1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 static std::string getTypeString(Type *T) {
57   std::string Result;
58   raw_string_ostream Tmp(Result);
59   Tmp << *T;
60   return Tmp.str();
61 }
62 
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return Error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   return ParseTopLevelEntities() || ValidateEndOfModule() ||
74          ValidateEndOfIndex();
75 }
76 
77 bool LLParser::parseStandaloneConstantValue(Constant *&C,
78                                             const SlotMapping *Slots) {
79   restoreParsingState(Slots);
80   Lex.Lex();
81 
82   Type *Ty = nullptr;
83   if (ParseType(Ty) || parseConstantValue(Ty, C))
84     return true;
85   if (Lex.getKind() != lltok::Eof)
86     return Error(Lex.getLoc(), "expected end of string");
87   return false;
88 }
89 
90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91                                     const SlotMapping *Slots) {
92   restoreParsingState(Slots);
93   Lex.Lex();
94 
95   Read = 0;
96   SMLoc Start = Lex.getLoc();
97   Ty = nullptr;
98   if (ParseType(Ty))
99     return true;
100   SMLoc End = Lex.getLoc();
101   Read = End.getPointer() - Start.getPointer();
102 
103   return false;
104 }
105 
106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107   if (!Slots)
108     return;
109   NumberedVals = Slots->GlobalValues;
110   NumberedMetadata = Slots->MetadataNodes;
111   for (const auto &I : Slots->NamedTypes)
112     NamedTypes.insert(
113         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114   for (const auto &I : Slots->Types)
115     NumberedTypes.insert(
116         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
117 }
118 
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
121 bool LLParser::ValidateEndOfModule() {
122   if (!M)
123     return false;
124   // Handle any function attribute group forward references.
125   for (const auto &RAG : ForwardRefAttrGroups) {
126     Value *V = RAG.first;
127     const std::vector<unsigned> &Attrs = RAG.second;
128     AttrBuilder B;
129 
130     for (const auto &Attr : Attrs)
131       B.merge(NumberedAttrBuilders[Attr]);
132 
133     if (Function *Fn = dyn_cast<Function>(V)) {
134       AttributeList AS = Fn->getAttributes();
135       AttrBuilder FnAttrs(AS.getFnAttributes());
136       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
137 
138       FnAttrs.merge(B);
139 
140       // If the alignment was parsed as an attribute, move to the alignment
141       // field.
142       if (FnAttrs.hasAlignmentAttr()) {
143         Fn->setAlignment(FnAttrs.getAlignment());
144         FnAttrs.removeAttribute(Attribute::Alignment);
145       }
146 
147       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
148                             AttributeSet::get(Context, FnAttrs));
149       Fn->setAttributes(AS);
150     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151       AttributeList AS = CI->getAttributes();
152       AttrBuilder FnAttrs(AS.getFnAttributes());
153       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
154       FnAttrs.merge(B);
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       CI->setAttributes(AS);
158     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159       AttributeList AS = II->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       II->setAttributes(AS);
166     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
167       AttributeList AS = CBI->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       CBI->setAttributes(AS);
174     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
175       AttrBuilder Attrs(GV->getAttributes());
176       Attrs.merge(B);
177       GV->setAttributes(AttributeSet::get(Context,Attrs));
178     } else {
179       llvm_unreachable("invalid object with forward attribute group reference");
180     }
181   }
182 
183   // If there are entries in ForwardRefBlockAddresses at this point, the
184   // function was never defined.
185   if (!ForwardRefBlockAddresses.empty())
186     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
187                  "expected function name in blockaddress");
188 
189   for (const auto &NT : NumberedTypes)
190     if (NT.second.second.isValid())
191       return Error(NT.second.second,
192                    "use of undefined type '%" + Twine(NT.first) + "'");
193 
194   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
195        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
196     if (I->second.second.isValid())
197       return Error(I->second.second,
198                    "use of undefined type named '" + I->getKey() + "'");
199 
200   if (!ForwardRefComdats.empty())
201     return Error(ForwardRefComdats.begin()->second,
202                  "use of undefined comdat '$" +
203                      ForwardRefComdats.begin()->first + "'");
204 
205   if (!ForwardRefVals.empty())
206     return Error(ForwardRefVals.begin()->second.second,
207                  "use of undefined value '@" + ForwardRefVals.begin()->first +
208                  "'");
209 
210   if (!ForwardRefValIDs.empty())
211     return Error(ForwardRefValIDs.begin()->second.second,
212                  "use of undefined value '@" +
213                  Twine(ForwardRefValIDs.begin()->first) + "'");
214 
215   if (!ForwardRefMDNodes.empty())
216     return Error(ForwardRefMDNodes.begin()->second.second,
217                  "use of undefined metadata '!" +
218                  Twine(ForwardRefMDNodes.begin()->first) + "'");
219 
220   // Resolve metadata cycles.
221   for (auto &N : NumberedMetadata) {
222     if (N.second && !N.second->isResolved())
223       N.second->resolveCycles();
224   }
225 
226   for (auto *Inst : InstsWithTBAATag) {
227     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
228     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
229     auto *UpgradedMD = UpgradeTBAANode(*MD);
230     if (MD != UpgradedMD)
231       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
232   }
233 
234   // Look for intrinsic functions and CallInst that need to be upgraded
235   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
236     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
237 
238   // Some types could be renamed during loading if several modules are
239   // loaded in the same LLVMContext (LTO scenario). In this case we should
240   // remangle intrinsics names as well.
241   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
242     Function *F = &*FI++;
243     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
244       F->replaceAllUsesWith(Remangled.getValue());
245       F->eraseFromParent();
246     }
247   }
248 
249   if (UpgradeDebugInfo)
250     llvm::UpgradeDebugInfo(*M);
251 
252   UpgradeModuleFlags(*M);
253   UpgradeSectionAttributes(*M);
254 
255   if (!Slots)
256     return false;
257   // Initialize the slot mapping.
258   // Because by this point we've parsed and validated everything, we can "steal"
259   // the mapping from LLParser as it doesn't need it anymore.
260   Slots->GlobalValues = std::move(NumberedVals);
261   Slots->MetadataNodes = std::move(NumberedMetadata);
262   for (const auto &I : NamedTypes)
263     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
264   for (const auto &I : NumberedTypes)
265     Slots->Types.insert(std::make_pair(I.first, I.second.first));
266 
267   return false;
268 }
269 
270 /// Do final validity and sanity checks at the end of the index.
271 bool LLParser::ValidateEndOfIndex() {
272   if (!Index)
273     return false;
274 
275   if (!ForwardRefValueInfos.empty())
276     return Error(ForwardRefValueInfos.begin()->second.front().second,
277                  "use of undefined summary '^" +
278                      Twine(ForwardRefValueInfos.begin()->first) + "'");
279 
280   if (!ForwardRefAliasees.empty())
281     return Error(ForwardRefAliasees.begin()->second.front().second,
282                  "use of undefined summary '^" +
283                      Twine(ForwardRefAliasees.begin()->first) + "'");
284 
285   if (!ForwardRefTypeIds.empty())
286     return Error(ForwardRefTypeIds.begin()->second.front().second,
287                  "use of undefined type id summary '^" +
288                      Twine(ForwardRefTypeIds.begin()->first) + "'");
289 
290   return false;
291 }
292 
293 //===----------------------------------------------------------------------===//
294 // Top-Level Entities
295 //===----------------------------------------------------------------------===//
296 
297 bool LLParser::ParseTopLevelEntities() {
298   // If there is no Module, then parse just the summary index entries.
299   if (!M) {
300     while (true) {
301       switch (Lex.getKind()) {
302       case lltok::Eof:
303         return false;
304       case lltok::SummaryID:
305         if (ParseSummaryEntry())
306           return true;
307         break;
308       case lltok::kw_source_filename:
309         if (ParseSourceFileName())
310           return true;
311         break;
312       default:
313         // Skip everything else
314         Lex.Lex();
315       }
316     }
317   }
318   while (true) {
319     switch (Lex.getKind()) {
320     default:         return TokError("expected top-level entity");
321     case lltok::Eof: return false;
322     case lltok::kw_declare: if (ParseDeclare()) return true; break;
323     case lltok::kw_define:  if (ParseDefine()) return true; break;
324     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
325     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
326     case lltok::kw_source_filename:
327       if (ParseSourceFileName())
328         return true;
329       break;
330     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
331     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
332     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
333     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
334     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
335     case lltok::ComdatVar:  if (parseComdat()) return true; break;
336     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
337     case lltok::SummaryID:
338       if (ParseSummaryEntry())
339         return true;
340       break;
341     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
342     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
343     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
344     case lltok::kw_uselistorder_bb:
345       if (ParseUseListOrderBB())
346         return true;
347       break;
348     }
349   }
350 }
351 
352 /// toplevelentity
353 ///   ::= 'module' 'asm' STRINGCONSTANT
354 bool LLParser::ParseModuleAsm() {
355   assert(Lex.getKind() == lltok::kw_module);
356   Lex.Lex();
357 
358   std::string AsmStr;
359   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
360       ParseStringConstant(AsmStr)) return true;
361 
362   M->appendModuleInlineAsm(AsmStr);
363   return false;
364 }
365 
366 /// toplevelentity
367 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
368 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
369 bool LLParser::ParseTargetDefinition() {
370   assert(Lex.getKind() == lltok::kw_target);
371   std::string Str;
372   switch (Lex.Lex()) {
373   default: return TokError("unknown target property");
374   case lltok::kw_triple:
375     Lex.Lex();
376     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
377         ParseStringConstant(Str))
378       return true;
379     M->setTargetTriple(Str);
380     return false;
381   case lltok::kw_datalayout:
382     Lex.Lex();
383     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
384         ParseStringConstant(Str))
385       return true;
386     if (DataLayoutStr.empty())
387       M->setDataLayout(Str);
388     return false;
389   }
390 }
391 
392 /// toplevelentity
393 ///   ::= 'source_filename' '=' STRINGCONSTANT
394 bool LLParser::ParseSourceFileName() {
395   assert(Lex.getKind() == lltok::kw_source_filename);
396   Lex.Lex();
397   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
398       ParseStringConstant(SourceFileName))
399     return true;
400   if (M)
401     M->setSourceFileName(SourceFileName);
402   return false;
403 }
404 
405 /// toplevelentity
406 ///   ::= 'deplibs' '=' '[' ']'
407 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
408 /// FIXME: Remove in 4.0. Currently parse, but ignore.
409 bool LLParser::ParseDepLibs() {
410   assert(Lex.getKind() == lltok::kw_deplibs);
411   Lex.Lex();
412   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
413       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
414     return true;
415 
416   if (EatIfPresent(lltok::rsquare))
417     return false;
418 
419   do {
420     std::string Str;
421     if (ParseStringConstant(Str)) return true;
422   } while (EatIfPresent(lltok::comma));
423 
424   return ParseToken(lltok::rsquare, "expected ']' at end of list");
425 }
426 
427 /// ParseUnnamedType:
428 ///   ::= LocalVarID '=' 'type' type
429 bool LLParser::ParseUnnamedType() {
430   LocTy TypeLoc = Lex.getLoc();
431   unsigned TypeID = Lex.getUIntVal();
432   Lex.Lex(); // eat LocalVarID;
433 
434   if (ParseToken(lltok::equal, "expected '=' after name") ||
435       ParseToken(lltok::kw_type, "expected 'type' after '='"))
436     return true;
437 
438   Type *Result = nullptr;
439   if (ParseStructDefinition(TypeLoc, "",
440                             NumberedTypes[TypeID], Result)) return true;
441 
442   if (!isa<StructType>(Result)) {
443     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
444     if (Entry.first)
445       return Error(TypeLoc, "non-struct types may not be recursive");
446     Entry.first = Result;
447     Entry.second = SMLoc();
448   }
449 
450   return false;
451 }
452 
453 /// toplevelentity
454 ///   ::= LocalVar '=' 'type' type
455 bool LLParser::ParseNamedType() {
456   std::string Name = Lex.getStrVal();
457   LocTy NameLoc = Lex.getLoc();
458   Lex.Lex();  // eat LocalVar.
459 
460   if (ParseToken(lltok::equal, "expected '=' after name") ||
461       ParseToken(lltok::kw_type, "expected 'type' after name"))
462     return true;
463 
464   Type *Result = nullptr;
465   if (ParseStructDefinition(NameLoc, Name,
466                             NamedTypes[Name], Result)) return true;
467 
468   if (!isa<StructType>(Result)) {
469     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
470     if (Entry.first)
471       return Error(NameLoc, "non-struct types may not be recursive");
472     Entry.first = Result;
473     Entry.second = SMLoc();
474   }
475 
476   return false;
477 }
478 
479 /// toplevelentity
480 ///   ::= 'declare' FunctionHeader
481 bool LLParser::ParseDeclare() {
482   assert(Lex.getKind() == lltok::kw_declare);
483   Lex.Lex();
484 
485   std::vector<std::pair<unsigned, MDNode *>> MDs;
486   while (Lex.getKind() == lltok::MetadataVar) {
487     unsigned MDK;
488     MDNode *N;
489     if (ParseMetadataAttachment(MDK, N))
490       return true;
491     MDs.push_back({MDK, N});
492   }
493 
494   Function *F;
495   if (ParseFunctionHeader(F, false))
496     return true;
497   for (auto &MD : MDs)
498     F->addMetadata(MD.first, *MD.second);
499   return false;
500 }
501 
502 /// toplevelentity
503 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
504 bool LLParser::ParseDefine() {
505   assert(Lex.getKind() == lltok::kw_define);
506   Lex.Lex();
507 
508   Function *F;
509   return ParseFunctionHeader(F, true) ||
510          ParseOptionalFunctionMetadata(*F) ||
511          ParseFunctionBody(*F);
512 }
513 
514 /// ParseGlobalType
515 ///   ::= 'constant'
516 ///   ::= 'global'
517 bool LLParser::ParseGlobalType(bool &IsConstant) {
518   if (Lex.getKind() == lltok::kw_constant)
519     IsConstant = true;
520   else if (Lex.getKind() == lltok::kw_global)
521     IsConstant = false;
522   else {
523     IsConstant = false;
524     return TokError("expected 'global' or 'constant'");
525   }
526   Lex.Lex();
527   return false;
528 }
529 
530 bool LLParser::ParseOptionalUnnamedAddr(
531     GlobalVariable::UnnamedAddr &UnnamedAddr) {
532   if (EatIfPresent(lltok::kw_unnamed_addr))
533     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
534   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
535     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
536   else
537     UnnamedAddr = GlobalValue::UnnamedAddr::None;
538   return false;
539 }
540 
541 /// ParseUnnamedGlobal:
542 ///   OptionalVisibility (ALIAS | IFUNC) ...
543 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
544 ///   OptionalDLLStorageClass
545 ///                                                     ...   -> global variable
546 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
547 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
548 ///                OptionalDLLStorageClass
549 ///                                                     ...   -> global variable
550 bool LLParser::ParseUnnamedGlobal() {
551   unsigned VarID = NumberedVals.size();
552   std::string Name;
553   LocTy NameLoc = Lex.getLoc();
554 
555   // Handle the GlobalID form.
556   if (Lex.getKind() == lltok::GlobalID) {
557     if (Lex.getUIntVal() != VarID)
558       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
559                    Twine(VarID) + "'");
560     Lex.Lex(); // eat GlobalID;
561 
562     if (ParseToken(lltok::equal, "expected '=' after name"))
563       return true;
564   }
565 
566   bool HasLinkage;
567   unsigned Linkage, Visibility, DLLStorageClass;
568   bool DSOLocal;
569   GlobalVariable::ThreadLocalMode TLM;
570   GlobalVariable::UnnamedAddr UnnamedAddr;
571   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
572                            DSOLocal) ||
573       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
574     return true;
575 
576   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
577     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
578                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
579 
580   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
581                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
582 }
583 
584 /// ParseNamedGlobal:
585 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
586 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
587 ///                 OptionalVisibility OptionalDLLStorageClass
588 ///                                                     ...   -> global variable
589 bool LLParser::ParseNamedGlobal() {
590   assert(Lex.getKind() == lltok::GlobalVar);
591   LocTy NameLoc = Lex.getLoc();
592   std::string Name = Lex.getStrVal();
593   Lex.Lex();
594 
595   bool HasLinkage;
596   unsigned Linkage, Visibility, DLLStorageClass;
597   bool DSOLocal;
598   GlobalVariable::ThreadLocalMode TLM;
599   GlobalVariable::UnnamedAddr UnnamedAddr;
600   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
601       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
602                            DSOLocal) ||
603       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
604     return true;
605 
606   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
607     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
608                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
609 
610   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
611                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
612 }
613 
614 bool LLParser::parseComdat() {
615   assert(Lex.getKind() == lltok::ComdatVar);
616   std::string Name = Lex.getStrVal();
617   LocTy NameLoc = Lex.getLoc();
618   Lex.Lex();
619 
620   if (ParseToken(lltok::equal, "expected '=' here"))
621     return true;
622 
623   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
624     return TokError("expected comdat type");
625 
626   Comdat::SelectionKind SK;
627   switch (Lex.getKind()) {
628   default:
629     return TokError("unknown selection kind");
630   case lltok::kw_any:
631     SK = Comdat::Any;
632     break;
633   case lltok::kw_exactmatch:
634     SK = Comdat::ExactMatch;
635     break;
636   case lltok::kw_largest:
637     SK = Comdat::Largest;
638     break;
639   case lltok::kw_noduplicates:
640     SK = Comdat::NoDuplicates;
641     break;
642   case lltok::kw_samesize:
643     SK = Comdat::SameSize;
644     break;
645   }
646   Lex.Lex();
647 
648   // See if the comdat was forward referenced, if so, use the comdat.
649   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
650   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
651   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
652     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
653 
654   Comdat *C;
655   if (I != ComdatSymTab.end())
656     C = &I->second;
657   else
658     C = M->getOrInsertComdat(Name);
659   C->setSelectionKind(SK);
660 
661   return false;
662 }
663 
664 // MDString:
665 //   ::= '!' STRINGCONSTANT
666 bool LLParser::ParseMDString(MDString *&Result) {
667   std::string Str;
668   if (ParseStringConstant(Str)) return true;
669   Result = MDString::get(Context, Str);
670   return false;
671 }
672 
673 // MDNode:
674 //   ::= '!' MDNodeNumber
675 bool LLParser::ParseMDNodeID(MDNode *&Result) {
676   // !{ ..., !42, ... }
677   LocTy IDLoc = Lex.getLoc();
678   unsigned MID = 0;
679   if (ParseUInt32(MID))
680     return true;
681 
682   // If not a forward reference, just return it now.
683   if (NumberedMetadata.count(MID)) {
684     Result = NumberedMetadata[MID];
685     return false;
686   }
687 
688   // Otherwise, create MDNode forward reference.
689   auto &FwdRef = ForwardRefMDNodes[MID];
690   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
691 
692   Result = FwdRef.first.get();
693   NumberedMetadata[MID].reset(Result);
694   return false;
695 }
696 
697 /// ParseNamedMetadata:
698 ///   !foo = !{ !1, !2 }
699 bool LLParser::ParseNamedMetadata() {
700   assert(Lex.getKind() == lltok::MetadataVar);
701   std::string Name = Lex.getStrVal();
702   Lex.Lex();
703 
704   if (ParseToken(lltok::equal, "expected '=' here") ||
705       ParseToken(lltok::exclaim, "Expected '!' here") ||
706       ParseToken(lltok::lbrace, "Expected '{' here"))
707     return true;
708 
709   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
710   if (Lex.getKind() != lltok::rbrace)
711     do {
712       MDNode *N = nullptr;
713       // Parse DIExpressions inline as a special case. They are still MDNodes,
714       // so they can still appear in named metadata. Remove this logic if they
715       // become plain Metadata.
716       if (Lex.getKind() == lltok::MetadataVar &&
717           Lex.getStrVal() == "DIExpression") {
718         if (ParseDIExpression(N, /*IsDistinct=*/false))
719           return true;
720       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
721                  ParseMDNodeID(N)) {
722         return true;
723       }
724       NMD->addOperand(N);
725     } while (EatIfPresent(lltok::comma));
726 
727   return ParseToken(lltok::rbrace, "expected end of metadata node");
728 }
729 
730 /// ParseStandaloneMetadata:
731 ///   !42 = !{...}
732 bool LLParser::ParseStandaloneMetadata() {
733   assert(Lex.getKind() == lltok::exclaim);
734   Lex.Lex();
735   unsigned MetadataID = 0;
736 
737   MDNode *Init;
738   if (ParseUInt32(MetadataID) ||
739       ParseToken(lltok::equal, "expected '=' here"))
740     return true;
741 
742   // Detect common error, from old metadata syntax.
743   if (Lex.getKind() == lltok::Type)
744     return TokError("unexpected type in metadata definition");
745 
746   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
747   if (Lex.getKind() == lltok::MetadataVar) {
748     if (ParseSpecializedMDNode(Init, IsDistinct))
749       return true;
750   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
751              ParseMDTuple(Init, IsDistinct))
752     return true;
753 
754   // See if this was forward referenced, if so, handle it.
755   auto FI = ForwardRefMDNodes.find(MetadataID);
756   if (FI != ForwardRefMDNodes.end()) {
757     FI->second.first->replaceAllUsesWith(Init);
758     ForwardRefMDNodes.erase(FI);
759 
760     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
761   } else {
762     if (NumberedMetadata.count(MetadataID))
763       return TokError("Metadata id is already used");
764     NumberedMetadata[MetadataID].reset(Init);
765   }
766 
767   return false;
768 }
769 
770 // Skips a single module summary entry.
771 bool LLParser::SkipModuleSummaryEntry() {
772   // Each module summary entry consists of a tag for the entry
773   // type, followed by a colon, then the fields surrounded by nested sets of
774   // parentheses. The "tag:" looks like a Label. Once parsing support is
775   // in place we will look for the tokens corresponding to the expected tags.
776   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
777       Lex.getKind() != lltok::kw_typeid)
778     return TokError(
779         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
780   Lex.Lex();
781   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
782       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
783     return true;
784   // Now walk through the parenthesized entry, until the number of open
785   // parentheses goes back down to 0 (the first '(' was parsed above).
786   unsigned NumOpenParen = 1;
787   do {
788     switch (Lex.getKind()) {
789     case lltok::lparen:
790       NumOpenParen++;
791       break;
792     case lltok::rparen:
793       NumOpenParen--;
794       break;
795     case lltok::Eof:
796       return TokError("found end of file while parsing summary entry");
797     default:
798       // Skip everything in between parentheses.
799       break;
800     }
801     Lex.Lex();
802   } while (NumOpenParen > 0);
803   return false;
804 }
805 
806 /// SummaryEntry
807 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
808 bool LLParser::ParseSummaryEntry() {
809   assert(Lex.getKind() == lltok::SummaryID);
810   unsigned SummaryID = Lex.getUIntVal();
811 
812   // For summary entries, colons should be treated as distinct tokens,
813   // not an indication of the end of a label token.
814   Lex.setIgnoreColonInIdentifiers(true);
815 
816   Lex.Lex();
817   if (ParseToken(lltok::equal, "expected '=' here"))
818     return true;
819 
820   // If we don't have an index object, skip the summary entry.
821   if (!Index)
822     return SkipModuleSummaryEntry();
823 
824   switch (Lex.getKind()) {
825   case lltok::kw_gv:
826     return ParseGVEntry(SummaryID);
827   case lltok::kw_module:
828     return ParseModuleEntry(SummaryID);
829   case lltok::kw_typeid:
830     return ParseTypeIdEntry(SummaryID);
831     break;
832   default:
833     return Error(Lex.getLoc(), "unexpected summary kind");
834   }
835   Lex.setIgnoreColonInIdentifiers(false);
836   return false;
837 }
838 
839 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
840   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
841          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
842 }
843 
844 // If there was an explicit dso_local, update GV. In the absence of an explicit
845 // dso_local we keep the default value.
846 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
847   if (DSOLocal)
848     GV.setDSOLocal(true);
849 }
850 
851 /// parseIndirectSymbol:
852 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
853 ///                     OptionalVisibility OptionalDLLStorageClass
854 ///                     OptionalThreadLocal OptionalUnnamedAddr
855 //                      'alias|ifunc' IndirectSymbol
856 ///
857 /// IndirectSymbol
858 ///   ::= TypeAndValue
859 ///
860 /// Everything through OptionalUnnamedAddr has already been parsed.
861 ///
862 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
863                                    unsigned L, unsigned Visibility,
864                                    unsigned DLLStorageClass, bool DSOLocal,
865                                    GlobalVariable::ThreadLocalMode TLM,
866                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
867   bool IsAlias;
868   if (Lex.getKind() == lltok::kw_alias)
869     IsAlias = true;
870   else if (Lex.getKind() == lltok::kw_ifunc)
871     IsAlias = false;
872   else
873     llvm_unreachable("Not an alias or ifunc!");
874   Lex.Lex();
875 
876   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
877 
878   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
879     return Error(NameLoc, "invalid linkage type for alias");
880 
881   if (!isValidVisibilityForLinkage(Visibility, L))
882     return Error(NameLoc,
883                  "symbol with local linkage must have default visibility");
884 
885   Type *Ty;
886   LocTy ExplicitTypeLoc = Lex.getLoc();
887   if (ParseType(Ty) ||
888       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
889     return true;
890 
891   Constant *Aliasee;
892   LocTy AliaseeLoc = Lex.getLoc();
893   if (Lex.getKind() != lltok::kw_bitcast &&
894       Lex.getKind() != lltok::kw_getelementptr &&
895       Lex.getKind() != lltok::kw_addrspacecast &&
896       Lex.getKind() != lltok::kw_inttoptr) {
897     if (ParseGlobalTypeAndValue(Aliasee))
898       return true;
899   } else {
900     // The bitcast dest type is not present, it is implied by the dest type.
901     ValID ID;
902     if (ParseValID(ID))
903       return true;
904     if (ID.Kind != ValID::t_Constant)
905       return Error(AliaseeLoc, "invalid aliasee");
906     Aliasee = ID.ConstantVal;
907   }
908 
909   Type *AliaseeType = Aliasee->getType();
910   auto *PTy = dyn_cast<PointerType>(AliaseeType);
911   if (!PTy)
912     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
913   unsigned AddrSpace = PTy->getAddressSpace();
914 
915   if (IsAlias && Ty != PTy->getElementType())
916     return Error(
917         ExplicitTypeLoc,
918         "explicit pointee type doesn't match operand's pointee type");
919 
920   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
921     return Error(
922         ExplicitTypeLoc,
923         "explicit pointee type should be a function type");
924 
925   GlobalValue *GVal = nullptr;
926 
927   // See if the alias was forward referenced, if so, prepare to replace the
928   // forward reference.
929   if (!Name.empty()) {
930     GVal = M->getNamedValue(Name);
931     if (GVal) {
932       if (!ForwardRefVals.erase(Name))
933         return Error(NameLoc, "redefinition of global '@" + Name + "'");
934     }
935   } else {
936     auto I = ForwardRefValIDs.find(NumberedVals.size());
937     if (I != ForwardRefValIDs.end()) {
938       GVal = I->second.first;
939       ForwardRefValIDs.erase(I);
940     }
941   }
942 
943   // Okay, create the alias but do not insert it into the module yet.
944   std::unique_ptr<GlobalIndirectSymbol> GA;
945   if (IsAlias)
946     GA.reset(GlobalAlias::create(Ty, AddrSpace,
947                                  (GlobalValue::LinkageTypes)Linkage, Name,
948                                  Aliasee, /*Parent*/ nullptr));
949   else
950     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
951                                  (GlobalValue::LinkageTypes)Linkage, Name,
952                                  Aliasee, /*Parent*/ nullptr));
953   GA->setThreadLocalMode(TLM);
954   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
955   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
956   GA->setUnnamedAddr(UnnamedAddr);
957   maybeSetDSOLocal(DSOLocal, *GA);
958 
959   if (Name.empty())
960     NumberedVals.push_back(GA.get());
961 
962   if (GVal) {
963     // Verify that types agree.
964     if (GVal->getType() != GA->getType())
965       return Error(
966           ExplicitTypeLoc,
967           "forward reference and definition of alias have different types");
968 
969     // If they agree, just RAUW the old value with the alias and remove the
970     // forward ref info.
971     GVal->replaceAllUsesWith(GA.get());
972     GVal->eraseFromParent();
973   }
974 
975   // Insert into the module, we know its name won't collide now.
976   if (IsAlias)
977     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
978   else
979     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
980   assert(GA->getName() == Name && "Should not be a name conflict!");
981 
982   // The module owns this now
983   GA.release();
984 
985   return false;
986 }
987 
988 /// ParseGlobal
989 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
990 ///       OptionalVisibility OptionalDLLStorageClass
991 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
992 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
993 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
994 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
995 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
996 ///       Const OptionalAttrs
997 ///
998 /// Everything up to and including OptionalUnnamedAddr has been parsed
999 /// already.
1000 ///
1001 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1002                            unsigned Linkage, bool HasLinkage,
1003                            unsigned Visibility, unsigned DLLStorageClass,
1004                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1005                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1006   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1007     return Error(NameLoc,
1008                  "symbol with local linkage must have default visibility");
1009 
1010   unsigned AddrSpace;
1011   bool IsConstant, IsExternallyInitialized;
1012   LocTy IsExternallyInitializedLoc;
1013   LocTy TyLoc;
1014 
1015   Type *Ty = nullptr;
1016   if (ParseOptionalAddrSpace(AddrSpace) ||
1017       ParseOptionalToken(lltok::kw_externally_initialized,
1018                          IsExternallyInitialized,
1019                          &IsExternallyInitializedLoc) ||
1020       ParseGlobalType(IsConstant) ||
1021       ParseType(Ty, TyLoc))
1022     return true;
1023 
1024   // If the linkage is specified and is external, then no initializer is
1025   // present.
1026   Constant *Init = nullptr;
1027   if (!HasLinkage ||
1028       !GlobalValue::isValidDeclarationLinkage(
1029           (GlobalValue::LinkageTypes)Linkage)) {
1030     if (ParseGlobalValue(Ty, Init))
1031       return true;
1032   }
1033 
1034   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1035     return Error(TyLoc, "invalid type for global variable");
1036 
1037   GlobalValue *GVal = nullptr;
1038 
1039   // See if the global was forward referenced, if so, use the global.
1040   if (!Name.empty()) {
1041     GVal = M->getNamedValue(Name);
1042     if (GVal) {
1043       if (!ForwardRefVals.erase(Name))
1044         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1045     }
1046   } else {
1047     auto I = ForwardRefValIDs.find(NumberedVals.size());
1048     if (I != ForwardRefValIDs.end()) {
1049       GVal = I->second.first;
1050       ForwardRefValIDs.erase(I);
1051     }
1052   }
1053 
1054   GlobalVariable *GV;
1055   if (!GVal) {
1056     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1057                             Name, nullptr, GlobalVariable::NotThreadLocal,
1058                             AddrSpace);
1059   } else {
1060     if (GVal->getValueType() != Ty)
1061       return Error(TyLoc,
1062             "forward reference and definition of global have different types");
1063 
1064     GV = cast<GlobalVariable>(GVal);
1065 
1066     // Move the forward-reference to the correct spot in the module.
1067     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1068   }
1069 
1070   if (Name.empty())
1071     NumberedVals.push_back(GV);
1072 
1073   // Set the parsed properties on the global.
1074   if (Init)
1075     GV->setInitializer(Init);
1076   GV->setConstant(IsConstant);
1077   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1078   maybeSetDSOLocal(DSOLocal, *GV);
1079   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1080   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1081   GV->setExternallyInitialized(IsExternallyInitialized);
1082   GV->setThreadLocalMode(TLM);
1083   GV->setUnnamedAddr(UnnamedAddr);
1084 
1085   // Parse attributes on the global.
