1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/AutoUpgrade.h" 16 #include "llvm/CallingConv.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/InlineAsm.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Module.h" 22 #include "llvm/Operator.h" 23 #include "llvm/ValueSymbolTable.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/raw_ostream.h" 27 using namespace llvm; 28 29 static std::string getTypeString(Type *T) { 30 std::string Result; 31 raw_string_ostream Tmp(Result); 32 Tmp << *T; 33 return Tmp.str(); 34 } 35 36 /// Run: module ::= toplevelentity* 37 bool LLParser::Run() { 38 // Prime the lexer. 39 Lex.Lex(); 40 41 return ParseTopLevelEntities() || 42 ValidateEndOfModule(); 43 } 44 45 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 46 /// module. 47 bool LLParser::ValidateEndOfModule() { 48 // Handle any instruction metadata forward references. 49 if (!ForwardRefInstMetadata.empty()) { 50 for (DenseMap<Instruction*, std::vector<MDRef> >::iterator 51 I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end(); 52 I != E; ++I) { 53 Instruction *Inst = I->first; 54 const std::vector<MDRef> &MDList = I->second; 55 56 for (unsigned i = 0, e = MDList.size(); i != e; ++i) { 57 unsigned SlotNo = MDList[i].MDSlot; 58 59 if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0) 60 return Error(MDList[i].Loc, "use of undefined metadata '!" + 61 Twine(SlotNo) + "'"); 62 Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]); 63 } 64 } 65 ForwardRefInstMetadata.clear(); 66 } 67 68 69 // If there are entries in ForwardRefBlockAddresses at this point, they are 70 // references after the function was defined. Resolve those now. 71 while (!ForwardRefBlockAddresses.empty()) { 72 // Okay, we are referencing an already-parsed function, resolve them now. 73 Function *TheFn = 0; 74 const ValID &Fn = ForwardRefBlockAddresses.begin()->first; 75 if (Fn.Kind == ValID::t_GlobalName) 76 TheFn = M->getFunction(Fn.StrVal); 77 else if (Fn.UIntVal < NumberedVals.size()) 78 TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]); 79 80 if (TheFn == 0) 81 return Error(Fn.Loc, "unknown function referenced by blockaddress"); 82 83 // Resolve all these references. 84 if (ResolveForwardRefBlockAddresses(TheFn, 85 ForwardRefBlockAddresses.begin()->second, 86 0)) 87 return true; 88 89 ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin()); 90 } 91 92 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) 93 if (NumberedTypes[i].second.isValid()) 94 return Error(NumberedTypes[i].second, 95 "use of undefined type '%" + Twine(i) + "'"); 96 97 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 98 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 99 if (I->second.second.isValid()) 100 return Error(I->second.second, 101 "use of undefined type named '" + I->getKey() + "'"); 102 103 if (!ForwardRefVals.empty()) 104 return Error(ForwardRefVals.begin()->second.second, 105 "use of undefined value '@" + ForwardRefVals.begin()->first + 106 "'"); 107 108 if (!ForwardRefValIDs.empty()) 109 return Error(ForwardRefValIDs.begin()->second.second, 110 "use of undefined value '@" + 111 Twine(ForwardRefValIDs.begin()->first) + "'"); 112 113 if (!ForwardRefMDNodes.empty()) 114 return Error(ForwardRefMDNodes.begin()->second.second, 115 "use of undefined metadata '!" + 116 Twine(ForwardRefMDNodes.begin()->first) + "'"); 117 118 119 // Look for intrinsic functions and CallInst that need to be upgraded 120 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 121 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove 122 123 return false; 124 } 125 126 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn, 127 std::vector<std::pair<ValID, GlobalValue*> > &Refs, 128 PerFunctionState *PFS) { 129 // Loop over all the references, resolving them. 130 for (unsigned i = 0, e = Refs.size(); i != e; ++i) { 131 BasicBlock *Res; 132 if (PFS) { 133 if (Refs[i].first.Kind == ValID::t_LocalName) 134 Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc); 135 else 136 Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc); 137 } else if (Refs[i].first.Kind == ValID::t_LocalID) { 138 return Error(Refs[i].first.Loc, 139 "cannot take address of numeric label after the function is defined"); 140 } else { 141 Res = dyn_cast_or_null<BasicBlock>( 142 TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal)); 143 } 144 145 if (Res == 0) 146 return Error(Refs[i].first.Loc, 147 "referenced value is not a basic block"); 148 149 // Get the BlockAddress for this and update references to use it. 150 BlockAddress *BA = BlockAddress::get(TheFn, Res); 151 Refs[i].second->replaceAllUsesWith(BA); 152 Refs[i].second->eraseFromParent(); 153 } 154 return false; 155 } 156 157 158 //===----------------------------------------------------------------------===// 159 // Top-Level Entities 160 //===----------------------------------------------------------------------===// 161 162 bool LLParser::ParseTopLevelEntities() { 163 while (1) { 164 switch (Lex.getKind()) { 165 default: return TokError("expected top-level entity"); 166 case lltok::Eof: return false; 167 case lltok::kw_declare: if (ParseDeclare()) return true; break; 168 case lltok::kw_define: if (ParseDefine()) return true; break; 169 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 170 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 171 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 172 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 173 case lltok::LocalVar: if (ParseNamedType()) return true; break; 174 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 175 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 176 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 177 case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break; 178 179 // The Global variable production with no name can have many different 180 // optional leading prefixes, the production is: 181 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 182 // OptionalAddrSpace OptionalUnNammedAddr 183 // ('constant'|'global') ... 184 case lltok::kw_private: // OptionalLinkage 185 case lltok::kw_linker_private: // OptionalLinkage 186 case lltok::kw_linker_private_weak: // OptionalLinkage 187 case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat. 188 case lltok::kw_internal: // OptionalLinkage 189 case lltok::kw_weak: // OptionalLinkage 190 case lltok::kw_weak_odr: // OptionalLinkage 191 case lltok::kw_linkonce: // OptionalLinkage 192 case lltok::kw_linkonce_odr: // OptionalLinkage 193 case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage 194 case lltok::kw_appending: // OptionalLinkage 195 case lltok::kw_dllexport: // OptionalLinkage 196 case lltok::kw_common: // OptionalLinkage 197 case lltok::kw_dllimport: // OptionalLinkage 198 case lltok::kw_extern_weak: // OptionalLinkage 199 case lltok::kw_external: { // OptionalLinkage 200 unsigned Linkage, Visibility; 201 if (ParseOptionalLinkage(Linkage) || 202 ParseOptionalVisibility(Visibility) || 203 ParseGlobal("", SMLoc(), Linkage, true, Visibility)) 204 return true; 205 break; 206 } 207 case lltok::kw_default: // OptionalVisibility 208 case lltok::kw_hidden: // OptionalVisibility 209 case lltok::kw_protected: { // OptionalVisibility 210 unsigned Visibility; 211 if (ParseOptionalVisibility(Visibility) || 212 ParseGlobal("", SMLoc(), 0, false, Visibility)) 213 return true; 214 break; 215 } 216 217 case lltok::kw_thread_local: // OptionalThreadLocal 218 case lltok::kw_addrspace: // OptionalAddrSpace 219 case lltok::kw_constant: // GlobalType 220 case lltok::kw_global: // GlobalType 221 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true; 222 break; 223 } 224 } 225 } 226 227 228 /// toplevelentity 229 /// ::= 'module' 'asm' STRINGCONSTANT 230 bool LLParser::ParseModuleAsm() { 231 assert(Lex.getKind() == lltok::kw_module); 232 Lex.Lex(); 233 234 std::string AsmStr; 235 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 236 ParseStringConstant(AsmStr)) return true; 237 238 M->appendModuleInlineAsm(AsmStr); 239 return false; 240 } 241 242 /// toplevelentity 243 /// ::= 'target' 'triple' '=' STRINGCONSTANT 244 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 245 bool LLParser::ParseTargetDefinition() { 246 assert(Lex.getKind() == lltok::kw_target); 247 std::string Str; 248 switch (Lex.Lex()) { 249 default: return TokError("unknown target property"); 250 case lltok::kw_triple: 251 Lex.Lex(); 252 if (ParseToken(lltok::equal, "expected '=' after target triple") || 253 ParseStringConstant(Str)) 254 return true; 255 M->setTargetTriple(Str); 256 return false; 257 case lltok::kw_datalayout: 258 Lex.Lex(); 259 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 260 ParseStringConstant(Str)) 261 return true; 262 M->setDataLayout(Str); 263 return false; 264 } 265 } 266 267 /// toplevelentity 268 /// ::= 'deplibs' '=' '[' ']' 269 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 270 bool LLParser::ParseDepLibs() { 271 assert(Lex.getKind() == lltok::kw_deplibs); 272 Lex.Lex(); 273 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 274 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 275 return true; 276 277 if (EatIfPresent(lltok::rsquare)) 278 return false; 279 280 std::string Str; 281 if (ParseStringConstant(Str)) return true; 282 M->addLibrary(Str); 283 284 while (EatIfPresent(lltok::comma)) { 285 if (ParseStringConstant(Str)) return true; 286 M->addLibrary(Str); 287 } 288 289 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 290 } 291 292 /// ParseUnnamedType: 293 /// ::= LocalVarID '=' 'type' type 294 bool LLParser::ParseUnnamedType() { 295 LocTy TypeLoc = Lex.getLoc(); 296 unsigned TypeID = Lex.getUIntVal(); 297 Lex.Lex(); // eat LocalVarID; 298 299 if (ParseToken(lltok::equal, "expected '=' after name") || 300 ParseToken(lltok::kw_type, "expected 'type' after '='")) 301 return true; 302 303 if (TypeID >= NumberedTypes.size()) 304 NumberedTypes.resize(TypeID+1); 305 306 Type *Result = 0; 307 if (ParseStructDefinition(TypeLoc, "", 308 NumberedTypes[TypeID], Result)) return true; 309 310 if (!isa<StructType>(Result)) { 311 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 312 if (Entry.first) 313 return Error(TypeLoc, "non-struct types may not be recursive"); 314 Entry.first = Result; 315 Entry.second = SMLoc(); 316 } 317 318 return false; 319 } 320 321 322 /// toplevelentity 323 /// ::= LocalVar '=' 'type' type 324 bool LLParser::ParseNamedType() { 325 std::string Name = Lex.getStrVal(); 326 LocTy NameLoc = Lex.getLoc(); 327 Lex.Lex(); // eat LocalVar. 328 329 if (ParseToken(lltok::equal, "expected '=' after name") || 330 ParseToken(lltok::kw_type, "expected 'type' after name")) 331 return true; 332 333 Type *Result = 0; 334 if (ParseStructDefinition(NameLoc, Name, 335 NamedTypes[Name], Result)) return true; 336 337 if (!isa<StructType>(Result)) { 338 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 339 if (Entry.first) 340 return Error(NameLoc, "non-struct types may not be recursive"); 341 Entry.first = Result; 342 Entry.second = SMLoc(); 343 } 344 345 return false; 346 } 347 348 349 /// toplevelentity 350 /// ::= 'declare' FunctionHeader 351 bool LLParser::ParseDeclare() { 352 assert(Lex.getKind() == lltok::kw_declare); 353 Lex.Lex(); 354 355 Function *F; 356 return ParseFunctionHeader(F, false); 357 } 358 359 /// toplevelentity 360 /// ::= 'define' FunctionHeader '{' ... 361 bool LLParser::ParseDefine() { 362 assert(Lex.getKind() == lltok::kw_define); 363 Lex.Lex(); 364 365 Function *F; 366 return ParseFunctionHeader(F, true) || 367 ParseFunctionBody(*F); 368 } 369 370 /// ParseGlobalType 371 /// ::= 'constant' 372 /// ::= 'global' 373 bool LLParser::ParseGlobalType(bool &IsConstant) { 374 if (Lex.getKind() == lltok::kw_constant) 375 IsConstant = true; 376 else if (Lex.getKind() == lltok::kw_global) 377 IsConstant = false; 378 else { 379 IsConstant = false; 380 return TokError("expected 'global' or 'constant'"); 381 } 382 Lex.Lex(); 383 return false; 384 } 385 386 /// ParseUnnamedGlobal: 387 /// OptionalVisibility ALIAS ... 388 /// OptionalLinkage OptionalVisibility ... -> global variable 389 /// GlobalID '=' OptionalVisibility ALIAS ... 390 /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable 391 bool LLParser::ParseUnnamedGlobal() { 392 unsigned VarID = NumberedVals.size(); 393 std::string Name; 394 LocTy NameLoc = Lex.getLoc(); 395 396 // Handle the GlobalID form. 397 if (Lex.getKind() == lltok::GlobalID) { 398 if (Lex.getUIntVal() != VarID) 399 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 400 Twine(VarID) + "'"); 401 Lex.Lex(); // eat GlobalID; 402 403 if (ParseToken(lltok::equal, "expected '=' after name")) 404 return true; 405 } 406 407 bool HasLinkage; 408 unsigned Linkage, Visibility; 409 if (ParseOptionalLinkage(Linkage, HasLinkage) || 410 ParseOptionalVisibility(Visibility)) 411 return true; 412 413 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 414 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 415 return ParseAlias(Name, NameLoc, Visibility); 416 } 417 418 /// ParseNamedGlobal: 419 /// GlobalVar '=' OptionalVisibility ALIAS ... 420 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable 421 bool LLParser::ParseNamedGlobal() { 422 assert(Lex.getKind() == lltok::GlobalVar); 423 LocTy NameLoc = Lex.getLoc(); 424 std::string Name = Lex.getStrVal(); 425 Lex.Lex(); 426 427 bool HasLinkage; 428 unsigned Linkage, Visibility; 429 if (ParseToken(lltok::equal, "expected '=' in global variable") || 430 ParseOptionalLinkage(Linkage, HasLinkage) || 431 ParseOptionalVisibility(Visibility)) 432 return true; 433 434 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 435 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 436 return ParseAlias(Name, NameLoc, Visibility); 437 } 438 439 // MDString: 440 // ::= '!' STRINGCONSTANT 441 bool LLParser::ParseMDString(MDString *&Result) { 442 std::string Str; 443 if (ParseStringConstant(Str)) return true; 444 Result = MDString::get(Context, Str); 445 return false; 446 } 447 448 // MDNode: 449 // ::= '!' MDNodeNumber 450 // 451 /// This version of ParseMDNodeID returns the slot number and null in the case 452 /// of a forward reference. 453 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) { 454 // !{ ..., !42, ... } 455 if (ParseUInt32(SlotNo)) return true; 456 457 // Check existing MDNode. 458 if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0) 459 Result = NumberedMetadata[SlotNo]; 460 else 461 Result = 0; 462 return false; 463 } 464 465 bool LLParser::ParseMDNodeID(MDNode *&Result) { 466 // !{ ..., !42, ... } 467 unsigned MID = 0; 468 if (ParseMDNodeID(Result, MID)) return true; 469 470 // If not a forward reference, just return it now. 471 if (Result) return false; 472 473 // Otherwise, create MDNode forward reference. 474 MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>()); 475 ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc()); 476 477 if (NumberedMetadata.size() <= MID) 478 NumberedMetadata.resize(MID+1); 479 NumberedMetadata[MID] = FwdNode; 480 Result = FwdNode; 481 return false; 482 } 483 484 /// ParseNamedMetadata: 485 /// !foo = !{ !1, !2 } 486 bool LLParser::ParseNamedMetadata() { 487 assert(Lex.getKind() == lltok::MetadataVar); 488 std::string Name = Lex.getStrVal(); 489 Lex.Lex(); 490 491 if (ParseToken(lltok::equal, "expected '=' here") || 492 ParseToken(lltok::exclaim, "Expected '!' here") || 493 ParseToken(lltok::lbrace, "Expected '{' here")) 494 return true; 495 496 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 497 if (Lex.getKind() != lltok::rbrace) 498 do { 499 if (ParseToken(lltok::exclaim, "Expected '!' here")) 500 return true; 501 502 MDNode *N = 0; 503 if (ParseMDNodeID(N)) return true; 504 NMD->addOperand(N); 505 } while (EatIfPresent(lltok::comma)); 506 507 if (ParseToken(lltok::rbrace, "expected end of metadata node")) 508 return true; 509 510 return false; 511 } 512 513 /// ParseStandaloneMetadata: 514 /// !42 = !{...} 515 bool LLParser::ParseStandaloneMetadata() { 516 assert(Lex.getKind() == lltok::exclaim); 517 Lex.Lex(); 518 unsigned MetadataID = 0; 519 520 LocTy TyLoc; 521 Type *Ty = 0; 522 SmallVector<Value *, 16> Elts; 523 if (ParseUInt32(MetadataID) || 524 ParseToken(lltok::equal, "expected '=' here") || 525 ParseType(Ty, TyLoc) || 526 ParseToken(lltok::exclaim, "Expected '!' here") || 527 ParseToken(lltok::lbrace, "Expected '{' here") || 528 ParseMDNodeVector(Elts, NULL) || 529 ParseToken(lltok::rbrace, "expected end of metadata node")) 530 return true; 531 532 MDNode *Init = MDNode::get(Context, Elts); 533 534 // See if this was forward referenced, if so, handle it. 535 std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator 536 FI = ForwardRefMDNodes.find(MetadataID); 537 if (FI != ForwardRefMDNodes.end()) { 538 MDNode *Temp = FI->second.first; 539 Temp->replaceAllUsesWith(Init); 540 MDNode::deleteTemporary(Temp); 541 ForwardRefMDNodes.erase(FI); 542 543 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 544 } else { 545 if (MetadataID >= NumberedMetadata.size()) 546 NumberedMetadata.resize(MetadataID+1); 547 548 if (NumberedMetadata[MetadataID] != 0) 549 return TokError("Metadata id is already used"); 550 NumberedMetadata[MetadataID] = Init; 551 } 552 553 return false; 554 } 555 556 /// ParseAlias: 557 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee 558 /// Aliasee 559 /// ::= TypeAndValue 560 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')' 561 /// ::= 'getelementptr' 'inbounds'? '(' ... ')' 562 /// 563 /// Everything through visibility has already been parsed. 