1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/AutoUpgrade.h" 16 #include "llvm/CallingConv.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/InlineAsm.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Module.h" 22 #include "llvm/Operator.h" 23 #include "llvm/ValueSymbolTable.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/raw_ostream.h" 27 using namespace llvm; 28 29 static std::string getTypeString(Type *T) { 30 std::string Result; 31 raw_string_ostream Tmp(Result); 32 Tmp << *T; 33 return Tmp.str(); 34 } 35 36 /// Run: module ::= toplevelentity* 37 bool LLParser::Run() { 38 // Prime the lexer. 39 Lex.Lex(); 40 41 return ParseTopLevelEntities() || 42 ValidateEndOfModule(); 43 } 44 45 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 46 /// module. 47 bool LLParser::ValidateEndOfModule() { 48 // Handle any instruction metadata forward references. 49 if (!ForwardRefInstMetadata.empty()) { 50 for (DenseMap<Instruction*, std::vector<MDRef> >::iterator 51 I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end(); 52 I != E; ++I) { 53 Instruction *Inst = I->first; 54 const std::vector<MDRef> &MDList = I->second; 55 56 for (unsigned i = 0, e = MDList.size(); i != e; ++i) { 57 unsigned SlotNo = MDList[i].MDSlot; 58 59 if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0) 60 return Error(MDList[i].Loc, "use of undefined metadata '!" + 61 Twine(SlotNo) + "'"); 62 Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]); 63 } 64 } 65 ForwardRefInstMetadata.clear(); 66 } 67 68 69 // If there are entries in ForwardRefBlockAddresses at this point, they are 70 // references after the function was defined. Resolve those now. 71 while (!ForwardRefBlockAddresses.empty()) { 72 // Okay, we are referencing an already-parsed function, resolve them now. 73 Function *TheFn = 0; 74 const ValID &Fn = ForwardRefBlockAddresses.begin()->first; 75 if (Fn.Kind == ValID::t_GlobalName) 76 TheFn = M->getFunction(Fn.StrVal); 77 else if (Fn.UIntVal < NumberedVals.size()) 78 TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]); 79 80 if (TheFn == 0) 81 return Error(Fn.Loc, "unknown function referenced by blockaddress"); 82 83 // Resolve all these references. 84 if (ResolveForwardRefBlockAddresses(TheFn, 85 ForwardRefBlockAddresses.begin()->second, 86 0)) 87 return true; 88 89 ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin()); 90 } 91 92 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) 93 if (NumberedTypes[i].second.isValid()) 94 return Error(NumberedTypes[i].second, 95 "use of undefined type '%" + Twine(i) + "'"); 96 97 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 98 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 99 if (I->second.second.isValid()) 100 return Error(I->second.second, 101 "use of undefined type named '" + I->getKey() + "'"); 102 103 if (!ForwardRefVals.empty()) 104 return Error(ForwardRefVals.begin()->second.second, 105 "use of undefined value '@" + ForwardRefVals.begin()->first + 106 "'"); 107 108 if (!ForwardRefValIDs.empty()) 109 return Error(ForwardRefValIDs.begin()->second.second, 110 "use of undefined value '@" + 111 Twine(ForwardRefValIDs.begin()->first) + "'"); 112 113 if (!ForwardRefMDNodes.empty()) 114 return Error(ForwardRefMDNodes.begin()->second.second, 115 "use of undefined metadata '!" + 116 Twine(ForwardRefMDNodes.begin()->first) + "'"); 117 118 119 // Look for intrinsic functions and CallInst that need to be upgraded 120 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 121 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove 122 123 return false; 124 } 125 126 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn, 127 std::vector<std::pair<ValID, GlobalValue*> > &Refs, 128 PerFunctionState *PFS) { 129 // Loop over all the references, resolving them. 130 for (unsigned i = 0, e = Refs.size(); i != e; ++i) { 131 BasicBlock *Res; 132 if (PFS) { 133 if (Refs[i].first.Kind == ValID::t_LocalName) 134 Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc); 135 else 136 Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc); 137 } else if (Refs[i].first.Kind == ValID::t_LocalID) { 138 return Error(Refs[i].first.Loc, 139 "cannot take address of numeric label after the function is defined"); 140 } else { 141 Res = dyn_cast_or_null<BasicBlock>( 142 TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal)); 143 } 144 145 if (Res == 0) 146 return Error(Refs[i].first.Loc, 147 "referenced value is not a basic block"); 148 149 // Get the BlockAddress for this and update references to use it. 150 BlockAddress *BA = BlockAddress::get(TheFn, Res); 151 Refs[i].second->replaceAllUsesWith(BA); 152 Refs[i].second->eraseFromParent(); 153 } 154 return false; 155 } 156 157 158 //===----------------------------------------------------------------------===// 159 // Top-Level Entities 160 //===----------------------------------------------------------------------===// 161 162 bool LLParser::ParseTopLevelEntities() { 163 while (1) { 164 switch (Lex.getKind()) { 165 default: return TokError("expected top-level entity"); 166 case lltok::Eof: return false; 167 case lltok::kw_declare: if (ParseDeclare()) return true; break; 168 case lltok::kw_define: if (ParseDefine()) return true; break; 169 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 170 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 171 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 172 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 173 case lltok::LocalVar: if (ParseNamedType()) return true; break; 174 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 175 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 176 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 177 case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break; 178 179 // The Global variable production with no name can have many different 180 // optional leading prefixes, the production is: 181 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 182 // OptionalAddrSpace OptionalUnNammedAddr 183 // ('constant'|'global') ... 184 case lltok::kw_private: // OptionalLinkage 185 case lltok::kw_linker_private: // OptionalLinkage 186 case lltok::kw_linker_private_weak: // OptionalLinkage 187 case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage 188 case lltok::kw_internal: // OptionalLinkage 189 case lltok::kw_weak: // OptionalLinkage 190 case lltok::kw_weak_odr: // OptionalLinkage 191 case lltok::kw_linkonce: // OptionalLinkage 192 case lltok::kw_linkonce_odr: // OptionalLinkage 193 case lltok::kw_appending: // OptionalLinkage 194 case lltok::kw_dllexport: // OptionalLinkage 195 case lltok::kw_common: // OptionalLinkage 196 case lltok::kw_dllimport: // OptionalLinkage 197 case lltok::kw_extern_weak: // OptionalLinkage 198 case lltok::kw_external: { // OptionalLinkage 199 unsigned Linkage, Visibility; 200 if (ParseOptionalLinkage(Linkage) || 201 ParseOptionalVisibility(Visibility) || 202 ParseGlobal("", SMLoc(), Linkage, true, Visibility)) 203 return true; 204 break; 205 } 206 case lltok::kw_default: // OptionalVisibility 207 case lltok::kw_hidden: // OptionalVisibility 208 case lltok::kw_protected: { // OptionalVisibility 209 unsigned Visibility; 210 if (ParseOptionalVisibility(Visibility) || 211 ParseGlobal("", SMLoc(), 0, false, Visibility)) 212 return true; 213 break; 214 } 215 216 case lltok::kw_thread_local: // OptionalThreadLocal 217 case lltok::kw_addrspace: // OptionalAddrSpace 218 case lltok::kw_constant: // GlobalType 219 case lltok::kw_global: // GlobalType 220 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true; 221 break; 222 } 223 } 224 } 225 226 227 /// toplevelentity 228 /// ::= 'module' 'asm' STRINGCONSTANT 229 bool LLParser::ParseModuleAsm() { 230 assert(Lex.getKind() == lltok::kw_module); 231 Lex.Lex(); 232 233 std::string AsmStr; 234 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 235 ParseStringConstant(AsmStr)) return true; 236 237 M->appendModuleInlineAsm(AsmStr); 238 return false; 239 } 240 241 /// toplevelentity 242 /// ::= 'target' 'triple' '=' STRINGCONSTANT 243 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 244 bool LLParser::ParseTargetDefinition() { 245 assert(Lex.getKind() == lltok::kw_target); 246 std::string Str; 247 switch (Lex.Lex()) { 248 default: return TokError("unknown target property"); 249 case lltok::kw_triple: 250 Lex.Lex(); 251 if (ParseToken(lltok::equal, "expected '=' after target triple") || 252 ParseStringConstant(Str)) 253 return true; 254 M->setTargetTriple(Str); 255 return false; 256 case lltok::kw_datalayout: 257 Lex.Lex(); 258 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 259 ParseStringConstant(Str)) 260 return true; 261 M->setDataLayout(Str); 262 return false; 263 } 264 } 265 266 /// toplevelentity 267 /// ::= 'deplibs' '=' '[' ']' 268 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 269 bool LLParser::ParseDepLibs() { 270 assert(Lex.getKind() == lltok::kw_deplibs); 271 Lex.Lex(); 272 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 273 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 274 return true; 275 276 if (EatIfPresent(lltok::rsquare)) 277 return false; 278 279 std::string Str; 280 if (ParseStringConstant(Str)) return true; 281 M->addLibrary(Str); 282 283 while (EatIfPresent(lltok::comma)) { 284 if (ParseStringConstant(Str)) return true; 285 M->addLibrary(Str); 286 } 287 288 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 289 } 290 291 /// ParseUnnamedType: 292 /// ::= LocalVarID '=' 'type' type 293 bool LLParser::ParseUnnamedType() { 294 LocTy TypeLoc = Lex.getLoc(); 295 unsigned TypeID = Lex.getUIntVal(); 296 Lex.Lex(); // eat LocalVarID; 297 298 if (ParseToken(lltok::equal, "expected '=' after name") || 299 ParseToken(lltok::kw_type, "expected 'type' after '='")) 300 return true; 301 302 if (TypeID >= NumberedTypes.size()) 303 NumberedTypes.resize(TypeID+1); 304 305 Type *Result = 0; 306 if (ParseStructDefinition(TypeLoc, "", 307 NumberedTypes[TypeID], Result)) return true; 308 309 if (!isa<StructType>(Result)) { 310 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 311 if (Entry.first) 312 return Error(TypeLoc, "non-struct types may not be recursive"); 313 Entry.first = Result; 314 Entry.second = SMLoc(); 315 } 316 317 return false; 318 } 319 320 321 /// toplevelentity 322 /// ::= LocalVar '=' 'type' type 323 bool LLParser::ParseNamedType() { 324 std::string Name = Lex.getStrVal(); 325 LocTy NameLoc = Lex.getLoc(); 326 Lex.Lex(); // eat LocalVar. 327 328 if (ParseToken(lltok::equal, "expected '=' after name") || 329 ParseToken(lltok::kw_type, "expected 'type' after name")) 330 return true; 331 332 Type *Result = 0; 333 if (ParseStructDefinition(NameLoc, Name, 334 NamedTypes[Name], Result)) return true; 335 336 if (!isa<StructType>(Result)) { 337 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 338 if (Entry.first) 339 return Error(NameLoc, "non-struct types may not be recursive"); 340 Entry.first = Result; 341 Entry.second = SMLoc(); 342 } 343 344 return false; 345 } 346 347 348 /// toplevelentity 349 /// ::= 'declare' FunctionHeader 350 bool LLParser::ParseDeclare() { 351 assert(Lex.getKind() == lltok::kw_declare); 352 Lex.Lex(); 353 354 Function *F; 355 return ParseFunctionHeader(F, false); 356 } 357 358 /// toplevelentity 359 /// ::= 'define' FunctionHeader '{' ... 360 bool LLParser::ParseDefine() { 361 assert(Lex.getKind() == lltok::kw_define); 362 Lex.Lex(); 363 364 Function *F; 365 return ParseFunctionHeader(F, true) || 366 ParseFunctionBody(*F); 367 } 368 369 /// ParseGlobalType 370 /// ::= 'constant' 371 /// ::= 'global' 372 bool LLParser::ParseGlobalType(bool &IsConstant) { 373 if (Lex.getKind() == lltok::kw_constant) 374 IsConstant = true; 375 else if (Lex.getKind() == lltok::kw_global) 376 IsConstant = false; 377 else { 378 IsConstant = false; 379 return TokError("expected 'global' or 'constant'"); 380 } 381 Lex.Lex(); 382 return false; 383 } 384 385 /// ParseUnnamedGlobal: 386 /// OptionalVisibility ALIAS ... 387 /// OptionalLinkage OptionalVisibility ... -> global variable 388 /// GlobalID '=' OptionalVisibility ALIAS ... 389 /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable 390 bool LLParser::ParseUnnamedGlobal() { 391 unsigned VarID = NumberedVals.size(); 392 std::string Name; 393 LocTy NameLoc = Lex.getLoc(); 394 395 // Handle the GlobalID form. 396 if (Lex.getKind() == lltok::GlobalID) { 397 if (Lex.getUIntVal() != VarID) 398 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 399 Twine(VarID) + "'"); 400 Lex.Lex(); // eat GlobalID; 401 402 if (ParseToken(lltok::equal, "expected '=' after name")) 403 return true; 404 } 405 406 bool HasLinkage; 407 unsigned Linkage, Visibility; 408 if (ParseOptionalLinkage(Linkage, HasLinkage) || 409 ParseOptionalVisibility(Visibility)) 410 return true; 411 412 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 413 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 414 return ParseAlias(Name, NameLoc, Visibility); 415 } 416 417 /// ParseNamedGlobal: 418 /// GlobalVar '=' OptionalVisibility ALIAS ... 419 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable 420 bool LLParser::ParseNamedGlobal() { 421 assert(Lex.getKind() == lltok::GlobalVar); 422 LocTy NameLoc = Lex.getLoc(); 423 std::string Name = Lex.getStrVal(); 424 Lex.Lex(); 425 426 bool HasLinkage; 427 unsigned Linkage, Visibility; 428 if (ParseToken(lltok::equal, "expected '=' in global variable") || 429 ParseOptionalLinkage(Linkage, HasLinkage) || 430 ParseOptionalVisibility(Visibility)) 431 return true; 432 433 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 434 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 435 return ParseAlias(Name, NameLoc, Visibility); 436 } 437 438 // MDString: 439 // ::= '!' STRINGCONSTANT 440 bool LLParser::ParseMDString(MDString *&Result) { 441 std::string Str; 442 if (ParseStringConstant(Str)) return true; 443 Result = MDString::get(Context, Str); 444 return false; 445 } 446 447 // MDNode: 448 // ::= '!' MDNodeNumber 449 // 450 /// This version of ParseMDNodeID returns the slot number and null in the case 451 /// of a forward reference. 452 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) { 453 // !{ ..., !42, ... } 454 if (ParseUInt32(SlotNo)) return true; 455 456 // Check existing MDNode. 457 if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0) 458 Result = NumberedMetadata[SlotNo]; 459 else 460 Result = 0; 461 return false; 462 } 463 464 bool LLParser::ParseMDNodeID(MDNode *&Result) { 465 // !{ ..., !42, ... } 466 unsigned MID = 0; 467 if (ParseMDNodeID(Result, MID)) return true; 468 469 // If not a forward reference, just return it now. 470 if (Result) return false; 471 472 // Otherwise, create MDNode forward reference. 473 MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>()); 474 ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc()); 475 476 if (NumberedMetadata.size() <= MID) 477 NumberedMetadata.resize(MID+1); 478 NumberedMetadata[MID] = FwdNode; 479 Result = FwdNode; 480 return false; 481 } 482 483 /// ParseNamedMetadata: 484 /// !foo = !{ !1, !2 } 485 bool LLParser::ParseNamedMetadata() { 486 assert(Lex.getKind() == lltok::MetadataVar); 487 std::string Name = Lex.getStrVal(); 488 Lex.Lex(); 489 490 if (ParseToken(lltok::equal, "expected '=' here") || 491 ParseToken(lltok::exclaim, "Expected '!' here") || 492 ParseToken(lltok::lbrace, "Expected '{' here")) 493 return true; 494 495 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 496 if (Lex.getKind() != lltok::rbrace) 497 do { 498 if (ParseToken(lltok::exclaim, "Expected '!' here")) 499 return true; 500 501 MDNode *N = 0; 502 if (ParseMDNodeID(N)) return true; 503 NMD->addOperand(N); 504 } while (EatIfPresent(lltok::comma)); 505 506 if (ParseToken(lltok::rbrace, "expected end of metadata node")) 507 return true; 508 509 return false; 510 } 511 512 /// ParseStandaloneMetadata: 513 /// !42 = !{...} 514 bool LLParser::ParseStandaloneMetadata() { 515 assert(Lex.getKind() == lltok::exclaim); 516 Lex.Lex(); 517 unsigned MetadataID = 0; 518 519 LocTy TyLoc; 520 Type *Ty = 0; 521 SmallVector<Value *, 16> Elts; 522 if (ParseUInt32(MetadataID) || 523 ParseToken(lltok::equal, "expected '=' here") || 524 ParseType(Ty, TyLoc) || 525 ParseToken(lltok::exclaim, "Expected '!' here") || 526 ParseToken(lltok::lbrace, "Expected '{' here") || 527 ParseMDNodeVector(Elts, NULL) || 528 ParseToken(lltok::rbrace, "expected end of metadata node")) 529 return true; 530 531 MDNode *Init = MDNode::get(Context, Elts); 532 533 // See if this was forward referenced, if so, handle it. 534 std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator 535 FI = ForwardRefMDNodes.find(MetadataID); 536 if (FI != ForwardRefMDNodes.end()) { 537 MDNode *Temp = FI->second.first; 538 Temp->replaceAllUsesWith(Init); 539 MDNode::deleteTemporary(Temp); 540 ForwardRefMDNodes.erase(FI); 541 542 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 543 } else { 544 if (MetadataID >= NumberedMetadata.size()) 545 NumberedMetadata.resize(MetadataID+1); 546 547 if (NumberedMetadata[MetadataID] != 0) 548 return TokError("Metadata id is already used"); 549 NumberedMetadata[MetadataID] = Init; 550 } 551 552 return false; 553 } 554 555 /// ParseAlias: 556 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee 557 /// Aliasee 558 /// ::= TypeAndValue 559 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')' 560 /// ::= 'getelementptr' 'inbounds'? '(' ... ')' 561 /// 562 /// Everything through visibility has already been parsed. 