1086   while (Lex.getKind() == lltok::comma) {
1087     Lex.Lex();
1088 
1089     if (Lex.getKind() == lltok::kw_section) {
1090       Lex.Lex();
1091       GV->setSection(Lex.getStrVal());
1092       if (ParseToken(lltok::StringConstant, "expected global section string"))
1093         return true;
1094     } else if (Lex.getKind() == lltok::kw_align) {
1095       unsigned Alignment;
1096       if (ParseOptionalAlignment(Alignment)) return true;
1097       GV->setAlignment(Alignment);
1098     } else if (Lex.getKind() == lltok::MetadataVar) {
1099       if (ParseGlobalObjectMetadataAttachment(*GV))
1100         return true;
1101     } else {
1102       Comdat *C;
1103       if (parseOptionalComdat(Name, C))
1104         return true;
1105       if (C)
1106         GV->setComdat(C);
1107       else
1108         return TokError("unknown global variable property!");
1109     }
1110   }
1111 
1112   AttrBuilder Attrs;
1113   LocTy BuiltinLoc;
1114   std::vector<unsigned> FwdRefAttrGrps;
1115   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1116     return true;
1117   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1118     GV->setAttributes(AttributeSet::get(Context, Attrs));
1119     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1120   }
1121 
1122   return false;
1123 }
1124 
1125 /// ParseUnnamedAttrGrp
1126 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1127 bool LLParser::ParseUnnamedAttrGrp() {
1128   assert(Lex.getKind() == lltok::kw_attributes);
1129   LocTy AttrGrpLoc = Lex.getLoc();
1130   Lex.Lex();
1131 
1132   if (Lex.getKind() != lltok::AttrGrpID)
1133     return TokError("expected attribute group id");
1134 
1135   unsigned VarID = Lex.getUIntVal();
1136   std::vector<unsigned> unused;
1137   LocTy BuiltinLoc;
1138   Lex.Lex();
1139 
1140   if (ParseToken(lltok::equal, "expected '=' here") ||
1141       ParseToken(lltok::lbrace, "expected '{' here") ||
1142       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1143                                  BuiltinLoc) ||
1144       ParseToken(lltok::rbrace, "expected end of attribute group"))
1145     return true;
1146 
1147   if (!NumberedAttrBuilders[VarID].hasAttributes())
1148     return Error(AttrGrpLoc, "attribute group has no attributes");
1149 
1150   return false;
1151 }
1152 
1153 /// ParseFnAttributeValuePairs
1154 ///   ::= <attr> | <attr> '=' <value>
1155 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1156                                           std::vector<unsigned> &FwdRefAttrGrps,
1157                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1158   bool HaveError = false;
1159 
1160   B.clear();
1161 
1162   while (true) {
1163     lltok::Kind Token = Lex.getKind();
1164     if (Token == lltok::kw_builtin)
1165       BuiltinLoc = Lex.getLoc();
1166     switch (Token) {
1167     default:
1168       if (!inAttrGrp) return HaveError;
1169       return Error(Lex.getLoc(), "unterminated attribute group");
1170     case lltok::rbrace:
1171       // Finished.
1172       return false;
1173 
1174     case lltok::AttrGrpID: {
1175       // Allow a function to reference an attribute group:
1176       //
1177       //   define void @foo() #1 { ... }
1178       if (inAttrGrp)
1179         HaveError |=
1180           Error(Lex.getLoc(),
1181               "cannot have an attribute group reference in an attribute group");
1182 
1183       unsigned AttrGrpNum = Lex.getUIntVal();
1184       if (inAttrGrp) break;
1185 
1186       // Save the reference to the attribute group. We'll fill it in later.
1187       FwdRefAttrGrps.push_back(AttrGrpNum);
1188       break;
1189     }
1190     // Target-dependent attributes:
1191     case lltok::StringConstant: {
1192       if (ParseStringAttribute(B))
1193         return true;
1194       continue;
1195     }
1196 
1197     // Target-independent attributes:
1198     case lltok::kw_align: {
1199       // As a hack, we allow function alignment to be initially parsed as an
1200       // attribute on a function declaration/definition or added to an attribute
1201       // group and later moved to the alignment field.
1202       unsigned Alignment;
1203       if (inAttrGrp) {
1204         Lex.Lex();
1205         if (ParseToken(lltok::equal, "expected '=' here") ||
1206             ParseUInt32(Alignment))
1207           return true;
1208       } else {
1209         if (ParseOptionalAlignment(Alignment))
1210           return true;
1211       }
1212       B.addAlignmentAttr(Alignment);
1213       continue;
1214     }
1215     case lltok::kw_alignstack: {
1216       unsigned Alignment;
1217       if (inAttrGrp) {
1218         Lex.Lex();
1219         if (ParseToken(lltok::equal, "expected '=' here") ||
1220             ParseUInt32(Alignment))
1221           return true;
1222       } else {
1223         if (ParseOptionalStackAlignment(Alignment))
1224           return true;
1225       }
1226       B.addStackAlignmentAttr(Alignment);
1227       continue;
1228     }
1229     case lltok::kw_allocsize: {
1230       unsigned ElemSizeArg;
1231       Optional<unsigned> NumElemsArg;
1232       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1233       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1234         return true;
1235       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1236       continue;
1237     }
1238     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1239     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1240     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1241     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1242     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1243     case lltok::kw_inaccessiblememonly:
1244       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1245     case lltok::kw_inaccessiblemem_or_argmemonly:
1246       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1247     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1248     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1249     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1250     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1251     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1252     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1253     case lltok::kw_noimplicitfloat:
1254       B.addAttribute(Attribute::NoImplicitFloat); break;
1255     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1256     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1257     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1258     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1259     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1260     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1261     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1262     case lltok::kw_optforfuzzing:
1263       B.addAttribute(Attribute::OptForFuzzing); break;
1264     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1265     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1266     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1267     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1268     case lltok::kw_returns_twice:
1269       B.addAttribute(Attribute::ReturnsTwice); break;
1270     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1271     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1272     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1273     case lltok::kw_sspstrong:
1274       B.addAttribute(Attribute::StackProtectStrong); break;
1275     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1276     case lltok::kw_shadowcallstack:
1277       B.addAttribute(Attribute::ShadowCallStack); break;
1278     case lltok::kw_sanitize_address:
1279       B.addAttribute(Attribute::SanitizeAddress); break;
1280     case lltok::kw_sanitize_hwaddress:
1281       B.addAttribute(Attribute::SanitizeHWAddress); break;
1282     case lltok::kw_sanitize_thread:
1283       B.addAttribute(Attribute::SanitizeThread); break;
1284     case lltok::kw_sanitize_memory:
1285       B.addAttribute(Attribute::SanitizeMemory); break;
1286     case lltok::kw_speculative_load_hardening:
1287       B.addAttribute(Attribute::SpeculativeLoadHardening);
1288       break;
1289     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1290     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1291     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1292 
1293     // Error handling.
1294     case lltok::kw_inreg:
1295     case lltok::kw_signext:
1296     case lltok::kw_zeroext:
1297       HaveError |=
1298         Error(Lex.getLoc(),
1299               "invalid use of attribute on a function");
1300       break;
1301     case lltok::kw_byval:
1302     case lltok::kw_dereferenceable:
1303     case lltok::kw_dereferenceable_or_null:
1304     case lltok::kw_inalloca:
1305     case lltok::kw_nest:
1306     case lltok::kw_noalias:
1307     case lltok::kw_nocapture:
1308     case lltok::kw_nonnull:
1309     case lltok::kw_returned:
1310     case lltok::kw_sret:
1311     case lltok::kw_swifterror:
1312     case lltok::kw_swiftself:
1313     case lltok::kw_immarg:
1314       HaveError |=
1315         Error(Lex.getLoc(),
1316               "invalid use of parameter-only attribute on a function");
1317       break;
1318     }
1319 
1320     Lex.Lex();
1321   }
1322 }
1323 
1324 //===----------------------------------------------------------------------===//
1325 // GlobalValue Reference/Resolution Routines.
1326 //===----------------------------------------------------------------------===//
1327 
1328 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1329                                               const std::string &Name) {
1330   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1331     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1332                             PTy->getAddressSpace(), Name, M);
1333   else
1334     return new GlobalVariable(*M, PTy->getElementType(), false,
1335                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1336                               nullptr, GlobalVariable::NotThreadLocal,
1337                               PTy->getAddressSpace());
1338 }
1339 
1340 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1341                                         Value *Val, bool IsCall) {
1342   if (Val->getType() == Ty)
1343     return Val;
1344   // For calls we also accept variables in the program address space.
1345   Type *SuggestedTy = Ty;
1346   if (IsCall && isa<PointerType>(Ty)) {
1347     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1348         M->getDataLayout().getProgramAddressSpace());
1349     SuggestedTy = TyInProgAS;
1350     if (Val->getType() == TyInProgAS)
1351       return Val;
1352   }
1353   if (Ty->isLabelTy())
1354     Error(Loc, "'" + Name + "' is not a basic block");
1355   else
1356     Error(Loc, "'" + Name + "' defined with type '" +
1357                    getTypeString(Val->getType()) + "' but expected '" +
1358                    getTypeString(SuggestedTy) + "'");
1359   return nullptr;
1360 }
1361 
1362 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1363 /// forward reference record if needed.  This can return null if the value
1364 /// exists but does not have the right type.
1365 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1366                                     LocTy Loc, bool IsCall) {
1367   PointerType *PTy = dyn_cast<PointerType>(Ty);
1368   if (!PTy) {
1369     Error(Loc, "global variable reference must have pointer type");
1370     return nullptr;
1371   }
1372 
1373   // Look this name up in the normal function symbol table.
1374   GlobalValue *Val =
1375     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1376 
1377   // If this is a forward reference for the value, see if we already created a
1378   // forward ref record.
1379   if (!Val) {
1380     auto I = ForwardRefVals.find(Name);
1381     if (I != ForwardRefVals.end())
1382       Val = I->second.first;
1383   }
1384 
1385   // If we have the value in the symbol table or fwd-ref table, return it.
1386   if (Val)
1387     return cast_or_null<GlobalValue>(
1388         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1389 
1390   // Otherwise, create a new forward reference for this value and remember it.
1391   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1392   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1393   return FwdVal;
1394 }
1395 
1396 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1397                                     bool IsCall) {
1398   PointerType *PTy = dyn_cast<PointerType>(Ty);
1399   if (!PTy) {
1400     Error(Loc, "global variable reference must have pointer type");
1401     return nullptr;
1402   }
1403 
1404   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1405 
1406   // If this is a forward reference for the value, see if we already created a
1407   // forward ref record.
1408   if (!Val) {
1409     auto I = ForwardRefValIDs.find(ID);
1410     if (I != ForwardRefValIDs.end())
1411       Val = I->second.first;
1412   }
1413 
1414   // If we have the value in the symbol table or fwd-ref table, return it.
1415   if (Val)
1416     return cast_or_null<GlobalValue>(
1417         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1418 
1419   // Otherwise, create a new forward reference for this value and remember it.
1420   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1421   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1422   return FwdVal;
1423 }
1424 
1425 //===----------------------------------------------------------------------===//
1426 // Comdat Reference/Resolution Routines.
1427 //===----------------------------------------------------------------------===//
1428 
1429 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1430   // Look this name up in the comdat symbol table.
1431   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1432   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1433   if (I != ComdatSymTab.end())
1434     return &I->second;
1435 
1436   // Otherwise, create a new forward reference for this value and remember it.
1437   Comdat *C = M->getOrInsertComdat(Name);
1438   ForwardRefComdats[Name] = Loc;
1439   return C;
1440 }
1441 
1442 //===----------------------------------------------------------------------===//
1443 // Helper Routines.
1444 //===----------------------------------------------------------------------===//
1445 
1446 /// ParseToken - If the current token has the specified kind, eat it and return
1447 /// success.  Otherwise, emit the specified error and return failure.
1448 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1449   if (Lex.getKind() != T)
1450     return TokError(ErrMsg);
1451   Lex.Lex();
1452   return false;
1453 }
1454 
1455 /// ParseStringConstant
1456 ///   ::= StringConstant
1457 bool LLParser::ParseStringConstant(std::string &Result) {
1458   if (Lex.getKind() != lltok::StringConstant)
1459     return TokError("expected string constant");
1460   Result = Lex.getStrVal();
1461   Lex.Lex();
1462   return false;
1463 }
1464 
1465 /// ParseUInt32
1466 ///   ::= uint32
1467 bool LLParser::ParseUInt32(uint32_t &Val) {
1468   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1469     return TokError("expected integer");
1470   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1471   if (Val64 != unsigned(Val64))
1472     return TokError("expected 32-bit integer (too large)");
1473   Val = Val64;
1474   Lex.Lex();
1475   return false;
1476 }
1477 
1478 /// ParseUInt64
1479 ///   ::= uint64
1480 bool LLParser::ParseUInt64(uint64_t &Val) {
1481   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1482     return TokError("expected integer");
1483   Val = Lex.getAPSIntVal().getLimitedValue();
1484   Lex.Lex();
1485   return false;
1486 }
1487 
1488 /// ParseTLSModel
1489 ///   := 'localdynamic'
1490 ///   := 'initialexec'
1491 ///   := 'localexec'
1492 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1493   switch (Lex.getKind()) {
1494     default:
1495       return TokError("expected localdynamic, initialexec or localexec");
1496     case lltok::kw_localdynamic:
1497       TLM = GlobalVariable::LocalDynamicTLSModel;
1498       break;
1499     case lltok::kw_initialexec:
1500       TLM = GlobalVariable::InitialExecTLSModel;
1501       break;
1502     case lltok::kw_localexec:
1503       TLM = GlobalVariable::LocalExecTLSModel;
1504       break;
1505   }
1506 
1507   Lex.Lex();
1508   return false;
1509 }
1510 
1511 /// ParseOptionalThreadLocal
1512 ///   := /*empty*/
1513 ///   := 'thread_local'
1514 ///   := 'thread_local' '(' tlsmodel ')'
1515 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1516   TLM = GlobalVariable::NotThreadLocal;
1517   if (!EatIfPresent(lltok::kw_thread_local))
1518     return false;
1519 
1520   TLM = GlobalVariable::GeneralDynamicTLSModel;
1521   if (Lex.getKind() == lltok::lparen) {
1522     Lex.Lex();
1523     return ParseTLSModel(TLM) ||
1524       ParseToken(lltok::rparen, "expected ')' after thread local model");
1525   }
1526   return false;
1527 }
1528 
1529 /// ParseOptionalAddrSpace
1530 ///   := /*empty*/
1531 ///   := 'addrspace' '(' uint32 ')'
1532 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1533   AddrSpace = DefaultAS;
1534   if (!EatIfPresent(lltok::kw_addrspace))
1535     return false;
1536   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1537          ParseUInt32(AddrSpace) ||
1538          ParseToken(lltok::rparen, "expected ')' in address space");
1539 }
1540 
1541 /// ParseStringAttribute
1542 ///   := StringConstant
1543 ///   := StringConstant '=' StringConstant
1544 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1545   std::string Attr = Lex.getStrVal();
1546   Lex.Lex();
1547   std::string Val;
1548   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1549     return true;
1550   B.addAttribute(Attr, Val);
1551   return false;
1552 }
1553 
1554 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1555 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1556   bool HaveError = false;
1557 
1558   B.clear();
1559 
1560   while (true) {
1561     lltok::Kind Token = Lex.getKind();
1562     switch (Token) {
1563     default:  // End of attributes.
1564       return HaveError;
1565     case lltok::StringConstant: {
1566       if (ParseStringAttribute(B))
1567         return true;
1568       continue;
1569     }
1570     case lltok::kw_align: {
1571       unsigned Alignment;
1572       if (ParseOptionalAlignment(Alignment))
1573         return true;
1574       B.addAlignmentAttr(Alignment);
1575       continue;
1576     }
1577     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1578     case lltok::kw_dereferenceable: {
1579       uint64_t Bytes;
1580       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1581         return true;
1582       B.addDereferenceableAttr(Bytes);
1583       continue;
1584     }
1585     case lltok::kw_dereferenceable_or_null: {
1586       uint64_t Bytes;
1587       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1588         return true;
1589       B.addDereferenceableOrNullAttr(Bytes);
1590       continue;
1591     }
1592     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1593     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1594     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1595     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1596     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1597     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1598     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1599     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1600     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1601     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1602     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1603     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1604     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1605     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1606     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1607     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1608 
1609     case lltok::kw_alignstack:
1610     case lltok::kw_alwaysinline:
1611     case lltok::kw_argmemonly:
1612     case lltok::kw_builtin:
1613     case lltok::kw_inlinehint:
1614     case lltok::kw_jumptable:
1615     case lltok::kw_minsize:
1616     case lltok::kw_naked:
1617     case lltok::kw_nobuiltin:
1618     case lltok::kw_noduplicate:
1619     case lltok::kw_noimplicitfloat:
1620     case lltok::kw_noinline:
1621     case lltok::kw_nonlazybind:
1622     case lltok::kw_noredzone:
1623     case lltok::kw_noreturn:
1624     case lltok::kw_nocf_check:
1625     case lltok::kw_nounwind:
1626     case lltok::kw_optforfuzzing:
1627     case lltok::kw_optnone:
1628     case lltok::kw_optsize:
1629     case lltok::kw_returns_twice:
1630     case lltok::kw_sanitize_address:
1631     case lltok::kw_sanitize_hwaddress:
1632     case lltok::kw_sanitize_memory:
1633     case lltok::kw_sanitize_thread:
1634     case lltok::kw_speculative_load_hardening:
1635     case lltok::kw_ssp:
1636     case lltok::kw_sspreq:
1637     case lltok::kw_sspstrong:
1638     case lltok::kw_safestack:
1639     case lltok::kw_shadowcallstack:
1640     case lltok::kw_strictfp:
1641     case lltok::kw_uwtable:
1642       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1643       break;
1644     }
1645 
1646     Lex.Lex();
1647   }
1648 }
1649 
1650 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1651 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1652   bool HaveError = false;
1653 
1654   B.clear();
1655 
1656   while (true) {
1657     lltok::Kind Token = Lex.getKind();
1658     switch (Token) {
1659     default:  // End of attributes.
1660       return HaveError;
1661     case lltok::StringConstant: {
1662       if (ParseStringAttribute(B))
1663         return true;
1664       continue;
1665     }
1666     case lltok::kw_dereferenceable: {
1667       uint64_t Bytes;
1668       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1669         return true;
1670       B.addDereferenceableAttr(Bytes);
1671       continue;
1672     }
1673     case lltok::kw_dereferenceable_or_null: {
1674       uint64_t Bytes;
1675       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1676         return true;
1677       B.addDereferenceableOrNullAttr(Bytes);
1678       continue;
1679     }
1680     case lltok::kw_align: {
1681       unsigned Alignment;
1682       if (ParseOptionalAlignment(Alignment))
1683         return true;
1684       B.addAlignmentAttr(Alignment);
1685       continue;
1686     }
1687     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1688     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1689     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1690     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1691     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1692 
1693     // Error handling.
1694     case lltok::kw_byval:
1695     case lltok::kw_inalloca:
1696     case lltok::kw_nest:
1697     case lltok::kw_nocapture:
1698     case lltok::kw_returned:
1699     case lltok::kw_sret:
1700     case lltok::kw_swifterror:
1701     case lltok::kw_swiftself:
1702     case lltok::kw_immarg:
1703       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1704       break;
1705 
1706     case lltok::kw_alignstack:
1707     case lltok::kw_alwaysinline:
1708     case lltok::kw_argmemonly:
1709     case lltok::kw_builtin:
1710     case lltok::kw_cold:
1711     case lltok::kw_inlinehint:
1712     case lltok::kw_jumptable:
1713     case lltok::kw_minsize:
1714     case lltok::kw_naked:
1715     case lltok::kw_nobuiltin:
1716     case lltok::kw_noduplicate:
1717     case lltok::kw_noimplicitfloat:
1718     case lltok::kw_noinline:
1719     case lltok::kw_nonlazybind:
1720     case lltok::kw_noredzone:
1721     case lltok::kw_noreturn:
1722     case lltok::kw_nocf_check:
1723     case lltok::kw_nounwind:
1724     case lltok::kw_optforfuzzing:
1725     case lltok::kw_optnone:
1726     case lltok::kw_optsize:
1727     case lltok::kw_returns_twice:
1728     case lltok::kw_sanitize_address:
1729     case lltok::kw_sanitize_hwaddress:
1730     case lltok::kw_sanitize_memory:
1731     case lltok::kw_sanitize_thread:
1732     case lltok::kw_speculative_load_hardening:
1733     case lltok::kw_ssp:
1734     case lltok::kw_sspreq:
1735     case lltok::kw_sspstrong:
1736     case lltok::kw_safestack:
1737     case lltok::kw_shadowcallstack:
1738     case lltok::kw_strictfp:
1739     case lltok::kw_uwtable:
1740       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1741       break;
1742 
1743     case lltok::kw_readnone:
1744     case lltok::kw_readonly:
1745       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1746     }
1747 
1748     Lex.Lex();
1749   }
1750 }
1751 
1752 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1753   HasLinkage = true;
1754   switch (Kind) {
1755   default:
1756     HasLinkage = false;
1757     return GlobalValue::ExternalLinkage;
1758   case lltok::kw_private:
1759     return GlobalValue::PrivateLinkage;
1760   case lltok::kw_internal:
1761     return GlobalValue::InternalLinkage;
1762   case lltok::kw_weak:
1763     return GlobalValue::WeakAnyLinkage;
1764   case lltok::kw_weak_odr:
1765     return GlobalValue::WeakODRLinkage;
1766   case lltok::kw_linkonce:
1767     return GlobalValue::LinkOnceAnyLinkage;
1768   case lltok::kw_linkonce_odr:
1769     return GlobalValue::LinkOnceODRLinkage;
1770   case lltok::kw_available_externally:
1771     return GlobalValue::AvailableExternallyLinkage;
1772   case lltok::kw_appending:
1773     return GlobalValue::AppendingLinkage;
1774   case lltok::kw_common:
1775     return GlobalValue::CommonLinkage;
1776   case lltok::kw_extern_weak:
1777     return GlobalValue::ExternalWeakLinkage;
1778   case lltok::kw_external:
1779     return GlobalValue::ExternalLinkage;
1780   }
1781 }
1782 
1783 /// ParseOptionalLinkage
1784 ///   ::= /*empty*/
1785 ///   ::= 'private'
1786 ///   ::= 'internal'
1787 ///   ::= 'weak'
1788 ///   ::= 'weak_odr'
1789 ///   ::= 'linkonce'
1790 ///   ::= 'linkonce_odr'
1791 ///   ::= 'available_externally'
1792 ///   ::= 'appending'
1793 ///   ::= 'common'
1794 ///   ::= 'extern_weak'
1795 ///   ::= 'external'
1796 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1797                                     unsigned &Visibility,
1798                                     unsigned &DLLStorageClass,
1799                                     bool &DSOLocal) {
1800   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1801   if (HasLinkage)
1802     Lex.Lex();
1803   ParseOptionalDSOLocal(DSOLocal);
1804   ParseOptionalVisibility(Visibility);
1805   ParseOptionalDLLStorageClass(DLLStorageClass);
1806 
1807   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1808     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1809   }
1810 
1811   return false;
1812 }
1813 
1814 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1815   switch (Lex.getKind()) {
1816   default:
1817     DSOLocal = false;
1818     break;
1819   case lltok::kw_dso_local:
1820     DSOLocal = true;
1821     Lex.Lex();
1822     break;
1823   case lltok::kw_dso_preemptable:
1824     DSOLocal = false;
1825     Lex.Lex();
1826     break;
1827   }
1828 }
1829 
1830 /// ParseOptionalVisibility
1831 ///   ::= /*empty*/
1832 ///   ::= 'default'
1833 ///   ::= 'hidden'
1834 ///   ::= 'protected'
1835 ///
1836 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1837   switch (Lex.getKind()) {
1838   default:
1839     Res = GlobalValue::DefaultVisibility;
1840     return;
1841   case lltok::kw_default:
1842     Res = GlobalValue::DefaultVisibility;
1843     break;
1844   case lltok::kw_hidden:
1845     Res = GlobalValue::HiddenVisibility;
1846     break;
1847   case lltok::kw_protected:
1848     Res = GlobalValue::ProtectedVisibility;
1849     break;
1850   }
1851   Lex.Lex();
1852 }
1853 
1854 /// ParseOptionalDLLStorageClass
1855 ///   ::= /*empty*/
1856 ///   ::= 'dllimport'
1857 ///   ::= 'dllexport'
1858 ///
1859 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1860   switch (Lex.getKind()) {
1861   default:
1862     Res = GlobalValue::DefaultStorageClass;
1863     return;
1864   case lltok::kw_dllimport:
1865     Res = GlobalValue::DLLImportStorageClass;
1866     break;
1867   case lltok::kw_dllexport:
1868     Res = GlobalValue::DLLExportStorageClass;
1869     break;
1870   }
1871   Lex.Lex();
1872 }
1873 
1874 /// ParseOptionalCallingConv
1875 ///   ::= /*empty*/
1876 ///   ::= 'ccc'
1877 ///   ::= 'fastcc'
1878 ///   ::= 'intel_ocl_bicc'
1879 ///   ::= 'coldcc'
1880 ///   ::= 'x86_stdcallcc'
1881 ///   ::= 'x86_fastcallcc'
1882 ///   ::= 'x86_thiscallcc'
1883 ///   ::= 'x86_vectorcallcc'
1884 ///   ::= 'arm_apcscc'
1885 ///   ::= 'arm_aapcscc'
1886 ///   ::= 'arm_aapcs_vfpcc'
1887 ///   ::= 'aarch64_vector_pcs'
1888 ///   ::= 'msp430_intrcc'
1889 ///   ::= 'avr_intrcc'
1890 ///   ::= 'avr_signalcc'
1891 ///   ::= 'ptx_kernel'
1892 ///   ::= 'ptx_device'
1893 ///   ::= 'spir_func'
1894 ///   ::= 'spir_kernel'
1895 ///   ::= 'x86_64_sysvcc'
1896 ///   ::= 'win64cc'
1897 ///   ::= 'webkit_jscc'
1898 ///   ::= 'anyregcc'
1899 ///   ::= 'preserve_mostcc'
1900 ///   ::= 'preserve_allcc'
1901 ///   ::= 'ghccc'
1902 ///   ::= 'swiftcc'
1903 ///   ::= 'x86_intrcc'
1904 ///   ::= 'hhvmcc'
1905 ///   ::= 'hhvm_ccc'
1906 ///   ::= 'cxx_fast_tlscc'
1907 ///   ::= 'amdgpu_vs'
1908 ///   ::= 'amdgpu_ls'
1909 ///   ::= 'amdgpu_hs'
1910 ///   ::= 'amdgpu_es'
1911 ///   ::= 'amdgpu_gs'
1912 ///   ::= 'amdgpu_ps'
1913 ///   ::= 'amdgpu_cs'
1914 ///   ::= 'amdgpu_kernel'
1915 ///   ::= 'cc' UINT
1916 ///
1917 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1918   switch (Lex.getKind()) {
1919   default:                       CC = CallingConv::C; return false;
1920   case lltok::kw_ccc:            CC = CallingConv::C; break;
1921   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1922   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1923   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1924   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1925   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1926   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1927   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1928   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1929   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1930   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1931   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1932   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1933   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1934   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1935   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1936   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1937   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1938   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1939   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1940   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1941   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1942   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1943   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1944   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1945   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1946   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1947   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1948   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1949   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1950   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1951   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1952   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1953   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1954   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1955   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1956   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1957   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1958   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1959   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1960   case lltok::kw_cc: {
1961       Lex.Lex();
1962       return ParseUInt32(CC);
1963     }
1964   }
1965 
1966   Lex.Lex();
1967   return false;
1968 }
1969 
1970 /// ParseMetadataAttachment
1971 ///   ::= !dbg !42
1972 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1973   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1974 
1975   std::string Name = Lex.getStrVal();
1976   Kind = M->getMDKindID(Name);
1977   Lex.Lex();
1978 
1979   return ParseMDNode(MD);
1980 }
1981 
1982 /// ParseInstructionMetadata
1983 ///   ::= !dbg !42 (',' !dbg !57)*
1984 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1985   do {
1986     if (Lex.getKind() != lltok::MetadataVar)
1987       return TokError("expected metadata after comma");
1988 
1989     unsigned MDK;
1990     MDNode *N;
1991     if (ParseMetadataAttachment(MDK, N))
1992       return true;
1993 
1994     Inst.setMetadata(MDK, N);
1995     if (MDK == LLVMContext::MD_tbaa)
1996       InstsWithTBAATag.push_back(&Inst);
1997 
1998     // If this is the end of the list, we're done.
1999   } while (EatIfPresent(lltok::comma));
2000   return false;
2001 }
2002 
2003 /// ParseGlobalObjectMetadataAttachment
2004 ///   ::= !dbg !57
2005 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2006   unsigned MDK;
2007   MDNode *N;
2008   if (ParseMetadataAttachment(MDK, N))
2009     return true;
2010 
2011   GO.addMetadata(MDK, *N);
2012   return false;
2013 }
2014 
2015 /// ParseOptionalFunctionMetadata
2016 ///   ::= (!dbg !57)*
2017 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2018   while (Lex.getKind() == lltok::MetadataVar)
2019     if (ParseGlobalObjectMetadataAttachment(F))
2020       return true;
2021   return false;
2022 }
2023 
2024 /// ParseOptionalAlignment
2025 ///   ::= /* empty */
2026 ///   ::= 'align' 4
2027 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
2028   Alignment = 0;
2029   if (!EatIfPresent(lltok::kw_align))
2030     return false;
2031   LocTy AlignLoc = Lex.getLoc();
2032   if (ParseUInt32(Alignment)) return true;
2033   if (!isPowerOf2_32(Alignment))
2034     return Error(AlignLoc, "alignment is not a power of two");
2035   if (Alignment > Value::MaximumAlignment)
2036     return Error(AlignLoc, "huge alignments are not supported yet");
2037   return false;
2038 }
2039 
2040 /// ParseOptionalDerefAttrBytes
2041 ///   ::= /* empty */
2042 ///   ::= AttrKind '(' 4 ')'
2043 ///
2044 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2045 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2046                                            uint64_t &Bytes) {
2047   assert((AttrKind == lltok::kw_dereferenceable ||
2048           AttrKind == lltok::kw_dereferenceable_or_null) &&
2049          "contract!");
2050 
2051   Bytes = 0;
2052   if (!EatIfPresent(AttrKind))
2053     return false;
2054   LocTy ParenLoc = Lex.getLoc();
2055   if (!EatIfPresent(lltok::lparen))
2056     return Error(ParenLoc, "expected '('");
2057   LocTy DerefLoc = Lex.getLoc();
2058   if (ParseUInt64(Bytes)) return true;
2059   ParenLoc = Lex.getLoc();
2060   if (!EatIfPresent(lltok::rparen))
2061     return Error(ParenLoc, "expected ')'");
2062   if (!Bytes)
2063     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2064   return false;
2065 }
2066 
2067 /// ParseOptionalCommaAlign
2068 ///   ::=
2069 ///   ::= ',' align 4
2070 ///
2071 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2072 /// end.
2073 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2074                                        bool &AteExtraComma) {
2075   AteExtraComma = false;
2076   while (EatIfPresent(lltok::comma)) {
2077     // Metadata at the end is an early exit.
2078     if (Lex.getKind() == lltok::MetadataVar) {
2079       AteExtraComma = true;
2080       return false;
2081     }
2082 
2083     if (Lex.getKind() != lltok::kw_align)
2084       return Error(Lex.getLoc(), "expected metadata or 'align'");
2085 
2086     if (ParseOptionalAlignment(Alignment)) return true;
2087   }
2088 
2089   return false;
2090 }
2091 
2092 /// ParseOptionalCommaAddrSpace
2093 ///   ::=
2094 ///   ::= ',' addrspace(1)
2095 ///
2096 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2097 /// end.
2098 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2099                                            LocTy &Loc,
2100                                            bool &AteExtraComma) {
2101   AteExtraComma = false;
2102   while (EatIfPresent(lltok::comma)) {
2103     // Metadata at the end is an early exit.
2104     if (Lex.getKind() == lltok::MetadataVar) {
2105       AteExtraComma = true;
2106       return false;
2107     }
2108 
2109     Loc = Lex.getLoc();
2110     if (Lex.getKind() != lltok::kw_addrspace)
2111       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2112 
2113     if (ParseOptionalAddrSpace(AddrSpace))
2114       return true;
2115   }
2116 
2117   return false;
2118 }
2119 
2120 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2121                                        Optional<unsigned> &HowManyArg) {
2122   Lex.Lex();
2123 
2124   auto StartParen = Lex.getLoc();
2125   if (!EatIfPresent(lltok::lparen))
2126     return Error(StartParen, "expected '('");
2127 
2128   if (ParseUInt32(BaseSizeArg))
2129     return true;
2130 
2131   if (EatIfPresent(lltok::comma)) {
2132     auto HowManyAt = Lex.getLoc();
2133     unsigned HowMany;
2134     if (ParseUInt32(HowMany))
2135       return true;
2136     if (HowMany == BaseSizeArg)
2137       return Error(HowManyAt,
2138                    "'allocsize' indices can't refer to the same parameter");
2139     HowManyArg = HowMany;
2140   } else
2141     HowManyArg = None;
2142 
2143   auto EndParen = Lex.getLoc();
2144   if (!EatIfPresent(lltok::rparen))
2145     return Error(EndParen, "expected ')'");
2146   return false;
2147 }
2148 
2149 /// ParseScopeAndOrdering
2150 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2151 ///   else: ::=
2152 ///
2153 /// This sets Scope and Ordering to the parsed values.
2154 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2155                                      AtomicOrdering &Ordering) {
2156   if (!isAtomic)
2157     return false;
2158 
2159   return ParseScope(SSID) || ParseOrdering(Ordering);
2160 }
2161 
2162 /// ParseScope
2163 ///   ::= syncscope("singlethread" | "<target scope>")?
2164 ///
2165 /// This sets synchronization scope ID to the ID of the parsed value.
