1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "LLToken.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueSymbolTable.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/SaveAndRestore.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstring>
49 #include <iterator>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 static std::string getTypeString(Type *T) {
55   std::string Result;
56   raw_string_ostream Tmp(Result);
57   Tmp << *T;
58   return Tmp.str();
59 }
60 
61 /// Run: module ::= toplevelentity*
62 bool LLParser::Run(bool UpgradeDebugInfo,
63                    DataLayoutCallbackTy DataLayoutCallback) {
64   // Prime the lexer.
65   Lex.Lex();
66 
67   if (Context.shouldDiscardValueNames())
68     return error(
69         Lex.getLoc(),
70         "Can't read textual IR with a Context that discards named Values");
71 
72   if (M) {
73     if (parseTargetDefinitions())
74       return true;
75 
76     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
77       M->setDataLayout(*LayoutOverride);
78   }
79 
80   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
81          validateEndOfIndex();
82 }
83 
84 bool LLParser::parseStandaloneConstantValue(Constant *&C,
85                                             const SlotMapping *Slots) {
86   restoreParsingState(Slots);
87   Lex.Lex();
88 
89   Type *Ty = nullptr;
90   if (parseType(Ty) || parseConstantValue(Ty, C))
91     return true;
92   if (Lex.getKind() != lltok::Eof)
93     return error(Lex.getLoc(), "expected end of string");
94   return false;
95 }
96 
97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
98                                     const SlotMapping *Slots) {
99   restoreParsingState(Slots);
100   Lex.Lex();
101 
102   Read = 0;
103   SMLoc Start = Lex.getLoc();
104   Ty = nullptr;
105   if (parseType(Ty))
106     return true;
107   SMLoc End = Lex.getLoc();
108   Read = End.getPointer() - Start.getPointer();
109 
110   return false;
111 }
112 
113 void LLParser::restoreParsingState(const SlotMapping *Slots) {
114   if (!Slots)
115     return;
116   NumberedVals = Slots->GlobalValues;
117   NumberedMetadata = Slots->MetadataNodes;
118   for (const auto &I : Slots->NamedTypes)
119     NamedTypes.insert(
120         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
121   for (const auto &I : Slots->Types)
122     NumberedTypes.insert(
123         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
124 }
125 
126 /// validateEndOfModule - Do final validity and sanity checks at the end of the
127 /// module.
128 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
129   if (!M)
130     return false;
131   // Handle any function attribute group forward references.
132   for (const auto &RAG : ForwardRefAttrGroups) {
133     Value *V = RAG.first;
134     const std::vector<unsigned> &Attrs = RAG.second;
135     AttrBuilder B;
136 
137     for (const auto &Attr : Attrs)
138       B.merge(NumberedAttrBuilders[Attr]);
139 
140     if (Function *Fn = dyn_cast<Function>(V)) {
141       AttributeList AS = Fn->getAttributes();
142       AttrBuilder FnAttrs(AS.getFnAttributes());
143       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
144 
145       FnAttrs.merge(B);
146 
147       // If the alignment was parsed as an attribute, move to the alignment
148       // field.
149       if (FnAttrs.hasAlignmentAttr()) {
150         Fn->setAlignment(FnAttrs.getAlignment());
151         FnAttrs.removeAttribute(Attribute::Alignment);
152       }
153 
154       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
155                             AttributeSet::get(Context, FnAttrs));
156       Fn->setAttributes(AS);
157     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
158       AttributeList AS = CI->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttributes());
160       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
161       FnAttrs.merge(B);
162       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
163                             AttributeSet::get(Context, FnAttrs));
164       CI->setAttributes(AS);
165     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
166       AttributeList AS = II->getAttributes();
167       AttrBuilder FnAttrs(AS.getFnAttributes());
168       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
169       FnAttrs.merge(B);
170       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
171                             AttributeSet::get(Context, FnAttrs));
172       II->setAttributes(AS);
173     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
174       AttributeList AS = CBI->getAttributes();
175       AttrBuilder FnAttrs(AS.getFnAttributes());
176       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
177       FnAttrs.merge(B);
178       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
179                             AttributeSet::get(Context, FnAttrs));
180       CBI->setAttributes(AS);
181     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
182       AttrBuilder Attrs(GV->getAttributes());
183       Attrs.merge(B);
184       GV->setAttributes(AttributeSet::get(Context,Attrs));
185     } else {
186       llvm_unreachable("invalid object with forward attribute group reference");
187     }
188   }
189 
190   // If there are entries in ForwardRefBlockAddresses at this point, the
191   // function was never defined.
192   if (!ForwardRefBlockAddresses.empty())
193     return error(ForwardRefBlockAddresses.begin()->first.Loc,
194                  "expected function name in blockaddress");
195 
196   for (const auto &NT : NumberedTypes)
197     if (NT.second.second.isValid())
198       return error(NT.second.second,
199                    "use of undefined type '%" + Twine(NT.first) + "'");
200 
201   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
202        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
203     if (I->second.second.isValid())
204       return error(I->second.second,
205                    "use of undefined type named '" + I->getKey() + "'");
206 
207   if (!ForwardRefComdats.empty())
208     return error(ForwardRefComdats.begin()->second,
209                  "use of undefined comdat '$" +
210                      ForwardRefComdats.begin()->first + "'");
211 
212   if (!ForwardRefVals.empty())
213     return error(ForwardRefVals.begin()->second.second,
214                  "use of undefined value '@" + ForwardRefVals.begin()->first +
215                      "'");
216 
217   if (!ForwardRefValIDs.empty())
218     return error(ForwardRefValIDs.begin()->second.second,
219                  "use of undefined value '@" +
220                      Twine(ForwardRefValIDs.begin()->first) + "'");
221 
222   if (!ForwardRefMDNodes.empty())
223     return error(ForwardRefMDNodes.begin()->second.second,
224                  "use of undefined metadata '!" +
225                      Twine(ForwardRefMDNodes.begin()->first) + "'");
226 
227   // Resolve metadata cycles.
228   for (auto &N : NumberedMetadata) {
229     if (N.second && !N.second->isResolved())
230       N.second->resolveCycles();
231   }
232 
233   for (auto *Inst : InstsWithTBAATag) {
234     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
235     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
236     auto *UpgradedMD = UpgradeTBAANode(*MD);
237     if (MD != UpgradedMD)
238       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
239   }
240 
241   // Look for intrinsic functions and CallInst that need to be upgraded
242   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
243     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
244 
245   // Some types could be renamed during loading if several modules are
246   // loaded in the same LLVMContext (LTO scenario). In this case we should
247   // remangle intrinsics names as well.
248   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
249     Function *F = &*FI++;
250     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
251       F->replaceAllUsesWith(Remangled.getValue());
252       F->eraseFromParent();
253     }
254   }
255 
256   if (UpgradeDebugInfo)
257     llvm::UpgradeDebugInfo(*M);
258 
259   UpgradeModuleFlags(*M);
260   UpgradeSectionAttributes(*M);
261 
262   if (!Slots)
263     return false;
264   // Initialize the slot mapping.
265   // Because by this point we've parsed and validated everything, we can "steal"
266   // the mapping from LLParser as it doesn't need it anymore.
267   Slots->GlobalValues = std::move(NumberedVals);
268   Slots->MetadataNodes = std::move(NumberedMetadata);
269   for (const auto &I : NamedTypes)
270     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
271   for (const auto &I : NumberedTypes)
272     Slots->Types.insert(std::make_pair(I.first, I.second.first));
273 
274   return false;
275 }
276 
277 /// Do final validity and sanity checks at the end of the index.
278 bool LLParser::validateEndOfIndex() {
279   if (!Index)
280     return false;
281 
282   if (!ForwardRefValueInfos.empty())
283     return error(ForwardRefValueInfos.begin()->second.front().second,
284                  "use of undefined summary '^" +
285                      Twine(ForwardRefValueInfos.begin()->first) + "'");
286 
287   if (!ForwardRefAliasees.empty())
288     return error(ForwardRefAliasees.begin()->second.front().second,
289                  "use of undefined summary '^" +
290                      Twine(ForwardRefAliasees.begin()->first) + "'");
291 
292   if (!ForwardRefTypeIds.empty())
293     return error(ForwardRefTypeIds.begin()->second.front().second,
294                  "use of undefined type id summary '^" +
295                      Twine(ForwardRefTypeIds.begin()->first) + "'");
296 
297   return false;
298 }
299 
300 //===----------------------------------------------------------------------===//
301 // Top-Level Entities
302 //===----------------------------------------------------------------------===//
303 
304 bool LLParser::parseTargetDefinitions() {
305   while (true) {
306     switch (Lex.getKind()) {
307     case lltok::kw_target:
308       if (parseTargetDefinition())
309         return true;
310       break;
311     case lltok::kw_source_filename:
312       if (parseSourceFileName())
313         return true;
314       break;
315     default:
316       return false;
317     }
318   }
319 }
320 
321 bool LLParser::parseTopLevelEntities() {
322   // If there is no Module, then parse just the summary index entries.
323   if (!M) {
324     while (true) {
325       switch (Lex.getKind()) {
326       case lltok::Eof:
327         return false;
328       case lltok::SummaryID:
329         if (parseSummaryEntry())
330           return true;
331         break;
332       case lltok::kw_source_filename:
333         if (parseSourceFileName())
334           return true;
335         break;
336       default:
337         // Skip everything else
338         Lex.Lex();
339       }
340     }
341   }
342   while (true) {
343     switch (Lex.getKind()) {
344     default:
345       return tokError("expected top-level entity");
346     case lltok::Eof: return false;
347     case lltok::kw_declare:
348       if (parseDeclare())
349         return true;
350       break;
351     case lltok::kw_define:
352       if (parseDefine())
353         return true;
354       break;
355     case lltok::kw_module:
356       if (parseModuleAsm())
357         return true;
358       break;
359     case lltok::kw_deplibs:
360       if (parseDepLibs())
361         return true;
362       break;
363     case lltok::LocalVarID:
364       if (parseUnnamedType())
365         return true;
366       break;
367     case lltok::LocalVar:
368       if (parseNamedType())
369         return true;
370       break;
371     case lltok::GlobalID:
372       if (parseUnnamedGlobal())
373         return true;
374       break;
375     case lltok::GlobalVar:
376       if (parseNamedGlobal())
377         return true;
378       break;
379     case lltok::ComdatVar:  if (parseComdat()) return true; break;
380     case lltok::exclaim:
381       if (parseStandaloneMetadata())
382         return true;
383       break;
384     case lltok::SummaryID:
385       if (parseSummaryEntry())
386         return true;
387       break;
388     case lltok::MetadataVar:
389       if (parseNamedMetadata())
390         return true;
391       break;
392     case lltok::kw_attributes:
393       if (parseUnnamedAttrGrp())
394         return true;
395       break;
396     case lltok::kw_uselistorder:
397       if (parseUseListOrder())
398         return true;
399       break;
400     case lltok::kw_uselistorder_bb:
401       if (parseUseListOrderBB())
402         return true;
403       break;
404     }
405   }
406 }
407 
408 /// toplevelentity
409 ///   ::= 'module' 'asm' STRINGCONSTANT
410 bool LLParser::parseModuleAsm() {
411   assert(Lex.getKind() == lltok::kw_module);
412   Lex.Lex();
413 
414   std::string AsmStr;
415   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
416       parseStringConstant(AsmStr))
417     return true;
418 
419   M->appendModuleInlineAsm(AsmStr);
420   return false;
421 }
422 
423 /// toplevelentity
424 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
425 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
426 bool LLParser::parseTargetDefinition() {
427   assert(Lex.getKind() == lltok::kw_target);
428   std::string Str;
429   switch (Lex.Lex()) {
430   default:
431     return tokError("unknown target property");
432   case lltok::kw_triple:
433     Lex.Lex();
434     if (parseToken(lltok::equal, "expected '=' after target triple") ||
435         parseStringConstant(Str))
436       return true;
437     M->setTargetTriple(Str);
438     return false;
439   case lltok::kw_datalayout:
440     Lex.Lex();
441     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
442         parseStringConstant(Str))
443       return true;
444     M->setDataLayout(Str);
445     return false;
446   }
447 }
448 
449 /// toplevelentity
450 ///   ::= 'source_filename' '=' STRINGCONSTANT
451 bool LLParser::parseSourceFileName() {
452   assert(Lex.getKind() == lltok::kw_source_filename);
453   Lex.Lex();
454   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
455       parseStringConstant(SourceFileName))
456     return true;
457   if (M)
458     M->setSourceFileName(SourceFileName);
459   return false;
460 }
461 
462 /// toplevelentity
463 ///   ::= 'deplibs' '=' '[' ']'
464 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
465 /// FIXME: Remove in 4.0. Currently parse, but ignore.
466 bool LLParser::parseDepLibs() {
467   assert(Lex.getKind() == lltok::kw_deplibs);
468   Lex.Lex();
469   if (parseToken(lltok::equal, "expected '=' after deplibs") ||
470       parseToken(lltok::lsquare, "expected '=' after deplibs"))
471     return true;
472 
473   if (EatIfPresent(lltok::rsquare))
474     return false;
475 
476   do {
477     std::string Str;
478     if (parseStringConstant(Str))
479       return true;
480   } while (EatIfPresent(lltok::comma));
481 
482   return parseToken(lltok::rsquare, "expected ']' at end of list");
483 }
484 
485 /// parseUnnamedType:
486 ///   ::= LocalVarID '=' 'type' type
487 bool LLParser::parseUnnamedType() {
488   LocTy TypeLoc = Lex.getLoc();
489   unsigned TypeID = Lex.getUIntVal();
490   Lex.Lex(); // eat LocalVarID;
491 
492   if (parseToken(lltok::equal, "expected '=' after name") ||
493       parseToken(lltok::kw_type, "expected 'type' after '='"))
494     return true;
495 
496   Type *Result = nullptr;
497   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
498     return true;
499 
500   if (!isa<StructType>(Result)) {
501     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
502     if (Entry.first)
503       return error(TypeLoc, "non-struct types may not be recursive");
504     Entry.first = Result;
505     Entry.second = SMLoc();
506   }
507 
508   return false;
509 }
510 
511 /// toplevelentity
512 ///   ::= LocalVar '=' 'type' type
513 bool LLParser::parseNamedType() {
514   std::string Name = Lex.getStrVal();
515   LocTy NameLoc = Lex.getLoc();
516   Lex.Lex();  // eat LocalVar.
517 
518   if (parseToken(lltok::equal, "expected '=' after name") ||
519       parseToken(lltok::kw_type, "expected 'type' after name"))
520     return true;
521 
522   Type *Result = nullptr;
523   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
524     return true;
525 
526   if (!isa<StructType>(Result)) {
527     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
528     if (Entry.first)
529       return error(NameLoc, "non-struct types may not be recursive");
530     Entry.first = Result;
531     Entry.second = SMLoc();
532   }
533 
534   return false;
535 }
536 
537 /// toplevelentity
538 ///   ::= 'declare' FunctionHeader
539 bool LLParser::parseDeclare() {
540   assert(Lex.getKind() == lltok::kw_declare);
541   Lex.Lex();
542 
543   std::vector<std::pair<unsigned, MDNode *>> MDs;
544   while (Lex.getKind() == lltok::MetadataVar) {
545     unsigned MDK;
546     MDNode *N;
547     if (parseMetadataAttachment(MDK, N))
548       return true;
549     MDs.push_back({MDK, N});
550   }
551 
552   Function *F;
553   if (parseFunctionHeader(F, false))
554     return true;
555   for (auto &MD : MDs)
556     F->addMetadata(MD.first, *MD.second);
557   return false;
558 }
559 
560 /// toplevelentity
561 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
562 bool LLParser::parseDefine() {
563   assert(Lex.getKind() == lltok::kw_define);
564   Lex.Lex();
565 
566   Function *F;
567   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
568          parseFunctionBody(*F);
569 }
570 
571 /// parseGlobalType
572 ///   ::= 'constant'
573 ///   ::= 'global'
574 bool LLParser::parseGlobalType(bool &IsConstant) {
575   if (Lex.getKind() == lltok::kw_constant)
576     IsConstant = true;
577   else if (Lex.getKind() == lltok::kw_global)
578     IsConstant = false;
579   else {
580     IsConstant = false;
581     return tokError("expected 'global' or 'constant'");
582   }
583   Lex.Lex();
584   return false;
585 }
586 
587 bool LLParser::parseOptionalUnnamedAddr(
588     GlobalVariable::UnnamedAddr &UnnamedAddr) {
589   if (EatIfPresent(lltok::kw_unnamed_addr))
590     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
591   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
592     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
593   else
594     UnnamedAddr = GlobalValue::UnnamedAddr::None;
595   return false;
596 }
597 
598 /// parseUnnamedGlobal:
599 ///   OptionalVisibility (ALIAS | IFUNC) ...
600 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
601 ///   OptionalDLLStorageClass
602 ///                                                     ...   -> global variable
603 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
604 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
605 ///   OptionalVisibility
606 ///                OptionalDLLStorageClass
607 ///                                                     ...   -> global variable
608 bool LLParser::parseUnnamedGlobal() {
609   unsigned VarID = NumberedVals.size();
610   std::string Name;
611   LocTy NameLoc = Lex.getLoc();
612 
613   // Handle the GlobalID form.
614   if (Lex.getKind() == lltok::GlobalID) {
615     if (Lex.getUIntVal() != VarID)
616       return error(Lex.getLoc(),
617                    "variable expected to be numbered '%" + Twine(VarID) + "'");
618     Lex.Lex(); // eat GlobalID;
619 
620     if (parseToken(lltok::equal, "expected '=' after name"))
621       return true;
622   }
623 
624   bool HasLinkage;
625   unsigned Linkage, Visibility, DLLStorageClass;
626   bool DSOLocal;
627   GlobalVariable::ThreadLocalMode TLM;
628   GlobalVariable::UnnamedAddr UnnamedAddr;
629   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
630                            DSOLocal) ||
631       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
632     return true;
633 
634   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
635     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
636                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
637 
638   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
639                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
640 }
641 
642 /// parseNamedGlobal:
643 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
644 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
645 ///                 OptionalVisibility OptionalDLLStorageClass
646 ///                                                     ...   -> global variable
647 bool LLParser::parseNamedGlobal() {
648   assert(Lex.getKind() == lltok::GlobalVar);
649   LocTy NameLoc = Lex.getLoc();
650   std::string Name = Lex.getStrVal();
651   Lex.Lex();
652 
653   bool HasLinkage;
654   unsigned Linkage, Visibility, DLLStorageClass;
655   bool DSOLocal;
656   GlobalVariable::ThreadLocalMode TLM;
657   GlobalVariable::UnnamedAddr UnnamedAddr;
658   if (parseToken(lltok::equal, "expected '=' in global variable") ||
659       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
660                            DSOLocal) ||
661       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
662     return true;
663 
664   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
665     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
666                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
667 
668   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
669                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
670 }
671 
672 bool LLParser::parseComdat() {
673   assert(Lex.getKind() == lltok::ComdatVar);
674   std::string Name = Lex.getStrVal();
675   LocTy NameLoc = Lex.getLoc();
676   Lex.Lex();
677 
678   if (parseToken(lltok::equal, "expected '=' here"))
679     return true;
680 
681   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
682     return tokError("expected comdat type");
683 
684   Comdat::SelectionKind SK;
685   switch (Lex.getKind()) {
686   default:
687     return tokError("unknown selection kind");
688   case lltok::kw_any:
689     SK = Comdat::Any;
690     break;
691   case lltok::kw_exactmatch:
692     SK = Comdat::ExactMatch;
693     break;
694   case lltok::kw_largest:
695     SK = Comdat::Largest;
696     break;
697   case lltok::kw_noduplicates:
698     SK = Comdat::NoDuplicates;
699     break;
700   case lltok::kw_samesize:
701     SK = Comdat::SameSize;
702     break;
703   }
704   Lex.Lex();
705 
706   // See if the comdat was forward referenced, if so, use the comdat.
707   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
708   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
709   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
710     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
711 
712   Comdat *C;
713   if (I != ComdatSymTab.end())
714     C = &I->second;
715   else
716     C = M->getOrInsertComdat(Name);
717   C->setSelectionKind(SK);
718 
719   return false;
720 }
721 
722 // MDString:
723 //   ::= '!' STRINGCONSTANT
724 bool LLParser::parseMDString(MDString *&Result) {
725   std::string Str;
726   if (parseStringConstant(Str))
727     return true;
728   Result = MDString::get(Context, Str);
729   return false;
730 }
731 
732 // MDNode:
733 //   ::= '!' MDNodeNumber
734 bool LLParser::parseMDNodeID(MDNode *&Result) {
735   // !{ ..., !42, ... }
736   LocTy IDLoc = Lex.getLoc();
737   unsigned MID = 0;
738   if (parseUInt32(MID))
739     return true;
740 
741   // If not a forward reference, just return it now.
742   if (NumberedMetadata.count(MID)) {
743     Result = NumberedMetadata[MID];
744     return false;
745   }
746 
747   // Otherwise, create MDNode forward reference.
748   auto &FwdRef = ForwardRefMDNodes[MID];
749   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
750 
751   Result = FwdRef.first.get();
752   NumberedMetadata[MID].reset(Result);
753   return false;
754 }
755 
756 /// parseNamedMetadata:
757 ///   !foo = !{ !1, !2 }
758 bool LLParser::parseNamedMetadata() {
759   assert(Lex.getKind() == lltok::MetadataVar);
760   std::string Name = Lex.getStrVal();
761   Lex.Lex();
762 
763   if (parseToken(lltok::equal, "expected '=' here") ||
764       parseToken(lltok::exclaim, "Expected '!' here") ||
765       parseToken(lltok::lbrace, "Expected '{' here"))
766     return true;
767 
768   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
769   if (Lex.getKind() != lltok::rbrace)
770     do {
771       MDNode *N = nullptr;
772       // parse DIExpressions inline as a special case. They are still MDNodes,
773       // so they can still appear in named metadata. Remove this logic if they
774       // become plain Metadata.
775       if (Lex.getKind() == lltok::MetadataVar &&
776           Lex.getStrVal() == "DIExpression") {
777         if (parseDIExpression(N, /*IsDistinct=*/false))
778           return true;
779         // DIArgLists should only appear inline in a function, as they may
780         // contain LocalAsMetadata arguments which require a function context.
781       } else if (Lex.getKind() == lltok::MetadataVar &&
782                  Lex.getStrVal() == "DIArgList") {
783         return tokError("found DIArgList outside of function");
784       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
785                  parseMDNodeID(N)) {
786         return true;
787       }
788       NMD->addOperand(N);
789     } while (EatIfPresent(lltok::comma));
790 
791   return parseToken(lltok::rbrace, "expected end of metadata node");
792 }
793 
794 /// parseStandaloneMetadata:
795 ///   !42 = !{...}
796 bool LLParser::parseStandaloneMetadata() {
797   assert(Lex.getKind() == lltok::exclaim);
798   Lex.Lex();
799   unsigned MetadataID = 0;
800 
801   MDNode *Init;
802   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
803     return true;
804 
805   // Detect common error, from old metadata syntax.
806   if (Lex.getKind() == lltok::Type)
807     return tokError("unexpected type in metadata definition");
808 
809   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
810   if (Lex.getKind() == lltok::MetadataVar) {
811     if (parseSpecializedMDNode(Init, IsDistinct))
812       return true;
813   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
814              parseMDTuple(Init, IsDistinct))
815     return true;
816 
817   // See if this was forward referenced, if so, handle it.
818   auto FI = ForwardRefMDNodes.find(MetadataID);
819   if (FI != ForwardRefMDNodes.end()) {
820     FI->second.first->replaceAllUsesWith(Init);
821     ForwardRefMDNodes.erase(FI);
822 
823     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
824   } else {
825     if (NumberedMetadata.count(MetadataID))
826       return tokError("Metadata id is already used");
827     NumberedMetadata[MetadataID].reset(Init);
828   }
829 
830   return false;
831 }
832 
833 // Skips a single module summary entry.
834 bool LLParser::skipModuleSummaryEntry() {
835   // Each module summary entry consists of a tag for the entry
836   // type, followed by a colon, then the fields which may be surrounded by
837   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
838   // support is in place we will look for the tokens corresponding to the
839   // expected tags.
840   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
841       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
842       Lex.getKind() != lltok::kw_blockcount)
843     return tokError(
844         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
845         "start of summary entry");
846   if (Lex.getKind() == lltok::kw_flags)
847     return parseSummaryIndexFlags();
848   if (Lex.getKind() == lltok::kw_blockcount)
849     return parseBlockCount();
850   Lex.Lex();
851   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
852       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
853     return true;
854   // Now walk through the parenthesized entry, until the number of open
855   // parentheses goes back down to 0 (the first '(' was parsed above).
856   unsigned NumOpenParen = 1;
857   do {
858     switch (Lex.getKind()) {
859     case lltok::lparen:
860       NumOpenParen++;
861       break;
862     case lltok::rparen:
863       NumOpenParen--;
864       break;
865     case lltok::Eof:
866       return tokError("found end of file while parsing summary entry");
867     default:
868       // Skip everything in between parentheses.
869       break;
870     }
871     Lex.Lex();
872   } while (NumOpenParen > 0);
873   return false;
874 }
875 
876 /// SummaryEntry
877 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
878 bool LLParser::parseSummaryEntry() {
879   assert(Lex.getKind() == lltok::SummaryID);
880   unsigned SummaryID = Lex.getUIntVal();
881 
882   // For summary entries, colons should be treated as distinct tokens,
883   // not an indication of the end of a label token.
884   Lex.setIgnoreColonInIdentifiers(true);
885 
886   Lex.Lex();
887   if (parseToken(lltok::equal, "expected '=' here"))
888     return true;
889 
890   // If we don't have an index object, skip the summary entry.
891   if (!Index)
892     return skipModuleSummaryEntry();
893 
894   bool result = false;
895   switch (Lex.getKind()) {
896   case lltok::kw_gv:
897     result = parseGVEntry(SummaryID);
898     break;
899   case lltok::kw_module:
900     result = parseModuleEntry(SummaryID);
901     break;
902   case lltok::kw_typeid:
903     result = parseTypeIdEntry(SummaryID);
904     break;
905   case lltok::kw_typeidCompatibleVTable:
906     result = parseTypeIdCompatibleVtableEntry(SummaryID);
907     break;
908   case lltok::kw_flags:
909     result = parseSummaryIndexFlags();
910     break;
911   case lltok::kw_blockcount:
912     result = parseBlockCount();
913     break;
914   default:
915     result = error(Lex.getLoc(), "unexpected summary kind");
916     break;
917   }
918   Lex.setIgnoreColonInIdentifiers(false);
919   return result;
920 }
921 
922 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
923   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
924          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
925 }
926 
927 // If there was an explicit dso_local, update GV. In the absence of an explicit
928 // dso_local we keep the default value.
929 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
930   if (DSOLocal)
931     GV.setDSOLocal(true);
932 }
933 
934 /// parseIndirectSymbol:
935 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
936 ///                     OptionalVisibility OptionalDLLStorageClass
937 ///                     OptionalThreadLocal OptionalUnnamedAddr
938 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
939 ///
940 /// IndirectSymbol
941 ///   ::= TypeAndValue
942 ///
943 /// IndirectSymbolAttr
944 ///   ::= ',' 'partition' StringConstant
945 ///
946 /// Everything through OptionalUnnamedAddr has already been parsed.
947 ///
948 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
949                                    unsigned L, unsigned Visibility,
950                                    unsigned DLLStorageClass, bool DSOLocal,
951                                    GlobalVariable::ThreadLocalMode TLM,
952                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
953   bool IsAlias;
954   if (Lex.getKind() == lltok::kw_alias)
955     IsAlias = true;
956   else if (Lex.getKind() == lltok::kw_ifunc)
957     IsAlias = false;
958   else
959     llvm_unreachable("Not an alias or ifunc!");
960   Lex.Lex();
961 
962   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
963 
964   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
965     return error(NameLoc, "invalid linkage type for alias");
966 
967   if (!isValidVisibilityForLinkage(Visibility, L))
968     return error(NameLoc,
969                  "symbol with local linkage must have default visibility");
970 
971   Type *Ty;
972   LocTy ExplicitTypeLoc = Lex.getLoc();
973   if (parseType(Ty) ||
974       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
975     return true;
976 
977   Constant *Aliasee;
978   LocTy AliaseeLoc = Lex.getLoc();
979   if (Lex.getKind() != lltok::kw_bitcast &&
980       Lex.getKind() != lltok::kw_getelementptr &&
981       Lex.getKind() != lltok::kw_addrspacecast &&
982       Lex.getKind() != lltok::kw_inttoptr) {
983     if (parseGlobalTypeAndValue(Aliasee))
984       return true;
985   } else {
986     // The bitcast dest type is not present, it is implied by the dest type.
987     ValID ID;
988     if (parseValID(ID))
989       return true;
990     if (ID.Kind != ValID::t_Constant)
991       return error(AliaseeLoc, "invalid aliasee");
992     Aliasee = ID.ConstantVal;
993   }
994 
995   Type *AliaseeType = Aliasee->getType();
996   auto *PTy = dyn_cast<PointerType>(AliaseeType);
997   if (!PTy)
998     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
999   unsigned AddrSpace = PTy->getAddressSpace();
1000 
1001   if (IsAlias && Ty != PTy->getElementType())
1002     return error(ExplicitTypeLoc,
1003                  "explicit pointee type doesn't match operand's pointee type");
1004 
1005   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
1006     return error(ExplicitTypeLoc,
1007                  "explicit pointee type should be a function type");
1008 
1009   GlobalValue *GVal = nullptr;
1010 
1011   // See if the alias was forward referenced, if so, prepare to replace the
1012   // forward reference.
1013   if (!Name.empty()) {
1014     GVal = M->getNamedValue(Name);
1015     if (GVal) {
1016       if (!ForwardRefVals.erase(Name))
1017         return error(NameLoc, "redefinition of global '@" + Name + "'");
1018     }
1019   } else {
1020     auto I = ForwardRefValIDs.find(NumberedVals.size());
1021     if (I != ForwardRefValIDs.end()) {
1022       GVal = I->second.first;
1023       ForwardRefValIDs.erase(I);
1024     }
1025   }
1026 
1027   // Okay, create the alias but do not insert it into the module yet.
1028   std::unique_ptr<GlobalIndirectSymbol> GA;
1029   if (IsAlias)
1030     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1031                                  (GlobalValue::LinkageTypes)Linkage, Name,
1032                                  Aliasee, /*Parent*/ nullptr));
1033   else
1034     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
1035                                  (GlobalValue::LinkageTypes)Linkage, Name,
1036                                  Aliasee, /*Parent*/ nullptr));
1037   GA->setThreadLocalMode(TLM);
1038   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1039   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1040   GA->setUnnamedAddr(UnnamedAddr);
1041   maybeSetDSOLocal(DSOLocal, *GA);
1042 
1043   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1044   // Now parse them if there are any.
1045   while (Lex.getKind() == lltok::comma) {
1046     Lex.Lex();
1047 
1048     if (Lex.getKind() == lltok::kw_partition) {
1049       Lex.Lex();
1050       GA->setPartition(Lex.getStrVal());
1051       if (parseToken(lltok::StringConstant, "expected partition string"))
1052         return true;
1053     } else {
1054       return tokError("unknown alias or ifunc property!");
1055     }
1056   }
1057 
1058   if (Name.empty())
1059     NumberedVals.push_back(GA.get());
1060 
1061   if (GVal) {
1062     // Verify that types agree.
1063     if (GVal->getType() != GA->getType())
1064       return error(
1065           ExplicitTypeLoc,
1066           "forward reference and definition of alias have different types");
1067 
1068     // If they agree, just RAUW the old value with the alias and remove the
1069     // forward ref info.
1070     GVal->replaceAllUsesWith(GA.get());
1071     GVal->eraseFromParent();
1072   }
1073 
1074   // Insert into the module, we know its name won't collide now.
1075   if (IsAlias)
1076     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1077   else
1078     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1079   assert(GA->getName() == Name && "Should not be a name conflict!");
1080 
1081   // The module owns this now
1082   GA.release();
1083 
1084   return false;
1085 }
1086 
1087 /// parseGlobal
1088 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1089 ///       OptionalVisibility OptionalDLLStorageClass
1090 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1091 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1092 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1093 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1094 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1095 ///       Const OptionalAttrs
1096 ///
1097 /// Everything up to and including OptionalUnnamedAddr has been parsed
1098 /// already.
1099 ///
1100 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1101                            unsigned Linkage, bool HasLinkage,
1102                            unsigned Visibility, unsigned DLLStorageClass,
1103                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1104                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1105   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1106     return error(NameLoc,
1107                  "symbol with local linkage must have default visibility");
1108 
1109   unsigned AddrSpace;
1110   bool IsConstant, IsExternallyInitialized;
1111   LocTy IsExternallyInitializedLoc;
1112   LocTy TyLoc;
1113 
1114   Type *Ty = nullptr;
1115   if (parseOptionalAddrSpace(AddrSpace) ||
1116       parseOptionalToken(lltok::kw_externally_initialized,
1117                          IsExternallyInitialized,
1118                          &IsExternallyInitializedLoc) ||
1119       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1120     return true;
1121 
1122   // If the linkage is specified and is external, then no initializer is
1123   // present.
1124   Constant *Init = nullptr;
1125   if (!HasLinkage ||
1126       !GlobalValue::isValidDeclarationLinkage(
1127           (GlobalValue::LinkageTypes)Linkage)) {
1128     if (parseGlobalValue(Ty, Init))
1129       return true;
1130   }
1131 
1132   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1133     return error(TyLoc, "invalid type for global variable");
1134 
1135   GlobalValue *GVal = nullptr;
1136 
1137   // See if the global was forward referenced, if so, use the global.
1138   if (!Name.empty()) {
1139     GVal = M->getNamedValue(Name);
1140     if (GVal) {
1141       if (!ForwardRefVals.erase(Name))
1142         return error(NameLoc, "redefinition of global '@" + Name + "'");
1143     }
1144   } else {
1145     auto I = ForwardRefValIDs.find(NumberedVals.size());
1146     if (I != ForwardRefValIDs.end()) {
1147       GVal = I->second.first;
1148       ForwardRefValIDs.erase(I);
1149     }
1150   }
1151 
1152   GlobalVariable *GV;
1153   if (!GVal) {
1154     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1155                             Name, nullptr, GlobalVariable::NotThreadLocal,
1156                             AddrSpace);
1157   } else {
1158     if (GVal->getValueType() != Ty)
1159       return error(
1160           TyLoc,
1161           "forward reference and definition of global have different types");
1162 
1163     GV = cast<GlobalVariable>(GVal);
1164 
1165     // Move the forward-reference to the correct spot in the module.
1166     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1167   }
1168 
1169   if (Name.empty())
1170     NumberedVals.push_back(GV);
1171 
1172   // Set the parsed properties on the global.
1173   if (Init)
1174     GV->setInitializer(Init);
1175   GV->setConstant(IsConstant);
1176   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1177   maybeSetDSOLocal(DSOLocal, *GV);
1178   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1179   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1180   GV->setExternallyInitialized(IsExternallyInitialized);
1181   GV->setThreadLocalMode(TLM);
1182   GV->setUnnamedAddr(UnnamedAddr);
1183 
1184   // parse attributes on the global.
1185   while (Lex.getKind() == lltok::comma) {
1186     Lex.Lex();
1187 
1188     if (Lex.getKind() == lltok::kw_section) {
1189       Lex.Lex();
1190       GV->setSection(Lex.getStrVal());
1191       if (parseToken(lltok::StringConstant, "expected global section string"))
1192         return true;
1193     } else if (Lex.getKind() == lltok::kw_partition) {
1194       Lex.Lex();
1195       GV->setPartition(Lex.getStrVal());
1196       if (parseToken(lltok::StringConstant, "expected partition string"))
1197         return true;
1198     } else if (Lex.getKind() == lltok::kw_align) {
1199       MaybeAlign Alignment;
1200       if (parseOptionalAlignment(Alignment))
1201         return true;
1202       GV->setAlignment(Alignment);
1203     } else if (Lex.getKind() == lltok::MetadataVar) {
1204       if (parseGlobalObjectMetadataAttachment(*GV))
1205         return true;
1206     } else {
1207       Comdat *C;
1208       if (parseOptionalComdat(Name, C))
1209         return true;
1210       if (C)
1211         GV->setComdat(C);
1212       else
1213         return tokError("unknown global variable property!");
1214     }
1215   }
1216 
1217   AttrBuilder Attrs;
1218   LocTy BuiltinLoc;
1219   std::vector<unsigned> FwdRefAttrGrps;
1220   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1221     return true;
1222   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1223     GV->setAttributes(AttributeSet::get(Context, Attrs));
1224     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1225   }
1226 
1227   return false;
1228 }
1229 
1230 /// parseUnnamedAttrGrp
1231 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1232 bool LLParser::parseUnnamedAttrGrp() {
1233   assert(Lex.getKind() == lltok::kw_attributes);
1234   LocTy AttrGrpLoc = Lex.getLoc();
1235   Lex.Lex();
1236 
1237   if (Lex.getKind() != lltok::AttrGrpID)
1238     return tokError("expected attribute group id");
1239 
1240   unsigned VarID = Lex.getUIntVal();
1241   std::vector<unsigned> unused;
1242   LocTy BuiltinLoc;
1243   Lex.Lex();
1244 
1245   if (parseToken(lltok::equal, "expected '=' here") ||
1246       parseToken(lltok::lbrace, "expected '{' here") ||
1247       parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1248                                  BuiltinLoc) ||
1249       parseToken(lltok::rbrace, "expected end of attribute group"))
1250     return true;
1251 
1252   if (!NumberedAttrBuilders[VarID].hasAttributes())
1253     return error(AttrGrpLoc, "attribute group has no attributes");
1254 
1255   return false;
1256 }
1257 
1258 /// parseFnAttributeValuePairs
1259 ///   ::= <attr> | <attr> '=' <value>
1260 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1261                                           std::vector<unsigned> &FwdRefAttrGrps,
1262                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1263   bool HaveError = false;
1264 
1265   B.clear();
1266 
1267   while (true) {
1268     lltok::Kind Token = Lex.getKind();
1269     if (Token == lltok::kw_builtin)
1270       BuiltinLoc = Lex.getLoc();
1271     switch (Token) {
1272     default:
1273       if (!inAttrGrp) return HaveError;
1274       return error(Lex.getLoc(), "unterminated attribute group");
1275     case lltok::rbrace:
1276       // Finished.
