1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/AutoUpgrade.h" 17 #include "llvm/IR/CallingConv.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/InlineAsm.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/ValueSymbolTable.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/raw_ostream.h" 28 using namespace llvm; 29 30 static std::string getTypeString(Type *T) { 31 std::string Result; 32 raw_string_ostream Tmp(Result); 33 Tmp << *T; 34 return Tmp.str(); 35 } 36 37 /// Run: module ::= toplevelentity* 38 bool LLParser::Run() { 39 // Prime the lexer. 40 Lex.Lex(); 41 42 return ParseTopLevelEntities() || 43 ValidateEndOfModule(); 44 } 45 46 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 47 /// module. 48 bool LLParser::ValidateEndOfModule() { 49 // Handle any instruction metadata forward references. 50 if (!ForwardRefInstMetadata.empty()) { 51 for (DenseMap<Instruction*, std::vector<MDRef> >::iterator 52 I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end(); 53 I != E; ++I) { 54 Instruction *Inst = I->first; 55 const std::vector<MDRef> &MDList = I->second; 56 57 for (unsigned i = 0, e = MDList.size(); i != e; ++i) { 58 unsigned SlotNo = MDList[i].MDSlot; 59 60 if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0) 61 return Error(MDList[i].Loc, "use of undefined metadata '!" + 62 Twine(SlotNo) + "'"); 63 Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]); 64 } 65 } 66 ForwardRefInstMetadata.clear(); 67 } 68 69 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 70 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 71 72 // Handle any function attribute group forward references. 73 for (std::map<Value*, std::vector<unsigned> >::iterator 74 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end(); 75 I != E; ++I) { 76 Value *V = I->first; 77 std::vector<unsigned> &Vec = I->second; 78 AttrBuilder B; 79 80 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end(); 81 VI != VE; ++VI) 82 B.merge(NumberedAttrBuilders[*VI]); 83 84 if (Function *Fn = dyn_cast<Function>(V)) { 85 AttributeSet AS = Fn->getAttributes(); 86 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 87 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 88 AS.getFnAttributes()); 89 90 FnAttrs.merge(B); 91 92 // If the alignment was parsed as an attribute, move to the alignment 93 // field. 94 if (FnAttrs.hasAlignmentAttr()) { 95 Fn->setAlignment(FnAttrs.getAlignment()); 96 FnAttrs.removeAttribute(Attribute::Alignment); 97 } 98 99 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 100 AttributeSet::get(Context, 101 AttributeSet::FunctionIndex, 102 FnAttrs)); 103 Fn->setAttributes(AS); 104 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 105 AttributeSet AS = CI->getAttributes(); 106 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 107 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 108 AS.getFnAttributes()); 109 FnAttrs.merge(B); 110 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 111 AttributeSet::get(Context, 112 AttributeSet::FunctionIndex, 113 FnAttrs)); 114 CI->setAttributes(AS); 115 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 116 AttributeSet AS = II->getAttributes(); 117 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 118 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 119 AS.getFnAttributes()); 120 FnAttrs.merge(B); 121 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 122 AttributeSet::get(Context, 123 AttributeSet::FunctionIndex, 124 FnAttrs)); 125 II->setAttributes(AS); 126 } else { 127 llvm_unreachable("invalid object with forward attribute group reference"); 128 } 129 } 130 131 // If there are entries in ForwardRefBlockAddresses at this point, they are 132 // references after the function was defined. Resolve those now. 133 while (!ForwardRefBlockAddresses.empty()) { 134 // Okay, we are referencing an already-parsed function, resolve them now. 135 Function *TheFn = 0; 136 const ValID &Fn = ForwardRefBlockAddresses.begin()->first; 137 if (Fn.Kind == ValID::t_GlobalName) 138 TheFn = M->getFunction(Fn.StrVal); 139 else if (Fn.UIntVal < NumberedVals.size()) 140 TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]); 141 142 if (TheFn == 0) 143 return Error(Fn.Loc, "unknown function referenced by blockaddress"); 144 145 // Resolve all these references. 146 if (ResolveForwardRefBlockAddresses(TheFn, 147 ForwardRefBlockAddresses.begin()->second, 148 0)) 149 return true; 150 151 ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin()); 152 } 153 154 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) 155 if (NumberedTypes[i].second.isValid()) 156 return Error(NumberedTypes[i].second, 157 "use of undefined type '%" + Twine(i) + "'"); 158 159 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 160 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 161 if (I->second.second.isValid()) 162 return Error(I->second.second, 163 "use of undefined type named '" + I->getKey() + "'"); 164 165 if (!ForwardRefVals.empty()) 166 return Error(ForwardRefVals.begin()->second.second, 167 "use of undefined value '@" + ForwardRefVals.begin()->first + 168 "'"); 169 170 if (!ForwardRefValIDs.empty()) 171 return Error(ForwardRefValIDs.begin()->second.second, 172 "use of undefined value '@" + 173 Twine(ForwardRefValIDs.begin()->first) + "'"); 174 175 if (!ForwardRefMDNodes.empty()) 176 return Error(ForwardRefMDNodes.begin()->second.second, 177 "use of undefined metadata '!" + 178 Twine(ForwardRefMDNodes.begin()->first) + "'"); 179 180 181 // Look for intrinsic functions and CallInst that need to be upgraded 182 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 183 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove 184 185 UpgradeDebugInfo(*M); 186 187 return false; 188 } 189 190 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn, 191 std::vector<std::pair<ValID, GlobalValue*> > &Refs, 192 PerFunctionState *PFS) { 193 // Loop over all the references, resolving them. 194 for (unsigned i = 0, e = Refs.size(); i != e; ++i) { 195 BasicBlock *Res; 196 if (PFS) { 197 if (Refs[i].first.Kind == ValID::t_LocalName) 198 Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc); 199 else 200 Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc); 201 } else if (Refs[i].first.Kind == ValID::t_LocalID) { 202 return Error(Refs[i].first.Loc, 203 "cannot take address of numeric label after the function is defined"); 204 } else { 205 Res = dyn_cast_or_null<BasicBlock>( 206 TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal)); 207 } 208 209 if (Res == 0) 210 return Error(Refs[i].first.Loc, 211 "referenced value is not a basic block"); 212 213 // Get the BlockAddress for this and update references to use it. 214 BlockAddress *BA = BlockAddress::get(TheFn, Res); 215 Refs[i].second->replaceAllUsesWith(BA); 216 Refs[i].second->eraseFromParent(); 217 } 218 return false; 219 } 220 221 222 //===----------------------------------------------------------------------===// 223 // Top-Level Entities 224 //===----------------------------------------------------------------------===// 225 226 bool LLParser::ParseTopLevelEntities() { 227 while (1) { 228 switch (Lex.getKind()) { 229 default: return TokError("expected top-level entity"); 230 case lltok::Eof: return false; 231 case lltok::kw_declare: if (ParseDeclare()) return true; break; 232 case lltok::kw_define: if (ParseDefine()) return true; break; 233 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 234 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 235 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 236 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 237 case lltok::LocalVar: if (ParseNamedType()) return true; break; 238 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 239 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 240 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 241 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 242 243 // The Global variable production with no name can have many different 244 // optional leading prefixes, the production is: 245 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 246 // OptionalThreadLocal OptionalAddrSpace OptionalUnNammedAddr 247 // ('constant'|'global') ... 248 case lltok::kw_private: // OptionalLinkage 249 case lltok::kw_linker_private: // OptionalLinkage 250 case lltok::kw_linker_private_weak: // OptionalLinkage 251 case lltok::kw_internal: // OptionalLinkage 252 case lltok::kw_weak: // OptionalLinkage 253 case lltok::kw_weak_odr: // OptionalLinkage 254 case lltok::kw_linkonce: // OptionalLinkage 255 case lltok::kw_linkonce_odr: // OptionalLinkage 256 case lltok::kw_appending: // OptionalLinkage 257 case lltok::kw_common: // OptionalLinkage 258 case lltok::kw_extern_weak: // OptionalLinkage 259 case lltok::kw_external: { // OptionalLinkage 260 unsigned Linkage, Visibility, DLLStorageClass; 261 if (ParseOptionalLinkage(Linkage) || 262 ParseOptionalVisibility(Visibility) || 263 ParseOptionalDLLStorageClass(DLLStorageClass) || 264 ParseGlobal("", SMLoc(), Linkage, true, Visibility, DLLStorageClass)) 265 return true; 266 break; 267 } 268 case lltok::kw_default: // OptionalVisibility 269 case lltok::kw_hidden: // OptionalVisibility 270 case lltok::kw_protected: { // OptionalVisibility 271 unsigned Visibility, DLLStorageClass; 272 if (ParseOptionalVisibility(Visibility) || 273 ParseOptionalDLLStorageClass(DLLStorageClass) || 274 ParseGlobal("", SMLoc(), 0, false, Visibility, DLLStorageClass)) 275 return true; 276 break; 277 } 278 279 case lltok::kw_thread_local: // OptionalThreadLocal 280 case lltok::kw_addrspace: // OptionalAddrSpace 281 case lltok::kw_constant: // GlobalType 282 case lltok::kw_global: // GlobalType 283 if (ParseGlobal("", SMLoc(), 0, false, 0, 0)) return true; 284 break; 285 286 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 287 } 288 } 289 } 290 291 292 /// toplevelentity 293 /// ::= 'module' 'asm' STRINGCONSTANT 294 bool LLParser::ParseModuleAsm() { 295 assert(Lex.getKind() == lltok::kw_module); 296 Lex.Lex(); 297 298 std::string AsmStr; 299 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 300 ParseStringConstant(AsmStr)) return true; 301 302 M->appendModuleInlineAsm(AsmStr); 303 return false; 304 } 305 306 /// toplevelentity 307 /// ::= 'target' 'triple' '=' STRINGCONSTANT 308 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 309 bool LLParser::ParseTargetDefinition() { 310 assert(Lex.getKind() == lltok::kw_target); 311 std::string Str; 312 switch (Lex.Lex()) { 313 default: return TokError("unknown target property"); 314 case lltok::kw_triple: 315 Lex.Lex(); 316 if (ParseToken(lltok::equal, "expected '=' after target triple") || 317 ParseStringConstant(Str)) 318 return true; 319 M->setTargetTriple(Str); 320 return false; 321 case lltok::kw_datalayout: 322 Lex.Lex(); 323 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 324 ParseStringConstant(Str)) 325 return true; 326 M->setDataLayout(Str); 327 return false; 328 } 329 } 330 331 /// toplevelentity 332 /// ::= 'deplibs' '=' '[' ']' 333 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 334 /// FIXME: Remove in 4.0. Currently parse, but ignore. 335 bool LLParser::ParseDepLibs() { 336 assert(Lex.getKind() == lltok::kw_deplibs); 337 Lex.Lex(); 338 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 339 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 340 return true; 341 342 if (EatIfPresent(lltok::rsquare)) 343 return false; 344 345 do { 346 std::string Str; 347 if (ParseStringConstant(Str)) return true; 348 } while (EatIfPresent(lltok::comma)); 349 350 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 351 } 352 353 /// ParseUnnamedType: 354 /// ::= LocalVarID '=' 'type' type 355 bool LLParser::ParseUnnamedType() { 356 LocTy TypeLoc = Lex.getLoc(); 357 unsigned TypeID = Lex.getUIntVal(); 358 Lex.Lex(); // eat LocalVarID; 359 360 if (ParseToken(lltok::equal, "expected '=' after name") || 361 ParseToken(lltok::kw_type, "expected 'type' after '='")) 362 return true; 363 364 if (TypeID >= NumberedTypes.size()) 365 NumberedTypes.resize(TypeID+1); 366 367 Type *Result = 0; 368 if (ParseStructDefinition(TypeLoc, "", 369 NumberedTypes[TypeID], Result)) return true; 370 371 if (!isa<StructType>(Result)) { 372 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 373 if (Entry.first) 374 return Error(TypeLoc, "non-struct types may not be recursive"); 375 Entry.first = Result; 376 Entry.second = SMLoc(); 377 } 378 379 return false; 380 } 381 382 383 /// toplevelentity 384 /// ::= LocalVar '=' 'type' type 385 bool LLParser::ParseNamedType() { 386 std::string Name = Lex.getStrVal(); 387 LocTy NameLoc = Lex.getLoc(); 388 Lex.Lex(); // eat LocalVar. 389 390 if (ParseToken(lltok::equal, "expected '=' after name") || 391 ParseToken(lltok::kw_type, "expected 'type' after name")) 392 return true; 393 394 Type *Result = 0; 395 if (ParseStructDefinition(NameLoc, Name, 396 NamedTypes[Name], Result)) return true; 397 398 if (!isa<StructType>(Result)) { 399 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 400 if (Entry.first) 401 return Error(NameLoc, "non-struct types may not be recursive"); 402 Entry.first = Result; 403 Entry.second = SMLoc(); 404 } 405 406 return false; 407 } 408 409 410 /// toplevelentity 411 /// ::= 'declare' FunctionHeader 412 bool LLParser::ParseDeclare() { 413 assert(Lex.getKind() == lltok::kw_declare); 414 Lex.Lex(); 415 416 Function *F; 417 return ParseFunctionHeader(F, false); 418 } 419 420 /// toplevelentity 421 /// ::= 'define' FunctionHeader '{' ... 422 bool LLParser::ParseDefine() { 423 assert(Lex.getKind() == lltok::kw_define); 424 Lex.Lex(); 425 426 Function *F; 427 return ParseFunctionHeader(F, true) || 428 ParseFunctionBody(*F); 429 } 430 431 /// ParseGlobalType 432 /// ::= 'constant' 433 /// ::= 'global' 434 bool LLParser::ParseGlobalType(bool &IsConstant) { 435 if (Lex.getKind() == lltok::kw_constant) 436 IsConstant = true; 437 else if (Lex.getKind() == lltok::kw_global) 438 IsConstant = false; 439 else { 440 IsConstant = false; 441 return TokError("expected 'global' or 'constant'"); 442 } 443 Lex.Lex(); 444 return false; 445 } 446 447 /// ParseUnnamedGlobal: 448 /// OptionalVisibility ALIAS ... 449 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass 450 /// ... -> global variable 451 /// GlobalID '=' OptionalVisibility ALIAS ... 452 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 453 /// ... -> global variable 454 bool LLParser::ParseUnnamedGlobal() { 455 unsigned VarID = NumberedVals.size(); 456 std::string Name; 457 LocTy NameLoc = Lex.getLoc(); 458 459 // Handle the GlobalID form. 460 if (Lex.getKind() == lltok::GlobalID) { 461 if (Lex.getUIntVal() != VarID) 462 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 463 Twine(VarID) + "'"); 464 Lex.Lex(); // eat GlobalID; 465 466 if (ParseToken(lltok::equal, "expected '=' after name")) 467 return true; 468 } 469 470 bool HasLinkage; 471 unsigned Linkage, Visibility, DLLStorageClass; 472 if (ParseOptionalLinkage(Linkage, HasLinkage) || 473 ParseOptionalVisibility(Visibility) || 474 ParseOptionalDLLStorageClass(DLLStorageClass)) 475 return true; 476 477 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 478 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 479 DLLStorageClass); 480 return ParseAlias(Name, NameLoc, Visibility, DLLStorageClass); 481 } 482 483 /// ParseNamedGlobal: 484 /// GlobalVar '=' OptionalVisibility ALIAS ... 485 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 486 /// ... -> global variable 487 bool LLParser::ParseNamedGlobal() { 488 assert(Lex.getKind() == lltok::GlobalVar); 489 LocTy NameLoc = Lex.getLoc(); 490 std::string Name = Lex.getStrVal(); 491 Lex.Lex(); 492 493 bool HasLinkage; 494 unsigned Linkage, Visibility, DLLStorageClass; 495 if (ParseToken(lltok::equal, "expected '=' in global variable") || 496 ParseOptionalLinkage(Linkage, HasLinkage) || 497 ParseOptionalVisibility(Visibility) || 498 ParseOptionalDLLStorageClass(DLLStorageClass)) 499 return true; 500 501 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 502 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 503 DLLStorageClass); 504 return ParseAlias(Name, NameLoc, Visibility, DLLStorageClass); 505 } 506 507 // MDString: 508 // ::= '!' STRINGCONSTANT 509 bool LLParser::ParseMDString(MDString *&Result) { 510 std::string Str; 511 if (ParseStringConstant(Str)) return true; 512 Result = MDString::get(Context, Str); 513 return false; 514 } 515 516 // MDNode: 517 // ::= '!' MDNodeNumber 518 // 519 /// This version of ParseMDNodeID returns the slot number and null in the case 520 /// of a forward reference. 521 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) { 522 // !{ ..., !42, ... } 523 if (ParseUInt32(SlotNo)) return true; 524 525 // Check existing MDNode. 526 if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0) 527 Result = NumberedMetadata[SlotNo]; 528 else 529 Result = 0; 530 return false; 531 } 532 533 bool LLParser::ParseMDNodeID(MDNode *&Result) { 534 // !{ ..., !42, ... } 535 unsigned MID = 0; 536 if (ParseMDNodeID(Result, MID)) return true; 537 538 // If not a forward reference, just return it now. 539 if (Result) return false; 540 541 // Otherwise, create MDNode forward reference. 542 MDNode *FwdNode = MDNode::getTemporary(Context, None); 543 ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc()); 544 545 if (NumberedMetadata.size() <= MID) 546 NumberedMetadata.resize(MID+1); 547 NumberedMetadata[MID] = FwdNode; 548 Result = FwdNode; 549 return false; 550 } 551 552 /// ParseNamedMetadata: 553 /// !foo = !{ !1, !2 } 554 bool LLParser::ParseNamedMetadata() { 555 assert(Lex.getKind() == lltok::MetadataVar); 556 std::string Name = Lex.getStrVal(); 557 Lex.Lex(); 558 559 if (ParseToken(lltok::equal, "expected '=' here") || 560 ParseToken(lltok::exclaim, "Expected '!' here") || 561 ParseToken(lltok::lbrace, "Expected '{' here")) 562 return true; 563 564 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 565 if (Lex.getKind() != lltok::rbrace) 566 do { 567 if (ParseToken(lltok::exclaim, "Expected '!' here")) 568 return true; 569 570 MDNode *N = 0; 571 if (ParseMDNodeID(N)) return true; 572 NMD->addOperand(N); 573 } while (EatIfPresent(lltok::comma)); 574 575 if (ParseToken(lltok::rbrace, "expected end of metadata node")) 576 return true; 577 578 return false; 579 } 580 581 /// ParseStandaloneMetadata: 582 /// !42 = !{...