2166 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2167   SSID = SyncScope::System;
2168   if (EatIfPresent(lltok::kw_syncscope)) {
2169     auto StartParenAt = Lex.getLoc();
2170     if (!EatIfPresent(lltok::lparen))
2171       return Error(StartParenAt, "Expected '(' in syncscope");
2172 
2173     std::string SSN;
2174     auto SSNAt = Lex.getLoc();
2175     if (ParseStringConstant(SSN))
2176       return Error(SSNAt, "Expected synchronization scope name");
2177 
2178     auto EndParenAt = Lex.getLoc();
2179     if (!EatIfPresent(lltok::rparen))
2180       return Error(EndParenAt, "Expected ')' in syncscope");
2181 
2182     SSID = Context.getOrInsertSyncScopeID(SSN);
2183   }
2184 
2185   return false;
2186 }
2187 
2188 /// ParseOrdering
2189 ///   ::= AtomicOrdering
2190 ///
2191 /// This sets Ordering to the parsed value.
2192 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2193   switch (Lex.getKind()) {
2194   default: return TokError("Expected ordering on atomic instruction");
2195   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2196   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2197   // Not specified yet:
2198   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2199   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2200   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2201   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2202   case lltok::kw_seq_cst:
2203     Ordering = AtomicOrdering::SequentiallyConsistent;
2204     break;
2205   }
2206   Lex.Lex();
2207   return false;
2208 }
2209 
2210 /// ParseOptionalStackAlignment
2211 ///   ::= /* empty */
2212 ///   ::= 'alignstack' '(' 4 ')'
2213 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2214   Alignment = 0;
2215   if (!EatIfPresent(lltok::kw_alignstack))
2216     return false;
2217   LocTy ParenLoc = Lex.getLoc();
2218   if (!EatIfPresent(lltok::lparen))
2219     return Error(ParenLoc, "expected '('");
2220   LocTy AlignLoc = Lex.getLoc();
2221   if (ParseUInt32(Alignment)) return true;
2222   ParenLoc = Lex.getLoc();
2223   if (!EatIfPresent(lltok::rparen))
2224     return Error(ParenLoc, "expected ')'");
2225   if (!isPowerOf2_32(Alignment))
2226     return Error(AlignLoc, "stack alignment is not a power of two");
2227   return false;
2228 }
2229 
2230 /// ParseIndexList - This parses the index list for an insert/extractvalue
2231 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2232 /// comma at the end of the line and find that it is followed by metadata.
2233 /// Clients that don't allow metadata can call the version of this function that
2234 /// only takes one argument.
2235 ///
2236 /// ParseIndexList
2237 ///    ::=  (',' uint32)+
2238 ///
2239 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2240                               bool &AteExtraComma) {
2241   AteExtraComma = false;
2242 
2243   if (Lex.getKind() != lltok::comma)
2244     return TokError("expected ',' as start of index list");
2245 
2246   while (EatIfPresent(lltok::comma)) {
2247     if (Lex.getKind() == lltok::MetadataVar) {
2248       if (Indices.empty()) return TokError("expected index");
2249       AteExtraComma = true;
2250       return false;
2251     }
2252     unsigned Idx = 0;
2253     if (ParseUInt32(Idx)) return true;
2254     Indices.push_back(Idx);
2255   }
2256 
2257   return false;
2258 }
2259 
2260 //===----------------------------------------------------------------------===//
2261 // Type Parsing.
2262 //===----------------------------------------------------------------------===//
2263 
2264 /// ParseType - Parse a type.
2265 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2266   SMLoc TypeLoc = Lex.getLoc();
2267   switch (Lex.getKind()) {
2268   default:
2269     return TokError(Msg);
2270   case lltok::Type:
2271     // Type ::= 'float' | 'void' (etc)
2272     Result = Lex.getTyVal();
2273     Lex.Lex();
2274     break;
2275   case lltok::lbrace:
2276     // Type ::= StructType
2277     if (ParseAnonStructType(Result, false))
2278       return true;
2279     break;
2280   case lltok::lsquare:
2281     // Type ::= '[' ... ']'
2282     Lex.Lex(); // eat the lsquare.
2283     if (ParseArrayVectorType(Result, false))
2284       return true;
2285     break;
2286   case lltok::less: // Either vector or packed struct.
2287     // Type ::= '<' ... '>'
2288     Lex.Lex();
2289     if (Lex.getKind() == lltok::lbrace) {
2290       if (ParseAnonStructType(Result, true) ||
2291           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2292         return true;
2293     } else if (ParseArrayVectorType(Result, true))
2294       return true;
2295     break;
2296   case lltok::LocalVar: {
2297     // Type ::= %foo
2298     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2299 
2300     // If the type hasn't been defined yet, create a forward definition and
2301     // remember where that forward def'n was seen (in case it never is defined).
2302     if (!Entry.first) {
2303       Entry.first = StructType::create(Context, Lex.getStrVal());
2304       Entry.second = Lex.getLoc();
2305     }
2306     Result = Entry.first;
2307     Lex.Lex();
2308     break;
2309   }
2310 
2311   case lltok::LocalVarID: {
2312     // Type ::= %4
2313     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2314 
2315     // If the type hasn't been defined yet, create a forward definition and
2316     // remember where that forward def'n was seen (in case it never is defined).
2317     if (!Entry.first) {
2318       Entry.first = StructType::create(Context);
2319       Entry.second = Lex.getLoc();
2320     }
2321     Result = Entry.first;
2322     Lex.Lex();
2323     break;
2324   }
2325   }
2326 
2327   // Parse the type suffixes.
2328   while (true) {
2329     switch (Lex.getKind()) {
2330     // End of type.
2331     default:
2332       if (!AllowVoid && Result->isVoidTy())
2333         return Error(TypeLoc, "void type only allowed for function results");
2334       return false;
2335 
2336     // Type ::= Type '*'
2337     case lltok::star:
2338       if (Result->isLabelTy())
2339         return TokError("basic block pointers are invalid");
2340       if (Result->isVoidTy())
2341         return TokError("pointers to void are invalid - use i8* instead");
2342       if (!PointerType::isValidElementType(Result))
2343         return TokError("pointer to this type is invalid");
2344       Result = PointerType::getUnqual(Result);
2345       Lex.Lex();
2346       break;
2347 
2348     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2349     case lltok::kw_addrspace: {
2350       if (Result->isLabelTy())
2351         return TokError("basic block pointers are invalid");
2352       if (Result->isVoidTy())
2353         return TokError("pointers to void are invalid; use i8* instead");
2354       if (!PointerType::isValidElementType(Result))
2355         return TokError("pointer to this type is invalid");
2356       unsigned AddrSpace;
2357       if (ParseOptionalAddrSpace(AddrSpace) ||
2358           ParseToken(lltok::star, "expected '*' in address space"))
2359         return true;
2360 
2361       Result = PointerType::get(Result, AddrSpace);
2362       break;
2363     }
2364 
2365     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2366     case lltok::lparen:
2367       if (ParseFunctionType(Result))
2368         return true;
2369       break;
2370     }
2371   }
2372 }
2373 
2374 /// ParseParameterList
2375 ///    ::= '(' ')'
2376 ///    ::= '(' Arg (',' Arg)* ')'
2377 ///  Arg
2378 ///    ::= Type OptionalAttributes Value OptionalAttributes
2379 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2380                                   PerFunctionState &PFS, bool IsMustTailCall,
2381                                   bool InVarArgsFunc) {
2382   if (ParseToken(lltok::lparen, "expected '(' in call"))
2383     return true;
2384 
2385   while (Lex.getKind() != lltok::rparen) {
2386     // If this isn't the first argument, we need a comma.
2387     if (!ArgList.empty() &&
2388         ParseToken(lltok::comma, "expected ',' in argument list"))
2389       return true;
2390 
2391     // Parse an ellipsis if this is a musttail call in a variadic function.
2392     if (Lex.getKind() == lltok::dotdotdot) {
2393       const char *Msg = "unexpected ellipsis in argument list for ";
2394       if (!IsMustTailCall)
2395         return TokError(Twine(Msg) + "non-musttail call");
2396       if (!InVarArgsFunc)
2397         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2398       Lex.Lex();  // Lex the '...', it is purely for readability.
2399       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2400     }
2401 
2402     // Parse the argument.
2403     LocTy ArgLoc;
2404     Type *ArgTy = nullptr;
2405     AttrBuilder ArgAttrs;
2406     Value *V;
2407     if (ParseType(ArgTy, ArgLoc))
2408       return true;
2409 
2410     if (ArgTy->isMetadataTy()) {
2411       if (ParseMetadataAsValue(V, PFS))
2412         return true;
2413     } else {
2414       // Otherwise, handle normal operands.
2415       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2416         return true;
2417     }
2418     ArgList.push_back(ParamInfo(
2419         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2420   }
2421 
2422   if (IsMustTailCall && InVarArgsFunc)
2423     return TokError("expected '...' at end of argument list for musttail call "
2424                     "in varargs function");
2425 
2426   Lex.Lex();  // Lex the ')'.
2427   return false;
2428 }
2429 
2430 /// ParseOptionalOperandBundles
2431 ///    ::= /*empty*/
2432 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2433 ///
2434 /// OperandBundle
2435 ///    ::= bundle-tag '(' ')'
2436 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2437 ///
2438 /// bundle-tag ::= String Constant
2439 bool LLParser::ParseOptionalOperandBundles(
2440     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2441   LocTy BeginLoc = Lex.getLoc();
2442   if (!EatIfPresent(lltok::lsquare))
2443     return false;
2444 
2445   while (Lex.getKind() != lltok::rsquare) {
2446     // If this isn't the first operand bundle, we need a comma.
2447     if (!BundleList.empty() &&
2448         ParseToken(lltok::comma, "expected ',' in input list"))
2449       return true;
2450 
2451     std::string Tag;
2452     if (ParseStringConstant(Tag))
2453       return true;
2454 
2455     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2456       return true;
2457 
2458     std::vector<Value *> Inputs;
2459     while (Lex.getKind() != lltok::rparen) {
2460       // If this isn't the first input, we need a comma.
2461       if (!Inputs.empty() &&
2462           ParseToken(lltok::comma, "expected ',' in input list"))
2463         return true;
2464 
2465       Type *Ty = nullptr;
2466       Value *Input = nullptr;
2467       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2468         return true;
2469       Inputs.push_back(Input);
2470     }
2471 
2472     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2473 
2474     Lex.Lex(); // Lex the ')'.
2475   }
2476 
2477   if (BundleList.empty())
2478     return Error(BeginLoc, "operand bundle set must not be empty");
2479 
2480   Lex.Lex(); // Lex the ']'.
2481   return false;
2482 }
2483 
2484 /// ParseArgumentList - Parse the argument list for a function type or function
2485 /// prototype.
2486 ///   ::= '(' ArgTypeListI ')'
2487 /// ArgTypeListI
2488 ///   ::= /*empty*/
2489 ///   ::= '...'
2490 ///   ::= ArgTypeList ',' '...'
2491 ///   ::= ArgType (',' ArgType)*
2492 ///
2493 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2494                                  bool &isVarArg){
2495   isVarArg = false;
2496   assert(Lex.getKind() == lltok::lparen);
2497   Lex.Lex(); // eat the (.
2498 
2499   if (Lex.getKind() == lltok::rparen) {
2500     // empty
2501   } else if (Lex.getKind() == lltok::dotdotdot) {
2502     isVarArg = true;
2503     Lex.Lex();
2504   } else {
2505     LocTy TypeLoc = Lex.getLoc();
2506     Type *ArgTy = nullptr;
2507     AttrBuilder Attrs;
2508     std::string Name;
2509 
2510     if (ParseType(ArgTy) ||
2511         ParseOptionalParamAttrs(Attrs)) return true;
2512 
2513     if (ArgTy->isVoidTy())
2514       return Error(TypeLoc, "argument can not have void type");
2515 
2516     if (Lex.getKind() == lltok::LocalVar) {
2517       Name = Lex.getStrVal();
2518       Lex.Lex();
2519     }
2520 
2521     if (!FunctionType::isValidArgumentType(ArgTy))
2522       return Error(TypeLoc, "invalid type for function argument");
2523 
2524     ArgList.emplace_back(TypeLoc, ArgTy,
2525                          AttributeSet::get(ArgTy->getContext(), Attrs),
2526                          std::move(Name));
2527 
2528     while (EatIfPresent(lltok::comma)) {
2529       // Handle ... at end of arg list.
2530       if (EatIfPresent(lltok::dotdotdot)) {
2531         isVarArg = true;
2532         break;
2533       }
2534 
2535       // Otherwise must be an argument type.
2536       TypeLoc = Lex.getLoc();
2537       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2538 
2539       if (ArgTy->isVoidTy())
2540         return Error(TypeLoc, "argument can not have void type");
2541 
2542       if (Lex.getKind() == lltok::LocalVar) {
2543         Name = Lex.getStrVal();
2544         Lex.Lex();
2545       } else {
2546         Name = "";
2547       }
2548 
2549       if (!ArgTy->isFirstClassType())
2550         return Error(TypeLoc, "invalid type for function argument");
2551 
2552       ArgList.emplace_back(TypeLoc, ArgTy,
2553                            AttributeSet::get(ArgTy->getContext(), Attrs),
2554                            std::move(Name));
2555     }
2556   }
2557 
2558   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2559 }
2560 
2561 /// ParseFunctionType
2562 ///  ::= Type ArgumentList OptionalAttrs
2563 bool LLParser::ParseFunctionType(Type *&Result) {
2564   assert(Lex.getKind() == lltok::lparen);
2565 
2566   if (!FunctionType::isValidReturnType(Result))
2567     return TokError("invalid function return type");
2568 
2569   SmallVector<ArgInfo, 8> ArgList;
2570   bool isVarArg;
2571   if (ParseArgumentList(ArgList, isVarArg))
2572     return true;
2573 
2574   // Reject names on the arguments lists.
2575   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2576     if (!ArgList[i].Name.empty())
2577       return Error(ArgList[i].Loc, "argument name invalid in function type");
2578     if (ArgList[i].Attrs.hasAttributes())
2579       return Error(ArgList[i].Loc,
2580                    "argument attributes invalid in function type");
2581   }
2582 
2583   SmallVector<Type*, 16> ArgListTy;
2584   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2585     ArgListTy.push_back(ArgList[i].Ty);
2586 
2587   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2588   return false;
2589 }
2590 
2591 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2592 /// other structs.
2593 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2594   SmallVector<Type*, 8> Elts;
2595   if (ParseStructBody(Elts)) return true;
2596 
2597   Result = StructType::get(Context, Elts, Packed);
2598   return false;
2599 }
2600 
2601 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2602 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2603                                      std::pair<Type*, LocTy> &Entry,
2604                                      Type *&ResultTy) {
2605   // If the type was already defined, diagnose the redefinition.
2606   if (Entry.first && !Entry.second.isValid())
2607     return Error(TypeLoc, "redefinition of type");
2608 
2609   // If we have opaque, just return without filling in the definition for the
2610   // struct.  This counts as a definition as far as the .ll file goes.
2611   if (EatIfPresent(lltok::kw_opaque)) {
2612     // This type is being defined, so clear the location to indicate this.
2613     Entry.second = SMLoc();
2614 
2615     // If this type number has never been uttered, create it.
2616     if (!Entry.first)
2617       Entry.first = StructType::create(Context, Name);
2618     ResultTy = Entry.first;
2619     return false;
2620   }
2621 
2622   // If the type starts with '<', then it is either a packed struct or a vector.
2623   bool isPacked = EatIfPresent(lltok::less);
2624 
2625   // If we don't have a struct, then we have a random type alias, which we
2626   // accept for compatibility with old files.  These types are not allowed to be
2627   // forward referenced and not allowed to be recursive.
2628   if (Lex.getKind() != lltok::lbrace) {
2629     if (Entry.first)
2630       return Error(TypeLoc, "forward references to non-struct type");
2631 
2632     ResultTy = nullptr;
2633     if (isPacked)
2634       return ParseArrayVectorType(ResultTy, true);
2635     return ParseType(ResultTy);
2636   }
2637 
2638   // This type is being defined, so clear the location to indicate this.
2639   Entry.second = SMLoc();
2640 
2641   // If this type number has never been uttered, create it.
2642   if (!Entry.first)
2643     Entry.first = StructType::create(Context, Name);
2644 
2645   StructType *STy = cast<StructType>(Entry.first);
2646 
2647   SmallVector<Type*, 8> Body;
2648   if (ParseStructBody(Body) ||
2649       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2650     return true;
2651 
2652   STy->setBody(Body, isPacked);
2653   ResultTy = STy;
2654   return false;
2655 }
2656 
2657 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2658 ///   StructType
2659 ///     ::= '{' '}'
2660 ///     ::= '{' Type (',' Type)* '}'
2661 ///     ::= '<' '{' '}' '>'
2662 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2663 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2664   assert(Lex.getKind() == lltok::lbrace);
2665   Lex.Lex(); // Consume the '{'
2666 
2667   // Handle the empty struct.
2668   if (EatIfPresent(lltok::rbrace))
2669     return false;
2670 
2671   LocTy EltTyLoc = Lex.getLoc();
2672   Type *Ty = nullptr;
2673   if (ParseType(Ty)) return true;
2674   Body.push_back(Ty);
2675 
2676   if (!StructType::isValidElementType(Ty))
2677     return Error(EltTyLoc, "invalid element type for struct");
2678 
2679   while (EatIfPresent(lltok::comma)) {
2680     EltTyLoc = Lex.getLoc();
2681     if (ParseType(Ty)) return true;
2682 
2683     if (!StructType::isValidElementType(Ty))
2684       return Error(EltTyLoc, "invalid element type for struct");
2685 
2686     Body.push_back(Ty);
2687   }
2688 
2689   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2690 }
2691 
2692 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2693 /// token has already been consumed.
2694 ///   Type
2695 ///     ::= '[' APSINTVAL 'x' Types ']'
2696 ///     ::= '<' APSINTVAL 'x' Types '>'
2697 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2698   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2699       Lex.getAPSIntVal().getBitWidth() > 64)
2700     return TokError("expected number in address space");
2701 
2702   LocTy SizeLoc = Lex.getLoc();
2703   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2704   Lex.Lex();
2705 
2706   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2707       return true;
2708 
2709   LocTy TypeLoc = Lex.getLoc();
2710   Type *EltTy = nullptr;
2711   if (ParseType(EltTy)) return true;
2712 
2713   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2714                  "expected end of sequential type"))
2715     return true;
2716 
2717   if (isVector) {
2718     if (Size == 0)
2719       return Error(SizeLoc, "zero element vector is illegal");
2720     if ((unsigned)Size != Size)
2721       return Error(SizeLoc, "size too large for vector");
2722     if (!VectorType::isValidElementType(EltTy))
2723       return Error(TypeLoc, "invalid vector element type");
2724     Result = VectorType::get(EltTy, unsigned(Size));
2725   } else {
2726     if (!ArrayType::isValidElementType(EltTy))
2727       return Error(TypeLoc, "invalid array element type");
2728     Result = ArrayType::get(EltTy, Size);
2729   }
2730   return false;
2731 }
2732 
2733 //===----------------------------------------------------------------------===//
2734 // Function Semantic Analysis.
2735 //===----------------------------------------------------------------------===//
2736 
2737 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2738                                              int functionNumber)
2739   : P(p), F(f), FunctionNumber(functionNumber) {
2740 
2741   // Insert unnamed arguments into the NumberedVals list.
2742   for (Argument &A : F.args())
2743     if (!A.hasName())
2744       NumberedVals.push_back(&A);
2745 }
2746 
2747 LLParser::PerFunctionState::~PerFunctionState() {
2748   // If there were any forward referenced non-basicblock values, delete them.
2749 
2750   for (const auto &P : ForwardRefVals) {
2751     if (isa<BasicBlock>(P.second.first))
2752       continue;
2753     P.second.first->replaceAllUsesWith(
2754         UndefValue::get(P.second.first->getType()));
2755     P.second.first->deleteValue();
2756   }
2757 
2758   for (const auto &P : ForwardRefValIDs) {
2759     if (isa<BasicBlock>(P.second.first))
2760       continue;
2761     P.second.first->replaceAllUsesWith(
2762         UndefValue::get(P.second.first->getType()));
2763     P.second.first->deleteValue();
2764   }
2765 }
2766 
2767 bool LLParser::PerFunctionState::FinishFunction() {
2768   if (!ForwardRefVals.empty())
2769     return P.Error(ForwardRefVals.begin()->second.second,
2770                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2771                    "'");
2772   if (!ForwardRefValIDs.empty())
2773     return P.Error(ForwardRefValIDs.begin()->second.second,
2774                    "use of undefined value '%" +
2775                    Twine(ForwardRefValIDs.begin()->first) + "'");
2776   return false;
2777 }
2778 
2779 /// GetVal - Get a value with the specified name or ID, creating a
2780 /// forward reference record if needed.  This can return null if the value
2781 /// exists but does not have the right type.
2782 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2783                                           LocTy Loc, bool IsCall) {
2784   // Look this name up in the normal function symbol table.
2785   Value *Val = F.getValueSymbolTable()->lookup(Name);
2786 
2787   // If this is a forward reference for the value, see if we already created a
2788   // forward ref record.
2789   if (!Val) {
2790     auto I = ForwardRefVals.find(Name);
2791     if (I != ForwardRefVals.end())
2792       Val = I->second.first;
2793   }
2794 
2795   // If we have the value in the symbol table or fwd-ref table, return it.
2796   if (Val)
2797     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2798 
2799   // Don't make placeholders with invalid type.
2800   if (!Ty->isFirstClassType()) {
2801     P.Error(Loc, "invalid use of a non-first-class type");
2802     return nullptr;
2803   }
2804 
2805   // Otherwise, create a new forward reference for this value and remember it.
2806   Value *FwdVal;
2807   if (Ty->isLabelTy()) {
2808     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2809   } else {
2810     FwdVal = new Argument(Ty, Name);
2811   }
2812 
2813   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2814   return FwdVal;
2815 }
2816 
2817 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2818                                           bool IsCall) {
2819   // Look this name up in the normal function symbol table.
2820   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2821 
2822   // If this is a forward reference for the value, see if we already created a
2823   // forward ref record.
2824   if (!Val) {
2825     auto I = ForwardRefValIDs.find(ID);
2826     if (I != ForwardRefValIDs.end())
2827       Val = I->second.first;
2828   }
2829 
2830   // If we have the value in the symbol table or fwd-ref table, return it.
2831   if (Val)
2832     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2833 
2834   if (!Ty->isFirstClassType()) {
2835     P.Error(Loc, "invalid use of a non-first-class type");
2836     return nullptr;
2837   }
2838 
2839   // Otherwise, create a new forward reference for this value and remember it.
2840   Value *FwdVal;
2841   if (Ty->isLabelTy()) {
2842     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2843   } else {
2844     FwdVal = new Argument(Ty);
2845   }
2846 
2847   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2848   return FwdVal;
2849 }
2850 
2851 /// SetInstName - After an instruction is parsed and inserted into its
2852 /// basic block, this installs its name.
2853 bool LLParser::PerFunctionState::SetInstName(int NameID,
2854                                              const std::string &NameStr,
2855                                              LocTy NameLoc, Instruction *Inst) {
2856   // If this instruction has void type, it cannot have a name or ID specified.
2857   if (Inst->getType()->isVoidTy()) {
2858     if (NameID != -1 || !NameStr.empty())
2859       return P.Error(NameLoc, "instructions returning void cannot have a name");
2860     return false;
2861   }
2862 
2863   // If this was a numbered instruction, verify that the instruction is the
2864   // expected value and resolve any forward references.
2865   if (NameStr.empty()) {
2866     // If neither a name nor an ID was specified, just use the next ID.
2867     if (NameID == -1)
2868       NameID = NumberedVals.size();
2869 
2870     if (unsigned(NameID) != NumberedVals.size())
2871       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2872                      Twine(NumberedVals.size()) + "'");
2873 
2874     auto FI = ForwardRefValIDs.find(NameID);
2875     if (FI != ForwardRefValIDs.end()) {
2876       Value *Sentinel = FI->second.first;
2877       if (Sentinel->getType() != Inst->getType())
2878         return P.Error(NameLoc, "instruction forward referenced with type '" +
2879                        getTypeString(FI->second.first->getType()) + "'");
2880 
2881       Sentinel->replaceAllUsesWith(Inst);
2882       Sentinel->deleteValue();
2883       ForwardRefValIDs.erase(FI);
2884     }
2885 
2886     NumberedVals.push_back(Inst);
2887     return false;
2888   }
2889 
2890   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2891   auto FI = ForwardRefVals.find(NameStr);
2892   if (FI != ForwardRefVals.end()) {
2893     Value *Sentinel = FI->second.first;
2894     if (Sentinel->getType() != Inst->getType())
2895       return P.Error(NameLoc, "instruction forward referenced with type '" +
2896                      getTypeString(FI->second.first->getType()) + "'");
2897 
2898     Sentinel->replaceAllUsesWith(Inst);
2899     Sentinel->deleteValue();
2900     ForwardRefVals.erase(FI);
2901   }
2902 
2903   // Set the name on the instruction.
2904   Inst->setName(NameStr);
2905 
2906   if (Inst->getName() != NameStr)
2907     return P.Error(NameLoc, "multiple definition of local value named '" +
2908                    NameStr + "'");
2909   return false;
2910 }
2911 
2912 /// GetBB - Get a basic block with the specified name or ID, creating a
2913 /// forward reference record if needed.
2914 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2915                                               LocTy Loc) {
2916   return dyn_cast_or_null<BasicBlock>(
2917       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2918 }
2919 
2920 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2921   return dyn_cast_or_null<BasicBlock>(
2922       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2923 }
2924 
2925 /// DefineBB - Define the specified basic block, which is either named or
2926 /// unnamed.  If there is an error, this returns null otherwise it returns
2927 /// the block being defined.
2928 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2929                                                  LocTy Loc) {
2930   BasicBlock *BB;
2931   if (Name.empty())
2932     BB = GetBB(NumberedVals.size(), Loc);
2933   else
2934     BB = GetBB(Name, Loc);
2935   if (!BB) return nullptr; // Already diagnosed error.
2936 
2937   // Move the block to the end of the function.  Forward ref'd blocks are
2938   // inserted wherever they happen to be referenced.
2939   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2940 
2941   // Remove the block from forward ref sets.
2942   if (Name.empty()) {
2943     ForwardRefValIDs.erase(NumberedVals.size());
2944     NumberedVals.push_back(BB);
2945   } else {
2946     // BB forward references are already in the function symbol table.
2947     ForwardRefVals.erase(Name);
2948   }
2949 
2950   return BB;
2951 }
2952 
2953 //===----------------------------------------------------------------------===//
2954 // Constants.
2955 //===----------------------------------------------------------------------===//
2956 
2957 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2958 /// type implied.  For example, if we parse "4" we don't know what integer type
2959 /// it has.  The value will later be combined with its type and checked for
2960 /// sanity.  PFS is used to convert function-local operands of metadata (since
2961 /// metadata operands are not just parsed here but also converted to values).
2962 /// PFS can be null when we are not parsing metadata values inside a function.
2963 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2964   ID.Loc = Lex.getLoc();
2965   switch (Lex.getKind()) {
2966   default: return TokError("expected value token");
2967   case lltok::GlobalID:  // @42
2968     ID.UIntVal = Lex.getUIntVal();
2969     ID.Kind = ValID::t_GlobalID;
2970     break;
2971   case lltok::GlobalVar:  // @foo
2972     ID.StrVal = Lex.getStrVal();
2973     ID.Kind = ValID::t_GlobalName;
2974     break;
2975   case lltok::LocalVarID:  // %42
2976     ID.UIntVal = Lex.getUIntVal();
2977     ID.Kind = ValID::t_LocalID;
2978     break;
2979   case lltok::LocalVar:  // %foo
2980     ID.StrVal = Lex.getStrVal();
2981     ID.Kind = ValID::t_LocalName;
2982     break;
2983   case lltok::APSInt:
2984     ID.APSIntVal = Lex.getAPSIntVal();
2985     ID.Kind = ValID::t_APSInt;
2986     break;
2987   case lltok::APFloat:
2988     ID.APFloatVal = Lex.getAPFloatVal();
2989     ID.Kind = ValID::t_APFloat;
2990     break;
2991   case lltok::kw_true:
2992     ID.ConstantVal = ConstantInt::getTrue(Context);
2993     ID.Kind = ValID::t_Constant;
2994     break;
2995   case lltok::kw_false:
2996     ID.ConstantVal = ConstantInt::getFalse(Context);
2997     ID.Kind = ValID::t_Constant;
2998     break;
2999   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3000   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3001   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3002   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3003 
3004   case lltok::lbrace: {
3005     // ValID ::= '{' ConstVector '}'
3006     Lex.Lex();
3007     SmallVector<Constant*, 16> Elts;
3008     if (ParseGlobalValueVector(Elts) ||
3009         ParseToken(lltok::rbrace, "expected end of struct constant"))
3010       return true;
3011 
3012     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3013     ID.UIntVal = Elts.size();
3014     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3015            Elts.size() * sizeof(Elts[0]));
3016     ID.Kind = ValID::t_ConstantStruct;
3017     return false;
3018   }
3019   case lltok::less: {
3020     // ValID ::= '<' ConstVector '>'         --> Vector.
3021     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3022     Lex.Lex();
3023     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3024 
3025     SmallVector<Constant*, 16> Elts;
3026     LocTy FirstEltLoc = Lex.getLoc();
3027     if (ParseGlobalValueVector(Elts) ||
3028         (isPackedStruct &&
3029          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3030         ParseToken(lltok::greater, "expected end of constant"))
3031       return true;
3032 
3033     if (isPackedStruct) {
3034       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3035       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3036              Elts.size() * sizeof(Elts[0]));
3037       ID.UIntVal = Elts.size();
3038       ID.Kind = ValID::t_PackedConstantStruct;
3039       return false;
3040     }
3041 
3042     if (Elts.empty())
3043       return Error(ID.Loc, "constant vector must not be empty");
3044 
3045     if (!Elts[0]->getType()->isIntegerTy() &&
3046         !Elts[0]->getType()->isFloatingPointTy() &&
3047         !Elts[0]->getType()->isPointerTy())
3048       return Error(FirstEltLoc,
3049             "vector elements must have integer, pointer or floating point type");
3050 
3051     // Verify that all the vector elements have the same type.
3052     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3053       if (Elts[i]->getType() != Elts[0]->getType())
3054         return Error(FirstEltLoc,
3055                      "vector element #" + Twine(i) +
3056                     " is not of type '" + getTypeString(Elts[0]->getType()));
3057 
3058     ID.ConstantVal = ConstantVector::get(Elts);
3059     ID.Kind = ValID::t_Constant;
3060     return false;
3061   }
3062   case lltok::lsquare: {   // Array Constant
3063     Lex.Lex();
3064     SmallVector<Constant*, 16> Elts;
3065     LocTy FirstEltLoc = Lex.getLoc();
3066     if (ParseGlobalValueVector(Elts) ||
3067         ParseToken(lltok::rsquare, "expected end of array constant"))
3068       return true;
3069 
3070     // Handle empty element.
3071     if (Elts.empty()) {
3072       // Use undef instead of an array because it's inconvenient to determine
3073       // the element type at this point, there being no elements to examine.
3074       ID.Kind = ValID::t_EmptyArray;
3075       return false;
3076     }
3077 
3078     if (!Elts[0]->getType()->isFirstClassType())
3079       return Error(FirstEltLoc, "invalid array element type: " +
3080                    getTypeString(Elts[0]->getType()));
3081 
3082     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3083 
3084     // Verify all elements are correct type!
3085     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3086       if (Elts[i]->getType() != Elts[0]->getType())
3087         return Error(FirstEltLoc,
3088                      "array element #" + Twine(i) +
3089                      " is not of type '" + getTypeString(Elts[0]->getType()));
3090     }
3091 
3092     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3093     ID.Kind = ValID::t_Constant;
3094     return false;
3095   }
3096   case lltok::kw_c:  // c "foo"
3097     Lex.Lex();
3098     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3099                                                   false);
3100     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3101     ID.Kind = ValID::t_Constant;
3102     return false;
3103 
3104   case lltok::kw_asm: {
3105     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3106     //             STRINGCONSTANT
3107     bool HasSideEffect, AlignStack, AsmDialect;
3108     Lex.Lex();
3109     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3110         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3111         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3112         ParseStringConstant(ID.StrVal) ||
3113         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3114         ParseToken(lltok::StringConstant, "expected constraint string"))
3115       return true;
3116     ID.StrVal2 = Lex.getStrVal();
3117     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3118       (unsigned(AsmDialect)<<2);
3119     ID.Kind = ValID::t_InlineAsm;
3120     return false;
3121   }
3122 
3123   case lltok::kw_blockaddress: {
3124     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3125     Lex.Lex();
3126 
3127     ValID Fn, Label;
3128 
3129     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3130         ParseValID(Fn) ||
3131         ParseToken(lltok::comma, "expected comma in block address expression")||
3132         ParseValID(Label) ||
3133         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3134       return true;
3135 
3136     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3137       return Error(Fn.Loc, "expected function name in blockaddress");
3138     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3139       return Error(Label.Loc, "expected basic block name in blockaddress");
3140 
3141     // Try to find the function (but skip it if it's forward-referenced).
3142     GlobalValue *GV = nullptr;
3143     if (Fn.Kind == ValID::t_GlobalID) {
3144       if (Fn.UIntVal < NumberedVals.size())
3145         GV = NumberedVals[Fn.UIntVal];
3146     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3147       GV = M->getNamedValue(Fn.StrVal);
3148     }
3149     Function *F = nullptr;
3150     if (GV) {
3151       // Confirm that it's actually a function with a definition.
