1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/IR/ValueSymbolTable.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/SaveAndRestore.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstring>
50 #include <iterator>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 static std::string getTypeString(Type *T) {
56   std::string Result;
57   raw_string_ostream Tmp(Result);
58   Tmp << *T;
59   return Tmp.str();
60 }
61 
62 /// Run: module ::= toplevelentity*
63 bool LLParser::Run(bool UpgradeDebugInfo,
64                    DataLayoutCallbackTy DataLayoutCallback) {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   if (M) {
74     if (parseTargetDefinitions())
75       return true;
76 
77     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
78       M->setDataLayout(*LayoutOverride);
79   }
80 
81   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
82          validateEndOfIndex();
83 }
84 
85 bool LLParser::parseStandaloneConstantValue(Constant *&C,
86                                             const SlotMapping *Slots) {
87   restoreParsingState(Slots);
88   Lex.Lex();
89 
90   Type *Ty = nullptr;
91   if (parseType(Ty) || parseConstantValue(Ty, C))
92     return true;
93   if (Lex.getKind() != lltok::Eof)
94     return error(Lex.getLoc(), "expected end of string");
95   return false;
96 }
97 
98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
99                                     const SlotMapping *Slots) {
100   restoreParsingState(Slots);
101   Lex.Lex();
102 
103   Read = 0;
104   SMLoc Start = Lex.getLoc();
105   Ty = nullptr;
106   if (parseType(Ty))
107     return true;
108   SMLoc End = Lex.getLoc();
109   Read = End.getPointer() - Start.getPointer();
110 
111   return false;
112 }
113 
114 void LLParser::restoreParsingState(const SlotMapping *Slots) {
115   if (!Slots)
116     return;
117   NumberedVals = Slots->GlobalValues;
118   NumberedMetadata = Slots->MetadataNodes;
119   for (const auto &I : Slots->NamedTypes)
120     NamedTypes.insert(
121         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
122   for (const auto &I : Slots->Types)
123     NumberedTypes.insert(
124         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
125 }
126 
127 /// validateEndOfModule - Do final validity and basic correctness checks at the
128 /// end of the module.
129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
130   if (!M)
131     return false;
132   // Handle any function attribute group forward references.
133   for (const auto &RAG : ForwardRefAttrGroups) {
134     Value *V = RAG.first;
135     const std::vector<unsigned> &Attrs = RAG.second;
136     AttrBuilder B;
137 
138     for (const auto &Attr : Attrs)
139       B.merge(NumberedAttrBuilders[Attr]);
140 
141     if (Function *Fn = dyn_cast<Function>(V)) {
142       AttributeList AS = Fn->getAttributes();
143       AttrBuilder FnAttrs(AS.getFnAttrs());
144       AS = AS.removeFnAttributes(Context);
145 
146       FnAttrs.merge(B);
147 
148       // If the alignment was parsed as an attribute, move to the alignment
149       // field.
150       if (FnAttrs.hasAlignmentAttr()) {
151         Fn->setAlignment(FnAttrs.getAlignment());
152         FnAttrs.removeAttribute(Attribute::Alignment);
153       }
154 
155       AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs));
156       Fn->setAttributes(AS);
157     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
158       AttributeList AS = CI->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttrs());
160       AS = AS.removeFnAttributes(Context);
161       FnAttrs.merge(B);
162       AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs));
163       CI->setAttributes(AS);
164     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
165       AttributeList AS = II->getAttributes();
166       AttrBuilder FnAttrs(AS.getFnAttrs());
167       AS = AS.removeFnAttributes(Context);
168       FnAttrs.merge(B);
169       AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs));
170       II->setAttributes(AS);
171     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
172       AttributeList AS = CBI->getAttributes();
173       AttrBuilder FnAttrs(AS.getFnAttrs());
174       AS = AS.removeFnAttributes(Context);
175       FnAttrs.merge(B);
176       AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs));
177       CBI->setAttributes(AS);
178     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
179       AttrBuilder Attrs(GV->getAttributes());
180       Attrs.merge(B);
181       GV->setAttributes(AttributeSet::get(Context,Attrs));
182     } else {
183       llvm_unreachable("invalid object with forward attribute group reference");
184     }
185   }
186 
187   // If there are entries in ForwardRefBlockAddresses at this point, the
188   // function was never defined.
189   if (!ForwardRefBlockAddresses.empty())
190     return error(ForwardRefBlockAddresses.begin()->first.Loc,
191                  "expected function name in blockaddress");
192 
193   for (const auto &NT : NumberedTypes)
194     if (NT.second.second.isValid())
195       return error(NT.second.second,
196                    "use of undefined type '%" + Twine(NT.first) + "'");
197 
198   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
199        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
200     if (I->second.second.isValid())
201       return error(I->second.second,
202                    "use of undefined type named '" + I->getKey() + "'");
203 
204   if (!ForwardRefComdats.empty())
205     return error(ForwardRefComdats.begin()->second,
206                  "use of undefined comdat '$" +
207                      ForwardRefComdats.begin()->first + "'");
208 
209   if (!ForwardRefVals.empty())
210     return error(ForwardRefVals.begin()->second.second,
211                  "use of undefined value '@" + ForwardRefVals.begin()->first +
212                      "'");
213 
214   if (!ForwardRefValIDs.empty())
215     return error(ForwardRefValIDs.begin()->second.second,
216                  "use of undefined value '@" +
217                      Twine(ForwardRefValIDs.begin()->first) + "'");
218 
219   if (!ForwardRefMDNodes.empty())
220     return error(ForwardRefMDNodes.begin()->second.second,
221                  "use of undefined metadata '!" +
222                      Twine(ForwardRefMDNodes.begin()->first) + "'");
223 
224   // Resolve metadata cycles.
225   for (auto &N : NumberedMetadata) {
226     if (N.second && !N.second->isResolved())
227       N.second->resolveCycles();
228   }
229 
230   for (auto *Inst : InstsWithTBAATag) {
231     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
232     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
233     auto *UpgradedMD = UpgradeTBAANode(*MD);
234     if (MD != UpgradedMD)
235       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
236   }
237 
238   // Look for intrinsic functions and CallInst that need to be upgraded.  We use
239   // make_early_inc_range here because we may remove some functions.
240   for (Function &F : llvm::make_early_inc_range(*M))
241     UpgradeCallsToIntrinsic(&F);
242 
243   // Some types could be renamed during loading if several modules are
244   // loaded in the same LLVMContext (LTO scenario). In this case we should
245   // remangle intrinsics names as well.
246   for (Function &F : llvm::make_early_inc_range(*M)) {
247     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) {
248       F.replaceAllUsesWith(Remangled.getValue());
249       F.eraseFromParent();
250     }
251   }
252 
253   if (UpgradeDebugInfo)
254     llvm::UpgradeDebugInfo(*M);
255 
256   UpgradeModuleFlags(*M);
257   UpgradeSectionAttributes(*M);
258 
259   if (!Slots)
260     return false;
261   // Initialize the slot mapping.
262   // Because by this point we've parsed and validated everything, we can "steal"
263   // the mapping from LLParser as it doesn't need it anymore.
264   Slots->GlobalValues = std::move(NumberedVals);
265   Slots->MetadataNodes = std::move(NumberedMetadata);
266   for (const auto &I : NamedTypes)
267     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
268   for (const auto &I : NumberedTypes)
269     Slots->Types.insert(std::make_pair(I.first, I.second.first));
270 
271   return false;
272 }
273 
274 /// Do final validity and basic correctness checks at the end of the index.
275 bool LLParser::validateEndOfIndex() {
276   if (!Index)
277     return false;
278 
279   if (!ForwardRefValueInfos.empty())
280     return error(ForwardRefValueInfos.begin()->second.front().second,
281                  "use of undefined summary '^" +
282                      Twine(ForwardRefValueInfos.begin()->first) + "'");
283 
284   if (!ForwardRefAliasees.empty())
285     return error(ForwardRefAliasees.begin()->second.front().second,
286                  "use of undefined summary '^" +
287                      Twine(ForwardRefAliasees.begin()->first) + "'");
288 
289   if (!ForwardRefTypeIds.empty())
290     return error(ForwardRefTypeIds.begin()->second.front().second,
291                  "use of undefined type id summary '^" +
292                      Twine(ForwardRefTypeIds.begin()->first) + "'");
293 
294   return false;
295 }
296 
297 //===----------------------------------------------------------------------===//
298 // Top-Level Entities
299 //===----------------------------------------------------------------------===//
300 
301 bool LLParser::parseTargetDefinitions() {
302   while (true) {
303     switch (Lex.getKind()) {
304     case lltok::kw_target:
305       if (parseTargetDefinition())
306         return true;
307       break;
308     case lltok::kw_source_filename:
309       if (parseSourceFileName())
310         return true;
311       break;
312     default:
313       return false;
314     }
315   }
316 }
317 
318 bool LLParser::parseTopLevelEntities() {
319   // If there is no Module, then parse just the summary index entries.
320   if (!M) {
321     while (true) {
322       switch (Lex.getKind()) {
323       case lltok::Eof:
324         return false;
325       case lltok::SummaryID:
326         if (parseSummaryEntry())
327           return true;
328         break;
329       case lltok::kw_source_filename:
330         if (parseSourceFileName())
331           return true;
332         break;
333       default:
334         // Skip everything else
335         Lex.Lex();
336       }
337     }
338   }
339   while (true) {
340     switch (Lex.getKind()) {
341     default:
342       return tokError("expected top-level entity");
343     case lltok::Eof: return false;
344     case lltok::kw_declare:
345       if (parseDeclare())
346         return true;
347       break;
348     case lltok::kw_define:
349       if (parseDefine())
350         return true;
351       break;
352     case lltok::kw_module:
353       if (parseModuleAsm())
354         return true;
355       break;
356     case lltok::LocalVarID:
357       if (parseUnnamedType())
358         return true;
359       break;
360     case lltok::LocalVar:
361       if (parseNamedType())
362         return true;
363       break;
364     case lltok::GlobalID:
365       if (parseUnnamedGlobal())
366         return true;
367       break;
368     case lltok::GlobalVar:
369       if (parseNamedGlobal())
370         return true;
371       break;
372     case lltok::ComdatVar:  if (parseComdat()) return true; break;
373     case lltok::exclaim:
374       if (parseStandaloneMetadata())
375         return true;
376       break;
377     case lltok::SummaryID:
378       if (parseSummaryEntry())
379         return true;
380       break;
381     case lltok::MetadataVar:
382       if (parseNamedMetadata())
383         return true;
384       break;
385     case lltok::kw_attributes:
386       if (parseUnnamedAttrGrp())
387         return true;
388       break;
389     case lltok::kw_uselistorder:
390       if (parseUseListOrder())
391         return true;
392       break;
393     case lltok::kw_uselistorder_bb:
394       if (parseUseListOrderBB())
395         return true;
396       break;
397     }
398   }
399 }
400 
401 /// toplevelentity
402 ///   ::= 'module' 'asm' STRINGCONSTANT
403 bool LLParser::parseModuleAsm() {
404   assert(Lex.getKind() == lltok::kw_module);
405   Lex.Lex();
406 
407   std::string AsmStr;
408   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
409       parseStringConstant(AsmStr))
410     return true;
411 
412   M->appendModuleInlineAsm(AsmStr);
413   return false;
414 }
415 
416 /// toplevelentity
417 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
418 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
419 bool LLParser::parseTargetDefinition() {
420   assert(Lex.getKind() == lltok::kw_target);
421   std::string Str;
422   switch (Lex.Lex()) {
423   default:
424     return tokError("unknown target property");
425   case lltok::kw_triple:
426     Lex.Lex();
427     if (parseToken(lltok::equal, "expected '=' after target triple") ||
428         parseStringConstant(Str))
429       return true;
430     M->setTargetTriple(Str);
431     return false;
432   case lltok::kw_datalayout:
433     Lex.Lex();
434     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
435         parseStringConstant(Str))
436       return true;
437     M->setDataLayout(Str);
438     return false;
439   }
440 }
441 
442 /// toplevelentity
443 ///   ::= 'source_filename' '=' STRINGCONSTANT
444 bool LLParser::parseSourceFileName() {
445   assert(Lex.getKind() == lltok::kw_source_filename);
446   Lex.Lex();
447   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
448       parseStringConstant(SourceFileName))
449     return true;
450   if (M)
451     M->setSourceFileName(SourceFileName);
452   return false;
453 }
454 
455 /// parseUnnamedType:
456 ///   ::= LocalVarID '=' 'type' type
457 bool LLParser::parseUnnamedType() {
458   LocTy TypeLoc = Lex.getLoc();
459   unsigned TypeID = Lex.getUIntVal();
460   Lex.Lex(); // eat LocalVarID;
461 
462   if (parseToken(lltok::equal, "expected '=' after name") ||
463       parseToken(lltok::kw_type, "expected 'type' after '='"))
464     return true;
465 
466   Type *Result = nullptr;
467   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
468     return true;
469 
470   if (!isa<StructType>(Result)) {
471     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
472     if (Entry.first)
473       return error(TypeLoc, "non-struct types may not be recursive");
474     Entry.first = Result;
475     Entry.second = SMLoc();
476   }
477 
478   return false;
479 }
480 
481 /// toplevelentity
482 ///   ::= LocalVar '=' 'type' type
483 bool LLParser::parseNamedType() {
484   std::string Name = Lex.getStrVal();
485   LocTy NameLoc = Lex.getLoc();
486   Lex.Lex();  // eat LocalVar.
487 
488   if (parseToken(lltok::equal, "expected '=' after name") ||
489       parseToken(lltok::kw_type, "expected 'type' after name"))
490     return true;
491 
492   Type *Result = nullptr;
493   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
494     return true;
495 
496   if (!isa<StructType>(Result)) {
497     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
498     if (Entry.first)
499       return error(NameLoc, "non-struct types may not be recursive");
500     Entry.first = Result;
501     Entry.second = SMLoc();
502   }
503 
504   return false;
505 }
506 
507 /// toplevelentity
508 ///   ::= 'declare' FunctionHeader
509 bool LLParser::parseDeclare() {
510   assert(Lex.getKind() == lltok::kw_declare);
511   Lex.Lex();
512 
513   std::vector<std::pair<unsigned, MDNode *>> MDs;
514   while (Lex.getKind() == lltok::MetadataVar) {
515     unsigned MDK;
516     MDNode *N;
517     if (parseMetadataAttachment(MDK, N))
518       return true;
519     MDs.push_back({MDK, N});
520   }
521 
522   Function *F;
523   if (parseFunctionHeader(F, false))
524     return true;
525   for (auto &MD : MDs)
526     F->addMetadata(MD.first, *MD.second);
527   return false;
528 }
529 
530 /// toplevelentity
531 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
532 bool LLParser::parseDefine() {
533   assert(Lex.getKind() == lltok::kw_define);
534   Lex.Lex();
535 
536   Function *F;
537   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
538          parseFunctionBody(*F);
539 }
540 
541 /// parseGlobalType
542 ///   ::= 'constant'
543 ///   ::= 'global'
544 bool LLParser::parseGlobalType(bool &IsConstant) {
545   if (Lex.getKind() == lltok::kw_constant)
546     IsConstant = true;
547   else if (Lex.getKind() == lltok::kw_global)
548     IsConstant = false;
549   else {
550     IsConstant = false;
551     return tokError("expected 'global' or 'constant'");
552   }
553   Lex.Lex();
554   return false;
555 }
556 
557 bool LLParser::parseOptionalUnnamedAddr(
558     GlobalVariable::UnnamedAddr &UnnamedAddr) {
559   if (EatIfPresent(lltok::kw_unnamed_addr))
560     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
561   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
562     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
563   else
564     UnnamedAddr = GlobalValue::UnnamedAddr::None;
565   return false;
566 }
567 
568 /// parseUnnamedGlobal:
569 ///   OptionalVisibility (ALIAS | IFUNC) ...
570 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
571 ///   OptionalDLLStorageClass
572 ///                                                     ...   -> global variable
573 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
574 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
575 ///   OptionalVisibility
576 ///                OptionalDLLStorageClass
577 ///                                                     ...   -> global variable
578 bool LLParser::parseUnnamedGlobal() {
579   unsigned VarID = NumberedVals.size();
580   std::string Name;
581   LocTy NameLoc = Lex.getLoc();
582 
583   // Handle the GlobalID form.
584   if (Lex.getKind() == lltok::GlobalID) {
585     if (Lex.getUIntVal() != VarID)
586       return error(Lex.getLoc(),
587                    "variable expected to be numbered '%" + Twine(VarID) + "'");
588     Lex.Lex(); // eat GlobalID;
589 
590     if (parseToken(lltok::equal, "expected '=' after name"))
591       return true;
592   }
593 
594   bool HasLinkage;
595   unsigned Linkage, Visibility, DLLStorageClass;
596   bool DSOLocal;
597   GlobalVariable::ThreadLocalMode TLM;
598   GlobalVariable::UnnamedAddr UnnamedAddr;
599   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
600                            DSOLocal) ||
601       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
602     return true;
603 
604   switch (Lex.getKind()) {
605   default:
606     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
607                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
608   case lltok::kw_alias:
609   case lltok::kw_ifunc:
610     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
611                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
612   }
613 }
614 
615 /// parseNamedGlobal:
616 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
617 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
618 ///                 OptionalVisibility OptionalDLLStorageClass
619 ///                                                     ...   -> global variable
620 bool LLParser::parseNamedGlobal() {
621   assert(Lex.getKind() == lltok::GlobalVar);
622   LocTy NameLoc = Lex.getLoc();
623   std::string Name = Lex.getStrVal();
624   Lex.Lex();
625 
626   bool HasLinkage;
627   unsigned Linkage, Visibility, DLLStorageClass;
628   bool DSOLocal;
629   GlobalVariable::ThreadLocalMode TLM;
630   GlobalVariable::UnnamedAddr UnnamedAddr;
631   if (parseToken(lltok::equal, "expected '=' in global variable") ||
632       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
633                            DSOLocal) ||
634       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
635     return true;
636 
637   switch (Lex.getKind()) {
638   default:
639     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
640                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
641   case lltok::kw_alias:
642   case lltok::kw_ifunc:
643     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
644                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
645   }
646 }
647 
648 bool LLParser::parseComdat() {
649   assert(Lex.getKind() == lltok::ComdatVar);
650   std::string Name = Lex.getStrVal();
651   LocTy NameLoc = Lex.getLoc();
652   Lex.Lex();
653 
654   if (parseToken(lltok::equal, "expected '=' here"))
655     return true;
656 
657   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
658     return tokError("expected comdat type");
659 
660   Comdat::SelectionKind SK;
661   switch (Lex.getKind()) {
662   default:
663     return tokError("unknown selection kind");
664   case lltok::kw_any:
665     SK = Comdat::Any;
666     break;
667   case lltok::kw_exactmatch:
668     SK = Comdat::ExactMatch;
669     break;
670   case lltok::kw_largest:
671     SK = Comdat::Largest;
672     break;
673   case lltok::kw_nodeduplicate:
674     SK = Comdat::NoDeduplicate;
675     break;
676   case lltok::kw_samesize:
677     SK = Comdat::SameSize;
678     break;
679   }
680   Lex.Lex();
681 
682   // See if the comdat was forward referenced, if so, use the comdat.
683   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
684   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
685   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
686     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
687 
688   Comdat *C;
689   if (I != ComdatSymTab.end())
690     C = &I->second;
691   else
692     C = M->getOrInsertComdat(Name);
693   C->setSelectionKind(SK);
694 
695   return false;
696 }
697 
698 // MDString:
699 //   ::= '!' STRINGCONSTANT
700 bool LLParser::parseMDString(MDString *&Result) {
701   std::string Str;
702   if (parseStringConstant(Str))
703     return true;
704   Result = MDString::get(Context, Str);
705   return false;
706 }
707 
708 // MDNode:
709 //   ::= '!' MDNodeNumber
710 bool LLParser::parseMDNodeID(MDNode *&Result) {
711   // !{ ..., !42, ... }
712   LocTy IDLoc = Lex.getLoc();
713   unsigned MID = 0;
714   if (parseUInt32(MID))
715     return true;
716 
717   // If not a forward reference, just return it now.
718   if (NumberedMetadata.count(MID)) {
719     Result = NumberedMetadata[MID];
720     return false;
721   }
722 
723   // Otherwise, create MDNode forward reference.
724   auto &FwdRef = ForwardRefMDNodes[MID];
725   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
726 
727   Result = FwdRef.first.get();
728   NumberedMetadata[MID].reset(Result);
729   return false;
730 }
731 
732 /// parseNamedMetadata:
733 ///   !foo = !{ !1, !2 }
734 bool LLParser::parseNamedMetadata() {
735   assert(Lex.getKind() == lltok::MetadataVar);
736   std::string Name = Lex.getStrVal();
737   Lex.Lex();
738 
739   if (parseToken(lltok::equal, "expected '=' here") ||
740       parseToken(lltok::exclaim, "Expected '!' here") ||
741       parseToken(lltok::lbrace, "Expected '{' here"))
742     return true;
743 
744   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
745   if (Lex.getKind() != lltok::rbrace)
746     do {
747       MDNode *N = nullptr;
748       // parse DIExpressions inline as a special case. They are still MDNodes,
749       // so they can still appear in named metadata. Remove this logic if they
750       // become plain Metadata.
751       if (Lex.getKind() == lltok::MetadataVar &&
752           Lex.getStrVal() == "DIExpression") {
753         if (parseDIExpression(N, /*IsDistinct=*/false))
754           return true;
755         // DIArgLists should only appear inline in a function, as they may
756         // contain LocalAsMetadata arguments which require a function context.
757       } else if (Lex.getKind() == lltok::MetadataVar &&
758                  Lex.getStrVal() == "DIArgList") {
759         return tokError("found DIArgList outside of function");
760       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
761                  parseMDNodeID(N)) {
762         return true;
763       }
764       NMD->addOperand(N);
765     } while (EatIfPresent(lltok::comma));
766 
767   return parseToken(lltok::rbrace, "expected end of metadata node");
768 }
769 
770 /// parseStandaloneMetadata:
771 ///   !42 = !{...}
772 bool LLParser::parseStandaloneMetadata() {
773   assert(Lex.getKind() == lltok::exclaim);
774   Lex.Lex();
775   unsigned MetadataID = 0;
776 
777   MDNode *Init;
778   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
779     return true;
780 
781   // Detect common error, from old metadata syntax.
782   if (Lex.getKind() == lltok::Type)
783     return tokError("unexpected type in metadata definition");
784 
785   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
786   if (Lex.getKind() == lltok::MetadataVar) {
787     if (parseSpecializedMDNode(Init, IsDistinct))
788       return true;
789   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
790              parseMDTuple(Init, IsDistinct))
791     return true;
792 
793   // See if this was forward referenced, if so, handle it.
794   auto FI = ForwardRefMDNodes.find(MetadataID);
795   if (FI != ForwardRefMDNodes.end()) {
796     FI->second.first->replaceAllUsesWith(Init);
797     ForwardRefMDNodes.erase(FI);
798 
799     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
800   } else {
801     if (NumberedMetadata.count(MetadataID))
802       return tokError("Metadata id is already used");
803     NumberedMetadata[MetadataID].reset(Init);
804   }
805 
806   return false;
807 }
808 
809 // Skips a single module summary entry.
810 bool LLParser::skipModuleSummaryEntry() {
811   // Each module summary entry consists of a tag for the entry
812   // type, followed by a colon, then the fields which may be surrounded by
813   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
814   // support is in place we will look for the tokens corresponding to the
815   // expected tags.
816   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
817       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
818       Lex.getKind() != lltok::kw_blockcount)
819     return tokError(
820         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
821         "start of summary entry");
822   if (Lex.getKind() == lltok::kw_flags)
823     return parseSummaryIndexFlags();
824   if (Lex.getKind() == lltok::kw_blockcount)
825     return parseBlockCount();
826   Lex.Lex();
827   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
828       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
829     return true;
830   // Now walk through the parenthesized entry, until the number of open
831   // parentheses goes back down to 0 (the first '(' was parsed above).
832   unsigned NumOpenParen = 1;
833   do {
834     switch (Lex.getKind()) {
835     case lltok::lparen:
836       NumOpenParen++;
837       break;
838     case lltok::rparen:
839       NumOpenParen--;
840       break;
841     case lltok::Eof:
842       return tokError("found end of file while parsing summary entry");
843     default:
844       // Skip everything in between parentheses.
845       break;
846     }
847     Lex.Lex();
848   } while (NumOpenParen > 0);
849   return false;
850 }
851 
852 /// SummaryEntry
853 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
854 bool LLParser::parseSummaryEntry() {
855   assert(Lex.getKind() == lltok::SummaryID);
856   unsigned SummaryID = Lex.getUIntVal();
857 
858   // For summary entries, colons should be treated as distinct tokens,
859   // not an indication of the end of a label token.
860   Lex.setIgnoreColonInIdentifiers(true);
861 
862   Lex.Lex();
863   if (parseToken(lltok::equal, "expected '=' here"))
864     return true;
865 
866   // If we don't have an index object, skip the summary entry.
867   if (!Index)
868     return skipModuleSummaryEntry();
869 
870   bool result = false;
871   switch (Lex.getKind()) {
872   case lltok::kw_gv:
873     result = parseGVEntry(SummaryID);
874     break;
875   case lltok::kw_module:
876     result = parseModuleEntry(SummaryID);
877     break;
878   case lltok::kw_typeid:
879     result = parseTypeIdEntry(SummaryID);
880     break;
881   case lltok::kw_typeidCompatibleVTable:
882     result = parseTypeIdCompatibleVtableEntry(SummaryID);
883     break;
884   case lltok::kw_flags:
885     result = parseSummaryIndexFlags();
886     break;
887   case lltok::kw_blockcount:
888     result = parseBlockCount();
889     break;
890   default:
891     result = error(Lex.getLoc(), "unexpected summary kind");
892     break;
893   }
894   Lex.setIgnoreColonInIdentifiers(false);
895   return result;
896 }
897 
898 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
899   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
900          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
901 }
902 
903 // If there was an explicit dso_local, update GV. In the absence of an explicit
904 // dso_local we keep the default value.
905 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
906   if (DSOLocal)
907     GV.setDSOLocal(true);
908 }
909 
910 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
911                                               Type *Ty2) {
912   std::string ErrString;
913   raw_string_ostream ErrOS(ErrString);
914   ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
915   return ErrOS.str();
916 }
917 
918 /// parseAliasOrIFunc:
919 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
920 ///                     OptionalVisibility OptionalDLLStorageClass
921 ///                     OptionalThreadLocal OptionalUnnamedAddr
922 ///                     'alias|ifunc' AliaseeOrResolver SymbolAttrs*
923 ///
924 /// AliaseeOrResolver
925 ///   ::= TypeAndValue
926 ///
927 /// SymbolAttrs
928 ///   ::= ',' 'partition' StringConstant
929 ///
930 /// Everything through OptionalUnnamedAddr has already been parsed.
931 ///
932 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc,
933                                  unsigned L, unsigned Visibility,
934                                  unsigned DLLStorageClass, bool DSOLocal,
935                                  GlobalVariable::ThreadLocalMode TLM,
936                                  GlobalVariable::UnnamedAddr UnnamedAddr) {
937   bool IsAlias;
938   if (Lex.getKind() == lltok::kw_alias)
939     IsAlias = true;
940   else if (Lex.getKind() == lltok::kw_ifunc)
941     IsAlias = false;
942   else
943     llvm_unreachable("Not an alias or ifunc!");
944   Lex.Lex();
945 
946   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
947 
948   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
949     return error(NameLoc, "invalid linkage type for alias");
950 
951   if (!isValidVisibilityForLinkage(Visibility, L))
952     return error(NameLoc,
953                  "symbol with local linkage must have default visibility");
954 
955   Type *Ty;
956   LocTy ExplicitTypeLoc = Lex.getLoc();
957   if (parseType(Ty) ||
958       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
959     return true;
960 
961   Constant *Aliasee;
962   LocTy AliaseeLoc = Lex.getLoc();
963   if (Lex.getKind() != lltok::kw_bitcast &&
964       Lex.getKind() != lltok::kw_getelementptr &&
965       Lex.getKind() != lltok::kw_addrspacecast &&
966       Lex.getKind() != lltok::kw_inttoptr) {
967     if (parseGlobalTypeAndValue(Aliasee))
968       return true;
969   } else {
970     // The bitcast dest type is not present, it is implied by the dest type.
971     ValID ID;
972     if (parseValID(ID, /*PFS=*/nullptr))
973       return true;
974     if (ID.Kind != ValID::t_Constant)
975       return error(AliaseeLoc, "invalid aliasee");
976     Aliasee = ID.ConstantVal;
977   }
978 
979   Type *AliaseeType = Aliasee->getType();
980   auto *PTy = dyn_cast<PointerType>(AliaseeType);
981   if (!PTy)
982     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
983   unsigned AddrSpace = PTy->getAddressSpace();
984 
985   if (IsAlias && !PTy->isOpaqueOrPointeeTypeMatches(Ty)) {
986     return error(
987         ExplicitTypeLoc,
988         typeComparisonErrorMessage(
989             "explicit pointee type doesn't match operand's pointee type", Ty,
990             PTy->getElementType()));
991   }
992 
993   if (!IsAlias && !PTy->getElementType()->isFunctionTy()) {
994     return error(ExplicitTypeLoc,
995                  "explicit pointee type should be a function type");
996   }
997 
998   GlobalValue *GVal = nullptr;
999 
1000   // See if the alias was forward referenced, if so, prepare to replace the
1001   // forward reference.
1002   if (!Name.empty()) {
1003     auto I = ForwardRefVals.find(Name);
1004     if (I != ForwardRefVals.end()) {
1005       GVal = I->second.first;
1006       ForwardRefVals.erase(Name);
1007     } else if (M->getNamedValue(Name)) {
1008       return error(NameLoc, "redefinition of global '@" + Name + "'");
1009     }
1010   } else {
1011     auto I = ForwardRefValIDs.find(NumberedVals.size());
1012     if (I != ForwardRefValIDs.end()) {
1013       GVal = I->second.first;
1014       ForwardRefValIDs.erase(I);
1015     }
1016   }
1017 
1018   // Okay, create the alias/ifunc but do not insert it into the module yet.
1019   std::unique_ptr<GlobalAlias> GA;
1020   std::unique_ptr<GlobalIFunc> GI;
1021   GlobalValue *GV;
1022   if (IsAlias) {
1023     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1024                                  (GlobalValue::LinkageTypes)Linkage, Name,
1025                                  Aliasee, /*Parent*/ nullptr));
1026     GV = GA.get();
1027   } else {
1028     GI.reset(GlobalIFunc::create(Ty, AddrSpace,
1029                                  (GlobalValue::LinkageTypes)Linkage, Name,
1030                                  Aliasee, /*Parent*/ nullptr));
1031     GV = GI.get();
1032   }
1033   GV->setThreadLocalMode(TLM);
1034   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1035   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1036   GV->setUnnamedAddr(UnnamedAddr);
1037   maybeSetDSOLocal(DSOLocal, *GV);
1038 
1039   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1040   // Now parse them if there are any.
1041   while (Lex.getKind() == lltok::comma) {
1042     Lex.Lex();
1043 
1044     if (Lex.getKind() == lltok::kw_partition) {
1045       Lex.Lex();
1046       GV->setPartition(Lex.getStrVal());
1047       if (parseToken(lltok::StringConstant, "expected partition string"))
1048         return true;
1049     } else {
1050       return tokError("unknown alias or ifunc property!");
1051     }
1052   }
1053 
1054   if (Name.empty())
1055     NumberedVals.push_back(GV);
1056 
1057   if (GVal) {
1058     // Verify that types agree.
1059     if (GVal->getType() != GV->getType())
1060       return error(
1061           ExplicitTypeLoc,
1062           "forward reference and definition of alias have different types");
1063 
1064     // If they agree, just RAUW the old value with the alias and remove the
1065     // forward ref info.
1066     GVal->replaceAllUsesWith(GV);
1067     GVal->eraseFromParent();
1068   }
1069 
1070   // Insert into the module, we know its name won't collide now.
1071   if (IsAlias)
1072     M->getAliasList().push_back(GA.release());
1073   else
1074     M->getIFuncList().push_back(GI.release());
1075   assert(GV->getName() == Name && "Should not be a name conflict!");
1076 
1077   return false;
1078 }
1079 
1080 /// parseGlobal
1081 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1082 ///       OptionalVisibility OptionalDLLStorageClass
1083 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1084 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1085 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1086 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1087 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1088 ///       Const OptionalAttrs
1089 ///
1090 /// Everything up to and including OptionalUnnamedAddr has been parsed
1091 /// already.
1092 ///
1093 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1094                            unsigned Linkage, bool HasLinkage,
1095                            unsigned Visibility, unsigned DLLStorageClass,
1096                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1097                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1098   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1099     return error(NameLoc,
1100                  "symbol with local linkage must have default visibility");
1101 
1102   unsigned AddrSpace;
1103   bool IsConstant, IsExternallyInitialized;
1104   LocTy IsExternallyInitializedLoc;
1105   LocTy TyLoc;
1106 
1107   Type *Ty = nullptr;
1108   if (parseOptionalAddrSpace(AddrSpace) ||
1109       parseOptionalToken(lltok::kw_externally_initialized,
1110                          IsExternallyInitialized,
1111                          &IsExternallyInitializedLoc) ||
1112       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1113     return true;
1114 
1115   // If the linkage is specified and is external, then no initializer is
1116   // present.
1117   Constant *Init = nullptr;
1118   if (!HasLinkage ||
1119       !GlobalValue::isValidDeclarationLinkage(
1120           (GlobalValue::LinkageTypes)Linkage)) {
1121     if (parseGlobalValue(Ty, Init))
1122       return true;
1123   }
1124 
1125   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1126     return error(TyLoc, "invalid type for global variable");
1127 
1128   GlobalValue *GVal = nullptr;
1129 
1130   // See if the global was forward referenced, if so, use the global.
1131   if (!Name.empty()) {
1132     auto I = ForwardRefVals.find(Name);
1133     if (I != ForwardRefVals.end()) {
1134       GVal = I->second.first;
1135       ForwardRefVals.erase(I);
1136     } else if (M->getNamedValue(Name)) {
1137       return error(NameLoc, "redefinition of global '@" + Name + "'");
1138     }
1139   } else {
1140     auto I = ForwardRefValIDs.find(NumberedVals.size());
1141     if (I != ForwardRefValIDs.end()) {
1142       GVal = I->second.first;
1143       ForwardRefValIDs.erase(I);
1144     }
1145   }
1146 
1147   GlobalVariable *GV = new GlobalVariable(
1148       *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1149       GlobalVariable::NotThreadLocal, AddrSpace);
1150 
1151   if (Name.empty())
1152     NumberedVals.push_back(GV);
1153 
1154   // Set the parsed properties on the global.
1155   if (Init)
1156     GV->setInitializer(Init);
1157   GV->setConstant(IsConstant);
1158   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1159   maybeSetDSOLocal(DSOLocal, *GV);
1160   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1161   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1162   GV->setExternallyInitialized(IsExternallyInitialized);
1163   GV->setThreadLocalMode(TLM);
1164   GV->setUnnamedAddr(UnnamedAddr);
1165 
1166   if (GVal) {
1167     if (!GVal->getType()->isOpaque() && GVal->getValueType() != Ty)
1168       return error(
1169           TyLoc,
1170           "forward reference and definition of global have different types");
1171 
1172     GVal->replaceAllUsesWith(GV);
1173     GVal->eraseFromParent();
1174   }
1175 
1176   // parse attributes on the global.
