1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/AsmParser/LLParser.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/LLToken.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/IR/ValueSymbolTable.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/SaveAndRestore.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstring> 50 #include <iterator> 51 #include <vector> 52 53 using namespace llvm; 54 55 static std::string getTypeString(Type *T) { 56 std::string Result; 57 raw_string_ostream Tmp(Result); 58 Tmp << *T; 59 return Tmp.str(); 60 } 61 62 /// Run: module ::= toplevelentity* 63 bool LLParser::Run(bool UpgradeDebugInfo, 64 DataLayoutCallbackTy DataLayoutCallback) { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 if (M) { 74 if (parseTargetDefinitions()) 75 return true; 76 77 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 78 M->setDataLayout(*LayoutOverride); 79 } 80 81 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 82 validateEndOfIndex(); 83 } 84 85 bool LLParser::parseStandaloneConstantValue(Constant *&C, 86 const SlotMapping *Slots) { 87 restoreParsingState(Slots); 88 Lex.Lex(); 89 90 Type *Ty = nullptr; 91 if (parseType(Ty) || parseConstantValue(Ty, C)) 92 return true; 93 if (Lex.getKind() != lltok::Eof) 94 return error(Lex.getLoc(), "expected end of string"); 95 return false; 96 } 97 98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 99 const SlotMapping *Slots) { 100 restoreParsingState(Slots); 101 Lex.Lex(); 102 103 Read = 0; 104 SMLoc Start = Lex.getLoc(); 105 Ty = nullptr; 106 if (parseType(Ty)) 107 return true; 108 SMLoc End = Lex.getLoc(); 109 Read = End.getPointer() - Start.getPointer(); 110 111 return false; 112 } 113 114 void LLParser::restoreParsingState(const SlotMapping *Slots) { 115 if (!Slots) 116 return; 117 NumberedVals = Slots->GlobalValues; 118 NumberedMetadata = Slots->MetadataNodes; 119 for (const auto &I : Slots->NamedTypes) 120 NamedTypes.insert( 121 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 122 for (const auto &I : Slots->Types) 123 NumberedTypes.insert( 124 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 125 } 126 127 /// validateEndOfModule - Do final validity and basic correctness checks at the 128 /// end of the module. 129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 130 if (!M) 131 return false; 132 // Handle any function attribute group forward references. 133 for (const auto &RAG : ForwardRefAttrGroups) { 134 Value *V = RAG.first; 135 const std::vector<unsigned> &Attrs = RAG.second; 136 AttrBuilder B; 137 138 for (const auto &Attr : Attrs) 139 B.merge(NumberedAttrBuilders[Attr]); 140 141 if (Function *Fn = dyn_cast<Function>(V)) { 142 AttributeList AS = Fn->getAttributes(); 143 AttrBuilder FnAttrs(AS.getFnAttrs()); 144 AS = AS.removeFnAttributes(Context); 145 146 FnAttrs.merge(B); 147 148 // If the alignment was parsed as an attribute, move to the alignment 149 // field. 150 if (FnAttrs.hasAlignmentAttr()) { 151 Fn->setAlignment(FnAttrs.getAlignment()); 152 FnAttrs.removeAttribute(Attribute::Alignment); 153 } 154 155 AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs)); 156 Fn->setAttributes(AS); 157 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 158 AttributeList AS = CI->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttrs()); 160 AS = AS.removeFnAttributes(Context); 161 FnAttrs.merge(B); 162 AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs)); 163 CI->setAttributes(AS); 164 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 165 AttributeList AS = II->getAttributes(); 166 AttrBuilder FnAttrs(AS.getFnAttrs()); 167 AS = AS.removeFnAttributes(Context); 168 FnAttrs.merge(B); 169 AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs)); 170 II->setAttributes(AS); 171 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 172 AttributeList AS = CBI->getAttributes(); 173 AttrBuilder FnAttrs(AS.getFnAttrs()); 174 AS = AS.removeFnAttributes(Context); 175 FnAttrs.merge(B); 176 AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs)); 177 CBI->setAttributes(AS); 178 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 179 AttrBuilder Attrs(GV->getAttributes()); 180 Attrs.merge(B); 181 GV->setAttributes(AttributeSet::get(Context,Attrs)); 182 } else { 183 llvm_unreachable("invalid object with forward attribute group reference"); 184 } 185 } 186 187 // If there are entries in ForwardRefBlockAddresses at this point, the 188 // function was never defined. 189 if (!ForwardRefBlockAddresses.empty()) 190 return error(ForwardRefBlockAddresses.begin()->first.Loc, 191 "expected function name in blockaddress"); 192 193 for (const auto &NT : NumberedTypes) 194 if (NT.second.second.isValid()) 195 return error(NT.second.second, 196 "use of undefined type '%" + Twine(NT.first) + "'"); 197 198 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 199 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 200 if (I->second.second.isValid()) 201 return error(I->second.second, 202 "use of undefined type named '" + I->getKey() + "'"); 203 204 if (!ForwardRefComdats.empty()) 205 return error(ForwardRefComdats.begin()->second, 206 "use of undefined comdat '$" + 207 ForwardRefComdats.begin()->first + "'"); 208 209 if (!ForwardRefVals.empty()) 210 return error(ForwardRefVals.begin()->second.second, 211 "use of undefined value '@" + ForwardRefVals.begin()->first + 212 "'"); 213 214 if (!ForwardRefValIDs.empty()) 215 return error(ForwardRefValIDs.begin()->second.second, 216 "use of undefined value '@" + 217 Twine(ForwardRefValIDs.begin()->first) + "'"); 218 219 if (!ForwardRefMDNodes.empty()) 220 return error(ForwardRefMDNodes.begin()->second.second, 221 "use of undefined metadata '!" + 222 Twine(ForwardRefMDNodes.begin()->first) + "'"); 223 224 // Resolve metadata cycles. 225 for (auto &N : NumberedMetadata) { 226 if (N.second && !N.second->isResolved()) 227 N.second->resolveCycles(); 228 } 229 230 for (auto *Inst : InstsWithTBAATag) { 231 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 232 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 233 auto *UpgradedMD = UpgradeTBAANode(*MD); 234 if (MD != UpgradedMD) 235 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 236 } 237 238 // Look for intrinsic functions and CallInst that need to be upgraded. We use 239 // make_early_inc_range here because we may remove some functions. 240 for (Function &F : llvm::make_early_inc_range(*M)) 241 UpgradeCallsToIntrinsic(&F); 242 243 // Some types could be renamed during loading if several modules are 244 // loaded in the same LLVMContext (LTO scenario). In this case we should 245 // remangle intrinsics names as well. 246 for (Function &F : llvm::make_early_inc_range(*M)) { 247 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) { 248 F.replaceAllUsesWith(Remangled.getValue()); 249 F.eraseFromParent(); 250 } 251 } 252 253 if (UpgradeDebugInfo) 254 llvm::UpgradeDebugInfo(*M); 255 256 UpgradeModuleFlags(*M); 257 UpgradeSectionAttributes(*M); 258 259 if (!Slots) 260 return false; 261 // Initialize the slot mapping. 262 // Because by this point we've parsed and validated everything, we can "steal" 263 // the mapping from LLParser as it doesn't need it anymore. 264 Slots->GlobalValues = std::move(NumberedVals); 265 Slots->MetadataNodes = std::move(NumberedMetadata); 266 for (const auto &I : NamedTypes) 267 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 268 for (const auto &I : NumberedTypes) 269 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 270 271 return false; 272 } 273 274 /// Do final validity and basic correctness checks at the end of the index. 275 bool LLParser::validateEndOfIndex() { 276 if (!Index) 277 return false; 278 279 if (!ForwardRefValueInfos.empty()) 280 return error(ForwardRefValueInfos.begin()->second.front().second, 281 "use of undefined summary '^" + 282 Twine(ForwardRefValueInfos.begin()->first) + "'"); 283 284 if (!ForwardRefAliasees.empty()) 285 return error(ForwardRefAliasees.begin()->second.front().second, 286 "use of undefined summary '^" + 287 Twine(ForwardRefAliasees.begin()->first) + "'"); 288 289 if (!ForwardRefTypeIds.empty()) 290 return error(ForwardRefTypeIds.begin()->second.front().second, 291 "use of undefined type id summary '^" + 292 Twine(ForwardRefTypeIds.begin()->first) + "'"); 293 294 return false; 295 } 296 297 //===----------------------------------------------------------------------===// 298 // Top-Level Entities 299 //===----------------------------------------------------------------------===// 300 301 bool LLParser::parseTargetDefinitions() { 302 while (true) { 303 switch (Lex.getKind()) { 304 case lltok::kw_target: 305 if (parseTargetDefinition()) 306 return true; 307 break; 308 case lltok::kw_source_filename: 309 if (parseSourceFileName()) 310 return true; 311 break; 312 default: 313 return false; 314 } 315 } 316 } 317 318 bool LLParser::parseTopLevelEntities() { 319 // If there is no Module, then parse just the summary index entries. 320 if (!M) { 321 while (true) { 322 switch (Lex.getKind()) { 323 case lltok::Eof: 324 return false; 325 case lltok::SummaryID: 326 if (parseSummaryEntry()) 327 return true; 328 break; 329 case lltok::kw_source_filename: 330 if (parseSourceFileName()) 331 return true; 332 break; 333 default: 334 // Skip everything else 335 Lex.Lex(); 336 } 337 } 338 } 339 while (true) { 340 switch (Lex.getKind()) { 341 default: 342 return tokError("expected top-level entity"); 343 case lltok::Eof: return false; 344 case lltok::kw_declare: 345 if (parseDeclare()) 346 return true; 347 break; 348 case lltok::kw_define: 349 if (parseDefine()) 350 return true; 351 break; 352 case lltok::kw_module: 353 if (parseModuleAsm()) 354 return true; 355 break; 356 case lltok::LocalVarID: 357 if (parseUnnamedType()) 358 return true; 359 break; 360 case lltok::LocalVar: 361 if (parseNamedType()) 362 return true; 363 break; 364 case lltok::GlobalID: 365 if (parseUnnamedGlobal()) 366 return true; 367 break; 368 case lltok::GlobalVar: 369 if (parseNamedGlobal()) 370 return true; 371 break; 372 case lltok::ComdatVar: if (parseComdat()) return true; break; 373 case lltok::exclaim: 374 if (parseStandaloneMetadata()) 375 return true; 376 break; 377 case lltok::SummaryID: 378 if (parseSummaryEntry()) 379 return true; 380 break; 381 case lltok::MetadataVar: 382 if (parseNamedMetadata()) 383 return true; 384 break; 385 case lltok::kw_attributes: 386 if (parseUnnamedAttrGrp()) 387 return true; 388 break; 389 case lltok::kw_uselistorder: 390 if (parseUseListOrder()) 391 return true; 392 break; 393 case lltok::kw_uselistorder_bb: 394 if (parseUseListOrderBB()) 395 return true; 396 break; 397 } 398 } 399 } 400 401 /// toplevelentity 402 /// ::= 'module' 'asm' STRINGCONSTANT 403 bool LLParser::parseModuleAsm() { 404 assert(Lex.getKind() == lltok::kw_module); 405 Lex.Lex(); 406 407 std::string AsmStr; 408 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 409 parseStringConstant(AsmStr)) 410 return true; 411 412 M->appendModuleInlineAsm(AsmStr); 413 return false; 414 } 415 416 /// toplevelentity 417 /// ::= 'target' 'triple' '=' STRINGCONSTANT 418 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 419 bool LLParser::parseTargetDefinition() { 420 assert(Lex.getKind() == lltok::kw_target); 421 std::string Str; 422 switch (Lex.Lex()) { 423 default: 424 return tokError("unknown target property"); 425 case lltok::kw_triple: 426 Lex.Lex(); 427 if (parseToken(lltok::equal, "expected '=' after target triple") || 428 parseStringConstant(Str)) 429 return true; 430 M->setTargetTriple(Str); 431 return false; 432 case lltok::kw_datalayout: 433 Lex.Lex(); 434 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 435 parseStringConstant(Str)) 436 return true; 437 M->setDataLayout(Str); 438 return false; 439 } 440 } 441 442 /// toplevelentity 443 /// ::= 'source_filename' '=' STRINGCONSTANT 444 bool LLParser::parseSourceFileName() { 445 assert(Lex.getKind() == lltok::kw_source_filename); 446 Lex.Lex(); 447 if (parseToken(lltok::equal, "expected '=' after source_filename") || 448 parseStringConstant(SourceFileName)) 449 return true; 450 if (M) 451 M->setSourceFileName(SourceFileName); 452 return false; 453 } 454 455 /// parseUnnamedType: 456 /// ::= LocalVarID '=' 'type' type 457 bool LLParser::parseUnnamedType() { 458 LocTy TypeLoc = Lex.getLoc(); 459 unsigned TypeID = Lex.getUIntVal(); 460 Lex.Lex(); // eat LocalVarID; 461 462 if (parseToken(lltok::equal, "expected '=' after name") || 463 parseToken(lltok::kw_type, "expected 'type' after '='")) 464 return true; 465 466 Type *Result = nullptr; 467 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 468 return true; 469 470 if (!isa<StructType>(Result)) { 471 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 472 if (Entry.first) 473 return error(TypeLoc, "non-struct types may not be recursive"); 474 Entry.first = Result; 475 Entry.second = SMLoc(); 476 } 477 478 return false; 479 } 480 481 /// toplevelentity 482 /// ::= LocalVar '=' 'type' type 483 bool LLParser::parseNamedType() { 484 std::string Name = Lex.getStrVal(); 485 LocTy NameLoc = Lex.getLoc(); 486 Lex.Lex(); // eat LocalVar. 487 488 if (parseToken(lltok::equal, "expected '=' after name") || 489 parseToken(lltok::kw_type, "expected 'type' after name")) 490 return true; 491 492 Type *Result = nullptr; 493 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 494 return true; 495 496 if (!isa<StructType>(Result)) { 497 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 498 if (Entry.first) 499 return error(NameLoc, "non-struct types may not be recursive"); 500 Entry.first = Result; 501 Entry.second = SMLoc(); 502 } 503 504 return false; 505 } 506 507 /// toplevelentity 508 /// ::= 'declare' FunctionHeader 509 bool LLParser::parseDeclare() { 510 assert(Lex.getKind() == lltok::kw_declare); 511 Lex.Lex(); 512 513 std::vector<std::pair<unsigned, MDNode *>> MDs; 514 while (Lex.getKind() == lltok::MetadataVar) { 515 unsigned MDK; 516 MDNode *N; 517 if (parseMetadataAttachment(MDK, N)) 518 return true; 519 MDs.push_back({MDK, N}); 520 } 521 522 Function *F; 523 if (parseFunctionHeader(F, false)) 524 return true; 525 for (auto &MD : MDs) 526 F->addMetadata(MD.first, *MD.second); 527 return false; 528 } 529 530 /// toplevelentity 531 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 532 bool LLParser::parseDefine() { 533 assert(Lex.getKind() == lltok::kw_define); 534 Lex.Lex(); 535 536 Function *F; 537 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 538 parseFunctionBody(*F); 539 } 540 541 /// parseGlobalType 542 /// ::= 'constant' 543 /// ::= 'global' 544 bool LLParser::parseGlobalType(bool &IsConstant) { 545 if (Lex.getKind() == lltok::kw_constant) 546 IsConstant = true; 547 else if (Lex.getKind() == lltok::kw_global) 548 IsConstant = false; 549 else { 550 IsConstant = false; 551 return tokError("expected 'global' or 'constant'"); 552 } 553 Lex.Lex(); 554 return false; 555 } 556 557 bool LLParser::parseOptionalUnnamedAddr( 558 GlobalVariable::UnnamedAddr &UnnamedAddr) { 559 if (EatIfPresent(lltok::kw_unnamed_addr)) 560 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 561 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 562 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 563 else 564 UnnamedAddr = GlobalValue::UnnamedAddr::None; 565 return false; 566 } 567 568 /// parseUnnamedGlobal: 569 /// OptionalVisibility (ALIAS | IFUNC) ... 570 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 571 /// OptionalDLLStorageClass 572 /// ... -> global variable 573 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 574 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 575 /// OptionalVisibility 576 /// OptionalDLLStorageClass 577 /// ... -> global variable 578 bool LLParser::parseUnnamedGlobal() { 579 unsigned VarID = NumberedVals.size(); 580 std::string Name; 581 LocTy NameLoc = Lex.getLoc(); 582 583 // Handle the GlobalID form. 584 if (Lex.getKind() == lltok::GlobalID) { 585 if (Lex.getUIntVal() != VarID) 586 return error(Lex.getLoc(), 587 "variable expected to be numbered '%" + Twine(VarID) + "'"); 588 Lex.Lex(); // eat GlobalID; 589 590 if (parseToken(lltok::equal, "expected '=' after name")) 591 return true; 592 } 593 594 bool HasLinkage; 595 unsigned Linkage, Visibility, DLLStorageClass; 596 bool DSOLocal; 597 GlobalVariable::ThreadLocalMode TLM; 598 GlobalVariable::UnnamedAddr UnnamedAddr; 599 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 600 DSOLocal) || 601 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 602 return true; 603 604 switch (Lex.getKind()) { 605 default: 606 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 607 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 608 case lltok::kw_alias: 609 case lltok::kw_ifunc: 610 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, 611 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 612 } 613 } 614 615 /// parseNamedGlobal: 616 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 617 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 618 /// OptionalVisibility OptionalDLLStorageClass 619 /// ... -> global variable 620 bool LLParser::parseNamedGlobal() { 621 assert(Lex.getKind() == lltok::GlobalVar); 622 LocTy NameLoc = Lex.getLoc(); 623 std::string Name = Lex.getStrVal(); 624 Lex.Lex(); 625 626 bool HasLinkage; 627 unsigned Linkage, Visibility, DLLStorageClass; 628 bool DSOLocal; 629 GlobalVariable::ThreadLocalMode TLM; 630 GlobalVariable::UnnamedAddr UnnamedAddr; 631 if (parseToken(lltok::equal, "expected '=' in global variable") || 632 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 633 DSOLocal) || 634 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 635 return true; 636 637 switch (Lex.getKind()) { 638 default: 639 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 640 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 641 case lltok::kw_alias: 642 case lltok::kw_ifunc: 643 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, 644 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 645 } 646 } 647 648 bool LLParser::parseComdat() { 649 assert(Lex.getKind() == lltok::ComdatVar); 650 std::string Name = Lex.getStrVal(); 651 LocTy NameLoc = Lex.getLoc(); 652 Lex.Lex(); 653 654 if (parseToken(lltok::equal, "expected '=' here")) 655 return true; 656 657 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 658 return tokError("expected comdat type"); 659 660 Comdat::SelectionKind SK; 661 switch (Lex.getKind()) { 662 default: 663 return tokError("unknown selection kind"); 664 case lltok::kw_any: 665 SK = Comdat::Any; 666 break; 667 case lltok::kw_exactmatch: 668 SK = Comdat::ExactMatch; 669 break; 670 case lltok::kw_largest: 671 SK = Comdat::Largest; 672 break; 673 case lltok::kw_nodeduplicate: 674 SK = Comdat::NoDeduplicate; 675 break; 676 case lltok::kw_samesize: 677 SK = Comdat::SameSize; 678 break; 679 } 680 Lex.Lex(); 681 682 // See if the comdat was forward referenced, if so, use the comdat. 683 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 684 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 685 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 686 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 687 688 Comdat *C; 689 if (I != ComdatSymTab.end()) 690 C = &I->second; 691 else 692 C = M->getOrInsertComdat(Name); 693 C->setSelectionKind(SK); 694 695 return false; 696 } 697 698 // MDString: 699 // ::= '!' STRINGCONSTANT 700 bool LLParser::parseMDString(MDString *&Result) { 701 std::string Str; 702 if (parseStringConstant(Str)) 703 return true; 704 Result = MDString::get(Context, Str); 705 return false; 706 } 707 708 // MDNode: 709 // ::= '!' MDNodeNumber 710 bool LLParser::parseMDNodeID(MDNode *&Result) { 711 // !{ ..., !42, ... } 712 LocTy IDLoc = Lex.getLoc(); 713 unsigned MID = 0; 714 if (parseUInt32(MID)) 715 return true; 716 717 // If not a forward reference, just return it now. 718 if (NumberedMetadata.count(MID)) { 719 Result = NumberedMetadata[MID]; 720 return false; 721 } 722 723 // Otherwise, create MDNode forward reference. 724 auto &FwdRef = ForwardRefMDNodes[MID]; 725 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 726 727 Result = FwdRef.first.get(); 728 NumberedMetadata[MID].reset(Result); 729 return false; 730 } 731 732 /// parseNamedMetadata: 733 /// !foo = !{ !1, !2 } 734 bool LLParser::parseNamedMetadata() { 735 assert(Lex.getKind() == lltok::MetadataVar); 736 std::string Name = Lex.getStrVal(); 737 Lex.Lex(); 738 739 if (parseToken(lltok::equal, "expected '=' here") || 740 parseToken(lltok::exclaim, "Expected '!' here") || 741 parseToken(lltok::lbrace, "Expected '{' here")) 742 return true; 743 744 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 745 if (Lex.getKind() != lltok::rbrace) 746 do { 747 MDNode *N = nullptr; 748 // parse DIExpressions inline as a special case. They are still MDNodes, 749 // so they can still appear in named metadata. Remove this logic if they 750 // become plain Metadata. 751 if (Lex.getKind() == lltok::MetadataVar && 752 Lex.getStrVal() == "DIExpression") { 753 if (parseDIExpression(N, /*IsDistinct=*/false)) 754 return true; 755 // DIArgLists should only appear inline in a function, as they may 756 // contain LocalAsMetadata arguments which require a function context. 757 } else if (Lex.getKind() == lltok::MetadataVar && 758 Lex.getStrVal() == "DIArgList") { 759 return tokError("found DIArgList outside of function"); 760 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 761 parseMDNodeID(N)) { 762 return true; 763 } 764 NMD->addOperand(N); 765 } while (EatIfPresent(lltok::comma)); 766 767 return parseToken(lltok::rbrace, "expected end of metadata node"); 768 } 769 770 /// parseStandaloneMetadata: 771 /// !42 = !{...} 772 bool LLParser::parseStandaloneMetadata() { 773 assert(Lex.getKind() == lltok::exclaim); 774 Lex.Lex(); 775 unsigned MetadataID = 0; 776 777 MDNode *Init; 778 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 779 return true; 780 781 // Detect common error, from old metadata syntax. 782 if (Lex.getKind() == lltok::Type) 783 return tokError("unexpected type in metadata definition"); 784 785 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 786 if (Lex.getKind() == lltok::MetadataVar) { 787 if (parseSpecializedMDNode(Init, IsDistinct)) 788 return true; 789 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 790 parseMDTuple(Init, IsDistinct)) 791 return true; 792 793 // See if this was forward referenced, if so, handle it. 794 auto FI = ForwardRefMDNodes.find(MetadataID); 795 if (FI != ForwardRefMDNodes.end()) { 796 FI->second.first->replaceAllUsesWith(Init); 797 ForwardRefMDNodes.erase(FI); 798 799 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 800 } else { 801 if (NumberedMetadata.count(MetadataID)) 802 return tokError("Metadata id is already used"); 803 NumberedMetadata[MetadataID].reset(Init); 804 } 805 806 return false; 807 } 808 809 // Skips a single module summary entry. 810 bool LLParser::skipModuleSummaryEntry() { 811 // Each module summary entry consists of a tag for the entry 812 // type, followed by a colon, then the fields which may be surrounded by 813 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 814 // support is in place we will look for the tokens corresponding to the 815 // expected tags. 816 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 817 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 818 Lex.getKind() != lltok::kw_blockcount) 819 return tokError( 820 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 821 "start of summary entry"); 822 if (Lex.getKind() == lltok::kw_flags) 823 return parseSummaryIndexFlags(); 824 if (Lex.getKind() == lltok::kw_blockcount) 825 return parseBlockCount(); 826 Lex.Lex(); 827 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 828 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 829 return true; 830 // Now walk through the parenthesized entry, until the number of open 831 // parentheses goes back down to 0 (the first '(' was parsed above). 832 unsigned NumOpenParen = 1; 833 do { 834 switch (Lex.getKind()) { 835 case lltok::lparen: 836 NumOpenParen++; 837 break; 838 case lltok::rparen: 839 NumOpenParen--; 840 break; 841 case lltok::Eof: 842 return tokError("found end of file while parsing summary entry"); 843 default: 844 // Skip everything in between parentheses. 845 break; 846 } 847 Lex.Lex(); 848 } while (NumOpenParen > 0); 849 return false; 850 } 851 852 /// SummaryEntry 853 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 854 bool LLParser::parseSummaryEntry() { 855 assert(Lex.getKind() == lltok::SummaryID); 856 unsigned SummaryID = Lex.getUIntVal(); 857 858 // For summary entries, colons should be treated as distinct tokens, 859 // not an indication of the end of a label token. 860 Lex.setIgnoreColonInIdentifiers(true); 861 862 Lex.Lex(); 863 if (parseToken(lltok::equal, "expected '=' here")) 864 return true; 865 866 // If we don't have an index object, skip the summary entry. 867 if (!Index) 868 return skipModuleSummaryEntry(); 869 870 bool result = false; 871 switch (Lex.getKind()) { 872 case lltok::kw_gv: 873 result = parseGVEntry(SummaryID); 874 break; 875 case lltok::kw_module: 876 result = parseModuleEntry(SummaryID); 877 break; 878 case lltok::kw_typeid: 879 result = parseTypeIdEntry(SummaryID); 880 break; 881 case lltok::kw_typeidCompatibleVTable: 882 result = parseTypeIdCompatibleVtableEntry(SummaryID); 883 break; 884 case lltok::kw_flags: 885 result = parseSummaryIndexFlags(); 886 break; 887 case lltok::kw_blockcount: 888 result = parseBlockCount(); 889 break; 890 default: 891 result = error(Lex.getLoc(), "unexpected summary kind"); 892 break; 893 } 894 Lex.setIgnoreColonInIdentifiers(false); 895 return result; 896 } 897 898 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 899 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 900 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 901 } 902 903 // If there was an explicit dso_local, update GV. In the absence of an explicit 904 // dso_local we keep the default value. 905 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 906 if (DSOLocal) 907 GV.setDSOLocal(true); 908 } 909 910 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1, 911 Type *Ty2) { 912 std::string ErrString; 913 raw_string_ostream ErrOS(ErrString); 914 ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")"; 915 return ErrOS.str(); 916 } 917 918 /// parseAliasOrIFunc: 919 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 920 /// OptionalVisibility OptionalDLLStorageClass 921 /// OptionalThreadLocal OptionalUnnamedAddr 922 /// 'alias|ifunc' AliaseeOrResolver SymbolAttrs* 923 /// 924 /// AliaseeOrResolver 925 /// ::= TypeAndValue 926 /// 927 /// SymbolAttrs 928 /// ::= ',' 'partition' StringConstant 929 /// 930 /// Everything through OptionalUnnamedAddr has already been parsed. 931 /// 932 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc, 933 unsigned L, unsigned Visibility, 934 unsigned DLLStorageClass, bool DSOLocal, 935 GlobalVariable::ThreadLocalMode TLM, 936 GlobalVariable::UnnamedAddr UnnamedAddr) { 937 bool IsAlias; 938 if (Lex.getKind() == lltok::kw_alias) 939 IsAlias = true; 940 else if (Lex.getKind() == lltok::kw_ifunc) 941 IsAlias = false; 942 else 943 llvm_unreachable("Not an alias or ifunc!"); 944 Lex.Lex(); 945 946 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 947 948 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 949 return error(NameLoc, "invalid linkage type for alias"); 950 951 if (!isValidVisibilityForLinkage(Visibility, L)) 952 return error(NameLoc, 953 "symbol with local linkage must have default visibility"); 954 955 Type *Ty; 956 LocTy ExplicitTypeLoc = Lex.getLoc(); 957 if (parseType(Ty) || 958 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 959 return true; 960 961 Constant *Aliasee; 962 LocTy AliaseeLoc = Lex.getLoc(); 963 if (Lex.getKind() != lltok::kw_bitcast && 964 Lex.getKind() != lltok::kw_getelementptr && 965 Lex.getKind() != lltok::kw_addrspacecast && 966 Lex.getKind() != lltok::kw_inttoptr) { 967 if (parseGlobalTypeAndValue(Aliasee)) 968 return true; 969 } else { 970 // The bitcast dest type is not present, it is implied by the dest type. 971 ValID ID; 972 if (parseValID(ID, /*PFS=*/nullptr)) 973 return true; 974 if (ID.Kind != ValID::t_Constant) 975 return error(AliaseeLoc, "invalid aliasee"); 976 Aliasee = ID.ConstantVal; 977 } 978 979 Type *AliaseeType = Aliasee->getType(); 980 auto *PTy = dyn_cast<PointerType>(AliaseeType); 981 if (!PTy) 982 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 983 unsigned AddrSpace = PTy->getAddressSpace(); 984 985 if (IsAlias && !PTy->isOpaqueOrPointeeTypeMatches(Ty)) { 986 return error( 987 ExplicitTypeLoc, 988 typeComparisonErrorMessage( 989 "explicit pointee type doesn't match operand's pointee type", Ty, 990 PTy->getElementType())); 991 } 992 993 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) { 994 return error(ExplicitTypeLoc, 995 "explicit pointee type should be a function type"); 996 } 997 998 GlobalValue *GVal = nullptr; 999 1000 // See if the alias was forward referenced, if so, prepare to replace the 1001 // forward reference. 1002 if (!Name.empty()) { 1003 auto I = ForwardRefVals.find(Name); 1004 if (I != ForwardRefVals.end()) { 1005 GVal = I->second.first; 1006 ForwardRefVals.erase(Name); 1007 } else if (M->getNamedValue(Name)) { 1008 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1009 } 1010 } else { 1011 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1012 if (I != ForwardRefValIDs.end()) { 1013 GVal = I->second.first; 1014 ForwardRefValIDs.erase(I); 1015 } 1016 } 1017 1018 // Okay, create the alias/ifunc but do not insert it into the module yet. 1019 std::unique_ptr<GlobalAlias> GA; 1020 std::unique_ptr<GlobalIFunc> GI; 1021 GlobalValue *GV; 1022 if (IsAlias) { 1023 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1024 (GlobalValue::LinkageTypes)Linkage, Name, 1025 Aliasee, /*Parent*/ nullptr)); 1026 GV = GA.get(); 1027 } else { 1028 GI.reset(GlobalIFunc::create(Ty, AddrSpace, 1029 (GlobalValue::LinkageTypes)Linkage, Name, 1030 Aliasee, /*Parent*/ nullptr)); 1031 GV = GI.get(); 1032 } 1033 GV->setThreadLocalMode(TLM); 1034 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1035 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1036 GV->setUnnamedAddr(UnnamedAddr); 1037 maybeSetDSOLocal(DSOLocal, *GV); 1038 1039 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1040 // Now parse them if there are any. 1041 while (Lex.getKind() == lltok::comma) { 1042 Lex.Lex(); 1043 1044 if (Lex.getKind() == lltok::kw_partition) { 1045 Lex.Lex(); 1046 GV->setPartition(Lex.getStrVal()); 1047 if (parseToken(lltok::StringConstant, "expected partition string")) 1048 return true; 1049 } else { 1050 return tokError("unknown alias or ifunc property!"); 1051 } 1052 } 1053 1054 if (Name.empty()) 1055 NumberedVals.push_back(GV); 1056 1057 if (GVal) { 1058 // Verify that types agree. 1059 if (GVal->getType() != GV->getType()) 1060 return error( 1061 ExplicitTypeLoc, 1062 "forward reference and definition of alias have different types"); 1063 1064 // If they agree, just RAUW the old value with the alias and remove the 1065 // forward ref info. 1066 GVal->replaceAllUsesWith(GV); 1067 GVal->eraseFromParent(); 1068 } 1069 1070 // Insert into the module, we know its name won't collide now. 1071 if (IsAlias) 1072 M->getAliasList().push_back(GA.release()); 1073 else 1074 M->getIFuncList().push_back(GI.release()); 1075 assert(GV->getName() == Name && "Should not be a name conflict!"); 1076 1077 return false; 1078 } 1079 1080 /// parseGlobal 1081 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1082 /// OptionalVisibility OptionalDLLStorageClass 1083 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1084 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1085 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1086 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1087 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1088 /// Const OptionalAttrs 1089 /// 1090 /// Everything up to and including OptionalUnnamedAddr has been parsed 1091 /// already. 1092 /// 1093 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1094 unsigned Linkage, bool HasLinkage, 1095 unsigned Visibility, unsigned DLLStorageClass, 1096 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1097 GlobalVariable::UnnamedAddr UnnamedAddr) { 1098 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1099 return error(NameLoc, 1100 "symbol with local linkage must have default visibility"); 1101 1102 unsigned AddrSpace; 1103 bool IsConstant, IsExternallyInitialized; 1104 LocTy IsExternallyInitializedLoc; 1105 LocTy TyLoc; 1106 1107 Type *Ty = nullptr; 1108 if (parseOptionalAddrSpace(AddrSpace) || 1109 parseOptionalToken(lltok::kw_externally_initialized, 1110 IsExternallyInitialized, 1111 &IsExternallyInitializedLoc) || 1112 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1113 return true; 1114 1115 // If the linkage is specified and is external, then no initializer is 1116 // present. 1117 Constant *Init = nullptr; 1118 if (!HasLinkage || 1119 !GlobalValue::isValidDeclarationLinkage( 1120 (GlobalValue::LinkageTypes)Linkage)) { 1121 if (parseGlobalValue(Ty, Init)) 1122 return true; 1123 } 1124 1125 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1126 return error(TyLoc, "invalid type for global variable"); 1127 1128 GlobalValue *GVal = nullptr; 1129 1130 // See if the global was forward referenced, if so, use the global. 1131 if (!Name.empty()) { 1132 auto I = ForwardRefVals.find(Name); 1133 if (I != ForwardRefVals.end()) { 1134 GVal = I->second.first; 1135 ForwardRefVals.erase(I); 1136 } else if (M->getNamedValue(Name)) { 1137 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1138 } 1139 } else { 1140 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1141 if (I != ForwardRefValIDs.end()) { 1142 GVal = I->second.first; 1143 ForwardRefValIDs.erase(I); 1144 } 1145 } 1146 1147 GlobalVariable *GV = new GlobalVariable( 1148 *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr, 1149 GlobalVariable::NotThreadLocal, AddrSpace); 1150 1151 if (Name.empty()) 1152 NumberedVals.push_back(GV); 1153 1154 // Set the parsed properties on the global. 1155 if (Init) 1156 GV->setInitializer(Init); 1157 GV->setConstant(IsConstant); 1158 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1159 maybeSetDSOLocal(DSOLocal, *GV); 1160 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1161 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1162 GV->setExternallyInitialized(IsExternallyInitialized); 1163 GV->setThreadLocalMode(TLM); 1164 GV->setUnnamedAddr(UnnamedAddr); 1165 1166 if (GVal) { 1167 if (!GVal->getType()->isOpaque() && GVal->getValueType() != Ty) 1168 return error( 1169 TyLoc, 1170 "forward reference and definition of global have different types"); 1171 1172 GVal->replaceAllUsesWith(GV); 1173 GVal->eraseFromParent(); 1174 } 1175 1176 // parse attributes on the global. 1177 while (Lex.getKind() == lltok::comma) { 1178 Lex.Lex(); 1179 1180 if (Lex.getKind() == lltok::kw_section) { 1181 Lex.Lex(); 1182 GV->setSection(Lex.getStrVal()); 1183 if (parseToken(lltok::StringConstant, "expected global section string")) 1184 return true; 1185 } else if (Lex.getKind() == lltok::kw_partition) { 1186 Lex.Lex(); 1187 GV->setPartition(Lex.getStrVal()); 1188 if (parseToken(lltok::StringConstant, "expected partition string")) 1189 return true; 1190 } else if (Lex.getKind() == lltok::kw_align) { 1191 MaybeAlign Alignment; 1192 if (parseOptionalAlignment(Alignment)) 1193 return true; 1194 GV->setAlignment(Alignment); 1195 } else if (Lex.getKind() == lltok::MetadataVar) { 1196 if (parseGlobalObjectMetadataAttachment(*GV)) 1197 return true; 1198 } else { 1199 Comdat *C; 1200 if (parseOptionalComdat(Name, C)) 1201 return true; 1202 if (C) 1203 GV->setComdat(C); 1204 else 1205 return tokError("unknown global variable property!"); 1206 } 1207 } 1208 1209 AttrBuilder Attrs; 1210 LocTy BuiltinLoc; 1211 std::vector<unsigned> FwdRefAttrGrps; 1212 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1213 return true; 1214 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1215 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1216 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1217 } 1218 1219 return false; 1220 } 1221 1222 /// parseUnnamedAttrGrp 1223 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1224 bool LLParser::parseUnnamedAttrGrp() { 1225 assert(Lex.getKind() == lltok::kw_attributes); 1226 LocTy AttrGrpLoc = Lex.getLoc(); 1227 Lex.Lex(); 1228 1229 if (Lex.getKind() != lltok::AttrGrpID) 1230 return tokError("expected attribute group id"); 1231 1232 unsigned VarID = Lex.getUIntVal(); 1233 std::vector<unsigned> unused; 1234 LocTy BuiltinLoc; 1235 Lex.Lex(); 1236 1237 if (parseToken(lltok::equal, "expected '=' here") || 1238 parseToken(lltok::lbrace, "expected '{' here") || 1239 parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1240 BuiltinLoc) || 1241 parseToken(lltok::rbrace, "expected end of attribute group")) 1242 return true; 1243 1244 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1245 return error(AttrGrpLoc, "attribute group has no attributes"); 1246 1247 return false; 1248 } 1249 1250 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) { 1251 switch (Kind) { 1252 #define GET_ATTR_NAMES 1253 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ 1254 case lltok::kw_##DISPLAY_NAME: \ 1255 return Attribute::ENUM_NAME; 1256 #include "llvm/IR/Attributes.inc" 1257 default: 1258 return Attribute::None; 1259 } 1260 } 1261 1262 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B, 1263 bool InAttrGroup) { 1264 if (Attribute::isTypeAttrKind(Attr)) 1265 return parseRequiredTypeAttr(B, Lex.getKind(), Attr); 1266 1267 switch (Attr) { 1268 case Attribute::Alignment: { 1269 MaybeAlign Alignment; 1270 if (InAttrGroup) { 1271 uint32_t Value = 0; 1272 Lex.Lex(); 1273 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1274 return true; 1275 Alignment = Align(Value); 1276 } else { 1277 if (parseOptionalAlignment(Alignment, true)) 1278 return true; 1279 } 1280 B.addAlignmentAttr(Alignment); 1281 return false; 1282 } 1283 case Attribute::StackAlignment: { 1284 unsigned Alignment; 1285 if (InAttrGroup) { 1286 Lex.Lex(); 1287 if (parseToken(lltok::equal, "expected '=' here") || 1288 parseUInt32(Alignment)) 1289 return true; 1290 } else { 1291 if (parseOptionalStackAlignment(Alignment)) 1292 return true; 1293 } 1294 B.addStackAlignmentAttr(Alignment); 1295 return false; 1296 } 1297 case Attribute::AllocSize: { 1298 unsigned ElemSizeArg; 1299 Optional<unsigned> NumElemsArg; 1300 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1301 return true; 1302 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1303 return false; 1304 } 1305 case Attribute::VScaleRange: { 1306 unsigned MinValue, MaxValue; 1307 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1308 return true; 1309 B.addVScaleRangeAttr(MinValue, 1310 MaxValue > 0 ? MaxValue : Optional<unsigned>()); 1311 return false; 1312 } 1313 case Attribute::Dereferenceable: { 1314 uint64_t Bytes; 1315 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1316 return true; 1317 B.addDereferenceableAttr(Bytes); 1318 return false; 1319 } 1320 case Attribute::DereferenceableOrNull: { 1321 uint64_t Bytes; 1322 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1323 return true; 1324 B.addDereferenceableOrNullAttr(Bytes); 1325 return false; 1326 } 1327 default: 1328 B.addAttribute(Attr); 1329 Lex.Lex(); 1330 return false; 1331 } 1332 } 1333 1334 /// parseFnAttributeValuePairs 1335 /// ::= <attr> | <attr> '=' <value> 1336 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1337 std::vector<unsigned> &FwdRefAttrGrps, 1338 bool InAttrGrp, LocTy &BuiltinLoc) { 1339 bool HaveError = false; 1340 1341 B.clear(); 1342 1343 while (true) { 1344 lltok::Kind Token = Lex.getKind(); 1345 if (Token == lltok::rbrace) 1346 return HaveError; // Finished. 