MDStringField, );                                      \
4910   OPTIONAL(apinotes, MDStringField, );                                         \
4911   OPTIONAL(file, MDField, );                                                   \
4912   OPTIONAL(line, LineField, );                                                 \
4913   OPTIONAL(isDecl, MDBoolField, );
4914   PARSE_MD_FIELDS();
4915 #undef VISIT_MD_FIELDS
4916 
4917   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
4918                                       configMacros.Val, includePath.Val,
4919                                       apinotes.Val, line.Val, isDecl.Val));
4920   return false;
4921 }
4922 
4923 /// parseDITemplateTypeParameter:
4924 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
4925 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4926 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4927   OPTIONAL(name, MDStringField, );                                             \
4928   REQUIRED(type, MDField, );                                                   \
4929   OPTIONAL(defaulted, MDBoolField, );
4930   PARSE_MD_FIELDS();
4931 #undef VISIT_MD_FIELDS
4932 
4933   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
4934                            (Context, name.Val, type.Val, defaulted.Val));
4935   return false;
4936 }
4937 
4938 /// parseDITemplateValueParameter:
4939 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4940 ///                                 name: "V", type: !1, defaulted: false,
4941 ///                                 value: i32 7)
4942 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4943 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4944   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4945   OPTIONAL(name, MDStringField, );                                             \
4946   OPTIONAL(type, MDField, );                                                   \
4947   OPTIONAL(defaulted, MDBoolField, );                                          \
4948   REQUIRED(value, MDField, );
4949 
4950   PARSE_MD_FIELDS();
4951 #undef VISIT_MD_FIELDS
4952 
4953   Result = GET_OR_DISTINCT(
4954       DITemplateValueParameter,
4955       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
4956   return false;
4957 }
4958 
4959 /// parseDIGlobalVariable:
4960 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4961 ///                         file: !1, line: 7, type: !2, isLocal: false,
4962 ///                         isDefinition: true, templateParams: !3,
4963 ///                         declaration: !4, align: 8)
4964 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4965 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4966   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4967   OPTIONAL(scope, MDField, );                                                  \
4968   OPTIONAL(linkageName, MDStringField, );                                      \
4969   OPTIONAL(file, MDField, );                                                   \
4970   OPTIONAL(line, LineField, );                                                 \
4971   OPTIONAL(type, MDField, );                                                   \
4972   OPTIONAL(isLocal, MDBoolField, );                                            \
4973   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4974   OPTIONAL(templateParams, MDField, );                                         \
4975   OPTIONAL(declaration, MDField, );                                            \
4976   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4977   OPTIONAL(annotations, MDField, );
4978   PARSE_MD_FIELDS();
4979 #undef VISIT_MD_FIELDS
4980 
4981   Result =
4982       GET_OR_DISTINCT(DIGlobalVariable,
4983                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4984                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4985                        declaration.Val, templateParams.Val, align.Val,
4986                        annotations.Val));
4987   return false;
4988 }
4989 
4990 /// parseDILocalVariable:
4991 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4992 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4993 ///                        align: 8)
4994 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4995 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4996 ///                        align: 8)
4997 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4998 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4999   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5000   OPTIONAL(name, MDStringField, );                                             \
5001   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5002   OPTIONAL(file, MDField, );                                                   \
5003   OPTIONAL(line, LineField, );                                                 \
5004   OPTIONAL(type, MDField, );                                                   \
5005   OPTIONAL(flags, DIFlagField, );                                              \
5006   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5007   OPTIONAL(annotations, MDField, );
5008   PARSE_MD_FIELDS();
5009 #undef VISIT_MD_FIELDS
5010 
5011   Result = GET_OR_DISTINCT(DILocalVariable,
5012                            (Context, scope.Val, name.Val, file.Val, line.Val,
5013                             type.Val, arg.Val, flags.Val, align.Val,
5014                             annotations.Val));
5015   return false;
5016 }
5017 
5018 /// parseDILabel:
5019 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5020 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5021 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5022   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5023   REQUIRED(name, MDStringField, );                                             \
5024   REQUIRED(file, MDField, );                                                   \
5025   REQUIRED(line, LineField, );
5026   PARSE_MD_FIELDS();
5027 #undef VISIT_MD_FIELDS
5028 
5029   Result = GET_OR_DISTINCT(DILabel,
5030                            (Context, scope.Val, name.Val, file.Val, line.Val));
5031   return false;
5032 }
5033 
5034 /// parseDIExpression:
5035 ///   ::= !DIExpression(0, 7, -1)
5036 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5037   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5038   Lex.Lex();
5039 
5040   if (parseToken(lltok::lparen, "expected '(' here"))
5041     return true;
5042 
5043   SmallVector<uint64_t, 8> Elements;
5044   if (Lex.getKind() != lltok::rparen)
5045     do {
5046       if (Lex.getKind() == lltok::DwarfOp) {
5047         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5048           Lex.Lex();
5049           Elements.push_back(Op);
5050           continue;
5051         }
5052         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5053       }
5054 
5055       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5056         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5057           Lex.Lex();
5058           Elements.push_back(Op);
5059           continue;
5060         }
5061         return tokError(Twine("invalid DWARF attribute encoding '") +
5062                         Lex.getStrVal() + "'");
5063       }
5064 
5065       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5066         return tokError("expected unsigned integer");
5067 
5068       auto &U = Lex.getAPSIntVal();
5069       if (U.ugt(UINT64_MAX))
5070         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5071       Elements.push_back(U.getZExtValue());
5072       Lex.Lex();
5073     } while (EatIfPresent(lltok::comma));
5074 
5075   if (parseToken(lltok::rparen, "expected ')' here"))
5076     return true;
5077 
5078   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5079   return false;
5080 }
5081 
5082 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5083   return parseDIArgList(Result, IsDistinct, nullptr);
5084 }
5085 /// ParseDIArgList:
5086 ///   ::= !DIArgList(i32 7, i64 %0)
5087 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5088                               PerFunctionState *PFS) {
5089   assert(PFS && "Expected valid function state");
5090   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5091   Lex.Lex();
5092 
5093   if (parseToken(lltok::lparen, "expected '(' here"))
5094     return true;
5095 
5096   SmallVector<ValueAsMetadata *, 4> Args;
5097   if (Lex.getKind() != lltok::rparen)
5098     do {
5099       Metadata *MD;
5100       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5101         return true;
5102       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5103     } while (EatIfPresent(lltok::comma));
5104 
5105   if (parseToken(lltok::rparen, "expected ')' here"))
5106     return true;
5107 
5108   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5109   return false;
5110 }
5111 
5112 /// parseDIGlobalVariableExpression:
5113 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5114 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5115                                                bool IsDistinct) {
5116 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5117   REQUIRED(var, MDField, );                                                    \
5118   REQUIRED(expr, MDField, );
5119   PARSE_MD_FIELDS();
5120 #undef VISIT_MD_FIELDS
5121 
5122   Result =
5123       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5124   return false;
5125 }
5126 
5127 /// parseDIObjCProperty:
5128 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5129 ///                       getter: "getFoo", attributes: 7, type: !2)
5130 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5131 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5132   OPTIONAL(name, MDStringField, );                                             \
5133   OPTIONAL(file, MDField, );                                                   \
5134   OPTIONAL(line, LineField, );                                                 \
5135   OPTIONAL(setter, MDStringField, );                                           \
5136   OPTIONAL(getter, MDStringField, );                                           \
5137   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5138   OPTIONAL(type, MDField, );
5139   PARSE_MD_FIELDS();
5140 #undef VISIT_MD_FIELDS
5141 
5142   Result = GET_OR_DISTINCT(DIObjCProperty,
5143                            (Context, name.Val, file.Val, line.Val, setter.Val,
5144                             getter.Val, attributes.Val, type.Val));
5145   return false;
5146 }
5147 
5148 /// parseDIImportedEntity:
5149 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5150 ///                         line: 7, name: "foo", elements: !2)
5151 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5152 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5153   REQUIRED(tag, DwarfTagField, );                                              \
5154   REQUIRED(scope, MDField, );                                                  \
5155   OPTIONAL(entity, MDField, );                                                 \
5156   OPTIONAL(file, MDField, );                                                   \
5157   OPTIONAL(line, LineField, );                                                 \
5158   OPTIONAL(name, MDStringField, );                                             \
5159   OPTIONAL(elements, MDField, );
5160   PARSE_MD_FIELDS();
5161 #undef VISIT_MD_FIELDS
5162 
5163   Result = GET_OR_DISTINCT(DIImportedEntity,
5164                            (Context, tag.Val, scope.Val, entity.Val, file.Val,
5165                             line.Val, name.Val, elements.Val));
5166   return false;
5167 }
5168 
5169 #undef PARSE_MD_FIELD
5170 #undef NOP_FIELD
5171 #undef REQUIRE_FIELD
5172 #undef DECLARE_FIELD
5173 
5174 /// parseMetadataAsValue
5175 ///  ::= metadata i32 %local
5176 ///  ::= metadata i32 @global
5177 ///  ::= metadata i32 7
5178 ///  ::= metadata !0
5179 ///  ::= metadata !{...}
5180 ///  ::= metadata !"string"
5181 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5182   // Note: the type 'metadata' has already been parsed.
5183   Metadata *MD;
5184   if (parseMetadata(MD, &PFS))
5185     return true;
5186 
5187   V = MetadataAsValue::get(Context, MD);
5188   return false;
5189 }
5190 
5191 /// parseValueAsMetadata
5192 ///  ::= i32 %local
5193 ///  ::= i32 @global
5194 ///  ::= i32 7
5195 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5196                                     PerFunctionState *PFS) {
5197   Type *Ty;
5198   LocTy Loc;
5199   if (parseType(Ty, TypeMsg, Loc))
5200     return true;
5201   if (Ty->isMetadataTy())
5202     return error(Loc, "invalid metadata-value-metadata roundtrip");
5203 
5204   Value *V;
5205   if (parseValue(Ty, V, PFS))
5206     return true;
5207 
5208   MD = ValueAsMetadata::get(V);
5209   return false;
5210 }
5211 
5212 /// parseMetadata
5213 ///  ::= i32 %local
5214 ///  ::= i32 @global
5215 ///  ::= i32 7
5216 ///  ::= !42
5217 ///  ::= !{...}
5218 ///  ::= !"string"
5219 ///  ::= !DILocation(...)
5220 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5221   if (Lex.getKind() == lltok::MetadataVar) {
5222     MDNode *N;
5223     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5224     // so parsing this requires a Function State.
5225     if (Lex.getStrVal() == "DIArgList") {
5226       if (parseDIArgList(N, false, PFS))
5227         return true;
5228     } else if (parseSpecializedMDNode(N)) {
5229       return true;
5230     }
5231     MD = N;
5232     return false;
5233   }
5234 
5235   // ValueAsMetadata:
5236   // <type> <value>
5237   if (Lex.getKind() != lltok::exclaim)
5238     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5239 
5240   // '!'.
5241   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5242   Lex.Lex();
5243 
5244   // MDString:
5245   //   ::= '!' STRINGCONSTANT
5246   if (Lex.getKind() == lltok::StringConstant) {
5247     MDString *S;
5248     if (parseMDString(S))
5249       return true;
5250     MD = S;
5251     return false;
5252   }
5253 
5254   // MDNode:
5255   // !{ ... }
5256   // !7
5257   MDNode *N;
5258   if (parseMDNodeTail(N))
5259     return true;
5260   MD = N;
5261   return false;
5262 }
5263 
5264 //===----------------------------------------------------------------------===//
5265 // Function Parsing.
5266 //===----------------------------------------------------------------------===//
5267 
5268 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5269                                    PerFunctionState *PFS) {
5270   if (Ty->isFunctionTy())
5271     return error(ID.Loc, "functions are not values, refer to them as pointers");
5272 
5273   switch (ID.Kind) {
5274   case ValID::t_LocalID:
5275     if (!PFS)
5276       return error(ID.Loc, "invalid use of function-local name");
5277     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc);
5278     return V == nullptr;
5279   case ValID::t_LocalName:
5280     if (!PFS)
5281       return error(ID.Loc, "invalid use of function-local name");
5282     V = PFS->getVal(ID.StrVal, Ty, ID.Loc);
5283     return V == nullptr;
5284   case ValID::t_InlineAsm: {
5285     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5286       return error(ID.Loc, "invalid type for inline asm constraint string");
5287     V = InlineAsm::get(
5288         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5289         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5290     return false;
5291   }
5292   case ValID::t_GlobalName:
5293     V = getGlobalVal(ID.StrVal, Ty, ID.Loc);
5294     if (V && ID.NoCFI)
5295       V = NoCFIValue::get(cast<GlobalValue>(V));
5296     return V == nullptr;
5297   case ValID::t_GlobalID:
5298     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc);
5299     if (V && ID.NoCFI)
5300       V = NoCFIValue::get(cast<GlobalValue>(V));
5301     return V == nullptr;
5302   case ValID::t_APSInt:
5303     if (!Ty->isIntegerTy())
5304       return error(ID.Loc, "integer constant must have integer type");
5305     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5306     V = ConstantInt::get(Context, ID.APSIntVal);
5307     return false;
5308   case ValID::t_APFloat:
5309     if (!Ty->isFloatingPointTy() ||
5310         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5311       return error(ID.Loc, "floating point constant invalid for type");
5312 
5313     // The lexer has no type info, so builds all half, bfloat, float, and double
5314     // FP constants as double.  Fix this here.  Long double does not need this.
5315     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5316       // Check for signaling before potentially converting and losing that info.
5317       bool IsSNAN = ID.APFloatVal.isSignaling();
5318       bool Ignored;
5319       if (Ty->isHalfTy())
5320         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5321                               &Ignored);
5322       else if (Ty->isBFloatTy())
5323         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5324                               &Ignored);
5325       else if (Ty->isFloatTy())
5326         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5327                               &Ignored);
5328       if (IsSNAN) {
5329         // The convert call above may quiet an SNaN, so manufacture another
5330         // SNaN. The bitcast works because the payload (significand) parameter
5331         // is truncated to fit.
5332         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5333         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5334                                          ID.APFloatVal.isNegative(), &Payload);
5335       }
5336     }
5337     V = ConstantFP::get(Context, ID.APFloatVal);
5338 
5339     if (V->getType() != Ty)
5340       return error(ID.Loc, "floating point constant does not have type '" +
5341                                getTypeString(Ty) + "'");
5342 
5343     return false;
5344   case ValID::t_Null:
5345     if (!Ty->isPointerTy())
5346       return error(ID.Loc, "null must be a pointer type");
5347     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5348     return false;
5349   case ValID::t_Undef:
5350     // FIXME: LabelTy should not be a first-class type.
5351     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5352       return error(ID.Loc, "invalid type for undef constant");
5353     V = UndefValue::get(Ty);
5354     return false;
5355   case ValID::t_EmptyArray:
5356     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5357       return error(ID.Loc, "invalid empty array initializer");
5358     V = UndefValue::get(Ty);
5359     return false;
5360   case ValID::t_Zero:
5361     // FIXME: LabelTy should not be a first-class type.
5362     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5363       return error(ID.Loc, "invalid type for null constant");
5364     V = Constant::getNullValue(Ty);
5365     return false;
5366   case ValID::t_None:
5367     if (!Ty->isTokenTy())
5368       return error(ID.Loc, "invalid type for none constant");
5369     V = Constant::getNullValue(Ty);
5370     return false;
5371   case ValID::t_Poison:
5372     // FIXME: LabelTy should not be a first-class type.
5373     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5374       return error(ID.Loc, "invalid type for poison constant");
5375     V = PoisonValue::get(Ty);
5376     return false;
5377   case ValID::t_Constant:
5378     if (ID.ConstantVal->getType() != Ty)
5379       return error(ID.Loc, "constant expression type mismatch: got type '" +
5380                                getTypeString(ID.ConstantVal->getType()) +
5381                                "' but expected '" + getTypeString(Ty) + "'");
5382     V = ID.ConstantVal;
5383     return false;
5384   case ValID::t_ConstantStruct:
5385   case ValID::t_PackedConstantStruct:
5386     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5387       if (ST->getNumElements() != ID.UIntVal)
5388         return error(ID.Loc,
5389                      "initializer with struct type has wrong # elements");
5390       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5391         return error(ID.Loc, "packed'ness of initializer and type don't match");
5392 
5393       // Verify that the elements are compatible with the structtype.
5394       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5395         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5396           return error(
5397               ID.Loc,
5398               "element " + Twine(i) +
5399                   " of struct initializer doesn't match struct element type");
5400 
5401       V = ConstantStruct::get(
5402           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5403     } else
5404       return error(ID.Loc, "constant expression type mismatch");
5405     return false;
5406   }
5407   llvm_unreachable("Invalid ValID");
5408 }
5409 
5410 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5411   C = nullptr;
5412   ValID ID;
5413   auto Loc = Lex.getLoc();
5414   if (parseValID(ID, /*PFS=*/nullptr))
5415     return true;
5416   switch (ID.Kind) {
5417   case ValID::t_APSInt:
5418   case ValID::t_APFloat:
5419   case ValID::t_Undef:
5420   case ValID::t_Constant:
5421   case ValID::t_ConstantStruct:
5422   case ValID::t_PackedConstantStruct: {
5423     Value *V;
5424     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
5425       return true;
5426     assert(isa<Constant>(V) && "Expected a constant value");
5427     C = cast<Constant>(V);
5428     return false;
5429   }
5430   case ValID::t_Null:
5431     C = Constant::getNullValue(Ty);
5432     return false;
5433   default:
5434     return error(Loc, "expected a constant value");
5435   }
5436 }
5437 
5438 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5439   V = nullptr;
5440   ValID ID;
5441   return parseValID(ID, PFS, Ty) ||
5442          convertValIDToValue(Ty, ID, V, PFS);
5443 }
5444 
5445 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5446   Type *Ty = nullptr;
5447   return parseType(Ty) || parseValue(Ty, V, PFS);
5448 }
5449 
5450 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5451                                       PerFunctionState &PFS) {
5452   Value *V;
5453   Loc = Lex.getLoc();
5454   if (parseTypeAndValue(V, PFS))
5455     return true;
5456   if (!isa<BasicBlock>(V))
5457     return error(Loc, "expected a basic block");
5458   BB = cast<BasicBlock>(V);
5459   return false;
5460 }
5461 
5462 /// FunctionHeader
5463 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5464 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5465 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5466 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5467 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5468   // parse the linkage.