} 583 bool LLParser::ParseStandaloneMetadata() { 584 assert(Lex.getKind() == lltok::exclaim); 585 Lex.Lex(); 586 unsigned MetadataID = 0; 587 588 LocTy TyLoc; 589 Type *Ty = 0; 590 SmallVector<Value *, 16> Elts; 591 if (ParseUInt32(MetadataID) || 592 ParseToken(lltok::equal, "expected '=' here") || 593 ParseType(Ty, TyLoc) || 594 ParseToken(lltok::exclaim, "Expected '!' here") || 595 ParseToken(lltok::lbrace, "Expected '{' here") || 596 ParseMDNodeVector(Elts, NULL) || 597 ParseToken(lltok::rbrace, "expected end of metadata node")) 598 return true; 599 600 MDNode *Init = MDNode::get(Context, Elts); 601 602 // See if this was forward referenced, if so, handle it. 603 std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator 604 FI = ForwardRefMDNodes.find(MetadataID); 605 if (FI != ForwardRefMDNodes.end()) { 606 MDNode *Temp = FI->second.first; 607 Temp->replaceAllUsesWith(Init); 608 MDNode::deleteTemporary(Temp); 609 ForwardRefMDNodes.erase(FI); 610 611 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 612 } else { 613 if (MetadataID >= NumberedMetadata.size()) 614 NumberedMetadata.resize(MetadataID+1); 615 616 if (NumberedMetadata[MetadataID] != 0) 617 return TokError("Metadata id is already used"); 618 NumberedMetadata[MetadataID] = Init; 619 } 620 621 return false; 622 } 623 624 /// ParseAlias: 625 /// ::= GlobalVar '=' OptionalVisibility OptionalDLLStorageClass 'alias' 626 /// OptionalLinkage Aliasee 627 /// Aliasee 628 /// ::= TypeAndValue 629 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')' 630 /// ::= 'getelementptr' 'inbounds'? '(' ... ')' 631 /// 632 /// Everything through DLL storage class has already been parsed. 633 /// 634 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, 635 unsigned Visibility, unsigned DLLStorageClass) { 636 assert(Lex.getKind() == lltok::kw_alias); 637 Lex.Lex(); 638 LocTy LinkageLoc = Lex.getLoc(); 639 unsigned L; 640 if (ParseOptionalLinkage(L)) 641 return true; 642 643 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 644 645 if(!GlobalAlias::isValidLinkage(Linkage)) 646 return Error(LinkageLoc, "invalid linkage type for alias"); 647 648 Constant *Aliasee; 649 LocTy AliaseeLoc = Lex.getLoc(); 650 if (Lex.getKind() != lltok::kw_bitcast && 651 Lex.getKind() != lltok::kw_getelementptr) { 652 if (ParseGlobalTypeAndValue(Aliasee)) return true; 653 } else { 654 // The bitcast dest type is not present, it is implied by the dest type. 655 ValID ID; 656 if (ParseValID(ID)) return true; 657 if (ID.Kind != ValID::t_Constant) 658 return Error(AliaseeLoc, "invalid aliasee"); 659 Aliasee = ID.ConstantVal; 660 } 661 662 if (!Aliasee->getType()->isPointerTy()) 663 return Error(AliaseeLoc, "alias must have pointer type"); 664 665 // Okay, create the alias but do not insert it into the module yet. 666 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), 667 (GlobalValue::LinkageTypes)Linkage, Name, 668 Aliasee); 669 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 670 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 671 672 // See if this value already exists in the symbol table. If so, it is either 673 // a redefinition or a definition of a forward reference. 674 if (GlobalValue *Val = M->getNamedValue(Name)) { 675 // See if this was a redefinition. If so, there is no entry in 676 // ForwardRefVals. 677 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 678 I = ForwardRefVals.find(Name); 679 if (I == ForwardRefVals.end()) 680 return Error(NameLoc, "redefinition of global named '@" + Name + "'"); 681 682 // Otherwise, this was a definition of forward ref. Verify that types 683 // agree. 684 if (Val->getType() != GA->getType()) 685 return Error(NameLoc, 686 "forward reference and definition of alias have different types"); 687 688 // If they agree, just RAUW the old value with the alias and remove the 689 // forward ref info. 690 Val->replaceAllUsesWith(GA); 691 Val->eraseFromParent(); 692 ForwardRefVals.erase(I); 693 } 694 695 // Insert into the module, we know its name won't collide now. 696 M->getAliasList().push_back(GA); 697 assert(GA->getName() == Name && "Should not be a name conflict!"); 698 699 return false; 700 } 701 702 /// ParseGlobal 703 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 704 /// OptionalThreadLocal OptionalAddrSpace OptionalUnNammedAddr 705 /// OptionalExternallyInitialized GlobalType Type Const 706 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 707 /// OptionalThreadLocal OptionalAddrSpace OptionalUnNammedAddr 708 /// OptionalExternallyInitialized GlobalType Type Const 709 /// 710 /// Everything through visibility has been parsed already. 711 /// 712 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 713 unsigned Linkage, bool HasLinkage, 714 unsigned Visibility, unsigned DLLStorageClass) { 715 unsigned AddrSpace; 716 bool IsConstant, UnnamedAddr, IsExternallyInitialized; 717 GlobalVariable::ThreadLocalMode TLM; 718 LocTy UnnamedAddrLoc; 719 LocTy IsExternallyInitializedLoc; 720 LocTy TyLoc; 721 722 Type *Ty = 0; 723 if (ParseOptionalThreadLocal(TLM) || 724 ParseOptionalAddrSpace(AddrSpace) || 725 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 726 &UnnamedAddrLoc) || 727 ParseOptionalToken(lltok::kw_externally_initialized, 728 IsExternallyInitialized, 729 &IsExternallyInitializedLoc) || 730 ParseGlobalType(IsConstant) || 731 ParseType(Ty, TyLoc)) 732 return true; 733 734 // If the linkage is specified and is external, then no initializer is 735 // present. 736 Constant *Init = 0; 737 if (!HasLinkage || (Linkage != GlobalValue::ExternalWeakLinkage && 738 Linkage != GlobalValue::ExternalLinkage)) { 739 if (ParseGlobalValue(Ty, Init)) 740 return true; 741 } 742 743 if (Ty->isFunctionTy() || Ty->isLabelTy()) 744 return Error(TyLoc, "invalid type for global variable"); 745 746 GlobalVariable *GV = 0; 747 748 // See if the global was forward referenced, if so, use the global. 749 if (!Name.empty()) { 750 if (GlobalValue *GVal = M->getNamedValue(Name)) { 751 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal)) 752 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 753 GV = cast<GlobalVariable>(GVal); 754 } 755 } else { 756 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 757 I = ForwardRefValIDs.find(NumberedVals.size()); 758 if (I != ForwardRefValIDs.end()) { 759 GV = cast<GlobalVariable>(I->second.first); 760 ForwardRefValIDs.erase(I); 761 } 762 } 763 764 if (GV == 0) { 765 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0, 766 Name, 0, GlobalVariable::NotThreadLocal, 767 AddrSpace); 768 } else { 769 if (GV->getType()->getElementType() != Ty) 770 return Error(TyLoc, 771 "forward reference and definition of global have different types"); 772 773 // Move the forward-reference to the correct spot in the module. 774 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 775 } 776 777 if (Name.empty()) 778 NumberedVals.push_back(GV); 779 780 // Set the parsed properties on the global. 781 if (Init) 782 GV->setInitializer(Init); 783 GV->setConstant(IsConstant); 784 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 785 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 786 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 787 GV->setExternallyInitialized(IsExternallyInitialized); 788 GV->setThreadLocalMode(TLM); 789 GV->setUnnamedAddr(UnnamedAddr); 790 791 // Parse attributes on the global. 792 while (Lex.getKind() == lltok::comma) { 793 Lex.Lex(); 794 795 if (Lex.getKind() == lltok::kw_section) { 796 Lex.Lex(); 797 GV->setSection(Lex.getStrVal()); 798 if (ParseToken(lltok::StringConstant, "expected global section string")) 799 return true; 800 } else if (Lex.getKind() == lltok::kw_align) { 801 unsigned Alignment; 802 if (ParseOptionalAlignment(Alignment)) return true; 803 GV->setAlignment(Alignment); 804 } else { 805 TokError("unknown global variable property!"); 806 } 807 } 808 809 return false; 810 } 811 812 /// ParseUnnamedAttrGrp 813 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 814 bool LLParser::ParseUnnamedAttrGrp() { 815 assert(Lex.getKind() == lltok::kw_attributes); 816 LocTy AttrGrpLoc = Lex.getLoc(); 817 Lex.Lex(); 818 819 assert(Lex.getKind() == lltok::AttrGrpID); 820 unsigned VarID = Lex.getUIntVal(); 821 std::vector<unsigned> unused; 822 LocTy BuiltinLoc; 823 Lex.Lex(); 824 825 if (ParseToken(lltok::equal, "expected '=' here") || 826 ParseToken(lltok::lbrace, "expected '{' here") || 827 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 828 BuiltinLoc) || 829 ParseToken(lltok::rbrace, "expected end of attribute group")) 830 return true; 831 832 if (!NumberedAttrBuilders[VarID].hasAttributes()) 833 return Error(AttrGrpLoc, "attribute group has no attributes"); 834 835 return false; 836 } 837 838 /// ParseFnAttributeValuePairs 839 /// ::= <attr> | <attr> '=' <value> 840 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 841 std::vector<unsigned> &FwdRefAttrGrps, 842 bool inAttrGrp, LocTy &BuiltinLoc) { 843 bool HaveError = false; 844 845 B.clear(); 846 847 while (true) { 848 lltok::Kind Token = Lex.getKind(); 849 if (Token == lltok::kw_builtin) 850 BuiltinLoc = Lex.getLoc(); 851 switch (Token) { 852 default: 853 if (!inAttrGrp) return HaveError; 854 return Error(Lex.getLoc(), "unterminated attribute group"); 855 case lltok::rbrace: 856 // Finished. 857 return false; 858 859 case lltok::AttrGrpID: { 860 // Allow a function to reference an attribute group: 861 // 862 // define void @foo() #1 { ... } 863 if (inAttrGrp) 864 HaveError |= 865 Error(Lex.getLoc(), 866 "cannot have an attribute group reference in an attribute group"); 867 868 unsigned AttrGrpNum = Lex.getUIntVal(); 869 if (inAttrGrp) break; 870 871 // Save the reference to the attribute group. We'll fill it in later. 872 FwdRefAttrGrps.push_back(AttrGrpNum); 873 break; 874 } 875 // Target-dependent attributes: 876 case lltok::StringConstant: { 877 std::string Attr = Lex.getStrVal(); 878 Lex.Lex(); 879 std::string Val; 880 if (EatIfPresent(lltok::equal) && 881 ParseStringConstant(Val)) 882 return true; 883 884 B.addAttribute(Attr, Val); 885 continue; 886 } 887 888 // Target-independent attributes: 889 case lltok::kw_align: { 890 // As a hack, we allow function alignment to be initially parsed as an 891 // attribute on a function declaration/definition or added to an attribute 892 // group and later moved to the alignment field. 893 unsigned Alignment; 894 if (inAttrGrp) { 895 Lex.Lex(); 896 if (ParseToken(lltok::equal, "expected '=' here") || 897 ParseUInt32(Alignment)) 898 return true; 899 } else { 900 if (ParseOptionalAlignment(Alignment)) 901 return true; 902 } 903 B.addAlignmentAttr(Alignment); 904 continue; 905 } 906 case lltok::kw_alignstack: { 907 unsigned Alignment; 908 if (inAttrGrp) { 909 Lex.Lex(); 910 if (ParseToken(lltok::equal, "expected '=' here") || 911 ParseUInt32(Alignment)) 912 return true; 913 } else { 914 if (ParseOptionalStackAlignment(Alignment)) 915 return true; 916 } 917 B.addStackAlignmentAttr(Alignment); 918 continue; 919 } 920 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 921 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 922 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 923 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 924 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 925 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 926 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 927 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 928 case lltok::kw_noimplicitfloat: B.addAttribute(Attribute::NoImplicitFloat); break; 929 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 930 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 931 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 932 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 933 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 934 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 935 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 936 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 937 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 938 case lltok::kw_returns_twice: B.addAttribute(Attribute::ReturnsTwice); break; 939 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 940 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 941 case lltok::kw_sspstrong: B.addAttribute(Attribute::StackProtectStrong); break; 942 case lltok::kw_sanitize_address: B.addAttribute(Attribute::SanitizeAddress); break; 943 case lltok::kw_sanitize_thread: B.addAttribute(Attribute::SanitizeThread); break; 944 case lltok::kw_sanitize_memory: B.addAttribute(Attribute::SanitizeMemory); break; 945 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 946 947 // Error handling. 948 case lltok::kw_inreg: 949 case lltok::kw_signext: 950 case lltok::kw_zeroext: 951 HaveError |= 952 Error(Lex.getLoc(), 953 "invalid use of attribute on a function"); 954 break; 955 case lltok::kw_byval: 956 case lltok::kw_inalloca: 957 case lltok::kw_nest: 958 case lltok::kw_noalias: 959 case lltok::kw_nocapture: 960 case lltok::kw_returned: 961 case lltok::kw_sret: 962 HaveError |= 963 Error(Lex.getLoc(), 964 "invalid use of parameter-only attribute on a function"); 965 break; 966 } 967 968 Lex.Lex(); 969 } 970 } 971 972 //===----------------------------------------------------------------------===// 973 // GlobalValue Reference/Resolution Routines. 974 //===----------------------------------------------------------------------===// 975 976 /// GetGlobalVal - Get a value with the specified name or ID, creating a 977 /// forward reference record if needed. This can return null if the value 978 /// exists but does not have the right type. 979 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 980 LocTy Loc) { 981 PointerType *PTy = dyn_cast<PointerType>(Ty); 982 if (PTy == 0) { 983 Error(Loc, "global variable reference must have pointer type"); 984 return 0; 985 } 986 987 // Look this name up in the normal function symbol table. 988 GlobalValue *Val = 989 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 990 991 // If this is a forward reference for the value, see if we already created a 992 // forward ref record. 993 if (Val == 0) { 994 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 995 I = ForwardRefVals.find(Name); 996 if (I != ForwardRefVals.end()) 997 Val = I->second.first; 998 } 999 1000 // If we have the value in the symbol table or fwd-ref table, return it. 1001 if (Val) { 1002 if (Val->getType() == Ty) return Val; 1003 Error(Loc, "'@" + Name + "' defined with type '" + 1004 getTypeString(Val->getType()) + "'"); 1005 return 0; 1006 } 1007 1008 // Otherwise, create a new forward reference for this value and remember it. 1009 GlobalValue *FwdVal; 1010 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1011 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1012 else 1013 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 1014 GlobalValue::ExternalWeakLinkage, 0, Name, 1015 0, GlobalVariable::NotThreadLocal, 1016 PTy->getAddressSpace()); 1017 1018 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1019 return FwdVal; 1020 } 1021 1022 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1023 PointerType *PTy = dyn_cast<PointerType>(Ty); 1024 if (PTy == 0) { 1025 Error(Loc, "global variable reference must have pointer type"); 1026 return 0; 1027 } 1028 1029 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 1030 1031 // If this is a forward reference for the value, see if we already created a 1032 // forward ref record. 1033 if (Val == 0) { 1034 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 1035 I = ForwardRefValIDs.find(ID); 1036 if (I != ForwardRefValIDs.end()) 1037 Val = I->second.first; 1038 } 1039 1040 // If we have the value in the symbol table or fwd-ref table, return it. 1041 if (Val) { 1042 if (Val->getType() == Ty) return Val; 1043 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1044 getTypeString(Val->getType()) + "'"); 1045 return 0; 1046 } 1047 1048 // Otherwise, create a new forward reference for this value and remember it. 1049 GlobalValue *FwdVal; 1050 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1051 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M); 1052 else 1053 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 1054 GlobalValue::ExternalWeakLinkage, 0, ""); 1055 1056 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1057 return FwdVal; 1058 } 1059 1060 1061 //===----------------------------------------------------------------------===// 1062 // Helper Routines. 1063 //===----------------------------------------------------------------------===// 1064 1065 /// ParseToken - If the current token has the specified kind, eat it and return 1066 /// success. Otherwise, emit the specified error and return failure. 1067 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1068 if (Lex.getKind() != T) 1069 return TokError(ErrMsg); 1070 Lex.Lex(); 1071 return false; 1072 } 1073 1074 /// ParseStringConstant 1075 /// ::= StringConstant 1076 bool LLParser::ParseStringConstant(std::string &Result) { 1077 if (Lex.getKind() != lltok::StringConstant) 1078 return TokError("expected string constant"); 1079 Result = Lex.getStrVal(); 1080 Lex.Lex(); 1081 return false; 1082 } 1083 1084 /// ParseUInt32 1085 /// ::= uint32 1086 bool LLParser::ParseUInt32(unsigned &Val) { 1087 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1088 return TokError("expected integer"); 1089 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1090 if (Val64 != unsigned(Val64)) 1091 return TokError("expected 32-bit integer (too large)"); 1092 Val = Val64; 1093 Lex.Lex(); 1094 return false; 1095 } 1096 1097 /// ParseTLSModel 1098 /// := 'localdynamic' 1099 /// := 'initialexec' 1100 /// := 'localexec' 1101 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1102 switch (Lex.getKind()) { 1103 default: 1104 return TokError("expected localdynamic, initialexec or localexec"); 1105 case lltok::kw_localdynamic: 1106 TLM = GlobalVariable::LocalDynamicTLSModel; 1107 break; 1108 case lltok::kw_initialexec: 1109 TLM = GlobalVariable::InitialExecTLSModel; 1110 break; 1111 case lltok::kw_localexec: 1112 TLM = GlobalVariable::LocalExecTLSModel; 1113 break; 1114 } 1115 1116 Lex.Lex(); 1117 return false; 1118 } 1119 1120 /// ParseOptionalThreadLocal 1121 /// := /*empty*/ 1122 /// := 'thread_local' 1123 /// := 'thread_local' '(' tlsmodel ')' 1124 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1125 TLM = GlobalVariable::NotThreadLocal; 1126 if (!EatIfPresent(lltok::kw_thread_local)) 1127 return false; 1128 1129 TLM = GlobalVariable::GeneralDynamicTLSModel; 1130 if (Lex.getKind() == lltok::lparen) { 1131 Lex.Lex(); 1132 return ParseTLSModel(TLM) || 1133 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1134 } 1135 return false; 1136 } 1137 1138 /// ParseOptionalAddrSpace 1139 /// := /*empty*/ 1140 /// := 'addrspace' '(' uint32 ')' 1141 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1142 AddrSpace = 0; 1143 if (!EatIfPresent(lltok::kw_addrspace)) 1144 return false; 1145 return ParseToken(lltok::lparen, "expected '(' in address space") || 1146 ParseUInt32(AddrSpace) || 1147 ParseToken(lltok::rparen, "expected ')' in address space"); 1148 } 1149 1150 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1151 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1152 bool HaveError = false; 1153 1154 B.clear(); 1155 1156 while (1) { 1157 lltok::Kind Token = Lex.getKind(); 1158 switch (Token) { 1159 default: // End of attributes. 