1347 1348 if (Token == lltok::StringConstant) { 1349 if (parseStringAttribute(B)) 1350 return true; 1351 continue; 1352 } 1353 1354 if (Token == lltok::AttrGrpID) { 1355 // Allow a function to reference an attribute group: 1356 // 1357 // define void @foo() #1 { ... } 1358 if (InAttrGrp) { 1359 HaveError |= error( 1360 Lex.getLoc(), 1361 "cannot have an attribute group reference in an attribute group"); 1362 } else { 1363 // Save the reference to the attribute group. We'll fill it in later. 1364 FwdRefAttrGrps.push_back(Lex.getUIntVal()); 1365 } 1366 Lex.Lex(); 1367 continue; 1368 } 1369 1370 SMLoc Loc = Lex.getLoc(); 1371 if (Token == lltok::kw_builtin) 1372 BuiltinLoc = Loc; 1373 1374 Attribute::AttrKind Attr = tokenToAttribute(Token); 1375 if (Attr == Attribute::None) { 1376 if (!InAttrGrp) 1377 return HaveError; 1378 return error(Lex.getLoc(), "unterminated attribute group"); 1379 } 1380 1381 if (parseEnumAttribute(Attr, B, InAttrGrp)) 1382 return true; 1383 1384 // As a hack, we allow function alignment to be initially parsed as an 1385 // attribute on a function declaration/definition or added to an attribute 1386 // group and later moved to the alignment field. 1387 if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment) 1388 HaveError |= error(Loc, "this attribute does not apply to functions"); 1389 } 1390 } 1391 1392 //===----------------------------------------------------------------------===// 1393 // GlobalValue Reference/Resolution Routines. 1394 //===----------------------------------------------------------------------===// 1395 1396 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) { 1397 // For opaque pointers, the used global type does not matter. We will later 1398 // RAUW it with a global/function of the correct type. 1399 if (PTy->isOpaque()) 1400 return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false, 1401 GlobalValue::ExternalWeakLinkage, nullptr, "", 1402 nullptr, GlobalVariable::NotThreadLocal, 1403 PTy->getAddressSpace()); 1404 1405 if (auto *FT = dyn_cast<FunctionType>(PTy->getPointerElementType())) 1406 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1407 PTy->getAddressSpace(), "", M); 1408 else 1409 return new GlobalVariable(*M, PTy->getPointerElementType(), false, 1410 GlobalValue::ExternalWeakLinkage, nullptr, "", 1411 nullptr, GlobalVariable::NotThreadLocal, 1412 PTy->getAddressSpace()); 1413 } 1414 1415 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1416 Value *Val) { 1417 Type *ValTy = Val->getType(); 1418 if (ValTy == Ty) 1419 return Val; 1420 if (Ty->isLabelTy()) 1421 error(Loc, "'" + Name + "' is not a basic block"); 1422 else 1423 error(Loc, "'" + Name + "' defined with type '" + 1424 getTypeString(Val->getType()) + "' but expected '" + 1425 getTypeString(Ty) + "'"); 1426 return nullptr; 1427 } 1428 1429 /// getGlobalVal - Get a value with the specified name or ID, creating a 1430 /// forward reference record if needed. This can return null if the value 1431 /// exists but does not have the right type. 1432 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1433 LocTy Loc) { 1434 PointerType *PTy = dyn_cast<PointerType>(Ty); 1435 if (!PTy) { 1436 error(Loc, "global variable reference must have pointer type"); 1437 return nullptr; 1438 } 1439 1440 // Look this name up in the normal function symbol table. 1441 GlobalValue *Val = 1442 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1443 1444 // If this is a forward reference for the value, see if we already created a 1445 // forward ref record. 1446 if (!Val) { 1447 auto I = ForwardRefVals.find(Name); 1448 if (I != ForwardRefVals.end()) 1449 Val = I->second.first; 1450 } 1451 1452 // If we have the value in the symbol table or fwd-ref table, return it. 1453 if (Val) 1454 return cast_or_null<GlobalValue>( 1455 checkValidVariableType(Loc, "@" + Name, Ty, Val)); 1456 1457 // Otherwise, create a new forward reference for this value and remember it. 1458 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1459 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1460 return FwdVal; 1461 } 1462 1463 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1464 PointerType *PTy = dyn_cast<PointerType>(Ty); 1465 if (!PTy) { 1466 error(Loc, "global variable reference must have pointer type"); 1467 return nullptr; 1468 } 1469 1470 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1471 1472 // If this is a forward reference for the value, see if we already created a 1473 // forward ref record. 1474 if (!Val) { 1475 auto I = ForwardRefValIDs.find(ID); 1476 if (I != ForwardRefValIDs.end()) 1477 Val = I->second.first; 1478 } 1479 1480 // If we have the value in the symbol table or fwd-ref table, return it. 1481 if (Val) 1482 return cast_or_null<GlobalValue>( 1483 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val)); 1484 1485 // Otherwise, create a new forward reference for this value and remember it. 1486 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1487 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1488 return FwdVal; 1489 } 1490 1491 //===----------------------------------------------------------------------===// 1492 // Comdat Reference/Resolution Routines. 1493 //===----------------------------------------------------------------------===// 1494 1495 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1496 // Look this name up in the comdat symbol table. 1497 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1498 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1499 if (I != ComdatSymTab.end()) 1500 return &I->second; 1501 1502 // Otherwise, create a new forward reference for this value and remember it. 1503 Comdat *C = M->getOrInsertComdat(Name); 1504 ForwardRefComdats[Name] = Loc; 1505 return C; 1506 } 1507 1508 //===----------------------------------------------------------------------===// 1509 // Helper Routines. 1510 //===----------------------------------------------------------------------===// 1511 1512 /// parseToken - If the current token has the specified kind, eat it and return 1513 /// success. Otherwise, emit the specified error and return failure. 1514 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1515 if (Lex.getKind() != T) 1516 return tokError(ErrMsg); 1517 Lex.Lex(); 1518 return false; 1519 } 1520 1521 /// parseStringConstant 1522 /// ::= StringConstant 1523 bool LLParser::parseStringConstant(std::string &Result) { 1524 if (Lex.getKind() != lltok::StringConstant) 1525 return tokError("expected string constant"); 1526 Result = Lex.getStrVal(); 1527 Lex.Lex(); 1528 return false; 1529 } 1530 1531 /// parseUInt32 1532 /// ::= uint32 1533 bool LLParser::parseUInt32(uint32_t &Val) { 1534 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1535 return tokError("expected integer"); 1536 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1537 if (Val64 != unsigned(Val64)) 1538 return tokError("expected 32-bit integer (too large)"); 1539 Val = Val64; 1540 Lex.Lex(); 1541 return false; 1542 } 1543 1544 /// parseUInt64 1545 /// ::= uint64 1546 bool LLParser::parseUInt64(uint64_t &Val) { 1547 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1548 return tokError("expected integer"); 1549 Val = Lex.getAPSIntVal().getLimitedValue(); 1550 Lex.Lex(); 1551 return false; 1552 } 1553 1554 /// parseTLSModel 1555 /// := 'localdynamic' 1556 /// := 'initialexec' 1557 /// := 'localexec' 1558 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1559 switch (Lex.getKind()) { 1560 default: 1561 return tokError("expected localdynamic, initialexec or localexec"); 1562 case lltok::kw_localdynamic: 1563 TLM = GlobalVariable::LocalDynamicTLSModel; 1564 break; 1565 case lltok::kw_initialexec: 1566 TLM = GlobalVariable::InitialExecTLSModel; 1567 break; 1568 case lltok::kw_localexec: 1569 TLM = GlobalVariable::LocalExecTLSModel; 1570 break; 1571 } 1572 1573 Lex.Lex(); 1574 return false; 1575 } 1576 1577 /// parseOptionalThreadLocal 1578 /// := /*empty*/ 1579 /// := 'thread_local' 1580 /// := 'thread_local' '(' tlsmodel ')' 1581 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1582 TLM = GlobalVariable::NotThreadLocal; 1583 if (!EatIfPresent(lltok::kw_thread_local)) 1584 return false; 1585 1586 TLM = GlobalVariable::GeneralDynamicTLSModel; 1587 if (Lex.getKind() == lltok::lparen) { 1588 Lex.Lex(); 1589 return parseTLSModel(TLM) || 1590 parseToken(lltok::rparen, "expected ')' after thread local model"); 1591 } 1592 return false; 1593 } 1594 1595 /// parseOptionalAddrSpace 1596 /// := /*empty*/ 1597 /// := 'addrspace' '(' uint32 ')' 1598 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1599 AddrSpace = DefaultAS; 1600 if (!EatIfPresent(lltok::kw_addrspace)) 1601 return false; 1602 return parseToken(lltok::lparen, "expected '(' in address space") || 1603 parseUInt32(AddrSpace) || 1604 parseToken(lltok::rparen, "expected ')' in address space"); 1605 } 1606 1607 /// parseStringAttribute 1608 /// := StringConstant 1609 /// := StringConstant '=' StringConstant 1610 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1611 std::string Attr = Lex.getStrVal(); 1612 Lex.Lex(); 1613 std::string Val; 1614 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1615 return true; 1616 B.addAttribute(Attr, Val); 1617 return false; 1618 } 1619 1620 /// Parse a potentially empty list of parameter or return attributes. 1621 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) { 1622 bool HaveError = false; 1623 1624 B.clear(); 1625 1626 while (true) { 1627 lltok::Kind Token = Lex.getKind(); 1628 if (Token == lltok::StringConstant) { 1629 if (parseStringAttribute(B)) 1630 return true; 1631 continue; 1632 } 1633 1634 SMLoc Loc = Lex.getLoc(); 1635 Attribute::AttrKind Attr = tokenToAttribute(Token); 1636 if (Attr == Attribute::None) 1637 return HaveError; 1638 1639 if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false)) 1640 return true; 1641 1642 if (IsParam && !Attribute::canUseAsParamAttr(Attr)) 1643 HaveError |= error(Loc, "this attribute does not apply to parameters"); 1644 if (!IsParam && !Attribute::canUseAsRetAttr(Attr)) 1645 HaveError |= error(Loc, "this attribute does not apply to return values"); 1646 } 1647 } 1648 1649 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1650 HasLinkage = true; 1651 switch (Kind) { 1652 default: 1653 HasLinkage = false; 1654 return GlobalValue::ExternalLinkage; 1655 case lltok::kw_private: 1656 return GlobalValue::PrivateLinkage; 1657 case lltok::kw_internal: 1658 return GlobalValue::InternalLinkage; 1659 case lltok::kw_weak: 1660 return GlobalValue::WeakAnyLinkage; 1661 case lltok::kw_weak_odr: 1662 return GlobalValue::WeakODRLinkage; 1663 case lltok::kw_linkonce: 1664 return GlobalValue::LinkOnceAnyLinkage; 1665 case lltok::kw_linkonce_odr: 1666 return GlobalValue::LinkOnceODRLinkage; 1667 case lltok::kw_available_externally: 1668 return GlobalValue::AvailableExternallyLinkage; 1669 case lltok::kw_appending: 1670 return GlobalValue::AppendingLinkage; 1671 case lltok::kw_common: 1672 return GlobalValue::CommonLinkage; 1673 case lltok::kw_extern_weak: 1674 return GlobalValue::ExternalWeakLinkage; 1675 case lltok::kw_external: 1676 return GlobalValue::ExternalLinkage; 1677 } 1678 } 1679 1680 /// parseOptionalLinkage 1681 /// ::= /*empty*/ 1682 /// ::= 'private' 1683 /// ::= 'internal' 1684 /// ::= 'weak' 1685 /// ::= 'weak_odr' 1686 /// ::= 'linkonce' 1687 /// ::= 'linkonce_odr' 1688 /// ::= 'available_externally' 1689 /// ::= 'appending' 1690 /// ::= 'common' 1691 /// ::= 'extern_weak' 1692 /// ::= 'external' 1693 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1694 unsigned &Visibility, 1695 unsigned &DLLStorageClass, bool &DSOLocal) { 1696 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1697 if (HasLinkage) 1698 Lex.Lex(); 1699 parseOptionalDSOLocal(DSOLocal); 1700 parseOptionalVisibility(Visibility); 1701 parseOptionalDLLStorageClass(DLLStorageClass); 1702 1703 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1704 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1705 } 1706 1707 return false; 1708 } 1709 1710 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 1711 switch (Lex.getKind()) { 1712 default: 1713 DSOLocal = false; 1714 break; 1715 case lltok::kw_dso_local: 1716 DSOLocal = true; 1717 Lex.Lex(); 1718 break; 1719 case lltok::kw_dso_preemptable: 1720 DSOLocal = false; 1721 Lex.Lex(); 1722 break; 1723 } 1724 } 1725 1726 /// parseOptionalVisibility 1727 /// ::= /*empty*/ 1728 /// ::= 'default' 1729 /// ::= 'hidden' 1730 /// ::= 'protected' 1731 /// 1732 void LLParser::parseOptionalVisibility(unsigned &Res) { 1733 switch (Lex.getKind()) { 1734 default: 1735 Res = GlobalValue::DefaultVisibility; 1736 return; 1737 case lltok::kw_default: 1738 Res = GlobalValue::DefaultVisibility; 1739 break; 1740 case lltok::kw_hidden: 1741 Res = GlobalValue::HiddenVisibility; 1742 break; 1743 case lltok::kw_protected: 1744 Res = GlobalValue::ProtectedVisibility; 1745 break; 1746 } 1747 Lex.Lex(); 1748 } 1749 1750 /// parseOptionalDLLStorageClass 1751 /// ::= /*empty*/ 1752 /// ::= 'dllimport' 1753 /// ::= 'dllexport' 1754 /// 1755 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 1756 switch (Lex.getKind()) { 1757 default: 1758 Res = GlobalValue::DefaultStorageClass; 1759 return; 1760 case lltok::kw_dllimport: 1761 Res = GlobalValue::DLLImportStorageClass; 1762 break; 1763 case lltok::kw_dllexport: 1764 Res = GlobalValue::DLLExportStorageClass; 1765 break; 1766 } 1767 Lex.Lex(); 1768 } 1769 1770 /// parseOptionalCallingConv 1771 /// ::= /*empty*/ 1772 /// ::= 'ccc' 1773 /// ::= 'fastcc' 1774 /// ::= 'intel_ocl_bicc' 1775 /// ::= 'coldcc' 1776 /// ::= 'cfguard_checkcc' 1777 /// ::= 'x86_stdcallcc' 1778 /// ::= 'x86_fastcallcc' 1779 /// ::= 'x86_thiscallcc' 1780 /// ::= 'x86_vectorcallcc' 1781 /// ::= 'arm_apcscc' 1782 /// ::= 'arm_aapcscc' 1783 /// ::= 'arm_aapcs_vfpcc' 1784 /// ::= 'aarch64_vector_pcs' 1785 /// ::= 'aarch64_sve_vector_pcs' 1786 /// ::= 'msp430_intrcc' 1787 /// ::= 'avr_intrcc' 1788 /// ::= 'avr_signalcc' 1789 /// ::= 'ptx_kernel' 1790 /// ::= 'ptx_device' 1791 /// ::= 'spir_func' 1792 /// ::= 'spir_kernel' 1793 /// ::= 'x86_64_sysvcc' 1794 /// ::= 'win64cc' 1795 /// ::= 'webkit_jscc' 1796 /// ::= 'anyregcc' 1797 /// ::= 'preserve_mostcc' 1798 /// ::= 'preserve_allcc' 1799 /// ::= 'ghccc' 1800 /// ::= 'swiftcc' 1801 /// ::= 'swifttailcc' 1802 /// ::= 'x86_intrcc' 1803 /// ::= 'hhvmcc' 1804 /// ::= 'hhvm_ccc' 1805 /// ::= 'cxx_fast_tlscc' 1806 /// ::= 'amdgpu_vs' 1807 /// ::= 'amdgpu_ls' 1808 /// ::= 'amdgpu_hs' 1809 /// ::= 'amdgpu_es' 1810 /// ::= 'amdgpu_gs' 1811 /// ::= 'amdgpu_ps' 1812 /// ::= 'amdgpu_cs' 1813 /// ::= 'amdgpu_kernel' 1814 /// ::= 'tailcc' 1815 /// ::= 'cc' UINT 1816 /// 1817 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 1818 switch (Lex.getKind()) { 1819 default: CC = CallingConv::C; return false; 1820 case lltok::kw_ccc: CC = CallingConv::C; break; 1821 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1822 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1823 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 1824 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1825 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1826 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1827 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1828 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1829 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1830 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1831 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1832 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1833 case lltok::kw_aarch64_sve_vector_pcs: 1834 CC = CallingConv::AArch64_SVE_VectorCall; 1835 break; 1836 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1837 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1838 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1839 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1840 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1841 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1842 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1843 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1844 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1845 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1846 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1847 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1848 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1849 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1850 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1851 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1852 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; 1853 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1854 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1855 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1856 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1857 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1858 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 1859 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1860 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1861 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1862 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1863 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1864 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1865 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1866 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 1867 case lltok::kw_cc: { 1868 Lex.Lex(); 1869 return parseUInt32(CC); 1870 } 1871 } 1872 1873 Lex.Lex(); 1874 return false; 1875 } 1876 1877 /// parseMetadataAttachment 1878 /// ::= !dbg !42 1879 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1880 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1881 1882 std::string Name = Lex.getStrVal(); 1883 Kind = M->getMDKindID(Name); 1884 Lex.Lex(); 1885 1886 return parseMDNode(MD); 1887 } 1888 1889 /// parseInstructionMetadata 1890 /// ::= !dbg !42 (',' !dbg !57)* 1891 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 1892 do { 1893 if (Lex.getKind() != lltok::MetadataVar) 1894 return tokError("expected metadata after comma"); 1895 1896 unsigned MDK; 1897 MDNode *N; 1898 if (parseMetadataAttachment(MDK, N)) 1899 return true; 1900 1901 Inst.setMetadata(MDK, N); 1902 if (MDK == LLVMContext::MD_tbaa) 1903 InstsWithTBAATag.push_back(&Inst); 1904 1905 // If this is the end of the list, we're done. 1906 } while (EatIfPresent(lltok::comma)); 1907 return false; 1908 } 1909 1910 /// parseGlobalObjectMetadataAttachment 1911 /// ::= !dbg !57 1912 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1913 unsigned MDK; 1914 MDNode *N; 1915 if (parseMetadataAttachment(MDK, N)) 1916 return true; 1917 1918 GO.addMetadata(MDK, *N); 1919 return false; 1920 } 1921 1922 /// parseOptionalFunctionMetadata 1923 /// ::= (!dbg !57)* 1924 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 1925 while (Lex.getKind() == lltok::MetadataVar) 1926 if (parseGlobalObjectMetadataAttachment(F)) 1927 return true; 1928 return false; 1929 } 1930 1931 /// parseOptionalAlignment 1932 /// ::= /* empty */ 1933 /// ::= 'align' 4 1934 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 1935 Alignment = None; 1936 if (!EatIfPresent(lltok::kw_align)) 1937 return false; 1938 LocTy AlignLoc = Lex.getLoc(); 1939 uint64_t Value = 0; 1940 1941 LocTy ParenLoc = Lex.getLoc(); 1942 bool HaveParens = false; 1943 if (AllowParens) { 1944 if (EatIfPresent(lltok::lparen)) 1945 HaveParens = true; 1946 } 1947 1948 if (parseUInt64(Value)) 1949 return true; 1950 1951 if (HaveParens && !EatIfPresent(lltok::rparen)) 1952 return error(ParenLoc, "expected ')'"); 1953 1954 if (!isPowerOf2_64(Value)) 1955 return error(AlignLoc, "alignment is not a power of two"); 1956 if (Value > Value::MaximumAlignment) 1957 return error(AlignLoc, "huge alignments are not supported yet"); 1958 Alignment = Align(Value); 1959 return false; 1960 } 1961 1962 /// parseOptionalDerefAttrBytes 1963 /// ::= /* empty */ 1964 /// ::= AttrKind '(' 4 ')' 1965 /// 1966 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1967 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1968 uint64_t &Bytes) { 1969 assert((AttrKind == lltok::kw_dereferenceable || 1970 AttrKind == lltok::kw_dereferenceable_or_null) && 1971 "contract!"); 1972 1973 Bytes = 0; 1974 if (!EatIfPresent(AttrKind)) 1975 return false; 1976 LocTy ParenLoc = Lex.getLoc(); 1977 if (!EatIfPresent(lltok::lparen)) 1978 return error(ParenLoc, "expected '('"); 1979 LocTy DerefLoc = Lex.getLoc(); 1980 if (parseUInt64(Bytes)) 1981 return true; 1982 ParenLoc = Lex.getLoc(); 1983 if (!EatIfPresent(lltok::rparen)) 1984 return error(ParenLoc, "expected ')'"); 1985 if (!Bytes) 1986 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 1987 return false; 1988 } 1989 1990 /// parseOptionalCommaAlign 1991 /// ::= 1992 /// ::= ',' align 4 1993 /// 1994 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1995 /// end. 1996 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 1997 bool &AteExtraComma) { 1998 AteExtraComma = false; 1999 while (EatIfPresent(lltok::comma)) { 2000 // Metadata at the end is an early exit. 2001 if (Lex.getKind() == lltok::MetadataVar) { 2002 AteExtraComma = true; 2003 return false; 2004 } 2005 2006 if (Lex.getKind() != lltok::kw_align) 2007 return error(Lex.getLoc(), "expected metadata or 'align'"); 2008 2009 if (parseOptionalAlignment(Alignment)) 2010 return true; 2011 } 2012 2013 return false; 2014 } 2015 2016 /// parseOptionalCommaAddrSpace 2017 /// ::= 2018 /// ::= ',' addrspace(1) 2019 /// 2020 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2021 /// end. 2022 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2023 bool &AteExtraComma) { 2024 AteExtraComma = false; 2025 while (EatIfPresent(lltok::comma)) { 2026 // Metadata at the end is an early exit. 2027 if (Lex.getKind() == lltok::MetadataVar) { 2028 AteExtraComma = true; 2029 return false; 2030 } 2031 2032 Loc = Lex.getLoc(); 2033 if (Lex.getKind() != lltok::kw_addrspace) 2034 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2035 2036 if (parseOptionalAddrSpace(AddrSpace)) 2037 return true; 2038 } 2039 2040 return false; 2041 } 2042 2043 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2044 Optional<unsigned> &HowManyArg) { 2045 Lex.Lex(); 2046 2047 auto StartParen = Lex.getLoc(); 2048 if (!EatIfPresent(lltok::lparen)) 2049 return error(StartParen, "expected '('"); 2050 2051 if (parseUInt32(BaseSizeArg)) 2052 return true; 2053 2054 if (EatIfPresent(lltok::comma)) { 2055 auto HowManyAt = Lex.getLoc(); 2056 unsigned HowMany; 2057 if (parseUInt32(HowMany)) 2058 return true; 2059 if (HowMany == BaseSizeArg) 2060 return error(HowManyAt, 2061 "'allocsize' indices can't refer to the same parameter"); 2062 HowManyArg = HowMany; 2063 } else 2064 HowManyArg = None; 2065 2066 auto EndParen = Lex.getLoc(); 2067 if (!EatIfPresent(lltok::rparen)) 2068 return error(EndParen, "expected ')'"); 2069 return false; 2070 } 2071 2072 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2073 unsigned &MaxValue) { 2074 Lex.Lex(); 2075 2076 auto StartParen = Lex.getLoc(); 2077 if (!EatIfPresent(lltok::lparen)) 2078 return error(StartParen, "expected '('"); 2079 2080 if (parseUInt32(MinValue)) 2081 return true; 2082 2083 if (EatIfPresent(lltok::comma)) { 2084 if (parseUInt32(MaxValue)) 2085 return true; 2086 } else 2087 MaxValue = MinValue; 2088 2089 auto EndParen = Lex.getLoc(); 2090 if (!EatIfPresent(lltok::rparen)) 2091 return error(EndParen, "expected ')'"); 2092 return false; 2093 } 2094 2095 /// parseScopeAndOrdering 2096 /// if isAtomic: ::= SyncScope? AtomicOrdering 2097 /// else: ::= 2098 /// 2099 /// This sets Scope and Ordering to the parsed values. 2100 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2101 AtomicOrdering &Ordering) { 2102 if (!IsAtomic) 2103 return false; 2104 2105 return parseScope(SSID) || parseOrdering(Ordering); 2106 } 2107 2108 /// parseScope 2109 /// ::= syncscope("singlethread" | "<target scope>")? 2110 /// 2111 /// This sets synchronization scope ID to the ID of the parsed value. 2112 bool LLParser::parseScope(SyncScope::ID &SSID) { 2113 SSID = SyncScope::System; 2114 if (EatIfPresent(lltok::kw_syncscope)) { 2115 auto StartParenAt = Lex.getLoc(); 2116 if (!EatIfPresent(lltok::lparen)) 2117 return error(StartParenAt, "Expected '(' in syncscope"); 2118 2119 std::string SSN; 2120 auto SSNAt = Lex.getLoc(); 2121 if (parseStringConstant(SSN)) 2122 return error(SSNAt, "Expected synchronization scope name"); 2123 2124 auto EndParenAt = Lex.getLoc(); 2125 if (!EatIfPresent(lltok::rparen)) 2126 return error(EndParenAt, "Expected ')' in syncscope"); 2127 2128 SSID = Context.getOrInsertSyncScopeID(SSN); 2129 } 2130 2131 return false; 2132 } 2133 2134 /// parseOrdering 2135 /// ::= AtomicOrdering 2136 /// 2137 /// This sets Ordering to the parsed value. 2138 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2139 switch (Lex.getKind()) { 2140 default: 2141 return tokError("Expected ordering on atomic instruction"); 2142 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2143 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2144 // Not specified yet: 2145 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2146 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2147 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2148 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2149 case lltok::kw_seq_cst: 2150 Ordering = AtomicOrdering::SequentiallyConsistent; 2151 break; 2152 } 2153 Lex.Lex(); 2154 return false; 2155 } 2156 2157 /// parseOptionalStackAlignment 2158 /// ::= /* empty */ 2159 /// ::= 'alignstack' '(' 4 ')' 2160 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2161 Alignment = 0; 2162 if (!EatIfPresent(lltok::kw_alignstack)) 2163 return false; 2164 LocTy ParenLoc = Lex.getLoc(); 2165 if (!EatIfPresent(lltok::lparen)) 2166 return error(ParenLoc, "expected '('"); 2167 LocTy AlignLoc = Lex.getLoc(); 2168 if (parseUInt32(Alignment)) 2169 return true; 2170 ParenLoc = Lex.getLoc(); 2171 if (!EatIfPresent(lltok::rparen)) 2172 return error(ParenLoc, "expected ')'"); 2173 if (!isPowerOf2_32(Alignment)) 2174 return error(AlignLoc, "stack alignment is not a power of two"); 2175 return false; 2176 } 2177 2178 /// parseIndexList - This parses the index list for an insert/extractvalue 2179 /// instruction. This sets AteExtraComma in the case where we eat an extra 2180 /// comma at the end of the line and find that it is followed by metadata. 2181 /// Clients that don't allow metadata can call the version of this function that 2182 /// only takes one argument. 2183 /// 2184 /// parseIndexList 2185 /// ::= (',' uint32)+ 2186 /// 2187 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2188 bool &AteExtraComma) { 2189 AteExtraComma = false; 2190 2191 if (Lex.getKind() != lltok::comma) 2192 return tokError("expected ',' as start of index list"); 2193 2194 while (EatIfPresent(lltok::comma)) { 2195 if (Lex.getKind() == lltok::MetadataVar) { 2196 if (Indices.empty()) 2197 return tokError("expected index"); 2198 AteExtraComma = true; 2199 return false; 2200 } 2201 unsigned Idx = 0; 2202 if (parseUInt32(Idx)) 2203 return true; 2204 Indices.push_back(Idx); 2205 } 2206 2207 return false; 2208 } 2209 2210 //===----------------------------------------------------------------------===// 2211 // Type Parsing. 2212 //===----------------------------------------------------------------------===// 2213 2214 /// parseType - parse a type. 2215 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2216 SMLoc TypeLoc = Lex.getLoc(); 2217 switch (Lex.getKind()) { 2218 default: 2219 return tokError(Msg); 2220 case lltok::Type: 2221 // Type ::= 'float' | 'void' (etc) 2222 Result = Lex.getTyVal(); 2223 Lex.Lex(); 2224 2225 // Handle "ptr" opaque pointer type. 2226 // 2227 // Type ::= ptr ('addrspace' '(' uint32 ')')? 2228 if (Result->isOpaquePointerTy()) { 2229 unsigned AddrSpace; 2230 if (parseOptionalAddrSpace(AddrSpace)) 2231 return true; 2232 Result = PointerType::get(getContext(), AddrSpace); 2233 2234 // Give a nice error for 'ptr*'. 2235 if (Lex.getKind() == lltok::star) 2236 return tokError("ptr* is invalid - use ptr instead"); 2237 2238 // Fall through to parsing the type suffixes only if this 'ptr' is a 2239 // function return. Otherwise, return success, implicitly rejecting other 2240 // suffixes. 2241 if (Lex.getKind() != lltok::lparen) 2242 return false; 2243 } 2244 break; 2245 case lltok::lbrace: 2246 // Type ::= StructType 2247 if (parseAnonStructType(Result, false)) 2248 return true; 2249 break; 2250 case lltok::lsquare: 2251 // Type ::= '[' ... ']' 2252 Lex.Lex(); // eat the lsquare. 2253 if (parseArrayVectorType(Result, false)) 2254 return true; 2255 break; 2256 case lltok::less: // Either vector or packed struct. 2257 // Type ::= '<' ... '>' 2258 Lex.Lex(); 2259 if (Lex.getKind() == lltok::lbrace) { 2260 if (parseAnonStructType(Result, true) || 2261 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2262 return true; 2263 } else if (parseArrayVectorType(Result, true)) 2264 return true; 2265 break; 2266 case lltok::LocalVar: { 2267 // Type ::= %foo 2268 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2269 2270 // If the type hasn't been defined yet, create a forward definition and 2271 // remember where that forward def'n was seen (in case it never is defined). 2272 if (!Entry.first) { 2273 Entry.first = StructType::create(Context, Lex.getStrVal()); 2274 Entry.second = Lex.getLoc(); 2275 } 2276 Result = Entry.first; 2277 Lex.Lex(); 2278 break; 2279 } 2280 2281 case lltok::LocalVarID: { 2282 // Type ::= %4 2283 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2284 2285 // If the type hasn't been defined yet, create a forward definition and 2286 // remember where that forward def'n was seen (in case it never is defined). 2287 if (!Entry.first) { 2288 Entry.first = StructType::create(Context); 2289 Entry.second = Lex.getLoc(); 2290 } 2291 Result = Entry.first; 2292 Lex.Lex(); 2293 break; 2294 } 2295 } 2296 2297 // parse the type suffixes. 2298 while (true) { 2299 switch (Lex.getKind()) { 2300 // End of type. 2301 default: 2302 if (!AllowVoid && Result->isVoidTy()) 2303 return error(TypeLoc, "void type only allowed for function results"); 2304 return false; 2305 2306 // Type ::= Type '*' 2307 case lltok::star: 2308 if (Result->isLabelTy()) 2309 return tokError("basic block pointers are invalid"); 2310 if (Result->isVoidTy()) 2311 return tokError("pointers to void are invalid - use i8* instead"); 2312 if (!PointerType::isValidElementType(Result)) 2313 return tokError("pointer to this type is invalid"); 2314 Result = PointerType::getUnqual(Result); 2315 Lex.Lex(); 2316 break; 2317 2318 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2319 case lltok::kw_addrspace: { 2320 if (Result->isLabelTy()) 2321 return tokError("basic block pointers are invalid"); 2322 if (Result->isVoidTy()) 2323 return tokError("pointers to void are invalid; use i8* instead"); 2324 if (!PointerType::isValidElementType(Result)) 2325 return tokError("pointer to this type is invalid"); 2326 unsigned AddrSpace; 2327 if (parseOptionalAddrSpace(AddrSpace) || 2328 parseToken(lltok::star, "expected '*' in address space")) 2329 return true; 2330 2331 Result = PointerType::get(Result, AddrSpace); 2332 break; 2333 } 2334 2335 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2336 case lltok::lparen: 2337 if (parseFunctionType(Result)) 2338 return true; 2339 break; 2340 } 2341 } 2342 } 2343 2344 /// parseParameterList 2345 /// ::= '(' ')' 2346 /// ::= '(' Arg (',' Arg)* ')' 2347 /// Arg 2348 /// ::= Type OptionalAttributes Value OptionalAttributes 2349 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2350 PerFunctionState &PFS, bool IsMustTailCall, 2351 bool InVarArgsFunc) { 2352 if (parseToken(lltok::lparen, "expected '(' in call")) 2353 return true; 2354 2355 while (Lex.getKind() != lltok::rparen) { 2356 // If this isn't the first argument, we need a comma. 2357 if (!ArgList.empty() && 2358 parseToken(lltok::comma, "expected ',' in argument list")) 2359 return true; 2360 2361 // parse an ellipsis if this is a musttail call in a variadic function. 2362 if (Lex.getKind() == lltok::dotdotdot) { 2363 const char *Msg = "unexpected ellipsis in argument list for "; 2364 if (!IsMustTailCall) 2365 return tokError(Twine(Msg) + "non-musttail call"); 2366 if (!InVarArgsFunc) 2367 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2368 Lex.Lex(); // Lex the '...', it is purely for readability. 2369 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2370 } 2371 2372 // parse the argument. 2373 LocTy ArgLoc; 2374 Type *ArgTy = nullptr; 2375 AttrBuilder ArgAttrs; 2376 Value *V; 2377 if (parseType(ArgTy, ArgLoc)) 2378 return true; 2379 2380 if (ArgTy->isMetadataTy()) { 2381 if (parseMetadataAsValue(V, PFS)) 2382 return true; 2383 } else { 2384 // Otherwise, handle normal operands. 2385 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2386 return true; 2387 } 2388 ArgList.push_back(ParamInfo( 2389 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2390 } 2391 2392 if (IsMustTailCall && InVarArgsFunc) 2393 return tokError("expected '...' at end of argument list for musttail call " 2394 "in varargs function"); 2395 2396 Lex.Lex(); // Lex the ')'. 2397 return false; 2398 } 2399 2400 /// parseRequiredTypeAttr 2401 /// ::= attrname(<ty>) 2402 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken, 2403 Attribute::AttrKind AttrKind) { 2404 Type *Ty = nullptr; 2405 if (!EatIfPresent(AttrToken)) 2406 return true; 2407 if (!EatIfPresent(lltok::lparen)) 2408 return error(Lex.getLoc(), "expected '('"); 2409 if (parseType(Ty)) 2410 return true; 2411 if (!EatIfPresent(lltok::rparen)) 2412 return error(Lex.getLoc(), "expected ')'"); 2413 2414 B.addTypeAttr(AttrKind, Ty); 2415 return false; 2416 } 2417 2418 /// parseOptionalOperandBundles 2419 /// ::= /*empty*/ 2420 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2421 /// 2422 /// OperandBundle 2423 /// ::= bundle-tag '(' ')' 2424 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2425 /// 2426 /// bundle-tag ::= String Constant 2427 bool LLParser::parseOptionalOperandBundles( 2428 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2429 LocTy BeginLoc = Lex.getLoc(); 2430 if (!EatIfPresent(lltok::lsquare)) 2431 return false; 2432 2433 while (Lex.getKind() != lltok::rsquare) { 2434 // If this isn't the first operand bundle, we need a comma. 2435 if (!BundleList.empty() && 2436 parseToken(lltok::comma, "expected ',' in input list")) 2437 return true; 2438 2439 std::string Tag; 2440 if (parseStringConstant(Tag)) 2441 return true; 2442 2443 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2444 return true; 2445 2446 std::vector<Value *> Inputs; 2447 while (Lex.getKind() != lltok::rparen) { 2448 // If this isn't the first input, we need a comma. 2449 if (!Inputs.empty() && 2450 parseToken(lltok::comma, "expected ',' in input list")) 2451 return true; 2452 2453 Type *Ty = nullptr; 2454 Value *Input = nullptr; 2455 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2456 return true; 2457 Inputs.push_back(Input); 2458 } 2459 2460 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2461 2462 Lex.Lex(); // Lex the ')'. 2463 } 2464 2465 if (BundleList.empty()) 2466 return error(BeginLoc, "operand bundle set must not be empty"); 2467 2468 Lex.Lex(); // Lex the ']'. 2469 return false; 2470 } 2471 2472 /// parseArgumentList - parse the argument list for a function type or function 2473 /// prototype. 2474 /// ::= '(' ArgTypeListI ')' 2475 /// ArgTypeListI 2476 /// ::= /*empty*/ 2477 /// ::= '...' 2478 /// ::= ArgTypeList ',' '...' 2479 /// ::= ArgType (',' ArgType)* 2480 /// 2481 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2482 bool &IsVarArg) { 2483 unsigned CurValID = 0; 2484 IsVarArg = false; 2485 assert(Lex.getKind() == lltok::lparen); 2486 Lex.Lex(); // eat the (. 