563 /// 564 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, 565 unsigned Visibility) { 566 assert(Lex.getKind() == lltok::kw_alias); 567 Lex.Lex(); 568 unsigned Linkage; 569 LocTy LinkageLoc = Lex.getLoc(); 570 if (ParseOptionalLinkage(Linkage)) 571 return true; 572 573 if (Linkage != GlobalValue::ExternalLinkage && 574 Linkage != GlobalValue::WeakAnyLinkage && 575 Linkage != GlobalValue::WeakODRLinkage && 576 Linkage != GlobalValue::InternalLinkage && 577 Linkage != GlobalValue::PrivateLinkage && 578 Linkage != GlobalValue::LinkerPrivateLinkage && 579 Linkage != GlobalValue::LinkerPrivateWeakLinkage && 580 Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage) 581 return Error(LinkageLoc, "invalid linkage type for alias"); 582 583 Constant *Aliasee; 584 LocTy AliaseeLoc = Lex.getLoc(); 585 if (Lex.getKind() != lltok::kw_bitcast && 586 Lex.getKind() != lltok::kw_getelementptr) { 587 if (ParseGlobalTypeAndValue(Aliasee)) return true; 588 } else { 589 // The bitcast dest type is not present, it is implied by the dest type. 590 ValID ID; 591 if (ParseValID(ID)) return true; 592 if (ID.Kind != ValID::t_Constant) 593 return Error(AliaseeLoc, "invalid aliasee"); 594 Aliasee = ID.ConstantVal; 595 } 596 597 if (!Aliasee->getType()->isPointerTy()) 598 return Error(AliaseeLoc, "alias must have pointer type"); 599 600 // Okay, create the alias but do not insert it into the module yet. 601 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), 602 (GlobalValue::LinkageTypes)Linkage, Name, 603 Aliasee); 604 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 605 606 // See if this value already exists in the symbol table. If so, it is either 607 // a redefinition or a definition of a forward reference. 608 if (GlobalValue *Val = M->getNamedValue(Name)) { 609 // See if this was a redefinition. If so, there is no entry in 610 // ForwardRefVals. 611 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 612 I = ForwardRefVals.find(Name); 613 if (I == ForwardRefVals.end()) 614 return Error(NameLoc, "redefinition of global named '@" + Name + "'"); 615 616 // Otherwise, this was a definition of forward ref. Verify that types 617 // agree. 618 if (Val->getType() != GA->getType()) 619 return Error(NameLoc, 620 "forward reference and definition of alias have different types"); 621 622 // If they agree, just RAUW the old value with the alias and remove the 623 // forward ref info. 624 Val->replaceAllUsesWith(GA); 625 Val->eraseFromParent(); 626 ForwardRefVals.erase(I); 627 } 628 629 // Insert into the module, we know its name won't collide now. 630 M->getAliasList().push_back(GA); 631 assert(GA->getName() == Name && "Should not be a name conflict!"); 632 633 return false; 634 } 635 636 /// ParseGlobal 637 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal 638 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const 639 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 640 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const 641 /// 642 /// Everything through visibility has been parsed already. 643 /// 644 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 645 unsigned Linkage, bool HasLinkage, 646 unsigned Visibility) { 647 unsigned AddrSpace; 648 bool ThreadLocal, IsConstant, UnnamedAddr; 649 LocTy UnnamedAddrLoc; 650 LocTy TyLoc; 651 652 Type *Ty = 0; 653 if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) || 654 ParseOptionalAddrSpace(AddrSpace) || 655 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 656 &UnnamedAddrLoc) || 657 ParseGlobalType(IsConstant) || 658 ParseType(Ty, TyLoc)) 659 return true; 660 661 // If the linkage is specified and is external, then no initializer is 662 // present. 663 Constant *Init = 0; 664 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage && 665 Linkage != GlobalValue::ExternalWeakLinkage && 666 Linkage != GlobalValue::ExternalLinkage)) { 667 if (ParseGlobalValue(Ty, Init)) 668 return true; 669 } 670 671 if (Ty->isFunctionTy() || Ty->isLabelTy()) 672 return Error(TyLoc, "invalid type for global variable"); 673 674 GlobalVariable *GV = 0; 675 676 // See if the global was forward referenced, if so, use the global. 677 if (!Name.empty()) { 678 if (GlobalValue *GVal = M->getNamedValue(Name)) { 679 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal)) 680 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 681 GV = cast<GlobalVariable>(GVal); 682 } 683 } else { 684 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 685 I = ForwardRefValIDs.find(NumberedVals.size()); 686 if (I != ForwardRefValIDs.end()) { 687 GV = cast<GlobalVariable>(I->second.first); 688 ForwardRefValIDs.erase(I); 689 } 690 } 691 692 if (GV == 0) { 693 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0, 694 Name, 0, false, AddrSpace); 695 } else { 696 if (GV->getType()->getElementType() != Ty) 697 return Error(TyLoc, 698 "forward reference and definition of global have different types"); 699 700 // Move the forward-reference to the correct spot in the module. 701 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 702 } 703 704 if (Name.empty()) 705 NumberedVals.push_back(GV); 706 707 // Set the parsed properties on the global. 708 if (Init) 709 GV->setInitializer(Init); 710 GV->setConstant(IsConstant); 711 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 712 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 713 GV->setThreadLocal(ThreadLocal); 714 GV->setUnnamedAddr(UnnamedAddr); 715 716 // Parse attributes on the global. 717 while (Lex.getKind() == lltok::comma) { 718 Lex.Lex(); 719 720 if (Lex.getKind() == lltok::kw_section) { 721 Lex.Lex(); 722 GV->setSection(Lex.getStrVal()); 723 if (ParseToken(lltok::StringConstant, "expected global section string")) 724 return true; 725 } else if (Lex.getKind() == lltok::kw_align) { 726 unsigned Alignment; 727 if (ParseOptionalAlignment(Alignment)) return true; 728 GV->setAlignment(Alignment); 729 } else { 730 TokError("unknown global variable property!"); 731 } 732 } 733 734 return false; 735 } 736 737 738 //===----------------------------------------------------------------------===// 739 // GlobalValue Reference/Resolution Routines. 740 //===----------------------------------------------------------------------===// 741 742 /// GetGlobalVal - Get a value with the specified name or ID, creating a 743 /// forward reference record if needed. This can return null if the value 744 /// exists but does not have the right type. 745 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 746 LocTy Loc) { 747 PointerType *PTy = dyn_cast<PointerType>(Ty); 748 if (PTy == 0) { 749 Error(Loc, "global variable reference must have pointer type"); 750 return 0; 751 } 752 753 // Look this name up in the normal function symbol table. 754 GlobalValue *Val = 755 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 756 757 // If this is a forward reference for the value, see if we already created a 758 // forward ref record. 759 if (Val == 0) { 760 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 761 I = ForwardRefVals.find(Name); 762 if (I != ForwardRefVals.end()) 763 Val = I->second.first; 764 } 765 766 // If we have the value in the symbol table or fwd-ref table, return it. 767 if (Val) { 768 if (Val->getType() == Ty) return Val; 769 Error(Loc, "'@" + Name + "' defined with type '" + 770 getTypeString(Val->getType()) + "'"); 771 return 0; 772 } 773 774 // Otherwise, create a new forward reference for this value and remember it. 775 GlobalValue *FwdVal; 776 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 777 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 778 else 779 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 780 GlobalValue::ExternalWeakLinkage, 0, Name); 781 782 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 783 return FwdVal; 784 } 785 786 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 787 PointerType *PTy = dyn_cast<PointerType>(Ty); 788 if (PTy == 0) { 789 Error(Loc, "global variable reference must have pointer type"); 790 return 0; 791 } 792 793 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 794 795 // If this is a forward reference for the value, see if we already created a 796 // forward ref record. 797 if (Val == 0) { 798 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 799 I = ForwardRefValIDs.find(ID); 800 if (I != ForwardRefValIDs.end()) 801 Val = I->second.first; 802 } 803 804 // If we have the value in the symbol table or fwd-ref table, return it. 805 if (Val) { 806 if (Val->getType() == Ty) return Val; 807 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 808 getTypeString(Val->getType()) + "'"); 809 return 0; 810 } 811 812 // Otherwise, create a new forward reference for this value and remember it. 813 GlobalValue *FwdVal; 814 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 815 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M); 816 else 817 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 818 GlobalValue::ExternalWeakLinkage, 0, ""); 819 820 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 821 return FwdVal; 822 } 823 824 825 //===----------------------------------------------------------------------===// 826 // Helper Routines. 827 //===----------------------------------------------------------------------===// 828 829 /// ParseToken - If the current token has the specified kind, eat it and return 830 /// success. Otherwise, emit the specified error and return failure. 831 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 832 if (Lex.getKind() != T) 833 return TokError(ErrMsg); 834 Lex.Lex(); 835 return false; 836 } 837 838 /// ParseStringConstant 839 /// ::= StringConstant 840 bool LLParser::ParseStringConstant(std::string &Result) { 841 if (Lex.getKind() != lltok::StringConstant) 842 return TokError("expected string constant"); 843 Result = Lex.getStrVal(); 844 Lex.Lex(); 845 return false; 846 } 847 848 /// ParseUInt32 849 /// ::= uint32 850 bool LLParser::ParseUInt32(unsigned &Val) { 851 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 852 return TokError("expected integer"); 853 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 854 if (Val64 != unsigned(Val64)) 855 return TokError("expected 32-bit integer (too large)"); 856 Val = Val64; 857 Lex.Lex(); 858 return false; 859 } 860 861 862 /// ParseOptionalAddrSpace 863 /// := /*empty*/ 864 /// := 'addrspace' '(' uint32 ')' 865 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 866 AddrSpace = 0; 867 if (!EatIfPresent(lltok::kw_addrspace)) 868 return false; 869 return ParseToken(lltok::lparen, "expected '(' in address space") || 870 ParseUInt32(AddrSpace) || 871 ParseToken(lltok::rparen, "expected ')' in address space"); 872 } 873 874 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind 875 /// indicates what kind of attribute list this is: 0: function arg, 1: result, 876 /// 2: function attr. 877 bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) { 878 Attrs = Attribute::None; 879 LocTy AttrLoc = Lex.getLoc(); 880 881 while (1) { 882 switch (Lex.getKind()) { 883 default: // End of attributes. 884 if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly)) 885 return Error(AttrLoc, "invalid use of function-only attribute"); 886 887 // As a hack, we allow "align 2" on functions as a synonym for 888 // "alignstack 2". 889 if (AttrKind == 2 && 890 (Attrs & ~(Attribute::FunctionOnly | Attribute::Alignment))) 891 return Error(AttrLoc, "invalid use of attribute on a function"); 892 893 if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly)) 894 return Error(AttrLoc, "invalid use of parameter-only attribute"); 895 896 return false; 897 case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break; 898 case lltok::kw_signext: Attrs |= Attribute::SExt; break; 899 case lltok::kw_inreg: Attrs |= Attribute::InReg; break; 900 case lltok::kw_sret: Attrs |= Attribute::StructRet; break; 901 case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break; 902 case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break; 903 case lltok::kw_byval: Attrs |= Attribute::ByVal; break; 904 case lltok::kw_nest: Attrs |= Attribute::Nest; break; 905 906 case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break; 907 case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break; 908 case lltok::kw_uwtable: Attrs |= Attribute::UWTable; break; 909 case lltok::kw_returns_twice: Attrs |= Attribute::ReturnsTwice; break; 910 case lltok::kw_noinline: Attrs |= Attribute::NoInline; break; 911 case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break; 912 case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break; 913 case lltok::kw_inlinehint: Attrs |= Attribute::InlineHint; break; 914 case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break; 915 case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break; 916 case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break; 917 case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break; 918 case lltok::kw_noredzone: Attrs |= Attribute::NoRedZone; break; 919 case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break; 920 case lltok::kw_naked: Attrs |= Attribute::Naked; break; 921 case lltok::kw_nonlazybind: Attrs |= Attribute::NonLazyBind; break; 922 923 case lltok::kw_alignstack: { 924 unsigned Alignment; 925 if (ParseOptionalStackAlignment(Alignment)) 926 return true; 927 Attrs |= Attribute::constructStackAlignmentFromInt(Alignment); 928 continue; 929 } 930 931 case lltok::kw_align: { 932 unsigned Alignment; 933 if (ParseOptionalAlignment(Alignment)) 934 return true; 935 Attrs |= Attribute::constructAlignmentFromInt(Alignment); 936 continue; 937 } 938 939 } 940 Lex.Lex(); 941 } 942 } 943 944 /// ParseOptionalLinkage 945 /// ::= /*empty*/ 946 /// ::= 'private' 947 /// ::= 'linker_private' 948 /// ::= 'linker_private_weak' 949 /// ::= 'linker_private_weak_def_auto' 950 /// ::= 'internal' 951 /// ::= 'weak' 952 /// ::= 'weak_odr' 953 /// ::= 'linkonce' 954 /// ::= 'linkonce_odr' 955 /// ::= 'available_externally' 956 /// ::= 'appending' 957 /// ::= 'dllexport' 958 /// ::= 'common' 959 /// ::= 'dllimport' 960 /// ::= 'extern_weak' 961 /// ::= 'external' 962 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { 963 HasLinkage = false; 964 switch (Lex.getKind()) { 965 default: Res=GlobalValue::ExternalLinkage; return false; 966 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; 967 case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break; 968 case lltok::kw_linker_private_weak: 969 Res = GlobalValue::LinkerPrivateWeakLinkage; 970 break; 971 case lltok::kw_linker_private_weak_def_auto: 972 Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage; 973 break; 974 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; 975 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; 976 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; 977 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; 978 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; 979 case lltok::kw_available_externally: 980 Res = GlobalValue::AvailableExternallyLinkage; 981 break; 982 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; 983 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break; 984 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; 985 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break; 986 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; 987 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; 988 } 989 Lex.Lex(); 990 HasLinkage = true; 991 return false; 992 } 993 994 /// ParseOptionalVisibility 995 /// ::= /*empty*/ 996 /// ::= 'default' 997 /// ::= 'hidden' 998 /// ::= 'protected' 999 /// 1000 bool LLParser::ParseOptionalVisibility(unsigned &Res) { 1001 switch (Lex.getKind()) { 1002 default: Res = GlobalValue::DefaultVisibility; return false; 1003 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; 1004 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; 1005 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; 1006 } 1007 Lex.Lex(); 1008 return false; 1009 } 1010 1011 /// ParseOptionalCallingConv 1012 /// ::= /*empty*/ 1013 /// ::= 'ccc' 1014 /// ::= 'fastcc' 1015 /// ::= 'coldcc' 1016 /// ::= 'x86_stdcallcc' 1017 /// ::= 'x86_fastcallcc' 1018 /// ::= 'x86_thiscallcc' 1019 /// ::= 'arm_apcscc' 1020 /// ::= 'arm_aapcscc' 1021 /// ::= 'arm_aapcs_vfpcc' 1022 /// ::= 'msp430_intrcc' 1023 /// ::= 'ptx_kernel' 1024 /// ::= 'ptx_device' 1025 /// ::= 'cc' UINT 1026 /// 1027 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) { 1028 switch (Lex.getKind()) { 1029 default: CC = CallingConv::C; return false; 1030 case lltok::kw_ccc: CC = CallingConv::C; break; 1031 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1032 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1033 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1034 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1035 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1036 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1037 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1038 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1039 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1040 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1041 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1042 case lltok::kw_cc: { 1043 unsigned ArbitraryCC; 1044 Lex.Lex(); 1045 if (ParseUInt32(ArbitraryCC)) { 1046 return true; 1047 } else 1048 CC = static_cast<CallingConv::ID>(ArbitraryCC); 1049 return false; 1050 } 1051 break; 1052 } 1053 1054 Lex.Lex(); 1055 return false; 1056 } 1057 1058 /// ParseInstructionMetadata 1059 /// ::= !dbg !42 (',' !dbg !57)* 1060 bool LLParser::ParseInstructionMetadata(Instruction *Inst, 1061 PerFunctionState *PFS) { 1062 do { 1063 if (Lex.getKind() != lltok::MetadataVar) 1064 return TokError("expected metadata after comma"); 1065 1066 std::string Name = Lex.getStrVal(); 1067 unsigned MDK = M->getMDKindID(Name); 1068 Lex.Lex(); 1069 1070 MDNode *Node; 1071 SMLoc Loc = Lex.getLoc(); 1072 1073 if (ParseToken(lltok::exclaim, "expected '!' here")) 1074 return true; 1075 1076 // This code is similar to that of ParseMetadataValue, however it needs to 1077 // have special-case code for a forward reference; see the comments on 1078 // ForwardRefInstMetadata for details. Also, MDStrings are not supported 1079 // at the top level here. 1080 if (Lex.getKind() == lltok::lbrace) { 1081 ValID ID; 1082 if (ParseMetadataListValue(ID, PFS)) 1083 return true; 1084 assert(ID.Kind == ValID::t_MDNode); 1085 Inst->setMetadata(MDK, ID.MDNodeVal); 1086 } else { 1087 unsigned NodeID = 0; 1088 if (ParseMDNodeID(Node, NodeID)) 1089 return true; 1090 if (Node) { 1091 // If we got the node, add it to the instruction. 