1160 return HaveError; 1161 case lltok::kw_align: { 1162 unsigned Alignment; 1163 if (ParseOptionalAlignment(Alignment)) 1164 return true; 1165 B.addAlignmentAttr(Alignment); 1166 continue; 1167 } 1168 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1169 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1170 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1171 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1172 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1173 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1174 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1175 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1176 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1177 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1178 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1179 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1180 1181 case lltok::kw_alignstack: 1182 case lltok::kw_alwaysinline: 1183 case lltok::kw_builtin: 1184 case lltok::kw_inlinehint: 1185 case lltok::kw_minsize: 1186 case lltok::kw_naked: 1187 case lltok::kw_nobuiltin: 1188 case lltok::kw_noduplicate: 1189 case lltok::kw_noimplicitfloat: 1190 case lltok::kw_noinline: 1191 case lltok::kw_nonlazybind: 1192 case lltok::kw_noredzone: 1193 case lltok::kw_noreturn: 1194 case lltok::kw_nounwind: 1195 case lltok::kw_optnone: 1196 case lltok::kw_optsize: 1197 case lltok::kw_returns_twice: 1198 case lltok::kw_sanitize_address: 1199 case lltok::kw_sanitize_memory: 1200 case lltok::kw_sanitize_thread: 1201 case lltok::kw_ssp: 1202 case lltok::kw_sspreq: 1203 case lltok::kw_sspstrong: 1204 case lltok::kw_uwtable: 1205 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1206 break; 1207 } 1208 1209 Lex.Lex(); 1210 } 1211 } 1212 1213 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1214 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1215 bool HaveError = false; 1216 1217 B.clear(); 1218 1219 while (1) { 1220 lltok::Kind Token = Lex.getKind(); 1221 switch (Token) { 1222 default: // End of attributes. 1223 return HaveError; 1224 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1225 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1226 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1227 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1228 1229 // Error handling. 1230 case lltok::kw_align: 1231 case lltok::kw_byval: 1232 case lltok::kw_inalloca: 1233 case lltok::kw_nest: 1234 case lltok::kw_nocapture: 1235 case lltok::kw_returned: 1236 case lltok::kw_sret: 1237 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1238 break; 1239 1240 case lltok::kw_alignstack: 1241 case lltok::kw_alwaysinline: 1242 case lltok::kw_builtin: 1243 case lltok::kw_cold: 1244 case lltok::kw_inlinehint: 1245 case lltok::kw_minsize: 1246 case lltok::kw_naked: 1247 case lltok::kw_nobuiltin: 1248 case lltok::kw_noduplicate: 1249 case lltok::kw_noimplicitfloat: 1250 case lltok::kw_noinline: 1251 case lltok::kw_nonlazybind: 1252 case lltok::kw_noredzone: 1253 case lltok::kw_noreturn: 1254 case lltok::kw_nounwind: 1255 case lltok::kw_optnone: 1256 case lltok::kw_optsize: 1257 case lltok::kw_returns_twice: 1258 case lltok::kw_sanitize_address: 1259 case lltok::kw_sanitize_memory: 1260 case lltok::kw_sanitize_thread: 1261 case lltok::kw_ssp: 1262 case lltok::kw_sspreq: 1263 case lltok::kw_sspstrong: 1264 case lltok::kw_uwtable: 1265 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1266 break; 1267 1268 case lltok::kw_readnone: 1269 case lltok::kw_readonly: 1270 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1271 } 1272 1273 Lex.Lex(); 1274 } 1275 } 1276 1277 /// ParseOptionalLinkage 1278 /// ::= /*empty*/ 1279 /// ::= 'private' 1280 /// ::= 'linker_private' 1281 /// ::= 'linker_private_weak' 1282 /// ::= 'internal' 1283 /// ::= 'weak' 1284 /// ::= 'weak_odr' 1285 /// ::= 'linkonce' 1286 /// ::= 'linkonce_odr' 1287 /// ::= 'available_externally' 1288 /// ::= 'appending' 1289 /// ::= 'common' 1290 /// ::= 'extern_weak' 1291 /// ::= 'external' 1292 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { 1293 HasLinkage = false; 1294 switch (Lex.getKind()) { 1295 default: Res=GlobalValue::ExternalLinkage; return false; 1296 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; 1297 case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break; 1298 case lltok::kw_linker_private_weak: 1299 Res = GlobalValue::LinkerPrivateWeakLinkage; 1300 break; 1301 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; 1302 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; 1303 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; 1304 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; 1305 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; 1306 case lltok::kw_available_externally: 1307 Res = GlobalValue::AvailableExternallyLinkage; 1308 break; 1309 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; 1310 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; 1311 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; 1312 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; 1313 } 1314 Lex.Lex(); 1315 HasLinkage = true; 1316 return false; 1317 } 1318 1319 /// ParseOptionalVisibility 1320 /// ::= /*empty*/ 1321 /// ::= 'default' 1322 /// ::= 'hidden' 1323 /// ::= 'protected' 1324 /// 1325 bool LLParser::ParseOptionalVisibility(unsigned &Res) { 1326 switch (Lex.getKind()) { 1327 default: Res = GlobalValue::DefaultVisibility; return false; 1328 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; 1329 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; 1330 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; 1331 } 1332 Lex.Lex(); 1333 return false; 1334 } 1335 1336 /// ParseOptionalDLLStorageClass 1337 /// ::= /*empty*/ 1338 /// ::= 'dllimport' 1339 /// ::= 'dllexport' 1340 /// 1341 bool LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1342 switch (Lex.getKind()) { 1343 default: Res = GlobalValue::DefaultStorageClass; return false; 1344 case lltok::kw_dllimport: Res = GlobalValue::DLLImportStorageClass; break; 1345 case lltok::kw_dllexport: Res = GlobalValue::DLLExportStorageClass; break; 1346 } 1347 Lex.Lex(); 1348 return false; 1349 } 1350 1351 /// ParseOptionalCallingConv 1352 /// ::= /*empty*/ 1353 /// ::= 'ccc' 1354 /// ::= 'fastcc' 1355 /// ::= 'kw_intel_ocl_bicc' 1356 /// ::= 'coldcc' 1357 /// ::= 'x86_stdcallcc' 1358 /// ::= 'x86_fastcallcc' 1359 /// ::= 'x86_thiscallcc' 1360 /// ::= 'arm_apcscc' 1361 /// ::= 'arm_aapcscc' 1362 /// ::= 'arm_aapcs_vfpcc' 1363 /// ::= 'msp430_intrcc' 1364 /// ::= 'ptx_kernel' 1365 /// ::= 'ptx_device' 1366 /// ::= 'spir_func' 1367 /// ::= 'spir_kernel' 1368 /// ::= 'x86_64_sysvcc' 1369 /// ::= 'x86_64_win64cc' 1370 /// ::= 'webkit_jscc' 1371 /// ::= 'anyregcc' 1372 /// ::= 'preserve_mostcc' 1373 /// ::= 'preserve_allcc' 1374 /// ::= 'cc' UINT 1375 /// 1376 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) { 1377 switch (Lex.getKind()) { 1378 default: CC = CallingConv::C; return false; 1379 case lltok::kw_ccc: CC = CallingConv::C; break; 1380 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1381 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1382 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1383 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1384 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1385 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1386 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1387 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1388 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1389 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1390 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1391 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1392 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1393 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1394 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1395 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break; 1396 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1397 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1398 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1399 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1400 case lltok::kw_cc: { 1401 unsigned ArbitraryCC; 1402 Lex.Lex(); 1403 if (ParseUInt32(ArbitraryCC)) 1404 return true; 1405 CC = static_cast<CallingConv::ID>(ArbitraryCC); 1406 return false; 1407 } 1408 } 1409 1410 Lex.Lex(); 1411 return false; 1412 } 1413 1414 /// ParseInstructionMetadata 1415 /// ::= !dbg !42 (',' !dbg !57)* 1416 bool LLParser::ParseInstructionMetadata(Instruction *Inst, 1417 PerFunctionState *PFS) { 1418 do { 1419 if (Lex.getKind() != lltok::MetadataVar) 1420 return TokError("expected metadata after comma"); 1421 1422 std::string Name = Lex.getStrVal(); 1423 unsigned MDK = M->getMDKindID(Name); 1424 Lex.Lex(); 1425 1426 MDNode *Node; 1427 SMLoc Loc = Lex.getLoc(); 1428 1429 if (ParseToken(lltok::exclaim, "expected '!' here")) 1430 return true; 1431 1432 // This code is similar to that of ParseMetadataValue, however it needs to 1433 // have special-case code for a forward reference; see the comments on 1434 // ForwardRefInstMetadata for details. Also, MDStrings are not supported 1435 // at the top level here. 1436 if (Lex.getKind() == lltok::lbrace) { 1437 ValID ID; 1438 if (ParseMetadataListValue(ID, PFS)) 1439 return true; 1440 assert(ID.Kind == ValID::t_MDNode); 1441 Inst->setMetadata(MDK, ID.MDNodeVal); 1442 } else { 1443 unsigned NodeID = 0; 1444 if (ParseMDNodeID(Node, NodeID)) 1445 return true; 1446 if (Node) { 1447 // If we got the node, add it to the instruction. 1448 Inst->setMetadata(MDK, Node); 1449 } else { 1450 MDRef R = { Loc, MDK, NodeID }; 1451 // Otherwise, remember that this should be resolved later. 1452 ForwardRefInstMetadata[Inst].push_back(R); 1453 } 1454 } 1455 1456 if (MDK == LLVMContext::MD_tbaa) 1457 InstsWithTBAATag.push_back(Inst); 1458 1459 // If this is the end of the list, we're done. 1460 } while (EatIfPresent(lltok::comma)); 1461 return false; 1462 } 1463 1464 /// ParseOptionalAlignment 1465 /// ::= /* empty */ 1466 /// ::= 'align' 4 1467 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1468 Alignment = 0; 1469 if (!EatIfPresent(lltok::kw_align)) 1470 return false; 1471 LocTy AlignLoc = Lex.getLoc(); 1472 if (ParseUInt32(Alignment)) return true; 1473 if (!isPowerOf2_32(Alignment)) 1474 return Error(AlignLoc, "alignment is not a power of two"); 1475 if (Alignment > Value::MaximumAlignment) 1476 return Error(AlignLoc, "huge alignments are not supported yet"); 1477 return false; 1478 } 1479 1480 /// ParseOptionalCommaAlign 1481 /// ::= 1482 /// ::= ',' align 4 1483 /// 1484 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1485 /// end. 1486 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1487 bool &AteExtraComma) { 1488 AteExtraComma = false; 1489 while (EatIfPresent(lltok::comma)) { 1490 // Metadata at the end is an early exit. 1491 if (Lex.getKind() == lltok::MetadataVar) { 1492 AteExtraComma = true; 1493 return false; 1494 } 1495 1496 if (Lex.getKind() != lltok::kw_align) 1497 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1498 1499 if (ParseOptionalAlignment(Alignment)) return true; 1500 } 1501 1502 return false; 1503 } 1504 1505 /// ParseScopeAndOrdering 1506 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1507 /// else: ::= 1508 /// 1509 /// This sets Scope and Ordering to the parsed values. 1510 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1511 AtomicOrdering &Ordering) { 1512 if (!isAtomic) 1513 return false; 1514 1515 Scope = CrossThread; 1516 if (EatIfPresent(lltok::kw_singlethread)) 1517 Scope = SingleThread; 1518 switch (Lex.getKind()) { 1519 default: return TokError("Expected ordering on atomic instruction"); 1520 case lltok::kw_unordered: Ordering = Unordered; break; 1521 case lltok::kw_monotonic: Ordering = Monotonic; break; 1522 case lltok::kw_acquire: Ordering = Acquire; break; 1523 case lltok::kw_release: Ordering = Release; break; 1524 case lltok::kw_acq_rel: Ordering = AcquireRelease; break; 1525 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break; 1526 } 1527 Lex.Lex(); 1528 return false; 1529 } 1530 1531 /// ParseOptionalStackAlignment 1532 /// ::= /* empty */ 1533 /// ::= 'alignstack' '(' 4 ')' 1534 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1535 Alignment = 0; 1536 if (!EatIfPresent(lltok::kw_alignstack)) 1537 return false; 1538 LocTy ParenLoc = Lex.getLoc(); 1539 if (!EatIfPresent(lltok::lparen)) 1540 return Error(ParenLoc, "expected '('"); 1541 LocTy AlignLoc = Lex.getLoc(); 1542 if (ParseUInt32(Alignment)) return true; 1543 ParenLoc = Lex.getLoc(); 1544 if (!EatIfPresent(lltok::rparen)) 1545 return Error(ParenLoc, "expected ')'"); 1546 if (!isPowerOf2_32(Alignment)) 1547 return Error(AlignLoc, "stack alignment is not a power of two"); 1548 return false; 1549 } 1550 1551 /// ParseIndexList - This parses the index list for an insert/extractvalue 1552 /// instruction. This sets AteExtraComma in the case where we eat an extra 1553 /// comma at the end of the line and find that it is followed by metadata. 1554 /// Clients that don't allow metadata can call the version of this function that 1555 /// only takes one argument. 1556 /// 1557 /// ParseIndexList 1558 /// ::= (',' uint32)+ 1559 /// 1560 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1561 bool &AteExtraComma) { 1562 AteExtraComma = false; 1563 1564 if (Lex.getKind() != lltok::comma) 1565 return TokError("expected ',' as start of index list"); 1566 1567 while (EatIfPresent(lltok::comma)) { 1568 if (Lex.getKind() == lltok::MetadataVar) { 1569 AteExtraComma = true; 1570 return false; 1571 } 1572 unsigned Idx = 0; 1573 if (ParseUInt32(Idx)) return true; 1574 Indices.push_back(Idx); 1575 } 1576 1577 return false; 1578 } 1579 1580 //===----------------------------------------------------------------------===// 1581 // Type Parsing. 1582 //===----------------------------------------------------------------------===// 1583 1584 /// ParseType - Parse a type. 1585 bool LLParser::ParseType(Type *&Result, bool AllowVoid) { 1586 SMLoc TypeLoc = Lex.getLoc(); 1587 switch (Lex.getKind()) { 1588 default: 1589 return TokError("expected type"); 1590 case lltok::Type: 1591 // Type ::= 'float' | 'void' (etc) 1592 Result = Lex.getTyVal(); 1593 Lex.Lex(); 1594 break; 1595 case lltok::lbrace: 1596 // Type ::= StructType 1597 if (ParseAnonStructType(Result, false)) 1598 return true; 1599 break; 1600 case lltok::lsquare: 1601 // Type ::= '[' ... ']' 1602 Lex.Lex(); // eat the lsquare. 1603 if (ParseArrayVectorType(Result, false)) 1604 return true; 1605 break; 1606 case lltok::less: // Either vector or packed struct. 1607 // Type ::= '<' ... '>' 1608 Lex.Lex(); 1609 if (Lex.getKind() == lltok::lbrace) { 1610 if (ParseAnonStructType(Result, true) || 1611 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1612 return true; 1613 } else if (ParseArrayVectorType(Result, true)) 1614 return true; 1615 break; 1616 case lltok::LocalVar: { 1617 // Type ::= %foo 1618 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1619 1620 // If the type hasn't been defined yet, create a forward definition and 1621 // remember where that forward def'n was seen (in case it never is defined). 1622 if (Entry.first == 0) { 1623 Entry.first = StructType::create(Context, Lex.getStrVal()); 1624 Entry.second = Lex.getLoc(); 1625 } 1626 Result = Entry.first; 1627 Lex.Lex(); 1628 break; 1629 } 1630 1631 case lltok::LocalVarID: { 1632 // Type ::= %4 1633 if (Lex.getUIntVal() >= NumberedTypes.size()) 1634 NumberedTypes.resize(Lex.getUIntVal()+1); 1635 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 1636 1637 // If the type hasn't been defined yet, create a forward definition and 1638 // remember where that forward def'n was seen (in case it never is defined). 1639 if (Entry.first == 0) { 1640 Entry.first = StructType::create(Context); 1641 Entry.second = Lex.getLoc(); 1642 } 1643 Result = Entry.first; 1644 Lex.Lex(); 1645 break; 1646 } 1647 } 1648 1649 // Parse the type suffixes. 1650 while (1) { 1651 switch (Lex.getKind()) { 1652 // End of type. 1653 default: 1654 if (!AllowVoid && Result->isVoidTy()) 1655 return Error(TypeLoc, "void type only allowed for function results"); 1656 return false; 1657 1658 // Type ::= Type '*' 1659 case lltok::star: 1660 if (Result->isLabelTy()) 1661 return TokError("basic block pointers are invalid"); 1662 if (Result->isVoidTy()) 1663 return TokError("pointers to void are invalid - use i8* instead"); 1664 if (!PointerType::isValidElementType(Result)) 1665 return TokError("pointer to this type is invalid"); 1666 Result = PointerType::getUnqual(Result); 1667 Lex.Lex(); 1668 break; 1669 1670 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 1671 case lltok::kw_addrspace: { 1672 if (Result->isLabelTy()) 1673 return TokError("basic block pointers are invalid"); 1674 if (Result->isVoidTy()) 1675 return TokError("pointers to void are invalid; use i8* instead"); 1676 if (!PointerType::isValidElementType(Result)) 1677 return TokError("pointer to this type is invalid"); 1678 unsigned AddrSpace; 1679 if (ParseOptionalAddrSpace(AddrSpace) || 1680 ParseToken(lltok::star, "expected '*' in address space")) 1681 return true; 1682 1683 Result = PointerType::get(Result, AddrSpace); 1684 break; 1685 } 1686 1687 /// Types '(' ArgTypeListI ')' OptFuncAttrs 1688 case lltok::lparen: 1689 if (ParseFunctionType(Result)) 1690 return true; 1691 break; 1692 } 1693 } 1694 } 1695 1696 /// ParseParameterList 1697 /// ::= '(' ')' 1698 /// ::= '(' Arg (',' Arg)* ')' 1699 /// Arg 1700 /// ::= Type OptionalAttributes Value OptionalAttributes 1701 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 1702 PerFunctionState &PFS) { 1703 if (ParseToken(lltok::lparen, "expected '(' in call")) 1704 return true; 1705 1706 unsigned AttrIndex = 1; 1707 while (Lex.getKind() != lltok::rparen) { 1708 // If this isn't the first argument, we need a comma. 1709 if (!ArgList.empty() && 1710 ParseToken(lltok::comma, "expected ',' in argument list")) 1711 return true; 1712 1713 // Parse the argument. 1714 LocTy ArgLoc; 1715 Type *ArgTy = 0; 1716 AttrBuilder ArgAttrs; 1717 Value *V; 1718 if (ParseType(ArgTy, ArgLoc)) 1719 return true; 1720 1721 // Otherwise, handle normal operands. 1722 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 1723 return true; 1724 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(), 1725 AttrIndex++, 1726 ArgAttrs))); 1727 } 1728 1729 Lex.Lex(); // Lex the ')'. 1730 return false; 1731 } 1732 1733 1734 1735 /// ParseArgumentList - Parse the argument list for a function type or function 1736 /// prototype. 1737 /// ::= '(' ArgTypeListI ')' 1738 /// ArgTypeListI 1739 /// ::= /*empty*/ 1740 /// ::= '...' 1741 /// ::= ArgTypeList ',' '...' 