1177   while (Lex.getKind() == lltok::comma) {
1178     Lex.Lex();
1179 
1180     if (Lex.getKind() == lltok::kw_section) {
1181       Lex.Lex();
1182       GV->setSection(Lex.getStrVal());
1183       if (parseToken(lltok::StringConstant, "expected global section string"))
1184         return true;
1185     } else if (Lex.getKind() == lltok::kw_partition) {
1186       Lex.Lex();
1187       GV->setPartition(Lex.getStrVal());
1188       if (parseToken(lltok::StringConstant, "expected partition string"))
1189         return true;
1190     } else if (Lex.getKind() == lltok::kw_align) {
1191       MaybeAlign Alignment;
1192       if (parseOptionalAlignment(Alignment))
1193         return true;
1194       GV->setAlignment(Alignment);
1195     } else if (Lex.getKind() == lltok::MetadataVar) {
1196       if (parseGlobalObjectMetadataAttachment(*GV))
1197         return true;
1198     } else {
1199       Comdat *C;
1200       if (parseOptionalComdat(Name, C))
1201         return true;
1202       if (C)
1203         GV->setComdat(C);
1204       else
1205         return tokError("unknown global variable property!");
1206     }
1207   }
1208 
1209   AttrBuilder Attrs;
1210   LocTy BuiltinLoc;
1211   std::vector<unsigned> FwdRefAttrGrps;
1212   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1213     return true;
1214   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1215     GV->setAttributes(AttributeSet::get(Context, Attrs));
1216     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1217   }
1218 
1219   return false;
1220 }
1221 
1222 /// parseUnnamedAttrGrp
1223 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1224 bool LLParser::parseUnnamedAttrGrp() {
1225   assert(Lex.getKind() == lltok::kw_attributes);
1226   LocTy AttrGrpLoc = Lex.getLoc();
1227   Lex.Lex();
1228 
1229   if (Lex.getKind() != lltok::AttrGrpID)
1230     return tokError("expected attribute group id");
1231 
1232   unsigned VarID = Lex.getUIntVal();
1233   std::vector<unsigned> unused;
1234   LocTy BuiltinLoc;
1235   Lex.Lex();
1236 
1237   if (parseToken(lltok::equal, "expected '=' here") ||
1238       parseToken(lltok::lbrace, "expected '{' here") ||
1239       parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1240                                  BuiltinLoc) ||
1241       parseToken(lltok::rbrace, "expected end of attribute group"))
1242     return true;
1243 
1244   if (!NumberedAttrBuilders[VarID].hasAttributes())
1245     return error(AttrGrpLoc, "attribute group has no attributes");
1246 
1247   return false;
1248 }
1249 
1250 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
1251   switch (Kind) {
1252 #define GET_ATTR_NAMES
1253 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
1254   case lltok::kw_##DISPLAY_NAME: \
1255     return Attribute::ENUM_NAME;
1256 #include "llvm/IR/Attributes.inc"
1257   default:
1258     return Attribute::None;
1259   }
1260 }
1261 
1262 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
1263                                   bool InAttrGroup) {
1264   if (Attribute::isTypeAttrKind(Attr))
1265     return parseRequiredTypeAttr(B, Lex.getKind(), Attr);
1266 
1267   switch (Attr) {
1268   case Attribute::Alignment: {
1269     MaybeAlign Alignment;
1270     if (InAttrGroup) {
1271       uint32_t Value = 0;
1272       Lex.Lex();
1273       if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1274         return true;
1275       Alignment = Align(Value);
1276     } else {
1277       if (parseOptionalAlignment(Alignment, true))
1278         return true;
1279     }
1280     B.addAlignmentAttr(Alignment);
1281     return false;
1282   }
1283   case Attribute::StackAlignment: {
1284     unsigned Alignment;
1285     if (InAttrGroup) {
1286       Lex.Lex();
1287       if (parseToken(lltok::equal, "expected '=' here") ||
1288           parseUInt32(Alignment))
1289         return true;
1290     } else {
1291       if (parseOptionalStackAlignment(Alignment))
1292         return true;
1293     }
1294     B.addStackAlignmentAttr(Alignment);
1295     return false;
1296   }
1297   case Attribute::AllocSize: {
1298     unsigned ElemSizeArg;
1299     Optional<unsigned> NumElemsArg;
1300     if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1301       return true;
1302     B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1303     return false;
1304   }
1305   case Attribute::VScaleRange: {
1306     unsigned MinValue, MaxValue;
1307     if (parseVScaleRangeArguments(MinValue, MaxValue))
1308       return true;
1309     B.addVScaleRangeAttr(MinValue,
1310                          MaxValue > 0 ? MaxValue : Optional<unsigned>());
1311     return false;
1312   }
1313   case Attribute::Dereferenceable: {
1314     uint64_t Bytes;
1315     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1316       return true;
1317     B.addDereferenceableAttr(Bytes);
1318     return false;
1319   }
1320   case Attribute::DereferenceableOrNull: {
1321     uint64_t Bytes;
1322     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1323       return true;
1324     B.addDereferenceableOrNullAttr(Bytes);
1325     return false;
1326   }
1327   default:
1328     B.addAttribute(Attr);
1329     Lex.Lex();
1330     return false;
1331   }
1332 }
1333 
1334 /// parseFnAttributeValuePairs
1335 ///   ::= <attr> | <attr> '=' <value>
1336 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1337                                           std::vector<unsigned> &FwdRefAttrGrps,
1338                                           bool InAttrGrp, LocTy &BuiltinLoc) {
1339   bool HaveError = false;
1340 
1341   B.clear();
1342 
1343   while (true) {
1344     lltok::Kind Token = Lex.getKind();
1345     if (Token == lltok::rbrace)
1346       return HaveError; // Finished.
1347 
1348     if (Token == lltok::StringConstant) {
1349       if (parseStringAttribute(B))
1350         return true;
1351       continue;
1352     }
1353 
1354     if (Token == lltok::AttrGrpID) {
1355       // Allow a function to reference an attribute group:
1356       //
1357       //   define void @foo() #1 { ... }
1358       if (InAttrGrp) {
1359         HaveError |= error(
1360             Lex.getLoc(),
1361             "cannot have an attribute group reference in an attribute group");
1362       } else {
1363         // Save the reference to the attribute group. We'll fill it in later.
1364         FwdRefAttrGrps.push_back(Lex.getUIntVal());
1365       }
1366       Lex.Lex();
1367       continue;
1368     }
1369 
1370     SMLoc Loc = Lex.getLoc();
1371     if (Token == lltok::kw_builtin)
1372       BuiltinLoc = Loc;
1373 
1374     Attribute::AttrKind Attr = tokenToAttribute(Token);
1375     if (Attr == Attribute::None) {
1376       if (!InAttrGrp)
1377         return HaveError;
1378       return error(Lex.getLoc(), "unterminated attribute group");
1379     }
1380 
1381     if (parseEnumAttribute(Attr, B, InAttrGrp))
1382       return true;
1383 
1384     // As a hack, we allow function alignment to be initially parsed as an
1385     // attribute on a function declaration/definition or added to an attribute
1386     // group and later moved to the alignment field.
1387     if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment)
1388       HaveError |= error(Loc, "this attribute does not apply to functions");
1389   }
1390 }
1391 
1392 //===----------------------------------------------------------------------===//
1393 // GlobalValue Reference/Resolution Routines.
1394 //===----------------------------------------------------------------------===//
1395 
1396 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1397   // For opaque pointers, the used global type does not matter. We will later
1398   // RAUW it with a global/function of the correct type.
1399   if (PTy->isOpaque())
1400     return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1401                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1402                               nullptr, GlobalVariable::NotThreadLocal,
1403                               PTy->getAddressSpace());
1404 
1405   if (auto *FT = dyn_cast<FunctionType>(PTy->getPointerElementType()))
1406     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1407                             PTy->getAddressSpace(), "", M);
1408   else
1409     return new GlobalVariable(*M, PTy->getPointerElementType(), false,
1410                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1411                               nullptr, GlobalVariable::NotThreadLocal,
1412                               PTy->getAddressSpace());
1413 }
1414 
1415 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1416                                         Value *Val) {
1417   Type *ValTy = Val->getType();
1418   if (ValTy == Ty)
1419     return Val;
1420   if (Ty->isLabelTy())
1421     error(Loc, "'" + Name + "' is not a basic block");
1422   else
1423     error(Loc, "'" + Name + "' defined with type '" +
1424                    getTypeString(Val->getType()) + "' but expected '" +
1425                    getTypeString(Ty) + "'");
1426   return nullptr;
1427 }
1428 
1429 /// getGlobalVal - Get a value with the specified name or ID, creating a
1430 /// forward reference record if needed.  This can return null if the value
1431 /// exists but does not have the right type.
1432 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1433                                     LocTy Loc) {
1434   PointerType *PTy = dyn_cast<PointerType>(Ty);
1435   if (!PTy) {
1436     error(Loc, "global variable reference must have pointer type");
1437     return nullptr;
1438   }
1439 
1440   // Look this name up in the normal function symbol table.
1441   GlobalValue *Val =
1442     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1443 
1444   // If this is a forward reference for the value, see if we already created a
1445   // forward ref record.
1446   if (!Val) {
1447     auto I = ForwardRefVals.find(Name);
1448     if (I != ForwardRefVals.end())
1449       Val = I->second.first;
1450   }
1451 
1452   // If we have the value in the symbol table or fwd-ref table, return it.
1453   if (Val)
1454     return cast_or_null<GlobalValue>(
1455         checkValidVariableType(Loc, "@" + Name, Ty, Val));
1456 
1457   // Otherwise, create a new forward reference for this value and remember it.
1458   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1459   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1460   return FwdVal;
1461 }
1462 
1463 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1464   PointerType *PTy = dyn_cast<PointerType>(Ty);
1465   if (!PTy) {
1466     error(Loc, "global variable reference must have pointer type");
1467     return nullptr;
1468   }
1469 
1470   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1471 
1472   // If this is a forward reference for the value, see if we already created a
1473   // forward ref record.
1474   if (!Val) {
1475     auto I = ForwardRefValIDs.find(ID);
1476     if (I != ForwardRefValIDs.end())
1477       Val = I->second.first;
1478   }
1479 
1480   // If we have the value in the symbol table or fwd-ref table, return it.
1481   if (Val)
1482     return cast_or_null<GlobalValue>(
1483         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val));
1484 
1485   // Otherwise, create a new forward reference for this value and remember it.
1486   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1487   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1488   return FwdVal;
1489 }
1490 
1491 //===----------------------------------------------------------------------===//
1492 // Comdat Reference/Resolution Routines.
1493 //===----------------------------------------------------------------------===//
1494 
1495 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1496   // Look this name up in the comdat symbol table.
1497   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1498   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1499   if (I != ComdatSymTab.end())
1500     return &I->second;
1501 
1502   // Otherwise, create a new forward reference for this value and remember it.
1503   Comdat *C = M->getOrInsertComdat(Name);
1504   ForwardRefComdats[Name] = Loc;
1505   return C;
1506 }
1507 
1508 //===----------------------------------------------------------------------===//
1509 // Helper Routines.
1510 //===----------------------------------------------------------------------===//
1511 
1512 /// parseToken - If the current token has the specified kind, eat it and return
1513 /// success.  Otherwise, emit the specified error and return failure.
1514 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1515   if (Lex.getKind() != T)
1516     return tokError(ErrMsg);
1517   Lex.Lex();
1518   return false;
1519 }
1520 
1521 /// parseStringConstant
1522 ///   ::= StringConstant
1523 bool LLParser::parseStringConstant(std::string &Result) {
1524   if (Lex.getKind() != lltok::StringConstant)
1525     return tokError("expected string constant");
1526   Result = Lex.getStrVal();
1527   Lex.Lex();
1528   return false;
1529 }
1530 
1531 /// parseUInt32
1532 ///   ::= uint32
1533 bool LLParser::parseUInt32(uint32_t &Val) {
1534   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1535     return tokError("expected integer");
1536   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1537   if (Val64 != unsigned(Val64))
1538     return tokError("expected 32-bit integer (too large)");
1539   Val = Val64;
1540   Lex.Lex();
1541   return false;
1542 }
1543 
1544 /// parseUInt64
1545 ///   ::= uint64
1546 bool LLParser::parseUInt64(uint64_t &Val) {
1547   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1548     return tokError("expected integer");
1549   Val = Lex.getAPSIntVal().getLimitedValue();
1550   Lex.Lex();
1551   return false;
1552 }
1553 
1554 /// parseTLSModel
1555 ///   := 'localdynamic'
1556 ///   := 'initialexec'
1557 ///   := 'localexec'
1558 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1559   switch (Lex.getKind()) {
1560     default:
1561       return tokError("expected localdynamic, initialexec or localexec");
1562     case lltok::kw_localdynamic:
1563       TLM = GlobalVariable::LocalDynamicTLSModel;
1564       break;
1565     case lltok::kw_initialexec:
1566       TLM = GlobalVariable::InitialExecTLSModel;
1567       break;
1568     case lltok::kw_localexec:
1569       TLM = GlobalVariable::LocalExecTLSModel;
1570       break;
1571   }
1572 
1573   Lex.Lex();
1574   return false;
1575 }
1576 
1577 /// parseOptionalThreadLocal
1578 ///   := /*empty*/
1579 ///   := 'thread_local'
1580 ///   := 'thread_local' '(' tlsmodel ')'
1581 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1582   TLM = GlobalVariable::NotThreadLocal;
1583   if (!EatIfPresent(lltok::kw_thread_local))
1584     return false;
1585 
1586   TLM = GlobalVariable::GeneralDynamicTLSModel;
1587   if (Lex.getKind() == lltok::lparen) {
1588     Lex.Lex();
1589     return parseTLSModel(TLM) ||
1590            parseToken(lltok::rparen, "expected ')' after thread local model");
1591   }
1592   return false;
1593 }
1594 
1595 /// parseOptionalAddrSpace
1596 ///   := /*empty*/
1597 ///   := 'addrspace' '(' uint32 ')'
1598 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1599   AddrSpace = DefaultAS;
1600   if (!EatIfPresent(lltok::kw_addrspace))
1601     return false;
1602   return parseToken(lltok::lparen, "expected '(' in address space") ||
1603          parseUInt32(AddrSpace) ||
1604          parseToken(lltok::rparen, "expected ')' in address space");
1605 }
1606 
1607 /// parseStringAttribute
1608 ///   := StringConstant
1609 ///   := StringConstant '=' StringConstant
1610 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1611   std::string Attr = Lex.getStrVal();
1612   Lex.Lex();
1613   std::string Val;
1614   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1615     return true;
1616   B.addAttribute(Attr, Val);
1617   return false;
1618 }
1619 
1620 /// Parse a potentially empty list of parameter or return attributes.
1621 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
1622   bool HaveError = false;
1623 
1624   B.clear();
1625 
1626   while (true) {
1627     lltok::Kind Token = Lex.getKind();
1628     if (Token == lltok::StringConstant) {
1629       if (parseStringAttribute(B))
1630         return true;
1631       continue;
1632     }
1633 
1634     SMLoc Loc = Lex.getLoc();
1635     Attribute::AttrKind Attr = tokenToAttribute(Token);
1636     if (Attr == Attribute::None)
1637       return HaveError;
1638 
1639     if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
1640       return true;
1641 
1642     if (IsParam && !Attribute::canUseAsParamAttr(Attr))
1643       HaveError |= error(Loc, "this attribute does not apply to parameters");
1644     if (!IsParam && !Attribute::canUseAsRetAttr(Attr))
1645       HaveError |= error(Loc, "this attribute does not apply to return values");
1646   }
1647 }
1648 
1649 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1650   HasLinkage = true;
1651   switch (Kind) {
1652   default:
1653     HasLinkage = false;
1654     return GlobalValue::ExternalLinkage;
1655   case lltok::kw_private:
1656     return GlobalValue::PrivateLinkage;
1657   case lltok::kw_internal:
1658     return GlobalValue::InternalLinkage;
1659   case lltok::kw_weak:
1660     return GlobalValue::WeakAnyLinkage;
1661   case lltok::kw_weak_odr:
1662     return GlobalValue::WeakODRLinkage;
1663   case lltok::kw_linkonce:
1664     return GlobalValue::LinkOnceAnyLinkage;
1665   case lltok::kw_linkonce_odr:
1666     return GlobalValue::LinkOnceODRLinkage;
1667   case lltok::kw_available_externally:
1668     return GlobalValue::AvailableExternallyLinkage;
1669   case lltok::kw_appending:
1670     return GlobalValue::AppendingLinkage;
1671   case lltok::kw_common:
1672     return GlobalValue::CommonLinkage;
1673   case lltok::kw_extern_weak:
1674     return GlobalValue::ExternalWeakLinkage;
1675   case lltok::kw_external:
1676     return GlobalValue::ExternalLinkage;
1677   }
1678 }
1679 
1680 /// parseOptionalLinkage
1681 ///   ::= /*empty*/
1682 ///   ::= 'private'
1683 ///   ::= 'internal'
1684 ///   ::= 'weak'
1685 ///   ::= 'weak_odr'
1686 ///   ::= 'linkonce'
1687 ///   ::= 'linkonce_odr'
1688 ///   ::= 'available_externally'
1689 ///   ::= 'appending'
1690 ///   ::= 'common'
1691 ///   ::= 'extern_weak'
1692 ///   ::= 'external'
1693 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1694                                     unsigned &Visibility,
1695                                     unsigned &DLLStorageClass, bool &DSOLocal) {
1696   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1697   if (HasLinkage)
1698     Lex.Lex();
1699   parseOptionalDSOLocal(DSOLocal);
1700   parseOptionalVisibility(Visibility);
1701   parseOptionalDLLStorageClass(DLLStorageClass);
1702 
1703   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1704     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1705   }
1706 
1707   return false;
1708 }
1709 
1710 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
1711   switch (Lex.getKind()) {
1712   default:
1713     DSOLocal = false;
1714     break;
1715   case lltok::kw_dso_local:
1716     DSOLocal = true;
1717     Lex.Lex();
1718     break;
1719   case lltok::kw_dso_preemptable:
1720     DSOLocal = false;
1721     Lex.Lex();
1722     break;
1723   }
1724 }
1725 
1726 /// parseOptionalVisibility
1727 ///   ::= /*empty*/
1728 ///   ::= 'default'
1729 ///   ::= 'hidden'
1730 ///   ::= 'protected'
1731 ///
1732 void LLParser::parseOptionalVisibility(unsigned &Res) {
1733   switch (Lex.getKind()) {
1734   default:
1735     Res = GlobalValue::DefaultVisibility;
1736     return;
1737   case lltok::kw_default:
1738     Res = GlobalValue::DefaultVisibility;
1739     break;
1740   case lltok::kw_hidden:
1741     Res = GlobalValue::HiddenVisibility;
1742     break;
1743   case lltok::kw_protected:
1744     Res = GlobalValue::ProtectedVisibility;
1745     break;
1746   }
1747   Lex.Lex();
1748 }
1749 
1750 /// parseOptionalDLLStorageClass
1751 ///   ::= /*empty*/
1752 ///   ::= 'dllimport'
1753 ///   ::= 'dllexport'
1754 ///
1755 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
1756   switch (Lex.getKind()) {
1757   default:
1758     Res = GlobalValue::DefaultStorageClass;
1759     return;
1760   case lltok::kw_dllimport:
1761     Res = GlobalValue::DLLImportStorageClass;
1762     break;
1763   case lltok::kw_dllexport:
1764     Res = GlobalValue::DLLExportStorageClass;
1765     break;
1766   }
1767   Lex.Lex();
1768 }
1769 
1770 /// parseOptionalCallingConv
1771 ///   ::= /*empty*/
1772 ///   ::= 'ccc'
1773 ///   ::= 'fastcc'
1774 ///   ::= 'intel_ocl_bicc'
1775 ///   ::= 'coldcc'
1776 ///   ::= 'cfguard_checkcc'
1777 ///   ::= 'x86_stdcallcc'
1778 ///   ::= 'x86_fastcallcc'
1779 ///   ::= 'x86_thiscallcc'
1780 ///   ::= 'x86_vectorcallcc'
1781 ///   ::= 'arm_apcscc'
1782 ///   ::= 'arm_aapcscc'
1783 ///   ::= 'arm_aapcs_vfpcc'
1784 ///   ::= 'aarch64_vector_pcs'
1785 ///   ::= 'aarch64_sve_vector_pcs'
1786 ///   ::= 'msp430_intrcc'
1787 ///   ::= 'avr_intrcc'
1788 ///   ::= 'avr_signalcc'
1789 ///   ::= 'ptx_kernel'
1790 ///   ::= 'ptx_device'
1791 ///   ::= 'spir_func'
1792 ///   ::= 'spir_kernel'
1793 ///   ::= 'x86_64_sysvcc'
1794 ///   ::= 'win64cc'
1795 ///   ::= 'webkit_jscc'
1796 ///   ::= 'anyregcc'
1797 ///   ::= 'preserve_mostcc'
1798 ///   ::= 'preserve_allcc'
1799 ///   ::= 'ghccc'
1800 ///   ::= 'swiftcc'
1801 ///   ::= 'swifttailcc'
1802 ///   ::= 'x86_intrcc'
1803 ///   ::= 'hhvmcc'
1804 ///   ::= 'hhvm_ccc'
1805 ///   ::= 'cxx_fast_tlscc'
1806 ///   ::= 'amdgpu_vs'
1807 ///   ::= 'amdgpu_ls'
1808 ///   ::= 'amdgpu_hs'
1809 ///   ::= 'amdgpu_es'
1810 ///   ::= 'amdgpu_gs'
1811 ///   ::= 'amdgpu_ps'
1812 ///   ::= 'amdgpu_cs'
1813 ///   ::= 'amdgpu_kernel'
1814 ///   ::= 'tailcc'
1815 ///   ::= 'cc' UINT
1816 ///
1817 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
1818   switch (Lex.getKind()) {
1819   default:                       CC = CallingConv::C; return false;
1820   case lltok::kw_ccc:            CC = CallingConv::C; break;
1821   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1822   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1823   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
1824   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1825   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1826   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1827   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1828   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1829   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1830   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1831   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1832   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1833   case lltok::kw_aarch64_sve_vector_pcs:
1834     CC = CallingConv::AArch64_SVE_VectorCall;
1835     break;
1836   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1837   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1838   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1839   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1840   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1841   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1842   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1843   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1844   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1845   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1846   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1847   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1848   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1849   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1850   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1851   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1852   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
1853   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1854   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1855   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1856   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1857   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1858   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
1859   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1860   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1861   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1862   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1863   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1864   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1865   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1866   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
1867   case lltok::kw_cc: {
1868       Lex.Lex();
1869       return parseUInt32(CC);
1870     }
1871   }
1872 
1873   Lex.Lex();
1874   return false;
1875 }
1876 
1877 /// parseMetadataAttachment
1878 ///   ::= !dbg !42
1879 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1880   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1881 
1882   std::string Name = Lex.getStrVal();
1883   Kind = M->getMDKindID(Name);
1884   Lex.Lex();
1885 
1886   return parseMDNode(MD);
1887 }
1888 
1889 /// parseInstructionMetadata
1890 ///   ::= !dbg !42 (',' !dbg !57)*
1891 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
1892   do {
1893     if (Lex.getKind() != lltok::MetadataVar)
1894       return tokError("expected metadata after comma");
1895 
1896     unsigned MDK;
1897     MDNode *N;
1898     if (parseMetadataAttachment(MDK, N))
1899       return true;
1900 
1901     Inst.setMetadata(MDK, N);
1902     if (MDK == LLVMContext::MD_tbaa)
1903       InstsWithTBAATag.push_back(&Inst);
1904 
1905     // If this is the end of the list, we're done.
1906   } while (EatIfPresent(lltok::comma));
1907   return false;
1908 }
1909 
1910 /// parseGlobalObjectMetadataAttachment
1911 ///   ::= !dbg !57
1912 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1913   unsigned MDK;
1914   MDNode *N;
1915   if (parseMetadataAttachment(MDK, N))
1916     return true;
1917 
1918   GO.addMetadata(MDK, *N);
1919   return false;
1920 }
1921 
1922 /// parseOptionalFunctionMetadata
1923 ///   ::= (!dbg !57)*
1924 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
1925   while (Lex.getKind() == lltok::MetadataVar)
1926     if (parseGlobalObjectMetadataAttachment(F))
1927       return true;
1928   return false;
1929 }
1930 
1931 /// parseOptionalAlignment
1932 ///   ::= /* empty */
1933 ///   ::= 'align' 4
1934 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
1935   Alignment = None;
1936   if (!EatIfPresent(lltok::kw_align))
1937     return false;
1938   LocTy AlignLoc = Lex.getLoc();
1939   uint64_t Value = 0;
1940 
1941   LocTy ParenLoc = Lex.getLoc();
1942   bool HaveParens = false;
1943   if (AllowParens) {
1944     if (EatIfPresent(lltok::lparen))
1945       HaveParens = true;
1946   }
1947 
1948   if (parseUInt64(Value))
1949     return true;
1950 
1951   if (HaveParens && !EatIfPresent(lltok::rparen))
1952     return error(ParenLoc, "expected ')'");
1953 
1954   if (!isPowerOf2_64(Value))
1955     return error(AlignLoc, "alignment is not a power of two");
1956   if (Value > Value::MaximumAlignment)
1957     return error(AlignLoc, "huge alignments are not supported yet");
1958   Alignment = Align(Value);
1959   return false;
1960 }
1961 
1962 /// parseOptionalDerefAttrBytes
1963 ///   ::= /* empty */
1964 ///   ::= AttrKind '(' 4 ')'
1965 ///
1966 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1967 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1968                                            uint64_t &Bytes) {
1969   assert((AttrKind == lltok::kw_dereferenceable ||
1970           AttrKind == lltok::kw_dereferenceable_or_null) &&
1971          "contract!");
1972 
1973   Bytes = 0;
1974   if (!EatIfPresent(AttrKind))
1975     return false;
1976   LocTy ParenLoc = Lex.getLoc();
1977   if (!EatIfPresent(lltok::lparen))
1978     return error(ParenLoc, "expected '('");
1979   LocTy DerefLoc = Lex.getLoc();
1980   if (parseUInt64(Bytes))
1981     return true;
1982   ParenLoc = Lex.getLoc();
1983   if (!EatIfPresent(lltok::rparen))
1984     return error(ParenLoc, "expected ')'");
1985   if (!Bytes)
1986     return error(DerefLoc, "dereferenceable bytes must be non-zero");
1987   return false;
1988 }
1989 
1990 /// parseOptionalCommaAlign
1991 ///   ::=
1992 ///   ::= ',' align 4
1993 ///
1994 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1995 /// end.
1996 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
1997                                        bool &AteExtraComma) {
1998   AteExtraComma = false;
1999   while (EatIfPresent(lltok::comma)) {
2000     // Metadata at the end is an early exit.
2001     if (Lex.getKind() == lltok::MetadataVar) {
2002       AteExtraComma = true;
2003       return false;
2004     }
2005 
2006     if (Lex.getKind() != lltok::kw_align)
2007       return error(Lex.getLoc(), "expected metadata or 'align'");
2008 
2009     if (parseOptionalAlignment(Alignment))
2010       return true;
2011   }
2012 
2013   return false;
2014 }
2015 
2016 /// parseOptionalCommaAddrSpace
2017 ///   ::=
2018 ///   ::= ',' addrspace(1)
2019 ///
2020 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2021 /// end.
2022 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2023                                            bool &AteExtraComma) {
2024   AteExtraComma = false;
2025   while (EatIfPresent(lltok::comma)) {
2026     // Metadata at the end is an early exit.
2027     if (Lex.getKind() == lltok::MetadataVar) {
2028       AteExtraComma = true;
2029       return false;
2030     }
2031 
2032     Loc = Lex.getLoc();
2033     if (Lex.getKind() != lltok::kw_addrspace)
2034       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2035 
2036     if (parseOptionalAddrSpace(AddrSpace))
2037       return true;
2038   }
2039 
2040   return false;
2041 }
2042 
2043 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2044                                        Optional<unsigned> &HowManyArg) {
2045   Lex.Lex();
2046 
2047   auto StartParen = Lex.getLoc();
2048   if (!EatIfPresent(lltok::lparen))
2049     return error(StartParen, "expected '('");
2050 
2051   if (parseUInt32(BaseSizeArg))
2052     return true;
2053 
2054   if (EatIfPresent(lltok::comma)) {
2055     auto HowManyAt = Lex.getLoc();
2056     unsigned HowMany;
2057     if (parseUInt32(HowMany))
2058       return true;
2059     if (HowMany == BaseSizeArg)
2060       return error(HowManyAt,
2061                    "'allocsize' indices can't refer to the same parameter");
2062     HowManyArg = HowMany;
2063   } else
2064     HowManyArg = None;
2065 
2066   auto EndParen = Lex.getLoc();
2067   if (!EatIfPresent(lltok::rparen))
2068     return error(EndParen, "expected ')'");
2069   return false;
2070 }
2071 
2072 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2073                                          unsigned &MaxValue) {
2074   Lex.Lex();
2075 
2076   auto StartParen = Lex.getLoc();
2077   if (!EatIfPresent(lltok::lparen))
2078     return error(StartParen, "expected '('");
2079 
2080   if (parseUInt32(MinValue))
2081     return true;
2082 
2083   if (EatIfPresent(lltok::comma)) {
2084     if (parseUInt32(MaxValue))
2085       return true;
2086   } else
2087     MaxValue = MinValue;
2088 
2089   auto EndParen = Lex.getLoc();
2090   if (!EatIfPresent(lltok::rparen))
2091     return error(EndParen, "expected ')'");
2092   return false;
2093 }
2094 
2095 /// parseScopeAndOrdering
2096 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2097 ///   else: ::=
2098 ///
2099 /// This sets Scope and Ordering to the parsed values.
2100 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2101                                      AtomicOrdering &Ordering) {
2102   if (!IsAtomic)
2103     return false;
2104 
2105   return parseScope(SSID) || parseOrdering(Ordering);
2106 }
2107 
2108 /// parseScope
2109 ///   ::= syncscope("singlethread" | "<target scope>")?
2110 ///
2111 /// This sets synchronization scope ID to the ID of the parsed value.
2112 bool LLParser::parseScope(SyncScope::ID &SSID) {
2113   SSID = SyncScope::System;
2114   if (EatIfPresent(lltok::kw_syncscope)) {
2115     auto StartParenAt = Lex.getLoc();
2116     if (!EatIfPresent(lltok::lparen))
2117       return error(StartParenAt, "Expected '(' in syncscope");
2118 
2119     std::string SSN;
2120     auto SSNAt = Lex.getLoc();
2121     if (parseStringConstant(SSN))
2122       return error(SSNAt, "Expected synchronization scope name");
2123 
2124     auto EndParenAt = Lex.getLoc();
2125     if (!EatIfPresent(lltok::rparen))
2126       return error(EndParenAt, "Expected ')' in syncscope");
2127 
2128     SSID = Context.getOrInsertSyncScopeID(SSN);
2129   }
2130 
2131   return false;
2132 }
2133 
2134 /// parseOrdering
2135 ///   ::= AtomicOrdering
2136 ///
2137 /// This sets Ordering to the parsed value.
2138 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2139   switch (Lex.getKind()) {
2140   default:
2141     return tokError("Expected ordering on atomic instruction");
2142   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2143   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2144   // Not specified yet:
2145   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2146   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2147   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2148   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2149   case lltok::kw_seq_cst:
2150     Ordering = AtomicOrdering::SequentiallyConsistent;
2151     break;
2152   }
2153   Lex.Lex();
2154   return false;
2155 }
2156 
2157 /// parseOptionalStackAlignment
2158 ///   ::= /* empty */
2159 ///   ::= 'alignstack' '(' 4 ')'
2160 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2161   Alignment = 0;
2162   if (!EatIfPresent(lltok::kw_alignstack))
2163     return false;
2164   LocTy ParenLoc = Lex.getLoc();
2165   if (!EatIfPresent(lltok::lparen))
2166     return error(ParenLoc, "expected '('");
2167   LocTy AlignLoc = Lex.getLoc();
2168   if (parseUInt32(Alignment))
2169     return true;
2170   ParenLoc = Lex.getLoc();
2171   if (!EatIfPresent(lltok::rparen))
2172     return error(ParenLoc, "expected ')'");
2173   if (!isPowerOf2_32(Alignment))
2174     return error(AlignLoc, "stack alignment is not a power of two");
2175   return false;
2176 }
2177 
2178 /// parseIndexList - This parses the index list for an insert/extractvalue
2179 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2180 /// comma at the end of the line and find that it is followed by metadata.
2181 /// Clients that don't allow metadata can call the version of this function that
2182 /// only takes one argument.
2183 ///
2184 /// parseIndexList
2185 ///    ::=  (',' uint32)+
2186 ///
2187 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2188                               bool &AteExtraComma) {
2189   AteExtraComma = false;
2190 
2191   if (Lex.getKind() != lltok::comma)
2192     return tokError("expected ',' as start of index list");
2193 
2194   while (EatIfPresent(lltok::comma)) {
2195     if (Lex.getKind() == lltok::MetadataVar) {
2196       if (Indices.empty())
2197         return tokError("expected index");
2198       AteExtraComma = true;
2199       return false;
2200     }
2201     unsigned Idx = 0;
2202     if (parseUInt32(Idx))
2203       return true;
2204     Indices.push_back(Idx);
2205   }
2206 
2207   return false;
2208 }
2209 
2210 //===----------------------------------------------------------------------===//
2211 // Type Parsing.
2212 //===----------------------------------------------------------------------===//
2213 
2214 /// parseType - parse a type.
2215 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2216   SMLoc TypeLoc = Lex.getLoc();
2217   switch (Lex.getKind()) {
2218   default:
2219     return tokError(Msg);
2220   case lltok::Type:
2221     // Type ::= 'float' | 'void' (etc)
2222     Result = Lex.getTyVal();
2223     Lex.Lex();
2224 
2225     // Handle "ptr" opaque pointer type.
2226     //
2227     // Type ::= ptr ('addrspace' '(' uint32 ')')?
2228     if (Result->isOpaquePointerTy()) {
2229       unsigned AddrSpace;
2230       if (parseOptionalAddrSpace(AddrSpace))
2231         return true;
2232       Result = PointerType::get(getContext(), AddrSpace);
2233 
2234       // Give a nice error for 'ptr*'.
2235       if (Lex.getKind() == lltok::star)
2236         return tokError("ptr* is invalid - use ptr instead");
2237 
2238       // Fall through to parsing the type suffixes only if this 'ptr' is a
2239       // function return. Otherwise, return success, implicitly rejecting other
2240       // suffixes.
2241       if (Lex.getKind() != lltok::lparen)
2242         return false;
2243     }
2244     break;
2245   case lltok::lbrace:
2246     // Type ::= StructType
2247     if (parseAnonStructType(Result, false))
2248       return true;
2249     break;
2250   case lltok::lsquare:
2251     // Type ::= '[' ... ']'
2252     Lex.Lex(); // eat the lsquare.
2253     if (parseArrayVectorType(Result, false))
2254       return true;
2255     break;
2256   case lltok::less: // Either vector or packed struct.
2257     // Type ::= '<' ... '>'
2258     Lex.Lex();
2259     if (Lex.getKind() == lltok::lbrace) {
2260       if (parseAnonStructType(Result, true) ||
2261           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2262         return true;
2263     } else if (parseArrayVectorType(Result, true))
2264       return true;
2265     break;
2266   case lltok::LocalVar: {
2267     // Type ::= %foo
2268     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2269 
2270     // If the type hasn't been defined yet, create a forward definition and
2271     // remember where that forward def'n was seen (in case it never is defined).
2272     if (!Entry.first) {
2273       Entry.first = StructType::create(Context, Lex.getStrVal());
2274       Entry.second = Lex.getLoc();
2275     }
2276     Result = Entry.first;
2277     Lex.Lex();
2278     break;
2279   }
2280 
2281   case lltok::LocalVarID: {
2282     // Type ::= %4
2283     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2284 
2285     // If the type hasn't been defined yet, create a forward definition and
2286     // remember where that forward def'n was seen (in case it never is defined).
2287     if (!Entry.first) {
2288       Entry.first = StructType::create(Context);
2289       Entry.second = Lex.getLoc();
2290     }
2291     Result = Entry.first;
2292     Lex.Lex();
2293     break;
2294   }
2295   }
2296 
2297   // parse the type suffixes.
2298   while (true) {
2299     switch (Lex.getKind()) {
2300     // End of type.
2301     default:
2302       if (!AllowVoid && Result->isVoidTy())
2303         return error(TypeLoc, "void type only allowed for function results");
2304       return false;
2305 
2306     // Type ::= Type '*'
2307     case lltok::star:
2308       if (Result->isLabelTy())
2309         return tokError("basic block pointers are invalid");
2310       if (Result->isVoidTy())
2311         return tokError("pointers to void are invalid - use i8* instead");
2312       if (!PointerType::isValidElementType(Result))
2313         return tokError("pointer to this type is invalid");
2314       Result = PointerType::getUnqual(Result);
2315       Lex.Lex();
2316       break;
2317 
2318     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2319     case lltok::kw_addrspace: {
2320       if (Result->isLabelTy())
2321         return tokError("basic block pointers are invalid");
2322       if (Result->isVoidTy())
2323         return tokError("pointers to void are invalid; use i8* instead");
2324       if (!PointerType::isValidElementType(Result))
2325         return tokError("pointer to this type is invalid");
2326       unsigned AddrSpace;
2327       if (parseOptionalAddrSpace(AddrSpace) ||
2328           parseToken(lltok::star, "expected '*' in address space"))
2329         return true;
2330 
2331       Result = PointerType::get(Result, AddrSpace);
2332       break;
2333     }
2334 
2335     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2336     case lltok::lparen:
2337       if (parseFunctionType(Result))
2338         return true;
2339       break;
2340     }
2341   }
2342 }
2343 
2344 /// parseParameterList
2345 ///    ::= '(' ')'
2346 ///    ::= '(' Arg (',' Arg)* ')'
2347 ///  Arg
2348 ///    ::= Type OptionalAttributes Value OptionalAttributes
2349 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2350                                   PerFunctionState &PFS, bool IsMustTailCall,
2351                                   bool InVarArgsFunc) {
2352   if (parseToken(lltok::lparen, "expected '(' in call"))
2353     return true;
2354 
2355   while (Lex.getKind() != lltok::rparen) {
2356     // If this isn't the first argument, we need a comma.
2357     if (!ArgList.empty() &&
2358         parseToken(lltok::comma, "expected ',' in argument list"))
2359       return true;
2360 
2361     // parse an ellipsis if this is a musttail call in a variadic function.