1092 Inst->setMetadata(MDK, Node); 1093 } else { 1094 MDRef R = { Loc, MDK, NodeID }; 1095 // Otherwise, remember that this should be resolved later. 1096 ForwardRefInstMetadata[Inst].push_back(R); 1097 } 1098 } 1099 1100 // If this is the end of the list, we're done. 1101 } while (EatIfPresent(lltok::comma)); 1102 return false; 1103 } 1104 1105 /// ParseOptionalAlignment 1106 /// ::= /* empty */ 1107 /// ::= 'align' 4 1108 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1109 Alignment = 0; 1110 if (!EatIfPresent(lltok::kw_align)) 1111 return false; 1112 LocTy AlignLoc = Lex.getLoc(); 1113 if (ParseUInt32(Alignment)) return true; 1114 if (!isPowerOf2_32(Alignment)) 1115 return Error(AlignLoc, "alignment is not a power of two"); 1116 if (Alignment > Value::MaximumAlignment) 1117 return Error(AlignLoc, "huge alignments are not supported yet"); 1118 return false; 1119 } 1120 1121 /// ParseOptionalCommaAlign 1122 /// ::= 1123 /// ::= ',' align 4 1124 /// 1125 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1126 /// end. 1127 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1128 bool &AteExtraComma) { 1129 AteExtraComma = false; 1130 while (EatIfPresent(lltok::comma)) { 1131 // Metadata at the end is an early exit. 1132 if (Lex.getKind() == lltok::MetadataVar) { 1133 AteExtraComma = true; 1134 return false; 1135 } 1136 1137 if (Lex.getKind() != lltok::kw_align) 1138 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1139 1140 if (ParseOptionalAlignment(Alignment)) return true; 1141 } 1142 1143 return false; 1144 } 1145 1146 /// ParseScopeAndOrdering 1147 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1148 /// else: ::= 1149 /// 1150 /// This sets Scope and Ordering to the parsed values. 1151 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1152 AtomicOrdering &Ordering) { 1153 if (!isAtomic) 1154 return false; 1155 1156 Scope = CrossThread; 1157 if (EatIfPresent(lltok::kw_singlethread)) 1158 Scope = SingleThread; 1159 switch (Lex.getKind()) { 1160 default: return TokError("Expected ordering on atomic instruction"); 1161 case lltok::kw_unordered: Ordering = Unordered; break; 1162 case lltok::kw_monotonic: Ordering = Monotonic; break; 1163 case lltok::kw_acquire: Ordering = Acquire; break; 1164 case lltok::kw_release: Ordering = Release; break; 1165 case lltok::kw_acq_rel: Ordering = AcquireRelease; break; 1166 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break; 1167 } 1168 Lex.Lex(); 1169 return false; 1170 } 1171 1172 /// ParseOptionalStackAlignment 1173 /// ::= /* empty */ 1174 /// ::= 'alignstack' '(' 4 ')' 1175 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1176 Alignment = 0; 1177 if (!EatIfPresent(lltok::kw_alignstack)) 1178 return false; 1179 LocTy ParenLoc = Lex.getLoc(); 1180 if (!EatIfPresent(lltok::lparen)) 1181 return Error(ParenLoc, "expected '('"); 1182 LocTy AlignLoc = Lex.getLoc(); 1183 if (ParseUInt32(Alignment)) return true; 1184 ParenLoc = Lex.getLoc(); 1185 if (!EatIfPresent(lltok::rparen)) 1186 return Error(ParenLoc, "expected ')'"); 1187 if (!isPowerOf2_32(Alignment)) 1188 return Error(AlignLoc, "stack alignment is not a power of two"); 1189 return false; 1190 } 1191 1192 /// ParseIndexList - This parses the index list for an insert/extractvalue 1193 /// instruction. This sets AteExtraComma in the case where we eat an extra 1194 /// comma at the end of the line and find that it is followed by metadata. 1195 /// Clients that don't allow metadata can call the version of this function that 1196 /// only takes one argument. 1197 /// 1198 /// ParseIndexList 1199 /// ::= (',' uint32)+ 1200 /// 1201 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1202 bool &AteExtraComma) { 1203 AteExtraComma = false; 1204 1205 if (Lex.getKind() != lltok::comma) 1206 return TokError("expected ',' as start of index list"); 1207 1208 while (EatIfPresent(lltok::comma)) { 1209 if (Lex.getKind() == lltok::MetadataVar) { 1210 AteExtraComma = true; 1211 return false; 1212 } 1213 unsigned Idx = 0; 1214 if (ParseUInt32(Idx)) return true; 1215 Indices.push_back(Idx); 1216 } 1217 1218 return false; 1219 } 1220 1221 //===----------------------------------------------------------------------===// 1222 // Type Parsing. 1223 //===----------------------------------------------------------------------===// 1224 1225 /// ParseType - Parse a type. 1226 bool LLParser::ParseType(Type *&Result, bool AllowVoid) { 1227 SMLoc TypeLoc = Lex.getLoc(); 1228 switch (Lex.getKind()) { 1229 default: 1230 return TokError("expected type"); 1231 case lltok::Type: 1232 // Type ::= 'float' | 'void' (etc) 1233 Result = Lex.getTyVal(); 1234 Lex.Lex(); 1235 break; 1236 case lltok::lbrace: 1237 // Type ::= StructType 1238 if (ParseAnonStructType(Result, false)) 1239 return true; 1240 break; 1241 case lltok::lsquare: 1242 // Type ::= '[' ... ']' 1243 Lex.Lex(); // eat the lsquare. 1244 if (ParseArrayVectorType(Result, false)) 1245 return true; 1246 break; 1247 case lltok::less: // Either vector or packed struct. 1248 // Type ::= '<' ... '>' 1249 Lex.Lex(); 1250 if (Lex.getKind() == lltok::lbrace) { 1251 if (ParseAnonStructType(Result, true) || 1252 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1253 return true; 1254 } else if (ParseArrayVectorType(Result, true)) 1255 return true; 1256 break; 1257 case lltok::LocalVar: { 1258 // Type ::= %foo 1259 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1260 1261 // If the type hasn't been defined yet, create a forward definition and 1262 // remember where that forward def'n was seen (in case it never is defined). 1263 if (Entry.first == 0) { 1264 Entry.first = StructType::create(Context, Lex.getStrVal()); 1265 Entry.second = Lex.getLoc(); 1266 } 1267 Result = Entry.first; 1268 Lex.Lex(); 1269 break; 1270 } 1271 1272 case lltok::LocalVarID: { 1273 // Type ::= %4 1274 if (Lex.getUIntVal() >= NumberedTypes.size()) 1275 NumberedTypes.resize(Lex.getUIntVal()+1); 1276 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 1277 1278 // If the type hasn't been defined yet, create a forward definition and 1279 // remember where that forward def'n was seen (in case it never is defined). 1280 if (Entry.first == 0) { 1281 Entry.first = StructType::create(Context); 1282 Entry.second = Lex.getLoc(); 1283 } 1284 Result = Entry.first; 1285 Lex.Lex(); 1286 break; 1287 } 1288 } 1289 1290 // Parse the type suffixes. 1291 while (1) { 1292 switch (Lex.getKind()) { 1293 // End of type. 1294 default: 1295 if (!AllowVoid && Result->isVoidTy()) 1296 return Error(TypeLoc, "void type only allowed for function results"); 1297 return false; 1298 1299 // Type ::= Type '*' 1300 case lltok::star: 1301 if (Result->isLabelTy()) 1302 return TokError("basic block pointers are invalid"); 1303 if (Result->isVoidTy()) 1304 return TokError("pointers to void are invalid - use i8* instead"); 1305 if (!PointerType::isValidElementType(Result)) 1306 return TokError("pointer to this type is invalid"); 1307 Result = PointerType::getUnqual(Result); 1308 Lex.Lex(); 1309 break; 1310 1311 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 1312 case lltok::kw_addrspace: { 1313 if (Result->isLabelTy()) 1314 return TokError("basic block pointers are invalid"); 1315 if (Result->isVoidTy()) 1316 return TokError("pointers to void are invalid; use i8* instead"); 1317 if (!PointerType::isValidElementType(Result)) 1318 return TokError("pointer to this type is invalid"); 1319 unsigned AddrSpace; 1320 if (ParseOptionalAddrSpace(AddrSpace) || 1321 ParseToken(lltok::star, "expected '*' in address space")) 1322 return true; 1323 1324 Result = PointerType::get(Result, AddrSpace); 1325 break; 1326 } 1327 1328 /// Types '(' ArgTypeListI ')' OptFuncAttrs 1329 case lltok::lparen: 1330 if (ParseFunctionType(Result)) 1331 return true; 1332 break; 1333 } 1334 } 1335 } 1336 1337 /// ParseParameterList 1338 /// ::= '(' ')' 1339 /// ::= '(' Arg (',' Arg)* ')' 1340 /// Arg 1341 /// ::= Type OptionalAttributes Value OptionalAttributes 1342 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 1343 PerFunctionState &PFS) { 1344 if (ParseToken(lltok::lparen, "expected '(' in call")) 1345 return true; 1346 1347 while (Lex.getKind() != lltok::rparen) { 1348 // If this isn't the first argument, we need a comma. 1349 if (!ArgList.empty() && 1350 ParseToken(lltok::comma, "expected ',' in argument list")) 1351 return true; 1352 1353 // Parse the argument. 1354 LocTy ArgLoc; 1355 Type *ArgTy = 0; 1356 unsigned ArgAttrs1 = Attribute::None; 1357 unsigned ArgAttrs2 = Attribute::None; 1358 Value *V; 1359 if (ParseType(ArgTy, ArgLoc)) 1360 return true; 1361 1362 // Otherwise, handle normal operands. 1363 if (ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS)) 1364 return true; 1365 ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2)); 1366 } 1367 1368 Lex.Lex(); // Lex the ')'. 1369 return false; 1370 } 1371 1372 1373 1374 /// ParseArgumentList - Parse the argument list for a function type or function 1375 /// prototype. 1376 /// ::= '(' ArgTypeListI ')' 1377 /// ArgTypeListI 1378 /// ::= /*empty*/ 1379 /// ::= '...' 1380 /// ::= ArgTypeList ',' '...' 1381 /// ::= ArgType (',' ArgType)* 1382 /// 1383 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 1384 bool &isVarArg){ 1385 isVarArg = false; 1386 assert(Lex.getKind() == lltok::lparen); 1387 Lex.Lex(); // eat the (. 1388 1389 if (Lex.getKind() == lltok::rparen) { 1390 // empty 1391 } else if (Lex.getKind() == lltok::dotdotdot) { 1392 isVarArg = true; 1393 Lex.Lex(); 1394 } else { 1395 LocTy TypeLoc = Lex.getLoc(); 1396 Type *ArgTy = 0; 1397 unsigned Attrs; 1398 std::string Name; 1399 1400 if (ParseType(ArgTy) || 1401 ParseOptionalAttrs(Attrs, 0)) return true; 1402 1403 if (ArgTy->isVoidTy()) 1404 return Error(TypeLoc, "argument can not have void type"); 1405 1406 if (Lex.getKind() == lltok::LocalVar) { 1407 Name = Lex.getStrVal(); 1408 Lex.Lex(); 1409 } 1410 1411 if (!FunctionType::isValidArgumentType(ArgTy)) 1412 return Error(TypeLoc, "invalid type for function argument"); 1413 1414 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); 1415 1416 while (EatIfPresent(lltok::comma)) { 1417 // Handle ... at end of arg list. 1418 if (EatIfPresent(lltok::dotdotdot)) { 1419 isVarArg = true; 1420 break; 1421 } 1422 1423 // Otherwise must be an argument type. 1424 TypeLoc = Lex.getLoc(); 1425 if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true; 1426 1427 if (ArgTy->isVoidTy()) 1428 return Error(TypeLoc, "argument can not have void type"); 1429 1430 if (Lex.getKind() == lltok::LocalVar) { 1431 Name = Lex.getStrVal(); 1432 Lex.Lex(); 1433 } else { 1434 Name = ""; 1435 } 1436 1437 if (!ArgTy->isFirstClassType()) 1438 return Error(TypeLoc, "invalid type for function argument"); 1439 1440 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); 1441 } 1442 } 1443 1444 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 1445 } 1446 1447 /// ParseFunctionType 1448 /// ::= Type ArgumentList OptionalAttrs 1449 bool LLParser::ParseFunctionType(Type *&Result) { 1450 assert(Lex.getKind() == lltok::lparen); 1451 1452 if (!FunctionType::isValidReturnType(Result)) 1453 return TokError("invalid function return type"); 1454 1455 SmallVector<ArgInfo, 8> ArgList; 1456 bool isVarArg; 1457 if (ParseArgumentList(ArgList, isVarArg)) 1458 return true; 1459 1460 // Reject names on the arguments lists. 1461 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 1462 if (!ArgList[i].Name.empty()) 1463 return Error(ArgList[i].Loc, "argument name invalid in function type"); 1464 if (ArgList[i].Attrs != 0) 1465 return Error(ArgList[i].Loc, 1466 "argument attributes invalid in function type"); 1467 } 1468 1469 SmallVector<Type*, 16> ArgListTy; 1470 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 1471 ArgListTy.push_back(ArgList[i].Ty); 1472 1473 Result = FunctionType::get(Result, ArgListTy, isVarArg); 1474 return false; 1475 } 1476 1477 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 1478 /// other structs. 1479 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 1480 SmallVector<Type*, 8> Elts; 1481 if (ParseStructBody(Elts)) return true; 1482 1483 Result = StructType::get(Context, Elts, Packed); 1484 return false; 1485 } 1486 1487 /// ParseStructDefinition - Parse a struct in a 'type' definition. 1488 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 1489 std::pair<Type*, LocTy> &Entry, 1490 Type *&ResultTy) { 1491 // If the type was already defined, diagnose the redefinition. 1492 if (Entry.first && !Entry.second.isValid()) 1493 return Error(TypeLoc, "redefinition of type"); 1494 1495 // If we have opaque, just return without filling in the definition for the 1496 // struct. This counts as a definition as far as the .ll file goes. 1497 if (EatIfPresent(lltok::kw_opaque)) { 1498 // This type is being defined, so clear the location to indicate this. 1499 Entry.second = SMLoc(); 1500 1501 // If this type number has never been uttered, create it. 1502 if (Entry.first == 0) 1503 Entry.first = StructType::create(Context, Name); 1504 ResultTy = Entry.first; 1505 return false; 1506 } 1507 1508 // If the type starts with '<', then it is either a packed struct or a vector. 1509 bool isPacked = EatIfPresent(lltok::less); 1510 1511 // If we don't have a struct, then we have a random type alias, which we 1512 // accept for compatibility with old files. These types are not allowed to be 1513 // forward referenced and not allowed to be recursive. 1514 if (Lex.getKind() != lltok::lbrace) { 1515 if (Entry.first) 1516 return Error(TypeLoc, "forward references to non-struct type"); 1517 1518 ResultTy = 0; 1519 if (isPacked) 1520 return ParseArrayVectorType(ResultTy, true); 1521 return ParseType(ResultTy); 1522 } 1523 1524 // This type is being defined, so clear the location to indicate this. 1525 Entry.second = SMLoc(); 1526 1527 // If this type number has never been uttered, create it. 1528 if (Entry.first == 0) 1529 Entry.first = StructType::create(Context, Name); 1530 1531 StructType *STy = cast<StructType>(Entry.first); 1532 1533 SmallVector<Type*, 8> Body; 1534 if (ParseStructBody(Body) || 1535 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 1536 return true; 1537 1538 STy->setBody(Body, isPacked); 1539 ResultTy = STy; 1540 return false; 1541 } 1542 1543 1544 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 1545 /// StructType 1546 /// ::= '{' '}' 1547 /// ::= '{' Type (',' Type)* '}' 1548 /// ::= '<' '{' '}' '>' 1549 /// ::= '<' '{' Type (',' Type)* '}' '>' 1550 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 1551 assert(Lex.getKind() == lltok::lbrace); 1552 Lex.Lex(); // Consume the '{' 1553 1554 // Handle the empty struct. 1555 if (EatIfPresent(lltok::rbrace)) 1556 return false; 1557 1558 LocTy EltTyLoc = Lex.getLoc(); 1559 Type *Ty = 0; 1560 if (ParseType(Ty)) return true; 1561 Body.push_back(Ty); 1562 1563 if (!StructType::isValidElementType(Ty)) 1564 return Error(EltTyLoc, "invalid element type for struct"); 1565 1566 while (EatIfPresent(lltok::comma)) { 1567 EltTyLoc = Lex.getLoc(); 1568 if (ParseType(Ty)) return true; 1569 1570 if (!StructType::isValidElementType(Ty)) 1571 return Error(EltTyLoc, "invalid element type for struct"); 1572 1573 Body.push_back(Ty); 1574 } 1575 1576 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 1577 } 1578 1579 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 1580 /// token has already been consumed. 