2487 2488 if (Lex.getKind() == lltok::rparen) { 2489 // empty 2490 } else if (Lex.getKind() == lltok::dotdotdot) { 2491 IsVarArg = true; 2492 Lex.Lex(); 2493 } else { 2494 LocTy TypeLoc = Lex.getLoc(); 2495 Type *ArgTy = nullptr; 2496 AttrBuilder Attrs; 2497 std::string Name; 2498 2499 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2500 return true; 2501 2502 if (ArgTy->isVoidTy()) 2503 return error(TypeLoc, "argument can not have void type"); 2504 2505 if (Lex.getKind() == lltok::LocalVar) { 2506 Name = Lex.getStrVal(); 2507 Lex.Lex(); 2508 } else if (Lex.getKind() == lltok::LocalVarID) { 2509 if (Lex.getUIntVal() != CurValID) 2510 return error(TypeLoc, "argument expected to be numbered '%" + 2511 Twine(CurValID) + "'"); 2512 ++CurValID; 2513 Lex.Lex(); 2514 } 2515 2516 if (!FunctionType::isValidArgumentType(ArgTy)) 2517 return error(TypeLoc, "invalid type for function argument"); 2518 2519 ArgList.emplace_back(TypeLoc, ArgTy, 2520 AttributeSet::get(ArgTy->getContext(), Attrs), 2521 std::move(Name)); 2522 2523 while (EatIfPresent(lltok::comma)) { 2524 // Handle ... at end of arg list. 2525 if (EatIfPresent(lltok::dotdotdot)) { 2526 IsVarArg = true; 2527 break; 2528 } 2529 2530 // Otherwise must be an argument type. 2531 TypeLoc = Lex.getLoc(); 2532 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2533 return true; 2534 2535 if (ArgTy->isVoidTy()) 2536 return error(TypeLoc, "argument can not have void type"); 2537 2538 if (Lex.getKind() == lltok::LocalVar) { 2539 Name = Lex.getStrVal(); 2540 Lex.Lex(); 2541 } else { 2542 if (Lex.getKind() == lltok::LocalVarID) { 2543 if (Lex.getUIntVal() != CurValID) 2544 return error(TypeLoc, "argument expected to be numbered '%" + 2545 Twine(CurValID) + "'"); 2546 Lex.Lex(); 2547 } 2548 ++CurValID; 2549 Name = ""; 2550 } 2551 2552 if (!ArgTy->isFirstClassType()) 2553 return error(TypeLoc, "invalid type for function argument"); 2554 2555 ArgList.emplace_back(TypeLoc, ArgTy, 2556 AttributeSet::get(ArgTy->getContext(), Attrs), 2557 std::move(Name)); 2558 } 2559 } 2560 2561 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2562 } 2563 2564 /// parseFunctionType 2565 /// ::= Type ArgumentList OptionalAttrs 2566 bool LLParser::parseFunctionType(Type *&Result) { 2567 assert(Lex.getKind() == lltok::lparen); 2568 2569 if (!FunctionType::isValidReturnType(Result)) 2570 return tokError("invalid function return type"); 2571 2572 SmallVector<ArgInfo, 8> ArgList; 2573 bool IsVarArg; 2574 if (parseArgumentList(ArgList, IsVarArg)) 2575 return true; 2576 2577 // Reject names on the arguments lists. 2578 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2579 if (!ArgList[i].Name.empty()) 2580 return error(ArgList[i].Loc, "argument name invalid in function type"); 2581 if (ArgList[i].Attrs.hasAttributes()) 2582 return error(ArgList[i].Loc, 2583 "argument attributes invalid in function type"); 2584 } 2585 2586 SmallVector<Type*, 16> ArgListTy; 2587 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2588 ArgListTy.push_back(ArgList[i].Ty); 2589 2590 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2591 return false; 2592 } 2593 2594 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2595 /// other structs. 2596 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2597 SmallVector<Type*, 8> Elts; 2598 if (parseStructBody(Elts)) 2599 return true; 2600 2601 Result = StructType::get(Context, Elts, Packed); 2602 return false; 2603 } 2604 2605 /// parseStructDefinition - parse a struct in a 'type' definition. 2606 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2607 std::pair<Type *, LocTy> &Entry, 2608 Type *&ResultTy) { 2609 // If the type was already defined, diagnose the redefinition. 2610 if (Entry.first && !Entry.second.isValid()) 2611 return error(TypeLoc, "redefinition of type"); 2612 2613 // If we have opaque, just return without filling in the definition for the 2614 // struct. This counts as a definition as far as the .ll file goes. 2615 if (EatIfPresent(lltok::kw_opaque)) { 2616 // This type is being defined, so clear the location to indicate this. 2617 Entry.second = SMLoc(); 2618 2619 // If this type number has never been uttered, create it. 2620 if (!Entry.first) 2621 Entry.first = StructType::create(Context, Name); 2622 ResultTy = Entry.first; 2623 return false; 2624 } 2625 2626 // If the type starts with '<', then it is either a packed struct or a vector. 2627 bool isPacked = EatIfPresent(lltok::less); 2628 2629 // If we don't have a struct, then we have a random type alias, which we 2630 // accept for compatibility with old files. These types are not allowed to be 2631 // forward referenced and not allowed to be recursive. 2632 if (Lex.getKind() != lltok::lbrace) { 2633 if (Entry.first) 2634 return error(TypeLoc, "forward references to non-struct type"); 2635 2636 ResultTy = nullptr; 2637 if (isPacked) 2638 return parseArrayVectorType(ResultTy, true); 2639 return parseType(ResultTy); 2640 } 2641 2642 // This type is being defined, so clear the location to indicate this. 2643 Entry.second = SMLoc(); 2644 2645 // If this type number has never been uttered, create it. 2646 if (!Entry.first) 2647 Entry.first = StructType::create(Context, Name); 2648 2649 StructType *STy = cast<StructType>(Entry.first); 2650 2651 SmallVector<Type*, 8> Body; 2652 if (parseStructBody(Body) || 2653 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2654 return true; 2655 2656 STy->setBody(Body, isPacked); 2657 ResultTy = STy; 2658 return false; 2659 } 2660 2661 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2662 /// StructType 2663 /// ::= '{' '}' 2664 /// ::= '{' Type (',' Type)* '}' 2665 /// ::= '<' '{' '}' '>' 2666 /// ::= '<' '{' Type (',' Type)* '}' '>' 2667 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2668 assert(Lex.getKind() == lltok::lbrace); 2669 Lex.Lex(); // Consume the '{' 2670 2671 // Handle the empty struct. 2672 if (EatIfPresent(lltok::rbrace)) 2673 return false; 2674 2675 LocTy EltTyLoc = Lex.getLoc(); 2676 Type *Ty = nullptr; 2677 if (parseType(Ty)) 2678 return true; 2679 Body.push_back(Ty); 2680 2681 if (!StructType::isValidElementType(Ty)) 2682 return error(EltTyLoc, "invalid element type for struct"); 2683 2684 while (EatIfPresent(lltok::comma)) { 2685 EltTyLoc = Lex.getLoc(); 2686 if (parseType(Ty)) 2687 return true; 2688 2689 if (!StructType::isValidElementType(Ty)) 2690 return error(EltTyLoc, "invalid element type for struct"); 2691 2692 Body.push_back(Ty); 2693 } 2694 2695 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 2696 } 2697 2698 /// parseArrayVectorType - parse an array or vector type, assuming the first 2699 /// token has already been consumed. 2700 /// Type 2701 /// ::= '[' APSINTVAL 'x' Types ']' 2702 /// ::= '<' APSINTVAL 'x' Types '>' 2703 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2704 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 2705 bool Scalable = false; 2706 2707 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 2708 Lex.Lex(); // consume the 'vscale' 2709 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 2710 return true; 2711 2712 Scalable = true; 2713 } 2714 2715 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2716 Lex.getAPSIntVal().getBitWidth() > 64) 2717 return tokError("expected number in address space"); 2718 2719 LocTy SizeLoc = Lex.getLoc(); 2720 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2721 Lex.Lex(); 2722 2723 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 2724 return true; 2725 2726 LocTy TypeLoc = Lex.getLoc(); 2727 Type *EltTy = nullptr; 2728 if (parseType(EltTy)) 2729 return true; 2730 2731 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 2732 "expected end of sequential type")) 2733 return true; 2734 2735 if (IsVector) { 2736 if (Size == 0) 2737 return error(SizeLoc, "zero element vector is illegal"); 2738 if ((unsigned)Size != Size) 2739 return error(SizeLoc, "size too large for vector"); 2740 if (!VectorType::isValidElementType(EltTy)) 2741 return error(TypeLoc, "invalid vector element type"); 2742 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2743 } else { 2744 if (!ArrayType::isValidElementType(EltTy)) 2745 return error(TypeLoc, "invalid array element type"); 2746 Result = ArrayType::get(EltTy, Size); 2747 } 2748 return false; 2749 } 2750 2751 //===----------------------------------------------------------------------===// 2752 // Function Semantic Analysis. 2753 //===----------------------------------------------------------------------===// 2754 2755 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2756 int functionNumber) 2757 : P(p), F(f), FunctionNumber(functionNumber) { 2758 2759 // Insert unnamed arguments into the NumberedVals list. 2760 for (Argument &A : F.args()) 2761 if (!A.hasName()) 2762 NumberedVals.push_back(&A); 2763 } 2764 2765 LLParser::PerFunctionState::~PerFunctionState() { 2766 // If there were any forward referenced non-basicblock values, delete them. 2767 2768 for (const auto &P : ForwardRefVals) { 2769 if (isa<BasicBlock>(P.second.first)) 2770 continue; 2771 P.second.first->replaceAllUsesWith( 2772 UndefValue::get(P.second.first->getType())); 2773 P.second.first->deleteValue(); 2774 } 2775 2776 for (const auto &P : ForwardRefValIDs) { 2777 if (isa<BasicBlock>(P.second.first)) 2778 continue; 2779 P.second.first->replaceAllUsesWith( 2780 UndefValue::get(P.second.first->getType())); 2781 P.second.first->deleteValue(); 2782 } 2783 } 2784 2785 bool LLParser::PerFunctionState::finishFunction() { 2786 if (!ForwardRefVals.empty()) 2787 return P.error(ForwardRefVals.begin()->second.second, 2788 "use of undefined value '%" + ForwardRefVals.begin()->first + 2789 "'"); 2790 if (!ForwardRefValIDs.empty()) 2791 return P.error(ForwardRefValIDs.begin()->second.second, 2792 "use of undefined value '%" + 2793 Twine(ForwardRefValIDs.begin()->first) + "'"); 2794 return false; 2795 } 2796 2797 /// getVal - Get a value with the specified name or ID, creating a 2798 /// forward reference record if needed. This can return null if the value 2799 /// exists but does not have the right type. 2800 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 2801 LocTy Loc) { 2802 // Look this name up in the normal function symbol table. 2803 Value *Val = F.getValueSymbolTable()->lookup(Name); 2804 2805 // If this is a forward reference for the value, see if we already created a 2806 // forward ref record. 2807 if (!Val) { 2808 auto I = ForwardRefVals.find(Name); 2809 if (I != ForwardRefVals.end()) 2810 Val = I->second.first; 2811 } 2812 2813 // If we have the value in the symbol table or fwd-ref table, return it. 2814 if (Val) 2815 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val); 2816 2817 // Don't make placeholders with invalid type. 2818 if (!Ty->isFirstClassType()) { 2819 P.error(Loc, "invalid use of a non-first-class type"); 2820 return nullptr; 2821 } 2822 2823 // Otherwise, create a new forward reference for this value and remember it. 2824 Value *FwdVal; 2825 if (Ty->isLabelTy()) { 2826 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2827 } else { 2828 FwdVal = new Argument(Ty, Name); 2829 } 2830 2831 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2832 return FwdVal; 2833 } 2834 2835 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) { 2836 // Look this name up in the normal function symbol table. 2837 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2838 2839 // If this is a forward reference for the value, see if we already created a 2840 // forward ref record. 2841 if (!Val) { 2842 auto I = ForwardRefValIDs.find(ID); 2843 if (I != ForwardRefValIDs.end()) 2844 Val = I->second.first; 2845 } 2846 2847 // If we have the value in the symbol table or fwd-ref table, return it. 2848 if (Val) 2849 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val); 2850 2851 if (!Ty->isFirstClassType()) { 2852 P.error(Loc, "invalid use of a non-first-class type"); 2853 return nullptr; 2854 } 2855 2856 // Otherwise, create a new forward reference for this value and remember it. 2857 Value *FwdVal; 2858 if (Ty->isLabelTy()) { 2859 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2860 } else { 2861 FwdVal = new Argument(Ty); 2862 } 2863 2864 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2865 return FwdVal; 2866 } 2867 2868 /// setInstName - After an instruction is parsed and inserted into its 2869 /// basic block, this installs its name. 2870 bool LLParser::PerFunctionState::setInstName(int NameID, 2871 const std::string &NameStr, 2872 LocTy NameLoc, Instruction *Inst) { 2873 // If this instruction has void type, it cannot have a name or ID specified. 2874 if (Inst->getType()->isVoidTy()) { 2875 if (NameID != -1 || !NameStr.empty()) 2876 return P.error(NameLoc, "instructions returning void cannot have a name"); 2877 return false; 2878 } 2879 2880 // If this was a numbered instruction, verify that the instruction is the 2881 // expected value and resolve any forward references. 2882 if (NameStr.empty()) { 2883 // If neither a name nor an ID was specified, just use the next ID. 2884 if (NameID == -1) 2885 NameID = NumberedVals.size(); 2886 2887 if (unsigned(NameID) != NumberedVals.size()) 2888 return P.error(NameLoc, "instruction expected to be numbered '%" + 2889 Twine(NumberedVals.size()) + "'"); 2890 2891 auto FI = ForwardRefValIDs.find(NameID); 2892 if (FI != ForwardRefValIDs.end()) { 2893 Value *Sentinel = FI->second.first; 2894 if (Sentinel->getType() != Inst->getType()) 2895 return P.error(NameLoc, "instruction forward referenced with type '" + 2896 getTypeString(FI->second.first->getType()) + 2897 "'"); 2898 2899 Sentinel->replaceAllUsesWith(Inst); 2900 Sentinel->deleteValue(); 2901 ForwardRefValIDs.erase(FI); 2902 } 2903 2904 NumberedVals.push_back(Inst); 2905 return false; 2906 } 2907 2908 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2909 auto FI = ForwardRefVals.find(NameStr); 2910 if (FI != ForwardRefVals.end()) { 2911 Value *Sentinel = FI->second.first; 2912 if (Sentinel->getType() != Inst->getType()) 2913 return P.error(NameLoc, "instruction forward referenced with type '" + 2914 getTypeString(FI->second.first->getType()) + 2915 "'"); 2916 2917 Sentinel->replaceAllUsesWith(Inst); 2918 Sentinel->deleteValue(); 2919 ForwardRefVals.erase(FI); 2920 } 2921 2922 // Set the name on the instruction. 2923 Inst->setName(NameStr); 2924 2925 if (Inst->getName() != NameStr) 2926 return P.error(NameLoc, "multiple definition of local value named '" + 2927 NameStr + "'"); 2928 return false; 2929 } 2930 2931 /// getBB - Get a basic block with the specified name or ID, creating a 2932 /// forward reference record if needed. 2933 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 2934 LocTy Loc) { 2935 return dyn_cast_or_null<BasicBlock>( 2936 getVal(Name, Type::getLabelTy(F.getContext()), Loc)); 2937 } 2938 2939 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 2940 return dyn_cast_or_null<BasicBlock>( 2941 getVal(ID, Type::getLabelTy(F.getContext()), Loc)); 2942 } 2943 2944 /// defineBB - Define the specified basic block, which is either named or 2945 /// unnamed. If there is an error, this returns null otherwise it returns 2946 /// the block being defined. 2947 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 2948 int NameID, LocTy Loc) { 2949 BasicBlock *BB; 2950 if (Name.empty()) { 2951 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 2952 P.error(Loc, "label expected to be numbered '" + 2953 Twine(NumberedVals.size()) + "'"); 2954 return nullptr; 2955 } 2956 BB = getBB(NumberedVals.size(), Loc); 2957 if (!BB) { 2958 P.error(Loc, "unable to create block numbered '" + 2959 Twine(NumberedVals.size()) + "'"); 2960 return nullptr; 2961 } 2962 } else { 2963 BB = getBB(Name, Loc); 2964 if (!BB) { 2965 P.error(Loc, "unable to create block named '" + Name + "'"); 2966 return nullptr; 2967 } 2968 } 2969 2970 // Move the block to the end of the function. Forward ref'd blocks are 2971 // inserted wherever they happen to be referenced. 2972 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2973 2974 // Remove the block from forward ref sets. 2975 if (Name.empty()) { 2976 ForwardRefValIDs.erase(NumberedVals.size()); 2977 NumberedVals.push_back(BB); 2978 } else { 2979 // BB forward references are already in the function symbol table. 2980 ForwardRefVals.erase(Name); 2981 } 2982 2983 return BB; 2984 } 2985 2986 //===----------------------------------------------------------------------===// 2987 // Constants. 2988 //===----------------------------------------------------------------------===// 2989 2990 /// parseValID - parse an abstract value that doesn't necessarily have a 2991 /// type implied. For example, if we parse "4" we don't know what integer type 2992 /// it has. The value will later be combined with its type and checked for 2993 /// basic correctness. PFS is used to convert function-local operands of 2994 /// metadata (since metadata operands are not just parsed here but also 2995 /// converted to values). PFS can be null when we are not parsing metadata 2996 /// values inside a function. 2997 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) { 2998 ID.Loc = Lex.getLoc(); 2999 switch (Lex.getKind()) { 3000 default: 3001 return tokError("expected value token"); 3002 case lltok::GlobalID: // @42 3003 ID.UIntVal = Lex.getUIntVal(); 3004 ID.Kind = ValID::t_GlobalID; 3005 break; 3006 case lltok::GlobalVar: // @foo 3007 ID.StrVal = Lex.getStrVal(); 3008 ID.Kind = ValID::t_GlobalName; 3009 break; 3010 case lltok::LocalVarID: // %42 3011 ID.UIntVal = Lex.getUIntVal(); 3012 ID.Kind = ValID::t_LocalID; 3013 break; 3014 case lltok::LocalVar: // %foo 3015 ID.StrVal = Lex.getStrVal(); 3016 ID.Kind = ValID::t_LocalName; 3017 break; 3018 case lltok::APSInt: 3019 ID.APSIntVal = Lex.getAPSIntVal(); 3020 ID.Kind = ValID::t_APSInt; 3021 break; 3022 case lltok::APFloat: 3023 ID.APFloatVal = Lex.getAPFloatVal(); 3024 ID.Kind = ValID::t_APFloat; 3025 break; 3026 case lltok::kw_true: 3027 ID.ConstantVal = ConstantInt::getTrue(Context); 3028 ID.Kind = ValID::t_Constant; 3029 break; 3030 case lltok::kw_false: 3031 ID.ConstantVal = ConstantInt::getFalse(Context); 3032 ID.Kind = ValID::t_Constant; 3033 break; 3034 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3035 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3036 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3037 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3038 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3039 3040 case lltok::lbrace: { 3041 // ValID ::= '{' ConstVector '}' 3042 Lex.Lex(); 3043 SmallVector<Constant*, 16> Elts; 3044 if (parseGlobalValueVector(Elts) || 3045 parseToken(lltok::rbrace, "expected end of struct constant")) 3046 return true; 3047 3048 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3049 ID.UIntVal = Elts.size(); 3050 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3051 Elts.size() * sizeof(Elts[0])); 3052 ID.Kind = ValID::t_ConstantStruct; 3053 return false; 3054 } 3055 case lltok::less: { 3056 // ValID ::= '<' ConstVector '>' --> Vector. 3057 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3058 Lex.Lex(); 3059 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3060 3061 SmallVector<Constant*, 16> Elts; 3062 LocTy FirstEltLoc = Lex.getLoc(); 3063 if (parseGlobalValueVector(Elts) || 3064 (isPackedStruct && 3065 parseToken(lltok::rbrace, "expected end of packed struct")) || 3066 parseToken(lltok::greater, "expected end of constant")) 3067 return true; 3068 3069 if (isPackedStruct) { 3070 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3071 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3072 Elts.size() * sizeof(Elts[0])); 3073 ID.UIntVal = Elts.size(); 3074 ID.Kind = ValID::t_PackedConstantStruct; 3075 return false; 3076 } 3077 3078 if (Elts.empty()) 3079 return error(ID.Loc, "constant vector must not be empty"); 3080 3081 if (!Elts[0]->getType()->isIntegerTy() && 3082 !Elts[0]->getType()->isFloatingPointTy() && 3083 !Elts[0]->getType()->isPointerTy()) 3084 return error( 3085 FirstEltLoc, 3086 "vector elements must have integer, pointer or floating point type"); 3087 3088 // Verify that all the vector elements have the same type. 3089 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3090 if (Elts[i]->getType() != Elts[0]->getType()) 3091 return error(FirstEltLoc, "vector element #" + Twine(i) + 3092 " is not of type '" + 3093 getTypeString(Elts[0]->getType())); 3094 3095 ID.ConstantVal = ConstantVector::get(Elts); 3096 ID.Kind = ValID::t_Constant; 3097 return false; 3098 } 3099 case lltok::lsquare: { // Array Constant 3100 Lex.Lex(); 3101 SmallVector<Constant*, 16> Elts; 3102 LocTy FirstEltLoc = Lex.getLoc(); 3103 if (parseGlobalValueVector(Elts) || 3104 parseToken(lltok::rsquare, "expected end of array constant")) 3105 return true; 3106 3107 // Handle empty element. 3108 if (Elts.empty()) { 3109 // Use undef instead of an array because it's inconvenient to determine 3110 // the element type at this point, there being no elements to examine. 3111 ID.Kind = ValID::t_EmptyArray; 3112 return false; 3113 } 3114 3115 if (!Elts[0]->getType()->isFirstClassType()) 3116 return error(FirstEltLoc, "invalid array element type: " + 3117 getTypeString(Elts[0]->getType())); 3118 3119 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3120 3121 // Verify all elements are correct type! 3122 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3123 if (Elts[i]->getType() != Elts[0]->getType()) 3124 return error(FirstEltLoc, "array element #" + Twine(i) + 3125 " is not of type '" + 3126 getTypeString(Elts[0]->getType())); 3127 } 3128 3129 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3130 ID.Kind = ValID::t_Constant; 3131 return false; 3132 } 3133 case lltok::kw_c: // c "foo" 3134 Lex.Lex(); 3135 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3136 false); 3137 if (parseToken(lltok::StringConstant, "expected string")) 3138 return true; 3139 ID.Kind = ValID::t_Constant; 3140 return false; 3141 3142 case lltok::kw_asm: { 3143 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3144 // STRINGCONSTANT 3145 bool HasSideEffect, AlignStack, AsmDialect, CanThrow; 3146 Lex.Lex(); 3147 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3148 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3149 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3150 parseOptionalToken(lltok::kw_unwind, CanThrow) || 3151 parseStringConstant(ID.StrVal) || 3152 parseToken(lltok::comma, "expected comma in inline asm expression") || 3153 parseToken(lltok::StringConstant, "expected constraint string")) 3154 return true; 3155 ID.StrVal2 = Lex.getStrVal(); 3156 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | 3157 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); 3158 ID.Kind = ValID::t_InlineAsm; 3159 return false; 3160 } 3161 3162 case lltok::kw_blockaddress: { 3163 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3164 Lex.Lex(); 3165 3166 ValID Fn, Label; 3167 3168 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3169 parseValID(Fn, PFS) || 3170 parseToken(lltok::comma, 3171 "expected comma in block address expression") || 3172 parseValID(Label, PFS) || 3173 parseToken(lltok::rparen, "expected ')' in block address expression")) 3174 return true; 3175 3176 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3177 return error(Fn.Loc, "expected function name in blockaddress"); 3178 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3179 return error(Label.Loc, "expected basic block name in blockaddress"); 3180 3181 // Try to find the function (but skip it if it's forward-referenced). 3182 GlobalValue *GV = nullptr; 3183 if (Fn.Kind == ValID::t_GlobalID) { 3184 if (Fn.UIntVal < NumberedVals.size()) 3185 GV = NumberedVals[Fn.UIntVal]; 3186 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3187 GV = M->getNamedValue(Fn.StrVal); 3188 } 3189 Function *F = nullptr; 3190 if (GV) { 3191 // Confirm that it's actually a function with a definition. 3192 if (!isa<Function>(GV)) 3193 return error(Fn.Loc, "expected function name in blockaddress"); 3194 F = cast<Function>(GV); 3195 if (F->isDeclaration()) 3196 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3197 } 3198 3199 if (!F) { 3200 // Make a global variable as a placeholder for this reference. 3201 GlobalValue *&FwdRef = 3202 ForwardRefBlockAddresses.insert(std::make_pair( 3203 std::move(Fn), 3204 std::map<ValID, GlobalValue *>())) 3205 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3206 .first->second; 3207 if (!FwdRef) { 3208 unsigned FwdDeclAS; 3209 if (ExpectedTy) { 3210 // If we know the type that the blockaddress is being assigned to, 3211 // we can use the address space of that type. 3212 if (!ExpectedTy->isPointerTy()) 3213 return error(ID.Loc, 3214 "type of blockaddress must be a pointer and not '" + 3215 getTypeString(ExpectedTy) + "'"); 3216 FwdDeclAS = ExpectedTy->getPointerAddressSpace(); 3217 } else if (PFS) { 3218 // Otherwise, we default the address space of the current function. 3219 FwdDeclAS = PFS->getFunction().getAddressSpace(); 3220 } else { 3221 llvm_unreachable("Unknown address space for blockaddress"); 3222 } 3223 FwdRef = new GlobalVariable( 3224 *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage, 3225 nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS); 3226 } 3227 3228 ID.ConstantVal = FwdRef; 3229 ID.Kind = ValID::t_Constant; 3230 return false; 3231 } 3232 3233 // We found the function; now find the basic block. Don't use PFS, since we 3234 // might be inside a constant expression. 3235 BasicBlock *BB; 3236 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3237 if (Label.Kind == ValID::t_LocalID) 3238 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3239 else 3240 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3241 if (!BB) 3242 return error(Label.Loc, "referenced value is not a basic block"); 3243 } else { 3244 if (Label.Kind == ValID::t_LocalID) 3245 return error(Label.Loc, "cannot take address of numeric label after " 3246 "the function is defined"); 3247 BB = dyn_cast_or_null<BasicBlock>( 3248 F->getValueSymbolTable()->lookup(Label.StrVal)); 3249 if (!BB) 3250 return error(Label.Loc, "referenced value is not a basic block"); 3251 } 3252 3253 ID.ConstantVal = BlockAddress::get(F, BB); 3254 ID.Kind = ValID::t_Constant; 3255 return false; 3256 } 3257 3258 case lltok::kw_dso_local_equivalent: { 3259 // ValID ::= 'dso_local_equivalent' @foo 3260 Lex.Lex(); 3261 3262 ValID Fn; 3263 3264 if (parseValID(Fn, PFS)) 3265 return true; 3266 3267 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3268 return error(Fn.Loc, 3269 "expected global value name in dso_local_equivalent"); 3270 3271 // Try to find the function (but skip it if it's forward-referenced). 3272 GlobalValue *GV = nullptr; 3273 if (Fn.Kind == ValID::t_GlobalID) { 3274 if (Fn.UIntVal < NumberedVals.size()) 3275 GV = NumberedVals[Fn.UIntVal]; 3276 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3277 GV = M->getNamedValue(Fn.StrVal); 3278 } 3279 3280 assert(GV && "Could not find a corresponding global variable"); 3281 3282 if (!GV->getValueType()->isFunctionTy()) 3283 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3284 "in dso_local_equivalent"); 3285 3286 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3287 ID.Kind = ValID::t_Constant; 3288 return false; 3289 } 3290 3291 case lltok::kw_trunc: 3292 case lltok::kw_zext: 3293 case lltok::kw_sext: 3294 case lltok::kw_fptrunc: 3295 case lltok::kw_fpext: 3296 case lltok::kw_bitcast: 3297 case lltok::kw_addrspacecast: 3298 case lltok::kw_uitofp: 3299 case lltok::kw_sitofp: 3300 case lltok::kw_fptoui: 3301 case lltok::kw_fptosi: 3302 case lltok::kw_inttoptr: 3303 case lltok::kw_ptrtoint: { 3304 unsigned Opc = Lex.getUIntVal(); 3305 Type *DestTy = nullptr; 3306 Constant *SrcVal; 3307 Lex.Lex(); 3308 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3309 parseGlobalTypeAndValue(SrcVal) || 3310 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3311 parseType(DestTy) || 3312 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3313 return true; 3314 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3315 return error(ID.Loc, "invalid cast opcode for cast from '" + 3316 getTypeString(SrcVal->getType()) + "' to '" + 3317 getTypeString(DestTy) + "'"); 3318 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3319 SrcVal, DestTy); 3320 ID.Kind = ValID::t_Constant; 3321 return false; 3322 } 3323 case lltok::kw_extractvalue: { 3324 Lex.Lex(); 3325 Constant *Val; 3326 SmallVector<unsigned, 4> Indices; 3327 if (parseToken(lltok::lparen, 3328 "expected '(' in extractvalue constantexpr") || 3329 parseGlobalTypeAndValue(Val) || parseIndexList(Indices) || 3330 parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3331 return true; 3332 3333 if (!Val->getType()->isAggregateType()) 3334 return error(ID.Loc, "extractvalue operand must be aggregate type"); 3335 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3336 return error(ID.Loc, "invalid indices for extractvalue"); 3337 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3338 ID.Kind = ValID::t_Constant; 3339 return false; 3340 } 3341 case lltok::kw_insertvalue: { 3342 Lex.Lex(); 3343 Constant *Val0, *Val1; 3344 SmallVector<unsigned, 4> Indices; 3345 if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") || 3346 parseGlobalTypeAndValue(Val0) || 3347 parseToken(lltok::comma, 3348 "expected comma in insertvalue constantexpr") || 3349 parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) || 3350 parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3351 return true; 3352 if (!Val0->getType()->isAggregateType()) 3353 return error(ID.Loc, "insertvalue operand must be aggregate type"); 3354 Type *IndexedType = 3355 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3356 if (!IndexedType) 3357 return error(ID.Loc, "invalid indices for insertvalue"); 3358 if (IndexedType != Val1->getType()) 3359 return error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3360 getTypeString(Val1->getType()) + 3361 "' instead of '" + getTypeString(IndexedType) + 3362 "'"); 3363 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3364 ID.Kind = ValID::t_Constant; 3365 return false; 3366 } 3367 case lltok::kw_icmp: 3368 case lltok::kw_fcmp: { 3369 unsigned PredVal, Opc = Lex.getUIntVal(); 3370 Constant *Val0, *Val1; 3371 Lex.Lex(); 3372 if (parseCmpPredicate(PredVal, Opc) || 3373 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3374 parseGlobalTypeAndValue(Val0) || 3375 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3376 parseGlobalTypeAndValue(Val1) || 3377 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3378 return true; 3379 3380 if (Val0->getType() != Val1->getType()) 3381 return error(ID.Loc, "compare operands must have the same type"); 3382 3383 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3384 3385 if (Opc == Instruction::FCmp) { 3386 if (!Val0->getType()->isFPOrFPVectorTy()) 3387 return error(ID.Loc, "fcmp requires floating point operands"); 3388 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3389 } else { 3390 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3391 if (!Val0->getType()->isIntOrIntVectorTy() && 3392 !Val0->getType()->isPtrOrPtrVectorTy()) 3393 return error(ID.Loc, "icmp requires pointer or integer operands"); 3394 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3395 } 3396 ID.Kind = ValID::t_Constant; 3397 return false; 3398 } 3399 3400 // Unary Operators. 3401 case lltok::kw_fneg: { 3402 unsigned Opc = Lex.getUIntVal(); 3403 Constant *Val; 3404 Lex.Lex(); 3405 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3406 parseGlobalTypeAndValue(Val) || 3407 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3408 return true; 3409 3410 // Check that the type is valid for the operator. 3411 switch (Opc) { 3412 case Instruction::FNeg: 3413 if (!Val->getType()->isFPOrFPVectorTy()) 3414 return error(ID.Loc, "constexpr requires fp operands"); 3415 break; 3416 default: llvm_unreachable("Unknown unary operator!"); 3417 } 3418 unsigned Flags = 0; 3419 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3420 ID.ConstantVal = C; 3421 ID.Kind = ValID::t_Constant; 3422 return false; 3423 } 3424 // Binary Operators. 3425 case lltok::kw_add: 3426 case lltok::kw_fadd: 3427 case lltok::kw_sub: 3428 case lltok::kw_fsub: 3429 case lltok::kw_mul: 3430 case lltok::kw_fmul: 3431 case lltok::kw_udiv: 3432 case lltok::kw_sdiv: 3433 case lltok::kw_fdiv: 3434 case lltok::kw_urem: 3435 case lltok::kw_srem: 3436 case lltok::kw_frem: 3437 case lltok::kw_shl: 3438 case lltok::kw_lshr: 3439 case lltok::kw_ashr: { 3440 bool NUW = false; 3441 bool NSW = false; 3442 bool Exact = false; 3443 unsigned Opc = Lex.getUIntVal(); 3444 Constant *Val0, *Val1; 3445 Lex.Lex(); 3446 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3447 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3448 if (EatIfPresent(lltok::kw_nuw)) 3449 NUW = true; 3450 if (EatIfPresent(lltok::kw_nsw)) { 3451 NSW = true; 3452 if (EatIfPresent(lltok::kw_nuw)) 3453 NUW = true; 3454 } 3455 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3456 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3457 if (EatIfPresent(lltok::kw_exact)) 3458 Exact = true; 3459 } 3460 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3461 parseGlobalTypeAndValue(Val0) || 3462 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3463 parseGlobalTypeAndValue(Val1) || 3464 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3465 return true; 3466 if (Val0->getType() != Val1->getType()) 3467 return error(ID.Loc, "operands of constexpr must have same type"); 3468 // Check that the type is valid for the operator. 3469 switch (Opc) { 3470 case Instruction::Add: 3471 case Instruction::Sub: 3472 case Instruction::Mul: 3473 case Instruction::UDiv: 3474 case Instruction::SDiv: 3475 case Instruction::URem: 3476 case Instruction::SRem: 3477 case Instruction::Shl: 3478 case Instruction::AShr: 3479 case Instruction::LShr: 3480 if (!Val0->getType()->isIntOrIntVectorTy()) 3481 return error(ID.Loc, "constexpr requires integer operands"); 3482 break; 3483 case Instruction::FAdd: 3484 case Instruction::FSub: 3485 case Instruction::FMul: 3486 case Instruction::FDiv: 3487 case Instruction::FRem: 3488 if (!Val0->getType()->isFPOrFPVectorTy()) 3489 return error(ID.Loc, "constexpr requires fp operands"); 3490 break; 3491 default: llvm_unreachable("Unknown binary operator!"); 3492 } 3493 unsigned Flags = 0; 3494 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3495 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3496 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3497 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3498 ID.ConstantVal = C; 3499 ID.Kind = ValID::t_Constant; 3500 return false; 3501 } 3502 3503 // Logical Operations 3504 case lltok::kw_and: 3505 case lltok::kw_or: 3506 case lltok::kw_xor: { 3507 unsigned Opc = Lex.getUIntVal(); 3508 Constant *Val0, *Val1; 3509 Lex.Lex(); 3510 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3511 parseGlobalTypeAndValue(Val0) || 3512 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3513 parseGlobalTypeAndValue(Val1) || 3514 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3515 return true; 3516 if (Val0->getType() != Val1->getType()) 3517 return error(ID.Loc, "operands of constexpr must have same type"); 3518 if (!Val0->getType()->isIntOrIntVectorTy()) 3519 return error(ID.Loc, 3520 "constexpr requires integer or integer vector operands"); 3521 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3522 ID.Kind = ValID::t_Constant; 3523 return false; 3524 } 3525 3526 case lltok::kw_getelementptr: 3527 case lltok::kw_shufflevector: 3528 case lltok::kw_insertelement: 3529 case lltok::kw_extractelement: 3530 case lltok::kw_select: { 3531 unsigned Opc = Lex.getUIntVal(); 3532 SmallVector<Constant*, 16> Elts; 3533 bool InBounds = false; 3534 Type *Ty; 3535 Lex.Lex(); 3536 3537 if (Opc == Instruction::GetElementPtr) 3538 InBounds = EatIfPresent(lltok::kw_inbounds); 3539 3540 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3541 return true; 3542 3543 LocTy ExplicitTypeLoc = Lex.getLoc(); 3544 if (Opc == Instruction::GetElementPtr) { 3545 if (parseType(Ty) || 3546 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3547 return true; 3548 } 3549 3550 Optional<unsigned> InRangeOp; 3551 if (parseGlobalValueVector( 3552 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3553 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3554 return true; 3555 3556 if (Opc == Instruction::GetElementPtr) { 3557 if (Elts.size() == 0 || 3558 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3559 return error(ID.Loc, "base of getelementptr must be a pointer"); 3560 3561 Type *BaseType = Elts[0]->getType(); 3562 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3563 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 3564 return error( 3565 ExplicitTypeLoc, 3566 typeComparisonErrorMessage( 3567 "explicit pointee type doesn't match operand's pointee type", 3568 Ty, BasePointerType->getElementType())); 3569 } 3570 3571 unsigned GEPWidth = 3572 BaseType->isVectorTy() 3573 ? cast<FixedVectorType>(BaseType)->getNumElements() 3574 : 0; 3575 3576 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3577 for (Constant *Val : Indices) { 3578 Type *ValTy = Val->getType(); 3579 if (!ValTy->isIntOrIntVectorTy()) 3580 return error(ID.Loc, "getelementptr index must be an integer"); 3581 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3582 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3583 if (GEPWidth && (ValNumEl != GEPWidth)) 3584 return error( 3585 ID.Loc, 3586 "getelementptr vector index has a wrong number of elements"); 3587 // GEPWidth may have been unknown because the base is a scalar, 3588 // but it is known now. 3589 GEPWidth = ValNumEl; 3590 } 3591 } 3592 3593 SmallPtrSet<Type*, 4> Visited; 3594 if (!Indices.empty() && !Ty->isSized(&Visited)) 3595 return error(ID.Loc, "base element of getelementptr must be sized"); 3596 3597 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3598 return error(ID.Loc, "invalid getelementptr indices"); 3599 3600 if (InRangeOp) { 3601 if (*InRangeOp == 0) 3602 return error(ID.Loc, 3603 "inrange keyword may not appear on pointer operand"); 3604 --*InRangeOp; 3605 } 3606 3607 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3608 InBounds, InRangeOp); 3609 } else if (Opc == Instruction::Select) { 3610 if (Elts.size() != 3) 3611 return error(ID.Loc, "expected three operands to select"); 3612 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3613 Elts[2])) 3614 return error(ID.Loc, Reason); 3615 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3616 } else if (Opc == Instruction::ShuffleVector) { 3617 if (Elts.size() != 3) 3618 return error(ID.Loc, "expected three operands to shufflevector"); 3619 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3620 return error(ID.Loc, "invalid operands to shufflevector"); 3621 SmallVector<int, 16> Mask; 3622 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3623 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3624 } else if (Opc == Instruction::ExtractElement) { 3625 if (Elts.size() != 2) 3626 return error(ID.Loc, "expected two operands to extractelement"); 3627 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3628 return error(ID.Loc, "invalid extractelement operands"); 3629 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3630 } else { 3631 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3632 if (Elts.size() != 3) 3633 return error(ID.Loc, "expected three operands to insertelement"); 3634 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3635 return error(ID.Loc, "invalid insertelement operands"); 3636 ID.ConstantVal = 3637 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3638 } 3639 3640 ID.Kind = ValID::t_Constant; 3641 return false; 3642 } 3643 } 3644 3645 Lex.Lex(); 3646 return false; 3647 } 3648 3649 /// parseGlobalValue - parse a global value with the specified type. 3650 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3651 C = nullptr; 3652 ValID ID; 3653 Value *V = nullptr; 3654 bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) || 3655 convertValIDToValue(Ty, ID, V, nullptr); 3656 if (V && !