1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 static std::string getTypeString(Type *T) {
57   std::string Result;
58   raw_string_ostream Tmp(Result);
59   Tmp << *T;
60   return Tmp.str();
61 }
62 
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run(bool UpgradeDebugInfo,
65                    DataLayoutCallbackTy DataLayoutCallback) {
66   // Prime the lexer.
67   Lex.Lex();
68 
69   if (Context.shouldDiscardValueNames())
70     return Error(
71         Lex.getLoc(),
72         "Can't read textual IR with a Context that discards named Values");
73 
74   if (M) {
75     if (ParseTargetDefinitions())
76       return true;
77 
78     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
79       M->setDataLayout(*LayoutOverride);
80   }
81 
82   return ParseTopLevelEntities() || ValidateEndOfModule(UpgradeDebugInfo) ||
83          ValidateEndOfIndex();
84 }
85 
86 bool LLParser::parseStandaloneConstantValue(Constant *&C,
87                                             const SlotMapping *Slots) {
88   restoreParsingState(Slots);
89   Lex.Lex();
90 
91   Type *Ty = nullptr;
92   if (ParseType(Ty) || parseConstantValue(Ty, C))
93     return true;
94   if (Lex.getKind() != lltok::Eof)
95     return Error(Lex.getLoc(), "expected end of string");
96   return false;
97 }
98 
99 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
100                                     const SlotMapping *Slots) {
101   restoreParsingState(Slots);
102   Lex.Lex();
103 
104   Read = 0;
105   SMLoc Start = Lex.getLoc();
106   Ty = nullptr;
107   if (ParseType(Ty))
108     return true;
109   SMLoc End = Lex.getLoc();
110   Read = End.getPointer() - Start.getPointer();
111 
112   return false;
113 }
114 
115 void LLParser::restoreParsingState(const SlotMapping *Slots) {
116   if (!Slots)
117     return;
118   NumberedVals = Slots->GlobalValues;
119   NumberedMetadata = Slots->MetadataNodes;
120   for (const auto &I : Slots->NamedTypes)
121     NamedTypes.insert(
122         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
123   for (const auto &I : Slots->Types)
124     NumberedTypes.insert(
125         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
126 }
127 
128 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
129 /// module.
130 bool LLParser::ValidateEndOfModule(bool UpgradeDebugInfo) {
131   if (!M)
132     return false;
133   // Handle any function attribute group forward references.
134   for (const auto &RAG : ForwardRefAttrGroups) {
135     Value *V = RAG.first;
136     const std::vector<unsigned> &Attrs = RAG.second;
137     AttrBuilder B;
138 
139     for (const auto &Attr : Attrs)
140       B.merge(NumberedAttrBuilders[Attr]);
141 
142     if (Function *Fn = dyn_cast<Function>(V)) {
143       AttributeList AS = Fn->getAttributes();
144       AttrBuilder FnAttrs(AS.getFnAttributes());
145       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
146 
147       FnAttrs.merge(B);
148 
149       // If the alignment was parsed as an attribute, move to the alignment
150       // field.
151       if (FnAttrs.hasAlignmentAttr()) {
152         Fn->setAlignment(FnAttrs.getAlignment());
153         FnAttrs.removeAttribute(Attribute::Alignment);
154       }
155 
156       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
157                             AttributeSet::get(Context, FnAttrs));
158       Fn->setAttributes(AS);
159     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
160       AttributeList AS = CI->getAttributes();
161       AttrBuilder FnAttrs(AS.getFnAttributes());
162       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
163       FnAttrs.merge(B);
164       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
165                             AttributeSet::get(Context, FnAttrs));
166       CI->setAttributes(AS);
167     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
168       AttributeList AS = II->getAttributes();
169       AttrBuilder FnAttrs(AS.getFnAttributes());
170       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
171       FnAttrs.merge(B);
172       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
173                             AttributeSet::get(Context, FnAttrs));
174       II->setAttributes(AS);
175     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
176       AttributeList AS = CBI->getAttributes();
177       AttrBuilder FnAttrs(AS.getFnAttributes());
178       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
179       FnAttrs.merge(B);
180       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
181                             AttributeSet::get(Context, FnAttrs));
182       CBI->setAttributes(AS);
183     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
184       AttrBuilder Attrs(GV->getAttributes());
185       Attrs.merge(B);
186       GV->setAttributes(AttributeSet::get(Context,Attrs));
187     } else {
188       llvm_unreachable("invalid object with forward attribute group reference");
189     }
190   }
191 
192   // If there are entries in ForwardRefBlockAddresses at this point, the
193   // function was never defined.
194   if (!ForwardRefBlockAddresses.empty())
195     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
196                  "expected function name in blockaddress");
197 
198   for (const auto &NT : NumberedTypes)
199     if (NT.second.second.isValid())
200       return Error(NT.second.second,
201                    "use of undefined type '%" + Twine(NT.first) + "'");
202 
203   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
204        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
205     if (I->second.second.isValid())
206       return Error(I->second.second,
207                    "use of undefined type named '" + I->getKey() + "'");
208 
209   if (!ForwardRefComdats.empty())
210     return Error(ForwardRefComdats.begin()->second,
211                  "use of undefined comdat '$" +
212                      ForwardRefComdats.begin()->first + "'");
213 
214   if (!ForwardRefVals.empty())
215     return Error(ForwardRefVals.begin()->second.second,
216                  "use of undefined value '@" + ForwardRefVals.begin()->first +
217                  "'");
218 
219   if (!ForwardRefValIDs.empty())
220     return Error(ForwardRefValIDs.begin()->second.second,
221                  "use of undefined value '@" +
222                  Twine(ForwardRefValIDs.begin()->first) + "'");
223 
224   if (!ForwardRefMDNodes.empty())
225     return Error(ForwardRefMDNodes.begin()->second.second,
226                  "use of undefined metadata '!" +
227                  Twine(ForwardRefMDNodes.begin()->first) + "'");
228 
229   // Resolve metadata cycles.
230   for (auto &N : NumberedMetadata) {
231     if (N.second && !N.second->isResolved())
232       N.second->resolveCycles();
233   }
234 
235   for (auto *Inst : InstsWithTBAATag) {
236     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
237     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
238     auto *UpgradedMD = UpgradeTBAANode(*MD);
239     if (MD != UpgradedMD)
240       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
241   }
242 
243   // Look for intrinsic functions and CallInst that need to be upgraded
244   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
245     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
246 
247   // Some types could be renamed during loading if several modules are
248   // loaded in the same LLVMContext (LTO scenario). In this case we should
249   // remangle intrinsics names as well.
250   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
251     Function *F = &*FI++;
252     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
253       F->replaceAllUsesWith(Remangled.getValue());
254       F->eraseFromParent();
255     }
256   }
257 
258   if (UpgradeDebugInfo)
259     llvm::UpgradeDebugInfo(*M);
260 
261   UpgradeModuleFlags(*M);
262   UpgradeSectionAttributes(*M);
263 
264   if (!Slots)
265     return false;
266   // Initialize the slot mapping.
267   // Because by this point we've parsed and validated everything, we can "steal"
268   // the mapping from LLParser as it doesn't need it anymore.
269   Slots->GlobalValues = std::move(NumberedVals);
270   Slots->MetadataNodes = std::move(NumberedMetadata);
271   for (const auto &I : NamedTypes)
272     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
273   for (const auto &I : NumberedTypes)
274     Slots->Types.insert(std::make_pair(I.first, I.second.first));
275 
276   return false;
277 }
278 
279 /// Do final validity and sanity checks at the end of the index.
280 bool LLParser::ValidateEndOfIndex() {
281   if (!Index)
282     return false;
283 
284   if (!ForwardRefValueInfos.empty())
285     return Error(ForwardRefValueInfos.begin()->second.front().second,
286                  "use of undefined summary '^" +
287                      Twine(ForwardRefValueInfos.begin()->first) + "'");
288 
289   if (!ForwardRefAliasees.empty())
290     return Error(ForwardRefAliasees.begin()->second.front().second,
291                  "use of undefined summary '^" +
292                      Twine(ForwardRefAliasees.begin()->first) + "'");
293 
294   if (!ForwardRefTypeIds.empty())
295     return Error(ForwardRefTypeIds.begin()->second.front().second,
296                  "use of undefined type id summary '^" +
297                      Twine(ForwardRefTypeIds.begin()->first) + "'");
298 
299   return false;
300 }
301 
302 //===----------------------------------------------------------------------===//
303 // Top-Level Entities
304 //===----------------------------------------------------------------------===//
305 
306 bool LLParser::ParseTargetDefinitions() {
307   while (true) {
308     switch (Lex.getKind()) {
309     case lltok::kw_target:
310       if (ParseTargetDefinition())
311         return true;
312       break;
313     case lltok::kw_source_filename:
314       if (ParseSourceFileName())
315         return true;
316       break;
317     default:
318       return false;
319     }
320   }
321 }
322 
323 bool LLParser::ParseTopLevelEntities() {
324   // If there is no Module, then parse just the summary index entries.
325   if (!M) {
326     while (true) {
327       switch (Lex.getKind()) {
328       case lltok::Eof:
329         return false;
330       case lltok::SummaryID:
331         if (ParseSummaryEntry())
332           return true;
333         break;
334       case lltok::kw_source_filename:
335         if (ParseSourceFileName())
336           return true;
337         break;
338       default:
339         // Skip everything else
340         Lex.Lex();
341       }
342     }
343   }
344   while (true) {
345     switch (Lex.getKind()) {
346     default:         return TokError("expected top-level entity");
347     case lltok::Eof: return false;
348     case lltok::kw_declare: if (ParseDeclare()) return true; break;
349     case lltok::kw_define:  if (ParseDefine()) return true; break;
350     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
351     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
352     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
353     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
354     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
355     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
356     case lltok::ComdatVar:  if (parseComdat()) return true; break;
357     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
358     case lltok::SummaryID:
359       if (ParseSummaryEntry())
360         return true;
361       break;
362     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
363     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
364     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
365     case lltok::kw_uselistorder_bb:
366       if (ParseUseListOrderBB())
367         return true;
368       break;
369     }
370   }
371 }
372 
373 /// toplevelentity
374 ///   ::= 'module' 'asm' STRINGCONSTANT
375 bool LLParser::ParseModuleAsm() {
376   assert(Lex.getKind() == lltok::kw_module);
377   Lex.Lex();
378 
379   std::string AsmStr;
380   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
381       ParseStringConstant(AsmStr)) return true;
382 
383   M->appendModuleInlineAsm(AsmStr);
384   return false;
385 }
386 
387 /// toplevelentity
388 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
389 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
390 bool LLParser::ParseTargetDefinition() {
391   assert(Lex.getKind() == lltok::kw_target);
392   std::string Str;
393   switch (Lex.Lex()) {
394   default: return TokError("unknown target property");
395   case lltok::kw_triple:
396     Lex.Lex();
397     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
398         ParseStringConstant(Str))
399       return true;
400     M->setTargetTriple(Str);
401     return false;
402   case lltok::kw_datalayout:
403     Lex.Lex();
404     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
405         ParseStringConstant(Str))
406       return true;
407     M->setDataLayout(Str);
408     return false;
409   }
410 }
411 
412 /// toplevelentity
413 ///   ::= 'source_filename' '=' STRINGCONSTANT
414 bool LLParser::ParseSourceFileName() {
415   assert(Lex.getKind() == lltok::kw_source_filename);
416   Lex.Lex();
417   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
418       ParseStringConstant(SourceFileName))
419     return true;
420   if (M)
421     M->setSourceFileName(SourceFileName);
422   return false;
423 }
424 
425 /// toplevelentity
426 ///   ::= 'deplibs' '=' '[' ']'
427 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
428 /// FIXME: Remove in 4.0. Currently parse, but ignore.
429 bool LLParser::ParseDepLibs() {
430   assert(Lex.getKind() == lltok::kw_deplibs);
431   Lex.Lex();
432   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
433       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
434     return true;
435 
436   if (EatIfPresent(lltok::rsquare))
437     return false;
438 
439   do {
440     std::string Str;
441     if (ParseStringConstant(Str)) return true;
442   } while (EatIfPresent(lltok::comma));
443 
444   return ParseToken(lltok::rsquare, "expected ']' at end of list");
445 }
446 
447 /// ParseUnnamedType:
448 ///   ::= LocalVarID '=' 'type' type
449 bool LLParser::ParseUnnamedType() {
450   LocTy TypeLoc = Lex.getLoc();
451   unsigned TypeID = Lex.getUIntVal();
452   Lex.Lex(); // eat LocalVarID;
453 
454   if (ParseToken(lltok::equal, "expected '=' after name") ||
455       ParseToken(lltok::kw_type, "expected 'type' after '='"))
456     return true;
457 
458   Type *Result = nullptr;
459   if (ParseStructDefinition(TypeLoc, "",
460                             NumberedTypes[TypeID], Result)) return true;
461 
462   if (!isa<StructType>(Result)) {
463     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
464     if (Entry.first)
465       return Error(TypeLoc, "non-struct types may not be recursive");
466     Entry.first = Result;
467     Entry.second = SMLoc();
468   }
469 
470   return false;
471 }
472 
473 /// toplevelentity
474 ///   ::= LocalVar '=' 'type' type
475 bool LLParser::ParseNamedType() {
476   std::string Name = Lex.getStrVal();
477   LocTy NameLoc = Lex.getLoc();
478   Lex.Lex();  // eat LocalVar.
479 
480   if (ParseToken(lltok::equal, "expected '=' after name") ||
481       ParseToken(lltok::kw_type, "expected 'type' after name"))
482     return true;
483 
484   Type *Result = nullptr;
485   if (ParseStructDefinition(NameLoc, Name,
486                             NamedTypes[Name], Result)) return true;
487 
488   if (!isa<StructType>(Result)) {
489     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
490     if (Entry.first)
491       return Error(NameLoc, "non-struct types may not be recursive");
492     Entry.first = Result;
493     Entry.second = SMLoc();
494   }
495 
496   return false;
497 }
498 
499 /// toplevelentity
500 ///   ::= 'declare' FunctionHeader
501 bool LLParser::ParseDeclare() {
502   assert(Lex.getKind() == lltok::kw_declare);
503   Lex.Lex();
504 
505   std::vector<std::pair<unsigned, MDNode *>> MDs;
506   while (Lex.getKind() == lltok::MetadataVar) {
507     unsigned MDK;
508     MDNode *N;
509     if (ParseMetadataAttachment(MDK, N))
510       return true;
511     MDs.push_back({MDK, N});
512   }
513 
514   Function *F;
515   if (ParseFunctionHeader(F, false))
516     return true;
517   for (auto &MD : MDs)
518     F->addMetadata(MD.first, *MD.second);
519   return false;
520 }
521 
522 /// toplevelentity
523 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
524 bool LLParser::ParseDefine() {
525   assert(Lex.getKind() == lltok::kw_define);
526   Lex.Lex();
527 
528   Function *F;
529   return ParseFunctionHeader(F, true) ||
530          ParseOptionalFunctionMetadata(*F) ||
531          ParseFunctionBody(*F);
532 }
533 
534 /// ParseGlobalType
535 ///   ::= 'constant'
536 ///   ::= 'global'
537 bool LLParser::ParseGlobalType(bool &IsConstant) {
538   if (Lex.getKind() == lltok::kw_constant)
539     IsConstant = true;
540   else if (Lex.getKind() == lltok::kw_global)
541     IsConstant = false;
542   else {
543     IsConstant = false;
544     return TokError("expected 'global' or 'constant'");
545   }
546   Lex.Lex();
547   return false;
548 }
549 
550 bool LLParser::ParseOptionalUnnamedAddr(
551     GlobalVariable::UnnamedAddr &UnnamedAddr) {
552   if (EatIfPresent(lltok::kw_unnamed_addr))
553     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
554   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
555     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
556   else
557     UnnamedAddr = GlobalValue::UnnamedAddr::None;
558   return false;
559 }
560 
561 /// ParseUnnamedGlobal:
562 ///   OptionalVisibility (ALIAS | IFUNC) ...
563 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
564 ///   OptionalDLLStorageClass
565 ///                                                     ...   -> global variable
566 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
567 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
568 ///                OptionalDLLStorageClass
569 ///                                                     ...   -> global variable
570 bool LLParser::ParseUnnamedGlobal() {
571   unsigned VarID = NumberedVals.size();
572   std::string Name;
573   LocTy NameLoc = Lex.getLoc();
574 
575   // Handle the GlobalID form.
576   if (Lex.getKind() == lltok::GlobalID) {
577     if (Lex.getUIntVal() != VarID)
578       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
579                    Twine(VarID) + "'");
580     Lex.Lex(); // eat GlobalID;
581 
582     if (ParseToken(lltok::equal, "expected '=' after name"))
583       return true;
584   }
585 
586   bool HasLinkage;
587   unsigned Linkage, Visibility, DLLStorageClass;
588   bool DSOLocal;
589   GlobalVariable::ThreadLocalMode TLM;
590   GlobalVariable::UnnamedAddr UnnamedAddr;
591   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
592                            DSOLocal) ||
593       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
594     return true;
595 
596   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
597     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
598                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
599 
600   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
601                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
602 }
603 
604 /// ParseNamedGlobal:
605 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
606 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
607 ///                 OptionalVisibility OptionalDLLStorageClass
608 ///                                                     ...   -> global variable
609 bool LLParser::ParseNamedGlobal() {
610   assert(Lex.getKind() == lltok::GlobalVar);
611   LocTy NameLoc = Lex.getLoc();
612   std::string Name = Lex.getStrVal();
613   Lex.Lex();
614 
615   bool HasLinkage;
616   unsigned Linkage, Visibility, DLLStorageClass;
617   bool DSOLocal;
618   GlobalVariable::ThreadLocalMode TLM;
619   GlobalVariable::UnnamedAddr UnnamedAddr;
620   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
621       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
622                            DSOLocal) ||
623       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
624     return true;
625 
626   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
627     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
628                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
629 
630   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
631                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
632 }
633 
634 bool LLParser::parseComdat() {
635   assert(Lex.getKind() == lltok::ComdatVar);
636   std::string Name = Lex.getStrVal();
637   LocTy NameLoc = Lex.getLoc();
638   Lex.Lex();
639 
640   if (ParseToken(lltok::equal, "expected '=' here"))
641     return true;
642 
643   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
644     return TokError("expected comdat type");
645 
646   Comdat::SelectionKind SK;
647   switch (Lex.getKind()) {
648   default:
649     return TokError("unknown selection kind");
650   case lltok::kw_any:
651     SK = Comdat::Any;
652     break;
653   case lltok::kw_exactmatch:
654     SK = Comdat::ExactMatch;
655     break;
656   case lltok::kw_largest:
657     SK = Comdat::Largest;
658     break;
659   case lltok::kw_noduplicates:
660     SK = Comdat::NoDuplicates;
661     break;
662   case lltok::kw_samesize:
663     SK = Comdat::SameSize;
664     break;
665   }
666   Lex.Lex();
667 
668   // See if the comdat was forward referenced, if so, use the comdat.
669   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
670   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
671   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
672     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
673 
674   Comdat *C;
675   if (I != ComdatSymTab.end())
676     C = &I->second;
677   else
678     C = M->getOrInsertComdat(Name);
679   C->setSelectionKind(SK);
680 
681   return false;
682 }
683 
684 // MDString:
685 //   ::= '!' STRINGCONSTANT
686 bool LLParser::ParseMDString(MDString *&Result) {
687   std::string Str;
688   if (ParseStringConstant(Str)) return true;
689   Result = MDString::get(Context, Str);
690   return false;
691 }
692 
693 // MDNode:
694 //   ::= '!' MDNodeNumber
695 bool LLParser::ParseMDNodeID(MDNode *&Result) {
696   // !{ ..., !42, ... }
697   LocTy IDLoc = Lex.getLoc();
698   unsigned MID = 0;
699   if (ParseUInt32(MID))
700     return true;
701 
702   // If not a forward reference, just return it now.
703   if (NumberedMetadata.count(MID)) {
704     Result = NumberedMetadata[MID];
705     return false;
706   }
707 
708   // Otherwise, create MDNode forward reference.
709   auto &FwdRef = ForwardRefMDNodes[MID];
710   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
711 
712   Result = FwdRef.first.get();
713   NumberedMetadata[MID].reset(Result);
714   return false;
715 }
716 
717 /// ParseNamedMetadata:
718 ///   !foo = !{ !1, !2 }
719 bool LLParser::ParseNamedMetadata() {
720   assert(Lex.getKind() == lltok::MetadataVar);
721   std::string Name = Lex.getStrVal();
722   Lex.Lex();
723 
724   if (ParseToken(lltok::equal, "expected '=' here") ||
725       ParseToken(lltok::exclaim, "Expected '!' here") ||
726       ParseToken(lltok::lbrace, "Expected '{' here"))
727     return true;
728 
729   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
730   if (Lex.getKind() != lltok::rbrace)
731     do {
732       MDNode *N = nullptr;
733       // Parse DIExpressions inline as a special case. They are still MDNodes,
734       // so they can still appear in named metadata. Remove this logic if they
735       // become plain Metadata.
736       if (Lex.getKind() == lltok::MetadataVar &&
737           Lex.getStrVal() == "DIExpression") {
738         if (ParseDIExpression(N, /*IsDistinct=*/false))
739           return true;
740       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
741                  ParseMDNodeID(N)) {
742         return true;
743       }
744       NMD->addOperand(N);
745     } while (EatIfPresent(lltok::comma));
746 
747   return ParseToken(lltok::rbrace, "expected end of metadata node");
748 }
749 
750 /// ParseStandaloneMetadata:
751 ///   !42 = !{...}
752 bool LLParser::ParseStandaloneMetadata() {
753   assert(Lex.getKind() == lltok::exclaim);
754   Lex.Lex();
755   unsigned MetadataID = 0;
756 
757   MDNode *Init;
758   if (ParseUInt32(MetadataID) ||
759       ParseToken(lltok::equal, "expected '=' here"))
760     return true;
761 
762   // Detect common error, from old metadata syntax.
763   if (Lex.getKind() == lltok::Type)
764     return TokError("unexpected type in metadata definition");
765 
766   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
767   if (Lex.getKind() == lltok::MetadataVar) {
768     if (ParseSpecializedMDNode(Init, IsDistinct))
769       return true;
770   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
771              ParseMDTuple(Init, IsDistinct))
772     return true;
773 
774   // See if this was forward referenced, if so, handle it.
775   auto FI = ForwardRefMDNodes.find(MetadataID);
776   if (FI != ForwardRefMDNodes.end()) {
777     FI->second.first->replaceAllUsesWith(Init);
778     ForwardRefMDNodes.erase(FI);
779 
780     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
781   } else {
782     if (NumberedMetadata.count(MetadataID))
783       return TokError("Metadata id is already used");
784     NumberedMetadata[MetadataID].reset(Init);
785   }
786 
787   return false;
788 }
789 
790 // Skips a single module summary entry.
791 bool LLParser::SkipModuleSummaryEntry() {
792   // Each module summary entry consists of a tag for the entry
793   // type, followed by a colon, then the fields surrounded by nested sets of
794   // parentheses. The "tag:" looks like a Label. Once parsing support is
795   // in place we will look for the tokens corresponding to the expected tags.
796   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
797       Lex.getKind() != lltok::kw_typeid)
798     return TokError(
799         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
800   Lex.Lex();
801   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
802       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
803     return true;
804   // Now walk through the parenthesized entry, until the number of open
805   // parentheses goes back down to 0 (the first '(' was parsed above).
806   unsigned NumOpenParen = 1;
807   do {
808     switch (Lex.getKind()) {
809     case lltok::lparen:
810       NumOpenParen++;
811       break;
812     case lltok::rparen:
813       NumOpenParen--;
814       break;
815     case lltok::Eof:
816       return TokError("found end of file while parsing summary entry");
817     default:
818       // Skip everything in between parentheses.
819       break;
820     }
821     Lex.Lex();
822   } while (NumOpenParen > 0);
823   return false;
824 }
825 
826 /// SummaryEntry
827 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
828 bool LLParser::ParseSummaryEntry() {
829   assert(Lex.getKind() == lltok::SummaryID);
830   unsigned SummaryID = Lex.getUIntVal();
831 
832   // For summary entries, colons should be treated as distinct tokens,
833   // not an indication of the end of a label token.
834   Lex.setIgnoreColonInIdentifiers(true);
835 
836   Lex.Lex();
837   if (ParseToken(lltok::equal, "expected '=' here"))
838     return true;
839 
840   // If we don't have an index object, skip the summary entry.
841   if (!Index)
842     return SkipModuleSummaryEntry();
843 
844   bool result = false;
845   switch (Lex.getKind()) {
846   case lltok::kw_gv:
847     result = ParseGVEntry(SummaryID);
848     break;
849   case lltok::kw_module:
850     result = ParseModuleEntry(SummaryID);
851     break;
852   case lltok::kw_typeid:
853     result = ParseTypeIdEntry(SummaryID);
854     break;
855   case lltok::kw_typeidCompatibleVTable:
856     result = ParseTypeIdCompatibleVtableEntry(SummaryID);
857     break;
858   case lltok::kw_flags:
859     result = ParseSummaryIndexFlags();
860     break;
861   default:
862     result = Error(Lex.getLoc(), "unexpected summary kind");
863     break;
864   }
865   Lex.setIgnoreColonInIdentifiers(false);
866   return result;
867 }
868 
869 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
870   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
871          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
872 }
873 
874 // If there was an explicit dso_local, update GV. In the absence of an explicit
875 // dso_local we keep the default value.
876 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
877   if (DSOLocal)
878     GV.setDSOLocal(true);
879 }
880 
881 /// parseIndirectSymbol:
882 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
883 ///                     OptionalVisibility OptionalDLLStorageClass
884 ///                     OptionalThreadLocal OptionalUnnamedAddr
885 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
886 ///
887 /// IndirectSymbol
888 ///   ::= TypeAndValue
889 ///
890 /// IndirectSymbolAttr
891 ///   ::= ',' 'partition' StringConstant
892 ///
893 /// Everything through OptionalUnnamedAddr has already been parsed.
894 ///
895 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
896                                    unsigned L, unsigned Visibility,
897                                    unsigned DLLStorageClass, bool DSOLocal,
898                                    GlobalVariable::ThreadLocalMode TLM,
899                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
900   bool IsAlias;
901   if (Lex.getKind() == lltok::kw_alias)
902     IsAlias = true;
903   else if (Lex.getKind() == lltok::kw_ifunc)
904     IsAlias = false;
905   else
906     llvm_unreachable("Not an alias or ifunc!");
907   Lex.Lex();
908 
909   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
910 
911   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
912     return Error(NameLoc, "invalid linkage type for alias");
913 
914   if (!isValidVisibilityForLinkage(Visibility, L))
915     return Error(NameLoc,
916                  "symbol with local linkage must have default visibility");
917 
918   Type *Ty;
919   LocTy ExplicitTypeLoc = Lex.getLoc();
920   if (ParseType(Ty) ||
921       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
922     return true;
923 
924   Constant *Aliasee;
925   LocTy AliaseeLoc = Lex.getLoc();
926   if (Lex.getKind() != lltok::kw_bitcast &&
927       Lex.getKind() != lltok::kw_getelementptr &&
928       Lex.getKind() != lltok::kw_addrspacecast &&
929       Lex.getKind() != lltok::kw_inttoptr) {
930     if (ParseGlobalTypeAndValue(Aliasee))
931       return true;
932   } else {
933     // The bitcast dest type is not present, it is implied by the dest type.
934     ValID ID;
935     if (ParseValID(ID))
936       return true;
937     if (ID.Kind != ValID::t_Constant)
938       return Error(AliaseeLoc, "invalid aliasee");
939     Aliasee = ID.ConstantVal;
940   }
941 
942   Type *AliaseeType = Aliasee->getType();
943   auto *PTy = dyn_cast<PointerType>(AliaseeType);
944   if (!PTy)
945     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
946   unsigned AddrSpace = PTy->getAddressSpace();
947 
948   if (IsAlias && Ty != PTy->getElementType())
949     return Error(
950         ExplicitTypeLoc,
951         "explicit pointee type doesn't match operand's pointee type");
952 
953   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
954     return Error(
955         ExplicitTypeLoc,
956         "explicit pointee type should be a function type");
957 
958   GlobalValue *GVal = nullptr;
959 
960   // See if the alias was forward referenced, if so, prepare to replace the
961   // forward reference.
962   if (!Name.empty()) {
963     GVal = M->getNamedValue(Name);
964     if (GVal) {
965       if (!ForwardRefVals.erase(Name))
966         return Error(NameLoc, "redefinition of global '@" + Name + "'");
967     }
968   } else {
969     auto I = ForwardRefValIDs.find(NumberedVals.size());
970     if (I != ForwardRefValIDs.end()) {
971       GVal = I->second.first;
972       ForwardRefValIDs.erase(I);
973     }
974   }
975 
976   // Okay, create the alias but do not insert it into the module yet.
977   std::unique_ptr<GlobalIndirectSymbol> GA;
978   if (IsAlias)
979     GA.reset(GlobalAlias::create(Ty, AddrSpace,
980                                  (GlobalValue::LinkageTypes)Linkage, Name,
981                                  Aliasee, /*Parent*/ nullptr));
982   else
983     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
984                                  (GlobalValue::LinkageTypes)Linkage, Name,
985                                  Aliasee, /*Parent*/ nullptr));
986   GA->setThreadLocalMode(TLM);
987   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
988   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
989   GA->setUnnamedAddr(UnnamedAddr);
990   maybeSetDSOLocal(DSOLocal, *GA);
991 
992   // At this point we've parsed everything except for the IndirectSymbolAttrs.
993   // Now parse them if there are any.
994   while (Lex.getKind() == lltok::comma) {
995     Lex.Lex();
996 
997     if (Lex.getKind() == lltok::kw_partition) {
998       Lex.Lex();
999       GA->setPartition(Lex.getStrVal());
1000       if (ParseToken(lltok::StringConstant, "expected partition string"))
1001         return true;
1002     } else {
1003       return TokError("unknown alias or ifunc property!");
1004     }
1005   }
1006 
1007   if (Name.empty())
1008     NumberedVals.push_back(GA.get());
1009 
1010   if (GVal) {
1011     // Verify that types agree.
1012     if (GVal->getType() != GA->getType())
1013       return Error(
1014           ExplicitTypeLoc,
1015           "forward reference and definition of alias have different types");
1016 
1017     // If they agree, just RAUW the old value with the alias and remove the
1018     // forward ref info.
1019     GVal->replaceAllUsesWith(GA.get());
1020     GVal->eraseFromParent();
1021   }
1022 
1023   // Insert into the module, we know its name won't collide now.
1024   if (IsAlias)
1025     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1026   else
1027     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1028   assert(GA->getName() == Name && "Should not be a name conflict!");
1029 
1030   // The module owns this now
1031   GA.release();
1032 
1033   return false;
1034 }
1035 
1036 /// ParseGlobal
1037 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1038 ///       OptionalVisibility OptionalDLLStorageClass
1039 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1040 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1041 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1042 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1043 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1044 ///       Const OptionalAttrs
1045 ///
1046 /// Everything up to and including OptionalUnnamedAddr has been parsed
1047 /// already.
1048 ///
1049 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1050                            unsigned Linkage, bool HasLinkage,
1051                            unsigned Visibility, unsigned DLLStorageClass,
1052                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1053                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1054   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1055     return Error(NameLoc,
1056                  "symbol with local linkage must have default visibility");
1057 
1058   unsigned AddrSpace;
1059   bool IsConstant, IsExternallyInitialized;
1060   LocTy IsExternallyInitializedLoc;
1061   LocTy TyLoc;
1062 
1063   Type *Ty = nullptr;
1064   if (ParseOptionalAddrSpace(AddrSpace) ||
1065       ParseOptionalToken(lltok::kw_externally_initialized,
1066                          IsExternallyInitialized,
1067                          &IsExternallyInitializedLoc) ||
1068       ParseGlobalType(IsConstant) ||
1069       ParseType(Ty, TyLoc))
1070     return true;
1071 
1072   // If the linkage is specified and is external, then no initializer is
1073   // present.
1074   Constant *Init = nullptr;
1075   if (!HasLinkage ||
1076       !GlobalValue::isValidDeclarationLinkage(
1077           (GlobalValue::LinkageTypes)Linkage)) {
1078     if (ParseGlobalValue(Ty, Init))
1079       return true;
1080   }
1081 
1082   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1083     return Error(TyLoc, "invalid type for global variable");
1084 
1085   GlobalValue *GVal = nullptr;
1086 
1087   // See if the global was forward referenced, if so, use the global.
1088   if (!Name.empty()) {
1089     GVal = M->getNamedValue(Name);
1090     if (GVal) {
1091       if (!ForwardRefVals.erase(Name))
1092         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1093     }
1094   } else {
1095     auto I = ForwardRefValIDs.find(NumberedVals.size());
1096     if (I != ForwardRefValIDs.end()) {
1097       GVal = I->second.first;
1098       ForwardRefValIDs.erase(I);
1099     }
1100   }
1101 
1102   GlobalVariable *GV;
1103   if (!GVal) {
1104     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1105                             Name, nullptr, GlobalVariable::NotThreadLocal,
1106                             AddrSpace);
1107   } else {
1108     if (GVal->getValueType() != Ty)
1109       return Error(TyLoc,
1110             "forward reference and definition of global have different types");
1111 
1112     GV = cast<GlobalVariable>(GVal);
1113 
1114     // Move the forward-reference to the correct spot in the module.
1115     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1116   }
1117 
1118   if (Name.empty())
1119     NumberedVals.push_back(GV);
1120 
1121   // Set the parsed properties on the global.
1122   if (Init)
1123     GV->setInitializer(Init);
1124   GV->setConstant(IsConstant);
1125   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1126   maybeSetDSOLocal(DSOLocal, *GV);
1127   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1128   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1129   GV->setExternallyInitialized(IsExternallyInitialized);
1130   GV->setThreadLocalMode(TLM);
1131   GV->setUnnamedAddr(UnnamedAddr);
1132 
1133   // Parse attributes on the global.