1742 /// ::= ArgType (',' ArgType)* 1743 /// 1744 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 1745 bool &isVarArg){ 1746 isVarArg = false; 1747 assert(Lex.getKind() == lltok::lparen); 1748 Lex.Lex(); // eat the (. 1749 1750 if (Lex.getKind() == lltok::rparen) { 1751 // empty 1752 } else if (Lex.getKind() == lltok::dotdotdot) { 1753 isVarArg = true; 1754 Lex.Lex(); 1755 } else { 1756 LocTy TypeLoc = Lex.getLoc(); 1757 Type *ArgTy = 0; 1758 AttrBuilder Attrs; 1759 std::string Name; 1760 1761 if (ParseType(ArgTy) || 1762 ParseOptionalParamAttrs(Attrs)) return true; 1763 1764 if (ArgTy->isVoidTy()) 1765 return Error(TypeLoc, "argument can not have void type"); 1766 1767 if (Lex.getKind() == lltok::LocalVar) { 1768 Name = Lex.getStrVal(); 1769 Lex.Lex(); 1770 } 1771 1772 if (!FunctionType::isValidArgumentType(ArgTy)) 1773 return Error(TypeLoc, "invalid type for function argument"); 1774 1775 unsigned AttrIndex = 1; 1776 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, 1777 AttributeSet::get(ArgTy->getContext(), 1778 AttrIndex++, Attrs), Name)); 1779 1780 while (EatIfPresent(lltok::comma)) { 1781 // Handle ... at end of arg list. 1782 if (EatIfPresent(lltok::dotdotdot)) { 1783 isVarArg = true; 1784 break; 1785 } 1786 1787 // Otherwise must be an argument type. 1788 TypeLoc = Lex.getLoc(); 1789 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 1790 1791 if (ArgTy->isVoidTy()) 1792 return Error(TypeLoc, "argument can not have void type"); 1793 1794 if (Lex.getKind() == lltok::LocalVar) { 1795 Name = Lex.getStrVal(); 1796 Lex.Lex(); 1797 } else { 1798 Name = ""; 1799 } 1800 1801 if (!ArgTy->isFirstClassType()) 1802 return Error(TypeLoc, "invalid type for function argument"); 1803 1804 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, 1805 AttributeSet::get(ArgTy->getContext(), 1806 AttrIndex++, Attrs), 1807 Name)); 1808 } 1809 } 1810 1811 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 1812 } 1813 1814 /// ParseFunctionType 1815 /// ::= Type ArgumentList OptionalAttrs 1816 bool LLParser::ParseFunctionType(Type *&Result) { 1817 assert(Lex.getKind() == lltok::lparen); 1818 1819 if (!FunctionType::isValidReturnType(Result)) 1820 return TokError("invalid function return type"); 1821 1822 SmallVector<ArgInfo, 8> ArgList; 1823 bool isVarArg; 1824 if (ParseArgumentList(ArgList, isVarArg)) 1825 return true; 1826 1827 // Reject names on the arguments lists. 1828 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 1829 if (!ArgList[i].Name.empty()) 1830 return Error(ArgList[i].Loc, "argument name invalid in function type"); 1831 if (ArgList[i].Attrs.hasAttributes(i + 1)) 1832 return Error(ArgList[i].Loc, 1833 "argument attributes invalid in function type"); 1834 } 1835 1836 SmallVector<Type*, 16> ArgListTy; 1837 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 1838 ArgListTy.push_back(ArgList[i].Ty); 1839 1840 Result = FunctionType::get(Result, ArgListTy, isVarArg); 1841 return false; 1842 } 1843 1844 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 1845 /// other structs. 1846 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 1847 SmallVector<Type*, 8> Elts; 1848 if (ParseStructBody(Elts)) return true; 1849 1850 Result = StructType::get(Context, Elts, Packed); 1851 return false; 1852 } 1853 1854 /// ParseStructDefinition - Parse a struct in a 'type' definition. 1855 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 1856 std::pair<Type*, LocTy> &Entry, 1857 Type *&ResultTy) { 1858 // If the type was already defined, diagnose the redefinition. 1859 if (Entry.first && !Entry.second.isValid()) 1860 return Error(TypeLoc, "redefinition of type"); 1861 1862 // If we have opaque, just return without filling in the definition for the 1863 // struct. This counts as a definition as far as the .ll file goes. 1864 if (EatIfPresent(lltok::kw_opaque)) { 1865 // This type is being defined, so clear the location to indicate this. 1866 Entry.second = SMLoc(); 1867 1868 // If this type number has never been uttered, create it. 1869 if (Entry.first == 0) 1870 Entry.first = StructType::create(Context, Name); 1871 ResultTy = Entry.first; 1872 return false; 1873 } 1874 1875 // If the type starts with '<', then it is either a packed struct or a vector. 1876 bool isPacked = EatIfPresent(lltok::less); 1877 1878 // If we don't have a struct, then we have a random type alias, which we 1879 // accept for compatibility with old files. These types are not allowed to be 1880 // forward referenced and not allowed to be recursive. 1881 if (Lex.getKind() != lltok::lbrace) { 1882 if (Entry.first) 1883 return Error(TypeLoc, "forward references to non-struct type"); 1884 1885 ResultTy = 0; 1886 if (isPacked) 1887 return ParseArrayVectorType(ResultTy, true); 1888 return ParseType(ResultTy); 1889 } 1890 1891 // This type is being defined, so clear the location to indicate this. 1892 Entry.second = SMLoc(); 1893 1894 // If this type number has never been uttered, create it. 1895 if (Entry.first == 0) 1896 Entry.first = StructType::create(Context, Name); 1897 1898 StructType *STy = cast<StructType>(Entry.first); 1899 1900 SmallVector<Type*, 8> Body; 1901 if (ParseStructBody(Body) || 1902 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 1903 return true; 1904 1905 STy->setBody(Body, isPacked); 1906 ResultTy = STy; 1907 return false; 1908 } 1909 1910 1911 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 1912 /// StructType 1913 /// ::= '{' '}' 1914 /// ::= '{' Type (',' Type)* '}' 1915 /// ::= '<' '{' '}' '>' 1916 /// ::= '<' '{' Type (',' Type)* '}' '>' 1917 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 1918 assert(Lex.getKind() == lltok::lbrace); 1919 Lex.Lex(); // Consume the '{' 1920 1921 // Handle the empty struct. 1922 if (EatIfPresent(lltok::rbrace)) 1923 return false; 1924 1925 LocTy EltTyLoc = Lex.getLoc(); 1926 Type *Ty = 0; 1927 if (ParseType(Ty)) return true; 1928 Body.push_back(Ty); 1929 1930 if (!StructType::isValidElementType(Ty)) 1931 return Error(EltTyLoc, "invalid element type for struct"); 1932 1933 while (EatIfPresent(lltok::comma)) { 1934 EltTyLoc = Lex.getLoc(); 1935 if (ParseType(Ty)) return true; 1936 1937 if (!StructType::isValidElementType(Ty)) 1938 return Error(EltTyLoc, "invalid element type for struct"); 1939 1940 Body.push_back(Ty); 1941 } 1942 1943 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 1944 } 1945 1946 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 1947 /// token has already been consumed. 1948 /// Type 1949 /// ::= '[' APSINTVAL 'x' Types ']' 1950 /// ::= '<' APSINTVAL 'x' Types '>' 1951 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 1952 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 1953 Lex.getAPSIntVal().getBitWidth() > 64) 1954 return TokError("expected number in address space"); 1955 1956 LocTy SizeLoc = Lex.getLoc(); 1957 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 1958 Lex.Lex(); 1959 1960 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 1961 return true; 1962 1963 LocTy TypeLoc = Lex.getLoc(); 1964 Type *EltTy = 0; 1965 if (ParseType(EltTy)) return true; 1966 1967 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 1968 "expected end of sequential type")) 1969 return true; 1970 1971 if (isVector) { 1972 if (Size == 0) 1973 return Error(SizeLoc, "zero element vector is illegal"); 1974 if ((unsigned)Size != Size) 1975 return Error(SizeLoc, "size too large for vector"); 1976 if (!VectorType::isValidElementType(EltTy)) 1977 return Error(TypeLoc, "invalid vector element type"); 1978 Result = VectorType::get(EltTy, unsigned(Size)); 1979 } else { 1980 if (!ArrayType::isValidElementType(EltTy)) 1981 return Error(TypeLoc, "invalid array element type"); 1982 Result = ArrayType::get(EltTy, Size); 1983 } 1984 return false; 1985 } 1986 1987 //===----------------------------------------------------------------------===// 1988 // Function Semantic Analysis. 1989 //===----------------------------------------------------------------------===// 1990 1991 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 1992 int functionNumber) 1993 : P(p), F(f), FunctionNumber(functionNumber) { 1994 1995 // Insert unnamed arguments into the NumberedVals list. 1996 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); 1997 AI != E; ++AI) 1998 if (!AI->hasName()) 1999 NumberedVals.push_back(AI); 2000 } 2001 2002 LLParser::PerFunctionState::~PerFunctionState() { 2003 // If there were any forward referenced non-basicblock values, delete them. 2004 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator 2005 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I) 2006 if (!isa<BasicBlock>(I->second.first)) { 2007 I->second.first->replaceAllUsesWith( 2008 UndefValue::get(I->second.first->getType())); 2009 delete I->second.first; 2010 I->second.first = 0; 2011 } 2012 2013 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator 2014 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I) 2015 if (!isa<BasicBlock>(I->second.first)) { 2016 I->second.first->replaceAllUsesWith( 2017 UndefValue::get(I->second.first->getType())); 2018 delete I->second.first; 2019 I->second.first = 0; 2020 } 2021 } 2022 2023 bool LLParser::PerFunctionState::FinishFunction() { 2024 // Check to see if someone took the address of labels in this block. 2025 if (!P.ForwardRefBlockAddresses.empty()) { 2026 ValID FunctionID; 2027 if (!F.getName().empty()) { 2028 FunctionID.Kind = ValID::t_GlobalName; 2029 FunctionID.StrVal = F.getName(); 2030 } else { 2031 FunctionID.Kind = ValID::t_GlobalID; 2032 FunctionID.UIntVal = FunctionNumber; 2033 } 2034 2035 std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator 2036 FRBAI = P.ForwardRefBlockAddresses.find(FunctionID); 2037 if (FRBAI != P.ForwardRefBlockAddresses.end()) { 2038 // Resolve all these references. 2039 if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this)) 2040 return true; 2041 2042 P.ForwardRefBlockAddresses.erase(FRBAI); 2043 } 2044 } 2045 2046 if (!ForwardRefVals.empty()) 2047 return P.Error(ForwardRefVals.begin()->second.second, 2048 "use of undefined value '%" + ForwardRefVals.begin()->first + 2049 "'"); 2050 if (!ForwardRefValIDs.empty()) 2051 return P.Error(ForwardRefValIDs.begin()->second.second, 2052 "use of undefined value '%" + 2053 Twine(ForwardRefValIDs.begin()->first) + "'"); 2054 return false; 2055 } 2056 2057 2058 /// GetVal - Get a value with the specified name or ID, creating a 2059 /// forward reference record if needed. This can return null if the value 2060 /// exists but does not have the right type. 2061 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, 2062 Type *Ty, LocTy Loc) { 2063 // Look this name up in the normal function symbol table. 2064 Value *Val = F.getValueSymbolTable().lookup(Name); 2065 2066 // If this is a forward reference for the value, see if we already created a 2067 // forward ref record. 2068 if (Val == 0) { 2069 std::map<std::string, std::pair<Value*, LocTy> >::iterator 2070 I = ForwardRefVals.find(Name); 2071 if (I != ForwardRefVals.end()) 2072 Val = I->second.first; 2073 } 2074 2075 // If we have the value in the symbol table or fwd-ref table, return it. 2076 if (Val) { 2077 if (Val->getType() == Ty) return Val; 2078 if (Ty->isLabelTy()) 2079 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2080 else 2081 P.Error(Loc, "'%" + Name + "' defined with type '" + 2082 getTypeString(Val->getType()) + "'"); 2083 return 0; 2084 } 2085 2086 // Don't make placeholders with invalid type. 2087 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { 2088 P.Error(Loc, "invalid use of a non-first-class type"); 2089 return 0; 2090 } 2091 2092 // Otherwise, create a new forward reference for this value and remember it. 2093 Value *FwdVal; 2094 if (Ty->isLabelTy()) 2095 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2096 else 2097 FwdVal = new Argument(Ty, Name); 2098 2099 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2100 return FwdVal; 2101 } 2102 2103 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, 2104 LocTy Loc) { 2105 // Look this name up in the normal function symbol table. 2106 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 2107 2108 // If this is a forward reference for the value, see if we already created a 2109 // forward ref record. 2110 if (Val == 0) { 2111 std::map<unsigned, std::pair<Value*, LocTy> >::iterator 2112 I = ForwardRefValIDs.find(ID); 2113 if (I != ForwardRefValIDs.end()) 2114 Val = I->second.first; 2115 } 2116 2117 // If we have the value in the symbol table or fwd-ref table, return it. 2118 if (Val) { 2119 if (Val->getType() == Ty) return Val; 2120 if (Ty->isLabelTy()) 2121 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2122 else 2123 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2124 getTypeString(Val->getType()) + "'"); 2125 return 0; 2126 } 2127 2128 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { 2129 P.Error(Loc, "invalid use of a non-first-class type"); 2130 return 0; 2131 } 2132 2133 // Otherwise, create a new forward reference for this value and remember it. 2134 Value *FwdVal; 2135 if (Ty->isLabelTy()) 2136 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2137 else 2138 FwdVal = new Argument(Ty); 2139 2140 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2141 return FwdVal; 2142 } 2143 2144 /// SetInstName - After an instruction is parsed and inserted into its 2145 /// basic block, this installs its name. 2146 bool LLParser::PerFunctionState::SetInstName(int NameID, 2147 const std::string &NameStr, 2148 LocTy NameLoc, Instruction *Inst) { 2149 // If this instruction has void type, it cannot have a name or ID specified. 2150 if (Inst->getType()->isVoidTy()) { 2151 if (NameID != -1 || !NameStr.empty()) 2152 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2153 return false; 2154 } 2155 2156 // If this was a numbered instruction, verify that the instruction is the 2157 // expected value and resolve any forward references. 2158 if (NameStr.empty()) { 2159 // If neither a name nor an ID was specified, just use the next ID. 2160 if (NameID == -1) 2161 NameID = NumberedVals.size(); 2162 2163 if (unsigned(NameID) != NumberedVals.size()) 2164 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2165 Twine(NumberedVals.size()) + "'"); 2166 2167 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI = 2168 ForwardRefValIDs.find(NameID); 2169 if (FI != ForwardRefValIDs.end()) { 2170 if (FI->second.first->getType() != Inst->getType()) 2171 return P.Error(NameLoc, "instruction forward referenced with type '" + 2172 getTypeString(FI->second.first->getType()) + "'"); 2173 FI->second.first->replaceAllUsesWith(Inst); 2174 delete FI->second.first; 2175 ForwardRefValIDs.erase(FI); 2176 } 2177 2178 NumberedVals.push_back(Inst); 2179 return false; 2180 } 2181 2182 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2183 std::map<std::string, std::pair<Value*, LocTy> >::iterator 2184 FI = ForwardRefVals.find(NameStr); 2185 if (FI != ForwardRefVals.end()) { 2186 if (FI->second.first->getType() != Inst->getType()) 2187 return P.Error(NameLoc, "instruction forward referenced with type '" + 2188 getTypeString(FI->second.first->getType()) + "'"); 2189 FI->second.first->replaceAllUsesWith(Inst); 2190 delete FI->second.first; 2191 ForwardRefVals.erase(FI); 2192 } 2193 2194 // Set the name on the instruction. 2195 Inst->setName(NameStr); 2196 2197 if (Inst->getName() != NameStr) 2198 return P.Error(NameLoc, "multiple definition of local value named '" + 2199 NameStr + "'"); 2200 return false; 2201 } 2202 2203 /// GetBB - Get a basic block with the specified name or ID, creating a 2204 /// forward reference record if needed. 2205 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2206 LocTy Loc) { 2207 return cast_or_null<BasicBlock>(GetVal(Name, 2208 Type::getLabelTy(F.getContext()), Loc)); 2209 } 2210 2211 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2212 return cast_or_null<BasicBlock>(GetVal(ID, 2213 Type::getLabelTy(F.getContext()), Loc)); 2214 } 2215 2216 /// DefineBB - Define the specified basic block, which is either named or 2217 /// unnamed. If there is an error, this returns null otherwise it returns 2218 /// the block being defined. 2219 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2220 LocTy Loc) { 2221 BasicBlock *BB; 2222 if (Name.empty()) 2223 BB = GetBB(NumberedVals.size(), Loc); 2224 else 2225 BB = GetBB(Name, Loc); 2226 if (BB == 0) return 0; // Already diagnosed error. 2227 2228 // Move the block to the end of the function. Forward ref'd blocks are 2229 // inserted wherever they happen to be referenced. 2230 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2231 2232 // Remove the block from forward ref sets. 2233 if (Name.empty()) { 2234 ForwardRefValIDs.erase(NumberedVals.size()); 2235 NumberedVals.push_back(BB); 2236 } else { 2237 // BB forward references are already in the function symbol table. 2238 ForwardRefVals.erase(Name); 2239 } 2240 2241 return BB; 2242 } 2243 2244 //===----------------------------------------------------------------------===// 2245 // Constants. 2246 //===----------------------------------------------------------------------===// 2247 2248 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2249 /// type implied. For example, if we parse "4" we don't know what integer type 2250 /// it has. The value will later be combined with its type and checked for 2251 /// sanity. PFS is used to convert function-local operands of metadata (since 2252 /// metadata operands are not just parsed here but also converted to values). 2253 /// PFS can be null when we are not parsing metadata values inside a function. 2254 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2255 ID.Loc = Lex.getLoc(); 2256 switch (Lex.getKind()) { 2257 default: return TokError("expected value token"); 2258 case lltok::GlobalID: // @42 2259 ID.UIntVal = Lex.getUIntVal(); 2260 ID.Kind = ValID::t_GlobalID; 2261 break; 2262 case lltok::GlobalVar: // @foo 2263 ID.StrVal = Lex.getStrVal(); 2264 ID.Kind = ValID::t_GlobalName; 2265 break; 2266 case lltok::LocalVarID: // %42 2267 ID.UIntVal = Lex.getUIntVal(); 2268 ID.Kind = ValID::t_LocalID; 2269 break; 2270 case lltok::LocalVar: // %foo 2271 ID.StrVal = Lex.getStrVal(); 2272 ID.Kind = ValID::t_LocalName; 2273 break; 2274 case lltok::exclaim: // !42, !{...}, or !"foo" 2275 return ParseMetadataValue(ID, PFS); 2276 case lltok::APSInt: 2277 ID.APSIntVal = Lex.getAPSIntVal(); 2278 ID.Kind = ValID::t_APSInt; 2279 break; 2280 case lltok::APFloat: 2281 ID.APFloatVal = Lex.getAPFloatVal(); 2282 ID.Kind = ValID::t_APFloat; 2283 break; 2284 case lltok::kw_true: 2285 ID.ConstantVal = ConstantInt::getTrue(Context); 2286 ID.Kind = ValID::t_Constant; 2287 break; 2288 case lltok::kw_false: 2289 ID.ConstantVal = ConstantInt::getFalse(Context); 2290 ID.Kind = ValID::t_Constant; 2291 break; 2292 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2293 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2294 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2295 2296 case lltok::lbrace: { 2297 // ValID ::= '{' ConstVector '}' 2298 Lex.Lex(); 2299 SmallVector<Constant*, 16> Elts; 2300 if (ParseGlobalValueVector(Elts) || 2301 ParseToken(lltok::rbrace, "expected end of struct constant")) 2302 return true; 2303 2304 ID.ConstantStructElts = new Constant*[Elts.size()]; 2305 ID.UIntVal = Elts.size(); 2306 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 2307 ID.Kind = ValID::t_ConstantStruct; 2308 return false; 2309 } 2310 case lltok::less: { 2311 // ValID ::= '<' ConstVector '>' --> Vector. 