1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/AsmParser/LLParser.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/LLToken.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/IR/ValueSymbolTable.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/SaveAndRestore.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstring> 50 #include <iterator> 51 #include <vector> 52 53 using namespace llvm; 54 55 static std::string getTypeString(Type *T) { 56 std::string Result; 57 raw_string_ostream Tmp(Result); 58 Tmp << *T; 59 return Tmp.str(); 60 } 61 62 /// Run: module ::= toplevelentity* 63 bool LLParser::Run(bool UpgradeDebugInfo, 64 DataLayoutCallbackTy DataLayoutCallback) { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 if (M) { 74 if (parseTargetDefinitions()) 75 return true; 76 77 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 78 M->setDataLayout(*LayoutOverride); 79 } 80 81 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 82 validateEndOfIndex(); 83 } 84 85 bool LLParser::parseStandaloneConstantValue(Constant *&C, 86 const SlotMapping *Slots) { 87 restoreParsingState(Slots); 88 Lex.Lex(); 89 90 Type *Ty = nullptr; 91 if (parseType(Ty) || parseConstantValue(Ty, C)) 92 return true; 93 if (Lex.getKind() != lltok::Eof) 94 return error(Lex.getLoc(), "expected end of string"); 95 return false; 96 } 97 98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 99 const SlotMapping *Slots) { 100 restoreParsingState(Slots); 101 Lex.Lex(); 102 103 Read = 0; 104 SMLoc Start = Lex.getLoc(); 105 Ty = nullptr; 106 if (parseType(Ty)) 107 return true; 108 SMLoc End = Lex.getLoc(); 109 Read = End.getPointer() - Start.getPointer(); 110 111 return false; 112 } 113 114 void LLParser::restoreParsingState(const SlotMapping *Slots) { 115 if (!Slots) 116 return; 117 NumberedVals = Slots->GlobalValues; 118 NumberedMetadata = Slots->MetadataNodes; 119 for (const auto &I : Slots->NamedTypes) 120 NamedTypes.insert( 121 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 122 for (const auto &I : Slots->Types) 123 NumberedTypes.insert( 124 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 125 } 126 127 /// validateEndOfModule - Do final validity and sanity checks at the end of the 128 /// module. 129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 130 if (!M) 131 return false; 132 // Handle any function attribute group forward references. 133 for (const auto &RAG : ForwardRefAttrGroups) { 134 Value *V = RAG.first; 135 const std::vector<unsigned> &Attrs = RAG.second; 136 AttrBuilder B; 137 138 for (const auto &Attr : Attrs) 139 B.merge(NumberedAttrBuilders[Attr]); 140 141 if (Function *Fn = dyn_cast<Function>(V)) { 142 AttributeList AS = Fn->getAttributes(); 143 AttrBuilder FnAttrs(AS.getFnAttributes()); 144 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 145 146 FnAttrs.merge(B); 147 148 // If the alignment was parsed as an attribute, move to the alignment 149 // field. 150 if (FnAttrs.hasAlignmentAttr()) { 151 Fn->setAlignment(FnAttrs.getAlignment()); 152 FnAttrs.removeAttribute(Attribute::Alignment); 153 } 154 155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 156 AttributeSet::get(Context, FnAttrs)); 157 Fn->setAttributes(AS); 158 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 159 AttributeList AS = CI->getAttributes(); 160 AttrBuilder FnAttrs(AS.getFnAttributes()); 161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 162 FnAttrs.merge(B); 163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 164 AttributeSet::get(Context, FnAttrs)); 165 CI->setAttributes(AS); 166 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 167 AttributeList AS = II->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes()); 169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 170 FnAttrs.merge(B); 171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 172 AttributeSet::get(Context, FnAttrs)); 173 II->setAttributes(AS); 174 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 175 AttributeList AS = CBI->getAttributes(); 176 AttrBuilder FnAttrs(AS.getFnAttributes()); 177 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 178 FnAttrs.merge(B); 179 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 180 AttributeSet::get(Context, FnAttrs)); 181 CBI->setAttributes(AS); 182 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 183 AttrBuilder Attrs(GV->getAttributes()); 184 Attrs.merge(B); 185 GV->setAttributes(AttributeSet::get(Context,Attrs)); 186 } else { 187 llvm_unreachable("invalid object with forward attribute group reference"); 188 } 189 } 190 191 // If there are entries in ForwardRefBlockAddresses at this point, the 192 // function was never defined. 193 if (!ForwardRefBlockAddresses.empty()) 194 return error(ForwardRefBlockAddresses.begin()->first.Loc, 195 "expected function name in blockaddress"); 196 197 for (const auto &NT : NumberedTypes) 198 if (NT.second.second.isValid()) 199 return error(NT.second.second, 200 "use of undefined type '%" + Twine(NT.first) + "'"); 201 202 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 203 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 204 if (I->second.second.isValid()) 205 return error(I->second.second, 206 "use of undefined type named '" + I->getKey() + "'"); 207 208 if (!ForwardRefComdats.empty()) 209 return error(ForwardRefComdats.begin()->second, 210 "use of undefined comdat '$" + 211 ForwardRefComdats.begin()->first + "'"); 212 213 if (!ForwardRefVals.empty()) 214 return error(ForwardRefVals.begin()->second.second, 215 "use of undefined value '@" + ForwardRefVals.begin()->first + 216 "'"); 217 218 if (!ForwardRefValIDs.empty()) 219 return error(ForwardRefValIDs.begin()->second.second, 220 "use of undefined value '@" + 221 Twine(ForwardRefValIDs.begin()->first) + "'"); 222 223 if (!ForwardRefMDNodes.empty()) 224 return error(ForwardRefMDNodes.begin()->second.second, 225 "use of undefined metadata '!" + 226 Twine(ForwardRefMDNodes.begin()->first) + "'"); 227 228 // Resolve metadata cycles. 229 for (auto &N : NumberedMetadata) { 230 if (N.second && !N.second->isResolved()) 231 N.second->resolveCycles(); 232 } 233 234 for (auto *Inst : InstsWithTBAATag) { 235 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 236 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 237 auto *UpgradedMD = UpgradeTBAANode(*MD); 238 if (MD != UpgradedMD) 239 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 240 } 241 242 // Look for intrinsic functions and CallInst that need to be upgraded 243 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 244 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 245 246 // Some types could be renamed during loading if several modules are 247 // loaded in the same LLVMContext (LTO scenario). In this case we should 248 // remangle intrinsics names as well. 249 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 250 Function *F = &*FI++; 251 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 252 F->replaceAllUsesWith(Remangled.getValue()); 253 F->eraseFromParent(); 254 } 255 } 256 257 if (UpgradeDebugInfo) 258 llvm::UpgradeDebugInfo(*M); 259 260 UpgradeModuleFlags(*M); 261 UpgradeSectionAttributes(*M); 262 263 if (!Slots) 264 return false; 265 // Initialize the slot mapping. 266 // Because by this point we've parsed and validated everything, we can "steal" 267 // the mapping from LLParser as it doesn't need it anymore. 268 Slots->GlobalValues = std::move(NumberedVals); 269 Slots->MetadataNodes = std::move(NumberedMetadata); 270 for (const auto &I : NamedTypes) 271 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 272 for (const auto &I : NumberedTypes) 273 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 274 275 return false; 276 } 277 278 /// Do final validity and sanity checks at the end of the index. 279 bool LLParser::validateEndOfIndex() { 280 if (!Index) 281 return false; 282 283 if (!ForwardRefValueInfos.empty()) 284 return error(ForwardRefValueInfos.begin()->second.front().second, 285 "use of undefined summary '^" + 286 Twine(ForwardRefValueInfos.begin()->first) + "'"); 287 288 if (!ForwardRefAliasees.empty()) 289 return error(ForwardRefAliasees.begin()->second.front().second, 290 "use of undefined summary '^" + 291 Twine(ForwardRefAliasees.begin()->first) + "'"); 292 293 if (!ForwardRefTypeIds.empty()) 294 return error(ForwardRefTypeIds.begin()->second.front().second, 295 "use of undefined type id summary '^" + 296 Twine(ForwardRefTypeIds.begin()->first) + "'"); 297 298 return false; 299 } 300 301 //===----------------------------------------------------------------------===// 302 // Top-Level Entities 303 //===----------------------------------------------------------------------===// 304 305 bool LLParser::parseTargetDefinitions() { 306 while (true) { 307 switch (Lex.getKind()) { 308 case lltok::kw_target: 309 if (parseTargetDefinition()) 310 return true; 311 break; 312 case lltok::kw_source_filename: 313 if (parseSourceFileName()) 314 return true; 315 break; 316 default: 317 return false; 318 } 319 } 320 } 321 322 bool LLParser::parseTopLevelEntities() { 323 // If there is no Module, then parse just the summary index entries. 