5469   LocTy LinkageLoc = Lex.getLoc();
5470   unsigned Linkage;
5471   unsigned Visibility;
5472   unsigned DLLStorageClass;
5473   bool DSOLocal;
5474   AttrBuilder RetAttrs(M->getContext());
5475   unsigned CC;
5476   bool HasLinkage;
5477   Type *RetType = nullptr;
5478   LocTy RetTypeLoc = Lex.getLoc();
5479   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5480                            DSOLocal) ||
5481       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5482       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5483     return true;
5484 
5485   // Verify that the linkage is ok.
5486   switch ((GlobalValue::LinkageTypes)Linkage) {
5487   case GlobalValue::ExternalLinkage:
5488     break; // always ok.
5489   case GlobalValue::ExternalWeakLinkage:
5490     if (IsDefine)
5491       return error(LinkageLoc, "invalid linkage for function definition");
5492     break;
5493   case GlobalValue::PrivateLinkage:
5494   case GlobalValue::InternalLinkage:
5495   case GlobalValue::AvailableExternallyLinkage:
5496   case GlobalValue::LinkOnceAnyLinkage:
5497   case GlobalValue::LinkOnceODRLinkage:
5498   case GlobalValue::WeakAnyLinkage:
5499   case GlobalValue::WeakODRLinkage:
5500     if (!IsDefine)
5501       return error(LinkageLoc, "invalid linkage for function declaration");
5502     break;
5503   case GlobalValue::AppendingLinkage:
5504   case GlobalValue::CommonLinkage:
5505     return error(LinkageLoc, "invalid function linkage type");
5506   }
5507 
5508   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5509     return error(LinkageLoc,
5510                  "symbol with local linkage must have default visibility");
5511 
5512   if (!FunctionType::isValidReturnType(RetType))
5513     return error(RetTypeLoc, "invalid function return type");
5514 
5515   LocTy NameLoc = Lex.getLoc();
5516 
5517   std::string FunctionName;
5518   if (Lex.getKind() == lltok::GlobalVar) {
5519     FunctionName = Lex.getStrVal();
5520   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5521     unsigned NameID = Lex.getUIntVal();
5522 
5523     if (NameID != NumberedVals.size())
5524       return tokError("function expected to be numbered '%" +
5525                       Twine(NumberedVals.size()) + "'");
5526   } else {
5527     return tokError("expected function name");
5528   }
5529 
5530   Lex.Lex();
5531 
5532   if (Lex.getKind() != lltok::lparen)
5533     return tokError("expected '(' in function argument list");
5534 
5535   SmallVector<ArgInfo, 8> ArgList;
5536   bool IsVarArg;
5537   AttrBuilder FuncAttrs(M->getContext());
5538   std::vector<unsigned> FwdRefAttrGrps;
5539   LocTy BuiltinLoc;
5540   std::string Section;
5541   std::string Partition;
5542   MaybeAlign Alignment;
5543   std::string GC;
5544   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5545   unsigned AddrSpace = 0;
5546   Constant *Prefix = nullptr;
5547   Constant *Prologue = nullptr;
5548   Constant *PersonalityFn = nullptr;
5549   Comdat *C;
5550 
5551   if (parseArgumentList(ArgList, IsVarArg) ||
5552       parseOptionalUnnamedAddr(UnnamedAddr) ||
5553       parseOptionalProgramAddrSpace(AddrSpace) ||
5554       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5555                                  BuiltinLoc) ||
5556       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5557       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5558       parseOptionalComdat(FunctionName, C) ||
5559       parseOptionalAlignment(Alignment) ||
5560       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5561       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5562       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5563       (EatIfPresent(lltok::kw_personality) &&
5564        parseGlobalTypeAndValue(PersonalityFn)))
5565     return true;
5566 
5567   if (FuncAttrs.contains(Attribute::Builtin))
5568     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5569 
5570   // If the alignment was parsed as an attribute, move to the alignment field.
5571   if (FuncAttrs.hasAlignmentAttr()) {
5572     Alignment = FuncAttrs.getAlignment();
5573     FuncAttrs.removeAttribute(Attribute::Alignment);
5574   }
5575 
5576   // Okay, if we got here, the function is syntactically valid.  Convert types
5577   // and do semantic checks.
5578   std::vector<Type*> ParamTypeList;
5579   SmallVector<AttributeSet, 8> Attrs;
5580 
5581   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5582     ParamTypeList.push_back(ArgList[i].Ty);
5583     Attrs.push_back(ArgList[i].Attrs);
5584   }
5585 
5586   AttributeList PAL =
5587       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5588                          AttributeSet::get(Context, RetAttrs), Attrs);
5589 
5590   if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy())
5591     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5592 
5593   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5594   PointerType *PFT = PointerType::get(FT, AddrSpace);
5595 
5596   Fn = nullptr;
5597   GlobalValue *FwdFn = nullptr;
5598   if (!FunctionName.empty()) {
5599     // If this was a definition of a forward reference, remove the definition
5600     // from the forward reference table and fill in the forward ref.
5601     auto FRVI = ForwardRefVals.find(FunctionName);
5602     if (FRVI != ForwardRefVals.end()) {
5603       FwdFn = FRVI->second.first;
5604       if (!FwdFn->getType()->isOpaque()) {
5605         if (!FwdFn->getType()->getPointerElementType()->isFunctionTy())
5606           return error(FRVI->second.second, "invalid forward reference to "
5607                                             "function as global value!");
5608         if (FwdFn->getType() != PFT)
5609           return error(FRVI->second.second,
5610                        "invalid forward reference to "
5611                        "function '" +
5612                            FunctionName +
5613                            "' with wrong type: "
5614                            "expected '" +
5615                            getTypeString(PFT) + "' but was '" +
5616                            getTypeString(FwdFn->getType()) + "'");
5617       }
5618       ForwardRefVals.erase(FRVI);
5619     } else if ((Fn = M->getFunction(FunctionName))) {
5620       // Reject redefinitions.
5621       return error(NameLoc,
5622                    "invalid redefinition of function '" + FunctionName + "'");
5623     } else if (M->getNamedValue(FunctionName)) {
5624       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5625     }
5626 
5627   } else {
5628     // If this is a definition of a forward referenced function, make sure the
5629     // types agree.
5630     auto I = ForwardRefValIDs.find(NumberedVals.size());
5631     if (I != ForwardRefValIDs.end()) {
5632       FwdFn = cast<Function>(I->second.first);
5633       if (!FwdFn->getType()->isOpaque() && FwdFn->getType() != PFT)
5634         return error(NameLoc, "type of definition and forward reference of '@" +
5635                                   Twine(NumberedVals.size()) +
5636                                   "' disagree: "
5637                                   "expected '" +
5638                                   getTypeString(PFT) + "' but was '" +
5639                                   getTypeString(FwdFn->getType()) + "'");
5640       ForwardRefValIDs.erase(I);
5641     }
5642   }
5643 
5644   Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5645                         FunctionName, M);
5646 
5647   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5648 
5649   if (FunctionName.empty())
5650     NumberedVals.push_back(Fn);
5651 
5652   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5653   maybeSetDSOLocal(DSOLocal, *Fn);
5654   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5655   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5656   Fn->setCallingConv(CC);
5657   Fn->setAttributes(PAL);
5658   Fn->setUnnamedAddr(UnnamedAddr);
5659   Fn->setAlignment(MaybeAlign(Alignment));
5660   Fn->setSection(Section);
5661   Fn->setPartition(Partition);
5662   Fn->setComdat(C);
5663   Fn->setPersonalityFn(PersonalityFn);
5664   if (!GC.empty()) Fn->setGC(GC);
5665   Fn->setPrefixData(Prefix);
5666   Fn->setPrologueData(Prologue);
5667   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5668 
5669   // Add all of the arguments we parsed to the function.
5670   Function::arg_iterator ArgIt = Fn->arg_begin();
5671   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5672     // If the argument has a name, insert it into the argument symbol table.
5673     if (ArgList[i].Name.empty()) continue;
5674 
5675     // Set the name, if it conflicted, it will be auto-renamed.
5676     ArgIt->setName(ArgList[i].Name);
5677 
5678     if (ArgIt->getName() != ArgList[i].Name)
5679       return error(ArgList[i].Loc,
5680                    "redefinition of argument '%" + ArgList[i].Name + "'");
5681   }
5682 
5683   if (FwdFn) {
5684     FwdFn->replaceAllUsesWith(Fn);
5685     FwdFn->eraseFromParent();
5686   }
5687 
5688   if (IsDefine)
5689     return false;
5690 
5691   // Check the declaration has no block address forward references.
5692   ValID ID;
5693   if (FunctionName.empty()) {
5694     ID.Kind = ValID::t_GlobalID;
5695     ID.UIntVal = NumberedVals.size() - 1;
5696   } else {
5697     ID.Kind = ValID::t_GlobalName;
5698     ID.StrVal = FunctionName;
5699   }
5700   auto Blocks = ForwardRefBlockAddresses.find(ID);
5701   if (Blocks != ForwardRefBlockAddresses.end())
5702     return error(Blocks->first.Loc,
5703                  "cannot take blockaddress inside a declaration");
5704   return false;
5705 }
5706 
5707 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5708   ValID ID;
5709   if (FunctionNumber == -1) {
5710     ID.Kind = ValID::t_GlobalName;
5711     ID.StrVal = std::string(F.getName());
5712   } else {
5713     ID.Kind = ValID::t_GlobalID;
5714     ID.UIntVal = FunctionNumber;
5715   }
5716 
5717   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5718   if (Blocks == P.ForwardRefBlockAddresses.end())
5719     return false;
5720 
5721   for (const auto &I : Blocks->second) {
5722     const ValID &BBID = I.first;
5723     GlobalValue *GV = I.second;
5724 
5725     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5726            "Expected local id or name");
5727     BasicBlock *BB;
5728     if (BBID.Kind == ValID::t_LocalName)
5729       BB = getBB(BBID.StrVal, BBID.Loc);
5730     else
5731       BB = getBB(BBID.UIntVal, BBID.Loc);
5732     if (!BB)
5733       return P.error(BBID.Loc, "referenced value is not a basic block");
5734 
5735     Value *ResolvedVal = BlockAddress::get(&F, BB);
5736     ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
5737                                            ResolvedVal);
5738     if (!ResolvedVal)
5739       return true;
5740     GV->replaceAllUsesWith(ResolvedVal);
5741     GV->eraseFromParent();
5742   }
5743 
5744   P.ForwardRefBlockAddresses.erase(Blocks);
5745   return false;
5746 }
5747 
5748 /// parseFunctionBody
5749 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5750 bool LLParser::parseFunctionBody(Function &Fn) {
5751   if (Lex.getKind() != lltok::lbrace)
5752     return tokError("expected '{' in function body");
5753   Lex.Lex();  // eat the {.
5754 
5755   int FunctionNumber = -1;
5756   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5757 
5758   PerFunctionState PFS(*this, Fn, FunctionNumber);
5759 
5760   // Resolve block addresses and allow basic blocks to be forward-declared
5761   // within this function.
5762   if (PFS.resolveForwardRefBlockAddresses())
5763     return true;
5764   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5765 
5766   // We need at least one basic block.
5767   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5768     return tokError("function body requires at least one basic block");
5769 
5770   while (Lex.getKind() != lltok::rbrace &&
5771          Lex.getKind() != lltok::kw_uselistorder)
5772     if (parseBasicBlock(PFS))
5773       return true;
5774 
5775   while (Lex.getKind() != lltok::rbrace)
5776     if (parseUseListOrder(&PFS))
5777       return true;
5778 
5779   // Eat the }.
5780   Lex.Lex();
5781 
5782   // Verify function is ok.
5783   return PFS.finishFunction();
5784 }
5785 
5786 /// parseBasicBlock
5787 ///   ::= (LabelStr|LabelID)? Instruction*
5788 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
5789   // If this basic block starts out with a name, remember it.
5790   std::string Name;
5791   int NameID = -1;
5792   LocTy NameLoc = Lex.getLoc();
5793   if (Lex.getKind() == lltok::LabelStr) {
5794     Name = Lex.getStrVal();
5795     Lex.Lex();
5796   } else if (Lex.getKind() == lltok::LabelID) {
5797     NameID = Lex.getUIntVal();
5798     Lex.Lex();
5799   }
5800 
5801   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
5802   if (!BB)
5803     return true;
5804 
5805   std::string NameStr;
5806 
5807   // parse the instructions in this block until we get a terminator.
5808   Instruction *Inst;
5809   do {
5810     // This instruction may have three possibilities for a name: a) none
5811     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5812     LocTy NameLoc = Lex.getLoc();
5813     int NameID = -1;
5814     NameStr = "";
5815 
5816     if (Lex.getKind() == lltok::LocalVarID) {
5817       NameID = Lex.getUIntVal();
5818       Lex.Lex();
5819       if (parseToken(lltok::equal, "expected '=' after instruction id"))
5820         return true;
5821     } else if (Lex.getKind() == lltok::LocalVar) {
5822       NameStr = Lex.getStrVal();
5823       Lex.Lex();
5824       if (parseToken(lltok::equal, "expected '=' after instruction name"))
5825         return true;
5826     }
5827 
5828     switch (parseInstruction(Inst, BB, PFS)) {
5829     default:
5830       llvm_unreachable("Unknown parseInstruction result!");
5831     case InstError: return true;
5832     case InstNormal:
5833       BB->getInstList().push_back(Inst);
5834 
5835       // With a normal result, we check to see if the instruction is followed by
5836       // a comma and metadata.
5837       if (EatIfPresent(lltok::comma))
5838         if (parseInstructionMetadata(*Inst))
5839           return true;
5840       break;
5841     case InstExtraComma:
5842       BB->getInstList().push_back(Inst);
5843 
5844       // If the instruction parser ate an extra comma at the end of it, it
5845       // *must* be followed by metadata.
5846       if (parseInstructionMetadata(*Inst))
5847         return true;
5848       break;
5849     }
5850 
5851     // Set the name on the instruction.
5852     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
5853       return true;
5854   } while (!Inst->isTerminator());
5855 
5856   return false;
5857 }
5858 
5859 //===----------------------------------------------------------------------===//
5860 // Instruction Parsing.
5861 //===----------------------------------------------------------------------===//
5862 
5863 /// parseInstruction - parse one of the many different instructions.
5864 ///
5865 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
5866                                PerFunctionState &PFS) {
5867   lltok::Kind Token = Lex.getKind();
5868   if (Token == lltok::Eof)
5869     return tokError("found end of file when expecting more instructions");
5870   LocTy Loc = Lex.getLoc();
5871   unsigned KeywordVal = Lex.getUIntVal();
5872   Lex.Lex();  // Eat the keyword.
5873 
5874   switch (Token) {
5875   default:
5876     return error(Loc, "expected instruction opcode");
5877   // Terminator Instructions.
5878   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5879   case lltok::kw_ret:
5880     return parseRet(Inst, BB, PFS);
5881   case lltok::kw_br:
5882     return parseBr(Inst, PFS);
5883   case lltok::kw_switch:
5884     return parseSwitch(Inst, PFS);
5885   case lltok::kw_indirectbr:
5886     return parseIndirectBr(Inst, PFS);
5887   case lltok::kw_invoke:
5888     return parseInvoke(Inst, PFS);
5889   case lltok::kw_resume:
5890     return parseResume(Inst, PFS);
5891   case lltok::kw_cleanupret:
5892     return parseCleanupRet(Inst, PFS);
5893   case lltok::kw_catchret:
5894     return parseCatchRet(Inst, PFS);
5895   case lltok::kw_catchswitch:
5896     return parseCatchSwitch(Inst, PFS);
5897   case lltok::kw_catchpad:
5898     return parseCatchPad(Inst, PFS);
5899   case lltok::kw_cleanuppad:
5900     return parseCleanupPad(Inst, PFS);
5901   case lltok::kw_callbr:
5902     return parseCallBr(Inst, PFS);
5903   // Unary Operators.
5904   case lltok::kw_fneg: {
5905     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5906     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
5907     if (Res != 0)
5908       return Res;
5909     if (FMF.any())
5910       Inst->setFastMathFlags(FMF);
5911     return false;
5912   }
5913   // Binary Operators.
5914   case lltok::kw_add:
5915   case lltok::kw_sub:
5916   case lltok::kw_mul:
5917   case lltok::kw_shl: {
5918     bool NUW = EatIfPresent(lltok::kw_nuw);
5919     bool NSW = EatIfPresent(lltok::kw_nsw);
5920     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5921 
5922     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
5923       return true;
5924 
5925     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5926     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5927     return false;
5928   }
5929   case lltok::kw_fadd:
5930   case lltok::kw_fsub:
5931   case lltok::kw_fmul:
5932   case lltok::kw_fdiv:
5933   case lltok::kw_frem: {
5934     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5935     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
5936     if (Res != 0)
5937       return Res;
5938     if (FMF.any())
5939       Inst->setFastMathFlags(FMF);
5940     return 0;
5941   }
5942 
5943   case lltok::kw_sdiv:
5944   case lltok::kw_udiv:
5945   case lltok::kw_lshr:
5946   case lltok::kw_ashr: {
5947     bool Exact = EatIfPresent(lltok::kw_exact);
5948 
5949     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
5950       return true;
5951     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5952     return false;
5953   }
5954 
5955   case lltok::kw_urem:
5956   case lltok::kw_srem:
5957     return parseArithmetic(Inst, PFS, KeywordVal,
5958                            /*IsFP*/ false);
5959   case lltok::kw_and:
5960   case lltok::kw_or:
5961   case lltok::kw_xor:
5962     return parseLogical(Inst, PFS, KeywordVal);
5963   case lltok::kw_icmp:
5964     return parseCompare(Inst, PFS, KeywordVal);
5965   case lltok::kw_fcmp: {
5966     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5967     int Res = parseCompare(Inst, PFS, KeywordVal);
5968     if (Res != 0)
5969       return Res;
5970     if (FMF.any())
5971       Inst->setFastMathFlags(FMF);
5972     return 0;
5973   }
5974 
5975   // Casts.