1277       return false;
1278 
1279     case lltok::AttrGrpID: {
1280       // Allow a function to reference an attribute group:
1281       //
1282       //   define void @foo() #1 { ... }
1283       if (inAttrGrp)
1284         HaveError |= error(
1285             Lex.getLoc(),
1286             "cannot have an attribute group reference in an attribute group");
1287 
1288       unsigned AttrGrpNum = Lex.getUIntVal();
1289       if (inAttrGrp) break;
1290 
1291       // Save the reference to the attribute group. We'll fill it in later.
1292       FwdRefAttrGrps.push_back(AttrGrpNum);
1293       break;
1294     }
1295     // Target-dependent attributes:
1296     case lltok::StringConstant: {
1297       if (parseStringAttribute(B))
1298         return true;
1299       continue;
1300     }
1301 
1302     // Target-independent attributes:
1303     case lltok::kw_align: {
1304       // As a hack, we allow function alignment to be initially parsed as an
1305       // attribute on a function declaration/definition or added to an attribute
1306       // group and later moved to the alignment field.
1307       MaybeAlign Alignment;
1308       if (inAttrGrp) {
1309         Lex.Lex();
1310         uint32_t Value = 0;
1311         if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1312           return true;
1313         Alignment = Align(Value);
1314       } else {
1315         if (parseOptionalAlignment(Alignment))
1316           return true;
1317       }
1318       B.addAlignmentAttr(Alignment);
1319       continue;
1320     }
1321     case lltok::kw_alignstack: {
1322       unsigned Alignment;
1323       if (inAttrGrp) {
1324         Lex.Lex();
1325         if (parseToken(lltok::equal, "expected '=' here") ||
1326             parseUInt32(Alignment))
1327           return true;
1328       } else {
1329         if (parseOptionalStackAlignment(Alignment))
1330           return true;
1331       }
1332       B.addStackAlignmentAttr(Alignment);
1333       continue;
1334     }
1335     case lltok::kw_allocsize: {
1336       unsigned ElemSizeArg;
1337       Optional<unsigned> NumElemsArg;
1338       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1339       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1340         return true;
1341       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1342       continue;
1343     }
1344     case lltok::kw_vscale_range: {
1345       unsigned MinValue, MaxValue;
1346       // inAttrGrp doesn't matter; we only support vscale_range(a[, b])
1347       if (parseVScaleRangeArguments(MinValue, MaxValue))
1348         return true;
1349       B.addVScaleRangeAttr(MinValue, MaxValue);
1350       continue;
1351     }
1352     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1353     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1354     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1355     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1356     case lltok::kw_hot: B.addAttribute(Attribute::Hot); break;
1357     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1358     case lltok::kw_inaccessiblememonly:
1359       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1360     case lltok::kw_inaccessiblemem_or_argmemonly:
1361       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1362     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1363     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1364     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1365     case lltok::kw_mustprogress:
1366       B.addAttribute(Attribute::MustProgress);
1367       break;
1368     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1369     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1370     case lltok::kw_nocallback:
1371       B.addAttribute(Attribute::NoCallback);
1372       break;
1373     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1374     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1375     case lltok::kw_noimplicitfloat:
1376       B.addAttribute(Attribute::NoImplicitFloat); break;
1377     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1378     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1379     case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break;
1380     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1381     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1382     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1383     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1384     case lltok::kw_noprofile: B.addAttribute(Attribute::NoProfile); break;
1385     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1386     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1387     case lltok::kw_null_pointer_is_valid:
1388       B.addAttribute(Attribute::NullPointerIsValid); break;
1389     case lltok::kw_optforfuzzing:
1390       B.addAttribute(Attribute::OptForFuzzing); break;
1391     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1392     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1393     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1394     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1395     case lltok::kw_returns_twice:
1396       B.addAttribute(Attribute::ReturnsTwice); break;
1397     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1398     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1399     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1400     case lltok::kw_sspstrong:
1401       B.addAttribute(Attribute::StackProtectStrong); break;
1402     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1403     case lltok::kw_shadowcallstack:
1404       B.addAttribute(Attribute::ShadowCallStack); break;
1405     case lltok::kw_sanitize_address:
1406       B.addAttribute(Attribute::SanitizeAddress); break;
1407     case lltok::kw_sanitize_hwaddress:
1408       B.addAttribute(Attribute::SanitizeHWAddress); break;
1409     case lltok::kw_sanitize_memtag:
1410       B.addAttribute(Attribute::SanitizeMemTag); break;
1411     case lltok::kw_sanitize_thread:
1412       B.addAttribute(Attribute::SanitizeThread); break;
1413     case lltok::kw_sanitize_memory:
1414       B.addAttribute(Attribute::SanitizeMemory); break;
1415     case lltok::kw_speculative_load_hardening:
1416       B.addAttribute(Attribute::SpeculativeLoadHardening);
1417       break;
1418     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1419     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1420     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1421     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1422     case lltok::kw_preallocated: {
1423       Type *Ty;
1424       if (parsePreallocated(Ty))
1425         return true;
1426       B.addPreallocatedAttr(Ty);
1427       break;
1428     }
1429 
1430     // error handling.
1431     case lltok::kw_inreg:
1432     case lltok::kw_signext:
1433     case lltok::kw_zeroext:
1434       HaveError |=
1435           error(Lex.getLoc(), "invalid use of attribute on a function");
1436       break;
1437     case lltok::kw_byval:
1438     case lltok::kw_dereferenceable:
1439     case lltok::kw_dereferenceable_or_null:
1440     case lltok::kw_inalloca:
1441     case lltok::kw_nest:
1442     case lltok::kw_noalias:
1443     case lltok::kw_noundef:
1444     case lltok::kw_nocapture:
1445     case lltok::kw_nonnull:
1446     case lltok::kw_returned:
1447     case lltok::kw_sret:
1448     case lltok::kw_swifterror:
1449     case lltok::kw_swiftself:
1450     case lltok::kw_immarg:
1451     case lltok::kw_byref:
1452       HaveError |=
1453           error(Lex.getLoc(),
1454                 "invalid use of parameter-only attribute on a function");
1455       break;
1456     }
1457 
1458     // parsePreallocated() consumes token
1459     if (Token != lltok::kw_preallocated)
1460       Lex.Lex();
1461   }
1462 }
1463 
1464 //===----------------------------------------------------------------------===//
1465 // GlobalValue Reference/Resolution Routines.
1466 //===----------------------------------------------------------------------===//
1467 
1468 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1469                                               const std::string &Name) {
1470   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1471     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1472                             PTy->getAddressSpace(), Name, M);
1473   else
1474     return new GlobalVariable(*M, PTy->getElementType(), false,
1475                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1476                               nullptr, GlobalVariable::NotThreadLocal,
1477                               PTy->getAddressSpace());
1478 }
1479 
1480 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1481                                         Value *Val, bool IsCall) {
1482   if (Val->getType() == Ty)
1483     return Val;
1484   // For calls we also accept variables in the program address space.
1485   Type *SuggestedTy = Ty;
1486   if (IsCall && isa<PointerType>(Ty)) {
1487     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1488         M->getDataLayout().getProgramAddressSpace());
1489     SuggestedTy = TyInProgAS;
1490     if (Val->getType() == TyInProgAS)
1491       return Val;
1492   }
1493   if (Ty->isLabelTy())
1494     error(Loc, "'" + Name + "' is not a basic block");
1495   else
1496     error(Loc, "'" + Name + "' defined with type '" +
1497                    getTypeString(Val->getType()) + "' but expected '" +
1498                    getTypeString(SuggestedTy) + "'");
1499   return nullptr;
1500 }
1501 
1502 /// getGlobalVal - Get a value with the specified name or ID, creating a
1503 /// forward reference record if needed.  This can return null if the value
1504 /// exists but does not have the right type.
1505 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1506                                     LocTy Loc, bool IsCall) {
1507   PointerType *PTy = dyn_cast<PointerType>(Ty);
1508   if (!PTy) {
1509     error(Loc, "global variable reference must have pointer type");
1510     return nullptr;
1511   }
1512 
1513   // Look this name up in the normal function symbol table.
1514   GlobalValue *Val =
1515     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1516 
1517   // If this is a forward reference for the value, see if we already created a
1518   // forward ref record.
1519   if (!Val) {
1520     auto I = ForwardRefVals.find(Name);
1521     if (I != ForwardRefVals.end())
1522       Val = I->second.first;
1523   }
1524 
1525   // If we have the value in the symbol table or fwd-ref table, return it.
1526   if (Val)
1527     return cast_or_null<GlobalValue>(
1528         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1529 
1530   // Otherwise, create a new forward reference for this value and remember it.
1531   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1532   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1533   return FwdVal;
1534 }
1535 
1536 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1537                                     bool IsCall) {
1538   PointerType *PTy = dyn_cast<PointerType>(Ty);
1539   if (!PTy) {
1540     error(Loc, "global variable reference must have pointer type");
1541     return nullptr;
1542   }
1543 
1544   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1545 
1546   // If this is a forward reference for the value, see if we already created a
1547   // forward ref record.
1548   if (!Val) {
1549     auto I = ForwardRefValIDs.find(ID);
1550     if (I != ForwardRefValIDs.end())
1551       Val = I->second.first;
1552   }
1553 
1554   // If we have the value in the symbol table or fwd-ref table, return it.
1555   if (Val)
1556     return cast_or_null<GlobalValue>(
1557         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1558 
1559   // Otherwise, create a new forward reference for this value and remember it.
1560   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1561   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1562   return FwdVal;
1563 }
1564 
1565 //===----------------------------------------------------------------------===//
1566 // Comdat Reference/Resolution Routines.
1567 //===----------------------------------------------------------------------===//
1568 
1569 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1570   // Look this name up in the comdat symbol table.
1571   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1572   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1573   if (I != ComdatSymTab.end())
1574     return &I->second;
1575 
1576   // Otherwise, create a new forward reference for this value and remember it.
1577   Comdat *C = M->getOrInsertComdat(Name);
1578   ForwardRefComdats[Name] = Loc;
1579   return C;
1580 }
1581 
1582 //===----------------------------------------------------------------------===//
1583 // Helper Routines.
1584 //===----------------------------------------------------------------------===//
1585 
1586 /// parseToken - If the current token has the specified kind, eat it and return
1587 /// success.  Otherwise, emit the specified error and return failure.
1588 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1589   if (Lex.getKind() != T)
1590     return tokError(ErrMsg);
1591   Lex.Lex();
1592   return false;
1593 }
1594 
1595 /// parseStringConstant
1596 ///   ::= StringConstant
1597 bool LLParser::parseStringConstant(std::string &Result) {
1598   if (Lex.getKind() != lltok::StringConstant)
1599     return tokError("expected string constant");
1600   Result = Lex.getStrVal();
1601   Lex.Lex();
1602   return false;
1603 }
1604 
1605 /// parseUInt32
1606 ///   ::= uint32
1607 bool LLParser::parseUInt32(uint32_t &Val) {
1608   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1609     return tokError("expected integer");
1610   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1611   if (Val64 != unsigned(Val64))
1612     return tokError("expected 32-bit integer (too large)");
1613   Val = Val64;
1614   Lex.Lex();
1615   return false;
1616 }
1617 
1618 /// parseUInt64
1619 ///   ::= uint64
1620 bool LLParser::parseUInt64(uint64_t &Val) {
1621   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1622     return tokError("expected integer");
1623   Val = Lex.getAPSIntVal().getLimitedValue();
1624   Lex.Lex();
1625   return false;
1626 }
1627 
1628 /// parseTLSModel
1629 ///   := 'localdynamic'
1630 ///   := 'initialexec'
1631 ///   := 'localexec'
1632 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1633   switch (Lex.getKind()) {
1634     default:
1635       return tokError("expected localdynamic, initialexec or localexec");
1636     case lltok::kw_localdynamic:
1637       TLM = GlobalVariable::LocalDynamicTLSModel;
1638       break;
1639     case lltok::kw_initialexec:
1640       TLM = GlobalVariable::InitialExecTLSModel;
1641       break;
1642     case lltok::kw_localexec:
1643       TLM = GlobalVariable::LocalExecTLSModel;
1644       break;
1645   }
1646 
1647   Lex.Lex();
1648   return false;
1649 }
1650 
1651 /// parseOptionalThreadLocal
1652 ///   := /*empty*/
1653 ///   := 'thread_local'
1654 ///   := 'thread_local' '(' tlsmodel ')'
1655 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1656   TLM = GlobalVariable::NotThreadLocal;
1657   if (!EatIfPresent(lltok::kw_thread_local))
1658     return false;
1659 
1660   TLM = GlobalVariable::GeneralDynamicTLSModel;
1661   if (Lex.getKind() == lltok::lparen) {
1662     Lex.Lex();
1663     return parseTLSModel(TLM) ||
1664            parseToken(lltok::rparen, "expected ')' after thread local model");
1665   }
1666   return false;
1667 }
1668 
1669 /// parseOptionalAddrSpace
1670 ///   := /*empty*/
1671 ///   := 'addrspace' '(' uint32 ')'
1672 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1673   AddrSpace = DefaultAS;
1674   if (!EatIfPresent(lltok::kw_addrspace))
1675     return false;
1676   return parseToken(lltok::lparen, "expected '(' in address space") ||
1677          parseUInt32(AddrSpace) ||
1678          parseToken(lltok::rparen, "expected ')' in address space");
1679 }
1680 
1681 /// parseStringAttribute
1682 ///   := StringConstant
1683 ///   := StringConstant '=' StringConstant
1684 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1685   std::string Attr = Lex.getStrVal();
1686   Lex.Lex();
1687   std::string Val;
1688   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1689     return true;
1690   B.addAttribute(Attr, Val);
1691   return false;
1692 }
1693 
1694 /// parseOptionalParamAttrs - parse a potentially empty list of parameter
1695 /// attributes.
1696 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) {
1697   bool HaveError = false;
1698 
1699   B.clear();
1700 
1701   while (true) {
1702     lltok::Kind Token = Lex.getKind();
1703     switch (Token) {
1704     default:  // End of attributes.
1705       return HaveError;
1706     case lltok::StringConstant: {
1707       if (parseStringAttribute(B))
1708         return true;
1709       continue;
1710     }
1711     case lltok::kw_align: {
1712       MaybeAlign Alignment;
1713       if (parseOptionalAlignment(Alignment, true))
1714         return true;
1715       B.addAlignmentAttr(Alignment);
1716       continue;
1717     }
1718     case lltok::kw_byval: {
1719       Type *Ty;
1720       if (parseRequiredTypeAttr(Ty, lltok::kw_byval))
1721         return true;
1722       B.addByValAttr(Ty);
1723       continue;
1724     }
1725     case lltok::kw_sret: {
1726       Type *Ty;
1727       if (parseRequiredTypeAttr(Ty, lltok::kw_sret))
1728         return true;
1729       B.addStructRetAttr(Ty);
1730       continue;
1731     }
1732     case lltok::kw_preallocated: {
1733       Type *Ty;
1734       if (parsePreallocated(Ty))
1735         return true;
1736       B.addPreallocatedAttr(Ty);
1737       continue;
1738     }
1739     case lltok::kw_dereferenceable: {
1740       uint64_t Bytes;
1741       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1742         return true;
1743       B.addDereferenceableAttr(Bytes);
1744       continue;
1745     }
1746     case lltok::kw_dereferenceable_or_null: {
1747       uint64_t Bytes;
1748       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1749         return true;
1750       B.addDereferenceableOrNullAttr(Bytes);
1751       continue;
1752     }
1753     case lltok::kw_byref: {
1754       Type *Ty;
1755       if (parseByRef(Ty))
1756         return true;
1757       B.addByRefAttr(Ty);
1758       continue;
1759     }
1760     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1761     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1762     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1763     case lltok::kw_noundef:
1764       B.addAttribute(Attribute::NoUndef);
1765       break;
1766     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1767     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1768     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1769     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1770     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1771     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1772     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1773     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1774     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1775     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1776     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1777     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1778     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1779 
1780     case lltok::kw_alignstack:
1781     case lltok::kw_alwaysinline:
1782     case lltok::kw_argmemonly:
1783     case lltok::kw_builtin:
1784     case lltok::kw_inlinehint:
1785     case lltok::kw_jumptable:
1786     case lltok::kw_minsize:
1787     case lltok::kw_mustprogress:
1788     case lltok::kw_naked:
1789     case lltok::kw_nobuiltin:
1790     case lltok::kw_noduplicate:
1791     case lltok::kw_noimplicitfloat:
1792     case lltok::kw_noinline:
1793     case lltok::kw_nonlazybind:
1794     case lltok::kw_nomerge:
1795     case lltok::kw_noprofile:
1796     case lltok::kw_noredzone:
1797     case lltok::kw_noreturn:
1798     case lltok::kw_nocf_check:
1799     case lltok::kw_nounwind:
1800     case lltok::kw_optforfuzzing:
1801     case lltok::kw_optnone:
1802     case lltok::kw_optsize:
1803     case lltok::kw_returns_twice:
1804     case lltok::kw_sanitize_address:
1805     case lltok::kw_sanitize_hwaddress:
1806     case lltok::kw_sanitize_memtag:
1807     case lltok::kw_sanitize_memory:
1808     case lltok::kw_sanitize_thread:
1809     case lltok::kw_speculative_load_hardening:
1810     case lltok::kw_ssp:
1811     case lltok::kw_sspreq:
1812     case lltok::kw_sspstrong:
1813     case lltok::kw_safestack:
1814     case lltok::kw_shadowcallstack:
1815     case lltok::kw_strictfp:
1816     case lltok::kw_uwtable:
1817     case lltok::kw_vscale_range:
1818       HaveError |=
1819           error(Lex.getLoc(), "invalid use of function-only attribute");
1820       break;
1821     }
1822 
1823     Lex.Lex();
1824   }
1825 }
1826 
1827 /// parseOptionalReturnAttrs - parse a potentially empty list of return
1828 /// attributes.
1829 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) {
1830   bool HaveError = false;
1831 
1832   B.clear();
1833 
1834   while (true) {
1835     lltok::Kind Token = Lex.getKind();
1836     switch (Token) {
1837     default:  // End of attributes.
1838       return HaveError;
1839     case lltok::StringConstant: {
1840       if (parseStringAttribute(B))
1841         return true;
1842       continue;
1843     }
1844     case lltok::kw_dereferenceable: {
1845       uint64_t Bytes;
1846       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1847         return true;
1848       B.addDereferenceableAttr(Bytes);
1849       continue;
1850     }
1851     case lltok::kw_dereferenceable_or_null: {
1852       uint64_t Bytes;
1853       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1854         return true;
1855       B.addDereferenceableOrNullAttr(Bytes);
1856       continue;
1857     }
1858     case lltok::kw_align: {
1859       MaybeAlign Alignment;
1860       if (parseOptionalAlignment(Alignment))
1861         return true;
1862       B.addAlignmentAttr(Alignment);
1863       continue;
1864     }
1865     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1866     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1867     case lltok::kw_noundef:
1868       B.addAttribute(Attribute::NoUndef);
1869       break;
1870     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1871     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1872     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1873 
1874     // error handling.
1875     case lltok::kw_byval:
1876     case lltok::kw_inalloca:
1877     case lltok::kw_nest:
1878     case lltok::kw_nocapture:
1879     case lltok::kw_returned:
1880     case lltok::kw_sret:
1881     case lltok::kw_swifterror:
1882     case lltok::kw_swiftself:
1883     case lltok::kw_immarg:
1884     case lltok::kw_byref:
1885       HaveError |=
1886           error(Lex.getLoc(), "invalid use of parameter-only attribute");
1887       break;
1888 
1889     case lltok::kw_alignstack:
1890     case lltok::kw_alwaysinline:
1891     case lltok::kw_argmemonly:
1892     case lltok::kw_builtin:
1893     case lltok::kw_cold:
1894     case lltok::kw_inlinehint:
1895     case lltok::kw_jumptable:
1896     case lltok::kw_minsize:
1897     case lltok::kw_mustprogress:
1898     case lltok::kw_naked:
1899     case lltok::kw_nobuiltin:
1900     case lltok::kw_noduplicate:
1901     case lltok::kw_noimplicitfloat:
1902     case lltok::kw_noinline:
1903     case lltok::kw_nonlazybind:
1904     case lltok::kw_nomerge:
1905     case lltok::kw_noprofile:
1906     case lltok::kw_noredzone:
1907     case lltok::kw_noreturn:
1908     case lltok::kw_nocf_check:
1909     case lltok::kw_nounwind:
1910     case lltok::kw_optforfuzzing:
1911     case lltok::kw_optnone:
1912     case lltok::kw_optsize:
1913     case lltok::kw_returns_twice:
1914     case lltok::kw_sanitize_address:
1915     case lltok::kw_sanitize_hwaddress:
1916     case lltok::kw_sanitize_memtag:
1917     case lltok::kw_sanitize_memory:
1918     case lltok::kw_sanitize_thread:
1919     case lltok::kw_speculative_load_hardening:
1920     case lltok::kw_ssp:
1921     case lltok::kw_sspreq:
1922     case lltok::kw_sspstrong:
1923     case lltok::kw_safestack:
1924     case lltok::kw_shadowcallstack:
1925     case lltok::kw_strictfp:
1926     case lltok::kw_uwtable:
1927     case lltok::kw_vscale_range:
1928       HaveError |=
1929           error(Lex.getLoc(), "invalid use of function-only attribute");
1930       break;
1931     case lltok::kw_readnone:
1932     case lltok::kw_readonly:
1933       HaveError |=
1934           error(Lex.getLoc(), "invalid use of attribute on return type");
1935       break;
1936     case lltok::kw_preallocated:
1937       HaveError |=
1938           error(Lex.getLoc(),
1939                 "invalid use of parameter-only/call site-only attribute");
1940       break;
1941     }
1942 
1943     Lex.Lex();
1944   }
1945 }
1946 
1947 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1948   HasLinkage = true;
1949   switch (Kind) {
1950   default:
1951     HasLinkage = false;
1952     return GlobalValue::ExternalLinkage;
1953   case lltok::kw_private:
1954     return GlobalValue::PrivateLinkage;
1955   case lltok::kw_internal:
1956     return GlobalValue::InternalLinkage;
1957   case lltok::kw_weak:
1958     return GlobalValue::WeakAnyLinkage;
1959   case lltok::kw_weak_odr:
1960     return GlobalValue::WeakODRLinkage;
1961   case lltok::kw_linkonce:
1962     return GlobalValue::LinkOnceAnyLinkage;
1963   case lltok::kw_linkonce_odr:
1964     return GlobalValue::LinkOnceODRLinkage;
1965   case lltok::kw_available_externally:
1966     return GlobalValue::AvailableExternallyLinkage;
1967   case lltok::kw_appending:
1968     return GlobalValue::AppendingLinkage;
1969   case lltok::kw_common:
1970     return GlobalValue::CommonLinkage;
1971   case lltok::kw_extern_weak:
1972     return GlobalValue::ExternalWeakLinkage;
1973   case lltok::kw_external:
1974     return GlobalValue::ExternalLinkage;
1975   }
1976 }
1977 
1978 /// parseOptionalLinkage
1979 ///   ::= /*empty*/
1980 ///   ::= 'private'
1981 ///   ::= 'internal'
1982 ///   ::= 'weak'
1983 ///   ::= 'weak_odr'
1984 ///   ::= 'linkonce'
1985 ///   ::= 'linkonce_odr'
1986 ///   ::= 'available_externally'
1987 ///   ::= 'appending'
1988 ///   ::= 'common'
1989 ///   ::= 'extern_weak'
1990 ///   ::= 'external'
1991 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1992                                     unsigned &Visibility,
1993                                     unsigned &DLLStorageClass, bool &DSOLocal) {
1994   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1995   if (HasLinkage)
1996     Lex.Lex();
1997   parseOptionalDSOLocal(DSOLocal);
1998   parseOptionalVisibility(Visibility);
1999   parseOptionalDLLStorageClass(DLLStorageClass);
2000 
2001   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
2002     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
2003   }
2004 
2005   return false;
2006 }
2007 
2008 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
2009   switch (Lex.getKind()) {
2010   default:
2011     DSOLocal = false;
2012     break;
2013   case lltok::kw_dso_local:
2014     DSOLocal = true;
2015     Lex.Lex();
2016     break;
2017   case lltok::kw_dso_preemptable:
2018     DSOLocal = false;
2019     Lex.Lex();
2020     break;
2021   }
2022 }
2023 
2024 /// parseOptionalVisibility
2025 ///   ::= /*empty*/
2026 ///   ::= 'default'
2027 ///   ::= 'hidden'
2028 ///   ::= 'protected'
2029 ///
2030 void LLParser::parseOptionalVisibility(unsigned &Res) {
2031   switch (Lex.getKind()) {
2032   default:
2033     Res = GlobalValue::DefaultVisibility;
2034     return;
2035   case lltok::kw_default:
2036     Res = GlobalValue::DefaultVisibility;
2037     break;
2038   case lltok::kw_hidden:
2039     Res = GlobalValue::HiddenVisibility;
2040     break;
2041   case lltok::kw_protected:
2042     Res = GlobalValue::ProtectedVisibility;
2043     break;
2044   }
2045   Lex.Lex();
2046 }
2047 
2048 /// parseOptionalDLLStorageClass
2049 ///   ::= /*empty*/
2050 ///   ::= 'dllimport'
2051 ///   ::= 'dllexport'
2052 ///
2053 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
2054   switch (Lex.getKind()) {
2055   default:
2056     Res = GlobalValue::DefaultStorageClass;
2057     return;
2058   case lltok::kw_dllimport:
2059     Res = GlobalValue::DLLImportStorageClass;
2060     break;
2061   case lltok::kw_dllexport:
2062     Res = GlobalValue::DLLExportStorageClass;
2063     break;
2064   }
2065   Lex.Lex();
2066 }
2067 
2068 /// parseOptionalCallingConv
2069 ///   ::= /*empty*/
2070 ///   ::= 'ccc'
2071 ///   ::= 'fastcc'
2072 ///   ::= 'intel_ocl_bicc'
2073 ///   ::= 'coldcc'
2074 ///   ::= 'cfguard_checkcc'
2075 ///   ::= 'x86_stdcallcc'
2076 ///   ::= 'x86_fastcallcc'
2077 ///   ::= 'x86_thiscallcc'
2078 ///   ::= 'x86_vectorcallcc'
2079 ///   ::= 'arm_apcscc'
2080 ///   ::= 'arm_aapcscc'
2081 ///   ::= 'arm_aapcs_vfpcc'
2082 ///   ::= 'aarch64_vector_pcs'
2083 ///   ::= 'aarch64_sve_vector_pcs'
2084 ///   ::= 'msp430_intrcc'
2085 ///   ::= 'avr_intrcc'
2086 ///   ::= 'avr_signalcc'
2087 ///   ::= 'ptx_kernel'
2088 ///   ::= 'ptx_device'
2089 ///   ::= 'spir_func'
2090 ///   ::= 'spir_kernel'
2091 ///   ::= 'x86_64_sysvcc'
2092 ///   ::= 'win64cc'
2093 ///   ::= 'webkit_jscc'
2094 ///   ::= 'anyregcc'
2095 ///   ::= 'preserve_mostcc'
2096 ///   ::= 'preserve_allcc'
2097 ///   ::= 'ghccc'
2098 ///   ::= 'swiftcc'
2099 ///   ::= 'x86_intrcc'
2100 ///   ::= 'hhvmcc'
2101 ///   ::= 'hhvm_ccc'
2102 ///   ::= 'cxx_fast_tlscc'
2103 ///   ::= 'amdgpu_vs'
2104 ///   ::= 'amdgpu_ls'
2105 ///   ::= 'amdgpu_hs'
2106 ///   ::= 'amdgpu_es'
2107 ///   ::= 'amdgpu_gs'
2108 ///   ::= 'amdgpu_ps'
2109 ///   ::= 'amdgpu_cs'
2110 ///   ::= 'amdgpu_kernel'
2111 ///   ::= 'tailcc'
2112 ///   ::= 'cc' UINT
2113 ///
2114 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
2115   switch (Lex.getKind()) {
2116   default:                       CC = CallingConv::C; return false;
2117   case lltok::kw_ccc:            CC = CallingConv::C; break;
2118   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2119   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2120   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2121   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2122   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2123   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2124   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2125   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2126   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2127   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2128   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2129   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2130   case lltok::kw_aarch64_sve_vector_pcs:
2131     CC = CallingConv::AArch64_SVE_VectorCall;
2132     break;
2133   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2134   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2135   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2136   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2137   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2138   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2139   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2140   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2141   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2142   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2143   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2144   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2145   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2146   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2147   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2148   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2149   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2150   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2151   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2152   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2153   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2154   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
2155   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2156   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2157   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2158   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2159   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2160   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2161   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2162   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2163   case lltok::kw_cc: {
2164       Lex.Lex();
2165       return parseUInt32(CC);
2166     }
2167   }
2168 
2169   Lex.Lex();
2170   return false;
2171 }
2172 
2173 /// parseMetadataAttachment
2174 ///   ::= !dbg !42
2175 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2176   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2177 
2178   std::string Name = Lex.getStrVal();
2179   Kind = M->getMDKindID(Name);
2180   Lex.Lex();
2181 
2182   return parseMDNode(MD);
2183 }
2184 
2185 /// parseInstructionMetadata
2186 ///   ::= !dbg !42 (',' !dbg !57)*
2187 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
2188   do {
2189     if (Lex.getKind() != lltok::MetadataVar)
2190       return tokError("expected metadata after comma");
2191 
2192     unsigned MDK;
2193     MDNode *N;
2194     if (parseMetadataAttachment(MDK, N))
2195       return true;
2196 
2197     Inst.setMetadata(MDK, N);
2198     if (MDK == LLVMContext::MD_tbaa)
2199       InstsWithTBAATag.push_back(&Inst);
2200 
2201     // If this is the end of the list, we're done.
2202   } while (EatIfPresent(lltok::comma));
2203   return false;
2204 }
2205 
2206 /// parseGlobalObjectMetadataAttachment
2207 ///   ::= !dbg !57
2208 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2209   unsigned MDK;
2210   MDNode *N;
2211   if (parseMetadataAttachment(MDK, N))
2212     return true;
2213 
2214   GO.addMetadata(MDK, *N);
2215   return false;
2216 }
2217 
2218 /// parseOptionalFunctionMetadata
2219 ///   ::= (!dbg !57)*
2220 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2221   while (Lex.getKind() == lltok::MetadataVar)
2222     if (parseGlobalObjectMetadataAttachment(F))
2223       return true;
2224   return false;
2225 }
2226 
2227 /// parseOptionalAlignment
2228 ///   ::= /* empty */
2229 ///   ::= 'align' 4
2230 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2231   Alignment = None;
2232   if (!EatIfPresent(lltok::kw_align))
2233     return false;
2234   LocTy AlignLoc = Lex.getLoc();
2235   uint32_t Value = 0;
2236 
2237   LocTy ParenLoc = Lex.getLoc();
2238   bool HaveParens = false;
2239   if (AllowParens) {
2240     if (EatIfPresent(lltok::lparen))
2241       HaveParens = true;
2242   }
2243 
2244   if (parseUInt32(Value))
2245     return true;
2246 
2247   if (HaveParens && !EatIfPresent(lltok::rparen))
2248     return error(ParenLoc, "expected ')'");
2249 
2250   if (!isPowerOf2_32(Value))
2251     return error(AlignLoc, "alignment is not a power of two");
2252   if (Value > Value::MaximumAlignment)
2253     return error(AlignLoc, "huge alignments are not supported yet");
2254   Alignment = Align(Value);
2255   return false;
2256 }
2257 
2258 /// parseOptionalDerefAttrBytes
2259 ///   ::= /* empty */
2260 ///   ::= AttrKind '(' 4 ')'
2261 ///
2262 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2263 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2264                                            uint64_t &Bytes) {
2265   assert((AttrKind == lltok::kw_dereferenceable ||
2266           AttrKind == lltok::kw_dereferenceable_or_null) &&
2267          "contract!");
2268 
2269   Bytes = 0;
2270   if (!EatIfPresent(AttrKind))
2271     return false;
2272   LocTy ParenLoc = Lex.getLoc();
2273   if (!EatIfPresent(lltok::lparen))
2274     return error(ParenLoc, "expected '('");
2275   LocTy DerefLoc = Lex.getLoc();
2276   if (parseUInt64(Bytes))
2277     return true;
2278   ParenLoc = Lex.getLoc();
2279   if (!EatIfPresent(lltok::rparen))
2280     return error(ParenLoc, "expected ')'");
2281   if (!Bytes)
2282     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2283   return false;
2284 }
2285 
2286 /// parseOptionalCommaAlign
2287 ///   ::=
2288 ///   ::= ',' align 4
2289 ///
2290 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2291 /// end.
2292 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2293                                        bool &AteExtraComma) {
2294   AteExtraComma = false;
2295   while (EatIfPresent(lltok::comma)) {
2296     // Metadata at the end is an early exit.
2297     if (Lex.getKind() == lltok::MetadataVar) {
2298       AteExtraComma = true;
2299       return false;
2300     }
2301 
2302     if (Lex.getKind() != lltok::kw_align)
2303       return error(Lex.getLoc(), "expected metadata or 'align'");
2304 
2305     if (parseOptionalAlignment(Alignment))
2306       return true;
2307   }
2308 
2309   return false;
2310 }
2311 
2312 /// parseOptionalCommaAddrSpace
2313 ///   ::=
2314 ///   ::= ',' addrspace(1)
2315 ///
2316 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2317 /// end.
2318 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2319                                            bool &AteExtraComma) {
2320   AteExtraComma = false;
2321   while (EatIfPresent(lltok::comma)) {
2322     // Metadata at the end is an early exit.
2323     if (Lex.getKind() == lltok::MetadataVar) {
2324       AteExtraComma = true;
2325       return false;
2326     }
2327 
2328     Loc = Lex.getLoc();
2329     if (Lex.getKind() != lltok::kw_addrspace)
2330       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2331 
2332     if (parseOptionalAddrSpace(AddrSpace))
2333       return true;
2334   }
2335 
2336   return false;
2337 }
2338 
2339 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2340                                        Optional<unsigned> &HowManyArg) {
2341   Lex.Lex();
2342 
2343   auto StartParen = Lex.getLoc();
2344   if (!EatIfPresent(lltok::lparen))
2345     return error(StartParen, "expected '('");
2346 
2347   if (parseUInt32(BaseSizeArg))
2348     return true;
2349 
2350   if (EatIfPresent(lltok::comma)) {
2351     auto HowManyAt = Lex.getLoc();
2352     unsigned HowMany;
2353     if (parseUInt32(HowMany))
2354       return true;
2355     if (HowMany == BaseSizeArg)
2356       return error(HowManyAt,
2357                    "'allocsize' indices can't refer to the same parameter");
2358     HowManyArg = HowMany;
2359   } else
2360     HowManyArg = None;
2361 
2362   auto EndParen = Lex.getLoc();
2363   if (!EatIfPresent(lltok::rparen))
2364     return error(EndParen, "expected ')'");
2365   return false;
2366 }
2367 
2368 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2369                                          unsigned &MaxValue) {
2370   Lex.Lex();
2371 
2372   auto StartParen = Lex.getLoc();
2373   if (!EatIfPresent(lltok::lparen))
2374     return error(StartParen, "expected '('");
2375 
2376   if (parseUInt32(MinValue))
2377     return true;
2378 
2379   if (EatIfPresent(lltok::comma)) {
2380     if (parseUInt32(MaxValue))
2381       return true;
2382   } else
2383     MaxValue = MinValue;
2384 
2385   auto EndParen = Lex.getLoc();
2386   if (!EatIfPresent(lltok::rparen))
2387     return error(EndParen, "expected ')'");
2388   return false;
2389 }
2390 
2391 /// parseScopeAndOrdering
2392 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2393 ///   else: ::=
2394 ///
2395 /// This sets Scope and Ordering to the parsed values.
2396 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2397                                      AtomicOrdering &Ordering) {
2398   if (!IsAtomic)
2399     return false;
2400 
2401   return parseScope(SSID) || parseOrdering(Ordering);
2402 }
2403 
2404 /// parseScope
2405 ///   ::= syncscope("singlethread" | "<target scope>")?
2406 ///
2407 /// This sets synchronization scope ID to the ID of the parsed value.
2408 bool LLParser::parseScope(SyncScope::ID &SSID) {
2409   SSID = SyncScope::System;
2410   if (EatIfPresent(lltok::kw_syncscope)) {
2411     auto StartParenAt = Lex.getLoc();
2412     if (!EatIfPresent(lltok::lparen))
2413       return error(StartParenAt, "Expected '(' in syncscope");
2414 
2415     std::string SSN;
2416     auto SSNAt = Lex.getLoc();
2417     if (parseStringConstant(SSN))
2418       return error(SSNAt, "Expected synchronization scope name");
2419 
2420     auto EndParenAt = Lex.getLoc();
2421     if (!EatIfPresent(lltok::rparen))
2422       return error(EndParenAt, "Expected ')' in syncscope");
2423 
2424     SSID = Context.getOrInsertSyncScopeID(SSN);
2425   }
2426 
2427   return false;
2428 }
2429 
2430 /// parseOrdering
2431 ///   ::= AtomicOrdering
2432 ///
2433 /// This sets Ordering to the parsed value.