2362     if (Lex.getKind() == lltok::dotdotdot) {
2363       const char *Msg = "unexpected ellipsis in argument list for ";
2364       if (!IsMustTailCall)
2365         return tokError(Twine(Msg) + "non-musttail call");
2366       if (!InVarArgsFunc)
2367         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2368       Lex.Lex();  // Lex the '...', it is purely for readability.
2369       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2370     }
2371 
2372     // parse the argument.
2373     LocTy ArgLoc;
2374     Type *ArgTy = nullptr;
2375     AttrBuilder ArgAttrs;
2376     Value *V;
2377     if (parseType(ArgTy, ArgLoc))
2378       return true;
2379 
2380     if (ArgTy->isMetadataTy()) {
2381       if (parseMetadataAsValue(V, PFS))
2382         return true;
2383     } else {
2384       // Otherwise, handle normal operands.
2385       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2386         return true;
2387     }
2388     ArgList.push_back(ParamInfo(
2389         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2390   }
2391 
2392   if (IsMustTailCall && InVarArgsFunc)
2393     return tokError("expected '...' at end of argument list for musttail call "
2394                     "in varargs function");
2395 
2396   Lex.Lex();  // Lex the ')'.
2397   return false;
2398 }
2399 
2400 /// parseRequiredTypeAttr
2401 ///   ::= attrname(<ty>)
2402 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
2403                                      Attribute::AttrKind AttrKind) {
2404   Type *Ty = nullptr;
2405   if (!EatIfPresent(AttrToken))
2406     return true;
2407   if (!EatIfPresent(lltok::lparen))
2408     return error(Lex.getLoc(), "expected '('");
2409   if (parseType(Ty))
2410     return true;
2411   if (!EatIfPresent(lltok::rparen))
2412     return error(Lex.getLoc(), "expected ')'");
2413 
2414   B.addTypeAttr(AttrKind, Ty);
2415   return false;
2416 }
2417 
2418 /// parseOptionalOperandBundles
2419 ///    ::= /*empty*/
2420 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2421 ///
2422 /// OperandBundle
2423 ///    ::= bundle-tag '(' ')'
2424 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2425 ///
2426 /// bundle-tag ::= String Constant
2427 bool LLParser::parseOptionalOperandBundles(
2428     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2429   LocTy BeginLoc = Lex.getLoc();
2430   if (!EatIfPresent(lltok::lsquare))
2431     return false;
2432 
2433   while (Lex.getKind() != lltok::rsquare) {
2434     // If this isn't the first operand bundle, we need a comma.
2435     if (!BundleList.empty() &&
2436         parseToken(lltok::comma, "expected ',' in input list"))
2437       return true;
2438 
2439     std::string Tag;
2440     if (parseStringConstant(Tag))
2441       return true;
2442 
2443     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2444       return true;
2445 
2446     std::vector<Value *> Inputs;
2447     while (Lex.getKind() != lltok::rparen) {
2448       // If this isn't the first input, we need a comma.
2449       if (!Inputs.empty() &&
2450           parseToken(lltok::comma, "expected ',' in input list"))
2451         return true;
2452 
2453       Type *Ty = nullptr;
2454       Value *Input = nullptr;
2455       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2456         return true;
2457       Inputs.push_back(Input);
2458     }
2459 
2460     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2461 
2462     Lex.Lex(); // Lex the ')'.
2463   }
2464 
2465   if (BundleList.empty())
2466     return error(BeginLoc, "operand bundle set must not be empty");
2467 
2468   Lex.Lex(); // Lex the ']'.
2469   return false;
2470 }
2471 
2472 /// parseArgumentList - parse the argument list for a function type or function
2473 /// prototype.
2474 ///   ::= '(' ArgTypeListI ')'
2475 /// ArgTypeListI
2476 ///   ::= /*empty*/
2477 ///   ::= '...'
2478 ///   ::= ArgTypeList ',' '...'
2479 ///   ::= ArgType (',' ArgType)*
2480 ///
2481 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2482                                  bool &IsVarArg) {
2483   unsigned CurValID = 0;
2484   IsVarArg = false;
2485   assert(Lex.getKind() == lltok::lparen);
2486   Lex.Lex(); // eat the (.
2487 
2488   if (Lex.getKind() == lltok::rparen) {
2489     // empty
2490   } else if (Lex.getKind() == lltok::dotdotdot) {
2491     IsVarArg = true;
2492     Lex.Lex();
2493   } else {
2494     LocTy TypeLoc = Lex.getLoc();
2495     Type *ArgTy = nullptr;
2496     AttrBuilder Attrs;
2497     std::string Name;
2498 
2499     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2500       return true;
2501 
2502     if (ArgTy->isVoidTy())
2503       return error(TypeLoc, "argument can not have void type");
2504 
2505     if (Lex.getKind() == lltok::LocalVar) {
2506       Name = Lex.getStrVal();
2507       Lex.Lex();
2508     } else if (Lex.getKind() == lltok::LocalVarID) {
2509       if (Lex.getUIntVal() != CurValID)
2510         return error(TypeLoc, "argument expected to be numbered '%" +
2511                                   Twine(CurValID) + "'");
2512       ++CurValID;
2513       Lex.Lex();
2514     }
2515 
2516     if (!FunctionType::isValidArgumentType(ArgTy))
2517       return error(TypeLoc, "invalid type for function argument");
2518 
2519     ArgList.emplace_back(TypeLoc, ArgTy,
2520                          AttributeSet::get(ArgTy->getContext(), Attrs),
2521                          std::move(Name));
2522 
2523     while (EatIfPresent(lltok::comma)) {
2524       // Handle ... at end of arg list.
2525       if (EatIfPresent(lltok::dotdotdot)) {
2526         IsVarArg = true;
2527         break;
2528       }
2529 
2530       // Otherwise must be an argument type.
2531       TypeLoc = Lex.getLoc();
2532       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2533         return true;
2534 
2535       if (ArgTy->isVoidTy())
2536         return error(TypeLoc, "argument can not have void type");
2537 
2538       if (Lex.getKind() == lltok::LocalVar) {
2539         Name = Lex.getStrVal();
2540         Lex.Lex();
2541       } else {
2542         if (Lex.getKind() == lltok::LocalVarID) {
2543           if (Lex.getUIntVal() != CurValID)
2544             return error(TypeLoc, "argument expected to be numbered '%" +
2545                                       Twine(CurValID) + "'");
2546           Lex.Lex();
2547         }
2548         ++CurValID;
2549         Name = "";
2550       }
2551 
2552       if (!ArgTy->isFirstClassType())
2553         return error(TypeLoc, "invalid type for function argument");
2554 
2555       ArgList.emplace_back(TypeLoc, ArgTy,
2556                            AttributeSet::get(ArgTy->getContext(), Attrs),
2557                            std::move(Name));
2558     }
2559   }
2560 
2561   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2562 }
2563 
2564 /// parseFunctionType
2565 ///  ::= Type ArgumentList OptionalAttrs
2566 bool LLParser::parseFunctionType(Type *&Result) {
2567   assert(Lex.getKind() == lltok::lparen);
2568 
2569   if (!FunctionType::isValidReturnType(Result))
2570     return tokError("invalid function return type");
2571 
2572   SmallVector<ArgInfo, 8> ArgList;
2573   bool IsVarArg;
2574   if (parseArgumentList(ArgList, IsVarArg))
2575     return true;
2576 
2577   // Reject names on the arguments lists.
2578   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2579     if (!ArgList[i].Name.empty())
2580       return error(ArgList[i].Loc, "argument name invalid in function type");
2581     if (ArgList[i].Attrs.hasAttributes())
2582       return error(ArgList[i].Loc,
2583                    "argument attributes invalid in function type");
2584   }
2585 
2586   SmallVector<Type*, 16> ArgListTy;
2587   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2588     ArgListTy.push_back(ArgList[i].Ty);
2589 
2590   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2591   return false;
2592 }
2593 
2594 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2595 /// other structs.
2596 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2597   SmallVector<Type*, 8> Elts;
2598   if (parseStructBody(Elts))
2599     return true;
2600 
2601   Result = StructType::get(Context, Elts, Packed);
2602   return false;
2603 }
2604 
2605 /// parseStructDefinition - parse a struct in a 'type' definition.
2606 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2607                                      std::pair<Type *, LocTy> &Entry,
2608                                      Type *&ResultTy) {
2609   // If the type was already defined, diagnose the redefinition.
2610   if (Entry.first && !Entry.second.isValid())
2611     return error(TypeLoc, "redefinition of type");
2612 
2613   // If we have opaque, just return without filling in the definition for the
2614   // struct.  This counts as a definition as far as the .ll file goes.
2615   if (EatIfPresent(lltok::kw_opaque)) {
2616     // This type is being defined, so clear the location to indicate this.
2617     Entry.second = SMLoc();
2618 
2619     // If this type number has never been uttered, create it.
2620     if (!Entry.first)
2621       Entry.first = StructType::create(Context, Name);
2622     ResultTy = Entry.first;
2623     return false;
2624   }
2625 
2626   // If the type starts with '<', then it is either a packed struct or a vector.
2627   bool isPacked = EatIfPresent(lltok::less);
2628 
2629   // If we don't have a struct, then we have a random type alias, which we
2630   // accept for compatibility with old files.  These types are not allowed to be
2631   // forward referenced and not allowed to be recursive.
2632   if (Lex.getKind() != lltok::lbrace) {
2633     if (Entry.first)
2634       return error(TypeLoc, "forward references to non-struct type");
2635 
2636     ResultTy = nullptr;
2637     if (isPacked)
2638       return parseArrayVectorType(ResultTy, true);
2639     return parseType(ResultTy);
2640   }
2641 
2642   // This type is being defined, so clear the location to indicate this.
2643   Entry.second = SMLoc();
2644 
2645   // If this type number has never been uttered, create it.
2646   if (!Entry.first)
2647     Entry.first = StructType::create(Context, Name);
2648 
2649   StructType *STy = cast<StructType>(Entry.first);
2650 
2651   SmallVector<Type*, 8> Body;
2652   if (parseStructBody(Body) ||
2653       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2654     return true;
2655 
2656   STy->setBody(Body, isPacked);
2657   ResultTy = STy;
2658   return false;
2659 }
2660 
2661 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2662 ///   StructType
2663 ///     ::= '{' '}'
2664 ///     ::= '{' Type (',' Type)* '}'
2665 ///     ::= '<' '{' '}' '>'
2666 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2667 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2668   assert(Lex.getKind() == lltok::lbrace);
2669   Lex.Lex(); // Consume the '{'
2670 
2671   // Handle the empty struct.
2672   if (EatIfPresent(lltok::rbrace))
2673     return false;
2674 
2675   LocTy EltTyLoc = Lex.getLoc();
2676   Type *Ty = nullptr;
2677   if (parseType(Ty))
2678     return true;
2679   Body.push_back(Ty);
2680 
2681   if (!StructType::isValidElementType(Ty))
2682     return error(EltTyLoc, "invalid element type for struct");
2683 
2684   while (EatIfPresent(lltok::comma)) {
2685     EltTyLoc = Lex.getLoc();
2686     if (parseType(Ty))
2687       return true;
2688 
2689     if (!StructType::isValidElementType(Ty))
2690       return error(EltTyLoc, "invalid element type for struct");
2691 
2692     Body.push_back(Ty);
2693   }
2694 
2695   return parseToken(lltok::rbrace, "expected '}' at end of struct");
2696 }
2697 
2698 /// parseArrayVectorType - parse an array or vector type, assuming the first
2699 /// token has already been consumed.
2700 ///   Type
2701 ///     ::= '[' APSINTVAL 'x' Types ']'
2702 ///     ::= '<' APSINTVAL 'x' Types '>'
2703 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2704 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
2705   bool Scalable = false;
2706 
2707   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
2708     Lex.Lex(); // consume the 'vscale'
2709     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
2710       return true;
2711 
2712     Scalable = true;
2713   }
2714 
2715   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2716       Lex.getAPSIntVal().getBitWidth() > 64)
2717     return tokError("expected number in address space");
2718 
2719   LocTy SizeLoc = Lex.getLoc();
2720   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2721   Lex.Lex();
2722 
2723   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
2724     return true;
2725 
2726   LocTy TypeLoc = Lex.getLoc();
2727   Type *EltTy = nullptr;
2728   if (parseType(EltTy))
2729     return true;
2730 
2731   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
2732                  "expected end of sequential type"))
2733     return true;
2734 
2735   if (IsVector) {
2736     if (Size == 0)
2737       return error(SizeLoc, "zero element vector is illegal");
2738     if ((unsigned)Size != Size)
2739       return error(SizeLoc, "size too large for vector");
2740     if (!VectorType::isValidElementType(EltTy))
2741       return error(TypeLoc, "invalid vector element type");
2742     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2743   } else {
2744     if (!ArrayType::isValidElementType(EltTy))
2745       return error(TypeLoc, "invalid array element type");
2746     Result = ArrayType::get(EltTy, Size);
2747   }
2748   return false;
2749 }
2750 
2751 //===----------------------------------------------------------------------===//
2752 // Function Semantic Analysis.
2753 //===----------------------------------------------------------------------===//
2754 
2755 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2756                                              int functionNumber)
2757   : P(p), F(f), FunctionNumber(functionNumber) {
2758 
2759   // Insert unnamed arguments into the NumberedVals list.
2760   for (Argument &A : F.args())
2761     if (!A.hasName())
2762       NumberedVals.push_back(&A);
2763 }
2764 
2765 LLParser::PerFunctionState::~PerFunctionState() {
2766   // If there were any forward referenced non-basicblock values, delete them.
2767 
2768   for (const auto &P : ForwardRefVals) {
2769     if (isa<BasicBlock>(P.second.first))
2770       continue;
2771     P.second.first->replaceAllUsesWith(
2772         UndefValue::get(P.second.first->getType()));
2773     P.second.first->deleteValue();
2774   }
2775 
2776   for (const auto &P : ForwardRefValIDs) {
2777     if (isa<BasicBlock>(P.second.first))
2778       continue;
2779     P.second.first->replaceAllUsesWith(
2780         UndefValue::get(P.second.first->getType()));
2781     P.second.first->deleteValue();
2782   }
2783 }
2784 
2785 bool LLParser::PerFunctionState::finishFunction() {
2786   if (!ForwardRefVals.empty())
2787     return P.error(ForwardRefVals.begin()->second.second,
2788                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2789                        "'");
2790   if (!ForwardRefValIDs.empty())
2791     return P.error(ForwardRefValIDs.begin()->second.second,
2792                    "use of undefined value '%" +
2793                        Twine(ForwardRefValIDs.begin()->first) + "'");
2794   return false;
2795 }
2796 
2797 /// getVal - Get a value with the specified name or ID, creating a
2798 /// forward reference record if needed.  This can return null if the value
2799 /// exists but does not have the right type.
2800 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
2801                                           LocTy Loc) {
2802   // Look this name up in the normal function symbol table.
2803   Value *Val = F.getValueSymbolTable()->lookup(Name);
2804 
2805   // If this is a forward reference for the value, see if we already created a
2806   // forward ref record.
2807   if (!Val) {
2808     auto I = ForwardRefVals.find(Name);
2809     if (I != ForwardRefVals.end())
2810       Val = I->second.first;
2811   }
2812 
2813   // If we have the value in the symbol table or fwd-ref table, return it.
2814   if (Val)
2815     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val);
2816 
2817   // Don't make placeholders with invalid type.
2818   if (!Ty->isFirstClassType()) {
2819     P.error(Loc, "invalid use of a non-first-class type");
2820     return nullptr;
2821   }
2822 
2823   // Otherwise, create a new forward reference for this value and remember it.
2824   Value *FwdVal;
2825   if (Ty->isLabelTy()) {
2826     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2827   } else {
2828     FwdVal = new Argument(Ty, Name);
2829   }
2830 
2831   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2832   return FwdVal;
2833 }
2834 
2835 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) {
2836   // Look this name up in the normal function symbol table.
2837   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2838 
2839   // If this is a forward reference for the value, see if we already created a
2840   // forward ref record.
2841   if (!Val) {
2842     auto I = ForwardRefValIDs.find(ID);
2843     if (I != ForwardRefValIDs.end())
2844       Val = I->second.first;
2845   }
2846 
2847   // If we have the value in the symbol table or fwd-ref table, return it.
2848   if (Val)
2849     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val);
2850 
2851   if (!Ty->isFirstClassType()) {
2852     P.error(Loc, "invalid use of a non-first-class type");
2853     return nullptr;
2854   }
2855 
2856   // Otherwise, create a new forward reference for this value and remember it.
2857   Value *FwdVal;
2858   if (Ty->isLabelTy()) {
2859     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2860   } else {
2861     FwdVal = new Argument(Ty);
2862   }
2863 
2864   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2865   return FwdVal;
2866 }
2867 
2868 /// setInstName - After an instruction is parsed and inserted into its
2869 /// basic block, this installs its name.
2870 bool LLParser::PerFunctionState::setInstName(int NameID,
2871                                              const std::string &NameStr,
2872                                              LocTy NameLoc, Instruction *Inst) {
2873   // If this instruction has void type, it cannot have a name or ID specified.
2874   if (Inst->getType()->isVoidTy()) {
2875     if (NameID != -1 || !NameStr.empty())
2876       return P.error(NameLoc, "instructions returning void cannot have a name");
2877     return false;
2878   }
2879 
2880   // If this was a numbered instruction, verify that the instruction is the
2881   // expected value and resolve any forward references.
2882   if (NameStr.empty()) {
2883     // If neither a name nor an ID was specified, just use the next ID.
2884     if (NameID == -1)
2885       NameID = NumberedVals.size();
2886 
2887     if (unsigned(NameID) != NumberedVals.size())
2888       return P.error(NameLoc, "instruction expected to be numbered '%" +
2889                                   Twine(NumberedVals.size()) + "'");
2890 
2891     auto FI = ForwardRefValIDs.find(NameID);
2892     if (FI != ForwardRefValIDs.end()) {
2893       Value *Sentinel = FI->second.first;
2894       if (Sentinel->getType() != Inst->getType())
2895         return P.error(NameLoc, "instruction forward referenced with type '" +
2896                                     getTypeString(FI->second.first->getType()) +
2897                                     "'");
2898 
2899       Sentinel->replaceAllUsesWith(Inst);
2900       Sentinel->deleteValue();
2901       ForwardRefValIDs.erase(FI);
2902     }
2903 
2904     NumberedVals.push_back(Inst);
2905     return false;
2906   }
2907 
2908   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2909   auto FI = ForwardRefVals.find(NameStr);
2910   if (FI != ForwardRefVals.end()) {
2911     Value *Sentinel = FI->second.first;
2912     if (Sentinel->getType() != Inst->getType())
2913       return P.error(NameLoc, "instruction forward referenced with type '" +
2914                                   getTypeString(FI->second.first->getType()) +
2915                                   "'");
2916 
2917     Sentinel->replaceAllUsesWith(Inst);
2918     Sentinel->deleteValue();
2919     ForwardRefVals.erase(FI);
2920   }
2921 
2922   // Set the name on the instruction.
2923   Inst->setName(NameStr);
2924 
2925   if (Inst->getName() != NameStr)
2926     return P.error(NameLoc, "multiple definition of local value named '" +
2927                                 NameStr + "'");
2928   return false;
2929 }
2930 
2931 /// getBB - Get a basic block with the specified name or ID, creating a
2932 /// forward reference record if needed.
2933 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
2934                                               LocTy Loc) {
2935   return dyn_cast_or_null<BasicBlock>(
2936       getVal(Name, Type::getLabelTy(F.getContext()), Loc));
2937 }
2938 
2939 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
2940   return dyn_cast_or_null<BasicBlock>(
2941       getVal(ID, Type::getLabelTy(F.getContext()), Loc));
2942 }
2943 
2944 /// defineBB - Define the specified basic block, which is either named or
2945 /// unnamed.  If there is an error, this returns null otherwise it returns
2946 /// the block being defined.
2947 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
2948                                                  int NameID, LocTy Loc) {
2949   BasicBlock *BB;
2950   if (Name.empty()) {
2951     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
2952       P.error(Loc, "label expected to be numbered '" +
2953                        Twine(NumberedVals.size()) + "'");
2954       return nullptr;
2955     }
2956     BB = getBB(NumberedVals.size(), Loc);
2957     if (!BB) {
2958       P.error(Loc, "unable to create block numbered '" +
2959                        Twine(NumberedVals.size()) + "'");
2960       return nullptr;
2961     }
2962   } else {
2963     BB = getBB(Name, Loc);
2964     if (!BB) {
2965       P.error(Loc, "unable to create block named '" + Name + "'");
2966       return nullptr;
2967     }
2968   }
2969 
2970   // Move the block to the end of the function.  Forward ref'd blocks are
2971   // inserted wherever they happen to be referenced.
2972   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2973 
2974   // Remove the block from forward ref sets.
2975   if (Name.empty()) {
2976     ForwardRefValIDs.erase(NumberedVals.size());
2977     NumberedVals.push_back(BB);
2978   } else {
2979     // BB forward references are already in the function symbol table.
2980     ForwardRefVals.erase(Name);
2981   }
2982 
2983   return BB;
2984 }
2985 
2986 //===----------------------------------------------------------------------===//
2987 // Constants.
2988 //===----------------------------------------------------------------------===//
2989 
2990 /// parseValID - parse an abstract value that doesn't necessarily have a
2991 /// type implied.  For example, if we parse "4" we don't know what integer type
2992 /// it has.  The value will later be combined with its type and checked for
2993 /// basic correctness.  PFS is used to convert function-local operands of
2994 /// metadata (since metadata operands are not just parsed here but also
2995 /// converted to values). PFS can be null when we are not parsing metadata
2996 /// values inside a function.
2997 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
2998   ID.Loc = Lex.getLoc();
2999   switch (Lex.getKind()) {
3000   default:
3001     return tokError("expected value token");
3002   case lltok::GlobalID:  // @42
3003     ID.UIntVal = Lex.getUIntVal();
3004     ID.Kind = ValID::t_GlobalID;
3005     break;
3006   case lltok::GlobalVar:  // @foo
3007     ID.StrVal = Lex.getStrVal();
3008     ID.Kind = ValID::t_GlobalName;
3009     break;
3010   case lltok::LocalVarID:  // %42
3011     ID.UIntVal = Lex.getUIntVal();
3012     ID.Kind = ValID::t_LocalID;
3013     break;
3014   case lltok::LocalVar:  // %foo
3015     ID.StrVal = Lex.getStrVal();
3016     ID.Kind = ValID::t_LocalName;
3017     break;
3018   case lltok::APSInt:
3019     ID.APSIntVal = Lex.getAPSIntVal();
3020     ID.Kind = ValID::t_APSInt;
3021     break;
3022   case lltok::APFloat:
3023     ID.APFloatVal = Lex.getAPFloatVal();
3024     ID.Kind = ValID::t_APFloat;
3025     break;
3026   case lltok::kw_true:
3027     ID.ConstantVal = ConstantInt::getTrue(Context);
3028     ID.Kind = ValID::t_Constant;
3029     break;
3030   case lltok::kw_false:
3031     ID.ConstantVal = ConstantInt::getFalse(Context);
3032     ID.Kind = ValID::t_Constant;
3033     break;
3034   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3035   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3036   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3037   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3038   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3039 
3040   case lltok::lbrace: {
3041     // ValID ::= '{' ConstVector '}'
3042     Lex.Lex();
3043     SmallVector<Constant*, 16> Elts;
3044     if (parseGlobalValueVector(Elts) ||
3045         parseToken(lltok::rbrace, "expected end of struct constant"))
3046       return true;
3047 
3048     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3049     ID.UIntVal = Elts.size();
3050     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3051            Elts.size() * sizeof(Elts[0]));
3052     ID.Kind = ValID::t_ConstantStruct;
3053     return false;
3054   }
3055   case lltok::less: {
3056     // ValID ::= '<' ConstVector '>'         --> Vector.
3057     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3058     Lex.Lex();
3059     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3060 
3061     SmallVector<Constant*, 16> Elts;
3062     LocTy FirstEltLoc = Lex.getLoc();
3063     if (parseGlobalValueVector(Elts) ||
3064         (isPackedStruct &&
3065          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3066         parseToken(lltok::greater, "expected end of constant"))
3067       return true;
3068 
3069     if (isPackedStruct) {
3070       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3071       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3072              Elts.size() * sizeof(Elts[0]));
3073       ID.UIntVal = Elts.size();
3074       ID.Kind = ValID::t_PackedConstantStruct;
3075       return false;
3076     }
3077 
3078     if (Elts.empty())
3079       return error(ID.Loc, "constant vector must not be empty");
3080 
3081     if (!Elts[0]->getType()->isIntegerTy() &&
3082         !Elts[0]->getType()->isFloatingPointTy() &&
3083         !Elts[0]->getType()->isPointerTy())
3084       return error(
3085           FirstEltLoc,
3086           "vector elements must have integer, pointer or floating point type");
3087 
3088     // Verify that all the vector elements have the same type.
3089     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3090       if (Elts[i]->getType() != Elts[0]->getType())
3091         return error(FirstEltLoc, "vector element #" + Twine(i) +
3092                                       " is not of type '" +
3093                                       getTypeString(Elts[0]->getType()));
3094 
3095     ID.ConstantVal = ConstantVector::get(Elts);
3096     ID.Kind = ValID::t_Constant;
3097     return false;
3098   }
3099   case lltok::lsquare: {   // Array Constant
3100     Lex.Lex();
3101     SmallVector<Constant*, 16> Elts;
3102     LocTy FirstEltLoc = Lex.getLoc();
3103     if (parseGlobalValueVector(Elts) ||
3104         parseToken(lltok::rsquare, "expected end of array constant"))
3105       return true;
3106 
3107     // Handle empty element.
3108     if (Elts.empty()) {
3109       // Use undef instead of an array because it's inconvenient to determine
3110       // the element type at this point, there being no elements to examine.
3111       ID.Kind = ValID::t_EmptyArray;
3112       return false;
3113     }
3114 
3115     if (!Elts[0]->getType()->isFirstClassType())
3116       return error(FirstEltLoc, "invalid array element type: " +
3117                                     getTypeString(Elts[0]->getType()));
3118 
3119     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3120 
3121     // Verify all elements are correct type!
3122     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3123       if (Elts[i]->getType() != Elts[0]->getType())
3124         return error(FirstEltLoc, "array element #" + Twine(i) +
3125                                       " is not of type '" +
3126                                       getTypeString(Elts[0]->getType()));
3127     }
3128 
3129     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3130     ID.Kind = ValID::t_Constant;
3131     return false;
3132   }
3133   case lltok::kw_c:  // c "foo"
3134     Lex.Lex();
3135     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3136                                                   false);
3137     if (parseToken(lltok::StringConstant, "expected string"))
3138       return true;
3139     ID.Kind = ValID::t_Constant;
3140     return false;
3141 
3142   case lltok::kw_asm: {
3143     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3144     //             STRINGCONSTANT
3145     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3146     Lex.Lex();
3147     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3148         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3149         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3150         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3151         parseStringConstant(ID.StrVal) ||
3152         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3153         parseToken(lltok::StringConstant, "expected constraint string"))
3154       return true;
3155     ID.StrVal2 = Lex.getStrVal();
3156     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3157                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3158     ID.Kind = ValID::t_InlineAsm;
3159     return false;
3160   }
3161 
3162   case lltok::kw_blockaddress: {
3163     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3164     Lex.Lex();
3165 
3166     ValID Fn, Label;
3167 
3168     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3169         parseValID(Fn, PFS) ||
3170         parseToken(lltok::comma,
3171                    "expected comma in block address expression") ||
3172         parseValID(Label, PFS) ||
3173         parseToken(lltok::rparen, "expected ')' in block address expression"))
3174       return true;
3175 
3176     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3177       return error(Fn.Loc, "expected function name in blockaddress");
3178     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3179       return error(Label.Loc, "expected basic block name in blockaddress");
3180 
3181     // Try to find the function (but skip it if it's forward-referenced).
3182     GlobalValue *GV = nullptr;
3183     if (Fn.Kind == ValID::t_GlobalID) {
3184       if (Fn.UIntVal < NumberedVals.size())
3185         GV = NumberedVals[Fn.UIntVal];
3186     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3187       GV = M->getNamedValue(Fn.StrVal);
3188     }
3189     Function *F = nullptr;
3190     if (GV) {
3191       // Confirm that it's actually a function with a definition.
3192       if (!isa<Function>(GV))
3193         return error(Fn.Loc, "expected function name in blockaddress");
3194       F = cast<Function>(GV);
3195       if (F->isDeclaration())
3196         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3197     }
3198 
3199     if (!F) {
3200       // Make a global variable as a placeholder for this reference.
3201       GlobalValue *&FwdRef =
3202           ForwardRefBlockAddresses.insert(std::make_pair(
3203                                               std::move(Fn),
3204                                               std::map<ValID, GlobalValue *>()))
3205               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3206               .first->second;
3207       if (!FwdRef) {
3208         unsigned FwdDeclAS;
3209         if (ExpectedTy) {
3210           // If we know the type that the blockaddress is being assigned to,
3211           // we can use the address space of that type.
3212           if (!ExpectedTy->isPointerTy())
3213             return error(ID.Loc,
3214                          "type of blockaddress must be a pointer and not '" +
3215                              getTypeString(ExpectedTy) + "'");
3216           FwdDeclAS = ExpectedTy->getPointerAddressSpace();
3217         } else if (PFS) {
3218           // Otherwise, we default the address space of the current function.
3219           FwdDeclAS = PFS->getFunction().getAddressSpace();
3220         } else {
3221           llvm_unreachable("Unknown address space for blockaddress");
3222         }
3223         FwdRef = new GlobalVariable(
3224             *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
3225             nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
3226       }
3227 
3228       ID.ConstantVal = FwdRef;
3229       ID.Kind = ValID::t_Constant;
3230       return false;
3231     }
3232 
3233     // We found the function; now find the basic block.  Don't use PFS, since we
3234     // might be inside a constant expression.
3235     BasicBlock *BB;
3236     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3237       if (Label.Kind == ValID::t_LocalID)
3238         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3239       else
3240         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3241       if (!BB)
3242         return error(Label.Loc, "referenced value is not a basic block");
3243     } else {
3244       if (Label.Kind == ValID::t_LocalID)
3245         return error(Label.Loc, "cannot take address of numeric label after "
3246                                 "the function is defined");
3247       BB = dyn_cast_or_null<BasicBlock>(
3248           F->getValueSymbolTable()->lookup(Label.StrVal));
3249       if (!BB)
3250         return error(Label.Loc, "referenced value is not a basic block");
3251     }
3252 
3253     ID.ConstantVal = BlockAddress::get(F, BB);
3254     ID.Kind = ValID::t_Constant;
3255     return false;
3256   }
3257 
3258   case lltok::kw_dso_local_equivalent: {
3259     // ValID ::= 'dso_local_equivalent' @foo
3260     Lex.Lex();
3261 
3262     ValID Fn;
3263 
3264     if (parseValID(Fn, PFS))
3265       return true;
3266 
3267     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3268       return error(Fn.Loc,
3269                    "expected global value name in dso_local_equivalent");
3270 
3271     // Try to find the function (but skip it if it's forward-referenced).
3272     GlobalValue *GV = nullptr;
3273     if (Fn.Kind == ValID::t_GlobalID) {
3274       if (Fn.UIntVal < NumberedVals.size())
3275         GV = NumberedVals[Fn.UIntVal];
3276     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3277       GV = M->getNamedValue(Fn.StrVal);
3278     }
3279 
3280     assert(GV && "Could not find a corresponding global variable");
3281 
3282     if (!GV->getValueType()->isFunctionTy())
3283       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3284                            "in dso_local_equivalent");
3285 
3286     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3287     ID.Kind = ValID::t_Constant;
3288     return false;
3289   }
3290 
3291   case lltok::kw_trunc:
3292   case lltok::kw_zext:
3293   case lltok::kw_sext:
3294   case lltok::kw_fptrunc:
3295   case lltok::kw_fpext:
3296   case lltok::kw_bitcast:
3297   case lltok::kw_addrspacecast:
3298   case lltok::kw_uitofp:
3299   case lltok::kw_sitofp:
3300   case lltok::kw_fptoui:
3301   case lltok::kw_fptosi:
3302   case lltok::kw_inttoptr:
3303   case lltok::kw_ptrtoint: {
3304     unsigned Opc = Lex.getUIntVal();
3305     Type *DestTy = nullptr;
3306     Constant *SrcVal;
3307     Lex.Lex();
3308     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3309         parseGlobalTypeAndValue(SrcVal) ||
3310         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3311         parseType(DestTy) ||
3312         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3313       return true;
3314     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3315       return error(ID.Loc, "invalid cast opcode for cast from '" +
3316                                getTypeString(SrcVal->getType()) + "' to '" +
3317                                getTypeString(DestTy) + "'");
3318     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3319                                                  SrcVal, DestTy);
3320     ID.Kind = ValID::t_Constant;
3321     return false;
3322   }
3323   case lltok::kw_extractvalue: {
3324     Lex.Lex();
3325     Constant *Val;
3326     SmallVector<unsigned, 4> Indices;
3327     if (parseToken(lltok::lparen,
3328                    "expected '(' in extractvalue constantexpr") ||
3329         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3330         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3331       return true;
3332 
3333     if (!Val->getType()->isAggregateType())
3334       return error(ID.Loc, "extractvalue operand must be aggregate type");
3335     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3336       return error(ID.Loc, "invalid indices for extractvalue");
3337     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3338     ID.Kind = ValID::t_Constant;
3339     return false;
3340   }
3341   case lltok::kw_insertvalue: {
3342     Lex.Lex();
3343     Constant *Val0, *Val1;
3344     SmallVector<unsigned, 4> Indices;
3345     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3346         parseGlobalTypeAndValue(Val0) ||
3347         parseToken(lltok::comma,
3348                    "expected comma in insertvalue constantexpr") ||
3349         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3350         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3351       return true;
3352     if (!Val0->getType()->isAggregateType())
3353       return error(ID.Loc, "insertvalue operand must be aggregate type");
3354     Type *IndexedType =
3355         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3356     if (!IndexedType)
3357       return error(ID.Loc, "invalid indices for insertvalue");
3358     if (IndexedType != Val1->getType())
3359       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3360                                getTypeString(Val1->getType()) +
3361                                "' instead of '" + getTypeString(IndexedType) +
3362                                "'");
3363     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3364     ID.Kind = ValID::t_Constant;
3365     return false;
3366   }
3367   case lltok::kw_icmp:
3368   case lltok::kw_fcmp: {
3369     unsigned PredVal, Opc = Lex.getUIntVal();
3370     Constant *Val0, *Val1;
3371     Lex.Lex();
3372     if (parseCmpPredicate(PredVal, Opc) ||
3373         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3374         parseGlobalTypeAndValue(Val0) ||
3375         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3376         parseGlobalTypeAndValue(Val1) ||
3377         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3378       return true;
3379 
3380     if (Val0->getType() != Val1->getType())
3381       return error(ID.Loc, "compare operands must have the same type");
3382 
3383     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3384 
3385     if (Opc == Instruction::FCmp) {
3386       if (!Val0->getType()->isFPOrFPVectorTy())
3387         return error(ID.Loc, "fcmp requires floating point operands");
3388       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3389     } else {
3390       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3391       if (!Val0->getType()->isIntOrIntVectorTy() &&
3392           !Val0->getType()->isPtrOrPtrVectorTy())
3393         return error(ID.Loc, "icmp requires pointer or integer operands");
3394       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3395     }
3396     ID.Kind = ValID::t_Constant;
3397     return false;
3398   }
3399 
3400   // Unary Operators.
3401   case lltok::kw_fneg: {
3402     unsigned Opc = Lex.getUIntVal();
3403     Constant *Val;
3404     Lex.Lex();
3405     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3406         parseGlobalTypeAndValue(Val) ||
3407         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3408       return true;
3409 
3410     // Check that the type is valid for the operator.
3411     switch (Opc) {
3412     case Instruction::FNeg:
3413       if (!Val->getType()->isFPOrFPVectorTy())
3414         return error(ID.Loc, "constexpr requires fp operands");
3415       break;
3416     default: llvm_unreachable("Unknown unary operator!");
3417     }
3418     unsigned Flags = 0;
3419     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3420     ID.ConstantVal = C;
3421     ID.Kind = ValID::t_Constant;
3422     return false;
3423   }
3424   // Binary Operators.