(C = dyn_cast<Constant>(V))) 3657 return error(ID.Loc, "global values must be constants"); 3658 return Parsed; 3659 } 3660 3661 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3662 Type *Ty = nullptr; 3663 return parseType(Ty) || parseGlobalValue(Ty, V); 3664 } 3665 3666 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3667 C = nullptr; 3668 3669 LocTy KwLoc = Lex.getLoc(); 3670 if (!EatIfPresent(lltok::kw_comdat)) 3671 return false; 3672 3673 if (EatIfPresent(lltok::lparen)) { 3674 if (Lex.getKind() != lltok::ComdatVar) 3675 return tokError("expected comdat variable"); 3676 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3677 Lex.Lex(); 3678 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3679 return true; 3680 } else { 3681 if (GlobalName.empty()) 3682 return tokError("comdat cannot be unnamed"); 3683 C = getComdat(std::string(GlobalName), KwLoc); 3684 } 3685 3686 return false; 3687 } 3688 3689 /// parseGlobalValueVector 3690 /// ::= /*empty*/ 3691 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3692 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3693 Optional<unsigned> *InRangeOp) { 3694 // Empty list. 3695 if (Lex.getKind() == lltok::rbrace || 3696 Lex.getKind() == lltok::rsquare || 3697 Lex.getKind() == lltok::greater || 3698 Lex.getKind() == lltok::rparen) 3699 return false; 3700 3701 do { 3702 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3703 *InRangeOp = Elts.size(); 3704 3705 Constant *C; 3706 if (parseGlobalTypeAndValue(C)) 3707 return true; 3708 Elts.push_back(C); 3709 } while (EatIfPresent(lltok::comma)); 3710 3711 return false; 3712 } 3713 3714 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 3715 SmallVector<Metadata *, 16> Elts; 3716 if (parseMDNodeVector(Elts)) 3717 return true; 3718 3719 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3720 return false; 3721 } 3722 3723 /// MDNode: 3724 /// ::= !{ ... } 3725 /// ::= !7 3726 /// ::= !DILocation(...) 3727 bool LLParser::parseMDNode(MDNode *&N) { 3728 if (Lex.getKind() == lltok::MetadataVar) 3729 return parseSpecializedMDNode(N); 3730 3731 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 3732 } 3733 3734 bool LLParser::parseMDNodeTail(MDNode *&N) { 3735 // !{ ... } 3736 if (Lex.getKind() == lltok::lbrace) 3737 return parseMDTuple(N); 3738 3739 // !42 3740 return parseMDNodeID(N); 3741 } 3742 3743 namespace { 3744 3745 /// Structure to represent an optional metadata field. 3746 template <class FieldTy> struct MDFieldImpl { 3747 typedef MDFieldImpl ImplTy; 3748 FieldTy Val; 3749 bool Seen; 3750 3751 void assign(FieldTy Val) { 3752 Seen = true; 3753 this->Val = std::move(Val); 3754 } 3755 3756 explicit MDFieldImpl(FieldTy Default) 3757 : Val(std::move(Default)), Seen(false) {} 3758 }; 3759 3760 /// Structure to represent an optional metadata field that 3761 /// can be of either type (A or B) and encapsulates the 3762 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3763 /// to reimplement the specifics for representing each Field. 3764 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3765 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3766 FieldTypeA A; 3767 FieldTypeB B; 3768 bool Seen; 3769 3770 enum { 3771 IsInvalid = 0, 3772 IsTypeA = 1, 3773 IsTypeB = 2 3774 } WhatIs; 3775 3776 void assign(FieldTypeA A) { 3777 Seen = true; 3778 this->A = std::move(A); 3779 WhatIs = IsTypeA; 3780 } 3781 3782 void assign(FieldTypeB B) { 3783 Seen = true; 3784 this->B = std::move(B); 3785 WhatIs = IsTypeB; 3786 } 3787 3788 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3789 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3790 WhatIs(IsInvalid) {} 3791 }; 3792 3793 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3794 uint64_t Max; 3795 3796 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3797 : ImplTy(Default), Max(Max) {} 3798 }; 3799 3800 struct LineField : public MDUnsignedField { 3801 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3802 }; 3803 3804 struct ColumnField : public MDUnsignedField { 3805 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3806 }; 3807 3808 struct DwarfTagField : public MDUnsignedField { 3809 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3810 DwarfTagField(dwarf::Tag DefaultTag) 3811 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3812 }; 3813 3814 struct DwarfMacinfoTypeField : public MDUnsignedField { 3815 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3816 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3817 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3818 }; 3819 3820 struct DwarfAttEncodingField : public MDUnsignedField { 3821 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3822 }; 3823 3824 struct DwarfVirtualityField : public MDUnsignedField { 3825 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3826 }; 3827 3828 struct DwarfLangField : public MDUnsignedField { 3829 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3830 }; 3831 3832 struct DwarfCCField : public MDUnsignedField { 3833 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3834 }; 3835 3836 struct EmissionKindField : public MDUnsignedField { 3837 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3838 }; 3839 3840 struct NameTableKindField : public MDUnsignedField { 3841 NameTableKindField() 3842 : MDUnsignedField( 3843 0, (unsigned) 3844 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3845 }; 3846 3847 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3848 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3849 }; 3850 3851 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3852 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3853 }; 3854 3855 struct MDAPSIntField : public MDFieldImpl<APSInt> { 3856 MDAPSIntField() : ImplTy(APSInt()) {} 3857 }; 3858 3859 struct MDSignedField : public MDFieldImpl<int64_t> { 3860 int64_t Min; 3861 int64_t Max; 3862 3863 MDSignedField(int64_t Default = 0) 3864 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3865 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3866 : ImplTy(Default), Min(Min), Max(Max) {} 3867 }; 3868 3869 struct MDBoolField : public MDFieldImpl<bool> { 3870 MDBoolField(bool Default = false) : ImplTy(Default) {} 3871 }; 3872 3873 struct MDField : public MDFieldImpl<Metadata *> { 3874 bool AllowNull; 3875 3876 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3877 }; 3878 3879 struct MDStringField : public MDFieldImpl<MDString *> { 3880 bool AllowEmpty; 3881 MDStringField(bool AllowEmpty = true) 3882 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3883 }; 3884 3885 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3886 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3887 }; 3888 3889 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3890 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3891 }; 3892 3893 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3894 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3895 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3896 3897 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3898 bool AllowNull = true) 3899 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3900 3901 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3902 bool isMDField() const { return WhatIs == IsTypeB; } 3903 int64_t getMDSignedValue() const { 3904 assert(isMDSignedField() && "Wrong field type"); 3905 return A.Val; 3906 } 3907 Metadata *getMDFieldValue() const { 3908 assert(isMDField() && "Wrong field type"); 3909 return B.Val; 3910 } 3911 }; 3912 3913 } // end anonymous namespace 3914 3915 namespace llvm { 3916 3917 template <> 3918 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 3919 if (Lex.getKind() != lltok::APSInt) 3920 return tokError("expected integer"); 3921 3922 Result.assign(Lex.getAPSIntVal()); 3923 Lex.Lex(); 3924 return false; 3925 } 3926 3927 template <> 3928 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 3929 MDUnsignedField &Result) { 3930 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3931 return tokError("expected unsigned integer"); 3932 3933 auto &U = Lex.getAPSIntVal(); 3934 if (U.ugt(Result.Max)) 3935 return tokError("value for '" + Name + "' too large, limit is " + 3936 Twine(Result.Max)); 3937 Result.assign(U.getZExtValue()); 3938 assert(Result.Val <= Result.Max && "Expected value in range"); 3939 Lex.Lex(); 3940 return false; 3941 } 3942 3943 template <> 3944 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3945 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3946 } 3947 template <> 3948 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3949 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3950 } 3951 3952 template <> 3953 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3954 if (Lex.getKind() == lltok::APSInt) 3955 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3956 3957 if (Lex.getKind() != lltok::DwarfTag) 3958 return tokError("expected DWARF tag"); 3959 3960 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3961 if (Tag == dwarf::DW_TAG_invalid) 3962 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3963 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3964 3965 Result.assign(Tag); 3966 Lex.Lex(); 3967 return false; 3968 } 3969 3970 template <> 3971 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 3972 DwarfMacinfoTypeField &Result) { 3973 if (Lex.getKind() == lltok::APSInt) 3974 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3975 3976 if (Lex.getKind() != lltok::DwarfMacinfo) 3977 return tokError("expected DWARF macinfo type"); 3978 3979 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3980 if (Macinfo == dwarf::DW_MACINFO_invalid) 3981 return tokError("invalid DWARF macinfo type" + Twine(" '") + 3982 Lex.getStrVal() + "'"); 3983 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3984 3985 Result.assign(Macinfo); 3986 Lex.Lex(); 3987 return false; 3988 } 3989 3990 template <> 3991 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 3992 DwarfVirtualityField &Result) { 3993 if (Lex.getKind() == lltok::APSInt) 3994 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3995 3996 if (Lex.getKind() != lltok::DwarfVirtuality) 3997 return tokError("expected DWARF virtuality code"); 3998 3999 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4000 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4001 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4002 Lex.getStrVal() + "'"); 4003 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4004 Result.assign(Virtuality); 4005 Lex.Lex(); 4006 return false; 4007 } 4008 4009 template <> 4010 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4011 if (Lex.getKind() == lltok::APSInt) 4012 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4013 4014 if (Lex.getKind() != lltok::DwarfLang) 4015 return tokError("expected DWARF language"); 4016 4017 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4018 if (!Lang) 4019 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4020 "'"); 4021 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4022 Result.assign(Lang); 4023 Lex.Lex(); 4024 return false; 4025 } 4026 4027 template <> 4028 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4029 if (Lex.getKind() == lltok::APSInt) 4030 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4031 4032 if (Lex.getKind() != lltok::DwarfCC) 4033 return tokError("expected DWARF calling convention"); 4034 4035 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4036 if (!CC) 4037 return tokError("invalid DWARF calling convention" + Twine(" '") + 4038 Lex.getStrVal() + "'"); 4039 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4040 Result.assign(CC); 4041 Lex.Lex(); 4042 return false; 4043 } 4044 4045 template <> 4046 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4047 EmissionKindField &Result) { 4048 if (Lex.getKind() == lltok::APSInt) 4049 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4050 4051 if (Lex.getKind() != lltok::EmissionKind) 4052 return tokError("expected emission kind"); 4053 4054 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4055 if (!Kind) 4056 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4057 "'"); 4058 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4059 Result.assign(*Kind); 4060 Lex.Lex(); 4061 return false; 4062 } 4063 4064 template <> 4065 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4066 NameTableKindField &Result) { 4067 if (Lex.getKind() == lltok::APSInt) 4068 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4069 4070 if (Lex.getKind() != lltok::NameTableKind) 4071 return tokError("expected nameTable kind"); 4072 4073 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4074 if (!Kind) 4075 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4076 "'"); 4077 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4078 Result.assign((unsigned)*Kind); 4079 Lex.Lex(); 4080 return false; 4081 } 4082 4083 template <> 4084 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4085 DwarfAttEncodingField &Result) { 4086 if (Lex.getKind() == lltok::APSInt) 4087 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4088 4089 if (Lex.getKind() != lltok::DwarfAttEncoding) 4090 return tokError("expected DWARF type attribute encoding"); 4091 4092 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4093 if (!Encoding) 4094 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4095 Lex.getStrVal() + "'"); 4096 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4097 Result.assign(Encoding); 4098 Lex.Lex(); 4099 return false; 4100 } 4101 4102 /// DIFlagField 4103 /// ::= uint32 4104 /// ::= DIFlagVector 4105 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4106 template <> 4107 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4108 4109 // parser for a single flag. 4110 auto parseFlag = [&](DINode::DIFlags &Val) { 4111 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4112 uint32_t TempVal = static_cast<uint32_t>(Val); 4113 bool Res = parseUInt32(TempVal); 4114 Val = static_cast<DINode::DIFlags>(TempVal); 4115 return Res; 4116 } 4117 4118 if (Lex.getKind() != lltok::DIFlag) 4119 return tokError("expected debug info flag"); 4120 4121 Val = DINode::getFlag(Lex.getStrVal()); 4122 if (!Val) 4123 return tokError(Twine("invalid debug info flag flag '") + 4124 Lex.getStrVal() + "'"); 4125 Lex.Lex(); 4126 return false; 4127 }; 4128 4129 // parse the flags and combine them together. 4130 DINode::DIFlags Combined = DINode::FlagZero; 4131 do { 4132 DINode::DIFlags Val; 4133 if (parseFlag(Val)) 4134 return true; 4135 Combined |= Val; 4136 } while (EatIfPresent(lltok::bar)); 4137 4138 Result.assign(Combined); 4139 return false; 4140 } 4141 4142 /// DISPFlagField 4143 /// ::= uint32 4144 /// ::= DISPFlagVector 4145 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4146 template <> 4147 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4148 4149 // parser for a single flag. 4150 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4151 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4152 uint32_t TempVal = static_cast<uint32_t>(Val); 4153 bool Res = parseUInt32(TempVal); 4154 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4155 return Res; 4156 } 4157 4158 if (Lex.getKind() != lltok::DISPFlag) 4159 return tokError("expected debug info flag"); 4160 4161 Val = DISubprogram::getFlag(Lex.getStrVal()); 4162 if (!Val) 4163 return tokError(Twine("invalid subprogram debug info flag '") + 4164 Lex.getStrVal() + "'"); 4165 Lex.Lex(); 4166 return false; 4167 }; 4168 4169 // parse the flags and combine them together. 4170 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4171 do { 4172 DISubprogram::DISPFlags Val; 4173 if (parseFlag(Val)) 4174 return true; 4175 Combined |= Val; 4176 } while (EatIfPresent(lltok::bar)); 4177 4178 Result.assign(Combined); 4179 return false; 4180 } 4181 4182 template <> 4183 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4184 if (Lex.getKind() != lltok::APSInt) 4185 return tokError("expected signed integer"); 4186 4187 auto &S = Lex.getAPSIntVal(); 4188 if (S < Result.Min) 4189 return tokError("value for '" + Name + "' too small, limit is " + 4190 Twine(Result.Min)); 4191 if (S > Result.Max) 4192 return tokError("value for '" + Name + "' too large, limit is " + 4193 Twine(Result.Max)); 4194 Result.assign(S.getExtValue()); 4195 assert(Result.Val >= Result.Min && "Expected value in range"); 4196 assert(Result.Val <= Result.Max && "Expected value in range"); 4197 Lex.Lex(); 4198 return false; 4199 } 4200 4201 template <> 4202 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4203 switch (Lex.getKind()) { 4204 default: 4205 return tokError("expected 'true' or 'false'"); 4206 case lltok::kw_true: 4207 Result.assign(true); 4208 break; 4209 case lltok::kw_false: 4210 Result.assign(false); 4211 break; 4212 } 4213 Lex.Lex(); 4214 return false; 4215 } 4216 4217 template <> 4218 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4219 if (Lex.getKind() == lltok::kw_null) { 4220 if (!Result.AllowNull) 4221 return tokError("'" + Name + "' cannot be null"); 4222 Lex.Lex(); 4223 Result.assign(nullptr); 4224 return false; 4225 } 4226 4227 Metadata *MD; 4228 if (parseMetadata(MD, nullptr)) 4229 return true; 4230 4231 Result.assign(MD); 4232 return false; 4233 } 4234 4235 template <> 4236 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4237 MDSignedOrMDField &Result) { 4238 // Try to parse a signed int. 4239 if (Lex.getKind() == lltok::APSInt) { 4240 MDSignedField Res = Result.A; 4241 if (!parseMDField(Loc, Name, Res)) { 4242 Result.assign(Res); 4243 return false; 4244 } 4245 return true; 4246 } 4247 4248 // Otherwise, try to parse as an MDField. 4249 MDField Res = Result.B; 4250 if (!parseMDField(Loc, Name, Res)) { 4251 Result.assign(Res); 4252 return false; 4253 } 4254 4255 return true; 4256 } 4257 4258 template <> 4259 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4260 LocTy ValueLoc = Lex.getLoc(); 4261 std::string S; 4262 if (parseStringConstant(S)) 4263 return true; 4264 4265 if (!Result.AllowEmpty && S.empty()) 4266 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4267 4268 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4269 return false; 4270 } 4271 4272 template <> 4273 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4274 SmallVector<Metadata *, 4> MDs; 4275 if (parseMDNodeVector(MDs)) 4276 return true; 4277 4278 Result.assign(std::move(MDs)); 4279 return false; 4280 } 4281 4282 template <> 4283 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4284 ChecksumKindField &Result) { 4285 Optional<DIFile::ChecksumKind> CSKind = 4286 DIFile::getChecksumKind(Lex.getStrVal()); 4287 4288 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4289 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4290 "'"); 4291 4292 Result.assign(*CSKind); 4293 Lex.Lex(); 4294 return false; 4295 } 4296 4297 } // end namespace llvm 4298 4299 template <class ParserTy> 4300 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4301 do { 4302 if (Lex.getKind() != lltok::LabelStr) 4303 return tokError("expected field label here"); 4304 4305 if (ParseField()) 4306 return true; 4307 } while (EatIfPresent(lltok::comma)); 4308 4309 return false; 4310 } 4311 4312 template <class ParserTy> 4313 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4314 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4315 Lex.Lex(); 4316 4317 if (parseToken(lltok::lparen, "expected '(' here")) 4318 return true; 4319 if (Lex.getKind() != lltok::rparen) 4320 if (parseMDFieldsImplBody(ParseField)) 4321 return true; 4322 4323 ClosingLoc = Lex.getLoc(); 4324 return parseToken(lltok::rparen, "expected ')' here"); 4325 } 4326 4327 template <class FieldTy> 4328 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4329 if (Result.Seen) 4330 return tokError("field '" + Name + "' cannot be specified more than once"); 4331 4332 LocTy Loc = Lex.getLoc(); 4333 Lex.Lex(); 4334 return parseMDField(Loc, Name, Result); 4335 } 4336 4337 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4338 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4339 4340 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4341 if (Lex.getStrVal() == #CLASS) \ 4342 return parse##CLASS(N, IsDistinct); 4343 #include "llvm/IR/Metadata.def" 4344 4345 return tokError("expected metadata type"); 4346 } 4347 4348 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4349 #define NOP_FIELD(NAME, TYPE, INIT) 4350 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4351 if (!NAME.Seen) \ 4352 return error(ClosingLoc, "missing required field '" #NAME "'"); 4353 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4354 if (Lex.getStrVal() == #NAME) \ 4355 return parseMDField(#NAME, NAME); 4356 #define PARSE_MD_FIELDS() \ 4357 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4358 do { \ 4359 LocTy ClosingLoc; \ 4360 if (parseMDFieldsImpl( \ 4361 [&]() -> bool { \ 4362 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4363 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4364 "'"); \ 4365 }, \ 4366 ClosingLoc)) \ 4367 return true; \ 4368 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4369 } while (false) 4370 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4371 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4372 4373 /// parseDILocationFields: 4374 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4375 /// isImplicitCode: true) 4376 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4377 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4378 OPTIONAL(line, LineField, ); \ 4379 OPTIONAL(column, ColumnField, ); \ 4380 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4381 OPTIONAL(inlinedAt, MDField, ); \ 4382 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4383 PARSE_MD_FIELDS(); 4384 #undef VISIT_MD_FIELDS 4385 4386 Result = 4387 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4388 inlinedAt.Val, isImplicitCode.Val)); 4389 return false; 4390 } 4391 4392 /// parseGenericDINode: 4393 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4394 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4395 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4396 REQUIRED(tag, DwarfTagField, ); \ 4397 OPTIONAL(header, MDStringField, ); \ 4398 OPTIONAL(operands, MDFieldList, ); 4399 PARSE_MD_FIELDS(); 4400 #undef VISIT_MD_FIELDS 4401 4402 Result = GET_OR_DISTINCT(GenericDINode, 4403 (Context, tag.Val, header.Val, operands.Val)); 4404 return false; 4405 } 4406 4407 /// parseDISubrange: 4408 /// ::= !DISubrange(count: 30, lowerBound: 2) 4409 /// ::= !DISubrange(count: !node, lowerBound: 2) 4410 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4411 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4412 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4413 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4414 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4415 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4416 OPTIONAL(stride, MDSignedOrMDField, ); 4417 PARSE_MD_FIELDS(); 4418 #undef VISIT_MD_FIELDS 4419 4420 Metadata *Count = nullptr; 4421 Metadata *LowerBound = nullptr; 4422 Metadata *UpperBound = nullptr; 4423 Metadata *Stride = nullptr; 4424 4425 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4426 if (Bound.isMDSignedField()) 4427 return ConstantAsMetadata::get(ConstantInt::getSigned( 4428 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4429 if (Bound.isMDField()) 4430 return Bound.getMDFieldValue(); 4431 return nullptr; 4432 }; 4433 4434 Count = convToMetadata(count); 4435 LowerBound = convToMetadata(lowerBound); 4436 UpperBound = convToMetadata(upperBound); 4437 Stride = convToMetadata(stride); 4438 4439 Result = GET_OR_DISTINCT(DISubrange, 4440 (Context, Count, LowerBound, UpperBound, Stride)); 4441 4442 return false; 4443 } 4444 4445 /// parseDIGenericSubrange: 4446 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4447 /// !node3) 4448 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4449 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4450 OPTIONAL(count, MDSignedOrMDField, ); \ 4451 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4452 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4453 OPTIONAL(stride, MDSignedOrMDField, ); 4454 PARSE_MD_FIELDS(); 4455 #undef VISIT_MD_FIELDS 4456 4457 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4458 if (Bound.isMDSignedField()) 4459 return DIExpression::get( 4460 Context, {dwarf::DW_OP_consts, 4461 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4462 if (Bound.isMDField()) 4463 return Bound.getMDFieldValue(); 4464 return nullptr; 4465 }; 4466 4467 Metadata *Count = ConvToMetadata(count); 4468 Metadata *LowerBound = ConvToMetadata(lowerBound); 4469 Metadata *UpperBound = ConvToMetadata(upperBound); 4470 Metadata *Stride = ConvToMetadata(stride); 4471 4472 Result = GET_OR_DISTINCT(DIGenericSubrange, 4473 (Context, Count, LowerBound, UpperBound, Stride)); 4474 4475 return false; 4476 } 4477 4478 /// parseDIEnumerator: 4479 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4480 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4481 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4482 REQUIRED(name, MDStringField, ); \ 4483 REQUIRED(value, MDAPSIntField, ); \ 4484 OPTIONAL(isUnsigned, MDBoolField, (false)); 4485 PARSE_MD_FIELDS(); 4486 #undef VISIT_MD_FIELDS 4487 4488 if (isUnsigned.Val && value.Val.isNegative()) 4489 return tokError("unsigned enumerator with negative value"); 4490 4491 APSInt Value(value.Val); 4492 // Add a leading zero so that unsigned values with the msb set are not 4493 // mistaken for negative values when used for signed enumerators. 4494 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4495 Value = Value.zext(Value.getBitWidth() + 1); 4496 4497 Result = 4498 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4499 4500 return false; 4501 } 4502 4503 /// parseDIBasicType: 4504 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4505 /// encoding: DW_ATE_encoding, flags: 0) 4506 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4507 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4508 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4509 OPTIONAL(name, MDStringField, ); \ 4510 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4511 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4512 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4513 OPTIONAL(flags, DIFlagField, ); 4514 PARSE_MD_FIELDS(); 4515 #undef VISIT_MD_FIELDS 4516 4517 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4518 align.Val, encoding.Val, flags.Val)); 4519 return false; 4520 } 4521 4522 /// parseDIStringType: 4523 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4524 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4525 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4526 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4527 OPTIONAL(name, MDStringField, ); \ 4528 OPTIONAL(stringLength, MDField, ); \ 4529 OPTIONAL(stringLengthExpression, MDField, ); \ 4530 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4531 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4532 OPTIONAL(encoding, DwarfAttEncodingField, ); 4533 PARSE_MD_FIELDS(); 4534 #undef VISIT_MD_FIELDS 4535 4536 Result = GET_OR_DISTINCT(DIStringType, 4537 (Context, tag.Val, name.Val, stringLength.Val, 4538 stringLengthExpression.Val, size.Val, align.Val, 4539 encoding.Val)); 4540 return false; 4541 } 4542 4543 /// parseDIDerivedType: 4544 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4545 /// line: 7, scope: !1, baseType: !2, size: 32, 4546 /// align: 32, offset: 0, flags: 0, extraData: !3, 4547 /// dwarfAddressSpace: 3) 4548 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4549 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4550 REQUIRED(tag, DwarfTagField, ); \ 4551 OPTIONAL(name, MDStringField, ); \ 4552 OPTIONAL(file, MDField, ); \ 4553 OPTIONAL(line, LineField, ); \ 4554 OPTIONAL(scope, MDField, ); \ 4555 REQUIRED(baseType, MDField, ); \ 4556 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4557 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4558 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4559 OPTIONAL(flags, DIFlagField, ); \ 4560 OPTIONAL(extraData, MDField, ); \ 4561 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); \ 4562 OPTIONAL(annotations, MDField, ); 4563 PARSE_MD_FIELDS(); 4564 #undef VISIT_MD_FIELDS 4565 4566 Optional<unsigned> DWARFAddressSpace; 4567 if (dwarfAddressSpace.Val != UINT32_MAX) 4568 DWARFAddressSpace = dwarfAddressSpace.Val; 4569 4570 Result = GET_OR_DISTINCT(DIDerivedType, 4571 (Context, tag.Val, name.Val, file.Val, line.Val, 4572 scope.Val, baseType.Val, size.Val, align.Val, 4573 offset.Val, DWARFAddressSpace, flags.Val, 4574 extraData.Val, annotations.Val)); 4575 return false; 4576 } 4577 4578 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4579 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4580 REQUIRED(tag, DwarfTagField, ); \ 4581 OPTIONAL(name, MDStringField, ); \ 4582 OPTIONAL(file, MDField, ); \ 4583 OPTIONAL(line, LineField, ); \ 4584 OPTIONAL(scope, MDField, ); \ 4585 OPTIONAL(baseType, MDField, ); \ 4586 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4587 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4588 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4589 OPTIONAL(flags, DIFlagField, ); \ 4590 OPTIONAL(elements, MDField, ); \ 4591 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4592 OPTIONAL(vtableHolder, MDField, ); \ 4593 OPTIONAL(templateParams, MDField, ); \ 4594 OPTIONAL(identifier, MDStringField, ); \ 4595 OPTIONAL(discriminator, MDField, ); \ 4596 OPTIONAL(dataLocation, MDField, ); \ 4597 OPTIONAL(associated, MDField, ); \ 4598 OPTIONAL(allocated, MDField, ); \ 4599 OPTIONAL(rank, MDSignedOrMDField, ); \ 4600 OPTIONAL(annotations, MDField, ); 4601 PARSE_MD_FIELDS(); 4602 #undef VISIT_MD_FIELDS 4603 4604 Metadata *Rank = nullptr; 4605 if (rank.isMDSignedField()) 4606 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4607 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4608 else if (rank.isMDField()) 4609 Rank = rank.getMDFieldValue(); 4610 4611 // If this has an identifier try to build an ODR type. 4612 if (identifier.Val) 4613 if (auto *CT = DICompositeType::buildODRType( 4614 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4615 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4616 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4617 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4618 Rank, annotations.Val)) { 4619 Result = CT; 4620 return false; 4621 } 4622 4623 // Create a new node, and save it in the context if it belongs in the type 4624 // map. 4625 Result = GET_OR_DISTINCT( 4626 DICompositeType, 4627 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4628 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4629 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4630 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank, 4631 annotations.Val)); 4632 return false; 4633 } 4634 4635 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4636 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4637 OPTIONAL(flags, DIFlagField, ); \ 4638 OPTIONAL(cc, DwarfCCField, ); \ 4639 REQUIRED(types, MDField, ); 4640 PARSE_MD_FIELDS(); 4641 #undef VISIT_MD_FIELDS 4642 4643 Result = GET_OR_DISTINCT(DISubroutineType, 4644 (Context, flags.Val, cc.Val, types.Val)); 4645 return false; 4646 } 4647 4648 /// parseDIFileType: 4649 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4650 /// checksumkind: CSK_MD5, 4651 /// checksum: "000102030405060708090a0b0c0d0e0f", 4652 /// source: "source file contents") 4653 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4654 // The default constructed value for checksumkind is required, but will never 4655 // be used, as the parser checks if the field was actually Seen before using 4656 // the Val. 4657 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4658 REQUIRED(filename, MDStringField, ); \ 4659 REQUIRED(directory, MDStringField, ); \ 4660 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4661 OPTIONAL(checksum, MDStringField, ); \ 4662 OPTIONAL(source, MDStringField, ); 4663 PARSE_MD_FIELDS(); 4664 #undef VISIT_MD_FIELDS 4665 4666 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4667 if (checksumkind.Seen && checksum.Seen) 4668 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4669 else if (checksumkind.Seen || checksum.Seen) 4670 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4671 4672 Optional<MDString *> OptSource; 4673 if (source.Seen) 4674 OptSource = source.Val; 4675 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4676 OptChecksum, OptSource)); 4677 return false; 4678 } 4679 4680 /// parseDICompileUnit: 4681 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4682 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4683 /// splitDebugFilename: "abc.debug", 4684 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4685 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 4686 /// sysroot: "/", sdk: "MacOSX.sdk") 4687 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4688 if (!IsDistinct) 4689 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4690 4691 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4692 REQUIRED(language, DwarfLangField, ); \ 4693 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4694 OPTIONAL(producer, MDStringField, ); \ 4695 OPTIONAL(isOptimized, MDBoolField, ); \ 4696 OPTIONAL(flags, MDStringField, ); \ 4697 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4698 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4699 OPTIONAL(emissionKind, EmissionKindField, ); \ 4700 OPTIONAL(enums, MDField, ); \ 4701 OPTIONAL(retainedTypes, MDField, ); \ 4702 OPTIONAL(globals, MDField, ); \ 4703 OPTIONAL(imports, MDField, ); \ 4704 OPTIONAL(macros, MDField, ); \ 4705 OPTIONAL(dwoId, MDUnsignedField, ); \ 4706 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4707 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4708 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4709 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 4710 OPTIONAL(sysroot, MDStringField, ); \ 4711 OPTIONAL(sdk, MDStringField, ); 4712 PARSE_MD_FIELDS(); 4713 #undef VISIT_MD_FIELDS 4714 4715 Result = DICompileUnit::getDistinct( 4716 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4717 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4718 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4719 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4720 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 4721 return false; 4722 } 4723 4724 /// parseDISubprogram: 4725 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4726 /// file: !1, line: 7, type: !2, isLocal: false, 4727 /// isDefinition: true, scopeLine: 8, containingType: !3, 4728 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4729 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4730 /// spFlags: 10, isOptimized: false, templateParams: !4, 4731 /// declaration: !5, retainedNodes: !6, thrownTypes: !7, 4732 /// annotations: !8) 4733 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 4734 auto Loc = Lex.getLoc(); 4735 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4736 OPTIONAL(scope, MDField, ); \ 4737 OPTIONAL(name, MDStringField, ); \ 4738 OPTIONAL(linkageName, MDStringField, ); \ 4739 OPTIONAL(file, MDField, ); \ 4740 OPTIONAL(line, LineField, ); \ 4741 OPTIONAL(type, MDField, ); \ 4742 OPTIONAL(isLocal, MDBoolField, ); \ 4743 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4744 OPTIONAL(scopeLine, LineField, ); \ 4745 OPTIONAL(containingType, MDField, ); \ 4746 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4747 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4748 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4749 OPTIONAL(flags, DIFlagField, ); \ 4750 OPTIONAL(spFlags, DISPFlagField, ); \ 4751 OPTIONAL(isOptimized, MDBoolField, ); \ 4752 OPTIONAL(unit, MDField, ); \ 4753 OPTIONAL(templateParams, MDField, ); \ 4754 OPTIONAL(declaration, MDField, ); \ 4755 OPTIONAL(retainedNodes, MDField, ); \ 4756 OPTIONAL(thrownTypes, MDField, ); \ 4757 OPTIONAL(annotations, MDField, ); 4758 PARSE_MD_FIELDS(); 4759 #undef VISIT_MD_FIELDS 4760 4761 // An explicit spFlags field takes precedence over individual fields in 4762 // older IR versions. 