2434 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2435   switch (Lex.getKind()) {
2436   default:
2437     return tokError("Expected ordering on atomic instruction");
2438   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2439   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2440   // Not specified yet:
2441   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2442   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2443   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2444   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2445   case lltok::kw_seq_cst:
2446     Ordering = AtomicOrdering::SequentiallyConsistent;
2447     break;
2448   }
2449   Lex.Lex();
2450   return false;
2451 }
2452 
2453 /// parseOptionalStackAlignment
2454 ///   ::= /* empty */
2455 ///   ::= 'alignstack' '(' 4 ')'
2456 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2457   Alignment = 0;
2458   if (!EatIfPresent(lltok::kw_alignstack))
2459     return false;
2460   LocTy ParenLoc = Lex.getLoc();
2461   if (!EatIfPresent(lltok::lparen))
2462     return error(ParenLoc, "expected '('");
2463   LocTy AlignLoc = Lex.getLoc();
2464   if (parseUInt32(Alignment))
2465     return true;
2466   ParenLoc = Lex.getLoc();
2467   if (!EatIfPresent(lltok::rparen))
2468     return error(ParenLoc, "expected ')'");
2469   if (!isPowerOf2_32(Alignment))
2470     return error(AlignLoc, "stack alignment is not a power of two");
2471   return false;
2472 }
2473 
2474 /// parseIndexList - This parses the index list for an insert/extractvalue
2475 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2476 /// comma at the end of the line and find that it is followed by metadata.
2477 /// Clients that don't allow metadata can call the version of this function that
2478 /// only takes one argument.
2479 ///
2480 /// parseIndexList
2481 ///    ::=  (',' uint32)+
2482 ///
2483 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2484                               bool &AteExtraComma) {
2485   AteExtraComma = false;
2486 
2487   if (Lex.getKind() != lltok::comma)
2488     return tokError("expected ',' as start of index list");
2489 
2490   while (EatIfPresent(lltok::comma)) {
2491     if (Lex.getKind() == lltok::MetadataVar) {
2492       if (Indices.empty())
2493         return tokError("expected index");
2494       AteExtraComma = true;
2495       return false;
2496     }
2497     unsigned Idx = 0;
2498     if (parseUInt32(Idx))
2499       return true;
2500     Indices.push_back(Idx);
2501   }
2502 
2503   return false;
2504 }
2505 
2506 //===----------------------------------------------------------------------===//
2507 // Type Parsing.
2508 //===----------------------------------------------------------------------===//
2509 
2510 /// parseType - parse a type.
2511 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2512   SMLoc TypeLoc = Lex.getLoc();
2513   switch (Lex.getKind()) {
2514   default:
2515     return tokError(Msg);
2516   case lltok::Type:
2517     // Type ::= 'float' | 'void' (etc)
2518     Result = Lex.getTyVal();
2519     Lex.Lex();
2520     break;
2521   case lltok::lbrace:
2522     // Type ::= StructType
2523     if (parseAnonStructType(Result, false))
2524       return true;
2525     break;
2526   case lltok::lsquare:
2527     // Type ::= '[' ... ']'
2528     Lex.Lex(); // eat the lsquare.
2529     if (parseArrayVectorType(Result, false))
2530       return true;
2531     break;
2532   case lltok::less: // Either vector or packed struct.
2533     // Type ::= '<' ... '>'
2534     Lex.Lex();
2535     if (Lex.getKind() == lltok::lbrace) {
2536       if (parseAnonStructType(Result, true) ||
2537           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2538         return true;
2539     } else if (parseArrayVectorType(Result, true))
2540       return true;
2541     break;
2542   case lltok::LocalVar: {
2543     // Type ::= %foo
2544     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2545 
2546     // If the type hasn't been defined yet, create a forward definition and
2547     // remember where that forward def'n was seen (in case it never is defined).
2548     if (!Entry.first) {
2549       Entry.first = StructType::create(Context, Lex.getStrVal());
2550       Entry.second = Lex.getLoc();
2551     }
2552     Result = Entry.first;
2553     Lex.Lex();
2554     break;
2555   }
2556 
2557   case lltok::LocalVarID: {
2558     // Type ::= %4
2559     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2560 
2561     // If the type hasn't been defined yet, create a forward definition and
2562     // remember where that forward def'n was seen (in case it never is defined).
2563     if (!Entry.first) {
2564       Entry.first = StructType::create(Context);
2565       Entry.second = Lex.getLoc();
2566     }
2567     Result = Entry.first;
2568     Lex.Lex();
2569     break;
2570   }
2571   }
2572 
2573   // parse the type suffixes.
2574   while (true) {
2575     switch (Lex.getKind()) {
2576     // End of type.
2577     default:
2578       if (!AllowVoid && Result->isVoidTy())
2579         return error(TypeLoc, "void type only allowed for function results");
2580       return false;
2581 
2582     // Type ::= Type '*'
2583     case lltok::star:
2584       if (Result->isLabelTy())
2585         return tokError("basic block pointers are invalid");
2586       if (Result->isVoidTy())
2587         return tokError("pointers to void are invalid - use i8* instead");
2588       if (!PointerType::isValidElementType(Result))
2589         return tokError("pointer to this type is invalid");
2590       Result = PointerType::getUnqual(Result);
2591       Lex.Lex();
2592       break;
2593 
2594     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2595     case lltok::kw_addrspace: {
2596       if (Result->isLabelTy())
2597         return tokError("basic block pointers are invalid");
2598       if (Result->isVoidTy())
2599         return tokError("pointers to void are invalid; use i8* instead");
2600       if (!PointerType::isValidElementType(Result))
2601         return tokError("pointer to this type is invalid");
2602       unsigned AddrSpace;
2603       if (parseOptionalAddrSpace(AddrSpace) ||
2604           parseToken(lltok::star, "expected '*' in address space"))
2605         return true;
2606 
2607       Result = PointerType::get(Result, AddrSpace);
2608       break;
2609     }
2610 
2611     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2612     case lltok::lparen:
2613       if (parseFunctionType(Result))
2614         return true;
2615       break;
2616     }
2617   }
2618 }
2619 
2620 /// parseParameterList
2621 ///    ::= '(' ')'
2622 ///    ::= '(' Arg (',' Arg)* ')'
2623 ///  Arg
2624 ///    ::= Type OptionalAttributes Value OptionalAttributes
2625 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2626                                   PerFunctionState &PFS, bool IsMustTailCall,
2627                                   bool InVarArgsFunc) {
2628   if (parseToken(lltok::lparen, "expected '(' in call"))
2629     return true;
2630 
2631   while (Lex.getKind() != lltok::rparen) {
2632     // If this isn't the first argument, we need a comma.
2633     if (!ArgList.empty() &&
2634         parseToken(lltok::comma, "expected ',' in argument list"))
2635       return true;
2636 
2637     // parse an ellipsis if this is a musttail call in a variadic function.
2638     if (Lex.getKind() == lltok::dotdotdot) {
2639       const char *Msg = "unexpected ellipsis in argument list for ";
2640       if (!IsMustTailCall)
2641         return tokError(Twine(Msg) + "non-musttail call");
2642       if (!InVarArgsFunc)
2643         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2644       Lex.Lex();  // Lex the '...', it is purely for readability.
2645       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2646     }
2647 
2648     // parse the argument.
2649     LocTy ArgLoc;
2650     Type *ArgTy = nullptr;
2651     AttrBuilder ArgAttrs;
2652     Value *V;
2653     if (parseType(ArgTy, ArgLoc))
2654       return true;
2655 
2656     if (ArgTy->isMetadataTy()) {
2657       if (parseMetadataAsValue(V, PFS))
2658         return true;
2659     } else {
2660       // Otherwise, handle normal operands.
2661       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2662         return true;
2663     }
2664     ArgList.push_back(ParamInfo(
2665         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2666   }
2667 
2668   if (IsMustTailCall && InVarArgsFunc)
2669     return tokError("expected '...' at end of argument list for musttail call "
2670                     "in varargs function");
2671 
2672   Lex.Lex();  // Lex the ')'.
2673   return false;
2674 }
2675 
2676 /// parseRequiredTypeAttr
2677 ///   ::= attrname(<ty>)
2678 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) {
2679   Result = nullptr;
2680   if (!EatIfPresent(AttrName))
2681     return true;
2682   if (!EatIfPresent(lltok::lparen))
2683     return error(Lex.getLoc(), "expected '('");
2684   if (parseType(Result))
2685     return true;
2686   if (!EatIfPresent(lltok::rparen))
2687     return error(Lex.getLoc(), "expected ')'");
2688   return false;
2689 }
2690 
2691 /// parsePreallocated
2692 ///   ::= preallocated(<ty>)
2693 bool LLParser::parsePreallocated(Type *&Result) {
2694   return parseRequiredTypeAttr(Result, lltok::kw_preallocated);
2695 }
2696 
2697 /// parseByRef
2698 ///   ::= byref(<type>)
2699 bool LLParser::parseByRef(Type *&Result) {
2700   return parseRequiredTypeAttr(Result, lltok::kw_byref);
2701 }
2702 
2703 /// parseOptionalOperandBundles
2704 ///    ::= /*empty*/
2705 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2706 ///
2707 /// OperandBundle
2708 ///    ::= bundle-tag '(' ')'
2709 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2710 ///
2711 /// bundle-tag ::= String Constant
2712 bool LLParser::parseOptionalOperandBundles(
2713     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2714   LocTy BeginLoc = Lex.getLoc();
2715   if (!EatIfPresent(lltok::lsquare))
2716     return false;
2717 
2718   while (Lex.getKind() != lltok::rsquare) {
2719     // If this isn't the first operand bundle, we need a comma.
2720     if (!BundleList.empty() &&
2721         parseToken(lltok::comma, "expected ',' in input list"))
2722       return true;
2723 
2724     std::string Tag;
2725     if (parseStringConstant(Tag))
2726       return true;
2727 
2728     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2729       return true;
2730 
2731     std::vector<Value *> Inputs;
2732     while (Lex.getKind() != lltok::rparen) {
2733       // If this isn't the first input, we need a comma.
2734       if (!Inputs.empty() &&
2735           parseToken(lltok::comma, "expected ',' in input list"))
2736         return true;
2737 
2738       Type *Ty = nullptr;
2739       Value *Input = nullptr;
2740       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2741         return true;
2742       Inputs.push_back(Input);
2743     }
2744 
2745     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2746 
2747     Lex.Lex(); // Lex the ')'.
2748   }
2749 
2750   if (BundleList.empty())
2751     return error(BeginLoc, "operand bundle set must not be empty");
2752 
2753   Lex.Lex(); // Lex the ']'.
2754   return false;
2755 }
2756 
2757 /// parseArgumentList - parse the argument list for a function type or function
2758 /// prototype.
2759 ///   ::= '(' ArgTypeListI ')'
2760 /// ArgTypeListI
2761 ///   ::= /*empty*/
2762 ///   ::= '...'
2763 ///   ::= ArgTypeList ',' '...'
2764 ///   ::= ArgType (',' ArgType)*
2765 ///
2766 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2767                                  bool &IsVarArg) {
2768   unsigned CurValID = 0;
2769   IsVarArg = false;
2770   assert(Lex.getKind() == lltok::lparen);
2771   Lex.Lex(); // eat the (.
2772 
2773   if (Lex.getKind() == lltok::rparen) {
2774     // empty
2775   } else if (Lex.getKind() == lltok::dotdotdot) {
2776     IsVarArg = true;
2777     Lex.Lex();
2778   } else {
2779     LocTy TypeLoc = Lex.getLoc();
2780     Type *ArgTy = nullptr;
2781     AttrBuilder Attrs;
2782     std::string Name;
2783 
2784     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2785       return true;
2786 
2787     if (ArgTy->isVoidTy())
2788       return error(TypeLoc, "argument can not have void type");
2789 
2790     if (Lex.getKind() == lltok::LocalVar) {
2791       Name = Lex.getStrVal();
2792       Lex.Lex();
2793     } else if (Lex.getKind() == lltok::LocalVarID) {
2794       if (Lex.getUIntVal() != CurValID)
2795         return error(TypeLoc, "argument expected to be numbered '%" +
2796                                   Twine(CurValID) + "'");
2797       ++CurValID;
2798       Lex.Lex();
2799     }
2800 
2801     if (!FunctionType::isValidArgumentType(ArgTy))
2802       return error(TypeLoc, "invalid type for function argument");
2803 
2804     ArgList.emplace_back(TypeLoc, ArgTy,
2805                          AttributeSet::get(ArgTy->getContext(), Attrs),
2806                          std::move(Name));
2807 
2808     while (EatIfPresent(lltok::comma)) {
2809       // Handle ... at end of arg list.
2810       if (EatIfPresent(lltok::dotdotdot)) {
2811         IsVarArg = true;
2812         break;
2813       }
2814 
2815       // Otherwise must be an argument type.
2816       TypeLoc = Lex.getLoc();
2817       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2818         return true;
2819 
2820       if (ArgTy->isVoidTy())
2821         return error(TypeLoc, "argument can not have void type");
2822 
2823       if (Lex.getKind() == lltok::LocalVar) {
2824         Name = Lex.getStrVal();
2825         Lex.Lex();
2826       } else {
2827         if (Lex.getKind() == lltok::LocalVarID) {
2828           if (Lex.getUIntVal() != CurValID)
2829             return error(TypeLoc, "argument expected to be numbered '%" +
2830                                       Twine(CurValID) + "'");
2831           Lex.Lex();
2832         }
2833         ++CurValID;
2834         Name = "";
2835       }
2836 
2837       if (!ArgTy->isFirstClassType())
2838         return error(TypeLoc, "invalid type for function argument");
2839 
2840       ArgList.emplace_back(TypeLoc, ArgTy,
2841                            AttributeSet::get(ArgTy->getContext(), Attrs),
2842                            std::move(Name));
2843     }
2844   }
2845 
2846   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2847 }
2848 
2849 /// parseFunctionType
2850 ///  ::= Type ArgumentList OptionalAttrs
2851 bool LLParser::parseFunctionType(Type *&Result) {
2852   assert(Lex.getKind() == lltok::lparen);
2853 
2854   if (!FunctionType::isValidReturnType(Result))
2855     return tokError("invalid function return type");
2856 
2857   SmallVector<ArgInfo, 8> ArgList;
2858   bool IsVarArg;
2859   if (parseArgumentList(ArgList, IsVarArg))
2860     return true;
2861 
2862   // Reject names on the arguments lists.
2863   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2864     if (!ArgList[i].Name.empty())
2865       return error(ArgList[i].Loc, "argument name invalid in function type");
2866     if (ArgList[i].Attrs.hasAttributes())
2867       return error(ArgList[i].Loc,
2868                    "argument attributes invalid in function type");
2869   }
2870 
2871   SmallVector<Type*, 16> ArgListTy;
2872   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2873     ArgListTy.push_back(ArgList[i].Ty);
2874 
2875   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2876   return false;
2877 }
2878 
2879 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2880 /// other structs.
2881 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2882   SmallVector<Type*, 8> Elts;
2883   if (parseStructBody(Elts))
2884     return true;
2885 
2886   Result = StructType::get(Context, Elts, Packed);
2887   return false;
2888 }
2889 
2890 /// parseStructDefinition - parse a struct in a 'type' definition.
2891 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2892                                      std::pair<Type *, LocTy> &Entry,
2893                                      Type *&ResultTy) {
2894   // If the type was already defined, diagnose the redefinition.
2895   if (Entry.first && !Entry.second.isValid())
2896     return error(TypeLoc, "redefinition of type");
2897 
2898   // If we have opaque, just return without filling in the definition for the
2899   // struct.  This counts as a definition as far as the .ll file goes.
2900   if (EatIfPresent(lltok::kw_opaque)) {
2901     // This type is being defined, so clear the location to indicate this.
2902     Entry.second = SMLoc();
2903 
2904     // If this type number has never been uttered, create it.
2905     if (!Entry.first)
2906       Entry.first = StructType::create(Context, Name);
2907     ResultTy = Entry.first;
2908     return false;
2909   }
2910 
2911   // If the type starts with '<', then it is either a packed struct or a vector.
2912   bool isPacked = EatIfPresent(lltok::less);
2913 
2914   // If we don't have a struct, then we have a random type alias, which we
2915   // accept for compatibility with old files.  These types are not allowed to be
2916   // forward referenced and not allowed to be recursive.
2917   if (Lex.getKind() != lltok::lbrace) {
2918     if (Entry.first)
2919       return error(TypeLoc, "forward references to non-struct type");
2920 
2921     ResultTy = nullptr;
2922     if (isPacked)
2923       return parseArrayVectorType(ResultTy, true);
2924     return parseType(ResultTy);
2925   }
2926 
2927   // This type is being defined, so clear the location to indicate this.
2928   Entry.second = SMLoc();
2929 
2930   // If this type number has never been uttered, create it.
2931   if (!Entry.first)
2932     Entry.first = StructType::create(Context, Name);
2933 
2934   StructType *STy = cast<StructType>(Entry.first);
2935 
2936   SmallVector<Type*, 8> Body;
2937   if (parseStructBody(Body) ||
2938       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2939     return true;
2940 
2941   STy->setBody(Body, isPacked);
2942   ResultTy = STy;
2943   return false;
2944 }
2945 
2946 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2947 ///   StructType
2948 ///     ::= '{' '}'
2949 ///     ::= '{' Type (',' Type)* '}'
2950 ///     ::= '<' '{' '}' '>'
2951 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2952 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2953   assert(Lex.getKind() == lltok::lbrace);
2954   Lex.Lex(); // Consume the '{'
2955 
2956   // Handle the empty struct.
2957   if (EatIfPresent(lltok::rbrace))
2958     return false;
2959 
2960   LocTy EltTyLoc = Lex.getLoc();
2961   Type *Ty = nullptr;
2962   if (parseType(Ty))
2963     return true;
2964   Body.push_back(Ty);
2965 
2966   if (!StructType::isValidElementType(Ty))
2967     return error(EltTyLoc, "invalid element type for struct");
2968 
2969   while (EatIfPresent(lltok::comma)) {
2970     EltTyLoc = Lex.getLoc();
2971     if (parseType(Ty))
2972       return true;
2973 
2974     if (!StructType::isValidElementType(Ty))
2975       return error(EltTyLoc, "invalid element type for struct");
2976 
2977     Body.push_back(Ty);
2978   }
2979 
2980   return parseToken(lltok::rbrace, "expected '}' at end of struct");
2981 }
2982 
2983 /// parseArrayVectorType - parse an array or vector type, assuming the first
2984 /// token has already been consumed.
2985 ///   Type
2986 ///     ::= '[' APSINTVAL 'x' Types ']'
2987 ///     ::= '<' APSINTVAL 'x' Types '>'
2988 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2989 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
2990   bool Scalable = false;
2991 
2992   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
2993     Lex.Lex(); // consume the 'vscale'
2994     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
2995       return true;
2996 
2997     Scalable = true;
2998   }
2999 
3000   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
3001       Lex.getAPSIntVal().getBitWidth() > 64)
3002     return tokError("expected number in address space");
3003 
3004   LocTy SizeLoc = Lex.getLoc();
3005   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
3006   Lex.Lex();
3007 
3008   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
3009     return true;
3010 
3011   LocTy TypeLoc = Lex.getLoc();
3012   Type *EltTy = nullptr;
3013   if (parseType(EltTy))
3014     return true;
3015 
3016   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
3017                  "expected end of sequential type"))
3018     return true;
3019 
3020   if (IsVector) {
3021     if (Size == 0)
3022       return error(SizeLoc, "zero element vector is illegal");
3023     if ((unsigned)Size != Size)
3024       return error(SizeLoc, "size too large for vector");
3025     if (!VectorType::isValidElementType(EltTy))
3026       return error(TypeLoc, "invalid vector element type");
3027     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
3028   } else {
3029     if (!ArrayType::isValidElementType(EltTy))
3030       return error(TypeLoc, "invalid array element type");
3031     Result = ArrayType::get(EltTy, Size);
3032   }
3033   return false;
3034 }
3035 
3036 //===----------------------------------------------------------------------===//
3037 // Function Semantic Analysis.
3038 //===----------------------------------------------------------------------===//
3039 
3040 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
3041                                              int functionNumber)
3042   : P(p), F(f), FunctionNumber(functionNumber) {
3043 
3044   // Insert unnamed arguments into the NumberedVals list.
3045   for (Argument &A : F.args())
3046     if (!A.hasName())
3047       NumberedVals.push_back(&A);
3048 }
3049 
3050 LLParser::PerFunctionState::~PerFunctionState() {
3051   // If there were any forward referenced non-basicblock values, delete them.
3052 
3053   for (const auto &P : ForwardRefVals) {
3054     if (isa<BasicBlock>(P.second.first))
3055       continue;
3056     P.second.first->replaceAllUsesWith(
3057         UndefValue::get(P.second.first->getType()));
3058     P.second.first->deleteValue();
3059   }
3060 
3061   for (const auto &P : ForwardRefValIDs) {
3062     if (isa<BasicBlock>(P.second.first))
3063       continue;
3064     P.second.first->replaceAllUsesWith(
3065         UndefValue::get(P.second.first->getType()));
3066     P.second.first->deleteValue();
3067   }
3068 }
3069 
3070 bool LLParser::PerFunctionState::finishFunction() {
3071   if (!ForwardRefVals.empty())
3072     return P.error(ForwardRefVals.begin()->second.second,
3073                    "use of undefined value '%" + ForwardRefVals.begin()->first +
3074                        "'");
3075   if (!ForwardRefValIDs.empty())
3076     return P.error(ForwardRefValIDs.begin()->second.second,
3077                    "use of undefined value '%" +
3078                        Twine(ForwardRefValIDs.begin()->first) + "'");
3079   return false;
3080 }
3081 
3082 /// getVal - Get a value with the specified name or ID, creating a
3083 /// forward reference record if needed.  This can return null if the value
3084 /// exists but does not have the right type.
3085 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
3086                                           LocTy Loc, bool IsCall) {
3087   // Look this name up in the normal function symbol table.
3088   Value *Val = F.getValueSymbolTable()->lookup(Name);
3089 
3090   // If this is a forward reference for the value, see if we already created a
3091   // forward ref record.
3092   if (!Val) {
3093     auto I = ForwardRefVals.find(Name);
3094     if (I != ForwardRefVals.end())
3095       Val = I->second.first;
3096   }
3097 
3098   // If we have the value in the symbol table or fwd-ref table, return it.
3099   if (Val)
3100     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
3101 
3102   // Don't make placeholders with invalid type.
3103   if (!Ty->isFirstClassType()) {
3104     P.error(Loc, "invalid use of a non-first-class type");
3105     return nullptr;
3106   }
3107 
3108   // Otherwise, create a new forward reference for this value and remember it.
3109   Value *FwdVal;
3110   if (Ty->isLabelTy()) {
3111     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3112   } else {
3113     FwdVal = new Argument(Ty, Name);
3114   }
3115 
3116   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3117   return FwdVal;
3118 }
3119 
3120 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc,
3121                                           bool IsCall) {
3122   // Look this name up in the normal function symbol table.
3123   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
3124 
3125   // If this is a forward reference for the value, see if we already created a
3126   // forward ref record.
3127   if (!Val) {
3128     auto I = ForwardRefValIDs.find(ID);
3129     if (I != ForwardRefValIDs.end())
3130       Val = I->second.first;
3131   }
3132 
3133   // If we have the value in the symbol table or fwd-ref table, return it.
3134   if (Val)
3135     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
3136 
3137   if (!Ty->isFirstClassType()) {
3138     P.error(Loc, "invalid use of a non-first-class type");
3139     return nullptr;
3140   }
3141 
3142   // Otherwise, create a new forward reference for this value and remember it.
3143   Value *FwdVal;
3144   if (Ty->isLabelTy()) {
3145     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3146   } else {
3147     FwdVal = new Argument(Ty);
3148   }
3149 
3150   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3151   return FwdVal;
3152 }
3153 
3154 /// setInstName - After an instruction is parsed and inserted into its
3155 /// basic block, this installs its name.
3156 bool LLParser::PerFunctionState::setInstName(int NameID,
3157                                              const std::string &NameStr,
3158                                              LocTy NameLoc, Instruction *Inst) {
3159   // If this instruction has void type, it cannot have a name or ID specified.
3160   if (Inst->getType()->isVoidTy()) {
3161     if (NameID != -1 || !NameStr.empty())
3162       return P.error(NameLoc, "instructions returning void cannot have a name");
3163     return false;
3164   }
3165 
3166   // If this was a numbered instruction, verify that the instruction is the
3167   // expected value and resolve any forward references.
3168   if (NameStr.empty()) {
3169     // If neither a name nor an ID was specified, just use the next ID.
3170     if (NameID == -1)
3171       NameID = NumberedVals.size();
3172 
3173     if (unsigned(NameID) != NumberedVals.size())
3174       return P.error(NameLoc, "instruction expected to be numbered '%" +
3175                                   Twine(NumberedVals.size()) + "'");
3176 
3177     auto FI = ForwardRefValIDs.find(NameID);
3178     if (FI != ForwardRefValIDs.end()) {
3179       Value *Sentinel = FI->second.first;
3180       if (Sentinel->getType() != Inst->getType())
3181         return P.error(NameLoc, "instruction forward referenced with type '" +
3182                                     getTypeString(FI->second.first->getType()) +
3183                                     "'");
3184 
3185       Sentinel->replaceAllUsesWith(Inst);
3186       Sentinel->deleteValue();
3187       ForwardRefValIDs.erase(FI);
3188     }
3189 
3190     NumberedVals.push_back(Inst);
3191     return false;
3192   }
3193 
3194   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3195   auto FI = ForwardRefVals.find(NameStr);
3196   if (FI != ForwardRefVals.end()) {
3197     Value *Sentinel = FI->second.first;
3198     if (Sentinel->getType() != Inst->getType())
3199       return P.error(NameLoc, "instruction forward referenced with type '" +
3200                                   getTypeString(FI->second.first->getType()) +
3201                                   "'");
3202 
3203     Sentinel->replaceAllUsesWith(Inst);
3204     Sentinel->deleteValue();
3205     ForwardRefVals.erase(FI);
3206   }
3207 
3208   // Set the name on the instruction.
3209   Inst->setName(NameStr);
3210 
3211   if (Inst->getName() != NameStr)
3212     return P.error(NameLoc, "multiple definition of local value named '" +
3213                                 NameStr + "'");
3214   return false;
3215 }
3216 
3217 /// getBB - Get a basic block with the specified name or ID, creating a
3218 /// forward reference record if needed.
3219 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3220                                               LocTy Loc) {
3221   return dyn_cast_or_null<BasicBlock>(
3222       getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3223 }
3224 
3225 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3226   return dyn_cast_or_null<BasicBlock>(
3227       getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3228 }
3229 
3230 /// defineBB - Define the specified basic block, which is either named or
3231 /// unnamed.  If there is an error, this returns null otherwise it returns
3232 /// the block being defined.
3233 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3234                                                  int NameID, LocTy Loc) {
3235   BasicBlock *BB;
3236   if (Name.empty()) {
3237     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3238       P.error(Loc, "label expected to be numbered '" +
3239                        Twine(NumberedVals.size()) + "'");
3240       return nullptr;
3241     }
3242     BB = getBB(NumberedVals.size(), Loc);
3243     if (!BB) {
3244       P.error(Loc, "unable to create block numbered '" +
3245                        Twine(NumberedVals.size()) + "'");
3246       return nullptr;
3247     }
3248   } else {
3249     BB = getBB(Name, Loc);
3250     if (!BB) {
3251       P.error(Loc, "unable to create block named '" + Name + "'");
3252       return nullptr;
3253     }
3254   }
3255 
3256   // Move the block to the end of the function.  Forward ref'd blocks are
3257   // inserted wherever they happen to be referenced.
3258   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3259 
3260   // Remove the block from forward ref sets.
3261   if (Name.empty()) {
3262     ForwardRefValIDs.erase(NumberedVals.size());
3263     NumberedVals.push_back(BB);
3264   } else {
3265     // BB forward references are already in the function symbol table.
3266     ForwardRefVals.erase(Name);
3267   }
3268 
3269   return BB;
3270 }
3271 
3272 //===----------------------------------------------------------------------===//
3273 // Constants.
3274 //===----------------------------------------------------------------------===//
3275 
3276 /// parseValID - parse an abstract value that doesn't necessarily have a
3277 /// type implied.  For example, if we parse "4" we don't know what integer type
3278 /// it has.  The value will later be combined with its type and checked for
3279 /// sanity.  PFS is used to convert function-local operands of metadata (since
3280 /// metadata operands are not just parsed here but also converted to values).
3281 /// PFS can be null when we are not parsing metadata values inside a function.
3282 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) {
3283   ID.Loc = Lex.getLoc();
3284   switch (Lex.getKind()) {
3285   default:
3286     return tokError("expected value token");
3287   case lltok::GlobalID:  // @42
3288     ID.UIntVal = Lex.getUIntVal();
3289     ID.Kind = ValID::t_GlobalID;
3290     break;
3291   case lltok::GlobalVar:  // @foo
3292     ID.StrVal = Lex.getStrVal();
3293     ID.Kind = ValID::t_GlobalName;
3294     break;
3295   case lltok::LocalVarID:  // %42
3296     ID.UIntVal = Lex.getUIntVal();
3297     ID.Kind = ValID::t_LocalID;
3298     break;
3299   case lltok::LocalVar:  // %foo
3300     ID.StrVal = Lex.getStrVal();
3301     ID.Kind = ValID::t_LocalName;
3302     break;
3303   case lltok::APSInt:
3304     ID.APSIntVal = Lex.getAPSIntVal();
3305     ID.Kind = ValID::t_APSInt;
3306     break;
3307   case lltok::APFloat:
3308     ID.APFloatVal = Lex.getAPFloatVal();
3309     ID.Kind = ValID::t_APFloat;
3310     break;
3311   case lltok::kw_true:
3312     ID.ConstantVal = ConstantInt::getTrue(Context);
3313     ID.Kind = ValID::t_Constant;
3314     break;
3315   case lltok::kw_false:
3316     ID.ConstantVal = ConstantInt::getFalse(Context);
3317     ID.Kind = ValID::t_Constant;
3318     break;
3319   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3320   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3321   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3322   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3323   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3324 
3325   case lltok::lbrace: {
3326     // ValID ::= '{' ConstVector '}'
3327     Lex.Lex();
3328     SmallVector<Constant*, 16> Elts;
3329     if (parseGlobalValueVector(Elts) ||
3330         parseToken(lltok::rbrace, "expected end of struct constant"))
3331       return true;
3332 
3333     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3334     ID.UIntVal = Elts.size();
3335     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3336            Elts.size() * sizeof(Elts[0]));
3337     ID.Kind = ValID::t_ConstantStruct;
3338     return false;
3339   }
3340   case lltok::less: {
3341     // ValID ::= '<' ConstVector '>'         --> Vector.
3342     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3343     Lex.Lex();
3344     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3345 
3346     SmallVector<Constant*, 16> Elts;
3347     LocTy FirstEltLoc = Lex.getLoc();
3348     if (parseGlobalValueVector(Elts) ||
3349         (isPackedStruct &&
3350          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3351         parseToken(lltok::greater, "expected end of constant"))
3352       return true;
3353 
3354     if (isPackedStruct) {
3355       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3356       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3357              Elts.size() * sizeof(Elts[0]));
3358       ID.UIntVal = Elts.size();
3359       ID.Kind = ValID::t_PackedConstantStruct;
3360       return false;
3361     }
3362 
3363     if (Elts.empty())
3364       return error(ID.Loc, "constant vector must not be empty");
3365 
3366     if (!Elts[0]->getType()->isIntegerTy() &&
3367         !Elts[0]->getType()->isFloatingPointTy() &&
3368         !Elts[0]->getType()->isPointerTy())
3369       return error(
3370           FirstEltLoc,
3371           "vector elements must have integer, pointer or floating point type");
3372 
3373     // Verify that all the vector elements have the same type.
3374     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3375       if (Elts[i]->getType() != Elts[0]->getType())
3376         return error(FirstEltLoc, "vector element #" + Twine(i) +
3377                                       " is not of type '" +
3378                                       getTypeString(Elts[0]->getType()));
3379 
3380     ID.ConstantVal = ConstantVector::get(Elts);
3381     ID.Kind = ValID::t_Constant;
3382     return false;
3383   }
3384   case lltok::lsquare: {   // Array Constant
3385     Lex.Lex();
3386     SmallVector<Constant*, 16> Elts;
3387     LocTy FirstEltLoc = Lex.getLoc();
3388     if (parseGlobalValueVector(Elts) ||
3389         parseToken(lltok::rsquare, "expected end of array constant"))
3390       return true;
3391 
3392     // Handle empty element.
3393     if (Elts.empty()) {
3394       // Use undef instead of an array because it's inconvenient to determine
3395       // the element type at this point, there being no elements to examine.
3396       ID.Kind = ValID::t_EmptyArray;
3397       return false;
3398     }
3399 
3400     if (!Elts[0]->getType()->isFirstClassType())
3401       return error(FirstEltLoc, "invalid array element type: " +
3402                                     getTypeString(Elts[0]->getType()));
3403 
3404     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3405 
3406     // Verify all elements are correct type!
3407     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3408       if (Elts[i]->getType() != Elts[0]->getType())
3409         return error(FirstEltLoc, "array element #" + Twine(i) +
3410                                       " is not of type '" +
3411                                       getTypeString(Elts[0]->getType()));
3412     }
3413 
3414     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3415     ID.Kind = ValID::t_Constant;
3416     return false;
3417   }
3418   case lltok::kw_c:  // c "foo"
3419     Lex.Lex();
3420     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3421                                                   false);
3422     if (parseToken(lltok::StringConstant, "expected string"))
3423       return true;
3424     ID.Kind = ValID::t_Constant;
3425     return false;
3426 
3427   case lltok::kw_asm: {
3428     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3429     //             STRINGCONSTANT
3430     bool HasSideEffect, AlignStack, AsmDialect;
3431     Lex.Lex();
3432     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3433         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3434         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3435         parseStringConstant(ID.StrVal) ||
3436         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3437         parseToken(lltok::StringConstant, "expected constraint string"))
3438       return true;
3439     ID.StrVal2 = Lex.getStrVal();
3440     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3441       (unsigned(AsmDialect)<<2);
3442     ID.Kind = ValID::t_InlineAsm;
3443     return false;
3444   }
3445 
3446   case lltok::kw_blockaddress: {
3447     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3448     Lex.Lex();
3449 
3450     ValID Fn, Label;
3451 
3452     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3453         parseValID(Fn) ||
3454         parseToken(lltok::comma,
3455                    "expected comma in block address expression") ||
3456         parseValID(Label) ||
3457         parseToken(lltok::rparen, "expected ')' in block address expression"))
3458       return true;
3459 
3460     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3461       return error(Fn.Loc, "expected function name in blockaddress");
3462     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3463       return error(Label.Loc, "expected basic block name in blockaddress");
3464 
3465     // Try to find the function (but skip it if it's forward-referenced).
3466     GlobalValue *GV = nullptr;
3467     if (Fn.Kind == ValID::t_GlobalID) {
3468       if (Fn.UIntVal < NumberedVals.size())
3469         GV = NumberedVals[Fn.UIntVal];
3470     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3471       GV = M->getNamedValue(Fn.StrVal);
3472     }
3473     Function *F = nullptr;
3474     if (GV) {
3475       // Confirm that it's actually a function with a definition.
3476       if (!isa<Function>(GV))
3477         return error(Fn.Loc, "expected function name in blockaddress");
3478       F = cast<Function>(GV);
3479       if (F->isDeclaration())
3480         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3481     }
3482 
3483     if (!F) {
3484       // Make a global variable as a placeholder for this reference.
3485       GlobalValue *&FwdRef =
3486           ForwardRefBlockAddresses.insert(std::make_pair(
3487                                               std::move(Fn),
3488                                               std::map<ValID, GlobalValue *>()))
3489               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3490               .first->second;
3491       if (!FwdRef)
3492         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3493                                     GlobalValue::InternalLinkage, nullptr, "");
3494       ID.ConstantVal = FwdRef;
3495       ID.Kind = ValID::t_Constant;
3496       return false;
3497     }
3498 
3499     // We found the function; now find the basic block.  Don't use PFS, since we
3500     // might be inside a constant expression.
3501     BasicBlock *BB;
3502     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3503       if (Label.Kind == ValID::t_LocalID)
3504         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3505       else
3506         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3507       if (!BB)
3508         return error(Label.Loc, "referenced value is not a basic block");
3509     } else {
3510       if (Label.Kind == ValID::t_LocalID)
3511         return error(Label.Loc, "cannot take address of numeric label after "
3512                                 "the function is defined");
3513       BB = dyn_cast_or_null<BasicBlock>(
3514           F->getValueSymbolTable()->lookup(Label.StrVal));
3515       if (!BB)
3516         return error(Label.Loc, "referenced value is not a basic block");
3517     }
3518 
3519     ID.ConstantVal = BlockAddress::get(F, BB);
3520     ID.Kind = ValID::t_Constant;
3521     return false;
3522   }
3523 
3524   case lltok::kw_dso_local_equivalent: {
3525     // ValID ::= 'dso_local_equivalent' @foo
3526     Lex.Lex();
3527 
3528     ValID Fn;
3529 
3530     if (parseValID(Fn))
3531       return true;
3532 
3533     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3534       return error(Fn.Loc,
3535                    "expected global value name in dso_local_equivalent");
3536 
3537     // Try to find the function (but skip it if it's forward-referenced).