1581 /// Type 1582 /// ::= '[' APSINTVAL 'x' Types ']' 1583 /// ::= '<' APSINTVAL 'x' Types '>' 1584 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 1585 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 1586 Lex.getAPSIntVal().getBitWidth() > 64) 1587 return TokError("expected number in address space"); 1588 1589 LocTy SizeLoc = Lex.getLoc(); 1590 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 1591 Lex.Lex(); 1592 1593 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 1594 return true; 1595 1596 LocTy TypeLoc = Lex.getLoc(); 1597 Type *EltTy = 0; 1598 if (ParseType(EltTy)) return true; 1599 1600 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 1601 "expected end of sequential type")) 1602 return true; 1603 1604 if (isVector) { 1605 if (Size == 0) 1606 return Error(SizeLoc, "zero element vector is illegal"); 1607 if ((unsigned)Size != Size) 1608 return Error(SizeLoc, "size too large for vector"); 1609 if (!VectorType::isValidElementType(EltTy)) 1610 return Error(TypeLoc, 1611 "vector element type must be fp, integer or a pointer to these types"); 1612 Result = VectorType::get(EltTy, unsigned(Size)); 1613 } else { 1614 if (!ArrayType::isValidElementType(EltTy)) 1615 return Error(TypeLoc, "invalid array element type"); 1616 Result = ArrayType::get(EltTy, Size); 1617 } 1618 return false; 1619 } 1620 1621 //===----------------------------------------------------------------------===// 1622 // Function Semantic Analysis. 1623 //===----------------------------------------------------------------------===// 1624 1625 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 1626 int functionNumber) 1627 : P(p), F(f), FunctionNumber(functionNumber) { 1628 1629 // Insert unnamed arguments into the NumberedVals list. 1630 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); 1631 AI != E; ++AI) 1632 if (!AI->hasName()) 1633 NumberedVals.push_back(AI); 1634 } 1635 1636 LLParser::PerFunctionState::~PerFunctionState() { 1637 // If there were any forward referenced non-basicblock values, delete them. 1638 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator 1639 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I) 1640 if (!isa<BasicBlock>(I->second.first)) { 1641 I->second.first->replaceAllUsesWith( 1642 UndefValue::get(I->second.first->getType())); 1643 delete I->second.first; 1644 I->second.first = 0; 1645 } 1646 1647 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1648 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I) 1649 if (!isa<BasicBlock>(I->second.first)) { 1650 I->second.first->replaceAllUsesWith( 1651 UndefValue::get(I->second.first->getType())); 1652 delete I->second.first; 1653 I->second.first = 0; 1654 } 1655 } 1656 1657 bool LLParser::PerFunctionState::FinishFunction() { 1658 // Check to see if someone took the address of labels in this block. 1659 if (!P.ForwardRefBlockAddresses.empty()) { 1660 ValID FunctionID; 1661 if (!F.getName().empty()) { 1662 FunctionID.Kind = ValID::t_GlobalName; 1663 FunctionID.StrVal = F.getName(); 1664 } else { 1665 FunctionID.Kind = ValID::t_GlobalID; 1666 FunctionID.UIntVal = FunctionNumber; 1667 } 1668 1669 std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator 1670 FRBAI = P.ForwardRefBlockAddresses.find(FunctionID); 1671 if (FRBAI != P.ForwardRefBlockAddresses.end()) { 1672 // Resolve all these references. 1673 if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this)) 1674 return true; 1675 1676 P.ForwardRefBlockAddresses.erase(FRBAI); 1677 } 1678 } 1679 1680 if (!ForwardRefVals.empty()) 1681 return P.Error(ForwardRefVals.begin()->second.second, 1682 "use of undefined value '%" + ForwardRefVals.begin()->first + 1683 "'"); 1684 if (!ForwardRefValIDs.empty()) 1685 return P.Error(ForwardRefValIDs.begin()->second.second, 1686 "use of undefined value '%" + 1687 Twine(ForwardRefValIDs.begin()->first) + "'"); 1688 return false; 1689 } 1690 1691 1692 /// GetVal - Get a value with the specified name or ID, creating a 1693 /// forward reference record if needed. This can return null if the value 1694 /// exists but does not have the right type. 1695 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, 1696 Type *Ty, LocTy Loc) { 1697 // Look this name up in the normal function symbol table. 1698 Value *Val = F.getValueSymbolTable().lookup(Name); 1699 1700 // If this is a forward reference for the value, see if we already created a 1701 // forward ref record. 1702 if (Val == 0) { 1703 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1704 I = ForwardRefVals.find(Name); 1705 if (I != ForwardRefVals.end()) 1706 Val = I->second.first; 1707 } 1708 1709 // If we have the value in the symbol table or fwd-ref table, return it. 1710 if (Val) { 1711 if (Val->getType() == Ty) return Val; 1712 if (Ty->isLabelTy()) 1713 P.Error(Loc, "'%" + Name + "' is not a basic block"); 1714 else 1715 P.Error(Loc, "'%" + Name + "' defined with type '" + 1716 getTypeString(Val->getType()) + "'"); 1717 return 0; 1718 } 1719 1720 // Don't make placeholders with invalid type. 1721 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { 1722 P.Error(Loc, "invalid use of a non-first-class type"); 1723 return 0; 1724 } 1725 1726 // Otherwise, create a new forward reference for this value and remember it. 1727 Value *FwdVal; 1728 if (Ty->isLabelTy()) 1729 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 1730 else 1731 FwdVal = new Argument(Ty, Name); 1732 1733 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1734 return FwdVal; 1735 } 1736 1737 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, 1738 LocTy Loc) { 1739 // Look this name up in the normal function symbol table. 1740 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 1741 1742 // If this is a forward reference for the value, see if we already created a 1743 // forward ref record. 1744 if (Val == 0) { 1745 std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1746 I = ForwardRefValIDs.find(ID); 1747 if (I != ForwardRefValIDs.end()) 1748 Val = I->second.first; 1749 } 1750 1751 // If we have the value in the symbol table or fwd-ref table, return it. 1752 if (Val) { 1753 if (Val->getType() == Ty) return Val; 1754 if (Ty->isLabelTy()) 1755 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 1756 else 1757 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 1758 getTypeString(Val->getType()) + "'"); 1759 return 0; 1760 } 1761 1762 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { 1763 P.Error(Loc, "invalid use of a non-first-class type"); 1764 return 0; 1765 } 1766 1767 // Otherwise, create a new forward reference for this value and remember it. 1768 Value *FwdVal; 1769 if (Ty->isLabelTy()) 1770 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 1771 else 1772 FwdVal = new Argument(Ty); 1773 1774 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1775 return FwdVal; 1776 } 1777 1778 /// SetInstName - After an instruction is parsed and inserted into its 1779 /// basic block, this installs its name. 1780 bool LLParser::PerFunctionState::SetInstName(int NameID, 1781 const std::string &NameStr, 1782 LocTy NameLoc, Instruction *Inst) { 1783 // If this instruction has void type, it cannot have a name or ID specified. 1784 if (Inst->getType()->isVoidTy()) { 1785 if (NameID != -1 || !NameStr.empty()) 1786 return P.Error(NameLoc, "instructions returning void cannot have a name"); 1787 return false; 1788 } 1789 1790 // If this was a numbered instruction, verify that the instruction is the 1791 // expected value and resolve any forward references. 1792 if (NameStr.empty()) { 1793 // If neither a name nor an ID was specified, just use the next ID. 1794 if (NameID == -1) 1795 NameID = NumberedVals.size(); 1796 1797 if (unsigned(NameID) != NumberedVals.size()) 1798 return P.Error(NameLoc, "instruction expected to be numbered '%" + 1799 Twine(NumberedVals.size()) + "'"); 1800 1801 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI = 1802 ForwardRefValIDs.find(NameID); 1803 if (FI != ForwardRefValIDs.end()) { 1804 if (FI->second.first->getType() != Inst->getType()) 1805 return P.Error(NameLoc, "instruction forward referenced with type '" + 1806 getTypeString(FI->second.first->getType()) + "'"); 1807 FI->second.first->replaceAllUsesWith(Inst); 1808 delete FI->second.first; 1809 ForwardRefValIDs.erase(FI); 1810 } 1811 1812 NumberedVals.push_back(Inst); 1813 return false; 1814 } 1815 1816 // Otherwise, the instruction had a name. Resolve forward refs and set it. 1817 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1818 FI = ForwardRefVals.find(NameStr); 1819 if (FI != ForwardRefVals.end()) { 1820 if (FI->second.first->getType() != Inst->getType()) 1821 return P.Error(NameLoc, "instruction forward referenced with type '" + 1822 getTypeString(FI->second.first->getType()) + "'"); 1823 FI->second.first->replaceAllUsesWith(Inst); 1824 delete FI->second.first; 1825 ForwardRefVals.erase(FI); 1826 } 1827 1828 // Set the name on the instruction. 1829 Inst->setName(NameStr); 1830 1831 if (Inst->getName() != NameStr) 1832 return P.Error(NameLoc, "multiple definition of local value named '" + 1833 NameStr + "'"); 1834 return false; 1835 } 1836 1837 /// GetBB - Get a basic block with the specified name or ID, creating a 1838 /// forward reference record if needed. 1839 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 1840 LocTy Loc) { 1841 return cast_or_null<BasicBlock>(GetVal(Name, 1842 Type::getLabelTy(F.getContext()), Loc)); 1843 } 1844 1845 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 1846 return cast_or_null<BasicBlock>(GetVal(ID, 1847 Type::getLabelTy(F.getContext()), Loc)); 1848 } 1849 1850 /// DefineBB - Define the specified basic block, which is either named or 1851 /// unnamed. If there is an error, this returns null otherwise it returns 1852 /// the block being defined. 1853 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 1854 LocTy Loc) { 1855 BasicBlock *BB; 1856 if (Name.empty()) 1857 BB = GetBB(NumberedVals.size(), Loc); 1858 else 1859 BB = GetBB(Name, Loc); 1860 if (BB == 0) return 0; // Already diagnosed error. 1861 1862 // Move the block to the end of the function. Forward ref'd blocks are 1863 // inserted wherever they happen to be referenced. 1864 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 1865 1866 // Remove the block from forward ref sets. 1867 if (Name.empty()) { 1868 ForwardRefValIDs.erase(NumberedVals.size()); 1869 NumberedVals.push_back(BB); 1870 } else { 1871 // BB forward references are already in the function symbol table. 1872 ForwardRefVals.erase(Name); 1873 } 1874 1875 return BB; 1876 } 1877 1878 //===----------------------------------------------------------------------===// 1879 // Constants. 1880 //===----------------------------------------------------------------------===// 1881 1882 /// ParseValID - Parse an abstract value that doesn't necessarily have a 1883 /// type implied. For example, if we parse "4" we don't know what integer type 1884 /// it has. The value will later be combined with its type and checked for 1885 /// sanity. PFS is used to convert function-local operands of metadata (since 1886 /// metadata operands are not just parsed here but also converted to values). 1887 /// PFS can be null when we are not parsing metadata values inside a function. 1888 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 1889 ID.Loc = Lex.getLoc(); 1890 switch (Lex.getKind()) { 1891 default: return TokError("expected value token"); 1892 case lltok::GlobalID: // @42 1893 ID.UIntVal = Lex.getUIntVal(); 1894 ID.Kind = ValID::t_GlobalID; 1895 break; 1896 case lltok::GlobalVar: // @foo 1897 ID.StrVal = Lex.getStrVal(); 1898 ID.Kind = ValID::t_GlobalName; 1899 break; 1900 case lltok::LocalVarID: // %42 1901 ID.UIntVal = Lex.getUIntVal(); 1902 ID.Kind = ValID::t_LocalID; 1903 break; 1904 case lltok::LocalVar: // %foo 1905 ID.StrVal = Lex.getStrVal(); 1906 ID.Kind = ValID::t_LocalName; 1907 break; 1908 case lltok::exclaim: // !42, !{...}, or !"foo" 1909 return ParseMetadataValue(ID, PFS); 1910 case lltok::APSInt: 1911 ID.APSIntVal = Lex.getAPSIntVal(); 1912 ID.Kind = ValID::t_APSInt; 1913 break; 1914 case lltok::APFloat: 1915 ID.APFloatVal = Lex.getAPFloatVal(); 1916 ID.Kind = ValID::t_APFloat; 1917 break; 1918 case lltok::kw_true: 1919 ID.ConstantVal = ConstantInt::getTrue(Context); 1920 ID.Kind = ValID::t_Constant; 1921 break; 1922 case lltok::kw_false: 1923 ID.ConstantVal = ConstantInt::getFalse(Context); 1924 ID.Kind = ValID::t_Constant; 1925 break; 1926 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 1927 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 1928 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 1929 1930 case lltok::lbrace: { 1931 // ValID ::= '{' ConstVector '}' 1932 Lex.Lex(); 1933 SmallVector<Constant*, 16> Elts; 1934 if (ParseGlobalValueVector(Elts) || 1935 ParseToken(lltok::rbrace, "expected end of struct constant")) 1936 return true; 1937 1938 ID.ConstantStructElts = new Constant*[Elts.size()]; 1939 ID.UIntVal = Elts.size(); 1940 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 1941 ID.Kind = ValID::t_ConstantStruct; 1942 return false; 1943 } 1944 case lltok::less: { 1945 // ValID ::= '<' ConstVector '>' --> Vector. 1946 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 1947 Lex.Lex(); 1948 bool isPackedStruct = EatIfPresent(lltok::lbrace); 1949 1950 SmallVector<Constant*, 16> Elts; 1951 LocTy FirstEltLoc = Lex.getLoc(); 1952 if (ParseGlobalValueVector(Elts) || 1953 (isPackedStruct && 1954 ParseToken(lltok::rbrace, "expected end of packed struct")) || 1955 ParseToken(lltok::greater, "expected end of constant")) 1956 return true; 1957 1958 if (isPackedStruct) { 1959 ID.ConstantStructElts = new Constant*[Elts.size()]; 1960 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 1961 ID.UIntVal = Elts.size(); 1962 ID.Kind = ValID::t_PackedConstantStruct; 1963 return false; 1964 } 1965 1966 if (Elts.empty()) 1967 return Error(ID.Loc, "constant vector must not be empty"); 1968 1969 if (!Elts[0]->getType()->isIntegerTy() && 1970 !Elts[0]->getType()->isFloatingPointTy() && 1971 !Elts[0]->getType()->isPointerTy()) 1972 return Error(FirstEltLoc, 1973 "vector elements must have integer, pointer or floating point type"); 1974 1975 // Verify that all the vector elements have the same type. 1976 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 1977 if (Elts[i]->getType() != Elts[0]->getType()) 1978 return Error(FirstEltLoc, 1979 "vector element #" + Twine(i) + 1980 " is not of type '" + getTypeString(Elts[0]->getType())); 1981 1982 ID.ConstantVal = ConstantVector::get(Elts); 1983 ID.Kind = ValID::t_Constant; 1984 return false; 1985 } 1986 case lltok::lsquare: { // Array Constant 1987 Lex.Lex(); 1988 SmallVector<Constant*, 16> Elts; 1989 LocTy FirstEltLoc = Lex.getLoc(); 1990 if (ParseGlobalValueVector(Elts) || 1991 ParseToken(lltok::rsquare, "expected end of array constant")) 1992 return true; 1993 1994 // Handle empty element. 1995 if (Elts.empty()) { 1996 // Use undef instead of an array because it's inconvenient to determine 1997 // the element type at this point, there being no elements to examine. 1998 ID.Kind = ValID::t_EmptyArray; 1999 return false; 2000 } 2001 2002 if (!Elts[0]->getType()->isFirstClassType()) 2003 return Error(FirstEltLoc, "invalid array element type: " + 2004 getTypeString(Elts[0]->getType())); 2005 2006 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2007 2008 // Verify all elements are correct type! 2009 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2010 if (Elts[i]->getType() != Elts[0]->getType()) 2011 return Error(FirstEltLoc, 2012 "array element #" + Twine(i) + 2013 " is not of type '" + getTypeString(Elts[0]->getType())); 2014 } 2015 2016 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2017 ID.Kind = ValID::t_Constant; 2018 return false; 2019 } 2020 case lltok::kw_c: // c "foo" 2021 Lex.Lex(); 2022 ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false); 2023 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2024 ID.Kind = ValID::t_Constant; 2025 return false; 2026 2027 case lltok::kw_asm: { 2028 // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT 2029 bool HasSideEffect, AlignStack; 2030 Lex.Lex(); 2031 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2032 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2033 ParseStringConstant(ID.StrVal) || 2034 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2035 ParseToken(lltok::StringConstant, "expected constraint string")) 2036 return true; 2037 ID.StrVal2 = Lex.getStrVal(); 2038 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1); 2039 ID.Kind = ValID::t_InlineAsm; 2040 return false; 2041 } 2042 2043 case lltok::kw_blockaddress: { 2044 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2045 Lex.Lex(); 2046 2047 ValID Fn, Label; 2048 LocTy FnLoc, LabelLoc; 2049 2050 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2051 ParseValID(Fn) || 2052 ParseToken(lltok::comma, "expected comma in block address expression")|| 2053 ParseValID(Label) || 2054 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2055 return true; 2056 2057 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2058 return Error(Fn.Loc, "expected function name in blockaddress"); 2059 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2060 return Error(Label.Loc, "expected basic block name in blockaddress"); 2061 2062 // Make a global variable as a placeholder for this reference. 