324 if (!M) { 325 while (true) { 326 switch (Lex.getKind()) { 327 case lltok::Eof: 328 return false; 329 case lltok::SummaryID: 330 if (parseSummaryEntry()) 331 return true; 332 break; 333 case lltok::kw_source_filename: 334 if (parseSourceFileName()) 335 return true; 336 break; 337 default: 338 // Skip everything else 339 Lex.Lex(); 340 } 341 } 342 } 343 while (true) { 344 switch (Lex.getKind()) { 345 default: 346 return tokError("expected top-level entity"); 347 case lltok::Eof: return false; 348 case lltok::kw_declare: 349 if (parseDeclare()) 350 return true; 351 break; 352 case lltok::kw_define: 353 if (parseDefine()) 354 return true; 355 break; 356 case lltok::kw_module: 357 if (parseModuleAsm()) 358 return true; 359 break; 360 case lltok::kw_deplibs: 361 if (parseDepLibs()) 362 return true; 363 break; 364 case lltok::LocalVarID: 365 if (parseUnnamedType()) 366 return true; 367 break; 368 case lltok::LocalVar: 369 if (parseNamedType()) 370 return true; 371 break; 372 case lltok::GlobalID: 373 if (parseUnnamedGlobal()) 374 return true; 375 break; 376 case lltok::GlobalVar: 377 if (parseNamedGlobal()) 378 return true; 379 break; 380 case lltok::ComdatVar: if (parseComdat()) return true; break; 381 case lltok::exclaim: 382 if (parseStandaloneMetadata()) 383 return true; 384 break; 385 case lltok::SummaryID: 386 if (parseSummaryEntry()) 387 return true; 388 break; 389 case lltok::MetadataVar: 390 if (parseNamedMetadata()) 391 return true; 392 break; 393 case lltok::kw_attributes: 394 if (parseUnnamedAttrGrp()) 395 return true; 396 break; 397 case lltok::kw_uselistorder: 398 if (parseUseListOrder()) 399 return true; 400 break; 401 case lltok::kw_uselistorder_bb: 402 if (parseUseListOrderBB()) 403 return true; 404 break; 405 } 406 } 407 } 408 409 /// toplevelentity 410 /// ::= 'module' 'asm' STRINGCONSTANT 411 bool LLParser::parseModuleAsm() { 412 assert(Lex.getKind() == lltok::kw_module); 413 Lex.Lex(); 414 415 std::string AsmStr; 416 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 417 parseStringConstant(AsmStr)) 418 return true; 419 420 M->appendModuleInlineAsm(AsmStr); 421 return false; 422 } 423 424 /// toplevelentity 425 /// ::= 'target' 'triple' '=' STRINGCONSTANT 426 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 427 bool LLParser::parseTargetDefinition() { 428 assert(Lex.getKind() == lltok::kw_target); 429 std::string Str; 430 switch (Lex.Lex()) { 431 default: 432 return tokError("unknown target property"); 433 case lltok::kw_triple: 434 Lex.Lex(); 435 if (parseToken(lltok::equal, "expected '=' after target triple") || 436 parseStringConstant(Str)) 437 return true; 438 M->setTargetTriple(Str); 439 return false; 440 case lltok::kw_datalayout: 441 Lex.Lex(); 442 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 443 parseStringConstant(Str)) 444 return true; 445 M->setDataLayout(Str); 446 return false; 447 } 448 } 449 450 /// toplevelentity 451 /// ::= 'source_filename' '=' STRINGCONSTANT 452 bool LLParser::parseSourceFileName() { 453 assert(Lex.getKind() == lltok::kw_source_filename); 454 Lex.Lex(); 455 if (parseToken(lltok::equal, "expected '=' after source_filename") || 456 parseStringConstant(SourceFileName)) 457 return true; 458 if (M) 459 M->setSourceFileName(SourceFileName); 460 return false; 461 } 462 463 /// toplevelentity 464 /// ::= 'deplibs' '=' '[' ']' 465 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 466 /// FIXME: Remove in 4.0. Currently parse, but ignore. 467 bool LLParser::parseDepLibs() { 468 assert(Lex.getKind() == lltok::kw_deplibs); 469 Lex.Lex(); 470 if (parseToken(lltok::equal, "expected '=' after deplibs") || 471 parseToken(lltok::lsquare, "expected '=' after deplibs")) 472 return true; 473 474 if (EatIfPresent(lltok::rsquare)) 475 return false; 476 477 do { 478 std::string Str; 479 if (parseStringConstant(Str)) 480 return true; 481 } while (EatIfPresent(lltok::comma)); 482 483 return parseToken(lltok::rsquare, "expected ']' at end of list"); 484 } 485 486 /// parseUnnamedType: 487 /// ::= LocalVarID '=' 'type' type 488 bool LLParser::parseUnnamedType() { 489 LocTy TypeLoc = Lex.getLoc(); 490 unsigned TypeID = Lex.getUIntVal(); 491 Lex.Lex(); // eat LocalVarID; 492 493 if (parseToken(lltok::equal, "expected '=' after name") || 494 parseToken(lltok::kw_type, "expected 'type' after '='")) 495 return true; 496 497 Type *Result = nullptr; 498 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 499 return true; 500 501 if (!isa<StructType>(Result)) { 502 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 503 if (Entry.first) 504 return error(TypeLoc, "non-struct types may not be recursive"); 505 Entry.first = Result; 506 Entry.second = SMLoc(); 507 } 508 509 return false; 510 } 511 512 /// toplevelentity 513 /// ::= LocalVar '=' 'type' type 514 bool LLParser::parseNamedType() { 515 std::string Name = Lex.getStrVal(); 516 LocTy NameLoc = Lex.getLoc(); 517 Lex.Lex(); // eat LocalVar. 518 519 if (parseToken(lltok::equal, "expected '=' after name") || 520 parseToken(lltok::kw_type, "expected 'type' after name")) 521 return true; 522 523 Type *Result = nullptr; 524 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 525 return true; 526 527 if (!isa<StructType>(Result)) { 528 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 529 if (Entry.first) 530 return error(NameLoc, "non-struct types may not be recursive"); 531 Entry.first = Result; 532 Entry.second = SMLoc(); 533 } 534 535 return false; 536 } 537 538 /// toplevelentity 539 /// ::= 'declare' FunctionHeader 540 bool LLParser::parseDeclare() { 541 assert(Lex.getKind() == lltok::kw_declare); 542 Lex.Lex(); 543 544 std::vector<std::pair<unsigned, MDNode *>> MDs; 545 while (Lex.getKind() == lltok::MetadataVar) { 546 unsigned MDK; 547 MDNode *N; 548 if (parseMetadataAttachment(MDK, N)) 549 return true; 550 MDs.push_back({MDK, N}); 551 } 552 553 Function *F; 554 if (parseFunctionHeader(F, false)) 555 return true; 556 for (auto &MD : MDs) 557 F->addMetadata(MD.first, *MD.second); 558 return false; 559 } 560 561 /// toplevelentity 562 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 563 bool LLParser::parseDefine() { 564 assert(Lex.getKind() == lltok::kw_define); 565 Lex.Lex(); 566 567 Function *F; 568 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 569 parseFunctionBody(*F); 570 } 571 572 /// parseGlobalType 573 /// ::= 'constant' 574 /// ::= 'global' 575 bool LLParser::parseGlobalType(bool &IsConstant) { 576 if (Lex.getKind() == lltok::kw_constant) 577 IsConstant = true; 578 else if (Lex.getKind() == lltok::kw_global) 579 IsConstant = false; 580 else { 581 IsConstant = false; 582 return tokError("expected 'global' or 'constant'"); 583 } 584 Lex.Lex(); 585 return false; 586 } 587 588 bool LLParser::parseOptionalUnnamedAddr( 589 GlobalVariable::UnnamedAddr &UnnamedAddr) { 590 if (EatIfPresent(lltok::kw_unnamed_addr)) 591 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 592 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 593 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 594 else 595 UnnamedAddr = GlobalValue::UnnamedAddr::None; 596 return false; 597 } 598 599 /// parseUnnamedGlobal: 600 /// OptionalVisibility (ALIAS | IFUNC) ... 601 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 602 /// OptionalDLLStorageClass 603 /// ... -> global variable 604 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 605 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 606 /// OptionalVisibility 607 /// OptionalDLLStorageClass 608 /// ... -> global variable 609 bool LLParser::parseUnnamedGlobal() { 610 unsigned VarID = NumberedVals.size(); 611 std::string Name; 612 LocTy NameLoc = Lex.getLoc(); 613 614 // Handle the GlobalID form. 615 if (Lex.getKind() == lltok::GlobalID) { 616 if (Lex.getUIntVal() != VarID) 617 return error(Lex.getLoc(), 618 "variable expected to be numbered '%" + Twine(VarID) + "'"); 619 Lex.Lex(); // eat GlobalID; 620 621 if (parseToken(lltok::equal, "expected '=' after name")) 622 return true; 623 } 624 625 bool HasLinkage; 626 unsigned Linkage, Visibility, DLLStorageClass; 627 bool DSOLocal; 628 GlobalVariable::ThreadLocalMode TLM; 629 GlobalVariable::UnnamedAddr UnnamedAddr; 630 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 631 DSOLocal) || 632 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 633 return true; 634 635 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 636 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 637 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 638 639 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 640 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 641 } 642 643 /// parseNamedGlobal: 644 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 645 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 646 /// OptionalVisibility OptionalDLLStorageClass 647 /// ... -> global variable 648 bool LLParser::parseNamedGlobal() { 649 assert(Lex.getKind() == lltok::GlobalVar); 650 LocTy NameLoc = Lex.getLoc(); 651 std::string Name = Lex.getStrVal(); 652 Lex.Lex(); 653 654 bool HasLinkage; 655 unsigned Linkage, Visibility, DLLStorageClass; 656 bool DSOLocal; 657 GlobalVariable::ThreadLocalMode TLM; 658 GlobalVariable::UnnamedAddr UnnamedAddr; 659 if (parseToken(lltok::equal, "expected '=' in global variable") || 660 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 661 DSOLocal) || 662 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 663 return true; 664 665 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 666 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 667 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 668 669 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 670 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 671 } 672 673 bool LLParser::parseComdat() { 674 assert(Lex.getKind() == lltok::ComdatVar); 675 std::string Name = Lex.getStrVal(); 676 LocTy NameLoc = Lex.getLoc(); 677 Lex.Lex(); 678 679 if (parseToken(lltok::equal, "expected '=' here")) 680 return true; 681 682 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 683 return tokError("expected comdat type"); 684 685 Comdat::SelectionKind SK; 686 switch (Lex.getKind()) { 687 default: 688 return tokError("unknown selection kind"); 689 case lltok::kw_any: 690 SK = Comdat::Any; 691 break; 692 case lltok::kw_exactmatch: 693 SK = Comdat::ExactMatch; 694 break; 695 case lltok::kw_largest: 696 SK = Comdat::Largest; 697 break; 698 case lltok::kw_noduplicates: 699 SK = Comdat::NoDuplicates; 700 break; 701 case lltok::kw_samesize: 702 SK = Comdat::SameSize; 703 break; 704 } 705 Lex.Lex(); 706 707 // See if the comdat was forward referenced, if so, use the comdat. 708 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 709 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 710 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 711 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 712 713 Comdat *C; 714 if (I != ComdatSymTab.end()) 715 C = &I->second; 716 else 717 C = M->getOrInsertComdat(Name); 718 C->setSelectionKind(SK); 719 720 return false; 721 } 722 723 // MDString: 724 // ::= '!' STRINGCONSTANT 725 bool LLParser::parseMDString(MDString *&Result) { 726 std::string Str; 727 if (parseStringConstant(Str)) 728 return true; 729 Result = MDString::get(Context, Str); 730 return false; 731 } 732 733 // MDNode: 734 // ::= '!' MDNodeNumber 735 bool LLParser::parseMDNodeID(MDNode *&Result) { 736 // !