564 /// 565 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, 566 unsigned Visibility) { 567 assert(Lex.getKind() == lltok::kw_alias); 568 Lex.Lex(); 569 unsigned Linkage; 570 LocTy LinkageLoc = Lex.getLoc(); 571 if (ParseOptionalLinkage(Linkage)) 572 return true; 573 574 if (Linkage != GlobalValue::ExternalLinkage && 575 Linkage != GlobalValue::WeakAnyLinkage && 576 Linkage != GlobalValue::WeakODRLinkage && 577 Linkage != GlobalValue::InternalLinkage && 578 Linkage != GlobalValue::PrivateLinkage && 579 Linkage != GlobalValue::LinkerPrivateLinkage && 580 Linkage != GlobalValue::LinkerPrivateWeakLinkage) 581 return Error(LinkageLoc, "invalid linkage type for alias"); 582 583 Constant *Aliasee; 584 LocTy AliaseeLoc = Lex.getLoc(); 585 if (Lex.getKind() != lltok::kw_bitcast && 586 Lex.getKind() != lltok::kw_getelementptr) { 587 if (ParseGlobalTypeAndValue(Aliasee)) return true; 588 } else { 589 // The bitcast dest type is not present, it is implied by the dest type. 590 ValID ID; 591 if (ParseValID(ID)) return true; 592 if (ID.Kind != ValID::t_Constant) 593 return Error(AliaseeLoc, "invalid aliasee"); 594 Aliasee = ID.ConstantVal; 595 } 596 597 if (!Aliasee->getType()->isPointerTy()) 598 return Error(AliaseeLoc, "alias must have pointer type"); 599 600 // Okay, create the alias but do not insert it into the module yet. 601 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), 602 (GlobalValue::LinkageTypes)Linkage, Name, 603 Aliasee); 604 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 605 606 // See if this value already exists in the symbol table. If so, it is either 607 // a redefinition or a definition of a forward reference. 608 if (GlobalValue *Val = M->getNamedValue(Name)) { 609 // See if this was a redefinition. If so, there is no entry in 610 // ForwardRefVals. 611 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 612 I = ForwardRefVals.find(Name); 613 if (I == ForwardRefVals.end()) 614 return Error(NameLoc, "redefinition of global named '@" + Name + "'"); 615 616 // Otherwise, this was a definition of forward ref. Verify that types 617 // agree. 618 if (Val->getType() != GA->getType()) 619 return Error(NameLoc, 620 "forward reference and definition of alias have different types"); 621 622 // If they agree, just RAUW the old value with the alias and remove the 623 // forward ref info. 624 Val->replaceAllUsesWith(GA); 625 Val->eraseFromParent(); 626 ForwardRefVals.erase(I); 627 } 628 629 // Insert into the module, we know its name won't collide now. 630 M->getAliasList().push_back(GA); 631 assert(GA->getName() == Name && "Should not be a name conflict!"); 632 633 return false; 634 } 635 636 /// ParseGlobal 637 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal 638 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const 639 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 640 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const 641 /// 642 /// Everything through visibility has been parsed already. 643 /// 644 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 645 unsigned Linkage, bool HasLinkage, 646 unsigned Visibility) { 647 unsigned AddrSpace; 648 bool IsConstant, UnnamedAddr; 649 GlobalVariable::ThreadLocalMode TLM; 650 LocTy UnnamedAddrLoc; 651 LocTy TyLoc; 652 653 Type *Ty = 0; 654 if (ParseOptionalThreadLocal(TLM) || 655 ParseOptionalAddrSpace(AddrSpace) || 656 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 657 &UnnamedAddrLoc) || 658 ParseGlobalType(IsConstant) || 659 ParseType(Ty, TyLoc)) 660 return true; 661 662 // If the linkage is specified and is external, then no initializer is 663 // present. 664 Constant *Init = 0; 665 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage && 666 Linkage != GlobalValue::ExternalWeakLinkage && 667 Linkage != GlobalValue::ExternalLinkage)) { 668 if (ParseGlobalValue(Ty, Init)) 669 return true; 670 } 671 672 if (Ty->isFunctionTy() || Ty->isLabelTy()) 673 return Error(TyLoc, "invalid type for global variable"); 674 675 GlobalVariable *GV = 0; 676 677 // See if the global was forward referenced, if so, use the global. 678 if (!Name.empty()) { 679 if (GlobalValue *GVal = M->getNamedValue(Name)) { 680 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal)) 681 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 682 GV = cast<GlobalVariable>(GVal); 683 } 684 } else { 685 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 686 I = ForwardRefValIDs.find(NumberedVals.size()); 687 if (I != ForwardRefValIDs.end()) { 688 GV = cast<GlobalVariable>(I->second.first); 689 ForwardRefValIDs.erase(I); 690 } 691 } 692 693 if (GV == 0) { 694 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0, 695 Name, 0, GlobalVariable::NotThreadLocal, 696 AddrSpace); 697 } else { 698 if (GV->getType()->getElementType() != Ty) 699 return Error(TyLoc, 700 "forward reference and definition of global have different types"); 701 702 // Move the forward-reference to the correct spot in the module. 703 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 704 } 705 706 if (Name.empty()) 707 NumberedVals.push_back(GV); 708 709 // Set the parsed properties on the global. 710 if (Init) 711 GV->setInitializer(Init); 712 GV->setConstant(IsConstant); 713 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 714 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 715 GV->setThreadLocalMode(TLM); 716 GV->setUnnamedAddr(UnnamedAddr); 717 718 // Parse attributes on the global. 719 while (Lex.getKind() == lltok::comma) { 720 Lex.Lex(); 721 722 if (Lex.getKind() == lltok::kw_section) { 723 Lex.Lex(); 724 GV->setSection(Lex.getStrVal()); 725 if (ParseToken(lltok::StringConstant, "expected global section string")) 726 return true; 727 } else if (Lex.getKind() == lltok::kw_align) { 728 unsigned Alignment; 729 if (ParseOptionalAlignment(Alignment)) return true; 730 GV->setAlignment(Alignment); 731 } else { 732 TokError("unknown global variable property!"); 733 } 734 } 735 736 return false; 737 } 738 739 740 //===----------------------------------------------------------------------===// 741 // GlobalValue Reference/Resolution Routines. 742 //===----------------------------------------------------------------------===// 743 744 /// GetGlobalVal - Get a value with the specified name or ID, creating a 745 /// forward reference record if needed. This can return null if the value 746 /// exists but does not have the right type. 747 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 748 LocTy Loc) { 749 PointerType *PTy = dyn_cast<PointerType>(Ty); 750 if (PTy == 0) { 751 Error(Loc, "global variable reference must have pointer type"); 752 return 0; 753 } 754 755 // Look this name up in the normal function symbol table. 756 GlobalValue *Val = 757 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 758 759 // If this is a forward reference for the value, see if we already created a 760 // forward ref record. 761 if (Val == 0) { 762 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 763 I = ForwardRefVals.find(Name); 764 if (I != ForwardRefVals.end()) 765 Val = I->second.first; 766 } 767 768 // If we have the value in the symbol table or fwd-ref table, return it. 769 if (Val) { 770 if (Val->getType() == Ty) return Val; 771 Error(Loc, "'@" + Name + "' defined with type '" + 772 getTypeString(Val->getType()) + "'"); 773 return 0; 774 } 775 776 // Otherwise, create a new forward reference for this value and remember it. 777 GlobalValue *FwdVal; 778 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 779 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 780 else 781 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 782 GlobalValue::ExternalWeakLinkage, 0, Name); 783 784 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 785 return FwdVal; 786 } 787 788 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 789 PointerType *PTy = dyn_cast<PointerType>(Ty); 790 if (PTy == 0) { 791 Error(Loc, "global variable reference must have pointer type"); 792 return 0; 793 } 794 795 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 796 797 // If this is a forward reference for the value, see if we already created a 798 // forward ref record. 799 if (Val == 0) { 800 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 801 I = ForwardRefValIDs.find(ID); 802 if (I != ForwardRefValIDs.end()) 803 Val = I->second.first; 804 } 805 806 // If we have the value in the symbol table or fwd-ref table, return it. 807 if (Val) { 808 if (Val->getType() == Ty) return Val; 809 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 810 getTypeString(Val->getType()) + "'"); 811 return 0; 812 } 813 814 // Otherwise, create a new forward reference for this value and remember it. 815 GlobalValue *FwdVal; 816 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 817 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M); 818 else 819 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 820 GlobalValue::ExternalWeakLinkage, 0, ""); 821 822 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 823 return FwdVal; 824 } 825 826 827 //===----------------------------------------------------------------------===// 828 // Helper Routines. 829 //===----------------------------------------------------------------------===// 830 831 /// ParseToken - If the current token has the specified kind, eat it and return 832 /// success. Otherwise, emit the specified error and return failure. 833 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 834 if (Lex.getKind() != T) 835 return TokError(ErrMsg); 836 Lex.Lex(); 837 return false; 838 } 839 840 /// ParseStringConstant 841 /// ::= StringConstant 842 bool LLParser::ParseStringConstant(std::string &Result) { 843 if (Lex.getKind() != lltok::StringConstant) 844 return TokError("expected string constant"); 845 Result = Lex.getStrVal(); 846 Lex.Lex(); 847 return false; 848 } 849 850 /// ParseUInt32 851 /// ::= uint32 852 bool LLParser::ParseUInt32(unsigned &Val) { 853 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 854 return TokError("expected integer"); 855 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 856 if (Val64 != unsigned(Val64)) 857 return TokError("expected 32-bit integer (too large)"); 858 Val = Val64; 859 Lex.Lex(); 860 return false; 861 } 862 863 /// ParseTLSModel 864 /// := 'localdynamic' 865 /// := 'initialexec' 866 /// := 'localexec' 867 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 868 switch (Lex.getKind()) { 869 default: 870 return TokError("expected localdynamic, initialexec or localexec"); 871 case lltok::kw_localdynamic: 872 TLM = GlobalVariable::LocalDynamicTLSModel; 873 break; 874 case lltok::kw_initialexec: 875 TLM = GlobalVariable::InitialExecTLSModel; 876 break; 877 case lltok::kw_localexec: 878 TLM = GlobalVariable::LocalExecTLSModel; 879 break; 880 } 881 882 Lex.Lex(); 883 return false; 884 } 885 886 /// ParseOptionalThreadLocal 887 /// := /*empty*/ 888 /// := 'thread_local' 889 /// := 'thread_local' '(' tlsmodel ')' 890 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 891 TLM = GlobalVariable::NotThreadLocal; 892 if (!EatIfPresent(lltok::kw_thread_local)) 893 return false; 894 895 TLM = GlobalVariable::GeneralDynamicTLSModel; 896 if (Lex.getKind() == lltok::lparen) { 897 Lex.Lex(); 898 return ParseTLSModel(TLM) || 899 ParseToken(lltok::rparen, "expected ')' after thread local model"); 900 } 901 return false; 902 } 903 904 /// ParseOptionalAddrSpace 905 /// := /*empty*/ 906 /// := 'addrspace' '(' uint32 ')' 907 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 908 AddrSpace = 0; 909 if (!EatIfPresent(lltok::kw_addrspace)) 910 return false; 911 return ParseToken(lltok::lparen, "expected '(' in address space") || 912 ParseUInt32(AddrSpace) || 913 ParseToken(lltok::rparen, "expected ')' in address space"); 914 } 915 916 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind 917 /// indicates what kind of attribute list this is: 0: function arg, 1: result, 918 /// 2: function attr. 919 bool LLParser::ParseOptionalAttrs(AttrBuilder &B, unsigned AttrKind) { 920 LocTy AttrLoc = Lex.getLoc(); 921 bool HaveError = false; 922 923 B.clear(); 924 925 while (1) { 926 lltok::Kind Token = Lex.getKind(); 927 switch (Token) { 928 default: // End of attributes. 929 return HaveError; 930 case lltok::kw_zeroext: B.addAttribute(Attributes::ZExt); break; 931 case lltok::kw_signext: B.addAttribute(Attributes::SExt); break; 932 case lltok::kw_inreg: B.addAttribute(Attributes::InReg); break; 933 case lltok::kw_sret: B.addAttribute(Attributes::StructRet); break; 934 case lltok::kw_noalias: B.addAttribute(Attributes::NoAlias); break; 935 case lltok::kw_nocapture: B.addAttribute(Attributes::NoCapture); break; 936 case lltok::kw_byval: B.addAttribute(Attributes::ByVal); break; 937 case lltok::kw_nest: B.addAttribute(Attributes::Nest); break; 938 939 case lltok::kw_noreturn: B.addAttribute(Attributes::NoReturn); break; 940 case lltok::kw_nounwind: B.addAttribute(Attributes::NoUnwind); break; 941 case lltok::kw_uwtable: B.addAttribute(Attributes::UWTable); break; 942 case lltok::kw_returns_twice: B.addAttribute(Attributes::ReturnsTwice); break; 943 case lltok::kw_noinline: B.addAttribute(Attributes::NoInline); break; 944 case lltok::kw_readnone: B.addAttribute(Attributes::ReadNone); break; 945 case lltok::kw_readonly: B.addAttribute(Attributes::ReadOnly); break; 946 case lltok::kw_inlinehint: B.addAttribute(Attributes::InlineHint); break; 947 case lltok::kw_alwaysinline: B.addAttribute(Attributes::AlwaysInline); break; 948 case lltok::kw_optsize: B.addAttribute(Attributes::OptimizeForSize); break; 949 case lltok::kw_ssp: B.addAttribute(Attributes::StackProtect); break; 950 case lltok::kw_sspreq: B.addAttribute(Attributes::StackProtectReq); break; 951 case lltok::kw_noredzone: B.addAttribute(Attributes::NoRedZone); break; 952 case lltok::kw_noimplicitfloat: B.addAttribute(Attributes::NoImplicitFloat); break; 953 case lltok::kw_naked: B.addAttribute(Attributes::Naked); break; 954 case lltok::kw_nonlazybind: B.addAttribute(Attributes::NonLazyBind); break; 955 case lltok::kw_address_safety: B.addAttribute(Attributes::AddressSafety); break; 956 case lltok::kw_minsize: B.addAttribute(Attributes::MinSize); break; 957 958 case lltok::kw_alignstack: { 959 unsigned Alignment; 960 if (ParseOptionalStackAlignment(Alignment)) 961 return true; 962 B.addStackAlignmentAttr(Alignment); 963 continue; 964 } 965 966 case lltok::kw_align: { 967 unsigned Alignment; 968 if (ParseOptionalAlignment(Alignment)) 969 return true; 970 B.addAlignmentAttr(Alignment); 971 continue; 972 } 973 974 } 975 976 // Perform some error checking. 977 switch (Token) { 978 default: 979 if (AttrKind == 2) 980 HaveError |= Error(AttrLoc, "invalid use of attribute on a function"); 981 break; 982 case lltok::kw_align: 983 // As a hack, we allow "align 2" on functions as a synonym for 984 // "alignstack 2". 985 break; 986 987 // Parameter Only: 988 case lltok::kw_sret: 989 case lltok::kw_nocapture: 990 case lltok::kw_byval: 991 case lltok::kw_nest: 992 if (AttrKind != 0) 993 HaveError |= Error(AttrLoc, "invalid use of parameter-only attribute"); 994 break; 995 996 // Function Only: 997 case lltok::kw_noreturn: 998 case lltok::kw_nounwind: 999 case lltok::kw_readnone: 1000 case lltok::kw_readonly: 1001 case lltok::kw_noinline: 1002 case lltok::kw_alwaysinline: 1003 case lltok::kw_optsize: 1004 case lltok::kw_ssp: 1005 case lltok::kw_sspreq: 1006 case lltok::kw_noredzone: 1007 case lltok::kw_noimplicitfloat: 1008 case lltok::kw_naked: 1009 case lltok::kw_inlinehint: 1010 case lltok::kw_alignstack: 1011 case lltok::kw_uwtable: 1012 case lltok::kw_nonlazybind: 1013 case lltok::kw_returns_twice: 1014 case lltok::kw_address_safety: 1015 case lltok::kw_minsize: 1016 if (AttrKind != 2) 1017 HaveError |= Error(AttrLoc, "invalid use of function-only attribute"); 1018 break; 1019 } 1020 1021 Lex.Lex(); 1022 } 1023 } 1024 1025 /// ParseOptionalLinkage 1026 /// ::= /*empty*/ 1027 /// ::= 'private' 1028 /// ::= 'linker_private' 1029 /// ::= 'linker_private_weak' 1030 /// ::= 'internal' 1031 /// ::= 'weak' 1032 /// ::= 'weak_odr' 1033 /// ::= 'linkonce' 1034 /// ::= 'linkonce_odr' 1035 /// ::= 'linkonce_odr_auto_hide' 1036 /// ::= 'available_externally' 1037 /// ::= 'appending' 1038 /// ::= 'dllexport' 1039 /// ::= 'common' 1040 /// ::= 'dllimport' 1041 /// ::= 'extern_weak' 1042 /// ::= 'external' 1043 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { 1044 HasLinkage = false; 1045 switch (Lex.getKind()) { 1046 default: Res=GlobalValue::ExternalLinkage; return false; 1047 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; 1048 case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break; 1049 case lltok::kw_linker_private_weak: 1050 Res = GlobalValue::LinkerPrivateWeakLinkage; 1051 break; 1052 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; 1053 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; 1054 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; 1055 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; 1056 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; 1057 case lltok::kw_linkonce_odr_auto_hide: 1058 case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat. 1059 Res = GlobalValue::LinkOnceODRAutoHideLinkage; 1060 break; 1061 case lltok::kw_available_externally: 1062 Res = GlobalValue::AvailableExternallyLinkage; 1063 break; 1064 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; 1065 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break; 1066 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; 1067 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break; 1068 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; 1069 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; 1070 } 1071 Lex.Lex(); 1072 HasLinkage = true; 