1134   while (Lex.getKind() == lltok::comma) {
1135     Lex.Lex();
1136 
1137     if (Lex.getKind() == lltok::kw_section) {
1138       Lex.Lex();
1139       GV->setSection(Lex.getStrVal());
1140       if (ParseToken(lltok::StringConstant, "expected global section string"))
1141         return true;
1142     } else if (Lex.getKind() == lltok::kw_partition) {
1143       Lex.Lex();
1144       GV->setPartition(Lex.getStrVal());
1145       if (ParseToken(lltok::StringConstant, "expected partition string"))
1146         return true;
1147     } else if (Lex.getKind() == lltok::kw_align) {
1148       MaybeAlign Alignment;
1149       if (ParseOptionalAlignment(Alignment)) return true;
1150       GV->setAlignment(Alignment);
1151     } else if (Lex.getKind() == lltok::MetadataVar) {
1152       if (ParseGlobalObjectMetadataAttachment(*GV))
1153         return true;
1154     } else {
1155       Comdat *C;
1156       if (parseOptionalComdat(Name, C))
1157         return true;
1158       if (C)
1159         GV->setComdat(C);
1160       else
1161         return TokError("unknown global variable property!");
1162     }
1163   }
1164 
1165   AttrBuilder Attrs;
1166   LocTy BuiltinLoc;
1167   std::vector<unsigned> FwdRefAttrGrps;
1168   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1169     return true;
1170   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1171     GV->setAttributes(AttributeSet::get(Context, Attrs));
1172     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1173   }
1174 
1175   return false;
1176 }
1177 
1178 /// ParseUnnamedAttrGrp
1179 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1180 bool LLParser::ParseUnnamedAttrGrp() {
1181   assert(Lex.getKind() == lltok::kw_attributes);
1182   LocTy AttrGrpLoc = Lex.getLoc();
1183   Lex.Lex();
1184 
1185   if (Lex.getKind() != lltok::AttrGrpID)
1186     return TokError("expected attribute group id");
1187 
1188   unsigned VarID = Lex.getUIntVal();
1189   std::vector<unsigned> unused;
1190   LocTy BuiltinLoc;
1191   Lex.Lex();
1192 
1193   if (ParseToken(lltok::equal, "expected '=' here") ||
1194       ParseToken(lltok::lbrace, "expected '{' here") ||
1195       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1196                                  BuiltinLoc) ||
1197       ParseToken(lltok::rbrace, "expected end of attribute group"))
1198     return true;
1199 
1200   if (!NumberedAttrBuilders[VarID].hasAttributes())
1201     return Error(AttrGrpLoc, "attribute group has no attributes");
1202 
1203   return false;
1204 }
1205 
1206 /// ParseFnAttributeValuePairs
1207 ///   ::= <attr> | <attr> '=' <value>
1208 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1209                                           std::vector<unsigned> &FwdRefAttrGrps,
1210                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1211   bool HaveError = false;
1212 
1213   B.clear();
1214 
1215   while (true) {
1216     lltok::Kind Token = Lex.getKind();
1217     if (Token == lltok::kw_builtin)
1218       BuiltinLoc = Lex.getLoc();
1219     switch (Token) {
1220     default:
1221       if (!inAttrGrp) return HaveError;
1222       return Error(Lex.getLoc(), "unterminated attribute group");
1223     case lltok::rbrace:
1224       // Finished.
1225       return false;
1226 
1227     case lltok::AttrGrpID: {
1228       // Allow a function to reference an attribute group:
1229       //
1230       //   define void @foo() #1 { ... }
1231       if (inAttrGrp)
1232         HaveError |=
1233           Error(Lex.getLoc(),
1234               "cannot have an attribute group reference in an attribute group");
1235 
1236       unsigned AttrGrpNum = Lex.getUIntVal();
1237       if (inAttrGrp) break;
1238 
1239       // Save the reference to the attribute group. We'll fill it in later.
1240       FwdRefAttrGrps.push_back(AttrGrpNum);
1241       break;
1242     }
1243     // Target-dependent attributes:
1244     case lltok::StringConstant: {
1245       if (ParseStringAttribute(B))
1246         return true;
1247       continue;
1248     }
1249 
1250     // Target-independent attributes:
1251     case lltok::kw_align: {
1252       // As a hack, we allow function alignment to be initially parsed as an
1253       // attribute on a function declaration/definition or added to an attribute
1254       // group and later moved to the alignment field.
1255       MaybeAlign Alignment;
1256       if (inAttrGrp) {
1257         Lex.Lex();
1258         uint32_t Value = 0;
1259         if (ParseToken(lltok::equal, "expected '=' here") || ParseUInt32(Value))
1260           return true;
1261         Alignment = Align(Value);
1262       } else {
1263         if (ParseOptionalAlignment(Alignment))
1264           return true;
1265       }
1266       B.addAlignmentAttr(Alignment);
1267       continue;
1268     }
1269     case lltok::kw_alignstack: {
1270       unsigned Alignment;
1271       if (inAttrGrp) {
1272         Lex.Lex();
1273         if (ParseToken(lltok::equal, "expected '=' here") ||
1274             ParseUInt32(Alignment))
1275           return true;
1276       } else {
1277         if (ParseOptionalStackAlignment(Alignment))
1278           return true;
1279       }
1280       B.addStackAlignmentAttr(Alignment);
1281       continue;
1282     }
1283     case lltok::kw_allocsize: {
1284       unsigned ElemSizeArg;
1285       Optional<unsigned> NumElemsArg;
1286       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1287       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1288         return true;
1289       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1290       continue;
1291     }
1292     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1293     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1294     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1295     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1296     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1297     case lltok::kw_inaccessiblememonly:
1298       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1299     case lltok::kw_inaccessiblemem_or_argmemonly:
1300       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1301     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1302     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1303     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1304     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1305     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1306     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1307     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1308     case lltok::kw_noimplicitfloat:
1309       B.addAttribute(Attribute::NoImplicitFloat); break;
1310     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1311     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1312     case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break;
1313     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1314     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1315     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1316     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1317     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1318     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1319     case lltok::kw_null_pointer_is_valid:
1320       B.addAttribute(Attribute::NullPointerIsValid); break;
1321     case lltok::kw_optforfuzzing:
1322       B.addAttribute(Attribute::OptForFuzzing); break;
1323     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1324     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1325     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1326     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1327     case lltok::kw_returns_twice:
1328       B.addAttribute(Attribute::ReturnsTwice); break;
1329     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1330     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1331     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1332     case lltok::kw_sspstrong:
1333       B.addAttribute(Attribute::StackProtectStrong); break;
1334     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1335     case lltok::kw_shadowcallstack:
1336       B.addAttribute(Attribute::ShadowCallStack); break;
1337     case lltok::kw_sanitize_address:
1338       B.addAttribute(Attribute::SanitizeAddress); break;
1339     case lltok::kw_sanitize_hwaddress:
1340       B.addAttribute(Attribute::SanitizeHWAddress); break;
1341     case lltok::kw_sanitize_memtag:
1342       B.addAttribute(Attribute::SanitizeMemTag); break;
1343     case lltok::kw_sanitize_thread:
1344       B.addAttribute(Attribute::SanitizeThread); break;
1345     case lltok::kw_sanitize_memory:
1346       B.addAttribute(Attribute::SanitizeMemory); break;
1347     case lltok::kw_speculative_load_hardening:
1348       B.addAttribute(Attribute::SpeculativeLoadHardening);
1349       break;
1350     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1351     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1352     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1353     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1354     case lltok::kw_preallocated: {
1355       Type *Ty;
1356       if (ParsePreallocated(Ty))
1357         return true;
1358       B.addPreallocatedAttr(Ty);
1359       break;
1360     }
1361 
1362     // Error handling.
1363     case lltok::kw_inreg:
1364     case lltok::kw_signext:
1365     case lltok::kw_zeroext:
1366       HaveError |=
1367         Error(Lex.getLoc(),
1368               "invalid use of attribute on a function");
1369       break;
1370     case lltok::kw_byval:
1371     case lltok::kw_dereferenceable:
1372     case lltok::kw_dereferenceable_or_null:
1373     case lltok::kw_inalloca:
1374     case lltok::kw_nest:
1375     case lltok::kw_noalias:
1376     case lltok::kw_nocapture:
1377     case lltok::kw_nonnull:
1378     case lltok::kw_returned:
1379     case lltok::kw_sret:
1380     case lltok::kw_swifterror:
1381     case lltok::kw_swiftself:
1382     case lltok::kw_immarg:
1383       HaveError |=
1384         Error(Lex.getLoc(),
1385               "invalid use of parameter-only attribute on a function");
1386       break;
1387     }
1388 
1389     // ParsePreallocated() consumes token
1390     if (Token != lltok::kw_preallocated)
1391       Lex.Lex();
1392   }
1393 }
1394 
1395 //===----------------------------------------------------------------------===//
1396 // GlobalValue Reference/Resolution Routines.
1397 //===----------------------------------------------------------------------===//
1398 
1399 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1400                                               const std::string &Name) {
1401   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1402     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1403                             PTy->getAddressSpace(), Name, M);
1404   else
1405     return new GlobalVariable(*M, PTy->getElementType(), false,
1406                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1407                               nullptr, GlobalVariable::NotThreadLocal,
1408                               PTy->getAddressSpace());
1409 }
1410 
1411 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1412                                         Value *Val, bool IsCall) {
1413   if (Val->getType() == Ty)
1414     return Val;
1415   // For calls we also accept variables in the program address space.
1416   Type *SuggestedTy = Ty;
1417   if (IsCall && isa<PointerType>(Ty)) {
1418     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1419         M->getDataLayout().getProgramAddressSpace());
1420     SuggestedTy = TyInProgAS;
1421     if (Val->getType() == TyInProgAS)
1422       return Val;
1423   }
1424   if (Ty->isLabelTy())
1425     Error(Loc, "'" + Name + "' is not a basic block");
1426   else
1427     Error(Loc, "'" + Name + "' defined with type '" +
1428                    getTypeString(Val->getType()) + "' but expected '" +
1429                    getTypeString(SuggestedTy) + "'");
1430   return nullptr;
1431 }
1432 
1433 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1434 /// forward reference record if needed.  This can return null if the value
1435 /// exists but does not have the right type.
1436 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1437                                     LocTy Loc, bool IsCall) {
1438   PointerType *PTy = dyn_cast<PointerType>(Ty);
1439   if (!PTy) {
1440     Error(Loc, "global variable reference must have pointer type");
1441     return nullptr;
1442   }
1443 
1444   // Look this name up in the normal function symbol table.
1445   GlobalValue *Val =
1446     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1447 
1448   // If this is a forward reference for the value, see if we already created a
1449   // forward ref record.
1450   if (!Val) {
1451     auto I = ForwardRefVals.find(Name);
1452     if (I != ForwardRefVals.end())
1453       Val = I->second.first;
1454   }
1455 
1456   // If we have the value in the symbol table or fwd-ref table, return it.
1457   if (Val)
1458     return cast_or_null<GlobalValue>(
1459         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1460 
1461   // Otherwise, create a new forward reference for this value and remember it.
1462   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1463   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1464   return FwdVal;
1465 }
1466 
1467 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1468                                     bool IsCall) {
1469   PointerType *PTy = dyn_cast<PointerType>(Ty);
1470   if (!PTy) {
1471     Error(Loc, "global variable reference must have pointer type");
1472     return nullptr;
1473   }
1474 
1475   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1476 
1477   // If this is a forward reference for the value, see if we already created a
1478   // forward ref record.
1479   if (!Val) {
1480     auto I = ForwardRefValIDs.find(ID);
1481     if (I != ForwardRefValIDs.end())
1482       Val = I->second.first;
1483   }
1484 
1485   // If we have the value in the symbol table or fwd-ref table, return it.
1486   if (Val)
1487     return cast_or_null<GlobalValue>(
1488         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1489 
1490   // Otherwise, create a new forward reference for this value and remember it.
1491   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1492   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1493   return FwdVal;
1494 }
1495 
1496 //===----------------------------------------------------------------------===//
1497 // Comdat Reference/Resolution Routines.
1498 //===----------------------------------------------------------------------===//
1499 
1500 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1501   // Look this name up in the comdat symbol table.
1502   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1503   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1504   if (I != ComdatSymTab.end())
1505     return &I->second;
1506 
1507   // Otherwise, create a new forward reference for this value and remember it.
1508   Comdat *C = M->getOrInsertComdat(Name);
1509   ForwardRefComdats[Name] = Loc;
1510   return C;
1511 }
1512 
1513 //===----------------------------------------------------------------------===//
1514 // Helper Routines.
1515 //===----------------------------------------------------------------------===//
1516 
1517 /// ParseToken - If the current token has the specified kind, eat it and return
1518 /// success.  Otherwise, emit the specified error and return failure.
1519 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1520   if (Lex.getKind() != T)
1521     return TokError(ErrMsg);
1522   Lex.Lex();
1523   return false;
1524 }
1525 
1526 /// ParseStringConstant
1527 ///   ::= StringConstant
1528 bool LLParser::ParseStringConstant(std::string &Result) {
1529   if (Lex.getKind() != lltok::StringConstant)
1530     return TokError("expected string constant");
1531   Result = Lex.getStrVal();
1532   Lex.Lex();
1533   return false;
1534 }
1535 
1536 /// ParseUInt32
1537 ///   ::= uint32
1538 bool LLParser::ParseUInt32(uint32_t &Val) {
1539   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1540     return TokError("expected integer");
1541   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1542   if (Val64 != unsigned(Val64))
1543     return TokError("expected 32-bit integer (too large)");
1544   Val = Val64;
1545   Lex.Lex();
1546   return false;
1547 }
1548 
1549 /// ParseUInt64
1550 ///   ::= uint64
1551 bool LLParser::ParseUInt64(uint64_t &Val) {
1552   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1553     return TokError("expected integer");
1554   Val = Lex.getAPSIntVal().getLimitedValue();
1555   Lex.Lex();
1556   return false;
1557 }
1558 
1559 /// ParseTLSModel
1560 ///   := 'localdynamic'
1561 ///   := 'initialexec'
1562 ///   := 'localexec'
1563 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1564   switch (Lex.getKind()) {
1565     default:
1566       return TokError("expected localdynamic, initialexec or localexec");
1567     case lltok::kw_localdynamic:
1568       TLM = GlobalVariable::LocalDynamicTLSModel;
1569       break;
1570     case lltok::kw_initialexec:
1571       TLM = GlobalVariable::InitialExecTLSModel;
1572       break;
1573     case lltok::kw_localexec:
1574       TLM = GlobalVariable::LocalExecTLSModel;
1575       break;
1576   }
1577 
1578   Lex.Lex();
1579   return false;
1580 }
1581 
1582 /// ParseOptionalThreadLocal
1583 ///   := /*empty*/
1584 ///   := 'thread_local'
1585 ///   := 'thread_local' '(' tlsmodel ')'
1586 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1587   TLM = GlobalVariable::NotThreadLocal;
1588   if (!EatIfPresent(lltok::kw_thread_local))
1589     return false;
1590 
1591   TLM = GlobalVariable::GeneralDynamicTLSModel;
1592   if (Lex.getKind() == lltok::lparen) {
1593     Lex.Lex();
1594     return ParseTLSModel(TLM) ||
1595       ParseToken(lltok::rparen, "expected ')' after thread local model");
1596   }
1597   return false;
1598 }
1599 
1600 /// ParseOptionalAddrSpace
1601 ///   := /*empty*/
1602 ///   := 'addrspace' '(' uint32 ')'
1603 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1604   AddrSpace = DefaultAS;
1605   if (!EatIfPresent(lltok::kw_addrspace))
1606     return false;
1607   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1608          ParseUInt32(AddrSpace) ||
1609          ParseToken(lltok::rparen, "expected ')' in address space");
1610 }
1611 
1612 /// ParseStringAttribute
1613 ///   := StringConstant
1614 ///   := StringConstant '=' StringConstant
1615 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1616   std::string Attr = Lex.getStrVal();
1617   Lex.Lex();
1618   std::string Val;
1619   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1620     return true;
1621   B.addAttribute(Attr, Val);
1622   return false;
1623 }
1624 
1625 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1626 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1627   bool HaveError = false;
1628 
1629   B.clear();
1630 
1631   while (true) {
1632     lltok::Kind Token = Lex.getKind();
1633     switch (Token) {
1634     default:  // End of attributes.
1635       return HaveError;
1636     case lltok::StringConstant: {
1637       if (ParseStringAttribute(B))
1638         return true;
1639       continue;
1640     }
1641     case lltok::kw_align: {
1642       MaybeAlign Alignment;
1643       if (ParseOptionalAlignment(Alignment))
1644         return true;
1645       B.addAlignmentAttr(Alignment);
1646       continue;
1647     }
1648     case lltok::kw_byval: {
1649       Type *Ty;
1650       if (ParseByValWithOptionalType(Ty))
1651         return true;
1652       B.addByValAttr(Ty);
1653       continue;
1654     }
1655     case lltok::kw_preallocated: {
1656       Type *Ty;
1657       if (ParsePreallocated(Ty))
1658         return true;
1659       B.addPreallocatedAttr(Ty);
1660       continue;
1661     }
1662     case lltok::kw_dereferenceable: {
1663       uint64_t Bytes;
1664       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1665         return true;
1666       B.addDereferenceableAttr(Bytes);
1667       continue;
1668     }
1669     case lltok::kw_dereferenceable_or_null: {
1670       uint64_t Bytes;
1671       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1672         return true;
1673       B.addDereferenceableOrNullAttr(Bytes);
1674       continue;
1675     }
1676     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1677     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1678     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1679     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1680     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1681     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1682     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1683     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1684     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1685     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1686     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1687     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1688     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1689     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1690     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1691     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1692     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1693 
1694     case lltok::kw_alignstack:
1695     case lltok::kw_alwaysinline:
1696     case lltok::kw_argmemonly:
1697     case lltok::kw_builtin:
1698     case lltok::kw_inlinehint:
1699     case lltok::kw_jumptable:
1700     case lltok::kw_minsize:
1701     case lltok::kw_naked:
1702     case lltok::kw_nobuiltin:
1703     case lltok::kw_noduplicate:
1704     case lltok::kw_noimplicitfloat:
1705     case lltok::kw_noinline:
1706     case lltok::kw_nonlazybind:
1707     case lltok::kw_nomerge:
1708     case lltok::kw_noredzone:
1709     case lltok::kw_noreturn:
1710     case lltok::kw_nocf_check:
1711     case lltok::kw_nounwind:
1712     case lltok::kw_optforfuzzing:
1713     case lltok::kw_optnone:
1714     case lltok::kw_optsize:
1715     case lltok::kw_returns_twice:
1716     case lltok::kw_sanitize_address:
1717     case lltok::kw_sanitize_hwaddress:
1718     case lltok::kw_sanitize_memtag:
1719     case lltok::kw_sanitize_memory:
1720     case lltok::kw_sanitize_thread:
1721     case lltok::kw_speculative_load_hardening:
1722     case lltok::kw_ssp:
1723     case lltok::kw_sspreq:
1724     case lltok::kw_sspstrong:
1725     case lltok::kw_safestack:
1726     case lltok::kw_shadowcallstack:
1727     case lltok::kw_strictfp:
1728     case lltok::kw_uwtable:
1729       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1730       break;
1731     }
1732 
1733     Lex.Lex();
1734   }
1735 }
1736 
1737 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1738 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1739   bool HaveError = false;
1740 
1741   B.clear();
1742 
1743   while (true) {
1744     lltok::Kind Token = Lex.getKind();
1745     switch (Token) {
1746     default:  // End of attributes.
1747       return HaveError;
1748     case lltok::StringConstant: {
1749       if (ParseStringAttribute(B))
1750         return true;
1751       continue;
1752     }
1753     case lltok::kw_dereferenceable: {
1754       uint64_t Bytes;
1755       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1756         return true;
1757       B.addDereferenceableAttr(Bytes);
1758       continue;
1759     }
1760     case lltok::kw_dereferenceable_or_null: {
1761       uint64_t Bytes;
1762       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1763         return true;
1764       B.addDereferenceableOrNullAttr(Bytes);
1765       continue;
1766     }
1767     case lltok::kw_align: {
1768       MaybeAlign Alignment;
1769       if (ParseOptionalAlignment(Alignment))
1770         return true;
1771       B.addAlignmentAttr(Alignment);
1772       continue;
1773     }
1774     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1775     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1776     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1777     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1778     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1779 
1780     // Error handling.
1781     case lltok::kw_byval:
1782     case lltok::kw_inalloca:
1783     case lltok::kw_nest:
1784     case lltok::kw_nocapture:
1785     case lltok::kw_returned:
1786     case lltok::kw_sret:
1787     case lltok::kw_swifterror:
1788     case lltok::kw_swiftself:
1789     case lltok::kw_immarg:
1790       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1791       break;
1792 
1793     case lltok::kw_alignstack:
1794     case lltok::kw_alwaysinline:
1795     case lltok::kw_argmemonly:
1796     case lltok::kw_builtin:
1797     case lltok::kw_cold:
1798     case lltok::kw_inlinehint:
1799     case lltok::kw_jumptable:
1800     case lltok::kw_minsize:
1801     case lltok::kw_naked:
1802     case lltok::kw_nobuiltin:
1803     case lltok::kw_noduplicate:
1804     case lltok::kw_noimplicitfloat:
1805     case lltok::kw_noinline:
1806     case lltok::kw_nonlazybind:
1807     case lltok::kw_nomerge:
1808     case lltok::kw_noredzone:
1809     case lltok::kw_noreturn:
1810     case lltok::kw_nocf_check:
1811     case lltok::kw_nounwind:
1812     case lltok::kw_optforfuzzing:
1813     case lltok::kw_optnone:
1814     case lltok::kw_optsize:
1815     case lltok::kw_returns_twice:
1816     case lltok::kw_sanitize_address:
1817     case lltok::kw_sanitize_hwaddress:
1818     case lltok::kw_sanitize_memtag:
1819     case lltok::kw_sanitize_memory:
1820     case lltok::kw_sanitize_thread:
1821     case lltok::kw_speculative_load_hardening:
1822     case lltok::kw_ssp:
1823     case lltok::kw_sspreq:
1824     case lltok::kw_sspstrong:
1825     case lltok::kw_safestack:
1826     case lltok::kw_shadowcallstack:
1827     case lltok::kw_strictfp:
1828     case lltok::kw_uwtable:
1829       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1830       break;
1831     case lltok::kw_readnone:
1832     case lltok::kw_readonly:
1833       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1834       break;
1835     case lltok::kw_preallocated:
1836       HaveError |=
1837           Error(Lex.getLoc(),
1838                 "invalid use of parameter-only/call site-only attribute");
1839       break;
1840     }
1841 
1842     Lex.Lex();
1843   }
1844 }
1845 
1846 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1847   HasLinkage = true;
1848   switch (Kind) {
1849   default:
1850     HasLinkage = false;
1851     return GlobalValue::ExternalLinkage;
1852   case lltok::kw_private:
1853     return GlobalValue::PrivateLinkage;
1854   case lltok::kw_internal:
1855     return GlobalValue::InternalLinkage;
1856   case lltok::kw_weak:
1857     return GlobalValue::WeakAnyLinkage;
1858   case lltok::kw_weak_odr:
1859     return GlobalValue::WeakODRLinkage;
1860   case lltok::kw_linkonce:
1861     return GlobalValue::LinkOnceAnyLinkage;
1862   case lltok::kw_linkonce_odr:
1863     return GlobalValue::LinkOnceODRLinkage;
1864   case lltok::kw_available_externally:
1865     return GlobalValue::AvailableExternallyLinkage;
1866   case lltok::kw_appending:
1867     return GlobalValue::AppendingLinkage;
1868   case lltok::kw_common:
1869     return GlobalValue::CommonLinkage;
1870   case lltok::kw_extern_weak:
1871     return GlobalValue::ExternalWeakLinkage;
1872   case lltok::kw_external:
1873     return GlobalValue::ExternalLinkage;
1874   }
1875 }
1876 
1877 /// ParseOptionalLinkage
1878 ///   ::= /*empty*/
1879 ///   ::= 'private'
1880 ///   ::= 'internal'
1881 ///   ::= 'weak'
1882 ///   ::= 'weak_odr'
1883 ///   ::= 'linkonce'
1884 ///   ::= 'linkonce_odr'
1885 ///   ::= 'available_externally'
1886 ///   ::= 'appending'
1887 ///   ::= 'common'
1888 ///   ::= 'extern_weak'
1889 ///   ::= 'external'
1890 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1891                                     unsigned &Visibility,
1892                                     unsigned &DLLStorageClass,
1893                                     bool &DSOLocal) {
1894   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1895   if (HasLinkage)
1896     Lex.Lex();
1897   ParseOptionalDSOLocal(DSOLocal);
1898   ParseOptionalVisibility(Visibility);
1899   ParseOptionalDLLStorageClass(DLLStorageClass);
1900 
1901   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1902     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1903   }
1904 
1905   return false;
1906 }
1907 
1908 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1909   switch (Lex.getKind()) {
1910   default:
1911     DSOLocal = false;
1912     break;
1913   case lltok::kw_dso_local:
1914     DSOLocal = true;
1915     Lex.Lex();
1916     break;
1917   case lltok::kw_dso_preemptable:
1918     DSOLocal = false;
1919     Lex.Lex();
1920     break;
1921   }
1922 }
1923 
1924 /// ParseOptionalVisibility
1925 ///   ::= /*empty*/
1926 ///   ::= 'default'
1927 ///   ::= 'hidden'
1928 ///   ::= 'protected'
1929 ///
1930 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1931   switch (Lex.getKind()) {
1932   default:
1933     Res = GlobalValue::DefaultVisibility;
1934     return;
1935   case lltok::kw_default:
1936     Res = GlobalValue::DefaultVisibility;
1937     break;
1938   case lltok::kw_hidden:
1939     Res = GlobalValue::HiddenVisibility;
1940     break;
1941   case lltok::kw_protected:
1942     Res = GlobalValue::ProtectedVisibility;
1943     break;
1944   }
1945   Lex.Lex();
1946 }
1947 
1948 /// ParseOptionalDLLStorageClass
1949 ///   ::= /*empty*/
1950 ///   ::= 'dllimport'
1951 ///   ::= 'dllexport'
1952 ///
1953 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1954   switch (Lex.getKind()) {
1955   default:
1956     Res = GlobalValue::DefaultStorageClass;
1957     return;
1958   case lltok::kw_dllimport:
1959     Res = GlobalValue::DLLImportStorageClass;
1960     break;
1961   case lltok::kw_dllexport:
1962     Res = GlobalValue::DLLExportStorageClass;
1963     break;
1964   }
1965   Lex.Lex();
1966 }
1967 
1968 /// ParseOptionalCallingConv
1969 ///   ::= /*empty*/
1970 ///   ::= 'ccc'
1971 ///   ::= 'fastcc'
1972 ///   ::= 'intel_ocl_bicc'
1973 ///   ::= 'coldcc'
1974 ///   ::= 'cfguard_checkcc'
1975 ///   ::= 'x86_stdcallcc'
1976 ///   ::= 'x86_fastcallcc'
1977 ///   ::= 'x86_thiscallcc'
1978 ///   ::= 'x86_vectorcallcc'
1979 ///   ::= 'arm_apcscc'
1980 ///   ::= 'arm_aapcscc'
1981 ///   ::= 'arm_aapcs_vfpcc'
1982 ///   ::= 'aarch64_vector_pcs'
1983 ///   ::= 'aarch64_sve_vector_pcs'
1984 ///   ::= 'msp430_intrcc'
1985 ///   ::= 'avr_intrcc'
1986 ///   ::= 'avr_signalcc'
1987 ///   ::= 'ptx_kernel'
1988 ///   ::= 'ptx_device'
1989 ///   ::= 'spir_func'
1990 ///   ::= 'spir_kernel'
1991 ///   ::= 'x86_64_sysvcc'
1992 ///   ::= 'win64cc'
1993 ///   ::= 'webkit_jscc'
1994 ///   ::= 'anyregcc'
1995 ///   ::= 'preserve_mostcc'
1996 ///   ::= 'preserve_allcc'
1997 ///   ::= 'ghccc'
1998 ///   ::= 'swiftcc'
1999 ///   ::= 'x86_intrcc'
2000 ///   ::= 'hhvmcc'
2001 ///   ::= 'hhvm_ccc'
2002 ///   ::= 'cxx_fast_tlscc'
2003 ///   ::= 'amdgpu_vs'
2004 ///   ::= 'amdgpu_ls'
2005 ///   ::= 'amdgpu_hs'
2006 ///   ::= 'amdgpu_es'
2007 ///   ::= 'amdgpu_gs'
2008 ///   ::= 'amdgpu_ps'
2009 ///   ::= 'amdgpu_cs'
2010 ///   ::= 'amdgpu_kernel'
2011 ///   ::= 'tailcc'
2012 ///   ::= 'cc' UINT
2013 ///
2014 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
2015   switch (Lex.getKind()) {
2016   default:                       CC = CallingConv::C; return false;
2017   case lltok::kw_ccc:            CC = CallingConv::C; break;
2018   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2019   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2020   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2021   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2022   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2023   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2024   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2025   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2026   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2027   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2028   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2029   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2030   case lltok::kw_aarch64_sve_vector_pcs:
2031     CC = CallingConv::AArch64_SVE_VectorCall;
2032     break;
2033   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2034   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2035   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2036   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2037   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2038   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2039   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2040   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2041   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2042   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2043   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2044   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2045   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2046   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2047   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2048   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2049   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2050   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2051   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2052   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2053   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2054   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2055   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2056   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2057   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2058   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2059   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2060   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2061   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2062   case lltok::kw_cc: {
2063       Lex.Lex();
2064       return ParseUInt32(CC);
2065     }
2066   }
2067 
2068   Lex.Lex();
2069   return false;
2070 }
2071 
2072 /// ParseMetadataAttachment
2073 ///   ::= !dbg !42
2074 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2075   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2076 
2077   std::string Name = Lex.getStrVal();
2078   Kind = M->getMDKindID(Name);
2079   Lex.Lex();
2080 
2081   return ParseMDNode(MD);
2082 }
2083 
2084 /// ParseInstructionMetadata
2085 ///   ::= !dbg !42 (',' !dbg !57)*
2086 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
2087   do {
2088     if (Lex.getKind() != lltok::MetadataVar)
2089       return TokError("expected metadata after comma");
2090 
2091     unsigned MDK;
2092     MDNode *N;
2093     if (ParseMetadataAttachment(MDK, N))
2094       return true;
2095 
2096     Inst.setMetadata(MDK, N);
2097     if (MDK == LLVMContext::MD_tbaa)
2098       InstsWithTBAATag.push_back(&Inst);
2099 
2100     // If this is the end of the list, we're done.
2101   } while (EatIfPresent(lltok::comma));
2102   return false;
2103 }
2104 
2105 /// ParseGlobalObjectMetadataAttachment
2106 ///   ::= !dbg !57
2107 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2108   unsigned MDK;
2109   MDNode *N;
2110   if (ParseMetadataAttachment(MDK, N))
2111     return true;
2112 
2113   GO.addMetadata(MDK, *N);
2114   return false;
2115 }
2116 
2117 /// ParseOptionalFunctionMetadata
2118 ///   ::= (!dbg !57)*
2119 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2120   while (Lex.getKind() == lltok::MetadataVar)
2121     if (ParseGlobalObjectMetadataAttachment(F))
2122       return true;
2123   return false;
2124 }
2125 
2126 /// ParseOptionalAlignment
2127 ///   ::= /* empty */
2128 ///   ::= 'align' 4
2129 bool LLParser::ParseOptionalAlignment(MaybeAlign &Alignment) {
2130   Alignment = None;
2131   if (!EatIfPresent(lltok::kw_align))
2132     return false;
2133   LocTy AlignLoc = Lex.getLoc();
2134   uint32_t Value = 0;
2135   if (ParseUInt32(Value))
2136     return true;
2137   if (!isPowerOf2_32(Value))
2138     return Error(AlignLoc, "alignment is not a power of two");
2139   if (Value > Value::MaximumAlignment)
2140     return Error(AlignLoc, "huge alignments are not supported yet");
2141   Alignment = Align(Value);
2142   return false;
2143 }
2144 
2145 /// ParseOptionalDerefAttrBytes
2146 ///   ::= /* empty */
2147 ///   ::= AttrKind '(' 4 ')'
2148 ///
2149 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2150 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2151                                            uint64_t &Bytes) {
2152   assert((AttrKind == lltok::kw_dereferenceable ||
2153           AttrKind == lltok::kw_dereferenceable_or_null) &&
2154          "contract!");
2155 
2156   Bytes = 0;
2157   if (!EatIfPresent(AttrKind))
2158     return false;
2159   LocTy ParenLoc = Lex.getLoc();
2160   if (!EatIfPresent(lltok::lparen))
2161     return Error(ParenLoc, "expected '('");
2162   LocTy DerefLoc = Lex.getLoc();
2163   if (ParseUInt64(Bytes)) return true;
2164   ParenLoc = Lex.getLoc();
2165   if (!EatIfPresent(lltok::rparen))
2166     return Error(ParenLoc, "expected ')'");
2167   if (!Bytes)
2168     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2169   return false;
2170 }
2171 
2172 /// ParseOptionalCommaAlign
2173 ///   ::=
2174 ///   ::= ',' align 4
2175 ///
2176 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2177 /// end.
2178 bool LLParser::ParseOptionalCommaAlign(MaybeAlign &Alignment,
2179                                        bool &AteExtraComma) {
2180   AteExtraComma = false;
2181   while (EatIfPresent(lltok::comma)) {
2182     // Metadata at the end is an early exit.
2183     if (Lex.getKind() == lltok::MetadataVar) {
2184       AteExtraComma = true;
2185       return false;
2186     }
2187 
2188     if (Lex.getKind() != lltok::kw_align)
2189       return Error(Lex.getLoc(), "expected metadata or 'align'");
2190 
2191     if (ParseOptionalAlignment(Alignment)) return true;
2192   }
2193 
2194   return false;
2195 }
2196 
2197 /// ParseOptionalCommaAddrSpace
2198 ///   ::=
2199 ///   ::= ',' addrspace(1)
2200 ///
2201 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2202 /// end.
2203 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2204                                            LocTy &Loc,
2205                                            bool &AteExtraComma) {
2206   AteExtraComma = false;
2207   while (EatIfPresent(lltok::comma)) {
2208     // Metadata at the end is an early exit.
2209     if (Lex.getKind() == lltok::MetadataVar) {
2210       AteExtraComma = true;
2211       return false;
2212     }
2213 
2214     Loc = Lex.getLoc();
2215     if (Lex.getKind() != lltok::kw_addrspace)
2216       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2217 
2218     if (ParseOptionalAddrSpace(AddrSpace))
2219       return true;
2220   }
2221 
2222   return false;
2223 }
2224 
2225 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2226                                        Optional<unsigned> &HowManyArg) {
2227   Lex.Lex();
2228 
2229   auto StartParen = Lex.getLoc();
2230   if (!EatIfPresent(lltok::lparen))
2231     return Error(StartParen, "expected '('");
2232 
2233   if (ParseUInt32(BaseSizeArg))
2234     return true;
2235 
2236   if (EatIfPresent(lltok::comma)) {
2237     auto HowManyAt = Lex.getLoc();
2238     unsigned HowMany;
2239     if (ParseUInt32(HowMany))
2240       return true;
2241     if (HowMany == BaseSizeArg)
2242       return Error(HowManyAt,
2243                    "'allocsize' indices can't refer to the same parameter");
2244     HowManyArg = HowMany;
2245   } else
2246     HowManyArg = None;
2247 
2248   auto EndParen = Lex.getLoc();
2249   if (!EatIfPresent(lltok::rparen))
2250     return Error(EndParen, "expected ')'");
2251   return false;
2252 }
2253 
2254 /// ParseScopeAndOrdering
2255 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2256 ///   else: ::=
2257 ///
2258 /// This sets Scope and Ordering to the parsed values.
2259 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2260                                      AtomicOrdering &Ordering) {
2261   if (!isAtomic)
2262     return false;
2263 
2264   return ParseScope(SSID) || ParseOrdering(Ordering);
2265 }
2266 
2267 /// ParseScope
2268 ///   ::= syncscope("singlethread" | "<target scope>")?
2269 ///
2270 /// This sets synchronization scope ID to the ID of the parsed value.