{ ..., !42, ... } 737 LocTy IDLoc = Lex.getLoc(); 738 unsigned MID = 0; 739 if (parseUInt32(MID)) 740 return true; 741 742 // If not a forward reference, just return it now. 743 if (NumberedMetadata.count(MID)) { 744 Result = NumberedMetadata[MID]; 745 return false; 746 } 747 748 // Otherwise, create MDNode forward reference. 749 auto &FwdRef = ForwardRefMDNodes[MID]; 750 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 751 752 Result = FwdRef.first.get(); 753 NumberedMetadata[MID].reset(Result); 754 return false; 755 } 756 757 /// parseNamedMetadata: 758 /// !foo = !{ !1, !2 } 759 bool LLParser::parseNamedMetadata() { 760 assert(Lex.getKind() == lltok::MetadataVar); 761 std::string Name = Lex.getStrVal(); 762 Lex.Lex(); 763 764 if (parseToken(lltok::equal, "expected '=' here") || 765 parseToken(lltok::exclaim, "Expected '!' here") || 766 parseToken(lltok::lbrace, "Expected '{' here")) 767 return true; 768 769 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 770 if (Lex.getKind() != lltok::rbrace) 771 do { 772 MDNode *N = nullptr; 773 // parse DIExpressions inline as a special case. They are still MDNodes, 774 // so they can still appear in named metadata. Remove this logic if they 775 // become plain Metadata. 776 if (Lex.getKind() == lltok::MetadataVar && 777 Lex.getStrVal() == "DIExpression") { 778 if (parseDIExpression(N, /*IsDistinct=*/false)) 779 return true; 780 // DIArgLists should only appear inline in a function, as they may 781 // contain LocalAsMetadata arguments which require a function context. 782 } else if (Lex.getKind() == lltok::MetadataVar && 783 Lex.getStrVal() == "DIArgList") { 784 return tokError("found DIArgList outside of function"); 785 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 786 parseMDNodeID(N)) { 787 return true; 788 } 789 NMD->addOperand(N); 790 } while (EatIfPresent(lltok::comma)); 791 792 return parseToken(lltok::rbrace, "expected end of metadata node"); 793 } 794 795 /// parseStandaloneMetadata: 796 /// !42 = !{...} 797 bool LLParser::parseStandaloneMetadata() { 798 assert(Lex.getKind() == lltok::exclaim); 799 Lex.Lex(); 800 unsigned MetadataID = 0; 801 802 MDNode *Init; 803 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 804 return true; 805 806 // Detect common error, from old metadata syntax. 807 if (Lex.getKind() == lltok::Type) 808 return tokError("unexpected type in metadata definition"); 809 810 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 811 if (Lex.getKind() == lltok::MetadataVar) { 812 if (parseSpecializedMDNode(Init, IsDistinct)) 813 return true; 814 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 815 parseMDTuple(Init, IsDistinct)) 816 return true; 817 818 // See if this was forward referenced, if so, handle it. 819 auto FI = ForwardRefMDNodes.find(MetadataID); 820 if (FI != ForwardRefMDNodes.end()) { 821 FI->second.first->replaceAllUsesWith(Init); 822 ForwardRefMDNodes.erase(FI); 823 824 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 825 } else { 826 if (NumberedMetadata.count(MetadataID)) 827 return tokError("Metadata id is already used"); 828 NumberedMetadata[MetadataID].reset(Init); 829 } 830 831 return false; 832 } 833 834 // Skips a single module summary entry. 835 bool LLParser::skipModuleSummaryEntry() { 836 // Each module summary entry consists of a tag for the entry 837 // type, followed by a colon, then the fields which may be surrounded by 838 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 839 // support is in place we will look for the tokens corresponding to the 840 // expected tags. 841 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 842 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 843 Lex.getKind() != lltok::kw_blockcount) 844 return tokError( 845 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 846 "start of summary entry"); 847 if (Lex.getKind() == lltok::kw_flags) 848 return parseSummaryIndexFlags(); 849 if (Lex.getKind() == lltok::kw_blockcount) 850 return parseBlockCount(); 851 Lex.Lex(); 852 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 853 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 854 return true; 855 // Now walk through the parenthesized entry, until the number of open 856 // parentheses goes back down to 0 (the first '(' was parsed above). 857 unsigned NumOpenParen = 1; 858 do { 859 switch (Lex.getKind()) { 860 case lltok::lparen: 861 NumOpenParen++; 862 break; 863 case lltok::rparen: 864 NumOpenParen--; 865 break; 866 case lltok::Eof: 867 return tokError("found end of file while parsing summary entry"); 868 default: 869 // Skip everything in between parentheses. 870 break; 871 } 872 Lex.Lex(); 873 } while (NumOpenParen > 0); 874 return false; 875 } 876 877 /// SummaryEntry 878 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 879 bool LLParser::parseSummaryEntry() { 880 assert(Lex.getKind() == lltok::SummaryID); 881 unsigned SummaryID = Lex.getUIntVal(); 882 883 // For summary entries, colons should be treated as distinct tokens, 884 // not an indication of the end of a label token. 885 Lex.setIgnoreColonInIdentifiers(true); 886 887 Lex.Lex(); 888 if (parseToken(lltok::equal, "expected '=' here")) 889 return true; 890 891 // If we don't have an index object, skip the summary entry. 892 if (!Index) 893 return skipModuleSummaryEntry(); 894 895 bool result = false; 896 switch (Lex.getKind()) { 897 case lltok::kw_gv: 898 result = parseGVEntry(SummaryID); 899 break; 900 case lltok::kw_module: 901 result = parseModuleEntry(SummaryID); 902 break; 903 case lltok::kw_typeid: 904 result = parseTypeIdEntry(SummaryID); 905 break; 906 case lltok::kw_typeidCompatibleVTable: 907 result = parseTypeIdCompatibleVtableEntry(SummaryID); 908 break; 909 case lltok::kw_flags: 910 result = parseSummaryIndexFlags(); 911 break; 912 case lltok::kw_blockcount: 913 result = parseBlockCount(); 914 break; 915 default: 916 result = error(Lex.getLoc(), "unexpected summary kind"); 917 break; 918 } 919 Lex.setIgnoreColonInIdentifiers(false); 920 return result; 921 } 922 923 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 924 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 925 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 926 } 927 928 // If there was an explicit dso_local, update GV. In the absence of an explicit 929 // dso_local we keep the default value. 930 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 931 if (DSOLocal) 932 GV.setDSOLocal(true); 933 } 934 935 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1, 936 Type *Ty2) { 937 std::string ErrString; 938 raw_string_ostream ErrOS(ErrString); 939 ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")"; 940 return ErrOS.str(); 941 } 942 943 /// parseIndirectSymbol: 944 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 945 /// OptionalVisibility OptionalDLLStorageClass 946 /// OptionalThreadLocal OptionalUnnamedAddr 947 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 948 /// 949 /// IndirectSymbol 950 /// ::= TypeAndValue 951 /// 952 /// IndirectSymbolAttr 953 /// ::= ',' 'partition' StringConstant 954 /// 955 /// Everything through OptionalUnnamedAddr has already been parsed. 956 /// 957 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 958 unsigned L, unsigned Visibility, 959 unsigned DLLStorageClass, bool DSOLocal, 960 GlobalVariable::ThreadLocalMode TLM, 961 GlobalVariable::UnnamedAddr UnnamedAddr) { 962 bool IsAlias; 963 if (Lex.getKind() == lltok::kw_alias) 964 IsAlias = true; 965 else if (Lex.getKind() == lltok::kw_ifunc) 966 IsAlias = false; 967 else 968 llvm_unreachable("Not an alias or ifunc!"); 969 Lex.Lex(); 970 971 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 972 973 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 974 return error(NameLoc, "invalid linkage type for alias"); 975 976 if (!isValidVisibilityForLinkage(Visibility, L)) 977 return error(NameLoc, 978 "symbol with local linkage must have default visibility"); 979 980 Type *Ty; 981 LocTy ExplicitTypeLoc = Lex.getLoc(); 982 if (parseType(Ty) || 983 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 984 return true; 985 986 Constant *Aliasee; 987 LocTy AliaseeLoc = Lex.getLoc(); 988 if (Lex.getKind() != lltok::kw_bitcast && 989 Lex.getKind() != lltok::kw_getelementptr && 990 Lex.getKind() != lltok::kw_addrspacecast && 991 Lex.getKind() != lltok::kw_inttoptr) { 992 if (parseGlobalTypeAndValue(Aliasee)) 993 return true; 994 } else { 995 // The bitcast dest type is not present, it is implied by the dest type. 996 ValID ID; 997 if (parseValID(ID)) 998 return true; 999 if (ID.Kind != ValID::t_Constant) 1000 return error(AliaseeLoc, "invalid aliasee"); 1001 Aliasee = ID.ConstantVal; 1002 } 1003 1004 Type *AliaseeType = Aliasee->getType(); 1005 auto *PTy = dyn_cast<PointerType>(AliaseeType); 1006 if (!PTy) 1007 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 1008 unsigned AddrSpace = PTy->getAddressSpace(); 1009 1010 if (IsAlias && Ty != PTy->getElementType()) { 1011 return error( 1012 ExplicitTypeLoc, 1013 typeComparisonErrorMessage( 1014 "explicit pointee type doesn't match operand's pointee type", Ty, 1015 PTy->getElementType())); 1016 } 1017 1018 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) { 1019 return error(ExplicitTypeLoc, 1020 "explicit pointee type should be a function type"); 1021 } 1022 1023 GlobalValue *GVal = nullptr; 1024 1025 // See if the alias was forward referenced, if so, prepare to replace the 1026 // forward reference. 