1073 return false; 1074 } 1075 1076 /// ParseOptionalVisibility 1077 /// ::= /*empty*/ 1078 /// ::= 'default' 1079 /// ::= 'hidden' 1080 /// ::= 'protected' 1081 /// 1082 bool LLParser::ParseOptionalVisibility(unsigned &Res) { 1083 switch (Lex.getKind()) { 1084 default: Res = GlobalValue::DefaultVisibility; return false; 1085 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; 1086 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; 1087 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; 1088 } 1089 Lex.Lex(); 1090 return false; 1091 } 1092 1093 /// ParseOptionalCallingConv 1094 /// ::= /*empty*/ 1095 /// ::= 'ccc' 1096 /// ::= 'fastcc' 1097 /// ::= 'kw_intel_ocl_bicc' 1098 /// ::= 'coldcc' 1099 /// ::= 'x86_stdcallcc' 1100 /// ::= 'x86_fastcallcc' 1101 /// ::= 'x86_thiscallcc' 1102 /// ::= 'arm_apcscc' 1103 /// ::= 'arm_aapcscc' 1104 /// ::= 'arm_aapcs_vfpcc' 1105 /// ::= 'msp430_intrcc' 1106 /// ::= 'ptx_kernel' 1107 /// ::= 'ptx_device' 1108 /// ::= 'spir_func' 1109 /// ::= 'spir_kernel' 1110 /// ::= 'cc' UINT 1111 /// 1112 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) { 1113 switch (Lex.getKind()) { 1114 default: CC = CallingConv::C; return false; 1115 case lltok::kw_ccc: CC = CallingConv::C; break; 1116 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1117 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1118 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1119 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1120 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1121 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1122 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1123 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1124 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1125 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1126 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1127 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1128 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1129 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1130 case lltok::kw_cc: { 1131 unsigned ArbitraryCC; 1132 Lex.Lex(); 1133 if (ParseUInt32(ArbitraryCC)) 1134 return true; 1135 CC = static_cast<CallingConv::ID>(ArbitraryCC); 1136 return false; 1137 } 1138 } 1139 1140 Lex.Lex(); 1141 return false; 1142 } 1143 1144 /// ParseInstructionMetadata 1145 /// ::= !dbg !42 (',' !dbg !57)* 1146 bool LLParser::ParseInstructionMetadata(Instruction *Inst, 1147 PerFunctionState *PFS) { 1148 do { 1149 if (Lex.getKind() != lltok::MetadataVar) 1150 return TokError("expected metadata after comma"); 1151 1152 std::string Name = Lex.getStrVal(); 1153 unsigned MDK = M->getMDKindID(Name); 1154 Lex.Lex(); 1155 1156 MDNode *Node; 1157 SMLoc Loc = Lex.getLoc(); 1158 1159 if (ParseToken(lltok::exclaim, "expected '!' here")) 1160 return true; 1161 1162 // This code is similar to that of ParseMetadataValue, however it needs to 1163 // have special-case code for a forward reference; see the comments on 1164 // ForwardRefInstMetadata for details. Also, MDStrings are not supported 1165 // at the top level here. 1166 if (Lex.getKind() == lltok::lbrace) { 1167 ValID ID; 1168 if (ParseMetadataListValue(ID, PFS)) 1169 return true; 1170 assert(ID.Kind == ValID::t_MDNode); 1171 Inst->setMetadata(MDK, ID.MDNodeVal); 1172 } else { 1173 unsigned NodeID = 0; 1174 if (ParseMDNodeID(Node, NodeID)) 1175 return true; 1176 if (Node) { 1177 // If we got the node, add it to the instruction. 1178 Inst->setMetadata(MDK, Node); 1179 } else { 1180 MDRef R = { Loc, MDK, NodeID }; 1181 // Otherwise, remember that this should be resolved later. 1182 ForwardRefInstMetadata[Inst].push_back(R); 1183 } 1184 } 1185 1186 // If this is the end of the list, we're done. 1187 } while (EatIfPresent(lltok::comma)); 1188 return false; 1189 } 1190 1191 /// ParseOptionalAlignment 1192 /// ::= /* empty */ 1193 /// ::= 'align' 4 1194 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1195 Alignment = 0; 1196 if (!EatIfPresent(lltok::kw_align)) 1197 return false; 1198 LocTy AlignLoc = Lex.getLoc(); 1199 if (ParseUInt32(Alignment)) return true; 1200 if (!isPowerOf2_32(Alignment)) 1201 return Error(AlignLoc, "alignment is not a power of two"); 1202 if (Alignment > Value::MaximumAlignment) 1203 return Error(AlignLoc, "huge alignments are not supported yet"); 1204 return false; 1205 } 1206 1207 /// ParseOptionalCommaAlign 1208 /// ::= 1209 /// ::= ',' align 4 1210 /// 1211 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1212 /// end. 1213 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1214 bool &AteExtraComma) { 1215 AteExtraComma = false; 1216 while (EatIfPresent(lltok::comma)) { 1217 // Metadata at the end is an early exit. 1218 if (Lex.getKind() == lltok::MetadataVar) { 1219 AteExtraComma = true; 1220 return false; 1221 } 1222 1223 if (Lex.getKind() != lltok::kw_align) 1224 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1225 1226 if (ParseOptionalAlignment(Alignment)) return true; 1227 } 1228 1229 return false; 1230 } 1231 1232 /// ParseScopeAndOrdering 1233 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1234 /// else: ::= 1235 /// 1236 /// This sets Scope and Ordering to the parsed values. 1237 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1238 AtomicOrdering &Ordering) { 1239 if (!isAtomic) 1240 return false; 1241 1242 Scope = CrossThread; 1243 if (EatIfPresent(lltok::kw_singlethread)) 1244 Scope = SingleThread; 1245 switch (Lex.getKind()) { 1246 default: return TokError("Expected ordering on atomic instruction"); 1247 case lltok::kw_unordered: Ordering = Unordered; break; 1248 case lltok::kw_monotonic: Ordering = Monotonic; break; 1249 case lltok::kw_acquire: Ordering = Acquire; break; 1250 case lltok::kw_release: Ordering = Release; break; 1251 case lltok::kw_acq_rel: Ordering = AcquireRelease; break; 1252 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break; 1253 } 1254 Lex.Lex(); 1255 return false; 1256 } 1257 1258 /// ParseOptionalStackAlignment 1259 /// ::= /* empty */ 1260 /// ::= 'alignstack' '(' 4 ')' 1261 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1262 Alignment = 0; 1263 if (!EatIfPresent(lltok::kw_alignstack)) 1264 return false; 1265 LocTy ParenLoc = Lex.getLoc(); 1266 if (!EatIfPresent(lltok::lparen)) 1267 return Error(ParenLoc, "expected '('"); 1268 LocTy AlignLoc = Lex.getLoc(); 1269 if (ParseUInt32(Alignment)) return true; 1270 ParenLoc = Lex.getLoc(); 1271 if (!EatIfPresent(lltok::rparen)) 1272 return Error(ParenLoc, "expected ')'"); 1273 if (!isPowerOf2_32(Alignment)) 1274 return Error(AlignLoc, "stack alignment is not a power of two"); 1275 return false; 1276 } 1277 1278 /// ParseIndexList - This parses the index list for an insert/extractvalue 1279 /// instruction. This sets AteExtraComma in the case where we eat an extra 1280 /// comma at the end of the line and find that it is followed by metadata. 1281 /// Clients that don't allow metadata can call the version of this function that 1282 /// only takes one argument. 1283 /// 1284 /// ParseIndexList 1285 /// ::= (',' uint32)+ 1286 /// 1287 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1288 bool &AteExtraComma) { 1289 AteExtraComma = false; 1290 1291 if (Lex.getKind() != lltok::comma) 1292 return TokError("expected ',' as start of index list"); 1293 1294 while (EatIfPresent(lltok::comma)) { 1295 if (Lex.getKind() == lltok::MetadataVar) { 1296 AteExtraComma = true; 1297 return false; 1298 } 1299 unsigned Idx = 0; 1300 if (ParseUInt32(Idx)) return true; 1301 Indices.push_back(Idx); 1302 } 1303 1304 return false; 1305 } 1306 1307 //===----------------------------------------------------------------------===// 1308 // Type Parsing. 1309 //===----------------------------------------------------------------------===// 1310 1311 /// ParseType - Parse a type. 1312 bool LLParser::ParseType(Type *&Result, bool AllowVoid) { 1313 SMLoc TypeLoc = Lex.getLoc(); 1314 switch (Lex.getKind()) { 1315 default: 1316 return TokError("expected type"); 1317 case lltok::Type: 1318 // Type ::= 'float' | 'void' (etc) 1319 Result = Lex.getTyVal(); 1320 Lex.Lex(); 1321 break; 1322 case lltok::lbrace: 1323 // Type ::= StructType 1324 if (ParseAnonStructType(Result, false)) 1325 return true; 1326 break; 1327 case lltok::lsquare: 1328 // Type ::= '[' ... ']' 1329 Lex.Lex(); // eat the lsquare. 1330 if (ParseArrayVectorType(Result, false)) 1331 return true; 1332 break; 1333 case lltok::less: // Either vector or packed struct. 1334 // Type ::= '<' ... '>' 1335 Lex.Lex(); 1336 if (Lex.getKind() == lltok::lbrace) { 1337 if (ParseAnonStructType(Result, true) || 1338 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1339 return true; 1340 } else if (ParseArrayVectorType(Result, true)) 1341 return true; 1342 break; 1343 case lltok::LocalVar: { 1344 // Type ::= %foo 1345 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1346 1347 // If the type hasn't been defined yet, create a forward definition and 1348 // remember where that forward def'n was seen (in case it never is defined). 1349 if (Entry.first == 0) { 1350 Entry.first = StructType::create(Context, Lex.getStrVal()); 1351 Entry.second = Lex.getLoc(); 1352 } 1353 Result = Entry.first; 1354 Lex.Lex(); 1355 break; 1356 } 1357 1358 case lltok::LocalVarID: { 1359 // Type ::= %4 1360 if (Lex.getUIntVal() >= NumberedTypes.size()) 1361 NumberedTypes.resize(Lex.getUIntVal()+1); 1362 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 1363 1364 // If the type hasn't been defined yet, create a forward definition and 1365 // remember where that forward def'n was seen (in case it never is defined). 1366 if (Entry.first == 0) { 1367 Entry.first = StructType::create(Context); 1368 Entry.second = Lex.getLoc(); 1369 } 1370 Result = Entry.first; 1371 Lex.Lex(); 1372 break; 1373 } 1374 } 1375 1376 // Parse the type suffixes. 1377 while (1) { 1378 switch (Lex.getKind()) { 1379 // End of type. 1380 default: 1381 if (!AllowVoid && Result->isVoidTy()) 1382 return Error(TypeLoc, "void type only allowed for function results"); 1383 return false; 1384 1385 // Type ::= Type '*' 1386 case lltok::star: 1387 if (Result->isLabelTy()) 1388 return TokError("basic block pointers are invalid"); 1389 if (Result->isVoidTy()) 1390 return TokError("pointers to void are invalid - use i8* instead"); 1391 if (!PointerType::isValidElementType(Result)) 1392 return TokError("pointer to this type is invalid"); 1393 Result = PointerType::getUnqual(Result); 1394 Lex.Lex(); 1395 break; 1396 1397 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 1398 case lltok::kw_addrspace: { 1399 if (Result->isLabelTy()) 1400 return TokError("basic block pointers are invalid"); 1401 if (Result->isVoidTy()) 1402 return TokError("pointers to void are invalid; use i8* instead"); 1403 if (!PointerType::isValidElementType(Result)) 1404 return TokError("pointer to this type is invalid"); 1405 unsigned AddrSpace; 1406 if (ParseOptionalAddrSpace(AddrSpace) || 1407 ParseToken(lltok::star, "expected '*' in address space")) 1408 return true; 1409 1410 Result = PointerType::get(Result, AddrSpace); 1411 break; 1412 } 1413 1414 /// Types '(' ArgTypeListI ')' OptFuncAttrs 1415 case lltok::lparen: 1416 if (ParseFunctionType(Result)) 1417 return true; 1418 break; 1419 } 1420 } 1421 } 1422 1423 /// ParseParameterList 1424 /// ::= '(' ')' 1425 /// ::= '(' Arg (',' Arg)* ')' 1426 /// Arg 1427 /// ::= Type OptionalAttributes Value OptionalAttributes 1428 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 1429 PerFunctionState &PFS) { 1430 if (ParseToken(lltok::lparen, "expected '(' in call")) 1431 return true; 1432 1433 while (Lex.getKind() != lltok::rparen) { 1434 // If this isn't the first argument, we need a comma. 1435 if (!ArgList.empty() && 1436 ParseToken(lltok::comma, "expected ',' in argument list")) 1437 return true; 1438 1439 // Parse the argument. 1440 LocTy ArgLoc; 1441 Type *ArgTy = 0; 1442 AttrBuilder ArgAttrs; 1443 Value *V; 1444 if (ParseType(ArgTy, ArgLoc)) 1445 return true; 1446 1447 // Otherwise, handle normal operands. 1448 if (ParseOptionalAttrs(ArgAttrs, 0) || ParseValue(ArgTy, V, PFS)) 1449 return true; 1450 ArgList.push_back(ParamInfo(ArgLoc, V, Attributes::get(V->getContext(), 1451 ArgAttrs))); 1452 } 1453 1454 Lex.Lex(); // Lex the ')'. 1455 return false; 1456 } 1457 1458 1459 1460 /// ParseArgumentList - Parse the argument list for a function type or function 1461 /// prototype. 1462 /// ::= '(' ArgTypeListI ')' 1463 /// ArgTypeListI 1464 /// ::= /*empty*/ 1465 /// ::= '...' 1466 /// ::= ArgTypeList ',' '...' 1467 /// ::= ArgType (',' ArgType)* 1468 /// 1469 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 1470 bool &isVarArg){ 1471 isVarArg = false; 1472 assert(Lex.getKind() == lltok::lparen); 1473 Lex.Lex(); // eat the (. 1474 1475 if (Lex.getKind() == lltok::rparen) { 1476 // empty 1477 } else if (Lex.getKind() == lltok::dotdotdot) { 1478 isVarArg = true; 1479 Lex.Lex(); 1480 } else { 1481 LocTy TypeLoc = Lex.getLoc(); 1482 Type *ArgTy = 0; 1483 AttrBuilder Attrs; 1484 std::string Name; 1485 1486 if (ParseType(ArgTy) || 1487 ParseOptionalAttrs(Attrs, 0)) return true; 1488 1489 if (ArgTy->isVoidTy()) 1490 return Error(TypeLoc, "argument can not have void type"); 1491 1492 if (Lex.getKind() == lltok::LocalVar) { 1493 Name = Lex.getStrVal(); 1494 Lex.Lex(); 1495 } 1496 1497 if (!FunctionType::isValidArgumentType(ArgTy)) 1498 return Error(TypeLoc, "invalid type for function argument"); 1499 1500 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, 1501 Attributes::get(ArgTy->getContext(), 1502 Attrs), Name)); 1503 1504 while (EatIfPresent(lltok::comma)) { 1505 // Handle ... at end of arg list. 1506 if (EatIfPresent(lltok::dotdotdot)) { 1507 isVarArg = true; 1508 break; 1509 } 1510 1511 // Otherwise must be an argument type. 1512 TypeLoc = Lex.getLoc(); 1513 if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true; 1514 1515 if (ArgTy->isVoidTy()) 1516 return Error(TypeLoc, "argument can not have void type"); 1517 1518 if (Lex.getKind() == lltok::LocalVar) { 1519 Name = Lex.getStrVal(); 1520 Lex.Lex(); 1521 } else { 1522 Name = ""; 1523 } 1524 1525 if (!ArgTy->isFirstClassType()) 1526 return Error(TypeLoc, "invalid type for function argument"); 1527 1528 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, 1529 Attributes::get(ArgTy->getContext(), Attrs), 1530 Name)); 1531 } 1532 } 1533 1534 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 1535 } 1536 1537 /// ParseFunctionType 1538 /// ::= Type ArgumentList OptionalAttrs 1539 bool LLParser::ParseFunctionType(Type *&Result) { 1540 assert(Lex.getKind() == lltok::lparen); 1541 1542 if (!FunctionType::isValidReturnType(Result)) 1543 return TokError("invalid function return type"); 1544 1545 SmallVector<ArgInfo, 8> ArgList; 1546 bool isVarArg; 1547 if (ParseArgumentList(ArgList, isVarArg)) 1548 return true; 1549 1550 // Reject names on the arguments lists. 1551 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 1552 if (!ArgList[i].Name.empty()) 1553 return Error(ArgList[i].Loc, "argument name invalid in function type"); 1554 if (ArgList[i].Attrs.hasAttributes()) 1555 return Error(ArgList[i].Loc, 1556 "argument attributes invalid in function type"); 1557 } 1558 1559 SmallVector<Type*, 16> ArgListTy; 1560 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 1561 ArgListTy.push_back(ArgList[i].Ty); 1562 1563 Result = FunctionType::get(Result, ArgListTy, isVarArg); 1564 return false; 1565 } 1566 1567 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 1568 /// other structs. 1569 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 1570 SmallVector<Type*, 8> Elts; 1571 if (ParseStructBody(Elts)) return true; 1572 1573 Result = StructType::get(Context, Elts, Packed); 1574 return false; 1575 } 1576 1577 /// ParseStructDefinition - Parse a struct in a 'type' definition. 1578 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 1579 std::pair<Type*, LocTy> &Entry, 1580 Type *&ResultTy) { 1581 // If the type was already defined, diagnose the redefinition. 1582 if (Entry.first && !Entry.second.isValid()) 1583 return Error(TypeLoc, "redefinition of type"); 1584 1585 // If we have opaque, just return without filling in the definition for the 1586 // struct. This counts as a definition as far as the .ll file goes. 1587 if (EatIfPresent(lltok::kw_opaque)) { 1588 // This type is being defined, so clear the location to indicate this. 1589 Entry.second = SMLoc(); 1590 1591 // If this type number has never been uttered, create it. 1592 if (Entry.first == 0) 1593 Entry.first = StructType::create(Context, Name); 1594 ResultTy = Entry.first; 1595 return false; 1596 } 1597 1598 // If the type starts with '<', then it is either a packed struct or a vector. 1599 bool isPacked = EatIfPresent(lltok::less); 1600 1601 // If we don't have a struct, then we have a random type alias, which we 1602 // accept for compatibility with old files. These types are not allowed to be 1603 // forward referenced and not allowed to be recursive. 1604 if (Lex.getKind() != lltok::lbrace) { 1605 if (Entry.first) 1606 return Error(TypeLoc, "forward references to non-struct type"); 1607 1608 ResultTy = 0; 1609 if (isPacked) 1610 return ParseArrayVectorType(ResultTy, true); 1611 return ParseType(ResultTy); 1612 } 1613 1614 // This type is being defined, so clear the location to indicate this. 1615 Entry.second = SMLoc(); 1616 1617 // If this type number has never been uttered, create it. 1618 if (Entry.first == 0) 1619 Entry.first = StructType::create(Context, Name); 1620 1621 StructType *STy = cast<StructType>(Entry.first); 1622 1623 SmallVector<Type*, 8> Body; 1624 if (ParseStructBody(Body) || 1625 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 1626 return true; 1627 1628 STy->setBody(Body, isPacked); 1629 ResultTy = STy; 1630 return false; 1631 } 1632 1633 1634 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 1635 /// StructType 1636 /// ::= '{' '}' 1637 /// ::= '{' Type (',' Type)* '}' 1638 /// ::= '<' '{' '}' '>' 1639 /// ::= '<' '{' Type (',' Type)* '}' '>' 1640 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 1641 assert(Lex.getKind() == lltok::lbrace); 1642 Lex.Lex(); // Consume the '{' 1643 1644 // Handle the empty struct. 