3538     GlobalValue *GV = nullptr;
3539     if (Fn.Kind == ValID::t_GlobalID) {
3540       if (Fn.UIntVal < NumberedVals.size())
3541         GV = NumberedVals[Fn.UIntVal];
3542     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3543       GV = M->getNamedValue(Fn.StrVal);
3544     }
3545 
3546     assert(GV && "Could not find a corresponding global variable");
3547 
3548     if (!GV->getValueType()->isFunctionTy())
3549       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3550                            "in dso_local_equivalent");
3551 
3552     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3553     ID.Kind = ValID::t_Constant;
3554     return false;
3555   }
3556 
3557   case lltok::kw_trunc:
3558   case lltok::kw_zext:
3559   case lltok::kw_sext:
3560   case lltok::kw_fptrunc:
3561   case lltok::kw_fpext:
3562   case lltok::kw_bitcast:
3563   case lltok::kw_addrspacecast:
3564   case lltok::kw_uitofp:
3565   case lltok::kw_sitofp:
3566   case lltok::kw_fptoui:
3567   case lltok::kw_fptosi:
3568   case lltok::kw_inttoptr:
3569   case lltok::kw_ptrtoint: {
3570     unsigned Opc = Lex.getUIntVal();
3571     Type *DestTy = nullptr;
3572     Constant *SrcVal;
3573     Lex.Lex();
3574     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3575         parseGlobalTypeAndValue(SrcVal) ||
3576         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3577         parseType(DestTy) ||
3578         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3579       return true;
3580     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3581       return error(ID.Loc, "invalid cast opcode for cast from '" +
3582                                getTypeString(SrcVal->getType()) + "' to '" +
3583                                getTypeString(DestTy) + "'");
3584     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3585                                                  SrcVal, DestTy);
3586     ID.Kind = ValID::t_Constant;
3587     return false;
3588   }
3589   case lltok::kw_extractvalue: {
3590     Lex.Lex();
3591     Constant *Val;
3592     SmallVector<unsigned, 4> Indices;
3593     if (parseToken(lltok::lparen,
3594                    "expected '(' in extractvalue constantexpr") ||
3595         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3596         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3597       return true;
3598 
3599     if (!Val->getType()->isAggregateType())
3600       return error(ID.Loc, "extractvalue operand must be aggregate type");
3601     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3602       return error(ID.Loc, "invalid indices for extractvalue");
3603     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3604     ID.Kind = ValID::t_Constant;
3605     return false;
3606   }
3607   case lltok::kw_insertvalue: {
3608     Lex.Lex();
3609     Constant *Val0, *Val1;
3610     SmallVector<unsigned, 4> Indices;
3611     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3612         parseGlobalTypeAndValue(Val0) ||
3613         parseToken(lltok::comma,
3614                    "expected comma in insertvalue constantexpr") ||
3615         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3616         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3617       return true;
3618     if (!Val0->getType()->isAggregateType())
3619       return error(ID.Loc, "insertvalue operand must be aggregate type");
3620     Type *IndexedType =
3621         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3622     if (!IndexedType)
3623       return error(ID.Loc, "invalid indices for insertvalue");
3624     if (IndexedType != Val1->getType())
3625       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3626                                getTypeString(Val1->getType()) +
3627                                "' instead of '" + getTypeString(IndexedType) +
3628                                "'");
3629     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3630     ID.Kind = ValID::t_Constant;
3631     return false;
3632   }
3633   case lltok::kw_icmp:
3634   case lltok::kw_fcmp: {
3635     unsigned PredVal, Opc = Lex.getUIntVal();
3636     Constant *Val0, *Val1;
3637     Lex.Lex();
3638     if (parseCmpPredicate(PredVal, Opc) ||
3639         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3640         parseGlobalTypeAndValue(Val0) ||
3641         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3642         parseGlobalTypeAndValue(Val1) ||
3643         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3644       return true;
3645 
3646     if (Val0->getType() != Val1->getType())
3647       return error(ID.Loc, "compare operands must have the same type");
3648 
3649     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3650 
3651     if (Opc == Instruction::FCmp) {
3652       if (!Val0->getType()->isFPOrFPVectorTy())
3653         return error(ID.Loc, "fcmp requires floating point operands");
3654       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3655     } else {
3656       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3657       if (!Val0->getType()->isIntOrIntVectorTy() &&
3658           !Val0->getType()->isPtrOrPtrVectorTy())
3659         return error(ID.Loc, "icmp requires pointer or integer operands");
3660       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3661     }
3662     ID.Kind = ValID::t_Constant;
3663     return false;
3664   }
3665 
3666   // Unary Operators.
3667   case lltok::kw_fneg: {
3668     unsigned Opc = Lex.getUIntVal();
3669     Constant *Val;
3670     Lex.Lex();
3671     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3672         parseGlobalTypeAndValue(Val) ||
3673         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3674       return true;
3675 
3676     // Check that the type is valid for the operator.
3677     switch (Opc) {
3678     case Instruction::FNeg:
3679       if (!Val->getType()->isFPOrFPVectorTy())
3680         return error(ID.Loc, "constexpr requires fp operands");
3681       break;
3682     default: llvm_unreachable("Unknown unary operator!");
3683     }
3684     unsigned Flags = 0;
3685     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3686     ID.ConstantVal = C;
3687     ID.Kind = ValID::t_Constant;
3688     return false;
3689   }
3690   // Binary Operators.
3691   case lltok::kw_add:
3692   case lltok::kw_fadd:
3693   case lltok::kw_sub:
3694   case lltok::kw_fsub:
3695   case lltok::kw_mul:
3696   case lltok::kw_fmul:
3697   case lltok::kw_udiv:
3698   case lltok::kw_sdiv:
3699   case lltok::kw_fdiv:
3700   case lltok::kw_urem:
3701   case lltok::kw_srem:
3702   case lltok::kw_frem:
3703   case lltok::kw_shl:
3704   case lltok::kw_lshr:
3705   case lltok::kw_ashr: {
3706     bool NUW = false;
3707     bool NSW = false;
3708     bool Exact = false;
3709     unsigned Opc = Lex.getUIntVal();
3710     Constant *Val0, *Val1;
3711     Lex.Lex();
3712     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3713         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3714       if (EatIfPresent(lltok::kw_nuw))
3715         NUW = true;
3716       if (EatIfPresent(lltok::kw_nsw)) {
3717         NSW = true;
3718         if (EatIfPresent(lltok::kw_nuw))
3719           NUW = true;
3720       }
3721     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3722                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3723       if (EatIfPresent(lltok::kw_exact))
3724         Exact = true;
3725     }
3726     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3727         parseGlobalTypeAndValue(Val0) ||
3728         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3729         parseGlobalTypeAndValue(Val1) ||
3730         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3731       return true;
3732     if (Val0->getType() != Val1->getType())
3733       return error(ID.Loc, "operands of constexpr must have same type");
3734     // Check that the type is valid for the operator.
3735     switch (Opc) {
3736     case Instruction::Add:
3737     case Instruction::Sub:
3738     case Instruction::Mul:
3739     case Instruction::UDiv:
3740     case Instruction::SDiv:
3741     case Instruction::URem:
3742     case Instruction::SRem:
3743     case Instruction::Shl:
3744     case Instruction::AShr:
3745     case Instruction::LShr:
3746       if (!Val0->getType()->isIntOrIntVectorTy())
3747         return error(ID.Loc, "constexpr requires integer operands");
3748       break;
3749     case Instruction::FAdd:
3750     case Instruction::FSub:
3751     case Instruction::FMul:
3752     case Instruction::FDiv:
3753     case Instruction::FRem:
3754       if (!Val0->getType()->isFPOrFPVectorTy())
3755         return error(ID.Loc, "constexpr requires fp operands");
3756       break;
3757     default: llvm_unreachable("Unknown binary operator!");
3758     }
3759     unsigned Flags = 0;
3760     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3761     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3762     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3763     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3764     ID.ConstantVal = C;
3765     ID.Kind = ValID::t_Constant;
3766     return false;
3767   }
3768 
3769   // Logical Operations
3770   case lltok::kw_and:
3771   case lltok::kw_or:
3772   case lltok::kw_xor: {
3773     unsigned Opc = Lex.getUIntVal();
3774     Constant *Val0, *Val1;
3775     Lex.Lex();
3776     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3777         parseGlobalTypeAndValue(Val0) ||
3778         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3779         parseGlobalTypeAndValue(Val1) ||
3780         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3781       return true;
3782     if (Val0->getType() != Val1->getType())
3783       return error(ID.Loc, "operands of constexpr must have same type");
3784     if (!Val0->getType()->isIntOrIntVectorTy())
3785       return error(ID.Loc,
3786                    "constexpr requires integer or integer vector operands");
3787     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3788     ID.Kind = ValID::t_Constant;
3789     return false;
3790   }
3791 
3792   case lltok::kw_getelementptr:
3793   case lltok::kw_shufflevector:
3794   case lltok::kw_insertelement:
3795   case lltok::kw_extractelement:
3796   case lltok::kw_select: {
3797     unsigned Opc = Lex.getUIntVal();
3798     SmallVector<Constant*, 16> Elts;
3799     bool InBounds = false;
3800     Type *Ty;
3801     Lex.Lex();
3802 
3803     if (Opc == Instruction::GetElementPtr)
3804       InBounds = EatIfPresent(lltok::kw_inbounds);
3805 
3806     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3807       return true;
3808 
3809     LocTy ExplicitTypeLoc = Lex.getLoc();
3810     if (Opc == Instruction::GetElementPtr) {
3811       if (parseType(Ty) ||
3812           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3813         return true;
3814     }
3815 
3816     Optional<unsigned> InRangeOp;
3817     if (parseGlobalValueVector(
3818             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3819         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3820       return true;
3821 
3822     if (Opc == Instruction::GetElementPtr) {
3823       if (Elts.size() == 0 ||
3824           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3825         return error(ID.Loc, "base of getelementptr must be a pointer");
3826 
3827       Type *BaseType = Elts[0]->getType();
3828       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3829       if (Ty != BasePointerType->getElementType())
3830         return error(
3831             ExplicitTypeLoc,
3832             "explicit pointee type doesn't match operand's pointee type");
3833 
3834       unsigned GEPWidth =
3835           BaseType->isVectorTy()
3836               ? cast<FixedVectorType>(BaseType)->getNumElements()
3837               : 0;
3838 
3839       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3840       for (Constant *Val : Indices) {
3841         Type *ValTy = Val->getType();
3842         if (!ValTy->isIntOrIntVectorTy())
3843           return error(ID.Loc, "getelementptr index must be an integer");
3844         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3845           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3846           if (GEPWidth && (ValNumEl != GEPWidth))
3847             return error(
3848                 ID.Loc,
3849                 "getelementptr vector index has a wrong number of elements");
3850           // GEPWidth may have been unknown because the base is a scalar,
3851           // but it is known now.
3852           GEPWidth = ValNumEl;
3853         }
3854       }
3855 
3856       SmallPtrSet<Type*, 4> Visited;
3857       if (!Indices.empty() && !Ty->isSized(&Visited))
3858         return error(ID.Loc, "base element of getelementptr must be sized");
3859 
3860       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3861         return error(ID.Loc, "invalid getelementptr indices");
3862 
3863       if (InRangeOp) {
3864         if (*InRangeOp == 0)
3865           return error(ID.Loc,
3866                        "inrange keyword may not appear on pointer operand");
3867         --*InRangeOp;
3868       }
3869 
3870       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3871                                                       InBounds, InRangeOp);
3872     } else if (Opc == Instruction::Select) {
3873       if (Elts.size() != 3)
3874         return error(ID.Loc, "expected three operands to select");
3875       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3876                                                               Elts[2]))
3877         return error(ID.Loc, Reason);
3878       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3879     } else if (Opc == Instruction::ShuffleVector) {
3880       if (Elts.size() != 3)
3881         return error(ID.Loc, "expected three operands to shufflevector");
3882       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3883         return error(ID.Loc, "invalid operands to shufflevector");
3884       SmallVector<int, 16> Mask;
3885       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3886       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3887     } else if (Opc == Instruction::ExtractElement) {
3888       if (Elts.size() != 2)
3889         return error(ID.Loc, "expected two operands to extractelement");
3890       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3891         return error(ID.Loc, "invalid extractelement operands");
3892       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3893     } else {
3894       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3895       if (Elts.size() != 3)
3896         return error(ID.Loc, "expected three operands to insertelement");
3897       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3898         return error(ID.Loc, "invalid insertelement operands");
3899       ID.ConstantVal =
3900                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3901     }
3902 
3903     ID.Kind = ValID::t_Constant;
3904     return false;
3905   }
3906   }
3907 
3908   Lex.Lex();
3909   return false;
3910 }
3911 
3912 /// parseGlobalValue - parse a global value with the specified type.
3913 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3914   C = nullptr;
3915   ValID ID;
3916   Value *V = nullptr;
3917   bool Parsed = parseValID(ID) ||
3918                 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3919   if (V && !(C = dyn_cast<Constant>(V)))
3920     return error(ID.Loc, "global values must be constants");
3921   return Parsed;
3922 }
3923 
3924 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3925   Type *Ty = nullptr;
3926   return parseType(Ty) || parseGlobalValue(Ty, V);
3927 }
3928 
3929 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3930   C = nullptr;
3931 
3932   LocTy KwLoc = Lex.getLoc();
3933   if (!EatIfPresent(lltok::kw_comdat))
3934     return false;
3935 
3936   if (EatIfPresent(lltok::lparen)) {
3937     if (Lex.getKind() != lltok::ComdatVar)
3938       return tokError("expected comdat variable");
3939     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3940     Lex.Lex();
3941     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3942       return true;
3943   } else {
3944     if (GlobalName.empty())
3945       return tokError("comdat cannot be unnamed");
3946     C = getComdat(std::string(GlobalName), KwLoc);
3947   }
3948 
3949   return false;
3950 }
3951 
3952 /// parseGlobalValueVector
3953 ///   ::= /*empty*/
3954 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3955 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3956                                       Optional<unsigned> *InRangeOp) {
3957   // Empty list.
3958   if (Lex.getKind() == lltok::rbrace ||
3959       Lex.getKind() == lltok::rsquare ||
3960       Lex.getKind() == lltok::greater ||
3961       Lex.getKind() == lltok::rparen)
3962     return false;
3963 
3964   do {
3965     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3966       *InRangeOp = Elts.size();
3967 
3968     Constant *C;
3969     if (parseGlobalTypeAndValue(C))
3970       return true;
3971     Elts.push_back(C);
3972   } while (EatIfPresent(lltok::comma));
3973 
3974   return false;
3975 }
3976 
3977 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
3978   SmallVector<Metadata *, 16> Elts;
3979   if (parseMDNodeVector(Elts))
3980     return true;
3981 
3982   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3983   return false;
3984 }
3985 
3986 /// MDNode:
3987 ///  ::= !{ ... }
3988 ///  ::= !7
3989 ///  ::= !DILocation(...)
3990 bool LLParser::parseMDNode(MDNode *&N) {
3991   if (Lex.getKind() == lltok::MetadataVar)
3992     return parseSpecializedMDNode(N);
3993 
3994   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
3995 }
3996 
3997 bool LLParser::parseMDNodeTail(MDNode *&N) {
3998   // !{ ... }
3999   if (Lex.getKind() == lltok::lbrace)
4000     return parseMDTuple(N);
4001 
4002   // !42
4003   return parseMDNodeID(N);
4004 }
4005 
4006 namespace {
4007 
4008 /// Structure to represent an optional metadata field.
4009 template <class FieldTy> struct MDFieldImpl {
4010   typedef MDFieldImpl ImplTy;
4011   FieldTy Val;
4012   bool Seen;
4013 
4014   void assign(FieldTy Val) {
4015     Seen = true;
4016     this->Val = std::move(Val);
4017   }
4018 
4019   explicit MDFieldImpl(FieldTy Default)
4020       : Val(std::move(Default)), Seen(false) {}
4021 };
4022 
4023 /// Structure to represent an optional metadata field that
4024 /// can be of either type (A or B) and encapsulates the
4025 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
4026 /// to reimplement the specifics for representing each Field.
4027 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
4028   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
4029   FieldTypeA A;
4030   FieldTypeB B;
4031   bool Seen;
4032 
4033   enum {
4034     IsInvalid = 0,
4035     IsTypeA = 1,
4036     IsTypeB = 2
4037   } WhatIs;
4038 
4039   void assign(FieldTypeA A) {
4040     Seen = true;
4041     this->A = std::move(A);
4042     WhatIs = IsTypeA;
4043   }
4044 
4045   void assign(FieldTypeB B) {
4046     Seen = true;
4047     this->B = std::move(B);
4048     WhatIs = IsTypeB;
4049   }
4050 
4051   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
4052       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
4053         WhatIs(IsInvalid) {}
4054 };
4055 
4056 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
4057   uint64_t Max;
4058 
4059   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
4060       : ImplTy(Default), Max(Max) {}
4061 };
4062 
4063 struct LineField : public MDUnsignedField {
4064   LineField() : MDUnsignedField(0, UINT32_MAX) {}
4065 };
4066 
4067 struct ColumnField : public MDUnsignedField {
4068   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
4069 };
4070 
4071 struct DwarfTagField : public MDUnsignedField {
4072   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
4073   DwarfTagField(dwarf::Tag DefaultTag)
4074       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
4075 };
4076 
4077 struct DwarfMacinfoTypeField : public MDUnsignedField {
4078   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
4079   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
4080     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
4081 };
4082 
4083 struct DwarfAttEncodingField : public MDUnsignedField {
4084   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
4085 };
4086 
4087 struct DwarfVirtualityField : public MDUnsignedField {
4088   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
4089 };
4090 
4091 struct DwarfLangField : public MDUnsignedField {
4092   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
4093 };
4094 
4095 struct DwarfCCField : public MDUnsignedField {
4096   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
4097 };
4098 
4099 struct EmissionKindField : public MDUnsignedField {
4100   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
4101 };
4102 
4103 struct NameTableKindField : public MDUnsignedField {
4104   NameTableKindField()
4105       : MDUnsignedField(
4106             0, (unsigned)
4107                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
4108 };
4109 
4110 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
4111   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4112 };
4113 
4114 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
4115   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4116 };
4117 
4118 struct MDAPSIntField : public MDFieldImpl<APSInt> {
4119   MDAPSIntField() : ImplTy(APSInt()) {}
4120 };
4121 
4122 struct MDSignedField : public MDFieldImpl<int64_t> {
4123   int64_t Min;
4124   int64_t Max;
4125 
4126   MDSignedField(int64_t Default = 0)
4127       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
4128   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4129       : ImplTy(Default), Min(Min), Max(Max) {}
4130 };
4131 
4132 struct MDBoolField : public MDFieldImpl<bool> {
4133   MDBoolField(bool Default = false) : ImplTy(Default) {}
4134 };
4135 
4136 struct MDField : public MDFieldImpl<Metadata *> {
4137   bool AllowNull;
4138 
4139   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4140 };
4141 
4142 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
4143   MDConstant() : ImplTy(nullptr) {}
4144 };
4145 
4146 struct MDStringField : public MDFieldImpl<MDString *> {
4147   bool AllowEmpty;
4148   MDStringField(bool AllowEmpty = true)
4149       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4150 };
4151 
4152 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4153   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4154 };
4155 
4156 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4157   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4158 };
4159 
4160 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4161   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4162       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4163 
4164   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4165                     bool AllowNull = true)
4166       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4167 
4168   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4169   bool isMDField() const { return WhatIs == IsTypeB; }
4170   int64_t getMDSignedValue() const {
4171     assert(isMDSignedField() && "Wrong field type");
4172     return A.Val;
4173   }
4174   Metadata *getMDFieldValue() const {
4175     assert(isMDField() && "Wrong field type");
4176     return B.Val;
4177   }
4178 };
4179 
4180 struct MDSignedOrUnsignedField
4181     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
4182   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
4183 
4184   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4185   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
4186   int64_t getMDSignedValue() const {
4187     assert(isMDSignedField() && "Wrong field type");
4188     return A.Val;
4189   }
4190   uint64_t getMDUnsignedValue() const {
4191     assert(isMDUnsignedField() && "Wrong field type");
4192     return B.Val;
4193   }
4194 };
4195 
4196 } // end anonymous namespace
4197 
4198 namespace llvm {
4199 
4200 template <>
4201 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4202   if (Lex.getKind() != lltok::APSInt)
4203     return tokError("expected integer");
4204 
4205   Result.assign(Lex.getAPSIntVal());
4206   Lex.Lex();
4207   return false;
4208 }
4209 
4210 template <>
4211 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4212                             MDUnsignedField &Result) {
4213   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4214     return tokError("expected unsigned integer");
4215 
4216   auto &U = Lex.getAPSIntVal();
4217   if (U.ugt(Result.Max))
4218     return tokError("value for '" + Name + "' too large, limit is " +
4219                     Twine(Result.Max));
4220   Result.assign(U.getZExtValue());
4221   assert(Result.Val <= Result.Max && "Expected value in range");
4222   Lex.Lex();
4223   return false;
4224 }
4225 
4226 template <>
4227 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4228   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4229 }
4230 template <>
4231 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4232   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4233 }
4234 
4235 template <>
4236 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4237   if (Lex.getKind() == lltok::APSInt)
4238     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4239 
4240   if (Lex.getKind() != lltok::DwarfTag)
4241     return tokError("expected DWARF tag");
4242 
4243   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4244   if (Tag == dwarf::DW_TAG_invalid)
4245     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4246   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4247 
4248   Result.assign(Tag);
4249   Lex.Lex();
4250   return false;
4251 }
4252 
4253 template <>
4254 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4255                             DwarfMacinfoTypeField &Result) {
4256   if (Lex.getKind() == lltok::APSInt)
4257     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4258 
4259   if (Lex.getKind() != lltok::DwarfMacinfo)
4260     return tokError("expected DWARF macinfo type");
4261 
4262   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4263   if (Macinfo == dwarf::DW_MACINFO_invalid)
4264     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4265                     Lex.getStrVal() + "'");
4266   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4267 
4268   Result.assign(Macinfo);
4269   Lex.Lex();
4270   return false;
4271 }
4272 
4273 template <>
4274 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4275                             DwarfVirtualityField &Result) {
4276   if (Lex.getKind() == lltok::APSInt)
4277     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4278 
4279   if (Lex.getKind() != lltok::DwarfVirtuality)
4280     return tokError("expected DWARF virtuality code");
4281 
4282   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4283   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4284     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4285                     Lex.getStrVal() + "'");
4286   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4287   Result.assign(Virtuality);
4288   Lex.Lex();
4289   return false;
4290 }
4291 
4292 template <>
4293 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4294   if (Lex.getKind() == lltok::APSInt)
4295     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4296 
4297   if (Lex.getKind() != lltok::DwarfLang)
4298     return tokError("expected DWARF language");
4299 
4300   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4301   if (!Lang)
4302     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4303                     "'");
4304   assert(Lang <= Result.Max && "Expected valid DWARF language");
4305   Result.assign(Lang);
4306   Lex.Lex();
4307   return false;
4308 }
4309 
4310 template <>
4311 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4312   if (Lex.getKind() == lltok::APSInt)
4313     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4314 
4315   if (Lex.getKind() != lltok::DwarfCC)
4316     return tokError("expected DWARF calling convention");
4317 
4318   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4319   if (!CC)
4320     return tokError("invalid DWARF calling convention" + Twine(" '") +
4321                     Lex.getStrVal() + "'");
4322   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4323   Result.assign(CC);
4324   Lex.Lex();
4325   return false;
4326 }
4327 
4328 template <>
4329 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4330                             EmissionKindField &Result) {
4331   if (Lex.getKind() == lltok::APSInt)
4332     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4333 
4334   if (Lex.getKind() != lltok::EmissionKind)
4335     return tokError("expected emission kind");
4336 
4337   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4338   if (!Kind)
4339     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4340                     "'");
4341   assert(*Kind <= Result.Max && "Expected valid emission kind");
4342   Result.assign(*Kind);
4343   Lex.Lex();
4344   return false;
4345 }
4346 
4347 template <>
4348 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4349                             NameTableKindField &Result) {
4350   if (Lex.getKind() == lltok::APSInt)
4351     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4352 
4353   if (Lex.getKind() != lltok::NameTableKind)
4354     return tokError("expected nameTable kind");
4355 
4356   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4357   if (!Kind)
4358     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4359                     "'");
4360   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4361   Result.assign((unsigned)*Kind);
4362   Lex.Lex();
4363   return false;
4364 }
4365 
4366 template <>
4367 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4368                             DwarfAttEncodingField &Result) {
4369   if (Lex.getKind() == lltok::APSInt)
4370     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4371 
4372   if (Lex.getKind() != lltok::DwarfAttEncoding)
4373     return tokError("expected DWARF type attribute encoding");
4374 
4375   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4376   if (!Encoding)
4377     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4378                     Lex.getStrVal() + "'");
4379   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4380   Result.assign(Encoding);
4381   Lex.Lex();
4382   return false;
4383 }
4384 
4385 /// DIFlagField
4386 ///  ::= uint32
4387 ///  ::= DIFlagVector
4388 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4389 template <>
4390 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4391 
4392   // parser for a single flag.
4393   auto parseFlag = [&](DINode::DIFlags &Val) {
4394     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4395       uint32_t TempVal = static_cast<uint32_t>(Val);
4396       bool Res = parseUInt32(TempVal);
4397       Val = static_cast<DINode::DIFlags>(TempVal);
4398       return Res;
4399     }
4400 
4401     if (Lex.getKind() != lltok::DIFlag)
4402       return tokError("expected debug info flag");
4403 
4404     Val = DINode::getFlag(Lex.getStrVal());
4405     if (!Val)
4406       return tokError(Twine("invalid debug info flag flag '") +
4407                       Lex.getStrVal() + "'");
4408     Lex.Lex();
4409     return false;
4410   };
4411 
4412   // parse the flags and combine them together.
4413   DINode::DIFlags Combined = DINode::FlagZero;
4414   do {
4415     DINode::DIFlags Val;
4416     if (parseFlag(Val))
4417       return true;
4418     Combined |= Val;
4419   } while (EatIfPresent(lltok::bar));
4420 
4421   Result.assign(Combined);
4422   return false;
4423 }
4424 
4425 /// DISPFlagField
4426 ///  ::= uint32
4427 ///  ::= DISPFlagVector
4428 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4429 template <>
4430 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4431 
4432   // parser for a single flag.
4433   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4434     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4435       uint32_t TempVal = static_cast<uint32_t>(Val);
4436       bool Res = parseUInt32(TempVal);
4437       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4438       return Res;
4439     }
4440 
4441     if (Lex.getKind() != lltok::DISPFlag)
4442       return tokError("expected debug info flag");
4443 
4444     Val = DISubprogram::getFlag(Lex.getStrVal());
4445     if (!Val)
4446       return tokError(Twine("invalid subprogram debug info flag '") +
4447                       Lex.getStrVal() + "'");
4448     Lex.Lex();
4449     return false;
4450   };
4451 
4452   // parse the flags and combine them together.
4453   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4454   do {
4455     DISubprogram::DISPFlags Val;
4456     if (parseFlag(Val))
4457       return true;
4458     Combined |= Val;
4459   } while (EatIfPresent(lltok::bar));
4460 
4461   Result.assign(Combined);
4462   return false;
4463 }
4464 
4465 template <>
4466 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4467   if (Lex.getKind() != lltok::APSInt)
4468     return tokError("expected signed integer");
4469 
4470   auto &S = Lex.getAPSIntVal();
4471   if (S < Result.Min)
4472     return tokError("value for '" + Name + "' too small, limit is " +
4473                     Twine(Result.Min));
4474   if (S > Result.Max)
4475     return tokError("value for '" + Name + "' too large, limit is " +
4476                     Twine(Result.Max));
4477   Result.assign(S.getExtValue());
4478   assert(Result.Val >= Result.Min && "Expected value in range");
4479   assert(Result.Val <= Result.Max && "Expected value in range");
4480   Lex.Lex();
4481   return false;
4482 }
4483 
4484 template <>
4485 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4486   switch (Lex.getKind()) {
4487   default:
4488     return tokError("expected 'true' or 'false'");
4489   case lltok::kw_true:
4490     Result.assign(true);
4491     break;
4492   case lltok::kw_false:
4493     Result.assign(false);
4494     break;
4495   }
4496   Lex.Lex();
4497   return false;
4498 }
4499 
4500 template <>
4501 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4502   if (Lex.getKind() == lltok::kw_null) {
4503     if (!Result.AllowNull)
4504       return tokError("'" + Name + "' cannot be null");
4505     Lex.Lex();
4506     Result.assign(nullptr);
4507     return false;
4508   }
4509 
4510   Metadata *MD;
4511   if (parseMetadata(MD, nullptr))
4512     return true;
4513 
4514   Result.assign(MD);
4515   return false;
4516 }
4517 
4518 template <>
4519 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4520                             MDSignedOrMDField &Result) {
4521   // Try to parse a signed int.
4522   if (Lex.getKind() == lltok::APSInt) {
4523     MDSignedField Res = Result.A;
4524     if (!parseMDField(Loc, Name, Res)) {
4525       Result.assign(Res);
4526       return false;
4527     }
4528     return true;
4529   }
4530 
4531   // Otherwise, try to parse as an MDField.
4532   MDField Res = Result.B;
4533   if (!parseMDField(Loc, Name, Res)) {
4534     Result.assign(Res);
4535     return false;
4536   }
4537 
4538   return true;
4539 }
4540 
4541 template <>
4542 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4543   LocTy ValueLoc = Lex.getLoc();
4544   std::string S;
4545   if (parseStringConstant(S))
4546     return true;
4547 
4548   if (!Result.AllowEmpty && S.empty())
4549     return error(ValueLoc, "'" + Name + "' cannot be empty");
4550 
4551   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4552   return false;
4553 }
4554 
4555 template <>
4556 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4557   SmallVector<Metadata *, 4> MDs;
4558   if (parseMDNodeVector(MDs))
4559     return true;
4560 
4561   Result.assign(std::move(MDs));
4562   return false;
4563 }
4564 
4565 template <>
4566 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4567                             ChecksumKindField &Result) {
4568   Optional<DIFile::ChecksumKind> CSKind =
4569       DIFile::getChecksumKind(Lex.getStrVal());
4570 
4571   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4572     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4573                     "'");
4574 
4575   Result.assign(*CSKind);
4576   Lex.Lex();
4577   return false;
4578 }
4579 
4580 } // end namespace llvm
4581 
4582 template <class ParserTy>
4583 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4584   do {
4585     if (Lex.getKind() != lltok::LabelStr)
4586       return tokError("expected field label here");
4587 
4588     if (ParseField())
4589       return true;
4590   } while (EatIfPresent(lltok::comma));
4591 
4592   return false;
4593 }
4594 
4595 template <class ParserTy>
4596 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4597   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4598   Lex.Lex();
4599 
4600   if (parseToken(lltok::lparen, "expected '(' here"))
4601     return true;
4602   if (Lex.getKind() != lltok::rparen)
4603     if (parseMDFieldsImplBody(ParseField))
4604       return true;
4605 
4606   ClosingLoc = Lex.getLoc();
4607   return parseToken(lltok::rparen, "expected ')' here");
4608 }
4609 
4610 template <class FieldTy>
4611 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4612   if (Result.Seen)
4613     return tokError("field '" + Name + "' cannot be specified more than once");
4614 
4615   LocTy Loc = Lex.getLoc();
4616   Lex.Lex();
4617   return parseMDField(Loc, Name, Result);
4618 }
4619 
4620 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4621   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4622 
4623 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4624   if (Lex.getStrVal() == #CLASS)                                               \
4625     return parse##CLASS(N, IsDistinct);
4626 #include "llvm/IR/Metadata.def"
4627 
4628   return tokError("expected metadata type");
4629 }
4630 
4631 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4632 #define NOP_FIELD(NAME, TYPE, INIT)
4633 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4634   if (!NAME.Seen)                                                              \
4635     return error(ClosingLoc, "missing required field '" #NAME "'");
4636 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4637   if (Lex.getStrVal() == #NAME)                                                \
4638     return parseMDField(#NAME, NAME);
4639 #define PARSE_MD_FIELDS()                                                      \
4640   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4641   do {                                                                         \
4642     LocTy ClosingLoc;                                                          \
4643     if (parseMDFieldsImpl(                                                     \
4644             [&]() -> bool {                                                    \
4645               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4646               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4647                               "'");                                            \
4648             },                                                                 \
4649             ClosingLoc))                                                       \
4650       return true;                                                             \
4651     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4652   } while (false)
4653 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4654   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4655 
4656 /// parseDILocationFields:
4657 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4658 ///   isImplicitCode: true)
4659 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4660 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4661   OPTIONAL(line, LineField, );                                                 \
4662   OPTIONAL(column, ColumnField, );                                             \
4663   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4664   OPTIONAL(inlinedAt, MDField, );                                              \
4665   OPTIONAL(isImplicitCode, MDBoolField, (false));
4666   PARSE_MD_FIELDS();
4667 #undef VISIT_MD_FIELDS
4668 
4669   Result =
4670       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4671                                    inlinedAt.Val, isImplicitCode.Val));
4672   return false;
4673 }
4674 
4675 /// parseGenericDINode:
4676 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4677 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4678 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4679   REQUIRED(tag, DwarfTagField, );                                              \
4680   OPTIONAL(header, MDStringField, );                                           \
4681   OPTIONAL(operands, MDFieldList, );
4682   PARSE_MD_FIELDS();
4683 #undef VISIT_MD_FIELDS
4684 
4685   Result = GET_OR_DISTINCT(GenericDINode,
4686                            (Context, tag.Val, header.Val, operands.Val));
4687   return false;
4688 }
4689 
4690 /// parseDISubrange:
4691 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4692 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4693 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4694 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4695 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4696   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4697   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4698   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4699   OPTIONAL(stride, MDSignedOrMDField, );
4700   PARSE_MD_FIELDS();
4701 #undef VISIT_MD_FIELDS
4702 
4703   Metadata *Count = nullptr;
4704   Metadata *LowerBound = nullptr;
4705   Metadata *UpperBound = nullptr;
4706   Metadata *Stride = nullptr;
4707   if (count.isMDSignedField())
4708     Count = ConstantAsMetadata::get(ConstantInt::getSigned(
4709         Type::getInt64Ty(Context), count.getMDSignedValue()));
4710   else if (count.isMDField())
4711     Count = count.getMDFieldValue();
4712 
4713   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4714     if (Bound.isMDSignedField())
4715       return ConstantAsMetadata::get(ConstantInt::getSigned(
4716           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4717     if (Bound.isMDField())
4718       return Bound.getMDFieldValue();
4719     return nullptr;
4720   };
4721 
4722   LowerBound = convToMetadata(lowerBound);
4723   UpperBound = convToMetadata(upperBound);
4724   Stride = convToMetadata(stride);
4725 
4726   Result = GET_OR_DISTINCT(DISubrange,
4727                            (Context, Count, LowerBound, UpperBound, Stride));
4728 
4729   return false;
4730 }
4731 
4732 /// parseDIGenericSubrange:
4733 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4734 ///   !node3)
4735 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4736 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4737   OPTIONAL(count, MDSignedOrMDField, );                                        \
4738   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4739   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4740   OPTIONAL(stride, MDSignedOrMDField, );
4741   PARSE_MD_FIELDS();
4742 #undef VISIT_MD_FIELDS
4743 
4744   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4745     if (Bound.isMDSignedField())
4746       return DIExpression::get(
4747           Context, {dwarf::DW_OP_consts,
4748                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4749     if (Bound.isMDField())
4750       return Bound.getMDFieldValue();
4751     return nullptr;
4752   };
4753 
4754   Metadata *Count = ConvToMetadata(count);
4755   Metadata *LowerBound = ConvToMetadata(lowerBound);
4756   Metadata *UpperBound = ConvToMetadata(upperBound);
4757   Metadata *Stride = ConvToMetadata(stride);
4758 
4759   Result = GET_OR_DISTINCT(DIGenericSubrange,
4760                            (Context, Count, LowerBound, UpperBound, Stride));
4761 
4762   return false;
4763 }
4764 
4765 /// parseDIEnumerator:
4766 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4767 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4768 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4769   REQUIRED(name, MDStringField, );                                             \
4770   REQUIRED(value, MDAPSIntField, );                                            \
4771   OPTIONAL(isUnsigned, MDBoolField, (false));
4772   PARSE_MD_FIELDS();
4773 #undef VISIT_MD_FIELDS
4774 
4775   if (isUnsigned.Val && value.Val.isNegative())
4776     return tokError("unsigned enumerator with negative value");
4777 
4778   APSInt Value(value.Val);
4779   // Add a leading zero so that unsigned values with the msb set are not
4780   // mistaken for negative values when used for signed enumerators.