2271 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2272   SSID = SyncScope::System;
2273   if (EatIfPresent(lltok::kw_syncscope)) {
2274     auto StartParenAt = Lex.getLoc();
2275     if (!EatIfPresent(lltok::lparen))
2276       return Error(StartParenAt, "Expected '(' in syncscope");
2277 
2278     std::string SSN;
2279     auto SSNAt = Lex.getLoc();
2280     if (ParseStringConstant(SSN))
2281       return Error(SSNAt, "Expected synchronization scope name");
2282 
2283     auto EndParenAt = Lex.getLoc();
2284     if (!EatIfPresent(lltok::rparen))
2285       return Error(EndParenAt, "Expected ')' in syncscope");
2286 
2287     SSID = Context.getOrInsertSyncScopeID(SSN);
2288   }
2289 
2290   return false;
2291 }
2292 
2293 /// ParseOrdering
2294 ///   ::= AtomicOrdering
2295 ///
2296 /// This sets Ordering to the parsed value.
2297 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2298   switch (Lex.getKind()) {
2299   default: return TokError("Expected ordering on atomic instruction");
2300   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2301   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2302   // Not specified yet:
2303   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2304   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2305   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2306   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2307   case lltok::kw_seq_cst:
2308     Ordering = AtomicOrdering::SequentiallyConsistent;
2309     break;
2310   }
2311   Lex.Lex();
2312   return false;
2313 }
2314 
2315 /// ParseOptionalStackAlignment
2316 ///   ::= /* empty */
2317 ///   ::= 'alignstack' '(' 4 ')'
2318 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2319   Alignment = 0;
2320   if (!EatIfPresent(lltok::kw_alignstack))
2321     return false;
2322   LocTy ParenLoc = Lex.getLoc();
2323   if (!EatIfPresent(lltok::lparen))
2324     return Error(ParenLoc, "expected '('");
2325   LocTy AlignLoc = Lex.getLoc();
2326   if (ParseUInt32(Alignment)) return true;
2327   ParenLoc = Lex.getLoc();
2328   if (!EatIfPresent(lltok::rparen))
2329     return Error(ParenLoc, "expected ')'");
2330   if (!isPowerOf2_32(Alignment))
2331     return Error(AlignLoc, "stack alignment is not a power of two");
2332   return false;
2333 }
2334 
2335 /// ParseIndexList - This parses the index list for an insert/extractvalue
2336 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2337 /// comma at the end of the line and find that it is followed by metadata.
2338 /// Clients that don't allow metadata can call the version of this function that
2339 /// only takes one argument.
2340 ///
2341 /// ParseIndexList
2342 ///    ::=  (',' uint32)+
2343 ///
2344 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2345                               bool &AteExtraComma) {
2346   AteExtraComma = false;
2347 
2348   if (Lex.getKind() != lltok::comma)
2349     return TokError("expected ',' as start of index list");
2350 
2351   while (EatIfPresent(lltok::comma)) {
2352     if (Lex.getKind() == lltok::MetadataVar) {
2353       if (Indices.empty()) return TokError("expected index");
2354       AteExtraComma = true;
2355       return false;
2356     }
2357     unsigned Idx = 0;
2358     if (ParseUInt32(Idx)) return true;
2359     Indices.push_back(Idx);
2360   }
2361 
2362   return false;
2363 }
2364 
2365 //===----------------------------------------------------------------------===//
2366 // Type Parsing.
2367 //===----------------------------------------------------------------------===//
2368 
2369 /// ParseType - Parse a type.
2370 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2371   SMLoc TypeLoc = Lex.getLoc();
2372   switch (Lex.getKind()) {
2373   default:
2374     return TokError(Msg);
2375   case lltok::Type:
2376     // Type ::= 'float' | 'void' (etc)
2377     Result = Lex.getTyVal();
2378     Lex.Lex();
2379     break;
2380   case lltok::lbrace:
2381     // Type ::= StructType
2382     if (ParseAnonStructType(Result, false))
2383       return true;
2384     break;
2385   case lltok::lsquare:
2386     // Type ::= '[' ... ']'
2387     Lex.Lex(); // eat the lsquare.
2388     if (ParseArrayVectorType(Result, false))
2389       return true;
2390     break;
2391   case lltok::less: // Either vector or packed struct.
2392     // Type ::= '<' ... '>'
2393     Lex.Lex();
2394     if (Lex.getKind() == lltok::lbrace) {
2395       if (ParseAnonStructType(Result, true) ||
2396           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2397         return true;
2398     } else if (ParseArrayVectorType(Result, true))
2399       return true;
2400     break;
2401   case lltok::LocalVar: {
2402     // Type ::= %foo
2403     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2404 
2405     // If the type hasn't been defined yet, create a forward definition and
2406     // remember where that forward def'n was seen (in case it never is defined).
2407     if (!Entry.first) {
2408       Entry.first = StructType::create(Context, Lex.getStrVal());
2409       Entry.second = Lex.getLoc();
2410     }
2411     Result = Entry.first;
2412     Lex.Lex();
2413     break;
2414   }
2415 
2416   case lltok::LocalVarID: {
2417     // Type ::= %4
2418     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2419 
2420     // If the type hasn't been defined yet, create a forward definition and
2421     // remember where that forward def'n was seen (in case it never is defined).
2422     if (!Entry.first) {
2423       Entry.first = StructType::create(Context);
2424       Entry.second = Lex.getLoc();
2425     }
2426     Result = Entry.first;
2427     Lex.Lex();
2428     break;
2429   }
2430   }
2431 
2432   // Parse the type suffixes.
2433   while (true) {
2434     switch (Lex.getKind()) {
2435     // End of type.
2436     default:
2437       if (!AllowVoid && Result->isVoidTy())
2438         return Error(TypeLoc, "void type only allowed for function results");
2439       return false;
2440 
2441     // Type ::= Type '*'
2442     case lltok::star:
2443       if (Result->isLabelTy())
2444         return TokError("basic block pointers are invalid");
2445       if (Result->isVoidTy())
2446         return TokError("pointers to void are invalid - use i8* instead");
2447       if (!PointerType::isValidElementType(Result))
2448         return TokError("pointer to this type is invalid");
2449       Result = PointerType::getUnqual(Result);
2450       Lex.Lex();
2451       break;
2452 
2453     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2454     case lltok::kw_addrspace: {
2455       if (Result->isLabelTy())
2456         return TokError("basic block pointers are invalid");
2457       if (Result->isVoidTy())
2458         return TokError("pointers to void are invalid; use i8* instead");
2459       if (!PointerType::isValidElementType(Result))
2460         return TokError("pointer to this type is invalid");
2461       unsigned AddrSpace;
2462       if (ParseOptionalAddrSpace(AddrSpace) ||
2463           ParseToken(lltok::star, "expected '*' in address space"))
2464         return true;
2465 
2466       Result = PointerType::get(Result, AddrSpace);
2467       break;
2468     }
2469 
2470     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2471     case lltok::lparen:
2472       if (ParseFunctionType(Result))
2473         return true;
2474       break;
2475     }
2476   }
2477 }
2478 
2479 /// ParseParameterList
2480 ///    ::= '(' ')'
2481 ///    ::= '(' Arg (',' Arg)* ')'
2482 ///  Arg
2483 ///    ::= Type OptionalAttributes Value OptionalAttributes
2484 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2485                                   PerFunctionState &PFS, bool IsMustTailCall,
2486                                   bool InVarArgsFunc) {
2487   if (ParseToken(lltok::lparen, "expected '(' in call"))
2488     return true;
2489 
2490   while (Lex.getKind() != lltok::rparen) {
2491     // If this isn't the first argument, we need a comma.
2492     if (!ArgList.empty() &&
2493         ParseToken(lltok::comma, "expected ',' in argument list"))
2494       return true;
2495 
2496     // Parse an ellipsis if this is a musttail call in a variadic function.
2497     if (Lex.getKind() == lltok::dotdotdot) {
2498       const char *Msg = "unexpected ellipsis in argument list for ";
2499       if (!IsMustTailCall)
2500         return TokError(Twine(Msg) + "non-musttail call");
2501       if (!InVarArgsFunc)
2502         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2503       Lex.Lex();  // Lex the '...', it is purely for readability.
2504       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2505     }
2506 
2507     // Parse the argument.
2508     LocTy ArgLoc;
2509     Type *ArgTy = nullptr;
2510     AttrBuilder ArgAttrs;
2511     Value *V;
2512     if (ParseType(ArgTy, ArgLoc))
2513       return true;
2514 
2515     if (ArgTy->isMetadataTy()) {
2516       if (ParseMetadataAsValue(V, PFS))
2517         return true;
2518     } else {
2519       // Otherwise, handle normal operands.
2520       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2521         return true;
2522     }
2523     ArgList.push_back(ParamInfo(
2524         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2525   }
2526 
2527   if (IsMustTailCall && InVarArgsFunc)
2528     return TokError("expected '...' at end of argument list for musttail call "
2529                     "in varargs function");
2530 
2531   Lex.Lex();  // Lex the ')'.
2532   return false;
2533 }
2534 
2535 /// ParseByValWithOptionalType
2536 ///   ::= byval
2537 ///   ::= byval(<ty>)
2538 bool LLParser::ParseByValWithOptionalType(Type *&Result) {
2539   Result = nullptr;
2540   if (!EatIfPresent(lltok::kw_byval))
2541     return true;
2542   if (!EatIfPresent(lltok::lparen))
2543     return false;
2544   if (ParseType(Result))
2545     return true;
2546   if (!EatIfPresent(lltok::rparen))
2547     return Error(Lex.getLoc(), "expected ')'");
2548   return false;
2549 }
2550 
2551 /// ParsePreallocated
2552 ///   ::= preallocated(<ty>)
2553 bool LLParser::ParsePreallocated(Type *&Result) {
2554   Result = nullptr;
2555   if (!EatIfPresent(lltok::kw_preallocated))
2556     return true;
2557   if (!EatIfPresent(lltok::lparen))
2558     return Error(Lex.getLoc(), "expected '('");
2559   if (ParseType(Result))
2560     return true;
2561   if (!EatIfPresent(lltok::rparen))
2562     return Error(Lex.getLoc(), "expected ')'");
2563   return false;
2564 }
2565 
2566 /// ParseOptionalOperandBundles
2567 ///    ::= /*empty*/
2568 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2569 ///
2570 /// OperandBundle
2571 ///    ::= bundle-tag '(' ')'
2572 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2573 ///
2574 /// bundle-tag ::= String Constant
2575 bool LLParser::ParseOptionalOperandBundles(
2576     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2577   LocTy BeginLoc = Lex.getLoc();
2578   if (!EatIfPresent(lltok::lsquare))
2579     return false;
2580 
2581   while (Lex.getKind() != lltok::rsquare) {
2582     // If this isn't the first operand bundle, we need a comma.
2583     if (!BundleList.empty() &&
2584         ParseToken(lltok::comma, "expected ',' in input list"))
2585       return true;
2586 
2587     std::string Tag;
2588     if (ParseStringConstant(Tag))
2589       return true;
2590 
2591     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2592       return true;
2593 
2594     std::vector<Value *> Inputs;
2595     while (Lex.getKind() != lltok::rparen) {
2596       // If this isn't the first input, we need a comma.
2597       if (!Inputs.empty() &&
2598           ParseToken(lltok::comma, "expected ',' in input list"))
2599         return true;
2600 
2601       Type *Ty = nullptr;
2602       Value *Input = nullptr;
2603       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2604         return true;
2605       Inputs.push_back(Input);
2606     }
2607 
2608     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2609 
2610     Lex.Lex(); // Lex the ')'.
2611   }
2612 
2613   if (BundleList.empty())
2614     return Error(BeginLoc, "operand bundle set must not be empty");
2615 
2616   Lex.Lex(); // Lex the ']'.
2617   return false;
2618 }
2619 
2620 /// ParseArgumentList - Parse the argument list for a function type or function
2621 /// prototype.
2622 ///   ::= '(' ArgTypeListI ')'
2623 /// ArgTypeListI
2624 ///   ::= /*empty*/
2625 ///   ::= '...'
2626 ///   ::= ArgTypeList ',' '...'
2627 ///   ::= ArgType (',' ArgType)*
2628 ///
2629 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2630                                  bool &isVarArg){
2631   unsigned CurValID = 0;
2632   isVarArg = false;
2633   assert(Lex.getKind() == lltok::lparen);
2634   Lex.Lex(); // eat the (.
2635 
2636   if (Lex.getKind() == lltok::rparen) {
2637     // empty
2638   } else if (Lex.getKind() == lltok::dotdotdot) {
2639     isVarArg = true;
2640     Lex.Lex();
2641   } else {
2642     LocTy TypeLoc = Lex.getLoc();
2643     Type *ArgTy = nullptr;
2644     AttrBuilder Attrs;
2645     std::string Name;
2646 
2647     if (ParseType(ArgTy) ||
2648         ParseOptionalParamAttrs(Attrs)) return true;
2649 
2650     if (ArgTy->isVoidTy())
2651       return Error(TypeLoc, "argument can not have void type");
2652 
2653     if (Lex.getKind() == lltok::LocalVar) {
2654       Name = Lex.getStrVal();
2655       Lex.Lex();
2656     } else if (Lex.getKind() == lltok::LocalVarID) {
2657       if (Lex.getUIntVal() != CurValID)
2658         return Error(TypeLoc, "argument expected to be numbered '%" +
2659                                   Twine(CurValID) + "'");
2660       ++CurValID;
2661       Lex.Lex();
2662     }
2663 
2664     if (!FunctionType::isValidArgumentType(ArgTy))
2665       return Error(TypeLoc, "invalid type for function argument");
2666 
2667     ArgList.emplace_back(TypeLoc, ArgTy,
2668                          AttributeSet::get(ArgTy->getContext(), Attrs),
2669                          std::move(Name));
2670 
2671     while (EatIfPresent(lltok::comma)) {
2672       // Handle ... at end of arg list.
2673       if (EatIfPresent(lltok::dotdotdot)) {
2674         isVarArg = true;
2675         break;
2676       }
2677 
2678       // Otherwise must be an argument type.
2679       TypeLoc = Lex.getLoc();
2680       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2681 
2682       if (ArgTy->isVoidTy())
2683         return Error(TypeLoc, "argument can not have void type");
2684 
2685       if (Lex.getKind() == lltok::LocalVar) {
2686         Name = Lex.getStrVal();
2687         Lex.Lex();
2688       } else {
2689         if (Lex.getKind() == lltok::LocalVarID) {
2690           if (Lex.getUIntVal() != CurValID)
2691             return Error(TypeLoc, "argument expected to be numbered '%" +
2692                                       Twine(CurValID) + "'");
2693           Lex.Lex();
2694         }
2695         ++CurValID;
2696         Name = "";
2697       }
2698 
2699       if (!ArgTy->isFirstClassType())
2700         return Error(TypeLoc, "invalid type for function argument");
2701 
2702       ArgList.emplace_back(TypeLoc, ArgTy,
2703                            AttributeSet::get(ArgTy->getContext(), Attrs),
2704                            std::move(Name));
2705     }
2706   }
2707 
2708   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2709 }
2710 
2711 /// ParseFunctionType
2712 ///  ::= Type ArgumentList OptionalAttrs
2713 bool LLParser::ParseFunctionType(Type *&Result) {
2714   assert(Lex.getKind() == lltok::lparen);
2715 
2716   if (!FunctionType::isValidReturnType(Result))
2717     return TokError("invalid function return type");
2718 
2719   SmallVector<ArgInfo, 8> ArgList;
2720   bool isVarArg;
2721   if (ParseArgumentList(ArgList, isVarArg))
2722     return true;
2723 
2724   // Reject names on the arguments lists.
2725   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2726     if (!ArgList[i].Name.empty())
2727       return Error(ArgList[i].Loc, "argument name invalid in function type");
2728     if (ArgList[i].Attrs.hasAttributes())
2729       return Error(ArgList[i].Loc,
2730                    "argument attributes invalid in function type");
2731   }
2732 
2733   SmallVector<Type*, 16> ArgListTy;
2734   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2735     ArgListTy.push_back(ArgList[i].Ty);
2736 
2737   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2738   return false;
2739 }
2740 
2741 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2742 /// other structs.
2743 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2744   SmallVector<Type*, 8> Elts;
2745   if (ParseStructBody(Elts)) return true;
2746 
2747   Result = StructType::get(Context, Elts, Packed);
2748   return false;
2749 }
2750 
2751 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2752 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2753                                      std::pair<Type*, LocTy> &Entry,
2754                                      Type *&ResultTy) {
2755   // If the type was already defined, diagnose the redefinition.
2756   if (Entry.first && !Entry.second.isValid())
2757     return Error(TypeLoc, "redefinition of type");
2758 
2759   // If we have opaque, just return without filling in the definition for the
2760   // struct.  This counts as a definition as far as the .ll file goes.
2761   if (EatIfPresent(lltok::kw_opaque)) {
2762     // This type is being defined, so clear the location to indicate this.
2763     Entry.second = SMLoc();
2764 
2765     // If this type number has never been uttered, create it.
2766     if (!Entry.first)
2767       Entry.first = StructType::create(Context, Name);
2768     ResultTy = Entry.first;
2769     return false;
2770   }
2771 
2772   // If the type starts with '<', then it is either a packed struct or a vector.
2773   bool isPacked = EatIfPresent(lltok::less);
2774 
2775   // If we don't have a struct, then we have a random type alias, which we
2776   // accept for compatibility with old files.  These types are not allowed to be
2777   // forward referenced and not allowed to be recursive.
2778   if (Lex.getKind() != lltok::lbrace) {
2779     if (Entry.first)
2780       return Error(TypeLoc, "forward references to non-struct type");
2781 
2782     ResultTy = nullptr;
2783     if (isPacked)
2784       return ParseArrayVectorType(ResultTy, true);
2785     return ParseType(ResultTy);
2786   }
2787 
2788   // This type is being defined, so clear the location to indicate this.
2789   Entry.second = SMLoc();
2790 
2791   // If this type number has never been uttered, create it.
2792   if (!Entry.first)
2793     Entry.first = StructType::create(Context, Name);
2794 
2795   StructType *STy = cast<StructType>(Entry.first);
2796 
2797   SmallVector<Type*, 8> Body;
2798   if (ParseStructBody(Body) ||
2799       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2800     return true;
2801 
2802   STy->setBody(Body, isPacked);
2803   ResultTy = STy;
2804   return false;
2805 }
2806 
2807 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2808 ///   StructType
2809 ///     ::= '{' '}'
2810 ///     ::= '{' Type (',' Type)* '}'
2811 ///     ::= '<' '{' '}' '>'
2812 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2813 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2814   assert(Lex.getKind() == lltok::lbrace);
2815   Lex.Lex(); // Consume the '{'
2816 
2817   // Handle the empty struct.
2818   if (EatIfPresent(lltok::rbrace))
2819     return false;
2820 
2821   LocTy EltTyLoc = Lex.getLoc();
2822   Type *Ty = nullptr;
2823   if (ParseType(Ty)) return true;
2824   Body.push_back(Ty);
2825 
2826   if (!StructType::isValidElementType(Ty))
2827     return Error(EltTyLoc, "invalid element type for struct");
2828 
2829   while (EatIfPresent(lltok::comma)) {
2830     EltTyLoc = Lex.getLoc();
2831     if (ParseType(Ty)) return true;
2832 
2833     if (!StructType::isValidElementType(Ty))
2834       return Error(EltTyLoc, "invalid element type for struct");
2835 
2836     Body.push_back(Ty);
2837   }
2838 
2839   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2840 }
2841 
2842 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2843 /// token has already been consumed.
2844 ///   Type
2845 ///     ::= '[' APSINTVAL 'x' Types ']'
2846 ///     ::= '<' APSINTVAL 'x' Types '>'
2847 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2848 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2849   bool Scalable = false;
2850 
2851   if (isVector && Lex.getKind() == lltok::kw_vscale) {
2852     Lex.Lex(); // consume the 'vscale'
2853     if (ParseToken(lltok::kw_x, "expected 'x' after vscale"))
2854       return true;
2855 
2856     Scalable = true;
2857   }
2858 
2859   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2860       Lex.getAPSIntVal().getBitWidth() > 64)
2861     return TokError("expected number in address space");
2862 
2863   LocTy SizeLoc = Lex.getLoc();
2864   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2865   Lex.Lex();
2866 
2867   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2868       return true;
2869 
2870   LocTy TypeLoc = Lex.getLoc();
2871   Type *EltTy = nullptr;
2872   if (ParseType(EltTy)) return true;
2873 
2874   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2875                  "expected end of sequential type"))
2876     return true;
2877 
2878   if (isVector) {
2879     if (Size == 0)
2880       return Error(SizeLoc, "zero element vector is illegal");
2881     if ((unsigned)Size != Size)
2882       return Error(SizeLoc, "size too large for vector");
2883     if (!VectorType::isValidElementType(EltTy))
2884       return Error(TypeLoc, "invalid vector element type");
2885     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2886   } else {
2887     if (!ArrayType::isValidElementType(EltTy))
2888       return Error(TypeLoc, "invalid array element type");
2889     Result = ArrayType::get(EltTy, Size);
2890   }
2891   return false;
2892 }
2893 
2894 //===----------------------------------------------------------------------===//
2895 // Function Semantic Analysis.
2896 //===----------------------------------------------------------------------===//
2897 
2898 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2899                                              int functionNumber)
2900   : P(p), F(f), FunctionNumber(functionNumber) {
2901 
2902   // Insert unnamed arguments into the NumberedVals list.
2903   for (Argument &A : F.args())
2904     if (!A.hasName())
2905       NumberedVals.push_back(&A);
2906 }
2907 
2908 LLParser::PerFunctionState::~PerFunctionState() {
2909   // If there were any forward referenced non-basicblock values, delete them.
2910 
2911   for (const auto &P : ForwardRefVals) {
2912     if (isa<BasicBlock>(P.second.first))
2913       continue;
2914     P.second.first->replaceAllUsesWith(
2915         UndefValue::get(P.second.first->getType()));
2916     P.second.first->deleteValue();
2917   }
2918 
2919   for (const auto &P : ForwardRefValIDs) {
2920     if (isa<BasicBlock>(P.second.first))
2921       continue;
2922     P.second.first->replaceAllUsesWith(
2923         UndefValue::get(P.second.first->getType()));
2924     P.second.first->deleteValue();
2925   }
2926 }
2927 
2928 bool LLParser::PerFunctionState::FinishFunction() {
2929   if (!ForwardRefVals.empty())
2930     return P.Error(ForwardRefVals.begin()->second.second,
2931                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2932                    "'");
2933   if (!ForwardRefValIDs.empty())
2934     return P.Error(ForwardRefValIDs.begin()->second.second,
2935                    "use of undefined value '%" +
2936                    Twine(ForwardRefValIDs.begin()->first) + "'");
2937   return false;
2938 }
2939 
2940 /// GetVal - Get a value with the specified name or ID, creating a
2941 /// forward reference record if needed.  This can return null if the value
2942 /// exists but does not have the right type.
2943 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2944                                           LocTy Loc, bool IsCall) {
2945   // Look this name up in the normal function symbol table.
2946   Value *Val = F.getValueSymbolTable()->lookup(Name);
2947 
2948   // If this is a forward reference for the value, see if we already created a
2949   // forward ref record.
2950   if (!Val) {
2951     auto I = ForwardRefVals.find(Name);
2952     if (I != ForwardRefVals.end())
2953       Val = I->second.first;
2954   }
2955 
2956   // If we have the value in the symbol table or fwd-ref table, return it.
2957   if (Val)
2958     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2959 
2960   // Don't make placeholders with invalid type.
2961   if (!Ty->isFirstClassType()) {
2962     P.Error(Loc, "invalid use of a non-first-class type");
2963     return nullptr;
2964   }
2965 
2966   // Otherwise, create a new forward reference for this value and remember it.
2967   Value *FwdVal;
2968   if (Ty->isLabelTy()) {
2969     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2970   } else {
2971     FwdVal = new Argument(Ty, Name);
2972   }
2973 
2974   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2975   return FwdVal;
2976 }
2977 
2978 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2979                                           bool IsCall) {
2980   // Look this name up in the normal function symbol table.
2981   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2982 
2983   // If this is a forward reference for the value, see if we already created a
2984   // forward ref record.
2985   if (!Val) {
2986     auto I = ForwardRefValIDs.find(ID);
2987     if (I != ForwardRefValIDs.end())
2988       Val = I->second.first;
2989   }
2990 
2991   // If we have the value in the symbol table or fwd-ref table, return it.
2992   if (Val)
2993     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2994 
2995   if (!Ty->isFirstClassType()) {
2996     P.Error(Loc, "invalid use of a non-first-class type");
2997     return nullptr;
2998   }
2999 
3000   // Otherwise, create a new forward reference for this value and remember it.
3001   Value *FwdVal;
3002   if (Ty->isLabelTy()) {
3003     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3004   } else {
3005     FwdVal = new Argument(Ty);
3006   }
3007 
3008   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3009   return FwdVal;
3010 }
3011 
3012 /// SetInstName - After an instruction is parsed and inserted into its
3013 /// basic block, this installs its name.
3014 bool LLParser::PerFunctionState::SetInstName(int NameID,
3015                                              const std::string &NameStr,
3016                                              LocTy NameLoc, Instruction *Inst) {
3017   // If this instruction has void type, it cannot have a name or ID specified.
3018   if (Inst->getType()->isVoidTy()) {
3019     if (NameID != -1 || !NameStr.empty())
3020       return P.Error(NameLoc, "instructions returning void cannot have a name");
3021     return false;
3022   }
3023 
3024   // If this was a numbered instruction, verify that the instruction is the
3025   // expected value and resolve any forward references.
3026   if (NameStr.empty()) {
3027     // If neither a name nor an ID was specified, just use the next ID.
3028     if (NameID == -1)
3029       NameID = NumberedVals.size();
3030 
3031     if (unsigned(NameID) != NumberedVals.size())
3032       return P.Error(NameLoc, "instruction expected to be numbered '%" +
3033                      Twine(NumberedVals.size()) + "'");
3034 
3035     auto FI = ForwardRefValIDs.find(NameID);
3036     if (FI != ForwardRefValIDs.end()) {
3037       Value *Sentinel = FI->second.first;
3038       if (Sentinel->getType() != Inst->getType())
3039         return P.Error(NameLoc, "instruction forward referenced with type '" +
3040                        getTypeString(FI->second.first->getType()) + "'");
3041 
3042       Sentinel->replaceAllUsesWith(Inst);
3043       Sentinel->deleteValue();
3044       ForwardRefValIDs.erase(FI);
3045     }
3046 
3047     NumberedVals.push_back(Inst);
3048     return false;
3049   }
3050 
3051   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3052   auto FI = ForwardRefVals.find(NameStr);
3053   if (FI != ForwardRefVals.end()) {
3054     Value *Sentinel = FI->second.first;
3055     if (Sentinel->getType() != Inst->getType())
3056       return P.Error(NameLoc, "instruction forward referenced with type '" +
3057                      getTypeString(FI->second.first->getType()) + "'");
3058 
3059     Sentinel->replaceAllUsesWith(Inst);
3060     Sentinel->deleteValue();
3061     ForwardRefVals.erase(FI);
3062   }
3063 
3064   // Set the name on the instruction.
3065   Inst->setName(NameStr);
3066 
3067   if (Inst->getName() != NameStr)
3068     return P.Error(NameLoc, "multiple definition of local value named '" +
3069                    NameStr + "'");
3070   return false;
3071 }
3072 
3073 /// GetBB - Get a basic block with the specified name or ID, creating a
3074 /// forward reference record if needed.
3075 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
3076                                               LocTy Loc) {
3077   return dyn_cast_or_null<BasicBlock>(
3078       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3079 }
3080 
3081 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
3082   return dyn_cast_or_null<BasicBlock>(
3083       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3084 }
3085 
3086 /// DefineBB - Define the specified basic block, which is either named or
3087 /// unnamed.  If there is an error, this returns null otherwise it returns
3088 /// the block being defined.
3089 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
3090                                                  int NameID, LocTy Loc) {
3091   BasicBlock *BB;
3092   if (Name.empty()) {
3093     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3094       P.Error(Loc, "label expected to be numbered '" +
3095                        Twine(NumberedVals.size()) + "'");
3096       return nullptr;
3097     }
3098     BB = GetBB(NumberedVals.size(), Loc);
3099     if (!BB) {
3100       P.Error(Loc, "unable to create block numbered '" +
3101                        Twine(NumberedVals.size()) + "'");
3102       return nullptr;
3103     }
3104   } else {
3105     BB = GetBB(Name, Loc);
3106     if (!BB) {
3107       P.Error(Loc, "unable to create block named '" + Name + "'");
3108       return nullptr;
3109     }
3110   }
3111 
3112   // Move the block to the end of the function.  Forward ref'd blocks are
3113   // inserted wherever they happen to be referenced.
3114   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3115 
3116   // Remove the block from forward ref sets.
3117   if (Name.empty()) {
3118     ForwardRefValIDs.erase(NumberedVals.size());
3119     NumberedVals.push_back(BB);
3120   } else {
3121     // BB forward references are already in the function symbol table.
3122     ForwardRefVals.erase(Name);
3123   }
3124 
3125   return BB;
3126 }
3127 
3128 //===----------------------------------------------------------------------===//
3129 // Constants.
3130 //===----------------------------------------------------------------------===//
3131 
3132 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3133 /// type implied.  For example, if we parse "4" we don't know what integer type
3134 /// it has.  The value will later be combined with its type and checked for
3135 /// sanity.  PFS is used to convert function-local operands of metadata (since
3136 /// metadata operands are not just parsed here but also converted to values).
3137 /// PFS can be null when we are not parsing metadata values inside a function.
3138 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
3139   ID.Loc = Lex.getLoc();
3140   switch (Lex.getKind()) {
3141   default: return TokError("expected value token");
3142   case lltok::GlobalID:  // @42
3143     ID.UIntVal = Lex.getUIntVal();
3144     ID.Kind = ValID::t_GlobalID;
3145     break;
3146   case lltok::GlobalVar:  // @foo
3147     ID.StrVal = Lex.getStrVal();
3148     ID.Kind = ValID::t_GlobalName;
3149     break;
3150   case lltok::LocalVarID:  // %42
3151     ID.UIntVal = Lex.getUIntVal();
3152     ID.Kind = ValID::t_LocalID;
3153     break;
3154   case lltok::LocalVar:  // %foo
3155     ID.StrVal = Lex.getStrVal();
3156     ID.Kind = ValID::t_LocalName;
3157     break;
3158   case lltok::APSInt:
3159     ID.APSIntVal = Lex.getAPSIntVal();
3160     ID.Kind = ValID::t_APSInt;
3161     break;
3162   case lltok::APFloat:
3163     ID.APFloatVal = Lex.getAPFloatVal();
3164     ID.Kind = ValID::t_APFloat;
3165     break;
3166   case lltok::kw_true:
3167     ID.ConstantVal = ConstantInt::getTrue(Context);
3168     ID.Kind = ValID::t_Constant;
3169     break;
3170   case lltok::kw_false:
3171     ID.ConstantVal = ConstantInt::getFalse(Context);
3172     ID.Kind = ValID::t_Constant;
3173     break;
3174   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3175   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3176   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3177   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3178 
3179   case lltok::lbrace: {
3180     // ValID ::= '{' ConstVector '}'
3181     Lex.Lex();
3182     SmallVector<Constant*, 16> Elts;
3183     if (ParseGlobalValueVector(Elts) ||
3184         ParseToken(lltok::rbrace, "expected end of struct constant"))
3185       return true;
3186 
3187     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3188     ID.UIntVal = Elts.size();
3189     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3190            Elts.size() * sizeof(Elts[0]));
3191     ID.Kind = ValID::t_ConstantStruct;
3192     return false;
3193   }
3194   case lltok::less: {
3195     // ValID ::= '<' ConstVector '>'         --> Vector.
3196     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3197     Lex.Lex();
3198     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3199 
3200     SmallVector<Constant*, 16> Elts;
3201     LocTy FirstEltLoc = Lex.getLoc();
3202     if (ParseGlobalValueVector(Elts) ||
3203         (isPackedStruct &&
3204          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3205         ParseToken(lltok::greater, "expected end of constant"))
3206       return true;
3207 
3208     if (isPackedStruct) {
3209       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3210       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3211              Elts.size() * sizeof(Elts[0]));
3212       ID.UIntVal = Elts.size();
3213       ID.Kind = ValID::t_PackedConstantStruct;
3214       return false;
3215     }
3216 
3217     if (Elts.empty())
3218       return Error(ID.Loc, "constant vector must not be empty");
3219 
3220     if (!Elts[0]->getType()->isIntegerTy() &&
3221         !Elts[0]->getType()->isFloatingPointTy() &&
3222         !Elts[0]->getType()->isPointerTy())
3223       return Error(FirstEltLoc,
3224             "vector elements must have integer, pointer or floating point type");
3225 
3226     // Verify that all the vector elements have the same type.
3227     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3228       if (Elts[i]->getType() != Elts[0]->getType())
3229         return Error(FirstEltLoc,
3230                      "vector element #" + Twine(i) +
3231                     " is not of type '" + getTypeString(Elts[0]->getType()));
3232 
3233     ID.ConstantVal = ConstantVector::get(Elts);
3234     ID.Kind = ValID::t_Constant;
3235     return false;
3236   }
3237   case lltok::lsquare: {   // Array Constant
3238     Lex.Lex();
3239     SmallVector<Constant*, 16> Elts;
3240     LocTy FirstEltLoc = Lex.getLoc();
3241     if (ParseGlobalValueVector(Elts) ||
3242         ParseToken(lltok::rsquare, "expected end of array constant"))
3243       return true;
3244 
3245     // Handle empty element.
3246     if (Elts.empty()) {
3247       // Use undef instead of an array because it's inconvenient to determine
3248       // the element type at this point, there being no elements to examine.
3249       ID.Kind = ValID::t_EmptyArray;
3250       return false;
3251     }
3252 
3253     if (!Elts[0]->getType()->isFirstClassType())
3254       return Error(FirstEltLoc, "invalid array element type: " +
3255                    getTypeString(Elts[0]->getType()));
3256 
3257     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3258 
3259     // Verify all elements are correct type!
3260     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3261       if (Elts[i]->getType() != Elts[0]->getType())
3262         return Error(FirstEltLoc,
3263                      "array element #" + Twine(i) +
3264                      " is not of type '" + getTypeString(Elts[0]->getType()));
3265     }
3266 
3267     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3268     ID.Kind = ValID::t_Constant;
3269     return false;
3270   }
3271   case lltok::kw_c:  // c "foo"
3272     Lex.Lex();
3273     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3274                                                   false);
3275     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3276     ID.Kind = ValID::t_Constant;
3277     return false;
3278 
3279   case lltok::kw_asm: {
3280     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3281     //             STRINGCONSTANT
3282     bool HasSideEffect, AlignStack, AsmDialect;
3283     Lex.Lex();
3284     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3285         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3286         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3287         ParseStringConstant(ID.StrVal) ||
3288         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3289         ParseToken(lltok::StringConstant, "expected constraint string"))
3290       return true;
3291     ID.StrVal2 = Lex.getStrVal();
3292     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3293       (unsigned(AsmDialect)<<2);
3294     ID.Kind = ValID::t_InlineAsm;
3295     return false;
3296   }
3297 
3298   case lltok::kw_blockaddress: {
3299     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3300     Lex.Lex();
3301 
3302     ValID Fn, Label;
3303 
3304     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3305         ParseValID(Fn) ||
3306         ParseToken(lltok::comma, "expected comma in block address expression")||
3307         ParseValID(Label) ||
3308         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3309       return true;
3310 
3311     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3312       return Error(Fn.Loc, "expected function name in blockaddress");
3313     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3314       return Error(Label.Loc, "expected basic block name in blockaddress");
3315 
3316     // Try to find the function (but skip it if it's forward-referenced).