1645 if (EatIfPresent(lltok::rbrace)) 1646 return false; 1647 1648 LocTy EltTyLoc = Lex.getLoc(); 1649 Type *Ty = 0; 1650 if (ParseType(Ty)) return true; 1651 Body.push_back(Ty); 1652 1653 if (!StructType::isValidElementType(Ty)) 1654 return Error(EltTyLoc, "invalid element type for struct"); 1655 1656 while (EatIfPresent(lltok::comma)) { 1657 EltTyLoc = Lex.getLoc(); 1658 if (ParseType(Ty)) return true; 1659 1660 if (!StructType::isValidElementType(Ty)) 1661 return Error(EltTyLoc, "invalid element type for struct"); 1662 1663 Body.push_back(Ty); 1664 } 1665 1666 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 1667 } 1668 1669 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 1670 /// token has already been consumed. 1671 /// Type 1672 /// ::= '[' APSINTVAL 'x' Types ']' 1673 /// ::= '<' APSINTVAL 'x' Types '>' 1674 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 1675 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 1676 Lex.getAPSIntVal().getBitWidth() > 64) 1677 return TokError("expected number in address space"); 1678 1679 LocTy SizeLoc = Lex.getLoc(); 1680 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 1681 Lex.Lex(); 1682 1683 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 1684 return true; 1685 1686 LocTy TypeLoc = Lex.getLoc(); 1687 Type *EltTy = 0; 1688 if (ParseType(EltTy)) return true; 1689 1690 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 1691 "expected end of sequential type")) 1692 return true; 1693 1694 if (isVector) { 1695 if (Size == 0) 1696 return Error(SizeLoc, "zero element vector is illegal"); 1697 if ((unsigned)Size != Size) 1698 return Error(SizeLoc, "size too large for vector"); 1699 if (!VectorType::isValidElementType(EltTy)) 1700 return Error(TypeLoc, 1701 "vector element type must be fp, integer or a pointer to these types"); 1702 Result = VectorType::get(EltTy, unsigned(Size)); 1703 } else { 1704 if (!ArrayType::isValidElementType(EltTy)) 1705 return Error(TypeLoc, "invalid array element type"); 1706 Result = ArrayType::get(EltTy, Size); 1707 } 1708 return false; 1709 } 1710 1711 //===----------------------------------------------------------------------===// 1712 // Function Semantic Analysis. 1713 //===----------------------------------------------------------------------===// 1714 1715 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 1716 int functionNumber) 1717 : P(p), F(f), FunctionNumber(functionNumber) { 1718 1719 // Insert unnamed arguments into the NumberedVals list. 1720 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); 1721 AI != E; ++AI) 1722 if (!AI->hasName()) 1723 NumberedVals.push_back(AI); 1724 } 1725 1726 LLParser::PerFunctionState::~PerFunctionState() { 1727 // If there were any forward referenced non-basicblock values, delete them. 1728 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator 1729 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I) 1730 if (!isa<BasicBlock>(I->second.first)) { 1731 I->second.first->replaceAllUsesWith( 1732 UndefValue::get(I->second.first->getType())); 1733 delete I->second.first; 1734 I->second.first = 0; 1735 } 1736 1737 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1738 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I) 1739 if (!isa<BasicBlock>(I->second.first)) { 1740 I->second.first->replaceAllUsesWith( 1741 UndefValue::get(I->second.first->getType())); 1742 delete I->second.first; 1743 I->second.first = 0; 1744 } 1745 } 1746 1747 bool LLParser::PerFunctionState::FinishFunction() { 1748 // Check to see if someone took the address of labels in this block. 1749 if (!P.ForwardRefBlockAddresses.empty()) { 1750 ValID FunctionID; 1751 if (!F.getName().empty()) { 1752 FunctionID.Kind = ValID::t_GlobalName; 1753 FunctionID.StrVal = F.getName(); 1754 } else { 1755 FunctionID.Kind = ValID::t_GlobalID; 1756 FunctionID.UIntVal = FunctionNumber; 1757 } 1758 1759 std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator 1760 FRBAI = P.ForwardRefBlockAddresses.find(FunctionID); 1761 if (FRBAI != P.ForwardRefBlockAddresses.end()) { 1762 // Resolve all these references. 1763 if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this)) 1764 return true; 1765 1766 P.ForwardRefBlockAddresses.erase(FRBAI); 1767 } 1768 } 1769 1770 if (!ForwardRefVals.empty()) 1771 return P.Error(ForwardRefVals.begin()->second.second, 1772 "use of undefined value '%" + ForwardRefVals.begin()->first + 1773 "'"); 1774 if (!ForwardRefValIDs.empty()) 1775 return P.Error(ForwardRefValIDs.begin()->second.second, 1776 "use of undefined value '%" + 1777 Twine(ForwardRefValIDs.begin()->first) + "'"); 1778 return false; 1779 } 1780 1781 1782 /// GetVal - Get a value with the specified name or ID, creating a 1783 /// forward reference record if needed. This can return null if the value 1784 /// exists but does not have the right type. 1785 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, 1786 Type *Ty, LocTy Loc) { 1787 // Look this name up in the normal function symbol table. 1788 Value *Val = F.getValueSymbolTable().lookup(Name); 1789 1790 // If this is a forward reference for the value, see if we already created a 1791 // forward ref record. 1792 if (Val == 0) { 1793 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1794 I = ForwardRefVals.find(Name); 1795 if (I != ForwardRefVals.end()) 1796 Val = I->second.first; 1797 } 1798 1799 // If we have the value in the symbol table or fwd-ref table, return it. 1800 if (Val) { 1801 if (Val->getType() == Ty) return Val; 1802 if (Ty->isLabelTy()) 1803 P.Error(Loc, "'%" + Name + "' is not a basic block"); 1804 else 1805 P.Error(Loc, "'%" + Name + "' defined with type '" + 1806 getTypeString(Val->getType()) + "'"); 1807 return 0; 1808 } 1809 1810 // Don't make placeholders with invalid type. 1811 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { 1812 P.Error(Loc, "invalid use of a non-first-class type"); 1813 return 0; 1814 } 1815 1816 // Otherwise, create a new forward reference for this value and remember it. 1817 Value *FwdVal; 1818 if (Ty->isLabelTy()) 1819 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 1820 else 1821 FwdVal = new Argument(Ty, Name); 1822 1823 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1824 return FwdVal; 1825 } 1826 1827 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, 1828 LocTy Loc) { 1829 // Look this name up in the normal function symbol table. 1830 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 1831 1832 // If this is a forward reference for the value, see if we already created a 1833 // forward ref record. 1834 if (Val == 0) { 1835 std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1836 I = ForwardRefValIDs.find(ID); 1837 if (I != ForwardRefValIDs.end()) 1838 Val = I->second.first; 1839 } 1840 1841 // If we have the value in the symbol table or fwd-ref table, return it. 1842 if (Val) { 1843 if (Val->getType() == Ty) return Val; 1844 if (Ty->isLabelTy()) 1845 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 1846 else 1847 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 1848 getTypeString(Val->getType()) + "'"); 1849 return 0; 1850 } 1851 1852 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { 1853 P.Error(Loc, "invalid use of a non-first-class type"); 1854 return 0; 1855 } 1856 1857 // Otherwise, create a new forward reference for this value and remember it. 1858 Value *FwdVal; 1859 if (Ty->isLabelTy()) 1860 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 1861 else 1862 FwdVal = new Argument(Ty); 1863 1864 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1865 return FwdVal; 1866 } 1867 1868 /// SetInstName - After an instruction is parsed and inserted into its 1869 /// basic block, this installs its name. 1870 bool LLParser::PerFunctionState::SetInstName(int NameID, 1871 const std::string &NameStr, 1872 LocTy NameLoc, Instruction *Inst) { 1873 // If this instruction has void type, it cannot have a name or ID specified. 1874 if (Inst->getType()->isVoidTy()) { 1875 if (NameID != -1 || !NameStr.empty()) 1876 return P.Error(NameLoc, "instructions returning void cannot have a name"); 1877 return false; 1878 } 1879 1880 // If this was a numbered instruction, verify that the instruction is the 1881 // expected value and resolve any forward references. 1882 if (NameStr.empty()) { 1883 // If neither a name nor an ID was specified, just use the next ID. 1884 if (NameID == -1) 1885 NameID = NumberedVals.size(); 1886 1887 if (unsigned(NameID) != NumberedVals.size()) 1888 return P.Error(NameLoc, "instruction expected to be numbered '%" + 1889 Twine(NumberedVals.size()) + "'"); 1890 1891 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI = 1892 ForwardRefValIDs.find(NameID); 1893 if (FI != ForwardRefValIDs.end()) { 1894 if (FI->second.first->getType() != Inst->getType()) 1895 return P.Error(NameLoc, "instruction forward referenced with type '" + 1896 getTypeString(FI->second.first->getType()) + "'"); 1897 FI->second.first->replaceAllUsesWith(Inst); 1898 delete FI->second.first; 1899 ForwardRefValIDs.erase(FI); 1900 } 1901 1902 NumberedVals.push_back(Inst); 1903 return false; 1904 } 1905 1906 // Otherwise, the instruction had a name. Resolve forward refs and set it. 1907 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1908 FI = ForwardRefVals.find(NameStr); 1909 if (FI != ForwardRefVals.end()) { 1910 if (FI->second.first->getType() != Inst->getType()) 1911 return P.Error(NameLoc, "instruction forward referenced with type '" + 1912 getTypeString(FI->second.first->getType()) + "'"); 1913 FI->second.first->replaceAllUsesWith(Inst); 1914 delete FI->second.first; 1915 ForwardRefVals.erase(FI); 1916 } 1917 1918 // Set the name on the instruction. 1919 Inst->setName(NameStr); 1920 1921 if (Inst->getName() != NameStr) 1922 return P.Error(NameLoc, "multiple definition of local value named '" + 1923 NameStr + "'"); 1924 return false; 1925 } 1926 1927 /// GetBB - Get a basic block with the specified name or ID, creating a 1928 /// forward reference record if needed. 1929 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 1930 LocTy Loc) { 1931 return cast_or_null<BasicBlock>(GetVal(Name, 1932 Type::getLabelTy(F.getContext()), Loc)); 1933 } 1934 1935 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 1936 return cast_or_null<BasicBlock>(GetVal(ID, 1937 Type::getLabelTy(F.getContext()), Loc)); 1938 } 1939 1940 /// DefineBB - Define the specified basic block, which is either named or 1941 /// unnamed. If there is an error, this returns null otherwise it returns 1942 /// the block being defined. 1943 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 1944 LocTy Loc) { 1945 BasicBlock *BB; 1946 if (Name.empty()) 1947 BB = GetBB(NumberedVals.size(), Loc); 1948 else 1949 BB = GetBB(Name, Loc); 1950 if (BB == 0) return 0; // Already diagnosed error. 1951 1952 // Move the block to the end of the function. Forward ref'd blocks are 1953 // inserted wherever they happen to be referenced. 1954 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 1955 1956 // Remove the block from forward ref sets. 1957 if (Name.empty()) { 1958 ForwardRefValIDs.erase(NumberedVals.size()); 1959 NumberedVals.push_back(BB); 1960 } else { 1961 // BB forward references are already in the function symbol table. 1962 ForwardRefVals.erase(Name); 1963 } 1964 1965 return BB; 1966 } 1967 1968 //===----------------------------------------------------------------------===// 1969 // Constants. 1970 //===----------------------------------------------------------------------===// 1971 1972 /// ParseValID - Parse an abstract value that doesn't necessarily have a 1973 /// type implied. For example, if we parse "4" we don't know what integer type 1974 /// it has. The value will later be combined with its type and checked for 1975 /// sanity. PFS is used to convert function-local operands of metadata (since 1976 /// metadata operands are not just parsed here but also converted to values). 1977 /// PFS can be null when we are not parsing metadata values inside a function. 1978 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 1979 ID.Loc = Lex.getLoc(); 1980 switch (Lex.getKind()) { 1981 default: return TokError("expected value token"); 1982 case lltok::GlobalID: // @42 1983 ID.UIntVal = Lex.getUIntVal(); 1984 ID.Kind = ValID::t_GlobalID; 1985 break; 1986 case lltok::GlobalVar: // @foo 1987 ID.StrVal = Lex.getStrVal(); 1988 ID.Kind = ValID::t_GlobalName; 1989 break; 1990 case lltok::LocalVarID: // %42 1991 ID.UIntVal = Lex.getUIntVal(); 1992 ID.Kind = ValID::t_LocalID; 1993 break; 1994 case lltok::LocalVar: // %foo 1995 ID.StrVal = Lex.getStrVal(); 1996 ID.Kind = ValID::t_LocalName; 1997 break; 1998 case lltok::exclaim: // !42, !{...}, or !"foo" 1999 return ParseMetadataValue(ID, PFS); 2000 case lltok::APSInt: 2001 ID.APSIntVal = Lex.getAPSIntVal(); 2002 ID.Kind = ValID::t_APSInt; 2003 break; 2004 case lltok::APFloat: 2005 ID.APFloatVal = Lex.getAPFloatVal(); 2006 ID.Kind = ValID::t_APFloat; 2007 break; 2008 case lltok::kw_true: 2009 ID.ConstantVal = ConstantInt::getTrue(Context); 2010 ID.Kind = ValID::t_Constant; 2011 break; 2012 case lltok::kw_false: 2013 ID.ConstantVal = ConstantInt::getFalse(Context); 2014 ID.Kind = ValID::t_Constant; 2015 break; 2016 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2017 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2018 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2019 2020 case lltok::lbrace: { 2021 // ValID ::= '{' ConstVector '}' 2022 Lex.Lex(); 2023 SmallVector<Constant*, 16> Elts; 2024 if (ParseGlobalValueVector(Elts) || 2025 ParseToken(lltok::rbrace, "expected end of struct constant")) 2026 return true; 2027 2028 ID.ConstantStructElts = new Constant*[Elts.size()]; 2029 ID.UIntVal = Elts.size(); 2030 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 2031 ID.Kind = ValID::t_ConstantStruct; 2032 return false; 2033 } 2034 case lltok::less: { 2035 // ValID ::= '<' ConstVector '>' --> Vector. 2036 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2037 Lex.Lex(); 2038 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2039 2040 SmallVector<Constant*, 16> Elts; 2041 LocTy FirstEltLoc = Lex.getLoc(); 2042 if (ParseGlobalValueVector(Elts) || 2043 (isPackedStruct && 2044 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2045 ParseToken(lltok::greater, "expected end of constant")) 2046 return true; 2047 2048 if (isPackedStruct) { 2049 ID.ConstantStructElts = new Constant*[Elts.size()]; 2050 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 2051 ID.UIntVal = Elts.size(); 2052 ID.Kind = ValID::t_PackedConstantStruct; 2053 return false; 2054 } 2055 2056 if (Elts.empty()) 2057 return Error(ID.Loc, "constant vector must not be empty"); 2058 2059 if (!Elts[0]->getType()->isIntegerTy() && 2060 !Elts[0]->getType()->isFloatingPointTy() && 2061 !Elts[0]->getType()->isPointerTy()) 2062 return Error(FirstEltLoc, 2063 "vector elements must have integer, pointer or floating point type"); 2064 2065 // Verify that all the vector elements have the same type. 2066 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2067 if (Elts[i]->getType() != Elts[0]->getType()) 2068 return Error(FirstEltLoc, 2069 "vector element #" + Twine(i) + 2070 " is not of type '" + getTypeString(Elts[0]->getType())); 2071 2072 ID.ConstantVal = ConstantVector::get(Elts); 2073 ID.Kind = ValID::t_Constant; 2074 return false; 2075 } 2076 case lltok::lsquare: { // Array Constant 2077 Lex.Lex(); 2078 SmallVector<Constant*, 16> Elts; 2079 LocTy FirstEltLoc = Lex.getLoc(); 2080 if (ParseGlobalValueVector(Elts) || 2081 ParseToken(lltok::rsquare, "expected end of array constant")) 2082 return true; 2083 2084 // Handle empty element. 2085 if (Elts.empty()) { 2086 // Use undef instead of an array because it's inconvenient to determine 2087 // the element type at this point, there being no elements to examine. 2088 ID.Kind = ValID::t_EmptyArray; 2089 return false; 2090 } 2091 2092 if (!Elts[0]->getType()->isFirstClassType()) 2093 return Error(FirstEltLoc, "invalid array element type: " + 2094 getTypeString(Elts[0]->getType())); 2095 2096 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2097 2098 // Verify all elements are correct type! 2099 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2100 if (Elts[i]->getType() != Elts[0]->getType()) 2101 return Error(FirstEltLoc, 2102 "array element #" + Twine(i) + 2103 " is not of type '" + getTypeString(Elts[0]->getType())); 2104 } 2105 2106 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2107 ID.Kind = ValID::t_Constant; 2108 return false; 2109 } 2110 case lltok::kw_c: // c "foo" 2111 Lex.Lex(); 2112 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2113 false); 2114 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2115 ID.Kind = ValID::t_Constant; 2116 return false; 2117 2118 case lltok::kw_asm: { 2119 // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT 2120 bool HasSideEffect, AlignStack, AsmDialect; 2121 Lex.Lex(); 2122 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2123 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2124 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2125 ParseStringConstant(ID.StrVal) || 2126 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2127 ParseToken(lltok::StringConstant, "expected constraint string")) 2128 return true; 2129 ID.StrVal2 = Lex.getStrVal(); 2130 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2131 (unsigned(AsmDialect)<<2); 2132 ID.Kind = ValID::t_InlineAsm; 2133 return false; 2134 } 2135 2136 case lltok::kw_blockaddress: { 2137 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2138 Lex.Lex(); 2139 2140 ValID Fn, Label; 2141 LocTy FnLoc, LabelLoc; 2142 2143 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2144 ParseValID(Fn) || 2145 ParseToken(lltok::comma, "expected comma in block address expression")|| 2146 ParseValID(Label) || 2147 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2148 return true; 2149 2150 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2151 return Error(Fn.Loc, "expected function name in blockaddress"); 2152 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2153 return Error(Label.Loc, "expected basic block name in blockaddress"); 2154 2155 // Make a global variable as a placeholder for this reference. 