2312 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2313 Lex.Lex(); 2314 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2315 2316 SmallVector<Constant*, 16> Elts; 2317 LocTy FirstEltLoc = Lex.getLoc(); 2318 if (ParseGlobalValueVector(Elts) || 2319 (isPackedStruct && 2320 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2321 ParseToken(lltok::greater, "expected end of constant")) 2322 return true; 2323 2324 if (isPackedStruct) { 2325 ID.ConstantStructElts = new Constant*[Elts.size()]; 2326 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 2327 ID.UIntVal = Elts.size(); 2328 ID.Kind = ValID::t_PackedConstantStruct; 2329 return false; 2330 } 2331 2332 if (Elts.empty()) 2333 return Error(ID.Loc, "constant vector must not be empty"); 2334 2335 if (!Elts[0]->getType()->isIntegerTy() && 2336 !Elts[0]->getType()->isFloatingPointTy() && 2337 !Elts[0]->getType()->isPointerTy()) 2338 return Error(FirstEltLoc, 2339 "vector elements must have integer, pointer or floating point type"); 2340 2341 // Verify that all the vector elements have the same type. 2342 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2343 if (Elts[i]->getType() != Elts[0]->getType()) 2344 return Error(FirstEltLoc, 2345 "vector element #" + Twine(i) + 2346 " is not of type '" + getTypeString(Elts[0]->getType())); 2347 2348 ID.ConstantVal = ConstantVector::get(Elts); 2349 ID.Kind = ValID::t_Constant; 2350 return false; 2351 } 2352 case lltok::lsquare: { // Array Constant 2353 Lex.Lex(); 2354 SmallVector<Constant*, 16> Elts; 2355 LocTy FirstEltLoc = Lex.getLoc(); 2356 if (ParseGlobalValueVector(Elts) || 2357 ParseToken(lltok::rsquare, "expected end of array constant")) 2358 return true; 2359 2360 // Handle empty element. 2361 if (Elts.empty()) { 2362 // Use undef instead of an array because it's inconvenient to determine 2363 // the element type at this point, there being no elements to examine. 2364 ID.Kind = ValID::t_EmptyArray; 2365 return false; 2366 } 2367 2368 if (!Elts[0]->getType()->isFirstClassType()) 2369 return Error(FirstEltLoc, "invalid array element type: " + 2370 getTypeString(Elts[0]->getType())); 2371 2372 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2373 2374 // Verify all elements are correct type! 2375 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2376 if (Elts[i]->getType() != Elts[0]->getType()) 2377 return Error(FirstEltLoc, 2378 "array element #" + Twine(i) + 2379 " is not of type '" + getTypeString(Elts[0]->getType())); 2380 } 2381 2382 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2383 ID.Kind = ValID::t_Constant; 2384 return false; 2385 } 2386 case lltok::kw_c: // c "foo" 2387 Lex.Lex(); 2388 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2389 false); 2390 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2391 ID.Kind = ValID::t_Constant; 2392 return false; 2393 2394 case lltok::kw_asm: { 2395 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2396 // STRINGCONSTANT 2397 bool HasSideEffect, AlignStack, AsmDialect; 2398 Lex.Lex(); 2399 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2400 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2401 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2402 ParseStringConstant(ID.StrVal) || 2403 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2404 ParseToken(lltok::StringConstant, "expected constraint string")) 2405 return true; 2406 ID.StrVal2 = Lex.getStrVal(); 2407 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2408 (unsigned(AsmDialect)<<2); 2409 ID.Kind = ValID::t_InlineAsm; 2410 return false; 2411 } 2412 2413 case lltok::kw_blockaddress: { 2414 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2415 Lex.Lex(); 2416 2417 ValID Fn, Label; 2418 2419 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2420 ParseValID(Fn) || 2421 ParseToken(lltok::comma, "expected comma in block address expression")|| 2422 ParseValID(Label) || 2423 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2424 return true; 2425 2426 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2427 return Error(Fn.Loc, "expected function name in blockaddress"); 2428 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2429 return Error(Label.Loc, "expected basic block name in blockaddress"); 2430 2431 // Make a global variable as a placeholder for this reference. 2432 GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), 2433 false, GlobalValue::InternalLinkage, 2434 0, ""); 2435 ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef)); 2436 ID.ConstantVal = FwdRef; 2437 ID.Kind = ValID::t_Constant; 2438 return false; 2439 } 2440 2441 case lltok::kw_trunc: 2442 case lltok::kw_zext: 2443 case lltok::kw_sext: 2444 case lltok::kw_fptrunc: 2445 case lltok::kw_fpext: 2446 case lltok::kw_bitcast: 2447 case lltok::kw_addrspacecast: 2448 case lltok::kw_uitofp: 2449 case lltok::kw_sitofp: 2450 case lltok::kw_fptoui: 2451 case lltok::kw_fptosi: 2452 case lltok::kw_inttoptr: 2453 case lltok::kw_ptrtoint: { 2454 unsigned Opc = Lex.getUIntVal(); 2455 Type *DestTy = 0; 2456 Constant *SrcVal; 2457 Lex.Lex(); 2458 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2459 ParseGlobalTypeAndValue(SrcVal) || 2460 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2461 ParseType(DestTy) || 2462 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2463 return true; 2464 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2465 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2466 getTypeString(SrcVal->getType()) + "' to '" + 2467 getTypeString(DestTy) + "'"); 2468 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2469 SrcVal, DestTy); 2470 ID.Kind = ValID::t_Constant; 2471 return false; 2472 } 2473 case lltok::kw_extractvalue: { 2474 Lex.Lex(); 2475 Constant *Val; 2476 SmallVector<unsigned, 4> Indices; 2477 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2478 ParseGlobalTypeAndValue(Val) || 2479 ParseIndexList(Indices) || 2480 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2481 return true; 2482 2483 if (!Val->getType()->isAggregateType()) 2484 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2485 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2486 return Error(ID.Loc, "invalid indices for extractvalue"); 2487 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2488 ID.Kind = ValID::t_Constant; 2489 return false; 2490 } 2491 case lltok::kw_insertvalue: { 2492 Lex.Lex(); 2493 Constant *Val0, *Val1; 2494 SmallVector<unsigned, 4> Indices; 2495 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2496 ParseGlobalTypeAndValue(Val0) || 2497 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2498 ParseGlobalTypeAndValue(Val1) || 2499 ParseIndexList(Indices) || 2500 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2501 return true; 2502 if (!Val0->getType()->isAggregateType()) 2503 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2504 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) 2505 return Error(ID.Loc, "invalid indices for insertvalue"); 2506 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2507 ID.Kind = ValID::t_Constant; 2508 return false; 2509 } 2510 case lltok::kw_icmp: 2511 case lltok::kw_fcmp: { 2512 unsigned PredVal, Opc = Lex.getUIntVal(); 2513 Constant *Val0, *Val1; 2514 Lex.Lex(); 2515 if (ParseCmpPredicate(PredVal, Opc) || 2516 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2517 ParseGlobalTypeAndValue(Val0) || 2518 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2519 ParseGlobalTypeAndValue(Val1) || 2520 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2521 return true; 2522 2523 if (Val0->getType() != Val1->getType()) 2524 return Error(ID.Loc, "compare operands must have the same type"); 2525 2526 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2527 2528 if (Opc == Instruction::FCmp) { 2529 if (!Val0->getType()->isFPOrFPVectorTy()) 2530 return Error(ID.Loc, "fcmp requires floating point operands"); 2531 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2532 } else { 2533 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2534 if (!Val0->getType()->isIntOrIntVectorTy() && 2535 !Val0->getType()->getScalarType()->isPointerTy()) 2536 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2537 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2538 } 2539 ID.Kind = ValID::t_Constant; 2540 return false; 2541 } 2542 2543 // Binary Operators. 2544 case lltok::kw_add: 2545 case lltok::kw_fadd: 2546 case lltok::kw_sub: 2547 case lltok::kw_fsub: 2548 case lltok::kw_mul: 2549 case lltok::kw_fmul: 2550 case lltok::kw_udiv: 2551 case lltok::kw_sdiv: 2552 case lltok::kw_fdiv: 2553 case lltok::kw_urem: 2554 case lltok::kw_srem: 2555 case lltok::kw_frem: 2556 case lltok::kw_shl: 2557 case lltok::kw_lshr: 2558 case lltok::kw_ashr: { 2559 bool NUW = false; 2560 bool NSW = false; 2561 bool Exact = false; 2562 unsigned Opc = Lex.getUIntVal(); 2563 Constant *Val0, *Val1; 2564 Lex.Lex(); 2565 LocTy ModifierLoc = Lex.getLoc(); 2566 if (Opc == Instruction::Add || Opc == Instruction::Sub || 2567 Opc == Instruction::Mul || Opc == Instruction::Shl) { 2568 if (EatIfPresent(lltok::kw_nuw)) 2569 NUW = true; 2570 if (EatIfPresent(lltok::kw_nsw)) { 2571 NSW = true; 2572 if (EatIfPresent(lltok::kw_nuw)) 2573 NUW = true; 2574 } 2575 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 2576 Opc == Instruction::LShr || Opc == Instruction::AShr) { 2577 if (EatIfPresent(lltok::kw_exact)) 2578 Exact = true; 2579 } 2580 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 2581 ParseGlobalTypeAndValue(Val0) || 2582 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 2583 ParseGlobalTypeAndValue(Val1) || 2584 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 2585 return true; 2586 if (Val0->getType() != Val1->getType()) 2587 return Error(ID.Loc, "operands of constexpr must have same type"); 2588 if (!Val0->getType()->isIntOrIntVectorTy()) { 2589 if (NUW) 2590 return Error(ModifierLoc, "nuw only applies to integer operations"); 2591 if (NSW) 2592 return Error(ModifierLoc, "nsw only applies to integer operations"); 2593 } 2594 // Check that the type is valid for the operator. 2595 switch (Opc) { 2596 case Instruction::Add: 2597 case Instruction::Sub: 2598 case Instruction::Mul: 2599 case Instruction::UDiv: 2600 case Instruction::SDiv: 2601 case Instruction::URem: 2602 case Instruction::SRem: 2603 case Instruction::Shl: 2604 case Instruction::AShr: 2605 case Instruction::LShr: 2606 if (!Val0->getType()->isIntOrIntVectorTy()) 2607 return Error(ID.Loc, "constexpr requires integer operands"); 2608 break; 2609 case Instruction::FAdd: 2610 case Instruction::FSub: 2611 case Instruction::FMul: 2612 case Instruction::FDiv: 2613 case Instruction::FRem: 2614 if (!Val0->getType()->isFPOrFPVectorTy()) 2615 return Error(ID.Loc, "constexpr requires fp operands"); 2616 break; 2617 default: llvm_unreachable("Unknown binary operator!"); 2618 } 2619 unsigned Flags = 0; 2620 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2621 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 2622 if (Exact) Flags |= PossiblyExactOperator::IsExact; 2623 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 2624 ID.ConstantVal = C; 2625 ID.Kind = ValID::t_Constant; 2626 return false; 2627 } 2628 2629 // Logical Operations 2630 case lltok::kw_and: 2631 case lltok::kw_or: 2632 case lltok::kw_xor: { 2633 unsigned Opc = Lex.getUIntVal(); 2634 Constant *Val0, *Val1; 2635 Lex.Lex(); 2636 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 2637 ParseGlobalTypeAndValue(Val0) || 2638 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 2639 ParseGlobalTypeAndValue(Val1) || 2640 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 2641 return true; 2642 if (Val0->getType() != Val1->getType()) 2643 return Error(ID.Loc, "operands of constexpr must have same type"); 2644 if (!Val0->getType()->isIntOrIntVectorTy()) 2645 return Error(ID.Loc, 2646 "constexpr requires integer or integer vector operands"); 2647 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 2648 ID.Kind = ValID::t_Constant; 2649 return false; 2650 } 2651 2652 case lltok::kw_getelementptr: 2653 case lltok::kw_shufflevector: 2654 case lltok::kw_insertelement: 2655 case lltok::kw_extractelement: 2656 case lltok::kw_select: { 2657 unsigned Opc = Lex.getUIntVal(); 2658 SmallVector<Constant*, 16> Elts; 2659 bool InBounds = false; 2660 Lex.Lex(); 2661 if (Opc == Instruction::GetElementPtr) 2662 InBounds = EatIfPresent(lltok::kw_inbounds); 2663 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") || 2664 ParseGlobalValueVector(Elts) || 2665 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 2666 return true; 2667 2668 if (Opc == Instruction::GetElementPtr) { 2669 if (Elts.size() == 0 || 2670 !Elts[0]->getType()->getScalarType()->isPointerTy()) 2671 return Error(ID.Loc, "getelementptr requires pointer operand"); 2672 2673 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2674 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices)) 2675 return Error(ID.Loc, "invalid indices for getelementptr"); 2676 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices, 2677 InBounds); 2678 } else if (Opc == Instruction::Select) { 2679 if (Elts.size() != 3) 2680 return Error(ID.Loc, "expected three operands to select"); 2681 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 2682 Elts[2])) 2683 return Error(ID.Loc, Reason); 2684 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 2685 } else if (Opc == Instruction::ShuffleVector) { 2686 if (Elts.size() != 3) 2687 return Error(ID.Loc, "expected three operands to shufflevector"); 2688 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2689 return Error(ID.Loc, "invalid operands to shufflevector"); 2690 ID.ConstantVal = 2691 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 2692 } else if (Opc == Instruction::ExtractElement) { 2693 if (Elts.size() != 2) 2694 return Error(ID.Loc, "expected two operands to extractelement"); 2695 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 2696 return Error(ID.Loc, "invalid extractelement operands"); 2697 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 2698 } else { 2699 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 2700 if (Elts.size() != 3) 2701 return Error(ID.Loc, "expected three operands to insertelement"); 2702 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2703 return Error(ID.Loc, "invalid insertelement operands"); 2704 ID.ConstantVal = 2705 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 2706 } 2707 2708 ID.Kind = ValID::t_Constant; 2709 return false; 2710 } 2711 } 2712 2713 Lex.Lex(); 2714 return false; 2715 } 2716 2717 /// ParseGlobalValue - Parse a global value with the specified type. 2718 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 2719 C = 0; 2720 ValID ID; 2721 Value *V = NULL; 2722 bool Parsed = ParseValID(ID) || 2723 ConvertValIDToValue(Ty, ID, V, NULL); 2724 if (V && !(C = dyn_cast<Constant>(V))) 2725 return Error(ID.Loc, "global values must be constants"); 2726 return Parsed; 2727 } 2728 2729 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 2730 Type *Ty = 0; 2731 return ParseType(Ty) || 2732 ParseGlobalValue(Ty, V); 2733 } 2734 2735 /// ParseGlobalValueVector 2736 /// ::= /*empty*/ 2737 /// ::= TypeAndValue (',' TypeAndValue)* 2738 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) { 2739 // Empty list. 2740 if (Lex.getKind() == lltok::rbrace || 2741 Lex.getKind() == lltok::rsquare || 2742 Lex.getKind() == lltok::greater || 2743 Lex.getKind() == lltok::rparen) 2744 return false; 2745 2746 Constant *C; 2747 if (ParseGlobalTypeAndValue(C)) return true; 2748 Elts.push_back(C); 2749 2750 while (EatIfPresent(lltok::comma)) { 2751 if (ParseGlobalTypeAndValue(C)) return true; 2752 Elts.push_back(C); 2753 } 2754 2755 return false; 2756 } 2757 2758 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) { 2759 assert(Lex.getKind() == lltok::lbrace); 2760 Lex.Lex(); 2761 2762 SmallVector<Value*, 16> Elts; 2763 if (ParseMDNodeVector(Elts, PFS) || 2764 ParseToken(lltok::rbrace, "expected end of metadata node")) 2765 return true; 2766 2767 ID.MDNodeVal = MDNode::get(Context, Elts); 2768 ID.Kind = ValID::t_MDNode; 2769 return false; 2770 } 2771 2772 /// ParseMetadataValue 2773 /// ::= !42 2774 /// ::= !{...} 2775 /// ::= !"string" 2776 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) { 2777 assert(Lex.getKind() == lltok::exclaim); 2778 Lex.Lex(); 2779 2780 // MDNode: 2781 // !{ ... } 2782 if (Lex.getKind() == lltok::lbrace) 2783 return ParseMetadataListValue(ID, PFS); 2784 2785 // Standalone metadata reference 2786 // !42 2787 if (Lex.getKind() == lltok::APSInt) { 2788 if (ParseMDNodeID(ID.MDNodeVal)) return true; 2789 ID.Kind = ValID::t_MDNode; 2790 return false; 2791 } 2792 2793 // MDString: 2794 // ::= '!' STRINGCONSTANT 2795 if (ParseMDString(ID.MDStringVal)) return true; 2796 ID.Kind = ValID::t_MDString; 2797 return false; 2798 } 2799 2800 2801 //===----------------------------------------------------------------------===// 2802 // Function Parsing. 