3317     GlobalValue *GV = nullptr;
3318     if (Fn.Kind == ValID::t_GlobalID) {
3319       if (Fn.UIntVal < NumberedVals.size())
3320         GV = NumberedVals[Fn.UIntVal];
3321     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3322       GV = M->getNamedValue(Fn.StrVal);
3323     }
3324     Function *F = nullptr;
3325     if (GV) {
3326       // Confirm that it's actually a function with a definition.
3327       if (!isa<Function>(GV))
3328         return Error(Fn.Loc, "expected function name in blockaddress");
3329       F = cast<Function>(GV);
3330       if (F->isDeclaration())
3331         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3332     }
3333 
3334     if (!F) {
3335       // Make a global variable as a placeholder for this reference.
3336       GlobalValue *&FwdRef =
3337           ForwardRefBlockAddresses.insert(std::make_pair(
3338                                               std::move(Fn),
3339                                               std::map<ValID, GlobalValue *>()))
3340               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3341               .first->second;
3342       if (!FwdRef)
3343         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3344                                     GlobalValue::InternalLinkage, nullptr, "");
3345       ID.ConstantVal = FwdRef;
3346       ID.Kind = ValID::t_Constant;
3347       return false;
3348     }
3349 
3350     // We found the function; now find the basic block.  Don't use PFS, since we
3351     // might be inside a constant expression.
3352     BasicBlock *BB;
3353     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3354       if (Label.Kind == ValID::t_LocalID)
3355         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3356       else
3357         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3358       if (!BB)
3359         return Error(Label.Loc, "referenced value is not a basic block");
3360     } else {
3361       if (Label.Kind == ValID::t_LocalID)
3362         return Error(Label.Loc, "cannot take address of numeric label after "
3363                                 "the function is defined");
3364       BB = dyn_cast_or_null<BasicBlock>(
3365           F->getValueSymbolTable()->lookup(Label.StrVal));
3366       if (!BB)
3367         return Error(Label.Loc, "referenced value is not a basic block");
3368     }
3369 
3370     ID.ConstantVal = BlockAddress::get(F, BB);
3371     ID.Kind = ValID::t_Constant;
3372     return false;
3373   }
3374 
3375   case lltok::kw_trunc:
3376   case lltok::kw_zext:
3377   case lltok::kw_sext:
3378   case lltok::kw_fptrunc:
3379   case lltok::kw_fpext:
3380   case lltok::kw_bitcast:
3381   case lltok::kw_addrspacecast:
3382   case lltok::kw_uitofp:
3383   case lltok::kw_sitofp:
3384   case lltok::kw_fptoui:
3385   case lltok::kw_fptosi:
3386   case lltok::kw_inttoptr:
3387   case lltok::kw_ptrtoint: {
3388     unsigned Opc = Lex.getUIntVal();
3389     Type *DestTy = nullptr;
3390     Constant *SrcVal;
3391     Lex.Lex();
3392     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3393         ParseGlobalTypeAndValue(SrcVal) ||
3394         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3395         ParseType(DestTy) ||
3396         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3397       return true;
3398     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3399       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3400                    getTypeString(SrcVal->getType()) + "' to '" +
3401                    getTypeString(DestTy) + "'");
3402     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3403                                                  SrcVal, DestTy);
3404     ID.Kind = ValID::t_Constant;
3405     return false;
3406   }
3407   case lltok::kw_extractvalue: {
3408     Lex.Lex();
3409     Constant *Val;
3410     SmallVector<unsigned, 4> Indices;
3411     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3412         ParseGlobalTypeAndValue(Val) ||
3413         ParseIndexList(Indices) ||
3414         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3415       return true;
3416 
3417     if (!Val->getType()->isAggregateType())
3418       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3419     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3420       return Error(ID.Loc, "invalid indices for extractvalue");
3421     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3422     ID.Kind = ValID::t_Constant;
3423     return false;
3424   }
3425   case lltok::kw_insertvalue: {
3426     Lex.Lex();
3427     Constant *Val0, *Val1;
3428     SmallVector<unsigned, 4> Indices;
3429     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3430         ParseGlobalTypeAndValue(Val0) ||
3431         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3432         ParseGlobalTypeAndValue(Val1) ||
3433         ParseIndexList(Indices) ||
3434         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3435       return true;
3436     if (!Val0->getType()->isAggregateType())
3437       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3438     Type *IndexedType =
3439         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3440     if (!IndexedType)
3441       return Error(ID.Loc, "invalid indices for insertvalue");
3442     if (IndexedType != Val1->getType())
3443       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3444                                getTypeString(Val1->getType()) +
3445                                "' instead of '" + getTypeString(IndexedType) +
3446                                "'");
3447     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3448     ID.Kind = ValID::t_Constant;
3449     return false;
3450   }
3451   case lltok::kw_icmp:
3452   case lltok::kw_fcmp: {
3453     unsigned PredVal, Opc = Lex.getUIntVal();
3454     Constant *Val0, *Val1;
3455     Lex.Lex();
3456     if (ParseCmpPredicate(PredVal, Opc) ||
3457         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3458         ParseGlobalTypeAndValue(Val0) ||
3459         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3460         ParseGlobalTypeAndValue(Val1) ||
3461         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3462       return true;
3463 
3464     if (Val0->getType() != Val1->getType())
3465       return Error(ID.Loc, "compare operands must have the same type");
3466 
3467     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3468 
3469     if (Opc == Instruction::FCmp) {
3470       if (!Val0->getType()->isFPOrFPVectorTy())
3471         return Error(ID.Loc, "fcmp requires floating point operands");
3472       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3473     } else {
3474       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3475       if (!Val0->getType()->isIntOrIntVectorTy() &&
3476           !Val0->getType()->isPtrOrPtrVectorTy())
3477         return Error(ID.Loc, "icmp requires pointer or integer operands");
3478       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3479     }
3480     ID.Kind = ValID::t_Constant;
3481     return false;
3482   }
3483 
3484   // Unary Operators.
3485   case lltok::kw_fneg: {
3486     unsigned Opc = Lex.getUIntVal();
3487     Constant *Val;
3488     Lex.Lex();
3489     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3490         ParseGlobalTypeAndValue(Val) ||
3491         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3492       return true;
3493 
3494     // Check that the type is valid for the operator.
3495     switch (Opc) {
3496     case Instruction::FNeg:
3497       if (!Val->getType()->isFPOrFPVectorTy())
3498         return Error(ID.Loc, "constexpr requires fp operands");
3499       break;
3500     default: llvm_unreachable("Unknown unary operator!");
3501     }
3502     unsigned Flags = 0;
3503     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3504     ID.ConstantVal = C;
3505     ID.Kind = ValID::t_Constant;
3506     return false;
3507   }
3508   // Binary Operators.
3509   case lltok::kw_add:
3510   case lltok::kw_fadd:
3511   case lltok::kw_sub:
3512   case lltok::kw_fsub:
3513   case lltok::kw_mul:
3514   case lltok::kw_fmul:
3515   case lltok::kw_udiv:
3516   case lltok::kw_sdiv:
3517   case lltok::kw_fdiv:
3518   case lltok::kw_urem:
3519   case lltok::kw_srem:
3520   case lltok::kw_frem:
3521   case lltok::kw_shl:
3522   case lltok::kw_lshr:
3523   case lltok::kw_ashr: {
3524     bool NUW = false;
3525     bool NSW = false;
3526     bool Exact = false;
3527     unsigned Opc = Lex.getUIntVal();
3528     Constant *Val0, *Val1;
3529     Lex.Lex();
3530     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3531         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3532       if (EatIfPresent(lltok::kw_nuw))
3533         NUW = true;
3534       if (EatIfPresent(lltok::kw_nsw)) {
3535         NSW = true;
3536         if (EatIfPresent(lltok::kw_nuw))
3537           NUW = true;
3538       }
3539     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3540                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3541       if (EatIfPresent(lltok::kw_exact))
3542         Exact = true;
3543     }
3544     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3545         ParseGlobalTypeAndValue(Val0) ||
3546         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3547         ParseGlobalTypeAndValue(Val1) ||
3548         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3549       return true;
3550     if (Val0->getType() != Val1->getType())
3551       return Error(ID.Loc, "operands of constexpr must have same type");
3552     // Check that the type is valid for the operator.
3553     switch (Opc) {
3554     case Instruction::Add:
3555     case Instruction::Sub:
3556     case Instruction::Mul:
3557     case Instruction::UDiv:
3558     case Instruction::SDiv:
3559     case Instruction::URem:
3560     case Instruction::SRem:
3561     case Instruction::Shl:
3562     case Instruction::AShr:
3563     case Instruction::LShr:
3564       if (!Val0->getType()->isIntOrIntVectorTy())
3565         return Error(ID.Loc, "constexpr requires integer operands");
3566       break;
3567     case Instruction::FAdd:
3568     case Instruction::FSub:
3569     case Instruction::FMul:
3570     case Instruction::FDiv:
3571     case Instruction::FRem:
3572       if (!Val0->getType()->isFPOrFPVectorTy())
3573         return Error(ID.Loc, "constexpr requires fp operands");
3574       break;
3575     default: llvm_unreachable("Unknown binary operator!");
3576     }
3577     unsigned Flags = 0;
3578     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3579     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3580     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3581     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3582     ID.ConstantVal = C;
3583     ID.Kind = ValID::t_Constant;
3584     return false;
3585   }
3586 
3587   // Logical Operations
3588   case lltok::kw_and:
3589   case lltok::kw_or:
3590   case lltok::kw_xor: {
3591     unsigned Opc = Lex.getUIntVal();
3592     Constant *Val0, *Val1;
3593     Lex.Lex();
3594     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3595         ParseGlobalTypeAndValue(Val0) ||
3596         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3597         ParseGlobalTypeAndValue(Val1) ||
3598         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3599       return true;
3600     if (Val0->getType() != Val1->getType())
3601       return Error(ID.Loc, "operands of constexpr must have same type");
3602     if (!Val0->getType()->isIntOrIntVectorTy())
3603       return Error(ID.Loc,
3604                    "constexpr requires integer or integer vector operands");
3605     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3606     ID.Kind = ValID::t_Constant;
3607     return false;
3608   }
3609 
3610   case lltok::kw_getelementptr:
3611   case lltok::kw_shufflevector:
3612   case lltok::kw_insertelement:
3613   case lltok::kw_extractelement:
3614   case lltok::kw_select: {
3615     unsigned Opc = Lex.getUIntVal();
3616     SmallVector<Constant*, 16> Elts;
3617     bool InBounds = false;
3618     Type *Ty;
3619     Lex.Lex();
3620 
3621     if (Opc == Instruction::GetElementPtr)
3622       InBounds = EatIfPresent(lltok::kw_inbounds);
3623 
3624     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3625       return true;
3626 
3627     LocTy ExplicitTypeLoc = Lex.getLoc();
3628     if (Opc == Instruction::GetElementPtr) {
3629       if (ParseType(Ty) ||
3630           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3631         return true;
3632     }
3633 
3634     Optional<unsigned> InRangeOp;
3635     if (ParseGlobalValueVector(
3636             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3637         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3638       return true;
3639 
3640     if (Opc == Instruction::GetElementPtr) {
3641       if (Elts.size() == 0 ||
3642           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3643         return Error(ID.Loc, "base of getelementptr must be a pointer");
3644 
3645       Type *BaseType = Elts[0]->getType();
3646       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3647       if (Ty != BasePointerType->getElementType())
3648         return Error(
3649             ExplicitTypeLoc,
3650             "explicit pointee type doesn't match operand's pointee type");
3651 
3652       unsigned GEPWidth = BaseType->isVectorTy()
3653                               ? cast<VectorType>(BaseType)->getNumElements()
3654                               : 0;
3655 
3656       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3657       for (Constant *Val : Indices) {
3658         Type *ValTy = Val->getType();
3659         if (!ValTy->isIntOrIntVectorTy())
3660           return Error(ID.Loc, "getelementptr index must be an integer");
3661         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3662           unsigned ValNumEl = ValVTy->getNumElements();
3663           if (GEPWidth && (ValNumEl != GEPWidth))
3664             return Error(
3665                 ID.Loc,
3666                 "getelementptr vector index has a wrong number of elements");
3667           // GEPWidth may have been unknown because the base is a scalar,
3668           // but it is known now.
3669           GEPWidth = ValNumEl;
3670         }
3671       }
3672 
3673       SmallPtrSet<Type*, 4> Visited;
3674       if (!Indices.empty() && !Ty->isSized(&Visited))
3675         return Error(ID.Loc, "base element of getelementptr must be sized");
3676 
3677       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3678         return Error(ID.Loc, "invalid getelementptr indices");
3679 
3680       if (InRangeOp) {
3681         if (*InRangeOp == 0)
3682           return Error(ID.Loc,
3683                        "inrange keyword may not appear on pointer operand");
3684         --*InRangeOp;
3685       }
3686 
3687       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3688                                                       InBounds, InRangeOp);
3689     } else if (Opc == Instruction::Select) {
3690       if (Elts.size() != 3)
3691         return Error(ID.Loc, "expected three operands to select");
3692       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3693                                                               Elts[2]))
3694         return Error(ID.Loc, Reason);
3695       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3696     } else if (Opc == Instruction::ShuffleVector) {
3697       if (Elts.size() != 3)
3698         return Error(ID.Loc, "expected three operands to shufflevector");
3699       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3700         return Error(ID.Loc, "invalid operands to shufflevector");
3701       SmallVector<int, 16> Mask;
3702       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3703       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3704     } else if (Opc == Instruction::ExtractElement) {
3705       if (Elts.size() != 2)
3706         return Error(ID.Loc, "expected two operands to extractelement");
3707       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3708         return Error(ID.Loc, "invalid extractelement operands");
3709       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3710     } else {
3711       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3712       if (Elts.size() != 3)
3713       return Error(ID.Loc, "expected three operands to insertelement");
3714       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3715         return Error(ID.Loc, "invalid insertelement operands");
3716       ID.ConstantVal =
3717                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3718     }
3719 
3720     ID.Kind = ValID::t_Constant;
3721     return false;
3722   }
3723   }
3724 
3725   Lex.Lex();
3726   return false;
3727 }
3728 
3729 /// ParseGlobalValue - Parse a global value with the specified type.
3730 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3731   C = nullptr;
3732   ValID ID;
3733   Value *V = nullptr;
3734   bool Parsed = ParseValID(ID) ||
3735                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3736   if (V && !(C = dyn_cast<Constant>(V)))
3737     return Error(ID.Loc, "global values must be constants");
3738   return Parsed;
3739 }
3740 
3741 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3742   Type *Ty = nullptr;
3743   return ParseType(Ty) ||
3744          ParseGlobalValue(Ty, V);
3745 }
3746 
3747 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3748   C = nullptr;
3749 
3750   LocTy KwLoc = Lex.getLoc();
3751   if (!EatIfPresent(lltok::kw_comdat))
3752     return false;
3753 
3754   if (EatIfPresent(lltok::lparen)) {
3755     if (Lex.getKind() != lltok::ComdatVar)
3756       return TokError("expected comdat variable");
3757     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3758     Lex.Lex();
3759     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3760       return true;
3761   } else {
3762     if (GlobalName.empty())
3763       return TokError("comdat cannot be unnamed");
3764     C = getComdat(std::string(GlobalName), KwLoc);
3765   }
3766 
3767   return false;
3768 }
3769 
3770 /// ParseGlobalValueVector
3771 ///   ::= /*empty*/
3772 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3773 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3774                                       Optional<unsigned> *InRangeOp) {
3775   // Empty list.
3776   if (Lex.getKind() == lltok::rbrace ||
3777       Lex.getKind() == lltok::rsquare ||
3778       Lex.getKind() == lltok::greater ||
3779       Lex.getKind() == lltok::rparen)
3780     return false;
3781 
3782   do {
3783     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3784       *InRangeOp = Elts.size();
3785 
3786     Constant *C;
3787     if (ParseGlobalTypeAndValue(C)) return true;
3788     Elts.push_back(C);
3789   } while (EatIfPresent(lltok::comma));
3790 
3791   return false;
3792 }
3793 
3794 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3795   SmallVector<Metadata *, 16> Elts;
3796   if (ParseMDNodeVector(Elts))
3797     return true;
3798 
3799   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3800   return false;
3801 }
3802 
3803 /// MDNode:
3804 ///  ::= !{ ... }
3805 ///  ::= !7
3806 ///  ::= !DILocation(...)
3807 bool LLParser::ParseMDNode(MDNode *&N) {
3808   if (Lex.getKind() == lltok::MetadataVar)
3809     return ParseSpecializedMDNode(N);
3810 
3811   return ParseToken(lltok::exclaim, "expected '!' here") ||
3812          ParseMDNodeTail(N);
3813 }
3814 
3815 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3816   // !{ ... }
3817   if (Lex.getKind() == lltok::lbrace)
3818     return ParseMDTuple(N);
3819 
3820   // !42
3821   return ParseMDNodeID(N);
3822 }
3823 
3824 namespace {
3825 
3826 /// Structure to represent an optional metadata field.
3827 template <class FieldTy> struct MDFieldImpl {
3828   typedef MDFieldImpl ImplTy;
3829   FieldTy Val;
3830   bool Seen;
3831 
3832   void assign(FieldTy Val) {
3833     Seen = true;
3834     this->Val = std::move(Val);
3835   }
3836 
3837   explicit MDFieldImpl(FieldTy Default)
3838       : Val(std::move(Default)), Seen(false) {}
3839 };
3840 
3841 /// Structure to represent an optional metadata field that
3842 /// can be of either type (A or B) and encapsulates the
3843 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3844 /// to reimplement the specifics for representing each Field.
3845 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3846   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3847   FieldTypeA A;
3848   FieldTypeB B;
3849   bool Seen;
3850 
3851   enum {
3852     IsInvalid = 0,
3853     IsTypeA = 1,
3854     IsTypeB = 2
3855   } WhatIs;
3856 
3857   void assign(FieldTypeA A) {
3858     Seen = true;
3859     this->A = std::move(A);
3860     WhatIs = IsTypeA;
3861   }
3862 
3863   void assign(FieldTypeB B) {
3864     Seen = true;
3865     this->B = std::move(B);
3866     WhatIs = IsTypeB;
3867   }
3868 
3869   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3870       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3871         WhatIs(IsInvalid) {}
3872 };
3873 
3874 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3875   uint64_t Max;
3876 
3877   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3878       : ImplTy(Default), Max(Max) {}
3879 };
3880 
3881 struct LineField : public MDUnsignedField {
3882   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3883 };
3884 
3885 struct ColumnField : public MDUnsignedField {
3886   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3887 };
3888 
3889 struct DwarfTagField : public MDUnsignedField {
3890   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3891   DwarfTagField(dwarf::Tag DefaultTag)
3892       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3893 };
3894 
3895 struct DwarfMacinfoTypeField : public MDUnsignedField {
3896   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3897   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3898     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3899 };
3900 
3901 struct DwarfAttEncodingField : public MDUnsignedField {
3902   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3903 };
3904 
3905 struct DwarfVirtualityField : public MDUnsignedField {
3906   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3907 };
3908 
3909 struct DwarfLangField : public MDUnsignedField {
3910   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3911 };
3912 
3913 struct DwarfCCField : public MDUnsignedField {
3914   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3915 };
3916 
3917 struct EmissionKindField : public MDUnsignedField {
3918   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3919 };
3920 
3921 struct NameTableKindField : public MDUnsignedField {
3922   NameTableKindField()
3923       : MDUnsignedField(
3924             0, (unsigned)
3925                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3926 };
3927 
3928 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3929   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3930 };
3931 
3932 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3933   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3934 };
3935 
3936 struct MDAPSIntField : public MDFieldImpl<APSInt> {
3937   MDAPSIntField() : ImplTy(APSInt()) {}
3938 };
3939 
3940 struct MDSignedField : public MDFieldImpl<int64_t> {
3941   int64_t Min;
3942   int64_t Max;
3943 
3944   MDSignedField(int64_t Default = 0)
3945       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3946   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3947       : ImplTy(Default), Min(Min), Max(Max) {}
3948 };
3949 
3950 struct MDBoolField : public MDFieldImpl<bool> {
3951   MDBoolField(bool Default = false) : ImplTy(Default) {}
3952 };
3953 
3954 struct MDField : public MDFieldImpl<Metadata *> {
3955   bool AllowNull;
3956 
3957   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3958 };
3959 
3960 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3961   MDConstant() : ImplTy(nullptr) {}
3962 };
3963 
3964 struct MDStringField : public MDFieldImpl<MDString *> {
3965   bool AllowEmpty;
3966   MDStringField(bool AllowEmpty = true)
3967       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3968 };
3969 
3970 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3971   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3972 };
3973 
3974 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3975   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3976 };
3977 
3978 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3979   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3980       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3981 
3982   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3983                     bool AllowNull = true)
3984       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3985 
3986   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3987   bool isMDField() const { return WhatIs == IsTypeB; }
3988   int64_t getMDSignedValue() const {
3989     assert(isMDSignedField() && "Wrong field type");
3990     return A.Val;
3991   }
3992   Metadata *getMDFieldValue() const {
3993     assert(isMDField() && "Wrong field type");
3994     return B.Val;
3995   }
3996 };
3997 
3998 struct MDSignedOrUnsignedField
3999     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
4000   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
4001 
4002   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4003   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
4004   int64_t getMDSignedValue() const {
4005     assert(isMDSignedField() && "Wrong field type");
4006     return A.Val;
4007   }
4008   uint64_t getMDUnsignedValue() const {
4009     assert(isMDUnsignedField() && "Wrong field type");
4010     return B.Val;
4011   }
4012 };
4013 
4014 } // end anonymous namespace
4015 
4016 namespace llvm {
4017 
4018 template <>
4019 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4020   if (Lex.getKind() != lltok::APSInt)
4021     return TokError("expected integer");
4022 
4023   Result.assign(Lex.getAPSIntVal());
4024   Lex.Lex();
4025   return false;
4026 }
4027 
4028 template <>
4029 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4030                             MDUnsignedField &Result) {
4031   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4032     return TokError("expected unsigned integer");
4033 
4034   auto &U = Lex.getAPSIntVal();
4035   if (U.ugt(Result.Max))
4036     return TokError("value for '" + Name + "' too large, limit is " +
4037                     Twine(Result.Max));
4038   Result.assign(U.getZExtValue());
4039   assert(Result.Val <= Result.Max && "Expected value in range");
4040   Lex.Lex();
4041   return false;
4042 }
4043 
4044 template <>
4045 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4046   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4047 }
4048 template <>
4049 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4050   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4051 }
4052 
4053 template <>
4054 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4055   if (Lex.getKind() == lltok::APSInt)
4056     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4057 
4058   if (Lex.getKind() != lltok::DwarfTag)
4059     return TokError("expected DWARF tag");
4060 
4061   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4062   if (Tag == dwarf::DW_TAG_invalid)
4063     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4064   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4065 
4066   Result.assign(Tag);
4067   Lex.Lex();
4068   return false;
4069 }
4070 
4071 template <>
4072 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4073                             DwarfMacinfoTypeField &Result) {
4074   if (Lex.getKind() == lltok::APSInt)
4075     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4076 
4077   if (Lex.getKind() != lltok::DwarfMacinfo)
4078     return TokError("expected DWARF macinfo type");
4079 
4080   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4081   if (Macinfo == dwarf::DW_MACINFO_invalid)
4082     return TokError(
4083         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
4084   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4085 
4086   Result.assign(Macinfo);
4087   Lex.Lex();
4088   return false;
4089 }
4090 
4091 template <>
4092 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4093                             DwarfVirtualityField &Result) {
4094   if (Lex.getKind() == lltok::APSInt)
4095     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4096 
4097   if (Lex.getKind() != lltok::DwarfVirtuality)
4098     return TokError("expected DWARF virtuality code");
4099 
4100   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4101   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4102     return TokError("invalid DWARF virtuality code" + Twine(" '") +
4103                     Lex.getStrVal() + "'");
4104   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4105   Result.assign(Virtuality);
4106   Lex.Lex();
4107   return false;
4108 }
4109 
4110 template <>
4111 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4112   if (Lex.getKind() == lltok::APSInt)
4113     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4114 
4115   if (Lex.getKind() != lltok::DwarfLang)
4116     return TokError("expected DWARF language");
4117 
4118   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4119   if (!Lang)
4120     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4121                     "'");
4122   assert(Lang <= Result.Max && "Expected valid DWARF language");
4123   Result.assign(Lang);
4124   Lex.Lex();
4125   return false;
4126 }
4127 
4128 template <>
4129 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4130   if (Lex.getKind() == lltok::APSInt)
4131     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4132 
4133   if (Lex.getKind() != lltok::DwarfCC)
4134     return TokError("expected DWARF calling convention");
4135 
4136   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4137   if (!CC)
4138     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
4139                     "'");
4140   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4141   Result.assign(CC);
4142   Lex.Lex();
4143   return false;
4144 }
4145 
4146 template <>
4147 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
4148   if (Lex.getKind() == lltok::APSInt)
4149     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4150 
4151   if (Lex.getKind() != lltok::EmissionKind)
4152     return TokError("expected emission kind");
4153 
4154   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4155   if (!Kind)
4156     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4157                     "'");
4158   assert(*Kind <= Result.Max && "Expected valid emission kind");
4159   Result.assign(*Kind);
4160   Lex.Lex();
4161   return false;
4162 }
4163 
4164 template <>
4165 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4166                             NameTableKindField &Result) {
4167   if (Lex.getKind() == lltok::APSInt)
4168     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4169 
4170   if (Lex.getKind() != lltok::NameTableKind)
4171     return TokError("expected nameTable kind");
4172 
4173   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4174   if (!Kind)
4175     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4176                     "'");
4177   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4178   Result.assign((unsigned)*Kind);
4179   Lex.Lex();
4180   return false;
4181 }
4182 
4183 template <>
4184 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4185                             DwarfAttEncodingField &Result) {
4186   if (Lex.getKind() == lltok::APSInt)
4187     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4188 
4189   if (Lex.getKind() != lltok::DwarfAttEncoding)
4190     return TokError("expected DWARF type attribute encoding");
4191 
4192   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4193   if (!Encoding)
4194     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4195                     Lex.getStrVal() + "'");
4196   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4197   Result.assign(Encoding);
4198   Lex.Lex();
4199   return false;
4200 }
4201 
4202 /// DIFlagField
4203 ///  ::= uint32
4204 ///  ::= DIFlagVector
4205 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4206 template <>
4207 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4208 
4209   // Parser for a single flag.
4210   auto parseFlag = [&](DINode::DIFlags &Val) {
4211     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4212       uint32_t TempVal = static_cast<uint32_t>(Val);
4213       bool Res = ParseUInt32(TempVal);
4214       Val = static_cast<DINode::DIFlags>(TempVal);
4215       return Res;
4216     }
4217 
4218     if (Lex.getKind() != lltok::DIFlag)
4219       return TokError("expected debug info flag");
4220 
4221     Val = DINode::getFlag(Lex.getStrVal());
4222     if (!Val)
4223       return TokError(Twine("invalid debug info flag flag '") +
4224                       Lex.getStrVal() + "'");
4225     Lex.Lex();
4226     return false;
4227   };
4228 
4229   // Parse the flags and combine them together.
4230   DINode::DIFlags Combined = DINode::FlagZero;
4231   do {
4232     DINode::DIFlags Val;
4233     if (parseFlag(Val))
4234       return true;
4235     Combined |= Val;
4236   } while (EatIfPresent(lltok::bar));
4237 
4238   Result.assign(Combined);
4239   return false;
4240 }
4241 
4242 /// DISPFlagField
4243 ///  ::= uint32
4244 ///  ::= DISPFlagVector
4245 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4246 template <>
4247 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4248 
4249   // Parser for a single flag.
4250   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4251     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4252       uint32_t TempVal = static_cast<uint32_t>(Val);
4253       bool Res = ParseUInt32(TempVal);
4254       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4255       return Res;
4256     }
4257 
4258     if (Lex.getKind() != lltok::DISPFlag)
4259       return TokError("expected debug info flag");
4260 
4261     Val = DISubprogram::getFlag(Lex.getStrVal());
4262     if (!Val)
4263       return TokError(Twine("invalid subprogram debug info flag '") +
4264                       Lex.getStrVal() + "'");
4265     Lex.Lex();
4266     return false;
4267   };
4268 
4269   // Parse the flags and combine them together.
4270   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4271   do {
4272     DISubprogram::DISPFlags Val;
4273     if (parseFlag(Val))
4274       return true;
4275     Combined |= Val;
4276   } while (EatIfPresent(lltok::bar));
4277 
4278   Result.assign(Combined);
4279   return false;
4280 }
4281 
4282 template <>
4283 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4284                             MDSignedField &Result) {
4285   if (Lex.getKind() != lltok::APSInt)
4286     return TokError("expected signed integer");
4287 
4288   auto &S = Lex.getAPSIntVal();
4289   if (S < Result.Min)
4290     return TokError("value for '" + Name + "' too small, limit is " +
4291                     Twine(Result.Min));
4292   if (S > Result.Max)
4293     return TokError("value for '" + Name + "' too large, limit is " +
4294                     Twine(Result.Max));
4295   Result.assign(S.getExtValue());
4296   assert(Result.Val >= Result.Min && "Expected value in range");
4297   assert(Result.Val <= Result.Max && "Expected value in range");
4298   Lex.Lex();
4299   return false;
4300 }
4301 
4302 template <>
4303 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4304   switch (Lex.getKind()) {
4305   default:
4306     return TokError("expected 'true' or 'false'");
4307   case lltok::kw_true:
4308     Result.assign(true);
4309     break;
4310   case lltok::kw_false:
4311     Result.assign(false);
4312     break;
4313   }
4314   Lex.Lex();
4315   return false;
4316 }
4317 
4318 template <>
4319 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4320   if (Lex.getKind() == lltok::kw_null) {
4321     if (!Result.AllowNull)
4322       return TokError("'" + Name + "' cannot be null");
4323     Lex.Lex();
4324     Result.assign(nullptr);
4325     return false;
4326   }
4327 
4328   Metadata *MD;
4329   if (ParseMetadata(MD, nullptr))
4330     return true;
4331 
4332   Result.assign(MD);
4333   return false;
4334 }
4335 
4336 template <>
4337 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4338                             MDSignedOrMDField &Result) {
4339   // Try to parse a signed int.
4340   if (Lex.getKind() == lltok::APSInt) {
4341     MDSignedField Res = Result.A;
4342     if (!ParseMDField(Loc, Name, Res)) {
4343       Result.assign(Res);
4344       return false;
4345     }
4346     return true;
4347   }
4348 
4349   // Otherwise, try to parse as an MDField.
4350   MDField Res = Result.B;
4351   if (!ParseMDField(Loc, Name, Res)) {
4352     Result.assign(Res);
4353     return false;
4354   }
4355 
4356   return true;
4357 }
4358 
4359 template <>
4360 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4361   LocTy ValueLoc = Lex.getLoc();
4362   std::string S;
4363   if (ParseStringConstant(S))
4364     return true;
4365 
4366   if (!Result.AllowEmpty && S.empty())
4367     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4368 
4369   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4370   return false;
4371 }
4372 
4373 template <>
4374 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4375   SmallVector<Metadata *, 4> MDs;
4376   if (ParseMDNodeVector(MDs))
4377     return true;
4378 
4379   Result.assign(std::move(MDs));
4380   return false;
4381 }
4382 
4383 template <>
4384 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4385                             ChecksumKindField &Result) {
4386   Optional<DIFile::ChecksumKind> CSKind =
4387       DIFile::getChecksumKind(Lex.getStrVal());
4388 
4389   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4390     return TokError(
4391         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4392 
4393   Result.assign(*CSKind);
4394   Lex.Lex();
4395   return false;
4396 }
4397 
4398 } // end namespace llvm
4399 
4400 template <class ParserTy>
4401 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4402   do {
4403     if (Lex.getKind() != lltok::LabelStr)
4404       return TokError("expected field label here");
4405 
4406     if (parseField())
4407       return true;
4408   } while (EatIfPresent(lltok::comma));
4409 
4410   return false;
4411 }
4412 
4413 template <class ParserTy>
4414 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4415   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4416   Lex.Lex();
4417 
4418   if (ParseToken(lltok::lparen, "expected '(' here"))
4419     return true;
4420   if (Lex.getKind() != lltok::rparen)
4421     if (ParseMDFieldsImplBody(parseField))
4422       return true;
4423 
4424   ClosingLoc = Lex.getLoc();
4425   return ParseToken(lltok::rparen, "expected ')' here");
4426 }
4427 
4428 template <class FieldTy>
4429 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4430   if (Result.Seen)
4431     return TokError("field '" + Name + "' cannot be specified more than once");
4432 
4433   LocTy Loc = Lex.getLoc();
4434   Lex.Lex();
4435   return ParseMDField(Loc, Name, Result);
4436 }
4437 
4438 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4439   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4440 
4441 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4442   if (Lex.getStrVal() == #CLASS)                                               \
4443     return Parse##CLASS(N, IsDistinct);
4444 #include "llvm/IR/Metadata.def"
4445 
4446   return TokError("expected metadata type");
4447 }
4448 
4449 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4450 #define NOP_FIELD(NAME, TYPE, INIT)
4451 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4452   if (!NAME.Seen)                                                              \
4453     return Error(ClosingLoc, "missing required field '" #NAME "'");
4454 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4455   if (Lex.getStrVal() == #NAME)                                                \
4456     return ParseMDField(#NAME, NAME);
4457 #define PARSE_MD_FIELDS()                                                      \
4458   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4459   do {                                                                         \
4460     LocTy ClosingLoc;                                                          \
4461     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4462       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4463       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4464     }, ClosingLoc))                                                            \
4465       return true;                                                             \
4466     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4467   } while (false)
4468 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4469   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4470 
4471 /// ParseDILocationFields:
4472 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4473 ///   isImplicitCode: true)
4474 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4475 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4476   OPTIONAL(line, LineField, );                                                 \
4477   OPTIONAL(column, ColumnField, );                                             \
4478   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4479   OPTIONAL(inlinedAt, MDField, );                                              \
4480   OPTIONAL(isImplicitCode, MDBoolField, (false));
4481   PARSE_MD_FIELDS();
4482 #undef VISIT_MD_FIELDS
4483 
4484   Result =
4485       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4486                                    inlinedAt.Val, isImplicitCode.Val));
4487   return false;
4488 }
4489 
4490 /// ParseGenericDINode:
4491 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4492 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4493 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4494   REQUIRED(tag, DwarfTagField, );                                              \
4495   OPTIONAL(header, MDStringField, );                                           \
4496   OPTIONAL(operands, MDFieldList, );
4497   PARSE_MD_FIELDS();
4498 #undef VISIT_MD_FIELDS
4499 
4500   Result = GET_OR_DISTINCT(GenericDINode,
4501                            (Context, tag.Val, header.Val, operands.Val));
4502   return false;
4503 }
4504 
4505 /// ParseDISubrange:
4506 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4507 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4508 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4509 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4510   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4511   OPTIONAL(lowerBound, MDSignedField, );
4512   PARSE_MD_FIELDS();
4513 #undef VISIT_MD_FIELDS
4514 
4515   if (count.isMDSignedField())
4516     Result = GET_OR_DISTINCT(
4517         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4518   else if (count.isMDField())
4519     Result = GET_OR_DISTINCT(
4520         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4521   else
4522     return true;
4523 
4524   return false;
4525 }
4526 
4527 /// ParseDIEnumerator:
4528 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4529 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4530 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4531   REQUIRED(name, MDStringField, );                                             \
4532   REQUIRED(value, MDAPSIntField, );                                            \
4533   OPTIONAL(isUnsigned, MDBoolField, (false));
4534   PARSE_MD_FIELDS();
4535 #undef VISIT_MD_FIELDS
4536 
4537   if (isUnsigned.Val && value.Val.isNegative())
4538     return TokError("unsigned enumerator with negative value");
4539 
4540   APSInt Value(value.Val);
4541   // Add a leading zero so that unsigned values with the msb set are not
4542   // mistaken for negative values when used for signed enumerators.