2063 GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), 2064 false, GlobalValue::InternalLinkage, 2065 0, ""); 2066 ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef)); 2067 ID.ConstantVal = FwdRef; 2068 ID.Kind = ValID::t_Constant; 2069 return false; 2070 } 2071 2072 case lltok::kw_trunc: 2073 case lltok::kw_zext: 2074 case lltok::kw_sext: 2075 case lltok::kw_fptrunc: 2076 case lltok::kw_fpext: 2077 case lltok::kw_bitcast: 2078 case lltok::kw_uitofp: 2079 case lltok::kw_sitofp: 2080 case lltok::kw_fptoui: 2081 case lltok::kw_fptosi: 2082 case lltok::kw_inttoptr: 2083 case lltok::kw_ptrtoint: { 2084 unsigned Opc = Lex.getUIntVal(); 2085 Type *DestTy = 0; 2086 Constant *SrcVal; 2087 Lex.Lex(); 2088 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2089 ParseGlobalTypeAndValue(SrcVal) || 2090 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2091 ParseType(DestTy) || 2092 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2093 return true; 2094 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2095 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2096 getTypeString(SrcVal->getType()) + "' to '" + 2097 getTypeString(DestTy) + "'"); 2098 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2099 SrcVal, DestTy); 2100 ID.Kind = ValID::t_Constant; 2101 return false; 2102 } 2103 case lltok::kw_extractvalue: { 2104 Lex.Lex(); 2105 Constant *Val; 2106 SmallVector<unsigned, 4> Indices; 2107 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2108 ParseGlobalTypeAndValue(Val) || 2109 ParseIndexList(Indices) || 2110 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2111 return true; 2112 2113 if (!Val->getType()->isAggregateType()) 2114 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2115 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2116 return Error(ID.Loc, "invalid indices for extractvalue"); 2117 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2118 ID.Kind = ValID::t_Constant; 2119 return false; 2120 } 2121 case lltok::kw_insertvalue: { 2122 Lex.Lex(); 2123 Constant *Val0, *Val1; 2124 SmallVector<unsigned, 4> Indices; 2125 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2126 ParseGlobalTypeAndValue(Val0) || 2127 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2128 ParseGlobalTypeAndValue(Val1) || 2129 ParseIndexList(Indices) || 2130 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2131 return true; 2132 if (!Val0->getType()->isAggregateType()) 2133 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2134 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) 2135 return Error(ID.Loc, "invalid indices for insertvalue"); 2136 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2137 ID.Kind = ValID::t_Constant; 2138 return false; 2139 } 2140 case lltok::kw_icmp: 2141 case lltok::kw_fcmp: { 2142 unsigned PredVal, Opc = Lex.getUIntVal(); 2143 Constant *Val0, *Val1; 2144 Lex.Lex(); 2145 if (ParseCmpPredicate(PredVal, Opc) || 2146 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2147 ParseGlobalTypeAndValue(Val0) || 2148 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2149 ParseGlobalTypeAndValue(Val1) || 2150 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2151 return true; 2152 2153 if (Val0->getType() != Val1->getType()) 2154 return Error(ID.Loc, "compare operands must have the same type"); 2155 2156 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2157 2158 if (Opc == Instruction::FCmp) { 2159 if (!Val0->getType()->isFPOrFPVectorTy()) 2160 return Error(ID.Loc, "fcmp requires floating point operands"); 2161 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2162 } else { 2163 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2164 if (!Val0->getType()->isIntOrIntVectorTy() && 2165 !Val0->getType()->getScalarType()->isPointerTy()) 2166 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2167 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2168 } 2169 ID.Kind = ValID::t_Constant; 2170 return false; 2171 } 2172 2173 // Binary Operators. 2174 case lltok::kw_add: 2175 case lltok::kw_fadd: 2176 case lltok::kw_sub: 2177 case lltok::kw_fsub: 2178 case lltok::kw_mul: 2179 case lltok::kw_fmul: 2180 case lltok::kw_udiv: 2181 case lltok::kw_sdiv: 2182 case lltok::kw_fdiv: 2183 case lltok::kw_urem: 2184 case lltok::kw_srem: 2185 case lltok::kw_frem: 2186 case lltok::kw_shl: 2187 case lltok::kw_lshr: 2188 case lltok::kw_ashr: { 2189 bool NUW = false; 2190 bool NSW = false; 2191 bool Exact = false; 2192 unsigned Opc = Lex.getUIntVal(); 2193 Constant *Val0, *Val1; 2194 Lex.Lex(); 2195 LocTy ModifierLoc = Lex.getLoc(); 2196 if (Opc == Instruction::Add || Opc == Instruction::Sub || 2197 Opc == Instruction::Mul || Opc == Instruction::Shl) { 2198 if (EatIfPresent(lltok::kw_nuw)) 2199 NUW = true; 2200 if (EatIfPresent(lltok::kw_nsw)) { 2201 NSW = true; 2202 if (EatIfPresent(lltok::kw_nuw)) 2203 NUW = true; 2204 } 2205 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 2206 Opc == Instruction::LShr || Opc == Instruction::AShr) { 2207 if (EatIfPresent(lltok::kw_exact)) 2208 Exact = true; 2209 } 2210 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 2211 ParseGlobalTypeAndValue(Val0) || 2212 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 2213 ParseGlobalTypeAndValue(Val1) || 2214 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 2215 return true; 2216 if (Val0->getType() != Val1->getType()) 2217 return Error(ID.Loc, "operands of constexpr must have same type"); 2218 if (!Val0->getType()->isIntOrIntVectorTy()) { 2219 if (NUW) 2220 return Error(ModifierLoc, "nuw only applies to integer operations"); 2221 if (NSW) 2222 return Error(ModifierLoc, "nsw only applies to integer operations"); 2223 } 2224 // Check that the type is valid for the operator. 2225 switch (Opc) { 2226 case Instruction::Add: 2227 case Instruction::Sub: 2228 case Instruction::Mul: 2229 case Instruction::UDiv: 2230 case Instruction::SDiv: 2231 case Instruction::URem: 2232 case Instruction::SRem: 2233 case Instruction::Shl: 2234 case Instruction::AShr: 2235 case Instruction::LShr: 2236 if (!Val0->getType()->isIntOrIntVectorTy()) 2237 return Error(ID.Loc, "constexpr requires integer operands"); 2238 break; 2239 case Instruction::FAdd: 2240 case Instruction::FSub: 2241 case Instruction::FMul: 2242 case Instruction::FDiv: 2243 case Instruction::FRem: 2244 if (!Val0->getType()->isFPOrFPVectorTy()) 2245 return Error(ID.Loc, "constexpr requires fp operands"); 2246 break; 2247 default: llvm_unreachable("Unknown binary operator!"); 2248 } 2249 unsigned Flags = 0; 2250 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2251 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 2252 if (Exact) Flags |= PossiblyExactOperator::IsExact; 2253 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 2254 ID.ConstantVal = C; 2255 ID.Kind = ValID::t_Constant; 2256 return false; 2257 } 2258 2259 // Logical Operations 2260 case lltok::kw_and: 2261 case lltok::kw_or: 2262 case lltok::kw_xor: { 2263 unsigned Opc = Lex.getUIntVal(); 2264 Constant *Val0, *Val1; 2265 Lex.Lex(); 2266 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 2267 ParseGlobalTypeAndValue(Val0) || 2268 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 2269 ParseGlobalTypeAndValue(Val1) || 2270 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 2271 return true; 2272 if (Val0->getType() != Val1->getType()) 2273 return Error(ID.Loc, "operands of constexpr must have same type"); 2274 if (!Val0->getType()->isIntOrIntVectorTy()) 2275 return Error(ID.Loc, 2276 "constexpr requires integer or integer vector operands"); 2277 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 2278 ID.Kind = ValID::t_Constant; 2279 return false; 2280 } 2281 2282 case lltok::kw_getelementptr: 2283 case lltok::kw_shufflevector: 2284 case lltok::kw_insertelement: 2285 case lltok::kw_extractelement: 2286 case lltok::kw_select: { 2287 unsigned Opc = Lex.getUIntVal(); 2288 SmallVector<Constant*, 16> Elts; 2289 bool InBounds = false; 2290 Lex.Lex(); 2291 if (Opc == Instruction::GetElementPtr) 2292 InBounds = EatIfPresent(lltok::kw_inbounds); 2293 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") || 2294 ParseGlobalValueVector(Elts) || 2295 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 2296 return true; 2297 2298 if (Opc == Instruction::GetElementPtr) { 2299 if (Elts.size() == 0 || 2300 !Elts[0]->getType()->getScalarType()->isPointerTy()) 2301 return Error(ID.Loc, "getelementptr requires pointer operand"); 2302 2303 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2304 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices)) 2305 return Error(ID.Loc, "invalid indices for getelementptr"); 2306 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices, 2307 InBounds); 2308 } else if (Opc == Instruction::Select) { 2309 if (Elts.size() != 3) 2310 return Error(ID.Loc, "expected three operands to select"); 2311 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 2312 Elts[2])) 2313 return Error(ID.Loc, Reason); 2314 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 2315 } else if (Opc == Instruction::ShuffleVector) { 2316 if (Elts.size() != 3) 2317 return Error(ID.Loc, "expected three operands to shufflevector"); 2318 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2319 return Error(ID.Loc, "invalid operands to shufflevector"); 2320 ID.ConstantVal = 2321 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 2322 } else if (Opc == Instruction::ExtractElement) { 2323 if (Elts.size() != 2) 2324 return Error(ID.Loc, "expected two operands to extractelement"); 2325 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 2326 return Error(ID.Loc, "invalid extractelement operands"); 2327 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 2328 } else { 2329 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 2330 if (Elts.size() != 3) 2331 return Error(ID.Loc, "expected three operands to insertelement"); 2332 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2333 return Error(ID.Loc, "invalid insertelement operands"); 2334 ID.ConstantVal = 2335 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 2336 } 2337 2338 ID.Kind = ValID::t_Constant; 2339 return false; 2340 } 2341 } 2342 2343 Lex.Lex(); 2344 return false; 2345 } 2346 2347 /// ParseGlobalValue - Parse a global value with the specified type. 2348 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 2349 C = 0; 2350 ValID ID; 2351 Value *V = NULL; 2352 bool Parsed = ParseValID(ID) || 2353 ConvertValIDToValue(Ty, ID, V, NULL); 2354 if (V && !(C = dyn_cast<Constant>(V))) 2355 return Error(ID.Loc, "global values must be constants"); 2356 return Parsed; 2357 } 2358 2359 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 2360 Type *Ty = 0; 2361 return ParseType(Ty) || 2362 ParseGlobalValue(Ty, V); 2363 } 2364 2365 /// ParseGlobalValueVector 2366 /// ::= /*empty*/ 2367 /// ::= TypeAndValue (',' TypeAndValue)* 2368 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) { 2369 // Empty list. 2370 if (Lex.getKind() == lltok::rbrace || 2371 Lex.getKind() == lltok::rsquare || 2372 Lex.getKind() == lltok::greater || 2373 Lex.getKind() == lltok::rparen) 2374 return false; 2375 2376 Constant *C; 2377 if (ParseGlobalTypeAndValue(C)) return true; 2378 Elts.push_back(C); 2379 2380 while (EatIfPresent(lltok::comma)) { 2381 if (ParseGlobalTypeAndValue(C)) return true; 2382 Elts.push_back(C); 2383 } 2384 2385 return false; 2386 } 2387 2388 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) { 2389 assert(Lex.getKind() == lltok::lbrace); 2390 Lex.Lex(); 2391 2392 SmallVector<Value*, 16> Elts; 2393 if (ParseMDNodeVector(Elts, PFS) || 2394 ParseToken(lltok::rbrace, "expected end of metadata node")) 2395 return true; 2396 2397 ID.MDNodeVal = MDNode::get(Context, Elts); 2398 ID.Kind = ValID::t_MDNode; 2399 return false; 2400 } 2401 2402 /// ParseMetadataValue 2403 /// ::= !42 2404 /// ::= !{...} 2405 /// ::= !"string" 2406 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) { 2407 assert(Lex.getKind() == lltok::exclaim); 2408 Lex.Lex(); 2409 2410 // MDNode: 2411 // !{ ... } 2412 if (Lex.getKind() == lltok::lbrace) 2413 return ParseMetadataListValue(ID, PFS); 2414 2415 // Standalone metadata reference 2416 // !42 2417 if (Lex.getKind() == lltok::APSInt) { 2418 if (ParseMDNodeID(ID.MDNodeVal)) return true; 2419 ID.Kind = ValID::t_MDNode; 2420 return false; 2421 } 2422 2423 // MDString: 2424 // ::= '!' STRINGCONSTANT 2425 if (ParseMDString(ID.MDStringVal)) return true; 2426 ID.Kind = ValID::t_MDString; 2427 return false; 2428 } 2429 2430 2431 //===----------------------------------------------------------------------===// 2432 // Function Parsing. 2433 //===----------------------------------------------------------------------===// 2434 2435 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 2436 PerFunctionState *PFS) { 2437 if (Ty->isFunctionTy()) 2438 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 2439 2440 switch (ID.Kind) { 2441 default: llvm_unreachable("Unknown ValID!"); 2442 case ValID::t_LocalID: 2443 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2444 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 2445 return (V == 0); 2446 case ValID::t_LocalName: 2447 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2448 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 2449 return (V == 0); 2450 case ValID::t_InlineAsm: { 2451 PointerType *PTy = dyn_cast<PointerType>(Ty); 2452 FunctionType *FTy = 2453 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; 2454 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2)) 2455 return Error(ID.Loc, "invalid type for inline asm constraint string"); 2456 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1); 2457 return false; 2458 } 2459 case ValID::t_MDNode: 2460 if (!Ty->isMetadataTy()) 2461 return Error(ID.Loc, "metadata value must have metadata type"); 2462 V = ID.MDNodeVal; 2463 return false; 2464 case ValID::t_MDString: 2465 if (!Ty->isMetadataTy()) 2466 return Error(ID.Loc, "metadata value must have metadata type"); 2467 V = ID.MDStringVal; 2468 return false; 2469 case ValID::t_GlobalName: 2470 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 2471 return V == 0; 2472 case ValID::t_GlobalID: 2473 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 2474 return V == 0; 2475 case ValID::t_APSInt: 2476 if (!Ty->isIntegerTy()) 2477 return Error(ID.Loc, "integer constant must have integer type"); 2478 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 2479 V = ConstantInt::get(Context, ID.APSIntVal); 2480 return false; 2481 case ValID::t_APFloat: 2482 if (!Ty->isFloatingPointTy() || 2483 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 2484 return Error(ID.Loc, "floating point constant invalid for type"); 2485 2486 // The lexer has no type info, so builds all float and double FP constants 2487 // as double. Fix this here. Long double does not need this. 2488 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble && 2489 Ty->isFloatTy()) { 2490 bool Ignored; 2491 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 2492 &Ignored); 2493 } 2494 V = ConstantFP::get(Context, ID.APFloatVal); 2495 2496 if (V->getType() != Ty) 2497 return Error(ID.Loc, "floating point constant does not have type '" + 2498 getTypeString(Ty) + "'"); 2499 2500 return false; 2501 case ValID::t_Null: 2502 if (!Ty->isPointerTy()) 2503 return Error(ID.Loc, "null must be a pointer type"); 2504 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 2505 return false; 2506 case ValID::t_Undef: 2507 // FIXME: LabelTy should not be a first-class type. 2508 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2509 return Error(ID.Loc, "invalid type for undef constant"); 2510 V = UndefValue::get(Ty); 2511 return false; 2512 case ValID::t_EmptyArray: 2513 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 2514 return Error(ID.Loc, "invalid empty array initializer"); 2515 V = UndefValue::get(Ty); 2516 return false; 2517 case ValID::t_Zero: 2518 // FIXME: LabelTy should not be a first-class type. 2519 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2520 return Error(ID.Loc, "invalid type for null constant"); 2521 V = Constant::getNullValue(Ty); 2522 return false; 2523 case ValID::t_Constant: 2524 if (ID.ConstantVal->getType() != Ty) 2525 return Error(ID.Loc, "constant expression type mismatch"); 2526 2527 V = ID.ConstantVal; 2528 return false; 2529 case ValID::t_ConstantStruct: 2530 case ValID::t_PackedConstantStruct: 2531 if (StructType *ST = dyn_cast<StructType>(Ty)) { 2532 if (ST->getNumElements() != ID.UIntVal) 2533 return Error(ID.Loc, 2534 "initializer with struct type has wrong # elements"); 2535 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 2536 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 2537 2538 // Verify that the elements are compatible with the structtype. 