3425   case lltok::kw_add:
3426   case lltok::kw_fadd:
3427   case lltok::kw_sub:
3428   case lltok::kw_fsub:
3429   case lltok::kw_mul:
3430   case lltok::kw_fmul:
3431   case lltok::kw_udiv:
3432   case lltok::kw_sdiv:
3433   case lltok::kw_fdiv:
3434   case lltok::kw_urem:
3435   case lltok::kw_srem:
3436   case lltok::kw_frem:
3437   case lltok::kw_shl:
3438   case lltok::kw_lshr:
3439   case lltok::kw_ashr: {
3440     bool NUW = false;
3441     bool NSW = false;
3442     bool Exact = false;
3443     unsigned Opc = Lex.getUIntVal();
3444     Constant *Val0, *Val1;
3445     Lex.Lex();
3446     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3447         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3448       if (EatIfPresent(lltok::kw_nuw))
3449         NUW = true;
3450       if (EatIfPresent(lltok::kw_nsw)) {
3451         NSW = true;
3452         if (EatIfPresent(lltok::kw_nuw))
3453           NUW = true;
3454       }
3455     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3456                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3457       if (EatIfPresent(lltok::kw_exact))
3458         Exact = true;
3459     }
3460     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3461         parseGlobalTypeAndValue(Val0) ||
3462         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3463         parseGlobalTypeAndValue(Val1) ||
3464         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3465       return true;
3466     if (Val0->getType() != Val1->getType())
3467       return error(ID.Loc, "operands of constexpr must have same type");
3468     // Check that the type is valid for the operator.
3469     switch (Opc) {
3470     case Instruction::Add:
3471     case Instruction::Sub:
3472     case Instruction::Mul:
3473     case Instruction::UDiv:
3474     case Instruction::SDiv:
3475     case Instruction::URem:
3476     case Instruction::SRem:
3477     case Instruction::Shl:
3478     case Instruction::AShr:
3479     case Instruction::LShr:
3480       if (!Val0->getType()->isIntOrIntVectorTy())
3481         return error(ID.Loc, "constexpr requires integer operands");
3482       break;
3483     case Instruction::FAdd:
3484     case Instruction::FSub:
3485     case Instruction::FMul:
3486     case Instruction::FDiv:
3487     case Instruction::FRem:
3488       if (!Val0->getType()->isFPOrFPVectorTy())
3489         return error(ID.Loc, "constexpr requires fp operands");
3490       break;
3491     default: llvm_unreachable("Unknown binary operator!");
3492     }
3493     unsigned Flags = 0;
3494     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3495     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3496     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3497     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3498     ID.ConstantVal = C;
3499     ID.Kind = ValID::t_Constant;
3500     return false;
3501   }
3502 
3503   // Logical Operations
3504   case lltok::kw_and:
3505   case lltok::kw_or:
3506   case lltok::kw_xor: {
3507     unsigned Opc = Lex.getUIntVal();
3508     Constant *Val0, *Val1;
3509     Lex.Lex();
3510     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3511         parseGlobalTypeAndValue(Val0) ||
3512         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3513         parseGlobalTypeAndValue(Val1) ||
3514         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3515       return true;
3516     if (Val0->getType() != Val1->getType())
3517       return error(ID.Loc, "operands of constexpr must have same type");
3518     if (!Val0->getType()->isIntOrIntVectorTy())
3519       return error(ID.Loc,
3520                    "constexpr requires integer or integer vector operands");
3521     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3522     ID.Kind = ValID::t_Constant;
3523     return false;
3524   }
3525 
3526   case lltok::kw_getelementptr:
3527   case lltok::kw_shufflevector:
3528   case lltok::kw_insertelement:
3529   case lltok::kw_extractelement:
3530   case lltok::kw_select: {
3531     unsigned Opc = Lex.getUIntVal();
3532     SmallVector<Constant*, 16> Elts;
3533     bool InBounds = false;
3534     Type *Ty;
3535     Lex.Lex();
3536 
3537     if (Opc == Instruction::GetElementPtr)
3538       InBounds = EatIfPresent(lltok::kw_inbounds);
3539 
3540     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3541       return true;
3542 
3543     LocTy ExplicitTypeLoc = Lex.getLoc();
3544     if (Opc == Instruction::GetElementPtr) {
3545       if (parseType(Ty) ||
3546           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3547         return true;
3548     }
3549 
3550     Optional<unsigned> InRangeOp;
3551     if (parseGlobalValueVector(
3552             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3553         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3554       return true;
3555 
3556     if (Opc == Instruction::GetElementPtr) {
3557       if (Elts.size() == 0 ||
3558           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3559         return error(ID.Loc, "base of getelementptr must be a pointer");
3560 
3561       Type *BaseType = Elts[0]->getType();
3562       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3563       if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
3564         return error(
3565             ExplicitTypeLoc,
3566             typeComparisonErrorMessage(
3567                 "explicit pointee type doesn't match operand's pointee type",
3568                 Ty, BasePointerType->getElementType()));
3569       }
3570 
3571       unsigned GEPWidth =
3572           BaseType->isVectorTy()
3573               ? cast<FixedVectorType>(BaseType)->getNumElements()
3574               : 0;
3575 
3576       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3577       for (Constant *Val : Indices) {
3578         Type *ValTy = Val->getType();
3579         if (!ValTy->isIntOrIntVectorTy())
3580           return error(ID.Loc, "getelementptr index must be an integer");
3581         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3582           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3583           if (GEPWidth && (ValNumEl != GEPWidth))
3584             return error(
3585                 ID.Loc,
3586                 "getelementptr vector index has a wrong number of elements");
3587           // GEPWidth may have been unknown because the base is a scalar,
3588           // but it is known now.
3589           GEPWidth = ValNumEl;
3590         }
3591       }
3592 
3593       SmallPtrSet<Type*, 4> Visited;
3594       if (!Indices.empty() && !Ty->isSized(&Visited))
3595         return error(ID.Loc, "base element of getelementptr must be sized");
3596 
3597       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3598         return error(ID.Loc, "invalid getelementptr indices");
3599 
3600       if (InRangeOp) {
3601         if (*InRangeOp == 0)
3602           return error(ID.Loc,
3603                        "inrange keyword may not appear on pointer operand");
3604         --*InRangeOp;
3605       }
3606 
3607       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3608                                                       InBounds, InRangeOp);
3609     } else if (Opc == Instruction::Select) {
3610       if (Elts.size() != 3)
3611         return error(ID.Loc, "expected three operands to select");
3612       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3613                                                               Elts[2]))
3614         return error(ID.Loc, Reason);
3615       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3616     } else if (Opc == Instruction::ShuffleVector) {
3617       if (Elts.size() != 3)
3618         return error(ID.Loc, "expected three operands to shufflevector");
3619       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3620         return error(ID.Loc, "invalid operands to shufflevector");
3621       SmallVector<int, 16> Mask;
3622       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3623       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3624     } else if (Opc == Instruction::ExtractElement) {
3625       if (Elts.size() != 2)
3626         return error(ID.Loc, "expected two operands to extractelement");
3627       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3628         return error(ID.Loc, "invalid extractelement operands");
3629       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3630     } else {
3631       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3632       if (Elts.size() != 3)
3633         return error(ID.Loc, "expected three operands to insertelement");
3634       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3635         return error(ID.Loc, "invalid insertelement operands");
3636       ID.ConstantVal =
3637                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3638     }
3639 
3640     ID.Kind = ValID::t_Constant;
3641     return false;
3642   }
3643   }
3644 
3645   Lex.Lex();
3646   return false;
3647 }
3648 
3649 /// parseGlobalValue - parse a global value with the specified type.
3650 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3651   C = nullptr;
3652   ValID ID;
3653   Value *V = nullptr;
3654   bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
3655                 convertValIDToValue(Ty, ID, V, nullptr);
3656   if (V && !(C = dyn_cast<Constant>(V)))
3657     return error(ID.Loc, "global values must be constants");
3658   return Parsed;
3659 }
3660 
3661 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3662   Type *Ty = nullptr;
3663   return parseType(Ty) || parseGlobalValue(Ty, V);
3664 }
3665 
3666 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3667   C = nullptr;
3668 
3669   LocTy KwLoc = Lex.getLoc();
3670   if (!EatIfPresent(lltok::kw_comdat))
3671     return false;
3672 
3673   if (EatIfPresent(lltok::lparen)) {
3674     if (Lex.getKind() != lltok::ComdatVar)
3675       return tokError("expected comdat variable");
3676     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3677     Lex.Lex();
3678     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3679       return true;
3680   } else {
3681     if (GlobalName.empty())
3682       return tokError("comdat cannot be unnamed");
3683     C = getComdat(std::string(GlobalName), KwLoc);
3684   }
3685 
3686   return false;
3687 }
3688 
3689 /// parseGlobalValueVector
3690 ///   ::= /*empty*/
3691 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3692 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3693                                       Optional<unsigned> *InRangeOp) {
3694   // Empty list.
3695   if (Lex.getKind() == lltok::rbrace ||
3696       Lex.getKind() == lltok::rsquare ||
3697       Lex.getKind() == lltok::greater ||
3698       Lex.getKind() == lltok::rparen)
3699     return false;
3700 
3701   do {
3702     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3703       *InRangeOp = Elts.size();
3704 
3705     Constant *C;
3706     if (parseGlobalTypeAndValue(C))
3707       return true;
3708     Elts.push_back(C);
3709   } while (EatIfPresent(lltok::comma));
3710 
3711   return false;
3712 }
3713 
3714 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
3715   SmallVector<Metadata *, 16> Elts;
3716   if (parseMDNodeVector(Elts))
3717     return true;
3718 
3719   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3720   return false;
3721 }
3722 
3723 /// MDNode:
3724 ///  ::= !{ ... }
3725 ///  ::= !7
3726 ///  ::= !DILocation(...)
3727 bool LLParser::parseMDNode(MDNode *&N) {
3728   if (Lex.getKind() == lltok::MetadataVar)
3729     return parseSpecializedMDNode(N);
3730 
3731   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
3732 }
3733 
3734 bool LLParser::parseMDNodeTail(MDNode *&N) {
3735   // !{ ... }
3736   if (Lex.getKind() == lltok::lbrace)
3737     return parseMDTuple(N);
3738 
3739   // !42
3740   return parseMDNodeID(N);
3741 }
3742 
3743 namespace {
3744 
3745 /// Structure to represent an optional metadata field.
3746 template <class FieldTy> struct MDFieldImpl {
3747   typedef MDFieldImpl ImplTy;
3748   FieldTy Val;
3749   bool Seen;
3750 
3751   void assign(FieldTy Val) {
3752     Seen = true;
3753     this->Val = std::move(Val);
3754   }
3755 
3756   explicit MDFieldImpl(FieldTy Default)
3757       : Val(std::move(Default)), Seen(false) {}
3758 };
3759 
3760 /// Structure to represent an optional metadata field that
3761 /// can be of either type (A or B) and encapsulates the
3762 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3763 /// to reimplement the specifics for representing each Field.
3764 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3765   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3766   FieldTypeA A;
3767   FieldTypeB B;
3768   bool Seen;
3769 
3770   enum {
3771     IsInvalid = 0,
3772     IsTypeA = 1,
3773     IsTypeB = 2
3774   } WhatIs;
3775 
3776   void assign(FieldTypeA A) {
3777     Seen = true;
3778     this->A = std::move(A);
3779     WhatIs = IsTypeA;
3780   }
3781 
3782   void assign(FieldTypeB B) {
3783     Seen = true;
3784     this->B = std::move(B);
3785     WhatIs = IsTypeB;
3786   }
3787 
3788   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3789       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3790         WhatIs(IsInvalid) {}
3791 };
3792 
3793 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3794   uint64_t Max;
3795 
3796   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3797       : ImplTy(Default), Max(Max) {}
3798 };
3799 
3800 struct LineField : public MDUnsignedField {
3801   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3802 };
3803 
3804 struct ColumnField : public MDUnsignedField {
3805   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3806 };
3807 
3808 struct DwarfTagField : public MDUnsignedField {
3809   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3810   DwarfTagField(dwarf::Tag DefaultTag)
3811       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3812 };
3813 
3814 struct DwarfMacinfoTypeField : public MDUnsignedField {
3815   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3816   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3817     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3818 };
3819 
3820 struct DwarfAttEncodingField : public MDUnsignedField {
3821   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3822 };
3823 
3824 struct DwarfVirtualityField : public MDUnsignedField {
3825   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3826 };
3827 
3828 struct DwarfLangField : public MDUnsignedField {
3829   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3830 };
3831 
3832 struct DwarfCCField : public MDUnsignedField {
3833   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3834 };
3835 
3836 struct EmissionKindField : public MDUnsignedField {
3837   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3838 };
3839 
3840 struct NameTableKindField : public MDUnsignedField {
3841   NameTableKindField()
3842       : MDUnsignedField(
3843             0, (unsigned)
3844                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3845 };
3846 
3847 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3848   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3849 };
3850 
3851 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3852   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3853 };
3854 
3855 struct MDAPSIntField : public MDFieldImpl<APSInt> {
3856   MDAPSIntField() : ImplTy(APSInt()) {}
3857 };
3858 
3859 struct MDSignedField : public MDFieldImpl<int64_t> {
3860   int64_t Min;
3861   int64_t Max;
3862 
3863   MDSignedField(int64_t Default = 0)
3864       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3865   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3866       : ImplTy(Default), Min(Min), Max(Max) {}
3867 };
3868 
3869 struct MDBoolField : public MDFieldImpl<bool> {
3870   MDBoolField(bool Default = false) : ImplTy(Default) {}
3871 };
3872 
3873 struct MDField : public MDFieldImpl<Metadata *> {
3874   bool AllowNull;
3875 
3876   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3877 };
3878 
3879 struct MDStringField : public MDFieldImpl<MDString *> {
3880   bool AllowEmpty;
3881   MDStringField(bool AllowEmpty = true)
3882       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3883 };
3884 
3885 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3886   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3887 };
3888 
3889 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3890   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3891 };
3892 
3893 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3894   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3895       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3896 
3897   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3898                     bool AllowNull = true)
3899       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3900 
3901   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3902   bool isMDField() const { return WhatIs == IsTypeB; }
3903   int64_t getMDSignedValue() const {
3904     assert(isMDSignedField() && "Wrong field type");
3905     return A.Val;
3906   }
3907   Metadata *getMDFieldValue() const {
3908     assert(isMDField() && "Wrong field type");
3909     return B.Val;
3910   }
3911 };
3912 
3913 } // end anonymous namespace
3914 
3915 namespace llvm {
3916 
3917 template <>
3918 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
3919   if (Lex.getKind() != lltok::APSInt)
3920     return tokError("expected integer");
3921 
3922   Result.assign(Lex.getAPSIntVal());
3923   Lex.Lex();
3924   return false;
3925 }
3926 
3927 template <>
3928 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
3929                             MDUnsignedField &Result) {
3930   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3931     return tokError("expected unsigned integer");
3932 
3933   auto &U = Lex.getAPSIntVal();
3934   if (U.ugt(Result.Max))
3935     return tokError("value for '" + Name + "' too large, limit is " +
3936                     Twine(Result.Max));
3937   Result.assign(U.getZExtValue());
3938   assert(Result.Val <= Result.Max && "Expected value in range");
3939   Lex.Lex();
3940   return false;
3941 }
3942 
3943 template <>
3944 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3945   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3946 }
3947 template <>
3948 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3949   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3950 }
3951 
3952 template <>
3953 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3954   if (Lex.getKind() == lltok::APSInt)
3955     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3956 
3957   if (Lex.getKind() != lltok::DwarfTag)
3958     return tokError("expected DWARF tag");
3959 
3960   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3961   if (Tag == dwarf::DW_TAG_invalid)
3962     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3963   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3964 
3965   Result.assign(Tag);
3966   Lex.Lex();
3967   return false;
3968 }
3969 
3970 template <>
3971 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
3972                             DwarfMacinfoTypeField &Result) {
3973   if (Lex.getKind() == lltok::APSInt)
3974     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3975 
3976   if (Lex.getKind() != lltok::DwarfMacinfo)
3977     return tokError("expected DWARF macinfo type");
3978 
3979   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3980   if (Macinfo == dwarf::DW_MACINFO_invalid)
3981     return tokError("invalid DWARF macinfo type" + Twine(" '") +
3982                     Lex.getStrVal() + "'");
3983   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3984 
3985   Result.assign(Macinfo);
3986   Lex.Lex();
3987   return false;
3988 }
3989 
3990 template <>
3991 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
3992                             DwarfVirtualityField &Result) {
3993   if (Lex.getKind() == lltok::APSInt)
3994     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3995 
3996   if (Lex.getKind() != lltok::DwarfVirtuality)
3997     return tokError("expected DWARF virtuality code");
3998 
3999   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4000   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4001     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4002                     Lex.getStrVal() + "'");
4003   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4004   Result.assign(Virtuality);
4005   Lex.Lex();
4006   return false;
4007 }
4008 
4009 template <>
4010 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4011   if (Lex.getKind() == lltok::APSInt)
4012     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4013 
4014   if (Lex.getKind() != lltok::DwarfLang)
4015     return tokError("expected DWARF language");
4016 
4017   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4018   if (!Lang)
4019     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4020                     "'");
4021   assert(Lang <= Result.Max && "Expected valid DWARF language");
4022   Result.assign(Lang);
4023   Lex.Lex();
4024   return false;
4025 }
4026 
4027 template <>
4028 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4029   if (Lex.getKind() == lltok::APSInt)
4030     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4031 
4032   if (Lex.getKind() != lltok::DwarfCC)
4033     return tokError("expected DWARF calling convention");
4034 
4035   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4036   if (!CC)
4037     return tokError("invalid DWARF calling convention" + Twine(" '") +
4038                     Lex.getStrVal() + "'");
4039   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4040   Result.assign(CC);
4041   Lex.Lex();
4042   return false;
4043 }
4044 
4045 template <>
4046 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4047                             EmissionKindField &Result) {
4048   if (Lex.getKind() == lltok::APSInt)
4049     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4050 
4051   if (Lex.getKind() != lltok::EmissionKind)
4052     return tokError("expected emission kind");
4053 
4054   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4055   if (!Kind)
4056     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4057                     "'");
4058   assert(*Kind <= Result.Max && "Expected valid emission kind");
4059   Result.assign(*Kind);
4060   Lex.Lex();
4061   return false;
4062 }
4063 
4064 template <>
4065 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4066                             NameTableKindField &Result) {
4067   if (Lex.getKind() == lltok::APSInt)
4068     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4069 
4070   if (Lex.getKind() != lltok::NameTableKind)
4071     return tokError("expected nameTable kind");
4072 
4073   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4074   if (!Kind)
4075     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4076                     "'");
4077   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4078   Result.assign((unsigned)*Kind);
4079   Lex.Lex();
4080   return false;
4081 }
4082 
4083 template <>
4084 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4085                             DwarfAttEncodingField &Result) {
4086   if (Lex.getKind() == lltok::APSInt)
4087     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4088 
4089   if (Lex.getKind() != lltok::DwarfAttEncoding)
4090     return tokError("expected DWARF type attribute encoding");
4091 
4092   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4093   if (!Encoding)
4094     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4095                     Lex.getStrVal() + "'");
4096   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4097   Result.assign(Encoding);
4098   Lex.Lex();
4099   return false;
4100 }
4101 
4102 /// DIFlagField
4103 ///  ::= uint32
4104 ///  ::= DIFlagVector
4105 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4106 template <>
4107 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4108 
4109   // parser for a single flag.
4110   auto parseFlag = [&](DINode::DIFlags &Val) {
4111     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4112       uint32_t TempVal = static_cast<uint32_t>(Val);
4113       bool Res = parseUInt32(TempVal);
4114       Val = static_cast<DINode::DIFlags>(TempVal);
4115       return Res;
4116     }
4117 
4118     if (Lex.getKind() != lltok::DIFlag)
4119       return tokError("expected debug info flag");
4120 
4121     Val = DINode::getFlag(Lex.getStrVal());
4122     if (!Val)
4123       return tokError(Twine("invalid debug info flag flag '") +
4124                       Lex.getStrVal() + "'");
4125     Lex.Lex();
4126     return false;
4127   };
4128 
4129   // parse the flags and combine them together.
4130   DINode::DIFlags Combined = DINode::FlagZero;
4131   do {
4132     DINode::DIFlags Val;
4133     if (parseFlag(Val))
4134       return true;
4135     Combined |= Val;
4136   } while (EatIfPresent(lltok::bar));
4137 
4138   Result.assign(Combined);
4139   return false;
4140 }
4141 
4142 /// DISPFlagField
4143 ///  ::= uint32
4144 ///  ::= DISPFlagVector
4145 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4146 template <>
4147 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4148 
4149   // parser for a single flag.
4150   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4151     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4152       uint32_t TempVal = static_cast<uint32_t>(Val);
4153       bool Res = parseUInt32(TempVal);
4154       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4155       return Res;
4156     }
4157 
4158     if (Lex.getKind() != lltok::DISPFlag)
4159       return tokError("expected debug info flag");
4160 
4161     Val = DISubprogram::getFlag(Lex.getStrVal());
4162     if (!Val)
4163       return tokError(Twine("invalid subprogram debug info flag '") +
4164                       Lex.getStrVal() + "'");
4165     Lex.Lex();
4166     return false;
4167   };
4168 
4169   // parse the flags and combine them together.
4170   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4171   do {
4172     DISubprogram::DISPFlags Val;
4173     if (parseFlag(Val))
4174       return true;
4175     Combined |= Val;
4176   } while (EatIfPresent(lltok::bar));
4177 
4178   Result.assign(Combined);
4179   return false;
4180 }
4181 
4182 template <>
4183 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4184   if (Lex.getKind() != lltok::APSInt)
4185     return tokError("expected signed integer");
4186 
4187   auto &S = Lex.getAPSIntVal();
4188   if (S < Result.Min)
4189     return tokError("value for '" + Name + "' too small, limit is " +
4190                     Twine(Result.Min));
4191   if (S > Result.Max)
4192     return tokError("value for '" + Name + "' too large, limit is " +
4193                     Twine(Result.Max));
4194   Result.assign(S.getExtValue());
4195   assert(Result.Val >= Result.Min && "Expected value in range");
4196   assert(Result.Val <= Result.Max && "Expected value in range");
4197   Lex.Lex();
4198   return false;
4199 }
4200 
4201 template <>
4202 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4203   switch (Lex.getKind()) {
4204   default:
4205     return tokError("expected 'true' or 'false'");
4206   case lltok::kw_true:
4207     Result.assign(true);
4208     break;
4209   case lltok::kw_false:
4210     Result.assign(false);
4211     break;
4212   }
4213   Lex.Lex();
4214   return false;
4215 }
4216 
4217 template <>
4218 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4219   if (Lex.getKind() == lltok::kw_null) {
4220     if (!Result.AllowNull)
4221       return tokError("'" + Name + "' cannot be null");
4222     Lex.Lex();
4223     Result.assign(nullptr);
4224     return false;
4225   }
4226 
4227   Metadata *MD;
4228   if (parseMetadata(MD, nullptr))
4229     return true;
4230 
4231   Result.assign(MD);
4232   return false;
4233 }
4234 
4235 template <>
4236 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4237                             MDSignedOrMDField &Result) {
4238   // Try to parse a signed int.
4239   if (Lex.getKind() == lltok::APSInt) {
4240     MDSignedField Res = Result.A;
4241     if (!parseMDField(Loc, Name, Res)) {
4242       Result.assign(Res);
4243       return false;
4244     }
4245     return true;
4246   }
4247 
4248   // Otherwise, try to parse as an MDField.
4249   MDField Res = Result.B;
4250   if (!parseMDField(Loc, Name, Res)) {
4251     Result.assign(Res);
4252     return false;
4253   }
4254 
4255   return true;
4256 }
4257 
4258 template <>
4259 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4260   LocTy ValueLoc = Lex.getLoc();
4261   std::string S;
4262   if (parseStringConstant(S))
4263     return true;
4264 
4265   if (!Result.AllowEmpty && S.empty())
4266     return error(ValueLoc, "'" + Name + "' cannot be empty");
4267 
4268   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4269   return false;
4270 }
4271 
4272 template <>
4273 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4274   SmallVector<Metadata *, 4> MDs;
4275   if (parseMDNodeVector(MDs))
4276     return true;
4277 
4278   Result.assign(std::move(MDs));
4279   return false;
4280 }
4281 
4282 template <>
4283 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4284                             ChecksumKindField &Result) {
4285   Optional<DIFile::ChecksumKind> CSKind =
4286       DIFile::getChecksumKind(Lex.getStrVal());
4287 
4288   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4289     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4290                     "'");
4291 
4292   Result.assign(*CSKind);
4293   Lex.Lex();
4294   return false;
4295 }
4296 
4297 } // end namespace llvm
4298 
4299 template <class ParserTy>
4300 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4301   do {
4302     if (Lex.getKind() != lltok::LabelStr)
4303       return tokError("expected field label here");
4304 
4305     if (ParseField())
4306       return true;
4307   } while (EatIfPresent(lltok::comma));
4308 
4309   return false;
4310 }
4311 
4312 template <class ParserTy>
4313 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4314   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4315   Lex.Lex();
4316 
4317   if (parseToken(lltok::lparen, "expected '(' here"))
4318     return true;
4319   if (Lex.getKind() != lltok::rparen)
4320     if (parseMDFieldsImplBody(ParseField))
4321       return true;
4322 
4323   ClosingLoc = Lex.getLoc();
4324   return parseToken(lltok::rparen, "expected ')' here");
4325 }
4326 
4327 template <class FieldTy>
4328 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4329   if (Result.Seen)
4330     return tokError("field '" + Name + "' cannot be specified more than once");
4331 
4332   LocTy Loc = Lex.getLoc();
4333   Lex.Lex();
4334   return parseMDField(Loc, Name, Result);
4335 }
4336 
4337 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4338   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4339 
4340 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4341   if (Lex.getStrVal() == #CLASS)                                               \
4342     return parse##CLASS(N, IsDistinct);
4343 #include "llvm/IR/Metadata.def"
4344 
4345   return tokError("expected metadata type");
4346 }
4347 
4348 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4349 #define NOP_FIELD(NAME, TYPE, INIT)
4350 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4351   if (!NAME.Seen)                                                              \
4352     return error(ClosingLoc, "missing required field '" #NAME "'");
4353 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4354   if (Lex.getStrVal() == #NAME)                                                \
4355     return parseMDField(#NAME, NAME);
4356 #define PARSE_MD_FIELDS()                                                      \
4357   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4358   do {                                                                         \
4359     LocTy ClosingLoc;                                                          \
4360     if (parseMDFieldsImpl(                                                     \
4361             [&]() -> bool {                                                    \
4362               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4363               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4364                               "'");                                            \
4365             },                                                                 \
4366             ClosingLoc))                                                       \
4367       return true;                                                             \
4368     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4369   } while (false)
4370 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4371   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4372 
4373 /// parseDILocationFields:
4374 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4375 ///   isImplicitCode: true)
4376 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4377 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4378   OPTIONAL(line, LineField, );                                                 \
4379   OPTIONAL(column, ColumnField, );                                             \
4380   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4381   OPTIONAL(inlinedAt, MDField, );                                              \
4382   OPTIONAL(isImplicitCode, MDBoolField, (false));
4383   PARSE_MD_FIELDS();
4384 #undef VISIT_MD_FIELDS
4385 
4386   Result =
4387       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4388                                    inlinedAt.Val, isImplicitCode.Val));
4389   return false;
4390 }
4391 
4392 /// parseGenericDINode:
4393 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4394 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4395 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4396   REQUIRED(tag, DwarfTagField, );                                              \
4397   OPTIONAL(header, MDStringField, );                                           \
4398   OPTIONAL(operands, MDFieldList, );
4399   PARSE_MD_FIELDS();
4400 #undef VISIT_MD_FIELDS
4401 
4402   Result = GET_OR_DISTINCT(GenericDINode,
4403                            (Context, tag.Val, header.Val, operands.Val));
4404   return false;
4405 }
4406 
4407 /// parseDISubrange:
4408 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4409 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4410 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4411 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4412 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4413   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4414   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4415   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4416   OPTIONAL(stride, MDSignedOrMDField, );
4417   PARSE_MD_FIELDS();
4418 #undef VISIT_MD_FIELDS
4419 
4420   Metadata *Count = nullptr;
4421   Metadata *LowerBound = nullptr;
4422   Metadata *UpperBound = nullptr;
4423   Metadata *Stride = nullptr;
4424 
4425   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4426     if (Bound.isMDSignedField())
4427       return ConstantAsMetadata::get(ConstantInt::getSigned(
4428           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4429     if (Bound.isMDField())
4430       return Bound.getMDFieldValue();
4431     return nullptr;
4432   };
4433 
4434   Count = convToMetadata(count);
4435   LowerBound = convToMetadata(lowerBound);
4436   UpperBound = convToMetadata(upperBound);
4437   Stride = convToMetadata(stride);
4438 
4439   Result = GET_OR_DISTINCT(DISubrange,
4440                            (Context, Count, LowerBound, UpperBound, Stride));
4441 
4442   return false;
4443 }
4444 
4445 /// parseDIGenericSubrange:
4446 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4447 ///   !node3)
4448 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4449 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4450   OPTIONAL(count, MDSignedOrMDField, );                                        \
4451   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4452   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4453   OPTIONAL(stride, MDSignedOrMDField, );
4454   PARSE_MD_FIELDS();
4455 #undef VISIT_MD_FIELDS
4456 
4457   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4458     if (Bound.isMDSignedField())
4459       return DIExpression::get(
4460           Context, {dwarf::DW_OP_consts,
4461                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4462     if (Bound.isMDField())
4463       return Bound.getMDFieldValue();
4464     return nullptr;
4465   };
4466 
4467   Metadata *Count = ConvToMetadata(count);
4468   Metadata *LowerBound = ConvToMetadata(lowerBound);
4469   Metadata *UpperBound = ConvToMetadata(upperBound);
4470   Metadata *Stride = ConvToMetadata(stride);
4471 
4472   Result = GET_OR_DISTINCT(DIGenericSubrange,
4473                            (Context, Count, LowerBound, UpperBound, Stride));
4474 
4475   return false;
4476 }
4477 
4478 /// parseDIEnumerator:
4479 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4480 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4481 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4482   REQUIRED(name, MDStringField, );                                             \
4483   REQUIRED(value, MDAPSIntField, );                                            \
4484   OPTIONAL(isUnsigned, MDBoolField, (false));
4485   PARSE_MD_FIELDS();
4486 #undef VISIT_MD_FIELDS
4487 
4488   if (isUnsigned.Val && value.Val.isNegative())
4489     return tokError("unsigned enumerator with negative value");
4490 
4491   APSInt Value(value.Val);
4492   // Add a leading zero so that unsigned values with the msb set are not
4493   // mistaken for negative values when used for signed enumerators.
4494   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4495     Value = Value.zext(Value.getBitWidth() + 1);
4496 
4497   Result =
4498       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4499 
4500   return false;
4501 }
4502 
4503 /// parseDIBasicType:
4504 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4505 ///                    encoding: DW_ATE_encoding, flags: 0)
4506 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4507 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4508   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4509   OPTIONAL(name, MDStringField, );                                             \
4510   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4511   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4512   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4513   OPTIONAL(flags, DIFlagField, );
4514   PARSE_MD_FIELDS();
4515 #undef VISIT_MD_FIELDS
4516 
4517   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4518                                          align.Val, encoding.Val, flags.Val));
4519   return false;
4520 }
4521 
4522 /// parseDIStringType:
4523 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4524 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4525 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4526   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4527   OPTIONAL(name, MDStringField, );                                             \
4528   OPTIONAL(stringLength, MDField, );                                           \
4529   OPTIONAL(stringLengthExpression, MDField, );                                 \
4530   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4531   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4532   OPTIONAL(encoding, DwarfAttEncodingField, );
4533   PARSE_MD_FIELDS();
4534 #undef VISIT_MD_FIELDS
4535 
4536   Result = GET_OR_DISTINCT(DIStringType,
4537                            (Context, tag.Val, name.Val, stringLength.Val,
4538                             stringLengthExpression.Val, size.Val, align.Val,
4539                             encoding.Val));
4540   return false;
4541 }
4542 
4543 /// parseDIDerivedType:
4544 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4545 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4546 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4547 ///                      dwarfAddressSpace: 3)
4548 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4549 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4550   REQUIRED(tag, DwarfTagField, );                                              \
4551   OPTIONAL(name, MDStringField, );                                             \
4552   OPTIONAL(file, MDField, );                                                   \
4553   OPTIONAL(line, LineField, );                                                 \
4554   OPTIONAL(scope, MDField, );                                                  \
4555   REQUIRED(baseType, MDField, );                                               \
4556   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4557   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4558   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4559   OPTIONAL(flags, DIFlagField, );                                              \
4560   OPTIONAL(extraData, MDField, );                                              \
4561   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));      \
4562   OPTIONAL(annotations, MDField, );
4563   PARSE_MD_FIELDS();
4564 #undef VISIT_MD_FIELDS
4565 
4566   Optional<unsigned> DWARFAddressSpace;
4567   if (dwarfAddressSpace.Val != UINT32_MAX)
4568     DWARFAddressSpace = dwarfAddressSpace.Val;
4569 
4570   Result = GET_OR_DISTINCT(DIDerivedType,
4571                            (Context, tag.Val, name.Val, file.Val, line.Val,
4572                             scope.Val, baseType.Val, size.Val, align.Val,
4573                             offset.Val, DWARFAddressSpace, flags.Val,
4574                             extraData.Val, annotations.Val));
4575   return false;
4576 }
4577 
4578 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4579 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4580   REQUIRED(tag, DwarfTagField, );                                              \
4581   OPTIONAL(name, MDStringField, );                                             \
4582   OPTIONAL(file, MDField, );                                                   \
4583   OPTIONAL(line, LineField, );                                                 \
4584   OPTIONAL(scope, MDField, );                                                  \
4585   OPTIONAL(baseType, MDField, );                                               \
4586   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4587   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4588   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4589   OPTIONAL(flags, DIFlagField, );                                              \
4590   OPTIONAL(elements, MDField, );                                               \
4591   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4592   OPTIONAL(vtableHolder, MDField, );                                           \
4593   OPTIONAL(templateParams, MDField, );                                         \
4594   OPTIONAL(identifier, MDStringField, );                                       \
4595   OPTIONAL(discriminator, MDField, );                                          \
4596   OPTIONAL(dataLocation, MDField, );                                           \
4597   OPTIONAL(associated, MDField, );                                             \
4598   OPTIONAL(allocated, MDField, );                                              \
4599   OPTIONAL(rank, MDSignedOrMDField, );                                         \
4600   OPTIONAL(annotations, MDField, );
4601   PARSE_MD_FIELDS();
4602 #undef VISIT_MD_FIELDS
4603 
4604   Metadata *Rank = nullptr;
4605   if (rank.isMDSignedField())
4606     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4607         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4608   else if (rank.isMDField())
4609     Rank = rank.getMDFieldValue();
4610 
4611   // If this has an identifier try to build an ODR type.
4612   if (identifier.Val)
4613     if (auto *CT = DICompositeType::buildODRType(
4614             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4615             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4616             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4617             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4618             Rank, annotations.Val)) {
4619       Result = CT;
4620       return false;
4621     }
4622 
4623   // Create a new node, and save it in the context if it belongs in the type
4624   // map.
4625   Result = GET_OR_DISTINCT(
4626       DICompositeType,
4627       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4628        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4629        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4630        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank,
4631        annotations.Val));
4632   return false;
4633 }
4634 
4635 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4636 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4637   OPTIONAL(flags, DIFlagField, );                                              \
4638   OPTIONAL(cc, DwarfCCField, );                                                \
4639   REQUIRED(types, MDField, );
4640   PARSE_MD_FIELDS();
4641 #undef VISIT_MD_FIELDS
4642 
4643   Result = GET_OR_DISTINCT(DISubroutineType,
4644                            (Context, flags.Val, cc.Val, types.Val));
4645   return false;
4646 }
4647 
4648 /// parseDIFileType:
4649 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4650 ///                   checksumkind: CSK_MD5,
4651 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4652 ///                   source: "source file contents")
4653 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4654   // The default constructed value for checksumkind is required, but will never
4655   // be used, as the parser checks if the field was actually Seen before using
4656   // the Val.