5976   case lltok::kw_trunc:
5977   case lltok::kw_zext:
5978   case lltok::kw_sext:
5979   case lltok::kw_fptrunc:
5980   case lltok::kw_fpext:
5981   case lltok::kw_bitcast:
5982   case lltok::kw_addrspacecast:
5983   case lltok::kw_uitofp:
5984   case lltok::kw_sitofp:
5985   case lltok::kw_fptoui:
5986   case lltok::kw_fptosi:
5987   case lltok::kw_inttoptr:
5988   case lltok::kw_ptrtoint:
5989     return parseCast(Inst, PFS, KeywordVal);
5990   // Other.
5991   case lltok::kw_select: {
5992     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5993     int Res = parseSelect(Inst, PFS);
5994     if (Res != 0)
5995       return Res;
5996     if (FMF.any()) {
5997       if (!isa<FPMathOperator>(Inst))
5998         return error(Loc, "fast-math-flags specified for select without "
5999                           "floating-point scalar or vector return type");
6000       Inst->setFastMathFlags(FMF);
6001     }
6002     return 0;
6003   }
6004   case lltok::kw_va_arg:
6005     return parseVAArg(Inst, PFS);
6006   case lltok::kw_extractelement:
6007     return parseExtractElement(Inst, PFS);
6008   case lltok::kw_insertelement:
6009     return parseInsertElement(Inst, PFS);
6010   case lltok::kw_shufflevector:
6011     return parseShuffleVector(Inst, PFS);
6012   case lltok::kw_phi: {
6013     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6014     int Res = parsePHI(Inst, PFS);
6015     if (Res != 0)
6016       return Res;
6017     if (FMF.any()) {
6018       if (!isa<FPMathOperator>(Inst))
6019         return error(Loc, "fast-math-flags specified for phi without "
6020                           "floating-point scalar or vector return type");
6021       Inst->setFastMathFlags(FMF);
6022     }
6023     return 0;
6024   }
6025   case lltok::kw_landingpad:
6026     return parseLandingPad(Inst, PFS);
6027   case lltok::kw_freeze:
6028     return parseFreeze(Inst, PFS);
6029   // Call.
6030   case lltok::kw_call:
6031     return parseCall(Inst, PFS, CallInst::TCK_None);
6032   case lltok::kw_tail:
6033     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6034   case lltok::kw_musttail:
6035     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6036   case lltok::kw_notail:
6037     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6038   // Memory.
6039   case lltok::kw_alloca:
6040     return parseAlloc(Inst, PFS);
6041   case lltok::kw_load:
6042     return parseLoad(Inst, PFS);
6043   case lltok::kw_store:
6044     return parseStore(Inst, PFS);
6045   case lltok::kw_cmpxchg:
6046     return parseCmpXchg(Inst, PFS);
6047   case lltok::kw_atomicrmw:
6048     return parseAtomicRMW(Inst, PFS);
6049   case lltok::kw_fence:
6050     return parseFence(Inst, PFS);
6051   case lltok::kw_getelementptr:
6052     return parseGetElementPtr(Inst, PFS);
6053   case lltok::kw_extractvalue:
6054     return parseExtractValue(Inst, PFS);
6055   case lltok::kw_insertvalue:
6056     return parseInsertValue(Inst, PFS);
6057   }
6058 }
6059 
6060 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6061 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6062   if (Opc == Instruction::FCmp) {
6063     switch (Lex.getKind()) {
6064     default:
6065       return tokError("expected fcmp predicate (e.g. 'oeq')");
6066     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6067     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6068     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6069     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6070     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6071     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6072     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6073     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6074     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6075     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6076     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6077     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6078     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6079     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6080     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6081     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6082     }
6083   } else {
6084     switch (Lex.getKind()) {
6085     default:
6086       return tokError("expected icmp predicate (e.g. 'eq')");
6087     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6088     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6089     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6090     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6091     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6092     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6093     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6094     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6095     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6096     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6097     }
6098   }
6099   Lex.Lex();
6100   return false;
6101 }
6102 
6103 //===----------------------------------------------------------------------===//
6104 // Terminator Instructions.
6105 //===----------------------------------------------------------------------===//
6106 
6107 /// parseRet - parse a return instruction.
6108 ///   ::= 'ret' void (',' !dbg, !1)*
6109 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6110 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6111                         PerFunctionState &PFS) {
6112   SMLoc TypeLoc = Lex.getLoc();
6113   Type *Ty = nullptr;
6114   if (parseType(Ty, true /*void allowed*/))
6115     return true;
6116 
6117   Type *ResType = PFS.getFunction().getReturnType();
6118 
6119   if (Ty->isVoidTy()) {
6120     if (!ResType->isVoidTy())
6121       return error(TypeLoc, "value doesn't match function result type '" +
6122                                 getTypeString(ResType) + "'");
6123 
6124     Inst = ReturnInst::Create(Context);
6125     return false;
6126   }
6127 
6128   Value *RV;
6129   if (parseValue(Ty, RV, PFS))
6130     return true;
6131 
6132   if (ResType != RV->getType())
6133     return error(TypeLoc, "value doesn't match function result type '" +
6134                               getTypeString(ResType) + "'");
6135 
6136   Inst = ReturnInst::Create(Context, RV);
6137   return false;
6138 }
6139 
6140 /// parseBr
6141 ///   ::= 'br' TypeAndValue
6142 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6143 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6144   LocTy Loc, Loc2;
6145   Value *Op0;
6146   BasicBlock *Op1, *Op2;
6147   if (parseTypeAndValue(Op0, Loc, PFS))
6148     return true;
6149 
6150   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6151     Inst = BranchInst::Create(BB);
6152     return false;
6153   }
6154 
6155   if (Op0->getType() != Type::getInt1Ty(Context))
6156     return error(Loc, "branch condition must have 'i1' type");
6157 
6158   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6159       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6160       parseToken(lltok::comma, "expected ',' after true destination") ||
6161       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6162     return true;
6163 
6164   Inst = BranchInst::Create(Op1, Op2, Op0);
6165   return false;
6166 }
6167 
6168 /// parseSwitch
6169 ///  Instruction
6170 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6171 ///  JumpTable
6172 ///    ::= (TypeAndValue ',' TypeAndValue)*
6173 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6174   LocTy CondLoc, BBLoc;
6175   Value *Cond;
6176   BasicBlock *DefaultBB;
6177   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6178       parseToken(lltok::comma, "expected ',' after switch condition") ||
6179       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6180       parseToken(lltok::lsquare, "expected '[' with switch table"))
6181     return true;
6182 
6183   if (!Cond->getType()->isIntegerTy())
6184     return error(CondLoc, "switch condition must have integer type");
6185 
6186   // parse the jump table pairs.
6187   SmallPtrSet<Value*, 32> SeenCases;
6188   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6189   while (Lex.getKind() != lltok::rsquare) {
6190     Value *Constant;
6191     BasicBlock *DestBB;
6192 
6193     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6194         parseToken(lltok::comma, "expected ',' after case value") ||
6195         parseTypeAndBasicBlock(DestBB, PFS))
6196       return true;
6197 
6198     if (!SeenCases.insert(Constant).second)
6199       return error(CondLoc, "duplicate case value in switch");
6200     if (!isa<ConstantInt>(Constant))
6201       return error(CondLoc, "case value is not a constant integer");
6202 
6203     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6204   }
6205 
6206   Lex.Lex();  // Eat the ']'.
6207 
6208   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6209   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6210     SI->addCase(Table[i].first, Table[i].second);
6211   Inst = SI;
6212   return false;
6213 }
6214 
6215 /// parseIndirectBr
6216 ///  Instruction
6217 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6218 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6219   LocTy AddrLoc;
6220   Value *Address;
6221   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6222       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6223       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6224     return true;
6225 
6226   if (!Address->getType()->isPointerTy())
6227     return error(AddrLoc, "indirectbr address must have pointer type");
6228 
6229   // parse the destination list.
6230   SmallVector<BasicBlock*, 16> DestList;
6231 
6232   if (Lex.getKind() != lltok::rsquare) {
6233     BasicBlock *DestBB;
6234     if (parseTypeAndBasicBlock(DestBB, PFS))
6235       return true;
6236     DestList.push_back(DestBB);
6237 
6238     while (EatIfPresent(lltok::comma)) {
6239       if (parseTypeAndBasicBlock(DestBB, PFS))
6240         return true;
6241       DestList.push_back(DestBB);
6242     }
6243   }
6244 
6245   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6246     return true;
6247 
6248   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6249   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6250     IBI->addDestination(DestList[i]);
6251   Inst = IBI;
6252   return false;
6253 }
6254 
6255 /// parseInvoke
6256 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6257 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6258 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6259   LocTy CallLoc = Lex.getLoc();
6260   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
6261   std::vector<unsigned> FwdRefAttrGrps;
6262   LocTy NoBuiltinLoc;
6263   unsigned CC;
6264   unsigned InvokeAddrSpace;
6265   Type *RetType = nullptr;
6266   LocTy RetTypeLoc;
6267   ValID CalleeID;
6268   SmallVector<ParamInfo, 16> ArgList;
6269   SmallVector<OperandBundleDef, 2> BundleList;
6270 
6271   BasicBlock *NormalBB, *UnwindBB;
6272   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6273       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6274       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6275       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6276       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6277                                  NoBuiltinLoc) ||
6278       parseOptionalOperandBundles(BundleList, PFS) ||
6279       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6280       parseTypeAndBasicBlock(NormalBB, PFS) ||
6281       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6282       parseTypeAndBasicBlock(UnwindBB, PFS))
6283     return true;
6284 
6285   // If RetType is a non-function pointer type, then this is the short syntax
6286   // for the call, which means that RetType is just the return type.  Infer the
6287   // rest of the function argument types from the arguments that are present.
6288   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6289   if (!Ty) {
6290     // Pull out the types of all of the arguments...
6291     std::vector<Type*> ParamTypes;
6292     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6293       ParamTypes.push_back(ArgList[i].V->getType());
6294 
6295     if (!FunctionType::isValidReturnType(RetType))
6296       return error(RetTypeLoc, "Invalid result type for LLVM function");
6297 
6298     Ty = FunctionType::get(RetType, ParamTypes, false);
6299   }
6300 
6301   CalleeID.FTy = Ty;
6302 
6303   // Look up the callee.
6304   Value *Callee;
6305   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6306                           Callee, &PFS))
6307     return true;
6308 
6309   // Set up the Attribute for the function.
6310   SmallVector<Value *, 8> Args;
6311   SmallVector<AttributeSet, 8> ArgAttrs;
6312 
6313   // Loop through FunctionType's arguments and ensure they are specified
6314   // correctly.  Also, gather any parameter attributes.
6315   FunctionType::param_iterator I = Ty->param_begin();
6316   FunctionType::param_iterator E = Ty->param_end();
6317   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6318     Type *ExpectedTy = nullptr;
6319     if (I != E) {
6320       ExpectedTy = *I++;
6321     } else if (!Ty->isVarArg()) {
6322       return error(ArgList[i].Loc, "too many arguments specified");
6323     }
6324 
6325     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6326       return error(ArgList[i].Loc, "argument is not of expected type '" +
6327                                        getTypeString(ExpectedTy) + "'");
6328     Args.push_back(ArgList[i].V);
6329     ArgAttrs.push_back(ArgList[i].Attrs);
6330   }
6331 
6332   if (I != E)
6333     return error(CallLoc, "not enough parameters specified for call");
6334 
6335   if (FnAttrs.hasAlignmentAttr())
6336     return error(CallLoc, "invoke instructions may not have an alignment");
6337 
6338   // Finish off the Attribute and check them
6339   AttributeList PAL =
6340       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6341                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6342 
6343   InvokeInst *II =
6344       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6345   II->setCallingConv(CC);
6346   II->setAttributes(PAL);
6347   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6348   Inst = II;
6349   return false;
6350 }
6351 
6352 /// parseResume
6353 ///   ::= 'resume' TypeAndValue
6354 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6355   Value *Exn; LocTy ExnLoc;
6356   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6357     return true;
6358 
6359   ResumeInst *RI = ResumeInst::Create(Exn);
6360   Inst = RI;
6361   return false;
6362 }
6363 
6364 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6365                                   PerFunctionState &PFS) {
6366   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6367     return true;
6368 
6369   while (Lex.getKind() != lltok::rsquare) {
6370     // If this isn't the first argument, we need a comma.
6371     if (!Args.empty() &&
6372         parseToken(lltok::comma, "expected ',' in argument list"))
6373       return true;
6374 
6375     // parse the argument.
6376     LocTy ArgLoc;
6377     Type *ArgTy = nullptr;
6378     if (parseType(ArgTy, ArgLoc))
6379       return true;
6380 
6381     Value *V;
6382     if (ArgTy->isMetadataTy()) {
6383       if (parseMetadataAsValue(V, PFS))
6384         return true;
6385     } else {
6386       if (parseValue(ArgTy, V, PFS))
6387         return true;
6388     }
6389     Args.push_back(V);
6390   }
6391 
6392   Lex.Lex();  // Lex the ']'.
6393   return false;
6394 }
6395 
6396 /// parseCleanupRet
6397 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6398 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6399   Value *CleanupPad = nullptr;
6400 
6401   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6402     return true;
6403 
6404   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6405     return true;
6406 
6407   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6408     return true;
6409 
6410   BasicBlock *UnwindBB = nullptr;
6411   if (Lex.getKind() == lltok::kw_to) {
6412     Lex.Lex();
6413     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6414       return true;
6415   } else {
6416     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6417       return true;
6418     }
6419   }
6420 
6421   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6422   return false;
6423 }
6424 
6425 /// parseCatchRet
6426 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6427 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6428   Value *CatchPad = nullptr;
6429 
6430   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6431     return true;
6432 
6433   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6434     return true;
6435 
6436   BasicBlock *BB;
6437   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6438       parseTypeAndBasicBlock(BB, PFS))
6439     return true;
6440 
6441   Inst = CatchReturnInst::Create(CatchPad, BB);
6442   return false;
6443 }
6444 
6445 /// parseCatchSwitch
6446 ///   ::= 'catchswitch' within Parent
6447 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6448   Value *ParentPad;
6449 
6450   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6451     return true;
6452 
6453   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6454       Lex.getKind() != lltok::LocalVarID)
6455     return tokError("expected scope value for catchswitch");
6456 
6457   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6458     return true;
6459 
6460   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6461     return true;
6462 
6463   SmallVector<BasicBlock *, 32> Table;
6464   do {
6465     BasicBlock *DestBB;
6466     if (parseTypeAndBasicBlock(DestBB, PFS))
6467       return true;
6468     Table.push_back(DestBB);
6469   } while (EatIfPresent(lltok::comma));
6470 
6471   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6472     return true;
6473 
6474   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6475     return true;
6476 
6477   BasicBlock *UnwindBB = nullptr;
6478   if (EatIfPresent(lltok::kw_to)) {
6479     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6480       return true;
6481   } else {
6482     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6483       return true;
6484   }
6485 
6486   auto *CatchSwitch =
6487       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6488   for (BasicBlock *DestBB : Table)
6489     CatchSwitch->addHandler(DestBB);
6490   Inst = CatchSwitch;
6491   return false;
6492 }
6493 
6494 /// parseCatchPad
6495 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6496 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6497   Value *CatchSwitch = nullptr;
6498 
6499   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6500     return true;
6501 
6502   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6503     return tokError("expected scope value for catchpad");
6504 
6505   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6506     return true;
6507 
6508   SmallVector<Value *, 8> Args;
6509   if (parseExceptionArgs(Args, PFS))
6510     return true;
6511 
6512   Inst = CatchPadInst::Create(CatchSwitch, Args);
6513   return false;
6514 }
6515 
6516 /// parseCleanupPad
6517 ///   ::= 'cleanuppad' within Parent ParamList
6518 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6519   Value *ParentPad = nullptr;
6520 
6521   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6522     return true;
6523 
6524   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6525       Lex.getKind() != lltok::LocalVarID)
6526     return tokError("expected scope value for cleanuppad");
6527 
6528   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6529     return true;
6530 
6531   SmallVector<Value *, 8> Args;
6532   if (parseExceptionArgs(Args, PFS))
6533     return true;
6534 
6535   Inst = CleanupPadInst::Create(ParentPad, Args);
6536   return false;
6537 }
6538 
6539 //===----------------------------------------------------------------------===//
6540 // Unary Operators.
6541 //===----------------------------------------------------------------------===//
6542 
6543 /// parseUnaryOp
6544 ///  ::= UnaryOp TypeAndValue ',' Value
6545 ///
6546 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6547 /// operand is allowed.
6548 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6549                             unsigned Opc, bool IsFP) {
6550   LocTy Loc; Value *LHS;
6551   if (parseTypeAndValue(LHS, Loc, PFS))
6552     return true;
6553 
6554   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6555                     : LHS->getType()->isIntOrIntVectorTy();
6556 
6557   if (!Valid)
6558     return error(Loc, "invalid operand type for instruction");
6559 
6560   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6561   return false;
6562 }
6563 
6564 /// parseCallBr
6565 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6566 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6567 ///       '[' LabelList ']'
6568 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6569   LocTy CallLoc = Lex.getLoc();
6570   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
6571   std::vector<unsigned> FwdRefAttrGrps;
6572   LocTy NoBuiltinLoc;
6573   unsigned CC;
6574   Type *RetType = nullptr;
6575   LocTy RetTypeLoc;
6576   ValID CalleeID;
6577   SmallVector<ParamInfo, 16> ArgList;
6578   SmallVector<OperandBundleDef, 2> BundleList;
6579 
6580   BasicBlock *DefaultDest;
6581   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6582       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6583       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6584       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6585                                  NoBuiltinLoc) ||
6586       parseOptionalOperandBundles(BundleList, PFS) ||
6587       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6588       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6589       parseToken(lltok::lsquare, "expected '[' in callbr"))
6590     return true;
6591 
6592   // parse the destination list.