3152       if (!isa<Function>(GV))
3153         return Error(Fn.Loc, "expected function name in blockaddress");
3154       F = cast<Function>(GV);
3155       if (F->isDeclaration())
3156         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3157     }
3158 
3159     if (!F) {
3160       // Make a global variable as a placeholder for this reference.
3161       GlobalValue *&FwdRef =
3162           ForwardRefBlockAddresses.insert(std::make_pair(
3163                                               std::move(Fn),
3164                                               std::map<ValID, GlobalValue *>()))
3165               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3166               .first->second;
3167       if (!FwdRef)
3168         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3169                                     GlobalValue::InternalLinkage, nullptr, "");
3170       ID.ConstantVal = FwdRef;
3171       ID.Kind = ValID::t_Constant;
3172       return false;
3173     }
3174 
3175     // We found the function; now find the basic block.  Don't use PFS, since we
3176     // might be inside a constant expression.
3177     BasicBlock *BB;
3178     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3179       if (Label.Kind == ValID::t_LocalID)
3180         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3181       else
3182         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3183       if (!BB)
3184         return Error(Label.Loc, "referenced value is not a basic block");
3185     } else {
3186       if (Label.Kind == ValID::t_LocalID)
3187         return Error(Label.Loc, "cannot take address of numeric label after "
3188                                 "the function is defined");
3189       BB = dyn_cast_or_null<BasicBlock>(
3190           F->getValueSymbolTable()->lookup(Label.StrVal));
3191       if (!BB)
3192         return Error(Label.Loc, "referenced value is not a basic block");
3193     }
3194 
3195     ID.ConstantVal = BlockAddress::get(F, BB);
3196     ID.Kind = ValID::t_Constant;
3197     return false;
3198   }
3199 
3200   case lltok::kw_trunc:
3201   case lltok::kw_zext:
3202   case lltok::kw_sext:
3203   case lltok::kw_fptrunc:
3204   case lltok::kw_fpext:
3205   case lltok::kw_bitcast:
3206   case lltok::kw_addrspacecast:
3207   case lltok::kw_uitofp:
3208   case lltok::kw_sitofp:
3209   case lltok::kw_fptoui:
3210   case lltok::kw_fptosi:
3211   case lltok::kw_inttoptr:
3212   case lltok::kw_ptrtoint: {
3213     unsigned Opc = Lex.getUIntVal();
3214     Type *DestTy = nullptr;
3215     Constant *SrcVal;
3216     Lex.Lex();
3217     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3218         ParseGlobalTypeAndValue(SrcVal) ||
3219         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3220         ParseType(DestTy) ||
3221         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3222       return true;
3223     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3224       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3225                    getTypeString(SrcVal->getType()) + "' to '" +
3226                    getTypeString(DestTy) + "'");
3227     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3228                                                  SrcVal, DestTy);
3229     ID.Kind = ValID::t_Constant;
3230     return false;
3231   }
3232   case lltok::kw_extractvalue: {
3233     Lex.Lex();
3234     Constant *Val;
3235     SmallVector<unsigned, 4> Indices;
3236     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3237         ParseGlobalTypeAndValue(Val) ||
3238         ParseIndexList(Indices) ||
3239         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3240       return true;
3241 
3242     if (!Val->getType()->isAggregateType())
3243       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3244     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3245       return Error(ID.Loc, "invalid indices for extractvalue");
3246     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3247     ID.Kind = ValID::t_Constant;
3248     return false;
3249   }
3250   case lltok::kw_insertvalue: {
3251     Lex.Lex();
3252     Constant *Val0, *Val1;
3253     SmallVector<unsigned, 4> Indices;
3254     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3255         ParseGlobalTypeAndValue(Val0) ||
3256         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3257         ParseGlobalTypeAndValue(Val1) ||
3258         ParseIndexList(Indices) ||
3259         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3260       return true;
3261     if (!Val0->getType()->isAggregateType())
3262       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3263     Type *IndexedType =
3264         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3265     if (!IndexedType)
3266       return Error(ID.Loc, "invalid indices for insertvalue");
3267     if (IndexedType != Val1->getType())
3268       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3269                                getTypeString(Val1->getType()) +
3270                                "' instead of '" + getTypeString(IndexedType) +
3271                                "'");
3272     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3273     ID.Kind = ValID::t_Constant;
3274     return false;
3275   }
3276   case lltok::kw_icmp:
3277   case lltok::kw_fcmp: {
3278     unsigned PredVal, Opc = Lex.getUIntVal();
3279     Constant *Val0, *Val1;
3280     Lex.Lex();
3281     if (ParseCmpPredicate(PredVal, Opc) ||
3282         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3283         ParseGlobalTypeAndValue(Val0) ||
3284         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3285         ParseGlobalTypeAndValue(Val1) ||
3286         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3287       return true;
3288 
3289     if (Val0->getType() != Val1->getType())
3290       return Error(ID.Loc, "compare operands must have the same type");
3291 
3292     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3293 
3294     if (Opc == Instruction::FCmp) {
3295       if (!Val0->getType()->isFPOrFPVectorTy())
3296         return Error(ID.Loc, "fcmp requires floating point operands");
3297       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3298     } else {
3299       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3300       if (!Val0->getType()->isIntOrIntVectorTy() &&
3301           !Val0->getType()->isPtrOrPtrVectorTy())
3302         return Error(ID.Loc, "icmp requires pointer or integer operands");
3303       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3304     }
3305     ID.Kind = ValID::t_Constant;
3306     return false;
3307   }
3308 
3309   // Unary Operators.
3310   case lltok::kw_fneg: {
3311     unsigned Opc = Lex.getUIntVal();
3312     Constant *Val;
3313     Lex.Lex();
3314     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3315         ParseGlobalTypeAndValue(Val) ||
3316         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3317       return true;
3318 
3319     // Check that the type is valid for the operator.
3320     switch (Opc) {
3321     case Instruction::FNeg:
3322       if (!Val->getType()->isFPOrFPVectorTy())
3323         return Error(ID.Loc, "constexpr requires fp operands");
3324       break;
3325     default: llvm_unreachable("Unknown unary operator!");
3326     }
3327     unsigned Flags = 0;
3328     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3329     ID.ConstantVal = C;
3330     ID.Kind = ValID::t_Constant;
3331     return false;
3332   }
3333   // Binary Operators.
3334   case lltok::kw_add:
3335   case lltok::kw_fadd:
3336   case lltok::kw_sub:
3337   case lltok::kw_fsub:
3338   case lltok::kw_mul:
3339   case lltok::kw_fmul:
3340   case lltok::kw_udiv:
3341   case lltok::kw_sdiv:
3342   case lltok::kw_fdiv:
3343   case lltok::kw_urem:
3344   case lltok::kw_srem:
3345   case lltok::kw_frem:
3346   case lltok::kw_shl:
3347   case lltok::kw_lshr:
3348   case lltok::kw_ashr: {
3349     bool NUW = false;
3350     bool NSW = false;
3351     bool Exact = false;
3352     unsigned Opc = Lex.getUIntVal();
3353     Constant *Val0, *Val1;
3354     Lex.Lex();
3355     LocTy ModifierLoc = Lex.getLoc();
3356     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3357         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3358       if (EatIfPresent(lltok::kw_nuw))
3359         NUW = true;
3360       if (EatIfPresent(lltok::kw_nsw)) {
3361         NSW = true;
3362         if (EatIfPresent(lltok::kw_nuw))
3363           NUW = true;
3364       }
3365     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3366                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3367       if (EatIfPresent(lltok::kw_exact))
3368         Exact = true;
3369     }
3370     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3371         ParseGlobalTypeAndValue(Val0) ||
3372         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3373         ParseGlobalTypeAndValue(Val1) ||
3374         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3375       return true;
3376     if (Val0->getType() != Val1->getType())
3377       return Error(ID.Loc, "operands of constexpr must have same type");
3378     if (!Val0->getType()->isIntOrIntVectorTy()) {
3379       if (NUW)
3380         return Error(ModifierLoc, "nuw only applies to integer operations");
3381       if (NSW)
3382         return Error(ModifierLoc, "nsw only applies to integer operations");
3383     }
3384     // Check that the type is valid for the operator.
3385     switch (Opc) {
3386     case Instruction::Add:
3387     case Instruction::Sub:
3388     case Instruction::Mul:
3389     case Instruction::UDiv:
3390     case Instruction::SDiv:
3391     case Instruction::URem:
3392     case Instruction::SRem:
3393     case Instruction::Shl:
3394     case Instruction::AShr:
3395     case Instruction::LShr:
3396       if (!Val0->getType()->isIntOrIntVectorTy())
3397         return Error(ID.Loc, "constexpr requires integer operands");
3398       break;
3399     case Instruction::FAdd:
3400     case Instruction::FSub:
3401     case Instruction::FMul:
3402     case Instruction::FDiv:
3403     case Instruction::FRem:
3404       if (!Val0->getType()->isFPOrFPVectorTy())
3405         return Error(ID.Loc, "constexpr requires fp operands");
3406       break;
3407     default: llvm_unreachable("Unknown binary operator!");
3408     }
3409     unsigned Flags = 0;
3410     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3411     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3412     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3413     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3414     ID.ConstantVal = C;
3415     ID.Kind = ValID::t_Constant;
3416     return false;
3417   }
3418 
3419   // Logical Operations
3420   case lltok::kw_and:
3421   case lltok::kw_or:
3422   case lltok::kw_xor: {
3423     unsigned Opc = Lex.getUIntVal();
3424     Constant *Val0, *Val1;
3425     Lex.Lex();
3426     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3427         ParseGlobalTypeAndValue(Val0) ||
3428         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3429         ParseGlobalTypeAndValue(Val1) ||
3430         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3431       return true;
3432     if (Val0->getType() != Val1->getType())
3433       return Error(ID.Loc, "operands of constexpr must have same type");
3434     if (!Val0->getType()->isIntOrIntVectorTy())
3435       return Error(ID.Loc,
3436                    "constexpr requires integer or integer vector operands");
3437     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3438     ID.Kind = ValID::t_Constant;
3439     return false;
3440   }
3441 
3442   case lltok::kw_getelementptr:
3443   case lltok::kw_shufflevector:
3444   case lltok::kw_insertelement:
3445   case lltok::kw_extractelement:
3446   case lltok::kw_select: {
3447     unsigned Opc = Lex.getUIntVal();
3448     SmallVector<Constant*, 16> Elts;
3449     bool InBounds = false;
3450     Type *Ty;
3451     Lex.Lex();
3452 
3453     if (Opc == Instruction::GetElementPtr)
3454       InBounds = EatIfPresent(lltok::kw_inbounds);
3455 
3456     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3457       return true;
3458 
3459     LocTy ExplicitTypeLoc = Lex.getLoc();
3460     if (Opc == Instruction::GetElementPtr) {
3461       if (ParseType(Ty) ||
3462           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3463         return true;
3464     }
3465 
3466     Optional<unsigned> InRangeOp;
3467     if (ParseGlobalValueVector(
3468             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3469         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3470       return true;
3471 
3472     if (Opc == Instruction::GetElementPtr) {
3473       if (Elts.size() == 0 ||
3474           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3475         return Error(ID.Loc, "base of getelementptr must be a pointer");
3476 
3477       Type *BaseType = Elts[0]->getType();
3478       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3479       if (Ty != BasePointerType->getElementType())
3480         return Error(
3481             ExplicitTypeLoc,
3482             "explicit pointee type doesn't match operand's pointee type");
3483 
3484       unsigned GEPWidth =
3485           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3486 
3487       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3488       for (Constant *Val : Indices) {
3489         Type *ValTy = Val->getType();
3490         if (!ValTy->isIntOrIntVectorTy())
3491           return Error(ID.Loc, "getelementptr index must be an integer");
3492         if (ValTy->isVectorTy()) {
3493           unsigned ValNumEl = ValTy->getVectorNumElements();
3494           if (GEPWidth && (ValNumEl != GEPWidth))
3495             return Error(
3496                 ID.Loc,
3497                 "getelementptr vector index has a wrong number of elements");
3498           // GEPWidth may have been unknown because the base is a scalar,
3499           // but it is known now.
3500           GEPWidth = ValNumEl;
3501         }
3502       }
3503 
3504       SmallPtrSet<Type*, 4> Visited;
3505       if (!Indices.empty() && !Ty->isSized(&Visited))
3506         return Error(ID.Loc, "base element of getelementptr must be sized");
3507 
3508       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3509         return Error(ID.Loc, "invalid getelementptr indices");
3510 
3511       if (InRangeOp) {
3512         if (*InRangeOp == 0)
3513           return Error(ID.Loc,
3514                        "inrange keyword may not appear on pointer operand");
3515         --*InRangeOp;
3516       }
3517 
3518       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3519                                                       InBounds, InRangeOp);
3520     } else if (Opc == Instruction::Select) {
3521       if (Elts.size() != 3)
3522         return Error(ID.Loc, "expected three operands to select");
3523       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3524                                                               Elts[2]))
3525         return Error(ID.Loc, Reason);
3526       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3527     } else if (Opc == Instruction::ShuffleVector) {
3528       if (Elts.size() != 3)
3529         return Error(ID.Loc, "expected three operands to shufflevector");
3530       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3531         return Error(ID.Loc, "invalid operands to shufflevector");
3532       ID.ConstantVal =
3533                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3534     } else if (Opc == Instruction::ExtractElement) {
3535       if (Elts.size() != 2)
3536         return Error(ID.Loc, "expected two operands to extractelement");
3537       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3538         return Error(ID.Loc, "invalid extractelement operands");
3539       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3540     } else {
3541       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3542       if (Elts.size() != 3)
3543       return Error(ID.Loc, "expected three operands to insertelement");
3544       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3545         return Error(ID.Loc, "invalid insertelement operands");
3546       ID.ConstantVal =
3547                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3548     }
3549 
3550     ID.Kind = ValID::t_Constant;
3551     return false;
3552   }
3553   }
3554 
3555   Lex.Lex();
3556   return false;
3557 }
3558 
3559 /// ParseGlobalValue - Parse a global value with the specified type.
3560 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3561   C = nullptr;
3562   ValID ID;
3563   Value *V = nullptr;
3564   bool Parsed = ParseValID(ID) ||
3565                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3566   if (V && !(C = dyn_cast<Constant>(V)))
3567     return Error(ID.Loc, "global values must be constants");
3568   return Parsed;
3569 }
3570 
3571 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3572   Type *Ty = nullptr;
3573   return ParseType(Ty) ||
3574          ParseGlobalValue(Ty, V);
3575 }
3576 
3577 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3578   C = nullptr;
3579 
3580   LocTy KwLoc = Lex.getLoc();
3581   if (!EatIfPresent(lltok::kw_comdat))
3582     return false;
3583 
3584   if (EatIfPresent(lltok::lparen)) {
3585     if (Lex.getKind() != lltok::ComdatVar)
3586       return TokError("expected comdat variable");
3587     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3588     Lex.Lex();
3589     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3590       return true;
3591   } else {
3592     if (GlobalName.empty())
3593       return TokError("comdat cannot be unnamed");
3594     C = getComdat(GlobalName, KwLoc);
3595   }
3596 
3597   return false;
3598 }
3599 
3600 /// ParseGlobalValueVector
3601 ///   ::= /*empty*/
3602 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3603 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3604                                       Optional<unsigned> *InRangeOp) {
3605   // Empty list.
3606   if (Lex.getKind() == lltok::rbrace ||
3607       Lex.getKind() == lltok::rsquare ||
3608       Lex.getKind() == lltok::greater ||
3609       Lex.getKind() == lltok::rparen)
3610     return false;
3611 
3612   do {
3613     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3614       *InRangeOp = Elts.size();
3615 
3616     Constant *C;
3617     if (ParseGlobalTypeAndValue(C)) return true;
3618     Elts.push_back(C);
3619   } while (EatIfPresent(lltok::comma));
3620 
3621   return false;
3622 }
3623 
3624 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3625   SmallVector<Metadata *, 16> Elts;
3626   if (ParseMDNodeVector(Elts))
3627     return true;
3628 
3629   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3630   return false;
3631 }
3632 
3633 /// MDNode:
3634 ///  ::= !{ ... }
3635 ///  ::= !7
3636 ///  ::= !DILocation(...)
3637 bool LLParser::ParseMDNode(MDNode *&N) {
3638   if (Lex.getKind() == lltok::MetadataVar)
3639     return ParseSpecializedMDNode(N);
3640 
3641   return ParseToken(lltok::exclaim, "expected '!' here") ||
3642          ParseMDNodeTail(N);
3643 }
3644 
3645 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3646   // !{ ... }
3647   if (Lex.getKind() == lltok::lbrace)
3648     return ParseMDTuple(N);
3649 
3650   // !42
3651   return ParseMDNodeID(N);
3652 }
3653 
3654 namespace {
3655 
3656 /// Structure to represent an optional metadata field.
3657 template <class FieldTy> struct MDFieldImpl {
3658   typedef MDFieldImpl ImplTy;
3659   FieldTy Val;
3660   bool Seen;
3661 
3662   void assign(FieldTy Val) {
3663     Seen = true;
3664     this->Val = std::move(Val);
3665   }
3666 
3667   explicit MDFieldImpl(FieldTy Default)
3668       : Val(std::move(Default)), Seen(false) {}
3669 };
3670 
3671 /// Structure to represent an optional metadata field that
3672 /// can be of either type (A or B) and encapsulates the
3673 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3674 /// to reimplement the specifics for representing each Field.
3675 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3676   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3677   FieldTypeA A;
3678   FieldTypeB B;
3679   bool Seen;
3680 
3681   enum {
3682     IsInvalid = 0,
3683     IsTypeA = 1,
3684     IsTypeB = 2
3685   } WhatIs;
3686 
3687   void assign(FieldTypeA A) {
3688     Seen = true;
3689     this->A = std::move(A);
3690     WhatIs = IsTypeA;
3691   }
3692 
3693   void assign(FieldTypeB B) {
3694     Seen = true;
3695     this->B = std::move(B);
3696     WhatIs = IsTypeB;
3697   }
3698 
3699   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3700       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3701         WhatIs(IsInvalid) {}
3702 };
3703 
3704 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3705   uint64_t Max;
3706 
3707   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3708       : ImplTy(Default), Max(Max) {}
3709 };
3710 
3711 struct LineField : public MDUnsignedField {
3712   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3713 };
3714 
3715 struct ColumnField : public MDUnsignedField {
3716   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3717 };
3718 
3719 struct DwarfTagField : public MDUnsignedField {
3720   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3721   DwarfTagField(dwarf::Tag DefaultTag)
3722       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3723 };
3724 
3725 struct DwarfMacinfoTypeField : public MDUnsignedField {
3726   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3727   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3728     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3729 };
3730 
3731 struct DwarfAttEncodingField : public MDUnsignedField {
3732   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3733 };
3734 
3735 struct DwarfVirtualityField : public MDUnsignedField {
3736   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3737 };
3738 
3739 struct DwarfLangField : public MDUnsignedField {
3740   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3741 };
3742 
3743 struct DwarfCCField : public MDUnsignedField {
3744   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3745 };
3746 
3747 struct EmissionKindField : public MDUnsignedField {
3748   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3749 };
3750 
3751 struct NameTableKindField : public MDUnsignedField {
3752   NameTableKindField()
3753       : MDUnsignedField(
3754             0, (unsigned)
3755                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3756 };
3757 
3758 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3759   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3760 };
3761 
3762 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3763   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3764 };
3765 
3766 struct MDSignedField : public MDFieldImpl<int64_t> {
3767   int64_t Min;
3768   int64_t Max;
3769 
3770   MDSignedField(int64_t Default = 0)
3771       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3772   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3773       : ImplTy(Default), Min(Min), Max(Max) {}
3774 };
3775 
3776 struct MDBoolField : public MDFieldImpl<bool> {
3777   MDBoolField(bool Default = false) : ImplTy(Default) {}
3778 };
3779 
3780 struct MDField : public MDFieldImpl<Metadata *> {
3781   bool AllowNull;
3782 
3783   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3784 };
3785 
3786 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3787   MDConstant() : ImplTy(nullptr) {}
3788 };
3789 
3790 struct MDStringField : public MDFieldImpl<MDString *> {
3791   bool AllowEmpty;
3792   MDStringField(bool AllowEmpty = true)
3793       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3794 };
3795 
3796 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3797   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3798 };
3799 
3800 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3801   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3802 };
3803 
3804 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3805   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3806       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3807 
3808   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3809                     bool AllowNull = true)
3810       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3811 
3812   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3813   bool isMDField() const { return WhatIs == IsTypeB; }
3814   int64_t getMDSignedValue() const {
3815     assert(isMDSignedField() && "Wrong field type");
3816     return A.Val;
3817   }
3818   Metadata *getMDFieldValue() const {
3819     assert(isMDField() && "Wrong field type");
3820     return B.Val;
3821   }
3822 };
3823 
3824 struct MDSignedOrUnsignedField
3825     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3826   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3827 
3828   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3829   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3830   int64_t getMDSignedValue() const {
3831     assert(isMDSignedField() && "Wrong field type");
3832     return A.Val;
3833   }
3834   uint64_t getMDUnsignedValue() const {
3835     assert(isMDUnsignedField() && "Wrong field type");
3836     return B.Val;
3837   }
3838 };
3839 
3840 } // end anonymous namespace
3841 
3842 namespace llvm {
3843 
3844 template <>
3845 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3846                             MDUnsignedField &Result) {
3847   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3848     return TokError("expected unsigned integer");
3849 
3850   auto &U = Lex.getAPSIntVal();
3851   if (U.ugt(Result.Max))
3852     return TokError("value for '" + Name + "' too large, limit is " +
3853                     Twine(Result.Max));
3854   Result.assign(U.getZExtValue());
3855   assert(Result.Val <= Result.Max && "Expected value in range");
3856   Lex.Lex();
3857   return false;
3858 }
3859 
3860 template <>
3861 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3862   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3863 }
3864 template <>
3865 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3866   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3867 }
3868 
3869 template <>
3870 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3871   if (Lex.getKind() == lltok::APSInt)
3872     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3873 
3874   if (Lex.getKind() != lltok::DwarfTag)
3875     return TokError("expected DWARF tag");
3876 
3877   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3878   if (Tag == dwarf::DW_TAG_invalid)
3879     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3880   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3881 
3882   Result.assign(Tag);
3883   Lex.Lex();
3884   return false;
3885 }
3886 
3887 template <>
3888 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3889                             DwarfMacinfoTypeField &Result) {
3890   if (Lex.getKind() == lltok::APSInt)
3891     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3892 
3893   if (Lex.getKind() != lltok::DwarfMacinfo)
3894     return TokError("expected DWARF macinfo type");
3895 
3896   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3897   if (Macinfo == dwarf::DW_MACINFO_invalid)
3898     return TokError(
3899         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3900   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3901 
3902   Result.assign(Macinfo);
3903   Lex.Lex();
3904   return false;
3905 }
3906 
3907 template <>
3908 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3909                             DwarfVirtualityField &Result) {
3910   if (Lex.getKind() == lltok::APSInt)
3911     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3912 
3913   if (Lex.getKind() != lltok::DwarfVirtuality)
3914     return TokError("expected DWARF virtuality code");
3915 
3916   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3917   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3918     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3919                     Lex.getStrVal() + "'");
3920   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3921   Result.assign(Virtuality);
3922   Lex.Lex();
3923   return false;
3924 }
3925 
3926 template <>
3927 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3928   if (Lex.getKind() == lltok::APSInt)
3929     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3930 
3931   if (Lex.getKind() != lltok::DwarfLang)
3932     return TokError("expected DWARF language");
3933 
3934   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3935   if (!Lang)
3936     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3937                     "'");
3938   assert(Lang <= Result.Max && "Expected valid DWARF language");
3939   Result.assign(Lang);
3940   Lex.Lex();
3941   return false;
3942 }
3943 
3944 template <>
3945 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3946   if (Lex.getKind() == lltok::APSInt)
3947     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3948 
3949   if (Lex.getKind() != lltok::DwarfCC)
3950     return TokError("expected DWARF calling convention");
3951 
3952   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3953   if (!CC)
3954     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3955                     "'");
3956   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3957   Result.assign(CC);
3958   Lex.Lex();
3959   return false;
3960 }
3961 
3962 template <>
3963 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3964   if (Lex.getKind() == lltok::APSInt)
3965     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3966 
3967   if (Lex.getKind() != lltok::EmissionKind)
3968     return TokError("expected emission kind");
3969 
3970   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3971   if (!Kind)
3972     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3973                     "'");
3974   assert(*Kind <= Result.Max && "Expected valid emission kind");
3975   Result.assign(*Kind);
3976   Lex.Lex();
3977   return false;
3978 }
3979 
3980 template <>
3981 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3982                             NameTableKindField &Result) {
3983   if (Lex.getKind() == lltok::APSInt)
3984     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3985 
3986   if (Lex.getKind() != lltok::NameTableKind)
3987     return TokError("expected nameTable kind");
3988 
3989   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
3990   if (!Kind)
3991     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
3992                     "'");
3993   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
3994   Result.assign((unsigned)*Kind);
3995   Lex.Lex();
3996   return false;
3997 }
3998 
3999 template <>
4000 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4001                             DwarfAttEncodingField &Result) {
4002   if (Lex.getKind() == lltok::APSInt)
4003     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4004 
4005   if (Lex.getKind() != lltok::DwarfAttEncoding)
4006     return TokError("expected DWARF type attribute encoding");
4007 
4008   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4009   if (!Encoding)
4010     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4011                     Lex.getStrVal() + "'");
4012   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4013   Result.assign(Encoding);
4014   Lex.Lex();
4015   return false;
4016 }
4017 
4018 /// DIFlagField
4019 ///  ::= uint32
4020 ///  ::= DIFlagVector
4021 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4022 template <>
4023 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4024 
4025   // Parser for a single flag.
4026   auto parseFlag = [&](DINode::DIFlags &Val) {
4027     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4028       uint32_t TempVal = static_cast<uint32_t>(Val);
4029       bool Res = ParseUInt32(TempVal);
4030       Val = static_cast<DINode::DIFlags>(TempVal);
4031       return Res;
4032     }
4033 
4034     if (Lex.getKind() != lltok::DIFlag)
4035       return TokError("expected debug info flag");
4036 
4037     Val = DINode::getFlag(Lex.getStrVal());
4038     if (!Val)
4039       return TokError(Twine("invalid debug info flag flag '") +
4040                       Lex.getStrVal() + "'");
4041     Lex.Lex();
4042     return false;
4043   };
4044 
4045   // Parse the flags and combine them together.
4046   DINode::DIFlags Combined = DINode::FlagZero;
4047   do {
4048     DINode::DIFlags Val;
4049     if (parseFlag(Val))
4050       return true;
4051     Combined |= Val;
4052   } while (EatIfPresent(lltok::bar));
4053 
4054   Result.assign(Combined);
4055   return false;
4056 }
4057 
4058 /// DISPFlagField
4059 ///  ::= uint32
4060 ///  ::= DISPFlagVector
4061 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4062 template <>
4063 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4064 
4065   // Parser for a single flag.
4066   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4067     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4068       uint32_t TempVal = static_cast<uint32_t>(Val);
4069       bool Res = ParseUInt32(TempVal);
4070       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4071       return Res;
4072     }
4073 
4074     if (Lex.getKind() != lltok::DISPFlag)
4075       return TokError("expected debug info flag");
4076 
4077     Val = DISubprogram::getFlag(Lex.getStrVal());
4078     if (!Val)
4079       return TokError(Twine("invalid subprogram debug info flag '") +
4080                       Lex.getStrVal() + "'");
4081     Lex.Lex();
4082     return false;
4083   };
4084 
4085   // Parse the flags and combine them together.
4086   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4087   do {
4088     DISubprogram::DISPFlags Val;
4089     if (parseFlag(Val))
4090       return true;
4091     Combined |= Val;
4092   } while (EatIfPresent(lltok::bar));
4093 
4094   Result.assign(Combined);
4095   return false;
4096 }
4097 
4098 template <>
4099 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4100                             MDSignedField &Result) {
4101   if (Lex.getKind() != lltok::APSInt)
4102     return TokError("expected signed integer");
4103 
4104   auto &S = Lex.getAPSIntVal();
4105   if (S < Result.Min)
4106     return TokError("value for '" + Name + "' too small, limit is " +
4107                     Twine(Result.Min));
4108   if (S > Result.Max)
4109     return TokError("value for '" + Name + "' too large, limit is " +
4110                     Twine(Result.Max));
4111   Result.assign(S.getExtValue());
4112   assert(Result.Val >= Result.Min && "Expected value in range");
4113   assert(Result.Val <= Result.Max && "Expected value in range");
4114   Lex.Lex();
4115   return false;
4116 }
4117 
4118 template <>
4119 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4120   switch (Lex.getKind()) {
4121   default:
4122     return TokError("expected 'true' or 'false'");
4123   case lltok::kw_true:
4124     Result.assign(true);
4125     break;
4126   case lltok::kw_false:
4127     Result.assign(false);
4128     break;
4129   }
4130   Lex.Lex();
4131   return false;
4132 }
4133 
4134 template <>
4135 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4136   if (Lex.getKind() == lltok::kw_null) {
4137     if (!Result.AllowNull)
4138       return TokError("'" + Name + "' cannot be null");
4139     Lex.Lex();
4140     Result.assign(nullptr);
4141     return false;
4142   }
4143 
4144   Metadata *MD;
4145   if (ParseMetadata(MD, nullptr))
4146     return true;
4147 
4148   Result.assign(MD);
4149   return false;
4150 }
4151 
4152 template <>
4153 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4154                             MDSignedOrMDField &Result) {
4155   // Try to parse a signed int.
4156   if (Lex.getKind() == lltok::APSInt) {
4157     MDSignedField Res = Result.A;
4158     if (!ParseMDField(Loc, Name, Res)) {
4159       Result.assign(Res);
4160       return false;
4161     }
4162     return true;
4163   }
4164 
4165   // Otherwise, try to parse as an MDField.