4781   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4782     Value = Value.zext(Value.getBitWidth() + 1);
4783 
4784   Result =
4785       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4786 
4787   return false;
4788 }
4789 
4790 /// parseDIBasicType:
4791 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4792 ///                    encoding: DW_ATE_encoding, flags: 0)
4793 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4794 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4795   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4796   OPTIONAL(name, MDStringField, );                                             \
4797   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4798   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4799   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4800   OPTIONAL(flags, DIFlagField, );
4801   PARSE_MD_FIELDS();
4802 #undef VISIT_MD_FIELDS
4803 
4804   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4805                                          align.Val, encoding.Val, flags.Val));
4806   return false;
4807 }
4808 
4809 /// parseDIStringType:
4810 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4811 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4812 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4813   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4814   OPTIONAL(name, MDStringField, );                                             \
4815   OPTIONAL(stringLength, MDField, );                                           \
4816   OPTIONAL(stringLengthExpression, MDField, );                                 \
4817   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4818   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4819   OPTIONAL(encoding, DwarfAttEncodingField, );
4820   PARSE_MD_FIELDS();
4821 #undef VISIT_MD_FIELDS
4822 
4823   Result = GET_OR_DISTINCT(DIStringType,
4824                            (Context, tag.Val, name.Val, stringLength.Val,
4825                             stringLengthExpression.Val, size.Val, align.Val,
4826                             encoding.Val));
4827   return false;
4828 }
4829 
4830 /// parseDIDerivedType:
4831 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4832 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4833 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4834 ///                      dwarfAddressSpace: 3)
4835 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4836 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4837   REQUIRED(tag, DwarfTagField, );                                              \
4838   OPTIONAL(name, MDStringField, );                                             \
4839   OPTIONAL(file, MDField, );                                                   \
4840   OPTIONAL(line, LineField, );                                                 \
4841   OPTIONAL(scope, MDField, );                                                  \
4842   REQUIRED(baseType, MDField, );                                               \
4843   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4844   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4845   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4846   OPTIONAL(flags, DIFlagField, );                                              \
4847   OPTIONAL(extraData, MDField, );                                              \
4848   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4849   PARSE_MD_FIELDS();
4850 #undef VISIT_MD_FIELDS
4851 
4852   Optional<unsigned> DWARFAddressSpace;
4853   if (dwarfAddressSpace.Val != UINT32_MAX)
4854     DWARFAddressSpace = dwarfAddressSpace.Val;
4855 
4856   Result = GET_OR_DISTINCT(DIDerivedType,
4857                            (Context, tag.Val, name.Val, file.Val, line.Val,
4858                             scope.Val, baseType.Val, size.Val, align.Val,
4859                             offset.Val, DWARFAddressSpace, flags.Val,
4860                             extraData.Val));
4861   return false;
4862 }
4863 
4864 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4865 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4866   REQUIRED(tag, DwarfTagField, );                                              \
4867   OPTIONAL(name, MDStringField, );                                             \
4868   OPTIONAL(file, MDField, );                                                   \
4869   OPTIONAL(line, LineField, );                                                 \
4870   OPTIONAL(scope, MDField, );                                                  \
4871   OPTIONAL(baseType, MDField, );                                               \
4872   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4873   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4874   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4875   OPTIONAL(flags, DIFlagField, );                                              \
4876   OPTIONAL(elements, MDField, );                                               \
4877   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4878   OPTIONAL(vtableHolder, MDField, );                                           \
4879   OPTIONAL(templateParams, MDField, );                                         \
4880   OPTIONAL(identifier, MDStringField, );                                       \
4881   OPTIONAL(discriminator, MDField, );                                          \
4882   OPTIONAL(dataLocation, MDField, );                                           \
4883   OPTIONAL(associated, MDField, );                                             \
4884   OPTIONAL(allocated, MDField, );                                              \
4885   OPTIONAL(rank, MDSignedOrMDField, );
4886   PARSE_MD_FIELDS();
4887 #undef VISIT_MD_FIELDS
4888 
4889   Metadata *Rank = nullptr;
4890   if (rank.isMDSignedField())
4891     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4892         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4893   else if (rank.isMDField())
4894     Rank = rank.getMDFieldValue();
4895 
4896   // If this has an identifier try to build an ODR type.
4897   if (identifier.Val)
4898     if (auto *CT = DICompositeType::buildODRType(
4899             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4900             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4901             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4902             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4903             Rank)) {
4904       Result = CT;
4905       return false;
4906     }
4907 
4908   // Create a new node, and save it in the context if it belongs in the type
4909   // map.
4910   Result = GET_OR_DISTINCT(
4911       DICompositeType,
4912       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4913        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4914        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4915        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4916        Rank));
4917   return false;
4918 }
4919 
4920 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4921 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4922   OPTIONAL(flags, DIFlagField, );                                              \
4923   OPTIONAL(cc, DwarfCCField, );                                                \
4924   REQUIRED(types, MDField, );
4925   PARSE_MD_FIELDS();
4926 #undef VISIT_MD_FIELDS
4927 
4928   Result = GET_OR_DISTINCT(DISubroutineType,
4929                            (Context, flags.Val, cc.Val, types.Val));
4930   return false;
4931 }
4932 
4933 /// parseDIFileType:
4934 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4935 ///                   checksumkind: CSK_MD5,
4936 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4937 ///                   source: "source file contents")
4938 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4939   // The default constructed value for checksumkind is required, but will never
4940   // be used, as the parser checks if the field was actually Seen before using
4941   // the Val.
4942 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4943   REQUIRED(filename, MDStringField, );                                         \
4944   REQUIRED(directory, MDStringField, );                                        \
4945   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4946   OPTIONAL(checksum, MDStringField, );                                         \
4947   OPTIONAL(source, MDStringField, );
4948   PARSE_MD_FIELDS();
4949 #undef VISIT_MD_FIELDS
4950 
4951   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4952   if (checksumkind.Seen && checksum.Seen)
4953     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4954   else if (checksumkind.Seen || checksum.Seen)
4955     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4956 
4957   Optional<MDString *> OptSource;
4958   if (source.Seen)
4959     OptSource = source.Val;
4960   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4961                                     OptChecksum, OptSource));
4962   return false;
4963 }
4964 
4965 /// parseDICompileUnit:
4966 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4967 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4968 ///                      splitDebugFilename: "abc.debug",
4969 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4970 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4971 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4972 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4973   if (!IsDistinct)
4974     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4975 
4976 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4977   REQUIRED(language, DwarfLangField, );                                        \
4978   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4979   OPTIONAL(producer, MDStringField, );                                         \
4980   OPTIONAL(isOptimized, MDBoolField, );                                        \
4981   OPTIONAL(flags, MDStringField, );                                            \
4982   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4983   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4984   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4985   OPTIONAL(enums, MDField, );                                                  \
4986   OPTIONAL(retainedTypes, MDField, );                                          \
4987   OPTIONAL(globals, MDField, );                                                \
4988   OPTIONAL(imports, MDField, );                                                \
4989   OPTIONAL(macros, MDField, );                                                 \
4990   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4991   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4992   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4993   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4994   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4995   OPTIONAL(sysroot, MDStringField, );                                          \
4996   OPTIONAL(sdk, MDStringField, );
4997   PARSE_MD_FIELDS();
4998 #undef VISIT_MD_FIELDS
4999 
5000   Result = DICompileUnit::getDistinct(
5001       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
5002       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
5003       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
5004       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
5005       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
5006   return false;
5007 }
5008 
5009 /// parseDISubprogram:
5010 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
5011 ///                     file: !1, line: 7, type: !2, isLocal: false,
5012 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
5013 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
5014 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
5015 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
5016 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
5017 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
5018   auto Loc = Lex.getLoc();
5019 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5020   OPTIONAL(scope, MDField, );                                                  \
5021   OPTIONAL(name, MDStringField, );                                             \
5022   OPTIONAL(linkageName, MDStringField, );                                      \
5023   OPTIONAL(file, MDField, );                                                   \
5024   OPTIONAL(line, LineField, );                                                 \
5025   OPTIONAL(type, MDField, );                                                   \
5026   OPTIONAL(isLocal, MDBoolField, );                                            \
5027   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5028   OPTIONAL(scopeLine, LineField, );                                            \
5029   OPTIONAL(containingType, MDField, );                                         \
5030   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
5031   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
5032   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
5033   OPTIONAL(flags, DIFlagField, );                                              \
5034   OPTIONAL(spFlags, DISPFlagField, );                                          \
5035   OPTIONAL(isOptimized, MDBoolField, );                                        \
5036   OPTIONAL(unit, MDField, );                                                   \
5037   OPTIONAL(templateParams, MDField, );                                         \
5038   OPTIONAL(declaration, MDField, );                                            \
5039   OPTIONAL(retainedNodes, MDField, );                                          \
5040   OPTIONAL(thrownTypes, MDField, );
5041   PARSE_MD_FIELDS();
5042 #undef VISIT_MD_FIELDS
5043 
5044   // An explicit spFlags field takes precedence over individual fields in
5045   // older IR versions.
5046   DISubprogram::DISPFlags SPFlags =
5047       spFlags.Seen ? spFlags.Val
5048                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
5049                                              isOptimized.Val, virtuality.Val);
5050   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
5051     return Lex.Error(
5052         Loc,
5053         "missing 'distinct', required for !DISubprogram that is a Definition");
5054   Result = GET_OR_DISTINCT(
5055       DISubprogram,
5056       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
5057        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
5058        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
5059        declaration.Val, retainedNodes.Val, thrownTypes.Val));
5060   return false;
5061 }
5062 
5063 /// parseDILexicalBlock:
5064 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
5065 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
5066 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5067   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5068   OPTIONAL(file, MDField, );                                                   \
5069   OPTIONAL(line, LineField, );                                                 \
5070   OPTIONAL(column, ColumnField, );
5071   PARSE_MD_FIELDS();
5072 #undef VISIT_MD_FIELDS
5073 
5074   Result = GET_OR_DISTINCT(
5075       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
5076   return false;
5077 }
5078 
5079 /// parseDILexicalBlockFile:
5080 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
5081 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
5082 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5083   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5084   OPTIONAL(file, MDField, );                                                   \
5085   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
5086   PARSE_MD_FIELDS();
5087 #undef VISIT_MD_FIELDS
5088 
5089   Result = GET_OR_DISTINCT(DILexicalBlockFile,
5090                            (Context, scope.Val, file.Val, discriminator.Val));
5091   return false;
5092 }
5093 
5094 /// parseDICommonBlock:
5095 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
5096 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
5097 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5098   REQUIRED(scope, MDField, );                                                  \
5099   OPTIONAL(declaration, MDField, );                                            \
5100   OPTIONAL(name, MDStringField, );                                             \
5101   OPTIONAL(file, MDField, );                                                   \
5102   OPTIONAL(line, LineField, );
5103   PARSE_MD_FIELDS();
5104 #undef VISIT_MD_FIELDS
5105 
5106   Result = GET_OR_DISTINCT(DICommonBlock,
5107                            (Context, scope.Val, declaration.Val, name.Val,
5108                             file.Val, line.Val));
5109   return false;
5110 }
5111 
5112 /// parseDINamespace:
5113 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
5114 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
5115 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5116   REQUIRED(scope, MDField, );                                                  \
5117   OPTIONAL(name, MDStringField, );                                             \
5118   OPTIONAL(exportSymbols, MDBoolField, );
5119   PARSE_MD_FIELDS();
5120 #undef VISIT_MD_FIELDS
5121 
5122   Result = GET_OR_DISTINCT(DINamespace,
5123                            (Context, scope.Val, name.Val, exportSymbols.Val));
5124   return false;
5125 }
5126 
5127 /// parseDIMacro:
5128 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5129 ///   "SomeValue")
5130 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5131 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5132   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
5133   OPTIONAL(line, LineField, );                                                 \
5134   REQUIRED(name, MDStringField, );                                             \
5135   OPTIONAL(value, MDStringField, );
5136   PARSE_MD_FIELDS();
5137 #undef VISIT_MD_FIELDS
5138 
5139   Result = GET_OR_DISTINCT(DIMacro,
5140                            (Context, type.Val, line.Val, name.Val, value.Val));
5141   return false;
5142 }
5143 
5144 /// parseDIMacroFile:
5145 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
5146 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5147 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5148   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
5149   OPTIONAL(line, LineField, );                                                 \
5150   REQUIRED(file, MDField, );                                                   \
5151   OPTIONAL(nodes, MDField, );
5152   PARSE_MD_FIELDS();
5153 #undef VISIT_MD_FIELDS
5154 
5155   Result = GET_OR_DISTINCT(DIMacroFile,
5156                            (Context, type.Val, line.Val, file.Val, nodes.Val));
5157   return false;
5158 }
5159 
5160 /// parseDIModule:
5161 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5162 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5163 ///   file: !1, line: 4, isDecl: false)
5164 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5165 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5166   REQUIRED(scope, MDField, );                                                  \
5167   REQUIRED(name, MDStringField, );                                             \
5168   OPTIONAL(configMacros, MDStringField, );                                     \
5169   OPTIONAL(includePath, MDStringField, );                                      \
5170   OPTIONAL(apinotes, MDStringField, );                                         \
5171   OPTIONAL(file, MDField, );                                                   \
5172   OPTIONAL(line, LineField, );                                                 \
5173   OPTIONAL(isDecl, MDBoolField, );
5174   PARSE_MD_FIELDS();
5175 #undef VISIT_MD_FIELDS
5176 
5177   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5178                                       configMacros.Val, includePath.Val,
5179                                       apinotes.Val, line.Val, isDecl.Val));
5180   return false;
5181 }
5182 
5183 /// parseDITemplateTypeParameter:
5184 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5185 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5186 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5187   OPTIONAL(name, MDStringField, );                                             \
5188   REQUIRED(type, MDField, );                                                   \
5189   OPTIONAL(defaulted, MDBoolField, );
5190   PARSE_MD_FIELDS();
5191 #undef VISIT_MD_FIELDS
5192 
5193   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5194                            (Context, name.Val, type.Val, defaulted.Val));
5195   return false;
5196 }
5197 
5198 /// parseDITemplateValueParameter:
5199 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5200 ///                                 name: "V", type: !1, defaulted: false,
5201 ///                                 value: i32 7)
5202 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5203 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5204   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5205   OPTIONAL(name, MDStringField, );                                             \
5206   OPTIONAL(type, MDField, );                                                   \
5207   OPTIONAL(defaulted, MDBoolField, );                                          \
5208   REQUIRED(value, MDField, );
5209 
5210   PARSE_MD_FIELDS();
5211 #undef VISIT_MD_FIELDS
5212 
5213   Result = GET_OR_DISTINCT(
5214       DITemplateValueParameter,
5215       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5216   return false;
5217 }
5218 
5219 /// parseDIGlobalVariable:
5220 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5221 ///                         file: !1, line: 7, type: !2, isLocal: false,
5222 ///                         isDefinition: true, templateParams: !3,
5223 ///                         declaration: !4, align: 8)
5224 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5225 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5226   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
5227   OPTIONAL(scope, MDField, );                                                  \
5228   OPTIONAL(linkageName, MDStringField, );                                      \
5229   OPTIONAL(file, MDField, );                                                   \
5230   OPTIONAL(line, LineField, );                                                 \
5231   OPTIONAL(type, MDField, );                                                   \
5232   OPTIONAL(isLocal, MDBoolField, );                                            \
5233   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5234   OPTIONAL(templateParams, MDField, );                                         \
5235   OPTIONAL(declaration, MDField, );                                            \
5236   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5237   PARSE_MD_FIELDS();
5238 #undef VISIT_MD_FIELDS
5239 
5240   Result =
5241       GET_OR_DISTINCT(DIGlobalVariable,
5242                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5243                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5244                        declaration.Val, templateParams.Val, align.Val));
5245   return false;
5246 }
5247 
5248 /// parseDILocalVariable:
5249 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5250 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5251 ///                        align: 8)
5252 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5253 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5254 ///                        align: 8)
5255 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5256 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5257   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5258   OPTIONAL(name, MDStringField, );                                             \
5259   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5260   OPTIONAL(file, MDField, );                                                   \
5261   OPTIONAL(line, LineField, );                                                 \
5262   OPTIONAL(type, MDField, );                                                   \
5263   OPTIONAL(flags, DIFlagField, );                                              \
5264   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5265   PARSE_MD_FIELDS();
5266 #undef VISIT_MD_FIELDS
5267 
5268   Result = GET_OR_DISTINCT(DILocalVariable,
5269                            (Context, scope.Val, name.Val, file.Val, line.Val,
5270                             type.Val, arg.Val, flags.Val, align.Val));
5271   return false;
5272 }
5273 
5274 /// parseDILabel:
5275 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5276 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5277 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5278   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5279   REQUIRED(name, MDStringField, );                                             \
5280   REQUIRED(file, MDField, );                                                   \
5281   REQUIRED(line, LineField, );
5282   PARSE_MD_FIELDS();
5283 #undef VISIT_MD_FIELDS
5284 
5285   Result = GET_OR_DISTINCT(DILabel,
5286                            (Context, scope.Val, name.Val, file.Val, line.Val));
5287   return false;
5288 }
5289 
5290 /// parseDIExpression:
5291 ///   ::= !DIExpression(0, 7, -1)
5292 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5293   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5294   Lex.Lex();
5295 
5296   if (parseToken(lltok::lparen, "expected '(' here"))
5297     return true;
5298 
5299   SmallVector<uint64_t, 8> Elements;
5300   if (Lex.getKind() != lltok::rparen)
5301     do {
5302       if (Lex.getKind() == lltok::DwarfOp) {
5303         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5304           Lex.Lex();
5305           Elements.push_back(Op);
5306           continue;
5307         }
5308         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5309       }
5310 
5311       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5312         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5313           Lex.Lex();
5314           Elements.push_back(Op);
5315           continue;
5316         }
5317         return tokError(Twine("invalid DWARF attribute encoding '") +
5318                         Lex.getStrVal() + "'");
5319       }
5320 
5321       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5322         return tokError("expected unsigned integer");
5323 
5324       auto &U = Lex.getAPSIntVal();
5325       if (U.ugt(UINT64_MAX))
5326         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5327       Elements.push_back(U.getZExtValue());
5328       Lex.Lex();
5329     } while (EatIfPresent(lltok::comma));
5330 
5331   if (parseToken(lltok::rparen, "expected ')' here"))
5332     return true;
5333 
5334   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5335   return false;
5336 }
5337 
5338 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5339   return parseDIArgList(Result, IsDistinct, nullptr);
5340 }
5341 /// ParseDIArgList:
5342 ///   ::= !DIArgList(i32 7, i64 %0)
5343 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5344                               PerFunctionState *PFS) {
5345   assert(PFS && "Expected valid function state");
5346   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5347   Lex.Lex();
5348 
5349   if (parseToken(lltok::lparen, "expected '(' here"))
5350     return true;
5351 
5352   SmallVector<ValueAsMetadata *, 4> Args;
5353   if (Lex.getKind() != lltok::rparen)
5354     do {
5355       Metadata *MD;
5356       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5357         return true;
5358       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5359     } while (EatIfPresent(lltok::comma));
5360 
5361   if (parseToken(lltok::rparen, "expected ')' here"))
5362     return true;
5363 
5364   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5365   return false;
5366 }
5367 
5368 /// parseDIGlobalVariableExpression:
5369 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5370 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5371                                                bool IsDistinct) {
5372 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5373   REQUIRED(var, MDField, );                                                    \
5374   REQUIRED(expr, MDField, );
5375   PARSE_MD_FIELDS();
5376 #undef VISIT_MD_FIELDS
5377 
5378   Result =
5379       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5380   return false;
5381 }
5382 
5383 /// parseDIObjCProperty:
5384 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5385 ///                       getter: "getFoo", attributes: 7, type: !2)
5386 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5387 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5388   OPTIONAL(name, MDStringField, );                                             \
5389   OPTIONAL(file, MDField, );                                                   \
5390   OPTIONAL(line, LineField, );                                                 \
5391   OPTIONAL(setter, MDStringField, );                                           \
5392   OPTIONAL(getter, MDStringField, );                                           \
5393   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5394   OPTIONAL(type, MDField, );
5395   PARSE_MD_FIELDS();
5396 #undef VISIT_MD_FIELDS
5397 
5398   Result = GET_OR_DISTINCT(DIObjCProperty,
5399                            (Context, name.Val, file.Val, line.Val, setter.Val,
5400                             getter.Val, attributes.Val, type.Val));
5401   return false;
5402 }
5403 
5404 /// parseDIImportedEntity:
5405 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5406 ///                         line: 7, name: "foo")
5407 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5408 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5409   REQUIRED(tag, DwarfTagField, );                                              \
5410   REQUIRED(scope, MDField, );                                                  \
5411   OPTIONAL(entity, MDField, );                                                 \
5412   OPTIONAL(file, MDField, );                                                   \
5413   OPTIONAL(line, LineField, );                                                 \
5414   OPTIONAL(name, MDStringField, );
5415   PARSE_MD_FIELDS();
5416 #undef VISIT_MD_FIELDS
5417 
5418   Result = GET_OR_DISTINCT(
5419       DIImportedEntity,
5420       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5421   return false;
5422 }
5423 
5424 #undef PARSE_MD_FIELD
5425 #undef NOP_FIELD
5426 #undef REQUIRE_FIELD
5427 #undef DECLARE_FIELD
5428 
5429 /// parseMetadataAsValue
5430 ///  ::= metadata i32 %local
5431 ///  ::= metadata i32 @global
5432 ///  ::= metadata i32 7
5433 ///  ::= metadata !0
5434 ///  ::= metadata !{...}
5435 ///  ::= metadata !"string"
5436 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5437   // Note: the type 'metadata' has already been parsed.
5438   Metadata *MD;
5439   if (parseMetadata(MD, &PFS))
5440     return true;
5441 
5442   V = MetadataAsValue::get(Context, MD);
5443   return false;
5444 }
5445 
5446 /// parseValueAsMetadata
5447 ///  ::= i32 %local
5448 ///  ::= i32 @global
5449 ///  ::= i32 7
5450 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5451                                     PerFunctionState *PFS) {
5452   Type *Ty;
5453   LocTy Loc;
5454   if (parseType(Ty, TypeMsg, Loc))
5455     return true;
5456   if (Ty->isMetadataTy())
5457     return error(Loc, "invalid metadata-value-metadata roundtrip");
5458 
5459   Value *V;
5460   if (parseValue(Ty, V, PFS))
5461     return true;
5462 
5463   MD = ValueAsMetadata::get(V);
5464   return false;
5465 }
5466 
5467 /// parseMetadata
5468 ///  ::= i32 %local
5469 ///  ::= i32 @global
5470 ///  ::= i32 7
5471 ///  ::= !42
5472 ///  ::= !{...}
5473 ///  ::= !"string"
5474 ///  ::= !DILocation(...)
5475 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5476   if (Lex.getKind() == lltok::MetadataVar) {
5477     MDNode *N;
5478     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5479     // so parsing this requires a Function State.
5480     if (Lex.getStrVal() == "DIArgList") {
5481       if (parseDIArgList(N, false, PFS))
5482         return true;
5483     } else if (parseSpecializedMDNode(N)) {
5484       return true;
5485     }
5486     MD = N;
5487     return false;
5488   }
5489 
5490   // ValueAsMetadata:
5491   // <type> <value>
5492   if (Lex.getKind() != lltok::exclaim)
5493     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5494 
5495   // '!'.
5496   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5497   Lex.Lex();
5498 
5499   // MDString:
5500   //   ::= '!' STRINGCONSTANT
5501   if (Lex.getKind() == lltok::StringConstant) {
5502     MDString *S;
5503     if (parseMDString(S))
5504       return true;
5505     MD = S;
5506     return false;
5507   }
5508 
5509   // MDNode:
5510   // !{ ... }
5511   // !7
5512   MDNode *N;
5513   if (parseMDNodeTail(N))
5514     return true;
5515   MD = N;
5516   return false;
5517 }
5518 
5519 //===----------------------------------------------------------------------===//
5520 // Function Parsing.
5521 //===----------------------------------------------------------------------===//
5522 
5523 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5524                                    PerFunctionState *PFS, bool IsCall) {
5525   if (Ty->isFunctionTy())
5526     return error(ID.Loc, "functions are not values, refer to them as pointers");
5527 
5528   switch (ID.Kind) {
5529   case ValID::t_LocalID:
5530     if (!PFS)
5531       return error(ID.Loc, "invalid use of function-local name");
5532     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5533     return V == nullptr;
5534   case ValID::t_LocalName:
5535     if (!PFS)
5536       return error(ID.Loc, "invalid use of function-local name");
5537     V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall);
5538     return V == nullptr;
5539   case ValID::t_InlineAsm: {
5540     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5541       return error(ID.Loc, "invalid type for inline asm constraint string");
5542     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5543                        (ID.UIntVal >> 1) & 1,
5544                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5545     return false;
5546   }
5547   case ValID::t_GlobalName:
5548     V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5549     return V == nullptr;
5550   case ValID::t_GlobalID:
5551     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5552     return V == nullptr;
5553   case ValID::t_APSInt:
5554     if (!Ty->isIntegerTy())
5555       return error(ID.Loc, "integer constant must have integer type");
5556     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5557     V = ConstantInt::get(Context, ID.APSIntVal);
5558     return false;
5559   case ValID::t_APFloat:
5560     if (!Ty->isFloatingPointTy() ||
5561         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5562       return error(ID.Loc, "floating point constant invalid for type");
5563 
5564     // The lexer has no type info, so builds all half, bfloat, float, and double
5565     // FP constants as double.  Fix this here.  Long double does not need this.
5566     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5567       // Check for signaling before potentially converting and losing that info.
5568       bool IsSNAN = ID.APFloatVal.isSignaling();
5569       bool Ignored;
5570       if (Ty->isHalfTy())
5571         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5572                               &Ignored);
5573       else if (Ty->isBFloatTy())
5574         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5575                               &Ignored);
5576       else if (Ty->isFloatTy())
5577         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5578                               &Ignored);
5579       if (IsSNAN) {
5580         // The convert call above may quiet an SNaN, so manufacture another
5581         // SNaN. The bitcast works because the payload (significand) parameter
5582         // is truncated to fit.
5583         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5584         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5585                                          ID.APFloatVal.isNegative(), &Payload);
5586       }
5587     }
5588     V = ConstantFP::get(Context, ID.APFloatVal);
5589 
5590     if (V->getType() != Ty)
5591       return error(ID.Loc, "floating point constant does not have type '" +
5592                                getTypeString(Ty) + "'");
5593 
5594     return false;
5595   case ValID::t_Null:
5596     if (!Ty->isPointerTy())
5597       return error(ID.Loc, "null must be a pointer type");
5598     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5599     return false;
5600   case ValID::t_Undef:
5601     // FIXME: LabelTy should not be a first-class type.
5602     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5603       return error(ID.Loc, "invalid type for undef constant");
5604     V = UndefValue::get(Ty);
5605     return false;
5606   case ValID::t_EmptyArray:
5607     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5608       return error(ID.Loc, "invalid empty array initializer");
5609     V = UndefValue::get(Ty);
5610     return false;
5611   case ValID::t_Zero:
5612     // FIXME: LabelTy should not be a first-class type.
5613     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5614       return error(ID.Loc, "invalid type for null constant");
5615     V = Constant::getNullValue(Ty);
5616     return false;
5617   case ValID::t_None:
5618     if (!Ty->isTokenTy())
5619       return error(ID.Loc, "invalid type for none constant");
5620     V = Constant::getNullValue(Ty);
5621     return false;
5622   case ValID::t_Poison:
5623     // FIXME: LabelTy should not be a first-class type.
5624     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5625       return error(ID.Loc, "invalid type for poison constant");
5626     V = PoisonValue::get(Ty);
5627     return false;
5628   case ValID::t_Constant:
5629     if (ID.ConstantVal->getType() != Ty)
5630       return error(ID.Loc, "constant expression type mismatch");
5631     V = ID.ConstantVal;
5632     return false;
5633   case ValID::t_ConstantStruct:
5634   case ValID::t_PackedConstantStruct:
5635     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5636       if (ST->getNumElements() != ID.UIntVal)
5637         return error(ID.Loc,
5638                      "initializer with struct type has wrong # elements");
5639       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5640         return error(ID.Loc, "packed'ness of initializer and type don't match");
5641 
5642       // Verify that the elements are compatible with the structtype.
5643       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5644         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5645           return error(
5646               ID.Loc,
5647               "element " + Twine(i) +
5648                   " of struct initializer doesn't match struct element type");
5649 
5650       V = ConstantStruct::get(
5651           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5652     } else
5653       return error(ID.Loc, "constant expression type mismatch");
5654     return false;
5655   }
5656   llvm_unreachable("Invalid ValID");
5657 }
5658 
5659 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5660   C = nullptr;
5661   ValID ID;
5662   auto Loc = Lex.getLoc();
5663   if (parseValID(ID, /*PFS=*/nullptr))
5664     return true;
5665   switch (ID.Kind) {
5666   case ValID::t_APSInt:
5667   case ValID::t_APFloat:
5668   case ValID::t_Undef:
5669   case ValID::t_Constant:
5670   case ValID::t_ConstantStruct:
5671   case ValID::t_PackedConstantStruct: {
5672     Value *V;
5673     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5674       return true;
5675     assert(isa<Constant>(V) && "Expected a constant value");
5676     C = cast<Constant>(V);
5677     return false;
5678   }
5679   case ValID::t_Null:
5680     C = Constant::getNullValue(Ty);
5681     return false;
5682   default:
5683     return error(Loc, "expected a constant value");
5684   }
5685 }
5686 
5687 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5688   V = nullptr;
5689   ValID ID;
5690   return parseValID(ID, PFS) ||
5691          convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5692 }
5693 
5694 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5695   Type *Ty = nullptr;
5696   return parseType(Ty) || parseValue(Ty, V, PFS);
5697 }
5698 
5699 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5700                                       PerFunctionState &PFS) {
5701   Value *V;
5702   Loc = Lex.getLoc();
5703   if (parseTypeAndValue(V, PFS))
5704     return true;
5705   if (!isa<BasicBlock>(V))
5706     return error(Loc, "expected a basic block");
5707   BB = cast<BasicBlock>(V);
5708   return false;
5709 }
5710 
5711 /// FunctionHeader
5712 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5713 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5714 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5715 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5716 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5717   // parse the linkage.
5718   LocTy LinkageLoc = Lex.getLoc();
5719   unsigned Linkage;
5720   unsigned Visibility;
5721   unsigned DLLStorageClass;
5722   bool DSOLocal;
5723   AttrBuilder RetAttrs;
5724   unsigned CC;
5725   bool HasLinkage;
5726   Type *RetType = nullptr;
5727   LocTy RetTypeLoc = Lex.getLoc();
5728   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5729                            DSOLocal) ||
5730       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5731       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5732     return true;
5733 
5734   // Verify that the linkage is ok.
5735   switch ((GlobalValue::LinkageTypes)Linkage) {
5736   case GlobalValue::ExternalLinkage:
5737     break; // always ok.
5738   case GlobalValue::ExternalWeakLinkage:
5739     if (IsDefine)
5740       return error(LinkageLoc, "invalid linkage for function definition");
5741     break;
5742   case GlobalValue::PrivateLinkage:
5743   case GlobalValue::InternalLinkage:
5744   case GlobalValue::AvailableExternallyLinkage:
5745   case GlobalValue::LinkOnceAnyLinkage:
5746   case GlobalValue::LinkOnceODRLinkage:
5747   case GlobalValue::WeakAnyLinkage:
5748   case GlobalValue::WeakODRLinkage:
5749     if (!IsDefine)
5750       return error(LinkageLoc, "invalid linkage for function declaration");
5751     break;
5752   case GlobalValue::AppendingLinkage:
5753   case GlobalValue::CommonLinkage:
5754     return error(LinkageLoc, "invalid function linkage type");
5755   }
5756 
5757   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5758     return error(LinkageLoc,
5759                  "symbol with local linkage must have default visibility");
5760 
5761   if (!FunctionType::isValidReturnType(RetType))
5762     return error(RetTypeLoc, "invalid function return type");
5763 
5764   LocTy NameLoc = Lex.getLoc();
5765 
5766   std::string FunctionName;
5767   if (Lex.getKind() == lltok::GlobalVar) {
5768     FunctionName = Lex.getStrVal();
5769   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5770     unsigned NameID = Lex.getUIntVal();
5771 
5772     if (NameID != NumberedVals.size())
5773       return tokError("function expected to be numbered '%" +
5774                       Twine(NumberedVals.size()) + "'");
5775   } else {
5776     return tokError("expected function name");
5777   }
5778 
5779   Lex.Lex();
5780 
5781   if (Lex.getKind() != lltok::lparen)
5782     return tokError("expected '(' in function argument list");
5783 
5784   SmallVector<ArgInfo, 8> ArgList;
5785   bool IsVarArg;
5786   AttrBuilder FuncAttrs;
5787   std::vector<unsigned> FwdRefAttrGrps;
5788   LocTy BuiltinLoc;
5789   std::string Section;
5790   std::string Partition;
5791   MaybeAlign Alignment;
5792   std::string GC;
5793   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5794   unsigned AddrSpace = 0;
5795   Constant *Prefix = nullptr;
5796   Constant *Prologue = nullptr;
5797   Constant *PersonalityFn = nullptr;
5798   Comdat *C;
5799 
5800   if (parseArgumentList(ArgList, IsVarArg) ||
5801       parseOptionalUnnamedAddr(UnnamedAddr) ||
5802       parseOptionalProgramAddrSpace(AddrSpace) ||
5803       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5804                                  BuiltinLoc) ||
5805       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5806       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5807       parseOptionalComdat(FunctionName, C) ||
5808       parseOptionalAlignment(Alignment) ||
5809       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5810       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5811       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5812       (EatIfPresent(lltok::kw_personality) &&
5813        parseGlobalTypeAndValue(PersonalityFn)))
5814     return true;
5815 
5816   if (FuncAttrs.contains(Attribute::Builtin))
5817     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5818 
5819   // If the alignment was parsed as an attribute, move to the alignment field.
5820   if (FuncAttrs.hasAlignmentAttr()) {
5821     Alignment = FuncAttrs.getAlignment();
5822     FuncAttrs.removeAttribute(Attribute::Alignment);
5823   }
5824 
5825   // Okay, if we got here, the function is syntactically valid.  Convert types
5826   // and do semantic checks.
5827   std::vector<Type*> ParamTypeList;
5828   SmallVector<AttributeSet, 8> Attrs;
5829 
5830   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5831     ParamTypeList.push_back(ArgList[i].Ty);
5832     Attrs.push_back(ArgList[i].Attrs);
5833   }
5834 
5835   AttributeList PAL =
5836       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5837                          AttributeSet::get(Context, RetAttrs), Attrs);
5838 
5839   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5840     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5841 
5842   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5843   PointerType *PFT = PointerType::get(FT, AddrSpace);
5844 
5845   Fn = nullptr;
5846   if (!FunctionName.empty()) {
5847     // If this was a definition of a forward reference, remove the definition
5848     // from the forward reference table and fill in the forward ref.
5849     auto FRVI = ForwardRefVals.find(FunctionName);
5850     if (FRVI != ForwardRefVals.end()) {
5851       Fn = M->getFunction(FunctionName);
5852       if (!Fn)
5853         return error(FRVI->second.second, "invalid forward reference to "
5854                                           "function as global value!");
5855       if (Fn->getType() != PFT)
5856         return error(FRVI->second.second,
5857                      "invalid forward reference to "
5858                      "function '" +
5859                          FunctionName +
5860                          "' with wrong type: "
5861                          "expected '" +
5862                          getTypeString(PFT) + "' but was '" +
5863                          getTypeString(Fn->getType()) + "'");
5864       ForwardRefVals.erase(FRVI);
5865     } else if ((Fn = M->getFunction(FunctionName))) {
5866       // Reject redefinitions.
5867       return error(NameLoc,
5868                    "invalid redefinition of function '" + FunctionName + "'");
5869     } else if (M->getNamedValue(FunctionName)) {
5870       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5871     }
5872 
5873   } else {
5874     // If this is a definition of a forward referenced function, make sure the
5875     // types agree.
5876     auto I = ForwardRefValIDs.find(NumberedVals.size());
5877     if (I != ForwardRefValIDs.end()) {
5878       Fn = cast<Function>(I->second.first);
5879       if (Fn->getType() != PFT)
5880         return error(NameLoc, "type of definition and forward reference of '@" +
5881                                   Twine(NumberedVals.size()) +
5882                                   "' disagree: "
5883                                   "expected '" +
5884                                   getTypeString(PFT) + "' but was '" +
5885                                   getTypeString(Fn->getType()) + "'");
5886       ForwardRefValIDs.erase(I);
5887     }
5888   }
5889 
5890   if (!Fn)
5891     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5892                           FunctionName, M);
5893   else // Move the forward-reference to the correct spot in the module.
5894     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5895 
5896   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5897 
5898   if (FunctionName.empty())
5899     NumberedVals.push_back(Fn);
5900 
5901   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5902   maybeSetDSOLocal(DSOLocal, *Fn);
5903   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5904   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5905   Fn->setCallingConv(CC);
5906   Fn->setAttributes(PAL);
5907   Fn->setUnnamedAddr(UnnamedAddr);
5908   Fn->setAlignment(MaybeAlign(Alignment));
5909   Fn->setSection(Section);
5910   Fn->setPartition(Partition);
5911   Fn->setComdat(C);
5912   Fn->setPersonalityFn(PersonalityFn);
5913   if (!GC.empty()) Fn->setGC(GC);
5914   Fn->setPrefixData(Prefix);
5915   Fn->setPrologueData(Prologue);
5916   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5917 
5918   // Add all of the arguments we parsed to the function.
5919   Function::arg_iterator ArgIt = Fn->arg_begin();
5920   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5921     // If the argument has a name, insert it into the argument symbol table.
5922     if (ArgList[i].Name.empty()) continue;
5923 
5924     // Set the name, if it conflicted, it will be auto-renamed.
5925     ArgIt->setName(ArgList[i].Name);
5926 
5927     if (ArgIt->getName() != ArgList[i].Name)
5928       return error(ArgList[i].Loc,
5929                    "redefinition of argument '%" + ArgList[i].Name + "'");
5930   }
5931 
5932   if (IsDefine)
5933     return false;
5934 
5935   // Check the declaration has no block address forward references.
5936   ValID ID;
5937   if (FunctionName.empty()) {
5938     ID.Kind = ValID::t_GlobalID;
5939     ID.UIntVal = NumberedVals.size() - 1;
5940   } else {
5941     ID.Kind = ValID::t_GlobalName;
5942     ID.StrVal = FunctionName;
5943   }
5944   auto Blocks = ForwardRefBlockAddresses.find(ID);
5945   if (Blocks != ForwardRefBlockAddresses.end())
5946     return error(Blocks->first.Loc,
5947                  "cannot take blockaddress inside a declaration");
5948   return false;
5949 }
5950 
5951 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5952   ValID ID;
5953   if (FunctionNumber == -1) {
5954     ID.Kind = ValID::t_GlobalName;
5955     ID.StrVal = std::string(F.getName());
5956   } else {
5957     ID.Kind = ValID::t_GlobalID;
5958     ID.UIntVal = FunctionNumber;
5959   }
5960 
5961   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5962   if (Blocks == P.ForwardRefBlockAddresses.end())
5963     return false;
5964 
5965   for (const auto &I : Blocks->second) {
5966     const ValID &BBID = I.first;
5967     GlobalValue *GV = I.second;
5968 
5969     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5970            "Expected local id or name");
5971     BasicBlock *BB;
5972     if (BBID.Kind == ValID::t_LocalName)
5973       BB = getBB(BBID.StrVal, BBID.Loc);
5974     else
5975       BB = getBB(BBID.UIntVal, BBID.Loc);
5976     if (!BB)
5977       return P.error(BBID.Loc, "referenced value is not a basic block");
5978 
5979     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5980     GV->eraseFromParent();
5981   }
5982 
5983   P.ForwardRefBlockAddresses.erase(Blocks);
5984   return false;
5985 }
5986 
5987 /// parseFunctionBody
5988 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5989 bool LLParser::parseFunctionBody(Function &Fn) {
5990   if (Lex.getKind() != lltok::lbrace)
5991     return tokError("expected '{' in function body");
5992   Lex.Lex();  // eat the {.
5993 
5994   int FunctionNumber = -1;
5995   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5996 
5997   PerFunctionState PFS(*this, Fn, FunctionNumber);
5998 
5999   // Resolve block addresses and allow basic blocks to be forward-declared
6000   // within this function.