6593   SmallVector<BasicBlock *, 16> IndirectDests;
6594 
6595   if (Lex.getKind() != lltok::rsquare) {
6596     BasicBlock *DestBB;
6597     if (parseTypeAndBasicBlock(DestBB, PFS))
6598       return true;
6599     IndirectDests.push_back(DestBB);
6600 
6601     while (EatIfPresent(lltok::comma)) {
6602       if (parseTypeAndBasicBlock(DestBB, PFS))
6603         return true;
6604       IndirectDests.push_back(DestBB);
6605     }
6606   }
6607 
6608   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6609     return true;
6610 
6611   // If RetType is a non-function pointer type, then this is the short syntax
6612   // for the call, which means that RetType is just the return type.  Infer the
6613   // rest of the function argument types from the arguments that are present.
6614   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6615   if (!Ty) {
6616     // Pull out the types of all of the arguments...
6617     std::vector<Type *> ParamTypes;
6618     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6619       ParamTypes.push_back(ArgList[i].V->getType());
6620 
6621     if (!FunctionType::isValidReturnType(RetType))
6622       return error(RetTypeLoc, "Invalid result type for LLVM function");
6623 
6624     Ty = FunctionType::get(RetType, ParamTypes, false);
6625   }
6626 
6627   CalleeID.FTy = Ty;
6628 
6629   // Look up the callee.
6630   Value *Callee;
6631   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
6632     return true;
6633 
6634   // Set up the Attribute for the function.
6635   SmallVector<Value *, 8> Args;
6636   SmallVector<AttributeSet, 8> ArgAttrs;
6637 
6638   // Loop through FunctionType's arguments and ensure they are specified
6639   // correctly.  Also, gather any parameter attributes.
6640   FunctionType::param_iterator I = Ty->param_begin();
6641   FunctionType::param_iterator E = Ty->param_end();
6642   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6643     Type *ExpectedTy = nullptr;
6644     if (I != E) {
6645       ExpectedTy = *I++;
6646     } else if (!Ty->isVarArg()) {
6647       return error(ArgList[i].Loc, "too many arguments specified");
6648     }
6649 
6650     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6651       return error(ArgList[i].Loc, "argument is not of expected type '" +
6652                                        getTypeString(ExpectedTy) + "'");
6653     Args.push_back(ArgList[i].V);
6654     ArgAttrs.push_back(ArgList[i].Attrs);
6655   }
6656 
6657   if (I != E)
6658     return error(CallLoc, "not enough parameters specified for call");
6659 
6660   if (FnAttrs.hasAlignmentAttr())
6661     return error(CallLoc, "callbr instructions may not have an alignment");
6662 
6663   // Finish off the Attribute and check them
6664   AttributeList PAL =
6665       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6666                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6667 
6668   CallBrInst *CBI =
6669       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6670                          BundleList);
6671   CBI->setCallingConv(CC);
6672   CBI->setAttributes(PAL);
6673   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6674   Inst = CBI;
6675   return false;
6676 }
6677 
6678 //===----------------------------------------------------------------------===//
6679 // Binary Operators.
6680 //===----------------------------------------------------------------------===//
6681 
6682 /// parseArithmetic
6683 ///  ::= ArithmeticOps TypeAndValue ',' Value
6684 ///
6685 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6686 /// operand is allowed.
6687 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6688                                unsigned Opc, bool IsFP) {
6689   LocTy Loc; Value *LHS, *RHS;
6690   if (parseTypeAndValue(LHS, Loc, PFS) ||
6691       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6692       parseValue(LHS->getType(), RHS, PFS))
6693     return true;
6694 
6695   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6696                     : LHS->getType()->isIntOrIntVectorTy();
6697 
6698   if (!Valid)
6699     return error(Loc, "invalid operand type for instruction");
6700 
6701   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6702   return false;
6703 }
6704 
6705 /// parseLogical
6706 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6707 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6708                             unsigned Opc) {
6709   LocTy Loc; Value *LHS, *RHS;
6710   if (parseTypeAndValue(LHS, Loc, PFS) ||
6711       parseToken(lltok::comma, "expected ',' in logical operation") ||
6712       parseValue(LHS->getType(), RHS, PFS))
6713     return true;
6714 
6715   if (!LHS->getType()->isIntOrIntVectorTy())
6716     return error(Loc,
6717                  "instruction requires integer or integer vector operands");
6718 
6719   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6720   return false;
6721 }
6722 
6723 /// parseCompare
6724 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6725 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6726 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
6727                             unsigned Opc) {
6728   // parse the integer/fp comparison predicate.
6729   LocTy Loc;
6730   unsigned Pred;
6731   Value *LHS, *RHS;
6732   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
6733       parseToken(lltok::comma, "expected ',' after compare value") ||
6734       parseValue(LHS->getType(), RHS, PFS))
6735     return true;
6736 
6737   if (Opc == Instruction::FCmp) {
6738     if (!LHS->getType()->isFPOrFPVectorTy())
6739       return error(Loc, "fcmp requires floating point operands");
6740     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6741   } else {
6742     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6743     if (!LHS->getType()->isIntOrIntVectorTy() &&
6744         !LHS->getType()->isPtrOrPtrVectorTy())
6745       return error(Loc, "icmp requires integer operands");
6746     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6747   }
6748   return false;
6749 }
6750 
6751 //===----------------------------------------------------------------------===//
6752 // Other Instructions.
6753 //===----------------------------------------------------------------------===//
6754 
6755 /// parseCast
6756 ///   ::= CastOpc TypeAndValue 'to' Type
6757 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
6758                          unsigned Opc) {
6759   LocTy Loc;
6760   Value *Op;
6761   Type *DestTy = nullptr;
6762   if (parseTypeAndValue(Op, Loc, PFS) ||
6763       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
6764       parseType(DestTy))
6765     return true;
6766 
6767   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6768     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6769     return error(Loc, "invalid cast opcode for cast from '" +
6770                           getTypeString(Op->getType()) + "' to '" +
6771                           getTypeString(DestTy) + "'");
6772   }
6773   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6774   return false;
6775 }
6776 
6777 /// parseSelect
6778 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6779 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6780   LocTy Loc;
6781   Value *Op0, *Op1, *Op2;
6782   if (parseTypeAndValue(Op0, Loc, PFS) ||
6783       parseToken(lltok::comma, "expected ',' after select condition") ||
6784       parseTypeAndValue(Op1, PFS) ||
6785       parseToken(lltok::comma, "expected ',' after select value") ||
6786       parseTypeAndValue(Op2, PFS))
6787     return true;
6788 
6789   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6790     return error(Loc, Reason);
6791 
6792   Inst = SelectInst::Create(Op0, Op1, Op2);
6793   return false;
6794 }
6795 
6796 /// parseVAArg
6797 ///   ::= 'va_arg' TypeAndValue ',' Type
6798 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
6799   Value *Op;
6800   Type *EltTy = nullptr;
6801   LocTy TypeLoc;
6802   if (parseTypeAndValue(Op, PFS) ||
6803       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
6804       parseType(EltTy, TypeLoc))
6805     return true;
6806 
6807   if (!EltTy->isFirstClassType())
6808     return error(TypeLoc, "va_arg requires operand with first class type");
6809 
6810   Inst = new VAArgInst(Op, EltTy);
6811   return false;
6812 }
6813 
6814 /// parseExtractElement
6815 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6816 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6817   LocTy Loc;
6818   Value *Op0, *Op1;
6819   if (parseTypeAndValue(Op0, Loc, PFS) ||
6820       parseToken(lltok::comma, "expected ',' after extract value") ||
6821       parseTypeAndValue(Op1, PFS))
6822     return true;
6823 
6824   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6825     return error(Loc, "invalid extractelement operands");
6826 
6827   Inst = ExtractElementInst::Create(Op0, Op1);
6828   return false;
6829 }
6830 
6831 /// parseInsertElement
6832 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6833 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6834   LocTy Loc;
6835   Value *Op0, *Op1, *Op2;
6836   if (parseTypeAndValue(Op0, Loc, PFS) ||
6837       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6838       parseTypeAndValue(Op1, PFS) ||
6839       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6840       parseTypeAndValue(Op2, PFS))
6841     return true;
6842 
6843   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6844     return error(Loc, "invalid insertelement operands");
6845 
6846   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6847   return false;
6848 }
6849 
6850 /// parseShuffleVector
6851 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6852 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6853   LocTy Loc;
6854   Value *Op0, *Op1, *Op2;
6855   if (parseTypeAndValue(Op0, Loc, PFS) ||
6856       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
6857       parseTypeAndValue(Op1, PFS) ||
6858       parseToken(lltok::comma, "expected ',' after shuffle value") ||
6859       parseTypeAndValue(Op2, PFS))
6860     return true;
6861 
6862   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6863     return error(Loc, "invalid shufflevector operands");
6864 
6865   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6866   return false;
6867 }
6868 
6869 /// parsePHI
6870 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6871 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6872   Type *Ty = nullptr;  LocTy TypeLoc;
6873   Value *Op0, *Op1;
6874 
6875   if (parseType(Ty, TypeLoc) ||
6876       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6877       parseValue(Ty, Op0, PFS) ||
6878       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6879       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6880       parseToken(lltok::rsquare, "expected ']' in phi value list"))
6881     return true;
6882 
6883   bool AteExtraComma = false;
6884   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6885 
6886   while (true) {
6887     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6888 
6889     if (!EatIfPresent(lltok::comma))
6890       break;
6891 
6892     if (Lex.getKind() == lltok::MetadataVar) {
6893       AteExtraComma = true;
6894       break;
6895     }
6896 
6897     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6898         parseValue(Ty, Op0, PFS) ||
6899         parseToken(lltok::comma, "expected ',' after insertelement value") ||
6900         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6901         parseToken(lltok::rsquare, "expected ']' in phi value list"))
6902       return true;
6903   }
6904 
6905   if (!Ty->isFirstClassType())
6906     return error(TypeLoc, "phi node must have first class type");
6907 
6908   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6909   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6910     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6911   Inst = PN;
6912   return AteExtraComma ? InstExtraComma : InstNormal;
6913 }
6914 
6915 /// parseLandingPad
6916 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6917 /// Clause
6918 ///   ::= 'catch' TypeAndValue
6919 ///   ::= 'filter'
6920 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6921 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6922   Type *Ty = nullptr; LocTy TyLoc;
6923 
6924   if (parseType(Ty, TyLoc))
6925     return true;
6926 
6927   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6928   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6929 
6930   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6931     LandingPadInst::ClauseType CT;
6932     if (EatIfPresent(lltok::kw_catch))
6933       CT = LandingPadInst::Catch;
6934     else if (EatIfPresent(lltok::kw_filter))
6935       CT = LandingPadInst::Filter;
6936     else
6937       return tokError("expected 'catch' or 'filter' clause type");
6938 
6939     Value *V;
6940     LocTy VLoc;
6941     if (parseTypeAndValue(V, VLoc, PFS))
6942       return true;
6943 
6944     // A 'catch' type expects a non-array constant. A filter clause expects an
6945     // array constant.
6946     if (CT == LandingPadInst::Catch) {
6947       if (isa<ArrayType>(V->getType()))
6948         error(VLoc, "'catch' clause has an invalid type");
6949     } else {
6950       if (!isa<ArrayType>(V->getType()))
6951         error(VLoc, "'filter' clause has an invalid type");
6952     }
6953 
6954     Constant *CV = dyn_cast<Constant>(V);
6955     if (!CV)
6956       return error(VLoc, "clause argument must be a constant");
6957     LP->addClause(CV);
6958   }
6959 
6960   Inst = LP.release();
6961   return false;
6962 }
6963 
6964 /// parseFreeze
6965 ///   ::= 'freeze' Type Value
6966 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
6967   LocTy Loc;
6968   Value *Op;
6969   if (parseTypeAndValue(Op, Loc, PFS))
6970     return true;
6971 
6972   Inst = new FreezeInst(Op);
6973   return false;
6974 }
6975 
6976 /// parseCall
6977 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6978 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6979 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6980 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6981 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6982 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6983 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6984 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6985 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
6986                          CallInst::TailCallKind TCK) {
6987   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
6988   std::vector<unsigned> FwdRefAttrGrps;
6989   LocTy BuiltinLoc;
6990   unsigned CallAddrSpace;
6991   unsigned CC;
6992   Type *RetType = nullptr;
6993   LocTy RetTypeLoc;
6994   ValID CalleeID;
6995   SmallVector<ParamInfo, 16> ArgList;
6996   SmallVector<OperandBundleDef, 2> BundleList;
6997   LocTy CallLoc = Lex.getLoc();
6998 
6999   if (TCK != CallInst::TCK_None &&
7000       parseToken(lltok::kw_call,
7001                  "expected 'tail call', 'musttail call', or 'notail call'"))
7002     return true;
7003 
7004   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7005 
7006   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7007       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7008       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7009       parseValID(CalleeID, &PFS) ||
7010       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7011                          PFS.getFunction().isVarArg()) ||
7012       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7013       parseOptionalOperandBundles(BundleList, PFS))
7014     return true;
7015 
7016   // If RetType is a non-function pointer type, then this is the short syntax
7017   // for the call, which means that RetType is just the return type.  Infer the
7018   // rest of the function argument types from the arguments that are present.
7019   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7020   if (!Ty) {
7021     // Pull out the types of all of the arguments...
7022     std::vector<Type*> ParamTypes;
7023     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7024       ParamTypes.push_back(ArgList[i].V->getType());
7025 
7026     if (!FunctionType::isValidReturnType(RetType))
7027       return error(RetTypeLoc, "Invalid result type for LLVM function");
7028 
7029     Ty = FunctionType::get(RetType, ParamTypes, false);
7030   }
7031 
7032   CalleeID.FTy = Ty;
7033 
7034   // Look up the callee.
7035   Value *Callee;
7036   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7037                           &PFS))
7038     return true;
7039 
7040   // Set up the Attribute for the function.
7041   SmallVector<AttributeSet, 8> Attrs;
7042 
7043   SmallVector<Value*, 8> Args;
7044 
7045   // Loop through FunctionType's arguments and ensure they are specified
7046   // correctly.  Also, gather any parameter attributes.
7047   FunctionType::param_iterator I = Ty->param_begin();
7048   FunctionType::param_iterator E = Ty->param_end();
7049   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7050     Type *ExpectedTy = nullptr;
7051     if (I != E) {
7052       ExpectedTy = *I++;
7053     } else if (!Ty->isVarArg()) {
7054       return error(ArgList[i].Loc, "too many arguments specified");
7055     }
7056 
7057     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7058       return error(ArgList[i].Loc, "argument is not of expected type '" +
7059                                        getTypeString(ExpectedTy) + "'");
7060     Args.push_back(ArgList[i].V);
7061     Attrs.push_back(ArgList[i].Attrs);
7062   }
7063 
7064   if (I != E)
7065     return error(CallLoc, "not enough parameters specified for call");
7066 
7067   if (FnAttrs.hasAlignmentAttr())
7068     return error(CallLoc, "call instructions may not have an alignment");
7069 
7070   // Finish off the Attribute and check them
7071   AttributeList PAL =
7072       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7073                          AttributeSet::get(Context, RetAttrs), Attrs);
7074 
7075   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7076   CI->setTailCallKind(TCK);
7077   CI->setCallingConv(CC);
7078   if (FMF.any()) {
7079     if (!isa<FPMathOperator>(CI)) {
7080       CI->deleteValue();
7081       return error(CallLoc, "fast-math-flags specified for call without "
7082                             "floating-point scalar or vector return type");
7083     }
7084     CI->setFastMathFlags(FMF);
7085   }
7086   CI->setAttributes(PAL);
7087   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7088   Inst = CI;
7089   return false;
7090 }
7091 
7092 //===----------------------------------------------------------------------===//
7093 // Memory Instructions.