4543   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4544     Value = Value.zext(Value.getBitWidth() + 1);
4545 
4546   Result =
4547       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4548 
4549   return false;
4550 }
4551 
4552 /// ParseDIBasicType:
4553 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4554 ///                    encoding: DW_ATE_encoding, flags: 0)
4555 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4556 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4557   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4558   OPTIONAL(name, MDStringField, );                                             \
4559   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4560   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4561   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4562   OPTIONAL(flags, DIFlagField, );
4563   PARSE_MD_FIELDS();
4564 #undef VISIT_MD_FIELDS
4565 
4566   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4567                                          align.Val, encoding.Val, flags.Val));
4568   return false;
4569 }
4570 
4571 /// ParseDIDerivedType:
4572 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4573 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4574 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4575 ///                      dwarfAddressSpace: 3)
4576 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4577 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4578   REQUIRED(tag, DwarfTagField, );                                              \
4579   OPTIONAL(name, MDStringField, );                                             \
4580   OPTIONAL(file, MDField, );                                                   \
4581   OPTIONAL(line, LineField, );                                                 \
4582   OPTIONAL(scope, MDField, );                                                  \
4583   REQUIRED(baseType, MDField, );                                               \
4584   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4585   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4586   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4587   OPTIONAL(flags, DIFlagField, );                                              \
4588   OPTIONAL(extraData, MDField, );                                              \
4589   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4590   PARSE_MD_FIELDS();
4591 #undef VISIT_MD_FIELDS
4592 
4593   Optional<unsigned> DWARFAddressSpace;
4594   if (dwarfAddressSpace.Val != UINT32_MAX)
4595     DWARFAddressSpace = dwarfAddressSpace.Val;
4596 
4597   Result = GET_OR_DISTINCT(DIDerivedType,
4598                            (Context, tag.Val, name.Val, file.Val, line.Val,
4599                             scope.Val, baseType.Val, size.Val, align.Val,
4600                             offset.Val, DWARFAddressSpace, flags.Val,
4601                             extraData.Val));
4602   return false;
4603 }
4604 
4605 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4606 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4607   REQUIRED(tag, DwarfTagField, );                                              \
4608   OPTIONAL(name, MDStringField, );                                             \
4609   OPTIONAL(file, MDField, );                                                   \
4610   OPTIONAL(line, LineField, );                                                 \
4611   OPTIONAL(scope, MDField, );                                                  \
4612   OPTIONAL(baseType, MDField, );                                               \
4613   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4614   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4615   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4616   OPTIONAL(flags, DIFlagField, );                                              \
4617   OPTIONAL(elements, MDField, );                                               \
4618   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4619   OPTIONAL(vtableHolder, MDField, );                                           \
4620   OPTIONAL(templateParams, MDField, );                                         \
4621   OPTIONAL(identifier, MDStringField, );                                       \
4622   OPTIONAL(discriminator, MDField, );                                          \
4623   OPTIONAL(dataLocation, MDField, );
4624   PARSE_MD_FIELDS();
4625 #undef VISIT_MD_FIELDS
4626 
4627   // If this has an identifier try to build an ODR type.
4628   if (identifier.Val)
4629     if (auto *CT = DICompositeType::buildODRType(
4630             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4631             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4632             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4633             discriminator.Val, dataLocation.Val)) {
4634       Result = CT;
4635       return false;
4636     }
4637 
4638   // Create a new node, and save it in the context if it belongs in the type
4639   // map.
4640   Result = GET_OR_DISTINCT(
4641       DICompositeType,
4642       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4643        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4644        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4645        discriminator.Val, dataLocation.Val));
4646   return false;
4647 }
4648 
4649 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4650 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4651   OPTIONAL(flags, DIFlagField, );                                              \
4652   OPTIONAL(cc, DwarfCCField, );                                                \
4653   REQUIRED(types, MDField, );
4654   PARSE_MD_FIELDS();
4655 #undef VISIT_MD_FIELDS
4656 
4657   Result = GET_OR_DISTINCT(DISubroutineType,
4658                            (Context, flags.Val, cc.Val, types.Val));
4659   return false;
4660 }
4661 
4662 /// ParseDIFileType:
4663 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4664 ///                   checksumkind: CSK_MD5,
4665 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4666 ///                   source: "source file contents")
4667 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4668   // The default constructed value for checksumkind is required, but will never
4669   // be used, as the parser checks if the field was actually Seen before using
4670   // the Val.
4671 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4672   REQUIRED(filename, MDStringField, );                                         \
4673   REQUIRED(directory, MDStringField, );                                        \
4674   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4675   OPTIONAL(checksum, MDStringField, );                                         \
4676   OPTIONAL(source, MDStringField, );
4677   PARSE_MD_FIELDS();
4678 #undef VISIT_MD_FIELDS
4679 
4680   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4681   if (checksumkind.Seen && checksum.Seen)
4682     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4683   else if (checksumkind.Seen || checksum.Seen)
4684     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4685 
4686   Optional<MDString *> OptSource;
4687   if (source.Seen)
4688     OptSource = source.Val;
4689   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4690                                     OptChecksum, OptSource));
4691   return false;
4692 }
4693 
4694 /// ParseDICompileUnit:
4695 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4696 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4697 ///                      splitDebugFilename: "abc.debug",
4698 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4699 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4700 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4701 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4702   if (!IsDistinct)
4703     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4704 
4705 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4706   REQUIRED(language, DwarfLangField, );                                        \
4707   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4708   OPTIONAL(producer, MDStringField, );                                         \
4709   OPTIONAL(isOptimized, MDBoolField, );                                        \
4710   OPTIONAL(flags, MDStringField, );                                            \
4711   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4712   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4713   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4714   OPTIONAL(enums, MDField, );                                                  \
4715   OPTIONAL(retainedTypes, MDField, );                                          \
4716   OPTIONAL(globals, MDField, );                                                \
4717   OPTIONAL(imports, MDField, );                                                \
4718   OPTIONAL(macros, MDField, );                                                 \
4719   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4720   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4721   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4722   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4723   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4724   OPTIONAL(sysroot, MDStringField, );                                          \
4725   OPTIONAL(sdk, MDStringField, );
4726   PARSE_MD_FIELDS();
4727 #undef VISIT_MD_FIELDS
4728 
4729   Result = DICompileUnit::getDistinct(
4730       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4731       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4732       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4733       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4734       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4735   return false;
4736 }
4737 
4738 /// ParseDISubprogram:
4739 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4740 ///                     file: !1, line: 7, type: !2, isLocal: false,
4741 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4742 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4743 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4744 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4745 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4746 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4747   auto Loc = Lex.getLoc();
4748 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4749   OPTIONAL(scope, MDField, );                                                  \
4750   OPTIONAL(name, MDStringField, );                                             \
4751   OPTIONAL(linkageName, MDStringField, );                                      \
4752   OPTIONAL(file, MDField, );                                                   \
4753   OPTIONAL(line, LineField, );                                                 \
4754   OPTIONAL(type, MDField, );                                                   \
4755   OPTIONAL(isLocal, MDBoolField, );                                            \
4756   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4757   OPTIONAL(scopeLine, LineField, );                                            \
4758   OPTIONAL(containingType, MDField, );                                         \
4759   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4760   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4761   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4762   OPTIONAL(flags, DIFlagField, );                                              \
4763   OPTIONAL(spFlags, DISPFlagField, );                                          \
4764   OPTIONAL(isOptimized, MDBoolField, );                                        \
4765   OPTIONAL(unit, MDField, );                                                   \
4766   OPTIONAL(templateParams, MDField, );                                         \
4767   OPTIONAL(declaration, MDField, );                                            \
4768   OPTIONAL(retainedNodes, MDField, );                                          \
4769   OPTIONAL(thrownTypes, MDField, );
4770   PARSE_MD_FIELDS();
4771 #undef VISIT_MD_FIELDS
4772 
4773   // An explicit spFlags field takes precedence over individual fields in
4774   // older IR versions.
4775   DISubprogram::DISPFlags SPFlags =
4776       spFlags.Seen ? spFlags.Val
4777                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4778                                              isOptimized.Val, virtuality.Val);
4779   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4780     return Lex.Error(
4781         Loc,
4782         "missing 'distinct', required for !DISubprogram that is a Definition");
4783   Result = GET_OR_DISTINCT(
4784       DISubprogram,
4785       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4786        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4787        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4788        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4789   return false;
4790 }
4791 
4792 /// ParseDILexicalBlock:
4793 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4794 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4795 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4796   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4797   OPTIONAL(file, MDField, );                                                   \
4798   OPTIONAL(line, LineField, );                                                 \
4799   OPTIONAL(column, ColumnField, );
4800   PARSE_MD_FIELDS();
4801 #undef VISIT_MD_FIELDS
4802 
4803   Result = GET_OR_DISTINCT(
4804       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4805   return false;
4806 }
4807 
4808 /// ParseDILexicalBlockFile:
4809 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4810 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4811 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4812   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4813   OPTIONAL(file, MDField, );                                                   \
4814   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4815   PARSE_MD_FIELDS();
4816 #undef VISIT_MD_FIELDS
4817 
4818   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4819                            (Context, scope.Val, file.Val, discriminator.Val));
4820   return false;
4821 }
4822 
4823 /// ParseDICommonBlock:
4824 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4825 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4826 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4827   REQUIRED(scope, MDField, );                                                  \
4828   OPTIONAL(declaration, MDField, );                                            \
4829   OPTIONAL(name, MDStringField, );                                             \
4830   OPTIONAL(file, MDField, );                                                   \
4831   OPTIONAL(line, LineField, );
4832   PARSE_MD_FIELDS();
4833 #undef VISIT_MD_FIELDS
4834 
4835   Result = GET_OR_DISTINCT(DICommonBlock,
4836                            (Context, scope.Val, declaration.Val, name.Val,
4837                             file.Val, line.Val));
4838   return false;
4839 }
4840 
4841 /// ParseDINamespace:
4842 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4843 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4844 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4845   REQUIRED(scope, MDField, );                                                  \
4846   OPTIONAL(name, MDStringField, );                                             \
4847   OPTIONAL(exportSymbols, MDBoolField, );
4848   PARSE_MD_FIELDS();
4849 #undef VISIT_MD_FIELDS
4850 
4851   Result = GET_OR_DISTINCT(DINamespace,
4852                            (Context, scope.Val, name.Val, exportSymbols.Val));
4853   return false;
4854 }
4855 
4856 /// ParseDIMacro:
4857 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4858 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4859 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4860   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4861   OPTIONAL(line, LineField, );                                                 \
4862   REQUIRED(name, MDStringField, );                                             \
4863   OPTIONAL(value, MDStringField, );
4864   PARSE_MD_FIELDS();
4865 #undef VISIT_MD_FIELDS
4866 
4867   Result = GET_OR_DISTINCT(DIMacro,
4868                            (Context, type.Val, line.Val, name.Val, value.Val));
4869   return false;
4870 }
4871 
4872 /// ParseDIMacroFile:
4873 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4874 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4875 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4876   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4877   OPTIONAL(line, LineField, );                                                 \
4878   REQUIRED(file, MDField, );                                                   \
4879   OPTIONAL(nodes, MDField, );
4880   PARSE_MD_FIELDS();
4881 #undef VISIT_MD_FIELDS
4882 
4883   Result = GET_OR_DISTINCT(DIMacroFile,
4884                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4885   return false;
4886 }
4887 
4888 /// ParseDIModule:
4889 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
4890 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
4891 ///   file: !1, line: 4)
4892 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4893 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4894   REQUIRED(scope, MDField, );                                                  \
4895   REQUIRED(name, MDStringField, );                                             \
4896   OPTIONAL(configMacros, MDStringField, );                                     \
4897   OPTIONAL(includePath, MDStringField, );                                      \
4898   OPTIONAL(apinotes, MDStringField, );                                         \
4899   OPTIONAL(file, MDField, );                                                   \
4900   OPTIONAL(line, LineField, );
4901   PARSE_MD_FIELDS();
4902 #undef VISIT_MD_FIELDS
4903 
4904   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
4905                                       configMacros.Val, includePath.Val,
4906                                       apinotes.Val, line.Val));
4907   return false;
4908 }
4909 
4910 /// ParseDITemplateTypeParameter:
4911 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
4912 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4913 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4914   OPTIONAL(name, MDStringField, );                                             \
4915   REQUIRED(type, MDField, );                                                   \
4916   OPTIONAL(defaulted, MDBoolField, );
4917   PARSE_MD_FIELDS();
4918 #undef VISIT_MD_FIELDS
4919 
4920   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
4921                            (Context, name.Val, type.Val, defaulted.Val));
4922   return false;
4923 }
4924 
4925 /// ParseDITemplateValueParameter:
4926 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4927 ///                                 name: "V", type: !1, defaulted: false,
4928 ///                                 value: i32 7)
4929 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4930 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4931   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4932   OPTIONAL(name, MDStringField, );                                             \
4933   OPTIONAL(type, MDField, );                                                   \
4934   OPTIONAL(defaulted, MDBoolField, );                                          \
4935   REQUIRED(value, MDField, );
4936 
4937   PARSE_MD_FIELDS();
4938 #undef VISIT_MD_FIELDS
4939 
4940   Result = GET_OR_DISTINCT(
4941       DITemplateValueParameter,
4942       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
4943   return false;
4944 }
4945 
4946 /// ParseDIGlobalVariable:
4947 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4948 ///                         file: !1, line: 7, type: !2, isLocal: false,
4949 ///                         isDefinition: true, templateParams: !3,
4950 ///                         declaration: !4, align: 8)
4951 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4952 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4953   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4954   OPTIONAL(scope, MDField, );                                                  \
4955   OPTIONAL(linkageName, MDStringField, );                                      \
4956   OPTIONAL(file, MDField, );                                                   \
4957   OPTIONAL(line, LineField, );                                                 \
4958   OPTIONAL(type, MDField, );                                                   \
4959   OPTIONAL(isLocal, MDBoolField, );                                            \
4960   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4961   OPTIONAL(templateParams, MDField, );                                         \
4962   OPTIONAL(declaration, MDField, );                                            \
4963   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4964   PARSE_MD_FIELDS();
4965 #undef VISIT_MD_FIELDS
4966 
4967   Result =
4968       GET_OR_DISTINCT(DIGlobalVariable,
4969                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4970                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4971                        declaration.Val, templateParams.Val, align.Val));
4972   return false;
4973 }
4974 
4975 /// ParseDILocalVariable:
4976 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4977 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4978 ///                        align: 8)
4979 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4980 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4981 ///                        align: 8)
4982 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4983 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4984   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4985   OPTIONAL(name, MDStringField, );                                             \
4986   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4987   OPTIONAL(file, MDField, );                                                   \
4988   OPTIONAL(line, LineField, );                                                 \
4989   OPTIONAL(type, MDField, );                                                   \
4990   OPTIONAL(flags, DIFlagField, );                                              \
4991   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4992   PARSE_MD_FIELDS();
4993 #undef VISIT_MD_FIELDS
4994 
4995   Result = GET_OR_DISTINCT(DILocalVariable,
4996                            (Context, scope.Val, name.Val, file.Val, line.Val,
4997                             type.Val, arg.Val, flags.Val, align.Val));
4998   return false;
4999 }
5000 
5001 /// ParseDILabel:
5002 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5003 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
5004 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5005   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5006   REQUIRED(name, MDStringField, );                                             \
5007   REQUIRED(file, MDField, );                                                   \
5008   REQUIRED(line, LineField, );
5009   PARSE_MD_FIELDS();
5010 #undef VISIT_MD_FIELDS
5011 
5012   Result = GET_OR_DISTINCT(DILabel,
5013                            (Context, scope.Val, name.Val, file.Val, line.Val));
5014   return false;
5015 }
5016 
5017 /// ParseDIExpression:
5018 ///   ::= !DIExpression(0, 7, -1)
5019 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
5020   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5021   Lex.Lex();
5022 
5023   if (ParseToken(lltok::lparen, "expected '(' here"))
5024     return true;
5025 
5026   SmallVector<uint64_t, 8> Elements;
5027   if (Lex.getKind() != lltok::rparen)
5028     do {
5029       if (Lex.getKind() == lltok::DwarfOp) {
5030         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5031           Lex.Lex();
5032           Elements.push_back(Op);
5033           continue;
5034         }
5035         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5036       }
5037 
5038       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5039         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5040           Lex.Lex();
5041           Elements.push_back(Op);
5042           continue;
5043         }
5044         return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
5045       }
5046 
5047       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5048         return TokError("expected unsigned integer");
5049 
5050       auto &U = Lex.getAPSIntVal();
5051       if (U.ugt(UINT64_MAX))
5052         return TokError("element too large, limit is " + Twine(UINT64_MAX));
5053       Elements.push_back(U.getZExtValue());
5054       Lex.Lex();
5055     } while (EatIfPresent(lltok::comma));
5056 
5057   if (ParseToken(lltok::rparen, "expected ')' here"))
5058     return true;
5059 
5060   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5061   return false;
5062 }
5063 
5064 /// ParseDIGlobalVariableExpression:
5065 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5066 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
5067                                                bool IsDistinct) {
5068 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5069   REQUIRED(var, MDField, );                                                    \
5070   REQUIRED(expr, MDField, );
5071   PARSE_MD_FIELDS();
5072 #undef VISIT_MD_FIELDS
5073 
5074   Result =
5075       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5076   return false;
5077 }
5078 
5079 /// ParseDIObjCProperty:
5080 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5081 ///                       getter: "getFoo", attributes: 7, type: !2)
5082 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5083 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5084   OPTIONAL(name, MDStringField, );                                             \
5085   OPTIONAL(file, MDField, );                                                   \
5086   OPTIONAL(line, LineField, );                                                 \
5087   OPTIONAL(setter, MDStringField, );                                           \
5088   OPTIONAL(getter, MDStringField, );                                           \
5089   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5090   OPTIONAL(type, MDField, );
5091   PARSE_MD_FIELDS();
5092 #undef VISIT_MD_FIELDS
5093 
5094   Result = GET_OR_DISTINCT(DIObjCProperty,
5095                            (Context, name.Val, file.Val, line.Val, setter.Val,
5096                             getter.Val, attributes.Val, type.Val));
5097   return false;
5098 }
5099 
5100 /// ParseDIImportedEntity:
5101 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5102 ///                         line: 7, name: "foo")
5103 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5104 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5105   REQUIRED(tag, DwarfTagField, );                                              \
5106   REQUIRED(scope, MDField, );                                                  \
5107   OPTIONAL(entity, MDField, );                                                 \
5108   OPTIONAL(file, MDField, );                                                   \
5109   OPTIONAL(line, LineField, );                                                 \
5110   OPTIONAL(name, MDStringField, );
5111   PARSE_MD_FIELDS();
5112 #undef VISIT_MD_FIELDS
5113 
5114   Result = GET_OR_DISTINCT(
5115       DIImportedEntity,
5116       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5117   return false;
5118 }
5119 
5120 #undef PARSE_MD_FIELD
5121 #undef NOP_FIELD
5122 #undef REQUIRE_FIELD
5123 #undef DECLARE_FIELD
5124 
5125 /// ParseMetadataAsValue
5126 ///  ::= metadata i32 %local
5127 ///  ::= metadata i32 @global
5128 ///  ::= metadata i32 7
5129 ///  ::= metadata !0
5130 ///  ::= metadata !{...}
5131 ///  ::= metadata !"string"
5132 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5133   // Note: the type 'metadata' has already been parsed.
5134   Metadata *MD;
5135   if (ParseMetadata(MD, &PFS))
5136     return true;
5137 
5138   V = MetadataAsValue::get(Context, MD);
5139   return false;
5140 }
5141 
5142 /// ParseValueAsMetadata
5143 ///  ::= i32 %local
5144 ///  ::= i32 @global
5145 ///  ::= i32 7
5146 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5147                                     PerFunctionState *PFS) {
5148   Type *Ty;
5149   LocTy Loc;
5150   if (ParseType(Ty, TypeMsg, Loc))
5151     return true;
5152   if (Ty->isMetadataTy())
5153     return Error(Loc, "invalid metadata-value-metadata roundtrip");
5154 
5155   Value *V;
5156   if (ParseValue(Ty, V, PFS))
5157     return true;
5158 
5159   MD = ValueAsMetadata::get(V);
5160   return false;
5161 }
5162 
5163 /// ParseMetadata
5164 ///  ::= i32 %local
5165 ///  ::= i32 @global
5166 ///  ::= i32 7
5167 ///  ::= !42
5168 ///  ::= !{...}
5169 ///  ::= !"string"
5170 ///  ::= !DILocation(...)
5171 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5172   if (Lex.getKind() == lltok::MetadataVar) {
5173     MDNode *N;
5174     if (ParseSpecializedMDNode(N))
5175       return true;
5176     MD = N;
5177     return false;
5178   }
5179 
5180   // ValueAsMetadata:
5181   // <type> <value>
5182   if (Lex.getKind() != lltok::exclaim)
5183     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5184 
5185   // '!'.
5186   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5187   Lex.Lex();
5188 
5189   // MDString:
5190   //   ::= '!' STRINGCONSTANT
5191   if (Lex.getKind() == lltok::StringConstant) {
5192     MDString *S;
5193     if (ParseMDString(S))
5194       return true;
5195     MD = S;
5196     return false;
5197   }
5198 
5199   // MDNode:
5200   // !{ ... }
5201   // !7
5202   MDNode *N;
5203   if (ParseMDNodeTail(N))
5204     return true;
5205   MD = N;
5206   return false;
5207 }
5208 
5209 //===----------------------------------------------------------------------===//
5210 // Function Parsing.
5211 //===----------------------------------------------------------------------===//
5212 
5213 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5214                                    PerFunctionState *PFS, bool IsCall) {
5215   if (Ty->isFunctionTy())
5216     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5217 
5218   switch (ID.Kind) {
5219   case ValID::t_LocalID:
5220     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5221     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5222     return V == nullptr;
5223   case ValID::t_LocalName:
5224     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5225     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5226     return V == nullptr;
5227   case ValID::t_InlineAsm: {
5228     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5229       return Error(ID.Loc, "invalid type for inline asm constraint string");
5230     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5231                        (ID.UIntVal >> 1) & 1,
5232                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5233     return false;
5234   }
5235   case ValID::t_GlobalName:
5236     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5237     return V == nullptr;
5238   case ValID::t_GlobalID:
5239     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5240     return V == nullptr;
5241   case ValID::t_APSInt:
5242     if (!Ty->isIntegerTy())
5243       return Error(ID.Loc, "integer constant must have integer type");
5244     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5245     V = ConstantInt::get(Context, ID.APSIntVal);
5246     return false;
5247   case ValID::t_APFloat:
5248     if (!Ty->isFloatingPointTy() ||
5249         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5250       return Error(ID.Loc, "floating point constant invalid for type");
5251 
5252     // The lexer has no type info, so builds all half, bfloat, float, and double
5253     // FP constants as double.  Fix this here.  Long double does not need this.
5254     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5255       bool Ignored;
5256       if (Ty->isHalfTy())
5257         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5258                               &Ignored);
5259       else if (Ty->isBFloatTy())
5260         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5261                               &Ignored);
5262       else if (Ty->isFloatTy())
5263         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5264                               &Ignored);
5265     }
5266     V = ConstantFP::get(Context, ID.APFloatVal);
5267 
5268     if (V->getType() != Ty)
5269       return Error(ID.Loc, "floating point constant does not have type '" +
5270                    getTypeString(Ty) + "'");
5271 
5272     return false;
5273   case ValID::t_Null:
5274     if (!Ty->isPointerTy())
5275       return Error(ID.Loc, "null must be a pointer type");
5276     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5277     return false;
5278   case ValID::t_Undef:
5279     // FIXME: LabelTy should not be a first-class type.
5280     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5281       return Error(ID.Loc, "invalid type for undef constant");
5282     V = UndefValue::get(Ty);
5283     return false;
5284   case ValID::t_EmptyArray:
5285     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5286       return Error(ID.Loc, "invalid empty array initializer");
5287     V = UndefValue::get(Ty);
5288     return false;
5289   case ValID::t_Zero:
5290     // FIXME: LabelTy should not be a first-class type.
5291     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5292       return Error(ID.Loc, "invalid type for null constant");
5293     V = Constant::getNullValue(Ty);
5294     return false;
5295   case ValID::t_None:
5296     if (!Ty->isTokenTy())
5297       return Error(ID.Loc, "invalid type for none constant");
5298     V = Constant::getNullValue(Ty);
5299     return false;
5300   case ValID::t_Constant:
5301     if (ID.ConstantVal->getType() != Ty)
5302       return Error(ID.Loc, "constant expression type mismatch");
5303 
5304     V = ID.ConstantVal;
5305     return false;
5306   case ValID::t_ConstantStruct:
5307   case ValID::t_PackedConstantStruct:
5308     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5309       if (ST->getNumElements() != ID.UIntVal)
5310         return Error(ID.Loc,
5311                      "initializer with struct type has wrong # elements");
5312       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5313         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5314 
5315       // Verify that the elements are compatible with the structtype.
5316       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5317         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5318           return Error(ID.Loc, "element " + Twine(i) +
5319                     " of struct initializer doesn't match struct element type");
5320 
5321       V = ConstantStruct::get(
5322           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5323     } else
5324       return Error(ID.Loc, "constant expression type mismatch");
5325     return false;
5326   }
5327   llvm_unreachable("Invalid ValID");
5328 }
5329 
5330 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5331   C = nullptr;
5332   ValID ID;
5333   auto Loc = Lex.getLoc();
5334   if (ParseValID(ID, /*PFS=*/nullptr))
5335     return true;
5336   switch (ID.Kind) {
5337   case ValID::t_APSInt:
5338   case ValID::t_APFloat:
5339   case ValID::t_Undef:
5340   case ValID::t_Constant:
5341   case ValID::t_ConstantStruct:
5342   case ValID::t_PackedConstantStruct: {
5343     Value *V;
5344     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5345       return true;
5346     assert(isa<Constant>(V) && "Expected a constant value");
5347     C = cast<Constant>(V);
5348     return false;
5349   }
5350   case ValID::t_Null:
5351     C = Constant::getNullValue(Ty);
5352     return false;
5353   default:
5354     return Error(Loc, "expected a constant value");
5355   }
5356 }
5357 
5358 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5359   V = nullptr;
5360   ValID ID;
5361   return ParseValID(ID, PFS) ||
5362          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5363 }
5364 
5365 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5366   Type *Ty = nullptr;
5367   return ParseType(Ty) ||
5368          ParseValue(Ty, V, PFS);
5369 }
5370 
5371 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5372                                       PerFunctionState &PFS) {
5373   Value *V;
5374   Loc = Lex.getLoc();
5375   if (ParseTypeAndValue(V, PFS)) return true;
5376   if (!isa<BasicBlock>(V))
5377     return Error(Loc, "expected a basic block");
5378   BB = cast<BasicBlock>(V);
5379   return false;
5380 }
5381 
5382 /// FunctionHeader
5383 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5384 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5385 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5386 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5387 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5388   // Parse the linkage.
5389   LocTy LinkageLoc = Lex.getLoc();
5390   unsigned Linkage;
5391   unsigned Visibility;
5392   unsigned DLLStorageClass;
5393   bool DSOLocal;
5394   AttrBuilder RetAttrs;
5395   unsigned CC;
5396   bool HasLinkage;
5397   Type *RetType = nullptr;
5398   LocTy RetTypeLoc = Lex.getLoc();
5399   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5400                            DSOLocal) ||
5401       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5402       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5403     return true;
5404 
5405   // Verify that the linkage is ok.
5406   switch ((GlobalValue::LinkageTypes)Linkage) {
5407   case GlobalValue::ExternalLinkage:
5408     break; // always ok.
5409   case GlobalValue::ExternalWeakLinkage:
5410     if (isDefine)
5411       return Error(LinkageLoc, "invalid linkage for function definition");
5412     break;
5413   case GlobalValue::PrivateLinkage:
5414   case GlobalValue::InternalLinkage:
5415   case GlobalValue::AvailableExternallyLinkage:
5416   case GlobalValue::LinkOnceAnyLinkage:
5417   case GlobalValue::LinkOnceODRLinkage:
5418   case GlobalValue::WeakAnyLinkage:
5419   case GlobalValue::WeakODRLinkage:
5420     if (!isDefine)
5421       return Error(LinkageLoc, "invalid linkage for function declaration");
5422     break;
5423   case GlobalValue::AppendingLinkage:
5424   case GlobalValue::CommonLinkage:
5425     return Error(LinkageLoc, "invalid function linkage type");
5426   }
5427 
5428   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5429     return Error(LinkageLoc,
5430                  "symbol with local linkage must have default visibility");
5431 
5432   if (!FunctionType::isValidReturnType(RetType))
5433     return Error(RetTypeLoc, "invalid function return type");
5434 
5435   LocTy NameLoc = Lex.getLoc();
5436 
5437   std::string FunctionName;
5438   if (Lex.getKind() == lltok::GlobalVar) {
5439     FunctionName = Lex.getStrVal();
5440   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5441     unsigned NameID = Lex.getUIntVal();
5442 
5443     if (NameID != NumberedVals.size())
5444       return TokError("function expected to be numbered '%" +
5445                       Twine(NumberedVals.size()) + "'");
5446   } else {
5447     return TokError("expected function name");
5448   }
5449 
5450   Lex.Lex();
5451 
5452   if (Lex.getKind() != lltok::lparen)
5453     return TokError("expected '(' in function argument list");
5454 
5455   SmallVector<ArgInfo, 8> ArgList;
5456   bool isVarArg;
5457   AttrBuilder FuncAttrs;
5458   std::vector<unsigned> FwdRefAttrGrps;
5459   LocTy BuiltinLoc;
5460   std::string Section;
5461   std::string Partition;
5462   MaybeAlign Alignment;
5463   std::string GC;
5464   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5465   unsigned AddrSpace = 0;
5466   Constant *Prefix = nullptr;
5467   Constant *Prologue = nullptr;
5468   Constant *PersonalityFn = nullptr;
5469   Comdat *C;
5470 
5471   if (ParseArgumentList(ArgList, isVarArg) ||
5472       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5473       ParseOptionalProgramAddrSpace(AddrSpace) ||
5474       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5475                                  BuiltinLoc) ||
5476       (EatIfPresent(lltok::kw_section) &&
5477        ParseStringConstant(Section)) ||
5478       (EatIfPresent(lltok::kw_partition) &&
5479        ParseStringConstant(Partition)) ||
5480       parseOptionalComdat(FunctionName, C) ||
5481       ParseOptionalAlignment(Alignment) ||
5482       (EatIfPresent(lltok::kw_gc) &&
5483        ParseStringConstant(GC)) ||
5484       (EatIfPresent(lltok::kw_prefix) &&
5485        ParseGlobalTypeAndValue(Prefix)) ||
5486       (EatIfPresent(lltok::kw_prologue) &&
5487        ParseGlobalTypeAndValue(Prologue)) ||
5488       (EatIfPresent(lltok::kw_personality) &&
5489        ParseGlobalTypeAndValue(PersonalityFn)))
5490     return true;
5491 
5492   if (FuncAttrs.contains(Attribute::Builtin))
5493     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5494 
5495   // If the alignment was parsed as an attribute, move to the alignment field.
5496   if (FuncAttrs.hasAlignmentAttr()) {
5497     Alignment = FuncAttrs.getAlignment();
5498     FuncAttrs.removeAttribute(Attribute::Alignment);
5499   }
5500 
5501   // Okay, if we got here, the function is syntactically valid.  Convert types
5502   // and do semantic checks.
5503   std::vector<Type*> ParamTypeList;
5504   SmallVector<AttributeSet, 8> Attrs;
5505 
5506   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5507     ParamTypeList.push_back(ArgList[i].Ty);
5508     Attrs.push_back(ArgList[i].Attrs);
5509   }
5510 
5511   AttributeList PAL =
5512       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5513                          AttributeSet::get(Context, RetAttrs), Attrs);
5514 
5515   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5516     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5517 
5518   FunctionType *FT =
5519     FunctionType::get(RetType, ParamTypeList, isVarArg);
5520   PointerType *PFT = PointerType::get(FT, AddrSpace);
5521 
5522   Fn = nullptr;
5523   if (!FunctionName.empty()) {
5524     // If this was a definition of a forward reference, remove the definition
5525     // from the forward reference table and fill in the forward ref.
5526     auto FRVI = ForwardRefVals.find(FunctionName);
5527     if (FRVI != ForwardRefVals.end()) {
5528       Fn = M->getFunction(FunctionName);
5529       if (!Fn)
5530         return Error(FRVI->second.second, "invalid forward reference to "
5531                      "function as global value!");
5532       if (Fn->getType() != PFT)
5533         return Error(FRVI->second.second, "invalid forward reference to "
5534                      "function '" + FunctionName + "' with wrong type: "
5535                      "expected '" + getTypeString(PFT) + "' but was '" +
5536                      getTypeString(Fn->getType()) + "'");
5537       ForwardRefVals.erase(FRVI);
5538     } else if ((Fn = M->getFunction(FunctionName))) {
5539       // Reject redefinitions.
5540       return Error(NameLoc, "invalid redefinition of function '" +
5541                    FunctionName + "'");
5542     } else if (M->getNamedValue(FunctionName)) {
5543       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5544     }
5545 
5546   } else {
5547     // If this is a definition of a forward referenced function, make sure the
5548     // types agree.
5549     auto I = ForwardRefValIDs.find(NumberedVals.size());
5550     if (I != ForwardRefValIDs.end()) {
5551       Fn = cast<Function>(I->second.first);
5552       if (Fn->getType() != PFT)
5553         return Error(NameLoc, "type of definition and forward reference of '@" +
5554                      Twine(NumberedVals.size()) + "' disagree: "
5555                      "expected '" + getTypeString(PFT) + "' but was '" +
5556                      getTypeString(Fn->getType()) + "'");
5557       ForwardRefValIDs.erase(I);
5558     }
5559   }
5560 
5561   if (!Fn)
5562     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5563                           FunctionName, M);
5564   else // Move the forward-reference to the correct spot in the module.