1027 if (!Name.empty()) { 1028 GVal = M->getNamedValue(Name); 1029 if (GVal) { 1030 if (!ForwardRefVals.erase(Name)) 1031 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1032 } 1033 } else { 1034 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1035 if (I != ForwardRefValIDs.end()) { 1036 GVal = I->second.first; 1037 ForwardRefValIDs.erase(I); 1038 } 1039 } 1040 1041 // Okay, create the alias but do not insert it into the module yet. 1042 std::unique_ptr<GlobalIndirectSymbol> GA; 1043 if (IsAlias) 1044 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1045 (GlobalValue::LinkageTypes)Linkage, Name, 1046 Aliasee, /*Parent*/ nullptr)); 1047 else 1048 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 1049 (GlobalValue::LinkageTypes)Linkage, Name, 1050 Aliasee, /*Parent*/ nullptr)); 1051 GA->setThreadLocalMode(TLM); 1052 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1053 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1054 GA->setUnnamedAddr(UnnamedAddr); 1055 maybeSetDSOLocal(DSOLocal, *GA); 1056 1057 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1058 // Now parse them if there are any. 1059 while (Lex.getKind() == lltok::comma) { 1060 Lex.Lex(); 1061 1062 if (Lex.getKind() == lltok::kw_partition) { 1063 Lex.Lex(); 1064 GA->setPartition(Lex.getStrVal()); 1065 if (parseToken(lltok::StringConstant, "expected partition string")) 1066 return true; 1067 } else { 1068 return tokError("unknown alias or ifunc property!"); 1069 } 1070 } 1071 1072 if (Name.empty()) 1073 NumberedVals.push_back(GA.get()); 1074 1075 if (GVal) { 1076 // Verify that types agree. 1077 if (GVal->getType() != GA->getType()) 1078 return error( 1079 ExplicitTypeLoc, 1080 "forward reference and definition of alias have different types"); 1081 1082 // If they agree, just RAUW the old value with the alias and remove the 1083 // forward ref info. 1084 GVal->replaceAllUsesWith(GA.get()); 1085 GVal->eraseFromParent(); 1086 } 1087 1088 // Insert into the module, we know its name won't collide now. 1089 if (IsAlias) 1090 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1091 else 1092 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1093 assert(GA->getName() == Name && "Should not be a name conflict!"); 1094 1095 // The module owns this now 1096 GA.release(); 1097 1098 return false; 1099 } 1100 1101 /// parseGlobal 1102 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1103 /// OptionalVisibility OptionalDLLStorageClass 1104 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1105 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1106 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1107 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1108 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1109 /// Const OptionalAttrs 1110 /// 1111 /// Everything up to and including OptionalUnnamedAddr has been parsed 1112 /// already. 1113 /// 1114 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1115 unsigned Linkage, bool HasLinkage, 1116 unsigned Visibility, unsigned DLLStorageClass, 1117 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1118 GlobalVariable::UnnamedAddr UnnamedAddr) { 1119 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1120 return error(NameLoc, 1121 "symbol with local linkage must have default visibility"); 1122 1123 unsigned AddrSpace; 1124 bool IsConstant, IsExternallyInitialized; 1125 LocTy IsExternallyInitializedLoc; 1126 LocTy TyLoc; 1127 1128 Type *Ty = nullptr; 1129 if (parseOptionalAddrSpace(AddrSpace) || 1130 parseOptionalToken(lltok::kw_externally_initialized, 1131 IsExternallyInitialized, 1132 &IsExternallyInitializedLoc) || 1133 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1134 return true; 1135 1136 // If the linkage is specified and is external, then no initializer is 1137 // present. 1138 Constant *Init = nullptr; 1139 if (!HasLinkage || 1140 !GlobalValue::isValidDeclarationLinkage( 1141 (GlobalValue::LinkageTypes)Linkage)) { 1142 if (parseGlobalValue(Ty, Init)) 1143 return true; 1144 } 1145 1146 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1147 return error(TyLoc, "invalid type for global variable"); 1148 1149 GlobalValue *GVal = nullptr; 1150 1151 // See if the global was forward referenced, if so, use the global. 1152 if (!Name.empty()) { 1153 GVal = M->getNamedValue(Name); 1154 if (GVal) { 1155 if (!ForwardRefVals.erase(Name)) 1156 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1157 } 1158 } else { 1159 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1160 if (I != ForwardRefValIDs.end()) { 1161 GVal = I->second.first; 1162 ForwardRefValIDs.erase(I); 1163 } 1164 } 1165 1166 GlobalVariable *GV; 1167 if (!GVal) { 1168 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1169 Name, nullptr, GlobalVariable::NotThreadLocal, 1170 AddrSpace); 1171 } else { 1172 if (GVal->getValueType() != Ty) 1173 return error( 1174 TyLoc, 1175 "forward reference and definition of global have different types"); 1176 1177 GV = cast<GlobalVariable>(GVal); 1178 1179 // Move the forward-reference to the correct spot in the module. 1180 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1181 } 1182 1183 if (Name.empty()) 1184 NumberedVals.push_back(GV); 1185 1186 // Set the parsed properties on the global. 1187 if (Init) 1188 GV->setInitializer(Init); 1189 GV->setConstant(IsConstant); 1190 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1191 maybeSetDSOLocal(DSOLocal, *GV); 1192 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1193 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1194 GV->setExternallyInitialized(IsExternallyInitialized); 1195 GV->setThreadLocalMode(TLM); 1196 GV->setUnnamedAddr(UnnamedAddr); 1197 1198 // parse attributes on the global. 1199 while (Lex.getKind() == lltok::comma) { 1200 Lex.Lex(); 1201 1202 if (Lex.getKind() == lltok::kw_section) { 1203 Lex.Lex(); 1204 GV->setSection(Lex.getStrVal()); 1205 if (parseToken(lltok::StringConstant, "expected global section string")) 1206 return true; 1207 } else if (Lex.getKind() == lltok::kw_partition) { 1208 Lex.Lex(); 1209 GV->setPartition(Lex.getStrVal()); 1210 if (parseToken(lltok::StringConstant, "expected partition string")) 1211 return true; 1212 } else if (Lex.getKind() == lltok::kw_align) { 1213 MaybeAlign Alignment; 1214 if (parseOptionalAlignment(Alignment)) 1215 return true; 1216 GV->setAlignment(Alignment); 1217 } else if (Lex.getKind() == lltok::MetadataVar) { 1218 if (parseGlobalObjectMetadataAttachment(*GV)) 1219 return true; 1220 } else { 1221 Comdat *C; 1222 if (parseOptionalComdat(Name, C)) 1223 return true; 1224 if (C) 1225 GV->setComdat(C); 1226 else 1227 return tokError("unknown global variable property!"); 1228 } 1229 } 1230 1231 AttrBuilder Attrs; 1232 LocTy BuiltinLoc; 1233 std::vector<unsigned> FwdRefAttrGrps; 1234 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1235 return true; 1236 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1237 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1238 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1239 } 1240 1241 return false; 1242 } 1243 1244 /// parseUnnamedAttrGrp 1245 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1246 bool LLParser::parseUnnamedAttrGrp() { 1247 assert(Lex.getKind() == lltok::kw_attributes); 1248 LocTy AttrGrpLoc = Lex.getLoc(); 1249 Lex.Lex(); 1250 1251 if (Lex.getKind() != lltok::AttrGrpID) 1252 return tokError("expected attribute group id"); 1253 1254 unsigned VarID = Lex.getUIntVal(); 1255 std::vector<unsigned> unused; 1256 LocTy BuiltinLoc; 1257 Lex.Lex(); 1258 1259 if (parseToken(lltok::equal, "expected '=' here") || 1260 parseToken(lltok::lbrace, "expected '{' here") || 1261 parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1262 BuiltinLoc) || 1263 parseToken(lltok::rbrace, "expected end of attribute group")) 1264 return true; 1265 1266 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1267 return error(AttrGrpLoc, "attribute group has no attributes"); 1268 1269 return false; 1270 } 1271 1272 /// parseFnAttributeValuePairs 1273 /// ::= <attr> | <attr> '=' <value> 1274 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1275 std::vector<unsigned> &FwdRefAttrGrps, 1276 bool inAttrGrp, LocTy &BuiltinLoc) { 1277 bool HaveError = false; 1278 1279 B.clear(); 1280 1281 while (true) { 1282 lltok::Kind Token = Lex.getKind(); 1283 if (Token == lltok::kw_builtin) 1284 BuiltinLoc = Lex.getLoc(); 1285 switch (Token) { 1286 default: 1287 if (!inAttrGrp) return HaveError; 1288 return error(Lex.getLoc(), "unterminated attribute group"); 1289 case lltok::rbrace: 1290 // Finished. 1291 return false; 1292 1293 case lltok::AttrGrpID: { 1294 // Allow a function to reference an attribute group: 1295 // 1296 // define void @foo() #1 { ... } 1297 if (inAttrGrp) 1298 HaveError |= error( 1299 Lex.getLoc(), 1300 "cannot have an attribute group reference in an attribute group"); 1301 1302 unsigned AttrGrpNum = Lex.getUIntVal(); 1303 if (inAttrGrp) break; 1304 1305 // Save the reference to the attribute group. We'll fill it in later. 1306 FwdRefAttrGrps.push_back(AttrGrpNum); 1307 break; 1308 } 1309 // Target-dependent attributes: 1310 case lltok::StringConstant: { 1311 if (parseStringAttribute(B)) 1312 return true; 1313 continue; 1314 } 1315 1316 // Target-independent attributes: 1317 case lltok::kw_align: { 1318 // As a hack, we allow function alignment to be initially parsed as an 1319 // attribute on a function declaration/definition or added to an attribute 1320 // group and later moved to the alignment field. 