2803 //===----------------------------------------------------------------------===// 2804 2805 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 2806 PerFunctionState *PFS) { 2807 if (Ty->isFunctionTy()) 2808 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 2809 2810 switch (ID.Kind) { 2811 case ValID::t_LocalID: 2812 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2813 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 2814 return (V == 0); 2815 case ValID::t_LocalName: 2816 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2817 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 2818 return (V == 0); 2819 case ValID::t_InlineAsm: { 2820 PointerType *PTy = dyn_cast<PointerType>(Ty); 2821 FunctionType *FTy = 2822 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; 2823 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2)) 2824 return Error(ID.Loc, "invalid type for inline asm constraint string"); 2825 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, 2826 (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2))); 2827 return false; 2828 } 2829 case ValID::t_MDNode: 2830 if (!Ty->isMetadataTy()) 2831 return Error(ID.Loc, "metadata value must have metadata type"); 2832 V = ID.MDNodeVal; 2833 return false; 2834 case ValID::t_MDString: 2835 if (!Ty->isMetadataTy()) 2836 return Error(ID.Loc, "metadata value must have metadata type"); 2837 V = ID.MDStringVal; 2838 return false; 2839 case ValID::t_GlobalName: 2840 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 2841 return V == 0; 2842 case ValID::t_GlobalID: 2843 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 2844 return V == 0; 2845 case ValID::t_APSInt: 2846 if (!Ty->isIntegerTy()) 2847 return Error(ID.Loc, "integer constant must have integer type"); 2848 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 2849 V = ConstantInt::get(Context, ID.APSIntVal); 2850 return false; 2851 case ValID::t_APFloat: 2852 if (!Ty->isFloatingPointTy() || 2853 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 2854 return Error(ID.Loc, "floating point constant invalid for type"); 2855 2856 // The lexer has no type info, so builds all half, float, and double FP 2857 // constants as double. Fix this here. Long double does not need this. 2858 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 2859 bool Ignored; 2860 if (Ty->isHalfTy()) 2861 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 2862 &Ignored); 2863 else if (Ty->isFloatTy()) 2864 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 2865 &Ignored); 2866 } 2867 V = ConstantFP::get(Context, ID.APFloatVal); 2868 2869 if (V->getType() != Ty) 2870 return Error(ID.Loc, "floating point constant does not have type '" + 2871 getTypeString(Ty) + "'"); 2872 2873 return false; 2874 case ValID::t_Null: 2875 if (!Ty->isPointerTy()) 2876 return Error(ID.Loc, "null must be a pointer type"); 2877 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 2878 return false; 2879 case ValID::t_Undef: 2880 // FIXME: LabelTy should not be a first-class type. 2881 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2882 return Error(ID.Loc, "invalid type for undef constant"); 2883 V = UndefValue::get(Ty); 2884 return false; 2885 case ValID::t_EmptyArray: 2886 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 2887 return Error(ID.Loc, "invalid empty array initializer"); 2888 V = UndefValue::get(Ty); 2889 return false; 2890 case ValID::t_Zero: 2891 // FIXME: LabelTy should not be a first-class type. 2892 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2893 return Error(ID.Loc, "invalid type for null constant"); 2894 V = Constant::getNullValue(Ty); 2895 return false; 2896 case ValID::t_Constant: 2897 if (ID.ConstantVal->getType() != Ty) 2898 return Error(ID.Loc, "constant expression type mismatch"); 2899 2900 V = ID.ConstantVal; 2901 return false; 2902 case ValID::t_ConstantStruct: 2903 case ValID::t_PackedConstantStruct: 2904 if (StructType *ST = dyn_cast<StructType>(Ty)) { 2905 if (ST->getNumElements() != ID.UIntVal) 2906 return Error(ID.Loc, 2907 "initializer with struct type has wrong # elements"); 2908 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 2909 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 2910 2911 // Verify that the elements are compatible with the structtype. 2912 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 2913 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 2914 return Error(ID.Loc, "element " + Twine(i) + 2915 " of struct initializer doesn't match struct element type"); 2916 2917 V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts, 2918 ID.UIntVal)); 2919 } else 2920 return Error(ID.Loc, "constant expression type mismatch"); 2921 return false; 2922 } 2923 llvm_unreachable("Invalid ValID"); 2924 } 2925 2926 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 2927 V = 0; 2928 ValID ID; 2929 return ParseValID(ID, PFS) || 2930 ConvertValIDToValue(Ty, ID, V, PFS); 2931 } 2932 2933 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 2934 Type *Ty = 0; 2935 return ParseType(Ty) || 2936 ParseValue(Ty, V, PFS); 2937 } 2938 2939 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 2940 PerFunctionState &PFS) { 2941 Value *V; 2942 Loc = Lex.getLoc(); 2943 if (ParseTypeAndValue(V, PFS)) return true; 2944 if (!isa<BasicBlock>(V)) 2945 return Error(Loc, "expected a basic block"); 2946 BB = cast<BasicBlock>(V); 2947 return false; 2948 } 2949 2950 2951 /// FunctionHeader 2952 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 2953 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 2954 /// OptionalAlign OptGC OptionalPrefix 2955 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 2956 // Parse the linkage. 2957 LocTy LinkageLoc = Lex.getLoc(); 2958 unsigned Linkage; 2959 2960 unsigned Visibility; 2961 unsigned DLLStorageClass; 2962 AttrBuilder RetAttrs; 2963 CallingConv::ID CC; 2964 Type *RetType = 0; 2965 LocTy RetTypeLoc = Lex.getLoc(); 2966 if (ParseOptionalLinkage(Linkage) || 2967 ParseOptionalVisibility(Visibility) || 2968 ParseOptionalDLLStorageClass(DLLStorageClass) || 2969 ParseOptionalCallingConv(CC) || 2970 ParseOptionalReturnAttrs(RetAttrs) || 2971 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 2972 return true; 2973 2974 // Verify that the linkage is ok. 2975 switch ((GlobalValue::LinkageTypes)Linkage) { 2976 case GlobalValue::ExternalLinkage: 2977 break; // always ok. 2978 case GlobalValue::ExternalWeakLinkage: 2979 if (isDefine) 2980 return Error(LinkageLoc, "invalid linkage for function definition"); 2981 break; 2982 case GlobalValue::PrivateLinkage: 2983 case GlobalValue::LinkerPrivateLinkage: 2984 case GlobalValue::LinkerPrivateWeakLinkage: 2985 case GlobalValue::InternalLinkage: 2986 case GlobalValue::AvailableExternallyLinkage: 2987 case GlobalValue::LinkOnceAnyLinkage: 2988 case GlobalValue::LinkOnceODRLinkage: 2989 case GlobalValue::WeakAnyLinkage: 2990 case GlobalValue::WeakODRLinkage: 2991 if (!isDefine) 2992 return Error(LinkageLoc, "invalid linkage for function declaration"); 2993 break; 2994 case GlobalValue::AppendingLinkage: 2995 case GlobalValue::CommonLinkage: 2996 return Error(LinkageLoc, "invalid function linkage type"); 2997 } 2998 2999 if (!FunctionType::isValidReturnType(RetType)) 3000 return Error(RetTypeLoc, "invalid function return type"); 3001 3002 LocTy NameLoc = Lex.getLoc(); 3003 3004 std::string FunctionName; 3005 if (Lex.getKind() == lltok::GlobalVar) { 3006 FunctionName = Lex.getStrVal(); 3007 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 3008 unsigned NameID = Lex.getUIntVal(); 3009 3010 if (NameID != NumberedVals.size()) 3011 return TokError("function expected to be numbered '%" + 3012 Twine(NumberedVals.size()) + "'"); 3013 } else { 3014 return TokError("expected function name"); 3015 } 3016 3017 Lex.Lex(); 3018 3019 if (Lex.getKind() != lltok::lparen) 3020 return TokError("expected '(' in function argument list"); 3021 3022 SmallVector<ArgInfo, 8> ArgList; 3023 bool isVarArg; 3024 AttrBuilder FuncAttrs; 3025 std::vector<unsigned> FwdRefAttrGrps; 3026 LocTy BuiltinLoc; 3027 std::string Section; 3028 unsigned Alignment; 3029 std::string GC; 3030 bool UnnamedAddr; 3031 LocTy UnnamedAddrLoc; 3032 Constant *Prefix = 0; 3033 3034 if (ParseArgumentList(ArgList, isVarArg) || 3035 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 3036 &UnnamedAddrLoc) || 3037 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 3038 BuiltinLoc) || 3039 (EatIfPresent(lltok::kw_section) && 3040 ParseStringConstant(Section)) || 3041 ParseOptionalAlignment(Alignment) || 3042 (EatIfPresent(lltok::kw_gc) && 3043 ParseStringConstant(GC)) || 3044 (EatIfPresent(lltok::kw_prefix) && 3045 ParseGlobalTypeAndValue(Prefix))) 3046 return true; 3047 3048 if (FuncAttrs.contains(Attribute::Builtin)) 3049 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 3050 3051 // If the alignment was parsed as an attribute, move to the alignment field. 3052 if (FuncAttrs.hasAlignmentAttr()) { 3053 Alignment = FuncAttrs.getAlignment(); 3054 FuncAttrs.removeAttribute(Attribute::Alignment); 3055 } 3056 3057 // Okay, if we got here, the function is syntactically valid. Convert types 3058 // and do semantic checks. 3059 std::vector<Type*> ParamTypeList; 3060 SmallVector<AttributeSet, 8> Attrs; 3061 3062 if (RetAttrs.hasAttributes()) 3063 Attrs.push_back(AttributeSet::get(RetType->getContext(), 3064 AttributeSet::ReturnIndex, 3065 RetAttrs)); 3066 3067 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3068 ParamTypeList.push_back(ArgList[i].Ty); 3069 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 3070 AttrBuilder B(ArgList[i].Attrs, i + 1); 3071 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 3072 } 3073 } 3074 3075 if (FuncAttrs.hasAttributes()) 3076 Attrs.push_back(AttributeSet::get(RetType->getContext(), 3077 AttributeSet::FunctionIndex, 3078 FuncAttrs)); 3079 3080 AttributeSet PAL = AttributeSet::get(Context, Attrs); 3081 3082 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 3083 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 3084 3085 FunctionType *FT = 3086 FunctionType::get(RetType, ParamTypeList, isVarArg); 3087 PointerType *PFT = PointerType::getUnqual(FT); 3088 3089 Fn = 0; 3090 if (!FunctionName.empty()) { 3091 // If this was a definition of a forward reference, remove the definition 3092 // from the forward reference table and fill in the forward ref. 3093 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI = 3094 ForwardRefVals.find(FunctionName); 3095 if (FRVI != ForwardRefVals.end()) { 3096 Fn = M->getFunction(FunctionName); 3097 if (!Fn) 3098 return Error(FRVI->second.second, "invalid forward reference to " 3099 "function as global value!"); 3100 if (Fn->getType() != PFT) 3101 return Error(FRVI->second.second, "invalid forward reference to " 3102 "function '" + FunctionName + "' with wrong type!"); 3103 3104 ForwardRefVals.erase(FRVI); 3105 } else if ((Fn = M->getFunction(FunctionName))) { 3106 // Reject redefinitions. 3107 return Error(NameLoc, "invalid redefinition of function '" + 3108 FunctionName + "'"); 3109 } else if (M->getNamedValue(FunctionName)) { 3110 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 3111 } 3112 3113 } else { 3114 // If this is a definition of a forward referenced function, make sure the 3115 // types agree. 3116 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I 3117 = ForwardRefValIDs.find(NumberedVals.size()); 3118 if (I != ForwardRefValIDs.end()) { 3119 Fn = cast<Function>(I->second.first); 3120 if (Fn->getType() != PFT) 3121 return Error(NameLoc, "type of definition and forward reference of '@" + 3122 Twine(NumberedVals.size()) + "' disagree"); 3123 ForwardRefValIDs.erase(I); 3124 } 3125 } 3126 3127 if (Fn == 0) 3128 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 3129 else // Move the forward-reference to the correct spot in the module. 3130 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 3131 3132 if (FunctionName.empty()) 3133 NumberedVals.push_back(Fn); 3134 3135 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 3136 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 3137 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 3138 Fn->setCallingConv(CC); 3139 Fn->setAttributes(PAL); 3140 Fn->setUnnamedAddr(UnnamedAddr); 3141 Fn->setAlignment(Alignment); 3142 Fn->setSection(Section); 3143 if (!GC.empty()) Fn->setGC(GC.c_str()); 3144 Fn->setPrefixData(Prefix); 3145 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 3146 3147 // Add all of the arguments we parsed to the function. 3148 Function::arg_iterator ArgIt = Fn->arg_begin(); 3149 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 3150 // If the argument has a name, insert it into the argument symbol table. 3151 if (ArgList[i].Name.empty()) continue; 3152 3153 // Set the name, if it conflicted, it will be auto-renamed. 3154 ArgIt->setName(ArgList[i].Name); 3155 3156 if (ArgIt->getName() != ArgList[i].Name) 3157 return Error(ArgList[i].Loc, "redefinition of argument '%" + 3158 ArgList[i].Name + "'"); 3159 } 3160 3161 return false; 3162 } 3163 3164 3165 /// ParseFunctionBody 3166 /// ::= '{' BasicBlock+ '}' 3167 /// 3168 bool LLParser::ParseFunctionBody(Function &Fn) { 3169 if (Lex.getKind() != lltok::lbrace) 3170 return TokError("expected '{' in function body"); 3171 Lex.Lex(); // eat the {. 3172 3173 int FunctionNumber = -1; 3174 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 3175 3176 PerFunctionState PFS(*this, Fn, FunctionNumber); 3177 3178 // We need at least one basic block. 3179 if (Lex.getKind() == lltok::rbrace) 3180 return TokError("function body requires at least one basic block"); 3181 3182 while (Lex.getKind() != lltok::rbrace) 3183 if (ParseBasicBlock(PFS)) return true; 3184 3185 // Eat the }. 3186 Lex.Lex(); 3187 3188 // Verify function is ok. 3189 return PFS.FinishFunction(); 3190 } 3191 3192 /// ParseBasicBlock 3193 /// ::= LabelStr? Instruction* 3194 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 3195 // If this basic block starts out with a name, remember it. 3196 std::string Name; 3197 LocTy NameLoc = Lex.getLoc(); 3198 if (Lex.getKind() == lltok::LabelStr) { 3199 Name = Lex.getStrVal(); 3200 Lex.Lex(); 3201 } 3202 3203 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 3204 if (BB == 0) return true; 3205 3206 std::string NameStr; 3207 3208 // Parse the instructions in this block until we get a terminator. 3209 Instruction *Inst; 3210 do { 3211 // This instruction may have three possibilities for a name: a) none 3212 // specified, b) name specified "%foo =", c) number specified: "%4 =". 3213 LocTy NameLoc = Lex.getLoc(); 3214 int NameID = -1; 3215 NameStr = ""; 3216 3217 if (Lex.getKind() == lltok::LocalVarID) { 3218 NameID = Lex.getUIntVal(); 3219 Lex.Lex(); 3220 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 3221 return true; 3222 } else if (Lex.getKind() == lltok::LocalVar) { 3223 NameStr = Lex.getStrVal(); 3224 Lex.Lex(); 3225 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 3226 return true; 3227 } 3228 3229 switch (ParseInstruction(Inst, BB, PFS)) { 3230 default: llvm_unreachable("Unknown ParseInstruction result!"); 3231 case InstError: return true; 3232 case InstNormal: 3233 BB->getInstList().push_back(Inst); 3234 3235 // With a normal result, we check to see if the instruction is followed by 3236 // a comma and metadata. 3237 if (EatIfPresent(lltok::comma)) 3238 if (ParseInstructionMetadata(Inst, &PFS)) 3239 return true; 3240 break; 3241 case InstExtraComma: 3242 BB->getInstList().push_back(Inst); 3243 3244 // If the instruction parser ate an extra comma at the end of it, it 3245 // *must* be followed by metadata. 3246 if (ParseInstructionMetadata(Inst, &PFS)) 3247 return true; 3248 break; 3249 } 3250 3251 // Set the name on the instruction. 3252 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 3253 } while (!isa<TerminatorInst>(Inst)); 3254 3255 return false; 3256 } 3257 3258 //===----------------------------------------------------------------------===// 3259 // Instruction Parsing. 3260 //===----------------------------------------------------------------------===// 3261 3262 /// ParseInstruction - Parse one of the many different instructions. 3263 /// 3264 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 3265 PerFunctionState &PFS) { 3266 lltok::Kind Token = Lex.getKind(); 3267 if (Token == lltok::Eof) 3268 return TokError("found end of file when expecting more instructions"); 3269 LocTy Loc = Lex.getLoc(); 3270 unsigned KeywordVal = Lex.getUIntVal(); 3271 Lex.Lex(); // Eat the keyword. 3272 3273 switch (Token) { 3274 default: return Error(Loc, "expected instruction opcode"); 3275 // Terminator Instructions. 3276 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 3277 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 3278 case lltok::kw_br: return ParseBr(Inst, PFS); 3279 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 3280 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 3281 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 3282 case lltok::kw_resume: return ParseResume(Inst, PFS); 3283 // Binary Operators. 3284 case lltok::kw_add: 3285 case lltok::kw_sub: 3286 case lltok::kw_mul: 3287 case lltok::kw_shl: { 3288 bool NUW = EatIfPresent(lltok::kw_nuw); 3289 bool NSW = EatIfPresent(lltok::kw_nsw); 3290 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 3291 3292 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 3293 3294 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 3295 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 3296 return false; 3297 } 3298 case lltok::kw_fadd: 3299 case lltok::kw_fsub: 3300 case lltok::kw_fmul: 3301 case lltok::kw_fdiv: 3302 case lltok::kw_frem: { 3303 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 3304 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 3305 if (Res != 0) 3306 return Res; 3307 if (FMF.any()) 3308 Inst->setFastMathFlags(FMF); 3309 return 0; 3310 } 3311 3312 case lltok::kw_sdiv: 3313 case lltok::kw_udiv: 3314 case lltok::kw_lshr: 3315 case lltok::kw_ashr: { 3316 bool Exact = EatIfPresent(lltok::kw_exact); 3317 3318 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 3319 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 3320 return false; 3321 } 3322 3323 case lltok::kw_urem: 3324 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 3325 case lltok::kw_and: 3326 case lltok::kw_or: 3327 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 3328 case lltok::kw_icmp: 3329 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal); 3330 // Casts. 3331 case lltok::kw_trunc: 3332 case lltok::kw_zext: 3333 case lltok::kw_sext: 3334 case lltok::kw_fptrunc: 3335 case lltok::kw_fpext: 3336 case lltok::kw_bitcast: 3337 case lltok::kw_addrspacecast: 3338 case lltok::kw_uitofp: 3339 case lltok::kw_sitofp: 3340 case lltok::kw_fptoui: 3341 case lltok::kw_fptosi: 3342 case lltok::kw_inttoptr: 3343 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 3344 // Other. 3345 case lltok::kw_select: return ParseSelect(Inst, PFS); 3346 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 3347 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 3348 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 3349 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 3350 case lltok::kw_phi: return ParsePHI(Inst, PFS); 3351 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 3352 case lltok::kw_call: return ParseCall(Inst, PFS, false); 3353 case lltok::kw_tail: return ParseCall(Inst, PFS, true); 3354 // Memory. 