5565     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5566 
5567   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5568 
5569   if (FunctionName.empty())
5570     NumberedVals.push_back(Fn);
5571 
5572   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5573   maybeSetDSOLocal(DSOLocal, *Fn);
5574   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5575   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5576   Fn->setCallingConv(CC);
5577   Fn->setAttributes(PAL);
5578   Fn->setUnnamedAddr(UnnamedAddr);
5579   Fn->setAlignment(MaybeAlign(Alignment));
5580   Fn->setSection(Section);
5581   Fn->setPartition(Partition);
5582   Fn->setComdat(C);
5583   Fn->setPersonalityFn(PersonalityFn);
5584   if (!GC.empty()) Fn->setGC(GC);
5585   Fn->setPrefixData(Prefix);
5586   Fn->setPrologueData(Prologue);
5587   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5588 
5589   // Add all of the arguments we parsed to the function.
5590   Function::arg_iterator ArgIt = Fn->arg_begin();
5591   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5592     // If the argument has a name, insert it into the argument symbol table.
5593     if (ArgList[i].Name.empty()) continue;
5594 
5595     // Set the name, if it conflicted, it will be auto-renamed.
5596     ArgIt->setName(ArgList[i].Name);
5597 
5598     if (ArgIt->getName() != ArgList[i].Name)
5599       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5600                    ArgList[i].Name + "'");
5601   }
5602 
5603   if (isDefine)
5604     return false;
5605 
5606   // Check the declaration has no block address forward references.
5607   ValID ID;
5608   if (FunctionName.empty()) {
5609     ID.Kind = ValID::t_GlobalID;
5610     ID.UIntVal = NumberedVals.size() - 1;
5611   } else {
5612     ID.Kind = ValID::t_GlobalName;
5613     ID.StrVal = FunctionName;
5614   }
5615   auto Blocks = ForwardRefBlockAddresses.find(ID);
5616   if (Blocks != ForwardRefBlockAddresses.end())
5617     return Error(Blocks->first.Loc,
5618                  "cannot take blockaddress inside a declaration");
5619   return false;
5620 }
5621 
5622 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5623   ValID ID;
5624   if (FunctionNumber == -1) {
5625     ID.Kind = ValID::t_GlobalName;
5626     ID.StrVal = std::string(F.getName());
5627   } else {
5628     ID.Kind = ValID::t_GlobalID;
5629     ID.UIntVal = FunctionNumber;
5630   }
5631 
5632   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5633   if (Blocks == P.ForwardRefBlockAddresses.end())
5634     return false;
5635 
5636   for (const auto &I : Blocks->second) {
5637     const ValID &BBID = I.first;
5638     GlobalValue *GV = I.second;
5639 
5640     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5641            "Expected local id or name");
5642     BasicBlock *BB;
5643     if (BBID.Kind == ValID::t_LocalName)
5644       BB = GetBB(BBID.StrVal, BBID.Loc);
5645     else
5646       BB = GetBB(BBID.UIntVal, BBID.Loc);
5647     if (!BB)
5648       return P.Error(BBID.Loc, "referenced value is not a basic block");
5649 
5650     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5651     GV->eraseFromParent();
5652   }
5653 
5654   P.ForwardRefBlockAddresses.erase(Blocks);
5655   return false;
5656 }
5657 
5658 /// ParseFunctionBody
5659 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5660 bool LLParser::ParseFunctionBody(Function &Fn) {
5661   if (Lex.getKind() != lltok::lbrace)
5662     return TokError("expected '{' in function body");
5663   Lex.Lex();  // eat the {.
5664 
5665   int FunctionNumber = -1;
5666   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5667 
5668   PerFunctionState PFS(*this, Fn, FunctionNumber);
5669 
5670   // Resolve block addresses and allow basic blocks to be forward-declared
5671   // within this function.
5672   if (PFS.resolveForwardRefBlockAddresses())
5673     return true;
5674   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5675 
5676   // We need at least one basic block.
5677   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5678     return TokError("function body requires at least one basic block");
5679 
5680   while (Lex.getKind() != lltok::rbrace &&
5681          Lex.getKind() != lltok::kw_uselistorder)
5682     if (ParseBasicBlock(PFS)) return true;
5683 
5684   while (Lex.getKind() != lltok::rbrace)
5685     if (ParseUseListOrder(&PFS))
5686       return true;
5687 
5688   // Eat the }.
5689   Lex.Lex();
5690 
5691   // Verify function is ok.
5692   return PFS.FinishFunction();
5693 }
5694 
5695 /// ParseBasicBlock
5696 ///   ::= (LabelStr|LabelID)? Instruction*
5697 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5698   // If this basic block starts out with a name, remember it.
5699   std::string Name;
5700   int NameID = -1;
5701   LocTy NameLoc = Lex.getLoc();
5702   if (Lex.getKind() == lltok::LabelStr) {
5703     Name = Lex.getStrVal();
5704     Lex.Lex();
5705   } else if (Lex.getKind() == lltok::LabelID) {
5706     NameID = Lex.getUIntVal();
5707     Lex.Lex();
5708   }
5709 
5710   BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5711   if (!BB)
5712     return true;
5713 
5714   std::string NameStr;
5715 
5716   // Parse the instructions in this block until we get a terminator.
5717   Instruction *Inst;
5718   do {
5719     // This instruction may have three possibilities for a name: a) none
5720     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5721     LocTy NameLoc = Lex.getLoc();
5722     int NameID = -1;
5723     NameStr = "";
5724 
5725     if (Lex.getKind() == lltok::LocalVarID) {
5726       NameID = Lex.getUIntVal();
5727       Lex.Lex();
5728       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5729         return true;
5730     } else if (Lex.getKind() == lltok::LocalVar) {
5731       NameStr = Lex.getStrVal();
5732       Lex.Lex();
5733       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5734         return true;
5735     }
5736 
5737     switch (ParseInstruction(Inst, BB, PFS)) {
5738     default: llvm_unreachable("Unknown ParseInstruction result!");
5739     case InstError: return true;
5740     case InstNormal:
5741       BB->getInstList().push_back(Inst);
5742 
5743       // With a normal result, we check to see if the instruction is followed by
5744       // a comma and metadata.
5745       if (EatIfPresent(lltok::comma))
5746         if (ParseInstructionMetadata(*Inst))
5747           return true;
5748       break;
5749     case InstExtraComma:
5750       BB->getInstList().push_back(Inst);
5751 
5752       // If the instruction parser ate an extra comma at the end of it, it
5753       // *must* be followed by metadata.
5754       if (ParseInstructionMetadata(*Inst))
5755         return true;
5756       break;
5757     }
5758 
5759     // Set the name on the instruction.
5760     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5761   } while (!Inst->isTerminator());
5762 
5763   return false;
5764 }
5765 
5766 //===----------------------------------------------------------------------===//
5767 // Instruction Parsing.
5768 //===----------------------------------------------------------------------===//
5769 
5770 /// ParseInstruction - Parse one of the many different instructions.
5771 ///
5772 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5773                                PerFunctionState &PFS) {
5774   lltok::Kind Token = Lex.getKind();
5775   if (Token == lltok::Eof)
5776     return TokError("found end of file when expecting more instructions");
5777   LocTy Loc = Lex.getLoc();
5778   unsigned KeywordVal = Lex.getUIntVal();
5779   Lex.Lex();  // Eat the keyword.
5780 
5781   switch (Token) {
5782   default:                    return Error(Loc, "expected instruction opcode");
5783   // Terminator Instructions.
5784   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5785   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5786   case lltok::kw_br:          return ParseBr(Inst, PFS);
5787   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5788   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5789   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5790   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5791   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5792   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5793   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5794   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5795   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5796   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5797   // Unary Operators.
5798   case lltok::kw_fneg: {
5799     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5800     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
5801     if (Res != 0)
5802       return Res;
5803     if (FMF.any())
5804       Inst->setFastMathFlags(FMF);
5805     return false;
5806   }
5807   // Binary Operators.
5808   case lltok::kw_add:
5809   case lltok::kw_sub:
5810   case lltok::kw_mul:
5811   case lltok::kw_shl: {
5812     bool NUW = EatIfPresent(lltok::kw_nuw);
5813     bool NSW = EatIfPresent(lltok::kw_nsw);
5814     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5815 
5816     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5817 
5818     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5819     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5820     return false;
5821   }
5822   case lltok::kw_fadd:
5823   case lltok::kw_fsub:
5824   case lltok::kw_fmul:
5825   case lltok::kw_fdiv:
5826   case lltok::kw_frem: {
5827     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5828     int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
5829     if (Res != 0)
5830       return Res;
5831     if (FMF.any())
5832       Inst->setFastMathFlags(FMF);
5833     return 0;
5834   }
5835 
5836   case lltok::kw_sdiv:
5837   case lltok::kw_udiv:
5838   case lltok::kw_lshr:
5839   case lltok::kw_ashr: {
5840     bool Exact = EatIfPresent(lltok::kw_exact);
5841 
5842     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5843     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5844     return false;
5845   }
5846 
5847   case lltok::kw_urem:
5848   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal,
5849                                                 /*IsFP*/false);
5850   case lltok::kw_and:
5851   case lltok::kw_or:
5852   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5853   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5854   case lltok::kw_fcmp: {
5855     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5856     int Res = ParseCompare(Inst, PFS, KeywordVal);
5857     if (Res != 0)
5858       return Res;
5859     if (FMF.any())
5860       Inst->setFastMathFlags(FMF);
5861     return 0;
5862   }
5863 
5864   // Casts.
5865   case lltok::kw_trunc:
5866   case lltok::kw_zext:
5867   case lltok::kw_sext:
5868   case lltok::kw_fptrunc:
5869   case lltok::kw_fpext:
5870   case lltok::kw_bitcast:
5871   case lltok::kw_addrspacecast:
5872   case lltok::kw_uitofp:
5873   case lltok::kw_sitofp:
5874   case lltok::kw_fptoui:
5875   case lltok::kw_fptosi:
5876   case lltok::kw_inttoptr:
5877   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5878   // Other.
5879   case lltok::kw_select: {
5880     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5881     int Res = ParseSelect(Inst, PFS);
5882     if (Res != 0)
5883       return Res;
5884     if (FMF.any()) {
5885       if (!isa<FPMathOperator>(Inst))
5886         return Error(Loc, "fast-math-flags specified for select without "
5887                           "floating-point scalar or vector return type");
5888       Inst->setFastMathFlags(FMF);
5889     }
5890     return 0;
5891   }
5892   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5893   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5894   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5895   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5896   case lltok::kw_phi: {
5897     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5898     int Res = ParsePHI(Inst, PFS);
5899     if (Res != 0)
5900       return Res;
5901     if (FMF.any()) {
5902       if (!isa<FPMathOperator>(Inst))
5903         return Error(Loc, "fast-math-flags specified for phi without "
5904                           "floating-point scalar or vector return type");
5905       Inst->setFastMathFlags(FMF);
5906     }
5907     return 0;
5908   }
5909   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5910   case lltok::kw_freeze:         return ParseFreeze(Inst, PFS);
5911   // Call.
5912   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5913   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5914   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5915   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5916   // Memory.
5917   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5918   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5919   case lltok::kw_store:          return ParseStore(Inst, PFS);
5920   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5921   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5922   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5923   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5924   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5925   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5926   }
5927 }
5928 
5929 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5930 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5931   if (Opc == Instruction::FCmp) {
5932     switch (Lex.getKind()) {
5933     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5934     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5935     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5936     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5937     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5938     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5939     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5940     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5941     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5942     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5943     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5944     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5945     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5946     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5947     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5948     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5949     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5950     }
5951   } else {
5952     switch (Lex.getKind()) {
5953     default: return TokError("expected icmp predicate (e.g. 'eq')");
5954     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5955     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5956     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5957     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5958     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5959     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5960     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5961     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5962     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5963     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5964     }
5965   }
5966   Lex.Lex();
5967   return false;
5968 }
5969 
5970 //===----------------------------------------------------------------------===//
5971 // Terminator Instructions.
5972 //===----------------------------------------------------------------------===//
5973 
5974 /// ParseRet - Parse a return instruction.
5975 ///   ::= 'ret' void (',' !dbg, !1)*
5976 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5977 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5978                         PerFunctionState &PFS) {
5979   SMLoc TypeLoc = Lex.getLoc();
5980   Type *Ty = nullptr;
5981   if (ParseType(Ty, true /*void allowed*/)) return true;
5982 
5983   Type *ResType = PFS.getFunction().getReturnType();
5984 
5985   if (Ty->isVoidTy()) {
5986     if (!ResType->isVoidTy())
5987       return Error(TypeLoc, "value doesn't match function result type '" +
5988                    getTypeString(ResType) + "'");
5989 
5990     Inst = ReturnInst::Create(Context);
5991     return false;
5992   }
5993 
5994   Value *RV;
5995   if (ParseValue(Ty, RV, PFS)) return true;
5996 
5997   if (ResType != RV->getType())
5998     return Error(TypeLoc, "value doesn't match function result type '" +
5999                  getTypeString(ResType) + "'");
6000 
6001   Inst = ReturnInst::Create(Context, RV);
6002   return false;
6003 }
6004 
6005 /// ParseBr
6006 ///   ::= 'br' TypeAndValue
6007 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6008 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
6009   LocTy Loc, Loc2;
6010   Value *Op0;
6011   BasicBlock *Op1, *Op2;
6012   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
6013 
6014   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6015     Inst = BranchInst::Create(BB);
6016     return false;
6017   }
6018 
6019   if (Op0->getType() != Type::getInt1Ty(Context))
6020     return Error(Loc, "branch condition must have 'i1' type");
6021 
6022   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
6023       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
6024       ParseToken(lltok::comma, "expected ',' after true destination") ||
6025       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
6026     return true;
6027 
6028   Inst = BranchInst::Create(Op1, Op2, Op0);
6029   return false;
6030 }
6031 
6032 /// ParseSwitch
6033 ///  Instruction
6034 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6035 ///  JumpTable
6036 ///    ::= (TypeAndValue ',' TypeAndValue)*
6037 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6038   LocTy CondLoc, BBLoc;
6039   Value *Cond;
6040   BasicBlock *DefaultBB;
6041   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
6042       ParseToken(lltok::comma, "expected ',' after switch condition") ||
6043       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6044       ParseToken(lltok::lsquare, "expected '[' with switch table"))
6045     return true;
6046 
6047   if (!Cond->getType()->isIntegerTy())
6048     return Error(CondLoc, "switch condition must have integer type");
6049 
6050   // Parse the jump table pairs.
6051   SmallPtrSet<Value*, 32> SeenCases;
6052   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6053   while (Lex.getKind() != lltok::rsquare) {
6054     Value *Constant;
6055     BasicBlock *DestBB;
6056 
6057     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
6058         ParseToken(lltok::comma, "expected ',' after case value") ||
6059         ParseTypeAndBasicBlock(DestBB, PFS))
6060       return true;
6061 
6062     if (!SeenCases.insert(Constant).second)
6063       return Error(CondLoc, "duplicate case value in switch");
6064     if (!isa<ConstantInt>(Constant))
6065       return Error(CondLoc, "case value is not a constant integer");
6066 
6067     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6068   }
6069 
6070   Lex.Lex();  // Eat the ']'.
6071 
6072   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6073   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6074     SI->addCase(Table[i].first, Table[i].second);
6075   Inst = SI;
6076   return false;
6077 }
6078 
6079 /// ParseIndirectBr
6080 ///  Instruction
6081 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6082 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6083   LocTy AddrLoc;
6084   Value *Address;
6085   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
6086       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
6087       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
6088     return true;
6089 
6090   if (!Address->getType()->isPointerTy())
6091     return Error(AddrLoc, "indirectbr address must have pointer type");
6092 
6093   // Parse the destination list.
6094   SmallVector<BasicBlock*, 16> DestList;
6095 
6096   if (Lex.getKind() != lltok::rsquare) {
6097     BasicBlock *DestBB;
6098     if (ParseTypeAndBasicBlock(DestBB, PFS))
6099       return true;
6100     DestList.push_back(DestBB);
6101 
6102     while (EatIfPresent(lltok::comma)) {
6103       if (ParseTypeAndBasicBlock(DestBB, PFS))
6104         return true;
6105       DestList.push_back(DestBB);
6106     }
6107   }
6108 
6109   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6110     return true;
6111 
6112   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6113   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6114     IBI->addDestination(DestList[i]);
6115   Inst = IBI;
6116   return false;
6117 }
6118 
6119 /// ParseInvoke
6120 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6121 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6122 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6123   LocTy CallLoc = Lex.getLoc();
6124   AttrBuilder RetAttrs, FnAttrs;
6125   std::vector<unsigned> FwdRefAttrGrps;
6126   LocTy NoBuiltinLoc;
6127   unsigned CC;
6128   unsigned InvokeAddrSpace;
6129   Type *RetType = nullptr;
6130   LocTy RetTypeLoc;
6131   ValID CalleeID;
6132   SmallVector<ParamInfo, 16> ArgList;
6133   SmallVector<OperandBundleDef, 2> BundleList;
6134 
6135   BasicBlock *NormalBB, *UnwindBB;
6136   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6137       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6138       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6139       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6140       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6141                                  NoBuiltinLoc) ||
6142       ParseOptionalOperandBundles(BundleList, PFS) ||
6143       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
6144       ParseTypeAndBasicBlock(NormalBB, PFS) ||
6145       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6146       ParseTypeAndBasicBlock(UnwindBB, PFS))
6147     return true;
6148 
6149   // If RetType is a non-function pointer type, then this is the short syntax
6150   // for the call, which means that RetType is just the return type.  Infer the
6151   // rest of the function argument types from the arguments that are present.
6152   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6153   if (!Ty) {
6154     // Pull out the types of all of the arguments...
6155     std::vector<Type*> ParamTypes;
6156     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6157       ParamTypes.push_back(ArgList[i].V->getType());
6158 
6159     if (!FunctionType::isValidReturnType(RetType))
6160       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6161 
6162     Ty = FunctionType::get(RetType, ParamTypes, false);
6163   }
6164 
6165   CalleeID.FTy = Ty;
6166 
6167   // Look up the callee.
6168   Value *Callee;
6169   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6170                           Callee, &PFS, /*IsCall=*/true))
6171     return true;
6172 
6173   // Set up the Attribute for the function.
6174   SmallVector<Value *, 8> Args;
6175   SmallVector<AttributeSet, 8> ArgAttrs;
6176 
6177   // Loop through FunctionType's arguments and ensure they are specified
6178   // correctly.  Also, gather any parameter attributes.
6179   FunctionType::param_iterator I = Ty->param_begin();
6180   FunctionType::param_iterator E = Ty->param_end();
6181   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6182     Type *ExpectedTy = nullptr;
6183     if (I != E) {
6184       ExpectedTy = *I++;
6185     } else if (!Ty->isVarArg()) {
6186       return Error(ArgList[i].Loc, "too many arguments specified");
6187     }
6188 
6189     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6190       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6191                    getTypeString(ExpectedTy) + "'");
6192     Args.push_back(ArgList[i].V);
6193     ArgAttrs.push_back(ArgList[i].Attrs);
6194   }
6195 
6196   if (I != E)
6197     return Error(CallLoc, "not enough parameters specified for call");
6198 
6199   if (FnAttrs.hasAlignmentAttr())
6200     return Error(CallLoc, "invoke instructions may not have an alignment");
6201 
6202   // Finish off the Attribute and check them
6203   AttributeList PAL =
6204       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6205                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6206 
6207   InvokeInst *II =
6208       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6209   II->setCallingConv(CC);
6210   II->setAttributes(PAL);
6211   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6212   Inst = II;
6213   return false;
6214 }
6215 
6216 /// ParseResume
6217 ///   ::= 'resume' TypeAndValue
6218 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6219   Value *Exn; LocTy ExnLoc;
6220   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6221     return true;
6222 
6223   ResumeInst *RI = ResumeInst::Create(Exn);
6224   Inst = RI;
6225   return false;
6226 }
6227 
6228 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6229                                   PerFunctionState &PFS) {
6230   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6231     return true;
6232 
6233   while (Lex.getKind() != lltok::rsquare) {
6234     // If this isn't the first argument, we need a comma.
6235     if (!Args.empty() &&
6236         ParseToken(lltok::comma, "expected ',' in argument list"))
6237       return true;
6238 
6239     // Parse the argument.
6240     LocTy ArgLoc;
6241     Type *ArgTy = nullptr;
6242     if (ParseType(ArgTy, ArgLoc))
6243       return true;
6244 
6245     Value *V;
6246     if (ArgTy->isMetadataTy()) {
6247       if (ParseMetadataAsValue(V, PFS))
6248         return true;
6249     } else {
6250       if (ParseValue(ArgTy, V, PFS))
6251         return true;
6252     }
6253     Args.push_back(V);
6254   }
6255 
6256   Lex.Lex();  // Lex the ']'.
6257   return false;
6258 }
6259 
6260 /// ParseCleanupRet
6261 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6262 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6263   Value *CleanupPad = nullptr;
6264 
6265   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6266     return true;
6267 
6268   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6269     return true;
6270 
6271   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6272     return true;
6273 
6274   BasicBlock *UnwindBB = nullptr;
6275   if (Lex.getKind() == lltok::kw_to) {
6276     Lex.Lex();
6277     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6278       return true;
6279   } else {
6280     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6281       return true;
6282     }
6283   }
6284 
6285   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6286   return false;
6287 }
6288 
6289 /// ParseCatchRet
6290 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6291 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6292   Value *CatchPad = nullptr;
6293 
6294   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6295     return true;
6296 
6297   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6298     return true;
6299 
6300   BasicBlock *BB;
6301   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6302       ParseTypeAndBasicBlock(BB, PFS))
6303       return true;
6304 
6305   Inst = CatchReturnInst::Create(CatchPad, BB);
6306   return false;
6307 }
6308 
6309 /// ParseCatchSwitch
6310 ///   ::= 'catchswitch' within Parent
6311 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6312   Value *ParentPad;
6313 
6314   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6315     return true;
6316 
6317   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6318       Lex.getKind() != lltok::LocalVarID)
6319     return TokError("expected scope value for catchswitch");
6320 
6321   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6322     return true;
6323 
6324   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6325     return true;
6326 
6327   SmallVector<BasicBlock *, 32> Table;
6328   do {
6329     BasicBlock *DestBB;
6330     if (ParseTypeAndBasicBlock(DestBB, PFS))
6331       return true;
6332     Table.push_back(DestBB);
6333   } while (EatIfPresent(lltok::comma));
6334 
6335   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6336     return true;
6337 
6338   if (ParseToken(lltok::kw_unwind,
6339                  "expected 'unwind' after catchswitch scope"))
6340     return true;
6341 
6342   BasicBlock *UnwindBB = nullptr;
6343   if (EatIfPresent(lltok::kw_to)) {
6344     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6345       return true;
6346   } else {
6347     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6348       return true;
6349   }
6350 
6351   auto *CatchSwitch =
6352       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6353   for (BasicBlock *DestBB : Table)
6354     CatchSwitch->addHandler(DestBB);
6355   Inst = CatchSwitch;
6356   return false;
6357 }
6358 
6359 /// ParseCatchPad
6360 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6361 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6362   Value *CatchSwitch = nullptr;
6363 
6364   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6365     return true;
6366 
6367   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6368     return TokError("expected scope value for catchpad");
6369 
6370   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6371     return true;
6372 
6373   SmallVector<Value *, 8> Args;
6374   if (ParseExceptionArgs(Args, PFS))
6375     return true;
6376 
6377   Inst = CatchPadInst::Create(CatchSwitch, Args);
6378   return false;
6379 }
6380 
6381 /// ParseCleanupPad
6382 ///   ::= 'cleanuppad' within Parent ParamList
6383 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6384   Value *ParentPad = nullptr;
6385 
6386   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6387     return true;
6388 
6389   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6390       Lex.getKind() != lltok::LocalVarID)
6391     return TokError("expected scope value for cleanuppad");
6392 
6393   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6394     return true;
6395 
6396   SmallVector<Value *, 8> Args;
6397   if (ParseExceptionArgs(Args, PFS))
6398     return true;
6399 
6400   Inst = CleanupPadInst::Create(ParentPad, Args);
6401   return false;
6402 }
6403 
6404 //===----------------------------------------------------------------------===//
6405 // Unary Operators.
6406 //===----------------------------------------------------------------------===//
6407 
6408 /// ParseUnaryOp
6409 ///  ::= UnaryOp TypeAndValue ',' Value
6410 ///
6411 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6412 /// operand is allowed.
6413 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6414                             unsigned Opc, bool IsFP) {
6415   LocTy Loc; Value *LHS;
6416   if (ParseTypeAndValue(LHS, Loc, PFS))
6417     return true;
6418 
6419   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6420                     : LHS->getType()->isIntOrIntVectorTy();
6421 
6422   if (!Valid)
6423     return Error(Loc, "invalid operand type for instruction");
6424 
6425   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6426   return false;
6427 }
6428 
6429 /// ParseCallBr
6430 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6431 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6432 ///       '[' LabelList ']'
6433 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6434   LocTy CallLoc = Lex.getLoc();
6435   AttrBuilder RetAttrs, FnAttrs;
6436   std::vector<unsigned> FwdRefAttrGrps;
6437   LocTy NoBuiltinLoc;
6438   unsigned CC;
6439   Type *RetType = nullptr;
6440   LocTy RetTypeLoc;
6441   ValID CalleeID;
6442   SmallVector<ParamInfo, 16> ArgList;
6443   SmallVector<OperandBundleDef, 2> BundleList;
6444 
6445   BasicBlock *DefaultDest;
6446   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6447       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6448       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6449       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6450                                  NoBuiltinLoc) ||
6451       ParseOptionalOperandBundles(BundleList, PFS) ||
6452       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6453       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6454       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6455     return true;
6456 
6457   // Parse the destination list.
6458   SmallVector<BasicBlock *, 16> IndirectDests;
6459 
6460   if (Lex.getKind() != lltok::rsquare) {
6461     BasicBlock *DestBB;
6462     if (ParseTypeAndBasicBlock(DestBB, PFS))
6463       return true;
6464     IndirectDests.push_back(DestBB);
6465 
6466     while (EatIfPresent(lltok::comma)) {
6467       if (ParseTypeAndBasicBlock(DestBB, PFS))
6468         return true;
6469       IndirectDests.push_back(DestBB);
6470     }
6471   }
6472 
6473   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6474     return true;
6475 
6476   // If RetType is a non-function pointer type, then this is the short syntax
6477   // for the call, which means that RetType is just the return type.  Infer the
6478   // rest of the function argument types from the arguments that are present.
6479   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6480   if (!Ty) {
6481     // Pull out the types of all of the arguments...
6482     std::vector<Type *> ParamTypes;
6483     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6484       ParamTypes.push_back(ArgList[i].V->getType());
6485 
6486     if (!FunctionType::isValidReturnType(RetType))
6487       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6488 
6489     Ty = FunctionType::get(RetType, ParamTypes, false);
6490   }
6491 
6492   CalleeID.FTy = Ty;
6493 
6494   // Look up the callee.
6495   Value *Callee;
6496   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6497                           /*IsCall=*/true))
6498     return true;
6499 
6500   // Set up the Attribute for the function.
6501   SmallVector<Value *, 8> Args;
6502   SmallVector<AttributeSet, 8> ArgAttrs;
6503 
6504   // Loop through FunctionType's arguments and ensure they are specified
6505   // correctly.  Also, gather any parameter attributes.
6506   FunctionType::param_iterator I = Ty->param_begin();
6507   FunctionType::param_iterator E = Ty->param_end();
6508   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6509     Type *ExpectedTy = nullptr;
6510     if (I != E) {
6511       ExpectedTy = *I++;
6512     } else if (!Ty->isVarArg()) {
6513       return Error(ArgList[i].Loc, "too many arguments specified");
6514     }
6515 
6516     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6517       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6518                                        getTypeString(ExpectedTy) + "'");
6519     Args.push_back(ArgList[i].V);
6520     ArgAttrs.push_back(ArgList[i].Attrs);
6521   }
6522 
6523   if (I != E)
6524     return Error(CallLoc, "not enough parameters specified for call");
6525 
6526   if (FnAttrs.hasAlignmentAttr())
6527     return Error(CallLoc, "callbr instructions may not have an alignment");
6528 
6529   // Finish off the Attribute and check them
6530   AttributeList PAL =
6531       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6532                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6533 
6534   CallBrInst *CBI =
6535       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6536                          BundleList);
6537   CBI->setCallingConv(CC);
6538   CBI->setAttributes(PAL);
6539   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6540   Inst = CBI;
6541   return false;
6542 }
6543 
6544 //===----------------------------------------------------------------------===//
6545 // Binary Operators.
6546 //===----------------------------------------------------------------------===//
6547 
6548 /// ParseArithmetic
6549 ///  ::= ArithmeticOps TypeAndValue ',' Value
6550 ///
6551 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6552 /// operand is allowed.
6553 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6554                                unsigned Opc, bool IsFP) {
6555   LocTy Loc; Value *LHS, *RHS;
6556   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6557       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6558       ParseValue(LHS->getType(), RHS, PFS))
6559     return true;
6560 
6561   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6562                     : LHS->getType()->isIntOrIntVectorTy();
6563 
6564   if (!Valid)
6565     return Error(Loc, "invalid operand type for instruction");
6566 
6567   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6568   return false;
6569 }
6570 
6571 /// ParseLogical
6572 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6573 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6574                             unsigned Opc) {
6575   LocTy Loc; Value *LHS, *RHS;
6576   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6577       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6578       ParseValue(LHS->getType(), RHS, PFS))
6579     return true;
6580 
6581   if (!LHS->getType()->isIntOrIntVectorTy())
6582     return Error(Loc,"instruction requires integer or integer vector operands");
6583 
6584   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6585   return false;
6586 }
6587 
6588 /// ParseCompare
6589 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6590 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6591 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6592                             unsigned Opc) {
6593   // Parse the integer/fp comparison predicate.
6594   LocTy Loc;
6595   unsigned Pred;
6596   Value *LHS, *RHS;
6597   if (ParseCmpPredicate(Pred, Opc) ||
6598       ParseTypeAndValue(LHS, Loc, PFS) ||
6599       ParseToken(lltok::comma, "expected ',' after compare value") ||
6600       ParseValue(LHS->getType(), RHS, PFS))
6601     return true;
6602 
6603   if (Opc == Instruction::FCmp) {
6604     if (!LHS->getType()->isFPOrFPVectorTy())
6605       return Error(Loc, "fcmp requires floating point operands");
6606     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6607   } else {
6608     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6609     if (!LHS->getType()->isIntOrIntVectorTy() &&
6610         !LHS->getType()->isPtrOrPtrVectorTy())
6611       return Error(Loc, "icmp requires integer operands");
6612     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6613   }
6614   return false;
6615 }
6616 
6617 //===----------------------------------------------------------------------===//
6618 // Other Instructions.
6619 //===----------------------------------------------------------------------===//
6620 
6621 
6622 /// ParseCast
6623 ///   ::= CastOpc TypeAndValue 'to' Type
6624 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6625                          unsigned Opc) {
6626   LocTy Loc;
6627   Value *Op;
6628   Type *DestTy = nullptr;
6629   if (ParseTypeAndValue(Op, Loc, PFS) ||
6630       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6631       ParseType(DestTy))
6632     return true;
6633 
6634   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6635     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6636     return Error(Loc, "invalid cast opcode for cast from '" +
6637                  getTypeString(Op->getType()) + "' to '" +
6638                  getTypeString(DestTy) + "'");
6639   }
6640   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6641   return false;
6642 }
6643 
6644 /// ParseSelect
6645 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6646 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6647   LocTy Loc;
6648   Value *Op0, *Op1, *Op2;
6649   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6650       ParseToken(lltok::comma, "expected ',' after select condition") ||
6651       ParseTypeAndValue(Op1, PFS) ||
6652       ParseToken(lltok::comma, "expected ',' after select value") ||
6653       ParseTypeAndValue(Op2, PFS))
6654     return true;
6655 
6656   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6657     return Error(Loc, Reason);
6658 
6659   Inst = SelectInst::Create(Op0, Op1, Op2);
6660   return false;
6661 }
6662 
6663 /// ParseVA_Arg
6664 ///   ::= 'va_arg' TypeAndValue ',' Type
6665 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6666   Value *Op;
6667   Type *EltTy = nullptr;
6668   LocTy TypeLoc;
6669   if (ParseTypeAndValue(Op, PFS) ||
6670       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6671       ParseType(EltTy, TypeLoc))
6672     return true;
6673 
6674   if (!EltTy->isFirstClassType())
6675     return Error(TypeLoc, "va_arg requires operand with first class type");
6676 
6677   Inst = new VAArgInst(Op, EltTy);
6678   return false;
6679 }
6680 
6681 /// ParseExtractElement
6682 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6683 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6684   LocTy Loc;
6685   Value *Op0, *Op1;
6686   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6687       ParseToken(lltok::comma, "expected ',' after extract value") ||
6688       ParseTypeAndValue(Op1, PFS))
6689     return true;
6690 
6691   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6692     return Error(Loc, "invalid extractelement operands");
6693 
6694   Inst = ExtractElementInst::Create(Op0, Op1);
6695   return false;
6696 }
6697 
6698 /// ParseInsertElement
6699 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6700 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6701   LocTy Loc;
6702   Value *Op0, *Op1, *Op2;
6703   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6704       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6705       ParseTypeAndValue(Op1, PFS) ||
6706       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6707       ParseTypeAndValue(Op2, PFS))
6708     return true;
6709 
6710   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6711     return Error(Loc, "invalid insertelement operands");
6712 
6713   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6714   return false;
6715 }
6716 
6717 /// ParseShuffleVector
6718 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6719 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6720   LocTy Loc;
6721   Value *Op0, *Op1, *Op2;
6722   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6723       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6724       ParseTypeAndValue(Op1, PFS) ||
6725       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6726       ParseTypeAndValue(Op2, PFS))
6727     return true;
6728 
6729   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6730     return Error(Loc, "invalid shufflevector operands");
6731 
6732   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6733   return false;
6734 }
6735 
6736 /// ParsePHI
6737 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6738 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6739   Type *Ty = nullptr;  LocTy TypeLoc;
6740   Value *Op0, *Op1;
6741 
6742   if (ParseType(Ty, TypeLoc) ||
6743       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6744       ParseValue(Ty, Op0, PFS) ||
6745       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6746       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6747       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6748     return true;
6749 
6750   bool AteExtraComma = false;
6751   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6752 
6753   while (true) {
6754     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6755 
6756     if (!EatIfPresent(lltok::comma))
6757       break;
6758 
6759     if (Lex.getKind() == lltok::MetadataVar) {
6760       AteExtraComma = true;
6761       break;
6762     }
6763 
6764     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6765         ParseValue(Ty, Op0, PFS) ||
6766         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6767         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6768         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6769       return true;
6770   }
6771 
6772   if (!Ty->isFirstClassType())
6773     return Error(TypeLoc, "phi node must have first class type");
6774 
6775   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6776   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6777     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6778   Inst = PN;
6779   return AteExtraComma ? InstExtraComma : InstNormal;
6780 }
6781 
6782 /// ParseLandingPad
6783 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6784 /// Clause
6785 ///   ::= 'catch' TypeAndValue
6786 ///   ::= 'filter'
6787 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6788 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6789   Type *Ty = nullptr; LocTy TyLoc;
6790 
6791   if (ParseType(Ty, TyLoc))
6792     return true;
6793 
6794   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6795   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6796 
6797   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6798     LandingPadInst::ClauseType CT;
6799     if (EatIfPresent(lltok::kw_catch))
6800       CT = LandingPadInst::Catch;
6801     else if (EatIfPresent(lltok::kw_filter))
6802       CT = LandingPadInst::Filter;
6803     else
6804       return TokError("expected 'catch' or 'filter' clause type");
6805 
6806     Value *V;
6807     LocTy VLoc;
6808     if (ParseTypeAndValue(V, VLoc, PFS))
6809       return true;
6810 
6811     // A 'catch' type expects a non-array constant. A filter clause expects an
6812     // array constant.