1321 MaybeAlign Alignment; 1322 if (inAttrGrp) { 1323 Lex.Lex(); 1324 uint32_t Value = 0; 1325 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1326 return true; 1327 Alignment = Align(Value); 1328 } else { 1329 if (parseOptionalAlignment(Alignment)) 1330 return true; 1331 } 1332 B.addAlignmentAttr(Alignment); 1333 continue; 1334 } 1335 case lltok::kw_alignstack: { 1336 unsigned Alignment; 1337 if (inAttrGrp) { 1338 Lex.Lex(); 1339 if (parseToken(lltok::equal, "expected '=' here") || 1340 parseUInt32(Alignment)) 1341 return true; 1342 } else { 1343 if (parseOptionalStackAlignment(Alignment)) 1344 return true; 1345 } 1346 B.addStackAlignmentAttr(Alignment); 1347 continue; 1348 } 1349 case lltok::kw_allocsize: { 1350 unsigned ElemSizeArg; 1351 Optional<unsigned> NumElemsArg; 1352 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1353 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1354 return true; 1355 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1356 continue; 1357 } 1358 case lltok::kw_vscale_range: { 1359 unsigned MinValue, MaxValue; 1360 // inAttrGrp doesn't matter; we only support vscale_range(a[, b]) 1361 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1362 return true; 1363 B.addVScaleRangeAttr(MinValue, MaxValue); 1364 continue; 1365 } 1366 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1367 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1368 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1369 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1370 case lltok::kw_hot: B.addAttribute(Attribute::Hot); break; 1371 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1372 case lltok::kw_inaccessiblememonly: 1373 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1374 case lltok::kw_inaccessiblemem_or_argmemonly: 1375 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1376 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1377 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1378 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1379 case lltok::kw_mustprogress: 1380 B.addAttribute(Attribute::MustProgress); 1381 break; 1382 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1383 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1384 case lltok::kw_nocallback: 1385 B.addAttribute(Attribute::NoCallback); 1386 break; 1387 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1388 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1389 case lltok::kw_noimplicitfloat: 1390 B.addAttribute(Attribute::NoImplicitFloat); break; 1391 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1392 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1393 case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break; 1394 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1395 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1396 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1397 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1398 case lltok::kw_noprofile: B.addAttribute(Attribute::NoProfile); break; 1399 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1400 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1401 case lltok::kw_nosanitize_coverage: 1402 B.addAttribute(Attribute::NoSanitizeCoverage); 1403 break; 1404 case lltok::kw_null_pointer_is_valid: 1405 B.addAttribute(Attribute::NullPointerIsValid); break; 1406 case lltok::kw_optforfuzzing: 1407 B.addAttribute(Attribute::OptForFuzzing); break; 1408 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1409 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1410 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1411 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1412 case lltok::kw_returns_twice: 1413 B.addAttribute(Attribute::ReturnsTwice); break; 1414 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1415 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1416 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1417 case lltok::kw_sspstrong: 1418 B.addAttribute(Attribute::StackProtectStrong); break; 1419 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1420 case lltok::kw_shadowcallstack: 1421 B.addAttribute(Attribute::ShadowCallStack); break; 1422 case lltok::kw_sanitize_address: 1423 B.addAttribute(Attribute::SanitizeAddress); break; 1424 case lltok::kw_sanitize_hwaddress: 1425 B.addAttribute(Attribute::SanitizeHWAddress); break; 1426 case lltok::kw_sanitize_memtag: 1427 B.addAttribute(Attribute::SanitizeMemTag); break; 1428 case lltok::kw_sanitize_thread: 1429 B.addAttribute(Attribute::SanitizeThread); break; 1430 case lltok::kw_sanitize_memory: 1431 B.addAttribute(Attribute::SanitizeMemory); break; 1432 case lltok::kw_speculative_load_hardening: 1433 B.addAttribute(Attribute::SpeculativeLoadHardening); 1434 break; 1435 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1436 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1437 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1438 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1439 case lltok::kw_preallocated: { 1440 Type *Ty; 1441 if (parsePreallocated(Ty)) 1442 return true; 1443 B.addPreallocatedAttr(Ty); 1444 break; 1445 } 1446 1447 // error handling. 1448 case lltok::kw_inreg: 1449 case lltok::kw_signext: 1450 case lltok::kw_zeroext: 1451 HaveError |= 1452 error(Lex.getLoc(), "invalid use of attribute on a function"); 1453 break; 1454 case lltok::kw_byval: 1455 case lltok::kw_dereferenceable: 1456 case lltok::kw_dereferenceable_or_null: 1457 case lltok::kw_inalloca: 1458 case lltok::kw_nest: 1459 case lltok::kw_noalias: 1460 case lltok::kw_noundef: 1461 case lltok::kw_nocapture: 1462 case lltok::kw_nonnull: 1463 case lltok::kw_returned: 1464 case lltok::kw_sret: 1465 case lltok::kw_swifterror: 1466 case lltok::kw_swiftself: 1467 case lltok::kw_swiftasync: 1468 case lltok::kw_immarg: 1469 case lltok::kw_byref: 1470 HaveError |= 1471 error(Lex.getLoc(), 1472 "invalid use of parameter-only attribute on a function"); 1473 break; 1474 } 1475 1476 // parsePreallocated() consumes token 1477 if (Token != lltok::kw_preallocated) 1478 Lex.Lex(); 1479 } 1480 } 1481 1482 //===----------------------------------------------------------------------===// 1483 // GlobalValue Reference/Resolution Routines. 1484 //===----------------------------------------------------------------------===// 1485 1486 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1487 const std::string &Name) { 1488 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1489 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1490 PTy->getAddressSpace(), Name, M); 1491 else 1492 return new GlobalVariable(*M, PTy->getElementType(), false, 1493 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1494 nullptr, GlobalVariable::NotThreadLocal, 1495 PTy->getAddressSpace()); 1496 } 1497 1498 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1499 Value *Val, bool IsCall) { 1500 if (Val->getType() == Ty) 1501 return Val; 1502 // For calls we also accept variables in the program address space. 1503 Type *SuggestedTy = Ty; 1504 if (IsCall && isa<PointerType>(Ty)) { 1505 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1506 M->getDataLayout().getProgramAddressSpace()); 1507 SuggestedTy = TyInProgAS; 1508 if (Val->getType() == TyInProgAS) 1509 return Val; 1510 } 1511 if (Ty->isLabelTy()) 1512 error(Loc, "'" + Name + "' is not a basic block"); 1513 else 1514 error(Loc, "'" + Name + "' defined with type '" + 1515 getTypeString(Val->getType()) + "' but expected '" + 1516 getTypeString(SuggestedTy) + "'"); 1517 return nullptr; 1518 } 1519 1520 /// getGlobalVal - Get a value with the specified name or ID, creating a 1521 /// forward reference record if needed. This can return null if the value 1522 /// exists but does not have the right type. 1523 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1524 LocTy Loc, bool IsCall) { 1525 PointerType *PTy = dyn_cast<PointerType>(Ty); 1526 if (!PTy) { 1527 error(Loc, "global variable reference must have pointer type"); 1528 return nullptr; 1529 } 1530 1531 // Look this name up in the normal function symbol table. 1532 GlobalValue *Val = 1533 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1534 1535 // If this is a forward reference for the value, see if we already created a 1536 // forward ref record. 1537 if (!Val) { 1538 auto I = ForwardRefVals.find(Name); 1539 if (I != ForwardRefVals.end()) 1540 Val = I->second.first; 1541 } 1542 1543 // If we have the value in the symbol table or fwd-ref table, return it. 1544 if (Val) 1545 return cast_or_null<GlobalValue>( 1546 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1547 1548 // Otherwise, create a new forward reference for this value and remember it. 1549 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1550 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1551 return FwdVal; 1552 } 1553 1554 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1555 bool IsCall) { 1556 PointerType *PTy = dyn_cast<PointerType>(Ty); 1557 if (!PTy) { 1558 error(Loc, "global variable reference must have pointer type"); 1559 return nullptr; 1560 } 1561 1562 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1563 1564 // If this is a forward reference for the value, see if we already created a 1565 // forward ref record. 1566 if (!Val) { 1567 auto I = ForwardRefValIDs.find(ID); 1568 if (I != ForwardRefValIDs.end()) 1569 Val = I->second.first; 1570 } 1571 1572 // If we have the value in the symbol table or fwd-ref table, return it. 1573 if (Val) 1574 return cast_or_null<GlobalValue>( 1575 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1576 1577 // Otherwise, create a new forward reference for this value and remember it. 1578 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1579 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1580 return FwdVal; 1581 } 1582 1583 //===----------------------------------------------------------------------===// 1584 // Comdat Reference/Resolution Routines. 1585 //===----------------------------------------------------------------------===// 1586 1587 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1588 // Look this name up in the comdat symbol table. 1589 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1590 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1591 if (I != ComdatSymTab.end()) 1592 return &I->second; 1593 1594 // Otherwise, create a new forward reference for this value and remember it. 1595 Comdat *C = M->getOrInsertComdat(Name); 1596 ForwardRefComdats[Name] = Loc; 1597 return C; 1598 } 1599 1600 //===----------------------------------------------------------------------===// 1601 // Helper Routines. 1602 //===----------------------------------------------------------------------===// 1603 1604 /// parseToken - If the current token has the specified kind, eat it and return 1605 /// success. Otherwise, emit the specified error and return failure. 