3355 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 3356 case lltok::kw_load: return ParseLoad(Inst, PFS); 3357 case lltok::kw_store: return ParseStore(Inst, PFS); 3358 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 3359 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 3360 case lltok::kw_fence: return ParseFence(Inst, PFS); 3361 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 3362 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 3363 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 3364 } 3365 } 3366 3367 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 3368 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 3369 if (Opc == Instruction::FCmp) { 3370 switch (Lex.getKind()) { 3371 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 3372 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 3373 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 3374 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 3375 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 3376 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 3377 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 3378 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 3379 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 3380 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 3381 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 3382 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 3383 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 3384 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 3385 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 3386 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 3387 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 3388 } 3389 } else { 3390 switch (Lex.getKind()) { 3391 default: return TokError("expected icmp predicate (e.g. 'eq')"); 3392 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 3393 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 3394 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 3395 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 3396 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 3397 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 3398 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 3399 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 3400 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 3401 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 3402 } 3403 } 3404 Lex.Lex(); 3405 return false; 3406 } 3407 3408 //===----------------------------------------------------------------------===// 3409 // Terminator Instructions. 3410 //===----------------------------------------------------------------------===// 3411 3412 /// ParseRet - Parse a return instruction. 3413 /// ::= 'ret' void (',' !dbg, !1)* 3414 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 3415 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 3416 PerFunctionState &PFS) { 3417 SMLoc TypeLoc = Lex.getLoc(); 3418 Type *Ty = 0; 3419 if (ParseType(Ty, true /*void allowed*/)) return true; 3420 3421 Type *ResType = PFS.getFunction().getReturnType(); 3422 3423 if (Ty->isVoidTy()) { 3424 if (!ResType->isVoidTy()) 3425 return Error(TypeLoc, "value doesn't match function result type '" + 3426 getTypeString(ResType) + "'"); 3427 3428 Inst = ReturnInst::Create(Context); 3429 return false; 3430 } 3431 3432 Value *RV; 3433 if (ParseValue(Ty, RV, PFS)) return true; 3434 3435 if (ResType != RV->getType()) 3436 return Error(TypeLoc, "value doesn't match function result type '" + 3437 getTypeString(ResType) + "'"); 3438 3439 Inst = ReturnInst::Create(Context, RV); 3440 return false; 3441 } 3442 3443 3444 /// ParseBr 3445 /// ::= 'br' TypeAndValue 3446 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3447 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 3448 LocTy Loc, Loc2; 3449 Value *Op0; 3450 BasicBlock *Op1, *Op2; 3451 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 3452 3453 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 3454 Inst = BranchInst::Create(BB); 3455 return false; 3456 } 3457 3458 if (Op0->getType() != Type::getInt1Ty(Context)) 3459 return Error(Loc, "branch condition must have 'i1' type"); 3460 3461 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 3462 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 3463 ParseToken(lltok::comma, "expected ',' after true destination") || 3464 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 3465 return true; 3466 3467 Inst = BranchInst::Create(Op1, Op2, Op0); 3468 return false; 3469 } 3470 3471 /// ParseSwitch 3472 /// Instruction 3473 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 3474 /// JumpTable 3475 /// ::= (TypeAndValue ',' TypeAndValue)* 3476 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 3477 LocTy CondLoc, BBLoc; 3478 Value *Cond; 3479 BasicBlock *DefaultBB; 3480 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 3481 ParseToken(lltok::comma, "expected ',' after switch condition") || 3482 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 3483 ParseToken(lltok::lsquare, "expected '[' with switch table")) 3484 return true; 3485 3486 if (!Cond->getType()->isIntegerTy()) 3487 return Error(CondLoc, "switch condition must have integer type"); 3488 3489 // Parse the jump table pairs. 3490 SmallPtrSet<Value*, 32> SeenCases; 3491 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 3492 while (Lex.getKind() != lltok::rsquare) { 3493 Value *Constant; 3494 BasicBlock *DestBB; 3495 3496 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 3497 ParseToken(lltok::comma, "expected ',' after case value") || 3498 ParseTypeAndBasicBlock(DestBB, PFS)) 3499 return true; 3500 3501 if (!SeenCases.insert(Constant)) 3502 return Error(CondLoc, "duplicate case value in switch"); 3503 if (!isa<ConstantInt>(Constant)) 3504 return Error(CondLoc, "case value is not a constant integer"); 3505 3506 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 3507 } 3508 3509 Lex.Lex(); // Eat the ']'. 3510 3511 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 3512 for (unsigned i = 0, e = Table.size(); i != e; ++i) 3513 SI->addCase(Table[i].first, Table[i].second); 3514 Inst = SI; 3515 return false; 3516 } 3517 3518 /// ParseIndirectBr 3519 /// Instruction 3520 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 3521 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 3522 LocTy AddrLoc; 3523 Value *Address; 3524 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 3525 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 3526 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 3527 return true; 3528 3529 if (!Address->getType()->isPointerTy()) 3530 return Error(AddrLoc, "indirectbr address must have pointer type"); 3531 3532 // Parse the destination list. 3533 SmallVector<BasicBlock*, 16> DestList; 3534 3535 if (Lex.getKind() != lltok::rsquare) { 3536 BasicBlock *DestBB; 3537 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3538 return true; 3539 DestList.push_back(DestBB); 3540 3541 while (EatIfPresent(lltok::comma)) { 3542 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3543 return true; 3544 DestList.push_back(DestBB); 3545 } 3546 } 3547 3548 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 3549 return true; 3550 3551 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 3552 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 3553 IBI->addDestination(DestList[i]); 3554 Inst = IBI; 3555 return false; 3556 } 3557 3558 3559 /// ParseInvoke 3560 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 3561 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 3562 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 3563 LocTy CallLoc = Lex.getLoc(); 3564 AttrBuilder RetAttrs, FnAttrs; 3565 std::vector<unsigned> FwdRefAttrGrps; 3566 LocTy NoBuiltinLoc; 3567 CallingConv::ID CC; 3568 Type *RetType = 0; 3569 LocTy RetTypeLoc; 3570 ValID CalleeID; 3571 SmallVector<ParamInfo, 16> ArgList; 3572 3573 BasicBlock *NormalBB, *UnwindBB; 3574 if (ParseOptionalCallingConv(CC) || 3575 ParseOptionalReturnAttrs(RetAttrs) || 3576 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3577 ParseValID(CalleeID) || 3578 ParseParameterList(ArgList, PFS) || 3579 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 3580 NoBuiltinLoc) || 3581 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 3582 ParseTypeAndBasicBlock(NormalBB, PFS) || 3583 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 3584 ParseTypeAndBasicBlock(UnwindBB, PFS)) 3585 return true; 3586 3587 // If RetType is a non-function pointer type, then this is the short syntax 3588 // for the call, which means that RetType is just the return type. Infer the 3589 // rest of the function argument types from the arguments that are present. 3590 PointerType *PFTy = 0; 3591 FunctionType *Ty = 0; 3592 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3593 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3594 // Pull out the types of all of the arguments... 3595 std::vector<Type*> ParamTypes; 3596 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3597 ParamTypes.push_back(ArgList[i].V->getType()); 3598 3599 if (!FunctionType::isValidReturnType(RetType)) 3600 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3601 3602 Ty = FunctionType::get(RetType, ParamTypes, false); 3603 PFTy = PointerType::getUnqual(Ty); 3604 } 3605 3606 // Look up the callee. 3607 Value *Callee; 3608 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3609 3610 // Set up the Attribute for the function. 3611 SmallVector<AttributeSet, 8> Attrs; 3612 if (RetAttrs.hasAttributes()) 3613 Attrs.push_back(AttributeSet::get(RetType->getContext(), 3614 AttributeSet::ReturnIndex, 3615 RetAttrs)); 3616 3617 SmallVector<Value*, 8> Args; 3618 3619 // Loop through FunctionType's arguments and ensure they are specified 3620 // correctly. Also, gather any parameter attributes. 3621 FunctionType::param_iterator I = Ty->param_begin(); 3622 FunctionType::param_iterator E = Ty->param_end(); 3623 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3624 Type *ExpectedTy = 0; 3625 if (I != E) { 3626 ExpectedTy = *I++; 3627 } else if (!Ty->isVarArg()) { 3628 return Error(ArgList[i].Loc, "too many arguments specified"); 3629 } 3630 3631 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3632 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3633 getTypeString(ExpectedTy) + "'"); 3634 Args.push_back(ArgList[i].V); 3635 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 3636 AttrBuilder B(ArgList[i].Attrs, i + 1); 3637 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 3638 } 3639 } 3640 3641 if (I != E) 3642 return Error(CallLoc, "not enough parameters specified for call"); 3643 3644 if (FnAttrs.hasAttributes()) 3645 Attrs.push_back(AttributeSet::get(RetType->getContext(), 3646 AttributeSet::FunctionIndex, 3647 FnAttrs)); 3648 3649 // Finish off the Attribute and check them 3650 AttributeSet PAL = AttributeSet::get(Context, Attrs); 3651 3652 InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args); 3653 II->setCallingConv(CC); 3654 II->setAttributes(PAL); 3655 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 3656 Inst = II; 3657 return false; 3658 } 3659 3660 /// ParseResume 3661 /// ::= 'resume' TypeAndValue 3662 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 3663 Value *Exn; LocTy ExnLoc; 3664 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 3665 return true; 3666 3667 ResumeInst *RI = ResumeInst::Create(Exn); 3668 Inst = RI; 3669 return false; 3670 } 3671 3672 //===----------------------------------------------------------------------===// 3673 // Binary Operators. 3674 //===----------------------------------------------------------------------===// 3675 3676 /// ParseArithmetic 3677 /// ::= ArithmeticOps TypeAndValue ',' Value 3678 /// 3679 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 3680 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 3681 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 3682 unsigned Opc, unsigned OperandType) { 3683 LocTy Loc; Value *LHS, *RHS; 3684 if (ParseTypeAndValue(LHS, Loc, PFS) || 3685 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 3686 ParseValue(LHS->getType(), RHS, PFS)) 3687 return true; 3688 3689 bool Valid; 3690 switch (OperandType) { 3691 default: llvm_unreachable("Unknown operand type!"); 3692 case 0: // int or FP. 3693 Valid = LHS->getType()->isIntOrIntVectorTy() || 3694 LHS->getType()->isFPOrFPVectorTy(); 3695 break; 3696 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 3697 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 3698 } 3699 3700 if (!Valid) 3701 return Error(Loc, "invalid operand type for instruction"); 3702 3703 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3704 return false; 3705 } 3706 3707 /// ParseLogical 3708 /// ::= ArithmeticOps TypeAndValue ',' Value { 3709 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 3710 unsigned Opc) { 3711 LocTy Loc; Value *LHS, *RHS; 3712 if (ParseTypeAndValue(LHS, Loc, PFS) || 3713 ParseToken(lltok::comma, "expected ',' in logical operation") || 3714 ParseValue(LHS->getType(), RHS, PFS)) 3715 return true; 3716 3717 if (!LHS->getType()->isIntOrIntVectorTy()) 3718 return Error(Loc,"instruction requires integer or integer vector operands"); 3719 3720 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3721 return false; 3722 } 3723 3724 3725 /// ParseCompare 3726 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 3727 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 3728 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 3729 unsigned Opc) { 3730 // Parse the integer/fp comparison predicate. 3731 LocTy Loc; 3732 unsigned Pred; 3733 Value *LHS, *RHS; 3734 if (ParseCmpPredicate(Pred, Opc) || 3735 ParseTypeAndValue(LHS, Loc, PFS) || 3736 ParseToken(lltok::comma, "expected ',' after compare value") || 3737 ParseValue(LHS->getType(), RHS, PFS)) 3738 return true; 3739 3740 if (Opc == Instruction::FCmp) { 3741 if (!LHS->getType()->isFPOrFPVectorTy()) 3742 return Error(Loc, "fcmp requires floating point operands"); 3743 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3744 } else { 3745 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 3746 if (!LHS->getType()->isIntOrIntVectorTy() && 3747 !LHS->getType()->getScalarType()->isPointerTy()) 3748 return Error(Loc, "icmp requires integer operands"); 3749 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3750 } 3751 return false; 3752 } 3753 3754 //===----------------------------------------------------------------------===// 3755 // Other Instructions. 3756 //===----------------------------------------------------------------------===// 3757 3758 3759 /// ParseCast 3760 /// ::= CastOpc TypeAndValue 'to' Type 3761 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 3762 unsigned Opc) { 3763 LocTy Loc; 3764 Value *Op; 3765 Type *DestTy = 0; 3766 if (ParseTypeAndValue(Op, Loc, PFS) || 3767 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 3768 ParseType(DestTy)) 3769 return true; 3770 3771 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 3772 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 3773 return Error(Loc, "invalid cast opcode for cast from '" + 3774 getTypeString(Op->getType()) + "' to '" + 3775 getTypeString(DestTy) + "'"); 3776 } 3777 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 3778 return false; 3779 } 3780 3781 /// ParseSelect 3782 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3783 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 3784 LocTy Loc; 3785 Value *Op0, *Op1, *Op2; 3786 if (ParseTypeAndValue(Op0, Loc, PFS) || 3787 ParseToken(lltok::comma, "expected ',' after select condition") || 3788 ParseTypeAndValue(Op1, PFS) || 3789 ParseToken(lltok::comma, "expected ',' after select value") || 3790 ParseTypeAndValue(Op2, PFS)) 3791 return true; 3792 3793 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 3794 return Error(Loc, Reason); 3795 3796 Inst = SelectInst::Create(Op0, Op1, Op2); 3797 return false; 3798 } 3799 3800 /// ParseVA_Arg 3801 /// ::= 'va_arg' TypeAndValue ',' Type 3802 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 3803 Value *Op; 3804 Type *EltTy = 0; 3805 LocTy TypeLoc; 3806 if (ParseTypeAndValue(Op, PFS) || 3807 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 3808 ParseType(EltTy, TypeLoc)) 3809 return true; 3810 3811 if (!EltTy->isFirstClassType()) 3812 return Error(TypeLoc, "va_arg requires operand with first class type"); 3813 3814 Inst = new VAArgInst(Op, EltTy); 3815 return false; 3816 } 3817 3818 /// ParseExtractElement 3819 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 3820 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 3821 LocTy Loc; 3822 Value *Op0, *Op1; 3823 if (ParseTypeAndValue(Op0, Loc, PFS) || 3824 ParseToken(lltok::comma, "expected ',' after extract value") || 3825 ParseTypeAndValue(Op1, PFS)) 3826 return true; 3827 3828 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 3829 return Error(Loc, "invalid extractelement operands"); 3830 3831 Inst = ExtractElementInst::Create(Op0, Op1); 3832 return false; 3833 } 3834 3835 /// ParseInsertElement 3836 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3837 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 3838 LocTy Loc; 3839 Value *Op0, *Op1, *Op2; 3840 if (ParseTypeAndValue(Op0, Loc, PFS) || 3841 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3842 ParseTypeAndValue(Op1, PFS) || 3843 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3844 ParseTypeAndValue(Op2, PFS)) 3845 return true; 3846 3847 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 3848 return Error(Loc, "invalid insertelement operands"); 3849 3850 Inst = InsertElementInst::Create(Op0, Op1, Op2); 3851 return false; 3852 } 3853 3854 /// ParseShuffleVector 3855 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3856 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 3857 LocTy Loc; 3858 Value *Op0, *Op1, *Op2; 3859 if (ParseTypeAndValue(Op0, Loc, PFS) || 3860 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 3861 ParseTypeAndValue(Op1, PFS) || 3862 ParseToken(lltok::comma, "expected ',' after shuffle value") || 3863 ParseTypeAndValue(Op2, PFS)) 3864 return true; 3865 3866 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 3867 return Error(Loc, "invalid shufflevector operands"); 3868 3869 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 3870 return false; 3871 } 3872 3873 /// ParsePHI 3874 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 3875 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 3876 Type *Ty = 0; LocTy TypeLoc; 3877 Value *Op0, *Op1; 3878 3879 if (ParseType(Ty, TypeLoc) || 3880 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3881 ParseValue(Ty, Op0, PFS) || 3882 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3883 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3884 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3885 return true; 3886 3887 bool AteExtraComma = false; 3888 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 3889 while (1) { 3890 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 3891 3892 if (!EatIfPresent(lltok::comma)) 3893 break; 3894 3895 if (Lex.getKind() == lltok::MetadataVar) { 3896 AteExtraComma = true; 3897 break; 3898 } 3899 3900 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3901 ParseValue(Ty, Op0, PFS) || 3902 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3903 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3904 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3905 return true; 3906 } 3907 3908 if (!Ty->isFirstClassType()) 3909 return Error(TypeLoc, "phi node must have first class type"); 3910 3911 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 3912 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 3913 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 3914 Inst = PN; 3915 return AteExtraComma ? InstExtraComma : InstNormal; 3916 } 3917 3918 /// ParseLandingPad 3919 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 3920 /// Clause 3921 /// ::= 'catch' TypeAndValue 3922 /// ::= 'filter' 3923 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 3924 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 3925 Type *Ty = 0; LocTy TyLoc; 3926 Value *PersFn; LocTy PersFnLoc; 3927 3928 if (ParseType(Ty, TyLoc) || 3929 ParseToken(lltok::kw_personality, "expected 'personality'") || 3930 ParseTypeAndValue(PersFn, PersFnLoc, PFS)) 3931 return true; 3932 3933 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0); 3934 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 3935 3936 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 3937 LandingPadInst::ClauseType CT; 3938 if (EatIfPresent(lltok::kw_catch)) 3939 CT = LandingPadInst::Catch; 3940 else if (EatIfPresent(lltok::kw_filter)) 3941 CT = LandingPadInst::Filter; 3942 else 3943 return TokError("expected 'catch' or 'filter' clause type"); 3944 3945 Value *V; LocTy VLoc; 3946 if (ParseTypeAndValue(V, VLoc, PFS)) { 3947 delete LP; 3948 return true; 3949 } 3950 3951 // A 'catch' type expects a non-array constant. A filter clause expects an 3952 // array constant. 