6001   if (PFS.resolveForwardRefBlockAddresses())
6002     return true;
6003   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
6004 
6005   // We need at least one basic block.
6006   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
6007     return tokError("function body requires at least one basic block");
6008 
6009   while (Lex.getKind() != lltok::rbrace &&
6010          Lex.getKind() != lltok::kw_uselistorder)
6011     if (parseBasicBlock(PFS))
6012       return true;
6013 
6014   while (Lex.getKind() != lltok::rbrace)
6015     if (parseUseListOrder(&PFS))
6016       return true;
6017 
6018   // Eat the }.
6019   Lex.Lex();
6020 
6021   // Verify function is ok.
6022   return PFS.finishFunction();
6023 }
6024 
6025 /// parseBasicBlock
6026 ///   ::= (LabelStr|LabelID)? Instruction*
6027 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
6028   // If this basic block starts out with a name, remember it.
6029   std::string Name;
6030   int NameID = -1;
6031   LocTy NameLoc = Lex.getLoc();
6032   if (Lex.getKind() == lltok::LabelStr) {
6033     Name = Lex.getStrVal();
6034     Lex.Lex();
6035   } else if (Lex.getKind() == lltok::LabelID) {
6036     NameID = Lex.getUIntVal();
6037     Lex.Lex();
6038   }
6039 
6040   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
6041   if (!BB)
6042     return true;
6043 
6044   std::string NameStr;
6045 
6046   // parse the instructions in this block until we get a terminator.
6047   Instruction *Inst;
6048   do {
6049     // This instruction may have three possibilities for a name: a) none
6050     // specified, b) name specified "%foo =", c) number specified: "%4 =".
6051     LocTy NameLoc = Lex.getLoc();
6052     int NameID = -1;
6053     NameStr = "";
6054 
6055     if (Lex.getKind() == lltok::LocalVarID) {
6056       NameID = Lex.getUIntVal();
6057       Lex.Lex();
6058       if (parseToken(lltok::equal, "expected '=' after instruction id"))
6059         return true;
6060     } else if (Lex.getKind() == lltok::LocalVar) {
6061       NameStr = Lex.getStrVal();
6062       Lex.Lex();
6063       if (parseToken(lltok::equal, "expected '=' after instruction name"))
6064         return true;
6065     }
6066 
6067     switch (parseInstruction(Inst, BB, PFS)) {
6068     default:
6069       llvm_unreachable("Unknown parseInstruction result!");
6070     case InstError: return true;
6071     case InstNormal:
6072       BB->getInstList().push_back(Inst);
6073 
6074       // With a normal result, we check to see if the instruction is followed by
6075       // a comma and metadata.
6076       if (EatIfPresent(lltok::comma))
6077         if (parseInstructionMetadata(*Inst))
6078           return true;
6079       break;
6080     case InstExtraComma:
6081       BB->getInstList().push_back(Inst);
6082 
6083       // If the instruction parser ate an extra comma at the end of it, it
6084       // *must* be followed by metadata.
6085       if (parseInstructionMetadata(*Inst))
6086         return true;
6087       break;
6088     }
6089 
6090     // Set the name on the instruction.
6091     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
6092       return true;
6093   } while (!Inst->isTerminator());
6094 
6095   return false;
6096 }
6097 
6098 //===----------------------------------------------------------------------===//
6099 // Instruction Parsing.
6100 //===----------------------------------------------------------------------===//
6101 
6102 /// parseInstruction - parse one of the many different instructions.
6103 ///
6104 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
6105                                PerFunctionState &PFS) {
6106   lltok::Kind Token = Lex.getKind();
6107   if (Token == lltok::Eof)
6108     return tokError("found end of file when expecting more instructions");
6109   LocTy Loc = Lex.getLoc();
6110   unsigned KeywordVal = Lex.getUIntVal();
6111   Lex.Lex();  // Eat the keyword.
6112 
6113   switch (Token) {
6114   default:
6115     return error(Loc, "expected instruction opcode");
6116   // Terminator Instructions.
6117   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6118   case lltok::kw_ret:
6119     return parseRet(Inst, BB, PFS);
6120   case lltok::kw_br:
6121     return parseBr(Inst, PFS);
6122   case lltok::kw_switch:
6123     return parseSwitch(Inst, PFS);
6124   case lltok::kw_indirectbr:
6125     return parseIndirectBr(Inst, PFS);
6126   case lltok::kw_invoke:
6127     return parseInvoke(Inst, PFS);
6128   case lltok::kw_resume:
6129     return parseResume(Inst, PFS);
6130   case lltok::kw_cleanupret:
6131     return parseCleanupRet(Inst, PFS);
6132   case lltok::kw_catchret:
6133     return parseCatchRet(Inst, PFS);
6134   case lltok::kw_catchswitch:
6135     return parseCatchSwitch(Inst, PFS);
6136   case lltok::kw_catchpad:
6137     return parseCatchPad(Inst, PFS);
6138   case lltok::kw_cleanuppad:
6139     return parseCleanupPad(Inst, PFS);
6140   case lltok::kw_callbr:
6141     return parseCallBr(Inst, PFS);
6142   // Unary Operators.
6143   case lltok::kw_fneg: {
6144     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6145     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6146     if (Res != 0)
6147       return Res;
6148     if (FMF.any())
6149       Inst->setFastMathFlags(FMF);
6150     return false;
6151   }
6152   // Binary Operators.
6153   case lltok::kw_add:
6154   case lltok::kw_sub:
6155   case lltok::kw_mul:
6156   case lltok::kw_shl: {
6157     bool NUW = EatIfPresent(lltok::kw_nuw);
6158     bool NSW = EatIfPresent(lltok::kw_nsw);
6159     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6160 
6161     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6162       return true;
6163 
6164     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6165     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6166     return false;
6167   }
6168   case lltok::kw_fadd:
6169   case lltok::kw_fsub:
6170   case lltok::kw_fmul:
6171   case lltok::kw_fdiv:
6172   case lltok::kw_frem: {
6173     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6174     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6175     if (Res != 0)
6176       return Res;
6177     if (FMF.any())
6178       Inst->setFastMathFlags(FMF);
6179     return 0;
6180   }
6181 
6182   case lltok::kw_sdiv:
6183   case lltok::kw_udiv:
6184   case lltok::kw_lshr:
6185   case lltok::kw_ashr: {
6186     bool Exact = EatIfPresent(lltok::kw_exact);
6187 
6188     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6189       return true;
6190     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6191     return false;
6192   }
6193 
6194   case lltok::kw_urem:
6195   case lltok::kw_srem:
6196     return parseArithmetic(Inst, PFS, KeywordVal,
6197                            /*IsFP*/ false);
6198   case lltok::kw_and:
6199   case lltok::kw_or:
6200   case lltok::kw_xor:
6201     return parseLogical(Inst, PFS, KeywordVal);
6202   case lltok::kw_icmp:
6203     return parseCompare(Inst, PFS, KeywordVal);
6204   case lltok::kw_fcmp: {
6205     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6206     int Res = parseCompare(Inst, PFS, KeywordVal);
6207     if (Res != 0)
6208       return Res;
6209     if (FMF.any())
6210       Inst->setFastMathFlags(FMF);
6211     return 0;
6212   }
6213 
6214   // Casts.
6215   case lltok::kw_trunc:
6216   case lltok::kw_zext:
6217   case lltok::kw_sext:
6218   case lltok::kw_fptrunc:
6219   case lltok::kw_fpext:
6220   case lltok::kw_bitcast:
6221   case lltok::kw_addrspacecast:
6222   case lltok::kw_uitofp:
6223   case lltok::kw_sitofp:
6224   case lltok::kw_fptoui:
6225   case lltok::kw_fptosi:
6226   case lltok::kw_inttoptr:
6227   case lltok::kw_ptrtoint:
6228     return parseCast(Inst, PFS, KeywordVal);
6229   // Other.
6230   case lltok::kw_select: {
6231     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6232     int Res = parseSelect(Inst, PFS);
6233     if (Res != 0)
6234       return Res;
6235     if (FMF.any()) {
6236       if (!isa<FPMathOperator>(Inst))
6237         return error(Loc, "fast-math-flags specified for select without "
6238                           "floating-point scalar or vector return type");
6239       Inst->setFastMathFlags(FMF);
6240     }
6241     return 0;
6242   }
6243   case lltok::kw_va_arg:
6244     return parseVAArg(Inst, PFS);
6245   case lltok::kw_extractelement:
6246     return parseExtractElement(Inst, PFS);
6247   case lltok::kw_insertelement:
6248     return parseInsertElement(Inst, PFS);
6249   case lltok::kw_shufflevector:
6250     return parseShuffleVector(Inst, PFS);
6251   case lltok::kw_phi: {
6252     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6253     int Res = parsePHI(Inst, PFS);
6254     if (Res != 0)
6255       return Res;
6256     if (FMF.any()) {
6257       if (!isa<FPMathOperator>(Inst))
6258         return error(Loc, "fast-math-flags specified for phi without "
6259                           "floating-point scalar or vector return type");
6260       Inst->setFastMathFlags(FMF);
6261     }
6262     return 0;
6263   }
6264   case lltok::kw_landingpad:
6265     return parseLandingPad(Inst, PFS);
6266   case lltok::kw_freeze:
6267     return parseFreeze(Inst, PFS);
6268   // Call.
6269   case lltok::kw_call:
6270     return parseCall(Inst, PFS, CallInst::TCK_None);
6271   case lltok::kw_tail:
6272     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6273   case lltok::kw_musttail:
6274     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6275   case lltok::kw_notail:
6276     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6277   // Memory.
6278   case lltok::kw_alloca:
6279     return parseAlloc(Inst, PFS);
6280   case lltok::kw_load:
6281     return parseLoad(Inst, PFS);
6282   case lltok::kw_store:
6283     return parseStore(Inst, PFS);
6284   case lltok::kw_cmpxchg:
6285     return parseCmpXchg(Inst, PFS);
6286   case lltok::kw_atomicrmw:
6287     return parseAtomicRMW(Inst, PFS);
6288   case lltok::kw_fence:
6289     return parseFence(Inst, PFS);
6290   case lltok::kw_getelementptr:
6291     return parseGetElementPtr(Inst, PFS);
6292   case lltok::kw_extractvalue:
6293     return parseExtractValue(Inst, PFS);
6294   case lltok::kw_insertvalue:
6295     return parseInsertValue(Inst, PFS);
6296   }
6297 }
6298 
6299 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6300 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6301   if (Opc == Instruction::FCmp) {
6302     switch (Lex.getKind()) {
6303     default:
6304       return tokError("expected fcmp predicate (e.g. 'oeq')");
6305     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6306     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6307     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6308     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6309     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6310     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6311     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6312     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6313     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6314     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6315     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6316     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6317     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6318     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6319     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6320     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6321     }
6322   } else {
6323     switch (Lex.getKind()) {
6324     default:
6325       return tokError("expected icmp predicate (e.g. 'eq')");
6326     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6327     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6328     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6329     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6330     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6331     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6332     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6333     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6334     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6335     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6336     }
6337   }
6338   Lex.Lex();
6339   return false;
6340 }
6341 
6342 //===----------------------------------------------------------------------===//
6343 // Terminator Instructions.
6344 //===----------------------------------------------------------------------===//
6345 
6346 /// parseRet - parse a return instruction.
6347 ///   ::= 'ret' void (',' !dbg, !1)*
6348 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6349 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6350                         PerFunctionState &PFS) {
6351   SMLoc TypeLoc = Lex.getLoc();
6352   Type *Ty = nullptr;
6353   if (parseType(Ty, true /*void allowed*/))
6354     return true;
6355 
6356   Type *ResType = PFS.getFunction().getReturnType();
6357 
6358   if (Ty->isVoidTy()) {
6359     if (!ResType->isVoidTy())
6360       return error(TypeLoc, "value doesn't match function result type '" +
6361                                 getTypeString(ResType) + "'");
6362 
6363     Inst = ReturnInst::Create(Context);
6364     return false;
6365   }
6366 
6367   Value *RV;
6368   if (parseValue(Ty, RV, PFS))
6369     return true;
6370 
6371   if (ResType != RV->getType())
6372     return error(TypeLoc, "value doesn't match function result type '" +
6373                               getTypeString(ResType) + "'");
6374 
6375   Inst = ReturnInst::Create(Context, RV);
6376   return false;
6377 }
6378 
6379 /// parseBr
6380 ///   ::= 'br' TypeAndValue
6381 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6382 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6383   LocTy Loc, Loc2;
6384   Value *Op0;
6385   BasicBlock *Op1, *Op2;
6386   if (parseTypeAndValue(Op0, Loc, PFS))
6387     return true;
6388 
6389   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6390     Inst = BranchInst::Create(BB);
6391     return false;
6392   }
6393 
6394   if (Op0->getType() != Type::getInt1Ty(Context))
6395     return error(Loc, "branch condition must have 'i1' type");
6396 
6397   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6398       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6399       parseToken(lltok::comma, "expected ',' after true destination") ||
6400       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6401     return true;
6402 
6403   Inst = BranchInst::Create(Op1, Op2, Op0);
6404   return false;
6405 }
6406 
6407 /// parseSwitch
6408 ///  Instruction
6409 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6410 ///  JumpTable
6411 ///    ::= (TypeAndValue ',' TypeAndValue)*
6412 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6413   LocTy CondLoc, BBLoc;
6414   Value *Cond;
6415   BasicBlock *DefaultBB;
6416   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6417       parseToken(lltok::comma, "expected ',' after switch condition") ||
6418       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6419       parseToken(lltok::lsquare, "expected '[' with switch table"))
6420     return true;
6421 
6422   if (!Cond->getType()->isIntegerTy())
6423     return error(CondLoc, "switch condition must have integer type");
6424 
6425   // parse the jump table pairs.
6426   SmallPtrSet<Value*, 32> SeenCases;
6427   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6428   while (Lex.getKind() != lltok::rsquare) {
6429     Value *Constant;
6430     BasicBlock *DestBB;
6431 
6432     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6433         parseToken(lltok::comma, "expected ',' after case value") ||
6434         parseTypeAndBasicBlock(DestBB, PFS))
6435       return true;
6436 
6437     if (!SeenCases.insert(Constant).second)
6438       return error(CondLoc, "duplicate case value in switch");
6439     if (!isa<ConstantInt>(Constant))
6440       return error(CondLoc, "case value is not a constant integer");
6441 
6442     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6443   }
6444 
6445   Lex.Lex();  // Eat the ']'.
6446 
6447   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6448   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6449     SI->addCase(Table[i].first, Table[i].second);
6450   Inst = SI;
6451   return false;
6452 }
6453 
6454 /// parseIndirectBr
6455 ///  Instruction
6456 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6457 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6458   LocTy AddrLoc;
6459   Value *Address;
6460   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6461       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6462       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6463     return true;
6464 
6465   if (!Address->getType()->isPointerTy())
6466     return error(AddrLoc, "indirectbr address must have pointer type");
6467 
6468   // parse the destination list.
6469   SmallVector<BasicBlock*, 16> DestList;
6470 
6471   if (Lex.getKind() != lltok::rsquare) {
6472     BasicBlock *DestBB;
6473     if (parseTypeAndBasicBlock(DestBB, PFS))
6474       return true;
6475     DestList.push_back(DestBB);
6476 
6477     while (EatIfPresent(lltok::comma)) {
6478       if (parseTypeAndBasicBlock(DestBB, PFS))
6479         return true;
6480       DestList.push_back(DestBB);
6481     }
6482   }
6483 
6484   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6485     return true;
6486 
6487   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6488   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6489     IBI->addDestination(DestList[i]);
6490   Inst = IBI;
6491   return false;
6492 }
6493 
6494 /// parseInvoke
6495 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6496 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6497 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6498   LocTy CallLoc = Lex.getLoc();
6499   AttrBuilder RetAttrs, FnAttrs;
6500   std::vector<unsigned> FwdRefAttrGrps;
6501   LocTy NoBuiltinLoc;
6502   unsigned CC;
6503   unsigned InvokeAddrSpace;
6504   Type *RetType = nullptr;
6505   LocTy RetTypeLoc;
6506   ValID CalleeID;
6507   SmallVector<ParamInfo, 16> ArgList;
6508   SmallVector<OperandBundleDef, 2> BundleList;
6509 
6510   BasicBlock *NormalBB, *UnwindBB;
6511   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6512       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6513       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6514       parseValID(CalleeID) || parseParameterList(ArgList, PFS) ||
6515       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6516                                  NoBuiltinLoc) ||
6517       parseOptionalOperandBundles(BundleList, PFS) ||
6518       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6519       parseTypeAndBasicBlock(NormalBB, PFS) ||
6520       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6521       parseTypeAndBasicBlock(UnwindBB, PFS))
6522     return true;
6523 
6524   // If RetType is a non-function pointer type, then this is the short syntax
6525   // for the call, which means that RetType is just the return type.  Infer the
6526   // rest of the function argument types from the arguments that are present.
6527   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6528   if (!Ty) {
6529     // Pull out the types of all of the arguments...
6530     std::vector<Type*> ParamTypes;
6531     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6532       ParamTypes.push_back(ArgList[i].V->getType());
6533 
6534     if (!FunctionType::isValidReturnType(RetType))
6535       return error(RetTypeLoc, "Invalid result type for LLVM function");
6536 
6537     Ty = FunctionType::get(RetType, ParamTypes, false);
6538   }
6539 
6540   CalleeID.FTy = Ty;
6541 
6542   // Look up the callee.
6543   Value *Callee;
6544   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6545                           Callee, &PFS, /*IsCall=*/true))
6546     return true;
6547 
6548   // Set up the Attribute for the function.
6549   SmallVector<Value *, 8> Args;
6550   SmallVector<AttributeSet, 8> ArgAttrs;
6551 
6552   // Loop through FunctionType's arguments and ensure they are specified
6553   // correctly.  Also, gather any parameter attributes.
6554   FunctionType::param_iterator I = Ty->param_begin();
6555   FunctionType::param_iterator E = Ty->param_end();
6556   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6557     Type *ExpectedTy = nullptr;
6558     if (I != E) {
6559       ExpectedTy = *I++;
6560     } else if (!Ty->isVarArg()) {
6561       return error(ArgList[i].Loc, "too many arguments specified");
6562     }
6563 
6564     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6565       return error(ArgList[i].Loc, "argument is not of expected type '" +
6566                                        getTypeString(ExpectedTy) + "'");
6567     Args.push_back(ArgList[i].V);
6568     ArgAttrs.push_back(ArgList[i].Attrs);
6569   }
6570 
6571   if (I != E)
6572     return error(CallLoc, "not enough parameters specified for call");
6573 
6574   if (FnAttrs.hasAlignmentAttr())
6575     return error(CallLoc, "invoke instructions may not have an alignment");
6576 
6577   // Finish off the Attribute and check them
6578   AttributeList PAL =
6579       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6580                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6581 
6582   InvokeInst *II =
6583       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6584   II->setCallingConv(CC);
6585   II->setAttributes(PAL);
6586   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6587   Inst = II;
6588   return false;
6589 }
6590 
6591 /// parseResume
6592 ///   ::= 'resume' TypeAndValue
6593 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6594   Value *Exn; LocTy ExnLoc;
6595   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6596     return true;
6597 
6598   ResumeInst *RI = ResumeInst::Create(Exn);
6599   Inst = RI;
6600   return false;
6601 }
6602 
6603 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6604                                   PerFunctionState &PFS) {
6605   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6606     return true;
6607 
6608   while (Lex.getKind() != lltok::rsquare) {
6609     // If this isn't the first argument, we need a comma.
6610     if (!Args.empty() &&
6611         parseToken(lltok::comma, "expected ',' in argument list"))
6612       return true;
6613 
6614     // parse the argument.
6615     LocTy ArgLoc;
6616     Type *ArgTy = nullptr;
6617     if (parseType(ArgTy, ArgLoc))
6618       return true;
6619 
6620     Value *V;
6621     if (ArgTy->isMetadataTy()) {
6622       if (parseMetadataAsValue(V, PFS))
6623         return true;
6624     } else {
6625       if (parseValue(ArgTy, V, PFS))
6626         return true;
6627     }
6628     Args.push_back(V);
6629   }
6630 
6631   Lex.Lex();  // Lex the ']'.
6632   return false;
6633 }
6634 
6635 /// parseCleanupRet
6636 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6637 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6638   Value *CleanupPad = nullptr;
6639 
6640   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6641     return true;
6642 
6643   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6644     return true;
6645 
6646   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6647     return true;
6648 
6649   BasicBlock *UnwindBB = nullptr;
6650   if (Lex.getKind() == lltok::kw_to) {
6651     Lex.Lex();
6652     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6653       return true;
6654   } else {
6655     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6656       return true;
6657     }
6658   }
6659 
6660   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6661   return false;
6662 }
6663 
6664 /// parseCatchRet
6665 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6666 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6667   Value *CatchPad = nullptr;
6668 
6669   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6670     return true;
6671 
6672   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6673     return true;
6674 
6675   BasicBlock *BB;
6676   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6677       parseTypeAndBasicBlock(BB, PFS))
6678     return true;
6679 
6680   Inst = CatchReturnInst::Create(CatchPad, BB);
6681   return false;
6682 }
6683 
6684 /// parseCatchSwitch
6685 ///   ::= 'catchswitch' within Parent
6686 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6687   Value *ParentPad;
6688 
6689   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6690     return true;
6691 
6692   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6693       Lex.getKind() != lltok::LocalVarID)
6694     return tokError("expected scope value for catchswitch");
6695 
6696   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6697     return true;
6698 
6699   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6700     return true;
6701 
6702   SmallVector<BasicBlock *, 32> Table;
6703   do {
6704     BasicBlock *DestBB;
6705     if (parseTypeAndBasicBlock(DestBB, PFS))
6706       return true;
6707     Table.push_back(DestBB);
6708   } while (EatIfPresent(lltok::comma));
6709 
6710   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6711     return true;
6712 
6713   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6714     return true;
6715 
6716   BasicBlock *UnwindBB = nullptr;
6717   if (EatIfPresent(lltok::kw_to)) {
6718     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6719       return true;
6720   } else {
6721     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6722       return true;
6723   }
6724 
6725   auto *CatchSwitch =
6726       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6727   for (BasicBlock *DestBB : Table)
6728     CatchSwitch->addHandler(DestBB);
6729   Inst = CatchSwitch;
6730   return false;
6731 }
6732 
6733 /// parseCatchPad
6734 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6735 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6736   Value *CatchSwitch = nullptr;
6737 
6738   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6739     return true;
6740 
6741   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6742     return tokError("expected scope value for catchpad");
6743 
6744   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6745     return true;
6746 
6747   SmallVector<Value *, 8> Args;
6748   if (parseExceptionArgs(Args, PFS))
6749     return true;
6750 
6751   Inst = CatchPadInst::Create(CatchSwitch, Args);
6752   return false;
6753 }
6754 
6755 /// parseCleanupPad
6756 ///   ::= 'cleanuppad' within Parent ParamList
6757 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6758   Value *ParentPad = nullptr;
6759 
6760   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6761     return true;
6762 
6763   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6764       Lex.getKind() != lltok::LocalVarID)
6765     return tokError("expected scope value for cleanuppad");
6766 
6767   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6768     return true;
6769 
6770   SmallVector<Value *, 8> Args;
6771   if (parseExceptionArgs(Args, PFS))
6772     return true;
6773 
6774   Inst = CleanupPadInst::Create(ParentPad, Args);
6775   return false;
6776 }
6777 
6778 //===----------------------------------------------------------------------===//
6779 // Unary Operators.
6780 //===----------------------------------------------------------------------===//
6781 
6782 /// parseUnaryOp
6783 ///  ::= UnaryOp TypeAndValue ',' Value
6784 ///
6785 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6786 /// operand is allowed.
6787 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6788                             unsigned Opc, bool IsFP) {
6789   LocTy Loc; Value *LHS;
6790   if (parseTypeAndValue(LHS, Loc, PFS))
6791     return true;
6792 
6793   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6794                     : LHS->getType()->isIntOrIntVectorTy();
6795 
6796   if (!Valid)
6797     return error(Loc, "invalid operand type for instruction");
6798 
6799   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6800   return false;
6801 }
6802 
6803 /// parseCallBr
6804 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6805 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6806 ///       '[' LabelList ']'
6807 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6808   LocTy CallLoc = Lex.getLoc();
6809   AttrBuilder RetAttrs, FnAttrs;
6810   std::vector<unsigned> FwdRefAttrGrps;
6811   LocTy NoBuiltinLoc;
6812   unsigned CC;
6813   Type *RetType = nullptr;
6814   LocTy RetTypeLoc;
6815   ValID CalleeID;
6816   SmallVector<ParamInfo, 16> ArgList;
6817   SmallVector<OperandBundleDef, 2> BundleList;
6818 
6819   BasicBlock *DefaultDest;
6820   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6821       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6822       parseValID(CalleeID) || parseParameterList(ArgList, PFS) ||
6823       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6824                                  NoBuiltinLoc) ||
6825       parseOptionalOperandBundles(BundleList, PFS) ||
6826       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6827       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6828       parseToken(lltok::lsquare, "expected '[' in callbr"))
6829     return true;
6830 
6831   // parse the destination list.
6832   SmallVector<BasicBlock *, 16> IndirectDests;
6833 
6834   if (Lex.getKind() != lltok::rsquare) {
6835     BasicBlock *DestBB;
6836     if (parseTypeAndBasicBlock(DestBB, PFS))
6837       return true;
6838     IndirectDests.push_back(DestBB);
6839 
6840     while (EatIfPresent(lltok::comma)) {
6841       if (parseTypeAndBasicBlock(DestBB, PFS))
6842         return true;
6843       IndirectDests.push_back(DestBB);
6844     }
6845   }
6846 
6847   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6848     return true;
6849 
6850   // If RetType is a non-function pointer type, then this is the short syntax
6851   // for the call, which means that RetType is just the return type.  Infer the
6852   // rest of the function argument types from the arguments that are present.
6853   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6854   if (!Ty) {
6855     // Pull out the types of all of the arguments...
6856     std::vector<Type *> ParamTypes;
6857     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6858       ParamTypes.push_back(ArgList[i].V->getType());
6859 
6860     if (!FunctionType::isValidReturnType(RetType))
6861       return error(RetTypeLoc, "Invalid result type for LLVM function");
6862 
6863     Ty = FunctionType::get(RetType, ParamTypes, false);
6864   }
6865 
6866   CalleeID.FTy = Ty;
6867 
6868   // Look up the callee.
6869   Value *Callee;
6870   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6871                           /*IsCall=*/true))
6872     return true;
6873 
6874   // Set up the Attribute for the function.
6875   SmallVector<Value *, 8> Args;
6876   SmallVector<AttributeSet, 8> ArgAttrs;
6877 
6878   // Loop through FunctionType's arguments and ensure they are specified
6879   // correctly.  Also, gather any parameter attributes.
6880   FunctionType::param_iterator I = Ty->param_begin();
6881   FunctionType::param_iterator E = Ty->param_end();
6882   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6883     Type *ExpectedTy = nullptr;
6884     if (I != E) {
6885       ExpectedTy = *I++;
6886     } else if (!Ty->isVarArg()) {
6887       return error(ArgList[i].Loc, "too many arguments specified");
6888     }
6889 
6890     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6891       return error(ArgList[i].Loc, "argument is not of expected type '" +
6892                                        getTypeString(ExpectedTy) + "'");
6893     Args.push_back(ArgList[i].V);
6894     ArgAttrs.push_back(ArgList[i].Attrs);
6895   }
6896 
6897   if (I != E)
6898     return error(CallLoc, "not enough parameters specified for call");
6899 
6900   if (FnAttrs.hasAlignmentAttr())
6901     return error(CallLoc, "callbr instructions may not have an alignment");
6902 
6903   // Finish off the Attribute and check them
6904   AttributeList PAL =
6905       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6906                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6907 
6908   CallBrInst *CBI =
6909       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6910                          BundleList);
6911   CBI->setCallingConv(CC);
6912   CBI->setAttributes(PAL);
6913   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6914   Inst = CBI;
6915   return false;
6916 }
6917 
6918 //===----------------------------------------------------------------------===//
6919 // Binary Operators.
6920 //===----------------------------------------------------------------------===//
6921 
6922 /// parseArithmetic
6923 ///  ::= ArithmeticOps TypeAndValue ',' Value
6924 ///
6925 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6926 /// operand is allowed.
6927 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6928                                unsigned Opc, bool IsFP) {
6929   LocTy Loc; Value *LHS, *RHS;
6930   if (parseTypeAndValue(LHS, Loc, PFS) ||
6931       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6932       parseValue(LHS->getType(), RHS, PFS))
6933     return true;
6934 
6935   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6936                     : LHS->getType()->isIntOrIntVectorTy();
6937 
6938   if (!Valid)
6939     return error(Loc, "invalid operand type for instruction");
6940 
6941   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6942   return false;
6943 }
6944 
6945 /// parseLogical
6946 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6947 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6948                             unsigned Opc) {
6949   LocTy Loc; Value *LHS, *RHS;
6950   if (parseTypeAndValue(LHS, Loc, PFS) ||
6951       parseToken(lltok::comma, "expected ',' in logical operation") ||
6952       parseValue(LHS->getType(), RHS, PFS))
6953     return true;
6954 
6955   if (!LHS->getType()->isIntOrIntVectorTy())
6956     return error(Loc,
6957                  "instruction requires integer or integer vector operands");
6958 
6959   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6960   return false;
6961 }
6962 
6963 /// parseCompare
6964 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6965 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6966 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
6967                             unsigned Opc) {
6968   // parse the integer/fp comparison predicate.
6969   LocTy Loc;
6970   unsigned Pred;
6971   Value *LHS, *RHS;
6972   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
6973       parseToken(lltok::comma, "expected ',' after compare value") ||
6974       parseValue(LHS->getType(), RHS, PFS))
6975     return true;
6976 
6977   if (Opc == Instruction::FCmp) {
6978     if (!LHS->getType()->isFPOrFPVectorTy())
6979       return error(Loc, "fcmp requires floating point operands");
6980     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6981   } else {
6982     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6983     if (!LHS->getType()->isIntOrIntVectorTy() &&
6984         !LHS->getType()->isPtrOrPtrVectorTy())
6985       return error(Loc, "icmp requires integer operands");
6986     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6987   }
6988   return false;
6989 }
6990 
6991 //===----------------------------------------------------------------------===//
6992 // Other Instructions.
6993 //===----------------------------------------------------------------------===//
6994 
6995 /// parseCast
6996 ///   ::= CastOpc TypeAndValue 'to' Type
6997 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
6998                          unsigned Opc) {
6999   LocTy Loc;
7000   Value *Op;
7001   Type *DestTy = nullptr;
7002   if (parseTypeAndValue(Op, Loc, PFS) ||
7003       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
7004       parseType(DestTy))
7005     return true;
7006 
7007   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
7008     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
7009     return error(Loc, "invalid cast opcode for cast from '" +
7010                           getTypeString(Op->getType()) + "' to '" +
7011                           getTypeString(DestTy) + "'");
7012   }
7013   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
7014   return false;
7015 }
7016 
7017 /// parseSelect
7018 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7019 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
7020   LocTy Loc;
7021   Value *Op0, *Op1, *Op2;
7022   if (parseTypeAndValue(Op0, Loc, PFS) ||
7023       parseToken(lltok::comma, "expected ',' after select condition") ||
7024       parseTypeAndValue(Op1, PFS) ||
7025       parseToken(lltok::comma, "expected ',' after select value") ||
7026       parseTypeAndValue(Op2, PFS))
7027     return true;
7028 
7029   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
7030     return error(Loc, Reason);
7031 
7032   Inst = SelectInst::Create(Op0, Op1, Op2);
7033   return false;
7034 }
7035 
7036 /// parseVAArg
7037 ///   ::= 'va_arg' TypeAndValue ',' Type
7038 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
7039   Value *Op;
7040   Type *EltTy = nullptr;
7041   LocTy TypeLoc;
7042   if (parseTypeAndValue(Op, PFS) ||
7043       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
7044       parseType(EltTy, TypeLoc))
7045     return true;
7046 
7047   if (!EltTy->isFirstClassType())
7048     return error(TypeLoc, "va_arg requires operand with first class type");
7049 
7050   Inst = new VAArgInst(Op, EltTy);
7051   return false;
7052 }
7053 
7054 /// parseExtractElement
7055 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
7056 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
7057   LocTy Loc;
7058   Value *Op0, *Op1;
7059   if (parseTypeAndValue(Op0, Loc, PFS) ||
7060       parseToken(lltok::comma, "expected ',' after extract value") ||
7061       parseTypeAndValue(Op1, PFS))
7062     return true;
7063 
7064   if (!ExtractElementInst::isValidOperands(Op0, Op1))
7065     return error(Loc, "invalid extractelement operands");
7066 
7067   Inst = ExtractElementInst::Create(Op0, Op1);
7068   return false;
7069 }
7070 
7071 /// parseInsertElement
7072 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7073 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
7074   LocTy Loc;
7075   Value *Op0, *Op1, *Op2;
7076   if (parseTypeAndValue(Op0, Loc, PFS) ||
7077       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7078       parseTypeAndValue(Op1, PFS) ||
7079       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7080       parseTypeAndValue(Op2, PFS))
7081     return true;
7082 
7083   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
7084     return error(Loc, "invalid insertelement operands");
7085 
7086   Inst = InsertElementInst::Create(Op0, Op1, Op2);
7087   return false;
7088 }
7089 
7090 /// parseShuffleVector
7091 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7092 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
7093   LocTy Loc;
7094   Value *Op0, *Op1, *Op2;
7095   if (parseTypeAndValue(Op0, Loc, PFS) ||
7096       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
7097       parseTypeAndValue(Op1, PFS) ||
7098       parseToken(lltok::comma, "expected ',' after shuffle value") ||
7099       parseTypeAndValue(Op2, PFS))
7100     return true;
7101 
7102   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
7103     return error(Loc, "invalid shufflevector operands");
7104 
7105   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
7106   return false;
7107 }
7108 
7109 /// parsePHI
7110 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
7111 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7112   Type *Ty = nullptr;  LocTy TypeLoc;
7113   Value *Op0, *Op1;
7114 
7115   if (parseType(Ty, TypeLoc) ||
7116       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7117       parseValue(Ty, Op0, PFS) ||
7118       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7119       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7120       parseToken(lltok::rsquare, "expected ']' in phi value list"))
7121     return true;
7122 
7123   bool AteExtraComma = false;
7124   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7125 
7126   while (true) {
7127     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
7128 
7129     if (!EatIfPresent(lltok::comma))
7130       break;
7131 
7132     if (Lex.getKind() == lltok::MetadataVar) {
7133       AteExtraComma = true;
7134       break;
7135     }
7136 
7137     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7138         parseValue(Ty, Op0, PFS) ||
7139         parseToken(lltok::comma, "expected ',' after insertelement value") ||
7140         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7141         parseToken(lltok::rsquare, "expected ']' in phi value list"))
7142       return true;
7143   }
7144 
7145   if (!Ty->isFirstClassType())
7146     return error(TypeLoc, "phi node must have first class type");
7147 
7148   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7149   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7150     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7151   Inst = PN;
7152   return AteExtraComma ? InstExtraComma : InstNormal;
7153 }
7154 
7155 /// parseLandingPad
7156 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7157 /// Clause
7158 ///   ::= 'catch' TypeAndValue
7159 ///   ::= 'filter'
7160 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
7161 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7162   Type *Ty = nullptr; LocTy TyLoc;
7163 
7164   if (parseType(Ty, TyLoc))
7165     return true;
7166 
7167   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7168   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7169 
7170   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7171     LandingPadInst::ClauseType CT;
7172     if (EatIfPresent(lltok::kw_catch))
7173       CT = LandingPadInst::Catch;
7174     else if (EatIfPresent(lltok::kw_filter))
7175       CT = LandingPadInst::Filter;
7176     else
7177       return tokError("expected 'catch' or 'filter' clause type");
7178 
7179     Value *V;
7180     LocTy VLoc;
7181     if (parseTypeAndValue(V, VLoc, PFS))
7182       return true;
7183 
7184     // A 'catch' type expects a non-array constant. A filter clause expects an
7185     // array constant.