2156 GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), 2157 false, GlobalValue::InternalLinkage, 2158 0, ""); 2159 ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef)); 2160 ID.ConstantVal = FwdRef; 2161 ID.Kind = ValID::t_Constant; 2162 return false; 2163 } 2164 2165 case lltok::kw_trunc: 2166 case lltok::kw_zext: 2167 case lltok::kw_sext: 2168 case lltok::kw_fptrunc: 2169 case lltok::kw_fpext: 2170 case lltok::kw_bitcast: 2171 case lltok::kw_uitofp: 2172 case lltok::kw_sitofp: 2173 case lltok::kw_fptoui: 2174 case lltok::kw_fptosi: 2175 case lltok::kw_inttoptr: 2176 case lltok::kw_ptrtoint: { 2177 unsigned Opc = Lex.getUIntVal(); 2178 Type *DestTy = 0; 2179 Constant *SrcVal; 2180 Lex.Lex(); 2181 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2182 ParseGlobalTypeAndValue(SrcVal) || 2183 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2184 ParseType(DestTy) || 2185 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2186 return true; 2187 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2188 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2189 getTypeString(SrcVal->getType()) + "' to '" + 2190 getTypeString(DestTy) + "'"); 2191 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2192 SrcVal, DestTy); 2193 ID.Kind = ValID::t_Constant; 2194 return false; 2195 } 2196 case lltok::kw_extractvalue: { 2197 Lex.Lex(); 2198 Constant *Val; 2199 SmallVector<unsigned, 4> Indices; 2200 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2201 ParseGlobalTypeAndValue(Val) || 2202 ParseIndexList(Indices) || 2203 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2204 return true; 2205 2206 if (!Val->getType()->isAggregateType()) 2207 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2208 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2209 return Error(ID.Loc, "invalid indices for extractvalue"); 2210 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2211 ID.Kind = ValID::t_Constant; 2212 return false; 2213 } 2214 case lltok::kw_insertvalue: { 2215 Lex.Lex(); 2216 Constant *Val0, *Val1; 2217 SmallVector<unsigned, 4> Indices; 2218 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2219 ParseGlobalTypeAndValue(Val0) || 2220 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2221 ParseGlobalTypeAndValue(Val1) || 2222 ParseIndexList(Indices) || 2223 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2224 return true; 2225 if (!Val0->getType()->isAggregateType()) 2226 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2227 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) 2228 return Error(ID.Loc, "invalid indices for insertvalue"); 2229 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2230 ID.Kind = ValID::t_Constant; 2231 return false; 2232 } 2233 case lltok::kw_icmp: 2234 case lltok::kw_fcmp: { 2235 unsigned PredVal, Opc = Lex.getUIntVal(); 2236 Constant *Val0, *Val1; 2237 Lex.Lex(); 2238 if (ParseCmpPredicate(PredVal, Opc) || 2239 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2240 ParseGlobalTypeAndValue(Val0) || 2241 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2242 ParseGlobalTypeAndValue(Val1) || 2243 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2244 return true; 2245 2246 if (Val0->getType() != Val1->getType()) 2247 return Error(ID.Loc, "compare operands must have the same type"); 2248 2249 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2250 2251 if (Opc == Instruction::FCmp) { 2252 if (!Val0->getType()->isFPOrFPVectorTy()) 2253 return Error(ID.Loc, "fcmp requires floating point operands"); 2254 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2255 } else { 2256 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2257 if (!Val0->getType()->isIntOrIntVectorTy() && 2258 !Val0->getType()->getScalarType()->isPointerTy()) 2259 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2260 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2261 } 2262 ID.Kind = ValID::t_Constant; 2263 return false; 2264 } 2265 2266 // Binary Operators. 2267 case lltok::kw_add: 2268 case lltok::kw_fadd: 2269 case lltok::kw_sub: 2270 case lltok::kw_fsub: 2271 case lltok::kw_mul: 2272 case lltok::kw_fmul: 2273 case lltok::kw_udiv: 2274 case lltok::kw_sdiv: 2275 case lltok::kw_fdiv: 2276 case lltok::kw_urem: 2277 case lltok::kw_srem: 2278 case lltok::kw_frem: 2279 case lltok::kw_shl: 2280 case lltok::kw_lshr: 2281 case lltok::kw_ashr: { 2282 bool NUW = false; 2283 bool NSW = false; 2284 bool Exact = false; 2285 unsigned Opc = Lex.getUIntVal(); 2286 Constant *Val0, *Val1; 2287 Lex.Lex(); 2288 LocTy ModifierLoc = Lex.getLoc(); 2289 if (Opc == Instruction::Add || Opc == Instruction::Sub || 2290 Opc == Instruction::Mul || Opc == Instruction::Shl) { 2291 if (EatIfPresent(lltok::kw_nuw)) 2292 NUW = true; 2293 if (EatIfPresent(lltok::kw_nsw)) { 2294 NSW = true; 2295 if (EatIfPresent(lltok::kw_nuw)) 2296 NUW = true; 2297 } 2298 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 2299 Opc == Instruction::LShr || Opc == Instruction::AShr) { 2300 if (EatIfPresent(lltok::kw_exact)) 2301 Exact = true; 2302 } 2303 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 2304 ParseGlobalTypeAndValue(Val0) || 2305 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 2306 ParseGlobalTypeAndValue(Val1) || 2307 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 2308 return true; 2309 if (Val0->getType() != Val1->getType()) 2310 return Error(ID.Loc, "operands of constexpr must have same type"); 2311 if (!Val0->getType()->isIntOrIntVectorTy()) { 2312 if (NUW) 2313 return Error(ModifierLoc, "nuw only applies to integer operations"); 2314 if (NSW) 2315 return Error(ModifierLoc, "nsw only applies to integer operations"); 2316 } 2317 // Check that the type is valid for the operator. 2318 switch (Opc) { 2319 case Instruction::Add: 2320 case Instruction::Sub: 2321 case Instruction::Mul: 2322 case Instruction::UDiv: 2323 case Instruction::SDiv: 2324 case Instruction::URem: 2325 case Instruction::SRem: 2326 case Instruction::Shl: 2327 case Instruction::AShr: 2328 case Instruction::LShr: 2329 if (!Val0->getType()->isIntOrIntVectorTy()) 2330 return Error(ID.Loc, "constexpr requires integer operands"); 2331 break; 2332 case Instruction::FAdd: 2333 case Instruction::FSub: 2334 case Instruction::FMul: 2335 case Instruction::FDiv: 2336 case Instruction::FRem: 2337 if (!Val0->getType()->isFPOrFPVectorTy()) 2338 return Error(ID.Loc, "constexpr requires fp operands"); 2339 break; 2340 default: llvm_unreachable("Unknown binary operator!"); 2341 } 2342 unsigned Flags = 0; 2343 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2344 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 2345 if (Exact) Flags |= PossiblyExactOperator::IsExact; 2346 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 2347 ID.ConstantVal = C; 2348 ID.Kind = ValID::t_Constant; 2349 return false; 2350 } 2351 2352 // Logical Operations 2353 case lltok::kw_and: 2354 case lltok::kw_or: 2355 case lltok::kw_xor: { 2356 unsigned Opc = Lex.getUIntVal(); 2357 Constant *Val0, *Val1; 2358 Lex.Lex(); 2359 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 2360 ParseGlobalTypeAndValue(Val0) || 2361 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 2362 ParseGlobalTypeAndValue(Val1) || 2363 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 2364 return true; 2365 if (Val0->getType() != Val1->getType()) 2366 return Error(ID.Loc, "operands of constexpr must have same type"); 2367 if (!Val0->getType()->isIntOrIntVectorTy()) 2368 return Error(ID.Loc, 2369 "constexpr requires integer or integer vector operands"); 2370 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 2371 ID.Kind = ValID::t_Constant; 2372 return false; 2373 } 2374 2375 case lltok::kw_getelementptr: 2376 case lltok::kw_shufflevector: 2377 case lltok::kw_insertelement: 2378 case lltok::kw_extractelement: 2379 case lltok::kw_select: { 2380 unsigned Opc = Lex.getUIntVal(); 2381 SmallVector<Constant*, 16> Elts; 2382 bool InBounds = false; 2383 Lex.Lex(); 2384 if (Opc == Instruction::GetElementPtr) 2385 InBounds = EatIfPresent(lltok::kw_inbounds); 2386 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") || 2387 ParseGlobalValueVector(Elts) || 2388 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 2389 return true; 2390 2391 if (Opc == Instruction::GetElementPtr) { 2392 if (Elts.size() == 0 || 2393 !Elts[0]->getType()->getScalarType()->isPointerTy()) 2394 return Error(ID.Loc, "getelementptr requires pointer operand"); 2395 2396 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2397 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices)) 2398 return Error(ID.Loc, "invalid indices for getelementptr"); 2399 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices, 2400 InBounds); 2401 } else if (Opc == Instruction::Select) { 2402 if (Elts.size() != 3) 2403 return Error(ID.Loc, "expected three operands to select"); 2404 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 2405 Elts[2])) 2406 return Error(ID.Loc, Reason); 2407 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 2408 } else if (Opc == Instruction::ShuffleVector) { 2409 if (Elts.size() != 3) 2410 return Error(ID.Loc, "expected three operands to shufflevector"); 2411 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2412 return Error(ID.Loc, "invalid operands to shufflevector"); 2413 ID.ConstantVal = 2414 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 2415 } else if (Opc == Instruction::ExtractElement) { 2416 if (Elts.size() != 2) 2417 return Error(ID.Loc, "expected two operands to extractelement"); 2418 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 2419 return Error(ID.Loc, "invalid extractelement operands"); 2420 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 2421 } else { 2422 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 2423 if (Elts.size() != 3) 2424 return Error(ID.Loc, "expected three operands to insertelement"); 2425 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2426 return Error(ID.Loc, "invalid insertelement operands"); 2427 ID.ConstantVal = 2428 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 2429 } 2430 2431 ID.Kind = ValID::t_Constant; 2432 return false; 2433 } 2434 } 2435 2436 Lex.Lex(); 2437 return false; 2438 } 2439 2440 /// ParseGlobalValue - Parse a global value with the specified type. 2441 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 2442 C = 0; 2443 ValID ID; 2444 Value *V = NULL; 2445 bool Parsed = ParseValID(ID) || 2446 ConvertValIDToValue(Ty, ID, V, NULL); 2447 if (V && !(C = dyn_cast<Constant>(V))) 2448 return Error(ID.Loc, "global values must be constants"); 2449 return Parsed; 2450 } 2451 2452 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 2453 Type *Ty = 0; 2454 return ParseType(Ty) || 2455 ParseGlobalValue(Ty, V); 2456 } 2457 2458 /// ParseGlobalValueVector 2459 /// ::= /*empty*/ 2460 /// ::= TypeAndValue (',' TypeAndValue)* 2461 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) { 2462 // Empty list. 2463 if (Lex.getKind() == lltok::rbrace || 2464 Lex.getKind() == lltok::rsquare || 2465 Lex.getKind() == lltok::greater || 2466 Lex.getKind() == lltok::rparen) 2467 return false; 2468 2469 Constant *C; 2470 if (ParseGlobalTypeAndValue(C)) return true; 2471 Elts.push_back(C); 2472 2473 while (EatIfPresent(lltok::comma)) { 2474 if (ParseGlobalTypeAndValue(C)) return true; 2475 Elts.push_back(C); 2476 } 2477 2478 return false; 2479 } 2480 2481 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) { 2482 assert(Lex.getKind() == lltok::lbrace); 2483 Lex.Lex(); 2484 2485 SmallVector<Value*, 16> Elts; 2486 if (ParseMDNodeVector(Elts, PFS) || 2487 ParseToken(lltok::rbrace, "expected end of metadata node")) 2488 return true; 2489 2490 ID.MDNodeVal = MDNode::get(Context, Elts); 2491 ID.Kind = ValID::t_MDNode; 2492 return false; 2493 } 2494 2495 /// ParseMetadataValue 2496 /// ::= !42 2497 /// ::= !{...} 2498 /// ::= !"string" 2499 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) { 2500 assert(Lex.getKind() == lltok::exclaim); 2501 Lex.Lex(); 2502 2503 // MDNode: 2504 // !{ ... } 2505 if (Lex.getKind() == lltok::lbrace) 2506 return ParseMetadataListValue(ID, PFS); 2507 2508 // Standalone metadata reference 2509 // !42 2510 if (Lex.getKind() == lltok::APSInt) { 2511 if (ParseMDNodeID(ID.MDNodeVal)) return true; 2512 ID.Kind = ValID::t_MDNode; 2513 return false; 2514 } 2515 2516 // MDString: 2517 // ::= '!' STRINGCONSTANT 2518 if (ParseMDString(ID.MDStringVal)) return true; 2519 ID.Kind = ValID::t_MDString; 2520 return false; 2521 } 2522 2523 2524 //===----------------------------------------------------------------------===// 2525 // Function Parsing. 2526 //===----------------------------------------------------------------------===// 2527 2528 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 2529 PerFunctionState *PFS) { 2530 if (Ty->isFunctionTy()) 2531 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 2532 2533 switch (ID.Kind) { 2534 case ValID::t_LocalID: 2535 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2536 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 2537 return (V == 0); 2538 case ValID::t_LocalName: 2539 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2540 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 2541 return (V == 0); 2542 case ValID::t_InlineAsm: { 2543 PointerType *PTy = dyn_cast<PointerType>(Ty); 2544 FunctionType *FTy = 2545 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; 2546 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2)) 2547 return Error(ID.Loc, "invalid type for inline asm constraint string"); 2548 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, 2549 (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2))); 2550 return false; 2551 } 2552 case ValID::t_MDNode: 2553 if (!Ty->isMetadataTy()) 2554 return Error(ID.Loc, "metadata value must have metadata type"); 2555 V = ID.MDNodeVal; 2556 return false; 2557 case ValID::t_MDString: 2558 if (!Ty->isMetadataTy()) 2559 return Error(ID.Loc, "metadata value must have metadata type"); 2560 V = ID.MDStringVal; 2561 return false; 2562 case ValID::t_GlobalName: 2563 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 2564 return V == 0; 2565 case ValID::t_GlobalID: 2566 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 2567 return V == 0; 2568 case ValID::t_APSInt: 2569 if (!Ty->isIntegerTy()) 2570 return Error(ID.Loc, "integer constant must have integer type"); 2571 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 2572 V = ConstantInt::get(Context, ID.APSIntVal); 2573 return false; 2574 case ValID::t_APFloat: 2575 if (!Ty->isFloatingPointTy() || 2576 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 2577 return Error(ID.Loc, "floating point constant invalid for type"); 2578 2579 // The lexer has no type info, so builds all half, float, and double FP 2580 // constants as double. Fix this here. Long double does not need this. 2581 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 2582 bool Ignored; 2583 if (Ty->isHalfTy()) 2584 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 2585 &Ignored); 2586 else if (Ty->isFloatTy()) 2587 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 2588 &Ignored); 2589 } 2590 V = ConstantFP::get(Context, ID.APFloatVal); 2591 2592 if (V->getType() != Ty) 2593 return Error(ID.Loc, "floating point constant does not have type '" + 2594 getTypeString(Ty) + "'"); 2595 2596 return false; 2597 case ValID::t_Null: 2598 if (!Ty->isPointerTy()) 2599 return Error(ID.Loc, "null must be a pointer type"); 2600 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 2601 return false; 2602 case ValID::t_Undef: 2603 // FIXME: LabelTy should not be a first-class type. 2604 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2605 return Error(ID.Loc, "invalid type for undef constant"); 2606 V = UndefValue::get(Ty); 2607 return false; 2608 case ValID::t_EmptyArray: 2609 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 2610 return Error(ID.Loc, "invalid empty array initializer"); 2611 V = UndefValue::get(Ty); 2612 return false; 2613 case ValID::t_Zero: 2614 // FIXME: LabelTy should not be a first-class type. 2615 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2616 return Error(ID.Loc, "invalid type for null constant"); 2617 V = Constant::getNullValue(Ty); 2618 return false; 2619 case ValID::t_Constant: 2620 if (ID.ConstantVal->getType() != Ty) 2621 return Error(ID.Loc, "constant expression type mismatch"); 2622 2623 V = ID.ConstantVal; 2624 return false; 2625 case ValID::t_ConstantStruct: 2626 case ValID::t_PackedConstantStruct: 2627 if (StructType *ST = dyn_cast<StructType>(Ty)) { 2628 if (ST->getNumElements() != ID.UIntVal) 2629 return Error(ID.Loc, 2630 "initializer with struct type has wrong # elements"); 2631 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 2632 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 2633 2634 // Verify that the elements are compatible with the structtype. 