1606 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1607 if (Lex.getKind() != T) 1608 return tokError(ErrMsg); 1609 Lex.Lex(); 1610 return false; 1611 } 1612 1613 /// parseStringConstant 1614 /// ::= StringConstant 1615 bool LLParser::parseStringConstant(std::string &Result) { 1616 if (Lex.getKind() != lltok::StringConstant) 1617 return tokError("expected string constant"); 1618 Result = Lex.getStrVal(); 1619 Lex.Lex(); 1620 return false; 1621 } 1622 1623 /// parseUInt32 1624 /// ::= uint32 1625 bool LLParser::parseUInt32(uint32_t &Val) { 1626 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1627 return tokError("expected integer"); 1628 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1629 if (Val64 != unsigned(Val64)) 1630 return tokError("expected 32-bit integer (too large)"); 1631 Val = Val64; 1632 Lex.Lex(); 1633 return false; 1634 } 1635 1636 /// parseUInt64 1637 /// ::= uint64 1638 bool LLParser::parseUInt64(uint64_t &Val) { 1639 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1640 return tokError("expected integer"); 1641 Val = Lex.getAPSIntVal().getLimitedValue(); 1642 Lex.Lex(); 1643 return false; 1644 } 1645 1646 /// parseTLSModel 1647 /// := 'localdynamic' 1648 /// := 'initialexec' 1649 /// := 'localexec' 1650 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1651 switch (Lex.getKind()) { 1652 default: 1653 return tokError("expected localdynamic, initialexec or localexec"); 1654 case lltok::kw_localdynamic: 1655 TLM = GlobalVariable::LocalDynamicTLSModel; 1656 break; 1657 case lltok::kw_initialexec: 1658 TLM = GlobalVariable::InitialExecTLSModel; 1659 break; 1660 case lltok::kw_localexec: 1661 TLM = GlobalVariable::LocalExecTLSModel; 1662 break; 1663 } 1664 1665 Lex.Lex(); 1666 return false; 1667 } 1668 1669 /// parseOptionalThreadLocal 1670 /// := /*empty*/ 1671 /// := 'thread_local' 1672 /// := 'thread_local' '(' tlsmodel ')' 1673 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1674 TLM = GlobalVariable::NotThreadLocal; 1675 if (!EatIfPresent(lltok::kw_thread_local)) 1676 return false; 1677 1678 TLM = GlobalVariable::GeneralDynamicTLSModel; 1679 if (Lex.getKind() == lltok::lparen) { 1680 Lex.Lex(); 1681 return parseTLSModel(TLM) || 1682 parseToken(lltok::rparen, "expected ')' after thread local model"); 1683 } 1684 return false; 1685 } 1686 1687 /// parseOptionalAddrSpace 1688 /// := /*empty*/ 1689 /// := 'addrspace' '(' uint32 ')' 1690 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1691 AddrSpace = DefaultAS; 1692 if (!EatIfPresent(lltok::kw_addrspace)) 1693 return false; 1694 return parseToken(lltok::lparen, "expected '(' in address space") || 1695 parseUInt32(AddrSpace) || 1696 parseToken(lltok::rparen, "expected ')' in address space"); 1697 } 1698 1699 /// parseStringAttribute 1700 /// := StringConstant 1701 /// := StringConstant '=' StringConstant 1702 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1703 std::string Attr = Lex.getStrVal(); 1704 Lex.Lex(); 1705 std::string Val; 1706 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1707 return true; 1708 B.addAttribute(Attr, Val); 1709 return false; 1710 } 1711 1712 /// parseOptionalParamAttrs - parse a potentially empty list of parameter 1713 /// attributes. 1714 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) { 1715 bool HaveError = false; 1716 1717 B.clear(); 1718 1719 while (true) { 1720 lltok::Kind Token = Lex.getKind(); 1721 switch (Token) { 1722 default: // End of attributes. 1723 return HaveError; 1724 case lltok::StringConstant: { 1725 if (parseStringAttribute(B)) 1726 return true; 1727 continue; 1728 } 1729 case lltok::kw_align: { 1730 MaybeAlign Alignment; 1731 if (parseOptionalAlignment(Alignment, true)) 1732 return true; 1733 B.addAlignmentAttr(Alignment); 1734 continue; 1735 } 1736 case lltok::kw_alignstack: { 1737 unsigned Alignment; 1738 if (parseOptionalStackAlignment(Alignment)) 1739 return true; 1740 B.addStackAlignmentAttr(Alignment); 1741 continue; 1742 } 1743 case lltok::kw_byval: { 1744 Type *Ty; 1745 if (parseRequiredTypeAttr(Ty, lltok::kw_byval)) 1746 return true; 1747 B.addByValAttr(Ty); 1748 continue; 1749 } 1750 case lltok::kw_sret: { 1751 Type *Ty; 1752 if (parseRequiredTypeAttr(Ty, lltok::kw_sret)) 1753 return true; 1754 B.addStructRetAttr(Ty); 1755 continue; 1756 } 1757 case lltok::kw_preallocated: { 1758 Type *Ty; 1759 if (parsePreallocated(Ty)) 1760 return true; 1761 B.addPreallocatedAttr(Ty); 1762 continue; 1763 } 1764 case lltok::kw_inalloca: { 1765 Type *Ty; 1766 if (parseInalloca(Ty)) 1767 return true; 1768 B.addInAllocaAttr(Ty); 1769 continue; 1770 } 1771 case lltok::kw_dereferenceable: { 1772 uint64_t Bytes; 1773 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1774 return true; 1775 B.addDereferenceableAttr(Bytes); 1776 continue; 1777 } 1778 case lltok::kw_dereferenceable_or_null: { 1779 uint64_t Bytes; 1780 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1781 return true; 1782 B.addDereferenceableOrNullAttr(Bytes); 1783 continue; 1784 } 1785 case lltok::kw_byref: { 1786 Type *Ty; 1787 if (parseByRef(Ty)) 1788 return true; 1789 B.addByRefAttr(Ty); 1790 continue; 1791 } 1792 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1793 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1794 case lltok::kw_noundef: 1795 B.addAttribute(Attribute::NoUndef); 1796 break; 1797 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1798 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1799 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1800 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1801 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1802 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1803 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1804 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1805 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1806 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1807 case lltok::kw_swiftasync: B.addAttribute(Attribute::SwiftAsync); break; 1808 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1809 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1810 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1811 1812 case lltok::kw_alwaysinline: 1813 case lltok::kw_argmemonly: 1814 case lltok::kw_builtin: 1815 case lltok::kw_inlinehint: 1816 case lltok::kw_jumptable: 1817 case lltok::kw_minsize: 1818 case lltok::kw_mustprogress: 1819 case lltok::kw_naked: 1820 case lltok::kw_nobuiltin: 1821 case lltok::kw_noduplicate: 1822 case lltok::kw_noimplicitfloat: 1823 case lltok::kw_noinline: 1824 case lltok::kw_nonlazybind: 1825 case lltok::kw_nomerge: 1826 case lltok::kw_noprofile: 1827 case lltok::kw_noredzone: 1828 case lltok::kw_noreturn: 1829 case lltok::kw_nocf_check: 1830 case lltok::kw_nounwind: 1831 case lltok::kw_nosanitize_coverage: 1832 case lltok::kw_optforfuzzing: 1833 case lltok::kw_optnone: 1834 case lltok::kw_optsize: 1835 case lltok::kw_returns_twice: 1836 case lltok::kw_sanitize_address: 1837 case lltok::kw_sanitize_hwaddress: 1838 case lltok::kw_sanitize_memtag: 1839 case lltok::kw_sanitize_memory: 1840 case lltok::kw_sanitize_thread: 1841 case lltok::kw_speculative_load_hardening: 1842 case lltok::kw_ssp: 1843 case lltok::kw_sspreq: 1844 case lltok::kw_sspstrong: 1845 case lltok::kw_safestack: 1846 case lltok::kw_shadowcallstack: 1847 case lltok::kw_strictfp: 1848 case lltok::kw_uwtable: 1849 case lltok::kw_vscale_range: 1850 HaveError |= 1851 error(Lex.getLoc(), "invalid use of function-only attribute"); 1852 break; 1853 } 1854 1855 Lex.Lex(); 1856 } 1857 } 1858 1859 /// parseOptionalReturnAttrs - parse a potentially empty list of return 1860 /// attributes. 1861 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) { 1862 bool HaveError = false; 1863 1864 B.clear(); 1865 1866 while (true) { 1867 lltok::Kind Token = Lex.getKind(); 1868 switch (Token) { 1869 default: // End of attributes. 1870 return HaveError; 1871 case lltok::StringConstant: { 1872 if (parseStringAttribute(B)) 1873 return true; 1874 continue; 1875 } 1876 case lltok::kw_dereferenceable: { 1877 uint64_t Bytes; 1878 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1879 return true; 1880 B.addDereferenceableAttr(Bytes); 1881 continue; 1882 } 1883 case lltok::kw_dereferenceable_or_null: { 1884 uint64_t Bytes; 1885 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1886 return true; 1887 B.addDereferenceableOrNullAttr(Bytes); 1888 continue; 1889 } 1890 case lltok::kw_align: { 1891 MaybeAlign Alignment; 1892 if (parseOptionalAlignment(Alignment)) 1893 return true; 1894 B.addAlignmentAttr(Alignment); 1895 continue; 1896 } 1897 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1898 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1899 case lltok::kw_noundef: 1900 B.addAttribute(Attribute::NoUndef); 1901 break; 1902 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1903 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1904 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1905 1906 // error handling. 1907 case lltok::kw_byval: 1908 case lltok::kw_inalloca: 1909 case lltok::kw_nest: 1910 case lltok::kw_nocapture: 1911 case lltok::kw_returned: 1912 case lltok::kw_sret: 1913 case lltok::kw_swifterror: 1914 case lltok::kw_swiftself: 1915 case lltok::kw_swiftasync: 1916 case lltok::kw_immarg: 1917 case lltok::kw_byref: 1918 HaveError |= 1919 error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1920 break; 1921 1922 case lltok::kw_alignstack: 1923 case lltok::kw_alwaysinline: 1924 case lltok::kw_argmemonly: 1925 case lltok::kw_builtin: 1926 case lltok::kw_cold: 1927 case lltok::kw_inlinehint: 1928 case lltok::kw_jumptable: 1929 case lltok::kw_minsize: 1930 case lltok::kw_mustprogress: 1931 case lltok::kw_naked: 1932 case lltok::kw_nobuiltin: 1933 case lltok::kw_noduplicate: 1934 case lltok::kw_noimplicitfloat: 1935 case lltok::kw_noinline: 1936 case lltok::kw_nonlazybind: 1937 case lltok::kw_nomerge: 1938 case lltok::kw_noprofile: 1939 case lltok::kw_noredzone: 1940 case lltok::kw_noreturn: 1941 case lltok::kw_nocf_check: 1942 case lltok::kw_nounwind: 1943 case lltok::kw_nosanitize_coverage: 1944 case lltok::kw_optforfuzzing: 1945 case lltok::kw_optnone: 1946 case lltok::kw_optsize: 1947 case lltok::kw_returns_twice: 1948 case lltok::kw_sanitize_address: 1949 case lltok::kw_sanitize_hwaddress: 1950 case lltok::kw_sanitize_memtag: 1951 case lltok::kw_sanitize_memory: 1952 case lltok::kw_sanitize_thread: 1953 case lltok::kw_speculative_load_hardening: 1954 case lltok::kw_ssp: 1955 case lltok::kw_sspreq: 1956 case lltok::kw_sspstrong: 1957 case lltok::kw_safestack: 1958 case lltok::kw_shadowcallstack: 1959 case lltok::kw_strictfp: 1960 case lltok::kw_uwtable: 1961 