7186     if (CT == LandingPadInst::Catch) {
7187       if (isa<ArrayType>(V->getType()))
7188         error(VLoc, "'catch' clause has an invalid type");
7189     } else {
7190       if (!isa<ArrayType>(V->getType()))
7191         error(VLoc, "'filter' clause has an invalid type");
7192     }
7193 
7194     Constant *CV = dyn_cast<Constant>(V);
7195     if (!CV)
7196       return error(VLoc, "clause argument must be a constant");
7197     LP->addClause(CV);
7198   }
7199 
7200   Inst = LP.release();
7201   return false;
7202 }
7203 
7204 /// parseFreeze
7205 ///   ::= 'freeze' Type Value
7206 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7207   LocTy Loc;
7208   Value *Op;
7209   if (parseTypeAndValue(Op, Loc, PFS))
7210     return true;
7211 
7212   Inst = new FreezeInst(Op);
7213   return false;
7214 }
7215 
7216 /// parseCall
7217 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7218 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7219 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7220 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7221 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7222 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7223 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7224 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7225 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7226                          CallInst::TailCallKind TCK) {
7227   AttrBuilder RetAttrs, FnAttrs;
7228   std::vector<unsigned> FwdRefAttrGrps;
7229   LocTy BuiltinLoc;
7230   unsigned CallAddrSpace;
7231   unsigned CC;
7232   Type *RetType = nullptr;
7233   LocTy RetTypeLoc;
7234   ValID CalleeID;
7235   SmallVector<ParamInfo, 16> ArgList;
7236   SmallVector<OperandBundleDef, 2> BundleList;
7237   LocTy CallLoc = Lex.getLoc();
7238 
7239   if (TCK != CallInst::TCK_None &&
7240       parseToken(lltok::kw_call,
7241                  "expected 'tail call', 'musttail call', or 'notail call'"))
7242     return true;
7243 
7244   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7245 
7246   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7247       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7248       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7249       parseValID(CalleeID) ||
7250       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7251                          PFS.getFunction().isVarArg()) ||
7252       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7253       parseOptionalOperandBundles(BundleList, PFS))
7254     return true;
7255 
7256   // If RetType is a non-function pointer type, then this is the short syntax
7257   // for the call, which means that RetType is just the return type.  Infer the
7258   // rest of the function argument types from the arguments that are present.
7259   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7260   if (!Ty) {
7261     // Pull out the types of all of the arguments...
7262     std::vector<Type*> ParamTypes;
7263     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7264       ParamTypes.push_back(ArgList[i].V->getType());
7265 
7266     if (!FunctionType::isValidReturnType(RetType))
7267       return error(RetTypeLoc, "Invalid result type for LLVM function");
7268 
7269     Ty = FunctionType::get(RetType, ParamTypes, false);
7270   }
7271 
7272   CalleeID.FTy = Ty;
7273 
7274   // Look up the callee.
7275   Value *Callee;
7276   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7277                           &PFS, /*IsCall=*/true))
7278     return true;
7279 
7280   // Set up the Attribute for the function.
7281   SmallVector<AttributeSet, 8> Attrs;
7282 
7283   SmallVector<Value*, 8> Args;
7284 
7285   // Loop through FunctionType's arguments and ensure they are specified
7286   // correctly.  Also, gather any parameter attributes.
7287   FunctionType::param_iterator I = Ty->param_begin();
7288   FunctionType::param_iterator E = Ty->param_end();
7289   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7290     Type *ExpectedTy = nullptr;
7291     if (I != E) {
7292       ExpectedTy = *I++;
7293     } else if (!Ty->isVarArg()) {
7294       return error(ArgList[i].Loc, "too many arguments specified");
7295     }
7296 
7297     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7298       return error(ArgList[i].Loc, "argument is not of expected type '" +
7299                                        getTypeString(ExpectedTy) + "'");
7300     Args.push_back(ArgList[i].V);
7301     Attrs.push_back(ArgList[i].Attrs);
7302   }
7303 
7304   if (I != E)
7305     return error(CallLoc, "not enough parameters specified for call");
7306 
7307   if (FnAttrs.hasAlignmentAttr())
7308     return error(CallLoc, "call instructions may not have an alignment");
7309 
7310   // Finish off the Attribute and check them
7311   AttributeList PAL =
7312       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7313                          AttributeSet::get(Context, RetAttrs), Attrs);
7314 
7315   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7316   CI->setTailCallKind(TCK);
7317   CI->setCallingConv(CC);
7318   if (FMF.any()) {
7319     if (!isa<FPMathOperator>(CI)) {
7320       CI->deleteValue();
7321       return error(CallLoc, "fast-math-flags specified for call without "
7322                             "floating-point scalar or vector return type");
7323     }
7324     CI->setFastMathFlags(FMF);
7325   }
7326   CI->setAttributes(PAL);
7327   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7328   Inst = CI;
7329   return false;
7330 }
7331 
7332 //===----------------------------------------------------------------------===//
7333 // Memory Instructions.
7334 //===----------------------------------------------------------------------===//
7335 
7336 /// parseAlloc
7337 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7338 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7339 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7340   Value *Size = nullptr;
7341   LocTy SizeLoc, TyLoc, ASLoc;
7342   MaybeAlign Alignment;
7343   unsigned AddrSpace = 0;
7344   Type *Ty = nullptr;
7345 
7346   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7347   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7348 
7349   if (parseType(Ty, TyLoc))
7350     return true;
7351 
7352   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7353     return error(TyLoc, "invalid type for alloca");
7354 
7355   bool AteExtraComma = false;
7356   if (EatIfPresent(lltok::comma)) {
7357     if (Lex.getKind() == lltok::kw_align) {
7358       if (parseOptionalAlignment(Alignment))
7359         return true;
7360       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7361         return true;
7362     } else if (Lex.getKind() == lltok::kw_addrspace) {
7363       ASLoc = Lex.getLoc();
7364       if (parseOptionalAddrSpace(AddrSpace))
7365         return true;
7366     } else if (Lex.getKind() == lltok::MetadataVar) {
7367       AteExtraComma = true;
7368     } else {
7369       if (parseTypeAndValue(Size, SizeLoc, PFS))
7370         return true;
7371       if (EatIfPresent(lltok::comma)) {
7372         if (Lex.getKind() == lltok::kw_align) {
7373           if (parseOptionalAlignment(Alignment))
7374             return true;
7375           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7376             return true;
7377         } else if (Lex.getKind() == lltok::kw_addrspace) {
7378           ASLoc = Lex.getLoc();
7379           if (parseOptionalAddrSpace(AddrSpace))
7380             return true;
7381         } else if (Lex.getKind() == lltok::MetadataVar) {
7382           AteExtraComma = true;
7383         }
7384       }
7385     }
7386   }
7387 
7388   if (Size && !Size->getType()->isIntegerTy())
7389     return error(SizeLoc, "element count must have integer type");
7390 
7391   SmallPtrSet<Type *, 4> Visited;
7392   if (!Alignment && !Ty->isSized(&Visited))
7393     return error(TyLoc, "Cannot allocate unsized type");
7394   if (!Alignment)
7395     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7396   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7397   AI->setUsedWithInAlloca(IsInAlloca);
7398   AI->setSwiftError(IsSwiftError);
7399   Inst = AI;
7400   return AteExtraComma ? InstExtraComma : InstNormal;
7401 }
7402 
7403 /// parseLoad
7404 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7405 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7406 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7407 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7408   Value *Val; LocTy Loc;
7409   MaybeAlign Alignment;
7410   bool AteExtraComma = false;
7411   bool isAtomic = false;
7412   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7413   SyncScope::ID SSID = SyncScope::System;
7414 
7415   if (Lex.getKind() == lltok::kw_atomic) {
7416     isAtomic = true;
7417     Lex.Lex();
7418   }
7419 
7420   bool isVolatile = false;
7421   if (Lex.getKind() == lltok::kw_volatile) {
7422     isVolatile = true;
7423     Lex.Lex();
7424   }
7425 
7426   Type *Ty;
7427   LocTy ExplicitTypeLoc = Lex.getLoc();
7428   if (parseType(Ty) ||
7429       parseToken(lltok::comma, "expected comma after load's type") ||
7430       parseTypeAndValue(Val, Loc, PFS) ||
7431       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7432       parseOptionalCommaAlign(Alignment, AteExtraComma))
7433     return true;
7434 
7435   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7436     return error(Loc, "load operand must be a pointer to a first class type");
7437   if (isAtomic && !Alignment)
7438     return error(Loc, "atomic load must have explicit non-zero alignment");
7439   if (Ordering == AtomicOrdering::Release ||
7440       Ordering == AtomicOrdering::AcquireRelease)
7441     return error(Loc, "atomic load cannot use Release ordering");
7442 
7443   if (Ty != cast<PointerType>(Val->getType())->getElementType())
7444     return error(ExplicitTypeLoc,
7445                  "explicit pointee type doesn't match operand's pointee type");
7446   SmallPtrSet<Type *, 4> Visited;
7447   if (!Alignment && !Ty->isSized(&Visited))
7448     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7449   if (!Alignment)
7450     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7451   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7452   return AteExtraComma ? InstExtraComma : InstNormal;
7453 }
7454 
7455 /// parseStore
7456 
7457 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7458 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7459 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7460 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7461   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7462   MaybeAlign Alignment;
7463   bool AteExtraComma = false;
7464   bool isAtomic = false;
7465   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7466   SyncScope::ID SSID = SyncScope::System;
7467 
7468   if (Lex.getKind() == lltok::kw_atomic) {
7469     isAtomic = true;
7470     Lex.Lex();
7471   }
7472 
7473   bool isVolatile = false;
7474   if (Lex.getKind() == lltok::kw_volatile) {
7475     isVolatile = true;
7476     Lex.Lex();
7477   }
7478 
7479   if (parseTypeAndValue(Val, Loc, PFS) ||
7480       parseToken(lltok::comma, "expected ',' after store operand") ||
7481       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7482       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7483       parseOptionalCommaAlign(Alignment, AteExtraComma))
7484     return true;
7485 
7486   if (!Ptr->getType()->isPointerTy())
7487     return error(PtrLoc, "store operand must be a pointer");
7488   if (!Val->getType()->isFirstClassType())
7489     return error(Loc, "store operand must be a first class value");
7490   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7491     return error(Loc, "stored value and pointer type do not match");
7492   if (isAtomic && !Alignment)
7493     return error(Loc, "atomic store must have explicit non-zero alignment");
7494   if (Ordering == AtomicOrdering::Acquire ||
7495       Ordering == AtomicOrdering::AcquireRelease)
7496     return error(Loc, "atomic store cannot use Acquire ordering");
7497   SmallPtrSet<Type *, 4> Visited;
7498   if (!Alignment && !Val->getType()->isSized(&Visited))
7499     return error(Loc, "storing unsized types is not allowed");
7500   if (!Alignment)
7501     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7502 
7503   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7504   return AteExtraComma ? InstExtraComma : InstNormal;
7505 }
7506 
7507 /// parseCmpXchg
7508 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7509 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7510 ///       'Align'?
7511 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7512   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7513   bool AteExtraComma = false;
7514   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7515   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7516   SyncScope::ID SSID = SyncScope::System;
7517   bool isVolatile = false;
7518   bool isWeak = false;
7519   MaybeAlign Alignment;
7520 
7521   if (EatIfPresent(lltok::kw_weak))
7522     isWeak = true;
7523 
7524   if (EatIfPresent(lltok::kw_volatile))
7525     isVolatile = true;
7526 
7527   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7528       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7529       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7530       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7531       parseTypeAndValue(New, NewLoc, PFS) ||
7532       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7533       parseOrdering(FailureOrdering) ||
7534       parseOptionalCommaAlign(Alignment, AteExtraComma))
7535     return true;
7536 
7537   if (SuccessOrdering == AtomicOrdering::Unordered ||
7538       FailureOrdering == AtomicOrdering::Unordered)
7539     return tokError("cmpxchg cannot be unordered");
7540   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7541     return tokError("cmpxchg failure argument shall be no stronger than the "
7542                     "success argument");
7543   if (FailureOrdering == AtomicOrdering::Release ||
7544       FailureOrdering == AtomicOrdering::AcquireRelease)
7545     return tokError(
7546         "cmpxchg failure ordering cannot include release semantics");
7547   if (!Ptr->getType()->isPointerTy())
7548     return error(PtrLoc, "cmpxchg operand must be a pointer");
7549   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7550     return error(CmpLoc, "compare value and pointer type do not match");
7551   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7552     return error(NewLoc, "new value and pointer type do not match");
7553   if (!New->getType()->isFirstClassType())
7554     return error(NewLoc, "cmpxchg operand must be a first class value");
7555 
7556   const Align DefaultAlignment(
7557       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7558           Cmp->getType()));
7559 
7560   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7561       Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
7562       FailureOrdering, SSID);
7563   CXI->setVolatile(isVolatile);
7564   CXI->setWeak(isWeak);
7565 
7566   Inst = CXI;
7567   return AteExtraComma ? InstExtraComma : InstNormal;
7568 }
7569 
7570 /// parseAtomicRMW
7571 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7572 ///       'singlethread'? AtomicOrdering
7573 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7574   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7575   bool AteExtraComma = false;
7576   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7577   SyncScope::ID SSID = SyncScope::System;
7578   bool isVolatile = false;
7579   bool IsFP = false;
7580   AtomicRMWInst::BinOp Operation;
7581   MaybeAlign Alignment;
7582 
7583   if (EatIfPresent(lltok::kw_volatile))
7584     isVolatile = true;
7585 
7586   switch (Lex.getKind()) {
7587   default:
7588     return tokError("expected binary operation in atomicrmw");
7589   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7590   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7591   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7592   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7593   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7594   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7595   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7596   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7597   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7598   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7599   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7600   case lltok::kw_fadd:
7601     Operation = AtomicRMWInst::FAdd;
7602     IsFP = true;
7603     break;
7604   case lltok::kw_fsub:
7605     Operation = AtomicRMWInst::FSub;
7606     IsFP = true;
7607     break;
7608   }
7609   Lex.Lex();  // Eat the operation.
7610 
7611   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7612       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7613       parseTypeAndValue(Val, ValLoc, PFS) ||
7614       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7615       parseOptionalCommaAlign(Alignment, AteExtraComma))
7616     return true;
7617 
7618   if (Ordering == AtomicOrdering::Unordered)
7619     return tokError("atomicrmw cannot be unordered");
7620   if (!Ptr->getType()->isPointerTy())
7621     return error(PtrLoc, "atomicrmw operand must be a pointer");
7622   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7623     return error(ValLoc, "atomicrmw value and pointer type do not match");
7624 
7625   if (Operation == AtomicRMWInst::Xchg) {
7626     if (!Val->getType()->isIntegerTy() &&
7627         !Val->getType()->isFloatingPointTy()) {
7628       return error(ValLoc,
7629                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7630                        " operand must be an integer or floating point type");
7631     }
7632   } else if (IsFP) {
7633     if (!Val->getType()->isFloatingPointTy()) {
7634       return error(ValLoc, "atomicrmw " +
7635                                AtomicRMWInst::getOperationName(Operation) +
7636                                " operand must be a floating point type");
7637     }
7638   } else {
7639     if (!Val->getType()->isIntegerTy()) {
7640       return error(ValLoc, "atomicrmw " +
7641                                AtomicRMWInst::getOperationName(Operation) +
7642                                " operand must be an integer");
7643     }
7644   }
7645 
7646   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7647   if (Size < 8 || (Size & (Size - 1)))
7648     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7649                          " integer");
7650   const Align DefaultAlignment(
7651       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7652           Val->getType()));
7653   AtomicRMWInst *RMWI =
7654       new AtomicRMWInst(Operation, Ptr, Val,
7655                         Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
7656   RMWI->setVolatile(isVolatile);
7657   Inst = RMWI;
7658   return AteExtraComma ? InstExtraComma : InstNormal;
7659 }
7660 
7661 /// parseFence
7662 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7663 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7664   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7665   SyncScope::ID SSID = SyncScope::System;
7666   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7667     return true;
7668 
7669   if (Ordering == AtomicOrdering::Unordered)
7670     return tokError("fence cannot be unordered");
7671   if (Ordering == AtomicOrdering::Monotonic)
7672     return tokError("fence cannot be monotonic");
7673 
7674   Inst = new FenceInst(Context, Ordering, SSID);
7675   return InstNormal;
7676 }
7677 
7678 /// parseGetElementPtr
7679 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7680 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7681   Value *Ptr = nullptr;
7682   Value *Val = nullptr;
7683   LocTy Loc, EltLoc;
7684 
7685   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7686 
7687   Type *Ty = nullptr;
7688   LocTy ExplicitTypeLoc = Lex.getLoc();
7689   if (parseType(Ty) ||
7690       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7691       parseTypeAndValue(Ptr, Loc, PFS))
7692     return true;
7693 
7694   Type *BaseType = Ptr->getType();
7695   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7696   if (!BasePointerType)
7697     return error(Loc, "base of getelementptr must be a pointer");
7698 
7699   if (Ty != BasePointerType->getElementType())
7700     return error(ExplicitTypeLoc,
7701                  "explicit pointee type doesn't match operand's pointee type");
7702 
7703   SmallVector<Value*, 16> Indices;
7704   bool AteExtraComma = false;
7705   // GEP returns a vector of pointers if at least one of parameters is a vector.
7706   // All vector parameters should have the same vector width.
7707   ElementCount GEPWidth = BaseType->isVectorTy()
7708                               ? cast<VectorType>(BaseType)->getElementCount()
7709                               : ElementCount::getFixed(0);
7710 
7711   while (EatIfPresent(lltok::comma)) {
7712     if (Lex.getKind() == lltok::MetadataVar) {
7713       AteExtraComma = true;
7714       break;
7715     }
7716     if (parseTypeAndValue(Val, EltLoc, PFS))
7717       return true;
7718     if (!Val->getType()->isIntOrIntVectorTy())
7719       return error(EltLoc, "getelementptr index must be an integer");
7720 
7721     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7722       ElementCount ValNumEl = ValVTy->getElementCount();
7723       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7724         return error(
7725             EltLoc,
7726             "getelementptr vector index has a wrong number of elements");
7727       GEPWidth = ValNumEl;
7728     }
7729     Indices.push_back(Val);
7730   }
7731 
7732   SmallPtrSet<Type*, 4> Visited;
7733   if (!Indices.empty() && !Ty->isSized(&Visited))
7734     return error(Loc, "base element of getelementptr must be sized");
7735 
7736   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7737     return error(Loc, "invalid getelementptr indices");
7738   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7739   if (InBounds)
7740     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7741   return AteExtraComma ? InstExtraComma : InstNormal;
7742 }
7743 
7744 /// parseExtractValue
7745 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7746 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7747   Value *Val; LocTy Loc;
7748   SmallVector<unsigned, 4> Indices;
7749   bool AteExtraComma;
7750   if (parseTypeAndValue(Val, Loc, PFS) ||
7751       parseIndexList(Indices, AteExtraComma))
7752     return true;
7753 
7754   if (!Val->getType()->isAggregateType())
7755     return error(Loc, "extractvalue operand must be aggregate type");
7756 
7757   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7758     return error(Loc, "invalid indices for extractvalue");
7759   Inst = ExtractValueInst::Create(Val, Indices);
7760   return AteExtraComma ? InstExtraComma : InstNormal;
7761 }
7762 
7763 /// parseInsertValue
7764 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7765 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7766   Value *Val0, *Val1; LocTy Loc0, Loc1;
7767   SmallVector<unsigned, 4> Indices;
7768   bool AteExtraComma;
7769   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7770       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7771       parseTypeAndValue(Val1, Loc1, PFS) ||
7772       parseIndexList(Indices, AteExtraComma))
7773     return true;
7774 
7775   if (!Val0->getType()->isAggregateType())
7776     return error(Loc0, "insertvalue operand must be aggregate type");
7777 
7778   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7779   if (!IndexedType)
7780     return error(Loc0, "invalid indices for insertvalue");
7781   if (IndexedType != Val1->getType())
7782     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7783                            getTypeString(Val1->getType()) + "' instead of '" +
7784                            getTypeString(IndexedType) + "'");
7785   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7786   return AteExtraComma ? InstExtraComma : InstNormal;
7787 }
7788 
7789 //===----------------------------------------------------------------------===//
7790 // Embedded metadata.
7791 //===----------------------------------------------------------------------===//
7792 
7793 /// parseMDNodeVector
7794 ///   ::= { Element (',' Element)* }
7795 /// Element
7796 ///   ::= 'null' | TypeAndValue
7797 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7798   if (parseToken(lltok::lbrace, "expected '{' here"))
7799     return true;
7800 
7801   // Check for an empty list.
7802   if (EatIfPresent(lltok::rbrace))
7803     return false;
7804 
7805   do {
7806     // Null is a special case since it is typeless.
7807     if (EatIfPresent(lltok::kw_null)) {
7808       Elts.push_back(nullptr);
7809       continue;
7810     }
7811 
7812     Metadata *MD;
7813     if (parseMetadata(MD, nullptr))
7814       return true;
7815     Elts.push_back(MD);
7816   } while (EatIfPresent(lltok::comma));
7817 
7818   return parseToken(lltok::rbrace, "expected end of metadata node");
7819 }
7820 
7821 //===----------------------------------------------------------------------===//
7822 // Use-list order directives.
7823 //===----------------------------------------------------------------------===//
7824 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7825                                 SMLoc Loc) {
7826   if (V->use_empty())
7827     return error(Loc, "value has no uses");
7828 
7829   unsigned NumUses = 0;
7830   SmallDenseMap<const Use *, unsigned, 16> Order;
7831   for (const Use &U : V->uses()) {
7832     if (++NumUses > Indexes.size())
7833       break;
7834     Order[&U] = Indexes[NumUses - 1];
7835   }
7836   if (NumUses < 2)
7837     return error(Loc, "value only has one use");
7838   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7839     return error(Loc,
7840                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7841 
7842   V->sortUseList([&](const Use &L, const Use &R) {
7843     return Order.lookup(&L) < Order.lookup(&R);
7844   });
7845   return false;
7846 }
7847 
7848 /// parseUseListOrderIndexes
7849 ///   ::= '{' uint32 (',' uint32)+ '}'
7850 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7851   SMLoc Loc = Lex.getLoc();
7852   if (parseToken(lltok::lbrace, "expected '{' here"))
7853     return true;
7854   if (Lex.getKind() == lltok::rbrace)
7855     return Lex.Error("expected non-empty list of uselistorder indexes");
7856 
7857   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7858   // indexes should be distinct numbers in the range [0, size-1], and should
7859   // not be in order.
7860   unsigned Offset = 0;
7861   unsigned Max = 0;
7862   bool IsOrdered = true;
7863   assert(Indexes.empty() && "Expected empty order vector");
7864   do {
7865     unsigned Index;
7866     if (parseUInt32(Index))
7867       return true;
7868 
7869     // Update consistency checks.
7870     Offset += Index - Indexes.size();
7871     Max = std::max(Max, Index);
7872     IsOrdered &= Index == Indexes.size();
7873 
7874     Indexes.push_back(Index);
7875   } while (EatIfPresent(lltok::comma));
7876 
7877   if (parseToken(lltok::rbrace, "expected '}' here"))
7878     return true;
7879 
7880   if (Indexes.size() < 2)
7881     return error(Loc, "expected >= 2 uselistorder indexes");
7882   if (Offset != 0 || Max >= Indexes.size())
7883     return error(Loc,
7884                  "expected distinct uselistorder indexes in range [0, size)");
7885   if (IsOrdered)
7886     return error(Loc, "expected uselistorder indexes to change the order");
7887 
7888   return false;
7889 }
7890 
7891 /// parseUseListOrder
7892 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7893 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7894   SMLoc Loc = Lex.getLoc();
7895   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7896     return true;
7897 
7898   Value *V;
7899   SmallVector<unsigned, 16> Indexes;
7900   if (parseTypeAndValue(V, PFS) ||
7901       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7902       parseUseListOrderIndexes(Indexes))
7903     return true;
7904 
7905   return sortUseListOrder(V, Indexes, Loc);
7906 }
7907 
7908 /// parseUseListOrderBB
7909 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7910 bool LLParser::parseUseListOrderBB() {
7911   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7912   SMLoc Loc = Lex.getLoc();
7913   Lex.Lex();
7914 
7915   ValID Fn, Label;
7916   SmallVector<unsigned, 16> Indexes;
7917   if (parseValID(Fn) ||
7918       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7919       parseValID(Label) ||
7920       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7921       parseUseListOrderIndexes(Indexes))
7922     return true;
7923 
7924   // Check the function.
7925   GlobalValue *GV;
7926   if (Fn.Kind == ValID::t_GlobalName)
7927     GV = M->getNamedValue(Fn.StrVal);
7928   else if (Fn.Kind == ValID::t_GlobalID)
7929     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7930   else
7931     return error(Fn.Loc, "expected function name in uselistorder_bb");
7932   if (!GV)
7933     return error(Fn.Loc,
7934                  "invalid function forward reference in uselistorder_bb");
7935   auto *F = dyn_cast<Function>(GV);
7936   if (!F)
7937     return error(Fn.Loc, "expected function name in uselistorder_bb");
7938   if (F->isDeclaration())
7939     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7940 
7941   // Check the basic block.
7942   if (Label.Kind == ValID::t_LocalID)
7943     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7944   if (Label.Kind != ValID::t_LocalName)
7945     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7946   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7947   if (!V)
7948     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7949   if (!isa<BasicBlock>(V))
7950     return error(Label.Loc, "expected basic block in uselistorder_bb");
7951 
7952   return sortUseListOrder(V, Indexes, Loc);
7953 }
7954 
7955 /// ModuleEntry
7956 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7957 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7958 bool LLParser::parseModuleEntry(unsigned ID) {
7959   assert(Lex.getKind() == lltok::kw_module);
7960   Lex.Lex();
7961 
7962   std::string Path;
7963   if (parseToken(lltok::colon, "expected ':' here") ||
7964       parseToken(lltok::lparen, "expected '(' here") ||
7965       parseToken(lltok::kw_path, "expected 'path' here") ||
7966       parseToken(lltok::colon, "expected ':' here") ||
7967       parseStringConstant(Path) ||
7968       parseToken(lltok::comma, "expected ',' here") ||
7969       parseToken(lltok::kw_hash, "expected 'hash' here") ||
7970       parseToken(lltok::colon, "expected ':' here") ||
7971       parseToken(lltok::lparen, "expected '(' here"))
7972     return true;
7973 
7974   ModuleHash Hash;
7975   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
7976       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
7977       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
7978       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
7979       parseUInt32(Hash[4]))
7980     return true;
7981 
7982   if (parseToken(lltok::rparen, "expected ')' here") ||
7983       parseToken(lltok::rparen, "expected ')' here"))
7984     return true;
7985 
7986   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7987   ModuleIdMap[ID] = ModuleEntry->first();
7988 
7989   return false;
7990 }
7991 
7992 /// TypeIdEntry
7993 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7994 bool LLParser::parseTypeIdEntry(unsigned ID) {
7995   assert(Lex.getKind() == lltok::kw_typeid);
7996   Lex.Lex();
7997 
7998   std::string Name;
7999   if (parseToken(lltok::colon, "expected ':' here") ||
8000       parseToken(lltok::lparen, "expected '(' here") ||
8001       parseToken(lltok::kw_name, "expected 'name' here") ||
8002       parseToken(lltok::colon, "expected ':' here") ||
8003       parseStringConstant(Name))
8004     return true;
8005 
8006   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
8007   if (parseToken(lltok::comma, "expected ',' here") ||
8008       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
8009     return true;
8010 
8011   // Check if this ID was forward referenced, and if so, update the
8012   // corresponding GUIDs.
8013   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8014   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8015     for (auto TIDRef : FwdRefTIDs->second) {
8016       assert(!*TIDRef.first &&
8017              "Forward referenced type id GUID expected to be 0");
8018       *TIDRef.first = GlobalValue::getGUID(Name);
8019     }
8020     ForwardRefTypeIds.erase(FwdRefTIDs);
8021   }
8022 
8023   return false;
8024 }
8025 
8026 /// TypeIdSummary
8027 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
8028 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
8029   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
8030       parseToken(lltok::colon, "expected ':' here") ||
8031       parseToken(lltok::lparen, "expected '(' here") ||
8032       parseTypeTestResolution(TIS.TTRes))
8033     return true;
8034 
8035   if (EatIfPresent(lltok::comma)) {
8036     // Expect optional wpdResolutions field
8037     if (parseOptionalWpdResolutions(TIS.WPDRes))
8038       return true;
8039   }
8040 
8041   if (parseToken(lltok::rparen, "expected ')' here"))
8042     return true;
8043 
8044   return false;
8045 }
8046 
8047 static ValueInfo EmptyVI =
8048     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
8049 
8050 /// TypeIdCompatibleVtableEntry
8051 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
8052 ///   TypeIdCompatibleVtableInfo
8053 ///   ')'
8054 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
8055   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
8056   Lex.Lex();
8057 
8058   std::string Name;
8059   if (parseToken(lltok::colon, "expected ':' here") ||
8060       parseToken(lltok::lparen, "expected '(' here") ||
8061       parseToken(lltok::kw_name, "expected 'name' here") ||
8062       parseToken(lltok::colon, "expected ':' here") ||
8063       parseStringConstant(Name))
8064     return true;
8065 
8066   TypeIdCompatibleVtableInfo &TI =
8067       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
8068   if (parseToken(lltok::comma, "expected ',' here") ||
8069       parseToken(lltok::kw_summary, "expected 'summary' here") ||
8070       parseToken(lltok::colon, "expected ':' here") ||
8071       parseToken(lltok::lparen, "expected '(' here"))
8072     return true;
8073 
8074   IdToIndexMapType IdToIndexMap;
8075   // parse each call edge
8076   do {
8077     uint64_t Offset;
8078     if (parseToken(lltok::lparen, "expected '(' here") ||
8079         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8080         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8081         parseToken(lltok::comma, "expected ',' here"))
8082       return true;
8083 
8084     LocTy Loc = Lex.getLoc();
8085     unsigned GVId;
8086     ValueInfo VI;
8087     if (parseGVReference(VI, GVId))
8088       return true;
8089 
8090     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
8091     // forward reference. We will save the location of the ValueInfo needing an
8092     // update, but can only do so once the std::vector is finalized.
8093     if (VI == EmptyVI)
8094       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
8095     TI.push_back({Offset, VI});
8096 
8097     if (parseToken(lltok::rparen, "expected ')' in call"))
8098       return true;
8099   } while (EatIfPresent(lltok::comma));
8100 
8101   // Now that the TI vector is finalized, it is safe to save the locations
8102   // of any forward GV references that need updating later.
8103   for (auto I : IdToIndexMap) {
8104     auto &Infos = ForwardRefValueInfos[I.first];
8105     for (auto P : I.second) {
8106       assert(TI[P.first].VTableVI == EmptyVI &&
8107              "Forward referenced ValueInfo expected to be empty");
8108       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
8109     }
8110   }
8111 
8112   if (parseToken(lltok::rparen, "expected ')' here") ||
8113       parseToken(lltok::rparen, "expected ')' here"))
8114     return true;
8115 
8116   // Check if this ID was forward referenced, and if so, update the
8117   // corresponding GUIDs.
8118   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8119   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8120     for (auto TIDRef : FwdRefTIDs->second) {
8121       assert(!*TIDRef.first &&
8122              "Forward referenced type id GUID expected to be 0");
8123       *TIDRef.first = GlobalValue::getGUID(Name);
8124     }
8125     ForwardRefTypeIds.erase(FwdRefTIDs);
8126   }
8127 
8128   return false;
8129 }
8130 
8131 /// TypeTestResolution
8132 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
8133 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8134 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8135 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8136 ///         [',' 'inlinesBits' ':' UInt64]? ')'
8137 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8138   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8139       parseToken(lltok::colon, "expected ':' here") ||
8140       parseToken(lltok::lparen, "expected '(' here") ||
8141       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8142       parseToken(lltok::colon, "expected ':' here"))
8143     return true;
8144 
8145   switch (Lex.getKind()) {
8146   case lltok::kw_unknown:
8147     TTRes.TheKind = TypeTestResolution::Unknown;
8148     break;
8149   case lltok::kw_unsat:
8150     TTRes.TheKind = TypeTestResolution::Unsat;
8151     break;
8152   case lltok::kw_byteArray:
8153     TTRes.TheKind = TypeTestResolution::ByteArray;
8154     break;
8155   case lltok::kw_inline:
8156     TTRes.TheKind = TypeTestResolution::Inline;
8157     break;
8158   case lltok::kw_single:
8159     TTRes.TheKind = TypeTestResolution::Single;
8160     break;
8161   case lltok::kw_allOnes:
8162     TTRes.TheKind = TypeTestResolution::AllOnes;
8163     break;
8164   default:
8165     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8166   }
8167   Lex.Lex();
8168 
8169   if (parseToken(lltok::comma, "expected ',' here") ||
8170       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8171       parseToken(lltok::colon, "expected ':' here") ||
8172       parseUInt32(TTRes.SizeM1BitWidth))
8173     return true;
8174 
8175   // parse optional fields
8176   while (EatIfPresent(lltok::comma)) {
8177     switch (Lex.getKind()) {
8178     case lltok::kw_alignLog2:
8179       Lex.Lex();
8180       if (parseToken(lltok::colon, "expected ':'") ||
8181           parseUInt64(TTRes.AlignLog2))
8182         return true;
8183       break;
8184     case lltok::kw_sizeM1:
8185       Lex.Lex();
8186       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8187         return true;
8188       break;
8189     case lltok::kw_bitMask: {
8190       unsigned Val;
8191       Lex.Lex();
8192       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8193         return true;
8194       assert(Val <= 0xff);
8195       TTRes.BitMask = (uint8_t)Val;
8196       break;
8197     }
8198     case lltok::kw_inlineBits:
8199       Lex.Lex();
8200       if (parseToken(lltok::colon, "expected ':'") ||
8201           parseUInt64(TTRes.InlineBits))
8202         return true;
8203       break;
8204     default:
8205       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8206     }
8207   }
8208 
8209   if (parseToken(lltok::rparen, "expected ')' here"))
8210     return true;
8211 
8212   return false;
8213 }
8214 
8215 /// OptionalWpdResolutions
8216 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8217 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8218 bool LLParser::parseOptionalWpdResolutions(
8219     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8220   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8221       parseToken(lltok::colon, "expected ':' here") ||
8222       parseToken(lltok::lparen, "expected '(' here"))
8223     return true;
8224 
8225   do {
8226     uint64_t Offset;
8227     WholeProgramDevirtResolution WPDRes;
8228     if (parseToken(lltok::lparen, "expected '(' here") ||
8229         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8230         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8231         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8232         parseToken(lltok::rparen, "expected ')' here"))
8233       return true;
8234     WPDResMap[Offset] = WPDRes;
8235   } while (EatIfPresent(lltok::comma));
8236 
8237   if (parseToken(lltok::rparen, "expected ')' here"))
8238     return true;
8239 
8240   return false;
8241 }
8242 
8243 /// WpdRes
8244 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8245 ///         [',' OptionalResByArg]? ')'
8246 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8247 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8248 ///         [',' OptionalResByArg]? ')'
8249 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8250 ///         [',' OptionalResByArg]? ')'
8251 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8252   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8253       parseToken(lltok::colon, "expected ':' here") ||
8254       parseToken(lltok::lparen, "expected '(' here") ||
8255       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8256       parseToken(lltok::colon, "expected ':' here"))
8257     return true;
8258 
8259   switch (Lex.getKind()) {
8260   case lltok::kw_indir:
8261     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8262     break;
8263   case lltok::kw_singleImpl:
8264     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8265     break;
8266   case lltok::kw_branchFunnel:
8267     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8268     break;
8269   default:
8270     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8271   }
8272   Lex.Lex();
8273 
8274   // parse optional fields
8275   while (EatIfPresent(lltok::comma)) {
8276     switch (Lex.getKind()) {
8277     case lltok::kw_singleImplName:
8278       Lex.Lex();
8279       if (parseToken(lltok::colon, "expected ':' here") ||
8280           parseStringConstant(WPDRes.SingleImplName))
8281         return true;
8282       break;
8283     case lltok::kw_resByArg:
8284       if (parseOptionalResByArg(WPDRes.ResByArg))
8285         return true;
8286       break;
8287     default:
8288       return error(Lex.getLoc(),
8289                    "expected optional WholeProgramDevirtResolution field");
8290     }
8291   }
8292 
8293   if (parseToken(lltok::rparen, "expected ')' here"))
8294     return true;
8295 
8296   return false;
8297 }
8298 
8299 /// OptionalResByArg
8300 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8301 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8302 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8303 ///                  'virtualConstProp' )
8304 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8305 ///                [',' 'bit' ':' UInt32]? ')'
8306 bool LLParser::parseOptionalResByArg(
8307     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8308         &ResByArg) {
8309   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8310       parseToken(lltok::colon, "expected ':' here") ||
8311       parseToken(lltok::lparen, "expected '(' here"))
8312     return true;
8313 
8314   do {
8315     std::vector<uint64_t> Args;
8316     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8317         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8318         parseToken(lltok::colon, "expected ':' here") ||
8319         parseToken(lltok::lparen, "expected '(' here") ||
8320         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8321         parseToken(lltok::colon, "expected ':' here"))
8322       return true;
8323 
8324     WholeProgramDevirtResolution::ByArg ByArg;
8325     switch (Lex.getKind()) {
8326     case lltok::kw_indir:
8327       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8328       break;
8329     case lltok::kw_uniformRetVal:
8330       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8331       break;
8332     case lltok::kw_uniqueRetVal:
8333       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8334       break;
8335     case lltok::kw_virtualConstProp:
8336       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8337       break;
8338     default:
8339       return error(Lex.getLoc(),
8340                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8341     }
8342     Lex.Lex();
8343 
8344     // parse optional fields
8345     while (EatIfPresent(lltok::comma)) {
8346       switch (Lex.getKind()) {
8347       case lltok::kw_info:
8348         Lex.Lex();
8349         if (parseToken(lltok::colon, "expected ':' here") ||
8350             parseUInt64(ByArg.Info))
8351           return true;
8352         break;
8353       case lltok::kw_byte:
8354         Lex.Lex();
8355         if (parseToken(lltok::colon, "expected ':' here") ||
8356             parseUInt32(ByArg.Byte))
8357           return true;
8358         break;
8359       case lltok::kw_bit:
8360         Lex.Lex();
8361         if (parseToken(lltok::colon, "expected ':' here") ||
8362             parseUInt32(ByArg.Bit))
8363           return true;
8364         break;
8365       default:
8366         return error(Lex.getLoc(),
8367                      "expected optional whole program devirt field");
8368       }
8369     }
8370 
8371     if (parseToken(lltok::rparen, "expected ')' here"))
8372       return true;
8373 
8374     ResByArg[Args] = ByArg;
8375   } while (EatIfPresent(lltok::comma));
8376 
8377   if (parseToken(lltok::rparen, "expected ')' here"))
8378     return true;
8379 
8380   return false;
8381 }
8382 
8383 /// OptionalResByArg
8384 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8385 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8386   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8387       parseToken(lltok::colon, "expected ':' here") ||
8388       parseToken(lltok::lparen, "expected '(' here"))
8389     return true;
8390 
8391   do {
8392     uint64_t Val;
8393     if (parseUInt64(Val))
8394       return true;
8395     Args.push_back(Val);
8396   } while (EatIfPresent(lltok::comma));
8397 
8398   if (parseToken(lltok::rparen, "expected ')' here"))
8399     return true;
8400 
8401   return false;
8402 }
8403 
8404 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8405 
8406 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8407   bool ReadOnly = Fwd->isReadOnly();
8408   bool WriteOnly = Fwd->isWriteOnly();
8409   assert(!(ReadOnly && WriteOnly));
8410   *Fwd = Resolved;
8411   if (ReadOnly)
8412     Fwd->setReadOnly();
8413   if (WriteOnly)
8414     Fwd->setWriteOnly();
8415 }
8416 
8417 /// Stores the given Name/GUID and associated summary into the Index.