4166   MDField Res = Result.B;
4167   if (!ParseMDField(Loc, Name, Res)) {
4168     Result.assign(Res);
4169     return false;
4170   }
4171 
4172   return true;
4173 }
4174 
4175 template <>
4176 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4177                             MDSignedOrUnsignedField &Result) {
4178   if (Lex.getKind() != lltok::APSInt)
4179     return false;
4180 
4181   if (Lex.getAPSIntVal().isSigned()) {
4182     MDSignedField Res = Result.A;
4183     if (ParseMDField(Loc, Name, Res))
4184       return true;
4185     Result.assign(Res);
4186     return false;
4187   }
4188 
4189   MDUnsignedField Res = Result.B;
4190   if (ParseMDField(Loc, Name, Res))
4191     return true;
4192   Result.assign(Res);
4193   return false;
4194 }
4195 
4196 template <>
4197 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4198   LocTy ValueLoc = Lex.getLoc();
4199   std::string S;
4200   if (ParseStringConstant(S))
4201     return true;
4202 
4203   if (!Result.AllowEmpty && S.empty())
4204     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4205 
4206   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4207   return false;
4208 }
4209 
4210 template <>
4211 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4212   SmallVector<Metadata *, 4> MDs;
4213   if (ParseMDNodeVector(MDs))
4214     return true;
4215 
4216   Result.assign(std::move(MDs));
4217   return false;
4218 }
4219 
4220 template <>
4221 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4222                             ChecksumKindField &Result) {
4223   Optional<DIFile::ChecksumKind> CSKind =
4224       DIFile::getChecksumKind(Lex.getStrVal());
4225 
4226   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4227     return TokError(
4228         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4229 
4230   Result.assign(*CSKind);
4231   Lex.Lex();
4232   return false;
4233 }
4234 
4235 } // end namespace llvm
4236 
4237 template <class ParserTy>
4238 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4239   do {
4240     if (Lex.getKind() != lltok::LabelStr)
4241       return TokError("expected field label here");
4242 
4243     if (parseField())
4244       return true;
4245   } while (EatIfPresent(lltok::comma));
4246 
4247   return false;
4248 }
4249 
4250 template <class ParserTy>
4251 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4252   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4253   Lex.Lex();
4254 
4255   if (ParseToken(lltok::lparen, "expected '(' here"))
4256     return true;
4257   if (Lex.getKind() != lltok::rparen)
4258     if (ParseMDFieldsImplBody(parseField))
4259       return true;
4260 
4261   ClosingLoc = Lex.getLoc();
4262   return ParseToken(lltok::rparen, "expected ')' here");
4263 }
4264 
4265 template <class FieldTy>
4266 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4267   if (Result.Seen)
4268     return TokError("field '" + Name + "' cannot be specified more than once");
4269 
4270   LocTy Loc = Lex.getLoc();
4271   Lex.Lex();
4272   return ParseMDField(Loc, Name, Result);
4273 }
4274 
4275 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4276   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4277 
4278 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4279   if (Lex.getStrVal() == #CLASS)                                               \
4280     return Parse##CLASS(N, IsDistinct);
4281 #include "llvm/IR/Metadata.def"
4282 
4283   return TokError("expected metadata type");
4284 }
4285 
4286 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4287 #define NOP_FIELD(NAME, TYPE, INIT)
4288 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4289   if (!NAME.Seen)                                                              \
4290     return Error(ClosingLoc, "missing required field '" #NAME "'");
4291 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4292   if (Lex.getStrVal() == #NAME)                                                \
4293     return ParseMDField(#NAME, NAME);
4294 #define PARSE_MD_FIELDS()                                                      \
4295   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4296   do {                                                                         \
4297     LocTy ClosingLoc;                                                          \
4298     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4299       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4300       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4301     }, ClosingLoc))                                                            \
4302       return true;                                                             \
4303     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4304   } while (false)
4305 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4306   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4307 
4308 /// ParseDILocationFields:
4309 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4310 ///   isImplicitCode: true)
4311 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4312 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4313   OPTIONAL(line, LineField, );                                                 \
4314   OPTIONAL(column, ColumnField, );                                             \
4315   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4316   OPTIONAL(inlinedAt, MDField, );                                              \
4317   OPTIONAL(isImplicitCode, MDBoolField, (false));
4318   PARSE_MD_FIELDS();
4319 #undef VISIT_MD_FIELDS
4320 
4321   Result =
4322       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4323                                    inlinedAt.Val, isImplicitCode.Val));
4324   return false;
4325 }
4326 
4327 /// ParseGenericDINode:
4328 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4329 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4330 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4331   REQUIRED(tag, DwarfTagField, );                                              \
4332   OPTIONAL(header, MDStringField, );                                           \
4333   OPTIONAL(operands, MDFieldList, );
4334   PARSE_MD_FIELDS();
4335 #undef VISIT_MD_FIELDS
4336 
4337   Result = GET_OR_DISTINCT(GenericDINode,
4338                            (Context, tag.Val, header.Val, operands.Val));
4339   return false;
4340 }
4341 
4342 /// ParseDISubrange:
4343 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4344 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4345 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4346 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4347   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4348   OPTIONAL(lowerBound, MDSignedField, );
4349   PARSE_MD_FIELDS();
4350 #undef VISIT_MD_FIELDS
4351 
4352   if (count.isMDSignedField())
4353     Result = GET_OR_DISTINCT(
4354         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4355   else if (count.isMDField())
4356     Result = GET_OR_DISTINCT(
4357         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4358   else
4359     return true;
4360 
4361   return false;
4362 }
4363 
4364 /// ParseDIEnumerator:
4365 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4366 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4367 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4368   REQUIRED(name, MDStringField, );                                             \
4369   REQUIRED(value, MDSignedOrUnsignedField, );                                  \
4370   OPTIONAL(isUnsigned, MDBoolField, (false));
4371   PARSE_MD_FIELDS();
4372 #undef VISIT_MD_FIELDS
4373 
4374   if (isUnsigned.Val && value.isMDSignedField())
4375     return TokError("unsigned enumerator with negative value");
4376 
4377   int64_t Value = value.isMDSignedField()
4378                       ? value.getMDSignedValue()
4379                       : static_cast<int64_t>(value.getMDUnsignedValue());
4380   Result =
4381       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4382 
4383   return false;
4384 }
4385 
4386 /// ParseDIBasicType:
4387 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4388 ///                    encoding: DW_ATE_encoding, flags: 0)
4389 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4390 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4391   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4392   OPTIONAL(name, MDStringField, );                                             \
4393   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4394   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4395   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4396   OPTIONAL(flags, DIFlagField, );
4397   PARSE_MD_FIELDS();
4398 #undef VISIT_MD_FIELDS
4399 
4400   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4401                                          align.Val, encoding.Val, flags.Val));
4402   return false;
4403 }
4404 
4405 /// ParseDIDerivedType:
4406 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4407 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4408 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4409 ///                      dwarfAddressSpace: 3)
4410 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4411 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4412   REQUIRED(tag, DwarfTagField, );                                              \
4413   OPTIONAL(name, MDStringField, );                                             \
4414   OPTIONAL(file, MDField, );                                                   \
4415   OPTIONAL(line, LineField, );                                                 \
4416   OPTIONAL(scope, MDField, );                                                  \
4417   REQUIRED(baseType, MDField, );                                               \
4418   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4419   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4420   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4421   OPTIONAL(flags, DIFlagField, );                                              \
4422   OPTIONAL(extraData, MDField, );                                              \
4423   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4424   PARSE_MD_FIELDS();
4425 #undef VISIT_MD_FIELDS
4426 
4427   Optional<unsigned> DWARFAddressSpace;
4428   if (dwarfAddressSpace.Val != UINT32_MAX)
4429     DWARFAddressSpace = dwarfAddressSpace.Val;
4430 
4431   Result = GET_OR_DISTINCT(DIDerivedType,
4432                            (Context, tag.Val, name.Val, file.Val, line.Val,
4433                             scope.Val, baseType.Val, size.Val, align.Val,
4434                             offset.Val, DWARFAddressSpace, flags.Val,
4435                             extraData.Val));
4436   return false;
4437 }
4438 
4439 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4440 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4441   REQUIRED(tag, DwarfTagField, );                                              \
4442   OPTIONAL(name, MDStringField, );                                             \
4443   OPTIONAL(file, MDField, );                                                   \
4444   OPTIONAL(line, LineField, );                                                 \
4445   OPTIONAL(scope, MDField, );                                                  \
4446   OPTIONAL(baseType, MDField, );                                               \
4447   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4448   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4449   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4450   OPTIONAL(flags, DIFlagField, );                                              \
4451   OPTIONAL(elements, MDField, );                                               \
4452   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4453   OPTIONAL(vtableHolder, MDField, );                                           \
4454   OPTIONAL(templateParams, MDField, );                                         \
4455   OPTIONAL(identifier, MDStringField, );                                       \
4456   OPTIONAL(discriminator, MDField, );
4457   PARSE_MD_FIELDS();
4458 #undef VISIT_MD_FIELDS
4459 
4460   // If this has an identifier try to build an ODR type.
4461   if (identifier.Val)
4462     if (auto *CT = DICompositeType::buildODRType(
4463             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4464             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4465             elements.Val, runtimeLang.Val, vtableHolder.Val,
4466             templateParams.Val, discriminator.Val)) {
4467       Result = CT;
4468       return false;
4469     }
4470 
4471   // Create a new node, and save it in the context if it belongs in the type
4472   // map.
4473   Result = GET_OR_DISTINCT(
4474       DICompositeType,
4475       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4476        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4477        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4478        discriminator.Val));
4479   return false;
4480 }
4481 
4482 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4483 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4484   OPTIONAL(flags, DIFlagField, );                                              \
4485   OPTIONAL(cc, DwarfCCField, );                                                \
4486   REQUIRED(types, MDField, );
4487   PARSE_MD_FIELDS();
4488 #undef VISIT_MD_FIELDS
4489 
4490   Result = GET_OR_DISTINCT(DISubroutineType,
4491                            (Context, flags.Val, cc.Val, types.Val));
4492   return false;
4493 }
4494 
4495 /// ParseDIFileType:
4496 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4497 ///                   checksumkind: CSK_MD5,
4498 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4499 ///                   source: "source file contents")
4500 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4501   // The default constructed value for checksumkind is required, but will never
4502   // be used, as the parser checks if the field was actually Seen before using
4503   // the Val.
4504 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4505   REQUIRED(filename, MDStringField, );                                         \
4506   REQUIRED(directory, MDStringField, );                                        \
4507   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4508   OPTIONAL(checksum, MDStringField, );                                         \
4509   OPTIONAL(source, MDStringField, );
4510   PARSE_MD_FIELDS();
4511 #undef VISIT_MD_FIELDS
4512 
4513   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4514   if (checksumkind.Seen && checksum.Seen)
4515     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4516   else if (checksumkind.Seen || checksum.Seen)
4517     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4518 
4519   Optional<MDString *> OptSource;
4520   if (source.Seen)
4521     OptSource = source.Val;
4522   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4523                                     OptChecksum, OptSource));
4524   return false;
4525 }
4526 
4527 /// ParseDICompileUnit:
4528 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4529 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4530 ///                      splitDebugFilename: "abc.debug",
4531 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4532 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4533 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4534   if (!IsDistinct)
4535     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4536 
4537 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4538   REQUIRED(language, DwarfLangField, );                                        \
4539   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4540   OPTIONAL(producer, MDStringField, );                                         \
4541   OPTIONAL(isOptimized, MDBoolField, );                                        \
4542   OPTIONAL(flags, MDStringField, );                                            \
4543   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4544   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4545   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4546   OPTIONAL(enums, MDField, );                                                  \
4547   OPTIONAL(retainedTypes, MDField, );                                          \
4548   OPTIONAL(globals, MDField, );                                                \
4549   OPTIONAL(imports, MDField, );                                                \
4550   OPTIONAL(macros, MDField, );                                                 \
4551   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4552   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4553   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4554   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4555   OPTIONAL(debugBaseAddress, MDBoolField, = false);
4556   PARSE_MD_FIELDS();
4557 #undef VISIT_MD_FIELDS
4558 
4559   Result = DICompileUnit::getDistinct(
4560       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4561       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4562       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4563       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4564       debugBaseAddress.Val);
4565   return false;
4566 }
4567 
4568 /// ParseDISubprogram:
4569 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4570 ///                     file: !1, line: 7, type: !2, isLocal: false,
4571 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4572 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4573 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4574 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4575 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4576 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4577   auto Loc = Lex.getLoc();
4578 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4579   OPTIONAL(scope, MDField, );                                                  \
4580   OPTIONAL(name, MDStringField, );                                             \
4581   OPTIONAL(linkageName, MDStringField, );                                      \
4582   OPTIONAL(file, MDField, );                                                   \
4583   OPTIONAL(line, LineField, );                                                 \
4584   OPTIONAL(type, MDField, );                                                   \
4585   OPTIONAL(isLocal, MDBoolField, );                                            \
4586   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4587   OPTIONAL(scopeLine, LineField, );                                            \
4588   OPTIONAL(containingType, MDField, );                                         \
4589   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4590   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4591   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4592   OPTIONAL(flags, DIFlagField, );                                              \
4593   OPTIONAL(spFlags, DISPFlagField, );                                          \
4594   OPTIONAL(isOptimized, MDBoolField, );                                        \
4595   OPTIONAL(unit, MDField, );                                                   \
4596   OPTIONAL(templateParams, MDField, );                                         \
4597   OPTIONAL(declaration, MDField, );                                            \
4598   OPTIONAL(retainedNodes, MDField, );                                          \
4599   OPTIONAL(thrownTypes, MDField, );
4600   PARSE_MD_FIELDS();
4601 #undef VISIT_MD_FIELDS
4602 
4603   // An explicit spFlags field takes precedence over individual fields in
4604   // older IR versions.
4605   DISubprogram::DISPFlags SPFlags =
4606       spFlags.Seen ? spFlags.Val
4607                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4608                                              isOptimized.Val, virtuality.Val);
4609   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4610     return Lex.Error(
4611         Loc,
4612         "missing 'distinct', required for !DISubprogram that is a Definition");
4613   Result = GET_OR_DISTINCT(
4614       DISubprogram,
4615       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4616        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4617        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4618        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4619   return false;
4620 }
4621 
4622 /// ParseDILexicalBlock:
4623 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4624 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4625 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4626   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4627   OPTIONAL(file, MDField, );                                                   \
4628   OPTIONAL(line, LineField, );                                                 \
4629   OPTIONAL(column, ColumnField, );
4630   PARSE_MD_FIELDS();
4631 #undef VISIT_MD_FIELDS
4632 
4633   Result = GET_OR_DISTINCT(
4634       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4635   return false;
4636 }
4637 
4638 /// ParseDILexicalBlockFile:
4639 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4640 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4641 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4642   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4643   OPTIONAL(file, MDField, );                                                   \
4644   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4645   PARSE_MD_FIELDS();
4646 #undef VISIT_MD_FIELDS
4647 
4648   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4649                            (Context, scope.Val, file.Val, discriminator.Val));
4650   return false;
4651 }
4652 
4653 /// ParseDINamespace:
4654 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4655 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4656 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4657   REQUIRED(scope, MDField, );                                                  \
4658   OPTIONAL(name, MDStringField, );                                             \
4659   OPTIONAL(exportSymbols, MDBoolField, );
4660   PARSE_MD_FIELDS();
4661 #undef VISIT_MD_FIELDS
4662 
4663   Result = GET_OR_DISTINCT(DINamespace,
4664                            (Context, scope.Val, name.Val, exportSymbols.Val));
4665   return false;
4666 }
4667 
4668 /// ParseDIMacro:
4669 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4670 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4671 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4672   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4673   OPTIONAL(line, LineField, );                                                 \
4674   REQUIRED(name, MDStringField, );                                             \
4675   OPTIONAL(value, MDStringField, );
4676   PARSE_MD_FIELDS();
4677 #undef VISIT_MD_FIELDS
4678 
4679   Result = GET_OR_DISTINCT(DIMacro,
4680                            (Context, type.Val, line.Val, name.Val, value.Val));
4681   return false;
4682 }
4683 
4684 /// ParseDIMacroFile:
4685 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4686 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4687 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4688   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4689   OPTIONAL(line, LineField, );                                                 \
4690   REQUIRED(file, MDField, );                                                   \
4691   OPTIONAL(nodes, MDField, );
4692   PARSE_MD_FIELDS();
4693 #undef VISIT_MD_FIELDS
4694 
4695   Result = GET_OR_DISTINCT(DIMacroFile,
4696                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4697   return false;
4698 }
4699 
4700 /// ParseDIModule:
4701 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4702 ///                 includePath: "/usr/include", isysroot: "/")
4703 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4704 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4705   REQUIRED(scope, MDField, );                                                  \
4706   REQUIRED(name, MDStringField, );                                             \
4707   OPTIONAL(configMacros, MDStringField, );                                     \
4708   OPTIONAL(includePath, MDStringField, );                                      \
4709   OPTIONAL(isysroot, MDStringField, );
4710   PARSE_MD_FIELDS();
4711 #undef VISIT_MD_FIELDS
4712 
4713   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4714                            configMacros.Val, includePath.Val, isysroot.Val));
4715   return false;
4716 }
4717 
4718 /// ParseDITemplateTypeParameter:
4719 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4720 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4721 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4722   OPTIONAL(name, MDStringField, );                                             \
4723   REQUIRED(type, MDField, );
4724   PARSE_MD_FIELDS();
4725 #undef VISIT_MD_FIELDS
4726 
4727   Result =
4728       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4729   return false;
4730 }
4731 
4732 /// ParseDITemplateValueParameter:
4733 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4734 ///                                 name: "V", type: !1, value: i32 7)
4735 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4736 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4737   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4738   OPTIONAL(name, MDStringField, );                                             \
4739   OPTIONAL(type, MDField, );                                                   \
4740   REQUIRED(value, MDField, );
4741   PARSE_MD_FIELDS();
4742 #undef VISIT_MD_FIELDS
4743 
4744   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4745                            (Context, tag.Val, name.Val, type.Val, value.Val));
4746   return false;
4747 }
4748 
4749 /// ParseDIGlobalVariable:
4750 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4751 ///                         file: !1, line: 7, type: !2, isLocal: false,
4752 ///                         isDefinition: true, templateParams: !3,
4753 ///                         declaration: !4, align: 8)
4754 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4755 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4756   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4757   OPTIONAL(scope, MDField, );                                                  \
4758   OPTIONAL(linkageName, MDStringField, );                                      \
4759   OPTIONAL(file, MDField, );                                                   \
4760   OPTIONAL(line, LineField, );                                                 \
4761   OPTIONAL(type, MDField, );                                                   \
4762   OPTIONAL(isLocal, MDBoolField, );                                            \
4763   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4764   OPTIONAL(templateParams, MDField, );                                         \
4765   OPTIONAL(declaration, MDField, );                                            \
4766   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4767   PARSE_MD_FIELDS();
4768 #undef VISIT_MD_FIELDS
4769 
4770   Result =
4771       GET_OR_DISTINCT(DIGlobalVariable,
4772                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4773                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4774                        declaration.Val, templateParams.Val, align.Val));
4775   return false;
4776 }
4777 
4778 /// ParseDILocalVariable:
4779 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4780 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4781 ///                        align: 8)
4782 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4783 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4784 ///                        align: 8)
4785 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4786 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4787   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4788   OPTIONAL(name, MDStringField, );                                             \
4789   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4790   OPTIONAL(file, MDField, );                                                   \
4791   OPTIONAL(line, LineField, );                                                 \
4792   OPTIONAL(type, MDField, );                                                   \
4793   OPTIONAL(flags, DIFlagField, );                                              \
4794   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4795   PARSE_MD_FIELDS();
4796 #undef VISIT_MD_FIELDS
4797 
4798   Result = GET_OR_DISTINCT(DILocalVariable,
4799                            (Context, scope.Val, name.Val, file.Val, line.Val,
4800                             type.Val, arg.Val, flags.Val, align.Val));
4801   return false;
4802 }
4803 
4804 /// ParseDILabel:
4805 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4806 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4807 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4808   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4809   REQUIRED(name, MDStringField, );                                             \
4810   REQUIRED(file, MDField, );                                                   \
4811   REQUIRED(line, LineField, );
4812   PARSE_MD_FIELDS();
4813 #undef VISIT_MD_FIELDS
4814 
4815   Result = GET_OR_DISTINCT(DILabel,
4816                            (Context, scope.Val, name.Val, file.Val, line.Val));
4817   return false;
4818 }
4819 
4820 /// ParseDIExpression:
4821 ///   ::= !DIExpression(0, 7, -1)
4822 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4823   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4824   Lex.Lex();
4825 
4826   if (ParseToken(lltok::lparen, "expected '(' here"))
4827     return true;
4828 
4829   SmallVector<uint64_t, 8> Elements;
4830   if (Lex.getKind() != lltok::rparen)
4831     do {
4832       if (Lex.getKind() == lltok::DwarfOp) {
4833         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4834           Lex.Lex();
4835           Elements.push_back(Op);
4836           continue;
4837         }
4838         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4839       }
4840 
4841       if (Lex.getKind() == lltok::DwarfAttEncoding) {
4842         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
4843           Lex.Lex();
4844           Elements.push_back(Op);
4845           continue;
4846         }
4847         return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
4848       }
4849 
4850       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4851         return TokError("expected unsigned integer");
4852 
4853       auto &U = Lex.getAPSIntVal();
4854       if (U.ugt(UINT64_MAX))
4855         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4856       Elements.push_back(U.getZExtValue());
4857       Lex.Lex();
4858     } while (EatIfPresent(lltok::comma));
4859 
4860   if (ParseToken(lltok::rparen, "expected ')' here"))
4861     return true;
4862 
4863   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4864   return false;
4865 }
4866 
4867 /// ParseDIGlobalVariableExpression:
4868 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4869 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4870                                                bool IsDistinct) {
4871 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4872   REQUIRED(var, MDField, );                                                    \
4873   REQUIRED(expr, MDField, );
4874   PARSE_MD_FIELDS();
4875 #undef VISIT_MD_FIELDS
4876 
4877   Result =
4878       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4879   return false;
4880 }
4881 
4882 /// ParseDIObjCProperty:
4883 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4884 ///                       getter: "getFoo", attributes: 7, type: !2)
4885 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4886 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4887   OPTIONAL(name, MDStringField, );                                             \
4888   OPTIONAL(file, MDField, );                                                   \
4889   OPTIONAL(line, LineField, );                                                 \
4890   OPTIONAL(setter, MDStringField, );                                           \
4891   OPTIONAL(getter, MDStringField, );                                           \
4892   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4893   OPTIONAL(type, MDField, );
4894   PARSE_MD_FIELDS();
4895 #undef VISIT_MD_FIELDS
4896 
4897   Result = GET_OR_DISTINCT(DIObjCProperty,
4898                            (Context, name.Val, file.Val, line.Val, setter.Val,
4899                             getter.Val, attributes.Val, type.Val));
4900   return false;
4901 }
4902 
4903 /// ParseDIImportedEntity:
4904 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4905 ///                         line: 7, name: "foo")
4906 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4907 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4908   REQUIRED(tag, DwarfTagField, );                                              \
4909   REQUIRED(scope, MDField, );                                                  \
4910   OPTIONAL(entity, MDField, );                                                 \
4911   OPTIONAL(file, MDField, );                                                   \
4912   OPTIONAL(line, LineField, );                                                 \
4913   OPTIONAL(name, MDStringField, );
4914   PARSE_MD_FIELDS();
4915 #undef VISIT_MD_FIELDS
4916 
4917   Result = GET_OR_DISTINCT(
4918       DIImportedEntity,
4919       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4920   return false;
4921 }
4922 
4923 #undef PARSE_MD_FIELD
4924 #undef NOP_FIELD
4925 #undef REQUIRE_FIELD
4926 #undef DECLARE_FIELD
4927 
4928 /// ParseMetadataAsValue
4929 ///  ::= metadata i32 %local
4930 ///  ::= metadata i32 @global
4931 ///  ::= metadata i32 7
4932 ///  ::= metadata !0
4933 ///  ::= metadata !{...}
4934 ///  ::= metadata !"string"
4935 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4936   // Note: the type 'metadata' has already been parsed.
4937   Metadata *MD;
4938   if (ParseMetadata(MD, &PFS))
4939     return true;
4940 
4941   V = MetadataAsValue::get(Context, MD);
4942   return false;
4943 }
4944 
4945 /// ParseValueAsMetadata
4946 ///  ::= i32 %local
4947 ///  ::= i32 @global
4948 ///  ::= i32 7
4949 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4950                                     PerFunctionState *PFS) {
4951   Type *Ty;
4952   LocTy Loc;
4953   if (ParseType(Ty, TypeMsg, Loc))
4954     return true;
4955   if (Ty->isMetadataTy())
4956     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4957 
4958   Value *V;
4959   if (ParseValue(Ty, V, PFS))
4960     return true;
4961 
4962   MD = ValueAsMetadata::get(V);
4963   return false;
4964 }
4965 
4966 /// ParseMetadata
4967 ///  ::= i32 %local
4968 ///  ::= i32 @global
4969 ///  ::= i32 7
4970 ///  ::= !42
4971 ///  ::= !{...}
4972 ///  ::= !"string"
4973 ///  ::= !DILocation(...)
4974 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4975   if (Lex.getKind() == lltok::MetadataVar) {
4976     MDNode *N;
4977     if (ParseSpecializedMDNode(N))
4978       return true;
4979     MD = N;
4980     return false;
4981   }
4982 
4983   // ValueAsMetadata:
4984   // <type> <value>
4985   if (Lex.getKind() != lltok::exclaim)
4986     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4987 
4988   // '!'.
4989   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4990   Lex.Lex();
4991 
4992   // MDString:
4993   //   ::= '!' STRINGCONSTANT
4994   if (Lex.getKind() == lltok::StringConstant) {
4995     MDString *S;
4996     if (ParseMDString(S))
4997       return true;
4998     MD = S;
4999     return false;
5000   }
5001 
5002   // MDNode:
5003   // !{ ... }
5004   // !7
5005   MDNode *N;
5006   if (ParseMDNodeTail(N))
5007     return true;
5008   MD = N;
5009   return false;
5010 }
5011 
5012 //===----------------------------------------------------------------------===//
5013 // Function Parsing.
5014 //===----------------------------------------------------------------------===//
5015 
5016 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5017                                    PerFunctionState *PFS, bool IsCall) {
5018   if (Ty->isFunctionTy())
5019     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5020 
5021   switch (ID.Kind) {
5022   case ValID::t_LocalID:
5023     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5024     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5025     return V == nullptr;
5026   case ValID::t_LocalName:
5027     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5028     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5029     return V == nullptr;
5030   case ValID::t_InlineAsm: {
5031     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5032       return Error(ID.Loc, "invalid type for inline asm constraint string");
5033     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5034                        (ID.UIntVal >> 1) & 1,
5035                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5036     return false;
5037   }
5038   case ValID::t_GlobalName:
5039     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5040     return V == nullptr;
5041   case ValID::t_GlobalID:
5042     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5043     return V == nullptr;
5044   case ValID::t_APSInt:
5045     if (!Ty->isIntegerTy())
5046       return Error(ID.Loc, "integer constant must have integer type");
5047     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5048     V = ConstantInt::get(Context, ID.APSIntVal);
5049     return false;
5050   case ValID::t_APFloat:
5051     if (!Ty->isFloatingPointTy() ||
5052         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5053       return Error(ID.Loc, "floating point constant invalid for type");
5054 
5055     // The lexer has no type info, so builds all half, float, and double FP
5056     // constants as double.  Fix this here.  Long double does not need this.
5057     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5058       bool Ignored;
5059       if (Ty->isHalfTy())
5060         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5061                               &Ignored);
5062       else if (Ty->isFloatTy())
5063         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5064                               &Ignored);
5065     }
5066     V = ConstantFP::get(Context, ID.APFloatVal);
5067 
5068     if (V->getType() != Ty)
5069       return Error(ID.Loc, "floating point constant does not have type '" +
5070                    getTypeString(Ty) + "'");
5071 
5072     return false;
5073   case ValID::t_Null:
5074     if (!Ty->isPointerTy())
5075       return Error(ID.Loc, "null must be a pointer type");
5076     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5077     return false;
5078   case ValID::t_Undef:
5079     // FIXME: LabelTy should not be a first-class type.
5080     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5081       return Error(ID.Loc, "invalid type for undef constant");
5082     V = UndefValue::get(Ty);
5083     return false;
5084   case ValID::t_EmptyArray:
5085     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5086       return Error(ID.Loc, "invalid empty array initializer");
5087     V = UndefValue::get(Ty);
5088     return false;
5089   case ValID::t_Zero:
5090     // FIXME: LabelTy should not be a first-class type.
5091     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5092       return Error(ID.Loc, "invalid type for null constant");
5093     V = Constant::getNullValue(Ty);
5094     return false;
5095   case ValID::t_None:
5096     if (!Ty->isTokenTy())
5097       return Error(ID.Loc, "invalid type for none constant");
5098     V = Constant::getNullValue(Ty);
5099     return false;
5100   case ValID::t_Constant:
5101     if (ID.ConstantVal->getType() != Ty)
5102       return Error(ID.Loc, "constant expression type mismatch");
5103 
5104     V = ID.ConstantVal;
5105     return false;
5106   case ValID::t_ConstantStruct:
5107   case ValID::t_PackedConstantStruct:
5108     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5109       if (ST->getNumElements() != ID.UIntVal)
5110         return Error(ID.Loc,
5111                      "initializer with struct type has wrong # elements");
5112       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5113         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5114 
5115       // Verify that the elements are compatible with the structtype.
5116       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5117         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5118           return Error(ID.Loc, "element " + Twine(i) +
5119                     " of struct initializer doesn't match struct element type");
5120 
5121       V = ConstantStruct::get(
5122           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5123     } else
5124       return Error(ID.Loc, "constant expression type mismatch");
5125     return false;
5126   }
5127   llvm_unreachable("Invalid ValID");
5128 }
5129 
5130 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5131   C = nullptr;
5132   ValID ID;
5133   auto Loc = Lex.getLoc();
5134   if (ParseValID(ID, /*PFS=*/nullptr))
5135     return true;
5136   switch (ID.Kind) {
5137   case ValID::t_APSInt:
5138   case ValID::t_APFloat:
5139   case ValID::t_Undef:
5140   case ValID::t_Constant:
5141   case ValID::t_ConstantStruct:
5142   case ValID::t_PackedConstantStruct: {
5143     Value *V;
5144     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5145       return true;
5146     assert(isa<Constant>(V) && "Expected a constant value");
5147     C = cast<Constant>(V);
5148     return false;
5149   }
5150   case ValID::t_Null:
5151     C = Constant::getNullValue(Ty);
5152     return false;
5153   default:
5154     return Error(Loc, "expected a constant value");
5155   }
5156 }
5157 
5158 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5159   V = nullptr;
5160   ValID ID;
5161   return ParseValID(ID, PFS) ||
5162          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5163 }
5164 
5165 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5166   Type *Ty = nullptr;
5167   return ParseType(Ty) ||
5168          ParseValue(Ty, V, PFS);
5169 }
5170 
5171 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5172                                       PerFunctionState &PFS) {
5173   Value *V;
5174   Loc = Lex.getLoc();
5175   if (ParseTypeAndValue(V, PFS)) return true;
5176   if (!isa<BasicBlock>(V))
5177     return Error(Loc, "expected a basic block");
5178   BB = cast<BasicBlock>(V);
5179   return false;
5180 }
5181 
5182 /// FunctionHeader
5183 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5184 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5185 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5186 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5187 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5188   // Parse the linkage.
5189   LocTy LinkageLoc = Lex.getLoc();
5190   unsigned Linkage;
5191   unsigned Visibility;
5192   unsigned DLLStorageClass;
5193   bool DSOLocal;
5194   AttrBuilder RetAttrs;
5195   unsigned CC;
5196   bool HasLinkage;
5197   Type *RetType = nullptr;
5198   LocTy RetTypeLoc = Lex.getLoc();
5199   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5200                            DSOLocal) ||
5201       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5202       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5203     return true;
5204 
5205   // Verify that the linkage is ok.
5206   switch ((GlobalValue::LinkageTypes)Linkage) {
5207   case GlobalValue::ExternalLinkage:
5208     break; // always ok.
5209   case GlobalValue::ExternalWeakLinkage:
5210     if (isDefine)
5211       return Error(LinkageLoc, "invalid linkage for function definition");
5212     break;
5213   case GlobalValue::PrivateLinkage:
5214   case GlobalValue::InternalLinkage:
5215   case GlobalValue::AvailableExternallyLinkage:
5216   case GlobalValue::LinkOnceAnyLinkage:
5217   case GlobalValue::LinkOnceODRLinkage:
5218   case GlobalValue::WeakAnyLinkage:
5219   case GlobalValue::WeakODRLinkage:
5220     if (!isDefine)
5221       return Error(LinkageLoc, "invalid linkage for function declaration");
5222     break;
5223   case GlobalValue::AppendingLinkage:
5224   case GlobalValue::CommonLinkage:
5225     return Error(LinkageLoc, "invalid function linkage type");
5226   }
5227 
5228   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5229     return Error(LinkageLoc,
5230                  "symbol with local linkage must have default visibility");
5231 
5232   if (!FunctionType::isValidReturnType(RetType))
5233     return Error(RetTypeLoc, "invalid function return type");
5234 
5235   LocTy NameLoc = Lex.getLoc();
5236 
5237   std::string FunctionName;
5238   if (Lex.getKind() == lltok::GlobalVar) {
5239     FunctionName = Lex.getStrVal();
5240   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5241     unsigned NameID = Lex.getUIntVal();
5242 
5243     if (NameID != NumberedVals.size())
5244       return TokError("function expected to be numbered '%" +
5245                       Twine(NumberedVals.size()) + "'");
5246   } else {
5247     return TokError("expected function name");
5248   }
5249 
5250   Lex.Lex();
5251 
5252   if (Lex.getKind() != lltok::lparen)
5253     return TokError("expected '(' in function argument list");
5254 
5255   SmallVector<ArgInfo, 8> ArgList;
5256   bool isVarArg;
5257   AttrBuilder FuncAttrs;
5258   std::vector<unsigned> FwdRefAttrGrps;
5259   LocTy BuiltinLoc;
5260   std::string Section;
5261   unsigned Alignment;
5262   std::string GC;
5263   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5264   unsigned AddrSpace = 0;
5265   Constant *Prefix = nullptr;
5266   Constant *Prologue = nullptr;
5267   Constant *PersonalityFn = nullptr;
5268   Comdat *C;
5269 
5270   if (ParseArgumentList(ArgList, isVarArg) ||
5271       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5272       ParseOptionalProgramAddrSpace(AddrSpace) ||
5273       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5274                                  BuiltinLoc) ||
5275       (EatIfPresent(lltok::kw_section) &&
5276        ParseStringConstant(Section)) ||
5277       parseOptionalComdat(FunctionName, C) ||
5278       ParseOptionalAlignment(Alignment) ||
5279       (EatIfPresent(lltok::kw_gc) &&
5280        ParseStringConstant(GC)) ||
5281       (EatIfPresent(lltok::kw_prefix) &&
5282        ParseGlobalTypeAndValue(Prefix)) ||
5283       (EatIfPresent(lltok::kw_prologue) &&
5284        ParseGlobalTypeAndValue(Prologue)) ||
5285       (EatIfPresent(lltok::kw_personality) &&
5286        ParseGlobalTypeAndValue(PersonalityFn)))
5287     return true;
5288 
5289   if (FuncAttrs.contains(Attribute::Builtin))
5290     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5291 
5292   // If the alignment was parsed as an attribute, move to the alignment field.
5293   if (FuncAttrs.hasAlignmentAttr()) {
5294     Alignment = FuncAttrs.getAlignment();
5295     FuncAttrs.removeAttribute(Attribute::Alignment);
5296   }
5297 
5298   // Okay, if we got here, the function is syntactically valid.  Convert types
5299   // and do semantic checks.