4763 DISubprogram::DISPFlags SPFlags = 4764 spFlags.Seen ? spFlags.Val 4765 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4766 isOptimized.Val, virtuality.Val); 4767 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4768 return Lex.Error( 4769 Loc, 4770 "missing 'distinct', required for !DISubprogram that is a Definition"); 4771 Result = GET_OR_DISTINCT( 4772 DISubprogram, 4773 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4774 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4775 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4776 declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val)); 4777 return false; 4778 } 4779 4780 /// parseDILexicalBlock: 4781 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4782 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4783 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4784 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4785 OPTIONAL(file, MDField, ); \ 4786 OPTIONAL(line, LineField, ); \ 4787 OPTIONAL(column, ColumnField, ); 4788 PARSE_MD_FIELDS(); 4789 #undef VISIT_MD_FIELDS 4790 4791 Result = GET_OR_DISTINCT( 4792 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4793 return false; 4794 } 4795 4796 /// parseDILexicalBlockFile: 4797 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4798 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4799 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4800 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4801 OPTIONAL(file, MDField, ); \ 4802 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4803 PARSE_MD_FIELDS(); 4804 #undef VISIT_MD_FIELDS 4805 4806 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4807 (Context, scope.Val, file.Val, discriminator.Val)); 4808 return false; 4809 } 4810 4811 /// parseDICommonBlock: 4812 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4813 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4814 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4815 REQUIRED(scope, MDField, ); \ 4816 OPTIONAL(declaration, MDField, ); \ 4817 OPTIONAL(name, MDStringField, ); \ 4818 OPTIONAL(file, MDField, ); \ 4819 OPTIONAL(line, LineField, ); 4820 PARSE_MD_FIELDS(); 4821 #undef VISIT_MD_FIELDS 4822 4823 Result = GET_OR_DISTINCT(DICommonBlock, 4824 (Context, scope.Val, declaration.Val, name.Val, 4825 file.Val, line.Val)); 4826 return false; 4827 } 4828 4829 /// parseDINamespace: 4830 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4831 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 4832 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4833 REQUIRED(scope, MDField, ); \ 4834 OPTIONAL(name, MDStringField, ); \ 4835 OPTIONAL(exportSymbols, MDBoolField, ); 4836 PARSE_MD_FIELDS(); 4837 #undef VISIT_MD_FIELDS 4838 4839 Result = GET_OR_DISTINCT(DINamespace, 4840 (Context, scope.Val, name.Val, exportSymbols.Val)); 4841 return false; 4842 } 4843 4844 /// parseDIMacro: 4845 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 4846 /// "SomeValue") 4847 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 4848 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4849 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4850 OPTIONAL(line, LineField, ); \ 4851 REQUIRED(name, MDStringField, ); \ 4852 OPTIONAL(value, MDStringField, ); 4853 PARSE_MD_FIELDS(); 4854 #undef VISIT_MD_FIELDS 4855 4856 Result = GET_OR_DISTINCT(DIMacro, 4857 (Context, type.Val, line.Val, name.Val, value.Val)); 4858 return false; 4859 } 4860 4861 /// parseDIMacroFile: 4862 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4863 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4864 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4865 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4866 OPTIONAL(line, LineField, ); \ 4867 REQUIRED(file, MDField, ); \ 4868 OPTIONAL(nodes, MDField, ); 4869 PARSE_MD_FIELDS(); 4870 #undef VISIT_MD_FIELDS 4871 4872 Result = GET_OR_DISTINCT(DIMacroFile, 4873 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4874 return false; 4875 } 4876 4877 /// parseDIModule: 4878 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 4879 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 4880 /// file: !1, line: 4, isDecl: false) 4881 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 4882 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4883 REQUIRED(scope, MDField, ); \ 4884 REQUIRED(name, MDStringField, ); \ 4885 OPTIONAL(configMacros, MDStringField, ); \ 4886 OPTIONAL(includePath, MDStringField, ); \ 4887 OPTIONAL(apinotes, MDStringField, ); \ 4888 OPTIONAL(file, MDField, ); \ 4889 OPTIONAL(line, LineField, ); \ 4890 OPTIONAL(isDecl, MDBoolField, ); 4891 PARSE_MD_FIELDS(); 4892 #undef VISIT_MD_FIELDS 4893 4894 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 4895 configMacros.Val, includePath.Val, 4896 apinotes.Val, line.Val, isDecl.Val)); 4897 return false; 4898 } 4899 4900 /// parseDITemplateTypeParameter: 4901 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 4902 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4903 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4904 OPTIONAL(name, MDStringField, ); \ 4905 REQUIRED(type, MDField, ); \ 4906 OPTIONAL(defaulted, MDBoolField, ); 4907 PARSE_MD_FIELDS(); 4908 #undef VISIT_MD_FIELDS 4909 4910 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 4911 (Context, name.Val, type.Val, defaulted.Val)); 4912 return false; 4913 } 4914 4915 /// parseDITemplateValueParameter: 4916 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4917 /// name: "V", type: !1, defaulted: false, 4918 /// value: i32 7) 4919 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4920 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4921 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4922 OPTIONAL(name, MDStringField, ); \ 4923 OPTIONAL(type, MDField, ); \ 4924 OPTIONAL(defaulted, MDBoolField, ); \ 4925 REQUIRED(value, MDField, ); 4926 4927 PARSE_MD_FIELDS(); 4928 #undef VISIT_MD_FIELDS 4929 4930 Result = GET_OR_DISTINCT( 4931 DITemplateValueParameter, 4932 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 4933 return false; 4934 } 4935 4936 /// parseDIGlobalVariable: 4937 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4938 /// file: !1, line: 7, type: !2, isLocal: false, 4939 /// isDefinition: true, templateParams: !3, 4940 /// declaration: !4, align: 8) 4941 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4942 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4943 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4944 OPTIONAL(scope, MDField, ); \ 4945 OPTIONAL(linkageName, MDStringField, ); \ 4946 OPTIONAL(file, MDField, ); \ 4947 OPTIONAL(line, LineField, ); \ 4948 OPTIONAL(type, MDField, ); \ 4949 OPTIONAL(isLocal, MDBoolField, ); \ 4950 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4951 OPTIONAL(templateParams, MDField, ); \ 4952 OPTIONAL(declaration, MDField, ); \ 4953 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4954 OPTIONAL(annotations, MDField, ); 4955 PARSE_MD_FIELDS(); 4956 #undef VISIT_MD_FIELDS 4957 4958 Result = 4959 GET_OR_DISTINCT(DIGlobalVariable, 4960 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4961 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4962 declaration.Val, templateParams.Val, align.Val, 4963 annotations.Val)); 4964 return false; 4965 } 4966 4967 /// parseDILocalVariable: 4968 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4969 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4970 /// align: 8) 4971 /// ::= !DILocalVariable(scope: !0, name: "foo", 4972 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4973 /// align: 8) 4974 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4975 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4976 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4977 OPTIONAL(name, MDStringField, ); \ 4978 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4979 OPTIONAL(file, MDField, ); \ 4980 OPTIONAL(line, LineField, ); \ 4981 OPTIONAL(type, MDField, ); \ 4982 OPTIONAL(flags, DIFlagField, ); \ 4983 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4984 OPTIONAL(annotations, MDField, ); 4985 PARSE_MD_FIELDS(); 4986 #undef VISIT_MD_FIELDS 4987 4988 Result = GET_OR_DISTINCT(DILocalVariable, 4989 (Context, scope.Val, name.Val, file.Val, line.Val, 4990 type.Val, arg.Val, flags.Val, align.Val, 4991 annotations.Val)); 4992 return false; 4993 } 4994 4995 /// parseDILabel: 4996 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4997 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 4998 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4999 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5000 REQUIRED(name, MDStringField, ); \ 5001 REQUIRED(file, MDField, ); \ 5002 REQUIRED(line, LineField, ); 5003 PARSE_MD_FIELDS(); 5004 #undef VISIT_MD_FIELDS 5005 5006 Result = GET_OR_DISTINCT(DILabel, 5007 (Context, scope.Val, name.Val, file.Val, line.Val)); 5008 return false; 5009 } 5010 5011 /// parseDIExpression: 5012 /// ::= !DIExpression(0, 7, -1) 5013 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5014 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5015 Lex.Lex(); 5016 5017 if (parseToken(lltok::lparen, "expected '(' here")) 5018 return true; 5019 5020 SmallVector<uint64_t, 8> Elements; 5021 if (Lex.getKind() != lltok::rparen) 5022 do { 5023 if (Lex.getKind() == lltok::DwarfOp) { 5024 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5025 Lex.Lex(); 5026 Elements.push_back(Op); 5027 continue; 5028 } 5029 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5030 } 5031 5032 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5033 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5034 Lex.Lex(); 5035 Elements.push_back(Op); 5036 continue; 5037 } 5038 return tokError(Twine("invalid DWARF attribute encoding '") + 5039 Lex.getStrVal() + "'"); 5040 } 5041 5042 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5043 return tokError("expected unsigned integer"); 5044 5045 auto &U = Lex.getAPSIntVal(); 5046 if (U.ugt(UINT64_MAX)) 5047 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5048 Elements.push_back(U.getZExtValue()); 5049 Lex.Lex(); 5050 } while (EatIfPresent(lltok::comma)); 5051 5052 if (parseToken(lltok::rparen, "expected ')' here")) 5053 return true; 5054 5055 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5056 return false; 5057 } 5058 5059 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) { 5060 return parseDIArgList(Result, IsDistinct, nullptr); 5061 } 5062 /// ParseDIArgList: 5063 /// ::= !DIArgList(i32 7, i64 %0) 5064 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct, 5065 PerFunctionState *PFS) { 5066 assert(PFS && "Expected valid function state"); 5067 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5068 Lex.Lex(); 5069 5070 if (parseToken(lltok::lparen, "expected '(' here")) 5071 return true; 5072 5073 SmallVector<ValueAsMetadata *, 4> Args; 5074 if (Lex.getKind() != lltok::rparen) 5075 do { 5076 Metadata *MD; 5077 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5078 return true; 5079 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5080 } while (EatIfPresent(lltok::comma)); 5081 5082 if (parseToken(lltok::rparen, "expected ')' here")) 5083 return true; 5084 5085 Result = GET_OR_DISTINCT(DIArgList, (Context, Args)); 5086 return false; 5087 } 5088 5089 /// parseDIGlobalVariableExpression: 5090 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5091 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5092 bool IsDistinct) { 5093 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5094 REQUIRED(var, MDField, ); \ 5095 REQUIRED(expr, MDField, ); 5096 PARSE_MD_FIELDS(); 5097 #undef VISIT_MD_FIELDS 5098 5099 Result = 5100 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5101 return false; 5102 } 5103 5104 /// parseDIObjCProperty: 5105 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5106 /// getter: "getFoo", attributes: 7, type: !2) 5107 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5108 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5109 OPTIONAL(name, MDStringField, ); \ 5110 OPTIONAL(file, MDField, ); \ 5111 OPTIONAL(line, LineField, ); \ 5112 OPTIONAL(setter, MDStringField, ); \ 5113 OPTIONAL(getter, MDStringField, ); \ 5114 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5115 OPTIONAL(type, MDField, ); 5116 PARSE_MD_FIELDS(); 5117 #undef VISIT_MD_FIELDS 5118 5119 Result = GET_OR_DISTINCT(DIObjCProperty, 5120 (Context, name.Val, file.Val, line.Val, setter.Val, 5121 getter.Val, attributes.Val, type.Val)); 5122 return false; 5123 } 5124 5125 /// parseDIImportedEntity: 5126 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5127 /// line: 7, name: "foo", elements: !2) 5128 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5129 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5130 REQUIRED(tag, DwarfTagField, ); \ 5131 REQUIRED(scope, MDField, ); \ 5132 OPTIONAL(entity, MDField, ); \ 5133 OPTIONAL(file, MDField, ); \ 5134 OPTIONAL(line, LineField, ); \ 5135 OPTIONAL(name, MDStringField, ); \ 5136 OPTIONAL(elements, MDField, ); 5137 PARSE_MD_FIELDS(); 5138 #undef VISIT_MD_FIELDS 5139 5140 Result = GET_OR_DISTINCT(DIImportedEntity, 5141 (Context, tag.Val, scope.Val, entity.Val, file.Val, 5142 line.Val, name.Val, elements.Val)); 5143 return false; 5144 } 5145 5146 #undef PARSE_MD_FIELD 5147 #undef NOP_FIELD 5148 #undef REQUIRE_FIELD 5149 #undef DECLARE_FIELD 5150 5151 /// parseMetadataAsValue 5152 /// ::= metadata i32 %local 5153 /// ::= metadata i32 @global 5154 /// ::= metadata i32 7 5155 /// ::= metadata !0 5156 /// ::= metadata !{...} 5157 /// ::= metadata !"string" 5158 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5159 // Note: the type 'metadata' has already been parsed. 5160 Metadata *MD; 5161 if (parseMetadata(MD, &PFS)) 5162 return true; 5163 5164 V = MetadataAsValue::get(Context, MD); 5165 return false; 5166 } 5167 5168 /// parseValueAsMetadata 5169 /// ::= i32 %local 5170 /// ::= i32 @global 5171 /// ::= i32 7 5172 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5173 PerFunctionState *PFS) { 5174 Type *Ty; 5175 LocTy Loc; 5176 if (parseType(Ty, TypeMsg, Loc)) 5177 return true; 5178 if (Ty->isMetadataTy()) 5179 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5180 5181 Value *V; 5182 if (parseValue(Ty, V, PFS)) 5183 return true; 5184 5185 MD = ValueAsMetadata::get(V); 5186 return false; 5187 } 5188 5189 /// parseMetadata 5190 /// ::= i32 %local 5191 /// ::= i32 @global 5192 /// ::= i32 7 5193 /// ::= !42 5194 /// ::= !{...} 5195 /// ::= !"string" 5196 /// ::= !DILocation(...) 5197 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5198 if (Lex.getKind() == lltok::MetadataVar) { 5199 MDNode *N; 5200 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5201 // so parsing this requires a Function State. 5202 if (Lex.getStrVal() == "DIArgList") { 5203 if (parseDIArgList(N, false, PFS)) 5204 return true; 5205 } else if (parseSpecializedMDNode(N)) { 5206 return true; 5207 } 5208 MD = N; 5209 return false; 5210 } 5211 5212 // ValueAsMetadata: 5213 // <type> <value> 5214 if (Lex.getKind() != lltok::exclaim) 5215 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5216 5217 // '!'. 5218 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5219 Lex.Lex(); 5220 5221 // MDString: 5222 // ::= '!' STRINGCONSTANT 5223 if (Lex.getKind() == lltok::StringConstant) { 5224 MDString *S; 5225 if (parseMDString(S)) 5226 return true; 5227 MD = S; 5228 return false; 5229 } 5230 5231 // MDNode: 5232 // !{ ... } 5233 // !7 5234 MDNode *N; 5235 if (parseMDNodeTail(N)) 5236 return true; 5237 MD = N; 5238 return false; 5239 } 5240 5241 //===----------------------------------------------------------------------===// 5242 // Function Parsing. 5243 //===----------------------------------------------------------------------===// 5244 5245 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5246 PerFunctionState *PFS) { 5247 if (Ty->isFunctionTy()) 5248 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5249 5250 switch (ID.Kind) { 5251 case ValID::t_LocalID: 5252 if (!PFS) 5253 return error(ID.Loc, "invalid use of function-local name"); 5254 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc); 5255 return V == nullptr; 5256 case ValID::t_LocalName: 5257 if (!PFS) 5258 return error(ID.Loc, "invalid use of function-local name"); 5259 V = PFS->getVal(ID.StrVal, Ty, ID.Loc); 5260 return V == nullptr; 5261 case ValID::t_InlineAsm: { 5262 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5263 return error(ID.Loc, "invalid type for inline asm constraint string"); 5264 V = InlineAsm::get( 5265 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, 5266 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); 5267 return false; 5268 } 5269 case ValID::t_GlobalName: 5270 V = getGlobalVal(ID.StrVal, Ty, ID.Loc); 5271 return V == nullptr; 5272 case ValID::t_GlobalID: 5273 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc); 5274 return V == nullptr; 5275 case ValID::t_APSInt: 5276 if (!Ty->isIntegerTy()) 5277 return error(ID.Loc, "integer constant must have integer type"); 5278 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5279 V = ConstantInt::get(Context, ID.APSIntVal); 5280 return false; 5281 case ValID::t_APFloat: 5282 if (!Ty->isFloatingPointTy() || 5283 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5284 return error(ID.Loc, "floating point constant invalid for type"); 5285 5286 // The lexer has no type info, so builds all half, bfloat, float, and double 5287 // FP constants as double. Fix this here. Long double does not need this. 5288 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5289 // Check for signaling before potentially converting and losing that info. 5290 bool IsSNAN = ID.APFloatVal.isSignaling(); 5291 bool Ignored; 5292 if (Ty->isHalfTy()) 5293 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5294 &Ignored); 5295 else if (Ty->isBFloatTy()) 5296 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5297 &Ignored); 5298 else if (Ty->isFloatTy()) 5299 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5300 &Ignored); 5301 if (IsSNAN) { 5302 // The convert call above may quiet an SNaN, so manufacture another 5303 // SNaN. The bitcast works because the payload (significand) parameter 5304 // is truncated to fit. 5305 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5306 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5307 ID.APFloatVal.isNegative(), &Payload); 5308 } 5309 } 5310 V = ConstantFP::get(Context, ID.APFloatVal); 5311 5312 if (V->getType() != Ty) 5313 return error(ID.Loc, "floating point constant does not have type '" + 5314 getTypeString(Ty) + "'"); 5315 5316 return false; 5317 case ValID::t_Null: 5318 if (!Ty->isPointerTy()) 5319 return error(ID.Loc, "null must be a pointer type"); 5320 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5321 return false; 5322 case ValID::t_Undef: 5323 // FIXME: LabelTy should not be a first-class type. 5324 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5325 return error(ID.Loc, "invalid type for undef constant"); 5326 V = UndefValue::get(Ty); 5327 return false; 5328 case ValID::t_EmptyArray: 5329 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5330 return error(ID.Loc, "invalid empty array initializer"); 5331 V = UndefValue::get(Ty); 5332 return false; 5333 case ValID::t_Zero: 5334 // FIXME: LabelTy should not be a first-class type. 5335 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5336 return error(ID.Loc, "invalid type for null constant"); 5337 V = Constant::getNullValue(Ty); 5338 return false; 5339 case ValID::t_None: 5340 if (!Ty->isTokenTy()) 5341 return error(ID.Loc, "invalid type for none constant"); 5342 V = Constant::getNullValue(Ty); 5343 return false; 5344 case ValID::t_Poison: 5345 // FIXME: LabelTy should not be a first-class type. 5346 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5347 return error(ID.Loc, "invalid type for poison constant"); 5348 V = PoisonValue::get(Ty); 5349 return false; 5350 case ValID::t_Constant: 5351 if (ID.ConstantVal->getType() != Ty) 5352 return error(ID.Loc, "constant expression type mismatch: got type '" + 5353 getTypeString(ID.ConstantVal->getType()) + 5354 "' but expected '" + getTypeString(Ty) + "'"); 5355 V = ID.ConstantVal; 5356 return false; 5357 case ValID::t_ConstantStruct: 5358 case ValID::t_PackedConstantStruct: 5359 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5360 if (ST->getNumElements() != ID.UIntVal) 5361 return error(ID.Loc, 5362 "initializer with struct type has wrong # elements"); 5363 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5364 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5365 5366 // Verify that the elements are compatible with the structtype. 5367 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5368 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5369 return error( 5370 ID.Loc, 5371 "element " + Twine(i) + 5372 " of struct initializer doesn't match struct element type"); 5373 5374 V = ConstantStruct::get( 5375 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5376 } else 5377 return error(ID.Loc, "constant expression type mismatch"); 5378 return false; 5379 } 5380 llvm_unreachable("Invalid ValID"); 5381 } 5382 5383 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5384 C = nullptr; 5385 ValID ID; 5386 auto Loc = Lex.getLoc(); 5387 if (parseValID(ID, /*PFS=*/nullptr)) 5388 return true; 5389 switch (ID.Kind) { 5390 case ValID::t_APSInt: 5391 case ValID::t_APFloat: 5392 case ValID::t_Undef: 5393 case ValID::t_Constant: 5394 case ValID::t_ConstantStruct: 5395 case ValID::t_PackedConstantStruct: { 5396 Value *V; 5397 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 5398 return true; 5399 assert(isa<Constant>(V) && "Expected a constant value"); 5400 C = cast<Constant>(V); 5401 return false; 5402 } 5403 case ValID::t_Null: 5404 C = Constant::getNullValue(Ty); 5405 return false; 5406 default: 5407 return error(Loc, "expected a constant value"); 5408 } 5409 } 5410 5411 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5412 V = nullptr; 5413 ValID ID; 5414 return parseValID(ID, PFS, Ty) || 5415 convertValIDToValue(Ty, ID, V, PFS); 5416 } 5417 5418 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5419 Type *Ty = nullptr; 5420 return parseType(Ty) || parseValue(Ty, V, PFS); 5421 } 5422 5423 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5424 PerFunctionState &PFS) { 5425 Value *V; 5426 Loc = Lex.getLoc(); 5427 if (parseTypeAndValue(V, PFS)) 5428 return true; 5429 if (!isa<BasicBlock>(V)) 5430 return error(Loc, "expected a basic block"); 5431 BB = cast<BasicBlock>(V); 5432 return false; 5433 } 5434 5435 /// FunctionHeader 5436 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5437 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5438 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5439 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5440 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5441 // parse the linkage. 5442 LocTy LinkageLoc = Lex.getLoc(); 5443 unsigned Linkage; 5444 unsigned Visibility; 5445 unsigned DLLStorageClass; 5446 bool DSOLocal; 5447 AttrBuilder RetAttrs; 5448 unsigned CC; 5449 bool HasLinkage; 5450 Type *RetType = nullptr; 5451 LocTy RetTypeLoc = Lex.getLoc(); 5452 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5453 DSOLocal) || 5454 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5455 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5456 return true; 5457 5458 // Verify that the linkage is ok. 5459 switch ((GlobalValue::LinkageTypes)Linkage) { 5460 case GlobalValue::ExternalLinkage: 5461 break; // always ok. 5462 case GlobalValue::ExternalWeakLinkage: 5463 if (IsDefine) 5464 return error(LinkageLoc, "invalid linkage for function definition"); 5465 break; 5466 case GlobalValue::PrivateLinkage: 5467 case GlobalValue::InternalLinkage: 5468 case GlobalValue::AvailableExternallyLinkage: 5469 case GlobalValue::LinkOnceAnyLinkage: 5470 case GlobalValue::LinkOnceODRLinkage: 5471 case GlobalValue::WeakAnyLinkage: 5472 case GlobalValue::WeakODRLinkage: 5473 if (!IsDefine) 5474 return error(LinkageLoc, "invalid linkage for function declaration"); 5475 break; 5476 case GlobalValue::AppendingLinkage: 5477 case GlobalValue::CommonLinkage: 5478 return error(LinkageLoc, "invalid function linkage type"); 5479 } 5480 5481 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5482 return error(LinkageLoc, 5483 "symbol with local linkage must have default visibility"); 5484 5485 if (!FunctionType::isValidReturnType(RetType)) 5486 return error(RetTypeLoc, "invalid function return type"); 5487 5488 LocTy NameLoc = Lex.getLoc(); 5489 5490 std::string FunctionName; 5491 if (Lex.getKind() == lltok::GlobalVar) { 5492 FunctionName = Lex.getStrVal(); 5493 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5494 unsigned NameID = Lex.getUIntVal(); 5495 5496 if (NameID != NumberedVals.size()) 5497 return tokError("function expected to be numbered '%" + 5498 Twine(NumberedVals.size()) + "'"); 5499 } else { 5500 return tokError("expected function name"); 5501 } 5502 5503 Lex.Lex(); 5504 5505 if (Lex.getKind() != lltok::lparen) 5506 return tokError("expected '(' in function argument list"); 5507 5508 SmallVector<ArgInfo, 8> ArgList; 5509 bool IsVarArg; 5510 AttrBuilder FuncAttrs; 5511 std::vector<unsigned> FwdRefAttrGrps; 5512 LocTy BuiltinLoc; 5513 std::string Section; 5514 std::string Partition; 5515 MaybeAlign Alignment; 5516 std::string GC; 5517 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5518 unsigned AddrSpace = 0; 5519 Constant *Prefix = nullptr; 5520 Constant *Prologue = nullptr; 5521 Constant *PersonalityFn = nullptr; 5522 Comdat *C; 5523 5524 if (parseArgumentList(ArgList, IsVarArg) || 5525 parseOptionalUnnamedAddr(UnnamedAddr) || 5526 parseOptionalProgramAddrSpace(AddrSpace) || 5527 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5528 BuiltinLoc) || 5529 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5530 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5531 parseOptionalComdat(FunctionName, C) || 5532 parseOptionalAlignment(Alignment) || 5533 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5534 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5535 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5536 (EatIfPresent(lltok::kw_personality) && 5537 parseGlobalTypeAndValue(PersonalityFn))) 5538 return true; 5539 5540 if (FuncAttrs.contains(Attribute::Builtin)) 5541 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5542 5543 // If the alignment was parsed as an attribute, move to the alignment field. 5544 if (FuncAttrs.hasAlignmentAttr()) { 5545 Alignment = FuncAttrs.getAlignment(); 5546 FuncAttrs.removeAttribute(Attribute::Alignment); 5547 } 5548 5549 // Okay, if we got here, the function is syntactically valid. Convert types 5550 // and do semantic checks. 5551 std::vector<Type*> ParamTypeList; 5552 SmallVector<AttributeSet, 8> Attrs; 5553 5554 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5555 ParamTypeList.push_back(ArgList[i].Ty); 5556 Attrs.push_back(ArgList[i].Attrs); 5557 } 5558 5559 AttributeList PAL = 5560 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5561 AttributeSet::get(Context, RetAttrs), Attrs); 5562 5563 if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy()) 5564 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5565 5566 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5567 PointerType *PFT = PointerType::get(FT, AddrSpace); 5568 5569 Fn = nullptr; 5570 GlobalValue *FwdFn = nullptr; 5571 if (!FunctionName.empty()) { 5572 // If this was a definition of a forward reference, remove the definition 5573 // from the forward reference table and fill in the forward ref. 5574 auto FRVI = ForwardRefVals.find(FunctionName); 5575 if (FRVI != ForwardRefVals.end()) { 5576 FwdFn = FRVI->second.first; 5577 if (!FwdFn->getType()->isOpaque()) { 5578 if (!FwdFn->getType()->getPointerElementType()->isFunctionTy()) 5579 return error(FRVI->second.second, "invalid forward reference to " 5580 "function as global value!"); 5581 if (FwdFn->getType() != PFT) 5582 return error(FRVI->second.second, 5583 "invalid forward reference to " 5584 "function '" + 5585 FunctionName + 5586 "' with wrong type: " 5587 "expected '" + 5588 getTypeString(PFT) + "' but was '" + 5589 getTypeString(FwdFn->getType()) + "'"); 5590 } 5591 ForwardRefVals.erase(FRVI); 5592 } else if ((Fn = M->getFunction(FunctionName))) { 5593 // Reject redefinitions. 5594 return error(NameLoc, 5595 "invalid redefinition of function '" + FunctionName + "'"); 5596 } else if (M->getNamedValue(FunctionName)) { 5597 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5598 } 5599 5600 } else { 5601 // If this is a definition of a forward referenced function, make sure the 5602 // types agree. 5603 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5604 if (I != ForwardRefValIDs.end()) { 5605 FwdFn = cast<Function>(I->second.first); 5606 if (!FwdFn->getType()->isOpaque() && FwdFn->getType() != PFT) 5607 return error(NameLoc, "type of definition and forward reference of '@" + 5608 Twine(NumberedVals.size()) + 5609 "' disagree: " 5610 "expected '" + 5611 getTypeString(PFT) + "' but was '" + 5612 getTypeString(FwdFn->getType()) + "'"); 5613 ForwardRefValIDs.erase(I); 5614 } 5615 } 5616 5617 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5618 FunctionName, M); 5619 5620 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5621 5622 if (FunctionName.empty()) 5623 NumberedVals.push_back(Fn); 5624 5625 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5626 maybeSetDSOLocal(DSOLocal, *Fn); 5627 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5628 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5629 Fn->setCallingConv(CC); 5630 Fn->setAttributes(PAL); 5631 Fn->setUnnamedAddr(UnnamedAddr); 5632 Fn->setAlignment(MaybeAlign(Alignment)); 5633 Fn->setSection(Section); 5634 Fn->setPartition(Partition); 5635 Fn->setComdat(C); 5636 Fn->setPersonalityFn(PersonalityFn); 5637 if (!GC.empty()) Fn->setGC(GC); 5638 Fn->setPrefixData(Prefix); 5639 Fn->setPrologueData(Prologue); 5640 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5641 5642 // Add all of the arguments we parsed to the function. 5643 Function::arg_iterator ArgIt = Fn->arg_begin(); 5644 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5645 // If the argument has a name, insert it into the argument symbol table. 5646 if (ArgList[i].Name.empty()) continue; 5647 5648 // Set the name, if it conflicted, it will be auto-renamed. 5649 ArgIt->setName(ArgList[i].Name); 5650 5651 if (ArgIt->getName() != ArgList[i].Name) 5652 return error(ArgList[i].Loc, 5653 "redefinition of argument '%" + ArgList[i].Name + "'"); 5654 } 5655 5656 if (FwdFn) { 5657 FwdFn->replaceAllUsesWith(Fn); 5658 FwdFn->eraseFromParent(); 5659 } 5660 5661 if (IsDefine) 5662 return false; 5663 5664 // Check the declaration has no block address forward references. 5665 ValID ID; 5666 if (FunctionName.empty()) { 5667 ID.Kind = ValID::t_GlobalID; 5668 ID.UIntVal = NumberedVals.size() - 1; 5669 } else { 5670 ID.Kind = ValID::t_GlobalName; 5671 ID.StrVal = FunctionName; 5672 } 5673 auto Blocks = ForwardRefBlockAddresses.find(ID); 5674 if (Blocks != ForwardRefBlockAddresses.end()) 5675 return error(Blocks->first.Loc, 5676 "cannot take blockaddress inside a declaration"); 5677 return false; 5678 } 5679 5680 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5681 ValID ID; 5682 if (FunctionNumber == -1) { 5683 ID.Kind = ValID::t_GlobalName; 5684 ID.StrVal = std::string(F.getName()); 5685 } else { 5686 ID.Kind = ValID::t_GlobalID; 5687 ID.UIntVal = FunctionNumber; 5688 } 5689 5690 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5691 if (Blocks == P.ForwardRefBlockAddresses.end()) 5692 return false; 5693 5694 for (const auto &I : Blocks->second) { 5695 const ValID &BBID = I.first; 5696 GlobalValue *GV = I.second; 5697 5698 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5699 "Expected local id or name"); 5700 BasicBlock *BB; 5701 if (BBID.Kind == ValID::t_LocalName) 5702 BB = getBB(BBID.StrVal, BBID.Loc); 5703 else 5704 BB = getBB(BBID.UIntVal, BBID.Loc); 5705 if (!BB) 5706 return P.error(BBID.Loc, "referenced value is not a basic block"); 5707 5708 Value *ResolvedVal = BlockAddress::get(&F, BB); 5709 ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(), 5710 ResolvedVal); 5711 if (!ResolvedVal) 5712 return true; 5713 GV->replaceAllUsesWith(ResolvedVal); 5714 GV->eraseFromParent(); 5715 } 5716 5717 P.ForwardRefBlockAddresses.erase(Blocks); 5718 return false; 5719 } 5720 5721 /// parseFunctionBody 5722 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5723 bool LLParser::parseFunctionBody(Function &Fn) { 5724 if (Lex.getKind() != lltok::lbrace) 5725 return tokError("expected '{' in function body"); 5726 Lex.Lex(); // eat the {. 5727 5728 int FunctionNumber = -1; 5729 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5730 5731 PerFunctionState PFS(*this, Fn, FunctionNumber); 5732 5733 // Resolve block addresses and allow basic blocks to be forward-declared 5734 // within this function. 5735 if (PFS.resolveForwardRefBlockAddresses()) 5736 return true; 5737 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5738 5739 // We need at least one basic block. 5740 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5741 return tokError("function body requires at least one basic block"); 5742 5743 while (Lex.getKind() != lltok::rbrace && 5744 Lex.getKind() != lltok::kw_uselistorder) 5745 if (parseBasicBlock(PFS)) 5746 return true; 5747 5748 while (Lex.getKind() != lltok::rbrace) 5749 if (parseUseListOrder(&PFS)) 5750 return true; 5751 5752 // Eat the }. 5753 Lex.Lex(); 5754 5755 // Verify function is ok. 5756 return PFS.finishFunction(); 5757 } 5758 5759 /// parseBasicBlock 5760 /// ::= (LabelStr|LabelID)? Instruction* 5761 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 5762 // If this basic block starts out with a name, remember it. 5763 std::string Name; 5764 int NameID = -1; 5765 LocTy NameLoc = Lex.getLoc(); 5766 if (Lex.getKind() == lltok::LabelStr) { 5767 Name = Lex.getStrVal(); 5768 Lex.Lex(); 5769 } else if (Lex.getKind() == lltok::LabelID) { 5770 NameID = Lex.getUIntVal(); 5771 Lex.Lex(); 5772 } 5773 5774 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 5775 if (!BB) 5776 return true; 5777 5778 std::string NameStr; 5779 5780 // parse the instructions in this block until we get a terminator. 5781 Instruction *Inst; 5782 do { 5783 // This instruction may have three possibilities for a name: a) none 5784 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5785 LocTy NameLoc = Lex.getLoc(); 5786 int NameID = -1; 5787 NameStr = ""; 5788 5789 if (Lex.getKind() == lltok::LocalVarID) { 5790 NameID = Lex.getUIntVal(); 5791 Lex.Lex(); 5792 if (parseToken(lltok::equal, "expected '=' after instruction id")) 5793 return true; 5794 } else if (Lex.getKind() == lltok::LocalVar) { 5795 NameStr = Lex.getStrVal(); 5796 Lex.Lex(); 5797 if (parseToken(lltok::equal, "expected '=' after instruction name")) 5798 return true; 5799 } 5800 5801 switch (parseInstruction(Inst, BB, PFS)) { 5802 default: 5803 llvm_unreachable("Unknown parseInstruction result!"); 5804 case InstError: return true; 5805 case InstNormal: 5806 BB->getInstList().push_back(Inst); 5807 5808 // With a normal result, we check to see if the instruction is followed by 5809 // a comma and metadata. 5810 if (EatIfPresent(lltok::comma)) 5811 if (parseInstructionMetadata(*Inst)) 5812 return true; 5813 break; 5814 case InstExtraComma: 5815 BB->getInstList().push_back(Inst); 5816 5817 // If the instruction parser ate an extra comma at the end of it, it 5818 // *must* be followed by metadata. 5819 if (parseInstructionMetadata(*Inst)) 5820 return true; 5821 break; 5822 } 5823 5824 // Set the name on the instruction. 5825 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 5826 return true; 5827 } while (!Inst->isTerminator()); 5828 5829 return false; 5830 } 5831 5832 //===----------------------------------------------------------------------===// 5833 // Instruction Parsing. 5834 //===----------------------------------------------------------------------===// 5835 5836 /// parseInstruction - parse one of the many different instructions. 5837 /// 5838 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 5839 PerFunctionState &PFS) { 5840 lltok::Kind Token = Lex.getKind(); 5841 if (Token == lltok::Eof) 5842 return tokError("found end of file when expecting more instructions"); 5843 LocTy Loc = Lex.getLoc(); 5844 unsigned KeywordVal = Lex.getUIntVal(); 5845 Lex.Lex(); // Eat the keyword. 5846 5847 switch (Token) { 5848 default: 5849 return error(Loc, "expected instruction opcode"); 5850 // Terminator Instructions. 5851 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5852 case lltok::kw_ret: 5853 return parseRet(Inst, BB, PFS); 5854 case lltok::kw_br: 5855 return parseBr(Inst, PFS); 5856 case lltok::kw_switch: 5857 return parseSwitch(Inst, PFS); 5858 case lltok::kw_indirectbr: 5859 return parseIndirectBr(Inst, PFS); 5860 case lltok::kw_invoke: 5861 return parseInvoke(Inst, PFS); 5862 case lltok::kw_resume: 5863 return parseResume(Inst, PFS); 5864 case lltok::kw_cleanupret: 5865 return parseCleanupRet(Inst, PFS); 5866 case lltok::kw_catchret: 5867 return parseCatchRet(Inst, PFS); 5868 case lltok::kw_catchswitch: 5869 return parseCatchSwitch(Inst, PFS); 5870 case lltok::kw_catchpad: 5871 return parseCatchPad(Inst, PFS); 5872 case lltok::kw_cleanuppad: 5873 return parseCleanupPad(Inst, PFS); 5874 case lltok::kw_callbr: 5875 return parseCallBr(Inst, PFS); 5876 // Unary Operators. 5877 case lltok::kw_fneg: { 5878 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5879 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 5880 if (Res != 0) 5881 return Res; 5882 if (FMF.any()) 5883 Inst->setFastMathFlags(FMF); 5884 return false; 5885 } 5886 // Binary Operators. 5887 case lltok::kw_add: 5888 case lltok::kw_sub: 5889 case lltok::kw_mul: 5890 case lltok::kw_shl: { 5891 bool NUW = EatIfPresent(lltok::kw_nuw); 5892 bool NSW = EatIfPresent(lltok::kw_nsw); 5893 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5894 5895 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 5896 return true; 5897 5898 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5899 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5900 return false; 5901 } 5902 case lltok::kw_fadd: 5903 case lltok::kw_fsub: 5904 case lltok::kw_fmul: 5905 case lltok::kw_fdiv: 5906 case lltok::kw_frem: { 5907 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5908 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 5909 if (Res != 0) 5910 return Res; 5911 if (FMF.any()) 5912 Inst->setFastMathFlags(FMF); 5913 return 0; 5914 } 5915 5916 case lltok::kw_sdiv: 5917 case lltok::kw_udiv: 5918 case lltok::kw_lshr: 5919 case lltok::kw_ashr: { 5920 bool Exact = EatIfPresent(lltok::kw_exact); 5921 5922 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 5923 return true; 5924 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5925 return false; 5926 } 5927 5928 case lltok::kw_urem: 5929 case lltok::kw_srem: 5930 return parseArithmetic(Inst, PFS, KeywordVal, 5931 /*IsFP*/ false); 5932 case lltok::kw_and: 5933 case lltok::kw_or: 5934 case lltok::kw_xor: 5935 return parseLogical(Inst, PFS, KeywordVal); 5936 case lltok::kw_icmp: 5937 return parseCompare(Inst, PFS, KeywordVal); 5938 case lltok::kw_fcmp: { 5939 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5940 int Res = parseCompare(Inst, PFS, KeywordVal); 5941 if (Res != 0) 5942 return Res; 5943 if (FMF.any()) 5944 Inst->setFastMathFlags(FMF); 5945 return 0; 5946 } 5947 5948 // Casts. 