7094 //===----------------------------------------------------------------------===//
7095 
7096 /// parseAlloc
7097 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7098 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7099 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7100   Value *Size = nullptr;
7101   LocTy SizeLoc, TyLoc, ASLoc;
7102   MaybeAlign Alignment;
7103   unsigned AddrSpace = 0;
7104   Type *Ty = nullptr;
7105 
7106   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7107   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7108 
7109   if (parseType(Ty, TyLoc))
7110     return true;
7111 
7112   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7113     return error(TyLoc, "invalid type for alloca");
7114 
7115   bool AteExtraComma = false;
7116   if (EatIfPresent(lltok::comma)) {
7117     if (Lex.getKind() == lltok::kw_align) {
7118       if (parseOptionalAlignment(Alignment))
7119         return true;
7120       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7121         return true;
7122     } else if (Lex.getKind() == lltok::kw_addrspace) {
7123       ASLoc = Lex.getLoc();
7124       if (parseOptionalAddrSpace(AddrSpace))
7125         return true;
7126     } else if (Lex.getKind() == lltok::MetadataVar) {
7127       AteExtraComma = true;
7128     } else {
7129       if (parseTypeAndValue(Size, SizeLoc, PFS))
7130         return true;
7131       if (EatIfPresent(lltok::comma)) {
7132         if (Lex.getKind() == lltok::kw_align) {
7133           if (parseOptionalAlignment(Alignment))
7134             return true;
7135           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7136             return true;
7137         } else if (Lex.getKind() == lltok::kw_addrspace) {
7138           ASLoc = Lex.getLoc();
7139           if (parseOptionalAddrSpace(AddrSpace))
7140             return true;
7141         } else if (Lex.getKind() == lltok::MetadataVar) {
7142           AteExtraComma = true;
7143         }
7144       }
7145     }
7146   }
7147 
7148   if (Size && !Size->getType()->isIntegerTy())
7149     return error(SizeLoc, "element count must have integer type");
7150 
7151   SmallPtrSet<Type *, 4> Visited;
7152   if (!Alignment && !Ty->isSized(&Visited))
7153     return error(TyLoc, "Cannot allocate unsized type");
7154   if (!Alignment)
7155     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7156   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7157   AI->setUsedWithInAlloca(IsInAlloca);
7158   AI->setSwiftError(IsSwiftError);
7159   Inst = AI;
7160   return AteExtraComma ? InstExtraComma : InstNormal;
7161 }
7162 
7163 /// parseLoad
7164 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7165 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7166 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7167 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7168   Value *Val; LocTy Loc;
7169   MaybeAlign Alignment;
7170   bool AteExtraComma = false;
7171   bool isAtomic = false;
7172   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7173   SyncScope::ID SSID = SyncScope::System;
7174 
7175   if (Lex.getKind() == lltok::kw_atomic) {
7176     isAtomic = true;
7177     Lex.Lex();
7178   }
7179 
7180   bool isVolatile = false;
7181   if (Lex.getKind() == lltok::kw_volatile) {
7182     isVolatile = true;
7183     Lex.Lex();
7184   }
7185 
7186   Type *Ty;
7187   LocTy ExplicitTypeLoc = Lex.getLoc();
7188   if (parseType(Ty) ||
7189       parseToken(lltok::comma, "expected comma after load's type") ||
7190       parseTypeAndValue(Val, Loc, PFS) ||
7191       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7192       parseOptionalCommaAlign(Alignment, AteExtraComma))
7193     return true;
7194 
7195   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7196     return error(Loc, "load operand must be a pointer to a first class type");
7197   if (isAtomic && !Alignment)
7198     return error(Loc, "atomic load must have explicit non-zero alignment");
7199   if (Ordering == AtomicOrdering::Release ||
7200       Ordering == AtomicOrdering::AcquireRelease)
7201     return error(Loc, "atomic load cannot use Release ordering");
7202 
7203   if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
7204     return error(
7205         ExplicitTypeLoc,
7206         typeComparisonErrorMessage(
7207             "explicit pointee type doesn't match operand's pointee type", Ty,
7208             cast<PointerType>(Val->getType())->getElementType()));
7209   }
7210   SmallPtrSet<Type *, 4> Visited;
7211   if (!Alignment && !Ty->isSized(&Visited))
7212     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7213   if (!Alignment)
7214     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7215   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7216   return AteExtraComma ? InstExtraComma : InstNormal;
7217 }
7218 
7219 /// parseStore
7220 
7221 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7222 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7223 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7224 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7225   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7226   MaybeAlign Alignment;
7227   bool AteExtraComma = false;
7228   bool isAtomic = false;
7229   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7230   SyncScope::ID SSID = SyncScope::System;
7231 
7232   if (Lex.getKind() == lltok::kw_atomic) {
7233     isAtomic = true;
7234     Lex.Lex();
7235   }
7236 
7237   bool isVolatile = false;
7238   if (Lex.getKind() == lltok::kw_volatile) {
7239     isVolatile = true;
7240     Lex.Lex();
7241   }
7242 
7243   if (parseTypeAndValue(Val, Loc, PFS) ||
7244       parseToken(lltok::comma, "expected ',' after store operand") ||
7245       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7246       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7247       parseOptionalCommaAlign(Alignment, AteExtraComma))
7248     return true;
7249 
7250   if (!Ptr->getType()->isPointerTy())
7251     return error(PtrLoc, "store operand must be a pointer");
7252   if (!Val->getType()->isFirstClassType())
7253     return error(Loc, "store operand must be a first class value");
7254   if (!cast<PointerType>(Ptr->getType())
7255            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7256     return error(Loc, "stored value and pointer type do not match");
7257   if (isAtomic && !Alignment)
7258     return error(Loc, "atomic store must have explicit non-zero alignment");
7259   if (Ordering == AtomicOrdering::Acquire ||
7260       Ordering == AtomicOrdering::AcquireRelease)
7261     return error(Loc, "atomic store cannot use Acquire ordering");
7262   SmallPtrSet<Type *, 4> Visited;
7263   if (!Alignment && !Val->getType()->isSized(&Visited))
7264     return error(Loc, "storing unsized types is not allowed");
7265   if (!Alignment)
7266     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7267 
7268   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7269   return AteExtraComma ? InstExtraComma : InstNormal;
7270 }
7271 
7272 /// parseCmpXchg
7273 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7274 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7275 ///       'Align'?
7276 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7277   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7278   bool AteExtraComma = false;
7279   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7280   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7281   SyncScope::ID SSID = SyncScope::System;
7282   bool isVolatile = false;
7283   bool isWeak = false;
7284   MaybeAlign Alignment;
7285 
7286   if (EatIfPresent(lltok::kw_weak))
7287     isWeak = true;
7288 
7289   if (EatIfPresent(lltok::kw_volatile))
7290     isVolatile = true;
7291 
7292   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7293       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7294       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7295       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7296       parseTypeAndValue(New, NewLoc, PFS) ||
7297       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7298       parseOrdering(FailureOrdering) ||
7299       parseOptionalCommaAlign(Alignment, AteExtraComma))
7300     return true;
7301 
7302   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7303     return tokError("invalid cmpxchg success ordering");
7304   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7305     return tokError("invalid cmpxchg failure ordering");
7306   if (!Ptr->getType()->isPointerTy())
7307     return error(PtrLoc, "cmpxchg operand must be a pointer");
7308   if (!cast<PointerType>(Ptr->getType())
7309            ->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
7310     return error(CmpLoc, "compare value and pointer type do not match");
7311   if (!cast<PointerType>(Ptr->getType())
7312            ->isOpaqueOrPointeeTypeMatches(New->getType()))
7313     return error(NewLoc, "new value and pointer type do not match");
7314   if (Cmp->getType() != New->getType())
7315     return error(NewLoc, "compare value and new value type do not match");
7316   if (!New->getType()->isFirstClassType())
7317     return error(NewLoc, "cmpxchg operand must be a first class value");
7318 
7319   const Align DefaultAlignment(
7320       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7321           Cmp->getType()));
7322 
7323   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7324       Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
7325       FailureOrdering, SSID);
7326   CXI->setVolatile(isVolatile);
7327   CXI->setWeak(isWeak);
7328 
7329   Inst = CXI;
7330   return AteExtraComma ? InstExtraComma : InstNormal;
7331 }
7332 
7333 /// parseAtomicRMW
7334 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7335 ///       'singlethread'? AtomicOrdering
7336 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7337   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7338   bool AteExtraComma = false;
7339   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7340   SyncScope::ID SSID = SyncScope::System;
7341   bool isVolatile = false;
7342   bool IsFP = false;
7343   AtomicRMWInst::BinOp Operation;
7344   MaybeAlign Alignment;
7345 
7346   if (EatIfPresent(lltok::kw_volatile))
7347     isVolatile = true;
7348 
7349   switch (Lex.getKind()) {
7350   default:
7351     return tokError("expected binary operation in atomicrmw");
7352   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7353   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7354   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7355   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7356   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7357   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7358   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7359   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7360   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7361   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7362   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7363   case lltok::kw_fadd:
7364     Operation = AtomicRMWInst::FAdd;
7365     IsFP = true;
7366     break;
7367   case lltok::kw_fsub:
7368     Operation = AtomicRMWInst::FSub;
7369     IsFP = true;
7370     break;
7371   }
7372   Lex.Lex();  // Eat the operation.
7373 
7374   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7375       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7376       parseTypeAndValue(Val, ValLoc, PFS) ||
7377       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7378       parseOptionalCommaAlign(Alignment, AteExtraComma))
7379     return true;
7380 
7381   if (Ordering == AtomicOrdering::Unordered)
7382     return tokError("atomicrmw cannot be unordered");
7383   if (!Ptr->getType()->isPointerTy())
7384     return error(PtrLoc, "atomicrmw operand must be a pointer");
7385   if (!cast<PointerType>(Ptr->getType())
7386            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7387     return error(ValLoc, "atomicrmw value and pointer type do not match");
7388 
7389   if (Operation == AtomicRMWInst::Xchg) {
7390     if (!Val->getType()->isIntegerTy() &&
7391         !Val->getType()->isFloatingPointTy()) {
7392       return error(ValLoc,
7393                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7394                        " operand must be an integer or floating point type");
7395     }
7396   } else if (IsFP) {
7397     if (!Val->getType()->isFloatingPointTy()) {
7398       return error(ValLoc, "atomicrmw " +
7399                                AtomicRMWInst::getOperationName(Operation) +
7400                                " operand must be a floating point type");
7401     }
7402   } else {
7403     if (!Val->getType()->isIntegerTy()) {
7404       return error(ValLoc, "atomicrmw " +
7405                                AtomicRMWInst::getOperationName(Operation) +
7406                                " operand must be an integer");
7407     }
7408   }
7409 
7410   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7411   if (Size < 8 || (Size & (Size - 1)))
7412     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7413                          " integer");
7414   const Align DefaultAlignment(
7415       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7416           Val->getType()));
7417   AtomicRMWInst *RMWI =
7418       new AtomicRMWInst(Operation, Ptr, Val,
7419                         Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
7420   RMWI->setVolatile(isVolatile);
7421   Inst = RMWI;
7422   return AteExtraComma ? InstExtraComma : InstNormal;
7423 }
7424 
7425 /// parseFence
7426 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7427 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7428   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7429   SyncScope::ID SSID = SyncScope::System;
7430   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7431     return true;
7432 
7433   if (Ordering == AtomicOrdering::Unordered)
7434     return tokError("fence cannot be unordered");
7435   if (Ordering == AtomicOrdering::Monotonic)
7436     return tokError("fence cannot be monotonic");
7437 
7438   Inst = new FenceInst(Context, Ordering, SSID);
7439   return InstNormal;
7440 }
7441 
7442 /// parseGetElementPtr
7443 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7444 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7445   Value *Ptr = nullptr;
7446   Value *Val = nullptr;
7447   LocTy Loc, EltLoc;
7448 
7449   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7450 
7451   Type *Ty = nullptr;
7452   LocTy ExplicitTypeLoc = Lex.getLoc();
7453   if (parseType(Ty) ||
7454       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7455       parseTypeAndValue(Ptr, Loc, PFS))
7456     return true;
7457 
7458   Type *BaseType = Ptr->getType();
7459   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7460   if (!BasePointerType)
7461     return error(Loc, "base of getelementptr must be a pointer");
7462 
7463   if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
7464     return error(
7465         ExplicitTypeLoc,
7466         typeComparisonErrorMessage(
7467             "explicit pointee type doesn't match operand's pointee type", Ty,
7468             BasePointerType->getElementType()));
7469   }
7470 
7471   SmallVector<Value*, 16> Indices;
7472   bool AteExtraComma = false;
7473   // GEP returns a vector of pointers if at least one of parameters is a vector.
7474   // All vector parameters should have the same vector width.
7475   ElementCount GEPWidth = BaseType->isVectorTy()
7476                               ? cast<VectorType>(BaseType)->getElementCount()
7477                               : ElementCount::getFixed(0);
7478 
7479   while (EatIfPresent(lltok::comma)) {
7480     if (Lex.getKind() == lltok::MetadataVar) {
7481       AteExtraComma = true;
7482       break;
7483     }
7484     if (parseTypeAndValue(Val, EltLoc, PFS))
7485       return true;
7486     if (!Val->getType()->isIntOrIntVectorTy())
7487       return error(EltLoc, "getelementptr index must be an integer");
7488 
7489     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7490       ElementCount ValNumEl = ValVTy->getElementCount();
7491       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7492         return error(
7493             EltLoc,
7494             "getelementptr vector index has a wrong number of elements");
7495       GEPWidth = ValNumEl;
7496     }
7497     Indices.push_back(Val);
7498   }
7499 
7500   SmallPtrSet<Type*, 4> Visited;
7501   if (!Indices.empty() && !Ty->isSized(&Visited))
7502     return error(Loc, "base element of getelementptr must be sized");
7503 
7504   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7505     return error(Loc, "invalid getelementptr indices");
7506   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7507   if (InBounds)
7508     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7509   return AteExtraComma ? InstExtraComma : InstNormal;
7510 }
7511 
7512 /// parseExtractValue
7513 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7514 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7515   Value *Val; LocTy Loc;
7516   SmallVector<unsigned, 4> Indices;
7517   bool AteExtraComma;
7518   if (parseTypeAndValue(Val, Loc, PFS) ||
7519       parseIndexList(Indices, AteExtraComma))
7520     return true;
7521 
7522   if (!Val->getType()->isAggregateType())
7523     return error(Loc, "extractvalue operand must be aggregate type");
7524 
7525   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7526     return error(Loc, "invalid indices for extractvalue");
7527   Inst = ExtractValueInst::Create(Val, Indices);
7528   return AteExtraComma ? InstExtraComma : InstNormal;
7529 }
7530 
7531 /// parseInsertValue
7532 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7533 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7534   Value *Val0, *Val1; LocTy Loc0, Loc1;
7535   SmallVector<unsigned, 4> Indices;
7536   bool AteExtraComma;
7537   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7538       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7539       parseTypeAndValue(Val1, Loc1, PFS) ||
7540       parseIndexList(Indices, AteExtraComma))
7541     return true;
7542 
7543   if (!Val0->getType()->isAggregateType())
7544     return error(Loc0, "insertvalue operand must be aggregate type");
7545 
7546   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7547   if (!IndexedType)
7548     return error(Loc0, "invalid indices for insertvalue");
7549   if (IndexedType != Val1->getType())
7550     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7551                            getTypeString(Val1->getType()) + "' instead of '" +
7552                            getTypeString(IndexedType) + "'");
7553   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7554   return AteExtraComma ? InstExtraComma : InstNormal;
7555 }
7556 
7557 //===----------------------------------------------------------------------===//
7558 // Embedded metadata.
7559 //===----------------------------------------------------------------------===//
7560 
7561 /// parseMDNodeVector
7562 ///   ::= { Element (',' Element)* }
7563 /// Element
7564 ///   ::= 'null' | TypeAndValue
7565 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7566   if (parseToken(lltok::lbrace, "expected '{' here"))
7567     return true;
7568 
7569   // Check for an empty list.
7570   if (EatIfPresent(lltok::rbrace))
7571     return false;
7572 
7573   do {
7574     // Null is a special case since it is typeless.
7575     if (EatIfPresent(lltok::kw_null)) {
7576       Elts.push_back(nullptr);
7577       continue;
7578     }
7579 
7580     Metadata *MD;
7581     if (parseMetadata(MD, nullptr))
7582       return true;
7583     Elts.push_back(MD);
7584   } while (EatIfPresent(lltok::comma));
7585 
7586   return parseToken(lltok::rbrace, "expected end of metadata node");
7587 }
7588 
7589 //===----------------------------------------------------------------------===//
7590 // Use-list order directives.
7591 //===----------------------------------------------------------------------===//
7592 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7593                                 SMLoc Loc) {
7594   if (V->use_empty())
7595     return error(Loc, "value has no uses");
7596 
7597   unsigned NumUses = 0;
7598   SmallDenseMap<const Use *, unsigned, 16> Order;
7599   for (const Use &U : V->uses()) {
7600     if (++NumUses > Indexes.size())
7601       break;
7602     Order[&U] = Indexes[NumUses - 1];
7603   }
7604   if (NumUses < 2)
7605     return error(Loc, "value only has one use");
7606   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7607     return error(Loc,
7608                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7609 
7610   V->sortUseList([&](const Use &L, const Use &R) {
7611     return Order.lookup(&L) < Order.lookup(&R);
7612   });
7613   return false;
7614 }
7615 
7616 /// parseUseListOrderIndexes
7617 ///   ::= '{' uint32 (',' uint32)+ '}'
7618 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7619   SMLoc Loc = Lex.getLoc();
7620   if (parseToken(lltok::lbrace, "expected '{' here"))
7621     return true;
7622   if (Lex.getKind() == lltok::rbrace)
7623     return Lex.Error("expected non-empty list of uselistorder indexes");
7624 
7625   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7626   // indexes should be distinct numbers in the range [0, size-1], and should
7627   // not be in order.
7628   unsigned Offset = 0;
7629   unsigned Max = 0;
7630   bool IsOrdered = true;
7631   assert(Indexes.empty() && "Expected empty order vector");
7632   do {
7633     unsigned Index;
7634     if (parseUInt32(Index))
7635       return true;
7636 
7637     // Update consistency checks.
7638     Offset += Index - Indexes.size();
7639     Max = std::max(Max, Index);
7640     IsOrdered &= Index == Indexes.size();
7641 
7642     Indexes.push_back(Index);
7643   } while (EatIfPresent(lltok::comma));
7644 
7645   if (parseToken(lltok::rbrace, "expected '}' here"))
7646     return true;
7647 
7648   if (Indexes.size() < 2)
7649     return error(Loc, "expected >= 2 uselistorder indexes");
7650   if (Offset != 0 || Max >= Indexes.size())
7651     return error(Loc,
7652                  "expected distinct uselistorder indexes in range [0, size)");
7653   if (IsOrdered)
7654     return error(Loc, "expected uselistorder indexes to change the order");
7655 
7656   return false;
7657 }
7658 
7659 /// parseUseListOrder
7660 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7661 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7662   SMLoc Loc = Lex.getLoc();
7663   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7664     return true;
7665 
7666   Value *V;
7667   SmallVector<unsigned, 16> Indexes;
7668   if (parseTypeAndValue(V, PFS) ||
7669       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7670       parseUseListOrderIndexes(Indexes))
7671     return true;
7672 
7673   return sortUseListOrder(V, Indexes, Loc);
7674 }
7675 
7676 /// parseUseListOrderBB
7677 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7678 bool LLParser::parseUseListOrderBB() {
7679   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7680   SMLoc Loc = Lex.getLoc();
7681   Lex.Lex();
7682 
7683   ValID Fn, Label;
7684   SmallVector<unsigned, 16> Indexes;
7685   if (parseValID(Fn, /*PFS=*/nullptr) ||
7686       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7687       parseValID(Label, /*PFS=*/nullptr) ||
7688       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7689       parseUseListOrderIndexes(Indexes))
7690     return true;
7691 
7692   // Check the function.