4657 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4658   REQUIRED(filename, MDStringField, );                                         \
4659   REQUIRED(directory, MDStringField, );                                        \
4660   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4661   OPTIONAL(checksum, MDStringField, );                                         \
4662   OPTIONAL(source, MDStringField, );
4663   PARSE_MD_FIELDS();
4664 #undef VISIT_MD_FIELDS
4665 
4666   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4667   if (checksumkind.Seen && checksum.Seen)
4668     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4669   else if (checksumkind.Seen || checksum.Seen)
4670     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4671 
4672   Optional<MDString *> OptSource;
4673   if (source.Seen)
4674     OptSource = source.Val;
4675   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4676                                     OptChecksum, OptSource));
4677   return false;
4678 }
4679 
4680 /// parseDICompileUnit:
4681 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4682 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4683 ///                      splitDebugFilename: "abc.debug",
4684 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4685 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4686 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4687 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4688   if (!IsDistinct)
4689     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4690 
4691 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4692   REQUIRED(language, DwarfLangField, );                                        \
4693   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4694   OPTIONAL(producer, MDStringField, );                                         \
4695   OPTIONAL(isOptimized, MDBoolField, );                                        \
4696   OPTIONAL(flags, MDStringField, );                                            \
4697   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4698   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4699   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4700   OPTIONAL(enums, MDField, );                                                  \
4701   OPTIONAL(retainedTypes, MDField, );                                          \
4702   OPTIONAL(globals, MDField, );                                                \
4703   OPTIONAL(imports, MDField, );                                                \
4704   OPTIONAL(macros, MDField, );                                                 \
4705   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4706   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4707   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4708   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4709   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4710   OPTIONAL(sysroot, MDStringField, );                                          \
4711   OPTIONAL(sdk, MDStringField, );
4712   PARSE_MD_FIELDS();
4713 #undef VISIT_MD_FIELDS
4714 
4715   Result = DICompileUnit::getDistinct(
4716       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4717       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4718       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4719       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4720       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4721   return false;
4722 }
4723 
4724 /// parseDISubprogram:
4725 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4726 ///                     file: !1, line: 7, type: !2, isLocal: false,
4727 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4728 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4729 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4730 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4731 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7,
4732 ///                     annotations: !8)
4733 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
4734   auto Loc = Lex.getLoc();
4735 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4736   OPTIONAL(scope, MDField, );                                                  \
4737   OPTIONAL(name, MDStringField, );                                             \
4738   OPTIONAL(linkageName, MDStringField, );                                      \
4739   OPTIONAL(file, MDField, );                                                   \
4740   OPTIONAL(line, LineField, );                                                 \
4741   OPTIONAL(type, MDField, );                                                   \
4742   OPTIONAL(isLocal, MDBoolField, );                                            \
4743   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4744   OPTIONAL(scopeLine, LineField, );                                            \
4745   OPTIONAL(containingType, MDField, );                                         \
4746   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4747   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4748   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4749   OPTIONAL(flags, DIFlagField, );                                              \
4750   OPTIONAL(spFlags, DISPFlagField, );                                          \
4751   OPTIONAL(isOptimized, MDBoolField, );                                        \
4752   OPTIONAL(unit, MDField, );                                                   \
4753   OPTIONAL(templateParams, MDField, );                                         \
4754   OPTIONAL(declaration, MDField, );                                            \
4755   OPTIONAL(retainedNodes, MDField, );                                          \
4756   OPTIONAL(thrownTypes, MDField, );                                            \
4757   OPTIONAL(annotations, MDField, );
4758   PARSE_MD_FIELDS();
4759 #undef VISIT_MD_FIELDS
4760 
4761   // An explicit spFlags field takes precedence over individual fields in
4762   // older IR versions.
4763   DISubprogram::DISPFlags SPFlags =
4764       spFlags.Seen ? spFlags.Val
4765                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4766                                              isOptimized.Val, virtuality.Val);
4767   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4768     return Lex.Error(
4769         Loc,
4770         "missing 'distinct', required for !DISubprogram that is a Definition");
4771   Result = GET_OR_DISTINCT(
4772       DISubprogram,
4773       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4774        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4775        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4776        declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val));
4777   return false;
4778 }
4779 
4780 /// parseDILexicalBlock:
4781 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4782 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4783 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4784   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4785   OPTIONAL(file, MDField, );                                                   \
4786   OPTIONAL(line, LineField, );                                                 \
4787   OPTIONAL(column, ColumnField, );
4788   PARSE_MD_FIELDS();
4789 #undef VISIT_MD_FIELDS
4790 
4791   Result = GET_OR_DISTINCT(
4792       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4793   return false;
4794 }
4795 
4796 /// parseDILexicalBlockFile:
4797 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4798 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4799 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4800   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4801   OPTIONAL(file, MDField, );                                                   \
4802   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4803   PARSE_MD_FIELDS();
4804 #undef VISIT_MD_FIELDS
4805 
4806   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4807                            (Context, scope.Val, file.Val, discriminator.Val));
4808   return false;
4809 }
4810 
4811 /// parseDICommonBlock:
4812 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4813 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4814 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4815   REQUIRED(scope, MDField, );                                                  \
4816   OPTIONAL(declaration, MDField, );                                            \
4817   OPTIONAL(name, MDStringField, );                                             \
4818   OPTIONAL(file, MDField, );                                                   \
4819   OPTIONAL(line, LineField, );
4820   PARSE_MD_FIELDS();
4821 #undef VISIT_MD_FIELDS
4822 
4823   Result = GET_OR_DISTINCT(DICommonBlock,
4824                            (Context, scope.Val, declaration.Val, name.Val,
4825                             file.Val, line.Val));
4826   return false;
4827 }
4828 
4829 /// parseDINamespace:
4830 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4831 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
4832 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4833   REQUIRED(scope, MDField, );                                                  \
4834   OPTIONAL(name, MDStringField, );                                             \
4835   OPTIONAL(exportSymbols, MDBoolField, );
4836   PARSE_MD_FIELDS();
4837 #undef VISIT_MD_FIELDS
4838 
4839   Result = GET_OR_DISTINCT(DINamespace,
4840                            (Context, scope.Val, name.Val, exportSymbols.Val));
4841   return false;
4842 }
4843 
4844 /// parseDIMacro:
4845 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
4846 ///   "SomeValue")
4847 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
4848 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4849   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4850   OPTIONAL(line, LineField, );                                                 \
4851   REQUIRED(name, MDStringField, );                                             \
4852   OPTIONAL(value, MDStringField, );
4853   PARSE_MD_FIELDS();
4854 #undef VISIT_MD_FIELDS
4855 
4856   Result = GET_OR_DISTINCT(DIMacro,
4857                            (Context, type.Val, line.Val, name.Val, value.Val));
4858   return false;
4859 }
4860 
4861 /// parseDIMacroFile:
4862 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4863 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4864 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4865   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4866   OPTIONAL(line, LineField, );                                                 \
4867   REQUIRED(file, MDField, );                                                   \
4868   OPTIONAL(nodes, MDField, );
4869   PARSE_MD_FIELDS();
4870 #undef VISIT_MD_FIELDS
4871 
4872   Result = GET_OR_DISTINCT(DIMacroFile,
4873                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4874   return false;
4875 }
4876 
4877 /// parseDIModule:
4878 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
4879 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
4880 ///   file: !1, line: 4, isDecl: false)
4881 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
4882 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4883   REQUIRED(scope, MDField, );                                                  \
4884   REQUIRED(name, MDStringField, );                                             \
4885   OPTIONAL(configMacros, MDStringField, );                                     \
4886   OPTIONAL(includePath, MDStringField, );                                      \
4887   OPTIONAL(apinotes, MDStringField, );                                         \
4888   OPTIONAL(file, MDField, );                                                   \
4889   OPTIONAL(line, LineField, );                                                 \
4890   OPTIONAL(isDecl, MDBoolField, );
4891   PARSE_MD_FIELDS();
4892 #undef VISIT_MD_FIELDS
4893 
4894   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
4895                                       configMacros.Val, includePath.Val,
4896                                       apinotes.Val, line.Val, isDecl.Val));
4897   return false;
4898 }
4899 
4900 /// parseDITemplateTypeParameter:
4901 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
4902 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4903 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4904   OPTIONAL(name, MDStringField, );                                             \
4905   REQUIRED(type, MDField, );                                                   \
4906   OPTIONAL(defaulted, MDBoolField, );
4907   PARSE_MD_FIELDS();
4908 #undef VISIT_MD_FIELDS
4909 
4910   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
4911                            (Context, name.Val, type.Val, defaulted.Val));
4912   return false;
4913 }
4914 
4915 /// parseDITemplateValueParameter:
4916 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4917 ///                                 name: "V", type: !1, defaulted: false,
4918 ///                                 value: i32 7)
4919 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4920 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4921   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4922   OPTIONAL(name, MDStringField, );                                             \
4923   OPTIONAL(type, MDField, );                                                   \
4924   OPTIONAL(defaulted, MDBoolField, );                                          \
4925   REQUIRED(value, MDField, );
4926 
4927   PARSE_MD_FIELDS();
4928 #undef VISIT_MD_FIELDS
4929 
4930   Result = GET_OR_DISTINCT(
4931       DITemplateValueParameter,
4932       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
4933   return false;
4934 }
4935 
4936 /// parseDIGlobalVariable:
4937 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4938 ///                         file: !1, line: 7, type: !2, isLocal: false,
4939 ///                         isDefinition: true, templateParams: !3,
4940 ///                         declaration: !4, align: 8)
4941 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4942 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4943   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4944   OPTIONAL(scope, MDField, );                                                  \
4945   OPTIONAL(linkageName, MDStringField, );                                      \
4946   OPTIONAL(file, MDField, );                                                   \
4947   OPTIONAL(line, LineField, );                                                 \
4948   OPTIONAL(type, MDField, );                                                   \
4949   OPTIONAL(isLocal, MDBoolField, );                                            \
4950   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4951   OPTIONAL(templateParams, MDField, );                                         \
4952   OPTIONAL(declaration, MDField, );                                            \
4953   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4954   OPTIONAL(annotations, MDField, );
4955   PARSE_MD_FIELDS();
4956 #undef VISIT_MD_FIELDS
4957 
4958   Result =
4959       GET_OR_DISTINCT(DIGlobalVariable,
4960                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4961                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4962                        declaration.Val, templateParams.Val, align.Val,
4963                        annotations.Val));
4964   return false;
4965 }
4966 
4967 /// parseDILocalVariable:
4968 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4969 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4970 ///                        align: 8)
4971 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4972 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4973 ///                        align: 8)
4974 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4975 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4976   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4977   OPTIONAL(name, MDStringField, );                                             \
4978   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4979   OPTIONAL(file, MDField, );                                                   \
4980   OPTIONAL(line, LineField, );                                                 \
4981   OPTIONAL(type, MDField, );                                                   \
4982   OPTIONAL(flags, DIFlagField, );                                              \
4983   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4984   OPTIONAL(annotations, MDField, );
4985   PARSE_MD_FIELDS();
4986 #undef VISIT_MD_FIELDS
4987 
4988   Result = GET_OR_DISTINCT(DILocalVariable,
4989                            (Context, scope.Val, name.Val, file.Val, line.Val,
4990                             type.Val, arg.Val, flags.Val, align.Val,
4991                             annotations.Val));
4992   return false;
4993 }
4994 
4995 /// parseDILabel:
4996 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4997 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
4998 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4999   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5000   REQUIRED(name, MDStringField, );                                             \
5001   REQUIRED(file, MDField, );                                                   \
5002   REQUIRED(line, LineField, );
5003   PARSE_MD_FIELDS();
5004 #undef VISIT_MD_FIELDS
5005 
5006   Result = GET_OR_DISTINCT(DILabel,
5007                            (Context, scope.Val, name.Val, file.Val, line.Val));
5008   return false;
5009 }
5010 
5011 /// parseDIExpression:
5012 ///   ::= !DIExpression(0, 7, -1)
5013 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5014   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5015   Lex.Lex();
5016 
5017   if (parseToken(lltok::lparen, "expected '(' here"))
5018     return true;
5019 
5020   SmallVector<uint64_t, 8> Elements;
5021   if (Lex.getKind() != lltok::rparen)
5022     do {
5023       if (Lex.getKind() == lltok::DwarfOp) {
5024         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5025           Lex.Lex();
5026           Elements.push_back(Op);
5027           continue;
5028         }
5029         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5030       }
5031 
5032       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5033         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5034           Lex.Lex();
5035           Elements.push_back(Op);
5036           continue;
5037         }
5038         return tokError(Twine("invalid DWARF attribute encoding '") +
5039                         Lex.getStrVal() + "'");
5040       }
5041 
5042       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5043         return tokError("expected unsigned integer");
5044 
5045       auto &U = Lex.getAPSIntVal();
5046       if (U.ugt(UINT64_MAX))
5047         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5048       Elements.push_back(U.getZExtValue());
5049       Lex.Lex();
5050     } while (EatIfPresent(lltok::comma));
5051 
5052   if (parseToken(lltok::rparen, "expected ')' here"))
5053     return true;
5054 
5055   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5056   return false;
5057 }
5058 
5059 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5060   return parseDIArgList(Result, IsDistinct, nullptr);
5061 }
5062 /// ParseDIArgList:
5063 ///   ::= !DIArgList(i32 7, i64 %0)
5064 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5065                               PerFunctionState *PFS) {
5066   assert(PFS && "Expected valid function state");
5067   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5068   Lex.Lex();
5069 
5070   if (parseToken(lltok::lparen, "expected '(' here"))
5071     return true;
5072 
5073   SmallVector<ValueAsMetadata *, 4> Args;
5074   if (Lex.getKind() != lltok::rparen)
5075     do {
5076       Metadata *MD;
5077       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5078         return true;
5079       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5080     } while (EatIfPresent(lltok::comma));
5081 
5082   if (parseToken(lltok::rparen, "expected ')' here"))
5083     return true;
5084 
5085   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5086   return false;
5087 }
5088 
5089 /// parseDIGlobalVariableExpression:
5090 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5091 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5092                                                bool IsDistinct) {
5093 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5094   REQUIRED(var, MDField, );                                                    \
5095   REQUIRED(expr, MDField, );
5096   PARSE_MD_FIELDS();
5097 #undef VISIT_MD_FIELDS
5098 
5099   Result =
5100       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5101   return false;
5102 }
5103 
5104 /// parseDIObjCProperty:
5105 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5106 ///                       getter: "getFoo", attributes: 7, type: !2)
5107 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5108 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5109   OPTIONAL(name, MDStringField, );                                             \
5110   OPTIONAL(file, MDField, );                                                   \
5111   OPTIONAL(line, LineField, );                                                 \
5112   OPTIONAL(setter, MDStringField, );                                           \
5113   OPTIONAL(getter, MDStringField, );                                           \
5114   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5115   OPTIONAL(type, MDField, );
5116   PARSE_MD_FIELDS();
5117 #undef VISIT_MD_FIELDS
5118 
5119   Result = GET_OR_DISTINCT(DIObjCProperty,
5120                            (Context, name.Val, file.Val, line.Val, setter.Val,
5121                             getter.Val, attributes.Val, type.Val));
5122   return false;
5123 }
5124 
5125 /// parseDIImportedEntity:
5126 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5127 ///                         line: 7, name: "foo", elements: !2)
5128 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5129 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5130   REQUIRED(tag, DwarfTagField, );                                              \
5131   REQUIRED(scope, MDField, );                                                  \
5132   OPTIONAL(entity, MDField, );                                                 \
5133   OPTIONAL(file, MDField, );                                                   \
5134   OPTIONAL(line, LineField, );                                                 \
5135   OPTIONAL(name, MDStringField, );                                             \
5136   OPTIONAL(elements, MDField, );
5137   PARSE_MD_FIELDS();
5138 #undef VISIT_MD_FIELDS
5139 
5140   Result = GET_OR_DISTINCT(DIImportedEntity,
5141                            (Context, tag.Val, scope.Val, entity.Val, file.Val,
5142                             line.Val, name.Val, elements.Val));
5143   return false;
5144 }
5145 
5146 #undef PARSE_MD_FIELD
5147 #undef NOP_FIELD
5148 #undef REQUIRE_FIELD
5149 #undef DECLARE_FIELD
5150 
5151 /// parseMetadataAsValue
5152 ///  ::= metadata i32 %local
5153 ///  ::= metadata i32 @global
5154 ///  ::= metadata i32 7
5155 ///  ::= metadata !0
5156 ///  ::= metadata !{...}
5157 ///  ::= metadata !"string"
5158 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5159   // Note: the type 'metadata' has already been parsed.
5160   Metadata *MD;
5161   if (parseMetadata(MD, &PFS))
5162     return true;
5163 
5164   V = MetadataAsValue::get(Context, MD);
5165   return false;
5166 }
5167 
5168 /// parseValueAsMetadata
5169 ///  ::= i32 %local
5170 ///  ::= i32 @global
5171 ///  ::= i32 7
5172 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5173                                     PerFunctionState *PFS) {
5174   Type *Ty;
5175   LocTy Loc;
5176   if (parseType(Ty, TypeMsg, Loc))
5177     return true;
5178   if (Ty->isMetadataTy())
5179     return error(Loc, "invalid metadata-value-metadata roundtrip");
5180 
5181   Value *V;
5182   if (parseValue(Ty, V, PFS))
5183     return true;
5184 
5185   MD = ValueAsMetadata::get(V);
5186   return false;
5187 }
5188 
5189 /// parseMetadata
5190 ///  ::= i32 %local
5191 ///  ::= i32 @global
5192 ///  ::= i32 7
5193 ///  ::= !42
5194 ///  ::= !{...}
5195 ///  ::= !"string"
5196 ///  ::= !DILocation(...)
5197 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5198   if (Lex.getKind() == lltok::MetadataVar) {
5199     MDNode *N;
5200     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5201     // so parsing this requires a Function State.
5202     if (Lex.getStrVal() == "DIArgList") {
5203       if (parseDIArgList(N, false, PFS))
5204         return true;
5205     } else if (parseSpecializedMDNode(N)) {
5206       return true;
5207     }
5208     MD = N;
5209     return false;
5210   }
5211 
5212   // ValueAsMetadata:
5213   // <type> <value>
5214   if (Lex.getKind() != lltok::exclaim)
5215     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5216 
5217   // '!'.
5218   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5219   Lex.Lex();
5220 
5221   // MDString:
5222   //   ::= '!' STRINGCONSTANT
5223   if (Lex.getKind() == lltok::StringConstant) {
5224     MDString *S;
5225     if (parseMDString(S))
5226       return true;
5227     MD = S;
5228     return false;
5229   }
5230 
5231   // MDNode:
5232   // !{ ... }
5233   // !7
5234   MDNode *N;
5235   if (parseMDNodeTail(N))
5236     return true;
5237   MD = N;
5238   return false;
5239 }
5240 
5241 //===----------------------------------------------------------------------===//
5242 // Function Parsing.
5243 //===----------------------------------------------------------------------===//
5244 
5245 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5246                                    PerFunctionState *PFS) {
5247   if (Ty->isFunctionTy())
5248     return error(ID.Loc, "functions are not values, refer to them as pointers");
5249 
5250   switch (ID.Kind) {
5251   case ValID::t_LocalID:
5252     if (!PFS)
5253       return error(ID.Loc, "invalid use of function-local name");
5254     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc);
5255     return V == nullptr;
5256   case ValID::t_LocalName:
5257     if (!PFS)
5258       return error(ID.Loc, "invalid use of function-local name");
5259     V = PFS->getVal(ID.StrVal, Ty, ID.Loc);
5260     return V == nullptr;
5261   case ValID::t_InlineAsm: {
5262     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5263       return error(ID.Loc, "invalid type for inline asm constraint string");
5264     V = InlineAsm::get(
5265         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5266         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5267     return false;
5268   }
5269   case ValID::t_GlobalName:
5270     V = getGlobalVal(ID.StrVal, Ty, ID.Loc);
5271     return V == nullptr;
5272   case ValID::t_GlobalID:
5273     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc);
5274     return V == nullptr;
5275   case ValID::t_APSInt:
5276     if (!Ty->isIntegerTy())
5277       return error(ID.Loc, "integer constant must have integer type");
5278     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5279     V = ConstantInt::get(Context, ID.APSIntVal);
5280     return false;
5281   case ValID::t_APFloat:
5282     if (!Ty->isFloatingPointTy() ||
5283         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5284       return error(ID.Loc, "floating point constant invalid for type");
5285 
5286     // The lexer has no type info, so builds all half, bfloat, float, and double
5287     // FP constants as double.  Fix this here.  Long double does not need this.
5288     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5289       // Check for signaling before potentially converting and losing that info.
5290       bool IsSNAN = ID.APFloatVal.isSignaling();
5291       bool Ignored;
5292       if (Ty->isHalfTy())
5293         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5294                               &Ignored);
5295       else if (Ty->isBFloatTy())
5296         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5297                               &Ignored);
5298       else if (Ty->isFloatTy())
5299         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5300                               &Ignored);
5301       if (IsSNAN) {
5302         // The convert call above may quiet an SNaN, so manufacture another
5303         // SNaN. The bitcast works because the payload (significand) parameter
5304         // is truncated to fit.
5305         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5306         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5307                                          ID.APFloatVal.isNegative(), &Payload);
5308       }
5309     }
5310     V = ConstantFP::get(Context, ID.APFloatVal);
5311 
5312     if (V->getType() != Ty)
5313       return error(ID.Loc, "floating point constant does not have type '" +
5314                                getTypeString(Ty) + "'");
5315 
5316     return false;
5317   case ValID::t_Null:
5318     if (!Ty->isPointerTy())
5319       return error(ID.Loc, "null must be a pointer type");
5320     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5321     return false;
5322   case ValID::t_Undef:
5323     // FIXME: LabelTy should not be a first-class type.
5324     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5325       return error(ID.Loc, "invalid type for undef constant");
5326     V = UndefValue::get(Ty);
5327     return false;
5328   case ValID::t_EmptyArray:
5329     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5330       return error(ID.Loc, "invalid empty array initializer");
5331     V = UndefValue::get(Ty);
5332     return false;
5333   case ValID::t_Zero:
5334     // FIXME: LabelTy should not be a first-class type.
5335     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5336       return error(ID.Loc, "invalid type for null constant");
5337     V = Constant::getNullValue(Ty);
5338     return false;
5339   case ValID::t_None:
5340     if (!Ty->isTokenTy())
5341       return error(ID.Loc, "invalid type for none constant");
5342     V = Constant::getNullValue(Ty);
5343     return false;
5344   case ValID::t_Poison:
5345     // FIXME: LabelTy should not be a first-class type.
5346     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5347       return error(ID.Loc, "invalid type for poison constant");
5348     V = PoisonValue::get(Ty);
5349     return false;
5350   case ValID::t_Constant:
5351     if (ID.ConstantVal->getType() != Ty)
5352       return error(ID.Loc, "constant expression type mismatch: got type '" +
5353                                getTypeString(ID.ConstantVal->getType()) +
5354                                "' but expected '" + getTypeString(Ty) + "'");
5355     V = ID.ConstantVal;
5356     return false;
5357   case ValID::t_ConstantStruct:
5358   case ValID::t_PackedConstantStruct:
5359     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5360       if (ST->getNumElements() != ID.UIntVal)
5361         return error(ID.Loc,
5362                      "initializer with struct type has wrong # elements");
5363       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5364         return error(ID.Loc, "packed'ness of initializer and type don't match");
5365 
5366       // Verify that the elements are compatible with the structtype.
5367       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5368         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5369           return error(
5370               ID.Loc,
5371               "element " + Twine(i) +
5372                   " of struct initializer doesn't match struct element type");
5373 
5374       V = ConstantStruct::get(
5375           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5376     } else
5377       return error(ID.Loc, "constant expression type mismatch");
5378     return false;
5379   }
5380   llvm_unreachable("Invalid ValID");
5381 }
5382 
5383 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5384   C = nullptr;
5385   ValID ID;
5386   auto Loc = Lex.getLoc();
5387   if (parseValID(ID, /*PFS=*/nullptr))
5388     return true;
5389   switch (ID.Kind) {
5390   case ValID::t_APSInt:
5391   case ValID::t_APFloat:
5392   case ValID::t_Undef:
5393   case ValID::t_Constant:
5394   case ValID::t_ConstantStruct:
5395   case ValID::t_PackedConstantStruct: {
5396     Value *V;
5397     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
5398       return true;
5399     assert(isa<Constant>(V) && "Expected a constant value");
5400     C = cast<Constant>(V);
5401     return false;
5402   }
5403   case ValID::t_Null:
5404     C = Constant::getNullValue(Ty);
5405     return false;
5406   default:
5407     return error(Loc, "expected a constant value");
5408   }
5409 }
5410 
5411 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5412   V = nullptr;
5413   ValID ID;
5414   return parseValID(ID, PFS, Ty) ||
5415          convertValIDToValue(Ty, ID, V, PFS);
5416 }
5417 
5418 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5419   Type *Ty = nullptr;
5420   return parseType(Ty) || parseValue(Ty, V, PFS);
5421 }
5422 
5423 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5424                                       PerFunctionState &PFS) {
5425   Value *V;
5426   Loc = Lex.getLoc();
5427   if (parseTypeAndValue(V, PFS))
5428     return true;
5429   if (!isa<BasicBlock>(V))
5430     return error(Loc, "expected a basic block");
5431   BB = cast<BasicBlock>(V);
5432   return false;
5433 }
5434 
5435 /// FunctionHeader
5436 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5437 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5438 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5439 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5440 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5441   // parse the linkage.
5442   LocTy LinkageLoc = Lex.getLoc();
5443   unsigned Linkage;
5444   unsigned Visibility;
5445   unsigned DLLStorageClass;
5446   bool DSOLocal;
5447   AttrBuilder RetAttrs;
5448   unsigned CC;
5449   bool HasLinkage;
5450   Type *RetType = nullptr;
5451   LocTy RetTypeLoc = Lex.getLoc();
5452   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5453                            DSOLocal) ||
5454       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5455       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5456     return true;
5457 
5458   // Verify that the linkage is ok.
5459   switch ((GlobalValue::LinkageTypes)Linkage) {
5460   case GlobalValue::ExternalLinkage:
5461     break; // always ok.
5462   case GlobalValue::ExternalWeakLinkage:
5463     if (IsDefine)
5464       return error(LinkageLoc, "invalid linkage for function definition");
5465     break;
5466   case GlobalValue::PrivateLinkage:
5467   case GlobalValue::InternalLinkage:
5468   case GlobalValue::AvailableExternallyLinkage:
5469   case GlobalValue::LinkOnceAnyLinkage:
5470   case GlobalValue::LinkOnceODRLinkage:
5471   case GlobalValue::WeakAnyLinkage:
5472   case GlobalValue::WeakODRLinkage:
5473     if (!IsDefine)
5474       return error(LinkageLoc, "invalid linkage for function declaration");
5475     break;
5476   case GlobalValue::AppendingLinkage:
5477   case GlobalValue::CommonLinkage:
5478     return error(LinkageLoc, "invalid function linkage type");
5479   }
5480 
5481   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5482     return error(LinkageLoc,
5483                  "symbol with local linkage must have default visibility");
5484 
5485   if (!FunctionType::isValidReturnType(RetType))
5486     return error(RetTypeLoc, "invalid function return type");
5487 
5488   LocTy NameLoc = Lex.getLoc();
5489 
5490   std::string FunctionName;
5491   if (Lex.getKind() == lltok::GlobalVar) {
5492     FunctionName = Lex.getStrVal();
5493   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5494     unsigned NameID = Lex.getUIntVal();
5495 
5496     if (NameID != NumberedVals.size())
5497       return tokError("function expected to be numbered '%" +
5498                       Twine(NumberedVals.size()) + "'");
5499   } else {
5500     return tokError("expected function name");
5501   }
5502 
5503   Lex.Lex();
5504 
5505   if (Lex.getKind() != lltok::lparen)
5506     return tokError("expected '(' in function argument list");
5507 
5508   SmallVector<ArgInfo, 8> ArgList;
5509   bool IsVarArg;
5510   AttrBuilder FuncAttrs;
5511   std::vector<unsigned> FwdRefAttrGrps;
5512   LocTy BuiltinLoc;
5513   std::string Section;
5514   std::string Partition;
5515   MaybeAlign Alignment;
5516   std::string GC;
5517   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5518   unsigned AddrSpace = 0;
5519   Constant *Prefix = nullptr;
5520   Constant *Prologue = nullptr;
5521   Constant *PersonalityFn = nullptr;
5522   Comdat *C;
5523 
5524   if (parseArgumentList(ArgList, IsVarArg) ||
5525       parseOptionalUnnamedAddr(UnnamedAddr) ||
5526       parseOptionalProgramAddrSpace(AddrSpace) ||
5527       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5528                                  BuiltinLoc) ||
5529       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5530       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5531       parseOptionalComdat(FunctionName, C) ||
5532       parseOptionalAlignment(Alignment) ||
5533       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5534       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5535       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5536       (EatIfPresent(lltok::kw_personality) &&
5537        parseGlobalTypeAndValue(PersonalityFn)))
5538     return true;
5539 
5540   if (FuncAttrs.contains(Attribute::Builtin))
5541     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5542 
5543   // If the alignment was parsed as an attribute, move to the alignment field.
5544   if (FuncAttrs.hasAlignmentAttr()) {
5545     Alignment = FuncAttrs.getAlignment();
5546     FuncAttrs.removeAttribute(Attribute::Alignment);
5547   }
5548 
5549   // Okay, if we got here, the function is syntactically valid.  Convert types
5550   // and do semantic checks.
5551   std::vector<Type*> ParamTypeList;
5552   SmallVector<AttributeSet, 8> Attrs;
5553 
5554   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5555     ParamTypeList.push_back(ArgList[i].Ty);
5556     Attrs.push_back(ArgList[i].Attrs);
5557   }
5558 
5559   AttributeList PAL =
5560       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5561                          AttributeSet::get(Context, RetAttrs), Attrs);
5562 
5563   if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy())
5564     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5565 
5566   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5567   PointerType *PFT = PointerType::get(FT, AddrSpace);
5568 
5569   Fn = nullptr;
5570   GlobalValue *FwdFn = nullptr;
5571   if (!FunctionName.empty()) {
5572     // If this was a definition of a forward reference, remove the definition
5573     // from the forward reference table and fill in the forward ref.
5574     auto FRVI = ForwardRefVals.find(FunctionName);
5575     if (FRVI != ForwardRefVals.end()) {
5576       FwdFn = FRVI->second.first;
5577       if (!FwdFn->getType()->isOpaque()) {
5578         if (!FwdFn->getType()->getPointerElementType()->isFunctionTy())
5579           return error(FRVI->second.second, "invalid forward reference to "
5580                                             "function as global value!");
5581         if (FwdFn->getType() != PFT)
5582           return error(FRVI->second.second,
5583                        "invalid forward reference to "
5584                        "function '" +
5585                            FunctionName +
5586                            "' with wrong type: "
5587                            "expected '" +
5588                            getTypeString(PFT) + "' but was '" +
5589                            getTypeString(FwdFn->getType()) + "'");
5590       }
5591       ForwardRefVals.erase(FRVI);
5592     } else if ((Fn = M->getFunction(FunctionName))) {
5593       // Reject redefinitions.
5594       return error(NameLoc,
5595                    "invalid redefinition of function '" + FunctionName + "'");
5596     } else if (M->getNamedValue(FunctionName)) {
5597       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5598     }
5599 
5600   } else {
5601     // If this is a definition of a forward referenced function, make sure the
5602     // types agree.
5603     auto I = ForwardRefValIDs.find(NumberedVals.size());
5604     if (I != ForwardRefValIDs.end()) {
5605       FwdFn = cast<Function>(I->second.first);
5606       if (!FwdFn->getType()->isOpaque() && FwdFn->getType() != PFT)
5607         return error(NameLoc, "type of definition and forward reference of '@" +
5608                                   Twine(NumberedVals.size()) +
5609                                   "' disagree: "
5610                                   "expected '" +
5611                                   getTypeString(PFT) + "' but was '" +
5612                                   getTypeString(FwdFn->getType()) + "'");
5613       ForwardRefValIDs.erase(I);
5614     }
5615   }
5616 
5617   Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5618                         FunctionName, M);
5619 
5620   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5621 
5622   if (FunctionName.empty())
5623     NumberedVals.push_back(Fn);
5624 
5625   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5626   maybeSetDSOLocal(DSOLocal, *Fn);
5627   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5628   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5629   Fn->setCallingConv(CC);
5630   Fn->setAttributes(PAL);
5631   Fn->setUnnamedAddr(UnnamedAddr);
5632   Fn->setAlignment(MaybeAlign(Alignment));
5633   Fn->setSection(Section);
5634   Fn->setPartition(Partition);
5635   Fn->setComdat(C);
5636   Fn->setPersonalityFn(PersonalityFn);
5637   if (!GC.empty()) Fn->setGC(GC);
5638   Fn->setPrefixData(Prefix);
5639   Fn->setPrologueData(Prologue);
5640   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5641 
5642   // Add all of the arguments we parsed to the function.
5643   Function::arg_iterator ArgIt = Fn->arg_begin();
5644   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5645     // If the argument has a name, insert it into the argument symbol table.
5646     if (ArgList[i].Name.empty()) continue;
5647 
5648     // Set the name, if it conflicted, it will be auto-renamed.
5649     ArgIt->setName(ArgList[i].Name);
5650 
5651     if (ArgIt->getName() != ArgList[i].Name)
5652       return error(ArgList[i].Loc,
5653                    "redefinition of argument '%" + ArgList[i].Name + "'");
5654   }
5655 
5656   if (FwdFn) {
5657     FwdFn->replaceAllUsesWith(Fn);
5658     FwdFn->eraseFromParent();
5659   }
5660 
5661   if (IsDefine)
5662     return false;
5663 
5664   // Check the declaration has no block address forward references.
5665   ValID ID;
5666   if (FunctionName.empty()) {
5667     ID.Kind = ValID::t_GlobalID;
5668     ID.UIntVal = NumberedVals.size() - 1;
5669   } else {
5670     ID.Kind = ValID::t_GlobalName;
5671     ID.StrVal = FunctionName;
5672   }
5673   auto Blocks = ForwardRefBlockAddresses.find(ID);
5674   if (Blocks != ForwardRefBlockAddresses.end())
5675     return error(Blocks->first.Loc,
5676                  "cannot take blockaddress inside a declaration");
5677   return false;
5678 }
5679 
5680 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5681   ValID ID;
5682   if (FunctionNumber == -1) {
5683     ID.Kind = ValID::t_GlobalName;
5684     ID.StrVal = std::string(F.getName());
5685   } else {
5686     ID.Kind = ValID::t_GlobalID;
5687     ID.UIntVal = FunctionNumber;
5688   }
5689 
5690   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5691   if (Blocks == P.ForwardRefBlockAddresses.end())
5692     return false;
5693 
5694   for (const auto &I : Blocks->second) {
5695     const ValID &BBID = I.first;
5696     GlobalValue *GV = I.second;
5697 
5698     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5699            "Expected local id or name");
5700     BasicBlock *BB;
5701     if (BBID.Kind == ValID::t_LocalName)
5702       BB = getBB(BBID.StrVal, BBID.Loc);
5703     else
5704       BB = getBB(BBID.UIntVal, BBID.Loc);
5705     if (!BB)
5706       return P.error(BBID.Loc, "referenced value is not a basic block");
5707 
5708     Value *ResolvedVal = BlockAddress::get(&F, BB);
5709     ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
5710                                            ResolvedVal);
5711     if (!ResolvedVal)
5712       return true;
5713     GV->replaceAllUsesWith(ResolvedVal);
5714     GV->eraseFromParent();
5715   }
5716 
5717   P.ForwardRefBlockAddresses.erase(Blocks);
5718   return false;
5719 }
5720 
5721 /// parseFunctionBody
5722 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5723 bool LLParser::parseFunctionBody(Function &Fn) {
5724   if (Lex.getKind() != lltok::lbrace)
5725     return tokError("expected '{' in function body");
5726   Lex.Lex();  // eat the {.
5727 
5728   int FunctionNumber = -1;
5729   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5730 
5731   PerFunctionState PFS(*this, Fn, FunctionNumber);
5732 
5733   // Resolve block addresses and allow basic blocks to be forward-declared
5734   // within this function.
5735   if (PFS.resolveForwardRefBlockAddresses())
5736     return true;
5737   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5738 
5739   // We need at least one basic block.
5740   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5741     return tokError("function body requires at least one basic block");
5742 
5743   while (Lex.getKind() != lltok::rbrace &&
5744          Lex.getKind() != lltok::kw_uselistorder)
5745     if (parseBasicBlock(PFS))
5746       return true;
5747 
5748   while (Lex.getKind() != lltok::rbrace)
5749     if (parseUseListOrder(&PFS))
5750       return true;
5751 
5752   // Eat the }.
5753   Lex.Lex();
5754 
5755   // Verify function is ok.
5756   return PFS.finishFunction();
5757 }
5758 
5759 /// parseBasicBlock
5760 ///   ::= (LabelStr|LabelID)? Instruction*
5761 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
5762   // If this basic block starts out with a name, remember it.
5763   std::string Name;
5764   int NameID = -1;
5765   LocTy NameLoc = Lex.getLoc();
5766   if (Lex.getKind() == lltok::LabelStr) {
5767     Name = Lex.getStrVal();
5768     Lex.Lex();
5769   } else if (Lex.getKind() == lltok::LabelID) {
5770     NameID = Lex.getUIntVal();
5771     Lex.Lex();
5772   }
5773 
5774   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
5775   if (!BB)
5776     return true;
5777 
5778   std::string NameStr;
5779 
5780   // parse the instructions in this block until we get a terminator.
5781   Instruction *Inst;
5782   do {
5783     // This instruction may have three possibilities for a name: a) none
5784     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5785     LocTy NameLoc = Lex.getLoc();
5786     int NameID = -1;
5787     NameStr = "";
5788 
5789     if (Lex.getKind() == lltok::LocalVarID) {
5790       NameID = Lex.getUIntVal();
5791       Lex.Lex();
5792       if (parseToken(lltok::equal, "expected '=' after instruction id"))
5793         return true;
5794     } else if (Lex.getKind() == lltok::LocalVar) {
5795       NameStr = Lex.getStrVal();
5796       Lex.Lex();
5797       if (parseToken(lltok::equal, "expected '=' after instruction name"))
5798         return true;
5799     }
5800 
5801     switch (parseInstruction(Inst, BB, PFS)) {
5802     default:
5803       llvm_unreachable("Unknown parseInstruction result!");
5804     case InstError: return true;
5805     case InstNormal:
5806       BB->getInstList().push_back(Inst);
5807 
5808       // With a normal result, we check to see if the instruction is followed by
5809       // a comma and metadata.