3953 if (CT == LandingPadInst::Catch) { 3954 if (isa<ArrayType>(V->getType())) 3955 Error(VLoc, "'catch' clause has an invalid type"); 3956 } else { 3957 if (!isa<ArrayType>(V->getType())) 3958 Error(VLoc, "'filter' clause has an invalid type"); 3959 } 3960 3961 LP->addClause(V); 3962 } 3963 3964 Inst = LP; 3965 return false; 3966 } 3967 3968 /// ParseCall 3969 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value 3970 /// ParameterList OptionalAttrs 3971 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 3972 bool isTail) { 3973 AttrBuilder RetAttrs, FnAttrs; 3974 std::vector<unsigned> FwdRefAttrGrps; 3975 LocTy BuiltinLoc; 3976 CallingConv::ID CC; 3977 Type *RetType = 0; 3978 LocTy RetTypeLoc; 3979 ValID CalleeID; 3980 SmallVector<ParamInfo, 16> ArgList; 3981 LocTy CallLoc = Lex.getLoc(); 3982 3983 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) || 3984 ParseOptionalCallingConv(CC) || 3985 ParseOptionalReturnAttrs(RetAttrs) || 3986 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3987 ParseValID(CalleeID) || 3988 ParseParameterList(ArgList, PFS) || 3989 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 3990 BuiltinLoc)) 3991 return true; 3992 3993 // If RetType is a non-function pointer type, then this is the short syntax 3994 // for the call, which means that RetType is just the return type. Infer the 3995 // rest of the function argument types from the arguments that are present. 3996 PointerType *PFTy = 0; 3997 FunctionType *Ty = 0; 3998 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3999 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 4000 // Pull out the types of all of the arguments... 4001 std::vector<Type*> ParamTypes; 4002 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 4003 ParamTypes.push_back(ArgList[i].V->getType()); 4004 4005 if (!FunctionType::isValidReturnType(RetType)) 4006 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 4007 4008 Ty = FunctionType::get(RetType, ParamTypes, false); 4009 PFTy = PointerType::getUnqual(Ty); 4010 } 4011 4012 // Look up the callee. 4013 Value *Callee; 4014 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 4015 4016 // Set up the Attribute for the function. 4017 SmallVector<AttributeSet, 8> Attrs; 4018 if (RetAttrs.hasAttributes()) 4019 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4020 AttributeSet::ReturnIndex, 4021 RetAttrs)); 4022 4023 SmallVector<Value*, 8> Args; 4024 4025 // Loop through FunctionType's arguments and ensure they are specified 4026 // correctly. Also, gather any parameter attributes. 4027 FunctionType::param_iterator I = Ty->param_begin(); 4028 FunctionType::param_iterator E = Ty->param_end(); 4029 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4030 Type *ExpectedTy = 0; 4031 if (I != E) { 4032 ExpectedTy = *I++; 4033 } else if (!Ty->isVarArg()) { 4034 return Error(ArgList[i].Loc, "too many arguments specified"); 4035 } 4036 4037 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 4038 return Error(ArgList[i].Loc, "argument is not of expected type '" + 4039 getTypeString(ExpectedTy) + "'"); 4040 Args.push_back(ArgList[i].V); 4041 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 4042 AttrBuilder B(ArgList[i].Attrs, i + 1); 4043 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 4044 } 4045 } 4046 4047 if (I != E) 4048 return Error(CallLoc, "not enough parameters specified for call"); 4049 4050 if (FnAttrs.hasAttributes()) 4051 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4052 AttributeSet::FunctionIndex, 4053 FnAttrs)); 4054 4055 // Finish off the Attribute and check them 4056 AttributeSet PAL = AttributeSet::get(Context, Attrs); 4057 4058 CallInst *CI = CallInst::Create(Callee, Args); 4059 CI->setTailCall(isTail); 4060 CI->setCallingConv(CC); 4061 CI->setAttributes(PAL); 4062 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 4063 Inst = CI; 4064 return false; 4065 } 4066 4067 //===----------------------------------------------------------------------===// 4068 // Memory Instructions. 4069 //===----------------------------------------------------------------------===// 4070 4071 /// ParseAlloc 4072 /// ::= 'alloca' Type (',' 'inalloca')? (',' TypeAndValue)? (',' OptionalInfo)? 4073 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 4074 Value *Size = 0; 4075 LocTy SizeLoc; 4076 unsigned Alignment = 0; 4077 bool IsInAlloca = false; 4078 Type *Ty = 0; 4079 if (ParseType(Ty)) return true; 4080 4081 bool AteExtraComma = false; 4082 if (EatIfPresent(lltok::comma)) { 4083 bool HaveComma = true; 4084 if (EatIfPresent(lltok::kw_inalloca)) { 4085 IsInAlloca = true; 4086 HaveComma = EatIfPresent(lltok::comma); 4087 } 4088 4089 if (HaveComma) { 4090 if (Lex.getKind() == lltok::kw_align) { 4091 if (ParseOptionalAlignment(Alignment)) return true; 4092 } else if (Lex.getKind() == lltok::MetadataVar) { 4093 AteExtraComma = true; 4094 } else { 4095 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 4096 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 4097 return true; 4098 } 4099 } 4100 } 4101 4102 if (Size && !Size->getType()->isIntegerTy()) 4103 return Error(SizeLoc, "element count must have integer type"); 4104 4105 AllocaInst *AI = new AllocaInst(Ty, Size, Alignment); 4106 AI->setUsedWithInAlloca(IsInAlloca); 4107 Inst = AI; 4108 return AteExtraComma ? InstExtraComma : InstNormal; 4109 } 4110 4111 /// ParseLoad 4112 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 4113 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 4114 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 4115 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 4116 Value *Val; LocTy Loc; 4117 unsigned Alignment = 0; 4118 bool AteExtraComma = false; 4119 bool isAtomic = false; 4120 AtomicOrdering Ordering = NotAtomic; 4121 SynchronizationScope Scope = CrossThread; 4122 4123 if (Lex.getKind() == lltok::kw_atomic) { 4124 isAtomic = true; 4125 Lex.Lex(); 4126 } 4127 4128 bool isVolatile = false; 4129 if (Lex.getKind() == lltok::kw_volatile) { 4130 isVolatile = true; 4131 Lex.Lex(); 4132 } 4133 4134 if (ParseTypeAndValue(Val, Loc, PFS) || 4135 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 4136 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 4137 return true; 4138 4139 if (!Val->getType()->isPointerTy() || 4140 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType()) 4141 return Error(Loc, "load operand must be a pointer to a first class type"); 4142 if (isAtomic && !Alignment) 4143 return Error(Loc, "atomic load must have explicit non-zero alignment"); 4144 if (Ordering == Release || Ordering == AcquireRelease) 4145 return Error(Loc, "atomic load cannot use Release ordering"); 4146 4147 Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope); 4148 return AteExtraComma ? InstExtraComma : InstNormal; 4149 } 4150 4151 /// ParseStore 4152 4153 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 4154 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 4155 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 4156 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 4157 Value *Val, *Ptr; LocTy Loc, PtrLoc; 4158 unsigned Alignment = 0; 4159 bool AteExtraComma = false; 4160 bool isAtomic = false; 4161 AtomicOrdering Ordering = NotAtomic; 4162 SynchronizationScope Scope = CrossThread; 4163 4164 if (Lex.getKind() == lltok::kw_atomic) { 4165 isAtomic = true; 4166 Lex.Lex(); 4167 } 4168 4169 bool isVolatile = false; 4170 if (Lex.getKind() == lltok::kw_volatile) { 4171 isVolatile = true; 4172 Lex.Lex(); 4173 } 4174 4175 if (ParseTypeAndValue(Val, Loc, PFS) || 4176 ParseToken(lltok::comma, "expected ',' after store operand") || 4177 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 4178 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 4179 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 4180 return true; 4181 4182 if (!Ptr->getType()->isPointerTy()) 4183 return Error(PtrLoc, "store operand must be a pointer"); 4184 if (!Val->getType()->isFirstClassType()) 4185 return Error(Loc, "store operand must be a first class value"); 4186 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 4187 return Error(Loc, "stored value and pointer type do not match"); 4188 if (isAtomic && !Alignment) 4189 return Error(Loc, "atomic store must have explicit non-zero alignment"); 4190 if (Ordering == Acquire || Ordering == AcquireRelease) 4191 return Error(Loc, "atomic store cannot use Acquire ordering"); 4192 4193 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 4194 return AteExtraComma ? InstExtraComma : InstNormal; 4195 } 4196 4197 /// ParseCmpXchg 4198 /// ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue 4199 /// 'singlethread'? AtomicOrdering 4200 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 4201 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 4202 bool AteExtraComma = false; 4203 AtomicOrdering Ordering = NotAtomic; 4204 SynchronizationScope Scope = CrossThread; 4205 bool isVolatile = false; 4206 4207 if (EatIfPresent(lltok::kw_volatile)) 4208 isVolatile = true; 4209 4210 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 4211 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 4212 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 4213 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 4214 ParseTypeAndValue(New, NewLoc, PFS) || 4215 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 4216 return true; 4217 4218 if (Ordering == Unordered) 4219 return TokError("cmpxchg cannot be unordered"); 4220 if (!Ptr->getType()->isPointerTy()) 4221 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 4222 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 4223 return Error(CmpLoc, "compare value and pointer type do not match"); 4224 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 4225 return Error(NewLoc, "new value and pointer type do not match"); 4226 if (!New->getType()->isIntegerTy()) 4227 return Error(NewLoc, "cmpxchg operand must be an integer"); 4228 unsigned Size = New->getType()->getPrimitiveSizeInBits(); 4229 if (Size < 8 || (Size & (Size - 1))) 4230 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized" 4231 " integer"); 4232 4233 AtomicCmpXchgInst *CXI = 4234 new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope); 4235 CXI->setVolatile(isVolatile); 4236 Inst = CXI; 4237 return AteExtraComma ? InstExtraComma : InstNormal; 4238 } 4239 4240 /// ParseAtomicRMW 4241 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 4242 /// 'singlethread'? AtomicOrdering 4243 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 4244 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 4245 bool AteExtraComma = false; 4246 AtomicOrdering Ordering = NotAtomic; 4247 SynchronizationScope Scope = CrossThread; 4248 bool isVolatile = false; 4249 AtomicRMWInst::BinOp Operation; 4250 4251 if (EatIfPresent(lltok::kw_volatile)) 4252 isVolatile = true; 4253 4254 switch (Lex.getKind()) { 4255 default: return TokError("expected binary operation in atomicrmw"); 4256 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 4257 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 4258 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 4259 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 4260 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 4261 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 4262 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 4263 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 4264 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 4265 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 4266 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 4267 } 4268 Lex.Lex(); // Eat the operation. 4269 4270 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 4271 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 4272 ParseTypeAndValue(Val, ValLoc, PFS) || 4273 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 4274 return true; 4275 4276 if (Ordering == Unordered) 4277 return TokError("atomicrmw cannot be unordered"); 4278 if (!Ptr->getType()->isPointerTy()) 4279 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 4280 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 4281 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 4282 if (!Val->getType()->isIntegerTy()) 4283 return Error(ValLoc, "atomicrmw operand must be an integer"); 4284 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 4285 if (Size < 8 || (Size & (Size - 1))) 4286 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 4287 " integer"); 4288 4289 AtomicRMWInst *RMWI = 4290 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 4291 RMWI->setVolatile(isVolatile); 4292 Inst = RMWI; 4293 return AteExtraComma ? InstExtraComma : InstNormal; 4294 } 4295 4296 /// ParseFence 4297 /// ::= 'fence' 'singlethread'? AtomicOrdering 4298 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 4299 AtomicOrdering Ordering = NotAtomic; 4300 SynchronizationScope Scope = CrossThread; 4301 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 4302 return true; 4303 4304 if (Ordering == Unordered) 4305 return TokError("fence cannot be unordered"); 4306 if (Ordering == Monotonic) 4307 return TokError("fence cannot be monotonic"); 4308 4309 Inst = new FenceInst(Context, Ordering, Scope); 4310 return InstNormal; 4311 } 4312 4313 /// ParseGetElementPtr 4314 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 4315 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 4316 Value *Ptr = 0; 4317 Value *Val = 0; 4318 LocTy Loc, EltLoc; 4319 4320 bool InBounds = EatIfPresent(lltok::kw_inbounds); 4321 4322 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true; 4323 4324 Type *BaseType = Ptr->getType(); 4325 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 4326 if (!BasePointerType) 4327 return Error(Loc, "base of getelementptr must be a pointer"); 4328 4329 SmallVector<Value*, 16> Indices; 4330 bool AteExtraComma = false; 4331 while (EatIfPresent(lltok::comma)) { 4332 if (Lex.getKind() == lltok::MetadataVar) { 4333 AteExtraComma = true; 4334 break; 4335 } 4336 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 4337 if (!Val->getType()->getScalarType()->isIntegerTy()) 4338 return Error(EltLoc, "getelementptr index must be an integer"); 4339 if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy()) 4340 return Error(EltLoc, "getelementptr index type missmatch"); 4341 if (Val->getType()->isVectorTy()) { 4342 unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements(); 4343 unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements(); 4344 if (ValNumEl != PtrNumEl) 4345 return Error(EltLoc, 4346 "getelementptr vector index has a wrong number of elements"); 4347 } 4348 Indices.push_back(Val); 4349 } 4350 4351 if (!Indices.empty() && !BasePointerType->getElementType()->isSized()) 4352 return Error(Loc, "base element of getelementptr must be sized"); 4353 4354 if (!GetElementPtrInst::getIndexedType(BaseType, Indices)) 4355 return Error(Loc, "invalid getelementptr indices"); 4356 Inst = GetElementPtrInst::Create(Ptr, Indices); 4357 if (InBounds) 4358 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 4359 return AteExtraComma ? InstExtraComma : InstNormal; 4360 } 4361 4362 /// ParseExtractValue 4363 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 4364 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 4365 Value *Val; LocTy Loc; 4366 SmallVector<unsigned, 4> Indices; 4367 bool AteExtraComma; 4368 if (ParseTypeAndValue(Val, Loc, PFS) || 4369 ParseIndexList(Indices, AteExtraComma)) 4370 return true; 4371 4372 if (!Val->getType()->isAggregateType()) 4373 return Error(Loc, "extractvalue operand must be aggregate type"); 4374 4375 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 4376 return Error(Loc, "invalid indices for extractvalue"); 4377 Inst = ExtractValueInst::Create(Val, Indices); 4378 return AteExtraComma ? InstExtraComma : InstNormal; 4379 } 4380 4381 /// ParseInsertValue 4382 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 4383 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 4384 Value *Val0, *Val1; LocTy Loc0, Loc1; 4385 SmallVector<unsigned, 4> Indices; 4386 bool AteExtraComma; 4387 if (ParseTypeAndValue(Val0, Loc0, PFS) || 4388 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 4389 ParseTypeAndValue(Val1, Loc1, PFS) || 4390 ParseIndexList(Indices, AteExtraComma)) 4391 return true; 4392 4393 if (!Val0->getType()->isAggregateType()) 4394 return Error(Loc0, "insertvalue operand must be aggregate type"); 4395 4396 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) 4397 return Error(Loc0, "invalid indices for insertvalue"); 4398 Inst = InsertValueInst::Create(Val0, Val1, Indices); 4399 return AteExtraComma ? InstExtraComma : InstNormal; 4400 } 4401 4402 //===----------------------------------------------------------------------===// 4403 // Embedded metadata. 4404 //===----------------------------------------------------------------------===// 4405 4406 /// ParseMDNodeVector 4407 /// ::= Element (',' Element)* 4408 /// Element 4409 /// ::= 'null' | TypeAndValue 4410 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts, 4411 PerFunctionState *PFS) { 4412 // Check for an empty list. 4413 if (Lex.getKind() == lltok::rbrace) 4414 return false; 4415 4416 do { 4417 // Null is a special case since it is typeless. 4418 if (EatIfPresent(lltok::kw_null)) { 4419 Elts.push_back(0); 4420 continue; 4421 } 4422 4423 Value *V = 0; 4424 if (ParseTypeAndValue(V, PFS)) return true; 4425 Elts.push_back(V); 4426 } while (EatIfPresent(lltok::comma)); 4427 4428 return false; 4429 } 4430