5949 case lltok::kw_trunc: 5950 case lltok::kw_zext: 5951 case lltok::kw_sext: 5952 case lltok::kw_fptrunc: 5953 case lltok::kw_fpext: 5954 case lltok::kw_bitcast: 5955 case lltok::kw_addrspacecast: 5956 case lltok::kw_uitofp: 5957 case lltok::kw_sitofp: 5958 case lltok::kw_fptoui: 5959 case lltok::kw_fptosi: 5960 case lltok::kw_inttoptr: 5961 case lltok::kw_ptrtoint: 5962 return parseCast(Inst, PFS, KeywordVal); 5963 // Other. 5964 case lltok::kw_select: { 5965 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5966 int Res = parseSelect(Inst, PFS); 5967 if (Res != 0) 5968 return Res; 5969 if (FMF.any()) { 5970 if (!isa<FPMathOperator>(Inst)) 5971 return error(Loc, "fast-math-flags specified for select without " 5972 "floating-point scalar or vector return type"); 5973 Inst->setFastMathFlags(FMF); 5974 } 5975 return 0; 5976 } 5977 case lltok::kw_va_arg: 5978 return parseVAArg(Inst, PFS); 5979 case lltok::kw_extractelement: 5980 return parseExtractElement(Inst, PFS); 5981 case lltok::kw_insertelement: 5982 return parseInsertElement(Inst, PFS); 5983 case lltok::kw_shufflevector: 5984 return parseShuffleVector(Inst, PFS); 5985 case lltok::kw_phi: { 5986 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5987 int Res = parsePHI(Inst, PFS); 5988 if (Res != 0) 5989 return Res; 5990 if (FMF.any()) { 5991 if (!isa<FPMathOperator>(Inst)) 5992 return error(Loc, "fast-math-flags specified for phi without " 5993 "floating-point scalar or vector return type"); 5994 Inst->setFastMathFlags(FMF); 5995 } 5996 return 0; 5997 } 5998 case lltok::kw_landingpad: 5999 return parseLandingPad(Inst, PFS); 6000 case lltok::kw_freeze: 6001 return parseFreeze(Inst, PFS); 6002 // Call. 6003 case lltok::kw_call: 6004 return parseCall(Inst, PFS, CallInst::TCK_None); 6005 case lltok::kw_tail: 6006 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6007 case lltok::kw_musttail: 6008 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6009 case lltok::kw_notail: 6010 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6011 // Memory. 6012 case lltok::kw_alloca: 6013 return parseAlloc(Inst, PFS); 6014 case lltok::kw_load: 6015 return parseLoad(Inst, PFS); 6016 case lltok::kw_store: 6017 return parseStore(Inst, PFS); 6018 case lltok::kw_cmpxchg: 6019 return parseCmpXchg(Inst, PFS); 6020 case lltok::kw_atomicrmw: 6021 return parseAtomicRMW(Inst, PFS); 6022 case lltok::kw_fence: 6023 return parseFence(Inst, PFS); 6024 case lltok::kw_getelementptr: 6025 return parseGetElementPtr(Inst, PFS); 6026 case lltok::kw_extractvalue: 6027 return parseExtractValue(Inst, PFS); 6028 case lltok::kw_insertvalue: 6029 return parseInsertValue(Inst, PFS); 6030 } 6031 } 6032 6033 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6034 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6035 if (Opc == Instruction::FCmp) { 6036 switch (Lex.getKind()) { 6037 default: 6038 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6039 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6040 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6041 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6042 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6043 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6044 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6045 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6046 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6047 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6048 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6049 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6050 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6051 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6052 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6053 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6054 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6055 } 6056 } else { 6057 switch (Lex.getKind()) { 6058 default: 6059 return tokError("expected icmp predicate (e.g. 'eq')"); 6060 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6061 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6062 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6063 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6064 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6065 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6066 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6067 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6068 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6069 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6070 } 6071 } 6072 Lex.Lex(); 6073 return false; 6074 } 6075 6076 //===----------------------------------------------------------------------===// 6077 // Terminator Instructions. 6078 //===----------------------------------------------------------------------===// 6079 6080 /// parseRet - parse a return instruction. 6081 /// ::= 'ret' void (',' !dbg, !1)* 6082 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6083 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6084 PerFunctionState &PFS) { 6085 SMLoc TypeLoc = Lex.getLoc(); 6086 Type *Ty = nullptr; 6087 if (parseType(Ty, true /*void allowed*/)) 6088 return true; 6089 6090 Type *ResType = PFS.getFunction().getReturnType(); 6091 6092 if (Ty->isVoidTy()) { 6093 if (!ResType->isVoidTy()) 6094 return error(TypeLoc, "value doesn't match function result type '" + 6095 getTypeString(ResType) + "'"); 6096 6097 Inst = ReturnInst::Create(Context); 6098 return false; 6099 } 6100 6101 Value *RV; 6102 if (parseValue(Ty, RV, PFS)) 6103 return true; 6104 6105 if (ResType != RV->getType()) 6106 return error(TypeLoc, "value doesn't match function result type '" + 6107 getTypeString(ResType) + "'"); 6108 6109 Inst = ReturnInst::Create(Context, RV); 6110 return false; 6111 } 6112 6113 /// parseBr 6114 /// ::= 'br' TypeAndValue 6115 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6116 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6117 LocTy Loc, Loc2; 6118 Value *Op0; 6119 BasicBlock *Op1, *Op2; 6120 if (parseTypeAndValue(Op0, Loc, PFS)) 6121 return true; 6122 6123 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6124 Inst = BranchInst::Create(BB); 6125 return false; 6126 } 6127 6128 if (Op0->getType() != Type::getInt1Ty(Context)) 6129 return error(Loc, "branch condition must have 'i1' type"); 6130 6131 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6132 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6133 parseToken(lltok::comma, "expected ',' after true destination") || 6134 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6135 return true; 6136 6137 Inst = BranchInst::Create(Op1, Op2, Op0); 6138 return false; 6139 } 6140 6141 /// parseSwitch 6142 /// Instruction 6143 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6144 /// JumpTable 6145 /// ::= (TypeAndValue ',' TypeAndValue)* 6146 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6147 LocTy CondLoc, BBLoc; 6148 Value *Cond; 6149 BasicBlock *DefaultBB; 6150 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6151 parseToken(lltok::comma, "expected ',' after switch condition") || 6152 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6153 parseToken(lltok::lsquare, "expected '[' with switch table")) 6154 return true; 6155 6156 if (!Cond->getType()->isIntegerTy()) 6157 return error(CondLoc, "switch condition must have integer type"); 6158 6159 // parse the jump table pairs. 6160 SmallPtrSet<Value*, 32> SeenCases; 6161 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6162 while (Lex.getKind() != lltok::rsquare) { 6163 Value *Constant; 6164 BasicBlock *DestBB; 6165 6166 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6167 parseToken(lltok::comma, "expected ',' after case value") || 6168 parseTypeAndBasicBlock(DestBB, PFS)) 6169 return true; 6170 6171 if (!SeenCases.insert(Constant).second) 6172 return error(CondLoc, "duplicate case value in switch"); 6173 if (!isa<ConstantInt>(Constant)) 6174 return error(CondLoc, "case value is not a constant integer"); 6175 6176 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6177 } 6178 6179 Lex.Lex(); // Eat the ']'. 6180 6181 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6182 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6183 SI->addCase(Table[i].first, Table[i].second); 6184 Inst = SI; 6185 return false; 6186 } 6187 6188 /// parseIndirectBr 6189 /// Instruction 6190 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6191 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6192 LocTy AddrLoc; 6193 Value *Address; 6194 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6195 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6196 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6197 return true; 6198 6199 if (!Address->getType()->isPointerTy()) 6200 return error(AddrLoc, "indirectbr address must have pointer type"); 6201 6202 // parse the destination list. 6203 SmallVector<BasicBlock*, 16> DestList; 6204 6205 if (Lex.getKind() != lltok::rsquare) { 6206 BasicBlock *DestBB; 6207 if (parseTypeAndBasicBlock(DestBB, PFS)) 6208 return true; 6209 DestList.push_back(DestBB); 6210 6211 while (EatIfPresent(lltok::comma)) { 6212 if (parseTypeAndBasicBlock(DestBB, PFS)) 6213 return true; 6214 DestList.push_back(DestBB); 6215 } 6216 } 6217 6218 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6219 return true; 6220 6221 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6222 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6223 IBI->addDestination(DestList[i]); 6224 Inst = IBI; 6225 return false; 6226 } 6227 6228 /// parseInvoke 6229 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6230 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6231 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6232 LocTy CallLoc = Lex.getLoc(); 6233 AttrBuilder RetAttrs, FnAttrs; 6234 std::vector<unsigned> FwdRefAttrGrps; 6235 LocTy NoBuiltinLoc; 6236 unsigned CC; 6237 unsigned InvokeAddrSpace; 6238 Type *RetType = nullptr; 6239 LocTy RetTypeLoc; 6240 ValID CalleeID; 6241 SmallVector<ParamInfo, 16> ArgList; 6242 SmallVector<OperandBundleDef, 2> BundleList; 6243 6244 BasicBlock *NormalBB, *UnwindBB; 6245 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6246 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6247 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6248 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6249 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6250 NoBuiltinLoc) || 6251 parseOptionalOperandBundles(BundleList, PFS) || 6252 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6253 parseTypeAndBasicBlock(NormalBB, PFS) || 6254 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6255 parseTypeAndBasicBlock(UnwindBB, PFS)) 6256 return true; 6257 6258 // If RetType is a non-function pointer type, then this is the short syntax 6259 // for the call, which means that RetType is just the return type. Infer the 6260 // rest of the function argument types from the arguments that are present. 6261 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6262 if (!Ty) { 6263 // Pull out the types of all of the arguments... 6264 std::vector<Type*> ParamTypes; 6265 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6266 ParamTypes.push_back(ArgList[i].V->getType()); 6267 6268 if (!FunctionType::isValidReturnType(RetType)) 6269 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6270 6271 Ty = FunctionType::get(RetType, ParamTypes, false); 6272 } 6273 6274 CalleeID.FTy = Ty; 6275 6276 // Look up the callee. 6277 Value *Callee; 6278 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6279 Callee, &PFS)) 6280 return true; 6281 6282 // Set up the Attribute for the function. 6283 SmallVector<Value *, 8> Args; 6284 SmallVector<AttributeSet, 8> ArgAttrs; 6285 6286 // Loop through FunctionType's arguments and ensure they are specified 6287 // correctly. Also, gather any parameter attributes. 6288 FunctionType::param_iterator I = Ty->param_begin(); 6289 FunctionType::param_iterator E = Ty->param_end(); 6290 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6291 Type *ExpectedTy = nullptr; 6292 if (I != E) { 6293 ExpectedTy = *I++; 6294 } else if (!Ty->isVarArg()) { 6295 return error(ArgList[i].Loc, "too many arguments specified"); 6296 } 6297 6298 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6299 return error(ArgList[i].Loc, "argument is not of expected type '" + 6300 getTypeString(ExpectedTy) + "'"); 6301 Args.push_back(ArgList[i].V); 6302 ArgAttrs.push_back(ArgList[i].Attrs); 6303 } 6304 6305 if (I != E) 6306 return error(CallLoc, "not enough parameters specified for call"); 6307 6308 if (FnAttrs.hasAlignmentAttr()) 6309 return error(CallLoc, "invoke instructions may not have an alignment"); 6310 6311 // Finish off the Attribute and check them 6312 AttributeList PAL = 6313 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6314 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6315 6316 InvokeInst *II = 6317 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6318 II->setCallingConv(CC); 6319 II->setAttributes(PAL); 6320 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6321 Inst = II; 6322 return false; 6323 } 6324 6325 /// parseResume 6326 /// ::= 'resume' TypeAndValue 6327 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6328 Value *Exn; LocTy ExnLoc; 6329 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6330 return true; 6331 6332 ResumeInst *RI = ResumeInst::Create(Exn); 6333 Inst = RI; 6334 return false; 6335 } 6336 6337 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6338 PerFunctionState &PFS) { 6339 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6340 return true; 6341 6342 while (Lex.getKind() != lltok::rsquare) { 6343 // If this isn't the first argument, we need a comma. 6344 if (!Args.empty() && 6345 parseToken(lltok::comma, "expected ',' in argument list")) 6346 return true; 6347 6348 // parse the argument. 6349 LocTy ArgLoc; 6350 Type *ArgTy = nullptr; 6351 if (parseType(ArgTy, ArgLoc)) 6352 return true; 6353 6354 Value *V; 6355 if (ArgTy->isMetadataTy()) { 6356 if (parseMetadataAsValue(V, PFS)) 6357 return true; 6358 } else { 6359 if (parseValue(ArgTy, V, PFS)) 6360 return true; 6361 } 6362 Args.push_back(V); 6363 } 6364 6365 Lex.Lex(); // Lex the ']'. 6366 return false; 6367 } 6368 6369 /// parseCleanupRet 6370 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6371 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6372 Value *CleanupPad = nullptr; 6373 6374 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6375 return true; 6376 6377 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6378 return true; 6379 6380 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6381 return true; 6382 6383 BasicBlock *UnwindBB = nullptr; 6384 if (Lex.getKind() == lltok::kw_to) { 6385 Lex.Lex(); 6386 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6387 return true; 6388 } else { 6389 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6390 return true; 6391 } 6392 } 6393 6394 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6395 return false; 6396 } 6397 6398 /// parseCatchRet 6399 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6400 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6401 Value *CatchPad = nullptr; 6402 6403 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6404 return true; 6405 6406 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6407 return true; 6408 6409 BasicBlock *BB; 6410 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6411 parseTypeAndBasicBlock(BB, PFS)) 6412 return true; 6413 6414 Inst = CatchReturnInst::Create(CatchPad, BB); 6415 return false; 6416 } 6417 6418 /// parseCatchSwitch 6419 /// ::= 'catchswitch' within Parent 6420 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6421 Value *ParentPad; 6422 6423 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6424 return true; 6425 6426 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6427 Lex.getKind() != lltok::LocalVarID) 6428 return tokError("expected scope value for catchswitch"); 6429 6430 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6431 return true; 6432 6433 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6434 return true; 6435 6436 SmallVector<BasicBlock *, 32> Table; 6437 do { 6438 BasicBlock *DestBB; 6439 if (parseTypeAndBasicBlock(DestBB, PFS)) 6440 return true; 6441 Table.push_back(DestBB); 6442 } while (EatIfPresent(lltok::comma)); 6443 6444 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6445 return true; 6446 6447 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6448 return true; 6449 6450 BasicBlock *UnwindBB = nullptr; 6451 if (EatIfPresent(lltok::kw_to)) { 6452 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6453 return true; 6454 } else { 6455 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6456 return true; 6457 } 6458 6459 auto *CatchSwitch = 6460 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6461 for (BasicBlock *DestBB : Table) 6462 CatchSwitch->addHandler(DestBB); 6463 Inst = CatchSwitch; 6464 return false; 6465 } 6466 6467 /// parseCatchPad 6468 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6469 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6470 Value *CatchSwitch = nullptr; 6471 6472 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6473 return true; 6474 6475 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6476 return tokError("expected scope value for catchpad"); 6477 6478 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6479 return true; 6480 6481 SmallVector<Value *, 8> Args; 6482 if (parseExceptionArgs(Args, PFS)) 6483 return true; 6484 6485 Inst = CatchPadInst::Create(CatchSwitch, Args); 6486 return false; 6487 } 6488 6489 /// parseCleanupPad 6490 /// ::= 'cleanuppad' within Parent ParamList 6491 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6492 Value *ParentPad = nullptr; 6493 6494 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6495 return true; 6496 6497 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6498 Lex.getKind() != lltok::LocalVarID) 6499 return tokError("expected scope value for cleanuppad"); 6500 6501 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6502 return true; 6503 6504 SmallVector<Value *, 8> Args; 6505 if (parseExceptionArgs(Args, PFS)) 6506 return true; 6507 6508 Inst = CleanupPadInst::Create(ParentPad, Args); 6509 return false; 6510 } 6511 6512 //===----------------------------------------------------------------------===// 6513 // Unary Operators. 6514 //===----------------------------------------------------------------------===// 6515 6516 /// parseUnaryOp 6517 /// ::= UnaryOp TypeAndValue ',' Value 6518 /// 6519 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6520 /// operand is allowed. 6521 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6522 unsigned Opc, bool IsFP) { 6523 LocTy Loc; Value *LHS; 6524 if (parseTypeAndValue(LHS, Loc, PFS)) 6525 return true; 6526 6527 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6528 : LHS->getType()->isIntOrIntVectorTy(); 6529 6530 if (!Valid) 6531 return error(Loc, "invalid operand type for instruction"); 6532 6533 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6534 return false; 6535 } 6536 6537 /// parseCallBr 6538 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6539 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6540 /// '[' LabelList ']' 6541 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6542 LocTy CallLoc = Lex.getLoc(); 6543 AttrBuilder RetAttrs, FnAttrs; 6544 std::vector<unsigned> FwdRefAttrGrps; 6545 LocTy NoBuiltinLoc; 6546 unsigned CC; 6547 Type *RetType = nullptr; 6548 LocTy RetTypeLoc; 6549 ValID CalleeID; 6550 SmallVector<ParamInfo, 16> ArgList; 6551 SmallVector<OperandBundleDef, 2> BundleList; 6552 6553 BasicBlock *DefaultDest; 6554 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6555 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6556 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6557 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6558 NoBuiltinLoc) || 6559 parseOptionalOperandBundles(BundleList, PFS) || 6560 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6561 parseTypeAndBasicBlock(DefaultDest, PFS) || 6562 parseToken(lltok::lsquare, "expected '[' in callbr")) 6563 return true; 6564 6565 // parse the destination list. 6566 SmallVector<BasicBlock *, 16> IndirectDests; 6567 6568 if (Lex.getKind() != lltok::rsquare) { 6569 BasicBlock *DestBB; 6570 if (parseTypeAndBasicBlock(DestBB, PFS)) 6571 return true; 6572 IndirectDests.push_back(DestBB); 6573 6574 while (EatIfPresent(lltok::comma)) { 6575 if (parseTypeAndBasicBlock(DestBB, PFS)) 6576 return true; 6577 IndirectDests.push_back(DestBB); 6578 } 6579 } 6580 6581 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6582 return true; 6583 6584 // If RetType is a non-function pointer type, then this is the short syntax 6585 // for the call, which means that RetType is just the return type. Infer the 6586 // rest of the function argument types from the arguments that are present. 6587 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6588 if (!Ty) { 6589 // Pull out the types of all of the arguments... 6590 std::vector<Type *> ParamTypes; 6591 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6592 ParamTypes.push_back(ArgList[i].V->getType()); 6593 6594 if (!FunctionType::isValidReturnType(RetType)) 6595 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6596 6597 Ty = FunctionType::get(RetType, ParamTypes, false); 6598 } 6599 6600 CalleeID.FTy = Ty; 6601 6602 // Look up the callee. 6603 Value *Callee; 6604 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 6605 return true; 6606 6607 // Set up the Attribute for the function. 6608 SmallVector<Value *, 8> Args; 6609 SmallVector<AttributeSet, 8> ArgAttrs; 6610 6611 // Loop through FunctionType's arguments and ensure they are specified 6612 // correctly. Also, gather any parameter attributes. 6613 FunctionType::param_iterator I = Ty->param_begin(); 6614 FunctionType::param_iterator E = Ty->param_end(); 6615 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6616 Type *ExpectedTy = nullptr; 6617 if (I != E) { 6618 ExpectedTy = *I++; 6619 } else if (!Ty->isVarArg()) { 6620 return error(ArgList[i].Loc, "too many arguments specified"); 6621 } 6622 6623 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6624 return error(ArgList[i].Loc, "argument is not of expected type '" + 6625 getTypeString(ExpectedTy) + "'"); 6626 Args.push_back(ArgList[i].V); 6627 ArgAttrs.push_back(ArgList[i].Attrs); 6628 } 6629 6630 if (I != E) 6631 return error(CallLoc, "not enough parameters specified for call"); 6632 6633 if (FnAttrs.hasAlignmentAttr()) 6634 return error(CallLoc, "callbr instructions may not have an alignment"); 6635 6636 // Finish off the Attribute and check them 6637 AttributeList PAL = 6638 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6639 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6640 6641 CallBrInst *CBI = 6642 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6643 BundleList); 6644 CBI->setCallingConv(CC); 6645 CBI->setAttributes(PAL); 6646 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6647 Inst = CBI; 6648 return false; 6649 } 6650 6651 //===----------------------------------------------------------------------===// 6652 // Binary Operators. 6653 //===----------------------------------------------------------------------===// 6654 6655 /// parseArithmetic 6656 /// ::= ArithmeticOps TypeAndValue ',' Value 6657 /// 6658 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6659 /// operand is allowed. 6660 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6661 unsigned Opc, bool IsFP) { 6662 LocTy Loc; Value *LHS, *RHS; 6663 if (parseTypeAndValue(LHS, Loc, PFS) || 6664 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6665 parseValue(LHS->getType(), RHS, PFS)) 6666 return true; 6667 6668 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6669 : LHS->getType()->isIntOrIntVectorTy(); 6670 6671 if (!Valid) 6672 return error(Loc, "invalid operand type for instruction"); 6673 6674 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6675 return false; 6676 } 6677 6678 /// parseLogical 6679 /// ::= ArithmeticOps TypeAndValue ',' Value { 6680 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6681 unsigned Opc) { 6682 LocTy Loc; Value *LHS, *RHS; 6683 if (parseTypeAndValue(LHS, Loc, PFS) || 6684 parseToken(lltok::comma, "expected ',' in logical operation") || 6685 parseValue(LHS->getType(), RHS, PFS)) 6686 return true; 6687 6688 if (!LHS->getType()->isIntOrIntVectorTy()) 6689 return error(Loc, 6690 "instruction requires integer or integer vector operands"); 6691 6692 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6693 return false; 6694 } 6695 6696 /// parseCompare 6697 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6698 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6699 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 6700 unsigned Opc) { 6701 // parse the integer/fp comparison predicate. 6702 LocTy Loc; 6703 unsigned Pred; 6704 Value *LHS, *RHS; 6705 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 6706 parseToken(lltok::comma, "expected ',' after compare value") || 6707 parseValue(LHS->getType(), RHS, PFS)) 6708 return true; 6709 6710 if (Opc == Instruction::FCmp) { 6711 if (!LHS->getType()->isFPOrFPVectorTy()) 6712 return error(Loc, "fcmp requires floating point operands"); 6713 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6714 } else { 6715 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6716 if (!LHS->getType()->isIntOrIntVectorTy() && 6717 !LHS->getType()->isPtrOrPtrVectorTy()) 6718 return error(Loc, "icmp requires integer operands"); 6719 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6720 } 6721 return false; 6722 } 6723 6724 //===----------------------------------------------------------------------===// 6725 // Other Instructions. 6726 //===----------------------------------------------------------------------===// 6727 6728 /// parseCast 6729 /// ::= CastOpc TypeAndValue 'to' Type 6730 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 6731 unsigned Opc) { 6732 LocTy Loc; 6733 Value *Op; 6734 Type *DestTy = nullptr; 6735 if (parseTypeAndValue(Op, Loc, PFS) || 6736 parseToken(lltok::kw_to, "expected 'to' after cast value") || 6737 parseType(DestTy)) 6738 return true; 6739 6740 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6741 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6742 return error(Loc, "invalid cast opcode for cast from '" + 6743 getTypeString(Op->getType()) + "' to '" + 6744 getTypeString(DestTy) + "'"); 6745 } 6746 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6747 return false; 6748 } 6749 6750 /// parseSelect 6751 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6752 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6753 LocTy Loc; 6754 Value *Op0, *Op1, *Op2; 6755 if (parseTypeAndValue(Op0, Loc, PFS) || 6756 parseToken(lltok::comma, "expected ',' after select condition") || 6757 parseTypeAndValue(Op1, PFS) || 6758 parseToken(lltok::comma, "expected ',' after select value") || 6759 parseTypeAndValue(Op2, PFS)) 6760 return true; 6761 6762 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6763 return error(Loc, Reason); 6764 6765 Inst = SelectInst::Create(Op0, Op1, Op2); 6766 return false; 6767 } 6768 6769 /// parseVAArg 6770 /// ::= 'va_arg' TypeAndValue ',' Type 6771 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 6772 Value *Op; 6773 Type *EltTy = nullptr; 6774 LocTy TypeLoc; 6775 if (parseTypeAndValue(Op, PFS) || 6776 parseToken(lltok::comma, "expected ',' after vaarg operand") || 6777 parseType(EltTy, TypeLoc)) 6778 return true; 6779 6780 if (!EltTy->isFirstClassType()) 6781 return error(TypeLoc, "va_arg requires operand with first class type"); 6782 6783 Inst = new VAArgInst(Op, EltTy); 6784 return false; 6785 } 6786 6787 /// parseExtractElement 6788 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6789 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6790 LocTy Loc; 6791 Value *Op0, *Op1; 6792 if (parseTypeAndValue(Op0, Loc, PFS) || 6793 parseToken(lltok::comma, "expected ',' after extract value") || 6794 parseTypeAndValue(Op1, PFS)) 6795 return true; 6796 6797 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6798 return error(Loc, "invalid extractelement operands"); 6799 6800 Inst = ExtractElementInst::Create(Op0, Op1); 6801 return false; 6802 } 6803 6804 /// parseInsertElement 6805 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6806 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6807 LocTy Loc; 6808 Value *Op0, *Op1, *Op2; 6809 if (parseTypeAndValue(Op0, Loc, PFS) || 6810 parseToken(lltok::comma, "expected ',' after insertelement value") || 6811 parseTypeAndValue(Op1, PFS) || 6812 parseToken(lltok::comma, "expected ',' after insertelement value") || 6813 parseTypeAndValue(Op2, PFS)) 6814 return true; 6815 6816 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6817 return error(Loc, "invalid insertelement operands"); 6818 6819 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6820 return false; 6821 } 6822 6823 /// parseShuffleVector 6824 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6825 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6826 LocTy Loc; 6827 Value *Op0, *Op1, *Op2; 6828 if (parseTypeAndValue(Op0, Loc, PFS) || 6829 parseToken(lltok::comma, "expected ',' after shuffle mask") || 6830 parseTypeAndValue(Op1, PFS) || 6831 parseToken(lltok::comma, "expected ',' after shuffle value") || 6832 parseTypeAndValue(Op2, PFS)) 6833 return true; 6834 6835 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6836 return error(Loc, "invalid shufflevector operands"); 6837 6838 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6839 return false; 6840 } 6841 6842 /// parsePHI 6843 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6844 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6845 Type *Ty = nullptr; LocTy TypeLoc; 6846 Value *Op0, *Op1; 6847 6848 if (parseType(Ty, TypeLoc) || 6849 parseToken(lltok::lsquare, "expected '[' in phi value list") || 6850 parseValue(Ty, Op0, PFS) || 6851 parseToken(lltok::comma, "expected ',' after insertelement value") || 6852 parseValue(Type::getLabelTy(Context), Op1, PFS) || 6853 parseToken(lltok::rsquare, "expected ']' in phi value list")) 6854 return true; 6855 6856 bool AteExtraComma = false; 6857 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6858 6859 while (true) { 6860 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6861 6862 if (!EatIfPresent(lltok::comma)) 6863 break; 6864 6865 if (Lex.getKind() == lltok::MetadataVar) { 6866 AteExtraComma = true; 6867 break; 6868 } 6869 6870 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 6871 parseValue(Ty, Op0, PFS) || 6872 parseToken(lltok::comma, "expected ',' after insertelement value") || 6873 parseValue(Type::getLabelTy(Context), Op1, PFS) || 6874 parseToken(lltok::rsquare, "expected ']' in phi value list")) 6875 return true; 6876 } 6877 6878 if (!Ty->isFirstClassType()) 6879 return error(TypeLoc, "phi node must have first class type"); 6880 6881 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6882 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6883 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6884 Inst = PN; 6885 return AteExtraComma ? InstExtraComma : InstNormal; 6886 } 6887 6888 /// parseLandingPad 6889 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6890 /// Clause 6891 /// ::= 'catch' TypeAndValue 6892 /// ::= 'filter' 6893 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6894 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6895 Type *Ty = nullptr; LocTy TyLoc; 6896 6897 if (parseType(Ty, TyLoc)) 6898 return true; 6899 6900 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6901 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6902 6903 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6904 LandingPadInst::ClauseType CT; 6905 if (EatIfPresent(lltok::kw_catch)) 6906 CT = LandingPadInst::Catch; 6907 else if (EatIfPresent(lltok::kw_filter)) 6908 CT = LandingPadInst::Filter; 6909 else 6910 return tokError("expected 'catch' or 'filter' clause type"); 6911 6912 Value *V; 6913 LocTy VLoc; 6914 if (parseTypeAndValue(V, VLoc, PFS)) 6915 return true; 6916 6917 // A 'catch' type expects a non-array constant. A filter clause expects an 6918 // array constant. 6919 if (CT == LandingPadInst::Catch) { 6920 if (isa<ArrayType>(V->getType())) 6921 error(VLoc, "'catch' clause has an invalid type"); 6922 } else { 6923 if (!isa<ArrayType>(V->getType())) 6924 error(VLoc, "'filter' clause has an invalid type"); 6925 } 6926 6927 Constant *CV = dyn_cast<Constant>(V); 6928 if (!CV) 6929 return error(VLoc, "clause argument must be a constant"); 6930 LP->addClause(CV); 6931 } 6932 6933 Inst = LP.release(); 6934 return false; 6935 } 6936 6937 /// parseFreeze 6938 /// ::= 'freeze' Type Value 6939 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 6940 LocTy Loc; 6941 Value *Op; 6942 if (parseTypeAndValue(Op, Loc, PFS)) 6943 return true; 6944 6945 Inst = new FreezeInst(Op); 6946 return false; 6947 } 6948 6949 /// parseCall 6950 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6951 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6952 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6953 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6954 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6955 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6956 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6957 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6958 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 6959 CallInst::TailCallKind TCK) { 6960 AttrBuilder RetAttrs, FnAttrs; 6961 std::vector<unsigned> FwdRefAttrGrps; 6962 LocTy BuiltinLoc; 6963 unsigned CallAddrSpace; 6964 unsigned CC; 6965 Type *RetType = nullptr; 6966 LocTy RetTypeLoc; 6967 ValID CalleeID; 6968 SmallVector<ParamInfo, 16> ArgList; 6969 SmallVector<OperandBundleDef, 2> BundleList; 6970 LocTy CallLoc = Lex.getLoc(); 6971 6972 if (TCK != CallInst::TCK_None && 6973 parseToken(lltok::kw_call, 6974 "expected 'tail call', 'musttail call', or 'notail call'")) 6975 return true; 6976 6977 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6978 6979 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6980 parseOptionalProgramAddrSpace(CallAddrSpace) || 6981 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6982 parseValID(CalleeID, &PFS) || 6983 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6984 PFS.getFunction().isVarArg()) || 6985 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6986 parseOptionalOperandBundles(BundleList, PFS)) 6987 return true; 6988 6989 // If RetType is a non-function pointer type, then this is the short syntax 6990 // for the call, which means that RetType is just the return type. Infer the 6991 // rest of the function argument types from the arguments that are present. 6992 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6993 if (!Ty) { 6994 // Pull out the types of all of the arguments... 6995 std::vector<Type*> ParamTypes; 6996 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6997 ParamTypes.push_back(ArgList[i].V->getType()); 6998 6999 if (!FunctionType::isValidReturnType(RetType)) 7000 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7001 7002 Ty = FunctionType::get(RetType, ParamTypes, false); 7003 } 7004 7005 CalleeID.FTy = Ty; 7006 7007 // Look up the callee. 7008 Value *Callee; 7009 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7010 &PFS)) 7011 return true; 7012 7013 // Set up the Attribute for the function. 7014 SmallVector<AttributeSet, 8> Attrs; 7015 7016 SmallVector<Value*, 8> Args; 7017 7018 // Loop through FunctionType's arguments and ensure they are specified 7019 // correctly. Also, gather any parameter attributes. 7020 FunctionType::param_iterator I = Ty->param_begin(); 7021 FunctionType::param_iterator E = Ty->param_end(); 7022 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7023 Type *ExpectedTy = nullptr; 7024 if (I != E) { 7025 ExpectedTy = *I++; 7026 } else if (!Ty->isVarArg()) { 7027 return error(ArgList[i].Loc, "too many arguments specified"); 7028 } 7029 7030 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7031 return error(ArgList[i].Loc, "argument is not of expected type '" + 7032 getTypeString(ExpectedTy) + "'"); 7033 Args.push_back(ArgList[i].V); 7034 Attrs.push_back(ArgList[i].Attrs); 7035 } 7036 7037 if (I != E) 7038 return error(CallLoc, "not enough parameters specified for call"); 7039 7040 if (FnAttrs.hasAlignmentAttr()) 7041 return error(CallLoc, "call instructions may not have an alignment"); 7042 7043 // Finish off the Attribute and check them 7044 AttributeList PAL = 7045 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7046 AttributeSet::get(Context, RetAttrs), Attrs); 7047 7048 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7049 CI->setTailCallKind(TCK); 7050 CI->setCallingConv(CC); 7051 if (FMF.any()) { 7052 if (!isa<FPMathOperator>(CI)) { 7053 CI->deleteValue(); 7054 return error(CallLoc, "fast-math-flags specified for call without " 7055 "floating-point scalar or vector return type"); 7056 } 7057 CI->setFastMathFlags(FMF); 7058 } 7059 CI->setAttributes(PAL); 7060 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7061 Inst = CI; 7062 return false; 7063 } 7064 7065 //===----------------------------------------------------------------------===// 7066 // Memory Instructions. 