5810       if (EatIfPresent(lltok::comma))
5811         if (parseInstructionMetadata(*Inst))
5812           return true;
5813       break;
5814     case InstExtraComma:
5815       BB->getInstList().push_back(Inst);
5816 
5817       // If the instruction parser ate an extra comma at the end of it, it
5818       // *must* be followed by metadata.
5819       if (parseInstructionMetadata(*Inst))
5820         return true;
5821       break;
5822     }
5823 
5824     // Set the name on the instruction.
5825     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
5826       return true;
5827   } while (!Inst->isTerminator());
5828 
5829   return false;
5830 }
5831 
5832 //===----------------------------------------------------------------------===//
5833 // Instruction Parsing.
5834 //===----------------------------------------------------------------------===//
5835 
5836 /// parseInstruction - parse one of the many different instructions.
5837 ///
5838 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
5839                                PerFunctionState &PFS) {
5840   lltok::Kind Token = Lex.getKind();
5841   if (Token == lltok::Eof)
5842     return tokError("found end of file when expecting more instructions");
5843   LocTy Loc = Lex.getLoc();
5844   unsigned KeywordVal = Lex.getUIntVal();
5845   Lex.Lex();  // Eat the keyword.
5846 
5847   switch (Token) {
5848   default:
5849     return error(Loc, "expected instruction opcode");
5850   // Terminator Instructions.
5851   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5852   case lltok::kw_ret:
5853     return parseRet(Inst, BB, PFS);
5854   case lltok::kw_br:
5855     return parseBr(Inst, PFS);
5856   case lltok::kw_switch:
5857     return parseSwitch(Inst, PFS);
5858   case lltok::kw_indirectbr:
5859     return parseIndirectBr(Inst, PFS);
5860   case lltok::kw_invoke:
5861     return parseInvoke(Inst, PFS);
5862   case lltok::kw_resume:
5863     return parseResume(Inst, PFS);
5864   case lltok::kw_cleanupret:
5865     return parseCleanupRet(Inst, PFS);
5866   case lltok::kw_catchret:
5867     return parseCatchRet(Inst, PFS);
5868   case lltok::kw_catchswitch:
5869     return parseCatchSwitch(Inst, PFS);
5870   case lltok::kw_catchpad:
5871     return parseCatchPad(Inst, PFS);
5872   case lltok::kw_cleanuppad:
5873     return parseCleanupPad(Inst, PFS);
5874   case lltok::kw_callbr:
5875     return parseCallBr(Inst, PFS);
5876   // Unary Operators.
5877   case lltok::kw_fneg: {
5878     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5879     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
5880     if (Res != 0)
5881       return Res;
5882     if (FMF.any())
5883       Inst->setFastMathFlags(FMF);
5884     return false;
5885   }
5886   // Binary Operators.
5887   case lltok::kw_add:
5888   case lltok::kw_sub:
5889   case lltok::kw_mul:
5890   case lltok::kw_shl: {
5891     bool NUW = EatIfPresent(lltok::kw_nuw);
5892     bool NSW = EatIfPresent(lltok::kw_nsw);
5893     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5894 
5895     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
5896       return true;
5897 
5898     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5899     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5900     return false;
5901   }
5902   case lltok::kw_fadd:
5903   case lltok::kw_fsub:
5904   case lltok::kw_fmul:
5905   case lltok::kw_fdiv:
5906   case lltok::kw_frem: {
5907     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5908     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
5909     if (Res != 0)
5910       return Res;
5911     if (FMF.any())
5912       Inst->setFastMathFlags(FMF);
5913     return 0;
5914   }
5915 
5916   case lltok::kw_sdiv:
5917   case lltok::kw_udiv:
5918   case lltok::kw_lshr:
5919   case lltok::kw_ashr: {
5920     bool Exact = EatIfPresent(lltok::kw_exact);
5921 
5922     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
5923       return true;
5924     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5925     return false;
5926   }
5927 
5928   case lltok::kw_urem:
5929   case lltok::kw_srem:
5930     return parseArithmetic(Inst, PFS, KeywordVal,
5931                            /*IsFP*/ false);
5932   case lltok::kw_and:
5933   case lltok::kw_or:
5934   case lltok::kw_xor:
5935     return parseLogical(Inst, PFS, KeywordVal);
5936   case lltok::kw_icmp:
5937     return parseCompare(Inst, PFS, KeywordVal);
5938   case lltok::kw_fcmp: {
5939     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5940     int Res = parseCompare(Inst, PFS, KeywordVal);
5941     if (Res != 0)
5942       return Res;
5943     if (FMF.any())
5944       Inst->setFastMathFlags(FMF);
5945     return 0;
5946   }
5947 
5948   // Casts.
5949   case lltok::kw_trunc:
5950   case lltok::kw_zext:
5951   case lltok::kw_sext:
5952   case lltok::kw_fptrunc:
5953   case lltok::kw_fpext:
5954   case lltok::kw_bitcast:
5955   case lltok::kw_addrspacecast:
5956   case lltok::kw_uitofp:
5957   case lltok::kw_sitofp:
5958   case lltok::kw_fptoui:
5959   case lltok::kw_fptosi:
5960   case lltok::kw_inttoptr:
5961   case lltok::kw_ptrtoint:
5962     return parseCast(Inst, PFS, KeywordVal);
5963   // Other.
5964   case lltok::kw_select: {
5965     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5966     int Res = parseSelect(Inst, PFS);
5967     if (Res != 0)
5968       return Res;
5969     if (FMF.any()) {
5970       if (!isa<FPMathOperator>(Inst))
5971         return error(Loc, "fast-math-flags specified for select without "
5972                           "floating-point scalar or vector return type");
5973       Inst->setFastMathFlags(FMF);
5974     }
5975     return 0;
5976   }
5977   case lltok::kw_va_arg:
5978     return parseVAArg(Inst, PFS);
5979   case lltok::kw_extractelement:
5980     return parseExtractElement(Inst, PFS);
5981   case lltok::kw_insertelement:
5982     return parseInsertElement(Inst, PFS);
5983   case lltok::kw_shufflevector:
5984     return parseShuffleVector(Inst, PFS);
5985   case lltok::kw_phi: {
5986     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5987     int Res = parsePHI(Inst, PFS);
5988     if (Res != 0)
5989       return Res;
5990     if (FMF.any()) {
5991       if (!isa<FPMathOperator>(Inst))
5992         return error(Loc, "fast-math-flags specified for phi without "
5993                           "floating-point scalar or vector return type");
5994       Inst->setFastMathFlags(FMF);
5995     }
5996     return 0;
5997   }
5998   case lltok::kw_landingpad:
5999     return parseLandingPad(Inst, PFS);
6000   case lltok::kw_freeze:
6001     return parseFreeze(Inst, PFS);
6002   // Call.
6003   case lltok::kw_call:
6004     return parseCall(Inst, PFS, CallInst::TCK_None);
6005   case lltok::kw_tail:
6006     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6007   case lltok::kw_musttail:
6008     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6009   case lltok::kw_notail:
6010     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6011   // Memory.
6012   case lltok::kw_alloca:
6013     return parseAlloc(Inst, PFS);
6014   case lltok::kw_load:
6015     return parseLoad(Inst, PFS);
6016   case lltok::kw_store:
6017     return parseStore(Inst, PFS);
6018   case lltok::kw_cmpxchg:
6019     return parseCmpXchg(Inst, PFS);
6020   case lltok::kw_atomicrmw:
6021     return parseAtomicRMW(Inst, PFS);
6022   case lltok::kw_fence:
6023     return parseFence(Inst, PFS);
6024   case lltok::kw_getelementptr:
6025     return parseGetElementPtr(Inst, PFS);
6026   case lltok::kw_extractvalue:
6027     return parseExtractValue(Inst, PFS);
6028   case lltok::kw_insertvalue:
6029     return parseInsertValue(Inst, PFS);
6030   }
6031 }
6032 
6033 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6034 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6035   if (Opc == Instruction::FCmp) {
6036     switch (Lex.getKind()) {
6037     default:
6038       return tokError("expected fcmp predicate (e.g. 'oeq')");
6039     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6040     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6041     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6042     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6043     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6044     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6045     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6046     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6047     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6048     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6049     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6050     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6051     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6052     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6053     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6054     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6055     }
6056   } else {
6057     switch (Lex.getKind()) {
6058     default:
6059       return tokError("expected icmp predicate (e.g. 'eq')");
6060     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6061     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6062     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6063     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6064     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6065     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6066     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6067     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6068     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6069     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6070     }
6071   }
6072   Lex.Lex();
6073   return false;
6074 }
6075 
6076 //===----------------------------------------------------------------------===//
6077 // Terminator Instructions.
6078 //===----------------------------------------------------------------------===//
6079 
6080 /// parseRet - parse a return instruction.
6081 ///   ::= 'ret' void (',' !dbg, !1)*
6082 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6083 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6084                         PerFunctionState &PFS) {
6085   SMLoc TypeLoc = Lex.getLoc();
6086   Type *Ty = nullptr;
6087   if (parseType(Ty, true /*void allowed*/))
6088     return true;
6089 
6090   Type *ResType = PFS.getFunction().getReturnType();
6091 
6092   if (Ty->isVoidTy()) {
6093     if (!ResType->isVoidTy())
6094       return error(TypeLoc, "value doesn't match function result type '" +
6095                                 getTypeString(ResType) + "'");
6096 
6097     Inst = ReturnInst::Create(Context);
6098     return false;
6099   }
6100 
6101   Value *RV;
6102   if (parseValue(Ty, RV, PFS))
6103     return true;
6104 
6105   if (ResType != RV->getType())
6106     return error(TypeLoc, "value doesn't match function result type '" +
6107                               getTypeString(ResType) + "'");
6108 
6109   Inst = ReturnInst::Create(Context, RV);
6110   return false;
6111 }
6112 
6113 /// parseBr
6114 ///   ::= 'br' TypeAndValue
6115 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6116 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6117   LocTy Loc, Loc2;
6118   Value *Op0;
6119   BasicBlock *Op1, *Op2;
6120   if (parseTypeAndValue(Op0, Loc, PFS))
6121     return true;
6122 
6123   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6124     Inst = BranchInst::Create(BB);
6125     return false;
6126   }
6127 
6128   if (Op0->getType() != Type::getInt1Ty(Context))
6129     return error(Loc, "branch condition must have 'i1' type");
6130 
6131   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6132       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6133       parseToken(lltok::comma, "expected ',' after true destination") ||
6134       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6135     return true;
6136 
6137   Inst = BranchInst::Create(Op1, Op2, Op0);
6138   return false;
6139 }
6140 
6141 /// parseSwitch
6142 ///  Instruction
6143 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6144 ///  JumpTable
6145 ///    ::= (TypeAndValue ',' TypeAndValue)*
6146 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6147   LocTy CondLoc, BBLoc;
6148   Value *Cond;
6149   BasicBlock *DefaultBB;
6150   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6151       parseToken(lltok::comma, "expected ',' after switch condition") ||
6152       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6153       parseToken(lltok::lsquare, "expected '[' with switch table"))
6154     return true;
6155 
6156   if (!Cond->getType()->isIntegerTy())
6157     return error(CondLoc, "switch condition must have integer type");
6158 
6159   // parse the jump table pairs.
6160   SmallPtrSet<Value*, 32> SeenCases;
6161   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6162   while (Lex.getKind() != lltok::rsquare) {
6163     Value *Constant;
6164     BasicBlock *DestBB;
6165 
6166     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6167         parseToken(lltok::comma, "expected ',' after case value") ||
6168         parseTypeAndBasicBlock(DestBB, PFS))
6169       return true;
6170 
6171     if (!SeenCases.insert(Constant).second)
6172       return error(CondLoc, "duplicate case value in switch");
6173     if (!isa<ConstantInt>(Constant))
6174       return error(CondLoc, "case value is not a constant integer");
6175 
6176     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6177   }
6178 
6179   Lex.Lex();  // Eat the ']'.
6180 
6181   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6182   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6183     SI->addCase(Table[i].first, Table[i].second);
6184   Inst = SI;
6185   return false;
6186 }
6187 
6188 /// parseIndirectBr
6189 ///  Instruction
6190 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6191 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6192   LocTy AddrLoc;
6193   Value *Address;
6194   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6195       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6196       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6197     return true;
6198 
6199   if (!Address->getType()->isPointerTy())
6200     return error(AddrLoc, "indirectbr address must have pointer type");
6201 
6202   // parse the destination list.
6203   SmallVector<BasicBlock*, 16> DestList;
6204 
6205   if (Lex.getKind() != lltok::rsquare) {
6206     BasicBlock *DestBB;
6207     if (parseTypeAndBasicBlock(DestBB, PFS))
6208       return true;
6209     DestList.push_back(DestBB);
6210 
6211     while (EatIfPresent(lltok::comma)) {
6212       if (parseTypeAndBasicBlock(DestBB, PFS))
6213         return true;
6214       DestList.push_back(DestBB);
6215     }
6216   }
6217 
6218   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6219     return true;
6220 
6221   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6222   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6223     IBI->addDestination(DestList[i]);
6224   Inst = IBI;
6225   return false;
6226 }
6227 
6228 /// parseInvoke
6229 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6230 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6231 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6232   LocTy CallLoc = Lex.getLoc();
6233   AttrBuilder RetAttrs, FnAttrs;
6234   std::vector<unsigned> FwdRefAttrGrps;
6235   LocTy NoBuiltinLoc;
6236   unsigned CC;
6237   unsigned InvokeAddrSpace;
6238   Type *RetType = nullptr;
6239   LocTy RetTypeLoc;
6240   ValID CalleeID;
6241   SmallVector<ParamInfo, 16> ArgList;
6242   SmallVector<OperandBundleDef, 2> BundleList;
6243 
6244   BasicBlock *NormalBB, *UnwindBB;
6245   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6246       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6247       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6248       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6249       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6250                                  NoBuiltinLoc) ||
6251       parseOptionalOperandBundles(BundleList, PFS) ||
6252       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6253       parseTypeAndBasicBlock(NormalBB, PFS) ||
6254       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6255       parseTypeAndBasicBlock(UnwindBB, PFS))
6256     return true;
6257 
6258   // If RetType is a non-function pointer type, then this is the short syntax
6259   // for the call, which means that RetType is just the return type.  Infer the
6260   // rest of the function argument types from the arguments that are present.
6261   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6262   if (!Ty) {
6263     // Pull out the types of all of the arguments...
6264     std::vector<Type*> ParamTypes;
6265     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6266       ParamTypes.push_back(ArgList[i].V->getType());
6267 
6268     if (!FunctionType::isValidReturnType(RetType))
6269       return error(RetTypeLoc, "Invalid result type for LLVM function");
6270 
6271     Ty = FunctionType::get(RetType, ParamTypes, false);
6272   }
6273 
6274   CalleeID.FTy = Ty;
6275 
6276   // Look up the callee.
6277   Value *Callee;
6278   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6279                           Callee, &PFS))
6280     return true;
6281 
6282   // Set up the Attribute for the function.
6283   SmallVector<Value *, 8> Args;
6284   SmallVector<AttributeSet, 8> ArgAttrs;
6285 
6286   // Loop through FunctionType's arguments and ensure they are specified
6287   // correctly.  Also, gather any parameter attributes.
6288   FunctionType::param_iterator I = Ty->param_begin();
6289   FunctionType::param_iterator E = Ty->param_end();
6290   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6291     Type *ExpectedTy = nullptr;
6292     if (I != E) {
6293       ExpectedTy = *I++;
6294     } else if (!Ty->isVarArg()) {
6295       return error(ArgList[i].Loc, "too many arguments specified");
6296     }
6297 
6298     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6299       return error(ArgList[i].Loc, "argument is not of expected type '" +
6300                                        getTypeString(ExpectedTy) + "'");
6301     Args.push_back(ArgList[i].V);
6302     ArgAttrs.push_back(ArgList[i].Attrs);
6303   }
6304 
6305   if (I != E)
6306     return error(CallLoc, "not enough parameters specified for call");
6307 
6308   if (FnAttrs.hasAlignmentAttr())
6309     return error(CallLoc, "invoke instructions may not have an alignment");
6310 
6311   // Finish off the Attribute and check them
6312   AttributeList PAL =
6313       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6314                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6315 
6316   InvokeInst *II =
6317       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6318   II->setCallingConv(CC);
6319   II->setAttributes(PAL);
6320   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6321   Inst = II;
6322   return false;
6323 }
6324 
6325 /// parseResume
6326 ///   ::= 'resume' TypeAndValue
6327 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6328   Value *Exn; LocTy ExnLoc;
6329   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6330     return true;
6331 
6332   ResumeInst *RI = ResumeInst::Create(Exn);
6333   Inst = RI;
6334   return false;
6335 }
6336 
6337 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6338                                   PerFunctionState &PFS) {
6339   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6340     return true;
6341 
6342   while (Lex.getKind() != lltok::rsquare) {
6343     // If this isn't the first argument, we need a comma.
6344     if (!Args.empty() &&
6345         parseToken(lltok::comma, "expected ',' in argument list"))
6346       return true;
6347 
6348     // parse the argument.
6349     LocTy ArgLoc;
6350     Type *ArgTy = nullptr;
6351     if (parseType(ArgTy, ArgLoc))
6352       return true;
6353 
6354     Value *V;
6355     if (ArgTy->isMetadataTy()) {
6356       if (parseMetadataAsValue(V, PFS))
6357         return true;
6358     } else {
6359       if (parseValue(ArgTy, V, PFS))
6360         return true;
6361     }
6362     Args.push_back(V);
6363   }
6364 
6365   Lex.Lex();  // Lex the ']'.
6366   return false;
6367 }
6368 
6369 /// parseCleanupRet
6370 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6371 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6372   Value *CleanupPad = nullptr;
6373 
6374   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6375     return true;
6376 
6377   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6378     return true;
6379 
6380   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6381     return true;
6382 
6383   BasicBlock *UnwindBB = nullptr;
6384   if (Lex.getKind() == lltok::kw_to) {
6385     Lex.Lex();
6386     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6387       return true;
6388   } else {
6389     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6390       return true;
6391     }
6392   }
6393 
6394   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6395   return false;
6396 }
6397 
6398 /// parseCatchRet
6399 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6400 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6401   Value *CatchPad = nullptr;
6402 
6403   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6404     return true;
6405 
6406   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6407     return true;
6408 
6409   BasicBlock *BB;
6410   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6411       parseTypeAndBasicBlock(BB, PFS))
6412     return true;
6413 
6414   Inst = CatchReturnInst::Create(CatchPad, BB);
6415   return false;
6416 }
6417 
6418 /// parseCatchSwitch
6419 ///   ::= 'catchswitch' within Parent
6420 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6421   Value *ParentPad;
6422 
6423   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6424     return true;
6425 
6426   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6427       Lex.getKind() != lltok::LocalVarID)
6428     return tokError("expected scope value for catchswitch");
6429 
6430   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6431     return true;
6432 
6433   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6434     return true;
6435 
6436   SmallVector<BasicBlock *, 32> Table;
6437   do {
6438     BasicBlock *DestBB;
6439     if (parseTypeAndBasicBlock(DestBB, PFS))
6440       return true;
6441     Table.push_back(DestBB);
6442   } while (EatIfPresent(lltok::comma));
6443 
6444   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6445     return true;
6446 
6447   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6448     return true;
6449 
6450   BasicBlock *UnwindBB = nullptr;
6451   if (EatIfPresent(lltok::kw_to)) {
6452     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6453       return true;
6454   } else {
6455     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6456       return true;
6457   }
6458 
6459   auto *CatchSwitch =
6460       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6461   for (BasicBlock *DestBB : Table)
6462     CatchSwitch->addHandler(DestBB);
6463   Inst = CatchSwitch;
6464   return false;
6465 }
6466 
6467 /// parseCatchPad
6468 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6469 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6470   Value *CatchSwitch = nullptr;
6471 
6472   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6473     return true;
6474 
6475   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6476     return tokError("expected scope value for catchpad");
6477 
6478   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6479     return true;
6480 
6481   SmallVector<Value *, 8> Args;
6482   if (parseExceptionArgs(Args, PFS))
6483     return true;
6484 
6485   Inst = CatchPadInst::Create(CatchSwitch, Args);
6486   return false;
6487 }
6488 
6489 /// parseCleanupPad
6490 ///   ::= 'cleanuppad' within Parent ParamList
6491 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6492   Value *ParentPad = nullptr;
6493 
6494   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6495     return true;
6496 
6497   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6498       Lex.getKind() != lltok::LocalVarID)
6499     return tokError("expected scope value for cleanuppad");
6500 
6501   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6502     return true;
6503 
6504   SmallVector<Value *, 8> Args;
6505   if (parseExceptionArgs(Args, PFS))
6506     return true;
6507 
6508   Inst = CleanupPadInst::Create(ParentPad, Args);
6509   return false;
6510 }
6511 
6512 //===----------------------------------------------------------------------===//
6513 // Unary Operators.
6514 //===----------------------------------------------------------------------===//
6515 
6516 /// parseUnaryOp
6517 ///  ::= UnaryOp TypeAndValue ',' Value
6518 ///
6519 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6520 /// operand is allowed.
6521 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6522                             unsigned Opc, bool IsFP) {
6523   LocTy Loc; Value *LHS;
6524   if (parseTypeAndValue(LHS, Loc, PFS))
6525     return true;
6526 
6527   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6528                     : LHS->getType()->isIntOrIntVectorTy();
6529 
6530   if (!Valid)
6531     return error(Loc, "invalid operand type for instruction");
6532 
6533   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6534   return false;
6535 }
6536 
6537 /// parseCallBr
6538 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6539 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6540 ///       '[' LabelList ']'
6541 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6542   LocTy CallLoc = Lex.getLoc();
6543   AttrBuilder RetAttrs, FnAttrs;
6544   std::vector<unsigned> FwdRefAttrGrps;
6545   LocTy NoBuiltinLoc;
6546   unsigned CC;
6547   Type *RetType = nullptr;
6548   LocTy RetTypeLoc;
6549   ValID CalleeID;
6550   SmallVector<ParamInfo, 16> ArgList;
6551   SmallVector<OperandBundleDef, 2> BundleList;
6552 
6553   BasicBlock *DefaultDest;
6554   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6555       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6556       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6557       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6558                                  NoBuiltinLoc) ||
6559       parseOptionalOperandBundles(BundleList, PFS) ||
6560       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6561       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6562       parseToken(lltok::lsquare, "expected '[' in callbr"))
6563     return true;
6564 
6565   // parse the destination list.
6566   SmallVector<BasicBlock *, 16> IndirectDests;
6567 
6568   if (Lex.getKind() != lltok::rsquare) {
6569     BasicBlock *DestBB;
6570     if (parseTypeAndBasicBlock(DestBB, PFS))
6571       return true;
6572     IndirectDests.push_back(DestBB);
6573 
6574     while (EatIfPresent(lltok::comma)) {
6575       if (parseTypeAndBasicBlock(DestBB, PFS))
6576         return true;
6577       IndirectDests.push_back(DestBB);
6578     }
6579   }
6580 
6581   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6582     return true;
6583 
6584   // If RetType is a non-function pointer type, then this is the short syntax
6585   // for the call, which means that RetType is just the return type.  Infer the
6586   // rest of the function argument types from the arguments that are present.
6587   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6588   if (!Ty) {
6589     // Pull out the types of all of the arguments...
6590     std::vector<Type *> ParamTypes;
6591     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6592       ParamTypes.push_back(ArgList[i].V->getType());
6593 
6594     if (!FunctionType::isValidReturnType(RetType))
6595       return error(RetTypeLoc, "Invalid result type for LLVM function");
6596 
6597     Ty = FunctionType::get(RetType, ParamTypes, false);
6598   }
6599 
6600   CalleeID.FTy = Ty;
6601 
6602   // Look up the callee.
6603   Value *Callee;
6604   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
6605     return true;
6606 
6607   // Set up the Attribute for the function.
6608   SmallVector<Value *, 8> Args;
6609   SmallVector<AttributeSet, 8> ArgAttrs;
6610 
6611   // Loop through FunctionType's arguments and ensure they are specified
6612   // correctly.  Also, gather any parameter attributes.
6613   FunctionType::param_iterator I = Ty->param_begin();
6614   FunctionType::param_iterator E = Ty->param_end();
6615   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6616     Type *ExpectedTy = nullptr;
6617     if (I != E) {
6618       ExpectedTy = *I++;
6619     } else if (!Ty->isVarArg()) {
6620       return error(ArgList[i].Loc, "too many arguments specified");
6621     }
6622 
6623     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6624       return error(ArgList[i].Loc, "argument is not of expected type '" +
6625                                        getTypeString(ExpectedTy) + "'");
6626     Args.push_back(ArgList[i].V);
6627     ArgAttrs.push_back(ArgList[i].Attrs);
6628   }
6629 
6630   if (I != E)
6631     return error(CallLoc, "not enough parameters specified for call");
6632 
6633   if (FnAttrs.hasAlignmentAttr())
6634     return error(CallLoc, "callbr instructions may not have an alignment");
6635 
6636   // Finish off the Attribute and check them
6637   AttributeList PAL =
6638       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6639                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6640 
6641   CallBrInst *CBI =
6642       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6643                          BundleList);
6644   CBI->setCallingConv(CC);
6645   CBI->setAttributes(PAL);
6646   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6647   Inst = CBI;
6648   return false;
6649 }
6650 
6651 //===----------------------------------------------------------------------===//
6652 // Binary Operators.
6653 //===----------------------------------------------------------------------===//
6654 
6655 /// parseArithmetic
6656 ///  ::= ArithmeticOps TypeAndValue ',' Value
6657 ///
6658 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6659 /// operand is allowed.
6660 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6661                                unsigned Opc, bool IsFP) {
6662   LocTy Loc; Value *LHS, *RHS;
6663   if (parseTypeAndValue(LHS, Loc, PFS) ||
6664       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6665       parseValue(LHS->getType(), RHS, PFS))
6666     return true;
6667 
6668   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6669                     : LHS->getType()->isIntOrIntVectorTy();
6670 
6671   if (!Valid)
6672     return error(Loc, "invalid operand type for instruction");
6673 
6674   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6675   return false;
6676 }
6677 
6678 /// parseLogical
6679 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6680 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6681                             unsigned Opc) {
6682   LocTy Loc; Value *LHS, *RHS;
6683   if (parseTypeAndValue(LHS, Loc, PFS) ||
6684       parseToken(lltok::comma, "expected ',' in logical operation") ||
6685       parseValue(LHS->getType(), RHS, PFS))
6686     return true;
6687 
6688   if (!LHS->getType()->isIntOrIntVectorTy())
6689     return error(Loc,
6690                  "instruction requires integer or integer vector operands");
6691 
6692   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6693   return false;
6694 }
6695 
6696 /// parseCompare
6697 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6698 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6699 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
6700                             unsigned Opc) {
6701   // parse the integer/fp comparison predicate.
6702   LocTy Loc;
6703   unsigned Pred;
6704   Value *LHS, *RHS;
6705   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
6706       parseToken(lltok::comma, "expected ',' after compare value") ||
6707       parseValue(LHS->getType(), RHS, PFS))
6708     return true;
6709 
6710   if (Opc == Instruction::FCmp) {
6711     if (!LHS->getType()->isFPOrFPVectorTy())
6712       return error(Loc, "fcmp requires floating point operands");
6713     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6714   } else {
6715     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6716     if (!LHS->getType()->isIntOrIntVectorTy() &&
6717         !LHS->getType()->isPtrOrPtrVectorTy())
6718       return error(Loc, "icmp requires integer operands");
6719     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6720   }
6721   return false;
6722 }
6723 
6724 //===----------------------------------------------------------------------===//
6725 // Other Instructions.
6726 //===----------------------------------------------------------------------===//
6727 
6728 /// parseCast
6729 ///   ::= CastOpc TypeAndValue 'to' Type
6730 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
6731                          unsigned Opc) {
6732   LocTy Loc;
6733   Value *Op;
6734   Type *DestTy = nullptr;
6735   if (parseTypeAndValue(Op, Loc, PFS) ||
6736       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
6737       parseType(DestTy))
6738     return true;
6739 
6740   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6741     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6742     return error(Loc, "invalid cast opcode for cast from '" +
6743                           getTypeString(Op->getType()) + "' to '" +
6744                           getTypeString(DestTy) + "'");
6745   }
6746   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6747   return false;
6748 }
6749 
6750 /// parseSelect
6751 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6752 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6753   LocTy Loc;
6754   Value *Op0, *Op1, *Op2;
6755   if (parseTypeAndValue(Op0, Loc, PFS) ||
6756       parseToken(lltok::comma, "expected ',' after select condition") ||
6757       parseTypeAndValue(Op1, PFS) ||
6758       parseToken(lltok::comma, "expected ',' after select value") ||
6759       parseTypeAndValue(Op2, PFS))
6760     return true;
6761 
6762   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6763     return error(Loc, Reason);
6764 
6765   Inst = SelectInst::Create(Op0, Op1, Op2);
6766   return false;
6767 }
6768 
6769 /// parseVAArg
6770 ///   ::= 'va_arg' TypeAndValue ',' Type
6771 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
6772   Value *Op;
6773   Type *EltTy = nullptr;
6774   LocTy TypeLoc;
6775   if (parseTypeAndValue(Op, PFS) ||
6776       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
6777       parseType(EltTy, TypeLoc))
6778     return true;
6779 
6780   if (!EltTy->isFirstClassType())
6781     return error(TypeLoc, "va_arg requires operand with first class type");
6782 
6783   Inst = new VAArgInst(Op, EltTy);
6784   return false;
6785 }
6786 
6787 /// parseExtractElement
6788 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6789 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6790   LocTy Loc;
6791   Value *Op0, *Op1;
6792   if (parseTypeAndValue(Op0, Loc, PFS) ||
6793       parseToken(lltok::comma, "expected ',' after extract value") ||
6794       parseTypeAndValue(Op1, PFS))
6795     return true;
6796 
6797   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6798     return error(Loc, "invalid extractelement operands");
6799 
6800   Inst = ExtractElementInst::Create(Op0, Op1);
6801   return false;
6802 }
6803 
6804 /// parseInsertElement
6805 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6806 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6807   LocTy Loc;
6808   Value *Op0, *Op1, *Op2;
6809   if (parseTypeAndValue(Op0, Loc, PFS) ||
6810       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6811       parseTypeAndValue(Op1, PFS) ||
6812       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6813       parseTypeAndValue(Op2, PFS))
6814     return true;
6815 
6816   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6817     return error(Loc, "invalid insertelement operands");
6818 
6819   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6820   return false;
6821 }
6822 
6823 /// parseShuffleVector
6824 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6825 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6826   LocTy Loc;
6827   Value *Op0, *Op1, *Op2;
6828   if (parseTypeAndValue(Op0, Loc, PFS) ||
6829       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
6830       parseTypeAndValue(Op1, PFS) ||
6831       parseToken(lltok::comma, "expected ',' after shuffle value") ||
6832       parseTypeAndValue(Op2, PFS))
6833     return true;
6834 
6835   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6836     return error(Loc, "invalid shufflevector operands");
6837 
6838   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6839   return false;
6840 }
6841 
6842 /// parsePHI
6843 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6844 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6845   Type *Ty = nullptr;  LocTy TypeLoc;
6846   Value *Op0, *Op1;
6847 
6848   if (parseType(Ty, TypeLoc) ||
6849       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6850       parseValue(Ty, Op0, PFS) ||
6851       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6852       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6853       parseToken(lltok::rsquare, "expected ']' in phi value list"))
6854     return true;
6855 
6856   bool AteExtraComma = false;
6857   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6858 
6859   while (true) {
6860     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6861 
6862     if (!EatIfPresent(lltok::comma))
6863       break;
6864 
6865     if (Lex.getKind() == lltok::MetadataVar) {
6866       AteExtraComma = true;
6867       break;
6868     }
6869 
6870     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6871         parseValue(Ty, Op0, PFS) ||
6872         parseToken(lltok::comma, "expected ',' after insertelement value") ||
6873         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6874         parseToken(lltok::rsquare, "expected ']' in phi value list"))
6875       return true;
6876   }
6877 
6878   if (!Ty->isFirstClassType())
6879     return error(TypeLoc, "phi node must have first class type");
6880 
6881   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6882   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6883     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6884   Inst = PN;
6885   return AteExtraComma ? InstExtraComma : InstNormal;
6886 }
6887 
6888 /// parseLandingPad
6889 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6890 /// Clause
6891 ///   ::= 'catch' TypeAndValue
6892 ///   ::= 'filter'
6893 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6894 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6895   Type *Ty = nullptr; LocTy TyLoc;
6896 
6897   if (parseType(Ty, TyLoc))
6898     return true;
6899 
6900   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6901   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6902 
6903   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6904     LandingPadInst::ClauseType CT;
6905     if (EatIfPresent(lltok::kw_catch))
6906       CT = LandingPadInst::Catch;
6907     else if (EatIfPresent(lltok::kw_filter))
6908       CT = LandingPadInst::Filter;
6909     else
6910       return tokError("expected 'catch' or 'filter' clause type");
6911 
6912     Value *V;
6913     LocTy VLoc;
6914     if (parseTypeAndValue(V, VLoc, PFS))
6915       return true;
6916 
6917     // A 'catch' type expects a non-array constant. A filter clause expects an
6918     // array constant.
6919     if (CT == LandingPadInst::Catch) {
6920       if (isa<ArrayType>(V->getType()))
6921         error(VLoc, "'catch' clause has an invalid type");
6922     } else {
6923       if (!isa<ArrayType>(V->getType()))
6924         error(VLoc, "'filter' clause has an invalid type");
6925     }
6926 
6927     Constant *CV = dyn_cast<Constant>(V);
6928     if (!CV)
6929       return error(VLoc, "clause argument must be a constant");
6930     LP->addClause(CV);
6931   }
6932 
6933   Inst = LP.release();
6934   return false;
6935 }
6936 
6937 /// parseFreeze
6938 ///   ::= 'freeze' Type Value
6939 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
6940   LocTy Loc;
6941   Value *Op;
6942   if (parseTypeAndValue(Op, Loc, PFS))
6943     return true;
6944 
6945   Inst = new FreezeInst(Op);
6946   return false;
6947 }
6948 
6949 /// parseCall
6950 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6951 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6952 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6953 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6954 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6955 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6956 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6957 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6958 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
6959                          CallInst::TailCallKind TCK) {
6960   AttrBuilder RetAttrs, FnAttrs;
6961   std::vector<unsigned> FwdRefAttrGrps;
6962   LocTy BuiltinLoc;
6963   unsigned CallAddrSpace;
6964   unsigned CC;
6965   Type *RetType = nullptr;
6966   LocTy RetTypeLoc;
6967   ValID CalleeID;
6968   SmallVector<ParamInfo, 16> ArgList;
6969   SmallVector<OperandBundleDef, 2> BundleList;
6970   LocTy CallLoc = Lex.getLoc();
6971 
6972   if (TCK != CallInst::TCK_None &&
6973       parseToken(lltok::kw_call,
6974                  "expected 'tail call', 'musttail call', or 'notail call'"))
6975     return true;
6976 
6977   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6978 
6979   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6980       parseOptionalProgramAddrSpace(CallAddrSpace) ||
6981       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6982       parseValID(CalleeID, &PFS) ||
6983       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6984                          PFS.getFunction().isVarArg()) ||
6985       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6986       parseOptionalOperandBundles(BundleList, PFS))
6987     return true;
6988 
6989   // If RetType is a non-function pointer type, then this is the short syntax
6990   // for the call, which means that RetType is just the return type.  Infer the
6991   // rest of the function argument types from the arguments that are present.
6992   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6993   if (!Ty) {
6994     // Pull out the types of all of the arguments...
6995     std::vector<Type*> ParamTypes;
6996     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6997       ParamTypes.push_back(ArgList[i].V->getType());
6998 
6999     if (!FunctionType::isValidReturnType(RetType))
7000       return error(RetTypeLoc, "Invalid result type for LLVM function");
7001 
7002     Ty = FunctionType::get(RetType, ParamTypes, false);
7003   }
7004 
7005   CalleeID.FTy = Ty;
7006 
7007   // Look up the callee.
7008   Value *Callee;
7009   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7010                           &PFS))
7011     return true;
7012 
7013   // Set up the Attribute for the function.
7014   SmallVector<AttributeSet, 8> Attrs;
7015 
7016   SmallVector<Value*, 8> Args;
7017 
7018   // Loop through FunctionType's arguments and ensure they are specified
7019   // correctly.  Also, gather any parameter attributes.