2539 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 2540 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 2541 return Error(ID.Loc, "element " + Twine(i) + 2542 " of struct initializer doesn't match struct element type"); 2543 2544 V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts, 2545 ID.UIntVal)); 2546 } else 2547 return Error(ID.Loc, "constant expression type mismatch"); 2548 return false; 2549 } 2550 } 2551 2552 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 2553 V = 0; 2554 ValID ID; 2555 return ParseValID(ID, PFS) || 2556 ConvertValIDToValue(Ty, ID, V, PFS); 2557 } 2558 2559 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 2560 Type *Ty = 0; 2561 return ParseType(Ty) || 2562 ParseValue(Ty, V, PFS); 2563 } 2564 2565 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 2566 PerFunctionState &PFS) { 2567 Value *V; 2568 Loc = Lex.getLoc(); 2569 if (ParseTypeAndValue(V, PFS)) return true; 2570 if (!isa<BasicBlock>(V)) 2571 return Error(Loc, "expected a basic block"); 2572 BB = cast<BasicBlock>(V); 2573 return false; 2574 } 2575 2576 2577 /// FunctionHeader 2578 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 2579 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 2580 /// OptionalAlign OptGC 2581 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 2582 // Parse the linkage. 2583 LocTy LinkageLoc = Lex.getLoc(); 2584 unsigned Linkage; 2585 2586 unsigned Visibility, RetAttrs; 2587 CallingConv::ID CC; 2588 Type *RetType = 0; 2589 LocTy RetTypeLoc = Lex.getLoc(); 2590 if (ParseOptionalLinkage(Linkage) || 2591 ParseOptionalVisibility(Visibility) || 2592 ParseOptionalCallingConv(CC) || 2593 ParseOptionalAttrs(RetAttrs, 1) || 2594 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 2595 return true; 2596 2597 // Verify that the linkage is ok. 2598 switch ((GlobalValue::LinkageTypes)Linkage) { 2599 case GlobalValue::ExternalLinkage: 2600 break; // always ok. 2601 case GlobalValue::DLLImportLinkage: 2602 case GlobalValue::ExternalWeakLinkage: 2603 if (isDefine) 2604 return Error(LinkageLoc, "invalid linkage for function definition"); 2605 break; 2606 case GlobalValue::PrivateLinkage: 2607 case GlobalValue::LinkerPrivateLinkage: 2608 case GlobalValue::LinkerPrivateWeakLinkage: 2609 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: 2610 case GlobalValue::InternalLinkage: 2611 case GlobalValue::AvailableExternallyLinkage: 2612 case GlobalValue::LinkOnceAnyLinkage: 2613 case GlobalValue::LinkOnceODRLinkage: 2614 case GlobalValue::WeakAnyLinkage: 2615 case GlobalValue::WeakODRLinkage: 2616 case GlobalValue::DLLExportLinkage: 2617 if (!isDefine) 2618 return Error(LinkageLoc, "invalid linkage for function declaration"); 2619 break; 2620 case GlobalValue::AppendingLinkage: 2621 case GlobalValue::CommonLinkage: 2622 return Error(LinkageLoc, "invalid function linkage type"); 2623 } 2624 2625 if (!FunctionType::isValidReturnType(RetType)) 2626 return Error(RetTypeLoc, "invalid function return type"); 2627 2628 LocTy NameLoc = Lex.getLoc(); 2629 2630 std::string FunctionName; 2631 if (Lex.getKind() == lltok::GlobalVar) { 2632 FunctionName = Lex.getStrVal(); 2633 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 2634 unsigned NameID = Lex.getUIntVal(); 2635 2636 if (NameID != NumberedVals.size()) 2637 return TokError("function expected to be numbered '%" + 2638 Twine(NumberedVals.size()) + "'"); 2639 } else { 2640 return TokError("expected function name"); 2641 } 2642 2643 Lex.Lex(); 2644 2645 if (Lex.getKind() != lltok::lparen) 2646 return TokError("expected '(' in function argument list"); 2647 2648 SmallVector<ArgInfo, 8> ArgList; 2649 bool isVarArg; 2650 unsigned FuncAttrs; 2651 std::string Section; 2652 unsigned Alignment; 2653 std::string GC; 2654 bool UnnamedAddr; 2655 LocTy UnnamedAddrLoc; 2656 2657 if (ParseArgumentList(ArgList, isVarArg) || 2658 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 2659 &UnnamedAddrLoc) || 2660 ParseOptionalAttrs(FuncAttrs, 2) || 2661 (EatIfPresent(lltok::kw_section) && 2662 ParseStringConstant(Section)) || 2663 ParseOptionalAlignment(Alignment) || 2664 (EatIfPresent(lltok::kw_gc) && 2665 ParseStringConstant(GC))) 2666 return true; 2667 2668 // If the alignment was parsed as an attribute, move to the alignment field. 2669 if (FuncAttrs & Attribute::Alignment) { 2670 Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs); 2671 FuncAttrs &= ~Attribute::Alignment; 2672 } 2673 2674 // Okay, if we got here, the function is syntactically valid. Convert types 2675 // and do semantic checks. 2676 std::vector<Type*> ParamTypeList; 2677 SmallVector<AttributeWithIndex, 8> Attrs; 2678 2679 if (RetAttrs != Attribute::None) 2680 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); 2681 2682 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2683 ParamTypeList.push_back(ArgList[i].Ty); 2684 if (ArgList[i].Attrs != Attribute::None) 2685 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 2686 } 2687 2688 if (FuncAttrs != Attribute::None) 2689 Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs)); 2690 2691 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); 2692 2693 if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy()) 2694 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 2695 2696 FunctionType *FT = 2697 FunctionType::get(RetType, ParamTypeList, isVarArg); 2698 PointerType *PFT = PointerType::getUnqual(FT); 2699 2700 Fn = 0; 2701 if (!FunctionName.empty()) { 2702 // If this was a definition of a forward reference, remove the definition 2703 // from the forward reference table and fill in the forward ref. 2704 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI = 2705 ForwardRefVals.find(FunctionName); 2706 if (FRVI != ForwardRefVals.end()) { 2707 Fn = M->getFunction(FunctionName); 2708 if (Fn->getType() != PFT) 2709 return Error(FRVI->second.second, "invalid forward reference to " 2710 "function '" + FunctionName + "' with wrong type!"); 2711 2712 ForwardRefVals.erase(FRVI); 2713 } else if ((Fn = M->getFunction(FunctionName))) { 2714 // Reject redefinitions. 2715 return Error(NameLoc, "invalid redefinition of function '" + 2716 FunctionName + "'"); 2717 } else if (M->getNamedValue(FunctionName)) { 2718 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 2719 } 2720 2721 } else { 2722 // If this is a definition of a forward referenced function, make sure the 2723 // types agree. 2724 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I 2725 = ForwardRefValIDs.find(NumberedVals.size()); 2726 if (I != ForwardRefValIDs.end()) { 2727 Fn = cast<Function>(I->second.first); 2728 if (Fn->getType() != PFT) 2729 return Error(NameLoc, "type of definition and forward reference of '@" + 2730 Twine(NumberedVals.size()) + "' disagree"); 2731 ForwardRefValIDs.erase(I); 2732 } 2733 } 2734 2735 if (Fn == 0) 2736 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 2737 else // Move the forward-reference to the correct spot in the module. 2738 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 2739 2740 if (FunctionName.empty()) 2741 NumberedVals.push_back(Fn); 2742 2743 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 2744 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 2745 Fn->setCallingConv(CC); 2746 Fn->setAttributes(PAL); 2747 Fn->setUnnamedAddr(UnnamedAddr); 2748 Fn->setAlignment(Alignment); 2749 Fn->setSection(Section); 2750 if (!GC.empty()) Fn->setGC(GC.c_str()); 2751 2752 // Add all of the arguments we parsed to the function. 2753 Function::arg_iterator ArgIt = Fn->arg_begin(); 2754 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 2755 // If the argument has a name, insert it into the argument symbol table. 2756 if (ArgList[i].Name.empty()) continue; 2757 2758 // Set the name, if it conflicted, it will be auto-renamed. 2759 ArgIt->setName(ArgList[i].Name); 2760 2761 if (ArgIt->getName() != ArgList[i].Name) 2762 return Error(ArgList[i].Loc, "redefinition of argument '%" + 2763 ArgList[i].Name + "'"); 2764 } 2765 2766 return false; 2767 } 2768 2769 2770 /// ParseFunctionBody 2771 /// ::= '{' BasicBlock+ '}' 2772 /// 2773 bool LLParser::ParseFunctionBody(Function &Fn) { 2774 if (Lex.getKind() != lltok::lbrace) 2775 return TokError("expected '{' in function body"); 2776 Lex.Lex(); // eat the {. 2777 2778 int FunctionNumber = -1; 2779 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 2780 2781 PerFunctionState PFS(*this, Fn, FunctionNumber); 2782 2783 // We need at least one basic block. 2784 if (Lex.getKind() == lltok::rbrace) 2785 return TokError("function body requires at least one basic block"); 2786 2787 while (Lex.getKind() != lltok::rbrace) 2788 if (ParseBasicBlock(PFS)) return true; 2789 2790 // Eat the }. 2791 Lex.Lex(); 2792 2793 // Verify function is ok. 2794 return PFS.FinishFunction(); 2795 } 2796 2797 /// ParseBasicBlock 2798 /// ::= LabelStr? Instruction* 2799 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 2800 // If this basic block starts out with a name, remember it. 2801 std::string Name; 2802 LocTy NameLoc = Lex.getLoc(); 2803 if (Lex.getKind() == lltok::LabelStr) { 2804 Name = Lex.getStrVal(); 2805 Lex.Lex(); 2806 } 2807 2808 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 2809 if (BB == 0) return true; 2810 2811 std::string NameStr; 2812 2813 // Parse the instructions in this block until we get a terminator. 2814 Instruction *Inst; 2815 SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst; 2816 do { 2817 // This instruction may have three possibilities for a name: a) none 2818 // specified, b) name specified "%foo =", c) number specified: "%4 =". 2819 LocTy NameLoc = Lex.getLoc(); 2820 int NameID = -1; 2821 NameStr = ""; 2822 2823 if (Lex.getKind() == lltok::LocalVarID) { 2824 NameID = Lex.getUIntVal(); 2825 Lex.Lex(); 2826 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 2827 return true; 2828 } else if (Lex.getKind() == lltok::LocalVar) { 2829 NameStr = Lex.getStrVal(); 2830 Lex.Lex(); 2831 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 2832 return true; 2833 } 2834 2835 switch (ParseInstruction(Inst, BB, PFS)) { 2836 default: assert(0 && "Unknown ParseInstruction result!"); 2837 case InstError: return true; 2838 case InstNormal: 2839 BB->getInstList().push_back(Inst); 2840 2841 // With a normal result, we check to see if the instruction is followed by 2842 // a comma and metadata. 2843 if (EatIfPresent(lltok::comma)) 2844 if (ParseInstructionMetadata(Inst, &PFS)) 2845 return true; 2846 break; 2847 case InstExtraComma: 2848 BB->getInstList().push_back(Inst); 2849 2850 // If the instruction parser ate an extra comma at the end of it, it 2851 // *must* be followed by metadata. 2852 if (ParseInstructionMetadata(Inst, &PFS)) 2853 return true; 2854 break; 2855 } 2856 2857 // Set the name on the instruction. 2858 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 2859 } while (!isa<TerminatorInst>(Inst)); 2860 2861 return false; 2862 } 2863 2864 //===----------------------------------------------------------------------===// 2865 // Instruction Parsing. 2866 //===----------------------------------------------------------------------===// 2867 2868 /// ParseInstruction - Parse one of the many different instructions. 2869 /// 2870 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 2871 PerFunctionState &PFS) { 2872 lltok::Kind Token = Lex.getKind(); 2873 if (Token == lltok::Eof) 2874 return TokError("found end of file when expecting more instructions"); 2875 LocTy Loc = Lex.getLoc(); 2876 unsigned KeywordVal = Lex.getUIntVal(); 2877 Lex.Lex(); // Eat the keyword. 2878 2879 switch (Token) { 2880 default: return Error(Loc, "expected instruction opcode"); 2881 // Terminator Instructions. 2882 case lltok::kw_unwind: Inst = new UnwindInst(Context); return false; 2883 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 2884 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 2885 case lltok::kw_br: return ParseBr(Inst, PFS); 2886 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 2887 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 2888 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 2889 case lltok::kw_resume: return ParseResume(Inst, PFS); 2890 // Binary Operators. 2891 case lltok::kw_add: 2892 case lltok::kw_sub: 2893 case lltok::kw_mul: 2894 case lltok::kw_shl: { 2895 bool NUW = EatIfPresent(lltok::kw_nuw); 2896 bool NSW = EatIfPresent(lltok::kw_nsw); 2897 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 2898 2899 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 2900 2901 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 2902 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 2903 return false; 2904 } 2905 case lltok::kw_fadd: 2906 case lltok::kw_fsub: 2907 case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2); 2908 2909 case lltok::kw_sdiv: 2910 case lltok::kw_udiv: 2911 case lltok::kw_lshr: 2912 case lltok::kw_ashr: { 2913 bool Exact = EatIfPresent(lltok::kw_exact); 2914 2915 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 2916 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 2917 return false; 2918 } 2919 2920 case lltok::kw_urem: 2921 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 2922 case lltok::kw_fdiv: 2923 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2); 2924 case lltok::kw_and: 2925 case lltok::kw_or: 2926 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 2927 case lltok::kw_icmp: 2928 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal); 2929 // Casts. 2930 case lltok::kw_trunc: 2931 case lltok::kw_zext: 2932 case lltok::kw_sext: 2933 case lltok::kw_fptrunc: 2934 case lltok::kw_fpext: 2935 case lltok::kw_bitcast: 2936 case lltok::kw_uitofp: 2937 case lltok::kw_sitofp: 2938 case lltok::kw_fptoui: 2939 case lltok::kw_fptosi: 2940 case lltok::kw_inttoptr: 2941 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 2942 // Other. 2943 case lltok::kw_select: return ParseSelect(Inst, PFS); 2944 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 2945 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 2946 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 2947 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 2948 case lltok::kw_phi: return ParsePHI(Inst, PFS); 2949 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 2950 case lltok::kw_call: return ParseCall(Inst, PFS, false); 2951 case lltok::kw_tail: return ParseCall(Inst, PFS, true); 2952 // Memory. 2953 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 2954 case lltok::kw_load: return ParseLoad(Inst, PFS); 2955 case lltok::kw_store: return ParseStore(Inst, PFS); 2956 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 2957 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 2958 case lltok::kw_fence: return ParseFence(Inst, PFS); 2959 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 2960 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 2961 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 2962 } 2963 } 2964 2965 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 2966 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 2967 if (Opc == Instruction::FCmp) { 2968 switch (Lex.getKind()) { 2969 default: TokError("expected fcmp predicate (e.g. 'oeq')"); 2970 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 2971 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 2972 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 2973 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 2974 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 2975 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 2976 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 2977 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 2978 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 2979 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 2980 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 2981 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 2982 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 2983 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 2984 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 2985 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 2986 } 2987 } else { 2988 switch (Lex.getKind()) { 2989 default: TokError("expected icmp predicate (e.g. 'eq')"); 2990 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 2991 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 2992 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 2993 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 2994 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 2995 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 2996 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 2997 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 2998 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 2999 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 3000 } 3001 } 3002 Lex.Lex(); 3003 return false; 3004 } 3005 3006 //===----------------------------------------------------------------------===// 3007 // Terminator Instructions. 3008 //===----------------------------------------------------------------------===// 3009 3010 /// ParseRet - Parse a return instruction. 