2635 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 2636 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 2637 return Error(ID.Loc, "element " + Twine(i) + 2638 " of struct initializer doesn't match struct element type"); 2639 2640 V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts, 2641 ID.UIntVal)); 2642 } else 2643 return Error(ID.Loc, "constant expression type mismatch"); 2644 return false; 2645 } 2646 llvm_unreachable("Invalid ValID"); 2647 } 2648 2649 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 2650 V = 0; 2651 ValID ID; 2652 return ParseValID(ID, PFS) || 2653 ConvertValIDToValue(Ty, ID, V, PFS); 2654 } 2655 2656 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 2657 Type *Ty = 0; 2658 return ParseType(Ty) || 2659 ParseValue(Ty, V, PFS); 2660 } 2661 2662 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 2663 PerFunctionState &PFS) { 2664 Value *V; 2665 Loc = Lex.getLoc(); 2666 if (ParseTypeAndValue(V, PFS)) return true; 2667 if (!isa<BasicBlock>(V)) 2668 return Error(Loc, "expected a basic block"); 2669 BB = cast<BasicBlock>(V); 2670 return false; 2671 } 2672 2673 2674 /// FunctionHeader 2675 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 2676 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 2677 /// OptionalAlign OptGC 2678 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 2679 // Parse the linkage. 2680 LocTy LinkageLoc = Lex.getLoc(); 2681 unsigned Linkage; 2682 2683 unsigned Visibility; 2684 AttrBuilder RetAttrs; 2685 CallingConv::ID CC; 2686 Type *RetType = 0; 2687 LocTy RetTypeLoc = Lex.getLoc(); 2688 if (ParseOptionalLinkage(Linkage) || 2689 ParseOptionalVisibility(Visibility) || 2690 ParseOptionalCallingConv(CC) || 2691 ParseOptionalAttrs(RetAttrs, 1) || 2692 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 2693 return true; 2694 2695 // Verify that the linkage is ok. 2696 switch ((GlobalValue::LinkageTypes)Linkage) { 2697 case GlobalValue::ExternalLinkage: 2698 break; // always ok. 2699 case GlobalValue::DLLImportLinkage: 2700 case GlobalValue::ExternalWeakLinkage: 2701 if (isDefine) 2702 return Error(LinkageLoc, "invalid linkage for function definition"); 2703 break; 2704 case GlobalValue::PrivateLinkage: 2705 case GlobalValue::LinkerPrivateLinkage: 2706 case GlobalValue::LinkerPrivateWeakLinkage: 2707 case GlobalValue::InternalLinkage: 2708 case GlobalValue::AvailableExternallyLinkage: 2709 case GlobalValue::LinkOnceAnyLinkage: 2710 case GlobalValue::LinkOnceODRLinkage: 2711 case GlobalValue::LinkOnceODRAutoHideLinkage: 2712 case GlobalValue::WeakAnyLinkage: 2713 case GlobalValue::WeakODRLinkage: 2714 case GlobalValue::DLLExportLinkage: 2715 if (!isDefine) 2716 return Error(LinkageLoc, "invalid linkage for function declaration"); 2717 break; 2718 case GlobalValue::AppendingLinkage: 2719 case GlobalValue::CommonLinkage: 2720 return Error(LinkageLoc, "invalid function linkage type"); 2721 } 2722 2723 if (!FunctionType::isValidReturnType(RetType)) 2724 return Error(RetTypeLoc, "invalid function return type"); 2725 2726 LocTy NameLoc = Lex.getLoc(); 2727 2728 std::string FunctionName; 2729 if (Lex.getKind() == lltok::GlobalVar) { 2730 FunctionName = Lex.getStrVal(); 2731 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 2732 unsigned NameID = Lex.getUIntVal(); 2733 2734 if (NameID != NumberedVals.size()) 2735 return TokError("function expected to be numbered '%" + 2736 Twine(NumberedVals.size()) + "'"); 2737 } else { 2738 return TokError("expected function name"); 2739 } 2740 2741 Lex.Lex(); 2742 2743 if (Lex.getKind() != lltok::lparen) 2744 return TokError("expected '(' in function argument list"); 2745 2746 SmallVector<ArgInfo, 8> ArgList; 2747 bool isVarArg; 2748 AttrBuilder FuncAttrs; 2749 std::string Section; 2750 unsigned Alignment; 2751 std::string GC; 2752 bool UnnamedAddr; 2753 LocTy UnnamedAddrLoc; 2754 2755 if (ParseArgumentList(ArgList, isVarArg) || 2756 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 2757 &UnnamedAddrLoc) || 2758 ParseOptionalAttrs(FuncAttrs, 2) || 2759 (EatIfPresent(lltok::kw_section) && 2760 ParseStringConstant(Section)) || 2761 ParseOptionalAlignment(Alignment) || 2762 (EatIfPresent(lltok::kw_gc) && 2763 ParseStringConstant(GC))) 2764 return true; 2765 2766 // If the alignment was parsed as an attribute, move to the alignment field. 2767 if (FuncAttrs.hasAlignmentAttr()) { 2768 Alignment = FuncAttrs.getAlignment(); 2769 FuncAttrs.removeAttribute(Attributes::Alignment); 2770 } 2771 2772 // Okay, if we got here, the function is syntactically valid. Convert types 2773 // and do semantic checks. 2774 std::vector<Type*> ParamTypeList; 2775 SmallVector<AttributeWithIndex, 8> Attrs; 2776 2777 if (RetAttrs.hasAttributes()) 2778 Attrs.push_back( 2779 AttributeWithIndex::get(AttrListPtr::ReturnIndex, 2780 Attributes::get(RetType->getContext(), 2781 RetAttrs))); 2782 2783 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2784 ParamTypeList.push_back(ArgList[i].Ty); 2785 if (ArgList[i].Attrs.hasAttributes()) 2786 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 2787 } 2788 2789 if (FuncAttrs.hasAttributes()) 2790 Attrs.push_back( 2791 AttributeWithIndex::get(AttrListPtr::FunctionIndex, 2792 Attributes::get(RetType->getContext(), 2793 FuncAttrs))); 2794 2795 AttrListPtr PAL = AttrListPtr::get(Attrs); 2796 2797 if (PAL.getParamAttributes(1).hasAttribute(Attributes::StructRet) && 2798 !RetType->isVoidTy()) 2799 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 2800 2801 FunctionType *FT = 2802 FunctionType::get(RetType, ParamTypeList, isVarArg); 2803 PointerType *PFT = PointerType::getUnqual(FT); 2804 2805 Fn = 0; 2806 if (!FunctionName.empty()) { 2807 // If this was a definition of a forward reference, remove the definition 2808 // from the forward reference table and fill in the forward ref. 2809 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI = 2810 ForwardRefVals.find(FunctionName); 2811 if (FRVI != ForwardRefVals.end()) { 2812 Fn = M->getFunction(FunctionName); 2813 if (!Fn) 2814 return Error(FRVI->second.second, "invalid forward reference to " 2815 "function as global value!"); 2816 if (Fn->getType() != PFT) 2817 return Error(FRVI->second.second, "invalid forward reference to " 2818 "function '" + FunctionName + "' with wrong type!"); 2819 2820 ForwardRefVals.erase(FRVI); 2821 } else if ((Fn = M->getFunction(FunctionName))) { 2822 // Reject redefinitions. 2823 return Error(NameLoc, "invalid redefinition of function '" + 2824 FunctionName + "'"); 2825 } else if (M->getNamedValue(FunctionName)) { 2826 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 2827 } 2828 2829 } else { 2830 // If this is a definition of a forward referenced function, make sure the 2831 // types agree. 2832 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I 2833 = ForwardRefValIDs.find(NumberedVals.size()); 2834 if (I != ForwardRefValIDs.end()) { 2835 Fn = cast<Function>(I->second.first); 2836 if (Fn->getType() != PFT) 2837 return Error(NameLoc, "type of definition and forward reference of '@" + 2838 Twine(NumberedVals.size()) + "' disagree"); 2839 ForwardRefValIDs.erase(I); 2840 } 2841 } 2842 2843 if (Fn == 0) 2844 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 2845 else // Move the forward-reference to the correct spot in the module. 2846 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 2847 2848 if (FunctionName.empty()) 2849 NumberedVals.push_back(Fn); 2850 2851 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 2852 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 2853 Fn->setCallingConv(CC); 2854 Fn->setAttributes(PAL); 2855 Fn->setUnnamedAddr(UnnamedAddr); 2856 Fn->setAlignment(Alignment); 2857 Fn->setSection(Section); 2858 if (!GC.empty()) Fn->setGC(GC.c_str()); 2859 2860 // Add all of the arguments we parsed to the function. 2861 Function::arg_iterator ArgIt = Fn->arg_begin(); 2862 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 2863 // If the argument has a name, insert it into the argument symbol table. 2864 if (ArgList[i].Name.empty()) continue; 2865 2866 // Set the name, if it conflicted, it will be auto-renamed. 2867 ArgIt->setName(ArgList[i].Name); 2868 2869 if (ArgIt->getName() != ArgList[i].Name) 2870 return Error(ArgList[i].Loc, "redefinition of argument '%" + 2871 ArgList[i].Name + "'"); 2872 } 2873 2874 return false; 2875 } 2876 2877 2878 /// ParseFunctionBody 2879 /// ::= '{' BasicBlock+ '}' 2880 /// 2881 bool LLParser::ParseFunctionBody(Function &Fn) { 2882 if (Lex.getKind() != lltok::lbrace) 2883 return TokError("expected '{' in function body"); 2884 Lex.Lex(); // eat the {. 2885 2886 int FunctionNumber = -1; 2887 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 2888 2889 PerFunctionState PFS(*this, Fn, FunctionNumber); 2890 2891 // We need at least one basic block. 2892 if (Lex.getKind() == lltok::rbrace) 2893 return TokError("function body requires at least one basic block"); 2894 2895 while (Lex.getKind() != lltok::rbrace) 2896 if (ParseBasicBlock(PFS)) return true; 2897 2898 // Eat the }. 2899 Lex.Lex(); 2900 2901 // Verify function is ok. 2902 return PFS.FinishFunction(); 2903 } 2904 2905 /// ParseBasicBlock 2906 /// ::= LabelStr? Instruction* 2907 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 2908 // If this basic block starts out with a name, remember it. 2909 std::string Name; 2910 LocTy NameLoc = Lex.getLoc(); 2911 if (Lex.getKind() == lltok::LabelStr) { 2912 Name = Lex.getStrVal(); 2913 Lex.Lex(); 2914 } 2915 2916 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 2917 if (BB == 0) return true; 2918 2919 std::string NameStr; 2920 2921 // Parse the instructions in this block until we get a terminator. 2922 Instruction *Inst; 2923 SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst; 2924 do { 2925 // This instruction may have three possibilities for a name: a) none 2926 // specified, b) name specified "%foo =", c) number specified: "%4 =". 2927 LocTy NameLoc = Lex.getLoc(); 2928 int NameID = -1; 2929 NameStr = ""; 2930 2931 if (Lex.getKind() == lltok::LocalVarID) { 2932 NameID = Lex.getUIntVal(); 2933 Lex.Lex(); 2934 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 2935 return true; 2936 } else if (Lex.getKind() == lltok::LocalVar) { 2937 NameStr = Lex.getStrVal(); 2938 Lex.Lex(); 2939 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 2940 return true; 2941 } 2942 2943 switch (ParseInstruction(Inst, BB, PFS)) { 2944 default: llvm_unreachable("Unknown ParseInstruction result!"); 2945 case InstError: return true; 2946 case InstNormal: 2947 BB->getInstList().push_back(Inst); 2948 2949 // With a normal result, we check to see if the instruction is followed by 2950 // a comma and metadata. 2951 if (EatIfPresent(lltok::comma)) 2952 if (ParseInstructionMetadata(Inst, &PFS)) 2953 return true; 2954 break; 2955 case InstExtraComma: 2956 BB->getInstList().push_back(Inst); 2957 2958 // If the instruction parser ate an extra comma at the end of it, it 2959 // *must* be followed by metadata. 2960 if (ParseInstructionMetadata(Inst, &PFS)) 2961 return true; 2962 break; 2963 } 2964 2965 // Set the name on the instruction. 2966 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 2967 } while (!isa<TerminatorInst>(Inst)); 2968 2969 return false; 2970 } 2971 2972 //===----------------------------------------------------------------------===// 2973 // Instruction Parsing. 2974 //===----------------------------------------------------------------------===// 2975 2976 /// ParseInstruction - Parse one of the many different instructions. 2977 /// 2978 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 2979 PerFunctionState &PFS) { 2980 lltok::Kind Token = Lex.getKind(); 2981 if (Token == lltok::Eof) 2982 return TokError("found end of file when expecting more instructions"); 2983 LocTy Loc = Lex.getLoc(); 2984 unsigned KeywordVal = Lex.getUIntVal(); 2985 Lex.Lex(); // Eat the keyword. 2986 2987 switch (Token) { 2988 default: return Error(Loc, "expected instruction opcode"); 2989 // Terminator Instructions. 2990 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 2991 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 2992 case lltok::kw_br: return ParseBr(Inst, PFS); 2993 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 2994 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 2995 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 2996 case lltok::kw_resume: return ParseResume(Inst, PFS); 2997 // Binary Operators. 2998 case lltok::kw_add: 2999 case lltok::kw_sub: 3000 case lltok::kw_mul: 3001 case lltok::kw_shl: { 3002 bool NUW = EatIfPresent(lltok::kw_nuw); 3003 bool NSW = EatIfPresent(lltok::kw_nsw); 3004 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 3005 3006 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 3007 3008 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 3009 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 3010 return false; 3011 } 3012 case lltok::kw_fadd: 3013 case lltok::kw_fsub: 3014 case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2); 3015 3016 case lltok::kw_sdiv: 3017 case lltok::kw_udiv: 3018 case lltok::kw_lshr: 3019 case lltok::kw_ashr: { 3020 bool Exact = EatIfPresent(lltok::kw_exact); 3021 3022 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 3023 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 3024 return false; 3025 } 3026 3027 case lltok::kw_urem: 3028 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 3029 case lltok::kw_fdiv: 3030 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2); 3031 case lltok::kw_and: 3032 case lltok::kw_or: 3033 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 3034 case lltok::kw_icmp: 3035 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal); 3036 // Casts. 3037 case lltok::kw_trunc: 3038 case lltok::kw_zext: 3039 case lltok::kw_sext: 3040 case lltok::kw_fptrunc: 3041 case lltok::kw_fpext: 3042 case lltok::kw_bitcast: 3043 case lltok::kw_uitofp: 3044 case lltok::kw_sitofp: 3045 case lltok::kw_fptoui: 3046 case lltok::kw_fptosi: 3047 case lltok::kw_inttoptr: 3048 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 3049 // Other. 3050 case lltok::kw_select: return ParseSelect(Inst, PFS); 3051 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 3052 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 3053 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 3054 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 3055 case lltok::kw_phi: return ParsePHI(Inst, PFS); 3056 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 3057 case lltok::kw_call: return ParseCall(Inst, PFS, false); 3058 case lltok::kw_tail: return ParseCall(Inst, PFS, true); 3059 // Memory. 3060 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 3061 case lltok::kw_load: return ParseLoad(Inst, PFS); 3062 case lltok::kw_store: return ParseStore(Inst, PFS); 3063 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 3064 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 3065 case lltok::kw_fence: return ParseFence(Inst, PFS); 3066 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 3067 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 3068 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 3069 } 3070 } 3071 3072 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 3073 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 3074 if (Opc == Instruction::FCmp) { 3075 switch (Lex.getKind()) { 3076 default: TokError("expected fcmp predicate (e.g. 'oeq')"); 3077 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 3078 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 3079 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 3080 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 3081 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 3082 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 3083 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 3084 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 3085 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 3086 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 3087 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 3088 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 3089 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 3090 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 3091 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 3092 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 3093 } 3094 } else { 3095 switch (Lex.getKind()) { 3096 default: TokError("expected icmp predicate (e.g. 'eq')"); 3097 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 3098 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 3099 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 3100 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 3101 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 3102 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 3103 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 3104 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 3105 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 3106 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 3107 } 3108 } 3109 Lex.Lex(); 3110 return false; 3111 } 3112 3113 //===----------------------------------------------------------------------===// 3114 // Terminator Instructions. 