7693   GlobalValue *GV;
7694   if (Fn.Kind == ValID::t_GlobalName)
7695     GV = M->getNamedValue(Fn.StrVal);
7696   else if (Fn.Kind == ValID::t_GlobalID)
7697     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7698   else
7699     return error(Fn.Loc, "expected function name in uselistorder_bb");
7700   if (!GV)
7701     return error(Fn.Loc,
7702                  "invalid function forward reference in uselistorder_bb");
7703   auto *F = dyn_cast<Function>(GV);
7704   if (!F)
7705     return error(Fn.Loc, "expected function name in uselistorder_bb");
7706   if (F->isDeclaration())
7707     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7708 
7709   // Check the basic block.
7710   if (Label.Kind == ValID::t_LocalID)
7711     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7712   if (Label.Kind != ValID::t_LocalName)
7713     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7714   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7715   if (!V)
7716     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7717   if (!isa<BasicBlock>(V))
7718     return error(Label.Loc, "expected basic block in uselistorder_bb");
7719 
7720   return sortUseListOrder(V, Indexes, Loc);
7721 }
7722 
7723 /// ModuleEntry
7724 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7725 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7726 bool LLParser::parseModuleEntry(unsigned ID) {
7727   assert(Lex.getKind() == lltok::kw_module);
7728   Lex.Lex();
7729 
7730   std::string Path;
7731   if (parseToken(lltok::colon, "expected ':' here") ||
7732       parseToken(lltok::lparen, "expected '(' here") ||
7733       parseToken(lltok::kw_path, "expected 'path' here") ||
7734       parseToken(lltok::colon, "expected ':' here") ||
7735       parseStringConstant(Path) ||
7736       parseToken(lltok::comma, "expected ',' here") ||
7737       parseToken(lltok::kw_hash, "expected 'hash' here") ||
7738       parseToken(lltok::colon, "expected ':' here") ||
7739       parseToken(lltok::lparen, "expected '(' here"))
7740     return true;
7741 
7742   ModuleHash Hash;
7743   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
7744       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
7745       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
7746       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
7747       parseUInt32(Hash[4]))
7748     return true;
7749 
7750   if (parseToken(lltok::rparen, "expected ')' here") ||
7751       parseToken(lltok::rparen, "expected ')' here"))
7752     return true;
7753 
7754   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7755   ModuleIdMap[ID] = ModuleEntry->first();
7756 
7757   return false;
7758 }
7759 
7760 /// TypeIdEntry
7761 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7762 bool LLParser::parseTypeIdEntry(unsigned ID) {
7763   assert(Lex.getKind() == lltok::kw_typeid);
7764   Lex.Lex();
7765 
7766   std::string Name;
7767   if (parseToken(lltok::colon, "expected ':' here") ||
7768       parseToken(lltok::lparen, "expected '(' here") ||
7769       parseToken(lltok::kw_name, "expected 'name' here") ||
7770       parseToken(lltok::colon, "expected ':' here") ||
7771       parseStringConstant(Name))
7772     return true;
7773 
7774   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7775   if (parseToken(lltok::comma, "expected ',' here") ||
7776       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
7777     return true;
7778 
7779   // Check if this ID was forward referenced, and if so, update the
7780   // corresponding GUIDs.
7781   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7782   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7783     for (auto TIDRef : FwdRefTIDs->second) {
7784       assert(!*TIDRef.first &&
7785              "Forward referenced type id GUID expected to be 0");
7786       *TIDRef.first = GlobalValue::getGUID(Name);
7787     }
7788     ForwardRefTypeIds.erase(FwdRefTIDs);
7789   }
7790 
7791   return false;
7792 }
7793 
7794 /// TypeIdSummary
7795 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7796 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
7797   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
7798       parseToken(lltok::colon, "expected ':' here") ||
7799       parseToken(lltok::lparen, "expected '(' here") ||
7800       parseTypeTestResolution(TIS.TTRes))
7801     return true;
7802 
7803   if (EatIfPresent(lltok::comma)) {
7804     // Expect optional wpdResolutions field
7805     if (parseOptionalWpdResolutions(TIS.WPDRes))
7806       return true;
7807   }
7808 
7809   if (parseToken(lltok::rparen, "expected ')' here"))
7810     return true;
7811 
7812   return false;
7813 }
7814 
7815 static ValueInfo EmptyVI =
7816     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7817 
7818 /// TypeIdCompatibleVtableEntry
7819 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7820 ///   TypeIdCompatibleVtableInfo
7821 ///   ')'
7822 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
7823   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7824   Lex.Lex();
7825 
7826   std::string Name;
7827   if (parseToken(lltok::colon, "expected ':' here") ||
7828       parseToken(lltok::lparen, "expected '(' here") ||
7829       parseToken(lltok::kw_name, "expected 'name' here") ||
7830       parseToken(lltok::colon, "expected ':' here") ||
7831       parseStringConstant(Name))
7832     return true;
7833 
7834   TypeIdCompatibleVtableInfo &TI =
7835       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7836   if (parseToken(lltok::comma, "expected ',' here") ||
7837       parseToken(lltok::kw_summary, "expected 'summary' here") ||
7838       parseToken(lltok::colon, "expected ':' here") ||
7839       parseToken(lltok::lparen, "expected '(' here"))
7840     return true;
7841 
7842   IdToIndexMapType IdToIndexMap;
7843   // parse each call edge
7844   do {
7845     uint64_t Offset;
7846     if (parseToken(lltok::lparen, "expected '(' here") ||
7847         parseToken(lltok::kw_offset, "expected 'offset' here") ||
7848         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7849         parseToken(lltok::comma, "expected ',' here"))
7850       return true;
7851 
7852     LocTy Loc = Lex.getLoc();
7853     unsigned GVId;
7854     ValueInfo VI;
7855     if (parseGVReference(VI, GVId))
7856       return true;
7857 
7858     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7859     // forward reference. We will save the location of the ValueInfo needing an
7860     // update, but can only do so once the std::vector is finalized.
7861     if (VI == EmptyVI)
7862       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7863     TI.push_back({Offset, VI});
7864 
7865     if (parseToken(lltok::rparen, "expected ')' in call"))
7866       return true;
7867   } while (EatIfPresent(lltok::comma));
7868 
7869   // Now that the TI vector is finalized, it is safe to save the locations
7870   // of any forward GV references that need updating later.
7871   for (auto I : IdToIndexMap) {
7872     auto &Infos = ForwardRefValueInfos[I.first];
7873     for (auto P : I.second) {
7874       assert(TI[P.first].VTableVI == EmptyVI &&
7875              "Forward referenced ValueInfo expected to be empty");
7876       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
7877     }
7878   }
7879 
7880   if (parseToken(lltok::rparen, "expected ')' here") ||
7881       parseToken(lltok::rparen, "expected ')' here"))
7882     return true;
7883 
7884   // Check if this ID was forward referenced, and if so, update the
7885   // corresponding GUIDs.
7886   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7887   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7888     for (auto TIDRef : FwdRefTIDs->second) {
7889       assert(!*TIDRef.first &&
7890              "Forward referenced type id GUID expected to be 0");
7891       *TIDRef.first = GlobalValue::getGUID(Name);
7892     }
7893     ForwardRefTypeIds.erase(FwdRefTIDs);
7894   }
7895 
7896   return false;
7897 }
7898 
7899 /// TypeTestResolution
7900 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7901 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7902 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7903 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7904 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7905 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
7906   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7907       parseToken(lltok::colon, "expected ':' here") ||
7908       parseToken(lltok::lparen, "expected '(' here") ||
7909       parseToken(lltok::kw_kind, "expected 'kind' here") ||
7910       parseToken(lltok::colon, "expected ':' here"))
7911     return true;
7912 
7913   switch (Lex.getKind()) {
7914   case lltok::kw_unknown:
7915     TTRes.TheKind = TypeTestResolution::Unknown;
7916     break;
7917   case lltok::kw_unsat:
7918     TTRes.TheKind = TypeTestResolution::Unsat;
7919     break;
7920   case lltok::kw_byteArray:
7921     TTRes.TheKind = TypeTestResolution::ByteArray;
7922     break;
7923   case lltok::kw_inline:
7924     TTRes.TheKind = TypeTestResolution::Inline;
7925     break;
7926   case lltok::kw_single:
7927     TTRes.TheKind = TypeTestResolution::Single;
7928     break;
7929   case lltok::kw_allOnes:
7930     TTRes.TheKind = TypeTestResolution::AllOnes;
7931     break;
7932   default:
7933     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7934   }
7935   Lex.Lex();
7936 
7937   if (parseToken(lltok::comma, "expected ',' here") ||
7938       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7939       parseToken(lltok::colon, "expected ':' here") ||
7940       parseUInt32(TTRes.SizeM1BitWidth))
7941     return true;
7942 
7943   // parse optional fields
7944   while (EatIfPresent(lltok::comma)) {
7945     switch (Lex.getKind()) {
7946     case lltok::kw_alignLog2:
7947       Lex.Lex();
7948       if (parseToken(lltok::colon, "expected ':'") ||
7949           parseUInt64(TTRes.AlignLog2))
7950         return true;
7951       break;
7952     case lltok::kw_sizeM1:
7953       Lex.Lex();
7954       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
7955         return true;
7956       break;
7957     case lltok::kw_bitMask: {
7958       unsigned Val;
7959       Lex.Lex();
7960       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
7961         return true;
7962       assert(Val <= 0xff);
7963       TTRes.BitMask = (uint8_t)Val;
7964       break;
7965     }
7966     case lltok::kw_inlineBits:
7967       Lex.Lex();
7968       if (parseToken(lltok::colon, "expected ':'") ||
7969           parseUInt64(TTRes.InlineBits))
7970         return true;
7971       break;
7972     default:
7973       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
7974     }
7975   }
7976 
7977   if (parseToken(lltok::rparen, "expected ')' here"))
7978     return true;
7979 
7980   return false;
7981 }
7982 
7983 /// OptionalWpdResolutions
7984 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7985 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7986 bool LLParser::parseOptionalWpdResolutions(
7987     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7988   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7989       parseToken(lltok::colon, "expected ':' here") ||
7990       parseToken(lltok::lparen, "expected '(' here"))
7991     return true;
7992 
7993   do {
7994     uint64_t Offset;
7995     WholeProgramDevirtResolution WPDRes;
7996     if (parseToken(lltok::lparen, "expected '(' here") ||
7997         parseToken(lltok::kw_offset, "expected 'offset' here") ||
7998         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7999         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8000         parseToken(lltok::rparen, "expected ')' here"))
8001       return true;
8002     WPDResMap[Offset] = WPDRes;
8003   } while (EatIfPresent(lltok::comma));
8004 
8005   if (parseToken(lltok::rparen, "expected ')' here"))
8006     return true;
8007 
8008   return false;
8009 }
8010 
8011 /// WpdRes
8012 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8013 ///         [',' OptionalResByArg]? ')'
8014 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8015 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8016 ///         [',' OptionalResByArg]? ')'
8017 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8018 ///         [',' OptionalResByArg]? ')'
8019 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8020   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8021       parseToken(lltok::colon, "expected ':' here") ||
8022       parseToken(lltok::lparen, "expected '(' here") ||
8023       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8024       parseToken(lltok::colon, "expected ':' here"))
8025     return true;
8026 
8027   switch (Lex.getKind()) {
8028   case lltok::kw_indir:
8029     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8030     break;
8031   case lltok::kw_singleImpl:
8032     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8033     break;
8034   case lltok::kw_branchFunnel:
8035     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8036     break;
8037   default:
8038     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8039   }
8040   Lex.Lex();
8041 
8042   // parse optional fields
8043   while (EatIfPresent(lltok::comma)) {
8044     switch (Lex.getKind()) {
8045     case lltok::kw_singleImplName:
8046       Lex.Lex();
8047       if (parseToken(lltok::colon, "expected ':' here") ||
8048           parseStringConstant(WPDRes.SingleImplName))
8049         return true;
8050       break;
8051     case lltok::kw_resByArg:
8052       if (parseOptionalResByArg(WPDRes.ResByArg))
8053         return true;
8054       break;
8055     default:
8056       return error(Lex.getLoc(),
8057                    "expected optional WholeProgramDevirtResolution field");
8058     }
8059   }
8060 
8061   if (parseToken(lltok::rparen, "expected ')' here"))
8062     return true;
8063 
8064   return false;
8065 }
8066 
8067 /// OptionalResByArg
8068 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8069 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8070 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8071 ///                  'virtualConstProp' )
8072 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8073 ///                [',' 'bit' ':' UInt32]? ')'
8074 bool LLParser::parseOptionalResByArg(
8075     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8076         &ResByArg) {
8077   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8078       parseToken(lltok::colon, "expected ':' here") ||
8079       parseToken(lltok::lparen, "expected '(' here"))
8080     return true;
8081 
8082   do {
8083     std::vector<uint64_t> Args;
8084     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8085         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8086         parseToken(lltok::colon, "expected ':' here") ||
8087         parseToken(lltok::lparen, "expected '(' here") ||
8088         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8089         parseToken(lltok::colon, "expected ':' here"))
8090       return true;
8091 
8092     WholeProgramDevirtResolution::ByArg ByArg;
8093     switch (Lex.getKind()) {
8094     case lltok::kw_indir:
8095       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8096       break;
8097     case lltok::kw_uniformRetVal:
8098       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8099       break;
8100     case lltok::kw_uniqueRetVal:
8101       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8102       break;
8103     case lltok::kw_virtualConstProp:
8104       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8105       break;
8106     default:
8107       return error(Lex.getLoc(),
8108                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8109     }
8110     Lex.Lex();
8111 
8112     // parse optional fields
8113     while (EatIfPresent(lltok::comma)) {
8114       switch (Lex.getKind()) {
8115       case lltok::kw_info:
8116         Lex.Lex();
8117         if (parseToken(lltok::colon, "expected ':' here") ||
8118             parseUInt64(ByArg.Info))
8119           return true;
8120         break;
8121       case lltok::kw_byte:
8122         Lex.Lex();
8123         if (parseToken(lltok::colon, "expected ':' here") ||
8124             parseUInt32(ByArg.Byte))
8125           return true;
8126         break;
8127       case lltok::kw_bit:
8128         Lex.Lex();
8129         if (parseToken(lltok::colon, "expected ':' here") ||
8130             parseUInt32(ByArg.Bit))
8131           return true;
8132         break;
8133       default:
8134         return error(Lex.getLoc(),
8135                      "expected optional whole program devirt field");
8136       }
8137     }
8138 
8139     if (parseToken(lltok::rparen, "expected ')' here"))
8140       return true;
8141 
8142     ResByArg[Args] = ByArg;
8143   } while (EatIfPresent(lltok::comma));
8144 
8145   if (parseToken(lltok::rparen, "expected ')' here"))
8146     return true;
8147 
8148   return false;
8149 }
8150 
8151 /// OptionalResByArg
8152 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8153 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8154   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8155       parseToken(lltok::colon, "expected ':' here") ||
8156       parseToken(lltok::lparen, "expected '(' here"))
8157     return true;
8158 
8159   do {
8160     uint64_t Val;
8161     if (parseUInt64(Val))
8162       return true;
8163     Args.push_back(Val);
8164   } while (EatIfPresent(lltok::comma));
8165 
8166   if (parseToken(lltok::rparen, "expected ')' here"))
8167     return true;
8168 
8169   return false;
8170 }
8171 
8172 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8173 
8174 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8175   bool ReadOnly = Fwd->isReadOnly();
8176   bool WriteOnly = Fwd->isWriteOnly();
8177   assert(!(ReadOnly && WriteOnly));
8178   *Fwd = Resolved;
8179   if (ReadOnly)
8180     Fwd->setReadOnly();
8181   if (WriteOnly)
8182     Fwd->setWriteOnly();
8183 }
8184 
8185 /// Stores the given Name/GUID and associated summary into the Index.
8186 /// Also updates any forward references to the associated entry ID.
8187 void LLParser::addGlobalValueToIndex(
8188     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8189     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8190   // First create the ValueInfo utilizing the Name or GUID.
8191   ValueInfo VI;
8192   if (GUID != 0) {
8193     assert(Name.empty());
8194     VI = Index->getOrInsertValueInfo(GUID);
8195   } else {
8196     assert(!Name.empty());
8197     if (M) {
8198       auto *GV = M->getNamedValue(Name);
8199       assert(GV);
8200       VI = Index->getOrInsertValueInfo(GV);
8201     } else {
8202       assert(
8203           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8204           "Need a source_filename to compute GUID for local");
8205       GUID = GlobalValue::getGUID(
8206           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8207       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8208     }
8209   }
8210 
8211   // Resolve forward references from calls/refs
8212   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8213   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8214     for (auto VIRef : FwdRefVIs->second) {
8215       assert(VIRef.first->getRef() == FwdVIRef &&
8216              "Forward referenced ValueInfo expected to be empty");
8217       resolveFwdRef(VIRef.first, VI);
8218     }
8219     ForwardRefValueInfos.erase(FwdRefVIs);
8220   }
8221 
8222   // Resolve forward references from aliases
8223   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8224   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8225     for (auto AliaseeRef : FwdRefAliasees->second) {
8226       assert(!AliaseeRef.first->hasAliasee() &&
8227              "Forward referencing alias already has aliasee");
8228       assert(Summary && "Aliasee must be a definition");
8229       AliaseeRef.first->setAliasee(VI, Summary.get());
8230     }
8231     ForwardRefAliasees.erase(FwdRefAliasees);
8232   }
8233 
8234   // Add the summary if one was provided.
8235   if (Summary)
8236     Index->addGlobalValueSummary(VI, std::move(Summary));
8237 
8238   // Save the associated ValueInfo for use in later references by ID.