7067 //===----------------------------------------------------------------------===// 7068 7069 /// parseAlloc 7070 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7071 /// (',' 'align' i32)? (',', 'addrspace(n))? 7072 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7073 Value *Size = nullptr; 7074 LocTy SizeLoc, TyLoc, ASLoc; 7075 MaybeAlign Alignment; 7076 unsigned AddrSpace = 0; 7077 Type *Ty = nullptr; 7078 7079 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7080 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7081 7082 if (parseType(Ty, TyLoc)) 7083 return true; 7084 7085 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7086 return error(TyLoc, "invalid type for alloca"); 7087 7088 bool AteExtraComma = false; 7089 if (EatIfPresent(lltok::comma)) { 7090 if (Lex.getKind() == lltok::kw_align) { 7091 if (parseOptionalAlignment(Alignment)) 7092 return true; 7093 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7094 return true; 7095 } else if (Lex.getKind() == lltok::kw_addrspace) { 7096 ASLoc = Lex.getLoc(); 7097 if (parseOptionalAddrSpace(AddrSpace)) 7098 return true; 7099 } else if (Lex.getKind() == lltok::MetadataVar) { 7100 AteExtraComma = true; 7101 } else { 7102 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7103 return true; 7104 if (EatIfPresent(lltok::comma)) { 7105 if (Lex.getKind() == lltok::kw_align) { 7106 if (parseOptionalAlignment(Alignment)) 7107 return true; 7108 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7109 return true; 7110 } else if (Lex.getKind() == lltok::kw_addrspace) { 7111 ASLoc = Lex.getLoc(); 7112 if (parseOptionalAddrSpace(AddrSpace)) 7113 return true; 7114 } else if (Lex.getKind() == lltok::MetadataVar) { 7115 AteExtraComma = true; 7116 } 7117 } 7118 } 7119 } 7120 7121 if (Size && !Size->getType()->isIntegerTy()) 7122 return error(SizeLoc, "element count must have integer type"); 7123 7124 SmallPtrSet<Type *, 4> Visited; 7125 if (!Alignment && !Ty->isSized(&Visited)) 7126 return error(TyLoc, "Cannot allocate unsized type"); 7127 if (!Alignment) 7128 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7129 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7130 AI->setUsedWithInAlloca(IsInAlloca); 7131 AI->setSwiftError(IsSwiftError); 7132 Inst = AI; 7133 return AteExtraComma ? InstExtraComma : InstNormal; 7134 } 7135 7136 /// parseLoad 7137 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7138 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7139 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7140 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7141 Value *Val; LocTy Loc; 7142 MaybeAlign Alignment; 7143 bool AteExtraComma = false; 7144 bool isAtomic = false; 7145 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7146 SyncScope::ID SSID = SyncScope::System; 7147 7148 if (Lex.getKind() == lltok::kw_atomic) { 7149 isAtomic = true; 7150 Lex.Lex(); 7151 } 7152 7153 bool isVolatile = false; 7154 if (Lex.getKind() == lltok::kw_volatile) { 7155 isVolatile = true; 7156 Lex.Lex(); 7157 } 7158 7159 Type *Ty; 7160 LocTy ExplicitTypeLoc = Lex.getLoc(); 7161 if (parseType(Ty) || 7162 parseToken(lltok::comma, "expected comma after load's type") || 7163 parseTypeAndValue(Val, Loc, PFS) || 7164 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7165 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7166 return true; 7167 7168 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7169 return error(Loc, "load operand must be a pointer to a first class type"); 7170 if (isAtomic && !Alignment) 7171 return error(Loc, "atomic load must have explicit non-zero alignment"); 7172 if (Ordering == AtomicOrdering::Release || 7173 Ordering == AtomicOrdering::AcquireRelease) 7174 return error(Loc, "atomic load cannot use Release ordering"); 7175 7176 if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) { 7177 return error( 7178 ExplicitTypeLoc, 7179 typeComparisonErrorMessage( 7180 "explicit pointee type doesn't match operand's pointee type", Ty, 7181 cast<PointerType>(Val->getType())->getElementType())); 7182 } 7183 SmallPtrSet<Type *, 4> Visited; 7184 if (!Alignment && !Ty->isSized(&Visited)) 7185 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7186 if (!Alignment) 7187 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7188 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7189 return AteExtraComma ? InstExtraComma : InstNormal; 7190 } 7191 7192 /// parseStore 7193 7194 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7195 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7196 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7197 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7198 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7199 MaybeAlign Alignment; 7200 bool AteExtraComma = false; 7201 bool isAtomic = false; 7202 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7203 SyncScope::ID SSID = SyncScope::System; 7204 7205 if (Lex.getKind() == lltok::kw_atomic) { 7206 isAtomic = true; 7207 Lex.Lex(); 7208 } 7209 7210 bool isVolatile = false; 7211 if (Lex.getKind() == lltok::kw_volatile) { 7212 isVolatile = true; 7213 Lex.Lex(); 7214 } 7215 7216 if (parseTypeAndValue(Val, Loc, PFS) || 7217 parseToken(lltok::comma, "expected ',' after store operand") || 7218 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7219 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7220 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7221 return true; 7222 7223 if (!Ptr->getType()->isPointerTy()) 7224 return error(PtrLoc, "store operand must be a pointer"); 7225 if (!Val->getType()->isFirstClassType()) 7226 return error(Loc, "store operand must be a first class value"); 7227 if (!cast<PointerType>(Ptr->getType()) 7228 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7229 return error(Loc, "stored value and pointer type do not match"); 7230 if (isAtomic && !Alignment) 7231 return error(Loc, "atomic store must have explicit non-zero alignment"); 7232 if (Ordering == AtomicOrdering::Acquire || 7233 Ordering == AtomicOrdering::AcquireRelease) 7234 return error(Loc, "atomic store cannot use Acquire ordering"); 7235 SmallPtrSet<Type *, 4> Visited; 7236 if (!Alignment && !Val->getType()->isSized(&Visited)) 7237 return error(Loc, "storing unsized types is not allowed"); 7238 if (!Alignment) 7239 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7240 7241 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7242 return AteExtraComma ? InstExtraComma : InstNormal; 7243 } 7244 7245 /// parseCmpXchg 7246 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7247 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7248 /// 'Align'? 7249 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7250 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7251 bool AteExtraComma = false; 7252 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7253 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7254 SyncScope::ID SSID = SyncScope::System; 7255 bool isVolatile = false; 7256 bool isWeak = false; 7257 MaybeAlign Alignment; 7258 7259 if (EatIfPresent(lltok::kw_weak)) 7260 isWeak = true; 7261 7262 if (EatIfPresent(lltok::kw_volatile)) 7263 isVolatile = true; 7264 7265 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7266 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7267 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7268 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7269 parseTypeAndValue(New, NewLoc, PFS) || 7270 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7271 parseOrdering(FailureOrdering) || 7272 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7273 return true; 7274 7275 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 7276 return tokError("invalid cmpxchg success ordering"); 7277 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 7278 return tokError("invalid cmpxchg failure ordering"); 7279 if (!Ptr->getType()->isPointerTy()) 7280 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7281 if (!cast<PointerType>(Ptr->getType()) 7282 ->isOpaqueOrPointeeTypeMatches(Cmp->getType())) 7283 return error(CmpLoc, "compare value and pointer type do not match"); 7284 if (!cast<PointerType>(Ptr->getType()) 7285 ->isOpaqueOrPointeeTypeMatches(New->getType())) 7286 return error(NewLoc, "new value and pointer type do not match"); 7287 if (Cmp->getType() != New->getType()) 7288 return error(NewLoc, "compare value and new value type do not match"); 7289 if (!New->getType()->isFirstClassType()) 7290 return error(NewLoc, "cmpxchg operand must be a first class value"); 7291 7292 const Align DefaultAlignment( 7293 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7294 Cmp->getType())); 7295 7296 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7297 Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering, 7298 FailureOrdering, SSID); 7299 CXI->setVolatile(isVolatile); 7300 CXI->setWeak(isWeak); 7301 7302 Inst = CXI; 7303 return AteExtraComma ? InstExtraComma : InstNormal; 7304 } 7305 7306 /// parseAtomicRMW 7307 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7308 /// 'singlethread'? AtomicOrdering 7309 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7310 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7311 bool AteExtraComma = false; 7312 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7313 SyncScope::ID SSID = SyncScope::System; 7314 bool isVolatile = false; 7315 bool IsFP = false; 7316 AtomicRMWInst::BinOp Operation; 7317 MaybeAlign Alignment; 7318 7319 if (EatIfPresent(lltok::kw_volatile)) 7320 isVolatile = true; 7321 7322 switch (Lex.getKind()) { 7323 default: 7324 return tokError("expected binary operation in atomicrmw"); 7325 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7326 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7327 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7328 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7329 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7330 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7331 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7332 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7333 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7334 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7335 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7336 case lltok::kw_fadd: 7337 Operation = AtomicRMWInst::FAdd; 7338 IsFP = true; 7339 break; 7340 case lltok::kw_fsub: 7341 Operation = AtomicRMWInst::FSub; 7342 IsFP = true; 7343 break; 7344 } 7345 Lex.Lex(); // Eat the operation. 7346 7347 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7348 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7349 parseTypeAndValue(Val, ValLoc, PFS) || 7350 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7351 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7352 return true; 7353 7354 if (Ordering == AtomicOrdering::Unordered) 7355 return tokError("atomicrmw cannot be unordered"); 7356 if (!Ptr->getType()->isPointerTy()) 7357 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7358 if (!cast<PointerType>(Ptr->getType()) 7359 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7360 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7361 7362 if (Operation == AtomicRMWInst::Xchg) { 7363 if (!Val->getType()->isIntegerTy() && 7364 !Val->getType()->isFloatingPointTy()) { 7365 return error(ValLoc, 7366 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7367 " operand must be an integer or floating point type"); 7368 } 7369 } else if (IsFP) { 7370 if (!Val->getType()->isFloatingPointTy()) { 7371 return error(ValLoc, "atomicrmw " + 7372 AtomicRMWInst::getOperationName(Operation) + 7373 " operand must be a floating point type"); 7374 } 7375 } else { 7376 if (!Val->getType()->isIntegerTy()) { 7377 return error(ValLoc, "atomicrmw " + 7378 AtomicRMWInst::getOperationName(Operation) + 7379 " operand must be an integer"); 7380 } 7381 } 7382 7383 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7384 if (Size < 8 || (Size & (Size - 1))) 7385 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7386 " integer"); 7387 const Align DefaultAlignment( 7388 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7389 Val->getType())); 7390 AtomicRMWInst *RMWI = 7391 new AtomicRMWInst(Operation, Ptr, Val, 7392 Alignment.getValueOr(DefaultAlignment), Ordering, SSID); 7393 RMWI->setVolatile(isVolatile); 7394 Inst = RMWI; 7395 return AteExtraComma ? InstExtraComma : InstNormal; 7396 } 7397 7398 /// parseFence 7399 /// ::= 'fence' 'singlethread'? AtomicOrdering 7400 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7401 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7402 SyncScope::ID SSID = SyncScope::System; 7403 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7404 return true; 7405 7406 if (Ordering == AtomicOrdering::Unordered) 7407 return tokError("fence cannot be unordered"); 7408 if (Ordering == AtomicOrdering::Monotonic) 7409 return tokError("fence cannot be monotonic"); 7410 7411 Inst = new FenceInst(Context, Ordering, SSID); 7412 return InstNormal; 7413 } 7414 7415 /// parseGetElementPtr 7416 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7417 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7418 Value *Ptr = nullptr; 7419 Value *Val = nullptr; 7420 LocTy Loc, EltLoc; 7421 7422 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7423 7424 Type *Ty = nullptr; 7425 LocTy ExplicitTypeLoc = Lex.getLoc(); 7426 if (parseType(Ty) || 7427 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7428 parseTypeAndValue(Ptr, Loc, PFS)) 7429 return true; 7430 7431 Type *BaseType = Ptr->getType(); 7432 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7433 if (!BasePointerType) 7434 return error(Loc, "base of getelementptr must be a pointer"); 7435 7436 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 7437 return error( 7438 ExplicitTypeLoc, 7439 typeComparisonErrorMessage( 7440 "explicit pointee type doesn't match operand's pointee type", Ty, 7441 BasePointerType->getElementType())); 7442 } 7443 7444 SmallVector<Value*, 16> Indices; 7445 bool AteExtraComma = false; 7446 // GEP returns a vector of pointers if at least one of parameters is a vector. 7447 // All vector parameters should have the same vector width. 7448 ElementCount GEPWidth = BaseType->isVectorTy() 7449 ? cast<VectorType>(BaseType)->getElementCount() 7450 : ElementCount::getFixed(0); 7451 7452 while (EatIfPresent(lltok::comma)) { 7453 if (Lex.getKind() == lltok::MetadataVar) { 7454 AteExtraComma = true; 7455 break; 7456 } 7457 if (parseTypeAndValue(Val, EltLoc, PFS)) 7458 return true; 7459 if (!Val->getType()->isIntOrIntVectorTy()) 7460 return error(EltLoc, "getelementptr index must be an integer"); 7461 7462 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7463 ElementCount ValNumEl = ValVTy->getElementCount(); 7464 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7465 return error( 7466 EltLoc, 7467 "getelementptr vector index has a wrong number of elements"); 7468 GEPWidth = ValNumEl; 7469 } 7470 Indices.push_back(Val); 7471 } 7472 7473 SmallPtrSet<Type*, 4> Visited; 7474 if (!Indices.empty() && !Ty->isSized(&Visited)) 7475 return error(Loc, "base element of getelementptr must be sized"); 7476 7477 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7478 return error(Loc, "invalid getelementptr indices"); 7479 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7480 if (InBounds) 7481 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7482 return AteExtraComma ? InstExtraComma : InstNormal; 7483 } 7484 7485 /// parseExtractValue 7486 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7487 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7488 Value *Val; LocTy Loc; 7489 SmallVector<unsigned, 4> Indices; 7490 bool AteExtraComma; 7491 if (parseTypeAndValue(Val, Loc, PFS) || 7492 parseIndexList(Indices, AteExtraComma)) 7493 return true; 7494 7495 if (!Val->getType()->isAggregateType()) 7496 return error(Loc, "extractvalue operand must be aggregate type"); 7497 7498 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7499 return error(Loc, "invalid indices for extractvalue"); 7500 Inst = ExtractValueInst::Create(Val, Indices); 7501 return AteExtraComma ? InstExtraComma : InstNormal; 7502 } 7503 7504 /// parseInsertValue 7505 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7506 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7507 Value *Val0, *Val1; LocTy Loc0, Loc1; 7508 SmallVector<unsigned, 4> Indices; 7509 bool AteExtraComma; 7510 if (parseTypeAndValue(Val0, Loc0, PFS) || 7511 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7512 parseTypeAndValue(Val1, Loc1, PFS) || 7513 parseIndexList(Indices, AteExtraComma)) 7514 return true; 7515 7516 if (!Val0->getType()->isAggregateType()) 7517 return error(Loc0, "insertvalue operand must be aggregate type"); 7518 7519 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7520 if (!IndexedType) 7521 return error(Loc0, "invalid indices for insertvalue"); 7522 if (IndexedType != Val1->getType()) 7523 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7524 getTypeString(Val1->getType()) + "' instead of '" + 7525 getTypeString(IndexedType) + "'"); 7526 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7527 return AteExtraComma ? InstExtraComma : InstNormal; 7528 } 7529 7530 //===----------------------------------------------------------------------===// 7531 // Embedded metadata. 7532 //===----------------------------------------------------------------------===// 7533 7534 /// parseMDNodeVector 7535 /// ::= { Element (',' Element)* } 7536 /// Element 7537 /// ::= 'null' | TypeAndValue 7538 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7539 if (parseToken(lltok::lbrace, "expected '{' here")) 7540 return true; 7541 7542 // Check for an empty list. 7543 if (EatIfPresent(lltok::rbrace)) 7544 return false; 7545 7546 do { 7547 // Null is a special case since it is typeless. 7548 if (EatIfPresent(lltok::kw_null)) { 7549 Elts.push_back(nullptr); 7550 continue; 7551 } 7552 7553 Metadata *MD; 7554 if (parseMetadata(MD, nullptr)) 7555 return true; 7556 Elts.push_back(MD); 7557 } while (EatIfPresent(lltok::comma)); 7558 7559 return parseToken(lltok::rbrace, "expected end of metadata node"); 7560 } 7561 7562 //===----------------------------------------------------------------------===// 7563 // Use-list order directives. 7564 //===----------------------------------------------------------------------===// 7565 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7566 SMLoc Loc) { 7567 if (V->use_empty()) 7568 return error(Loc, "value has no uses"); 7569 7570 unsigned NumUses = 0; 7571 SmallDenseMap<const Use *, unsigned, 16> Order; 7572 for (const Use &U : V->uses()) { 7573 if (++NumUses > Indexes.size()) 7574 break; 7575 Order[&U] = Indexes[NumUses - 1]; 7576 } 7577 if (NumUses < 2) 7578 return error(Loc, "value only has one use"); 7579 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7580 return error(Loc, 7581 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7582 7583 V->sortUseList([&](const Use &L, const Use &R) { 7584 return Order.lookup(&L) < Order.lookup(&R); 7585 }); 7586 return false; 7587 } 7588 7589 /// parseUseListOrderIndexes 7590 /// ::= '{' uint32 (',' uint32)+ '}' 7591 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7592 SMLoc Loc = Lex.getLoc(); 7593 if (parseToken(lltok::lbrace, "expected '{' here")) 7594 return true; 7595 if (Lex.getKind() == lltok::rbrace) 7596 return Lex.Error("expected non-empty list of uselistorder indexes"); 7597 7598 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7599 // indexes should be distinct numbers in the range [0, size-1], and should 7600 // not be in order. 7601 unsigned Offset = 0; 7602 unsigned Max = 0; 7603 bool IsOrdered = true; 7604 assert(Indexes.empty() && "Expected empty order vector"); 7605 do { 7606 unsigned Index; 7607 if (parseUInt32(Index)) 7608 return true; 7609 7610 // Update consistency checks. 7611 Offset += Index - Indexes.size(); 7612 Max = std::max(Max, Index); 7613 IsOrdered &= Index == Indexes.size(); 7614 7615 Indexes.push_back(Index); 7616 } while (EatIfPresent(lltok::comma)); 7617 7618 if (parseToken(lltok::rbrace, "expected '}' here")) 7619 return true; 7620 7621 if (Indexes.size() < 2) 7622 return error(Loc, "expected >= 2 uselistorder indexes"); 7623 if (Offset != 0 || Max >= Indexes.size()) 7624 return error(Loc, 7625 "expected distinct uselistorder indexes in range [0, size)"); 7626 if (IsOrdered) 7627 return error(Loc, "expected uselistorder indexes to change the order"); 7628 7629 return false; 7630 } 7631 7632 /// parseUseListOrder 7633 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7634 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7635 SMLoc Loc = Lex.getLoc(); 7636 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7637 return true; 7638 7639 Value *V; 7640 SmallVector<unsigned, 16> Indexes; 7641 if (parseTypeAndValue(V, PFS) || 7642 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7643 parseUseListOrderIndexes(Indexes)) 7644 return true; 7645 7646 return sortUseListOrder(V, Indexes, Loc); 7647 } 7648 7649 /// parseUseListOrderBB 7650 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7651 bool LLParser::parseUseListOrderBB() { 7652 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7653 SMLoc Loc = Lex.getLoc(); 7654 Lex.Lex(); 7655 7656 ValID Fn, Label; 7657 SmallVector<unsigned, 16> Indexes; 7658 if (parseValID(Fn, /*PFS=*/nullptr) || 7659 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7660 parseValID(Label, /*PFS=*/nullptr) || 7661 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7662 parseUseListOrderIndexes(Indexes)) 7663 return true; 7664 7665 // Check the function. 7666 GlobalValue *GV; 7667 if (Fn.Kind == ValID::t_GlobalName) 7668 GV = M->getNamedValue(Fn.StrVal); 7669 else if (Fn.Kind == ValID::t_GlobalID) 7670 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7671 else 7672 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7673 if (!GV) 7674 return error(Fn.Loc, 7675 "invalid function forward reference in uselistorder_bb"); 7676 auto *F = dyn_cast<Function>(GV); 7677 if (!F) 7678 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7679 if (F->isDeclaration()) 7680 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7681 7682 // Check the basic block. 7683 if (Label.Kind == ValID::t_LocalID) 7684 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7685 if (Label.Kind != ValID::t_LocalName) 7686 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 7687 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7688 if (!V) 7689 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 7690 if (!isa<BasicBlock>(V)) 7691 return error(Label.Loc, "expected basic block in uselistorder_bb"); 7692 7693 return sortUseListOrder(V, Indexes, Loc); 7694 } 7695 7696 /// ModuleEntry 7697 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7698 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7699 bool LLParser::parseModuleEntry(unsigned ID) { 7700 assert(Lex.getKind() == lltok::kw_module); 7701 Lex.Lex(); 7702 7703 std::string Path; 7704 if (parseToken(lltok::colon, "expected ':' here") || 7705 parseToken(lltok::lparen, "expected '(' here") || 7706 parseToken(lltok::kw_path, "expected 'path' here") || 7707 parseToken(lltok::colon, "expected ':' here") || 7708 parseStringConstant(Path) || 7709 parseToken(lltok::comma, "expected ',' here") || 7710 parseToken(lltok::kw_hash, "expected 'hash' here") || 7711 parseToken(lltok::colon, "expected ':' here") || 7712 parseToken(lltok::lparen, "expected '(' here")) 7713 return true; 7714 7715 ModuleHash Hash; 7716 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 7717 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 7718 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 7719 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 7720 parseUInt32(Hash[4])) 7721 return true; 7722 7723 if (parseToken(lltok::rparen, "expected ')' here") || 7724 parseToken(lltok::rparen, "expected ')' here")) 7725 return true; 7726 7727 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7728 ModuleIdMap[ID] = ModuleEntry->first(); 7729 7730 return false; 7731 } 7732 7733 /// TypeIdEntry 7734 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7735 bool LLParser::parseTypeIdEntry(unsigned ID) { 7736 assert(Lex.getKind() == lltok::kw_typeid); 7737 Lex.Lex(); 7738 7739 std::string Name; 7740 if (parseToken(lltok::colon, "expected ':' here") || 7741 parseToken(lltok::lparen, "expected '(' here") || 7742 parseToken(lltok::kw_name, "expected 'name' here") || 7743 parseToken(lltok::colon, "expected ':' here") || 7744 parseStringConstant(Name)) 7745 return true; 7746 7747 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7748 if (parseToken(lltok::comma, "expected ',' here") || 7749 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 7750 return true; 7751 7752 // Check if this ID was forward referenced, and if so, update the 7753 // corresponding GUIDs. 7754 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7755 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7756 for (auto TIDRef : FwdRefTIDs->second) { 7757 assert(!*TIDRef.first && 7758 "Forward referenced type id GUID expected to be 0"); 7759 *TIDRef.first = GlobalValue::getGUID(Name); 7760 } 7761 ForwardRefTypeIds.erase(FwdRefTIDs); 7762 } 7763 7764 return false; 7765 } 7766 7767 /// TypeIdSummary 7768 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7769 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 7770 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 7771 parseToken(lltok::colon, "expected ':' here") || 7772 parseToken(lltok::lparen, "expected '(' here") || 7773 parseTypeTestResolution(TIS.TTRes)) 7774 return true; 7775 7776 if (EatIfPresent(lltok::comma)) { 7777 // Expect optional wpdResolutions field 7778 if (parseOptionalWpdResolutions(TIS.WPDRes)) 7779 return true; 7780 } 7781 7782 if (parseToken(lltok::rparen, "expected ')' here")) 7783 return true; 7784 7785 return false; 7786 } 7787 7788 static ValueInfo EmptyVI = 7789 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7790 7791 /// TypeIdCompatibleVtableEntry 7792 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7793 /// TypeIdCompatibleVtableInfo 7794 /// ')' 7795 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 7796 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7797 Lex.Lex(); 7798 7799 std::string Name; 7800 if (parseToken(lltok::colon, "expected ':' here") || 7801 parseToken(lltok::lparen, "expected '(' here") || 7802 parseToken(lltok::kw_name, "expected 'name' here") || 7803 parseToken(lltok::colon, "expected ':' here") || 7804 parseStringConstant(Name)) 7805 return true; 7806 7807 TypeIdCompatibleVtableInfo &TI = 7808 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7809 if (parseToken(lltok::comma, "expected ',' here") || 7810 parseToken(lltok::kw_summary, "expected 'summary' here") || 7811 parseToken(lltok::colon, "expected ':' here") || 7812 parseToken(lltok::lparen, "expected '(' here")) 7813 return true; 7814 7815 IdToIndexMapType IdToIndexMap; 7816 // parse each call edge 7817 do { 7818 uint64_t Offset; 7819 if (parseToken(lltok::lparen, "expected '(' here") || 7820 parseToken(lltok::kw_offset, "expected 'offset' here") || 7821 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7822 parseToken(lltok::comma, "expected ',' here")) 7823 return true; 7824 7825 LocTy Loc = Lex.getLoc(); 7826 unsigned GVId; 7827 ValueInfo VI; 7828 if (parseGVReference(VI, GVId)) 7829 return true; 7830 7831 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7832 // forward reference. We will save the location of the ValueInfo needing an 7833 // update, but can only do so once the std::vector is finalized. 7834 if (VI == EmptyVI) 7835 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7836 TI.push_back({Offset, VI}); 7837 7838 if (parseToken(lltok::rparen, "expected ')' in call")) 7839 return true; 7840 } while (EatIfPresent(lltok::comma)); 7841 7842 // Now that the TI vector is finalized, it is safe to save the locations 7843 // of any forward GV references that need updating later. 7844 for (auto I : IdToIndexMap) { 7845 auto &Infos = ForwardRefValueInfos[I.first]; 7846 for (auto P : I.second) { 7847 assert(TI[P.first].VTableVI == EmptyVI && 7848 "Forward referenced ValueInfo expected to be empty"); 7849 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 7850 } 7851 } 7852 7853 if (parseToken(lltok::rparen, "expected ')' here") || 7854 parseToken(lltok::rparen, "expected ')' here")) 7855 return true; 7856 7857 // Check if this ID was forward referenced, and if so, update the 7858 // corresponding GUIDs. 7859 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7860 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7861 for (auto TIDRef : FwdRefTIDs->second) { 7862 assert(!*TIDRef.first && 7863 "Forward referenced type id GUID expected to be 0"); 7864 *TIDRef.first = GlobalValue::getGUID(Name); 7865 } 7866 ForwardRefTypeIds.erase(FwdRefTIDs); 7867 } 7868 7869 return false; 7870 } 7871 7872 /// TypeTestResolution 7873 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7874 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7875 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7876 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7877 /// [',' 'inlinesBits' ':' UInt64]? ')' 7878 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 7879 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7880 parseToken(lltok::colon, "expected ':' here") || 7881 parseToken(lltok::lparen, "expected '(' here") || 7882 parseToken(lltok::kw_kind, "expected 'kind' here") || 7883 parseToken(lltok::colon, "expected ':' here")) 7884 return true; 7885 7886 switch (Lex.getKind()) { 7887 case lltok::kw_unknown: 7888 TTRes.TheKind = TypeTestResolution::Unknown; 7889 break; 7890 case lltok::kw_unsat: 7891 TTRes.TheKind = TypeTestResolution::Unsat; 7892 break; 7893 case lltok::kw_byteArray: 7894 TTRes.TheKind = TypeTestResolution::ByteArray; 7895 break; 7896 case lltok::kw_inline: 7897 TTRes.TheKind = TypeTestResolution::Inline; 7898 break; 7899 case lltok::kw_single: 7900 TTRes.TheKind = TypeTestResolution::Single; 7901 break; 7902 case lltok::kw_allOnes: 7903 TTRes.TheKind = TypeTestResolution::AllOnes; 7904 break; 7905 default: 7906 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7907 } 7908 Lex.Lex(); 7909 7910 if (parseToken(lltok::comma, "expected ',' here") || 7911 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7912 parseToken(lltok::colon, "expected ':' here") || 7913 parseUInt32(TTRes.SizeM1BitWidth)) 7914 return true; 7915 7916 // parse optional fields 7917 while (EatIfPresent(lltok::comma)) { 7918 switch (Lex.getKind()) { 7919 case lltok::kw_alignLog2: 7920 Lex.Lex(); 7921 if (parseToken(lltok::colon, "expected ':'") || 7922 parseUInt64(TTRes.AlignLog2)) 7923 return true; 7924 break; 7925 case lltok::kw_sizeM1: 7926 Lex.Lex(); 7927 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 7928 return true; 7929 break; 7930 case lltok::kw_bitMask: { 7931 unsigned Val; 7932 Lex.Lex(); 7933 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 7934 return true; 7935 assert(Val <= 0xff); 7936 TTRes.BitMask = (uint8_t)Val; 7937 break; 7938 } 7939 case lltok::kw_inlineBits: 7940 Lex.Lex(); 7941 if (parseToken(lltok::colon, "expected ':'") || 7942 parseUInt64(TTRes.InlineBits)) 7943 return true; 7944 break; 7945 default: 7946 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7947 } 7948 } 7949 7950 if (parseToken(lltok::rparen, "expected ')' here")) 7951 return true; 7952 7953 return false; 7954 } 7955 7956 /// OptionalWpdResolutions 7957 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7958 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7959 bool LLParser::parseOptionalWpdResolutions( 7960 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7961 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7962 parseToken(lltok::colon, "expected ':' here") || 7963 parseToken(lltok::lparen, "expected '(' here")) 7964 return true; 7965 7966 do { 7967 uint64_t Offset; 7968 WholeProgramDevirtResolution WPDRes; 7969 if (parseToken(lltok::lparen, "expected '(' here") || 7970 parseToken(lltok::kw_offset, "expected 'offset' here") || 7971 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7972 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 7973 parseToken(lltok::rparen, "expected ')' here")) 7974 return true; 7975 WPDResMap[Offset] = WPDRes; 7976 } while (EatIfPresent(lltok::comma)); 7977 7978 if (parseToken(lltok::rparen, "expected ')' here")) 7979 return true; 7980 7981 return false; 7982 } 7983 7984 /// WpdRes 7985 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7986 /// [',' OptionalResByArg]? ')' 7987 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7988 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7989 /// [',' OptionalResByArg]? ')' 7990 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7991 /// [',' OptionalResByArg]? ')' 7992 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7993 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7994 parseToken(lltok::colon, "expected ':' here") || 7995 parseToken(lltok::lparen, "expected '(' here") || 7996 parseToken(lltok::kw_kind, "expected 'kind' here") || 7997 parseToken(lltok::colon, "expected ':' here")) 7998 return true; 7999 8000 switch (Lex.getKind()) { 8001 case lltok::kw_indir: 8002 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8003 break; 8004 case lltok::kw_singleImpl: 8005 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8006 break; 8007 case lltok::kw_branchFunnel: 8008 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8009 break; 8010 default: 8011 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8012 } 8013 Lex.Lex(); 8014 8015 // parse optional fields 8016 while (EatIfPresent(lltok::comma)) { 8017 switch (Lex.getKind()) { 8018 case lltok::kw_singleImplName: 8019 Lex.Lex(); 8020 if (parseToken(lltok::colon, "expected ':' here") || 8021 parseStringConstant(WPDRes.SingleImplName)) 8022 return true; 8023 break; 8024 case lltok::kw_resByArg: 8025 if (parseOptionalResByArg(WPDRes.ResByArg)) 8026 return true; 8027 break; 8028 default: 8029 return error(Lex.getLoc(), 8030 "expected optional WholeProgramDevirtResolution field"); 8031 } 8032 } 8033 8034 if (parseToken(lltok::rparen, "expected ')' here")) 8035 return true; 8036 8037 return false; 8038 } 8039 8040 /// OptionalResByArg 8041 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8042 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8043 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8044 /// 'virtualConstProp' ) 8045 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8046 /// [',' 'bit' ':' UInt32]? ')' 8047 bool LLParser::parseOptionalResByArg( 8048 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8049 &ResByArg) { 8050 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8051 parseToken(lltok::colon, "expected ':' here") || 8052 parseToken(lltok::lparen, "expected '(' here")) 8053 return true; 8054 8055 do { 8056 std::vector<uint64_t> Args; 8057 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8058 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8059 parseToken(lltok::colon, "expected ':' here") || 8060 parseToken(lltok::lparen, "expected '(' here") || 8061 parseToken(lltok::kw_kind, "expected 'kind' here") || 8062 parseToken(lltok::colon, "expected ':' here")) 8063 return true; 8064 8065 WholeProgramDevirtResolution::ByArg ByArg; 8066 switch (Lex.getKind()) { 8067 case lltok::kw_indir: 8068 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8069 break; 8070 case lltok::kw_uniformRetVal: 8071 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8072 break; 8073 case lltok::kw_uniqueRetVal: 8074 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8075 break; 8076 case lltok::kw_virtualConstProp: 8077 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8078 break; 8079 default: 8080 return error(Lex.getLoc(), 8081 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8082 } 8083 Lex.Lex(); 8084 8085 // parse optional fields 8086 while (EatIfPresent(lltok::comma)) { 8087 switch (Lex.getKind()) { 8088 case lltok::kw_info: 8089 Lex.Lex(); 8090 if (parseToken(lltok::colon, "expected ':' here") || 8091 parseUInt64(ByArg.Info)) 8092 return true; 8093 break; 8094 case lltok::kw_byte: 8095 Lex.Lex(); 8096 if (parseToken(lltok::colon, "expected ':' here") || 8097 parseUInt32(ByArg.Byte)) 8098 return true; 8099 break; 8100 case lltok::kw_bit: 8101 Lex.Lex(); 8102 if (parseToken(lltok::colon, "expected ':' here") || 8103 parseUInt32(ByArg.Bit)) 8104 return true; 8105 break; 8106 default: 8107 return error(Lex.getLoc(), 8108 "expected optional whole program devirt field"); 8109 } 8110 } 8111 8112 if (parseToken(lltok::rparen, "expected ')' here")) 8113 return true; 8114 8115 ResByArg[Args] = ByArg; 8116 } while (EatIfPresent(lltok::comma)); 8117 8118 if (parseToken(lltok::rparen, "expected ')' here")) 8119 return true; 8120 8121 return false; 8122 } 8123 8124 /// OptionalResByArg 8125 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8126 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8127 if (parseToken(lltok::kw_args, "expected 'args' here") || 8128 parseToken(lltok::colon, "expected ':' here") || 8129 parseToken(lltok::lparen, "expected '(' here")) 8130 return true; 8131 8132 do { 8133 uint64_t Val; 8134 if (parseUInt64(Val)) 8135 return true; 8136 Args.push_back(Val); 8137 } while (EatIfPresent(lltok::comma)); 8138 8139 if (parseToken(lltok::rparen, "expected ')' here")) 8140 return true; 8141 8142 return false; 8143 } 8144 8145 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8146 8147 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8148 bool ReadOnly = Fwd->isReadOnly(); 8149 bool WriteOnly = Fwd->isWriteOnly(); 8150 assert(!(ReadOnly && WriteOnly)); 8151 *Fwd = Resolved; 8152 if (ReadOnly) 8153 Fwd->setReadOnly(); 8154 if (WriteOnly) 8155 Fwd->setWriteOnly(); 8156 } 8157 8158 /// Stores the given Name/GUID and associated summary into the Index. 