5300   std::vector<Type*> ParamTypeList;
5301   SmallVector<AttributeSet, 8> Attrs;
5302 
5303   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5304     ParamTypeList.push_back(ArgList[i].Ty);
5305     Attrs.push_back(ArgList[i].Attrs);
5306   }
5307 
5308   AttributeList PAL =
5309       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5310                          AttributeSet::get(Context, RetAttrs), Attrs);
5311 
5312   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5313     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5314 
5315   FunctionType *FT =
5316     FunctionType::get(RetType, ParamTypeList, isVarArg);
5317   PointerType *PFT = PointerType::get(FT, AddrSpace);
5318 
5319   Fn = nullptr;
5320   if (!FunctionName.empty()) {
5321     // If this was a definition of a forward reference, remove the definition
5322     // from the forward reference table and fill in the forward ref.
5323     auto FRVI = ForwardRefVals.find(FunctionName);
5324     if (FRVI != ForwardRefVals.end()) {
5325       Fn = M->getFunction(FunctionName);
5326       if (!Fn)
5327         return Error(FRVI->second.second, "invalid forward reference to "
5328                      "function as global value!");
5329       if (Fn->getType() != PFT)
5330         return Error(FRVI->second.second, "invalid forward reference to "
5331                      "function '" + FunctionName + "' with wrong type: "
5332                      "expected '" + getTypeString(PFT) + "' but was '" +
5333                      getTypeString(Fn->getType()) + "'");
5334       ForwardRefVals.erase(FRVI);
5335     } else if ((Fn = M->getFunction(FunctionName))) {
5336       // Reject redefinitions.
5337       return Error(NameLoc, "invalid redefinition of function '" +
5338                    FunctionName + "'");
5339     } else if (M->getNamedValue(FunctionName)) {
5340       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5341     }
5342 
5343   } else {
5344     // If this is a definition of a forward referenced function, make sure the
5345     // types agree.
5346     auto I = ForwardRefValIDs.find(NumberedVals.size());
5347     if (I != ForwardRefValIDs.end()) {
5348       Fn = cast<Function>(I->second.first);
5349       if (Fn->getType() != PFT)
5350         return Error(NameLoc, "type of definition and forward reference of '@" +
5351                      Twine(NumberedVals.size()) + "' disagree: "
5352                      "expected '" + getTypeString(PFT) + "' but was '" +
5353                      getTypeString(Fn->getType()) + "'");
5354       ForwardRefValIDs.erase(I);
5355     }
5356   }
5357 
5358   if (!Fn)
5359     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5360                           FunctionName, M);
5361   else // Move the forward-reference to the correct spot in the module.
5362     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5363 
5364   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5365 
5366   if (FunctionName.empty())
5367     NumberedVals.push_back(Fn);
5368 
5369   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5370   maybeSetDSOLocal(DSOLocal, *Fn);
5371   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5372   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5373   Fn->setCallingConv(CC);
5374   Fn->setAttributes(PAL);
5375   Fn->setUnnamedAddr(UnnamedAddr);
5376   Fn->setAlignment(Alignment);
5377   Fn->setSection(Section);
5378   Fn->setComdat(C);
5379   Fn->setPersonalityFn(PersonalityFn);
5380   if (!GC.empty()) Fn->setGC(GC);
5381   Fn->setPrefixData(Prefix);
5382   Fn->setPrologueData(Prologue);
5383   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5384 
5385   // Add all of the arguments we parsed to the function.
5386   Function::arg_iterator ArgIt = Fn->arg_begin();
5387   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5388     // If the argument has a name, insert it into the argument symbol table.
5389     if (ArgList[i].Name.empty()) continue;
5390 
5391     // Set the name, if it conflicted, it will be auto-renamed.
5392     ArgIt->setName(ArgList[i].Name);
5393 
5394     if (ArgIt->getName() != ArgList[i].Name)
5395       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5396                    ArgList[i].Name + "'");
5397   }
5398 
5399   if (isDefine)
5400     return false;
5401 
5402   // Check the declaration has no block address forward references.
5403   ValID ID;
5404   if (FunctionName.empty()) {
5405     ID.Kind = ValID::t_GlobalID;
5406     ID.UIntVal = NumberedVals.size() - 1;
5407   } else {
5408     ID.Kind = ValID::t_GlobalName;
5409     ID.StrVal = FunctionName;
5410   }
5411   auto Blocks = ForwardRefBlockAddresses.find(ID);
5412   if (Blocks != ForwardRefBlockAddresses.end())
5413     return Error(Blocks->first.Loc,
5414                  "cannot take blockaddress inside a declaration");
5415   return false;
5416 }
5417 
5418 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5419   ValID ID;
5420   if (FunctionNumber == -1) {
5421     ID.Kind = ValID::t_GlobalName;
5422     ID.StrVal = F.getName();
5423   } else {
5424     ID.Kind = ValID::t_GlobalID;
5425     ID.UIntVal = FunctionNumber;
5426   }
5427 
5428   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5429   if (Blocks == P.ForwardRefBlockAddresses.end())
5430     return false;
5431 
5432   for (const auto &I : Blocks->second) {
5433     const ValID &BBID = I.first;
5434     GlobalValue *GV = I.second;
5435 
5436     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5437            "Expected local id or name");
5438     BasicBlock *BB;
5439     if (BBID.Kind == ValID::t_LocalName)
5440       BB = GetBB(BBID.StrVal, BBID.Loc);
5441     else
5442       BB = GetBB(BBID.UIntVal, BBID.Loc);
5443     if (!BB)
5444       return P.Error(BBID.Loc, "referenced value is not a basic block");
5445 
5446     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5447     GV->eraseFromParent();
5448   }
5449 
5450   P.ForwardRefBlockAddresses.erase(Blocks);
5451   return false;
5452 }
5453 
5454 /// ParseFunctionBody
5455 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5456 bool LLParser::ParseFunctionBody(Function &Fn) {
5457   if (Lex.getKind() != lltok::lbrace)
5458     return TokError("expected '{' in function body");
5459   Lex.Lex();  // eat the {.
5460 
5461   int FunctionNumber = -1;
5462   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5463 
5464   PerFunctionState PFS(*this, Fn, FunctionNumber);
5465 
5466   // Resolve block addresses and allow basic blocks to be forward-declared
5467   // within this function.
5468   if (PFS.resolveForwardRefBlockAddresses())
5469     return true;
5470   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5471 
5472   // We need at least one basic block.
5473   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5474     return TokError("function body requires at least one basic block");
5475 
5476   while (Lex.getKind() != lltok::rbrace &&
5477          Lex.getKind() != lltok::kw_uselistorder)
5478     if (ParseBasicBlock(PFS)) return true;
5479 
5480   while (Lex.getKind() != lltok::rbrace)
5481     if (ParseUseListOrder(&PFS))
5482       return true;
5483 
5484   // Eat the }.
5485   Lex.Lex();
5486 
5487   // Verify function is ok.
5488   return PFS.FinishFunction();
5489 }
5490 
5491 /// ParseBasicBlock
5492 ///   ::= LabelStr? Instruction*
5493 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5494   // If this basic block starts out with a name, remember it.
5495   std::string Name;
5496   LocTy NameLoc = Lex.getLoc();
5497   if (Lex.getKind() == lltok::LabelStr) {
5498     Name = Lex.getStrVal();
5499     Lex.Lex();
5500   }
5501 
5502   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
5503   if (!BB)
5504     return Error(NameLoc,
5505                  "unable to create block named '" + Name + "'");
5506 
5507   std::string NameStr;
5508 
5509   // Parse the instructions in this block until we get a terminator.
5510   Instruction *Inst;
5511   do {
5512     // This instruction may have three possibilities for a name: a) none
5513     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5514     LocTy NameLoc = Lex.getLoc();
5515     int NameID = -1;
5516     NameStr = "";
5517 
5518     if (Lex.getKind() == lltok::LocalVarID) {
5519       NameID = Lex.getUIntVal();
5520       Lex.Lex();
5521       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5522         return true;
5523     } else if (Lex.getKind() == lltok::LocalVar) {
5524       NameStr = Lex.getStrVal();
5525       Lex.Lex();
5526       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5527         return true;
5528     }
5529 
5530     switch (ParseInstruction(Inst, BB, PFS)) {
5531     default: llvm_unreachable("Unknown ParseInstruction result!");
5532     case InstError: return true;
5533     case InstNormal:
5534       BB->getInstList().push_back(Inst);
5535 
5536       // With a normal result, we check to see if the instruction is followed by
5537       // a comma and metadata.
5538       if (EatIfPresent(lltok::comma))
5539         if (ParseInstructionMetadata(*Inst))
5540           return true;
5541       break;
5542     case InstExtraComma:
5543       BB->getInstList().push_back(Inst);
5544 
5545       // If the instruction parser ate an extra comma at the end of it, it
5546       // *must* be followed by metadata.
5547       if (ParseInstructionMetadata(*Inst))
5548         return true;
5549       break;
5550     }
5551 
5552     // Set the name on the instruction.
5553     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5554   } while (!Inst->isTerminator());
5555 
5556   return false;
5557 }
5558 
5559 //===----------------------------------------------------------------------===//
5560 // Instruction Parsing.
5561 //===----------------------------------------------------------------------===//
5562 
5563 /// ParseInstruction - Parse one of the many different instructions.
5564 ///
5565 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5566                                PerFunctionState &PFS) {
5567   lltok::Kind Token = Lex.getKind();
5568   if (Token == lltok::Eof)
5569     return TokError("found end of file when expecting more instructions");
5570   LocTy Loc = Lex.getLoc();
5571   unsigned KeywordVal = Lex.getUIntVal();
5572   Lex.Lex();  // Eat the keyword.
5573 
5574   switch (Token) {
5575   default:                    return Error(Loc, "expected instruction opcode");
5576   // Terminator Instructions.
5577   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5578   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5579   case lltok::kw_br:          return ParseBr(Inst, PFS);
5580   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5581   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5582   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5583   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5584   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5585   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5586   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5587   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5588   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5589   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5590   // Unary Operators.
5591   case lltok::kw_fneg: {
5592     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5593     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, 2);
5594     if (Res != 0)
5595       return Res;
5596     if (FMF.any())
5597       Inst->setFastMathFlags(FMF);
5598     return false;
5599   }
5600   // Binary Operators.
5601   case lltok::kw_add:
5602   case lltok::kw_sub:
5603   case lltok::kw_mul:
5604   case lltok::kw_shl: {
5605     bool NUW = EatIfPresent(lltok::kw_nuw);
5606     bool NSW = EatIfPresent(lltok::kw_nsw);
5607     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5608 
5609     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5610 
5611     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5612     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5613     return false;
5614   }
5615   case lltok::kw_fadd:
5616   case lltok::kw_fsub:
5617   case lltok::kw_fmul:
5618   case lltok::kw_fdiv:
5619   case lltok::kw_frem: {
5620     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5621     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5622     if (Res != 0)
5623       return Res;
5624     if (FMF.any())
5625       Inst->setFastMathFlags(FMF);
5626     return 0;
5627   }
5628 
5629   case lltok::kw_sdiv:
5630   case lltok::kw_udiv:
5631   case lltok::kw_lshr:
5632   case lltok::kw_ashr: {
5633     bool Exact = EatIfPresent(lltok::kw_exact);
5634 
5635     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5636     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5637     return false;
5638   }
5639 
5640   case lltok::kw_urem:
5641   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5642   case lltok::kw_and:
5643   case lltok::kw_or:
5644   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5645   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5646   case lltok::kw_fcmp: {
5647     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5648     int Res = ParseCompare(Inst, PFS, KeywordVal);
5649     if (Res != 0)
5650       return Res;
5651     if (FMF.any())
5652       Inst->setFastMathFlags(FMF);
5653     return 0;
5654   }
5655 
5656   // Casts.
5657   case lltok::kw_trunc:
5658   case lltok::kw_zext:
5659   case lltok::kw_sext:
5660   case lltok::kw_fptrunc:
5661   case lltok::kw_fpext:
5662   case lltok::kw_bitcast:
5663   case lltok::kw_addrspacecast:
5664   case lltok::kw_uitofp:
5665   case lltok::kw_sitofp:
5666   case lltok::kw_fptoui:
5667   case lltok::kw_fptosi:
5668   case lltok::kw_inttoptr:
5669   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5670   // Other.
5671   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5672   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5673   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5674   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5675   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5676   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5677   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5678   // Call.
5679   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5680   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5681   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5682   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5683   // Memory.
5684   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5685   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5686   case lltok::kw_store:          return ParseStore(Inst, PFS);
5687   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5688   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5689   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5690   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5691   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5692   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5693   }
5694 }
5695 
5696 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5697 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5698   if (Opc == Instruction::FCmp) {
5699     switch (Lex.getKind()) {
5700     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5701     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5702     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5703     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5704     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5705     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5706     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5707     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5708     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5709     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5710     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5711     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5712     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5713     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5714     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5715     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5716     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5717     }
5718   } else {
5719     switch (Lex.getKind()) {
5720     default: return TokError("expected icmp predicate (e.g. 'eq')");
5721     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5722     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5723     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5724     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5725     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5726     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5727     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5728     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5729     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5730     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5731     }
5732   }
5733   Lex.Lex();
5734   return false;
5735 }
5736 
5737 //===----------------------------------------------------------------------===//
5738 // Terminator Instructions.
5739 //===----------------------------------------------------------------------===//
5740 
5741 /// ParseRet - Parse a return instruction.
5742 ///   ::= 'ret' void (',' !dbg, !1)*
5743 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5744 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5745                         PerFunctionState &PFS) {
5746   SMLoc TypeLoc = Lex.getLoc();
5747   Type *Ty = nullptr;
5748   if (ParseType(Ty, true /*void allowed*/)) return true;
5749 
5750   Type *ResType = PFS.getFunction().getReturnType();
5751 
5752   if (Ty->isVoidTy()) {
5753     if (!ResType->isVoidTy())
5754       return Error(TypeLoc, "value doesn't match function result type '" +
5755                    getTypeString(ResType) + "'");
5756 
5757     Inst = ReturnInst::Create(Context);
5758     return false;
5759   }
5760 
5761   Value *RV;
5762   if (ParseValue(Ty, RV, PFS)) return true;
5763 
5764   if (ResType != RV->getType())
5765     return Error(TypeLoc, "value doesn't match function result type '" +
5766                  getTypeString(ResType) + "'");
5767 
5768   Inst = ReturnInst::Create(Context, RV);
5769   return false;
5770 }
5771 
5772 /// ParseBr
5773 ///   ::= 'br' TypeAndValue
5774 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5775 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5776   LocTy Loc, Loc2;
5777   Value *Op0;
5778   BasicBlock *Op1, *Op2;
5779   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5780 
5781   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5782     Inst = BranchInst::Create(BB);
5783     return false;
5784   }
5785 
5786   if (Op0->getType() != Type::getInt1Ty(Context))
5787     return Error(Loc, "branch condition must have 'i1' type");
5788 
5789   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5790       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5791       ParseToken(lltok::comma, "expected ',' after true destination") ||
5792       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5793     return true;
5794 
5795   Inst = BranchInst::Create(Op1, Op2, Op0);
5796   return false;
5797 }
5798 
5799 /// ParseSwitch
5800 ///  Instruction
5801 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5802 ///  JumpTable
5803 ///    ::= (TypeAndValue ',' TypeAndValue)*
5804 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5805   LocTy CondLoc, BBLoc;
5806   Value *Cond;
5807   BasicBlock *DefaultBB;
5808   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5809       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5810       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5811       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5812     return true;
5813 
5814   if (!Cond->getType()->isIntegerTy())
5815     return Error(CondLoc, "switch condition must have integer type");
5816 
5817   // Parse the jump table pairs.
5818   SmallPtrSet<Value*, 32> SeenCases;
5819   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5820   while (Lex.getKind() != lltok::rsquare) {
5821     Value *Constant;
5822     BasicBlock *DestBB;
5823 
5824     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5825         ParseToken(lltok::comma, "expected ',' after case value") ||
5826         ParseTypeAndBasicBlock(DestBB, PFS))
5827       return true;
5828 
5829     if (!SeenCases.insert(Constant).second)
5830       return Error(CondLoc, "duplicate case value in switch");
5831     if (!isa<ConstantInt>(Constant))
5832       return Error(CondLoc, "case value is not a constant integer");
5833 
5834     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5835   }
5836 
5837   Lex.Lex();  // Eat the ']'.
5838 
5839   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5840   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5841     SI->addCase(Table[i].first, Table[i].second);
5842   Inst = SI;
5843   return false;
5844 }
5845 
5846 /// ParseIndirectBr
5847 ///  Instruction
5848 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5849 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5850   LocTy AddrLoc;
5851   Value *Address;
5852   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5853       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5854       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5855     return true;
5856 
5857   if (!Address->getType()->isPointerTy())
5858     return Error(AddrLoc, "indirectbr address must have pointer type");
5859 
5860   // Parse the destination list.
5861   SmallVector<BasicBlock*, 16> DestList;
5862 
5863   if (Lex.getKind() != lltok::rsquare) {
5864     BasicBlock *DestBB;
5865     if (ParseTypeAndBasicBlock(DestBB, PFS))
5866       return true;
5867     DestList.push_back(DestBB);
5868 
5869     while (EatIfPresent(lltok::comma)) {
5870       if (ParseTypeAndBasicBlock(DestBB, PFS))
5871         return true;
5872       DestList.push_back(DestBB);
5873     }
5874   }
5875 
5876   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5877     return true;
5878 
5879   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5880   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5881     IBI->addDestination(DestList[i]);
5882   Inst = IBI;
5883   return false;
5884 }
5885 
5886 /// ParseInvoke
5887 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5888 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5889 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5890   LocTy CallLoc = Lex.getLoc();
5891   AttrBuilder RetAttrs, FnAttrs;
5892   std::vector<unsigned> FwdRefAttrGrps;
5893   LocTy NoBuiltinLoc;
5894   unsigned CC;
5895   unsigned InvokeAddrSpace;
5896   Type *RetType = nullptr;
5897   LocTy RetTypeLoc;
5898   ValID CalleeID;
5899   SmallVector<ParamInfo, 16> ArgList;
5900   SmallVector<OperandBundleDef, 2> BundleList;
5901 
5902   BasicBlock *NormalBB, *UnwindBB;
5903   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5904       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
5905       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5906       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5907       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5908                                  NoBuiltinLoc) ||
5909       ParseOptionalOperandBundles(BundleList, PFS) ||
5910       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5911       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5912       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5913       ParseTypeAndBasicBlock(UnwindBB, PFS))
5914     return true;
5915 
5916   // If RetType is a non-function pointer type, then this is the short syntax
5917   // for the call, which means that RetType is just the return type.  Infer the
5918   // rest of the function argument types from the arguments that are present.
5919   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5920   if (!Ty) {
5921     // Pull out the types of all of the arguments...
5922     std::vector<Type*> ParamTypes;
5923     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5924       ParamTypes.push_back(ArgList[i].V->getType());
5925 
5926     if (!FunctionType::isValidReturnType(RetType))
5927       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5928 
5929     Ty = FunctionType::get(RetType, ParamTypes, false);
5930   }
5931 
5932   CalleeID.FTy = Ty;
5933 
5934   // Look up the callee.
5935   Value *Callee;
5936   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
5937                           Callee, &PFS, /*IsCall=*/true))
5938     return true;
5939 
5940   // Set up the Attribute for the function.
5941   SmallVector<Value *, 8> Args;
5942   SmallVector<AttributeSet, 8> ArgAttrs;
5943 
5944   // Loop through FunctionType's arguments and ensure they are specified
5945   // correctly.  Also, gather any parameter attributes.
5946   FunctionType::param_iterator I = Ty->param_begin();
5947   FunctionType::param_iterator E = Ty->param_end();
5948   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5949     Type *ExpectedTy = nullptr;
5950     if (I != E) {
5951       ExpectedTy = *I++;
5952     } else if (!Ty->isVarArg()) {
5953       return Error(ArgList[i].Loc, "too many arguments specified");
5954     }
5955 
5956     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5957       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5958                    getTypeString(ExpectedTy) + "'");
5959     Args.push_back(ArgList[i].V);
5960     ArgAttrs.push_back(ArgList[i].Attrs);
5961   }
5962 
5963   if (I != E)
5964     return Error(CallLoc, "not enough parameters specified for call");
5965 
5966   if (FnAttrs.hasAlignmentAttr())
5967     return Error(CallLoc, "invoke instructions may not have an alignment");
5968 
5969   // Finish off the Attribute and check them
5970   AttributeList PAL =
5971       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
5972                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
5973 
5974   InvokeInst *II =
5975       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5976   II->setCallingConv(CC);
5977   II->setAttributes(PAL);
5978   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5979   Inst = II;
5980   return false;
5981 }
5982 
5983 /// ParseResume
5984 ///   ::= 'resume' TypeAndValue
5985 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5986   Value *Exn; LocTy ExnLoc;
5987   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5988     return true;
5989 
5990   ResumeInst *RI = ResumeInst::Create(Exn);
5991   Inst = RI;
5992   return false;
5993 }
5994 
5995 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5996                                   PerFunctionState &PFS) {
5997   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5998     return true;
5999 
6000   while (Lex.getKind() != lltok::rsquare) {
6001     // If this isn't the first argument, we need a comma.
6002     if (!Args.empty() &&
6003         ParseToken(lltok::comma, "expected ',' in argument list"))
6004       return true;
6005 
6006     // Parse the argument.
6007     LocTy ArgLoc;
6008     Type *ArgTy = nullptr;
6009     if (ParseType(ArgTy, ArgLoc))
6010       return true;
6011 
6012     Value *V;
6013     if (ArgTy->isMetadataTy()) {
6014       if (ParseMetadataAsValue(V, PFS))
6015         return true;
6016     } else {
6017       if (ParseValue(ArgTy, V, PFS))
6018         return true;
6019     }
6020     Args.push_back(V);
6021   }
6022 
6023   Lex.Lex();  // Lex the ']'.
6024   return false;
6025 }
6026 
6027 /// ParseCleanupRet
6028 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6029 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6030   Value *CleanupPad = nullptr;
6031 
6032   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6033     return true;
6034 
6035   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6036     return true;
6037 
6038   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6039     return true;
6040 
6041   BasicBlock *UnwindBB = nullptr;
6042   if (Lex.getKind() == lltok::kw_to) {
6043     Lex.Lex();
6044     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6045       return true;
6046   } else {
6047     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6048       return true;
6049     }
6050   }
6051 
6052   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6053   return false;
6054 }
6055 
6056 /// ParseCatchRet
6057 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6058 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6059   Value *CatchPad = nullptr;
6060 
6061   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6062     return true;
6063 
6064   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6065     return true;
6066 
6067   BasicBlock *BB;
6068   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6069       ParseTypeAndBasicBlock(BB, PFS))
6070       return true;
6071 
6072   Inst = CatchReturnInst::Create(CatchPad, BB);
6073   return false;
6074 }
6075 
6076 /// ParseCatchSwitch
6077 ///   ::= 'catchswitch' within Parent
6078 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6079   Value *ParentPad;
6080 
6081   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6082     return true;
6083 
6084   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6085       Lex.getKind() != lltok::LocalVarID)
6086     return TokError("expected scope value for catchswitch");
6087 
6088   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6089     return true;
6090 
6091   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6092     return true;
6093 
6094   SmallVector<BasicBlock *, 32> Table;
6095   do {
6096     BasicBlock *DestBB;
6097     if (ParseTypeAndBasicBlock(DestBB, PFS))
6098       return true;
6099     Table.push_back(DestBB);
6100   } while (EatIfPresent(lltok::comma));
6101 
6102   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6103     return true;
6104 
6105   if (ParseToken(lltok::kw_unwind,
6106                  "expected 'unwind' after catchswitch scope"))
6107     return true;
6108 
6109   BasicBlock *UnwindBB = nullptr;
6110   if (EatIfPresent(lltok::kw_to)) {
6111     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6112       return true;
6113   } else {
6114     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6115       return true;
6116   }
6117 
6118   auto *CatchSwitch =
6119       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6120   for (BasicBlock *DestBB : Table)
6121     CatchSwitch->addHandler(DestBB);
6122   Inst = CatchSwitch;
6123   return false;
6124 }
6125 
6126 /// ParseCatchPad
6127 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6128 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6129   Value *CatchSwitch = nullptr;
6130 
6131   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6132     return true;
6133 
6134   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6135     return TokError("expected scope value for catchpad");
6136 
6137   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6138     return true;
6139 
6140   SmallVector<Value *, 8> Args;
6141   if (ParseExceptionArgs(Args, PFS))
6142     return true;
6143 
6144   Inst = CatchPadInst::Create(CatchSwitch, Args);
6145   return false;
6146 }
6147 
6148 /// ParseCleanupPad
6149 ///   ::= 'cleanuppad' within Parent ParamList
6150 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6151   Value *ParentPad = nullptr;
6152 
6153   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6154     return true;
6155 
6156   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6157       Lex.getKind() != lltok::LocalVarID)
6158     return TokError("expected scope value for cleanuppad");
6159 
6160   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6161     return true;
6162 
6163   SmallVector<Value *, 8> Args;
6164   if (ParseExceptionArgs(Args, PFS))
6165     return true;
6166 
6167   Inst = CleanupPadInst::Create(ParentPad, Args);
6168   return false;
6169 }
6170 
6171 //===----------------------------------------------------------------------===//
6172 // Unary Operators.
6173 //===----------------------------------------------------------------------===//
6174 
6175 /// ParseUnaryOp
6176 ///  ::= UnaryOp TypeAndValue ',' Value
6177 ///
6178 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
6179 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
6180 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6181                             unsigned Opc, unsigned OperandType) {
6182   LocTy Loc; Value *LHS;
6183   if (ParseTypeAndValue(LHS, Loc, PFS))
6184     return true;
6185 
6186   bool Valid;
6187   switch (OperandType) {
6188   default: llvm_unreachable("Unknown operand type!");
6189   case 0: // int or FP.
6190     Valid = LHS->getType()->isIntOrIntVectorTy() ||
6191             LHS->getType()->isFPOrFPVectorTy();
6192     break;
6193   case 1:
6194     Valid = LHS->getType()->isIntOrIntVectorTy();
6195     break;
6196   case 2:
6197     Valid = LHS->getType()->isFPOrFPVectorTy();
6198     break;
6199   }
6200 
6201   if (!Valid)
6202     return Error(Loc, "invalid operand type for instruction");
6203 
6204   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6205   return false;
6206 }
6207 
6208 /// ParseCallBr
6209 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6210 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6211 ///       '[' LabelList ']'
6212 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6213   LocTy CallLoc = Lex.getLoc();
6214   AttrBuilder RetAttrs, FnAttrs;
6215   std::vector<unsigned> FwdRefAttrGrps;
6216   LocTy NoBuiltinLoc;
6217   unsigned CC;
6218   Type *RetType = nullptr;
6219   LocTy RetTypeLoc;
6220   ValID CalleeID;
6221   SmallVector<ParamInfo, 16> ArgList;
6222   SmallVector<OperandBundleDef, 2> BundleList;
6223 
6224   BasicBlock *DefaultDest;
6225   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6226       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6227       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6228       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6229                                  NoBuiltinLoc) ||
6230       ParseOptionalOperandBundles(BundleList, PFS) ||
6231       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6232       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6233       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6234     return true;
6235 
6236   // Parse the destination list.
6237   SmallVector<BasicBlock *, 16> IndirectDests;
6238 
6239   if (Lex.getKind() != lltok::rsquare) {
6240     BasicBlock *DestBB;
6241     if (ParseTypeAndBasicBlock(DestBB, PFS))
6242       return true;
6243     IndirectDests.push_back(DestBB);
6244 
6245     while (EatIfPresent(lltok::comma)) {
6246       if (ParseTypeAndBasicBlock(DestBB, PFS))
6247         return true;
6248       IndirectDests.push_back(DestBB);
6249     }
6250   }
6251 
6252   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6253     return true;
6254 
6255   // If RetType is a non-function pointer type, then this is the short syntax
6256   // for the call, which means that RetType is just the return type.  Infer the
6257   // rest of the function argument types from the arguments that are present.
6258   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6259   if (!Ty) {
6260     // Pull out the types of all of the arguments...
6261     std::vector<Type *> ParamTypes;
6262     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6263       ParamTypes.push_back(ArgList[i].V->getType());
6264 
6265     if (!FunctionType::isValidReturnType(RetType))
6266       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6267 
6268     Ty = FunctionType::get(RetType, ParamTypes, false);
6269   }
6270 
6271   CalleeID.FTy = Ty;
6272 
6273   // Look up the callee.
6274   Value *Callee;
6275   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6276                           /*IsCall=*/true))
6277     return true;
6278 
6279   if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy())
6280     return Error(RetTypeLoc, "asm-goto outputs not supported");
6281 
6282   // Set up the Attribute for the function.
6283   SmallVector<Value *, 8> Args;
6284   SmallVector<AttributeSet, 8> ArgAttrs;
6285 
6286   // Loop through FunctionType's arguments and ensure they are specified
6287   // correctly.  Also, gather any parameter attributes.
6288   FunctionType::param_iterator I = Ty->param_begin();
6289   FunctionType::param_iterator E = Ty->param_end();
6290   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6291     Type *ExpectedTy = nullptr;
6292     if (I != E) {
6293       ExpectedTy = *I++;
6294     } else if (!Ty->isVarArg()) {
6295       return Error(ArgList[i].Loc, "too many arguments specified");
6296     }
6297 
6298     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6299       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6300                                        getTypeString(ExpectedTy) + "'");
6301     Args.push_back(ArgList[i].V);
6302     ArgAttrs.push_back(ArgList[i].Attrs);
6303   }
6304 
6305   if (I != E)
6306     return Error(CallLoc, "not enough parameters specified for call");
6307 
6308   if (FnAttrs.hasAlignmentAttr())
6309     return Error(CallLoc, "callbr instructions may not have an alignment");
6310 
6311   // Finish off the Attribute and check them
6312   AttributeList PAL =
6313       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6314                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6315 
6316   CallBrInst *CBI =
6317       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6318                          BundleList);
6319   CBI->setCallingConv(CC);
6320   CBI->setAttributes(PAL);
6321   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6322   Inst = CBI;
6323   return false;
6324 }
6325 
6326 //===----------------------------------------------------------------------===//
6327 // Binary Operators.
6328 //===----------------------------------------------------------------------===//
6329 
6330 /// ParseArithmetic
6331 ///  ::= ArithmeticOps TypeAndValue ',' Value
6332 ///
6333 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
6334 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
6335 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6336                                unsigned Opc, unsigned OperandType) {
6337   LocTy Loc; Value *LHS, *RHS;
6338   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6339       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6340       ParseValue(LHS->getType(), RHS, PFS))
6341     return true;
6342 
6343   bool Valid;
6344   switch (OperandType) {
6345   default: llvm_unreachable("Unknown operand type!");
6346   case 0: // int or FP.
6347     Valid = LHS->getType()->isIntOrIntVectorTy() ||
6348             LHS->getType()->isFPOrFPVectorTy();
6349     break;
6350   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
6351   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
6352   }
6353 
6354   if (!Valid)
6355     return Error(Loc, "invalid operand type for instruction");
6356 
6357   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6358   return false;
6359 }
6360 
6361 /// ParseLogical
6362 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6363 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6364                             unsigned Opc) {
6365   LocTy Loc; Value *LHS, *RHS;
6366   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6367       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6368       ParseValue(LHS->getType(), RHS, PFS))
6369     return true;
6370 
6371   if (!LHS->getType()->isIntOrIntVectorTy())
6372     return Error(Loc,"instruction requires integer or integer vector operands");
6373 
6374   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6375   return false;
6376 }
6377 
6378 /// ParseCompare
6379 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6380 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6381 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6382                             unsigned Opc) {
6383   // Parse the integer/fp comparison predicate.
6384   LocTy Loc;
6385   unsigned Pred;
6386   Value *LHS, *RHS;
6387   if (ParseCmpPredicate(Pred, Opc) ||
6388       ParseTypeAndValue(LHS, Loc, PFS) ||
6389       ParseToken(lltok::comma, "expected ',' after compare value") ||
6390       ParseValue(LHS->getType(), RHS, PFS))
6391     return true;
6392 
6393   if (Opc == Instruction::FCmp) {
6394     if (!LHS->getType()->isFPOrFPVectorTy())
6395       return Error(Loc, "fcmp requires floating point operands");
6396     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6397   } else {
6398     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6399     if (!LHS->getType()->isIntOrIntVectorTy() &&
6400         !LHS->getType()->isPtrOrPtrVectorTy())
6401       return Error(Loc, "icmp requires integer operands");
6402     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6403   }
6404   return false;
6405 }
6406 
6407 //===----------------------------------------------------------------------===//
6408 // Other Instructions.