8239   if (ID == NumberedValueInfos.size())
8240     NumberedValueInfos.push_back(VI);
8241   else {
8242     // Handle non-continuous numbers (to make test simplification easier).
8243     if (ID > NumberedValueInfos.size())
8244       NumberedValueInfos.resize(ID + 1);
8245     NumberedValueInfos[ID] = VI;
8246   }
8247 }
8248 
8249 /// parseSummaryIndexFlags
8250 ///   ::= 'flags' ':' UInt64
8251 bool LLParser::parseSummaryIndexFlags() {
8252   assert(Lex.getKind() == lltok::kw_flags);
8253   Lex.Lex();
8254 
8255   if (parseToken(lltok::colon, "expected ':' here"))
8256     return true;
8257   uint64_t Flags;
8258   if (parseUInt64(Flags))
8259     return true;
8260   if (Index)
8261     Index->setFlags(Flags);
8262   return false;
8263 }
8264 
8265 /// parseBlockCount
8266 ///   ::= 'blockcount' ':' UInt64
8267 bool LLParser::parseBlockCount() {
8268   assert(Lex.getKind() == lltok::kw_blockcount);
8269   Lex.Lex();
8270 
8271   if (parseToken(lltok::colon, "expected ':' here"))
8272     return true;
8273   uint64_t BlockCount;
8274   if (parseUInt64(BlockCount))
8275     return true;
8276   if (Index)
8277     Index->setBlockCount(BlockCount);
8278   return false;
8279 }
8280 
8281 /// parseGVEntry
8282 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8283 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8284 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8285 bool LLParser::parseGVEntry(unsigned ID) {
8286   assert(Lex.getKind() == lltok::kw_gv);
8287   Lex.Lex();
8288 
8289   if (parseToken(lltok::colon, "expected ':' here") ||
8290       parseToken(lltok::lparen, "expected '(' here"))
8291     return true;
8292 
8293   std::string Name;
8294   GlobalValue::GUID GUID = 0;
8295   switch (Lex.getKind()) {
8296   case lltok::kw_name:
8297     Lex.Lex();
8298     if (parseToken(lltok::colon, "expected ':' here") ||
8299         parseStringConstant(Name))
8300       return true;
8301     // Can't create GUID/ValueInfo until we have the linkage.
8302     break;
8303   case lltok::kw_guid:
8304     Lex.Lex();
8305     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8306       return true;
8307     break;
8308   default:
8309     return error(Lex.getLoc(), "expected name or guid tag");
8310   }
8311 
8312   if (!EatIfPresent(lltok::comma)) {
8313     // No summaries. Wrap up.
8314     if (parseToken(lltok::rparen, "expected ')' here"))
8315       return true;
8316     // This was created for a call to an external or indirect target.
8317     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8318     // created for indirect calls with VP. A Name with no GUID came from
8319     // an external definition. We pass ExternalLinkage since that is only
8320     // used when the GUID must be computed from Name, and in that case
8321     // the symbol must have external linkage.
8322     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8323                           nullptr);
8324     return false;
8325   }
8326 
8327   // Have a list of summaries
8328   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8329       parseToken(lltok::colon, "expected ':' here") ||
8330       parseToken(lltok::lparen, "expected '(' here"))
8331     return true;
8332   do {
8333     switch (Lex.getKind()) {
8334     case lltok::kw_function:
8335       if (parseFunctionSummary(Name, GUID, ID))
8336         return true;
8337       break;
8338     case lltok::kw_variable:
8339       if (parseVariableSummary(Name, GUID, ID))
8340         return true;
8341       break;
8342     case lltok::kw_alias:
8343       if (parseAliasSummary(Name, GUID, ID))
8344         return true;
8345       break;
8346     default:
8347       return error(Lex.getLoc(), "expected summary type");
8348     }
8349   } while (EatIfPresent(lltok::comma));
8350 
8351   if (parseToken(lltok::rparen, "expected ')' here") ||
8352       parseToken(lltok::rparen, "expected ')' here"))
8353     return true;
8354 
8355   return false;
8356 }
8357 
8358 /// FunctionSummary
8359 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8360 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8361 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8362 ///         [',' OptionalRefs]? ')'
8363 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8364                                     unsigned ID) {
8365   assert(Lex.getKind() == lltok::kw_function);
8366   Lex.Lex();
8367 
8368   StringRef ModulePath;
8369   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8370       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8371       /*NotEligibleToImport=*/false,
8372       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8373   unsigned InstCount;
8374   std::vector<FunctionSummary::EdgeTy> Calls;
8375   FunctionSummary::TypeIdInfo TypeIdInfo;
8376   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8377   std::vector<ValueInfo> Refs;
8378   // Default is all-zeros (conservative values).
8379   FunctionSummary::FFlags FFlags = {};
8380   if (parseToken(lltok::colon, "expected ':' here") ||
8381       parseToken(lltok::lparen, "expected '(' here") ||
8382       parseModuleReference(ModulePath) ||
8383       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8384       parseToken(lltok::comma, "expected ',' here") ||
8385       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8386       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8387     return true;
8388 
8389   // parse optional fields
8390   while (EatIfPresent(lltok::comma)) {
8391     switch (Lex.getKind()) {
8392     case lltok::kw_funcFlags:
8393       if (parseOptionalFFlags(FFlags))
8394         return true;
8395       break;
8396     case lltok::kw_calls:
8397       if (parseOptionalCalls(Calls))
8398         return true;
8399       break;
8400     case lltok::kw_typeIdInfo:
8401       if (parseOptionalTypeIdInfo(TypeIdInfo))
8402         return true;
8403       break;
8404     case lltok::kw_refs:
8405       if (parseOptionalRefs(Refs))
8406         return true;
8407       break;
8408     case lltok::kw_params:
8409       if (parseOptionalParamAccesses(ParamAccesses))
8410         return true;
8411       break;
8412     default:
8413       return error(Lex.getLoc(), "expected optional function summary field");
8414     }
8415   }
8416 
8417   if (parseToken(lltok::rparen, "expected ')' here"))
8418     return true;
8419 
8420   auto FS = std::make_unique<FunctionSummary>(
8421       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8422       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8423       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8424       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8425       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8426       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8427       std::move(ParamAccesses));
8428 
8429   FS->setModulePath(ModulePath);
8430 
8431   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8432                         ID, std::move(FS));
8433 
8434   return false;
8435 }
8436 
8437 /// VariableSummary
8438 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8439 ///         [',' OptionalRefs]? ')'
8440 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8441                                     unsigned ID) {
8442   assert(Lex.getKind() == lltok::kw_variable);
8443   Lex.Lex();
8444 
8445   StringRef ModulePath;
8446   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8447       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8448       /*NotEligibleToImport=*/false,
8449       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8450   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8451                                         /* WriteOnly */ false,
8452                                         /* Constant */ false,
8453                                         GlobalObject::VCallVisibilityPublic);
8454   std::vector<ValueInfo> Refs;
8455   VTableFuncList VTableFuncs;
8456   if (parseToken(lltok::colon, "expected ':' here") ||
8457       parseToken(lltok::lparen, "expected '(' here") ||
8458       parseModuleReference(ModulePath) ||
8459       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8460       parseToken(lltok::comma, "expected ',' here") ||
8461       parseGVarFlags(GVarFlags))
8462     return true;
8463 
8464   // parse optional fields
8465   while (EatIfPresent(lltok::comma)) {
8466     switch (Lex.getKind()) {
8467     case lltok::kw_vTableFuncs:
8468       if (parseOptionalVTableFuncs(VTableFuncs))
8469         return true;
8470       break;
8471     case lltok::kw_refs:
8472       if (parseOptionalRefs(Refs))
8473         return true;
8474       break;
8475     default:
8476       return error(Lex.getLoc(), "expected optional variable summary field");
8477     }
8478   }
8479 
8480   if (parseToken(lltok::rparen, "expected ')' here"))
8481     return true;
8482 
8483   auto GS =
8484       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8485 
8486   GS->setModulePath(ModulePath);
8487   GS->setVTableFuncs(std::move(VTableFuncs));
8488 
8489   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8490                         ID, std::move(GS));
8491 
8492   return false;
8493 }
8494 
8495 /// AliasSummary
8496 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8497 ///         'aliasee' ':' GVReference ')'
8498 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8499                                  unsigned ID) {
8500   assert(Lex.getKind() == lltok::kw_alias);
8501   LocTy Loc = Lex.getLoc();
8502   Lex.Lex();
8503 
8504   StringRef ModulePath;
8505   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8506       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8507       /*NotEligibleToImport=*/false,
8508       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8509   if (parseToken(lltok::colon, "expected ':' here") ||
8510       parseToken(lltok::lparen, "expected '(' here") ||
8511       parseModuleReference(ModulePath) ||
8512       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8513       parseToken(lltok::comma, "expected ',' here") ||
8514       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8515       parseToken(lltok::colon, "expected ':' here"))
8516     return true;
8517 
8518   ValueInfo AliaseeVI;
8519   unsigned GVId;
8520   if (parseGVReference(AliaseeVI, GVId))
8521     return true;
8522 
8523   if (parseToken(lltok::rparen, "expected ')' here"))
8524     return true;
8525 
8526   auto AS = std::make_unique<AliasSummary>(GVFlags);
8527 
8528   AS->setModulePath(ModulePath);
8529 
8530   // Record forward reference if the aliasee is not parsed yet.
8531   if (AliaseeVI.getRef() == FwdVIRef) {
8532     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8533   } else {
8534     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8535     assert(Summary && "Aliasee must be a definition");
8536     AS->setAliasee(AliaseeVI, Summary);
8537   }
8538 
8539   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8540                         ID, std::move(AS));
8541 
8542   return false;
8543 }
8544 
8545 /// Flag
8546 ///   ::= [0|1]
8547 bool LLParser::parseFlag(unsigned &Val) {
8548   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8549     return tokError("expected integer");
8550   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8551   Lex.Lex();
8552   return false;
8553 }
8554 
8555 /// OptionalFFlags
8556 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8557 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8558 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8559 ///        [',' 'noInline' ':' Flag]? ')'
8560 ///        [',' 'alwaysInline' ':' Flag]? ')'
8561 ///        [',' 'noUnwind' ':' Flag]? ')'
8562 ///        [',' 'mayThrow' ':' Flag]? ')'
8563 ///        [',' 'hasUnknownCall' ':' Flag]? ')'
8564 ///        [',' 'mustBeUnreachable' ':' Flag]? ')'
8565 
8566 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8567   assert(Lex.getKind() == lltok::kw_funcFlags);
8568   Lex.Lex();
8569 
8570   if (parseToken(lltok::colon, "expected ':' in funcFlags") ||
8571       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8572     return true;
8573 
8574   do {
8575     unsigned Val = 0;
8576     switch (Lex.getKind()) {
8577     case lltok::kw_readNone:
8578       Lex.Lex();
8579       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8580         return true;
8581       FFlags.ReadNone = Val;
8582       break;
8583     case lltok::kw_readOnly:
8584       Lex.Lex();
8585       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8586         return true;
8587       FFlags.ReadOnly = Val;
8588       break;
8589     case lltok::kw_noRecurse:
8590       Lex.Lex();
8591       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8592         return true;
8593       FFlags.NoRecurse = Val;
8594       break;
8595     case lltok::kw_returnDoesNotAlias:
8596       Lex.Lex();
8597       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8598         return true;
8599       FFlags.ReturnDoesNotAlias = Val;
8600       break;
8601     case lltok::kw_noInline:
8602       Lex.Lex();
8603       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8604         return true;
8605       FFlags.NoInline = Val;
8606       break;
8607     case lltok::kw_alwaysInline:
8608       Lex.Lex();
8609       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8610         return true;
8611       FFlags.AlwaysInline = Val;
8612       break;
8613     case lltok::kw_noUnwind:
8614       Lex.Lex();
8615       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8616         return true;
8617       FFlags.NoUnwind = Val;
8618       break;
8619     case lltok::kw_mayThrow:
8620       Lex.Lex();
8621       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8622         return true;
8623       FFlags.MayThrow = Val;
8624       break;
8625     case lltok::kw_hasUnknownCall:
8626       Lex.Lex();
8627       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8628         return true;
8629       FFlags.HasUnknownCall = Val;
8630       break;
8631     case lltok::kw_mustBeUnreachable:
8632       Lex.Lex();
8633       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8634         return true;
8635       FFlags.MustBeUnreachable = Val;
8636       break;
8637     default:
8638       return error(Lex.getLoc(), "expected function flag type");
8639     }
8640   } while (EatIfPresent(lltok::comma));
8641 
8642   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8643     return true;
8644 
8645   return false;
8646 }
8647 
8648 /// OptionalCalls
8649 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8650 /// Call ::= '(' 'callee' ':' GVReference
8651 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8652 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8653   assert(Lex.getKind() == lltok::kw_calls);
8654   Lex.Lex();
8655 
8656   if (parseToken(lltok::colon, "expected ':' in calls") ||
8657       parseToken(lltok::lparen, "expected '(' in calls"))
8658     return true;
8659 
8660   IdToIndexMapType IdToIndexMap;
8661   // parse each call edge
8662   do {
8663     ValueInfo VI;
8664     if (parseToken(lltok::lparen, "expected '(' in call") ||
8665         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8666         parseToken(lltok::colon, "expected ':'"))
8667       return true;
8668 
8669     LocTy Loc = Lex.getLoc();
8670     unsigned GVId;
8671     if (parseGVReference(VI, GVId))
8672       return true;
8673 
8674     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8675     unsigned RelBF = 0;
8676     if (EatIfPresent(lltok::comma)) {
8677       // Expect either hotness or relbf
8678       if (EatIfPresent(lltok::kw_hotness)) {
8679         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8680           return true;
8681       } else {
8682         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8683             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8684           return true;
8685       }
8686     }
8687     // Keep track of the Call array index needing a forward reference.
8688     // We will save the location of the ValueInfo needing an update, but
8689     // can only do so once the std::vector is finalized.
8690     if (VI.getRef() == FwdVIRef)
8691       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8692     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8693 
8694     if (parseToken(lltok::rparen, "expected ')' in call"))
8695       return true;
8696   } while (EatIfPresent(lltok::comma));
8697 
8698   // Now that the Calls vector is finalized, it is safe to save the locations
8699   // of any forward GV references that need updating later.
8700   for (auto I : IdToIndexMap) {
8701     auto &Infos = ForwardRefValueInfos[I.first];
8702     for (auto P : I.second) {
8703       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8704              "Forward referenced ValueInfo expected to be empty");
8705       Infos.emplace_back(&Calls[P.first].first, P.second);
8706     }
8707   }
8708 
8709   if (parseToken(lltok::rparen, "expected ')' in calls"))
8710     return true;
8711 
8712   return false;
8713 }
8714 
8715 /// Hotness
8716 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8717 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8718   switch (Lex.getKind()) {
8719   case lltok::kw_unknown:
8720     Hotness = CalleeInfo::HotnessType::Unknown;
8721     break;
8722   case lltok::kw_cold:
8723     Hotness = CalleeInfo::HotnessType::Cold;
8724     break;
8725   case lltok::kw_none:
8726     Hotness = CalleeInfo::HotnessType::None;
8727     break;
8728   case lltok::kw_hot:
8729     Hotness = CalleeInfo::HotnessType::Hot;
8730     break;
8731   case lltok::kw_critical:
8732     Hotness = CalleeInfo::HotnessType::Critical;
8733     break;
8734   default:
8735     return error(Lex.getLoc(), "invalid call edge hotness");
8736   }
8737   Lex.Lex();
8738   return false;
8739 }
8740 
8741 /// OptionalVTableFuncs
8742 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8743 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8744 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8745   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8746   Lex.Lex();
8747 
8748   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") ||
8749       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8750     return true;
8751 
8752   IdToIndexMapType IdToIndexMap;
8753   // parse each virtual function pair
8754   do {
8755     ValueInfo VI;
8756     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8757         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8758         parseToken(lltok::colon, "expected ':'"))
8759       return true;
8760 
8761     LocTy Loc = Lex.getLoc();
8762     unsigned GVId;
8763     if (parseGVReference(VI, GVId))
8764       return true;
8765 
8766     uint64_t Offset;
8767     if (parseToken(lltok::comma, "expected comma") ||
8768         parseToken(lltok::kw_offset, "expected offset") ||
8769         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
8770       return true;
8771 
8772     // Keep track of the VTableFuncs array index needing a forward reference.
8773     // We will save the location of the ValueInfo needing an update, but
8774     // can only do so once the std::vector is finalized.
8775     if (VI == EmptyVI)
8776       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8777     VTableFuncs.push_back({VI, Offset});
8778 
8779     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
8780       return true;
8781   } while (EatIfPresent(lltok::comma));
8782 
8783   // Now that the VTableFuncs vector is finalized, it is safe to save the
8784   // locations of any forward GV references that need updating later.