6813     if (CT == LandingPadInst::Catch) {
6814       if (isa<ArrayType>(V->getType()))
6815         Error(VLoc, "'catch' clause has an invalid type");
6816     } else {
6817       if (!isa<ArrayType>(V->getType()))
6818         Error(VLoc, "'filter' clause has an invalid type");
6819     }
6820 
6821     Constant *CV = dyn_cast<Constant>(V);
6822     if (!CV)
6823       return Error(VLoc, "clause argument must be a constant");
6824     LP->addClause(CV);
6825   }
6826 
6827   Inst = LP.release();
6828   return false;
6829 }
6830 
6831 /// ParseFreeze
6832 ///   ::= 'freeze' Type Value
6833 bool LLParser::ParseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
6834   LocTy Loc;
6835   Value *Op;
6836   if (ParseTypeAndValue(Op, Loc, PFS))
6837     return true;
6838 
6839   Inst = new FreezeInst(Op);
6840   return false;
6841 }
6842 
6843 /// ParseCall
6844 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6845 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6846 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6847 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6848 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6849 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6850 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6851 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6852 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6853                          CallInst::TailCallKind TCK) {
6854   AttrBuilder RetAttrs, FnAttrs;
6855   std::vector<unsigned> FwdRefAttrGrps;
6856   LocTy BuiltinLoc;
6857   unsigned CallAddrSpace;
6858   unsigned CC;
6859   Type *RetType = nullptr;
6860   LocTy RetTypeLoc;
6861   ValID CalleeID;
6862   SmallVector<ParamInfo, 16> ArgList;
6863   SmallVector<OperandBundleDef, 2> BundleList;
6864   LocTy CallLoc = Lex.getLoc();
6865 
6866   if (TCK != CallInst::TCK_None &&
6867       ParseToken(lltok::kw_call,
6868                  "expected 'tail call', 'musttail call', or 'notail call'"))
6869     return true;
6870 
6871   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6872 
6873   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6874       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6875       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6876       ParseValID(CalleeID) ||
6877       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6878                          PFS.getFunction().isVarArg()) ||
6879       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6880       ParseOptionalOperandBundles(BundleList, PFS))
6881     return true;
6882 
6883   // If RetType is a non-function pointer type, then this is the short syntax
6884   // for the call, which means that RetType is just the return type.  Infer the
6885   // rest of the function argument types from the arguments that are present.
6886   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6887   if (!Ty) {
6888     // Pull out the types of all of the arguments...
6889     std::vector<Type*> ParamTypes;
6890     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6891       ParamTypes.push_back(ArgList[i].V->getType());
6892 
6893     if (!FunctionType::isValidReturnType(RetType))
6894       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6895 
6896     Ty = FunctionType::get(RetType, ParamTypes, false);
6897   }
6898 
6899   CalleeID.FTy = Ty;
6900 
6901   // Look up the callee.
6902   Value *Callee;
6903   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6904                           &PFS, /*IsCall=*/true))
6905     return true;
6906 
6907   // Set up the Attribute for the function.
6908   SmallVector<AttributeSet, 8> Attrs;
6909 
6910   SmallVector<Value*, 8> Args;
6911 
6912   // Loop through FunctionType's arguments and ensure they are specified
6913   // correctly.  Also, gather any parameter attributes.
6914   FunctionType::param_iterator I = Ty->param_begin();
6915   FunctionType::param_iterator E = Ty->param_end();
6916   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6917     Type *ExpectedTy = nullptr;
6918     if (I != E) {
6919       ExpectedTy = *I++;
6920     } else if (!Ty->isVarArg()) {
6921       return Error(ArgList[i].Loc, "too many arguments specified");
6922     }
6923 
6924     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6925       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6926                    getTypeString(ExpectedTy) + "'");
6927     Args.push_back(ArgList[i].V);
6928     Attrs.push_back(ArgList[i].Attrs);
6929   }
6930 
6931   if (I != E)
6932     return Error(CallLoc, "not enough parameters specified for call");
6933 
6934   if (FnAttrs.hasAlignmentAttr())
6935     return Error(CallLoc, "call instructions may not have an alignment");
6936 
6937   // Finish off the Attribute and check them
6938   AttributeList PAL =
6939       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6940                          AttributeSet::get(Context, RetAttrs), Attrs);
6941 
6942   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6943   CI->setTailCallKind(TCK);
6944   CI->setCallingConv(CC);
6945   if (FMF.any()) {
6946     if (!isa<FPMathOperator>(CI))
6947       return Error(CallLoc, "fast-math-flags specified for call without "
6948                    "floating-point scalar or vector return type");
6949     CI->setFastMathFlags(FMF);
6950   }
6951   CI->setAttributes(PAL);
6952   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6953   Inst = CI;
6954   return false;
6955 }
6956 
6957 //===----------------------------------------------------------------------===//
6958 // Memory Instructions.
6959 //===----------------------------------------------------------------------===//
6960 
6961 /// ParseAlloc
6962 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6963 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6964 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6965   Value *Size = nullptr;
6966   LocTy SizeLoc, TyLoc, ASLoc;
6967   MaybeAlign Alignment;
6968   unsigned AddrSpace = 0;
6969   Type *Ty = nullptr;
6970 
6971   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6972   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6973 
6974   if (ParseType(Ty, TyLoc)) return true;
6975 
6976   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6977     return Error(TyLoc, "invalid type for alloca");
6978 
6979   bool AteExtraComma = false;
6980   if (EatIfPresent(lltok::comma)) {
6981     if (Lex.getKind() == lltok::kw_align) {
6982       if (ParseOptionalAlignment(Alignment))
6983         return true;
6984       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6985         return true;
6986     } else if (Lex.getKind() == lltok::kw_addrspace) {
6987       ASLoc = Lex.getLoc();
6988       if (ParseOptionalAddrSpace(AddrSpace))
6989         return true;
6990     } else if (Lex.getKind() == lltok::MetadataVar) {
6991       AteExtraComma = true;
6992     } else {
6993       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6994         return true;
6995       if (EatIfPresent(lltok::comma)) {
6996         if (Lex.getKind() == lltok::kw_align) {
6997           if (ParseOptionalAlignment(Alignment))
6998             return true;
6999           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7000             return true;
7001         } else if (Lex.getKind() == lltok::kw_addrspace) {
7002           ASLoc = Lex.getLoc();
7003           if (ParseOptionalAddrSpace(AddrSpace))
7004             return true;
7005         } else if (Lex.getKind() == lltok::MetadataVar) {
7006           AteExtraComma = true;
7007         }
7008       }
7009     }
7010   }
7011 
7012   if (Size && !Size->getType()->isIntegerTy())
7013     return Error(SizeLoc, "element count must have integer type");
7014 
7015   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
7016   AI->setUsedWithInAlloca(IsInAlloca);
7017   AI->setSwiftError(IsSwiftError);
7018   Inst = AI;
7019   return AteExtraComma ? InstExtraComma : InstNormal;
7020 }
7021 
7022 /// ParseLoad
7023 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7024 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7025 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7026 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7027   Value *Val; LocTy Loc;
7028   MaybeAlign Alignment;
7029   bool AteExtraComma = false;
7030   bool isAtomic = false;
7031   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7032   SyncScope::ID SSID = SyncScope::System;
7033 
7034   if (Lex.getKind() == lltok::kw_atomic) {
7035     isAtomic = true;
7036     Lex.Lex();
7037   }
7038 
7039   bool isVolatile = false;
7040   if (Lex.getKind() == lltok::kw_volatile) {
7041     isVolatile = true;
7042     Lex.Lex();
7043   }
7044 
7045   Type *Ty;
7046   LocTy ExplicitTypeLoc = Lex.getLoc();
7047   if (ParseType(Ty) ||
7048       ParseToken(lltok::comma, "expected comma after load's type") ||
7049       ParseTypeAndValue(Val, Loc, PFS) ||
7050       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7051       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7052     return true;
7053 
7054   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7055     return Error(Loc, "load operand must be a pointer to a first class type");
7056   if (isAtomic && !Alignment)
7057     return Error(Loc, "atomic load must have explicit non-zero alignment");
7058   if (Ordering == AtomicOrdering::Release ||
7059       Ordering == AtomicOrdering::AcquireRelease)
7060     return Error(Loc, "atomic load cannot use Release ordering");
7061 
7062   if (Ty != cast<PointerType>(Val->getType())->getElementType())
7063     return Error(ExplicitTypeLoc,
7064                  "explicit pointee type doesn't match operand's pointee type");
7065   if (!Alignment && !Ty->isSized())
7066     return Error(ExplicitTypeLoc, "loading unsized types is not allowed");
7067   if (!Alignment)
7068     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7069   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7070   return AteExtraComma ? InstExtraComma : InstNormal;
7071 }
7072 
7073 /// ParseStore
7074 
7075 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7076 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7077 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7078 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
7079   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7080   MaybeAlign Alignment;
7081   bool AteExtraComma = false;
7082   bool isAtomic = false;
7083   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7084   SyncScope::ID SSID = SyncScope::System;
7085 
7086   if (Lex.getKind() == lltok::kw_atomic) {
7087     isAtomic = true;
7088     Lex.Lex();
7089   }
7090 
7091   bool isVolatile = false;
7092   if (Lex.getKind() == lltok::kw_volatile) {
7093     isVolatile = true;
7094     Lex.Lex();
7095   }
7096 
7097   if (ParseTypeAndValue(Val, Loc, PFS) ||
7098       ParseToken(lltok::comma, "expected ',' after store operand") ||
7099       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7100       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7101       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7102     return true;
7103 
7104   if (!Ptr->getType()->isPointerTy())
7105     return Error(PtrLoc, "store operand must be a pointer");
7106   if (!Val->getType()->isFirstClassType())
7107     return Error(Loc, "store operand must be a first class value");
7108   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7109     return Error(Loc, "stored value and pointer type do not match");
7110   if (isAtomic && !Alignment)
7111     return Error(Loc, "atomic store must have explicit non-zero alignment");
7112   if (Ordering == AtomicOrdering::Acquire ||
7113       Ordering == AtomicOrdering::AcquireRelease)
7114     return Error(Loc, "atomic store cannot use Acquire ordering");
7115   if (!Alignment && !Val->getType()->isSized())
7116     return Error(Loc, "storing unsized types is not allowed");
7117   if (!Alignment)
7118     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7119 
7120   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7121   return AteExtraComma ? InstExtraComma : InstNormal;
7122 }
7123 
7124 /// ParseCmpXchg
7125 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7126 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
7127 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7128   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7129   bool AteExtraComma = false;
7130   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7131   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7132   SyncScope::ID SSID = SyncScope::System;
7133   bool isVolatile = false;
7134   bool isWeak = false;
7135 
7136   if (EatIfPresent(lltok::kw_weak))
7137     isWeak = true;
7138 
7139   if (EatIfPresent(lltok::kw_volatile))
7140     isVolatile = true;
7141 
7142   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7143       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7144       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
7145       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7146       ParseTypeAndValue(New, NewLoc, PFS) ||
7147       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7148       ParseOrdering(FailureOrdering))
7149     return true;
7150 
7151   if (SuccessOrdering == AtomicOrdering::Unordered ||
7152       FailureOrdering == AtomicOrdering::Unordered)
7153     return TokError("cmpxchg cannot be unordered");
7154   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7155     return TokError("cmpxchg failure argument shall be no stronger than the "
7156                     "success argument");
7157   if (FailureOrdering == AtomicOrdering::Release ||
7158       FailureOrdering == AtomicOrdering::AcquireRelease)
7159     return TokError(
7160         "cmpxchg failure ordering cannot include release semantics");
7161   if (!Ptr->getType()->isPointerTy())
7162     return Error(PtrLoc, "cmpxchg operand must be a pointer");
7163   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7164     return Error(CmpLoc, "compare value and pointer type do not match");
7165   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7166     return Error(NewLoc, "new value and pointer type do not match");
7167   if (!New->getType()->isFirstClassType())
7168     return Error(NewLoc, "cmpxchg operand must be a first class value");
7169   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7170       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
7171   CXI->setVolatile(isVolatile);
7172   CXI->setWeak(isWeak);
7173   Inst = CXI;
7174   return AteExtraComma ? InstExtraComma : InstNormal;
7175 }
7176 
7177 /// ParseAtomicRMW
7178 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7179 ///       'singlethread'? AtomicOrdering
7180 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7181   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7182   bool AteExtraComma = false;
7183   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7184   SyncScope::ID SSID = SyncScope::System;
7185   bool isVolatile = false;
7186   bool IsFP = false;
7187   AtomicRMWInst::BinOp Operation;
7188 
7189   if (EatIfPresent(lltok::kw_volatile))
7190     isVolatile = true;
7191 
7192   switch (Lex.getKind()) {
7193   default: return TokError("expected binary operation in atomicrmw");
7194   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7195   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7196   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7197   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7198   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7199   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7200   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7201   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7202   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7203   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7204   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7205   case lltok::kw_fadd:
7206     Operation = AtomicRMWInst::FAdd;
7207     IsFP = true;
7208     break;
7209   case lltok::kw_fsub:
7210     Operation = AtomicRMWInst::FSub;
7211     IsFP = true;
7212     break;
7213   }
7214   Lex.Lex();  // Eat the operation.
7215 
7216   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7217       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7218       ParseTypeAndValue(Val, ValLoc, PFS) ||
7219       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7220     return true;
7221 
7222   if (Ordering == AtomicOrdering::Unordered)
7223     return TokError("atomicrmw cannot be unordered");
7224   if (!Ptr->getType()->isPointerTy())
7225     return Error(PtrLoc, "atomicrmw operand must be a pointer");
7226   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7227     return Error(ValLoc, "atomicrmw value and pointer type do not match");
7228 
7229   if (Operation == AtomicRMWInst::Xchg) {
7230     if (!Val->getType()->isIntegerTy() &&
7231         !Val->getType()->isFloatingPointTy()) {
7232       return Error(ValLoc, "atomicrmw " +
7233                    AtomicRMWInst::getOperationName(Operation) +
7234                    " operand must be an integer or floating point type");
7235     }
7236   } else if (IsFP) {
7237     if (!Val->getType()->isFloatingPointTy()) {
7238       return Error(ValLoc, "atomicrmw " +
7239                    AtomicRMWInst::getOperationName(Operation) +
7240                    " operand must be a floating point type");
7241     }
7242   } else {
7243     if (!Val->getType()->isIntegerTy()) {
7244       return Error(ValLoc, "atomicrmw " +
7245                    AtomicRMWInst::getOperationName(Operation) +
7246                    " operand must be an integer");
7247     }
7248   }
7249 
7250   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7251   if (Size < 8 || (Size & (Size - 1)))
7252     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7253                          " integer");
7254 
7255   AtomicRMWInst *RMWI =
7256     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7257   RMWI->setVolatile(isVolatile);
7258   Inst = RMWI;
7259   return AteExtraComma ? InstExtraComma : InstNormal;
7260 }
7261 
7262 /// ParseFence
7263 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7264 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7265   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7266   SyncScope::ID SSID = SyncScope::System;
7267   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7268     return true;
7269 
7270   if (Ordering == AtomicOrdering::Unordered)
7271     return TokError("fence cannot be unordered");
7272   if (Ordering == AtomicOrdering::Monotonic)
7273     return TokError("fence cannot be monotonic");
7274 
7275   Inst = new FenceInst(Context, Ordering, SSID);
7276   return InstNormal;
7277 }
7278 
7279 /// ParseGetElementPtr
7280 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7281 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7282   Value *Ptr = nullptr;
7283   Value *Val = nullptr;
7284   LocTy Loc, EltLoc;
7285 
7286   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7287 
7288   Type *Ty = nullptr;
7289   LocTy ExplicitTypeLoc = Lex.getLoc();
7290   if (ParseType(Ty) ||
7291       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7292       ParseTypeAndValue(Ptr, Loc, PFS))
7293     return true;
7294 
7295   Type *BaseType = Ptr->getType();
7296   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7297   if (!BasePointerType)
7298     return Error(Loc, "base of getelementptr must be a pointer");
7299 
7300   if (Ty != BasePointerType->getElementType())
7301     return Error(ExplicitTypeLoc,
7302                  "explicit pointee type doesn't match operand's pointee type");
7303 
7304   SmallVector<Value*, 16> Indices;
7305   bool AteExtraComma = false;
7306   // GEP returns a vector of pointers if at least one of parameters is a vector.
7307   // All vector parameters should have the same vector width.
7308   ElementCount GEPWidth = BaseType->isVectorTy()
7309                               ? cast<VectorType>(BaseType)->getElementCount()
7310                               : ElementCount(0, false);
7311 
7312   while (EatIfPresent(lltok::comma)) {
7313     if (Lex.getKind() == lltok::MetadataVar) {
7314       AteExtraComma = true;
7315       break;
7316     }
7317     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7318     if (!Val->getType()->isIntOrIntVectorTy())
7319       return Error(EltLoc, "getelementptr index must be an integer");
7320 
7321     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7322       ElementCount ValNumEl = ValVTy->getElementCount();
7323       if (GEPWidth != ElementCount(0, false) && GEPWidth != ValNumEl)
7324         return Error(EltLoc,
7325           "getelementptr vector index has a wrong number of elements");
7326       GEPWidth = ValNumEl;
7327     }
7328     Indices.push_back(Val);
7329   }
7330 
7331   SmallPtrSet<Type*, 4> Visited;
7332   if (!Indices.empty() && !Ty->isSized(&Visited))
7333     return Error(Loc, "base element of getelementptr must be sized");
7334 
7335   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7336     return Error(Loc, "invalid getelementptr indices");
7337   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7338   if (InBounds)
7339     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7340   return AteExtraComma ? InstExtraComma : InstNormal;
7341 }
7342 
7343 /// ParseExtractValue
7344 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7345 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7346   Value *Val; LocTy Loc;
7347   SmallVector<unsigned, 4> Indices;
7348   bool AteExtraComma;
7349   if (ParseTypeAndValue(Val, Loc, PFS) ||
7350       ParseIndexList(Indices, AteExtraComma))
7351     return true;
7352 
7353   if (!Val->getType()->isAggregateType())
7354     return Error(Loc, "extractvalue operand must be aggregate type");
7355 
7356   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7357     return Error(Loc, "invalid indices for extractvalue");
7358   Inst = ExtractValueInst::Create(Val, Indices);
7359   return AteExtraComma ? InstExtraComma : InstNormal;
7360 }
7361 
7362 /// ParseInsertValue
7363 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7364 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7365   Value *Val0, *Val1; LocTy Loc0, Loc1;
7366   SmallVector<unsigned, 4> Indices;
7367   bool AteExtraComma;
7368   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7369       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7370       ParseTypeAndValue(Val1, Loc1, PFS) ||
7371       ParseIndexList(Indices, AteExtraComma))
7372     return true;
7373 
7374   if (!Val0->getType()->isAggregateType())
7375     return Error(Loc0, "insertvalue operand must be aggregate type");
7376 
7377   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7378   if (!IndexedType)
7379     return Error(Loc0, "invalid indices for insertvalue");
7380   if (IndexedType != Val1->getType())
7381     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7382                            getTypeString(Val1->getType()) + "' instead of '" +
7383                            getTypeString(IndexedType) + "'");
7384   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7385   return AteExtraComma ? InstExtraComma : InstNormal;
7386 }
7387 
7388 //===----------------------------------------------------------------------===//
7389 // Embedded metadata.
7390 //===----------------------------------------------------------------------===//
7391 
7392 /// ParseMDNodeVector
7393 ///   ::= { Element (',' Element)* }
7394 /// Element
7395 ///   ::= 'null' | TypeAndValue
7396 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7397   if (ParseToken(lltok::lbrace, "expected '{' here"))
7398     return true;
7399 
7400   // Check for an empty list.
7401   if (EatIfPresent(lltok::rbrace))
7402     return false;
7403 
7404   do {
7405     // Null is a special case since it is typeless.
7406     if (EatIfPresent(lltok::kw_null)) {
7407       Elts.push_back(nullptr);
7408       continue;
7409     }
7410 
7411     Metadata *MD;
7412     if (ParseMetadata(MD, nullptr))
7413       return true;
7414     Elts.push_back(MD);
7415   } while (EatIfPresent(lltok::comma));
7416 
7417   return ParseToken(lltok::rbrace, "expected end of metadata node");
7418 }
7419 
7420 //===----------------------------------------------------------------------===//
7421 // Use-list order directives.
7422 //===----------------------------------------------------------------------===//
7423 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7424                                 SMLoc Loc) {
7425   if (V->use_empty())
7426     return Error(Loc, "value has no uses");
7427 
7428   unsigned NumUses = 0;
7429   SmallDenseMap<const Use *, unsigned, 16> Order;
7430   for (const Use &U : V->uses()) {
7431     if (++NumUses > Indexes.size())
7432       break;
7433     Order[&U] = Indexes[NumUses - 1];
7434   }
7435   if (NumUses < 2)
7436     return Error(Loc, "value only has one use");
7437   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7438     return Error(Loc,
7439                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7440 
7441   V->sortUseList([&](const Use &L, const Use &R) {
7442     return Order.lookup(&L) < Order.lookup(&R);
7443   });
7444   return false;
7445 }
7446 
7447 /// ParseUseListOrderIndexes
7448 ///   ::= '{' uint32 (',' uint32)+ '}'
7449 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7450   SMLoc Loc = Lex.getLoc();
7451   if (ParseToken(lltok::lbrace, "expected '{' here"))
7452     return true;
7453   if (Lex.getKind() == lltok::rbrace)
7454     return Lex.Error("expected non-empty list of uselistorder indexes");
7455 
7456   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7457   // indexes should be distinct numbers in the range [0, size-1], and should
7458   // not be in order.
7459   unsigned Offset = 0;
7460   unsigned Max = 0;
7461   bool IsOrdered = true;
7462   assert(Indexes.empty() && "Expected empty order vector");
7463   do {
7464     unsigned Index;
7465     if (ParseUInt32(Index))
7466       return true;
7467 
7468     // Update consistency checks.
7469     Offset += Index - Indexes.size();
7470     Max = std::max(Max, Index);
7471     IsOrdered &= Index == Indexes.size();
7472 
7473     Indexes.push_back(Index);
7474   } while (EatIfPresent(lltok::comma));
7475 
7476   if (ParseToken(lltok::rbrace, "expected '}' here"))
7477     return true;
7478 
7479   if (Indexes.size() < 2)
7480     return Error(Loc, "expected >= 2 uselistorder indexes");
7481   if (Offset != 0 || Max >= Indexes.size())
7482     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7483   if (IsOrdered)
7484     return Error(Loc, "expected uselistorder indexes to change the order");
7485 
7486   return false;
7487 }
7488 
7489 /// ParseUseListOrder
7490 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7491 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7492   SMLoc Loc = Lex.getLoc();
7493   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7494     return true;
7495 
7496   Value *V;
7497   SmallVector<unsigned, 16> Indexes;
7498   if (ParseTypeAndValue(V, PFS) ||
7499       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7500       ParseUseListOrderIndexes(Indexes))
7501     return true;
7502 
7503   return sortUseListOrder(V, Indexes, Loc);
7504 }
7505 
7506 /// ParseUseListOrderBB
7507 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7508 bool LLParser::ParseUseListOrderBB() {
7509   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7510   SMLoc Loc = Lex.getLoc();
7511   Lex.Lex();
7512 
7513   ValID Fn, Label;
7514   SmallVector<unsigned, 16> Indexes;
7515   if (ParseValID(Fn) ||
7516       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7517       ParseValID(Label) ||
7518       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7519       ParseUseListOrderIndexes(Indexes))
7520     return true;
7521 
7522   // Check the function.
7523   GlobalValue *GV;
7524   if (Fn.Kind == ValID::t_GlobalName)
7525     GV = M->getNamedValue(Fn.StrVal);
7526   else if (Fn.Kind == ValID::t_GlobalID)
7527     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7528   else
7529     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7530   if (!GV)
7531     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7532   auto *F = dyn_cast<Function>(GV);
7533   if (!F)
7534     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7535   if (F->isDeclaration())
7536     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7537 
7538   // Check the basic block.
7539   if (Label.Kind == ValID::t_LocalID)
7540     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7541   if (Label.Kind != ValID::t_LocalName)
7542     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7543   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7544   if (!V)
7545     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7546   if (!isa<BasicBlock>(V))
7547     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7548 
7549   return sortUseListOrder(V, Indexes, Loc);
7550 }
7551 
7552 /// ModuleEntry
7553 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7554 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7555 bool LLParser::ParseModuleEntry(unsigned ID) {
7556   assert(Lex.getKind() == lltok::kw_module);
7557   Lex.Lex();
7558 
7559   std::string Path;
7560   if (ParseToken(lltok::colon, "expected ':' here") ||
7561       ParseToken(lltok::lparen, "expected '(' here") ||
7562       ParseToken(lltok::kw_path, "expected 'path' here") ||
7563       ParseToken(lltok::colon, "expected ':' here") ||
7564       ParseStringConstant(Path) ||
7565       ParseToken(lltok::comma, "expected ',' here") ||
7566       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7567       ParseToken(lltok::colon, "expected ':' here") ||
7568       ParseToken(lltok::lparen, "expected '(' here"))
7569     return true;
7570 
7571   ModuleHash Hash;
7572   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7573       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7574       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7575       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7576       ParseUInt32(Hash[4]))
7577     return true;
7578 
7579   if (ParseToken(lltok::rparen, "expected ')' here") ||
7580       ParseToken(lltok::rparen, "expected ')' here"))
7581     return true;
7582 
7583   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7584   ModuleIdMap[ID] = ModuleEntry->first();
7585 
7586   return false;
7587 }
7588 
7589 /// TypeIdEntry
7590 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7591 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7592   assert(Lex.getKind() == lltok::kw_typeid);
7593   Lex.Lex();
7594 
7595   std::string Name;
7596   if (ParseToken(lltok::colon, "expected ':' here") ||
7597       ParseToken(lltok::lparen, "expected '(' here") ||
7598       ParseToken(lltok::kw_name, "expected 'name' here") ||
7599       ParseToken(lltok::colon, "expected ':' here") ||
7600       ParseStringConstant(Name))
7601     return true;
7602 
7603   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7604   if (ParseToken(lltok::comma, "expected ',' here") ||
7605       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7606     return true;
7607 
7608   // Check if this ID was forward referenced, and if so, update the
7609   // corresponding GUIDs.
7610   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7611   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7612     for (auto TIDRef : FwdRefTIDs->second) {
7613       assert(!*TIDRef.first &&
7614              "Forward referenced type id GUID expected to be 0");
7615       *TIDRef.first = GlobalValue::getGUID(Name);
7616     }
7617     ForwardRefTypeIds.erase(FwdRefTIDs);
7618   }
7619 
7620   return false;
7621 }
7622 
7623 /// TypeIdSummary
7624 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7625 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7626   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7627       ParseToken(lltok::colon, "expected ':' here") ||
7628       ParseToken(lltok::lparen, "expected '(' here") ||
7629       ParseTypeTestResolution(TIS.TTRes))
7630     return true;
7631 
7632   if (EatIfPresent(lltok::comma)) {
7633     // Expect optional wpdResolutions field
7634     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7635       return true;
7636   }
7637 
7638   if (ParseToken(lltok::rparen, "expected ')' here"))
7639     return true;
7640 
7641   return false;
7642 }
7643 
7644 static ValueInfo EmptyVI =
7645     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7646 
7647 /// TypeIdCompatibleVtableEntry
7648 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7649 ///   TypeIdCompatibleVtableInfo
7650 ///   ')'
7651 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) {
7652   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7653   Lex.Lex();
7654 
7655   std::string Name;
7656   if (ParseToken(lltok::colon, "expected ':' here") ||
7657       ParseToken(lltok::lparen, "expected '(' here") ||
7658       ParseToken(lltok::kw_name, "expected 'name' here") ||
7659       ParseToken(lltok::colon, "expected ':' here") ||
7660       ParseStringConstant(Name))
7661     return true;
7662 
7663   TypeIdCompatibleVtableInfo &TI =
7664       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7665   if (ParseToken(lltok::comma, "expected ',' here") ||
7666       ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7667       ParseToken(lltok::colon, "expected ':' here") ||
7668       ParseToken(lltok::lparen, "expected '(' here"))
7669     return true;
7670 
7671   IdToIndexMapType IdToIndexMap;
7672   // Parse each call edge
7673   do {
7674     uint64_t Offset;
7675     if (ParseToken(lltok::lparen, "expected '(' here") ||
7676         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7677         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7678         ParseToken(lltok::comma, "expected ',' here"))
7679       return true;
7680 
7681     LocTy Loc = Lex.getLoc();
7682     unsigned GVId;
7683     ValueInfo VI;
7684     if (ParseGVReference(VI, GVId))
7685       return true;
7686 
7687     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7688     // forward reference. We will save the location of the ValueInfo needing an
7689     // update, but can only do so once the std::vector is finalized.
7690     if (VI == EmptyVI)
7691       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7692     TI.push_back({Offset, VI});
7693 
7694     if (ParseToken(lltok::rparen, "expected ')' in call"))
7695       return true;
7696   } while (EatIfPresent(lltok::comma));
7697 
7698   // Now that the TI vector is finalized, it is safe to save the locations
7699   // of any forward GV references that need updating later.
7700   for (auto I : IdToIndexMap) {
7701     for (auto P : I.second) {
7702       assert(TI[P.first].VTableVI == EmptyVI &&
7703              "Forward referenced ValueInfo expected to be empty");
7704       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7705           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7706       FwdRef.first->second.push_back(
7707           std::make_pair(&TI[P.first].VTableVI, P.second));
7708     }
7709   }
7710 
7711   if (ParseToken(lltok::rparen, "expected ')' here") ||
7712       ParseToken(lltok::rparen, "expected ')' here"))
7713     return true;
7714 
7715   // Check if this ID was forward referenced, and if so, update the
7716   // corresponding GUIDs.