3011 /// ::= 'ret' void (',' !dbg, !1)* 3012 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 3013 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 3014 PerFunctionState &PFS) { 3015 SMLoc TypeLoc = Lex.getLoc(); 3016 Type *Ty = 0; 3017 if (ParseType(Ty, true /*void allowed*/)) return true; 3018 3019 Type *ResType = PFS.getFunction().getReturnType(); 3020 3021 if (Ty->isVoidTy()) { 3022 if (!ResType->isVoidTy()) 3023 return Error(TypeLoc, "value doesn't match function result type '" + 3024 getTypeString(ResType) + "'"); 3025 3026 Inst = ReturnInst::Create(Context); 3027 return false; 3028 } 3029 3030 Value *RV; 3031 if (ParseValue(Ty, RV, PFS)) return true; 3032 3033 if (ResType != RV->getType()) 3034 return Error(TypeLoc, "value doesn't match function result type '" + 3035 getTypeString(ResType) + "'"); 3036 3037 Inst = ReturnInst::Create(Context, RV); 3038 return false; 3039 } 3040 3041 3042 /// ParseBr 3043 /// ::= 'br' TypeAndValue 3044 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3045 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 3046 LocTy Loc, Loc2; 3047 Value *Op0; 3048 BasicBlock *Op1, *Op2; 3049 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 3050 3051 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 3052 Inst = BranchInst::Create(BB); 3053 return false; 3054 } 3055 3056 if (Op0->getType() != Type::getInt1Ty(Context)) 3057 return Error(Loc, "branch condition must have 'i1' type"); 3058 3059 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 3060 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 3061 ParseToken(lltok::comma, "expected ',' after true destination") || 3062 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 3063 return true; 3064 3065 Inst = BranchInst::Create(Op1, Op2, Op0); 3066 return false; 3067 } 3068 3069 /// ParseSwitch 3070 /// Instruction 3071 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 3072 /// JumpTable 3073 /// ::= (TypeAndValue ',' TypeAndValue)* 3074 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 3075 LocTy CondLoc, BBLoc; 3076 Value *Cond; 3077 BasicBlock *DefaultBB; 3078 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 3079 ParseToken(lltok::comma, "expected ',' after switch condition") || 3080 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 3081 ParseToken(lltok::lsquare, "expected '[' with switch table")) 3082 return true; 3083 3084 if (!Cond->getType()->isIntegerTy()) 3085 return Error(CondLoc, "switch condition must have integer type"); 3086 3087 // Parse the jump table pairs. 3088 SmallPtrSet<Value*, 32> SeenCases; 3089 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 3090 while (Lex.getKind() != lltok::rsquare) { 3091 Value *Constant; 3092 BasicBlock *DestBB; 3093 3094 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 3095 ParseToken(lltok::comma, "expected ',' after case value") || 3096 ParseTypeAndBasicBlock(DestBB, PFS)) 3097 return true; 3098 3099 if (!SeenCases.insert(Constant)) 3100 return Error(CondLoc, "duplicate case value in switch"); 3101 if (!isa<ConstantInt>(Constant)) 3102 return Error(CondLoc, "case value is not a constant integer"); 3103 3104 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 3105 } 3106 3107 Lex.Lex(); // Eat the ']'. 3108 3109 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 3110 for (unsigned i = 0, e = Table.size(); i != e; ++i) 3111 SI->addCase(Table[i].first, Table[i].second); 3112 Inst = SI; 3113 return false; 3114 } 3115 3116 /// ParseIndirectBr 3117 /// Instruction 3118 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 3119 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 3120 LocTy AddrLoc; 3121 Value *Address; 3122 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 3123 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 3124 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 3125 return true; 3126 3127 if (!Address->getType()->isPointerTy()) 3128 return Error(AddrLoc, "indirectbr address must have pointer type"); 3129 3130 // Parse the destination list. 3131 SmallVector<BasicBlock*, 16> DestList; 3132 3133 if (Lex.getKind() != lltok::rsquare) { 3134 BasicBlock *DestBB; 3135 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3136 return true; 3137 DestList.push_back(DestBB); 3138 3139 while (EatIfPresent(lltok::comma)) { 3140 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3141 return true; 3142 DestList.push_back(DestBB); 3143 } 3144 } 3145 3146 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 3147 return true; 3148 3149 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 3150 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 3151 IBI->addDestination(DestList[i]); 3152 Inst = IBI; 3153 return false; 3154 } 3155 3156 3157 /// ParseInvoke 3158 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 3159 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 3160 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 3161 LocTy CallLoc = Lex.getLoc(); 3162 unsigned RetAttrs, FnAttrs; 3163 CallingConv::ID CC; 3164 Type *RetType = 0; 3165 LocTy RetTypeLoc; 3166 ValID CalleeID; 3167 SmallVector<ParamInfo, 16> ArgList; 3168 3169 BasicBlock *NormalBB, *UnwindBB; 3170 if (ParseOptionalCallingConv(CC) || 3171 ParseOptionalAttrs(RetAttrs, 1) || 3172 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3173 ParseValID(CalleeID) || 3174 ParseParameterList(ArgList, PFS) || 3175 ParseOptionalAttrs(FnAttrs, 2) || 3176 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 3177 ParseTypeAndBasicBlock(NormalBB, PFS) || 3178 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 3179 ParseTypeAndBasicBlock(UnwindBB, PFS)) 3180 return true; 3181 3182 // If RetType is a non-function pointer type, then this is the short syntax 3183 // for the call, which means that RetType is just the return type. Infer the 3184 // rest of the function argument types from the arguments that are present. 3185 PointerType *PFTy = 0; 3186 FunctionType *Ty = 0; 3187 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3188 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3189 // Pull out the types of all of the arguments... 3190 std::vector<Type*> ParamTypes; 3191 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3192 ParamTypes.push_back(ArgList[i].V->getType()); 3193 3194 if (!FunctionType::isValidReturnType(RetType)) 3195 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3196 3197 Ty = FunctionType::get(RetType, ParamTypes, false); 3198 PFTy = PointerType::getUnqual(Ty); 3199 } 3200 3201 // Look up the callee. 3202 Value *Callee; 3203 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3204 3205 // Set up the Attributes for the function. 3206 SmallVector<AttributeWithIndex, 8> Attrs; 3207 if (RetAttrs != Attribute::None) 3208 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); 3209 3210 SmallVector<Value*, 8> Args; 3211 3212 // Loop through FunctionType's arguments and ensure they are specified 3213 // correctly. Also, gather any parameter attributes. 3214 FunctionType::param_iterator I = Ty->param_begin(); 3215 FunctionType::param_iterator E = Ty->param_end(); 3216 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3217 Type *ExpectedTy = 0; 3218 if (I != E) { 3219 ExpectedTy = *I++; 3220 } else if (!Ty->isVarArg()) { 3221 return Error(ArgList[i].Loc, "too many arguments specified"); 3222 } 3223 3224 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3225 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3226 getTypeString(ExpectedTy) + "'"); 3227 Args.push_back(ArgList[i].V); 3228 if (ArgList[i].Attrs != Attribute::None) 3229 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3230 } 3231 3232 if (I != E) 3233 return Error(CallLoc, "not enough parameters specified for call"); 3234 3235 if (FnAttrs != Attribute::None) 3236 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); 3237 3238 // Finish off the Attributes and check them 3239 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); 3240 3241 InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args); 3242 II->setCallingConv(CC); 3243 II->setAttributes(PAL); 3244 Inst = II; 3245 return false; 3246 } 3247 3248 /// ParseResume 3249 /// ::= 'resume' TypeAndValue 3250 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 3251 Value *Exn; LocTy ExnLoc; 3252 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 3253 return true; 3254 3255 ResumeInst *RI = ResumeInst::Create(Exn); 3256 Inst = RI; 3257 return false; 3258 } 3259 3260 //===----------------------------------------------------------------------===// 3261 // Binary Operators. 3262 //===----------------------------------------------------------------------===// 3263 3264 /// ParseArithmetic 3265 /// ::= ArithmeticOps TypeAndValue ',' Value 3266 /// 3267 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 3268 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 3269 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 3270 unsigned Opc, unsigned OperandType) { 3271 LocTy Loc; Value *LHS, *RHS; 3272 if (ParseTypeAndValue(LHS, Loc, PFS) || 3273 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 3274 ParseValue(LHS->getType(), RHS, PFS)) 3275 return true; 3276 3277 bool Valid; 3278 switch (OperandType) { 3279 default: llvm_unreachable("Unknown operand type!"); 3280 case 0: // int or FP. 3281 Valid = LHS->getType()->isIntOrIntVectorTy() || 3282 LHS->getType()->isFPOrFPVectorTy(); 3283 break; 3284 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 3285 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 3286 } 3287 3288 if (!Valid) 3289 return Error(Loc, "invalid operand type for instruction"); 3290 3291 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3292 return false; 3293 } 3294 3295 /// ParseLogical 3296 /// ::= ArithmeticOps TypeAndValue ',' Value { 3297 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 3298 unsigned Opc) { 3299 LocTy Loc; Value *LHS, *RHS; 3300 if (ParseTypeAndValue(LHS, Loc, PFS) || 3301 ParseToken(lltok::comma, "expected ',' in logical operation") || 3302 ParseValue(LHS->getType(), RHS, PFS)) 3303 return true; 3304 3305 if (!LHS->getType()->isIntOrIntVectorTy()) 3306 return Error(Loc,"instruction requires integer or integer vector operands"); 3307 3308 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3309 return false; 3310 } 3311 3312 3313 /// ParseCompare 3314 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 3315 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 3316 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 3317 unsigned Opc) { 3318 // Parse the integer/fp comparison predicate. 3319 LocTy Loc; 3320 unsigned Pred; 3321 Value *LHS, *RHS; 3322 if (ParseCmpPredicate(Pred, Opc) || 3323 ParseTypeAndValue(LHS, Loc, PFS) || 3324 ParseToken(lltok::comma, "expected ',' after compare value") || 3325 ParseValue(LHS->getType(), RHS, PFS)) 3326 return true; 3327 3328 if (Opc == Instruction::FCmp) { 3329 if (!LHS->getType()->isFPOrFPVectorTy()) 3330 return Error(Loc, "fcmp requires floating point operands"); 3331 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3332 } else { 3333 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 3334 if (!LHS->getType()->isIntOrIntVectorTy() && 3335 !LHS->getType()->getScalarType()->isPointerTy()) 3336 return Error(Loc, "icmp requires integer operands"); 3337 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3338 } 3339 return false; 3340 } 3341 3342 //===----------------------------------------------------------------------===// 3343 // Other Instructions. 3344 //===----------------------------------------------------------------------===// 3345 3346 3347 /// ParseCast 3348 /// ::= CastOpc TypeAndValue 'to' Type 3349 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 3350 unsigned Opc) { 3351 LocTy Loc; 3352 Value *Op; 3353 Type *DestTy = 0; 3354 if (ParseTypeAndValue(Op, Loc, PFS) || 3355 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 3356 ParseType(DestTy)) 3357 return true; 3358 3359 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 3360 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 3361 return Error(Loc, "invalid cast opcode for cast from '" + 3362 getTypeString(Op->getType()) + "' to '" + 3363 getTypeString(DestTy) + "'"); 3364 } 3365 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 3366 return false; 3367 } 3368 3369 /// ParseSelect 3370 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3371 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 3372 LocTy Loc; 3373 Value *Op0, *Op1, *Op2; 3374 if (ParseTypeAndValue(Op0, Loc, PFS) || 3375 ParseToken(lltok::comma, "expected ',' after select condition") || 3376 ParseTypeAndValue(Op1, PFS) || 3377 ParseToken(lltok::comma, "expected ',' after select value") || 3378 ParseTypeAndValue(Op2, PFS)) 3379 return true; 3380 3381 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 3382 return Error(Loc, Reason); 3383 3384 Inst = SelectInst::Create(Op0, Op1, Op2); 3385 return false; 3386 } 3387 3388 /// ParseVA_Arg 3389 /// ::= 'va_arg' TypeAndValue ',' Type 3390 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 3391 Value *Op; 3392 Type *EltTy = 0; 3393 LocTy TypeLoc; 3394 if (ParseTypeAndValue(Op, PFS) || 3395 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 3396 ParseType(EltTy, TypeLoc)) 3397 return true; 3398 3399 if (!EltTy->isFirstClassType()) 3400 return Error(TypeLoc, "va_arg requires operand with first class type"); 3401 3402 Inst = new VAArgInst(Op, EltTy); 3403 return false; 3404 } 3405 3406 /// ParseExtractElement 3407 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 3408 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 3409 LocTy Loc; 3410 Value *Op0, *Op1; 3411 if (ParseTypeAndValue(Op0, Loc, PFS) || 3412 ParseToken(lltok::comma, "expected ',' after extract value") || 3413 ParseTypeAndValue(Op1, PFS)) 3414 return true; 3415 3416 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 3417 return Error(Loc, "invalid extractelement operands"); 3418 3419 Inst = ExtractElementInst::Create(Op0, Op1); 3420 return false; 3421 } 3422 3423 /// ParseInsertElement 3424 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3425 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 3426 LocTy Loc; 3427 Value *Op0, *Op1, *Op2; 3428 if (ParseTypeAndValue(Op0, Loc, PFS) || 3429 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3430 ParseTypeAndValue(Op1, PFS) || 3431 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3432 ParseTypeAndValue(Op2, PFS)) 3433 return true; 3434 3435 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 3436 return Error(Loc, "invalid insertelement operands"); 3437 3438 Inst = InsertElementInst::Create(Op0, Op1, Op2); 3439 return false; 3440 } 3441 3442 /// ParseShuffleVector 3443 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3444 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 3445 LocTy Loc; 3446 Value *Op0, *Op1, *Op2; 3447 if (ParseTypeAndValue(Op0, Loc, PFS) || 3448 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 3449 ParseTypeAndValue(Op1, PFS) || 3450 ParseToken(lltok::comma, "expected ',' after shuffle value") || 3451 ParseTypeAndValue(Op2, PFS)) 3452 return true; 3453 3454 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 3455 return Error(Loc, "invalid extractelement operands"); 3456 3457 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 3458 return false; 3459 } 3460 3461 /// ParsePHI 3462 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 3463 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 3464 Type *Ty = 0; LocTy TypeLoc; 3465 Value *Op0, *Op1; 3466 3467 if (ParseType(Ty, TypeLoc) || 3468 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3469 ParseValue(Ty, Op0, PFS) || 3470 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3471 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3472 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3473 return true; 3474 3475 bool AteExtraComma = false; 3476 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 3477 while (1) { 3478 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 3479 3480 if (!EatIfPresent(lltok::comma)) 3481 break; 3482 3483 if (Lex.getKind() == lltok::MetadataVar) { 3484 AteExtraComma = true; 3485 break; 3486 } 3487 3488 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3489 ParseValue(Ty, Op0, PFS) || 3490 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3491 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3492 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3493 return true; 3494 } 3495 3496 if (!Ty->isFirstClassType()) 3497 return Error(TypeLoc, "phi node must have first class type"); 3498 3499 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 3500 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 3501 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 3502 Inst = PN; 3503 return AteExtraComma ? InstExtraComma : InstNormal; 3504 } 3505 3506 /// ParseLandingPad 3507 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 3508 /// Clause 3509 /// ::= 'catch' TypeAndValue 3510 /// ::= 'filter' 3511 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 3512 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 3513 Type *Ty = 0; LocTy TyLoc; 3514 Value *PersFn; LocTy PersFnLoc; 3515 3516 if (ParseType(Ty, TyLoc) || 3517 ParseToken(lltok::kw_personality, "expected 'personality'") || 3518 ParseTypeAndValue(PersFn, PersFnLoc, PFS)) 3519 return true; 3520 3521 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0); 3522 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 3523 3524 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 3525 LandingPadInst::ClauseType CT; 3526 if (EatIfPresent(lltok::kw_catch)) 3527 CT = LandingPadInst::Catch; 3528 else if (EatIfPresent(lltok::kw_filter)) 3529 CT = LandingPadInst::Filter; 3530 else 3531 return TokError("expected 'catch' or 'filter' clause type"); 3532 3533 Value *V; LocTy VLoc; 3534 if (ParseTypeAndValue(V, VLoc, PFS)) { 3535 delete LP; 3536 return true; 3537 } 3538 3539 // A 'catch' type expects a non-array constant. A filter clause expects an 3540 // array constant. 