8785   for (auto I : IdToIndexMap) {
8786     auto &Infos = ForwardRefValueInfos[I.first];
8787     for (auto P : I.second) {
8788       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8789              "Forward referenced ValueInfo expected to be empty");
8790       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
8791     }
8792   }
8793 
8794   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8795     return true;
8796 
8797   return false;
8798 }
8799 
8800 /// ParamNo := 'param' ':' UInt64
8801 bool LLParser::parseParamNo(uint64_t &ParamNo) {
8802   if (parseToken(lltok::kw_param, "expected 'param' here") ||
8803       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
8804     return true;
8805   return false;
8806 }
8807 
8808 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
8809 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
8810   APSInt Lower;
8811   APSInt Upper;
8812   auto ParseAPSInt = [&](APSInt &Val) {
8813     if (Lex.getKind() != lltok::APSInt)
8814       return tokError("expected integer");
8815     Val = Lex.getAPSIntVal();
8816     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
8817     Val.setIsSigned(true);
8818     Lex.Lex();
8819     return false;
8820   };
8821   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
8822       parseToken(lltok::colon, "expected ':' here") ||
8823       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
8824       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
8825       parseToken(lltok::rsquare, "expected ']' here"))
8826     return true;
8827 
8828   ++Upper;
8829   Range =
8830       (Lower == Upper && !Lower.isMaxValue())
8831           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
8832           : ConstantRange(Lower, Upper);
8833 
8834   return false;
8835 }
8836 
8837 /// ParamAccessCall
8838 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
8839 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
8840                                     IdLocListType &IdLocList) {
8841   if (parseToken(lltok::lparen, "expected '(' here") ||
8842       parseToken(lltok::kw_callee, "expected 'callee' here") ||
8843       parseToken(lltok::colon, "expected ':' here"))
8844     return true;
8845 
8846   unsigned GVId;
8847   ValueInfo VI;
8848   LocTy Loc = Lex.getLoc();
8849   if (parseGVReference(VI, GVId))
8850     return true;
8851 
8852   Call.Callee = VI;
8853   IdLocList.emplace_back(GVId, Loc);
8854 
8855   if (parseToken(lltok::comma, "expected ',' here") ||
8856       parseParamNo(Call.ParamNo) ||
8857       parseToken(lltok::comma, "expected ',' here") ||
8858       parseParamAccessOffset(Call.Offsets))
8859     return true;
8860 
8861   if (parseToken(lltok::rparen, "expected ')' here"))
8862     return true;
8863 
8864   return false;
8865 }
8866 
8867 /// ParamAccess
8868 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
8869 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
8870 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
8871                                 IdLocListType &IdLocList) {
8872   if (parseToken(lltok::lparen, "expected '(' here") ||
8873       parseParamNo(Param.ParamNo) ||
8874       parseToken(lltok::comma, "expected ',' here") ||
8875       parseParamAccessOffset(Param.Use))
8876     return true;
8877 
8878   if (EatIfPresent(lltok::comma)) {
8879     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
8880         parseToken(lltok::colon, "expected ':' here") ||
8881         parseToken(lltok::lparen, "expected '(' here"))
8882       return true;
8883     do {
8884       FunctionSummary::ParamAccess::Call Call;
8885       if (parseParamAccessCall(Call, IdLocList))
8886         return true;
8887       Param.Calls.push_back(Call);
8888     } while (EatIfPresent(lltok::comma));
8889 
8890     if (parseToken(lltok::rparen, "expected ')' here"))
8891       return true;
8892   }
8893 
8894   if (parseToken(lltok::rparen, "expected ')' here"))
8895     return true;
8896 
8897   return false;
8898 }
8899 
8900 /// OptionalParamAccesses
8901 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
8902 bool LLParser::parseOptionalParamAccesses(
8903     std::vector<FunctionSummary::ParamAccess> &Params) {
8904   assert(Lex.getKind() == lltok::kw_params);
8905   Lex.Lex();
8906 
8907   if (parseToken(lltok::colon, "expected ':' here") ||
8908       parseToken(lltok::lparen, "expected '(' here"))
8909     return true;
8910 
8911   IdLocListType VContexts;
8912   size_t CallsNum = 0;
8913   do {
8914     FunctionSummary::ParamAccess ParamAccess;
8915     if (parseParamAccess(ParamAccess, VContexts))
8916       return true;
8917     CallsNum += ParamAccess.Calls.size();
8918     assert(VContexts.size() == CallsNum);
8919     (void)CallsNum;
8920     Params.emplace_back(std::move(ParamAccess));
8921   } while (EatIfPresent(lltok::comma));
8922 
8923   if (parseToken(lltok::rparen, "expected ')' here"))
8924     return true;
8925 
8926   // Now that the Params is finalized, it is safe to save the locations
8927   // of any forward GV references that need updating later.
8928   IdLocListType::const_iterator ItContext = VContexts.begin();
8929   for (auto &PA : Params) {
8930     for (auto &C : PA.Calls) {
8931       if (C.Callee.getRef() == FwdVIRef)
8932         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
8933                                                             ItContext->second);
8934       ++ItContext;
8935     }
8936   }
8937   assert(ItContext == VContexts.end());
8938 
8939   return false;
8940 }
8941 
8942 /// OptionalRefs
8943 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8944 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
8945   assert(Lex.getKind() == lltok::kw_refs);
8946   Lex.Lex();
8947 
8948   if (parseToken(lltok::colon, "expected ':' in refs") ||
8949       parseToken(lltok::lparen, "expected '(' in refs"))
8950     return true;
8951 
8952   struct ValueContext {
8953     ValueInfo VI;
8954     unsigned GVId;
8955     LocTy Loc;
8956   };
8957   std::vector<ValueContext> VContexts;
8958   // parse each ref edge
8959   do {
8960     ValueContext VC;
8961     VC.Loc = Lex.getLoc();
8962     if (parseGVReference(VC.VI, VC.GVId))
8963       return true;
8964     VContexts.push_back(VC);
8965   } while (EatIfPresent(lltok::comma));
8966 
8967   // Sort value contexts so that ones with writeonly
8968   // and readonly ValueInfo  are at the end of VContexts vector.
8969   // See FunctionSummary::specialRefCounts()
8970   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8971     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8972   });
8973 
8974   IdToIndexMapType IdToIndexMap;
8975   for (auto &VC : VContexts) {
8976     // Keep track of the Refs array index needing a forward reference.
8977     // We will save the location of the ValueInfo needing an update, but
8978     // can only do so once the std::vector is finalized.
8979     if (VC.VI.getRef() == FwdVIRef)
8980       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8981     Refs.push_back(VC.VI);
8982   }
8983 
8984   // Now that the Refs vector is finalized, it is safe to save the locations
8985   // of any forward GV references that need updating later.
8986   for (auto I : IdToIndexMap) {
8987     auto &Infos = ForwardRefValueInfos[I.first];
8988     for (auto P : I.second) {
8989       assert(Refs[P.first].getRef() == FwdVIRef &&
8990              "Forward referenced ValueInfo expected to be empty");
8991       Infos.emplace_back(&Refs[P.first], P.second);
8992     }
8993   }
8994 
8995   if (parseToken(lltok::rparen, "expected ')' in refs"))
8996     return true;
8997 
8998   return false;
8999 }
9000 
9001 /// OptionalTypeIdInfo
9002 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9003 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9004 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9005 bool LLParser::parseOptionalTypeIdInfo(
9006     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9007   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9008   Lex.Lex();
9009 
9010   if (parseToken(lltok::colon, "expected ':' here") ||
9011       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9012     return true;
9013 
9014   do {
9015     switch (Lex.getKind()) {
9016     case lltok::kw_typeTests:
9017       if (parseTypeTests(TypeIdInfo.TypeTests))
9018         return true;
9019       break;
9020     case lltok::kw_typeTestAssumeVCalls:
9021       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9022                            TypeIdInfo.TypeTestAssumeVCalls))
9023         return true;
9024       break;
9025     case lltok::kw_typeCheckedLoadVCalls:
9026       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9027                            TypeIdInfo.TypeCheckedLoadVCalls))
9028         return true;
9029       break;
9030     case lltok::kw_typeTestAssumeConstVCalls:
9031       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9032                               TypeIdInfo.TypeTestAssumeConstVCalls))
9033         return true;
9034       break;
9035     case lltok::kw_typeCheckedLoadConstVCalls:
9036       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9037                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9038         return true;
9039       break;
9040     default:
9041       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9042     }
9043   } while (EatIfPresent(lltok::comma));
9044 
9045   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9046     return true;
9047 
9048   return false;
9049 }
9050 
9051 /// TypeTests
9052 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9053 ///         [',' (SummaryID | UInt64)]* ')'
9054 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9055   assert(Lex.getKind() == lltok::kw_typeTests);
9056   Lex.Lex();
9057 
9058   if (parseToken(lltok::colon, "expected ':' here") ||
9059       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9060     return true;
9061 
9062   IdToIndexMapType IdToIndexMap;
9063   do {
9064     GlobalValue::GUID GUID = 0;
9065     if (Lex.getKind() == lltok::SummaryID) {
9066       unsigned ID = Lex.getUIntVal();
9067       LocTy Loc = Lex.getLoc();
9068       // Keep track of the TypeTests array index needing a forward reference.
9069       // We will save the location of the GUID needing an update, but
9070       // can only do so once the std::vector is finalized.
9071       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9072       Lex.Lex();
9073     } else if (parseUInt64(GUID))
9074       return true;
9075     TypeTests.push_back(GUID);
9076   } while (EatIfPresent(lltok::comma));
9077 
9078   // Now that the TypeTests vector is finalized, it is safe to save the
9079   // locations of any forward GV references that need updating later.
9080   for (auto I : IdToIndexMap) {
9081     auto &Ids = ForwardRefTypeIds[I.first];
9082     for (auto P : I.second) {
9083       assert(TypeTests[P.first] == 0 &&
9084              "Forward referenced type id GUID expected to be 0");
9085       Ids.emplace_back(&TypeTests[P.first], P.second);
9086     }
9087   }
9088 
9089   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9090     return true;
9091 
9092   return false;
9093 }
9094 
9095 /// VFuncIdList
9096 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9097 bool LLParser::parseVFuncIdList(
9098     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9099   assert(Lex.getKind() == Kind);
9100   Lex.Lex();
9101 
9102   if (parseToken(lltok::colon, "expected ':' here") ||
9103       parseToken(lltok::lparen, "expected '(' here"))
9104     return true;
9105 
9106   IdToIndexMapType IdToIndexMap;
9107   do {
9108     FunctionSummary::VFuncId VFuncId;
9109     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9110       return true;
9111     VFuncIdList.push_back(VFuncId);
9112   } while (EatIfPresent(lltok::comma));
9113 
9114   if (parseToken(lltok::rparen, "expected ')' here"))
9115     return true;
9116 
9117   // Now that the VFuncIdList vector is finalized, it is safe to save the
9118   // locations of any forward GV references that need updating later.
9119   for (auto I : IdToIndexMap) {
9120     auto &Ids = ForwardRefTypeIds[I.first];
9121     for (auto P : I.second) {
9122       assert(VFuncIdList[P.first].GUID == 0 &&
9123              "Forward referenced type id GUID expected to be 0");
9124       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9125     }
9126   }
9127 
9128   return false;
9129 }
9130 
9131 /// ConstVCallList
9132 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9133 bool LLParser::parseConstVCallList(
9134     lltok::Kind Kind,
9135     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9136   assert(Lex.getKind() == Kind);
9137   Lex.Lex();
9138 
9139   if (parseToken(lltok::colon, "expected ':' here") ||
9140       parseToken(lltok::lparen, "expected '(' here"))
9141     return true;
9142 
9143   IdToIndexMapType IdToIndexMap;
9144   do {
9145     FunctionSummary::ConstVCall ConstVCall;
9146     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9147       return true;
9148     ConstVCallList.push_back(ConstVCall);
9149   } while (EatIfPresent(lltok::comma));
9150 
9151   if (parseToken(lltok::rparen, "expected ')' here"))
9152     return true;
9153 
9154   // Now that the ConstVCallList vector is finalized, it is safe to save the
9155   // locations of any forward GV references that need updating later.
9156   for (auto I : IdToIndexMap) {
9157     auto &Ids = ForwardRefTypeIds[I.first];
9158     for (auto P : I.second) {
9159       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9160              "Forward referenced type id GUID expected to be 0");
9161       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9162     }
9163   }
9164 
9165   return false;
9166 }
9167 
9168 /// ConstVCall
9169 ///   ::= '(' VFuncId ',' Args ')'
9170 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9171                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9172   if (parseToken(lltok::lparen, "expected '(' here") ||
9173       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9174     return true;
9175 
9176   if (EatIfPresent(lltok::comma))
9177     if (parseArgs(ConstVCall.Args))
9178       return true;
9179 
9180   if (parseToken(lltok::rparen, "expected ')' here"))
9181     return true;
9182 
9183   return false;
9184 }
9185 
9186 /// VFuncId
9187 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9188 ///         'offset' ':' UInt64 ')'
9189 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9190                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9191   assert(Lex.getKind() == lltok::kw_vFuncId);
9192   Lex.Lex();
9193 
9194   if (parseToken(lltok::colon, "expected ':' here") ||
9195       parseToken(lltok::lparen, "expected '(' here"))
9196     return true;
9197 
9198   if (Lex.getKind() == lltok::SummaryID) {
9199     VFuncId.GUID = 0;
9200     unsigned ID = Lex.getUIntVal();
9201     LocTy Loc = Lex.getLoc();
9202     // Keep track of the array index needing a forward reference.
9203     // We will save the location of the GUID needing an update, but
9204     // can only do so once the caller's std::vector is finalized.
9205     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9206     Lex.Lex();
9207   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9208              parseToken(lltok::colon, "expected ':' here") ||
9209              parseUInt64(VFuncId.GUID))
9210     return true;
9211 
9212   if (parseToken(lltok::comma, "expected ',' here") ||
9213       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9214       parseToken(lltok::colon, "expected ':' here") ||
9215       parseUInt64(VFuncId.Offset) ||
9216       parseToken(lltok::rparen, "expected ')' here"))
9217     return true;
9218 
9219   return false;
9220 }
9221 
9222 /// GVFlags
9223 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9224 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9225 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9226 ///         'canAutoHide' ':' Flag ',' ')'
9227 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9228   assert(Lex.getKind() == lltok::kw_flags);
9229   Lex.Lex();
9230 
9231   if (parseToken(lltok::colon, "expected ':' here") ||
9232       parseToken(lltok::lparen, "expected '(' here"))
9233     return true;
9234 
9235   do {
9236     unsigned Flag = 0;
9237     switch (Lex.getKind()) {
9238     case lltok::kw_linkage:
9239       Lex.Lex();
9240       if (parseToken(lltok::colon, "expected ':'"))
9241         return true;
9242       bool HasLinkage;
9243       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9244       assert(HasLinkage && "Linkage not optional in summary entry");
9245       Lex.Lex();
9246       break;
9247     case lltok::kw_visibility:
9248       Lex.Lex();
9249       if (parseToken(lltok::colon, "expected ':'"))
9250         return true;
9251       parseOptionalVisibility(Flag);
9252       GVFlags.Visibility = Flag;
9253       break;
9254     case lltok::kw_notEligibleToImport:
9255       Lex.Lex();
9256       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9257         return true;
9258       GVFlags.NotEligibleToImport = Flag;
9259       break;
9260     case lltok::kw_live:
9261       Lex.Lex();
9262       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9263         return true;
9264       GVFlags.Live = Flag;
9265       break;
9266     case lltok::kw_dsoLocal:
9267       Lex.Lex();
9268       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9269         return true;
9270       GVFlags.DSOLocal = Flag;
9271       break;
9272     case lltok::kw_canAutoHide:
9273       Lex.Lex();
9274       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9275         return true;
9276       GVFlags.CanAutoHide = Flag;
9277       break;
9278     default:
9279       return error(Lex.getLoc(), "expected gv flag type");
9280     }
9281   } while (EatIfPresent(lltok::comma));
9282 
9283   if (parseToken(lltok::rparen, "expected ')' here"))
9284     return true;
9285 
9286   return false;
9287 }
9288 
9289 /// GVarFlags
9290 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9291 ///                      ',' 'writeonly' ':' Flag
9292 ///                      ',' 'constant' ':' Flag ')'
9293 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9294   assert(Lex.getKind() == lltok::kw_varFlags);
9295   Lex.Lex();
9296 
9297   if (parseToken(lltok::colon, "expected ':' here") ||
9298       parseToken(lltok::lparen, "expected '(' here"))
9299     return true;
9300 
9301   auto ParseRest = [this](unsigned int &Val) {
9302     Lex.Lex();
9303     if (parseToken(lltok::colon, "expected ':'"))
9304       return true;
9305     return parseFlag(Val);
9306   };
9307 
9308   do {
9309     unsigned Flag = 0;
9310     switch (Lex.getKind()) {
9311     case lltok::kw_readonly:
9312       if (ParseRest(Flag))
9313         return true;
9314       GVarFlags.MaybeReadOnly = Flag;
9315       break;
9316     case lltok::kw_writeonly:
9317       if (ParseRest(Flag))
9318         return true;
9319       GVarFlags.MaybeWriteOnly = Flag;
9320       break;
9321     case lltok::kw_constant:
9322       if (ParseRest(Flag))
9323         return true;
9324       GVarFlags.Constant = Flag;
9325       break;
9326     case lltok::kw_vcall_visibility:
9327       if (ParseRest(Flag))
9328         return true;
9329       GVarFlags.VCallVisibility = Flag;
9330       break;
9331     default:
9332       return error(Lex.getLoc(), "expected gvar flag type");
9333     }
9334   } while (EatIfPresent(lltok::comma));
9335   return parseToken(lltok::rparen, "expected ')' here");
9336 }
9337 
9338 /// ModuleReference
9339 ///   ::= 'module' ':' UInt
9340 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9341   // parse module id.
9342   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9343       parseToken(lltok::colon, "expected ':' here") ||
9344       parseToken(lltok::SummaryID, "expected module ID"))
9345     return true;
9346 
9347   unsigned ModuleID = Lex.getUIntVal();
9348   auto I = ModuleIdMap.find(ModuleID);
9349   // We should have already parsed all module IDs
9350   assert(I != ModuleIdMap.end());
9351   ModulePath = I->second;
9352   return false;
9353 }
9354 
9355 /// GVReference
9356 ///   ::= SummaryID
9357 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9358   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9359   if (!ReadOnly)
9360     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9361   if (parseToken(lltok::SummaryID, "expected GV ID"))
9362     return true;
9363 
9364   GVId = Lex.getUIntVal();
9365   // Check if we already have a VI for this GV
9366   if (GVId < NumberedValueInfos.size()) {
9367     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9368     VI = NumberedValueInfos[GVId];
9369   } else
9370     // We will create a forward reference to the stored location.
9371     VI = ValueInfo(false, FwdVIRef);
9372 
9373   if (ReadOnly)
9374     VI.setReadOnly();
9375   if (WriteOnly)
9376     VI.setWriteOnly();
9377   return false;
9378 }
9379