case lltok::kw_vscale_range: 1962 HaveError |= 1963 error(Lex.getLoc(), "invalid use of function-only attribute"); 1964 break; 1965 case lltok::kw_readnone: 1966 case lltok::kw_readonly: 1967 HaveError |= 1968 error(Lex.getLoc(), "invalid use of attribute on return type"); 1969 break; 1970 case lltok::kw_preallocated: 1971 HaveError |= 1972 error(Lex.getLoc(), 1973 "invalid use of parameter-only/call site-only attribute"); 1974 break; 1975 } 1976 1977 Lex.Lex(); 1978 } 1979 } 1980 1981 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1982 HasLinkage = true; 1983 switch (Kind) { 1984 default: 1985 HasLinkage = false; 1986 return GlobalValue::ExternalLinkage; 1987 case lltok::kw_private: 1988 return GlobalValue::PrivateLinkage; 1989 case lltok::kw_internal: 1990 return GlobalValue::InternalLinkage; 1991 case lltok::kw_weak: 1992 return GlobalValue::WeakAnyLinkage; 1993 case lltok::kw_weak_odr: 1994 return GlobalValue::WeakODRLinkage; 1995 case lltok::kw_linkonce: 1996 return GlobalValue::LinkOnceAnyLinkage; 1997 case lltok::kw_linkonce_odr: 1998 return GlobalValue::LinkOnceODRLinkage; 1999 case lltok::kw_available_externally: 2000 return GlobalValue::AvailableExternallyLinkage; 2001 case lltok::kw_appending: 2002 return GlobalValue::AppendingLinkage; 2003 case lltok::kw_common: 2004 return GlobalValue::CommonLinkage; 2005 case lltok::kw_extern_weak: 2006 return GlobalValue::ExternalWeakLinkage; 2007 case lltok::kw_external: 2008 return GlobalValue::ExternalLinkage; 2009 } 2010 } 2011 2012 /// parseOptionalLinkage 2013 /// ::= /*empty*/ 2014 /// ::= 'private' 2015 /// ::= 'internal' 2016 /// ::= 'weak' 2017 /// ::= 'weak_odr' 2018 /// ::= 'linkonce' 2019 /// ::= 'linkonce_odr' 2020 /// ::= 'available_externally' 2021 /// ::= 'appending' 2022 /// ::= 'common' 2023 /// ::= 'extern_weak' 2024 /// ::= 'external' 2025 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 2026 unsigned &Visibility, 2027 unsigned &DLLStorageClass, bool &DSOLocal) { 2028 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 2029 if (HasLinkage) 2030 Lex.Lex(); 2031 parseOptionalDSOLocal(DSOLocal); 2032 parseOptionalVisibility(Visibility); 2033 parseOptionalDLLStorageClass(DLLStorageClass); 2034 2035 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 2036 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 2037 } 2038 2039 return false; 2040 } 2041 2042 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 2043 switch (Lex.getKind()) { 2044 default: 2045 DSOLocal = false; 2046 break; 2047 case lltok::kw_dso_local: 2048 DSOLocal = true; 2049 Lex.Lex(); 2050 break; 2051 case lltok::kw_dso_preemptable: 2052 DSOLocal = false; 2053 Lex.Lex(); 2054 break; 2055 } 2056 } 2057 2058 /// parseOptionalVisibility 2059 /// ::= /*empty*/ 2060 /// ::= 'default' 2061 /// ::= 'hidden' 2062 /// ::= 'protected' 2063 /// 2064 void LLParser::parseOptionalVisibility(unsigned &Res) { 2065 switch (Lex.getKind()) { 2066 default: 2067 Res = GlobalValue::DefaultVisibility; 2068 return; 2069 case lltok::kw_default: 2070 Res = GlobalValue::DefaultVisibility; 2071 break; 2072 case lltok::kw_hidden: 2073 Res = GlobalValue::HiddenVisibility; 2074 break; 2075 case lltok::kw_protected: 2076 Res = GlobalValue::ProtectedVisibility; 2077 break; 2078 } 2079 Lex.Lex(); 2080 } 2081 2082 /// parseOptionalDLLStorageClass 2083 /// ::= /*empty*/ 2084 /// ::= 'dllimport' 2085 /// ::= 'dllexport' 2086 /// 2087 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 2088 switch (Lex.getKind()) { 2089 default: 2090 Res = GlobalValue::DefaultStorageClass; 2091 return; 2092 case lltok::kw_dllimport: 2093 Res = GlobalValue::DLLImportStorageClass; 2094 break; 2095 case lltok::kw_dllexport: 2096 Res = GlobalValue::DLLExportStorageClass; 2097 break; 2098 } 2099 Lex.Lex(); 2100 } 2101 2102 /// parseOptionalCallingConv 2103 /// ::= /*empty*/ 2104 /// ::= 'ccc' 2105 /// ::= 'fastcc' 2106 /// ::= 'intel_ocl_bicc' 2107 /// ::= 'coldcc' 2108 /// ::= 'cfguard_checkcc' 2109 /// ::= 'x86_stdcallcc' 2110 /// ::= 'x86_fastcallcc' 2111 /// ::= 'x86_thiscallcc' 2112 /// ::= 'x86_vectorcallcc' 2113 /// ::= 'arm_apcscc' 2114 /// ::= 'arm_aapcscc' 2115 /// ::= 'arm_aapcs_vfpcc' 2116 /// ::= 'aarch64_vector_pcs' 2117 /// ::= 'aarch64_sve_vector_pcs' 2118 /// ::= 'msp430_intrcc' 2119 /// ::= 'avr_intrcc' 2120 /// ::= 'avr_signalcc' 2121 /// ::= 'ptx_kernel' 2122 /// ::= 'ptx_device' 2123 /// ::= 'spir_func' 2124 /// ::= 'spir_kernel' 2125 /// ::= 'x86_64_sysvcc' 2126 /// ::= 'win64cc' 2127 /// ::= 'webkit_jscc' 2128 /// ::= 'anyregcc' 2129 /// ::= 'preserve_mostcc' 2130 /// ::= 'preserve_allcc' 2131 /// ::= 'ghccc' 2132 /// ::= 'swiftcc' 2133 /// ::= 'swifttailcc' 2134 /// ::= 'x86_intrcc' 2135 /// ::= 'hhvmcc' 2136 /// ::= 'hhvm_ccc' 2137 /// ::= 'cxx_fast_tlscc' 2138 /// ::= 'amdgpu_vs' 2139 /// ::= 'amdgpu_ls' 2140 /// ::= 'amdgpu_hs' 2141 /// ::= 'amdgpu_es' 2142 /// ::= 'amdgpu_gs' 2143 /// ::= 'amdgpu_ps' 2144 /// ::= 'amdgpu_cs' 2145 /// ::= 'amdgpu_kernel' 2146 /// ::= 'tailcc' 2147 /// ::= 'cc' UINT 2148 /// 2149 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 2150 switch (Lex.getKind()) { 2151 default: CC = CallingConv::C; return false; 2152 case lltok::kw_ccc: CC = CallingConv::C; break; 2153 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 2154 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 2155 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 2156 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 2157 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 2158 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 2159 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 2160 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 2161 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 2162 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 2163 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 2164 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 2165 case lltok::kw_aarch64_sve_vector_pcs: 2166 CC = CallingConv::AArch64_SVE_VectorCall; 2167 break; 2168 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 2169 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 2170 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 2171 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 2172 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 2173 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 2174 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 2175 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 2176 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 2177 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 2178 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 2179 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 2180 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 2181 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 2182 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 2183 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 2184 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; 2185 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 2186 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 2187 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 2188 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 2189 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2190 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 2191 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2192 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2193 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2194 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2195 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2196 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2197 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2198 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2199 case lltok::kw_cc: { 2200 Lex.Lex(); 2201 return parseUInt32(CC); 2202 } 2203 } 2204 2205 Lex.Lex(); 2206 return false; 2207 } 2208 2209 /// parseMetadataAttachment 2210 /// ::= !dbg !42 2211 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2212 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2213 2214 std::string Name = Lex.getStrVal(); 2215 Kind = M->getMDKindID(Name); 2216 Lex.Lex(); 2217 2218 return parseMDNode(MD); 2219 } 2220 2221 /// parseInstructionMetadata 2222 /// ::= !dbg !42 (',' !dbg !57)* 2223 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 2224 do { 2225 if (Lex.getKind() != lltok::MetadataVar) 2226 return tokError("expected metadata after comma"); 2227 2228 unsigned MDK; 2229 MDNode *N; 2230 if (parseMetadataAttachment(MDK, N)) 2231 return true; 2232 2233 Inst.setMetadata(MDK, N); 2234 if (MDK == LLVMContext::MD_tbaa) 2235 InstsWithTBAATag.push_back(&Inst); 2236 2237 // If this is the end of the list, we're done. 2238 } while (EatIfPresent(lltok::comma)); 2239 return false; 2240 } 2241 2242 /// parseGlobalObjectMetadataAttachment 2243 /// ::= !dbg !57 2244 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2245 unsigned MDK; 2246 MDNode *N; 2247 if (parseMetadataAttachment(MDK, N)) 2248 return true; 2249 2250 GO.addMetadata(MDK, *N); 2251 return false; 2252 } 2253 2254 /// parseOptionalFunctionMetadata 2255 /// ::= (!dbg !57)* 2256 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 2257 while (Lex.getKind() == lltok::MetadataVar) 2258 if (parseGlobalObjectMetadataAttachment(F)) 2259 return true; 2260 return false; 2261 } 2262 2263 /// parseOptionalAlignment 2264 /// ::= /* empty */ 2265 /// ::= 'align' 4 2266 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 2267 Alignment = None; 2268 if (!EatIfPresent(lltok::kw_align)) 2269 return false; 2270 LocTy AlignLoc = Lex.getLoc(); 2271 uint32_t Value = 0; 2272 2273 LocTy ParenLoc = Lex.getLoc(); 2274 bool HaveParens = false; 2275 if (AllowParens) { 2276 if (EatIfPresent(lltok::lparen)) 2277 HaveParens = true; 2278 } 2279 2280 if (parseUInt32(Value)) 2281 return true; 2282 2283 if (HaveParens && !EatIfPresent(lltok::rparen)) 2284 return error(ParenLoc, "expected ')'"); 2285 2286 if (!isPowerOf2_32(Value)) 2287 return error(AlignLoc, "alignment is not a power of two"); 2288 if (Value > Value::MaximumAlignment) 2289 