8159 /// Also updates any forward references to the associated entry ID. 8160 void LLParser::addGlobalValueToIndex( 8161 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8162 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8163 // First create the ValueInfo utilizing the Name or GUID. 8164 ValueInfo VI; 8165 if (GUID != 0) { 8166 assert(Name.empty()); 8167 VI = Index->getOrInsertValueInfo(GUID); 8168 } else { 8169 assert(!Name.empty()); 8170 if (M) { 8171 auto *GV = M->getNamedValue(Name); 8172 assert(GV); 8173 VI = Index->getOrInsertValueInfo(GV); 8174 } else { 8175 assert( 8176 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8177 "Need a source_filename to compute GUID for local"); 8178 GUID = GlobalValue::getGUID( 8179 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8180 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8181 } 8182 } 8183 8184 // Resolve forward references from calls/refs 8185 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8186 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8187 for (auto VIRef : FwdRefVIs->second) { 8188 assert(VIRef.first->getRef() == FwdVIRef && 8189 "Forward referenced ValueInfo expected to be empty"); 8190 resolveFwdRef(VIRef.first, VI); 8191 } 8192 ForwardRefValueInfos.erase(FwdRefVIs); 8193 } 8194 8195 // Resolve forward references from aliases 8196 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8197 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8198 for (auto AliaseeRef : FwdRefAliasees->second) { 8199 assert(!AliaseeRef.first->hasAliasee() && 8200 "Forward referencing alias already has aliasee"); 8201 assert(Summary && "Aliasee must be a definition"); 8202 AliaseeRef.first->setAliasee(VI, Summary.get()); 8203 } 8204 ForwardRefAliasees.erase(FwdRefAliasees); 8205 } 8206 8207 // Add the summary if one was provided. 8208 if (Summary) 8209 Index->addGlobalValueSummary(VI, std::move(Summary)); 8210 8211 // Save the associated ValueInfo for use in later references by ID. 8212 if (ID == NumberedValueInfos.size()) 8213 NumberedValueInfos.push_back(VI); 8214 else { 8215 // Handle non-continuous numbers (to make test simplification easier). 8216 if (ID > NumberedValueInfos.size()) 8217 NumberedValueInfos.resize(ID + 1); 8218 NumberedValueInfos[ID] = VI; 8219 } 8220 } 8221 8222 /// parseSummaryIndexFlags 8223 /// ::= 'flags' ':' UInt64 8224 bool LLParser::parseSummaryIndexFlags() { 8225 assert(Lex.getKind() == lltok::kw_flags); 8226 Lex.Lex(); 8227 8228 if (parseToken(lltok::colon, "expected ':' here")) 8229 return true; 8230 uint64_t Flags; 8231 if (parseUInt64(Flags)) 8232 return true; 8233 if (Index) 8234 Index->setFlags(Flags); 8235 return false; 8236 } 8237 8238 /// parseBlockCount 8239 /// ::= 'blockcount' ':' UInt64 8240 bool LLParser::parseBlockCount() { 8241 assert(Lex.getKind() == lltok::kw_blockcount); 8242 Lex.Lex(); 8243 8244 if (parseToken(lltok::colon, "expected ':' here")) 8245 return true; 8246 uint64_t BlockCount; 8247 if (parseUInt64(BlockCount)) 8248 return true; 8249 if (Index) 8250 Index->setBlockCount(BlockCount); 8251 return false; 8252 } 8253 8254 /// parseGVEntry 8255 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8256 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8257 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8258 bool LLParser::parseGVEntry(unsigned ID) { 8259 assert(Lex.getKind() == lltok::kw_gv); 8260 Lex.Lex(); 8261 8262 if (parseToken(lltok::colon, "expected ':' here") || 8263 parseToken(lltok::lparen, "expected '(' here")) 8264 return true; 8265 8266 std::string Name; 8267 GlobalValue::GUID GUID = 0; 8268 switch (Lex.getKind()) { 8269 case lltok::kw_name: 8270 Lex.Lex(); 8271 if (parseToken(lltok::colon, "expected ':' here") || 8272 parseStringConstant(Name)) 8273 return true; 8274 // Can't create GUID/ValueInfo until we have the linkage. 8275 break; 8276 case lltok::kw_guid: 8277 Lex.Lex(); 8278 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8279 return true; 8280 break; 8281 default: 8282 return error(Lex.getLoc(), "expected name or guid tag"); 8283 } 8284 8285 if (!EatIfPresent(lltok::comma)) { 8286 // No summaries. Wrap up. 8287 if (parseToken(lltok::rparen, "expected ')' here")) 8288 return true; 8289 // This was created for a call to an external or indirect target. 8290 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8291 // created for indirect calls with VP. A Name with no GUID came from 8292 // an external definition. We pass ExternalLinkage since that is only 8293 // used when the GUID must be computed from Name, and in that case 8294 // the symbol must have external linkage. 8295 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8296 nullptr); 8297 return false; 8298 } 8299 8300 // Have a list of summaries 8301 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8302 parseToken(lltok::colon, "expected ':' here") || 8303 parseToken(lltok::lparen, "expected '(' here")) 8304 return true; 8305 do { 8306 switch (Lex.getKind()) { 8307 case lltok::kw_function: 8308 if (parseFunctionSummary(Name, GUID, ID)) 8309 return true; 8310 break; 8311 case lltok::kw_variable: 8312 if (parseVariableSummary(Name, GUID, ID)) 8313 return true; 8314 break; 8315 case lltok::kw_alias: 8316 if (parseAliasSummary(Name, GUID, ID)) 8317 return true; 8318 break; 8319 default: 8320 return error(Lex.getLoc(), "expected summary type"); 8321 } 8322 } while (EatIfPresent(lltok::comma)); 8323 8324 if (parseToken(lltok::rparen, "expected ')' here") || 8325 parseToken(lltok::rparen, "expected ')' here")) 8326 return true; 8327 8328 return false; 8329 } 8330 8331 /// FunctionSummary 8332 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8333 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8334 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8335 /// [',' OptionalRefs]? ')' 8336 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8337 unsigned ID) { 8338 assert(Lex.getKind() == lltok::kw_function); 8339 Lex.Lex(); 8340 8341 StringRef ModulePath; 8342 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8343 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8344 /*NotEligibleToImport=*/false, 8345 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8346 unsigned InstCount; 8347 std::vector<FunctionSummary::EdgeTy> Calls; 8348 FunctionSummary::TypeIdInfo TypeIdInfo; 8349 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8350 std::vector<ValueInfo> Refs; 8351 // Default is all-zeros (conservative values). 8352 FunctionSummary::FFlags FFlags = {}; 8353 if (parseToken(lltok::colon, "expected ':' here") || 8354 parseToken(lltok::lparen, "expected '(' here") || 8355 parseModuleReference(ModulePath) || 8356 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8357 parseToken(lltok::comma, "expected ',' here") || 8358 parseToken(lltok::kw_insts, "expected 'insts' here") || 8359 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8360 return true; 8361 8362 // parse optional fields 8363 while (EatIfPresent(lltok::comma)) { 8364 switch (Lex.getKind()) { 8365 case lltok::kw_funcFlags: 8366 if (parseOptionalFFlags(FFlags)) 8367 return true; 8368 break; 8369 case lltok::kw_calls: 8370 if (parseOptionalCalls(Calls)) 8371 return true; 8372 break; 8373 case lltok::kw_typeIdInfo: 8374 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8375 return true; 8376 break; 8377 case lltok::kw_refs: 8378 if (parseOptionalRefs(Refs)) 8379 return true; 8380 break; 8381 case lltok::kw_params: 8382 if (parseOptionalParamAccesses(ParamAccesses)) 8383 return true; 8384 break; 8385 default: 8386 return error(Lex.getLoc(), "expected optional function summary field"); 8387 } 8388 } 8389 8390 if (parseToken(lltok::rparen, "expected ')' here")) 8391 return true; 8392 8393 auto FS = std::make_unique<FunctionSummary>( 8394 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8395 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8396 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8397 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8398 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8399 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8400 std::move(ParamAccesses)); 8401 8402 FS->setModulePath(ModulePath); 8403 8404 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8405 ID, std::move(FS)); 8406 8407 return false; 8408 } 8409 8410 /// VariableSummary 8411 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8412 /// [',' OptionalRefs]? ')' 8413 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8414 unsigned ID) { 8415 assert(Lex.getKind() == lltok::kw_variable); 8416 Lex.Lex(); 8417 8418 StringRef ModulePath; 8419 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8420 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8421 /*NotEligibleToImport=*/false, 8422 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8423 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8424 /* WriteOnly */ false, 8425 /* Constant */ false, 8426 GlobalObject::VCallVisibilityPublic); 8427 std::vector<ValueInfo> Refs; 8428 VTableFuncList VTableFuncs; 8429 if (parseToken(lltok::colon, "expected ':' here") || 8430 parseToken(lltok::lparen, "expected '(' here") || 8431 parseModuleReference(ModulePath) || 8432 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8433 parseToken(lltok::comma, "expected ',' here") || 8434 parseGVarFlags(GVarFlags)) 8435 return true; 8436 8437 // parse optional fields 8438 while (EatIfPresent(lltok::comma)) { 8439 switch (Lex.getKind()) { 8440 case lltok::kw_vTableFuncs: 8441 if (parseOptionalVTableFuncs(VTableFuncs)) 8442 return true; 8443 break; 8444 case lltok::kw_refs: 8445 if (parseOptionalRefs(Refs)) 8446 return true; 8447 break; 8448 default: 8449 return error(Lex.getLoc(), "expected optional variable summary field"); 8450 } 8451 } 8452 8453 if (parseToken(lltok::rparen, "expected ')' here")) 8454 return true; 8455 8456 auto GS = 8457 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8458 8459 GS->setModulePath(ModulePath); 8460 GS->setVTableFuncs(std::move(VTableFuncs)); 8461 8462 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8463 ID, std::move(GS)); 8464 8465 return false; 8466 } 8467 8468 /// AliasSummary 8469 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8470 /// 'aliasee' ':' GVReference ')' 8471 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8472 unsigned ID) { 8473 assert(Lex.getKind() == lltok::kw_alias); 8474 LocTy Loc = Lex.getLoc(); 8475 Lex.Lex(); 8476 8477 StringRef ModulePath; 8478 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8479 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8480 /*NotEligibleToImport=*/false, 8481 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8482 if (parseToken(lltok::colon, "expected ':' here") || 8483 parseToken(lltok::lparen, "expected '(' here") || 8484 parseModuleReference(ModulePath) || 8485 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8486 parseToken(lltok::comma, "expected ',' here") || 8487 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8488 parseToken(lltok::colon, "expected ':' here")) 8489 return true; 8490 8491 ValueInfo AliaseeVI; 8492 unsigned GVId; 8493 if (parseGVReference(AliaseeVI, GVId)) 8494 return true; 8495 8496 if (parseToken(lltok::rparen, "expected ')' here")) 8497 return true; 8498 8499 auto AS = std::make_unique<AliasSummary>(GVFlags); 8500 8501 AS->setModulePath(ModulePath); 8502 8503 // Record forward reference if the aliasee is not parsed yet. 8504 if (AliaseeVI.getRef() == FwdVIRef) { 8505 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8506 } else { 8507 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8508 assert(Summary && "Aliasee must be a definition"); 8509 AS->setAliasee(AliaseeVI, Summary); 8510 } 8511 8512 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8513 ID, std::move(AS)); 8514 8515 return false; 8516 } 8517 8518 /// Flag 8519 /// ::= [0|1] 8520 bool LLParser::parseFlag(unsigned &Val) { 8521 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8522 return tokError("expected integer"); 8523 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8524 Lex.Lex(); 8525 return false; 8526 } 8527 8528 /// OptionalFFlags 8529 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8530 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8531 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8532 /// [',' 'noInline' ':' Flag]? ')' 8533 /// [',' 'alwaysInline' ':' Flag]? ')' 8534 /// [',' 'noUnwind' ':' Flag]? ')' 8535 /// [',' 'mayThrow' ':' Flag]? ')' 8536 /// [',' 'hasUnknownCall' ':' Flag]? ')' 8537 8538 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8539 assert(Lex.getKind() == lltok::kw_funcFlags); 8540 Lex.Lex(); 8541 8542 if (parseToken(lltok::colon, "expected ':' in funcFlags") || 8543 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8544 return true; 8545 8546 do { 8547 unsigned Val = 0; 8548 switch (Lex.getKind()) { 8549 case lltok::kw_readNone: 8550 Lex.Lex(); 8551 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8552 return true; 8553 FFlags.ReadNone = Val; 8554 break; 8555 case lltok::kw_readOnly: 8556 Lex.Lex(); 8557 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8558 return true; 8559 FFlags.ReadOnly = Val; 8560 break; 8561 case lltok::kw_noRecurse: 8562 Lex.Lex(); 8563 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8564 return true; 8565 FFlags.NoRecurse = Val; 8566 break; 8567 case lltok::kw_returnDoesNotAlias: 8568 Lex.Lex(); 8569 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8570 return true; 8571 FFlags.ReturnDoesNotAlias = Val; 8572 break; 8573 case lltok::kw_noInline: 8574 Lex.Lex(); 8575 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8576 return true; 8577 FFlags.NoInline = Val; 8578 break; 8579 case lltok::kw_alwaysInline: 8580 Lex.Lex(); 8581 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8582 return true; 8583 FFlags.AlwaysInline = Val; 8584 break; 8585 case lltok::kw_noUnwind: 8586 Lex.Lex(); 8587 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8588 return true; 8589 FFlags.NoUnwind = Val; 8590 break; 8591 case lltok::kw_mayThrow: 8592 Lex.Lex(); 8593 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8594 return true; 8595 FFlags.MayThrow = Val; 8596 break; 8597 case lltok::kw_hasUnknownCall: 8598 Lex.Lex(); 8599 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8600 return true; 8601 FFlags.HasUnknownCall = Val; 8602 break; 8603 default: 8604 return error(Lex.getLoc(), "expected function flag type"); 8605 } 8606 } while (EatIfPresent(lltok::comma)); 8607 8608 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8609 return true; 8610 8611 return false; 8612 } 8613 8614 /// OptionalCalls 8615 /// := 'calls' ':' '(' Call [',' Call]* ')' 8616 /// Call ::= '(' 'callee' ':' GVReference 8617 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8618 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8619 assert(Lex.getKind() == lltok::kw_calls); 8620 Lex.Lex(); 8621 8622 if (parseToken(lltok::colon, "expected ':' in calls") || 8623 parseToken(lltok::lparen, "expected '(' in calls")) 8624 return true; 8625 8626 IdToIndexMapType IdToIndexMap; 8627 // parse each call edge 8628 do { 8629 ValueInfo VI; 8630 if (parseToken(lltok::lparen, "expected '(' in call") || 8631 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8632 parseToken(lltok::colon, "expected ':'")) 8633 return true; 8634 8635 LocTy Loc = Lex.getLoc(); 8636 unsigned GVId; 8637 if (parseGVReference(VI, GVId)) 8638 return true; 8639 8640 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8641 unsigned RelBF = 0; 8642 if (EatIfPresent(lltok::comma)) { 8643 // Expect either hotness or relbf 8644 if (EatIfPresent(lltok::kw_hotness)) { 8645 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8646 return true; 8647 } else { 8648 if (parseToken(lltok::kw_relbf, "expected relbf") || 8649 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8650 return true; 8651 } 8652 } 8653 // Keep track of the Call array index needing a forward reference. 8654 // We will save the location of the ValueInfo needing an update, but 8655 // can only do so once the std::vector is finalized. 8656 if (VI.getRef() == FwdVIRef) 8657 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8658 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8659 8660 if (parseToken(lltok::rparen, "expected ')' in call")) 8661 return true; 8662 } while (EatIfPresent(lltok::comma)); 8663 8664 // Now that the Calls vector is finalized, it is safe to save the locations 8665 // of any forward GV references that need updating later. 8666 for (auto I : IdToIndexMap) { 8667 auto &Infos = ForwardRefValueInfos[I.first]; 8668 for (auto P : I.second) { 8669 assert(Calls[P.first].first.getRef() == FwdVIRef && 8670 "Forward referenced ValueInfo expected to be empty"); 8671 Infos.emplace_back(&Calls[P.first].first, P.second); 8672 } 8673 } 8674 8675 if (parseToken(lltok::rparen, "expected ')' in calls")) 8676 return true; 8677 8678 return false; 8679 } 8680 8681 /// Hotness 8682 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8683 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8684 switch (Lex.getKind()) { 8685 case lltok::kw_unknown: 8686 Hotness = CalleeInfo::HotnessType::Unknown; 8687 break; 8688 case lltok::kw_cold: 8689 Hotness = CalleeInfo::HotnessType::Cold; 8690 break; 8691 case lltok::kw_none: 8692 Hotness = CalleeInfo::HotnessType::None; 8693 break; 8694 case lltok::kw_hot: 8695 Hotness = CalleeInfo::HotnessType::Hot; 8696 break; 8697 case lltok::kw_critical: 8698 Hotness = CalleeInfo::HotnessType::Critical; 8699 break; 8700 default: 8701 return error(Lex.getLoc(), "invalid call edge hotness"); 8702 } 8703 Lex.Lex(); 8704 return false; 8705 } 8706 8707 /// OptionalVTableFuncs 8708 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8709 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8710 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8711 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8712 Lex.Lex(); 8713 8714 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") || 8715 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8716 return true; 8717 8718 IdToIndexMapType IdToIndexMap; 8719 // parse each virtual function pair 8720 do { 8721 ValueInfo VI; 8722 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 8723 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8724 parseToken(lltok::colon, "expected ':'")) 8725 return true; 8726 8727 LocTy Loc = Lex.getLoc(); 8728 unsigned GVId; 8729 if (parseGVReference(VI, GVId)) 8730 return true; 8731 8732 uint64_t Offset; 8733 if (parseToken(lltok::comma, "expected comma") || 8734 parseToken(lltok::kw_offset, "expected offset") || 8735 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 8736 return true; 8737 8738 // Keep track of the VTableFuncs array index needing a forward reference. 8739 // We will save the location of the ValueInfo needing an update, but 8740 // can only do so once the std::vector is finalized. 8741 if (VI == EmptyVI) 8742 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8743 VTableFuncs.push_back({VI, Offset}); 8744 8745 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 8746 return true; 8747 } while (EatIfPresent(lltok::comma)); 8748 8749 // Now that the VTableFuncs vector is finalized, it is safe to save the 8750 // locations of any forward GV references that need updating later. 8751 for (auto I : IdToIndexMap) { 8752 auto &Infos = ForwardRefValueInfos[I.first]; 8753 for (auto P : I.second) { 8754 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8755 "Forward referenced ValueInfo expected to be empty"); 8756 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 8757 } 8758 } 8759 8760 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8761 return true; 8762 8763 return false; 8764 } 8765 8766 /// ParamNo := 'param' ':' UInt64 8767 bool LLParser::parseParamNo(uint64_t &ParamNo) { 8768 if (parseToken(lltok::kw_param, "expected 'param' here") || 8769 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 8770 return true; 8771 return false; 8772 } 8773 8774 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 8775 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 8776 APSInt Lower; 8777 APSInt Upper; 8778 auto ParseAPSInt = [&](APSInt &Val) { 8779 if (Lex.getKind() != lltok::APSInt) 8780 return tokError("expected integer"); 8781 Val = Lex.getAPSIntVal(); 8782 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 8783 Val.setIsSigned(true); 8784 Lex.Lex(); 8785 return false; 8786 }; 8787 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 8788 parseToken(lltok::colon, "expected ':' here") || 8789 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 8790 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 8791 parseToken(lltok::rsquare, "expected ']' here")) 8792 return true; 8793 8794 ++Upper; 8795 Range = 8796 (Lower == Upper && !Lower.isMaxValue()) 8797 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 8798 : ConstantRange(Lower, Upper); 8799 8800 return false; 8801 } 8802 8803 /// ParamAccessCall 8804 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 8805 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 8806 IdLocListType &IdLocList) { 8807 if (parseToken(lltok::lparen, "expected '(' here") || 8808 parseToken(lltok::kw_callee, "expected 'callee' here") || 8809 parseToken(lltok::colon, "expected ':' here")) 8810 return true; 8811 8812 unsigned GVId; 8813 ValueInfo VI; 8814 LocTy Loc = Lex.getLoc(); 8815 if (parseGVReference(VI, GVId)) 8816 return true; 8817 8818 Call.Callee = VI; 8819 IdLocList.emplace_back(GVId, Loc); 8820 8821 if (parseToken(lltok::comma, "expected ',' here") || 8822 parseParamNo(Call.ParamNo) || 8823 parseToken(lltok::comma, "expected ',' here") || 8824 parseParamAccessOffset(Call.Offsets)) 8825 return true; 8826 8827 if (parseToken(lltok::rparen, "expected ')' here")) 8828 return true; 8829 8830 return false; 8831 } 8832 8833 /// ParamAccess 8834 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 8835 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 8836 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 8837 IdLocListType &IdLocList) { 8838 if (parseToken(lltok::lparen, "expected '(' here") || 8839 parseParamNo(Param.ParamNo) || 8840 parseToken(lltok::comma, "expected ',' here") || 8841 parseParamAccessOffset(Param.Use)) 8842 return true; 8843 8844 if (EatIfPresent(lltok::comma)) { 8845 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 8846 parseToken(lltok::colon, "expected ':' here") || 8847 parseToken(lltok::lparen, "expected '(' here")) 8848 return true; 8849 do { 8850 FunctionSummary::ParamAccess::Call Call; 8851 if (parseParamAccessCall(Call, IdLocList)) 8852 return true; 8853 Param.Calls.push_back(Call); 8854 } while (EatIfPresent(lltok::comma)); 8855 8856 if (parseToken(lltok::rparen, "expected ')' here")) 8857 return true; 8858 } 8859 8860 if (parseToken(lltok::rparen, "expected ')' here")) 8861 return true; 8862 8863 return false; 8864 } 8865 8866 /// OptionalParamAccesses 8867 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 8868 bool LLParser::parseOptionalParamAccesses( 8869 std::vector<FunctionSummary::ParamAccess> &Params) { 8870 assert(Lex.getKind() == lltok::kw_params); 8871 Lex.Lex(); 8872 8873 if (parseToken(lltok::colon, "expected ':' here") || 8874 parseToken(lltok::lparen, "expected '(' here")) 8875 return true; 8876 8877 IdLocListType VContexts; 8878 size_t CallsNum = 0; 8879 do { 8880 FunctionSummary::ParamAccess ParamAccess; 8881 if (parseParamAccess(ParamAccess, VContexts)) 8882 return true; 8883 CallsNum += ParamAccess.Calls.size(); 8884 assert(VContexts.size() == CallsNum); 8885 (void)CallsNum; 8886 Params.emplace_back(std::move(ParamAccess)); 8887 } while (EatIfPresent(lltok::comma)); 8888 8889 if (parseToken(lltok::rparen, "expected ')' here")) 8890 return true; 8891 8892 // Now that the Params is finalized, it is safe to save the locations 8893 // of any forward GV references that need updating later. 8894 IdLocListType::const_iterator ItContext = VContexts.begin(); 8895 for (auto &PA : Params) { 8896 for (auto &C : PA.Calls) { 8897 if (C.Callee.getRef() == FwdVIRef) 8898 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 8899 ItContext->second); 8900 ++ItContext; 8901 } 8902 } 8903 assert(ItContext == VContexts.end()); 8904 8905 return false; 8906 } 8907 8908 /// OptionalRefs 8909 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8910 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 8911 assert(Lex.getKind() == lltok::kw_refs); 8912 Lex.Lex(); 8913 8914 if (parseToken(lltok::colon, "expected ':' in refs") || 8915 parseToken(lltok::lparen, "expected '(' in refs")) 8916 return true; 8917 8918 struct ValueContext { 8919 ValueInfo VI; 8920 unsigned GVId; 8921 LocTy Loc; 8922 }; 8923 std::vector<ValueContext> VContexts; 8924 // parse each ref edge 8925 do { 8926 ValueContext VC; 8927 VC.Loc = Lex.getLoc(); 8928 if (parseGVReference(VC.VI, VC.GVId)) 8929 return true; 8930 VContexts.push_back(VC); 8931 } while (EatIfPresent(lltok::comma)); 8932 8933 // Sort value contexts so that ones with writeonly 8934 // and readonly ValueInfo are at the end of VContexts vector. 8935 // See FunctionSummary::specialRefCounts() 8936 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8937 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 8938 }); 8939 8940 IdToIndexMapType IdToIndexMap; 8941 for (auto &VC : VContexts) { 8942 // Keep track of the Refs array index needing a forward reference. 8943 // We will save the location of the ValueInfo needing an update, but 8944 // can only do so once the std::vector is finalized. 8945 if (VC.VI.getRef() == FwdVIRef) 8946 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8947 Refs.push_back(VC.VI); 8948 } 8949 8950 // Now that the Refs vector is finalized, it is safe to save the locations 8951 // of any forward GV references that need updating later. 8952 for (auto I : IdToIndexMap) { 8953 auto &Infos = ForwardRefValueInfos[I.first]; 8954 for (auto P : I.second) { 8955 assert(Refs[P.first].getRef() == FwdVIRef && 8956 "Forward referenced ValueInfo expected to be empty"); 8957 Infos.emplace_back(&Refs[P.first], P.second); 8958 } 8959 } 8960 8961 if (parseToken(lltok::rparen, "expected ')' in refs")) 8962 return true; 8963 8964 return false; 8965 } 8966 8967 /// OptionalTypeIdInfo 8968 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8969 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8970 /// [',' TypeCheckedLoadConstVCalls]? ')' 8971 bool LLParser::parseOptionalTypeIdInfo( 8972 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8973 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8974 Lex.Lex(); 8975 8976 if (parseToken(lltok::colon, "expected ':' here") || 8977 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8978 return true; 8979 8980 do { 8981 switch (Lex.getKind()) { 8982 case lltok::kw_typeTests: 8983 if (parseTypeTests(TypeIdInfo.TypeTests)) 8984 return true; 8985 break; 8986 case lltok::kw_typeTestAssumeVCalls: 8987 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8988 TypeIdInfo.TypeTestAssumeVCalls)) 8989 return true; 8990 break; 8991 case lltok::kw_typeCheckedLoadVCalls: 8992 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8993 TypeIdInfo.TypeCheckedLoadVCalls)) 8994 return true; 8995 break; 8996 case lltok::kw_typeTestAssumeConstVCalls: 8997 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8998 TypeIdInfo.TypeTestAssumeConstVCalls)) 8999 return true; 9000 break; 9001 case lltok::kw_typeCheckedLoadConstVCalls: 9002 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9003 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9004 return true; 9005 break; 9006 default: 9007 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9008 } 9009 } while (EatIfPresent(lltok::comma)); 9010 9011 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9012 return true; 9013 9014 return false; 9015 } 9016 9017 /// TypeTests 9018 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9019 /// [',' (SummaryID | UInt64)]* ')' 9020 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9021 assert(Lex.getKind() == lltok::kw_typeTests); 9022 Lex.Lex(); 9023 9024 if (parseToken(lltok::colon, "expected ':' here") || 9025 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9026 return true; 9027 9028 IdToIndexMapType IdToIndexMap; 9029 do { 9030 GlobalValue::GUID GUID = 0; 9031 if (Lex.getKind() == lltok::SummaryID) { 9032 unsigned ID = Lex.getUIntVal(); 9033 LocTy Loc = Lex.getLoc(); 9034 // Keep track of the TypeTests array index needing a forward reference. 9035 // We will save the location of the GUID needing an update, but 9036 // can only do so once the std::vector is finalized. 9037 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9038 Lex.Lex(); 9039 } else if (parseUInt64(GUID)) 9040 return true; 9041 TypeTests.push_back(GUID); 9042 } while (EatIfPresent(lltok::comma)); 9043 9044 // Now that the TypeTests vector is finalized, it is safe to save the 9045 // locations of any forward GV references that need updating later. 9046 for (auto I : IdToIndexMap) { 9047 auto &Ids = ForwardRefTypeIds[I.first]; 9048 for (auto P : I.second) { 9049 assert(TypeTests[P.first] == 0 && 9050 "Forward referenced type id GUID expected to be 0"); 9051 Ids.emplace_back(&TypeTests[P.first], P.second); 9052 } 9053 } 9054 9055 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9056 return true; 9057 9058 return false; 9059 } 9060 9061 /// VFuncIdList 9062 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9063 bool LLParser::parseVFuncIdList( 9064 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9065 assert(Lex.getKind() == Kind); 9066 Lex.Lex(); 9067 9068 if (parseToken(lltok::colon, "expected ':' here") || 9069 parseToken(lltok::lparen, "expected '(' here")) 9070 return true; 9071 9072 IdToIndexMapType IdToIndexMap; 9073 do { 9074 FunctionSummary::VFuncId VFuncId; 9075 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9076 return true; 9077 VFuncIdList.push_back(VFuncId); 9078 } while (EatIfPresent(lltok::comma)); 9079 9080 if (parseToken(lltok::rparen, "expected ')' here")) 9081 return true; 9082 9083 // Now that the VFuncIdList vector is finalized, it is safe to save the 9084 // locations of any forward GV references that need updating later. 9085 for (auto I : IdToIndexMap) { 9086 auto &Ids = ForwardRefTypeIds[I.first]; 9087 for (auto P : I.second) { 9088 assert(VFuncIdList[P.first].GUID == 0 && 9089 "Forward referenced type id GUID expected to be 0"); 9090 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9091 } 9092 } 9093 9094 return false; 9095 } 9096 9097 /// ConstVCallList 9098 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9099 bool LLParser::parseConstVCallList( 9100 lltok::Kind Kind, 9101 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9102 assert(Lex.getKind() == Kind); 9103 Lex.Lex(); 9104 9105 if (parseToken(lltok::colon, "expected ':' here") || 9106 parseToken(lltok::lparen, "expected '(' here")) 9107 return true; 9108 9109 IdToIndexMapType IdToIndexMap; 9110 do { 9111 FunctionSummary::ConstVCall ConstVCall; 9112 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9113 return true; 9114 ConstVCallList.push_back(ConstVCall); 9115 } while (EatIfPresent(lltok::comma)); 9116 9117 if (parseToken(lltok::rparen, "expected ')' here")) 9118 return true; 9119 9120 // Now that the ConstVCallList vector is finalized, it is safe to save the 9121 // locations of any forward GV references that need updating later. 9122 for (auto I : IdToIndexMap) { 9123 auto &Ids = ForwardRefTypeIds[I.first]; 9124 for (auto P : I.second) { 9125 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9126 "Forward referenced type id GUID expected to be 0"); 9127 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9128 } 9129 } 9130 9131 return false; 9132 } 9133 9134 /// ConstVCall 9135 /// ::= '(' VFuncId ',' Args ')' 9136 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9137 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9138 if (parseToken(lltok::lparen, "expected '(' here") || 9139 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9140 return true; 9141 9142 if (EatIfPresent(lltok::comma)) 9143 if (parseArgs(ConstVCall.Args)) 9144 return true; 9145 9146 if (parseToken(lltok::rparen, "expected ')' here")) 9147 return true; 9148 9149 return false; 9150 } 9151 9152 /// VFuncId 9153 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9154 /// 'offset' ':' UInt64 ')' 9155 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9156 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9157 assert(Lex.getKind() == lltok::kw_vFuncId); 9158 Lex.Lex(); 9159 9160 if (parseToken(lltok::colon, "expected ':' here") || 9161 parseToken(lltok::lparen, "expected '(' here")) 9162 return true; 9163 9164 if (Lex.getKind() == lltok::SummaryID) { 9165 VFuncId.GUID = 0; 9166 unsigned ID = Lex.getUIntVal(); 9167 LocTy Loc = Lex.getLoc(); 9168 // Keep track of the array index needing a forward reference. 9169 // We will save the location of the GUID needing an update, but 9170 // can only do so once the caller's std::vector is finalized. 9171 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9172 Lex.Lex(); 9173 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9174 parseToken(lltok::colon, "expected ':' here") || 9175 parseUInt64(VFuncId.GUID)) 9176 return true; 9177 9178 if (parseToken(lltok::comma, "expected ',' here") || 9179 parseToken(lltok::kw_offset, "expected 'offset' here") || 9180 parseToken(lltok::colon, "expected ':' here") || 9181 parseUInt64(VFuncId.Offset) || 9182 parseToken(lltok::rparen, "expected ')' here")) 9183 return true; 9184 9185 return false; 9186 } 9187 9188 /// GVFlags 9189 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9190 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9191 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9192 /// 'canAutoHide' ':' Flag ',' ')' 9193 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9194 assert(Lex.getKind() == lltok::kw_flags); 9195 Lex.Lex(); 9196 9197 if (parseToken(lltok::colon, "expected ':' here") || 9198 parseToken(lltok::lparen, "expected '(' here")) 9199 return true; 9200 9201 do { 9202 unsigned Flag = 0; 9203 switch (Lex.getKind()) { 9204 case lltok::kw_linkage: 9205 Lex.Lex(); 9206 if (parseToken(lltok::colon, "expected ':'")) 9207 return true; 9208 bool HasLinkage; 9209 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9210 assert(HasLinkage && "Linkage not optional in summary entry"); 9211 Lex.Lex(); 9212 break; 9213 case lltok::kw_visibility: 9214 Lex.Lex(); 9215 if (parseToken(lltok::colon, "expected ':'")) 9216 return true; 9217 parseOptionalVisibility(Flag); 9218 GVFlags.Visibility = Flag; 9219 break; 9220 case lltok::kw_notEligibleToImport: 9221 Lex.Lex(); 9222 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9223 return true; 9224 GVFlags.NotEligibleToImport = Flag; 9225 break; 9226 case lltok::kw_live: 9227 Lex.Lex(); 9228 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9229 return true; 9230 GVFlags.Live = Flag; 9231 break; 9232 case lltok::kw_dsoLocal: 9233 Lex.Lex(); 9234 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9235 return true; 9236 GVFlags.DSOLocal = Flag; 9237 break; 9238 case lltok::kw_canAutoHide: 9239 Lex.Lex(); 9240 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9241 return true; 9242 GVFlags.CanAutoHide = Flag; 9243 break; 9244 default: 9245 return error(Lex.getLoc(), "expected gv flag type"); 9246 } 9247 } while (EatIfPresent(lltok::comma)); 9248 9249 if (parseToken(lltok::rparen, "expected ')' here")) 9250 return true; 9251 9252 return false; 9253 } 9254 9255 /// GVarFlags 9256 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9257 /// ',' 'writeonly' ':' Flag 9258 /// ',' 'constant' ':' Flag ')' 9259 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9260 assert(Lex.getKind() == lltok::kw_varFlags); 9261 Lex.Lex(); 9262 9263 if (parseToken(lltok::colon, "expected ':' here") || 9264 parseToken(lltok::lparen, "expected '(' here")) 9265 return true; 9266 9267 auto ParseRest = [this](unsigned int &Val) { 9268 Lex.Lex(); 9269 if (parseToken(lltok::colon, "expected ':'")) 9270 return true; 9271 return parseFlag(Val); 9272 }; 9273 9274 do { 9275 unsigned Flag = 0; 9276 switch (Lex.getKind()) { 9277 case lltok::kw_readonly: 9278 if (ParseRest(Flag)) 9279 return true; 9280 GVarFlags.MaybeReadOnly = Flag; 9281 break; 9282 case lltok::kw_writeonly: 9283 if (ParseRest(Flag)) 9284 return true; 9285 GVarFlags.MaybeWriteOnly = Flag; 9286 break; 9287 case lltok::kw_constant: 9288 if (ParseRest(Flag)) 9289 return true; 9290 GVarFlags.Constant = Flag; 9291 break; 9292 case lltok::kw_vcall_visibility: 9293 if (ParseRest(Flag)) 9294 return true; 9295 GVarFlags.VCallVisibility = Flag; 9296 break; 9297 default: 9298 return error(Lex.getLoc(), "expected gvar flag type"); 9299 } 9300 } while (EatIfPresent(lltok::comma)); 9301 return parseToken(lltok::rparen, "expected ')' here"); 9302 } 9303 9304 /// ModuleReference 9305 /// ::= 'module' ':' UInt 9306 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9307 // parse module id. 9308 if (parseToken(lltok::kw_module, "expected 'module' here") || 9309 parseToken(lltok::colon, "expected ':' here") || 9310 parseToken(lltok::SummaryID, "expected module ID")) 9311 return true; 9312 9313 unsigned ModuleID = Lex.getUIntVal(); 9314 auto I = ModuleIdMap.find(ModuleID); 9315 // We should have already parsed all module IDs 9316 assert(I != ModuleIdMap.end()); 9317 ModulePath = I->second; 9318 return false; 9319 } 9320 9321 /// GVReference 9322 /// ::= SummaryID 9323 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9324 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9325 if (!ReadOnly) 9326 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9327 if (parseToken(lltok::SummaryID, "expected GV ID")) 9328 return true; 9329 9330 GVId = Lex.getUIntVal(); 9331 // Check if we already have a VI for this GV 9332 if (GVId < NumberedValueInfos.size()) { 9333 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9334 VI = NumberedValueInfos[GVId]; 9335 } else 9336 // We will create a forward reference to the stored location. 9337 VI = ValueInfo(false, FwdVIRef); 9338 9339 if (ReadOnly) 9340 VI.setReadOnly(); 9341 if (WriteOnly) 9342 VI.setWriteOnly(); 9343 return false; 9344 } 9345