7020   FunctionType::param_iterator I = Ty->param_begin();
7021   FunctionType::param_iterator E = Ty->param_end();
7022   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7023     Type *ExpectedTy = nullptr;
7024     if (I != E) {
7025       ExpectedTy = *I++;
7026     } else if (!Ty->isVarArg()) {
7027       return error(ArgList[i].Loc, "too many arguments specified");
7028     }
7029 
7030     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7031       return error(ArgList[i].Loc, "argument is not of expected type '" +
7032                                        getTypeString(ExpectedTy) + "'");
7033     Args.push_back(ArgList[i].V);
7034     Attrs.push_back(ArgList[i].Attrs);
7035   }
7036 
7037   if (I != E)
7038     return error(CallLoc, "not enough parameters specified for call");
7039 
7040   if (FnAttrs.hasAlignmentAttr())
7041     return error(CallLoc, "call instructions may not have an alignment");
7042 
7043   // Finish off the Attribute and check them
7044   AttributeList PAL =
7045       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7046                          AttributeSet::get(Context, RetAttrs), Attrs);
7047 
7048   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7049   CI->setTailCallKind(TCK);
7050   CI->setCallingConv(CC);
7051   if (FMF.any()) {
7052     if (!isa<FPMathOperator>(CI)) {
7053       CI->deleteValue();
7054       return error(CallLoc, "fast-math-flags specified for call without "
7055                             "floating-point scalar or vector return type");
7056     }
7057     CI->setFastMathFlags(FMF);
7058   }
7059   CI->setAttributes(PAL);
7060   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7061   Inst = CI;
7062   return false;
7063 }
7064 
7065 //===----------------------------------------------------------------------===//
7066 // Memory Instructions.
7067 //===----------------------------------------------------------------------===//
7068 
7069 /// parseAlloc
7070 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7071 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7072 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7073   Value *Size = nullptr;
7074   LocTy SizeLoc, TyLoc, ASLoc;
7075   MaybeAlign Alignment;
7076   unsigned AddrSpace = 0;
7077   Type *Ty = nullptr;
7078 
7079   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7080   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7081 
7082   if (parseType(Ty, TyLoc))
7083     return true;
7084 
7085   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7086     return error(TyLoc, "invalid type for alloca");
7087 
7088   bool AteExtraComma = false;
7089   if (EatIfPresent(lltok::comma)) {
7090     if (Lex.getKind() == lltok::kw_align) {
7091       if (parseOptionalAlignment(Alignment))
7092         return true;
7093       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7094         return true;
7095     } else if (Lex.getKind() == lltok::kw_addrspace) {
7096       ASLoc = Lex.getLoc();
7097       if (parseOptionalAddrSpace(AddrSpace))
7098         return true;
7099     } else if (Lex.getKind() == lltok::MetadataVar) {
7100       AteExtraComma = true;
7101     } else {
7102       if (parseTypeAndValue(Size, SizeLoc, PFS))
7103         return true;
7104       if (EatIfPresent(lltok::comma)) {
7105         if (Lex.getKind() == lltok::kw_align) {
7106           if (parseOptionalAlignment(Alignment))
7107             return true;
7108           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7109             return true;
7110         } else if (Lex.getKind() == lltok::kw_addrspace) {
7111           ASLoc = Lex.getLoc();
7112           if (parseOptionalAddrSpace(AddrSpace))
7113             return true;
7114         } else if (Lex.getKind() == lltok::MetadataVar) {
7115           AteExtraComma = true;
7116         }
7117       }
7118     }
7119   }
7120 
7121   if (Size && !Size->getType()->isIntegerTy())
7122     return error(SizeLoc, "element count must have integer type");
7123 
7124   SmallPtrSet<Type *, 4> Visited;
7125   if (!Alignment && !Ty->isSized(&Visited))
7126     return error(TyLoc, "Cannot allocate unsized type");
7127   if (!Alignment)
7128     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7129   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7130   AI->setUsedWithInAlloca(IsInAlloca);
7131   AI->setSwiftError(IsSwiftError);
7132   Inst = AI;
7133   return AteExtraComma ? InstExtraComma : InstNormal;
7134 }
7135 
7136 /// parseLoad
7137 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7138 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7139 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7140 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7141   Value *Val; LocTy Loc;
7142   MaybeAlign Alignment;
7143   bool AteExtraComma = false;
7144   bool isAtomic = false;
7145   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7146   SyncScope::ID SSID = SyncScope::System;
7147 
7148   if (Lex.getKind() == lltok::kw_atomic) {
7149     isAtomic = true;
7150     Lex.Lex();
7151   }
7152 
7153   bool isVolatile = false;
7154   if (Lex.getKind() == lltok::kw_volatile) {
7155     isVolatile = true;
7156     Lex.Lex();
7157   }
7158 
7159   Type *Ty;
7160   LocTy ExplicitTypeLoc = Lex.getLoc();
7161   if (parseType(Ty) ||
7162       parseToken(lltok::comma, "expected comma after load's type") ||
7163       parseTypeAndValue(Val, Loc, PFS) ||
7164       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7165       parseOptionalCommaAlign(Alignment, AteExtraComma))
7166     return true;
7167 
7168   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7169     return error(Loc, "load operand must be a pointer to a first class type");
7170   if (isAtomic && !Alignment)
7171     return error(Loc, "atomic load must have explicit non-zero alignment");
7172   if (Ordering == AtomicOrdering::Release ||
7173       Ordering == AtomicOrdering::AcquireRelease)
7174     return error(Loc, "atomic load cannot use Release ordering");
7175 
7176   if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
7177     return error(
7178         ExplicitTypeLoc,
7179         typeComparisonErrorMessage(
7180             "explicit pointee type doesn't match operand's pointee type", Ty,
7181             cast<PointerType>(Val->getType())->getElementType()));
7182   }
7183   SmallPtrSet<Type *, 4> Visited;
7184   if (!Alignment && !Ty->isSized(&Visited))
7185     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7186   if (!Alignment)
7187     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7188   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7189   return AteExtraComma ? InstExtraComma : InstNormal;
7190 }
7191 
7192 /// parseStore
7193 
7194 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7195 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7196 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7197 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7198   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7199   MaybeAlign Alignment;
7200   bool AteExtraComma = false;
7201   bool isAtomic = false;
7202   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7203   SyncScope::ID SSID = SyncScope::System;
7204 
7205   if (Lex.getKind() == lltok::kw_atomic) {
7206     isAtomic = true;
7207     Lex.Lex();
7208   }
7209 
7210   bool isVolatile = false;
7211   if (Lex.getKind() == lltok::kw_volatile) {
7212     isVolatile = true;
7213     Lex.Lex();
7214   }
7215 
7216   if (parseTypeAndValue(Val, Loc, PFS) ||
7217       parseToken(lltok::comma, "expected ',' after store operand") ||
7218       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7219       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7220       parseOptionalCommaAlign(Alignment, AteExtraComma))
7221     return true;
7222 
7223   if (!Ptr->getType()->isPointerTy())
7224     return error(PtrLoc, "store operand must be a pointer");
7225   if (!Val->getType()->isFirstClassType())
7226     return error(Loc, "store operand must be a first class value");
7227   if (!cast<PointerType>(Ptr->getType())
7228            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7229     return error(Loc, "stored value and pointer type do not match");
7230   if (isAtomic && !Alignment)
7231     return error(Loc, "atomic store must have explicit non-zero alignment");
7232   if (Ordering == AtomicOrdering::Acquire ||
7233       Ordering == AtomicOrdering::AcquireRelease)
7234     return error(Loc, "atomic store cannot use Acquire ordering");
7235   SmallPtrSet<Type *, 4> Visited;
7236   if (!Alignment && !Val->getType()->isSized(&Visited))
7237     return error(Loc, "storing unsized types is not allowed");
7238   if (!Alignment)
7239     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7240 
7241   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7242   return AteExtraComma ? InstExtraComma : InstNormal;
7243 }
7244 
7245 /// parseCmpXchg
7246 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7247 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7248 ///       'Align'?
7249 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7250   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7251   bool AteExtraComma = false;
7252   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7253   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7254   SyncScope::ID SSID = SyncScope::System;
7255   bool isVolatile = false;
7256   bool isWeak = false;
7257   MaybeAlign Alignment;
7258 
7259   if (EatIfPresent(lltok::kw_weak))
7260     isWeak = true;
7261 
7262   if (EatIfPresent(lltok::kw_volatile))
7263     isVolatile = true;
7264 
7265   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7266       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7267       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7268       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7269       parseTypeAndValue(New, NewLoc, PFS) ||
7270       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7271       parseOrdering(FailureOrdering) ||
7272       parseOptionalCommaAlign(Alignment, AteExtraComma))
7273     return true;
7274 
7275   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7276     return tokError("invalid cmpxchg success ordering");
7277   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7278     return tokError("invalid cmpxchg failure ordering");
7279   if (!Ptr->getType()->isPointerTy())
7280     return error(PtrLoc, "cmpxchg operand must be a pointer");
7281   if (!cast<PointerType>(Ptr->getType())
7282            ->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
7283     return error(CmpLoc, "compare value and pointer type do not match");
7284   if (!cast<PointerType>(Ptr->getType())
7285            ->isOpaqueOrPointeeTypeMatches(New->getType()))
7286     return error(NewLoc, "new value and pointer type do not match");
7287   if (Cmp->getType() != New->getType())
7288     return error(NewLoc, "compare value and new value type do not match");
7289   if (!New->getType()->isFirstClassType())
7290     return error(NewLoc, "cmpxchg operand must be a first class value");
7291 
7292   const Align DefaultAlignment(
7293       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7294           Cmp->getType()));
7295 
7296   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7297       Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
7298       FailureOrdering, SSID);
7299   CXI->setVolatile(isVolatile);
7300   CXI->setWeak(isWeak);
7301 
7302   Inst = CXI;
7303   return AteExtraComma ? InstExtraComma : InstNormal;
7304 }
7305 
7306 /// parseAtomicRMW
7307 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7308 ///       'singlethread'? AtomicOrdering
7309 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7310   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7311   bool AteExtraComma = false;
7312   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7313   SyncScope::ID SSID = SyncScope::System;
7314   bool isVolatile = false;
7315   bool IsFP = false;
7316   AtomicRMWInst::BinOp Operation;
7317   MaybeAlign Alignment;
7318 
7319   if (EatIfPresent(lltok::kw_volatile))
7320     isVolatile = true;
7321 
7322   switch (Lex.getKind()) {
7323   default:
7324     return tokError("expected binary operation in atomicrmw");
7325   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7326   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7327   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7328   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7329   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7330   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7331   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7332   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7333   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7334   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7335   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7336   case lltok::kw_fadd:
7337     Operation = AtomicRMWInst::FAdd;
7338     IsFP = true;
7339     break;
7340   case lltok::kw_fsub:
7341     Operation = AtomicRMWInst::FSub;
7342     IsFP = true;
7343     break;
7344   }
7345   Lex.Lex();  // Eat the operation.
7346 
7347   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7348       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7349       parseTypeAndValue(Val, ValLoc, PFS) ||
7350       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7351       parseOptionalCommaAlign(Alignment, AteExtraComma))
7352     return true;
7353 
7354   if (Ordering == AtomicOrdering::Unordered)
7355     return tokError("atomicrmw cannot be unordered");
7356   if (!Ptr->getType()->isPointerTy())
7357     return error(PtrLoc, "atomicrmw operand must be a pointer");
7358   if (!cast<PointerType>(Ptr->getType())
7359            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7360     return error(ValLoc, "atomicrmw value and pointer type do not match");
7361 
7362   if (Operation == AtomicRMWInst::Xchg) {
7363     if (!Val->getType()->isIntegerTy() &&
7364         !Val->getType()->isFloatingPointTy()) {
7365       return error(ValLoc,
7366                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7367                        " operand must be an integer or floating point type");
7368     }
7369   } else if (IsFP) {
7370     if (!Val->getType()->isFloatingPointTy()) {
7371       return error(ValLoc, "atomicrmw " +
7372                                AtomicRMWInst::getOperationName(Operation) +
7373                                " operand must be a floating point type");
7374     }
7375   } else {
7376     if (!Val->getType()->isIntegerTy()) {
7377       return error(ValLoc, "atomicrmw " +
7378                                AtomicRMWInst::getOperationName(Operation) +
7379                                " operand must be an integer");
7380     }
7381   }
7382 
7383   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7384   if (Size < 8 || (Size & (Size - 1)))
7385     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7386                          " integer");
7387   const Align DefaultAlignment(
7388       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7389           Val->getType()));
7390   AtomicRMWInst *RMWI =
7391       new AtomicRMWInst(Operation, Ptr, Val,
7392                         Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
7393   RMWI->setVolatile(isVolatile);
7394   Inst = RMWI;
7395   return AteExtraComma ? InstExtraComma : InstNormal;
7396 }
7397 
7398 /// parseFence
7399 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7400 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7401   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7402   SyncScope::ID SSID = SyncScope::System;
7403   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7404     return true;
7405 
7406   if (Ordering == AtomicOrdering::Unordered)
7407     return tokError("fence cannot be unordered");
7408   if (Ordering == AtomicOrdering::Monotonic)
7409     return tokError("fence cannot be monotonic");
7410 
7411   Inst = new FenceInst(Context, Ordering, SSID);
7412   return InstNormal;
7413 }
7414 
7415 /// parseGetElementPtr
7416 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7417 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7418   Value *Ptr = nullptr;
7419   Value *Val = nullptr;
7420   LocTy Loc, EltLoc;
7421 
7422   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7423 
7424   Type *Ty = nullptr;
7425   LocTy ExplicitTypeLoc = Lex.getLoc();
7426   if (parseType(Ty) ||
7427       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7428       parseTypeAndValue(Ptr, Loc, PFS))
7429     return true;
7430 
7431   Type *BaseType = Ptr->getType();
7432   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7433   if (!BasePointerType)
7434     return error(Loc, "base of getelementptr must be a pointer");
7435 
7436   if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
7437     return error(
7438         ExplicitTypeLoc,
7439         typeComparisonErrorMessage(
7440             "explicit pointee type doesn't match operand's pointee type", Ty,
7441             BasePointerType->getElementType()));
7442   }
7443 
7444   SmallVector<Value*, 16> Indices;
7445   bool AteExtraComma = false;
7446   // GEP returns a vector of pointers if at least one of parameters is a vector.
7447   // All vector parameters should have the same vector width.
7448   ElementCount GEPWidth = BaseType->isVectorTy()
7449                               ? cast<VectorType>(BaseType)->getElementCount()
7450                               : ElementCount::getFixed(0);
7451 
7452   while (EatIfPresent(lltok::comma)) {
7453     if (Lex.getKind() == lltok::MetadataVar) {
7454       AteExtraComma = true;
7455       break;
7456     }
7457     if (parseTypeAndValue(Val, EltLoc, PFS))
7458       return true;
7459     if (!Val->getType()->isIntOrIntVectorTy())
7460       return error(EltLoc, "getelementptr index must be an integer");
7461 
7462     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7463       ElementCount ValNumEl = ValVTy->getElementCount();
7464       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7465         return error(
7466             EltLoc,
7467             "getelementptr vector index has a wrong number of elements");
7468       GEPWidth = ValNumEl;
7469     }
7470     Indices.push_back(Val);
7471   }
7472 
7473   SmallPtrSet<Type*, 4> Visited;
7474   if (!Indices.empty() && !Ty->isSized(&Visited))
7475     return error(Loc, "base element of getelementptr must be sized");
7476 
7477   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7478     return error(Loc, "invalid getelementptr indices");
7479   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7480   if (InBounds)
7481     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7482   return AteExtraComma ? InstExtraComma : InstNormal;
7483 }
7484 
7485 /// parseExtractValue
7486 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7487 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7488   Value *Val; LocTy Loc;
7489   SmallVector<unsigned, 4> Indices;
7490   bool AteExtraComma;
7491   if (parseTypeAndValue(Val, Loc, PFS) ||
7492       parseIndexList(Indices, AteExtraComma))
7493     return true;
7494 
7495   if (!Val->getType()->isAggregateType())
7496     return error(Loc, "extractvalue operand must be aggregate type");
7497 
7498   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7499     return error(Loc, "invalid indices for extractvalue");
7500   Inst = ExtractValueInst::Create(Val, Indices);
7501   return AteExtraComma ? InstExtraComma : InstNormal;
7502 }
7503 
7504 /// parseInsertValue
7505 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7506 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7507   Value *Val0, *Val1; LocTy Loc0, Loc1;
7508   SmallVector<unsigned, 4> Indices;
7509   bool AteExtraComma;
7510   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7511       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7512       parseTypeAndValue(Val1, Loc1, PFS) ||
7513       parseIndexList(Indices, AteExtraComma))
7514     return true;
7515 
7516   if (!Val0->getType()->isAggregateType())
7517     return error(Loc0, "insertvalue operand must be aggregate type");
7518 
7519   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7520   if (!IndexedType)
7521     return error(Loc0, "invalid indices for insertvalue");
7522   if (IndexedType != Val1->getType())
7523     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7524                            getTypeString(Val1->getType()) + "' instead of '" +
7525                            getTypeString(IndexedType) + "'");
7526   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7527   return AteExtraComma ? InstExtraComma : InstNormal;
7528 }
7529 
7530 //===----------------------------------------------------------------------===//
7531 // Embedded metadata.
7532 //===----------------------------------------------------------------------===//
7533 
7534 /// parseMDNodeVector
7535 ///   ::= { Element (',' Element)* }
7536 /// Element
7537 ///   ::= 'null' | TypeAndValue
7538 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7539   if (parseToken(lltok::lbrace, "expected '{' here"))
7540     return true;
7541 
7542   // Check for an empty list.
7543   if (EatIfPresent(lltok::rbrace))
7544     return false;
7545 
7546   do {
7547     // Null is a special case since it is typeless.
7548     if (EatIfPresent(lltok::kw_null)) {
7549       Elts.push_back(nullptr);
7550       continue;
7551     }
7552 
7553     Metadata *MD;
7554     if (parseMetadata(MD, nullptr))
7555       return true;
7556     Elts.push_back(MD);
7557   } while (EatIfPresent(lltok::comma));
7558 
7559   return parseToken(lltok::rbrace, "expected end of metadata node");
7560 }
7561 
7562 //===----------------------------------------------------------------------===//
7563 // Use-list order directives.
7564 //===----------------------------------------------------------------------===//
7565 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7566                                 SMLoc Loc) {
7567   if (V->use_empty())
7568     return error(Loc, "value has no uses");
7569 
7570   unsigned NumUses = 0;
7571   SmallDenseMap<const Use *, unsigned, 16> Order;
7572   for (const Use &U : V->uses()) {
7573     if (++NumUses > Indexes.size())
7574       break;
7575     Order[&U] = Indexes[NumUses - 1];
7576   }
7577   if (NumUses < 2)
7578     return error(Loc, "value only has one use");
7579   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7580     return error(Loc,
7581                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7582 
7583   V->sortUseList([&](const Use &L, const Use &R) {
7584     return Order.lookup(&L) < Order.lookup(&R);
7585   });
7586   return false;
7587 }
7588 
7589 /// parseUseListOrderIndexes
7590 ///   ::= '{' uint32 (',' uint32)+ '}'
7591 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7592   SMLoc Loc = Lex.getLoc();
7593   if (parseToken(lltok::lbrace, "expected '{' here"))
7594     return true;
7595   if (Lex.getKind() == lltok::rbrace)
7596     return Lex.Error("expected non-empty list of uselistorder indexes");
7597 
7598   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7599   // indexes should be distinct numbers in the range [0, size-1], and should
7600   // not be in order.
7601   unsigned Offset = 0;
7602   unsigned Max = 0;
7603   bool IsOrdered = true;
7604   assert(Indexes.empty() && "Expected empty order vector");
7605   do {
7606     unsigned Index;
7607     if (parseUInt32(Index))
7608       return true;
7609 
7610     // Update consistency checks.
7611     Offset += Index - Indexes.size();
7612     Max = std::max(Max, Index);
7613     IsOrdered &= Index == Indexes.size();
7614 
7615     Indexes.push_back(Index);
7616   } while (EatIfPresent(lltok::comma));
7617 
7618   if (parseToken(lltok::rbrace, "expected '}' here"))
7619     return true;
7620 
7621   if (Indexes.size() < 2)
7622     return error(Loc, "expected >= 2 uselistorder indexes");
7623   if (Offset != 0 || Max >= Indexes.size())
7624     return error(Loc,
7625                  "expected distinct uselistorder indexes in range [0, size)");
7626   if (IsOrdered)
7627     return error(Loc, "expected uselistorder indexes to change the order");
7628 
7629   return false;
7630 }
7631 
7632 /// parseUseListOrder
7633 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7634 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7635   SMLoc Loc = Lex.getLoc();
7636   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7637     return true;
7638 
7639   Value *V;
7640   SmallVector<unsigned, 16> Indexes;
7641   if (parseTypeAndValue(V, PFS) ||
7642       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7643       parseUseListOrderIndexes(Indexes))
7644     return true;
7645 
7646   return sortUseListOrder(V, Indexes, Loc);
7647 }
7648 
7649 /// parseUseListOrderBB
7650 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7651 bool LLParser::parseUseListOrderBB() {
7652   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7653   SMLoc Loc = Lex.getLoc();
7654   Lex.Lex();
7655 
7656   ValID Fn, Label;
7657   SmallVector<unsigned, 16> Indexes;
7658   if (parseValID(Fn, /*PFS=*/nullptr) ||
7659       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7660       parseValID(Label, /*PFS=*/nullptr) ||
7661       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7662       parseUseListOrderIndexes(Indexes))
7663     return true;
7664 
7665   // Check the function.
7666   GlobalValue *GV;
7667   if (Fn.Kind == ValID::t_GlobalName)
7668     GV = M->getNamedValue(Fn.StrVal);
7669   else if (Fn.Kind == ValID::t_GlobalID)
7670     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7671   else
7672     return error(Fn.Loc, "expected function name in uselistorder_bb");
7673   if (!GV)
7674     return error(Fn.Loc,
7675                  "invalid function forward reference in uselistorder_bb");
7676   auto *F = dyn_cast<Function>(GV);
7677   if (!F)
7678     return error(Fn.Loc, "expected function name in uselistorder_bb");
7679   if (F->isDeclaration())
7680     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7681 
7682   // Check the basic block.
7683   if (Label.Kind == ValID::t_LocalID)
7684     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7685   if (Label.Kind != ValID::t_LocalName)
7686     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7687   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7688   if (!V)
7689     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7690   if (!isa<BasicBlock>(V))
7691     return error(Label.Loc, "expected basic block in uselistorder_bb");
7692 
7693   return sortUseListOrder(V, Indexes, Loc);
7694 }
7695 
7696 /// ModuleEntry
7697 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7698 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7699 bool LLParser::parseModuleEntry(unsigned ID) {
7700   assert(Lex.getKind() == lltok::kw_module);
7701   Lex.Lex();
7702 
7703   std::string Path;
7704   if (parseToken(lltok::colon, "expected ':' here") ||
7705       parseToken(lltok::lparen, "expected '(' here") ||
7706       parseToken(lltok::kw_path, "expected 'path' here") ||
7707       parseToken(lltok::colon, "expected ':' here") ||
7708       parseStringConstant(Path) ||
7709       parseToken(lltok::comma, "expected ',' here") ||
7710       parseToken(lltok::kw_hash, "expected 'hash' here") ||
7711       parseToken(lltok::colon, "expected ':' here") ||
7712       parseToken(lltok::lparen, "expected '(' here"))
7713     return true;
7714 
7715   ModuleHash Hash;
7716   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
7717       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
7718       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
7719       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
7720       parseUInt32(Hash[4]))
7721     return true;
7722 
7723   if (parseToken(lltok::rparen, "expected ')' here") ||
7724       parseToken(lltok::rparen, "expected ')' here"))
7725     return true;
7726 
7727   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7728   ModuleIdMap[ID] = ModuleEntry->first();
7729 
7730   return false;
7731 }
7732 
7733 /// TypeIdEntry
7734 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7735 bool LLParser::parseTypeIdEntry(unsigned ID) {
7736   assert(Lex.getKind() == lltok::kw_typeid);
7737   Lex.Lex();
7738 
7739   std::string Name;
7740   if (parseToken(lltok::colon, "expected ':' here") ||
7741       parseToken(lltok::lparen, "expected '(' here") ||
7742       parseToken(lltok::kw_name, "expected 'name' here") ||
7743       parseToken(lltok::colon, "expected ':' here") ||
7744       parseStringConstant(Name))
7745     return true;
7746 
7747   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7748   if (parseToken(lltok::comma, "expected ',' here") ||
7749       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
7750     return true;
7751 
7752   // Check if this ID was forward referenced, and if so, update the
7753   // corresponding GUIDs.
7754   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7755   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7756     for (auto TIDRef : FwdRefTIDs->second) {
7757       assert(!*TIDRef.first &&
7758              "Forward referenced type id GUID expected to be 0");
7759       *TIDRef.first = GlobalValue::getGUID(Name);
7760     }
7761     ForwardRefTypeIds.erase(FwdRefTIDs);
7762   }
7763 
7764   return false;
7765 }
7766 
7767 /// TypeIdSummary
7768 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7769 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
7770   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
7771       parseToken(lltok::colon, "expected ':' here") ||
7772       parseToken(lltok::lparen, "expected '(' here") ||
7773       parseTypeTestResolution(TIS.TTRes))
7774     return true;
7775 
7776   if (EatIfPresent(lltok::comma)) {
7777     // Expect optional wpdResolutions field
7778     if (parseOptionalWpdResolutions(TIS.WPDRes))
7779       return true;
7780   }
7781 
7782   if (parseToken(lltok::rparen, "expected ')' here"))
7783     return true;
7784 
7785   return false;
7786 }
7787 
7788 static ValueInfo EmptyVI =
7789     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7790 
7791 /// TypeIdCompatibleVtableEntry
7792 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7793 ///   TypeIdCompatibleVtableInfo
7794 ///   ')'
7795 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
7796   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7797   Lex.Lex();
7798 
7799   std::string Name;
7800   if (parseToken(lltok::colon, "expected ':' here") ||
7801       parseToken(lltok::lparen, "expected '(' here") ||
7802       parseToken(lltok::kw_name, "expected 'name' here") ||
7803       parseToken(lltok::colon, "expected ':' here") ||
7804       parseStringConstant(Name))
7805     return true;
7806 
7807   TypeIdCompatibleVtableInfo &TI =
7808       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7809   if (parseToken(lltok::comma, "expected ',' here") ||
7810       parseToken(lltok::kw_summary, "expected 'summary' here") ||
7811       parseToken(lltok::colon, "expected ':' here") ||
7812       parseToken(lltok::lparen, "expected '(' here"))
7813     return true;
7814 
7815   IdToIndexMapType IdToIndexMap;
7816   // parse each call edge
7817   do {
7818     uint64_t Offset;
7819     if (parseToken(lltok::lparen, "expected '(' here") ||
7820         parseToken(lltok::kw_offset, "expected 'offset' here") ||
7821         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7822         parseToken(lltok::comma, "expected ',' here"))
7823       return true;
7824 
7825     LocTy Loc = Lex.getLoc();
7826     unsigned GVId;
7827     ValueInfo VI;
7828     if (parseGVReference(VI, GVId))
7829       return true;
7830 
7831     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7832     // forward reference. We will save the location of the ValueInfo needing an
7833     // update, but can only do so once the std::vector is finalized.
7834     if (VI == EmptyVI)
7835       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7836     TI.push_back({Offset, VI});
7837 
7838     if (parseToken(lltok::rparen, "expected ')' in call"))
7839       return true;
7840   } while (EatIfPresent(lltok::comma));
7841 
7842   // Now that the TI vector is finalized, it is safe to save the locations
7843   // of any forward GV references that need updating later.
7844   for (auto I : IdToIndexMap) {
7845     auto &Infos = ForwardRefValueInfos[I.first];
7846     for (auto P : I.second) {
7847       assert(TI[P.first].VTableVI == EmptyVI &&
7848              "Forward referenced ValueInfo expected to be empty");
7849       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
7850     }
7851   }
7852 
7853   if (parseToken(lltok::rparen, "expected ')' here") ||
7854       parseToken(lltok::rparen, "expected ')' here"))
7855     return true;
7856 
7857   // Check if this ID was forward referenced, and if so, update the
7858   // corresponding GUIDs.
7859   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7860   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7861     for (auto TIDRef : FwdRefTIDs->second) {
7862       assert(!*TIDRef.first &&
7863              "Forward referenced type id GUID expected to be 0");
7864       *TIDRef.first = GlobalValue::getGUID(Name);
7865     }
7866     ForwardRefTypeIds.erase(FwdRefTIDs);
7867   }
7868 
7869   return false;
7870 }
7871 
7872 /// TypeTestResolution
7873 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7874 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7875 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7876 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7877 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7878 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
7879   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7880       parseToken(lltok::colon, "expected ':' here") ||
7881       parseToken(lltok::lparen, "expected '(' here") ||
7882       parseToken(lltok::kw_kind, "expected 'kind' here") ||
7883       parseToken(lltok::colon, "expected ':' here"))
7884     return true;
7885 
7886   switch (Lex.getKind()) {
7887   case lltok::kw_unknown:
7888     TTRes.TheKind = TypeTestResolution::Unknown;
7889     break;
7890   case lltok::kw_unsat:
7891     TTRes.TheKind = TypeTestResolution::Unsat;
7892     break;
7893   case lltok::kw_byteArray:
7894     TTRes.TheKind = TypeTestResolution::ByteArray;
7895     break;
7896   case lltok::kw_inline:
7897     TTRes.TheKind = TypeTestResolution::Inline;
7898     break;
7899   case lltok::kw_single:
7900     TTRes.TheKind = TypeTestResolution::Single;
7901     break;
7902   case lltok::kw_allOnes:
7903     TTRes.TheKind = TypeTestResolution::AllOnes;
7904     break;
7905   default:
7906     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7907   }
7908   Lex.Lex();
7909 
7910   if (parseToken(lltok::comma, "expected ',' here") ||
7911       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7912       parseToken(lltok::colon, "expected ':' here") ||
7913       parseUInt32(TTRes.SizeM1BitWidth))
7914     return true;
7915 
7916   // parse optional fields
7917   while (EatIfPresent(lltok::comma)) {
7918     switch (Lex.getKind()) {
7919     case lltok::kw_alignLog2:
7920       Lex.Lex();
7921       if (parseToken(lltok::colon, "expected ':'") ||
7922           parseUInt64(TTRes.AlignLog2))
7923         return true;
7924       break;
7925     case lltok::kw_sizeM1:
7926       Lex.Lex();
7927       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
7928         return true;
7929       break;
7930     case lltok::kw_bitMask: {
7931       unsigned Val;
7932       Lex.Lex();
7933       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
7934         return true;
7935       assert(Val <= 0xff);
7936       TTRes.BitMask = (uint8_t)Val;
7937       break;
7938     }
7939     case lltok::kw_inlineBits:
7940       Lex.Lex();
7941       if (parseToken(lltok::colon, "expected ':'") ||
7942           parseUInt64(TTRes.InlineBits))
7943         return true;
7944       break;
7945     default:
7946       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
7947     }
7948   }
7949 
7950   if (parseToken(lltok::rparen, "expected ')' here"))
7951     return true;
7952 
7953   return false;
7954 }
7955 
7956 /// OptionalWpdResolutions
7957 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7958 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7959 bool LLParser::parseOptionalWpdResolutions(
7960     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7961   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7962       parseToken(lltok::colon, "expected ':' here") ||
7963       parseToken(lltok::lparen, "expected '(' here"))
7964     return true;
7965 
7966   do {
7967     uint64_t Offset;
7968     WholeProgramDevirtResolution WPDRes;
7969     if (parseToken(lltok::lparen, "expected '(' here") ||
7970         parseToken(lltok::kw_offset, "expected 'offset' here") ||
7971         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7972         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
7973         parseToken(lltok::rparen, "expected ')' here"))
7974       return true;
7975     WPDResMap[Offset] = WPDRes;
7976   } while (EatIfPresent(lltok::comma));
7977 
7978   if (parseToken(lltok::rparen, "expected ')' here"))
7979     return true;
7980 
7981   return false;
7982 }
7983 
7984 /// WpdRes
7985 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7986 ///         [',' OptionalResByArg]? ')'
7987 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7988 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7989 ///         [',' OptionalResByArg]? ')'
7990 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7991 ///         [',' OptionalResByArg]? ')'
7992 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7993   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7994       parseToken(lltok::colon, "expected ':' here") ||
7995       parseToken(lltok::lparen, "expected '(' here") ||
7996       parseToken(lltok::kw_kind, "expected 'kind' here") ||
7997       parseToken(lltok::colon, "expected ':' here"))
7998     return true;
7999 
8000   switch (Lex.getKind()) {
8001   case lltok::kw_indir:
8002     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8003     break;
8004   case lltok::kw_singleImpl:
8005     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8006     break;
8007   case lltok::kw_branchFunnel:
8008     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8009     break;
8010   default:
8011     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8012   }
8013   Lex.Lex();
8014 
8015   // parse optional fields
8016   while (EatIfPresent(lltok::comma)) {
8017     switch (Lex.getKind()) {
8018     case lltok::kw_singleImplName:
8019       Lex.Lex();
8020       if (parseToken(lltok::colon, "expected ':' here") ||
8021           parseStringConstant(WPDRes.SingleImplName))
8022         return true;
8023       break;
8024     case lltok::kw_resByArg:
8025       if (parseOptionalResByArg(WPDRes.ResByArg))
8026         return true;
8027       break;
8028     default:
8029       return error(Lex.getLoc(),
8030                    "expected optional WholeProgramDevirtResolution field");
8031     }
8032   }
8033 
8034   if (parseToken(lltok::rparen, "expected ')' here"))
8035     return true;
8036 
8037   return false;
8038 }
8039 
8040 /// OptionalResByArg
8041 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8042 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8043 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8044 ///                  'virtualConstProp' )
8045 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8046 ///                [',' 'bit' ':' UInt32]? ')'
8047 bool LLParser::parseOptionalResByArg(
8048     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8049         &ResByArg) {
8050   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8051       parseToken(lltok::colon, "expected ':' here") ||
8052       parseToken(lltok::lparen, "expected '(' here"))
8053     return true;
8054 
8055   do {
8056     std::vector<uint64_t> Args;
8057     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8058         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8059         parseToken(lltok::colon, "expected ':' here") ||
8060         parseToken(lltok::lparen, "expected '(' here") ||
8061         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8062         parseToken(lltok::colon, "expected ':' here"))
8063       return true;
8064 
8065     WholeProgramDevirtResolution::ByArg ByArg;
8066     switch (Lex.getKind()) {
8067     case lltok::kw_indir:
8068       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8069       break;
8070     case lltok::kw_uniformRetVal:
8071       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8072       break;
8073     case lltok::kw_uniqueRetVal:
8074       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8075       break;
8076     case lltok::kw_virtualConstProp:
8077       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8078       break;
8079     default:
8080       return error(Lex.getLoc(),
8081                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8082     }
8083     Lex.Lex();
8084 
8085     // parse optional fields
8086     while (EatIfPresent(lltok::comma)) {
8087       switch (Lex.getKind()) {
8088       case lltok::kw_info:
8089         Lex.Lex();
8090         if (parseToken(lltok::colon, "expected ':' here") ||
8091             parseUInt64(ByArg.Info))
8092           return true;
8093         break;
8094       case lltok::kw_byte:
8095         Lex.Lex();
8096         if (parseToken(lltok::colon, "expected ':' here") ||
8097             parseUInt32(ByArg.Byte))
8098           return true;
8099         break;
8100       case lltok::kw_bit:
8101         Lex.Lex();
8102         if (parseToken(lltok::colon, "expected ':' here") ||
8103             parseUInt32(ByArg.Bit))
8104           return true;
8105         break;
8106       default:
8107         return error(Lex.getLoc(),
8108                      "expected optional whole program devirt field");
8109       }
8110     }
8111 
8112     if (parseToken(lltok::rparen, "expected ')' here"))
8113       return true;
8114 
8115     ResByArg[Args] = ByArg;
8116   } while (EatIfPresent(lltok::comma));
8117 
8118   if (parseToken(lltok::rparen, "expected ')' here"))
8119     return true;
8120 
8121   return false;
8122 }
8123 
8124 /// OptionalResByArg
8125 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8126 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8127   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8128       parseToken(lltok::colon, "expected ':' here") ||
8129       parseToken(lltok::lparen, "expected '(' here"))
8130     return true;
8131 
8132   do {
8133     uint64_t Val;
8134     if (parseUInt64(Val))
8135       return true;
8136     Args.push_back(Val);
8137   } while (EatIfPresent(lltok::comma));
8138 
8139   if (parseToken(lltok::rparen, "expected ')' here"))
8140     return true;
8141 
8142   return false;
8143 }
8144 
8145 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8146 
8147 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8148   bool ReadOnly = Fwd->isReadOnly();
8149   bool WriteOnly = Fwd->isWriteOnly();
8150   assert(!(ReadOnly && WriteOnly));
8151   *Fwd = Resolved;
8152   if (ReadOnly)
8153     Fwd->setReadOnly();
8154   if (WriteOnly)
8155     Fwd->setWriteOnly();
8156 }
8157 
8158 /// Stores the given Name/GUID and associated summary into the Index.
8159 /// Also updates any forward references to the associated entry ID.
8160 void LLParser::addGlobalValueToIndex(
8161     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8162     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8163   // First create the ValueInfo utilizing the Name or GUID.