3115 //===----------------------------------------------------------------------===// 3116 3117 /// ParseRet - Parse a return instruction. 3118 /// ::= 'ret' void (',' !dbg, !1)* 3119 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 3120 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 3121 PerFunctionState &PFS) { 3122 SMLoc TypeLoc = Lex.getLoc(); 3123 Type *Ty = 0; 3124 if (ParseType(Ty, true /*void allowed*/)) return true; 3125 3126 Type *ResType = PFS.getFunction().getReturnType(); 3127 3128 if (Ty->isVoidTy()) { 3129 if (!ResType->isVoidTy()) 3130 return Error(TypeLoc, "value doesn't match function result type '" + 3131 getTypeString(ResType) + "'"); 3132 3133 Inst = ReturnInst::Create(Context); 3134 return false; 3135 } 3136 3137 Value *RV; 3138 if (ParseValue(Ty, RV, PFS)) return true; 3139 3140 if (ResType != RV->getType()) 3141 return Error(TypeLoc, "value doesn't match function result type '" + 3142 getTypeString(ResType) + "'"); 3143 3144 Inst = ReturnInst::Create(Context, RV); 3145 return false; 3146 } 3147 3148 3149 /// ParseBr 3150 /// ::= 'br' TypeAndValue 3151 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3152 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 3153 LocTy Loc, Loc2; 3154 Value *Op0; 3155 BasicBlock *Op1, *Op2; 3156 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 3157 3158 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 3159 Inst = BranchInst::Create(BB); 3160 return false; 3161 } 3162 3163 if (Op0->getType() != Type::getInt1Ty(Context)) 3164 return Error(Loc, "branch condition must have 'i1' type"); 3165 3166 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 3167 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 3168 ParseToken(lltok::comma, "expected ',' after true destination") || 3169 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 3170 return true; 3171 3172 Inst = BranchInst::Create(Op1, Op2, Op0); 3173 return false; 3174 } 3175 3176 /// ParseSwitch 3177 /// Instruction 3178 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 3179 /// JumpTable 3180 /// ::= (TypeAndValue ',' TypeAndValue)* 3181 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 3182 LocTy CondLoc, BBLoc; 3183 Value *Cond; 3184 BasicBlock *DefaultBB; 3185 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 3186 ParseToken(lltok::comma, "expected ',' after switch condition") || 3187 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 3188 ParseToken(lltok::lsquare, "expected '[' with switch table")) 3189 return true; 3190 3191 if (!Cond->getType()->isIntegerTy()) 3192 return Error(CondLoc, "switch condition must have integer type"); 3193 3194 // Parse the jump table pairs. 3195 SmallPtrSet<Value*, 32> SeenCases; 3196 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 3197 while (Lex.getKind() != lltok::rsquare) { 3198 Value *Constant; 3199 BasicBlock *DestBB; 3200 3201 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 3202 ParseToken(lltok::comma, "expected ',' after case value") || 3203 ParseTypeAndBasicBlock(DestBB, PFS)) 3204 return true; 3205 3206 if (!SeenCases.insert(Constant)) 3207 return Error(CondLoc, "duplicate case value in switch"); 3208 if (!isa<ConstantInt>(Constant)) 3209 return Error(CondLoc, "case value is not a constant integer"); 3210 3211 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 3212 } 3213 3214 Lex.Lex(); // Eat the ']'. 3215 3216 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 3217 for (unsigned i = 0, e = Table.size(); i != e; ++i) 3218 SI->addCase(Table[i].first, Table[i].second); 3219 Inst = SI; 3220 return false; 3221 } 3222 3223 /// ParseIndirectBr 3224 /// Instruction 3225 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 3226 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 3227 LocTy AddrLoc; 3228 Value *Address; 3229 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 3230 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 3231 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 3232 return true; 3233 3234 if (!Address->getType()->isPointerTy()) 3235 return Error(AddrLoc, "indirectbr address must have pointer type"); 3236 3237 // Parse the destination list. 3238 SmallVector<BasicBlock*, 16> DestList; 3239 3240 if (Lex.getKind() != lltok::rsquare) { 3241 BasicBlock *DestBB; 3242 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3243 return true; 3244 DestList.push_back(DestBB); 3245 3246 while (EatIfPresent(lltok::comma)) { 3247 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3248 return true; 3249 DestList.push_back(DestBB); 3250 } 3251 } 3252 3253 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 3254 return true; 3255 3256 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 3257 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 3258 IBI->addDestination(DestList[i]); 3259 Inst = IBI; 3260 return false; 3261 } 3262 3263 3264 /// ParseInvoke 3265 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 3266 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 3267 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 3268 LocTy CallLoc = Lex.getLoc(); 3269 AttrBuilder RetAttrs, FnAttrs; 3270 CallingConv::ID CC; 3271 Type *RetType = 0; 3272 LocTy RetTypeLoc; 3273 ValID CalleeID; 3274 SmallVector<ParamInfo, 16> ArgList; 3275 3276 BasicBlock *NormalBB, *UnwindBB; 3277 if (ParseOptionalCallingConv(CC) || 3278 ParseOptionalAttrs(RetAttrs, 1) || 3279 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3280 ParseValID(CalleeID) || 3281 ParseParameterList(ArgList, PFS) || 3282 ParseOptionalAttrs(FnAttrs, 2) || 3283 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 3284 ParseTypeAndBasicBlock(NormalBB, PFS) || 3285 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 3286 ParseTypeAndBasicBlock(UnwindBB, PFS)) 3287 return true; 3288 3289 // If RetType is a non-function pointer type, then this is the short syntax 3290 // for the call, which means that RetType is just the return type. Infer the 3291 // rest of the function argument types from the arguments that are present. 3292 PointerType *PFTy = 0; 3293 FunctionType *Ty = 0; 3294 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3295 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3296 // Pull out the types of all of the arguments... 3297 std::vector<Type*> ParamTypes; 3298 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3299 ParamTypes.push_back(ArgList[i].V->getType()); 3300 3301 if (!FunctionType::isValidReturnType(RetType)) 3302 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3303 3304 Ty = FunctionType::get(RetType, ParamTypes, false); 3305 PFTy = PointerType::getUnqual(Ty); 3306 } 3307 3308 // Look up the callee. 3309 Value *Callee; 3310 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3311 3312 // Set up the Attributes for the function. 3313 SmallVector<AttributeWithIndex, 8> Attrs; 3314 if (RetAttrs.hasAttributes()) 3315 Attrs.push_back( 3316 AttributeWithIndex::get(AttrListPtr::ReturnIndex, 3317 Attributes::get(Callee->getContext(), 3318 RetAttrs))); 3319 3320 SmallVector<Value*, 8> Args; 3321 3322 // Loop through FunctionType's arguments and ensure they are specified 3323 // correctly. Also, gather any parameter attributes. 3324 FunctionType::param_iterator I = Ty->param_begin(); 3325 FunctionType::param_iterator E = Ty->param_end(); 3326 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3327 Type *ExpectedTy = 0; 3328 if (I != E) { 3329 ExpectedTy = *I++; 3330 } else if (!Ty->isVarArg()) { 3331 return Error(ArgList[i].Loc, "too many arguments specified"); 3332 } 3333 3334 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3335 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3336 getTypeString(ExpectedTy) + "'"); 3337 Args.push_back(ArgList[i].V); 3338 if (ArgList[i].Attrs.hasAttributes()) 3339 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3340 } 3341 3342 if (I != E) 3343 return Error(CallLoc, "not enough parameters specified for call"); 3344 3345 if (FnAttrs.hasAttributes()) 3346 Attrs.push_back( 3347 AttributeWithIndex::get(AttrListPtr::FunctionIndex, 3348 Attributes::get(Callee->getContext(), 3349 FnAttrs))); 3350 3351 // Finish off the Attributes and check them 3352 AttrListPtr PAL = AttrListPtr::get(Attrs); 3353 3354 InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args); 3355 II->setCallingConv(CC); 3356 II->setAttributes(PAL); 3357 Inst = II; 3358 return false; 3359 } 3360 3361 /// ParseResume 3362 /// ::= 'resume' TypeAndValue 3363 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 3364 Value *Exn; LocTy ExnLoc; 3365 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 3366 return true; 3367 3368 ResumeInst *RI = ResumeInst::Create(Exn); 3369 Inst = RI; 3370 return false; 3371 } 3372 3373 //===----------------------------------------------------------------------===// 3374 // Binary Operators. 3375 //===----------------------------------------------------------------------===// 3376 3377 /// ParseArithmetic 3378 /// ::= ArithmeticOps TypeAndValue ',' Value 3379 /// 3380 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 3381 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 3382 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 3383 unsigned Opc, unsigned OperandType) { 3384 LocTy Loc; Value *LHS, *RHS; 3385 if (ParseTypeAndValue(LHS, Loc, PFS) || 3386 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 3387 ParseValue(LHS->getType(), RHS, PFS)) 3388 return true; 3389 3390 bool Valid; 3391 switch (OperandType) { 3392 default: llvm_unreachable("Unknown operand type!"); 3393 case 0: // int or FP. 3394 Valid = LHS->getType()->isIntOrIntVectorTy() || 3395 LHS->getType()->isFPOrFPVectorTy(); 3396 break; 3397 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 3398 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 3399 } 3400 3401 if (!Valid) 3402 return Error(Loc, "invalid operand type for instruction"); 3403 3404 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3405 return false; 3406 } 3407 3408 /// ParseLogical 3409 /// ::= ArithmeticOps TypeAndValue ',' Value { 3410 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 3411 unsigned Opc) { 3412 LocTy Loc; Value *LHS, *RHS; 3413 if (ParseTypeAndValue(LHS, Loc, PFS) || 3414 ParseToken(lltok::comma, "expected ',' in logical operation") || 3415 ParseValue(LHS->getType(), RHS, PFS)) 3416 return true; 3417 3418 if (!LHS->getType()->isIntOrIntVectorTy()) 3419 return Error(Loc,"instruction requires integer or integer vector operands"); 3420 3421 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3422 return false; 3423 } 3424 3425 3426 /// ParseCompare 3427 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 3428 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 3429 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 3430 unsigned Opc) { 3431 // Parse the integer/fp comparison predicate. 3432 LocTy Loc; 3433 unsigned Pred; 3434 Value *LHS, *RHS; 3435 if (ParseCmpPredicate(Pred, Opc) || 3436 ParseTypeAndValue(LHS, Loc, PFS) || 3437 ParseToken(lltok::comma, "expected ',' after compare value") || 3438 ParseValue(LHS->getType(), RHS, PFS)) 3439 return true; 3440 3441 if (Opc == Instruction::FCmp) { 3442 if (!LHS->getType()->isFPOrFPVectorTy()) 3443 return Error(Loc, "fcmp requires floating point operands"); 3444 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3445 } else { 3446 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 3447 if (!LHS->getType()->isIntOrIntVectorTy() && 3448 !LHS->getType()->getScalarType()->isPointerTy()) 3449 return Error(Loc, "icmp requires integer operands"); 3450 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3451 } 3452 return false; 3453 } 3454 3455 //===----------------------------------------------------------------------===// 3456 // Other Instructions. 3457 //===----------------------------------------------------------------------===// 3458 3459 3460 /// ParseCast 3461 /// ::= CastOpc TypeAndValue 'to' Type 3462 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 3463 unsigned Opc) { 3464 LocTy Loc; 3465 Value *Op; 3466 Type *DestTy = 0; 3467 if (ParseTypeAndValue(Op, Loc, PFS) || 3468 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 3469 ParseType(DestTy)) 3470 return true; 3471 3472 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 3473 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 3474 return Error(Loc, "invalid cast opcode for cast from '" + 3475 getTypeString(Op->getType()) + "' to '" + 3476 getTypeString(DestTy) + "'"); 3477 } 3478 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 3479 return false; 3480 } 3481 3482 /// ParseSelect 3483 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3484 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 3485 LocTy Loc; 3486 Value *Op0, *Op1, *Op2; 3487 if (ParseTypeAndValue(Op0, Loc, PFS) || 3488 ParseToken(lltok::comma, "expected ',' after select condition") || 3489 ParseTypeAndValue(Op1, PFS) || 3490 ParseToken(lltok::comma, "expected ',' after select value") || 3491 ParseTypeAndValue(Op2, PFS)) 3492 return true; 3493 3494 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 3495 return Error(Loc, Reason); 3496 3497 Inst = SelectInst::Create(Op0, Op1, Op2); 3498 return false; 3499 } 3500 3501 /// ParseVA_Arg 3502 /// ::= 'va_arg' TypeAndValue ',' Type 3503 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 3504 Value *Op; 3505 Type *EltTy = 0; 3506 LocTy TypeLoc; 3507 if (ParseTypeAndValue(Op, PFS) || 3508 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 3509 ParseType(EltTy, TypeLoc)) 3510 return true; 3511 3512 if (!EltTy->isFirstClassType()) 3513 return Error(TypeLoc, "va_arg requires operand with first class type"); 3514 3515 Inst = new VAArgInst(Op, EltTy); 3516 return false; 3517 } 3518 3519 /// ParseExtractElement 3520 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 3521 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 3522 LocTy Loc; 3523 Value *Op0, *Op1; 3524 if (ParseTypeAndValue(Op0, Loc, PFS) || 3525 ParseToken(lltok::comma, "expected ',' after extract value") || 3526 ParseTypeAndValue(Op1, PFS)) 3527 return true; 3528 3529 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 3530 return Error(Loc, "invalid extractelement operands"); 3531 3532 Inst = ExtractElementInst::Create(Op0, Op1); 3533 return false; 3534 } 3535 3536 /// ParseInsertElement 3537 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3538 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 3539 LocTy Loc; 3540 Value *Op0, *Op1, *Op2; 3541 if (ParseTypeAndValue(Op0, Loc, PFS) || 3542 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3543 ParseTypeAndValue(Op1, PFS) || 3544 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3545 ParseTypeAndValue(Op2, PFS)) 3546 return true; 3547 3548 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 3549 return Error(Loc, "invalid insertelement operands"); 3550 3551 Inst = InsertElementInst::Create(Op0, Op1, Op2); 3552 return false; 3553 } 3554 3555 /// ParseShuffleVector 3556 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3557 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 3558 LocTy Loc; 3559 Value *Op0, *Op1, *Op2; 3560 if (ParseTypeAndValue(Op0, Loc, PFS) || 3561 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 3562 ParseTypeAndValue(Op1, PFS) || 3563 ParseToken(lltok::comma, "expected ',' after shuffle value") || 3564 ParseTypeAndValue(Op2, PFS)) 3565 return true; 3566 3567 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 3568 return Error(Loc, "invalid shufflevector operands"); 3569 3570 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 3571 return false; 3572 } 3573 3574 /// ParsePHI 3575 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 3576 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 3577 Type *Ty = 0; LocTy TypeLoc; 3578 Value *Op0, *Op1; 3579 3580 if (ParseType(Ty, TypeLoc) || 3581 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3582 ParseValue(Ty, Op0, PFS) || 3583 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3584 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3585 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3586 return true; 3587 3588 bool AteExtraComma = false; 3589 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 3590 while (1) { 3591 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 3592 3593 if (!EatIfPresent(lltok::comma)) 3594 break; 3595 3596 if (Lex.getKind() == lltok::MetadataVar) { 3597 AteExtraComma = true; 3598 break; 3599 } 3600 3601 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3602 ParseValue(Ty, Op0, PFS) || 3603 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3604 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3605 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3606 return true; 3607 } 3608 3609 if (!Ty->isFirstClassType()) 3610 return Error(TypeLoc, "phi node must have first class type"); 3611 3612 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 3613 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 3614 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 3615 Inst = PN; 3616 return AteExtraComma ? InstExtraComma : InstNormal; 3617 } 3618 3619 /// ParseLandingPad 3620 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 3621 /// Clause 3622 /// ::= 'catch' TypeAndValue 3623 /// ::= 'filter' 3624 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 3625 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 3626 Type *Ty = 0; LocTy TyLoc; 3627 Value *PersFn; LocTy PersFnLoc; 3628 3629 if (ParseType(Ty, TyLoc) || 3630 ParseToken(lltok::kw_personality, "expected 'personality'") || 3631 ParseTypeAndValue(PersFn, PersFnLoc, PFS)) 3632 return true; 3633 3634 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0); 3635 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 3636 3637 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 3638 LandingPadInst::ClauseType CT; 3639 if (EatIfPresent(lltok::kw_catch)) 3640 CT = LandingPadInst::Catch; 3641 else if (EatIfPresent(lltok::kw_filter)) 3642 CT = LandingPadInst::Filter; 3643 else 3644 return TokError("expected 'catch' or 'filter' clause type"); 3645 3646 Value *V; LocTy VLoc; 3647 if (ParseTypeAndValue(V, VLoc, PFS)) { 3648 delete LP; 3649 return true; 3650 } 3651 3652 // A 'catch' type expects a non-array constant. A filter clause expects an 3653 // array constant. 