7717   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7718   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7719     for (auto TIDRef : FwdRefTIDs->second) {
7720       assert(!*TIDRef.first &&
7721              "Forward referenced type id GUID expected to be 0");
7722       *TIDRef.first = GlobalValue::getGUID(Name);
7723     }
7724     ForwardRefTypeIds.erase(FwdRefTIDs);
7725   }
7726 
7727   return false;
7728 }
7729 
7730 /// TypeTestResolution
7731 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7732 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7733 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7734 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7735 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7736 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7737   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7738       ParseToken(lltok::colon, "expected ':' here") ||
7739       ParseToken(lltok::lparen, "expected '(' here") ||
7740       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7741       ParseToken(lltok::colon, "expected ':' here"))
7742     return true;
7743 
7744   switch (Lex.getKind()) {
7745   case lltok::kw_unsat:
7746     TTRes.TheKind = TypeTestResolution::Unsat;
7747     break;
7748   case lltok::kw_byteArray:
7749     TTRes.TheKind = TypeTestResolution::ByteArray;
7750     break;
7751   case lltok::kw_inline:
7752     TTRes.TheKind = TypeTestResolution::Inline;
7753     break;
7754   case lltok::kw_single:
7755     TTRes.TheKind = TypeTestResolution::Single;
7756     break;
7757   case lltok::kw_allOnes:
7758     TTRes.TheKind = TypeTestResolution::AllOnes;
7759     break;
7760   default:
7761     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7762   }
7763   Lex.Lex();
7764 
7765   if (ParseToken(lltok::comma, "expected ',' here") ||
7766       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7767       ParseToken(lltok::colon, "expected ':' here") ||
7768       ParseUInt32(TTRes.SizeM1BitWidth))
7769     return true;
7770 
7771   // Parse optional fields
7772   while (EatIfPresent(lltok::comma)) {
7773     switch (Lex.getKind()) {
7774     case lltok::kw_alignLog2:
7775       Lex.Lex();
7776       if (ParseToken(lltok::colon, "expected ':'") ||
7777           ParseUInt64(TTRes.AlignLog2))
7778         return true;
7779       break;
7780     case lltok::kw_sizeM1:
7781       Lex.Lex();
7782       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7783         return true;
7784       break;
7785     case lltok::kw_bitMask: {
7786       unsigned Val;
7787       Lex.Lex();
7788       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7789         return true;
7790       assert(Val <= 0xff);
7791       TTRes.BitMask = (uint8_t)Val;
7792       break;
7793     }
7794     case lltok::kw_inlineBits:
7795       Lex.Lex();
7796       if (ParseToken(lltok::colon, "expected ':'") ||
7797           ParseUInt64(TTRes.InlineBits))
7798         return true;
7799       break;
7800     default:
7801       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7802     }
7803   }
7804 
7805   if (ParseToken(lltok::rparen, "expected ')' here"))
7806     return true;
7807 
7808   return false;
7809 }
7810 
7811 /// OptionalWpdResolutions
7812 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7813 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7814 bool LLParser::ParseOptionalWpdResolutions(
7815     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7816   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7817       ParseToken(lltok::colon, "expected ':' here") ||
7818       ParseToken(lltok::lparen, "expected '(' here"))
7819     return true;
7820 
7821   do {
7822     uint64_t Offset;
7823     WholeProgramDevirtResolution WPDRes;
7824     if (ParseToken(lltok::lparen, "expected '(' here") ||
7825         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7826         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7827         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7828         ParseToken(lltok::rparen, "expected ')' here"))
7829       return true;
7830     WPDResMap[Offset] = WPDRes;
7831   } while (EatIfPresent(lltok::comma));
7832 
7833   if (ParseToken(lltok::rparen, "expected ')' here"))
7834     return true;
7835 
7836   return false;
7837 }
7838 
7839 /// WpdRes
7840 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7841 ///         [',' OptionalResByArg]? ')'
7842 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7843 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7844 ///         [',' OptionalResByArg]? ')'
7845 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7846 ///         [',' OptionalResByArg]? ')'
7847 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7848   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7849       ParseToken(lltok::colon, "expected ':' here") ||
7850       ParseToken(lltok::lparen, "expected '(' here") ||
7851       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7852       ParseToken(lltok::colon, "expected ':' here"))
7853     return true;
7854 
7855   switch (Lex.getKind()) {
7856   case lltok::kw_indir:
7857     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7858     break;
7859   case lltok::kw_singleImpl:
7860     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7861     break;
7862   case lltok::kw_branchFunnel:
7863     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7864     break;
7865   default:
7866     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7867   }
7868   Lex.Lex();
7869 
7870   // Parse optional fields
7871   while (EatIfPresent(lltok::comma)) {
7872     switch (Lex.getKind()) {
7873     case lltok::kw_singleImplName:
7874       Lex.Lex();
7875       if (ParseToken(lltok::colon, "expected ':' here") ||
7876           ParseStringConstant(WPDRes.SingleImplName))
7877         return true;
7878       break;
7879     case lltok::kw_resByArg:
7880       if (ParseOptionalResByArg(WPDRes.ResByArg))
7881         return true;
7882       break;
7883     default:
7884       return Error(Lex.getLoc(),
7885                    "expected optional WholeProgramDevirtResolution field");
7886     }
7887   }
7888 
7889   if (ParseToken(lltok::rparen, "expected ')' here"))
7890     return true;
7891 
7892   return false;
7893 }
7894 
7895 /// OptionalResByArg
7896 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7897 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7898 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7899 ///                  'virtualConstProp' )
7900 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7901 ///                [',' 'bit' ':' UInt32]? ')'
7902 bool LLParser::ParseOptionalResByArg(
7903     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7904         &ResByArg) {
7905   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7906       ParseToken(lltok::colon, "expected ':' here") ||
7907       ParseToken(lltok::lparen, "expected '(' here"))
7908     return true;
7909 
7910   do {
7911     std::vector<uint64_t> Args;
7912     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7913         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7914         ParseToken(lltok::colon, "expected ':' here") ||
7915         ParseToken(lltok::lparen, "expected '(' here") ||
7916         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7917         ParseToken(lltok::colon, "expected ':' here"))
7918       return true;
7919 
7920     WholeProgramDevirtResolution::ByArg ByArg;
7921     switch (Lex.getKind()) {
7922     case lltok::kw_indir:
7923       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7924       break;
7925     case lltok::kw_uniformRetVal:
7926       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7927       break;
7928     case lltok::kw_uniqueRetVal:
7929       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7930       break;
7931     case lltok::kw_virtualConstProp:
7932       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7933       break;
7934     default:
7935       return Error(Lex.getLoc(),
7936                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7937     }
7938     Lex.Lex();
7939 
7940     // Parse optional fields
7941     while (EatIfPresent(lltok::comma)) {
7942       switch (Lex.getKind()) {
7943       case lltok::kw_info:
7944         Lex.Lex();
7945         if (ParseToken(lltok::colon, "expected ':' here") ||
7946             ParseUInt64(ByArg.Info))
7947           return true;
7948         break;
7949       case lltok::kw_byte:
7950         Lex.Lex();
7951         if (ParseToken(lltok::colon, "expected ':' here") ||
7952             ParseUInt32(ByArg.Byte))
7953           return true;
7954         break;
7955       case lltok::kw_bit:
7956         Lex.Lex();
7957         if (ParseToken(lltok::colon, "expected ':' here") ||
7958             ParseUInt32(ByArg.Bit))
7959           return true;
7960         break;
7961       default:
7962         return Error(Lex.getLoc(),
7963                      "expected optional whole program devirt field");
7964       }
7965     }
7966 
7967     if (ParseToken(lltok::rparen, "expected ')' here"))
7968       return true;
7969 
7970     ResByArg[Args] = ByArg;
7971   } while (EatIfPresent(lltok::comma));
7972 
7973   if (ParseToken(lltok::rparen, "expected ')' here"))
7974     return true;
7975 
7976   return false;
7977 }
7978 
7979 /// OptionalResByArg
7980 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7981 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7982   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7983       ParseToken(lltok::colon, "expected ':' here") ||
7984       ParseToken(lltok::lparen, "expected '(' here"))
7985     return true;
7986 
7987   do {
7988     uint64_t Val;
7989     if (ParseUInt64(Val))
7990       return true;
7991     Args.push_back(Val);
7992   } while (EatIfPresent(lltok::comma));
7993 
7994   if (ParseToken(lltok::rparen, "expected ')' here"))
7995     return true;
7996 
7997   return false;
7998 }
7999 
8000 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8001 
8002 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8003   bool ReadOnly = Fwd->isReadOnly();
8004   bool WriteOnly = Fwd->isWriteOnly();
8005   assert(!(ReadOnly && WriteOnly));
8006   *Fwd = Resolved;
8007   if (ReadOnly)
8008     Fwd->setReadOnly();
8009   if (WriteOnly)
8010     Fwd->setWriteOnly();
8011 }
8012 
8013 /// Stores the given Name/GUID and associated summary into the Index.
8014 /// Also updates any forward references to the associated entry ID.
8015 void LLParser::AddGlobalValueToIndex(
8016     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8017     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8018   // First create the ValueInfo utilizing the Name or GUID.
8019   ValueInfo VI;
8020   if (GUID != 0) {
8021     assert(Name.empty());
8022     VI = Index->getOrInsertValueInfo(GUID);
8023   } else {
8024     assert(!Name.empty());
8025     if (M) {
8026       auto *GV = M->getNamedValue(Name);
8027       assert(GV);
8028       VI = Index->getOrInsertValueInfo(GV);
8029     } else {
8030       assert(
8031           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8032           "Need a source_filename to compute GUID for local");
8033       GUID = GlobalValue::getGUID(
8034           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8035       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8036     }
8037   }
8038 
8039   // Resolve forward references from calls/refs
8040   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8041   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8042     for (auto VIRef : FwdRefVIs->second) {
8043       assert(VIRef.first->getRef() == FwdVIRef &&
8044              "Forward referenced ValueInfo expected to be empty");
8045       resolveFwdRef(VIRef.first, VI);
8046     }
8047     ForwardRefValueInfos.erase(FwdRefVIs);
8048   }
8049 
8050   // Resolve forward references from aliases
8051   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8052   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8053     for (auto AliaseeRef : FwdRefAliasees->second) {
8054       assert(!AliaseeRef.first->hasAliasee() &&
8055              "Forward referencing alias already has aliasee");
8056       assert(Summary && "Aliasee must be a definition");
8057       AliaseeRef.first->setAliasee(VI, Summary.get());
8058     }
8059     ForwardRefAliasees.erase(FwdRefAliasees);
8060   }
8061 
8062   // Add the summary if one was provided.
8063   if (Summary)
8064     Index->addGlobalValueSummary(VI, std::move(Summary));
8065 
8066   // Save the associated ValueInfo for use in later references by ID.
8067   if (ID == NumberedValueInfos.size())
8068     NumberedValueInfos.push_back(VI);
8069   else {
8070     // Handle non-continuous numbers (to make test simplification easier).
8071     if (ID > NumberedValueInfos.size())
8072       NumberedValueInfos.resize(ID + 1);
8073     NumberedValueInfos[ID] = VI;
8074   }
8075 }
8076 
8077 /// ParseSummaryIndexFlags
8078 ///   ::= 'flags' ':' UInt64
8079 bool LLParser::ParseSummaryIndexFlags() {
8080   assert(Lex.getKind() == lltok::kw_flags);
8081   Lex.Lex();
8082 
8083   if (ParseToken(lltok::colon, "expected ':' here"))
8084     return true;
8085   uint64_t Flags;
8086   if (ParseUInt64(Flags))
8087     return true;
8088   Index->setFlags(Flags);
8089   return false;
8090 }
8091 
8092 /// ParseGVEntry
8093 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8094 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8095 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8096 bool LLParser::ParseGVEntry(unsigned ID) {
8097   assert(Lex.getKind() == lltok::kw_gv);
8098   Lex.Lex();
8099 
8100   if (ParseToken(lltok::colon, "expected ':' here") ||
8101       ParseToken(lltok::lparen, "expected '(' here"))
8102     return true;
8103 
8104   std::string Name;
8105   GlobalValue::GUID GUID = 0;
8106   switch (Lex.getKind()) {
8107   case lltok::kw_name:
8108     Lex.Lex();
8109     if (ParseToken(lltok::colon, "expected ':' here") ||
8110         ParseStringConstant(Name))
8111       return true;
8112     // Can't create GUID/ValueInfo until we have the linkage.
8113     break;
8114   case lltok::kw_guid:
8115     Lex.Lex();
8116     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
8117       return true;
8118     break;
8119   default:
8120     return Error(Lex.getLoc(), "expected name or guid tag");
8121   }
8122 
8123   if (!EatIfPresent(lltok::comma)) {
8124     // No summaries. Wrap up.
8125     if (ParseToken(lltok::rparen, "expected ')' here"))
8126       return true;
8127     // This was created for a call to an external or indirect target.
8128     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8129     // created for indirect calls with VP. A Name with no GUID came from
8130     // an external definition. We pass ExternalLinkage since that is only
8131     // used when the GUID must be computed from Name, and in that case
8132     // the symbol must have external linkage.
8133     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8134                           nullptr);
8135     return false;
8136   }
8137 
8138   // Have a list of summaries
8139   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8140       ParseToken(lltok::colon, "expected ':' here") ||
8141       ParseToken(lltok::lparen, "expected '(' here"))
8142     return true;
8143   do {
8144     switch (Lex.getKind()) {
8145     case lltok::kw_function:
8146       if (ParseFunctionSummary(Name, GUID, ID))
8147         return true;
8148       break;
8149     case lltok::kw_variable:
8150       if (ParseVariableSummary(Name, GUID, ID))
8151         return true;
8152       break;
8153     case lltok::kw_alias:
8154       if (ParseAliasSummary(Name, GUID, ID))
8155         return true;
8156       break;
8157     default:
8158       return Error(Lex.getLoc(), "expected summary type");
8159     }
8160   } while (EatIfPresent(lltok::comma));
8161 
8162   if (ParseToken(lltok::rparen, "expected ')' here") ||
8163       ParseToken(lltok::rparen, "expected ')' here"))
8164     return true;
8165 
8166   return false;
8167 }
8168 
8169 /// FunctionSummary
8170 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8171 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8172 ///         [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
8173 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8174                                     unsigned ID) {
8175   assert(Lex.getKind() == lltok::kw_function);
8176   Lex.Lex();
8177 
8178   StringRef ModulePath;
8179   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8180       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8181       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8182   unsigned InstCount;
8183   std::vector<FunctionSummary::EdgeTy> Calls;
8184   FunctionSummary::TypeIdInfo TypeIdInfo;
8185   std::vector<ValueInfo> Refs;
8186   // Default is all-zeros (conservative values).
8187   FunctionSummary::FFlags FFlags = {};
8188   if (ParseToken(lltok::colon, "expected ':' here") ||
8189       ParseToken(lltok::lparen, "expected '(' here") ||
8190       ParseModuleReference(ModulePath) ||
8191       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8192       ParseToken(lltok::comma, "expected ',' here") ||
8193       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
8194       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
8195     return true;
8196 
8197   // Parse optional fields
8198   while (EatIfPresent(lltok::comma)) {
8199     switch (Lex.getKind()) {
8200     case lltok::kw_funcFlags:
8201       if (ParseOptionalFFlags(FFlags))
8202         return true;
8203       break;
8204     case lltok::kw_calls:
8205       if (ParseOptionalCalls(Calls))
8206         return true;
8207       break;
8208     case lltok::kw_typeIdInfo:
8209       if (ParseOptionalTypeIdInfo(TypeIdInfo))
8210         return true;
8211       break;
8212     case lltok::kw_refs:
8213       if (ParseOptionalRefs(Refs))
8214         return true;
8215       break;
8216     default:
8217       return Error(Lex.getLoc(), "expected optional function summary field");
8218     }
8219   }
8220 
8221   if (ParseToken(lltok::rparen, "expected ')' here"))
8222     return true;
8223 
8224   auto FS = std::make_unique<FunctionSummary>(
8225       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8226       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8227       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8228       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8229       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8230       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
8231 
8232   FS->setModulePath(ModulePath);
8233 
8234   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8235                         ID, std::move(FS));
8236 
8237   return false;
8238 }
8239 
8240 /// VariableSummary
8241 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8242 ///         [',' OptionalRefs]? ')'
8243 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8244                                     unsigned ID) {
8245   assert(Lex.getKind() == lltok::kw_variable);
8246   Lex.Lex();
8247 
8248   StringRef ModulePath;
8249   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8250       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8251       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8252   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8253                                         /* WriteOnly */ false,
8254                                         /* Constant */ false,
8255                                         GlobalObject::VCallVisibilityPublic);
8256   std::vector<ValueInfo> Refs;
8257   VTableFuncList VTableFuncs;
8258   if (ParseToken(lltok::colon, "expected ':' here") ||
8259       ParseToken(lltok::lparen, "expected '(' here") ||
8260       ParseModuleReference(ModulePath) ||
8261       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8262       ParseToken(lltok::comma, "expected ',' here") ||
8263       ParseGVarFlags(GVarFlags))
8264     return true;
8265 
8266   // Parse optional fields
8267   while (EatIfPresent(lltok::comma)) {
8268     switch (Lex.getKind()) {
8269     case lltok::kw_vTableFuncs:
8270       if (ParseOptionalVTableFuncs(VTableFuncs))
8271         return true;
8272       break;
8273     case lltok::kw_refs:
8274       if (ParseOptionalRefs(Refs))
8275         return true;
8276       break;
8277     default:
8278       return Error(Lex.getLoc(), "expected optional variable summary field");
8279     }
8280   }
8281 
8282   if (ParseToken(lltok::rparen, "expected ')' here"))
8283     return true;
8284 
8285   auto GS =
8286       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8287 
8288   GS->setModulePath(ModulePath);
8289   GS->setVTableFuncs(std::move(VTableFuncs));
8290 
8291   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8292                         ID, std::move(GS));
8293 
8294   return false;
8295 }
8296 
8297 /// AliasSummary
8298 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8299 ///         'aliasee' ':' GVReference ')'
8300 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8301                                  unsigned ID) {
8302   assert(Lex.getKind() == lltok::kw_alias);
8303   LocTy Loc = Lex.getLoc();
8304   Lex.Lex();
8305 
8306   StringRef ModulePath;
8307   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8308       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8309       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8310   if (ParseToken(lltok::colon, "expected ':' here") ||
8311       ParseToken(lltok::lparen, "expected '(' here") ||
8312       ParseModuleReference(ModulePath) ||
8313       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8314       ParseToken(lltok::comma, "expected ',' here") ||
8315       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8316       ParseToken(lltok::colon, "expected ':' here"))
8317     return true;
8318 
8319   ValueInfo AliaseeVI;
8320   unsigned GVId;
8321   if (ParseGVReference(AliaseeVI, GVId))
8322     return true;
8323 
8324   if (ParseToken(lltok::rparen, "expected ')' here"))
8325     return true;
8326 
8327   auto AS = std::make_unique<AliasSummary>(GVFlags);
8328 
8329   AS->setModulePath(ModulePath);
8330 
8331   // Record forward reference if the aliasee is not parsed yet.
8332   if (AliaseeVI.getRef() == FwdVIRef) {
8333     auto FwdRef = ForwardRefAliasees.insert(
8334         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8335     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8336   } else {
8337     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8338     assert(Summary && "Aliasee must be a definition");
8339     AS->setAliasee(AliaseeVI, Summary);
8340   }
8341 
8342   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8343                         ID, std::move(AS));
8344 
8345   return false;
8346 }
8347 
8348 /// Flag
8349 ///   ::= [0|1]
8350 bool LLParser::ParseFlag(unsigned &Val) {
8351   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8352     return TokError("expected integer");
8353   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8354   Lex.Lex();
8355   return false;
8356 }
8357 
8358 /// OptionalFFlags
8359 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8360 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8361 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8362 ///        [',' 'noInline' ':' Flag]? ')'
8363 ///        [',' 'alwaysInline' ':' Flag]? ')'
8364 
8365 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8366   assert(Lex.getKind() == lltok::kw_funcFlags);
8367   Lex.Lex();
8368 
8369   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8370       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8371     return true;
8372 
8373   do {
8374     unsigned Val = 0;
8375     switch (Lex.getKind()) {
8376     case lltok::kw_readNone:
8377       Lex.Lex();
8378       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8379         return true;
8380       FFlags.ReadNone = Val;
8381       break;
8382     case lltok::kw_readOnly:
8383       Lex.Lex();
8384       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8385         return true;
8386       FFlags.ReadOnly = Val;
8387       break;
8388     case lltok::kw_noRecurse:
8389       Lex.Lex();
8390       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8391         return true;
8392       FFlags.NoRecurse = Val;
8393       break;
8394     case lltok::kw_returnDoesNotAlias:
8395       Lex.Lex();
8396       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8397         return true;
8398       FFlags.ReturnDoesNotAlias = Val;
8399       break;
8400     case lltok::kw_noInline:
8401       Lex.Lex();
8402       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8403         return true;
8404       FFlags.NoInline = Val;
8405       break;
8406     case lltok::kw_alwaysInline:
8407       Lex.Lex();
8408       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8409         return true;
8410       FFlags.AlwaysInline = Val;
8411       break;
8412     default:
8413       return Error(Lex.getLoc(), "expected function flag type");
8414     }
8415   } while (EatIfPresent(lltok::comma));
8416 
8417   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8418     return true;
8419 
8420   return false;
8421 }
8422 
8423 /// OptionalCalls
8424 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8425 /// Call ::= '(' 'callee' ':' GVReference
8426 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8427 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8428   assert(Lex.getKind() == lltok::kw_calls);
8429   Lex.Lex();
8430 
8431   if (ParseToken(lltok::colon, "expected ':' in calls") |
8432       ParseToken(lltok::lparen, "expected '(' in calls"))
8433     return true;
8434 
8435   IdToIndexMapType IdToIndexMap;
8436   // Parse each call edge
8437   do {
8438     ValueInfo VI;
8439     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8440         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8441         ParseToken(lltok::colon, "expected ':'"))
8442       return true;
8443 
8444     LocTy Loc = Lex.getLoc();
8445     unsigned GVId;
8446     if (ParseGVReference(VI, GVId))
8447       return true;
8448 
8449     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8450     unsigned RelBF = 0;
8451     if (EatIfPresent(lltok::comma)) {
8452       // Expect either hotness or relbf
8453       if (EatIfPresent(lltok::kw_hotness)) {
8454         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8455           return true;
8456       } else {
8457         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8458             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8459           return true;
8460       }
8461     }
8462     // Keep track of the Call array index needing a forward reference.
8463     // We will save the location of the ValueInfo needing an update, but
8464     // can only do so once the std::vector is finalized.
8465     if (VI.getRef() == FwdVIRef)
8466       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8467     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8468 
8469     if (ParseToken(lltok::rparen, "expected ')' in call"))
8470       return true;
8471   } while (EatIfPresent(lltok::comma));
8472 
8473   // Now that the Calls vector is finalized, it is safe to save the locations
8474   // of any forward GV references that need updating later.
8475   for (auto I : IdToIndexMap) {
8476     for (auto P : I.second) {
8477       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8478              "Forward referenced ValueInfo expected to be empty");
8479       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8480           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8481       FwdRef.first->second.push_back(
8482           std::make_pair(&Calls[P.first].first, P.second));
8483     }
8484   }
8485 
8486   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8487     return true;
8488 
8489   return false;
8490 }
8491 
8492 /// Hotness
8493 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8494 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8495   switch (Lex.getKind()) {
8496   case lltok::kw_unknown:
8497     Hotness = CalleeInfo::HotnessType::Unknown;
8498     break;
8499   case lltok::kw_cold:
8500     Hotness = CalleeInfo::HotnessType::Cold;
8501     break;
8502   case lltok::kw_none:
8503     Hotness = CalleeInfo::HotnessType::None;
8504     break;
8505   case lltok::kw_hot:
8506     Hotness = CalleeInfo::HotnessType::Hot;
8507     break;
8508   case lltok::kw_critical:
8509     Hotness = CalleeInfo::HotnessType::Critical;
8510     break;
8511   default:
8512     return Error(Lex.getLoc(), "invalid call edge hotness");
8513   }
8514   Lex.Lex();
8515   return false;
8516 }
8517 
8518 /// OptionalVTableFuncs
8519 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8520 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8521 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8522   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8523   Lex.Lex();
8524 
8525   if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") |
8526       ParseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8527     return true;
8528 
8529   IdToIndexMapType IdToIndexMap;
8530   // Parse each virtual function pair
8531   do {
8532     ValueInfo VI;
8533     if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8534         ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8535         ParseToken(lltok::colon, "expected ':'"))
8536       return true;
8537 
8538     LocTy Loc = Lex.getLoc();
8539     unsigned GVId;
8540     if (ParseGVReference(VI, GVId))
8541       return true;
8542 
8543     uint64_t Offset;
8544     if (ParseToken(lltok::comma, "expected comma") ||
8545         ParseToken(lltok::kw_offset, "expected offset") ||
8546         ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset))
8547       return true;
8548 
8549     // Keep track of the VTableFuncs array index needing a forward reference.
8550     // We will save the location of the ValueInfo needing an update, but
8551     // can only do so once the std::vector is finalized.
8552     if (VI == EmptyVI)
8553       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8554     VTableFuncs.push_back({VI, Offset});
8555 
8556     if (ParseToken(lltok::rparen, "expected ')' in vTableFunc"))
8557       return true;
8558   } while (EatIfPresent(lltok::comma));
8559 
8560   // Now that the VTableFuncs vector is finalized, it is safe to save the
8561   // locations of any forward GV references that need updating later.
8562   for (auto I : IdToIndexMap) {
8563     for (auto P : I.second) {
8564       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8565              "Forward referenced ValueInfo expected to be empty");
8566       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8567           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8568       FwdRef.first->second.push_back(
8569           std::make_pair(&VTableFuncs[P.first].FuncVI, P.second));
8570     }
8571   }
8572 
8573   if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8574     return true;
8575 
8576   return false;
8577 }
8578 
8579 /// OptionalRefs
8580 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8581 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8582   assert(Lex.getKind() == lltok::kw_refs);
8583   Lex.Lex();
8584 
8585   if (ParseToken(lltok::colon, "expected ':' in refs") |
8586       ParseToken(lltok::lparen, "expected '(' in refs"))
8587     return true;
8588 
8589   struct ValueContext {
8590     ValueInfo VI;
8591     unsigned GVId;
8592     LocTy Loc;
8593   };
8594   std::vector<ValueContext> VContexts;
8595   // Parse each ref edge
8596   do {
8597     ValueContext VC;
8598     VC.Loc = Lex.getLoc();
8599     if (ParseGVReference(VC.VI, VC.GVId))
8600       return true;
8601     VContexts.push_back(VC);
8602   } while (EatIfPresent(lltok::comma));
8603 
8604   // Sort value contexts so that ones with writeonly
8605   // and readonly ValueInfo  are at the end of VContexts vector.
8606   // See FunctionSummary::specialRefCounts()
8607   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8608     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8609   });
8610 
8611   IdToIndexMapType IdToIndexMap;
8612   for (auto &VC : VContexts) {
8613     // Keep track of the Refs array index needing a forward reference.
8614     // We will save the location of the ValueInfo needing an update, but
8615     // can only do so once the std::vector is finalized.
8616     if (VC.VI.getRef() == FwdVIRef)
8617       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8618     Refs.push_back(VC.VI);
8619   }
8620 
8621   // Now that the Refs vector is finalized, it is safe to save the locations
8622   // of any forward GV references that need updating later.
8623   for (auto I : IdToIndexMap) {
8624     for (auto P : I.second) {
8625       assert(Refs[P.first].getRef() == FwdVIRef &&
8626              "Forward referenced ValueInfo expected to be empty");
8627       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8628           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8629       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8630     }
8631   }
8632 
8633   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8634     return true;
8635 
8636   return false;
8637 }
8638 
8639 /// OptionalTypeIdInfo
8640 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8641 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8642 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8643 bool LLParser::ParseOptionalTypeIdInfo(
8644     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8645   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8646   Lex.Lex();
8647 
8648   if (ParseToken(lltok::colon, "expected ':' here") ||
8649       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8650     return true;
8651 
8652   do {
8653     switch (Lex.getKind()) {
8654     case lltok::kw_typeTests:
8655       if (ParseTypeTests(TypeIdInfo.TypeTests))
8656         return true;
8657       break;
8658     case lltok::kw_typeTestAssumeVCalls:
8659       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8660                            TypeIdInfo.TypeTestAssumeVCalls))
8661         return true;
8662       break;
8663     case lltok::kw_typeCheckedLoadVCalls:
8664       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8665                            TypeIdInfo.TypeCheckedLoadVCalls))
8666         return true;
8667       break;
8668     case lltok::kw_typeTestAssumeConstVCalls:
8669       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8670                               TypeIdInfo.TypeTestAssumeConstVCalls))
8671         return true;
8672       break;
8673     case lltok::kw_typeCheckedLoadConstVCalls:
8674       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8675                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8676         return true;
8677       break;
8678     default:
8679       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8680     }
8681   } while (EatIfPresent(lltok::comma));
8682 
8683   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8684     return true;
8685 
8686   return false;
8687 }
8688 
8689 /// TypeTests
8690 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8691 ///         [',' (SummaryID | UInt64)]* ')'
8692 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8693   assert(Lex.getKind() == lltok::kw_typeTests);
8694   Lex.Lex();
8695 
8696   if (ParseToken(lltok::colon, "expected ':' here") ||
8697       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8698     return true;
8699 
8700   IdToIndexMapType IdToIndexMap;
8701   do {
8702     GlobalValue::GUID GUID = 0;
8703     if (Lex.getKind() == lltok::SummaryID) {
8704       unsigned ID = Lex.getUIntVal();
8705       LocTy Loc = Lex.getLoc();
8706       // Keep track of the TypeTests array index needing a forward reference.
8707       // We will save the location of the GUID needing an update, but
8708       // can only do so once the std::vector is finalized.
8709       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8710       Lex.Lex();
8711     } else if (ParseUInt64(GUID))
8712       return true;
8713     TypeTests.push_back(GUID);
8714   } while (EatIfPresent(lltok::comma));
8715 
8716   // Now that the TypeTests vector is finalized, it is safe to save the
8717   // locations of any forward GV references that need updating later.
8718   for (auto I : IdToIndexMap) {
8719     for (auto P : I.second) {
8720       assert(TypeTests[P.first] == 0 &&
8721              "Forward referenced type id GUID expected to be 0");
8722       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8723           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8724       FwdRef.first->second.push_back(
8725           std::make_pair(&TypeTests[P.first], P.second));
8726     }
8727   }
8728 
8729   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8730     return true;
8731 
8732   return false;
8733 }
8734 
8735 /// VFuncIdList
8736 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8737 bool LLParser::ParseVFuncIdList(
8738     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8739   assert(Lex.getKind() == Kind);
8740   Lex.Lex();
8741 
8742   if (ParseToken(lltok::colon, "expected ':' here") ||
8743       ParseToken(lltok::lparen, "expected '(' here"))
8744     return true;
8745 
8746   IdToIndexMapType IdToIndexMap;
8747   do {
8748     FunctionSummary::VFuncId VFuncId;
8749     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8750       return true;
8751     VFuncIdList.push_back(VFuncId);
8752   } while (EatIfPresent(lltok::comma));
8753 
8754   if (ParseToken(lltok::rparen, "expected ')' here"))
8755     return true;
8756 
8757   // Now that the VFuncIdList vector is finalized, it is safe to save the
8758   // locations of any forward GV references that need updating later.
8759   for (auto I : IdToIndexMap) {
8760     for (auto P : I.second) {
8761       assert(VFuncIdList[P.first].GUID == 0 &&
8762              "Forward referenced type id GUID expected to be 0");
8763       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8764           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8765       FwdRef.first->second.push_back(
8766           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8767     }
8768   }
8769 
8770   return false;
8771 }
8772 
8773 /// ConstVCallList
8774 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8775 bool LLParser::ParseConstVCallList(
8776     lltok::Kind Kind,
8777     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8778   assert(Lex.getKind() == Kind);
8779   Lex.Lex();
8780 
8781   if (ParseToken(lltok::colon, "expected ':' here") ||
8782       ParseToken(lltok::lparen, "expected '(' here"))
8783     return true;
8784 
8785   IdToIndexMapType IdToIndexMap;
8786   do {
8787     FunctionSummary::ConstVCall ConstVCall;
8788     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8789       return true;
8790     ConstVCallList.push_back(ConstVCall);
8791   } while (EatIfPresent(lltok::comma));
8792 
8793   if (ParseToken(lltok::rparen, "expected ')' here"))
8794     return true;
8795 
8796   // Now that the ConstVCallList vector is finalized, it is safe to save the
8797   // locations of any forward GV references that need updating later.
8798   for (auto I : IdToIndexMap) {
8799     for (auto P : I.second) {
8800       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8801              "Forward referenced type id GUID expected to be 0");
8802       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8803           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8804       FwdRef.first->second.push_back(
8805           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8806     }
8807   }
8808 
8809   return false;
8810 }
8811 
8812 /// ConstVCall
8813 ///   ::= '(' VFuncId ',' Args ')'
8814 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8815                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8816   if (ParseToken(lltok::lparen, "expected '(' here") ||
8817       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8818     return true;
8819 
8820   if (EatIfPresent(lltok::comma))
8821     if (ParseArgs(ConstVCall.Args))
8822       return true;
8823 
8824   if (ParseToken(lltok::rparen, "expected ')' here"))
8825     return true;
8826 
8827   return false;
8828 }
8829 
8830 /// VFuncId
8831 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8832 ///         'offset' ':' UInt64 ')'
8833 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8834                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
8835   assert(Lex.getKind() == lltok::kw_vFuncId);
8836   Lex.Lex();
8837 
8838   if (ParseToken(lltok::colon, "expected ':' here") ||
8839       ParseToken(lltok::lparen, "expected '(' here"))
8840     return true;
8841 
8842   if (Lex.getKind() == lltok::SummaryID) {
8843     VFuncId.GUID = 0;
8844     unsigned ID = Lex.getUIntVal();
8845     LocTy Loc = Lex.getLoc();
8846     // Keep track of the array index needing a forward reference.
8847     // We will save the location of the GUID needing an update, but
8848     // can only do so once the caller's std::vector is finalized.
8849     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8850     Lex.Lex();
8851   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8852              ParseToken(lltok::colon, "expected ':' here") ||
8853              ParseUInt64(VFuncId.GUID))
8854     return true;
8855 
8856   if (ParseToken(lltok::comma, "expected ',' here") ||
8857       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8858       ParseToken(lltok::colon, "expected ':' here") ||
8859       ParseUInt64(VFuncId.Offset) ||
8860       ParseToken(lltok::rparen, "expected ')' here"))
8861     return true;
8862 
8863   return false;
8864 }
8865 
8866 /// GVFlags
8867 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8868 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8869 ///         'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
8870 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8871   assert(Lex.getKind() == lltok::kw_flags);
8872   Lex.Lex();
8873 
8874   if (ParseToken(lltok::colon, "expected ':' here") ||
8875       ParseToken(lltok::lparen, "expected '(' here"))
8876     return true;
8877 
8878   do {
8879     unsigned Flag = 0;
8880     switch (Lex.getKind()) {
8881     case lltok::kw_linkage:
8882       Lex.Lex();
8883       if (ParseToken(lltok::colon, "expected ':'"))
8884         return true;
8885       bool HasLinkage;
8886       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8887       assert(HasLinkage && "Linkage not optional in summary entry");
8888       Lex.Lex();
8889       break;
8890     case lltok::kw_notEligibleToImport:
8891       Lex.Lex();
8892       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8893         return true;
8894       GVFlags.NotEligibleToImport = Flag;
8895       break;
8896     case lltok::kw_live:
8897       Lex.Lex();
8898       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8899         return true;
8900       GVFlags.Live = Flag;
8901       break;
8902     case lltok::kw_dsoLocal:
8903       Lex.Lex();
8904       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8905         return true;
8906       GVFlags.DSOLocal = Flag;
8907       break;
8908     case lltok::kw_canAutoHide:
8909       Lex.Lex();
8910       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8911         return true;
8912       GVFlags.CanAutoHide = Flag;
8913       break;
8914     default:
8915       return Error(Lex.getLoc(), "expected gv flag type");
8916     }
8917   } while (EatIfPresent(lltok::comma));
8918 
8919   if (ParseToken(lltok::rparen, "expected ')' here"))
8920     return true;
8921 
8922   return false;
8923 }
8924 
8925 /// GVarFlags
8926 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
8927 ///                      ',' 'writeonly' ':' Flag
8928 ///                      ',' 'constant' ':' Flag ')'
8929 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8930   assert(Lex.getKind() == lltok::kw_varFlags);
8931   Lex.Lex();
8932 
8933   if (ParseToken(lltok::colon, "expected ':' here") ||
8934       ParseToken(lltok::lparen, "expected '(' here"))
8935     return true;
8936 
8937   auto ParseRest = [this](unsigned int &Val) {
8938     Lex.Lex();
8939     if (ParseToken(lltok::colon, "expected ':'"))
8940       return true;
8941     return ParseFlag(Val);
8942   };
8943 
8944   do {
8945     unsigned Flag = 0;
8946     switch (Lex.getKind()) {
8947     case lltok::kw_readonly:
8948       if (ParseRest(Flag))
8949         return true;
8950       GVarFlags.MaybeReadOnly = Flag;
8951       break;
8952     case lltok::kw_writeonly:
8953       if (ParseRest(Flag))
8954         return true;
8955       GVarFlags.MaybeWriteOnly = Flag;
8956       break;
8957     case lltok::kw_constant:
8958       if (ParseRest(Flag))
8959         return true;
8960       GVarFlags.Constant = Flag;
8961       break;
8962     case lltok::kw_vcall_visibility:
8963       if (ParseRest(Flag))
8964         return true;
8965       GVarFlags.VCallVisibility = Flag;
8966       break;
8967     default:
8968       return Error(Lex.getLoc(), "expected gvar flag type");
8969     }
8970   } while (EatIfPresent(lltok::comma));
8971   return ParseToken(lltok::rparen, "expected ')' here");
8972 }
8973 
8974 /// ModuleReference
8975 ///   ::= 'module' ':' UInt
8976 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8977   // Parse module id.
8978   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8979       ParseToken(lltok::colon, "expected ':' here") ||
8980       ParseToken(lltok::SummaryID, "expected module ID"))
8981     return true;
8982 
8983   unsigned ModuleID = Lex.getUIntVal();
8984   auto I = ModuleIdMap.find(ModuleID);
8985   // We should have already parsed all module IDs
8986   assert(I != ModuleIdMap.end());
8987   ModulePath = I->second;
8988   return false;
8989 }
8990 
8991 /// GVReference
8992 ///   ::= SummaryID
8993 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8994   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
8995   if (!ReadOnly)
8996     WriteOnly = EatIfPresent(lltok::kw_writeonly);
8997   if (ParseToken(lltok::SummaryID, "expected GV ID"))
8998     return true;
8999 
9000   GVId = Lex.getUIntVal();
9001   // Check if we already have a VI for this GV
9002   if (GVId < NumberedValueInfos.size()) {
9003     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9004     VI = NumberedValueInfos[GVId];
9005   } else
9006     // We will create a forward reference to the stored location.
9007     VI = ValueInfo(false, FwdVIRef);
9008 
9009   if (ReadOnly)
9010     VI.setReadOnly();
9011   if (WriteOnly)
9012     VI.setWriteOnly();
9013   return false;
9014 }
9015