6409 //===----------------------------------------------------------------------===//
6410 
6411 
6412 /// ParseCast
6413 ///   ::= CastOpc TypeAndValue 'to' Type
6414 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6415                          unsigned Opc) {
6416   LocTy Loc;
6417   Value *Op;
6418   Type *DestTy = nullptr;
6419   if (ParseTypeAndValue(Op, Loc, PFS) ||
6420       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6421       ParseType(DestTy))
6422     return true;
6423 
6424   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6425     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6426     return Error(Loc, "invalid cast opcode for cast from '" +
6427                  getTypeString(Op->getType()) + "' to '" +
6428                  getTypeString(DestTy) + "'");
6429   }
6430   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6431   return false;
6432 }
6433 
6434 /// ParseSelect
6435 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6436 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6437   LocTy Loc;
6438   Value *Op0, *Op1, *Op2;
6439   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6440       ParseToken(lltok::comma, "expected ',' after select condition") ||
6441       ParseTypeAndValue(Op1, PFS) ||
6442       ParseToken(lltok::comma, "expected ',' after select value") ||
6443       ParseTypeAndValue(Op2, PFS))
6444     return true;
6445 
6446   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6447     return Error(Loc, Reason);
6448 
6449   Inst = SelectInst::Create(Op0, Op1, Op2);
6450   return false;
6451 }
6452 
6453 /// ParseVA_Arg
6454 ///   ::= 'va_arg' TypeAndValue ',' Type
6455 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6456   Value *Op;
6457   Type *EltTy = nullptr;
6458   LocTy TypeLoc;
6459   if (ParseTypeAndValue(Op, PFS) ||
6460       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6461       ParseType(EltTy, TypeLoc))
6462     return true;
6463 
6464   if (!EltTy->isFirstClassType())
6465     return Error(TypeLoc, "va_arg requires operand with first class type");
6466 
6467   Inst = new VAArgInst(Op, EltTy);
6468   return false;
6469 }
6470 
6471 /// ParseExtractElement
6472 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6473 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6474   LocTy Loc;
6475   Value *Op0, *Op1;
6476   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6477       ParseToken(lltok::comma, "expected ',' after extract value") ||
6478       ParseTypeAndValue(Op1, PFS))
6479     return true;
6480 
6481   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6482     return Error(Loc, "invalid extractelement operands");
6483 
6484   Inst = ExtractElementInst::Create(Op0, Op1);
6485   return false;
6486 }
6487 
6488 /// ParseInsertElement
6489 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6490 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6491   LocTy Loc;
6492   Value *Op0, *Op1, *Op2;
6493   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6494       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6495       ParseTypeAndValue(Op1, PFS) ||
6496       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6497       ParseTypeAndValue(Op2, PFS))
6498     return true;
6499 
6500   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6501     return Error(Loc, "invalid insertelement operands");
6502 
6503   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6504   return false;
6505 }
6506 
6507 /// ParseShuffleVector
6508 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6509 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6510   LocTy Loc;
6511   Value *Op0, *Op1, *Op2;
6512   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6513       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6514       ParseTypeAndValue(Op1, PFS) ||
6515       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6516       ParseTypeAndValue(Op2, PFS))
6517     return true;
6518 
6519   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6520     return Error(Loc, "invalid shufflevector operands");
6521 
6522   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6523   return false;
6524 }
6525 
6526 /// ParsePHI
6527 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6528 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6529   Type *Ty = nullptr;  LocTy TypeLoc;
6530   Value *Op0, *Op1;
6531 
6532   if (ParseType(Ty, TypeLoc) ||
6533       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6534       ParseValue(Ty, Op0, PFS) ||
6535       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6536       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6537       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6538     return true;
6539 
6540   bool AteExtraComma = false;
6541   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6542 
6543   while (true) {
6544     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6545 
6546     if (!EatIfPresent(lltok::comma))
6547       break;
6548 
6549     if (Lex.getKind() == lltok::MetadataVar) {
6550       AteExtraComma = true;
6551       break;
6552     }
6553 
6554     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6555         ParseValue(Ty, Op0, PFS) ||
6556         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6557         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6558         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6559       return true;
6560   }
6561 
6562   if (!Ty->isFirstClassType())
6563     return Error(TypeLoc, "phi node must have first class type");
6564 
6565   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6566   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6567     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6568   Inst = PN;
6569   return AteExtraComma ? InstExtraComma : InstNormal;
6570 }
6571 
6572 /// ParseLandingPad
6573 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6574 /// Clause
6575 ///   ::= 'catch' TypeAndValue
6576 ///   ::= 'filter'
6577 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6578 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6579   Type *Ty = nullptr; LocTy TyLoc;
6580 
6581   if (ParseType(Ty, TyLoc))
6582     return true;
6583 
6584   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6585   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6586 
6587   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6588     LandingPadInst::ClauseType CT;
6589     if (EatIfPresent(lltok::kw_catch))
6590       CT = LandingPadInst::Catch;
6591     else if (EatIfPresent(lltok::kw_filter))
6592       CT = LandingPadInst::Filter;
6593     else
6594       return TokError("expected 'catch' or 'filter' clause type");
6595 
6596     Value *V;
6597     LocTy VLoc;
6598     if (ParseTypeAndValue(V, VLoc, PFS))
6599       return true;
6600 
6601     // A 'catch' type expects a non-array constant. A filter clause expects an
6602     // array constant.
6603     if (CT == LandingPadInst::Catch) {
6604       if (isa<ArrayType>(V->getType()))
6605         Error(VLoc, "'catch' clause has an invalid type");
6606     } else {
6607       if (!isa<ArrayType>(V->getType()))
6608         Error(VLoc, "'filter' clause has an invalid type");
6609     }
6610 
6611     Constant *CV = dyn_cast<Constant>(V);
6612     if (!CV)
6613       return Error(VLoc, "clause argument must be a constant");
6614     LP->addClause(CV);
6615   }
6616 
6617   Inst = LP.release();
6618   return false;
6619 }
6620 
6621 /// ParseCall
6622 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6623 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6624 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6625 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6626 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6627 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6628 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6629 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6630 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6631                          CallInst::TailCallKind TCK) {
6632   AttrBuilder RetAttrs, FnAttrs;
6633   std::vector<unsigned> FwdRefAttrGrps;
6634   LocTy BuiltinLoc;
6635   unsigned CallAddrSpace;
6636   unsigned CC;
6637   Type *RetType = nullptr;
6638   LocTy RetTypeLoc;
6639   ValID CalleeID;
6640   SmallVector<ParamInfo, 16> ArgList;
6641   SmallVector<OperandBundleDef, 2> BundleList;
6642   LocTy CallLoc = Lex.getLoc();
6643 
6644   if (TCK != CallInst::TCK_None &&
6645       ParseToken(lltok::kw_call,
6646                  "expected 'tail call', 'musttail call', or 'notail call'"))
6647     return true;
6648 
6649   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6650 
6651   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6652       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6653       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6654       ParseValID(CalleeID) ||
6655       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6656                          PFS.getFunction().isVarArg()) ||
6657       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6658       ParseOptionalOperandBundles(BundleList, PFS))
6659     return true;
6660 
6661   if (FMF.any() && !RetType->isFPOrFPVectorTy())
6662     return Error(CallLoc, "fast-math-flags specified for call without "
6663                           "floating-point scalar or vector return type");
6664 
6665   // If RetType is a non-function pointer type, then this is the short syntax
6666   // for the call, which means that RetType is just the return type.  Infer the
6667   // rest of the function argument types from the arguments that are present.
6668   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6669   if (!Ty) {
6670     // Pull out the types of all of the arguments...
6671     std::vector<Type*> ParamTypes;
6672     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6673       ParamTypes.push_back(ArgList[i].V->getType());
6674 
6675     if (!FunctionType::isValidReturnType(RetType))
6676       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6677 
6678     Ty = FunctionType::get(RetType, ParamTypes, false);
6679   }
6680 
6681   CalleeID.FTy = Ty;
6682 
6683   // Look up the callee.
6684   Value *Callee;
6685   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6686                           &PFS, /*IsCall=*/true))
6687     return true;
6688 
6689   // Set up the Attribute for the function.
6690   SmallVector<AttributeSet, 8> Attrs;
6691 
6692   SmallVector<Value*, 8> Args;
6693 
6694   // Loop through FunctionType's arguments and ensure they are specified
6695   // correctly.  Also, gather any parameter attributes.
6696   FunctionType::param_iterator I = Ty->param_begin();
6697   FunctionType::param_iterator E = Ty->param_end();
6698   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6699     Type *ExpectedTy = nullptr;
6700     if (I != E) {
6701       ExpectedTy = *I++;
6702     } else if (!Ty->isVarArg()) {
6703       return Error(ArgList[i].Loc, "too many arguments specified");
6704     }
6705 
6706     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6707       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6708                    getTypeString(ExpectedTy) + "'");
6709     Args.push_back(ArgList[i].V);
6710     Attrs.push_back(ArgList[i].Attrs);
6711   }
6712 
6713   if (I != E)
6714     return Error(CallLoc, "not enough parameters specified for call");
6715 
6716   if (FnAttrs.hasAlignmentAttr())
6717     return Error(CallLoc, "call instructions may not have an alignment");
6718 
6719   // Finish off the Attribute and check them
6720   AttributeList PAL =
6721       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6722                          AttributeSet::get(Context, RetAttrs), Attrs);
6723 
6724   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6725   CI->setTailCallKind(TCK);
6726   CI->setCallingConv(CC);
6727   if (FMF.any())
6728     CI->setFastMathFlags(FMF);
6729   CI->setAttributes(PAL);
6730   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6731   Inst = CI;
6732   return false;
6733 }
6734 
6735 //===----------------------------------------------------------------------===//
6736 // Memory Instructions.
6737 //===----------------------------------------------------------------------===//
6738 
6739 /// ParseAlloc
6740 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6741 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6742 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6743   Value *Size = nullptr;
6744   LocTy SizeLoc, TyLoc, ASLoc;
6745   unsigned Alignment = 0;
6746   unsigned AddrSpace = 0;
6747   Type *Ty = nullptr;
6748 
6749   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6750   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6751 
6752   if (ParseType(Ty, TyLoc)) return true;
6753 
6754   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6755     return Error(TyLoc, "invalid type for alloca");
6756 
6757   bool AteExtraComma = false;
6758   if (EatIfPresent(lltok::comma)) {
6759     if (Lex.getKind() == lltok::kw_align) {
6760       if (ParseOptionalAlignment(Alignment))
6761         return true;
6762       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6763         return true;
6764     } else if (Lex.getKind() == lltok::kw_addrspace) {
6765       ASLoc = Lex.getLoc();
6766       if (ParseOptionalAddrSpace(AddrSpace))
6767         return true;
6768     } else if (Lex.getKind() == lltok::MetadataVar) {
6769       AteExtraComma = true;
6770     } else {
6771       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6772         return true;
6773       if (EatIfPresent(lltok::comma)) {
6774         if (Lex.getKind() == lltok::kw_align) {
6775           if (ParseOptionalAlignment(Alignment))
6776             return true;
6777           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6778             return true;
6779         } else if (Lex.getKind() == lltok::kw_addrspace) {
6780           ASLoc = Lex.getLoc();
6781           if (ParseOptionalAddrSpace(AddrSpace))
6782             return true;
6783         } else if (Lex.getKind() == lltok::MetadataVar) {
6784           AteExtraComma = true;
6785         }
6786       }
6787     }
6788   }
6789 
6790   if (Size && !Size->getType()->isIntegerTy())
6791     return Error(SizeLoc, "element count must have integer type");
6792 
6793   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6794   AI->setUsedWithInAlloca(IsInAlloca);
6795   AI->setSwiftError(IsSwiftError);
6796   Inst = AI;
6797   return AteExtraComma ? InstExtraComma : InstNormal;
6798 }
6799 
6800 /// ParseLoad
6801 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6802 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6803 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6804 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6805   Value *Val; LocTy Loc;
6806   unsigned Alignment = 0;
6807   bool AteExtraComma = false;
6808   bool isAtomic = false;
6809   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6810   SyncScope::ID SSID = SyncScope::System;
6811 
6812   if (Lex.getKind() == lltok::kw_atomic) {
6813     isAtomic = true;
6814     Lex.Lex();
6815   }
6816 
6817   bool isVolatile = false;
6818   if (Lex.getKind() == lltok::kw_volatile) {
6819     isVolatile = true;
6820     Lex.Lex();
6821   }
6822 
6823   Type *Ty;
6824   LocTy ExplicitTypeLoc = Lex.getLoc();
6825   if (ParseType(Ty) ||
6826       ParseToken(lltok::comma, "expected comma after load's type") ||
6827       ParseTypeAndValue(Val, Loc, PFS) ||
6828       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6829       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6830     return true;
6831 
6832   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6833     return Error(Loc, "load operand must be a pointer to a first class type");
6834   if (isAtomic && !Alignment)
6835     return Error(Loc, "atomic load must have explicit non-zero alignment");
6836   if (Ordering == AtomicOrdering::Release ||
6837       Ordering == AtomicOrdering::AcquireRelease)
6838     return Error(Loc, "atomic load cannot use Release ordering");
6839 
6840   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6841     return Error(ExplicitTypeLoc,
6842                  "explicit pointee type doesn't match operand's pointee type");
6843 
6844   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6845   return AteExtraComma ? InstExtraComma : InstNormal;
6846 }
6847 
6848 /// ParseStore
6849 
6850 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6851 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6852 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6853 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6854   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6855   unsigned Alignment = 0;
6856   bool AteExtraComma = false;
6857   bool isAtomic = false;
6858   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6859   SyncScope::ID SSID = SyncScope::System;
6860 
6861   if (Lex.getKind() == lltok::kw_atomic) {
6862     isAtomic = true;
6863     Lex.Lex();
6864   }
6865 
6866   bool isVolatile = false;
6867   if (Lex.getKind() == lltok::kw_volatile) {
6868     isVolatile = true;
6869     Lex.Lex();
6870   }
6871 
6872   if (ParseTypeAndValue(Val, Loc, PFS) ||
6873       ParseToken(lltok::comma, "expected ',' after store operand") ||
6874       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6875       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6876       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6877     return true;
6878 
6879   if (!Ptr->getType()->isPointerTy())
6880     return Error(PtrLoc, "store operand must be a pointer");
6881   if (!Val->getType()->isFirstClassType())
6882     return Error(Loc, "store operand must be a first class value");
6883   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6884     return Error(Loc, "stored value and pointer type do not match");
6885   if (isAtomic && !Alignment)
6886     return Error(Loc, "atomic store must have explicit non-zero alignment");
6887   if (Ordering == AtomicOrdering::Acquire ||
6888       Ordering == AtomicOrdering::AcquireRelease)
6889     return Error(Loc, "atomic store cannot use Acquire ordering");
6890 
6891   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6892   return AteExtraComma ? InstExtraComma : InstNormal;
6893 }
6894 
6895 /// ParseCmpXchg
6896 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6897 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6898 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6899   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6900   bool AteExtraComma = false;
6901   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6902   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6903   SyncScope::ID SSID = SyncScope::System;
6904   bool isVolatile = false;
6905   bool isWeak = false;
6906 
6907   if (EatIfPresent(lltok::kw_weak))
6908     isWeak = true;
6909 
6910   if (EatIfPresent(lltok::kw_volatile))
6911     isVolatile = true;
6912 
6913   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6914       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6915       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6916       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6917       ParseTypeAndValue(New, NewLoc, PFS) ||
6918       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6919       ParseOrdering(FailureOrdering))
6920     return true;
6921 
6922   if (SuccessOrdering == AtomicOrdering::Unordered ||
6923       FailureOrdering == AtomicOrdering::Unordered)
6924     return TokError("cmpxchg cannot be unordered");
6925   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6926     return TokError("cmpxchg failure argument shall be no stronger than the "
6927                     "success argument");
6928   if (FailureOrdering == AtomicOrdering::Release ||
6929       FailureOrdering == AtomicOrdering::AcquireRelease)
6930     return TokError(
6931         "cmpxchg failure ordering cannot include release semantics");
6932   if (!Ptr->getType()->isPointerTy())
6933     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6934   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6935     return Error(CmpLoc, "compare value and pointer type do not match");
6936   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6937     return Error(NewLoc, "new value and pointer type do not match");
6938   if (!New->getType()->isFirstClassType())
6939     return Error(NewLoc, "cmpxchg operand must be a first class value");
6940   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6941       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
6942   CXI->setVolatile(isVolatile);
6943   CXI->setWeak(isWeak);
6944   Inst = CXI;
6945   return AteExtraComma ? InstExtraComma : InstNormal;
6946 }
6947 
6948 /// ParseAtomicRMW
6949 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6950 ///       'singlethread'? AtomicOrdering
6951 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6952   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6953   bool AteExtraComma = false;
6954   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6955   SyncScope::ID SSID = SyncScope::System;
6956   bool isVolatile = false;
6957   bool IsFP = false;
6958   AtomicRMWInst::BinOp Operation;
6959 
6960   if (EatIfPresent(lltok::kw_volatile))
6961     isVolatile = true;
6962 
6963   switch (Lex.getKind()) {
6964   default: return TokError("expected binary operation in atomicrmw");
6965   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6966   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6967   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6968   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6969   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6970   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6971   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6972   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6973   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6974   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6975   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6976   case lltok::kw_fadd:
6977     Operation = AtomicRMWInst::FAdd;
6978     IsFP = true;
6979     break;
6980   case lltok::kw_fsub:
6981     Operation = AtomicRMWInst::FSub;
6982     IsFP = true;
6983     break;
6984   }
6985   Lex.Lex();  // Eat the operation.
6986 
6987   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6988       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6989       ParseTypeAndValue(Val, ValLoc, PFS) ||
6990       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6991     return true;
6992 
6993   if (Ordering == AtomicOrdering::Unordered)
6994     return TokError("atomicrmw cannot be unordered");
6995   if (!Ptr->getType()->isPointerTy())
6996     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6997   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6998     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6999 
7000   if (Operation == AtomicRMWInst::Xchg) {
7001     if (!Val->getType()->isIntegerTy() &&
7002         !Val->getType()->isFloatingPointTy()) {
7003       return Error(ValLoc, "atomicrmw " +
7004                    AtomicRMWInst::getOperationName(Operation) +
7005                    " operand must be an integer or floating point type");
7006     }
7007   } else if (IsFP) {
7008     if (!Val->getType()->isFloatingPointTy()) {
7009       return Error(ValLoc, "atomicrmw " +
7010                    AtomicRMWInst::getOperationName(Operation) +
7011                    " operand must be a floating point type");
7012     }
7013   } else {
7014     if (!Val->getType()->isIntegerTy()) {
7015       return Error(ValLoc, "atomicrmw " +
7016                    AtomicRMWInst::getOperationName(Operation) +
7017                    " operand must be an integer");
7018     }
7019   }
7020 
7021   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7022   if (Size < 8 || (Size & (Size - 1)))
7023     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7024                          " integer");
7025 
7026   AtomicRMWInst *RMWI =
7027     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7028   RMWI->setVolatile(isVolatile);
7029   Inst = RMWI;
7030   return AteExtraComma ? InstExtraComma : InstNormal;
7031 }
7032 
7033 /// ParseFence
7034 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7035 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7036   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7037   SyncScope::ID SSID = SyncScope::System;
7038   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7039     return true;
7040 
7041   if (Ordering == AtomicOrdering::Unordered)
7042     return TokError("fence cannot be unordered");
7043   if (Ordering == AtomicOrdering::Monotonic)
7044     return TokError("fence cannot be monotonic");
7045 
7046   Inst = new FenceInst(Context, Ordering, SSID);
7047   return InstNormal;
7048 }
7049 
7050 /// ParseGetElementPtr
7051 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7052 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7053   Value *Ptr = nullptr;
7054   Value *Val = nullptr;
7055   LocTy Loc, EltLoc;
7056 
7057   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7058 
7059   Type *Ty = nullptr;
7060   LocTy ExplicitTypeLoc = Lex.getLoc();
7061   if (ParseType(Ty) ||
7062       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7063       ParseTypeAndValue(Ptr, Loc, PFS))
7064     return true;
7065 
7066   Type *BaseType = Ptr->getType();
7067   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7068   if (!BasePointerType)
7069     return Error(Loc, "base of getelementptr must be a pointer");
7070 
7071   if (Ty != BasePointerType->getElementType())
7072     return Error(ExplicitTypeLoc,
7073                  "explicit pointee type doesn't match operand's pointee type");
7074 
7075   SmallVector<Value*, 16> Indices;
7076   bool AteExtraComma = false;
7077   // GEP returns a vector of pointers if at least one of parameters is a vector.
7078   // All vector parameters should have the same vector width.
7079   unsigned GEPWidth = BaseType->isVectorTy() ?
7080     BaseType->getVectorNumElements() : 0;
7081 
7082   while (EatIfPresent(lltok::comma)) {
7083     if (Lex.getKind() == lltok::MetadataVar) {
7084       AteExtraComma = true;
7085       break;
7086     }
7087     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7088     if (!Val->getType()->isIntOrIntVectorTy())
7089       return Error(EltLoc, "getelementptr index must be an integer");
7090 
7091     if (Val->getType()->isVectorTy()) {
7092       unsigned ValNumEl = Val->getType()->getVectorNumElements();
7093       if (GEPWidth && GEPWidth != ValNumEl)
7094         return Error(EltLoc,
7095           "getelementptr vector index has a wrong number of elements");
7096       GEPWidth = ValNumEl;
7097     }
7098     Indices.push_back(Val);
7099   }
7100 
7101   SmallPtrSet<Type*, 4> Visited;
7102   if (!Indices.empty() && !Ty->isSized(&Visited))
7103     return Error(Loc, "base element of getelementptr must be sized");
7104 
7105   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7106     return Error(Loc, "invalid getelementptr indices");
7107   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7108   if (InBounds)
7109     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7110   return AteExtraComma ? InstExtraComma : InstNormal;
7111 }
7112 
7113 /// ParseExtractValue
7114 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7115 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7116   Value *Val; LocTy Loc;
7117   SmallVector<unsigned, 4> Indices;
7118   bool AteExtraComma;
7119   if (ParseTypeAndValue(Val, Loc, PFS) ||
7120       ParseIndexList(Indices, AteExtraComma))
7121     return true;
7122 
7123   if (!Val->getType()->isAggregateType())
7124     return Error(Loc, "extractvalue operand must be aggregate type");
7125 
7126   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7127     return Error(Loc, "invalid indices for extractvalue");
7128   Inst = ExtractValueInst::Create(Val, Indices);
7129   return AteExtraComma ? InstExtraComma : InstNormal;
7130 }
7131 
7132 /// ParseInsertValue
7133 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7134 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7135   Value *Val0, *Val1; LocTy Loc0, Loc1;
7136   SmallVector<unsigned, 4> Indices;
7137   bool AteExtraComma;
7138   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7139       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7140       ParseTypeAndValue(Val1, Loc1, PFS) ||
7141       ParseIndexList(Indices, AteExtraComma))
7142     return true;
7143 
7144   if (!Val0->getType()->isAggregateType())
7145     return Error(Loc0, "insertvalue operand must be aggregate type");
7146 
7147   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7148   if (!IndexedType)
7149     return Error(Loc0, "invalid indices for insertvalue");
7150   if (IndexedType != Val1->getType())
7151     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7152                            getTypeString(Val1->getType()) + "' instead of '" +
7153                            getTypeString(IndexedType) + "'");
7154   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7155   return AteExtraComma ? InstExtraComma : InstNormal;
7156 }
7157 
7158 //===----------------------------------------------------------------------===//
7159 // Embedded metadata.
7160 //===----------------------------------------------------------------------===//
7161 
7162 /// ParseMDNodeVector
7163 ///   ::= { Element (',' Element)* }
7164 /// Element
7165 ///   ::= 'null' | TypeAndValue
7166 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7167   if (ParseToken(lltok::lbrace, "expected '{' here"))
7168     return true;
7169 
7170   // Check for an empty list.
7171   if (EatIfPresent(lltok::rbrace))
7172     return false;
7173 
7174   do {
7175     // Null is a special case since it is typeless.
7176     if (EatIfPresent(lltok::kw_null)) {
7177       Elts.push_back(nullptr);
7178       continue;
7179     }
7180 
7181     Metadata *MD;
7182     if (ParseMetadata(MD, nullptr))
7183       return true;
7184     Elts.push_back(MD);
7185   } while (EatIfPresent(lltok::comma));
7186 
7187   return ParseToken(lltok::rbrace, "expected end of metadata node");
7188 }
7189 
7190 //===----------------------------------------------------------------------===//
7191 // Use-list order directives.
7192 //===----------------------------------------------------------------------===//
7193 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7194                                 SMLoc Loc) {
7195   if (V->use_empty())
7196     return Error(Loc, "value has no uses");
7197 
7198   unsigned NumUses = 0;
7199   SmallDenseMap<const Use *, unsigned, 16> Order;
7200   for (const Use &U : V->uses()) {
7201     if (++NumUses > Indexes.size())
7202       break;
7203     Order[&U] = Indexes[NumUses - 1];
7204   }
7205   if (NumUses < 2)
7206     return Error(Loc, "value only has one use");
7207   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7208     return Error(Loc,
7209                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7210 
7211   V->sortUseList([&](const Use &L, const Use &R) {
7212     return Order.lookup(&L) < Order.lookup(&R);
7213   });
7214   return false;
7215 }
7216 
7217 /// ParseUseListOrderIndexes
7218 ///   ::= '{' uint32 (',' uint32)+ '}'
7219 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7220   SMLoc Loc = Lex.getLoc();
7221   if (ParseToken(lltok::lbrace, "expected '{' here"))
7222     return true;
7223   if (Lex.getKind() == lltok::rbrace)
7224     return Lex.Error("expected non-empty list of uselistorder indexes");
7225 
7226   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7227   // indexes should be distinct numbers in the range [0, size-1], and should
7228   // not be in order.
7229   unsigned Offset = 0;
7230   unsigned Max = 0;
7231   bool IsOrdered = true;
7232   assert(Indexes.empty() && "Expected empty order vector");
7233   do {
7234     unsigned Index;
7235     if (ParseUInt32(Index))
7236       return true;
7237 
7238     // Update consistency checks.
7239     Offset += Index - Indexes.size();
7240     Max = std::max(Max, Index);
7241     IsOrdered &= Index == Indexes.size();
7242 
7243     Indexes.push_back(Index);
7244   } while (EatIfPresent(lltok::comma));
7245 
7246   if (ParseToken(lltok::rbrace, "expected '}' here"))
7247     return true;
7248 
7249   if (Indexes.size() < 2)
7250     return Error(Loc, "expected >= 2 uselistorder indexes");
7251   if (Offset != 0 || Max >= Indexes.size())
7252     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7253   if (IsOrdered)
7254     return Error(Loc, "expected uselistorder indexes to change the order");
7255 
7256   return false;
7257 }
7258 
7259 /// ParseUseListOrder
7260 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7261 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7262   SMLoc Loc = Lex.getLoc();
7263   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7264     return true;
7265 
7266   Value *V;
7267   SmallVector<unsigned, 16> Indexes;
7268   if (ParseTypeAndValue(V, PFS) ||
7269       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7270       ParseUseListOrderIndexes(Indexes))
7271     return true;
7272 
7273   return sortUseListOrder(V, Indexes, Loc);
7274 }
7275 
7276 /// ParseUseListOrderBB
7277 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7278 bool LLParser::ParseUseListOrderBB() {
7279   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7280   SMLoc Loc = Lex.getLoc();
7281   Lex.Lex();
7282 
7283   ValID Fn, Label;
7284   SmallVector<unsigned, 16> Indexes;
7285   if (ParseValID(Fn) ||
7286       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7287       ParseValID(Label) ||
7288       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7289       ParseUseListOrderIndexes(Indexes))
7290     return true;
7291 
7292   // Check the function.
7293   GlobalValue *GV;
7294   if (Fn.Kind == ValID::t_GlobalName)
7295     GV = M->getNamedValue(Fn.StrVal);
7296   else if (Fn.Kind == ValID::t_GlobalID)
7297     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7298   else
7299     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7300   if (!GV)
7301     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7302   auto *F = dyn_cast<Function>(GV);
7303   if (!F)
7304     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7305   if (F->isDeclaration())
7306     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7307 
7308   // Check the basic block.
7309   if (Label.Kind == ValID::t_LocalID)
7310     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7311   if (Label.Kind != ValID::t_LocalName)
7312     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7313   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7314   if (!V)
7315     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7316   if (!isa<BasicBlock>(V))
7317     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7318 
7319   return sortUseListOrder(V, Indexes, Loc);
7320 }
7321 
7322 /// ModuleEntry
7323 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7324 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7325 bool LLParser::ParseModuleEntry(unsigned ID) {
7326   assert(Lex.getKind() == lltok::kw_module);
7327   Lex.Lex();
7328 
7329   std::string Path;
7330   if (ParseToken(lltok::colon, "expected ':' here") ||
7331       ParseToken(lltok::lparen, "expected '(' here") ||
7332       ParseToken(lltok::kw_path, "expected 'path' here") ||
7333       ParseToken(lltok::colon, "expected ':' here") ||
7334       ParseStringConstant(Path) ||
7335       ParseToken(lltok::comma, "expected ',' here") ||
7336       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7337       ParseToken(lltok::colon, "expected ':' here") ||
7338       ParseToken(lltok::lparen, "expected '(' here"))
7339     return true;
7340 
7341   ModuleHash Hash;
7342   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7343       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7344       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7345       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7346       ParseUInt32(Hash[4]))
7347     return true;
7348 
7349   if (ParseToken(lltok::rparen, "expected ')' here") ||
7350       ParseToken(lltok::rparen, "expected ')' here"))
7351     return true;
7352 
7353   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7354   ModuleIdMap[ID] = ModuleEntry->first();
7355 
7356   return false;
7357 }
7358 
7359 /// TypeIdEntry
7360 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7361 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7362   assert(Lex.getKind() == lltok::kw_typeid);
7363   Lex.Lex();
7364 
7365   std::string Name;
7366   if (ParseToken(lltok::colon, "expected ':' here") ||
7367       ParseToken(lltok::lparen, "expected '(' here") ||
7368       ParseToken(lltok::kw_name, "expected 'name' here") ||
7369       ParseToken(lltok::colon, "expected ':' here") ||
7370       ParseStringConstant(Name))
7371     return true;
7372 
7373   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7374   if (ParseToken(lltok::comma, "expected ',' here") ||
7375       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7376     return true;
7377 
7378   // Check if this ID was forward referenced, and if so, update the
7379   // corresponding GUIDs.