3654 if (CT == LandingPadInst::Catch) { 3655 if (isa<ArrayType>(V->getType())) 3656 Error(VLoc, "'catch' clause has an invalid type"); 3657 } else { 3658 if (!isa<ArrayType>(V->getType())) 3659 Error(VLoc, "'filter' clause has an invalid type"); 3660 } 3661 3662 LP->addClause(V); 3663 } 3664 3665 Inst = LP; 3666 return false; 3667 } 3668 3669 /// ParseCall 3670 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value 3671 /// ParameterList OptionalAttrs 3672 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 3673 bool isTail) { 3674 AttrBuilder RetAttrs, FnAttrs; 3675 CallingConv::ID CC; 3676 Type *RetType = 0; 3677 LocTy RetTypeLoc; 3678 ValID CalleeID; 3679 SmallVector<ParamInfo, 16> ArgList; 3680 LocTy CallLoc = Lex.getLoc(); 3681 3682 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) || 3683 ParseOptionalCallingConv(CC) || 3684 ParseOptionalAttrs(RetAttrs, 1) || 3685 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3686 ParseValID(CalleeID) || 3687 ParseParameterList(ArgList, PFS) || 3688 ParseOptionalAttrs(FnAttrs, 2)) 3689 return true; 3690 3691 // If RetType is a non-function pointer type, then this is the short syntax 3692 // for the call, which means that RetType is just the return type. Infer the 3693 // rest of the function argument types from the arguments that are present. 3694 PointerType *PFTy = 0; 3695 FunctionType *Ty = 0; 3696 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3697 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3698 // Pull out the types of all of the arguments... 3699 std::vector<Type*> ParamTypes; 3700 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3701 ParamTypes.push_back(ArgList[i].V->getType()); 3702 3703 if (!FunctionType::isValidReturnType(RetType)) 3704 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3705 3706 Ty = FunctionType::get(RetType, ParamTypes, false); 3707 PFTy = PointerType::getUnqual(Ty); 3708 } 3709 3710 // Look up the callee. 3711 Value *Callee; 3712 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3713 3714 // Set up the Attributes for the function. 3715 SmallVector<AttributeWithIndex, 8> Attrs; 3716 if (RetAttrs.hasAttributes()) 3717 Attrs.push_back( 3718 AttributeWithIndex::get(AttrListPtr::ReturnIndex, 3719 Attributes::get(Callee->getContext(), 3720 RetAttrs))); 3721 3722 SmallVector<Value*, 8> Args; 3723 3724 // Loop through FunctionType's arguments and ensure they are specified 3725 // correctly. Also, gather any parameter attributes. 3726 FunctionType::param_iterator I = Ty->param_begin(); 3727 FunctionType::param_iterator E = Ty->param_end(); 3728 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3729 Type *ExpectedTy = 0; 3730 if (I != E) { 3731 ExpectedTy = *I++; 3732 } else if (!Ty->isVarArg()) { 3733 return Error(ArgList[i].Loc, "too many arguments specified"); 3734 } 3735 3736 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3737 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3738 getTypeString(ExpectedTy) + "'"); 3739 Args.push_back(ArgList[i].V); 3740 if (ArgList[i].Attrs.hasAttributes()) 3741 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3742 } 3743 3744 if (I != E) 3745 return Error(CallLoc, "not enough parameters specified for call"); 3746 3747 if (FnAttrs.hasAttributes()) 3748 Attrs.push_back( 3749 AttributeWithIndex::get(AttrListPtr::FunctionIndex, 3750 Attributes::get(Callee->getContext(), 3751 FnAttrs))); 3752 3753 // Finish off the Attributes and check them 3754 AttrListPtr PAL = AttrListPtr::get(Attrs); 3755 3756 CallInst *CI = CallInst::Create(Callee, Args); 3757 CI->setTailCall(isTail); 3758 CI->setCallingConv(CC); 3759 CI->setAttributes(PAL); 3760 Inst = CI; 3761 return false; 3762 } 3763 3764 //===----------------------------------------------------------------------===// 3765 // Memory Instructions. 3766 //===----------------------------------------------------------------------===// 3767 3768 /// ParseAlloc 3769 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)? 3770 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 3771 Value *Size = 0; 3772 LocTy SizeLoc; 3773 unsigned Alignment = 0; 3774 Type *Ty = 0; 3775 if (ParseType(Ty)) return true; 3776 3777 bool AteExtraComma = false; 3778 if (EatIfPresent(lltok::comma)) { 3779 if (Lex.getKind() == lltok::kw_align) { 3780 if (ParseOptionalAlignment(Alignment)) return true; 3781 } else if (Lex.getKind() == lltok::MetadataVar) { 3782 AteExtraComma = true; 3783 } else { 3784 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 3785 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3786 return true; 3787 } 3788 } 3789 3790 if (Size && !Size->getType()->isIntegerTy()) 3791 return Error(SizeLoc, "element count must have integer type"); 3792 3793 Inst = new AllocaInst(Ty, Size, Alignment); 3794 return AteExtraComma ? InstExtraComma : InstNormal; 3795 } 3796 3797 /// ParseLoad 3798 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 3799 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 3800 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 3801 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 3802 Value *Val; LocTy Loc; 3803 unsigned Alignment = 0; 3804 bool AteExtraComma = false; 3805 bool isAtomic = false; 3806 AtomicOrdering Ordering = NotAtomic; 3807 SynchronizationScope Scope = CrossThread; 3808 3809 if (Lex.getKind() == lltok::kw_atomic) { 3810 isAtomic = true; 3811 Lex.Lex(); 3812 } 3813 3814 bool isVolatile = false; 3815 if (Lex.getKind() == lltok::kw_volatile) { 3816 isVolatile = true; 3817 Lex.Lex(); 3818 } 3819 3820 if (ParseTypeAndValue(Val, Loc, PFS) || 3821 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 3822 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3823 return true; 3824 3825 if (!Val->getType()->isPointerTy() || 3826 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType()) 3827 return Error(Loc, "load operand must be a pointer to a first class type"); 3828 if (isAtomic && !Alignment) 3829 return Error(Loc, "atomic load must have explicit non-zero alignment"); 3830 if (Ordering == Release || Ordering == AcquireRelease) 3831 return Error(Loc, "atomic load cannot use Release ordering"); 3832 3833 Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope); 3834 return AteExtraComma ? InstExtraComma : InstNormal; 3835 } 3836 3837 /// ParseStore 3838 3839 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 3840 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 3841 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 3842 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 3843 Value *Val, *Ptr; LocTy Loc, PtrLoc; 3844 unsigned Alignment = 0; 3845 bool AteExtraComma = false; 3846 bool isAtomic = false; 3847 AtomicOrdering Ordering = NotAtomic; 3848 SynchronizationScope Scope = CrossThread; 3849 3850 if (Lex.getKind() == lltok::kw_atomic) { 3851 isAtomic = true; 3852 Lex.Lex(); 3853 } 3854 3855 bool isVolatile = false; 3856 if (Lex.getKind() == lltok::kw_volatile) { 3857 isVolatile = true; 3858 Lex.Lex(); 3859 } 3860 3861 if (ParseTypeAndValue(Val, Loc, PFS) || 3862 ParseToken(lltok::comma, "expected ',' after store operand") || 3863 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3864 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 3865 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3866 return true; 3867 3868 if (!Ptr->getType()->isPointerTy()) 3869 return Error(PtrLoc, "store operand must be a pointer"); 3870 if (!Val->getType()->isFirstClassType()) 3871 return Error(Loc, "store operand must be a first class value"); 3872 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 3873 return Error(Loc, "stored value and pointer type do not match"); 3874 if (isAtomic && !Alignment) 3875 return Error(Loc, "atomic store must have explicit non-zero alignment"); 3876 if (Ordering == Acquire || Ordering == AcquireRelease) 3877 return Error(Loc, "atomic store cannot use Acquire ordering"); 3878 3879 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 3880 return AteExtraComma ? InstExtraComma : InstNormal; 3881 } 3882 3883 /// ParseCmpXchg 3884 /// ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue 3885 /// 'singlethread'? AtomicOrdering 3886 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 3887 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 3888 bool AteExtraComma = false; 3889 AtomicOrdering Ordering = NotAtomic; 3890 SynchronizationScope Scope = CrossThread; 3891 bool isVolatile = false; 3892 3893 if (EatIfPresent(lltok::kw_volatile)) 3894 isVolatile = true; 3895 3896 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3897 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 3898 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 3899 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 3900 ParseTypeAndValue(New, NewLoc, PFS) || 3901 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3902 return true; 3903 3904 if (Ordering == Unordered) 3905 return TokError("cmpxchg cannot be unordered"); 3906 if (!Ptr->getType()->isPointerTy()) 3907 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 3908 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 3909 return Error(CmpLoc, "compare value and pointer type do not match"); 3910 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 3911 return Error(NewLoc, "new value and pointer type do not match"); 3912 if (!New->getType()->isIntegerTy()) 3913 return Error(NewLoc, "cmpxchg operand must be an integer"); 3914 unsigned Size = New->getType()->getPrimitiveSizeInBits(); 3915 if (Size < 8 || (Size & (Size - 1))) 3916 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized" 3917 " integer"); 3918 3919 AtomicCmpXchgInst *CXI = 3920 new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope); 3921 CXI->setVolatile(isVolatile); 3922 Inst = CXI; 3923 return AteExtraComma ? InstExtraComma : InstNormal; 3924 } 3925 3926 /// ParseAtomicRMW 3927 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 3928 /// 'singlethread'? AtomicOrdering 3929 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 3930 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 3931 bool AteExtraComma = false; 3932 AtomicOrdering Ordering = NotAtomic; 3933 SynchronizationScope Scope = CrossThread; 3934 bool isVolatile = false; 3935 AtomicRMWInst::BinOp Operation; 3936 3937 if (EatIfPresent(lltok::kw_volatile)) 3938 isVolatile = true; 3939 3940 switch (Lex.getKind()) { 3941 default: return TokError("expected binary operation in atomicrmw"); 3942 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 3943 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 3944 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 3945 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 3946 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 3947 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 3948 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 3949 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 3950 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 3951 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 3952 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 3953 } 3954 Lex.Lex(); // Eat the operation. 3955 3956 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3957 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 3958 ParseTypeAndValue(Val, ValLoc, PFS) || 3959 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3960 return true; 3961 3962 if (Ordering == Unordered) 3963 return TokError("atomicrmw cannot be unordered"); 3964 if (!Ptr->getType()->isPointerTy()) 3965 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 3966 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 3967 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 3968 if (!Val->getType()->isIntegerTy()) 3969 return Error(ValLoc, "atomicrmw operand must be an integer"); 3970 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 3971 if (Size < 8 || (Size & (Size - 1))) 3972 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 3973 " integer"); 3974 3975 AtomicRMWInst *RMWI = 3976 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 3977 RMWI->setVolatile(isVolatile); 3978 Inst = RMWI; 3979 return AteExtraComma ? InstExtraComma : InstNormal; 3980 } 3981 3982 /// ParseFence 3983 /// ::= 'fence' 'singlethread'? AtomicOrdering 3984 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 3985 AtomicOrdering Ordering = NotAtomic; 3986 SynchronizationScope Scope = CrossThread; 3987 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3988 return true; 3989 3990 if (Ordering == Unordered) 3991 return TokError("fence cannot be unordered"); 3992 if (Ordering == Monotonic) 3993 return TokError("fence cannot be monotonic"); 3994 3995 Inst = new FenceInst(Context, Ordering, Scope); 3996 return InstNormal; 3997 } 3998 3999 /// ParseGetElementPtr 4000 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 4001 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 4002 Value *Ptr = 0; 4003 Value *Val = 0; 4004 LocTy Loc, EltLoc; 4005 4006 bool InBounds = EatIfPresent(lltok::kw_inbounds); 4007 4008 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true; 4009 4010 if (!Ptr->getType()->getScalarType()->isPointerTy()) 4011 return Error(Loc, "base of getelementptr must be a pointer"); 4012 4013 SmallVector<Value*, 16> Indices; 4014 bool AteExtraComma = false; 4015 while (EatIfPresent(lltok::comma)) { 4016 if (Lex.getKind() == lltok::MetadataVar) { 4017 AteExtraComma = true; 4018 break; 4019 } 4020 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 4021 if (!Val->getType()->getScalarType()->isIntegerTy()) 4022 return Error(EltLoc, "getelementptr index must be an integer"); 4023 if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy()) 4024 return Error(EltLoc, "getelementptr index type missmatch"); 4025 if (Val->getType()->isVectorTy()) { 4026 unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements(); 4027 unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements(); 4028 if (ValNumEl != PtrNumEl) 4029 return Error(EltLoc, 4030 "getelementptr vector index has a wrong number of elements"); 4031 } 4032 Indices.push_back(Val); 4033 } 4034 4035 if (Val && Val->getType()->isVectorTy() && Indices.size() != 1) 4036 return Error(EltLoc, "vector getelementptrs must have a single index"); 4037 4038 if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices)) 4039 return Error(Loc, "invalid getelementptr indices"); 4040 Inst = GetElementPtrInst::Create(Ptr, Indices); 4041 if (InBounds) 4042 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 4043 return AteExtraComma ? InstExtraComma : InstNormal; 4044 } 4045 4046 /// ParseExtractValue 4047 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 4048 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 4049 Value *Val; LocTy Loc; 4050 SmallVector<unsigned, 4> Indices; 4051 bool AteExtraComma; 4052 if (ParseTypeAndValue(Val, Loc, PFS) || 4053 ParseIndexList(Indices, AteExtraComma)) 4054 return true; 4055 4056 if (!Val->getType()->isAggregateType()) 4057 return Error(Loc, "extractvalue operand must be aggregate type"); 4058 4059 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 4060 return Error(Loc, "invalid indices for extractvalue"); 4061 Inst = ExtractValueInst::Create(Val, Indices); 4062 return AteExtraComma ? InstExtraComma : InstNormal; 4063 } 4064 4065 /// ParseInsertValue 4066 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 4067 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 4068 Value *Val0, *Val1; LocTy Loc0, Loc1; 4069 SmallVector<unsigned, 4> Indices; 4070 bool AteExtraComma; 4071 if (ParseTypeAndValue(Val0, Loc0, PFS) || 4072 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 4073 ParseTypeAndValue(Val1, Loc1, PFS) || 4074 ParseIndexList(Indices, AteExtraComma)) 4075 return true; 4076 4077 if (!Val0->getType()->isAggregateType()) 4078 return Error(Loc0, "insertvalue operand must be aggregate type"); 4079 4080 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) 4081 return Error(Loc0, "invalid indices for insertvalue"); 4082 Inst = InsertValueInst::Create(Val0, Val1, Indices); 4083 return AteExtraComma ? InstExtraComma : InstNormal; 4084 } 4085 4086 //===----------------------------------------------------------------------===// 4087 // Embedded metadata. 4088 //===----------------------------------------------------------------------===// 4089 4090 /// ParseMDNodeVector 4091 /// ::= Element (',' Element)* 4092 /// Element 4093 /// ::= 'null' | TypeAndValue 4094 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts, 4095 PerFunctionState *PFS) { 4096 // Check for an empty list. 4097 if (Lex.getKind() == lltok::rbrace) 4098 return false; 4099 4100 do { 4101 // Null is a special case since it is typeless. 4102 if (EatIfPresent(lltok::kw_null)) { 4103 Elts.push_back(0); 4104 continue; 4105 } 4106 4107 Value *V = 0; 4108 if (ParseTypeAndValue(V, PFS)) return true; 4109 Elts.push_back(V); 4110 } while (EatIfPresent(lltok::comma)); 4111 4112 return false; 4113 } 4114