8418 /// Also updates any forward references to the associated entry ID.
8419 void LLParser::addGlobalValueToIndex(
8420     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8421     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8422   // First create the ValueInfo utilizing the Name or GUID.
8423   ValueInfo VI;
8424   if (GUID != 0) {
8425     assert(Name.empty());
8426     VI = Index->getOrInsertValueInfo(GUID);
8427   } else {
8428     assert(!Name.empty());
8429     if (M) {
8430       auto *GV = M->getNamedValue(Name);
8431       assert(GV);
8432       VI = Index->getOrInsertValueInfo(GV);
8433     } else {
8434       assert(
8435           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8436           "Need a source_filename to compute GUID for local");
8437       GUID = GlobalValue::getGUID(
8438           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8439       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8440     }
8441   }
8442 
8443   // Resolve forward references from calls/refs
8444   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8445   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8446     for (auto VIRef : FwdRefVIs->second) {
8447       assert(VIRef.first->getRef() == FwdVIRef &&
8448              "Forward referenced ValueInfo expected to be empty");
8449       resolveFwdRef(VIRef.first, VI);
8450     }
8451     ForwardRefValueInfos.erase(FwdRefVIs);
8452   }
8453 
8454   // Resolve forward references from aliases
8455   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8456   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8457     for (auto AliaseeRef : FwdRefAliasees->second) {
8458       assert(!AliaseeRef.first->hasAliasee() &&
8459              "Forward referencing alias already has aliasee");
8460       assert(Summary && "Aliasee must be a definition");
8461       AliaseeRef.first->setAliasee(VI, Summary.get());
8462     }
8463     ForwardRefAliasees.erase(FwdRefAliasees);
8464   }
8465 
8466   // Add the summary if one was provided.
8467   if (Summary)
8468     Index->addGlobalValueSummary(VI, std::move(Summary));
8469 
8470   // Save the associated ValueInfo for use in later references by ID.
8471   if (ID == NumberedValueInfos.size())
8472     NumberedValueInfos.push_back(VI);
8473   else {
8474     // Handle non-continuous numbers (to make test simplification easier).
8475     if (ID > NumberedValueInfos.size())
8476       NumberedValueInfos.resize(ID + 1);
8477     NumberedValueInfos[ID] = VI;
8478   }
8479 }
8480 
8481 /// parseSummaryIndexFlags
8482 ///   ::= 'flags' ':' UInt64
8483 bool LLParser::parseSummaryIndexFlags() {
8484   assert(Lex.getKind() == lltok::kw_flags);
8485   Lex.Lex();
8486 
8487   if (parseToken(lltok::colon, "expected ':' here"))
8488     return true;
8489   uint64_t Flags;
8490   if (parseUInt64(Flags))
8491     return true;
8492   if (Index)
8493     Index->setFlags(Flags);
8494   return false;
8495 }
8496 
8497 /// parseBlockCount
8498 ///   ::= 'blockcount' ':' UInt64
8499 bool LLParser::parseBlockCount() {
8500   assert(Lex.getKind() == lltok::kw_blockcount);
8501   Lex.Lex();
8502 
8503   if (parseToken(lltok::colon, "expected ':' here"))
8504     return true;
8505   uint64_t BlockCount;
8506   if (parseUInt64(BlockCount))
8507     return true;
8508   if (Index)
8509     Index->setBlockCount(BlockCount);
8510   return false;
8511 }
8512 
8513 /// parseGVEntry
8514 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8515 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8516 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8517 bool LLParser::parseGVEntry(unsigned ID) {
8518   assert(Lex.getKind() == lltok::kw_gv);
8519   Lex.Lex();
8520 
8521   if (parseToken(lltok::colon, "expected ':' here") ||
8522       parseToken(lltok::lparen, "expected '(' here"))
8523     return true;
8524 
8525   std::string Name;
8526   GlobalValue::GUID GUID = 0;
8527   switch (Lex.getKind()) {
8528   case lltok::kw_name:
8529     Lex.Lex();
8530     if (parseToken(lltok::colon, "expected ':' here") ||
8531         parseStringConstant(Name))
8532       return true;
8533     // Can't create GUID/ValueInfo until we have the linkage.
8534     break;
8535   case lltok::kw_guid:
8536     Lex.Lex();
8537     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8538       return true;
8539     break;
8540   default:
8541     return error(Lex.getLoc(), "expected name or guid tag");
8542   }
8543 
8544   if (!EatIfPresent(lltok::comma)) {
8545     // No summaries. Wrap up.
8546     if (parseToken(lltok::rparen, "expected ')' here"))
8547       return true;
8548     // This was created for a call to an external or indirect target.
8549     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8550     // created for indirect calls with VP. A Name with no GUID came from
8551     // an external definition. We pass ExternalLinkage since that is only
8552     // used when the GUID must be computed from Name, and in that case
8553     // the symbol must have external linkage.
8554     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8555                           nullptr);
8556     return false;
8557   }
8558 
8559   // Have a list of summaries
8560   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8561       parseToken(lltok::colon, "expected ':' here") ||
8562       parseToken(lltok::lparen, "expected '(' here"))
8563     return true;
8564   do {
8565     switch (Lex.getKind()) {
8566     case lltok::kw_function:
8567       if (parseFunctionSummary(Name, GUID, ID))
8568         return true;
8569       break;
8570     case lltok::kw_variable:
8571       if (parseVariableSummary(Name, GUID, ID))
8572         return true;
8573       break;
8574     case lltok::kw_alias:
8575       if (parseAliasSummary(Name, GUID, ID))
8576         return true;
8577       break;
8578     default:
8579       return error(Lex.getLoc(), "expected summary type");
8580     }
8581   } while (EatIfPresent(lltok::comma));
8582 
8583   if (parseToken(lltok::rparen, "expected ')' here") ||
8584       parseToken(lltok::rparen, "expected ')' here"))
8585     return true;
8586 
8587   return false;
8588 }
8589 
8590 /// FunctionSummary
8591 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8592 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8593 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8594 ///         [',' OptionalRefs]? ')'
8595 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8596                                     unsigned ID) {
8597   assert(Lex.getKind() == lltok::kw_function);
8598   Lex.Lex();
8599 
8600   StringRef ModulePath;
8601   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8602       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8603       /*NotEligibleToImport=*/false,
8604       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8605   unsigned InstCount;
8606   std::vector<FunctionSummary::EdgeTy> Calls;
8607   FunctionSummary::TypeIdInfo TypeIdInfo;
8608   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8609   std::vector<ValueInfo> Refs;
8610   // Default is all-zeros (conservative values).
8611   FunctionSummary::FFlags FFlags = {};
8612   if (parseToken(lltok::colon, "expected ':' here") ||
8613       parseToken(lltok::lparen, "expected '(' here") ||
8614       parseModuleReference(ModulePath) ||
8615       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8616       parseToken(lltok::comma, "expected ',' here") ||
8617       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8618       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8619     return true;
8620 
8621   // parse optional fields
8622   while (EatIfPresent(lltok::comma)) {
8623     switch (Lex.getKind()) {
8624     case lltok::kw_funcFlags:
8625       if (parseOptionalFFlags(FFlags))
8626         return true;
8627       break;
8628     case lltok::kw_calls:
8629       if (parseOptionalCalls(Calls))
8630         return true;
8631       break;
8632     case lltok::kw_typeIdInfo:
8633       if (parseOptionalTypeIdInfo(TypeIdInfo))
8634         return true;
8635       break;
8636     case lltok::kw_refs:
8637       if (parseOptionalRefs(Refs))
8638         return true;
8639       break;
8640     case lltok::kw_params:
8641       if (parseOptionalParamAccesses(ParamAccesses))
8642         return true;
8643       break;
8644     default:
8645       return error(Lex.getLoc(), "expected optional function summary field");
8646     }
8647   }
8648 
8649   if (parseToken(lltok::rparen, "expected ')' here"))
8650     return true;
8651 
8652   auto FS = std::make_unique<FunctionSummary>(
8653       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8654       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8655       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8656       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8657       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8658       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8659       std::move(ParamAccesses));
8660 
8661   FS->setModulePath(ModulePath);
8662 
8663   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8664                         ID, std::move(FS));
8665 
8666   return false;
8667 }
8668 
8669 /// VariableSummary
8670 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8671 ///         [',' OptionalRefs]? ')'
8672 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8673                                     unsigned ID) {
8674   assert(Lex.getKind() == lltok::kw_variable);
8675   Lex.Lex();
8676 
8677   StringRef ModulePath;
8678   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8679       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8680       /*NotEligibleToImport=*/false,
8681       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8682   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8683                                         /* WriteOnly */ false,
8684                                         /* Constant */ false,
8685                                         GlobalObject::VCallVisibilityPublic);
8686   std::vector<ValueInfo> Refs;
8687   VTableFuncList VTableFuncs;
8688   if (parseToken(lltok::colon, "expected ':' here") ||
8689       parseToken(lltok::lparen, "expected '(' here") ||
8690       parseModuleReference(ModulePath) ||
8691       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8692       parseToken(lltok::comma, "expected ',' here") ||
8693       parseGVarFlags(GVarFlags))
8694     return true;
8695 
8696   // parse optional fields
8697   while (EatIfPresent(lltok::comma)) {
8698     switch (Lex.getKind()) {
8699     case lltok::kw_vTableFuncs:
8700       if (parseOptionalVTableFuncs(VTableFuncs))
8701         return true;
8702       break;
8703     case lltok::kw_refs:
8704       if (parseOptionalRefs(Refs))
8705         return true;
8706       break;
8707     default:
8708       return error(Lex.getLoc(), "expected optional variable summary field");
8709     }
8710   }
8711 
8712   if (parseToken(lltok::rparen, "expected ')' here"))
8713     return true;
8714 
8715   auto GS =
8716       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8717 
8718   GS->setModulePath(ModulePath);
8719   GS->setVTableFuncs(std::move(VTableFuncs));
8720 
8721   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8722                         ID, std::move(GS));
8723 
8724   return false;
8725 }
8726 
8727 /// AliasSummary
8728 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8729 ///         'aliasee' ':' GVReference ')'
8730 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8731                                  unsigned ID) {
8732   assert(Lex.getKind() == lltok::kw_alias);
8733   LocTy Loc = Lex.getLoc();
8734   Lex.Lex();
8735 
8736   StringRef ModulePath;
8737   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8738       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8739       /*NotEligibleToImport=*/false,
8740       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8741   if (parseToken(lltok::colon, "expected ':' here") ||
8742       parseToken(lltok::lparen, "expected '(' here") ||
8743       parseModuleReference(ModulePath) ||
8744       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8745       parseToken(lltok::comma, "expected ',' here") ||
8746       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8747       parseToken(lltok::colon, "expected ':' here"))
8748     return true;
8749 
8750   ValueInfo AliaseeVI;
8751   unsigned GVId;
8752   if (parseGVReference(AliaseeVI, GVId))
8753     return true;
8754 
8755   if (parseToken(lltok::rparen, "expected ')' here"))
8756     return true;
8757 
8758   auto AS = std::make_unique<AliasSummary>(GVFlags);
8759 
8760   AS->setModulePath(ModulePath);
8761 
8762   // Record forward reference if the aliasee is not parsed yet.
8763   if (AliaseeVI.getRef() == FwdVIRef) {
8764     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8765   } else {
8766     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8767     assert(Summary && "Aliasee must be a definition");
8768     AS->setAliasee(AliaseeVI, Summary);
8769   }
8770 
8771   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8772                         ID, std::move(AS));
8773 
8774   return false;
8775 }
8776 
8777 /// Flag
8778 ///   ::= [0|1]
8779 bool LLParser::parseFlag(unsigned &Val) {
8780   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8781     return tokError("expected integer");
8782   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8783   Lex.Lex();
8784   return false;
8785 }
8786 
8787 /// OptionalFFlags
8788 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8789 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8790 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8791 ///        [',' 'noInline' ':' Flag]? ')'
8792 ///        [',' 'alwaysInline' ':' Flag]? ')'
8793 
8794 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8795   assert(Lex.getKind() == lltok::kw_funcFlags);
8796   Lex.Lex();
8797 
8798   if (parseToken(lltok::colon, "expected ':' in funcFlags") |
8799       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8800     return true;
8801 
8802   do {
8803     unsigned Val = 0;
8804     switch (Lex.getKind()) {
8805     case lltok::kw_readNone:
8806       Lex.Lex();
8807       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8808         return true;
8809       FFlags.ReadNone = Val;
8810       break;
8811     case lltok::kw_readOnly:
8812       Lex.Lex();
8813       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8814         return true;
8815       FFlags.ReadOnly = Val;
8816       break;
8817     case lltok::kw_noRecurse:
8818       Lex.Lex();
8819       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8820         return true;
8821       FFlags.NoRecurse = Val;
8822       break;
8823     case lltok::kw_returnDoesNotAlias:
8824       Lex.Lex();
8825       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8826         return true;
8827       FFlags.ReturnDoesNotAlias = Val;
8828       break;
8829     case lltok::kw_noInline:
8830       Lex.Lex();
8831       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8832         return true;
8833       FFlags.NoInline = Val;
8834       break;
8835     case lltok::kw_alwaysInline:
8836       Lex.Lex();
8837       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8838         return true;
8839       FFlags.AlwaysInline = Val;
8840       break;
8841     default:
8842       return error(Lex.getLoc(), "expected function flag type");
8843     }
8844   } while (EatIfPresent(lltok::comma));
8845 
8846   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8847     return true;
8848 
8849   return false;
8850 }
8851 
8852 /// OptionalCalls
8853 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8854 /// Call ::= '(' 'callee' ':' GVReference
8855 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8856 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8857   assert(Lex.getKind() == lltok::kw_calls);
8858   Lex.Lex();
8859 
8860   if (parseToken(lltok::colon, "expected ':' in calls") |
8861       parseToken(lltok::lparen, "expected '(' in calls"))
8862     return true;
8863 
8864   IdToIndexMapType IdToIndexMap;
8865   // parse each call edge
8866   do {
8867     ValueInfo VI;
8868     if (parseToken(lltok::lparen, "expected '(' in call") ||
8869         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8870         parseToken(lltok::colon, "expected ':'"))
8871       return true;
8872 
8873     LocTy Loc = Lex.getLoc();
8874     unsigned GVId;
8875     if (parseGVReference(VI, GVId))
8876       return true;
8877 
8878     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8879     unsigned RelBF = 0;
8880     if (EatIfPresent(lltok::comma)) {
8881       // Expect either hotness or relbf
8882       if (EatIfPresent(lltok::kw_hotness)) {
8883         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8884           return true;
8885       } else {
8886         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8887             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8888           return true;
8889       }
8890     }
8891     // Keep track of the Call array index needing a forward reference.
8892     // We will save the location of the ValueInfo needing an update, but
8893     // can only do so once the std::vector is finalized.
8894     if (VI.getRef() == FwdVIRef)
8895       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8896     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8897 
8898     if (parseToken(lltok::rparen, "expected ')' in call"))
8899       return true;
8900   } while (EatIfPresent(lltok::comma));
8901 
8902   // Now that the Calls vector is finalized, it is safe to save the locations
8903   // of any forward GV references that need updating later.
8904   for (auto I : IdToIndexMap) {
8905     auto &Infos = ForwardRefValueInfos[I.first];
8906     for (auto P : I.second) {
8907       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8908              "Forward referenced ValueInfo expected to be empty");
8909       Infos.emplace_back(&Calls[P.first].first, P.second);
8910     }
8911   }
8912 
8913   if (parseToken(lltok::rparen, "expected ')' in calls"))
8914     return true;
8915 
8916   return false;
8917 }
8918 
8919 /// Hotness
8920 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8921 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8922   switch (Lex.getKind()) {
8923   case lltok::kw_unknown:
8924     Hotness = CalleeInfo::HotnessType::Unknown;
8925     break;
8926   case lltok::kw_cold:
8927     Hotness = CalleeInfo::HotnessType::Cold;
8928     break;
8929   case lltok::kw_none:
8930     Hotness = CalleeInfo::HotnessType::None;
8931     break;
8932   case lltok::kw_hot:
8933     Hotness = CalleeInfo::HotnessType::Hot;
8934     break;
8935   case lltok::kw_critical:
8936     Hotness = CalleeInfo::HotnessType::Critical;
8937     break;
8938   default:
8939     return error(Lex.getLoc(), "invalid call edge hotness");
8940   }
8941   Lex.Lex();
8942   return false;
8943 }
8944 
8945 /// OptionalVTableFuncs
8946 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8947 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8948 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8949   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8950   Lex.Lex();
8951 
8952   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") |
8953       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8954     return true;
8955 
8956   IdToIndexMapType IdToIndexMap;
8957   // parse each virtual function pair
8958   do {
8959     ValueInfo VI;
8960     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8961         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8962         parseToken(lltok::colon, "expected ':'"))
8963       return true;
8964 
8965     LocTy Loc = Lex.getLoc();
8966     unsigned GVId;
8967     if (parseGVReference(VI, GVId))
8968       return true;
8969 
8970     uint64_t Offset;
8971     if (parseToken(lltok::comma, "expected comma") ||
8972         parseToken(lltok::kw_offset, "expected offset") ||
8973         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
8974       return true;
8975 
8976     // Keep track of the VTableFuncs array index needing a forward reference.
8977     // We will save the location of the ValueInfo needing an update, but
8978     // can only do so once the std::vector is finalized.
8979     if (VI == EmptyVI)
8980       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8981     VTableFuncs.push_back({VI, Offset});
8982 
8983     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
8984       return true;
8985   } while (EatIfPresent(lltok::comma));
8986 
8987   // Now that the VTableFuncs vector is finalized, it is safe to save the
8988   // locations of any forward GV references that need updating later.
8989   for (auto I : IdToIndexMap) {
8990     auto &Infos = ForwardRefValueInfos[I.first];
8991     for (auto P : I.second) {
8992       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8993              "Forward referenced ValueInfo expected to be empty");
8994       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
8995     }
8996   }
8997 
8998   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8999     return true;
9000 
9001   return false;
9002 }
9003 
9004 /// ParamNo := 'param' ':' UInt64
9005 bool LLParser::parseParamNo(uint64_t &ParamNo) {
9006   if (parseToken(lltok::kw_param, "expected 'param' here") ||
9007       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
9008     return true;
9009   return false;
9010 }
9011 
9012 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
9013 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
9014   APSInt Lower;
9015   APSInt Upper;
9016   auto ParseAPSInt = [&](APSInt &Val) {
9017     if (Lex.getKind() != lltok::APSInt)
9018       return tokError("expected integer");
9019     Val = Lex.getAPSIntVal();
9020     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
9021     Val.setIsSigned(true);
9022     Lex.Lex();
9023     return false;
9024   };
9025   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
9026       parseToken(lltok::colon, "expected ':' here") ||
9027       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
9028       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
9029       parseToken(lltok::rsquare, "expected ']' here"))
9030     return true;
9031 
9032   ++Upper;
9033   Range =
9034       (Lower == Upper && !Lower.isMaxValue())
9035           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
9036           : ConstantRange(Lower, Upper);
9037 
9038   return false;
9039 }
9040 
9041 /// ParamAccessCall
9042 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
9043 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
9044                                     IdLocListType &IdLocList) {
9045   if (parseToken(lltok::lparen, "expected '(' here") ||
9046       parseToken(lltok::kw_callee, "expected 'callee' here") ||
9047       parseToken(lltok::colon, "expected ':' here"))
9048     return true;
9049 
9050   unsigned GVId;
9051   ValueInfo VI;
9052   LocTy Loc = Lex.getLoc();
9053   if (parseGVReference(VI, GVId))
9054     return true;
9055 
9056   Call.Callee = VI;
9057   IdLocList.emplace_back(GVId, Loc);
9058 
9059   if (parseToken(lltok::comma, "expected ',' here") ||
9060       parseParamNo(Call.ParamNo) ||
9061       parseToken(lltok::comma, "expected ',' here") ||
9062       parseParamAccessOffset(Call.Offsets))
9063     return true;
9064 
9065   if (parseToken(lltok::rparen, "expected ')' here"))
9066     return true;
9067 
9068   return false;
9069 }
9070 
9071 /// ParamAccess
9072 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
9073 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
9074 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
9075                                 IdLocListType &IdLocList) {
9076   if (parseToken(lltok::lparen, "expected '(' here") ||
9077       parseParamNo(Param.ParamNo) ||
9078       parseToken(lltok::comma, "expected ',' here") ||
9079       parseParamAccessOffset(Param.Use))
9080     return true;
9081 
9082   if (EatIfPresent(lltok::comma)) {
9083     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
9084         parseToken(lltok::colon, "expected ':' here") ||
9085         parseToken(lltok::lparen, "expected '(' here"))
9086       return true;
9087     do {
9088       FunctionSummary::ParamAccess::Call Call;
9089       if (parseParamAccessCall(Call, IdLocList))
9090         return true;
9091       Param.Calls.push_back(Call);
9092     } while (EatIfPresent(lltok::comma));
9093 
9094     if (parseToken(lltok::rparen, "expected ')' here"))
9095       return true;
9096   }
9097 
9098   if (parseToken(lltok::rparen, "expected ')' here"))
9099     return true;
9100 
9101   return false;
9102 }
9103 
9104 /// OptionalParamAccesses
9105 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
9106 bool LLParser::parseOptionalParamAccesses(
9107     std::vector<FunctionSummary::ParamAccess> &Params) {
9108   assert(Lex.getKind() == lltok::kw_params);
9109   Lex.Lex();
9110 
9111   if (parseToken(lltok::colon, "expected ':' here") ||
9112       parseToken(lltok::lparen, "expected '(' here"))
9113     return true;
9114 
9115   IdLocListType VContexts;
9116   size_t CallsNum = 0;
9117   do {
9118     FunctionSummary::ParamAccess ParamAccess;
9119     if (parseParamAccess(ParamAccess, VContexts))
9120       return true;
9121     CallsNum += ParamAccess.Calls.size();
9122     assert(VContexts.size() == CallsNum);
9123     Params.emplace_back(std::move(ParamAccess));
9124   } while (EatIfPresent(lltok::comma));
9125 
9126   if (parseToken(lltok::rparen, "expected ')' here"))
9127     return true;
9128 
9129   // Now that the Params is finalized, it is safe to save the locations
9130   // of any forward GV references that need updating later.
9131   IdLocListType::const_iterator ItContext = VContexts.begin();
9132   for (auto &PA : Params) {
9133     for (auto &C : PA.Calls) {
9134       if (C.Callee.getRef() == FwdVIRef)
9135         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9136                                                             ItContext->second);
9137       ++ItContext;
9138     }
9139   }
9140   assert(ItContext == VContexts.end());
9141 
9142   return false;
9143 }
9144 
9145 /// OptionalRefs
9146 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
9147 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9148   assert(Lex.getKind() == lltok::kw_refs);
9149   Lex.Lex();
9150 
9151   if (parseToken(lltok::colon, "expected ':' in refs") ||
9152       parseToken(lltok::lparen, "expected '(' in refs"))
9153     return true;
9154 
9155   struct ValueContext {
9156     ValueInfo VI;
9157     unsigned GVId;
9158     LocTy Loc;
9159   };
9160   std::vector<ValueContext> VContexts;
9161   // parse each ref edge
9162   do {
9163     ValueContext VC;
9164     VC.Loc = Lex.getLoc();
9165     if (parseGVReference(VC.VI, VC.GVId))
9166       return true;
9167     VContexts.push_back(VC);
9168   } while (EatIfPresent(lltok::comma));
9169 
9170   // Sort value contexts so that ones with writeonly
9171   // and readonly ValueInfo  are at the end of VContexts vector.
9172   // See FunctionSummary::specialRefCounts()
9173   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
9174     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9175   });
9176 
9177   IdToIndexMapType IdToIndexMap;
9178   for (auto &VC : VContexts) {
9179     // Keep track of the Refs array index needing a forward reference.
9180     // We will save the location of the ValueInfo needing an update, but
9181     // can only do so once the std::vector is finalized.
9182     if (VC.VI.getRef() == FwdVIRef)
9183       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9184     Refs.push_back(VC.VI);
9185   }
9186 
9187   // Now that the Refs vector is finalized, it is safe to save the locations
9188   // of any forward GV references that need updating later.
9189   for (auto I : IdToIndexMap) {
9190     auto &Infos = ForwardRefValueInfos[I.first];
9191     for (auto P : I.second) {
9192       assert(Refs[P.first].getRef() == FwdVIRef &&
9193              "Forward referenced ValueInfo expected to be empty");
9194       Infos.emplace_back(&Refs[P.first], P.second);
9195     }
9196   }
9197 
9198   if (parseToken(lltok::rparen, "expected ')' in refs"))
9199     return true;
9200 
9201   return false;
9202 }
9203 
9204 /// OptionalTypeIdInfo
9205 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9206 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9207 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9208 bool LLParser::parseOptionalTypeIdInfo(
9209     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9210   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9211   Lex.Lex();
9212 
9213   if (parseToken(lltok::colon, "expected ':' here") ||
9214       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9215     return true;
9216 
9217   do {
9218     switch (Lex.getKind()) {
9219     case lltok::kw_typeTests:
9220       if (parseTypeTests(TypeIdInfo.TypeTests))
9221         return true;
9222       break;
9223     case lltok::kw_typeTestAssumeVCalls:
9224       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9225                            TypeIdInfo.TypeTestAssumeVCalls))
9226         return true;
9227       break;
9228     case lltok::kw_typeCheckedLoadVCalls:
9229       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9230                            TypeIdInfo.TypeCheckedLoadVCalls))
9231         return true;
9232       break;
9233     case lltok::kw_typeTestAssumeConstVCalls:
9234       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9235                               TypeIdInfo.TypeTestAssumeConstVCalls))
9236         return true;
9237       break;
9238     case lltok::kw_typeCheckedLoadConstVCalls:
9239       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9240                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9241         return true;
9242       break;
9243     default:
9244       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9245     }
9246   } while (EatIfPresent(lltok::comma));
9247 
9248   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9249     return true;
9250 
9251   return false;
9252 }
9253 
9254 /// TypeTests
9255 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9256 ///         [',' (SummaryID | UInt64)]* ')'
9257 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9258   assert(Lex.getKind() == lltok::kw_typeTests);
9259   Lex.Lex();
9260 
9261   if (parseToken(lltok::colon, "expected ':' here") ||
9262       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9263     return true;
9264 
9265   IdToIndexMapType IdToIndexMap;
9266   do {
9267     GlobalValue::GUID GUID = 0;
9268     if (Lex.getKind() == lltok::SummaryID) {
9269       unsigned ID = Lex.getUIntVal();
9270       LocTy Loc = Lex.getLoc();
9271       // Keep track of the TypeTests array index needing a forward reference.
9272       // We will save the location of the GUID needing an update, but
9273       // can only do so once the std::vector is finalized.
9274       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9275       Lex.Lex();
9276     } else if (parseUInt64(GUID))
9277       return true;
9278     TypeTests.push_back(GUID);
9279   } while (EatIfPresent(lltok::comma));
9280 
9281   // Now that the TypeTests vector is finalized, it is safe to save the
9282   // locations of any forward GV references that need updating later.
9283   for (auto I : IdToIndexMap) {
9284     auto &Ids = ForwardRefTypeIds[I.first];
9285     for (auto P : I.second) {
9286       assert(TypeTests[P.first] == 0 &&
9287              "Forward referenced type id GUID expected to be 0");
9288       Ids.emplace_back(&TypeTests[P.first], P.second);
9289     }
9290   }
9291 
9292   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9293     return true;
9294 
9295   return false;
9296 }
9297 
9298 /// VFuncIdList
9299 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9300 bool LLParser::parseVFuncIdList(
9301     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9302   assert(Lex.getKind() == Kind);
9303   Lex.Lex();
9304 
9305   if (parseToken(lltok::colon, "expected ':' here") ||
9306       parseToken(lltok::lparen, "expected '(' here"))
9307     return true;
9308 
9309   IdToIndexMapType IdToIndexMap;
9310   do {
9311     FunctionSummary::VFuncId VFuncId;
9312     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9313       return true;
9314     VFuncIdList.push_back(VFuncId);
9315   } while (EatIfPresent(lltok::comma));
9316 
9317   if (parseToken(lltok::rparen, "expected ')' here"))
9318     return true;
9319 
9320   // Now that the VFuncIdList vector is finalized, it is safe to save the
9321   // locations of any forward GV references that need updating later.
9322   for (auto I : IdToIndexMap) {
9323     auto &Ids = ForwardRefTypeIds[I.first];
9324     for (auto P : I.second) {
9325       assert(VFuncIdList[P.first].GUID == 0 &&
9326              "Forward referenced type id GUID expected to be 0");
9327       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9328     }
9329   }
9330 
9331   return false;
9332 }
9333 
9334 /// ConstVCallList
9335 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9336 bool LLParser::parseConstVCallList(
9337     lltok::Kind Kind,
9338     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9339   assert(Lex.getKind() == Kind);
9340   Lex.Lex();
9341 
9342   if (parseToken(lltok::colon, "expected ':' here") ||
9343       parseToken(lltok::lparen, "expected '(' here"))
9344     return true;
9345 
9346   IdToIndexMapType IdToIndexMap;
9347   do {
9348     FunctionSummary::ConstVCall ConstVCall;
9349     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9350       return true;
9351     ConstVCallList.push_back(ConstVCall);
9352   } while (EatIfPresent(lltok::comma));
9353 
9354   if (parseToken(lltok::rparen, "expected ')' here"))
9355     return true;
9356 
9357   // Now that the ConstVCallList vector is finalized, it is safe to save the
9358   // locations of any forward GV references that need updating later.
9359   for (auto I : IdToIndexMap) {
9360     auto &Ids = ForwardRefTypeIds[I.first];
9361     for (auto P : I.second) {
9362       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9363              "Forward referenced type id GUID expected to be 0");
9364       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9365     }
9366   }
9367 
9368   return false;
9369 }
9370 
9371 /// ConstVCall
9372 ///   ::= '(' VFuncId ',' Args ')'
9373 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9374                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9375   if (parseToken(lltok::lparen, "expected '(' here") ||
9376       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9377     return true;
9378 
9379   if (EatIfPresent(lltok::comma))
9380     if (parseArgs(ConstVCall.Args))
9381       return true;
9382 
9383   if (parseToken(lltok::rparen, "expected ')' here"))
9384     return true;
9385 
9386   return false;
9387 }
9388 
9389 /// VFuncId
9390 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9391 ///         'offset' ':' UInt64 ')'
9392 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9393                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9394   assert(Lex.getKind() == lltok::kw_vFuncId);
9395   Lex.Lex();
9396 
9397   if (parseToken(lltok::colon, "expected ':' here") ||
9398       parseToken(lltok::lparen, "expected '(' here"))
9399     return true;
9400 
9401   if (Lex.getKind() == lltok::SummaryID) {
9402     VFuncId.GUID = 0;
9403     unsigned ID = Lex.getUIntVal();
9404     LocTy Loc = Lex.getLoc();
9405     // Keep track of the array index needing a forward reference.
9406     // We will save the location of the GUID needing an update, but
9407     // can only do so once the caller's std::vector is finalized.
9408     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9409     Lex.Lex();
9410   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9411              parseToken(lltok::colon, "expected ':' here") ||
9412              parseUInt64(VFuncId.GUID))
9413     return true;
9414 
9415   if (parseToken(lltok::comma, "expected ',' here") ||
9416       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9417       parseToken(lltok::colon, "expected ':' here") ||
9418       parseUInt64(VFuncId.Offset) ||
9419       parseToken(lltok::rparen, "expected ')' here"))
9420     return true;
9421 
9422   return false;
9423 }
9424 
9425 /// GVFlags
9426 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9427 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9428 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9429 ///         'canAutoHide' ':' Flag ',' ')'
9430 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9431   assert(Lex.getKind() == lltok::kw_flags);
9432   Lex.Lex();
9433 
9434   if (parseToken(lltok::colon, "expected ':' here") ||
9435       parseToken(lltok::lparen, "expected '(' here"))
9436     return true;
9437 
9438   do {
9439     unsigned Flag = 0;
9440     switch (Lex.getKind()) {
9441     case lltok::kw_linkage:
9442       Lex.Lex();
9443       if (parseToken(lltok::colon, "expected ':'"))
9444         return true;
9445       bool HasLinkage;
9446       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9447       assert(HasLinkage && "Linkage not optional in summary entry");
9448       Lex.Lex();
9449       break;
9450     case lltok::kw_visibility:
9451       Lex.Lex();
9452       if (parseToken(lltok::colon, "expected ':'"))
9453         return true;
9454       parseOptionalVisibility(Flag);
9455       GVFlags.Visibility = Flag;
9456       break;
9457     case lltok::kw_notEligibleToImport:
9458       Lex.Lex();
9459       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9460         return true;
9461       GVFlags.NotEligibleToImport = Flag;
9462       break;
9463     case lltok::kw_live:
9464       Lex.Lex();
9465       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9466         return true;
9467       GVFlags.Live = Flag;
9468       break;
9469     case lltok::kw_dsoLocal:
9470       Lex.Lex();
9471       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9472         return true;
9473       GVFlags.DSOLocal = Flag;
9474       break;
9475     case lltok::kw_canAutoHide:
9476       Lex.Lex();
9477       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9478         return true;
9479       GVFlags.CanAutoHide = Flag;
9480       break;
9481     default:
9482       return error(Lex.getLoc(), "expected gv flag type");
9483     }
9484   } while (EatIfPresent(lltok::comma));
9485 
9486   if (parseToken(lltok::rparen, "expected ')' here"))
9487     return true;
9488 
9489   return false;
9490 }
9491 
9492 /// GVarFlags
9493 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9494 ///                      ',' 'writeonly' ':' Flag
9495 ///                      ',' 'constant' ':' Flag ')'
9496 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9497   assert(Lex.getKind() == lltok::kw_varFlags);
9498   Lex.Lex();
9499 
9500   if (parseToken(lltok::colon, "expected ':' here") ||
9501       parseToken(lltok::lparen, "expected '(' here"))
9502     return true;
9503 
9504   auto ParseRest = [this](unsigned int &Val) {
9505     Lex.Lex();
9506     if (parseToken(lltok::colon, "expected ':'"))
9507       return true;
9508     return parseFlag(Val);
9509   };
9510 
9511   do {
9512     unsigned Flag = 0;
9513     switch (Lex.getKind()) {
9514     case lltok::kw_readonly:
9515       if (ParseRest(Flag))
9516         return true;
9517       GVarFlags.MaybeReadOnly = Flag;
9518       break;
9519     case lltok::kw_writeonly:
9520       if (ParseRest(Flag))
9521         return true;
9522       GVarFlags.MaybeWriteOnly = Flag;
9523       break;
9524     case lltok::kw_constant:
9525       if (ParseRest(Flag))
9526         return true;
9527       GVarFlags.Constant = Flag;
9528       break;
9529     case lltok::kw_vcall_visibility:
9530       if (ParseRest(Flag))
9531         return true;
9532       GVarFlags.VCallVisibility = Flag;
9533       break;
9534     default:
9535       return error(Lex.getLoc(), "expected gvar flag type");
9536     }
9537   } while (EatIfPresent(lltok::comma));
9538   return parseToken(lltok::rparen, "expected ')' here");
9539 }
9540 
9541 /// ModuleReference
9542 ///   ::= 'module' ':' UInt
9543 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9544   // parse module id.
9545   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9546       parseToken(lltok::colon, "expected ':' here") ||
9547       parseToken(lltok::SummaryID, "expected module ID"))
9548     return true;
9549 
9550   unsigned ModuleID = Lex.getUIntVal();
9551   auto I = ModuleIdMap.find(ModuleID);
9552   // We should have already parsed all module IDs
9553   assert(I != ModuleIdMap.end());
9554   ModulePath = I->second;
9555   return false;
9556 }
9557 
9558 /// GVReference
9559 ///   ::= SummaryID
9560 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9561   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9562   if (!ReadOnly)
9563     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9564   if (parseToken(lltok::SummaryID, "expected GV ID"))
9565     return true;
9566 
9567   GVId = Lex.getUIntVal();
9568   // Check if we already have a VI for this GV
9569   if (GVId < NumberedValueInfos.size()) {
9570     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9571     VI = NumberedValueInfos[GVId];
9572   } else
9573     // We will create a forward reference to the stored location.
9574     VI = ValueInfo(false, FwdVIRef);
9575 
9576   if (ReadOnly)
9577     VI.setReadOnly();
9578   if (WriteOnly)
9579     VI.setWriteOnly();
9580   return false;
9581 }
9582