8164   ValueInfo VI;
8165   if (GUID != 0) {
8166     assert(Name.empty());
8167     VI = Index->getOrInsertValueInfo(GUID);
8168   } else {
8169     assert(!Name.empty());
8170     if (M) {
8171       auto *GV = M->getNamedValue(Name);
8172       assert(GV);
8173       VI = Index->getOrInsertValueInfo(GV);
8174     } else {
8175       assert(
8176           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8177           "Need a source_filename to compute GUID for local");
8178       GUID = GlobalValue::getGUID(
8179           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8180       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8181     }
8182   }
8183 
8184   // Resolve forward references from calls/refs
8185   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8186   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8187     for (auto VIRef : FwdRefVIs->second) {
8188       assert(VIRef.first->getRef() == FwdVIRef &&
8189              "Forward referenced ValueInfo expected to be empty");
8190       resolveFwdRef(VIRef.first, VI);
8191     }
8192     ForwardRefValueInfos.erase(FwdRefVIs);
8193   }
8194 
8195   // Resolve forward references from aliases
8196   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8197   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8198     for (auto AliaseeRef : FwdRefAliasees->second) {
8199       assert(!AliaseeRef.first->hasAliasee() &&
8200              "Forward referencing alias already has aliasee");
8201       assert(Summary && "Aliasee must be a definition");
8202       AliaseeRef.first->setAliasee(VI, Summary.get());
8203     }
8204     ForwardRefAliasees.erase(FwdRefAliasees);
8205   }
8206 
8207   // Add the summary if one was provided.
8208   if (Summary)
8209     Index->addGlobalValueSummary(VI, std::move(Summary));
8210 
8211   // Save the associated ValueInfo for use in later references by ID.
8212   if (ID == NumberedValueInfos.size())
8213     NumberedValueInfos.push_back(VI);
8214   else {
8215     // Handle non-continuous numbers (to make test simplification easier).
8216     if (ID > NumberedValueInfos.size())
8217       NumberedValueInfos.resize(ID + 1);
8218     NumberedValueInfos[ID] = VI;
8219   }
8220 }
8221 
8222 /// parseSummaryIndexFlags
8223 ///   ::= 'flags' ':' UInt64
8224 bool LLParser::parseSummaryIndexFlags() {
8225   assert(Lex.getKind() == lltok::kw_flags);
8226   Lex.Lex();
8227 
8228   if (parseToken(lltok::colon, "expected ':' here"))
8229     return true;
8230   uint64_t Flags;
8231   if (parseUInt64(Flags))
8232     return true;
8233   if (Index)
8234     Index->setFlags(Flags);
8235   return false;
8236 }
8237 
8238 /// parseBlockCount
8239 ///   ::= 'blockcount' ':' UInt64
8240 bool LLParser::parseBlockCount() {
8241   assert(Lex.getKind() == lltok::kw_blockcount);
8242   Lex.Lex();
8243 
8244   if (parseToken(lltok::colon, "expected ':' here"))
8245     return true;
8246   uint64_t BlockCount;
8247   if (parseUInt64(BlockCount))
8248     return true;
8249   if (Index)
8250     Index->setBlockCount(BlockCount);
8251   return false;
8252 }
8253 
8254 /// parseGVEntry
8255 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8256 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8257 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8258 bool LLParser::parseGVEntry(unsigned ID) {
8259   assert(Lex.getKind() == lltok::kw_gv);
8260   Lex.Lex();
8261 
8262   if (parseToken(lltok::colon, "expected ':' here") ||
8263       parseToken(lltok::lparen, "expected '(' here"))
8264     return true;
8265 
8266   std::string Name;
8267   GlobalValue::GUID GUID = 0;
8268   switch (Lex.getKind()) {
8269   case lltok::kw_name:
8270     Lex.Lex();
8271     if (parseToken(lltok::colon, "expected ':' here") ||
8272         parseStringConstant(Name))
8273       return true;
8274     // Can't create GUID/ValueInfo until we have the linkage.
8275     break;
8276   case lltok::kw_guid:
8277     Lex.Lex();
8278     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8279       return true;
8280     break;
8281   default:
8282     return error(Lex.getLoc(), "expected name or guid tag");
8283   }
8284 
8285   if (!EatIfPresent(lltok::comma)) {
8286     // No summaries. Wrap up.
8287     if (parseToken(lltok::rparen, "expected ')' here"))
8288       return true;
8289     // This was created for a call to an external or indirect target.
8290     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8291     // created for indirect calls with VP. A Name with no GUID came from
8292     // an external definition. We pass ExternalLinkage since that is only
8293     // used when the GUID must be computed from Name, and in that case
8294     // the symbol must have external linkage.
8295     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8296                           nullptr);
8297     return false;
8298   }
8299 
8300   // Have a list of summaries
8301   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8302       parseToken(lltok::colon, "expected ':' here") ||
8303       parseToken(lltok::lparen, "expected '(' here"))
8304     return true;
8305   do {
8306     switch (Lex.getKind()) {
8307     case lltok::kw_function:
8308       if (parseFunctionSummary(Name, GUID, ID))
8309         return true;
8310       break;
8311     case lltok::kw_variable:
8312       if (parseVariableSummary(Name, GUID, ID))
8313         return true;
8314       break;
8315     case lltok::kw_alias:
8316       if (parseAliasSummary(Name, GUID, ID))
8317         return true;
8318       break;
8319     default:
8320       return error(Lex.getLoc(), "expected summary type");
8321     }
8322   } while (EatIfPresent(lltok::comma));
8323 
8324   if (parseToken(lltok::rparen, "expected ')' here") ||
8325       parseToken(lltok::rparen, "expected ')' here"))
8326     return true;
8327 
8328   return false;
8329 }
8330 
8331 /// FunctionSummary
8332 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8333 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8334 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8335 ///         [',' OptionalRefs]? ')'
8336 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8337                                     unsigned ID) {
8338   assert(Lex.getKind() == lltok::kw_function);
8339   Lex.Lex();
8340 
8341   StringRef ModulePath;
8342   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8343       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8344       /*NotEligibleToImport=*/false,
8345       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8346   unsigned InstCount;
8347   std::vector<FunctionSummary::EdgeTy> Calls;
8348   FunctionSummary::TypeIdInfo TypeIdInfo;
8349   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8350   std::vector<ValueInfo> Refs;
8351   // Default is all-zeros (conservative values).
8352   FunctionSummary::FFlags FFlags = {};
8353   if (parseToken(lltok::colon, "expected ':' here") ||
8354       parseToken(lltok::lparen, "expected '(' here") ||
8355       parseModuleReference(ModulePath) ||
8356       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8357       parseToken(lltok::comma, "expected ',' here") ||
8358       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8359       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8360     return true;
8361 
8362   // parse optional fields
8363   while (EatIfPresent(lltok::comma)) {
8364     switch (Lex.getKind()) {
8365     case lltok::kw_funcFlags:
8366       if (parseOptionalFFlags(FFlags))
8367         return true;
8368       break;
8369     case lltok::kw_calls:
8370       if (parseOptionalCalls(Calls))
8371         return true;
8372       break;
8373     case lltok::kw_typeIdInfo:
8374       if (parseOptionalTypeIdInfo(TypeIdInfo))
8375         return true;
8376       break;
8377     case lltok::kw_refs:
8378       if (parseOptionalRefs(Refs))
8379         return true;
8380       break;
8381     case lltok::kw_params:
8382       if (parseOptionalParamAccesses(ParamAccesses))
8383         return true;
8384       break;
8385     default:
8386       return error(Lex.getLoc(), "expected optional function summary field");
8387     }
8388   }
8389 
8390   if (parseToken(lltok::rparen, "expected ')' here"))
8391     return true;
8392 
8393   auto FS = std::make_unique<FunctionSummary>(
8394       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8395       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8396       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8397       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8398       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8399       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8400       std::move(ParamAccesses));
8401 
8402   FS->setModulePath(ModulePath);
8403 
8404   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8405                         ID, std::move(FS));
8406 
8407   return false;
8408 }
8409 
8410 /// VariableSummary
8411 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8412 ///         [',' OptionalRefs]? ')'
8413 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8414                                     unsigned ID) {
8415   assert(Lex.getKind() == lltok::kw_variable);
8416   Lex.Lex();
8417 
8418   StringRef ModulePath;
8419   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8420       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8421       /*NotEligibleToImport=*/false,
8422       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8423   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8424                                         /* WriteOnly */ false,
8425                                         /* Constant */ false,
8426                                         GlobalObject::VCallVisibilityPublic);
8427   std::vector<ValueInfo> Refs;
8428   VTableFuncList VTableFuncs;
8429   if (parseToken(lltok::colon, "expected ':' here") ||
8430       parseToken(lltok::lparen, "expected '(' here") ||
8431       parseModuleReference(ModulePath) ||
8432       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8433       parseToken(lltok::comma, "expected ',' here") ||
8434       parseGVarFlags(GVarFlags))
8435     return true;
8436 
8437   // parse optional fields
8438   while (EatIfPresent(lltok::comma)) {
8439     switch (Lex.getKind()) {
8440     case lltok::kw_vTableFuncs:
8441       if (parseOptionalVTableFuncs(VTableFuncs))
8442         return true;
8443       break;
8444     case lltok::kw_refs:
8445       if (parseOptionalRefs(Refs))
8446         return true;
8447       break;
8448     default:
8449       return error(Lex.getLoc(), "expected optional variable summary field");
8450     }
8451   }
8452 
8453   if (parseToken(lltok::rparen, "expected ')' here"))
8454     return true;
8455 
8456   auto GS =
8457       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8458 
8459   GS->setModulePath(ModulePath);
8460   GS->setVTableFuncs(std::move(VTableFuncs));
8461 
8462   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8463                         ID, std::move(GS));
8464 
8465   return false;
8466 }
8467 
8468 /// AliasSummary
8469 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8470 ///         'aliasee' ':' GVReference ')'
8471 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8472                                  unsigned ID) {
8473   assert(Lex.getKind() == lltok::kw_alias);
8474   LocTy Loc = Lex.getLoc();
8475   Lex.Lex();
8476 
8477   StringRef ModulePath;
8478   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8479       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8480       /*NotEligibleToImport=*/false,
8481       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8482   if (parseToken(lltok::colon, "expected ':' here") ||
8483       parseToken(lltok::lparen, "expected '(' here") ||
8484       parseModuleReference(ModulePath) ||
8485       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8486       parseToken(lltok::comma, "expected ',' here") ||
8487       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8488       parseToken(lltok::colon, "expected ':' here"))
8489     return true;
8490 
8491   ValueInfo AliaseeVI;
8492   unsigned GVId;
8493   if (parseGVReference(AliaseeVI, GVId))
8494     return true;
8495 
8496   if (parseToken(lltok::rparen, "expected ')' here"))
8497     return true;
8498 
8499   auto AS = std::make_unique<AliasSummary>(GVFlags);
8500 
8501   AS->setModulePath(ModulePath);
8502 
8503   // Record forward reference if the aliasee is not parsed yet.
8504   if (AliaseeVI.getRef() == FwdVIRef) {
8505     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8506   } else {
8507     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8508     assert(Summary && "Aliasee must be a definition");
8509     AS->setAliasee(AliaseeVI, Summary);
8510   }
8511 
8512   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8513                         ID, std::move(AS));
8514 
8515   return false;
8516 }
8517 
8518 /// Flag
8519 ///   ::= [0|1]
8520 bool LLParser::parseFlag(unsigned &Val) {
8521   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8522     return tokError("expected integer");
8523   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8524   Lex.Lex();
8525   return false;
8526 }
8527 
8528 /// OptionalFFlags
8529 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8530 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8531 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8532 ///        [',' 'noInline' ':' Flag]? ')'
8533 ///        [',' 'alwaysInline' ':' Flag]? ')'
8534 ///        [',' 'noUnwind' ':' Flag]? ')'
8535 ///        [',' 'mayThrow' ':' Flag]? ')'
8536 ///        [',' 'hasUnknownCall' ':' Flag]? ')'
8537 
8538 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8539   assert(Lex.getKind() == lltok::kw_funcFlags);
8540   Lex.Lex();
8541 
8542   if (parseToken(lltok::colon, "expected ':' in funcFlags") ||
8543       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8544     return true;
8545 
8546   do {
8547     unsigned Val = 0;
8548     switch (Lex.getKind()) {
8549     case lltok::kw_readNone:
8550       Lex.Lex();
8551       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8552         return true;
8553       FFlags.ReadNone = Val;
8554       break;
8555     case lltok::kw_readOnly:
8556       Lex.Lex();
8557       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8558         return true;
8559       FFlags.ReadOnly = Val;
8560       break;
8561     case lltok::kw_noRecurse:
8562       Lex.Lex();
8563       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8564         return true;
8565       FFlags.NoRecurse = Val;
8566       break;
8567     case lltok::kw_returnDoesNotAlias:
8568       Lex.Lex();
8569       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8570         return true;
8571       FFlags.ReturnDoesNotAlias = Val;
8572       break;
8573     case lltok::kw_noInline:
8574       Lex.Lex();
8575       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8576         return true;
8577       FFlags.NoInline = Val;
8578       break;
8579     case lltok::kw_alwaysInline:
8580       Lex.Lex();
8581       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8582         return true;
8583       FFlags.AlwaysInline = Val;
8584       break;
8585     case lltok::kw_noUnwind:
8586       Lex.Lex();
8587       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8588         return true;
8589       FFlags.NoUnwind = Val;
8590       break;
8591     case lltok::kw_mayThrow:
8592       Lex.Lex();
8593       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8594         return true;
8595       FFlags.MayThrow = Val;
8596       break;
8597     case lltok::kw_hasUnknownCall:
8598       Lex.Lex();
8599       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8600         return true;
8601       FFlags.HasUnknownCall = Val;
8602       break;
8603     default:
8604       return error(Lex.getLoc(), "expected function flag type");
8605     }
8606   } while (EatIfPresent(lltok::comma));
8607 
8608   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8609     return true;
8610 
8611   return false;
8612 }
8613 
8614 /// OptionalCalls
8615 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8616 /// Call ::= '(' 'callee' ':' GVReference
8617 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8618 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8619   assert(Lex.getKind() == lltok::kw_calls);
8620   Lex.Lex();
8621 
8622   if (parseToken(lltok::colon, "expected ':' in calls") ||
8623       parseToken(lltok::lparen, "expected '(' in calls"))
8624     return true;
8625 
8626   IdToIndexMapType IdToIndexMap;
8627   // parse each call edge
8628   do {
8629     ValueInfo VI;
8630     if (parseToken(lltok::lparen, "expected '(' in call") ||
8631         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8632         parseToken(lltok::colon, "expected ':'"))
8633       return true;
8634 
8635     LocTy Loc = Lex.getLoc();
8636     unsigned GVId;
8637     if (parseGVReference(VI, GVId))
8638       return true;
8639 
8640     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8641     unsigned RelBF = 0;
8642     if (EatIfPresent(lltok::comma)) {
8643       // Expect either hotness or relbf
8644       if (EatIfPresent(lltok::kw_hotness)) {
8645         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8646           return true;
8647       } else {
8648         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8649             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8650           return true;
8651       }
8652     }
8653     // Keep track of the Call array index needing a forward reference.
8654     // We will save the location of the ValueInfo needing an update, but
8655     // can only do so once the std::vector is finalized.
8656     if (VI.getRef() == FwdVIRef)
8657       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8658     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8659 
8660     if (parseToken(lltok::rparen, "expected ')' in call"))
8661       return true;
8662   } while (EatIfPresent(lltok::comma));
8663 
8664   // Now that the Calls vector is finalized, it is safe to save the locations
8665   // of any forward GV references that need updating later.
8666   for (auto I : IdToIndexMap) {
8667     auto &Infos = ForwardRefValueInfos[I.first];
8668     for (auto P : I.second) {
8669       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8670              "Forward referenced ValueInfo expected to be empty");
8671       Infos.emplace_back(&Calls[P.first].first, P.second);
8672     }
8673   }
8674 
8675   if (parseToken(lltok::rparen, "expected ')' in calls"))
8676     return true;
8677 
8678   return false;
8679 }
8680 
8681 /// Hotness
8682 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8683 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8684   switch (Lex.getKind()) {
8685   case lltok::kw_unknown:
8686     Hotness = CalleeInfo::HotnessType::Unknown;
8687     break;
8688   case lltok::kw_cold:
8689     Hotness = CalleeInfo::HotnessType::Cold;
8690     break;
8691   case lltok::kw_none:
8692     Hotness = CalleeInfo::HotnessType::None;
8693     break;
8694   case lltok::kw_hot:
8695     Hotness = CalleeInfo::HotnessType::Hot;
8696     break;
8697   case lltok::kw_critical:
8698     Hotness = CalleeInfo::HotnessType::Critical;
8699     break;
8700   default:
8701     return error(Lex.getLoc(), "invalid call edge hotness");
8702   }
8703   Lex.Lex();
8704   return false;
8705 }
8706 
8707 /// OptionalVTableFuncs
8708 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8709 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8710 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8711   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8712   Lex.Lex();
8713 
8714   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") ||
8715       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8716     return true;
8717 
8718   IdToIndexMapType IdToIndexMap;
8719   // parse each virtual function pair
8720   do {
8721     ValueInfo VI;
8722     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8723         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8724         parseToken(lltok::colon, "expected ':'"))
8725       return true;
8726 
8727     LocTy Loc = Lex.getLoc();
8728     unsigned GVId;
8729     if (parseGVReference(VI, GVId))
8730       return true;
8731 
8732     uint64_t Offset;
8733     if (parseToken(lltok::comma, "expected comma") ||
8734         parseToken(lltok::kw_offset, "expected offset") ||
8735         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
8736       return true;
8737 
8738     // Keep track of the VTableFuncs array index needing a forward reference.
8739     // We will save the location of the ValueInfo needing an update, but
8740     // can only do so once the std::vector is finalized.
8741     if (VI == EmptyVI)
8742       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8743     VTableFuncs.push_back({VI, Offset});
8744 
8745     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
8746       return true;
8747   } while (EatIfPresent(lltok::comma));
8748 
8749   // Now that the VTableFuncs vector is finalized, it is safe to save the
8750   // locations of any forward GV references that need updating later.
8751   for (auto I : IdToIndexMap) {
8752     auto &Infos = ForwardRefValueInfos[I.first];
8753     for (auto P : I.second) {
8754       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8755              "Forward referenced ValueInfo expected to be empty");
8756       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
8757     }
8758   }
8759 
8760   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8761     return true;
8762 
8763   return false;
8764 }
8765 
8766 /// ParamNo := 'param' ':' UInt64
8767 bool LLParser::parseParamNo(uint64_t &ParamNo) {
8768   if (parseToken(lltok::kw_param, "expected 'param' here") ||
8769       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
8770     return true;
8771   return false;
8772 }
8773 
8774 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
8775 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
8776   APSInt Lower;
8777   APSInt Upper;
8778   auto ParseAPSInt = [&](APSInt &Val) {
8779     if (Lex.getKind() != lltok::APSInt)
8780       return tokError("expected integer");
8781     Val = Lex.getAPSIntVal();
8782     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
8783     Val.setIsSigned(true);
8784     Lex.Lex();
8785     return false;
8786   };
8787   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
8788       parseToken(lltok::colon, "expected ':' here") ||
8789       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
8790       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
8791       parseToken(lltok::rsquare, "expected ']' here"))
8792     return true;
8793 
8794   ++Upper;
8795   Range =
8796       (Lower == Upper && !Lower.isMaxValue())
8797           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
8798           : ConstantRange(Lower, Upper);
8799 
8800   return false;
8801 }
8802 
8803 /// ParamAccessCall
8804 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
8805 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
8806                                     IdLocListType &IdLocList) {
8807   if (parseToken(lltok::lparen, "expected '(' here") ||
8808       parseToken(lltok::kw_callee, "expected 'callee' here") ||
8809       parseToken(lltok::colon, "expected ':' here"))
8810     return true;
8811 
8812   unsigned GVId;
8813   ValueInfo VI;
8814   LocTy Loc = Lex.getLoc();
8815   if (parseGVReference(VI, GVId))
8816     return true;
8817 
8818   Call.Callee = VI;
8819   IdLocList.emplace_back(GVId, Loc);
8820 
8821   if (parseToken(lltok::comma, "expected ',' here") ||
8822       parseParamNo(Call.ParamNo) ||
8823       parseToken(lltok::comma, "expected ',' here") ||
8824       parseParamAccessOffset(Call.Offsets))
8825     return true;
8826 
8827   if (parseToken(lltok::rparen, "expected ')' here"))
8828     return true;
8829 
8830   return false;
8831 }
8832 
8833 /// ParamAccess
8834 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
8835 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
8836 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
8837                                 IdLocListType &IdLocList) {
8838   if (parseToken(lltok::lparen, "expected '(' here") ||
8839       parseParamNo(Param.ParamNo) ||
8840       parseToken(lltok::comma, "expected ',' here") ||
8841       parseParamAccessOffset(Param.Use))
8842     return true;
8843 
8844   if (EatIfPresent(lltok::comma)) {
8845     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
8846         parseToken(lltok::colon, "expected ':' here") ||
8847         parseToken(lltok::lparen, "expected '(' here"))
8848       return true;
8849     do {
8850       FunctionSummary::ParamAccess::Call Call;
8851       if (parseParamAccessCall(Call, IdLocList))
8852         return true;
8853       Param.Calls.push_back(Call);
8854     } while (EatIfPresent(lltok::comma));
8855 
8856     if (parseToken(lltok::rparen, "expected ')' here"))
8857       return true;
8858   }
8859 
8860   if (parseToken(lltok::rparen, "expected ')' here"))
8861     return true;
8862 
8863   return false;
8864 }
8865 
8866 /// OptionalParamAccesses
8867 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
8868 bool LLParser::parseOptionalParamAccesses(
8869     std::vector<FunctionSummary::ParamAccess> &Params) {
8870   assert(Lex.getKind() == lltok::kw_params);
8871   Lex.Lex();
8872 
8873   if (parseToken(lltok::colon, "expected ':' here") ||
8874       parseToken(lltok::lparen, "expected '(' here"))
8875     return true;
8876 
8877   IdLocListType VContexts;
8878   size_t CallsNum = 0;
8879   do {
8880     FunctionSummary::ParamAccess ParamAccess;
8881     if (parseParamAccess(ParamAccess, VContexts))
8882       return true;
8883     CallsNum += ParamAccess.Calls.size();
8884     assert(VContexts.size() == CallsNum);
8885     (void)CallsNum;
8886     Params.emplace_back(std::move(ParamAccess));
8887   } while (EatIfPresent(lltok::comma));
8888 
8889   if (parseToken(lltok::rparen, "expected ')' here"))
8890     return true;
8891 
8892   // Now that the Params is finalized, it is safe to save the locations
8893   // of any forward GV references that need updating later.
8894   IdLocListType::const_iterator ItContext = VContexts.begin();
8895   for (auto &PA : Params) {
8896     for (auto &C : PA.Calls) {
8897       if (C.Callee.getRef() == FwdVIRef)
8898         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
8899                                                             ItContext->second);
8900       ++ItContext;
8901     }
8902   }
8903   assert(ItContext == VContexts.end());
8904 
8905   return false;
8906 }
8907 
8908 /// OptionalRefs
8909 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8910 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
8911   assert(Lex.getKind() == lltok::kw_refs);
8912   Lex.Lex();
8913 
8914   if (parseToken(lltok::colon, "expected ':' in refs") ||
8915       parseToken(lltok::lparen, "expected '(' in refs"))
8916     return true;
8917 
8918   struct ValueContext {
8919     ValueInfo VI;
8920     unsigned GVId;
8921     LocTy Loc;
8922   };
8923   std::vector<ValueContext> VContexts;
8924   // parse each ref edge
8925   do {
8926     ValueContext VC;
8927     VC.Loc = Lex.getLoc();
8928     if (parseGVReference(VC.VI, VC.GVId))
8929       return true;
8930     VContexts.push_back(VC);
8931   } while (EatIfPresent(lltok::comma));
8932 
8933   // Sort value contexts so that ones with writeonly
8934   // and readonly ValueInfo  are at the end of VContexts vector.
8935   // See FunctionSummary::specialRefCounts()
8936   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8937     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8938   });
8939 
8940   IdToIndexMapType IdToIndexMap;
8941   for (auto &VC : VContexts) {
8942     // Keep track of the Refs array index needing a forward reference.
8943     // We will save the location of the ValueInfo needing an update, but
8944     // can only do so once the std::vector is finalized.
8945     if (VC.VI.getRef() == FwdVIRef)
8946       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8947     Refs.push_back(VC.VI);
8948   }
8949 
8950   // Now that the Refs vector is finalized, it is safe to save the locations
8951   // of any forward GV references that need updating later.
8952   for (auto I : IdToIndexMap) {
8953     auto &Infos = ForwardRefValueInfos[I.first];
8954     for (auto P : I.second) {
8955       assert(Refs[P.first].getRef() == FwdVIRef &&
8956              "Forward referenced ValueInfo expected to be empty");
8957       Infos.emplace_back(&Refs[P.first], P.second);
8958     }
8959   }
8960 
8961   if (parseToken(lltok::rparen, "expected ')' in refs"))
8962     return true;
8963 
8964   return false;
8965 }
8966 
8967 /// OptionalTypeIdInfo
8968 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8969 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8970 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8971 bool LLParser::parseOptionalTypeIdInfo(
8972     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8973   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8974   Lex.Lex();
8975 
8976   if (parseToken(lltok::colon, "expected ':' here") ||
8977       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8978     return true;
8979 
8980   do {
8981     switch (Lex.getKind()) {
8982     case lltok::kw_typeTests:
8983       if (parseTypeTests(TypeIdInfo.TypeTests))
8984         return true;
8985       break;
8986     case lltok::kw_typeTestAssumeVCalls:
8987       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8988                            TypeIdInfo.TypeTestAssumeVCalls))
8989         return true;
8990       break;
8991     case lltok::kw_typeCheckedLoadVCalls:
8992       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8993                            TypeIdInfo.TypeCheckedLoadVCalls))
8994         return true;
8995       break;
8996     case lltok::kw_typeTestAssumeConstVCalls:
8997       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8998                               TypeIdInfo.TypeTestAssumeConstVCalls))
8999         return true;
9000       break;
9001     case lltok::kw_typeCheckedLoadConstVCalls:
9002       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9003                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9004         return true;
9005       break;
9006     default:
9007       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9008     }
9009   } while (EatIfPresent(lltok::comma));
9010 
9011   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9012     return true;
9013 
9014   return false;
9015 }
9016 
9017 /// TypeTests
9018 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9019 ///         [',' (SummaryID | UInt64)]* ')'
9020 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9021   assert(Lex.getKind() == lltok::kw_typeTests);
9022   Lex.Lex();
9023 
9024   if (parseToken(lltok::colon, "expected ':' here") ||
9025       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9026     return true;
9027 
9028   IdToIndexMapType IdToIndexMap;
9029   do {
9030     GlobalValue::GUID GUID = 0;
9031     if (Lex.getKind() == lltok::SummaryID) {
9032       unsigned ID = Lex.getUIntVal();
9033       LocTy Loc = Lex.getLoc();
9034       // Keep track of the TypeTests array index needing a forward reference.
9035       // We will save the location of the GUID needing an update, but
9036       // can only do so once the std::vector is finalized.
9037       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9038       Lex.Lex();
9039     } else if (parseUInt64(GUID))
9040       return true;
9041     TypeTests.push_back(GUID);
9042   } while (EatIfPresent(lltok::comma));
9043 
9044   // Now that the TypeTests vector is finalized, it is safe to save the
9045   // locations of any forward GV references that need updating later.
9046   for (auto I : IdToIndexMap) {
9047     auto &Ids = ForwardRefTypeIds[I.first];
9048     for (auto P : I.second) {
9049       assert(TypeTests[P.first] == 0 &&
9050              "Forward referenced type id GUID expected to be 0");
9051       Ids.emplace_back(&TypeTests[P.first], P.second);
9052     }
9053   }
9054 
9055   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9056     return true;
9057 
9058   return false;
9059 }
9060 
9061 /// VFuncIdList
9062 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9063 bool LLParser::parseVFuncIdList(
9064     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9065   assert(Lex.getKind() == Kind);
9066   Lex.Lex();
9067 
9068   if (parseToken(lltok::colon, "expected ':' here") ||
9069       parseToken(lltok::lparen, "expected '(' here"))
9070     return true;
9071 
9072   IdToIndexMapType IdToIndexMap;
9073   do {
9074     FunctionSummary::VFuncId VFuncId;
9075     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9076       return true;
9077     VFuncIdList.push_back(VFuncId);
9078   } while (EatIfPresent(lltok::comma));
9079 
9080   if (parseToken(lltok::rparen, "expected ')' here"))
9081     return true;
9082 
9083   // Now that the VFuncIdList vector is finalized, it is safe to save the
9084   // locations of any forward GV references that need updating later.
9085   for (auto I : IdToIndexMap) {
9086     auto &Ids = ForwardRefTypeIds[I.first];
9087     for (auto P : I.second) {
9088       assert(VFuncIdList[P.first].GUID == 0 &&
9089              "Forward referenced type id GUID expected to be 0");
9090       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9091     }
9092   }
9093 
9094   return false;
9095 }
9096 
9097 /// ConstVCallList
9098 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9099 bool LLParser::parseConstVCallList(
9100     lltok::Kind Kind,
9101     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9102   assert(Lex.getKind() == Kind);
9103   Lex.Lex();
9104 
9105   if (parseToken(lltok::colon, "expected ':' here") ||
9106       parseToken(lltok::lparen, "expected '(' here"))
9107     return true;
9108 
9109   IdToIndexMapType IdToIndexMap;
9110   do {
9111     FunctionSummary::ConstVCall ConstVCall;
9112     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9113       return true;
9114     ConstVCallList.push_back(ConstVCall);
9115   } while (EatIfPresent(lltok::comma));
9116 
9117   if (parseToken(lltok::rparen, "expected ')' here"))
9118     return true;
9119 
9120   // Now that the ConstVCallList vector is finalized, it is safe to save the
9121   // locations of any forward GV references that need updating later.
9122   for (auto I : IdToIndexMap) {
9123     auto &Ids = ForwardRefTypeIds[I.first];
9124     for (auto P : I.second) {
9125       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9126              "Forward referenced type id GUID expected to be 0");
9127       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9128     }
9129   }
9130 
9131   return false;
9132 }
9133 
9134 /// ConstVCall
9135 ///   ::= '(' VFuncId ',' Args ')'
9136 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9137                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9138   if (parseToken(lltok::lparen, "expected '(' here") ||
9139       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9140     return true;
9141 
9142   if (EatIfPresent(lltok::comma))
9143     if (parseArgs(ConstVCall.Args))
9144       return true;
9145 
9146   if (parseToken(lltok::rparen, "expected ')' here"))
9147     return true;
9148 
9149   return false;
9150 }
9151 
9152 /// VFuncId
9153 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9154 ///         'offset' ':' UInt64 ')'
9155 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9156                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9157   assert(Lex.getKind() == lltok::kw_vFuncId);
9158   Lex.Lex();
9159 
9160   if (parseToken(lltok::colon, "expected ':' here") ||
9161       parseToken(lltok::lparen, "expected '(' here"))
9162     return true;
9163 
9164   if (Lex.getKind() == lltok::SummaryID) {
9165     VFuncId.GUID = 0;
9166     unsigned ID = Lex.getUIntVal();
9167     LocTy Loc = Lex.getLoc();
9168     // Keep track of the array index needing a forward reference.
9169     // We will save the location of the GUID needing an update, but
9170     // can only do so once the caller's std::vector is finalized.
9171     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9172     Lex.Lex();
9173   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9174              parseToken(lltok::colon, "expected ':' here") ||
9175              parseUInt64(VFuncId.GUID))
9176     return true;
9177 
9178   if (parseToken(lltok::comma, "expected ',' here") ||
9179       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9180       parseToken(lltok::colon, "expected ':' here") ||
9181       parseUInt64(VFuncId.Offset) ||
9182       parseToken(lltok::rparen, "expected ')' here"))
9183     return true;
9184 
9185   return false;
9186 }
9187 
9188 /// GVFlags
9189 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9190 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9191 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9192 ///         'canAutoHide' ':' Flag ',' ')'
9193 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9194   assert(Lex.getKind() == lltok::kw_flags);
9195   Lex.Lex();
9196 
9197   if (parseToken(lltok::colon, "expected ':' here") ||
9198       parseToken(lltok::lparen, "expected '(' here"))
9199     return true;
9200 
9201   do {
9202     unsigned Flag = 0;
9203     switch (Lex.getKind()) {
9204     case lltok::kw_linkage:
9205       Lex.Lex();
9206       if (parseToken(lltok::colon, "expected ':'"))
9207         return true;
9208       bool HasLinkage;
9209       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9210       assert(HasLinkage && "Linkage not optional in summary entry");
9211       Lex.Lex();
9212       break;
9213     case lltok::kw_visibility:
9214       Lex.Lex();
9215       if (parseToken(lltok::colon, "expected ':'"))
9216         return true;
9217       parseOptionalVisibility(Flag);
9218       GVFlags.Visibility = Flag;
9219       break;
9220     case lltok::kw_notEligibleToImport:
9221       Lex.Lex();
9222       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9223         return true;
9224       GVFlags.NotEligibleToImport = Flag;
9225       break;
9226     case lltok::kw_live:
9227       Lex.Lex();
9228       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9229         return true;
9230       GVFlags.Live = Flag;
9231       break;
9232     case lltok::kw_dsoLocal:
9233       Lex.Lex();
9234       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9235         return true;
9236       GVFlags.DSOLocal = Flag;
9237       break;
9238     case lltok::kw_canAutoHide:
9239       Lex.Lex();
9240       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9241         return true;
9242       GVFlags.CanAutoHide = Flag;
9243       break;
9244     default:
9245       return error(Lex.getLoc(), "expected gv flag type");
9246     }
9247   } while (EatIfPresent(lltok::comma));
9248 
9249   if (parseToken(lltok::rparen, "expected ')' here"))
9250     return true;
9251 
9252   return false;
9253 }
9254 
9255 /// GVarFlags
9256 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9257 ///                      ',' 'writeonly' ':' Flag
9258 ///                      ',' 'constant' ':' Flag ')'
9259 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9260   assert(Lex.getKind() == lltok::kw_varFlags);
9261   Lex.Lex();
9262 
9263   if (parseToken(lltok::colon, "expected ':' here") ||
9264       parseToken(lltok::lparen, "expected '(' here"))
9265     return true;
9266 
9267   auto ParseRest = [this](unsigned int &Val) {
9268     Lex.Lex();
9269     if (parseToken(lltok::colon, "expected ':'"))
9270       return true;
9271     return parseFlag(Val);
9272   };
9273 
9274   do {
9275     unsigned Flag = 0;
9276     switch (Lex.getKind()) {
9277     case lltok::kw_readonly:
9278       if (ParseRest(Flag))
9279         return true;
9280       GVarFlags.MaybeReadOnly = Flag;
9281       break;
9282     case lltok::kw_writeonly:
9283       if (ParseRest(Flag))
9284         return true;
9285       GVarFlags.MaybeWriteOnly = Flag;
9286       break;
9287     case lltok::kw_constant:
9288       if (ParseRest(Flag))
9289         return true;
9290       GVarFlags.Constant = Flag;
9291       break;
9292     case lltok::kw_vcall_visibility:
9293       if (ParseRest(Flag))
9294         return true;
9295       GVarFlags.VCallVisibility = Flag;
9296       break;
9297     default:
9298       return error(Lex.getLoc(), "expected gvar flag type");
9299     }
9300   } while (EatIfPresent(lltok::comma));
9301   return parseToken(lltok::rparen, "expected ')' here");
9302 }
9303 
9304 /// ModuleReference
9305 ///   ::= 'module' ':' UInt
9306 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9307   // parse module id.
9308   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9309       parseToken(lltok::colon, "expected ':' here") ||
9310       parseToken(lltok::SummaryID, "expected module ID"))
9311     return true;
9312 
9313   unsigned ModuleID = Lex.getUIntVal();
9314   auto I = ModuleIdMap.find(ModuleID);
9315   // We should have already parsed all module IDs
9316   assert(I != ModuleIdMap.end());
9317   ModulePath = I->second;
9318   return false;
9319 }
9320 
9321 /// GVReference
9322 ///   ::= SummaryID
9323 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9324   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9325   if (!ReadOnly)
9326     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9327   if (parseToken(lltok::SummaryID, "expected GV ID"))
9328     return true;
9329 
9330   GVId = Lex.getUIntVal();
9331   // Check if we already have a VI for this GV
9332   if (GVId < NumberedValueInfos.size()) {
9333     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9334     VI = NumberedValueInfos[GVId];
9335   } else
9336     // We will create a forward reference to the stored location.
9337     VI = ValueInfo(false, FwdVIRef);
9338 
9339   if (ReadOnly)
9340     VI.setReadOnly();
9341   if (WriteOnly)
9342     VI.setWriteOnly();
9343   return false;
9344 }
9345