7380   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7381   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7382     for (auto TIDRef : FwdRefTIDs->second) {
7383       assert(!*TIDRef.first &&
7384              "Forward referenced type id GUID expected to be 0");
7385       *TIDRef.first = GlobalValue::getGUID(Name);
7386     }
7387     ForwardRefTypeIds.erase(FwdRefTIDs);
7388   }
7389 
7390   return false;
7391 }
7392 
7393 /// TypeIdSummary
7394 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7395 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7396   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7397       ParseToken(lltok::colon, "expected ':' here") ||
7398       ParseToken(lltok::lparen, "expected '(' here") ||
7399       ParseTypeTestResolution(TIS.TTRes))
7400     return true;
7401 
7402   if (EatIfPresent(lltok::comma)) {
7403     // Expect optional wpdResolutions field
7404     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7405       return true;
7406   }
7407 
7408   if (ParseToken(lltok::rparen, "expected ')' here"))
7409     return true;
7410 
7411   return false;
7412 }
7413 
7414 /// TypeTestResolution
7415 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7416 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7417 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7418 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7419 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7420 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7421   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7422       ParseToken(lltok::colon, "expected ':' here") ||
7423       ParseToken(lltok::lparen, "expected '(' here") ||
7424       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7425       ParseToken(lltok::colon, "expected ':' here"))
7426     return true;
7427 
7428   switch (Lex.getKind()) {
7429   case lltok::kw_unsat:
7430     TTRes.TheKind = TypeTestResolution::Unsat;
7431     break;
7432   case lltok::kw_byteArray:
7433     TTRes.TheKind = TypeTestResolution::ByteArray;
7434     break;
7435   case lltok::kw_inline:
7436     TTRes.TheKind = TypeTestResolution::Inline;
7437     break;
7438   case lltok::kw_single:
7439     TTRes.TheKind = TypeTestResolution::Single;
7440     break;
7441   case lltok::kw_allOnes:
7442     TTRes.TheKind = TypeTestResolution::AllOnes;
7443     break;
7444   default:
7445     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7446   }
7447   Lex.Lex();
7448 
7449   if (ParseToken(lltok::comma, "expected ',' here") ||
7450       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7451       ParseToken(lltok::colon, "expected ':' here") ||
7452       ParseUInt32(TTRes.SizeM1BitWidth))
7453     return true;
7454 
7455   // Parse optional fields
7456   while (EatIfPresent(lltok::comma)) {
7457     switch (Lex.getKind()) {
7458     case lltok::kw_alignLog2:
7459       Lex.Lex();
7460       if (ParseToken(lltok::colon, "expected ':'") ||
7461           ParseUInt64(TTRes.AlignLog2))
7462         return true;
7463       break;
7464     case lltok::kw_sizeM1:
7465       Lex.Lex();
7466       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7467         return true;
7468       break;
7469     case lltok::kw_bitMask: {
7470       unsigned Val;
7471       Lex.Lex();
7472       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7473         return true;
7474       assert(Val <= 0xff);
7475       TTRes.BitMask = (uint8_t)Val;
7476       break;
7477     }
7478     case lltok::kw_inlineBits:
7479       Lex.Lex();
7480       if (ParseToken(lltok::colon, "expected ':'") ||
7481           ParseUInt64(TTRes.InlineBits))
7482         return true;
7483       break;
7484     default:
7485       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7486     }
7487   }
7488 
7489   if (ParseToken(lltok::rparen, "expected ')' here"))
7490     return true;
7491 
7492   return false;
7493 }
7494 
7495 /// OptionalWpdResolutions
7496 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7497 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7498 bool LLParser::ParseOptionalWpdResolutions(
7499     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7500   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7501       ParseToken(lltok::colon, "expected ':' here") ||
7502       ParseToken(lltok::lparen, "expected '(' here"))
7503     return true;
7504 
7505   do {
7506     uint64_t Offset;
7507     WholeProgramDevirtResolution WPDRes;
7508     if (ParseToken(lltok::lparen, "expected '(' here") ||
7509         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7510         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7511         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7512         ParseToken(lltok::rparen, "expected ')' here"))
7513       return true;
7514     WPDResMap[Offset] = WPDRes;
7515   } while (EatIfPresent(lltok::comma));
7516 
7517   if (ParseToken(lltok::rparen, "expected ')' here"))
7518     return true;
7519 
7520   return false;
7521 }
7522 
7523 /// WpdRes
7524 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7525 ///         [',' OptionalResByArg]? ')'
7526 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7527 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7528 ///         [',' OptionalResByArg]? ')'
7529 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7530 ///         [',' OptionalResByArg]? ')'
7531 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7532   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7533       ParseToken(lltok::colon, "expected ':' here") ||
7534       ParseToken(lltok::lparen, "expected '(' here") ||
7535       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7536       ParseToken(lltok::colon, "expected ':' here"))
7537     return true;
7538 
7539   switch (Lex.getKind()) {
7540   case lltok::kw_indir:
7541     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7542     break;
7543   case lltok::kw_singleImpl:
7544     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7545     break;
7546   case lltok::kw_branchFunnel:
7547     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7548     break;
7549   default:
7550     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7551   }
7552   Lex.Lex();
7553 
7554   // Parse optional fields
7555   while (EatIfPresent(lltok::comma)) {
7556     switch (Lex.getKind()) {
7557     case lltok::kw_singleImplName:
7558       Lex.Lex();
7559       if (ParseToken(lltok::colon, "expected ':' here") ||
7560           ParseStringConstant(WPDRes.SingleImplName))
7561         return true;
7562       break;
7563     case lltok::kw_resByArg:
7564       if (ParseOptionalResByArg(WPDRes.ResByArg))
7565         return true;
7566       break;
7567     default:
7568       return Error(Lex.getLoc(),
7569                    "expected optional WholeProgramDevirtResolution field");
7570     }
7571   }
7572 
7573   if (ParseToken(lltok::rparen, "expected ')' here"))
7574     return true;
7575 
7576   return false;
7577 }
7578 
7579 /// OptionalResByArg
7580 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7581 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7582 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7583 ///                  'virtualConstProp' )
7584 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7585 ///                [',' 'bit' ':' UInt32]? ')'
7586 bool LLParser::ParseOptionalResByArg(
7587     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7588         &ResByArg) {
7589   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7590       ParseToken(lltok::colon, "expected ':' here") ||
7591       ParseToken(lltok::lparen, "expected '(' here"))
7592     return true;
7593 
7594   do {
7595     std::vector<uint64_t> Args;
7596     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7597         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7598         ParseToken(lltok::colon, "expected ':' here") ||
7599         ParseToken(lltok::lparen, "expected '(' here") ||
7600         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7601         ParseToken(lltok::colon, "expected ':' here"))
7602       return true;
7603 
7604     WholeProgramDevirtResolution::ByArg ByArg;
7605     switch (Lex.getKind()) {
7606     case lltok::kw_indir:
7607       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7608       break;
7609     case lltok::kw_uniformRetVal:
7610       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7611       break;
7612     case lltok::kw_uniqueRetVal:
7613       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7614       break;
7615     case lltok::kw_virtualConstProp:
7616       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7617       break;
7618     default:
7619       return Error(Lex.getLoc(),
7620                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7621     }
7622     Lex.Lex();
7623 
7624     // Parse optional fields
7625     while (EatIfPresent(lltok::comma)) {
7626       switch (Lex.getKind()) {
7627       case lltok::kw_info:
7628         Lex.Lex();
7629         if (ParseToken(lltok::colon, "expected ':' here") ||
7630             ParseUInt64(ByArg.Info))
7631           return true;
7632         break;
7633       case lltok::kw_byte:
7634         Lex.Lex();
7635         if (ParseToken(lltok::colon, "expected ':' here") ||
7636             ParseUInt32(ByArg.Byte))
7637           return true;
7638         break;
7639       case lltok::kw_bit:
7640         Lex.Lex();
7641         if (ParseToken(lltok::colon, "expected ':' here") ||
7642             ParseUInt32(ByArg.Bit))
7643           return true;
7644         break;
7645       default:
7646         return Error(Lex.getLoc(),
7647                      "expected optional whole program devirt field");
7648       }
7649     }
7650 
7651     if (ParseToken(lltok::rparen, "expected ')' here"))
7652       return true;
7653 
7654     ResByArg[Args] = ByArg;
7655   } while (EatIfPresent(lltok::comma));
7656 
7657   if (ParseToken(lltok::rparen, "expected ')' here"))
7658     return true;
7659 
7660   return false;
7661 }
7662 
7663 /// OptionalResByArg
7664 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7665 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7666   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7667       ParseToken(lltok::colon, "expected ':' here") ||
7668       ParseToken(lltok::lparen, "expected '(' here"))
7669     return true;
7670 
7671   do {
7672     uint64_t Val;
7673     if (ParseUInt64(Val))
7674       return true;
7675     Args.push_back(Val);
7676   } while (EatIfPresent(lltok::comma));
7677 
7678   if (ParseToken(lltok::rparen, "expected ')' here"))
7679     return true;
7680 
7681   return false;
7682 }
7683 
7684 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7685 
7686 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7687   bool ReadOnly = Fwd->isReadOnly();
7688   *Fwd = Resolved;
7689   if (ReadOnly)
7690     Fwd->setReadOnly();
7691 }
7692 
7693 /// Stores the given Name/GUID and associated summary into the Index.
7694 /// Also updates any forward references to the associated entry ID.
7695 void LLParser::AddGlobalValueToIndex(
7696     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7697     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7698   // First create the ValueInfo utilizing the Name or GUID.
7699   ValueInfo VI;
7700   if (GUID != 0) {
7701     assert(Name.empty());
7702     VI = Index->getOrInsertValueInfo(GUID);
7703   } else {
7704     assert(!Name.empty());
7705     if (M) {
7706       auto *GV = M->getNamedValue(Name);
7707       assert(GV);
7708       VI = Index->getOrInsertValueInfo(GV);
7709     } else {
7710       assert(
7711           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7712           "Need a source_filename to compute GUID for local");
7713       GUID = GlobalValue::getGUID(
7714           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7715       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7716     }
7717   }
7718 
7719   // Resolve forward references from calls/refs
7720   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7721   if (FwdRefVIs != ForwardRefValueInfos.end()) {
7722     for (auto VIRef : FwdRefVIs->second) {
7723       assert(VIRef.first->getRef() == FwdVIRef &&
7724              "Forward referenced ValueInfo expected to be empty");
7725       resolveFwdRef(VIRef.first, VI);
7726     }
7727     ForwardRefValueInfos.erase(FwdRefVIs);
7728   }
7729 
7730   // Resolve forward references from aliases
7731   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7732   if (FwdRefAliasees != ForwardRefAliasees.end()) {
7733     for (auto AliaseeRef : FwdRefAliasees->second) {
7734       assert(!AliaseeRef.first->hasAliasee() &&
7735              "Forward referencing alias already has aliasee");
7736       assert(Summary && "Aliasee must be a definition");
7737       AliaseeRef.first->setAliasee(VI, Summary.get());
7738     }
7739     ForwardRefAliasees.erase(FwdRefAliasees);
7740   }
7741 
7742   // Add the summary if one was provided.
7743   if (Summary)
7744     Index->addGlobalValueSummary(VI, std::move(Summary));
7745 
7746   // Save the associated ValueInfo for use in later references by ID.
7747   if (ID == NumberedValueInfos.size())
7748     NumberedValueInfos.push_back(VI);
7749   else {
7750     // Handle non-continuous numbers (to make test simplification easier).
7751     if (ID > NumberedValueInfos.size())
7752       NumberedValueInfos.resize(ID + 1);
7753     NumberedValueInfos[ID] = VI;
7754   }
7755 }
7756 
7757 /// ParseGVEntry
7758 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7759 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7760 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
7761 bool LLParser::ParseGVEntry(unsigned ID) {
7762   assert(Lex.getKind() == lltok::kw_gv);
7763   Lex.Lex();
7764 
7765   if (ParseToken(lltok::colon, "expected ':' here") ||
7766       ParseToken(lltok::lparen, "expected '(' here"))
7767     return true;
7768 
7769   std::string Name;
7770   GlobalValue::GUID GUID = 0;
7771   switch (Lex.getKind()) {
7772   case lltok::kw_name:
7773     Lex.Lex();
7774     if (ParseToken(lltok::colon, "expected ':' here") ||
7775         ParseStringConstant(Name))
7776       return true;
7777     // Can't create GUID/ValueInfo until we have the linkage.
7778     break;
7779   case lltok::kw_guid:
7780     Lex.Lex();
7781     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
7782       return true;
7783     break;
7784   default:
7785     return Error(Lex.getLoc(), "expected name or guid tag");
7786   }
7787 
7788   if (!EatIfPresent(lltok::comma)) {
7789     // No summaries. Wrap up.
7790     if (ParseToken(lltok::rparen, "expected ')' here"))
7791       return true;
7792     // This was created for a call to an external or indirect target.
7793     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
7794     // created for indirect calls with VP. A Name with no GUID came from
7795     // an external definition. We pass ExternalLinkage since that is only
7796     // used when the GUID must be computed from Name, and in that case
7797     // the symbol must have external linkage.
7798     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
7799                           nullptr);
7800     return false;
7801   }
7802 
7803   // Have a list of summaries
7804   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
7805       ParseToken(lltok::colon, "expected ':' here"))
7806     return true;
7807 
7808   do {
7809     if (ParseToken(lltok::lparen, "expected '(' here"))
7810       return true;
7811     switch (Lex.getKind()) {
7812     case lltok::kw_function:
7813       if (ParseFunctionSummary(Name, GUID, ID))
7814         return true;
7815       break;
7816     case lltok::kw_variable:
7817       if (ParseVariableSummary(Name, GUID, ID))
7818         return true;
7819       break;
7820     case lltok::kw_alias:
7821       if (ParseAliasSummary(Name, GUID, ID))
7822         return true;
7823       break;
7824     default:
7825       return Error(Lex.getLoc(), "expected summary type");
7826     }
7827     if (ParseToken(lltok::rparen, "expected ')' here"))
7828       return true;
7829   } while (EatIfPresent(lltok::comma));
7830 
7831   if (ParseToken(lltok::rparen, "expected ')' here"))
7832     return true;
7833 
7834   return false;
7835 }
7836 
7837 /// FunctionSummary
7838 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7839 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
7840 ///         [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
7841 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
7842                                     unsigned ID) {
7843   assert(Lex.getKind() == lltok::kw_function);
7844   Lex.Lex();
7845 
7846   StringRef ModulePath;
7847   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7848       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7849       /*Live=*/false, /*IsLocal=*/false);
7850   unsigned InstCount;
7851   std::vector<FunctionSummary::EdgeTy> Calls;
7852   FunctionSummary::TypeIdInfo TypeIdInfo;
7853   std::vector<ValueInfo> Refs;
7854   // Default is all-zeros (conservative values).
7855   FunctionSummary::FFlags FFlags = {};
7856   if (ParseToken(lltok::colon, "expected ':' here") ||
7857       ParseToken(lltok::lparen, "expected '(' here") ||
7858       ParseModuleReference(ModulePath) ||
7859       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7860       ParseToken(lltok::comma, "expected ',' here") ||
7861       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
7862       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
7863     return true;
7864 
7865   // Parse optional fields
7866   while (EatIfPresent(lltok::comma)) {
7867     switch (Lex.getKind()) {
7868     case lltok::kw_funcFlags:
7869       if (ParseOptionalFFlags(FFlags))
7870         return true;
7871       break;
7872     case lltok::kw_calls:
7873       if (ParseOptionalCalls(Calls))
7874         return true;
7875       break;
7876     case lltok::kw_typeIdInfo:
7877       if (ParseOptionalTypeIdInfo(TypeIdInfo))
7878         return true;
7879       break;
7880     case lltok::kw_refs:
7881       if (ParseOptionalRefs(Refs))
7882         return true;
7883       break;
7884     default:
7885       return Error(Lex.getLoc(), "expected optional function summary field");
7886     }
7887   }
7888 
7889   if (ParseToken(lltok::rparen, "expected ')' here"))
7890     return true;
7891 
7892   auto FS = llvm::make_unique<FunctionSummary>(
7893       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
7894       std::move(Calls), std::move(TypeIdInfo.TypeTests),
7895       std::move(TypeIdInfo.TypeTestAssumeVCalls),
7896       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
7897       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
7898       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
7899 
7900   FS->setModulePath(ModulePath);
7901 
7902   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7903                         ID, std::move(FS));
7904 
7905   return false;
7906 }
7907 
7908 /// VariableSummary
7909 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7910 ///         [',' OptionalRefs]? ')'
7911 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
7912                                     unsigned ID) {
7913   assert(Lex.getKind() == lltok::kw_variable);
7914   Lex.Lex();
7915 
7916   StringRef ModulePath;
7917   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7918       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7919       /*Live=*/false, /*IsLocal=*/false);
7920   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false);
7921   std::vector<ValueInfo> Refs;
7922   if (ParseToken(lltok::colon, "expected ':' here") ||
7923       ParseToken(lltok::lparen, "expected '(' here") ||
7924       ParseModuleReference(ModulePath) ||
7925       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7926       ParseToken(lltok::comma, "expected ',' here") ||
7927       ParseGVarFlags(GVarFlags))
7928     return true;
7929 
7930   // Parse optional refs field
7931   if (EatIfPresent(lltok::comma)) {
7932     if (ParseOptionalRefs(Refs))
7933       return true;
7934   }
7935 
7936   if (ParseToken(lltok::rparen, "expected ')' here"))
7937     return true;
7938 
7939   auto GS =
7940       llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
7941 
7942   GS->setModulePath(ModulePath);
7943 
7944   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7945                         ID, std::move(GS));
7946 
7947   return false;
7948 }
7949 
7950 /// AliasSummary
7951 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
7952 ///         'aliasee' ':' GVReference ')'
7953 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
7954                                  unsigned ID) {
7955   assert(Lex.getKind() == lltok::kw_alias);
7956   LocTy Loc = Lex.getLoc();
7957   Lex.Lex();
7958 
7959   StringRef ModulePath;
7960   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7961       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7962       /*Live=*/false, /*IsLocal=*/false);
7963   if (ParseToken(lltok::colon, "expected ':' here") ||
7964       ParseToken(lltok::lparen, "expected '(' here") ||
7965       ParseModuleReference(ModulePath) ||
7966       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7967       ParseToken(lltok::comma, "expected ',' here") ||
7968       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
7969       ParseToken(lltok::colon, "expected ':' here"))
7970     return true;
7971 
7972   ValueInfo AliaseeVI;
7973   unsigned GVId;
7974   if (ParseGVReference(AliaseeVI, GVId))
7975     return true;
7976 
7977   if (ParseToken(lltok::rparen, "expected ')' here"))
7978     return true;
7979 
7980   auto AS = llvm::make_unique<AliasSummary>(GVFlags);
7981 
7982   AS->setModulePath(ModulePath);
7983 
7984   // Record forward reference if the aliasee is not parsed yet.
7985   if (AliaseeVI.getRef() == FwdVIRef) {
7986     auto FwdRef = ForwardRefAliasees.insert(
7987         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
7988     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
7989   } else {
7990     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
7991     assert(Summary && "Aliasee must be a definition");
7992     AS->setAliasee(AliaseeVI, Summary);
7993   }
7994 
7995   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7996                         ID, std::move(AS));
7997 
7998   return false;
7999 }
8000 
8001 /// Flag
8002 ///   ::= [0|1]
8003 bool LLParser::ParseFlag(unsigned &Val) {
8004   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8005     return TokError("expected integer");
8006   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8007   Lex.Lex();
8008   return false;
8009 }
8010 
8011 /// OptionalFFlags
8012 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8013 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8014 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8015 ///        [',' 'noInline' ':' Flag]? ')'
8016 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8017   assert(Lex.getKind() == lltok::kw_funcFlags);
8018   Lex.Lex();
8019 
8020   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8021       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8022     return true;
8023 
8024   do {
8025     unsigned Val;
8026     switch (Lex.getKind()) {
8027     case lltok::kw_readNone:
8028       Lex.Lex();
8029       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8030         return true;
8031       FFlags.ReadNone = Val;
8032       break;
8033     case lltok::kw_readOnly:
8034       Lex.Lex();
8035       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8036         return true;
8037       FFlags.ReadOnly = Val;
8038       break;
8039     case lltok::kw_noRecurse:
8040       Lex.Lex();
8041       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8042         return true;
8043       FFlags.NoRecurse = Val;
8044       break;
8045     case lltok::kw_returnDoesNotAlias:
8046       Lex.Lex();
8047       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8048         return true;
8049       FFlags.ReturnDoesNotAlias = Val;
8050       break;
8051     case lltok::kw_noInline:
8052       Lex.Lex();
8053       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8054         return true;
8055       FFlags.NoInline = Val;
8056       break;
8057     default:
8058       return Error(Lex.getLoc(), "expected function flag type");
8059     }
8060   } while (EatIfPresent(lltok::comma));
8061 
8062   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8063     return true;
8064 
8065   return false;
8066 }
8067 
8068 /// OptionalCalls
8069 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8070 /// Call ::= '(' 'callee' ':' GVReference
8071 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8072 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8073   assert(Lex.getKind() == lltok::kw_calls);
8074   Lex.Lex();
8075 
8076   if (ParseToken(lltok::colon, "expected ':' in calls") |
8077       ParseToken(lltok::lparen, "expected '(' in calls"))
8078     return true;
8079 
8080   IdToIndexMapType IdToIndexMap;
8081   // Parse each call edge
8082   do {
8083     ValueInfo VI;
8084     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8085         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8086         ParseToken(lltok::colon, "expected ':'"))
8087       return true;
8088 
8089     LocTy Loc = Lex.getLoc();
8090     unsigned GVId;
8091     if (ParseGVReference(VI, GVId))
8092       return true;
8093 
8094     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8095     unsigned RelBF = 0;
8096     if (EatIfPresent(lltok::comma)) {
8097       // Expect either hotness or relbf
8098       if (EatIfPresent(lltok::kw_hotness)) {
8099         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8100           return true;
8101       } else {
8102         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8103             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8104           return true;
8105       }
8106     }
8107     // Keep track of the Call array index needing a forward reference.
8108     // We will save the location of the ValueInfo needing an update, but
8109     // can only do so once the std::vector is finalized.
8110     if (VI.getRef() == FwdVIRef)
8111       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8112     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8113 
8114     if (ParseToken(lltok::rparen, "expected ')' in call"))
8115       return true;
8116   } while (EatIfPresent(lltok::comma));
8117 
8118   // Now that the Calls vector is finalized, it is safe to save the locations
8119   // of any forward GV references that need updating later.
8120   for (auto I : IdToIndexMap) {
8121     for (auto P : I.second) {
8122       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8123              "Forward referenced ValueInfo expected to be empty");
8124       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8125           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8126       FwdRef.first->second.push_back(
8127           std::make_pair(&Calls[P.first].first, P.second));
8128     }
8129   }
8130 
8131   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8132     return true;
8133 
8134   return false;
8135 }
8136 
8137 /// Hotness
8138 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8139 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8140   switch (Lex.getKind()) {
8141   case lltok::kw_unknown:
8142     Hotness = CalleeInfo::HotnessType::Unknown;
8143     break;
8144   case lltok::kw_cold:
8145     Hotness = CalleeInfo::HotnessType::Cold;
8146     break;
8147   case lltok::kw_none:
8148     Hotness = CalleeInfo::HotnessType::None;
8149     break;
8150   case lltok::kw_hot:
8151     Hotness = CalleeInfo::HotnessType::Hot;
8152     break;
8153   case lltok::kw_critical:
8154     Hotness = CalleeInfo::HotnessType::Critical;
8155     break;
8156   default:
8157     return Error(Lex.getLoc(), "invalid call edge hotness");
8158   }
8159   Lex.Lex();
8160   return false;
8161 }
8162 
8163 /// OptionalRefs
8164 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8165 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8166   assert(Lex.getKind() == lltok::kw_refs);
8167   Lex.Lex();
8168 
8169   if (ParseToken(lltok::colon, "expected ':' in refs") |
8170       ParseToken(lltok::lparen, "expected '(' in refs"))
8171     return true;
8172 
8173   struct ValueContext {
8174     ValueInfo VI;
8175     unsigned GVId;
8176     LocTy Loc;
8177   };
8178   std::vector<ValueContext> VContexts;
8179   // Parse each ref edge
8180   do {
8181     ValueContext VC;
8182     VC.Loc = Lex.getLoc();
8183     if (ParseGVReference(VC.VI, VC.GVId))
8184       return true;
8185     VContexts.push_back(VC);
8186   } while (EatIfPresent(lltok::comma));
8187 
8188   // Sort value contexts so that ones with readonly ValueInfo are at the end
8189   // of VContexts vector. This is needed to match immutableRefCount() behavior.
8190   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8191     return VC1.VI.isReadOnly() < VC2.VI.isReadOnly();
8192   });
8193 
8194   IdToIndexMapType IdToIndexMap;
8195   for (auto &VC : VContexts) {
8196     // Keep track of the Refs array index needing a forward reference.
8197     // We will save the location of the ValueInfo needing an update, but
8198     // can only do so once the std::vector is finalized.
8199     if (VC.VI.getRef() == FwdVIRef)
8200       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8201     Refs.push_back(VC.VI);
8202   }
8203 
8204   // Now that the Refs vector is finalized, it is safe to save the locations
8205   // of any forward GV references that need updating later.
8206   for (auto I : IdToIndexMap) {
8207     for (auto P : I.second) {
8208       assert(Refs[P.first].getRef() == FwdVIRef &&
8209              "Forward referenced ValueInfo expected to be empty");
8210       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8211           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8212       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8213     }
8214   }
8215 
8216   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8217     return true;
8218 
8219   return false;
8220 }
8221 
8222 /// OptionalTypeIdInfo
8223 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8224 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8225 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8226 bool LLParser::ParseOptionalTypeIdInfo(
8227     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8228   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8229   Lex.Lex();
8230 
8231   if (ParseToken(lltok::colon, "expected ':' here") ||
8232       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8233     return true;
8234 
8235   do {
8236     switch (Lex.getKind()) {
8237     case lltok::kw_typeTests:
8238       if (ParseTypeTests(TypeIdInfo.TypeTests))
8239         return true;
8240       break;
8241     case lltok::kw_typeTestAssumeVCalls:
8242       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8243                            TypeIdInfo.TypeTestAssumeVCalls))
8244         return true;
8245       break;
8246     case lltok::kw_typeCheckedLoadVCalls:
8247       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8248                            TypeIdInfo.TypeCheckedLoadVCalls))
8249         return true;
8250       break;
8251     case lltok::kw_typeTestAssumeConstVCalls:
8252       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8253                               TypeIdInfo.TypeTestAssumeConstVCalls))
8254         return true;
8255       break;
8256     case lltok::kw_typeCheckedLoadConstVCalls:
8257       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8258                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8259         return true;
8260       break;
8261     default:
8262       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8263     }
8264   } while (EatIfPresent(lltok::comma));
8265 
8266   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8267     return true;
8268 
8269   return false;
8270 }
8271 
8272 /// TypeTests
8273 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8274 ///         [',' (SummaryID | UInt64)]* ')'
8275 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8276   assert(Lex.getKind() == lltok::kw_typeTests);
8277   Lex.Lex();
8278 
8279   if (ParseToken(lltok::colon, "expected ':' here") ||
8280       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8281     return true;
8282 
8283   IdToIndexMapType IdToIndexMap;
8284   do {
8285     GlobalValue::GUID GUID = 0;
8286     if (Lex.getKind() == lltok::SummaryID) {
8287       unsigned ID = Lex.getUIntVal();
8288       LocTy Loc = Lex.getLoc();
8289       // Keep track of the TypeTests array index needing a forward reference.
8290       // We will save the location of the GUID needing an update, but
8291       // can only do so once the std::vector is finalized.
8292       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8293       Lex.Lex();
8294     } else if (ParseUInt64(GUID))
8295       return true;
8296     TypeTests.push_back(GUID);
8297   } while (EatIfPresent(lltok::comma));
8298 
8299   // Now that the TypeTests vector is finalized, it is safe to save the
8300   // locations of any forward GV references that need updating later.
8301   for (auto I : IdToIndexMap) {
8302     for (auto P : I.second) {
8303       assert(TypeTests[P.first] == 0 &&
8304              "Forward referenced type id GUID expected to be 0");
8305       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8306           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8307       FwdRef.first->second.push_back(
8308           std::make_pair(&TypeTests[P.first], P.second));
8309     }
8310   }
8311 
8312   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8313     return true;
8314 
8315   return false;
8316 }
8317 
8318 /// VFuncIdList
8319 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8320 bool LLParser::ParseVFuncIdList(
8321     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8322   assert(Lex.getKind() == Kind);
8323   Lex.Lex();
8324 
8325   if (ParseToken(lltok::colon, "expected ':' here") ||
8326       ParseToken(lltok::lparen, "expected '(' here"))
8327     return true;
8328 
8329   IdToIndexMapType IdToIndexMap;
8330   do {
8331     FunctionSummary::VFuncId VFuncId;
8332     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8333       return true;
8334     VFuncIdList.push_back(VFuncId);
8335   } while (EatIfPresent(lltok::comma));
8336 
8337   if (ParseToken(lltok::rparen, "expected ')' here"))
8338     return true;
8339 
8340   // Now that the VFuncIdList vector is finalized, it is safe to save the
8341   // locations of any forward GV references that need updating later.
8342   for (auto I : IdToIndexMap) {
8343     for (auto P : I.second) {
8344       assert(VFuncIdList[P.first].GUID == 0 &&
8345              "Forward referenced type id GUID expected to be 0");
8346       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8347           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8348       FwdRef.first->second.push_back(
8349           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8350     }
8351   }
8352 
8353   return false;
8354 }
8355 
8356 /// ConstVCallList
8357 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8358 bool LLParser::ParseConstVCallList(
8359     lltok::Kind Kind,
8360     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8361   assert(Lex.getKind() == Kind);
8362   Lex.Lex();
8363 
8364   if (ParseToken(lltok::colon, "expected ':' here") ||
8365       ParseToken(lltok::lparen, "expected '(' here"))
8366     return true;
8367 
8368   IdToIndexMapType IdToIndexMap;
8369   do {
8370     FunctionSummary::ConstVCall ConstVCall;
8371     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8372       return true;
8373     ConstVCallList.push_back(ConstVCall);
8374   } while (EatIfPresent(lltok::comma));
8375 
8376   if (ParseToken(lltok::rparen, "expected ')' here"))
8377     return true;
8378 
8379   // Now that the ConstVCallList vector is finalized, it is safe to save the
8380   // locations of any forward GV references that need updating later.
8381   for (auto I : IdToIndexMap) {
8382     for (auto P : I.second) {
8383       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8384              "Forward referenced type id GUID expected to be 0");
8385       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8386           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8387       FwdRef.first->second.push_back(
8388           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8389     }
8390   }
8391 
8392   return false;
8393 }
8394 
8395 /// ConstVCall
8396 ///   ::= '(' VFuncId ',' Args ')'
8397 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8398                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8399   if (ParseToken(lltok::lparen, "expected '(' here") ||
8400       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8401     return true;
8402 
8403   if (EatIfPresent(lltok::comma))
8404     if (ParseArgs(ConstVCall.Args))
8405       return true;
8406 
8407   if (ParseToken(lltok::rparen, "expected ')' here"))
8408     return true;
8409 
8410   return false;
8411 }
8412 
8413 /// VFuncId
8414 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8415 ///         'offset' ':' UInt64 ')'
8416 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8417                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
8418   assert(Lex.getKind() == lltok::kw_vFuncId);
8419   Lex.Lex();
8420 
8421   if (ParseToken(lltok::colon, "expected ':' here") ||
8422       ParseToken(lltok::lparen, "expected '(' here"))
8423     return true;
8424 
8425   if (Lex.getKind() == lltok::SummaryID) {
8426     VFuncId.GUID = 0;
8427     unsigned ID = Lex.getUIntVal();
8428     LocTy Loc = Lex.getLoc();
8429     // Keep track of the array index needing a forward reference.
8430     // We will save the location of the GUID needing an update, but
8431     // can only do so once the caller's std::vector is finalized.
8432     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8433     Lex.Lex();
8434   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8435              ParseToken(lltok::colon, "expected ':' here") ||
8436              ParseUInt64(VFuncId.GUID))
8437     return true;
8438 
8439   if (ParseToken(lltok::comma, "expected ',' here") ||
8440       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8441       ParseToken(lltok::colon, "expected ':' here") ||
8442       ParseUInt64(VFuncId.Offset) ||
8443       ParseToken(lltok::rparen, "expected ')' here"))
8444     return true;
8445 
8446   return false;
8447 }
8448 
8449 /// GVFlags
8450 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8451 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8452 ///         'dsoLocal' ':' Flag ')'
8453 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8454   assert(Lex.getKind() == lltok::kw_flags);
8455   Lex.Lex();
8456 
8457   bool HasLinkage;
8458   if (ParseToken(lltok::colon, "expected ':' here") ||
8459       ParseToken(lltok::lparen, "expected '(' here") ||
8460       ParseToken(lltok::kw_linkage, "expected 'linkage' here") ||
8461       ParseToken(lltok::colon, "expected ':' here"))
8462     return true;
8463 
8464   GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8465   assert(HasLinkage && "Linkage not optional in summary entry");
8466   Lex.Lex();
8467 
8468   unsigned Flag;
8469   if (ParseToken(lltok::comma, "expected ',' here") ||
8470       ParseToken(lltok::kw_notEligibleToImport,
8471                  "expected 'notEligibleToImport' here") ||
8472       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8473     return true;
8474   GVFlags.NotEligibleToImport = Flag;
8475 
8476   if (ParseToken(lltok::comma, "expected ',' here") ||
8477       ParseToken(lltok::kw_live, "expected 'live' here") ||
8478       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8479     return true;
8480   GVFlags.Live = Flag;
8481 
8482   if (ParseToken(lltok::comma, "expected ',' here") ||
8483       ParseToken(lltok::kw_dsoLocal, "expected 'dsoLocal' here") ||
8484       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8485     return true;
8486   GVFlags.DSOLocal = Flag;
8487 
8488   if (ParseToken(lltok::rparen, "expected ')' here"))
8489     return true;
8490 
8491   return false;
8492 }
8493 
8494 /// GVarFlags
8495 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag ')'
8496 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8497   assert(Lex.getKind() == lltok::kw_varFlags);
8498   Lex.Lex();
8499 
8500   unsigned Flag;
8501   if (ParseToken(lltok::colon, "expected ':' here") ||
8502       ParseToken(lltok::lparen, "expected '(' here") ||
8503       ParseToken(lltok::kw_readonly, "expected 'readonly' here") ||
8504       ParseToken(lltok::colon, "expected ':' here"))
8505     return true;
8506 
8507   ParseFlag(Flag);
8508   GVarFlags.ReadOnly = Flag;
8509 
8510   if (ParseToken(lltok::rparen, "expected ')' here"))
8511     return true;
8512   return false;
8513 }
8514 
8515 /// ModuleReference
8516 ///   ::= 'module' ':' UInt
8517 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8518   // Parse module id.
8519   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8520       ParseToken(lltok::colon, "expected ':' here") ||
8521       ParseToken(lltok::SummaryID, "expected module ID"))
8522     return true;
8523 
8524   unsigned ModuleID = Lex.getUIntVal();
8525   auto I = ModuleIdMap.find(ModuleID);
8526   // We should have already parsed all module IDs
8527   assert(I != ModuleIdMap.end());
8528   ModulePath = I->second;
8529   return false;
8530 }
8531 
8532 /// GVReference
8533 ///   ::= SummaryID
8534 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8535   bool ReadOnly = EatIfPresent(lltok::kw_readonly);
8536   if (ParseToken(lltok::SummaryID, "expected GV ID"))
8537     return true;
8538 
8539   GVId = Lex.getUIntVal();
8540   // Check if we already have a VI for this GV
8541   if (GVId < NumberedValueInfos.size()) {
8542     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8543     VI = NumberedValueInfos[GVId];
8544   } else
8545     // We will create a forward reference to the stored location.
8546     VI = ValueInfo(false, FwdVIRef);
8547 
8548   if (ReadOnly)
8549     VI.setReadOnly();
8550   return false;
8551 }
8552