3541 if (CT == LandingPadInst::Catch) { 3542 if (isa<ArrayType>(V->getType())) 3543 Error(VLoc, "'catch' clause has an invalid type"); 3544 } else { 3545 if (!isa<ArrayType>(V->getType())) 3546 Error(VLoc, "'filter' clause has an invalid type"); 3547 } 3548 3549 LP->addClause(V); 3550 } 3551 3552 Inst = LP; 3553 return false; 3554 } 3555 3556 /// ParseCall 3557 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value 3558 /// ParameterList OptionalAttrs 3559 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 3560 bool isTail) { 3561 unsigned RetAttrs, FnAttrs; 3562 CallingConv::ID CC; 3563 Type *RetType = 0; 3564 LocTy RetTypeLoc; 3565 ValID CalleeID; 3566 SmallVector<ParamInfo, 16> ArgList; 3567 LocTy CallLoc = Lex.getLoc(); 3568 3569 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) || 3570 ParseOptionalCallingConv(CC) || 3571 ParseOptionalAttrs(RetAttrs, 1) || 3572 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3573 ParseValID(CalleeID) || 3574 ParseParameterList(ArgList, PFS) || 3575 ParseOptionalAttrs(FnAttrs, 2)) 3576 return true; 3577 3578 // If RetType is a non-function pointer type, then this is the short syntax 3579 // for the call, which means that RetType is just the return type. Infer the 3580 // rest of the function argument types from the arguments that are present. 3581 PointerType *PFTy = 0; 3582 FunctionType *Ty = 0; 3583 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3584 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3585 // Pull out the types of all of the arguments... 3586 std::vector<Type*> ParamTypes; 3587 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3588 ParamTypes.push_back(ArgList[i].V->getType()); 3589 3590 if (!FunctionType::isValidReturnType(RetType)) 3591 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3592 3593 Ty = FunctionType::get(RetType, ParamTypes, false); 3594 PFTy = PointerType::getUnqual(Ty); 3595 } 3596 3597 // Look up the callee. 3598 Value *Callee; 3599 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3600 3601 // Set up the Attributes for the function. 3602 SmallVector<AttributeWithIndex, 8> Attrs; 3603 if (RetAttrs != Attribute::None) 3604 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); 3605 3606 SmallVector<Value*, 8> Args; 3607 3608 // Loop through FunctionType's arguments and ensure they are specified 3609 // correctly. Also, gather any parameter attributes. 3610 FunctionType::param_iterator I = Ty->param_begin(); 3611 FunctionType::param_iterator E = Ty->param_end(); 3612 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3613 Type *ExpectedTy = 0; 3614 if (I != E) { 3615 ExpectedTy = *I++; 3616 } else if (!Ty->isVarArg()) { 3617 return Error(ArgList[i].Loc, "too many arguments specified"); 3618 } 3619 3620 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3621 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3622 getTypeString(ExpectedTy) + "'"); 3623 Args.push_back(ArgList[i].V); 3624 if (ArgList[i].Attrs != Attribute::None) 3625 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3626 } 3627 3628 if (I != E) 3629 return Error(CallLoc, "not enough parameters specified for call"); 3630 3631 if (FnAttrs != Attribute::None) 3632 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); 3633 3634 // Finish off the Attributes and check them 3635 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); 3636 3637 CallInst *CI = CallInst::Create(Callee, Args); 3638 CI->setTailCall(isTail); 3639 CI->setCallingConv(CC); 3640 CI->setAttributes(PAL); 3641 Inst = CI; 3642 return false; 3643 } 3644 3645 //===----------------------------------------------------------------------===// 3646 // Memory Instructions. 3647 //===----------------------------------------------------------------------===// 3648 3649 /// ParseAlloc 3650 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)? 3651 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 3652 Value *Size = 0; 3653 LocTy SizeLoc; 3654 unsigned Alignment = 0; 3655 Type *Ty = 0; 3656 if (ParseType(Ty)) return true; 3657 3658 bool AteExtraComma = false; 3659 if (EatIfPresent(lltok::comma)) { 3660 if (Lex.getKind() == lltok::kw_align) { 3661 if (ParseOptionalAlignment(Alignment)) return true; 3662 } else if (Lex.getKind() == lltok::MetadataVar) { 3663 AteExtraComma = true; 3664 } else { 3665 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 3666 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3667 return true; 3668 } 3669 } 3670 3671 if (Size && !Size->getType()->isIntegerTy()) 3672 return Error(SizeLoc, "element count must have integer type"); 3673 3674 Inst = new AllocaInst(Ty, Size, Alignment); 3675 return AteExtraComma ? InstExtraComma : InstNormal; 3676 } 3677 3678 /// ParseLoad 3679 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 3680 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 3681 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 3682 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 3683 Value *Val; LocTy Loc; 3684 unsigned Alignment = 0; 3685 bool AteExtraComma = false; 3686 bool isAtomic = false; 3687 AtomicOrdering Ordering = NotAtomic; 3688 SynchronizationScope Scope = CrossThread; 3689 3690 if (Lex.getKind() == lltok::kw_atomic) { 3691 isAtomic = true; 3692 Lex.Lex(); 3693 } 3694 3695 bool isVolatile = false; 3696 if (Lex.getKind() == lltok::kw_volatile) { 3697 isVolatile = true; 3698 Lex.Lex(); 3699 } 3700 3701 if (ParseTypeAndValue(Val, Loc, PFS) || 3702 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 3703 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3704 return true; 3705 3706 if (!Val->getType()->isPointerTy() || 3707 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType()) 3708 return Error(Loc, "load operand must be a pointer to a first class type"); 3709 if (isAtomic && !Alignment) 3710 return Error(Loc, "atomic load must have explicit non-zero alignment"); 3711 if (Ordering == Release || Ordering == AcquireRelease) 3712 return Error(Loc, "atomic load cannot use Release ordering"); 3713 3714 Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope); 3715 return AteExtraComma ? InstExtraComma : InstNormal; 3716 } 3717 3718 /// ParseStore 3719 3720 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 3721 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 3722 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 3723 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 3724 Value *Val, *Ptr; LocTy Loc, PtrLoc; 3725 unsigned Alignment = 0; 3726 bool AteExtraComma = false; 3727 bool isAtomic = false; 3728 AtomicOrdering Ordering = NotAtomic; 3729 SynchronizationScope Scope = CrossThread; 3730 3731 if (Lex.getKind() == lltok::kw_atomic) { 3732 isAtomic = true; 3733 Lex.Lex(); 3734 } 3735 3736 bool isVolatile = false; 3737 if (Lex.getKind() == lltok::kw_volatile) { 3738 isVolatile = true; 3739 Lex.Lex(); 3740 } 3741 3742 if (ParseTypeAndValue(Val, Loc, PFS) || 3743 ParseToken(lltok::comma, "expected ',' after store operand") || 3744 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3745 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 3746 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3747 return true; 3748 3749 if (!Ptr->getType()->isPointerTy()) 3750 return Error(PtrLoc, "store operand must be a pointer"); 3751 if (!Val->getType()->isFirstClassType()) 3752 return Error(Loc, "store operand must be a first class value"); 3753 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 3754 return Error(Loc, "stored value and pointer type do not match"); 3755 if (isAtomic && !Alignment) 3756 return Error(Loc, "atomic store must have explicit non-zero alignment"); 3757 if (Ordering == Acquire || Ordering == AcquireRelease) 3758 return Error(Loc, "atomic store cannot use Acquire ordering"); 3759 3760 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 3761 return AteExtraComma ? InstExtraComma : InstNormal; 3762 } 3763 3764 /// ParseCmpXchg 3765 /// ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue 3766 /// 'singlethread'? AtomicOrdering 3767 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 3768 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 3769 bool AteExtraComma = false; 3770 AtomicOrdering Ordering = NotAtomic; 3771 SynchronizationScope Scope = CrossThread; 3772 bool isVolatile = false; 3773 3774 if (EatIfPresent(lltok::kw_volatile)) 3775 isVolatile = true; 3776 3777 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3778 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 3779 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 3780 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 3781 ParseTypeAndValue(New, NewLoc, PFS) || 3782 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3783 return true; 3784 3785 if (Ordering == Unordered) 3786 return TokError("cmpxchg cannot be unordered"); 3787 if (!Ptr->getType()->isPointerTy()) 3788 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 3789 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 3790 return Error(CmpLoc, "compare value and pointer type do not match"); 3791 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 3792 return Error(NewLoc, "new value and pointer type do not match"); 3793 if (!New->getType()->isIntegerTy()) 3794 return Error(NewLoc, "cmpxchg operand must be an integer"); 3795 unsigned Size = New->getType()->getPrimitiveSizeInBits(); 3796 if (Size < 8 || (Size & (Size - 1))) 3797 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized" 3798 " integer"); 3799 3800 AtomicCmpXchgInst *CXI = 3801 new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope); 3802 CXI->setVolatile(isVolatile); 3803 Inst = CXI; 3804 return AteExtraComma ? InstExtraComma : InstNormal; 3805 } 3806 3807 /// ParseAtomicRMW 3808 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 3809 /// 'singlethread'? AtomicOrdering 3810 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 3811 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 3812 bool AteExtraComma = false; 3813 AtomicOrdering Ordering = NotAtomic; 3814 SynchronizationScope Scope = CrossThread; 3815 bool isVolatile = false; 3816 AtomicRMWInst::BinOp Operation; 3817 3818 if (EatIfPresent(lltok::kw_volatile)) 3819 isVolatile = true; 3820 3821 switch (Lex.getKind()) { 3822 default: return TokError("expected binary operation in atomicrmw"); 3823 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 3824 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 3825 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 3826 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 3827 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 3828 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 3829 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 3830 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 3831 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 3832 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 3833 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 3834 } 3835 Lex.Lex(); // Eat the operation. 3836 3837 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3838 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 3839 ParseTypeAndValue(Val, ValLoc, PFS) || 3840 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3841 return true; 3842 3843 if (Ordering == Unordered) 3844 return TokError("atomicrmw cannot be unordered"); 3845 if (!Ptr->getType()->isPointerTy()) 3846 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 3847 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 3848 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 3849 if (!Val->getType()->isIntegerTy()) 3850 return Error(ValLoc, "atomicrmw operand must be an integer"); 3851 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 3852 if (Size < 8 || (Size & (Size - 1))) 3853 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 3854 " integer"); 3855 3856 AtomicRMWInst *RMWI = 3857 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 3858 RMWI->setVolatile(isVolatile); 3859 Inst = RMWI; 3860 return AteExtraComma ? InstExtraComma : InstNormal; 3861 } 3862 3863 /// ParseFence 3864 /// ::= 'fence' 'singlethread'? AtomicOrdering 3865 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 3866 AtomicOrdering Ordering = NotAtomic; 3867 SynchronizationScope Scope = CrossThread; 3868 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3869 return true; 3870 3871 if (Ordering == Unordered) 3872 return TokError("fence cannot be unordered"); 3873 if (Ordering == Monotonic) 3874 return TokError("fence cannot be monotonic"); 3875 3876 Inst = new FenceInst(Context, Ordering, Scope); 3877 return InstNormal; 3878 } 3879 3880 /// ParseGetElementPtr 3881 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 3882 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 3883 Value *Ptr = 0; 3884 Value *Val = 0; 3885 LocTy Loc, EltLoc; 3886 3887 bool InBounds = EatIfPresent(lltok::kw_inbounds); 3888 3889 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true; 3890 3891 if (!Ptr->getType()->getScalarType()->isPointerTy()) 3892 return Error(Loc, "base of getelementptr must be a pointer"); 3893 3894 SmallVector<Value*, 16> Indices; 3895 bool AteExtraComma = false; 3896 while (EatIfPresent(lltok::comma)) { 3897 if (Lex.getKind() == lltok::MetadataVar) { 3898 AteExtraComma = true; 3899 break; 3900 } 3901 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 3902 if (!Val->getType()->getScalarType()->isIntegerTy()) 3903 return Error(EltLoc, "getelementptr index must be an integer"); 3904 if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy()) 3905 return Error(EltLoc, "getelementptr index type missmatch"); 3906 if (Val->getType()->isVectorTy()) { 3907 unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements(); 3908 unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements(); 3909 if (ValNumEl != PtrNumEl) 3910 return Error(EltLoc, 3911 "getelementptr vector index has a wrong number of elements"); 3912 } 3913 Indices.push_back(Val); 3914 } 3915 3916 if (Val && Val->getType()->isVectorTy() && Indices.size() != 1) 3917 return Error(EltLoc, "vector getelementptrs must have a single index"); 3918 3919 if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices)) 3920 return Error(Loc, "invalid getelementptr indices"); 3921 Inst = GetElementPtrInst::Create(Ptr, Indices); 3922 if (InBounds) 3923 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 3924 return AteExtraComma ? InstExtraComma : InstNormal; 3925 } 3926 3927 /// ParseExtractValue 3928 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 3929 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 3930 Value *Val; LocTy Loc; 3931 SmallVector<unsigned, 4> Indices; 3932 bool AteExtraComma; 3933 if (ParseTypeAndValue(Val, Loc, PFS) || 3934 ParseIndexList(Indices, AteExtraComma)) 3935 return true; 3936 3937 if (!Val->getType()->isAggregateType()) 3938 return Error(Loc, "extractvalue operand must be aggregate type"); 3939 3940 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3941 return Error(Loc, "invalid indices for extractvalue"); 3942 Inst = ExtractValueInst::Create(Val, Indices); 3943 return AteExtraComma ? InstExtraComma : InstNormal; 3944 } 3945 3946 /// ParseInsertValue 3947 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 3948 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 3949 Value *Val0, *Val1; LocTy Loc0, Loc1; 3950 SmallVector<unsigned, 4> Indices; 3951 bool AteExtraComma; 3952 if (ParseTypeAndValue(Val0, Loc0, PFS) || 3953 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 3954 ParseTypeAndValue(Val1, Loc1, PFS) || 3955 ParseIndexList(Indices, AteExtraComma)) 3956 return true; 3957 3958 if (!Val0->getType()->isAggregateType()) 3959 return Error(Loc0, "insertvalue operand must be aggregate type"); 3960 3961 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) 3962 return Error(Loc0, "invalid indices for insertvalue"); 3963 Inst = InsertValueInst::Create(Val0, Val1, Indices); 3964 return AteExtraComma ? InstExtraComma : InstNormal; 3965 } 3966 3967 //===----------------------------------------------------------------------===// 3968 // Embedded metadata. 3969 //===----------------------------------------------------------------------===// 3970 3971 /// ParseMDNodeVector 3972 /// ::= Element (',' Element)* 3973 /// Element 3974 /// ::= 'null' | TypeAndValue 3975 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts, 3976 PerFunctionState *PFS) { 3977 // Check for an empty list. 3978 if (Lex.getKind() == lltok::rbrace) 3979 return false; 3980 3981 do { 3982 // Null is a special case since it is typeless. 3983 if (EatIfPresent(lltok::kw_null)) { 3984 Elts.push_back(0); 3985 continue; 3986 } 3987 3988 Value *V = 0; 3989 if (ParseTypeAndValue(V, PFS)) return true; 3990 Elts.push_back(V); 3991 } while (EatIfPresent(lltok::comma)); 3992 3993 return false; 3994 } 3995