return error(AlignLoc, "huge alignments are not supported yet"); 2290 Alignment = Align(Value); 2291 return false; 2292 } 2293 2294 /// parseOptionalDerefAttrBytes 2295 /// ::= /* empty */ 2296 /// ::= AttrKind '(' 4 ')' 2297 /// 2298 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2299 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2300 uint64_t &Bytes) { 2301 assert((AttrKind == lltok::kw_dereferenceable || 2302 AttrKind == lltok::kw_dereferenceable_or_null) && 2303 "contract!"); 2304 2305 Bytes = 0; 2306 if (!EatIfPresent(AttrKind)) 2307 return false; 2308 LocTy ParenLoc = Lex.getLoc(); 2309 if (!EatIfPresent(lltok::lparen)) 2310 return error(ParenLoc, "expected '('"); 2311 LocTy DerefLoc = Lex.getLoc(); 2312 if (parseUInt64(Bytes)) 2313 return true; 2314 ParenLoc = Lex.getLoc(); 2315 if (!EatIfPresent(lltok::rparen)) 2316 return error(ParenLoc, "expected ')'"); 2317 if (!Bytes) 2318 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 2319 return false; 2320 } 2321 2322 /// parseOptionalCommaAlign 2323 /// ::= 2324 /// ::= ',' align 4 2325 /// 2326 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2327 /// end. 2328 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 2329 bool &AteExtraComma) { 2330 AteExtraComma = false; 2331 while (EatIfPresent(lltok::comma)) { 2332 // Metadata at the end is an early exit. 2333 if (Lex.getKind() == lltok::MetadataVar) { 2334 AteExtraComma = true; 2335 return false; 2336 } 2337 2338 if (Lex.getKind() != lltok::kw_align) 2339 return error(Lex.getLoc(), "expected metadata or 'align'"); 2340 2341 if (parseOptionalAlignment(Alignment)) 2342 return true; 2343 } 2344 2345 return false; 2346 } 2347 2348 /// parseOptionalCommaAddrSpace 2349 /// ::= 2350 /// ::= ',' addrspace(1) 2351 /// 2352 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2353 /// end. 2354 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2355 bool &AteExtraComma) { 2356 AteExtraComma = false; 2357 while (EatIfPresent(lltok::comma)) { 2358 // Metadata at the end is an early exit. 2359 if (Lex.getKind() == lltok::MetadataVar) { 2360 AteExtraComma = true; 2361 return false; 2362 } 2363 2364 Loc = Lex.getLoc(); 2365 if (Lex.getKind() != lltok::kw_addrspace) 2366 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2367 2368 if (parseOptionalAddrSpace(AddrSpace)) 2369 return true; 2370 } 2371 2372 return false; 2373 } 2374 2375 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2376 Optional<unsigned> &HowManyArg) { 2377 Lex.Lex(); 2378 2379 auto StartParen = Lex.getLoc(); 2380 if (!EatIfPresent(lltok::lparen)) 2381 return error(StartParen, "expected '('"); 2382 2383 if (parseUInt32(BaseSizeArg)) 2384 return true; 2385 2386 if (EatIfPresent(lltok::comma)) { 2387 auto HowManyAt = Lex.getLoc(); 2388 unsigned HowMany; 2389 if (parseUInt32(HowMany)) 2390 return true; 2391 if (HowMany == BaseSizeArg) 2392 return error(HowManyAt, 2393 "'allocsize' indices can't refer to the same parameter"); 2394 HowManyArg = HowMany; 2395 } else 2396 HowManyArg = None; 2397 2398 auto EndParen = Lex.getLoc(); 2399 if (!EatIfPresent(lltok::rparen)) 2400 return error(EndParen, "expected ')'"); 2401 return false; 2402 } 2403 2404 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2405 unsigned &MaxValue) { 2406 Lex.Lex(); 2407 2408 auto StartParen = Lex.getLoc(); 2409 if (!EatIfPresent(lltok::lparen)) 2410 return error(StartParen, "expected '('"); 2411 2412 if (parseUInt32(MinValue)) 2413 return true; 2414 2415 if (EatIfPresent(lltok::comma)) { 2416 if (parseUInt32(MaxValue)) 2417 return true; 2418 } else 2419 MaxValue = MinValue; 2420 2421 auto EndParen = Lex.getLoc(); 2422 if (!EatIfPresent(lltok::rparen)) 2423 return error(EndParen, "expected ')'"); 2424 return false; 2425 } 2426 2427 /// parseScopeAndOrdering 2428 /// if isAtomic: ::= SyncScope? AtomicOrdering 2429 /// else: ::= 2430 /// 2431 /// This sets Scope and Ordering to the parsed values. 2432 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2433 AtomicOrdering &Ordering) { 2434 if (!IsAtomic) 2435 return false; 2436 2437 return parseScope(SSID) || parseOrdering(Ordering); 2438 } 2439 2440 /// parseScope 2441 /// ::= syncscope("singlethread" | "<target scope>")? 2442 /// 2443 /// This sets synchronization scope ID to the ID of the parsed value. 2444 bool LLParser::parseScope(SyncScope::ID &SSID) { 2445 SSID = SyncScope::System; 2446 if (EatIfPresent(lltok::kw_syncscope)) { 2447 auto StartParenAt = Lex.getLoc(); 2448 if (!EatIfPresent(lltok::lparen)) 2449 return error(StartParenAt, "Expected '(' in syncscope"); 2450 2451 std::string SSN; 2452 auto SSNAt = Lex.getLoc(); 2453 if (parseStringConstant(SSN)) 2454 return error(SSNAt, "Expected synchronization scope name"); 2455 2456 auto EndParenAt = Lex.getLoc(); 2457 if (!EatIfPresent(lltok::rparen)) 2458 return error(EndParenAt, "Expected ')' in syncscope"); 2459 2460 SSID = Context.getOrInsertSyncScopeID(SSN); 2461 } 2462 2463 return false; 2464 } 2465 2466 /// parseOrdering 2467 /// ::= AtomicOrdering 2468 /// 2469 /// This sets Ordering to the parsed value. 2470 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2471 switch (Lex.getKind()) { 2472 default: 2473 return tokError("Expected ordering on atomic instruction"); 2474 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2475 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2476 // Not specified yet: 2477 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2478 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2479 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2480 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2481 case lltok::kw_seq_cst: 2482 Ordering = AtomicOrdering::SequentiallyConsistent; 2483 break; 2484 } 2485 Lex.Lex(); 2486 return false; 2487 } 2488 2489 /// parseOptionalStackAlignment 2490 /// ::= /* empty */ 2491 /// ::= 'alignstack' '(' 4 ')' 2492 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2493 Alignment = 0; 2494 if (!EatIfPresent(lltok::kw_alignstack)) 2495 return false; 2496 LocTy ParenLoc = Lex.getLoc(); 2497 if (!EatIfPresent(lltok::lparen)) 2498 return error(ParenLoc, "expected '('"); 2499 LocTy AlignLoc = Lex.getLoc(); 2500 if (parseUInt32(Alignment)) 2501 return true; 2502 ParenLoc = Lex.getLoc(); 2503 if (!EatIfPresent(lltok::rparen)) 2504 return error(ParenLoc, "expected ')'"); 2505 if (!isPowerOf2_32(Alignment)) 2506 return error(AlignLoc, "stack alignment is not a power of two"); 2507 return false; 2508 } 2509 2510 /// parseIndexList - This parses the index list for an insert/extractvalue 2511 /// instruction. This sets AteExtraComma in the case where we eat an extra 2512 /// comma at the end of the line and find that it is followed by metadata. 2513 /// Clients that don't allow metadata can call the version of this function that 2514 /// only takes one argument. 2515 /// 2516 /// parseIndexList 2517 /// ::= (',' uint32)+ 2518 /// 2519 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2520 bool &AteExtraComma) { 2521 AteExtraComma = false; 2522 2523 if (Lex.getKind() != lltok::comma) 2524 return tokError("expected ',' as start of index list"); 2525 2526 while (EatIfPresent(lltok::comma)) { 2527 if (Lex.getKind() == lltok::MetadataVar) { 2528 if (Indices.empty()) 2529 return tokError("expected index"); 2530 AteExtraComma = true; 2531 return false; 2532 } 2533 unsigned Idx = 0; 2534 if (parseUInt32(Idx)) 2535 return true; 2536 Indices.push_back(Idx); 2537 } 2538 2539 return false; 2540 } 2541 2542 //===----------------------------------------------------------------------===// 2543 // Type Parsing. 2544 //===----------------------------------------------------------------------===// 2545 2546 /// parseType - parse a type. 2547 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2548 SMLoc TypeLoc = Lex.getLoc(); 2549 switch (Lex.getKind()) { 2550 default: 2551 return tokError(Msg); 2552 case lltok::Type: 2553 // Type ::= 'float' | 'void' (etc) 2554 Result = Lex.getTyVal(); 2555 Lex.Lex(); 2556 break; 2557 case lltok::lbrace: 2558 // Type ::= StructType 2559 if (parseAnonStructType(Result, false)) 2560 return true; 2561 break; 2562 case lltok::lsquare: 2563 // Type ::= '[' ... ']' 2564 Lex.Lex(); // eat the lsquare. 2565 if (parseArrayVectorType(Result, false)) 2566 return true; 2567 break; 2568 case lltok::less: // Either vector or packed struct. 2569 // Type ::= '<' ... '>' 2570 Lex.Lex(); 2571 if (Lex.getKind() == lltok::lbrace) { 2572 if (parseAnonStructType(Result, true) || 2573 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2574 return true; 2575 } else if (parseArrayVectorType(Result, true)) 2576 return true; 2577 break; 2578 case lltok::LocalVar: { 2579 // Type ::= %foo 2580 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2581 2582 // If the type hasn't been defined yet, create a forward definition and 2583 // remember where that forward def'n was seen (in case it never is defined). 2584 if (!Entry.first) { 2585 Entry.first = StructType::create(Context, Lex.getStrVal()); 2586 Entry.second = Lex.getLoc(); 2587 } 2588 Result = Entry.first; 2589 Lex.Lex(); 2590 break; 2591 } 2592 2593 case lltok::LocalVarID: { 2594 // Type ::= %4 2595 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2596 2597 // If the type hasn't been defined yet, create a forward definition and 2598 // remember where that forward def'n was seen (in case it never is defined). 2599 if (!Entry.first) { 2600 Entry.first = StructType::create(Context); 2601 Entry.second = Lex.getLoc(); 2602 } 2603 Result = Entry.first; 2604 Lex.Lex(); 2605 break; 2606 } 2607 } 2608 2609 if (Result->isPointerTy() && cast<PointerType>(Result)->isOpaque()) { 2610 unsigned AddrSpace; 2611 if (parseOptionalAddrSpace(AddrSpace)) 2612 return true; 2613 Result = PointerType::get(getContext(), AddrSpace); 2614 } 2615 2616 // parse the type suffixes. 2617 while (true) { 2618 switch (Lex.getKind()) { 2619 // End of type. 2620 default: 2621 if (!AllowVoid && Result->isVoidTy()) 2622 return error(TypeLoc, "void type only allowed for function results"); 2623 return false; 2624 2625 // Type ::= Type '*' 2626 case lltok::star: 2627 if (Result->isLabelTy()) 2628 return tokError("basic block pointers are invalid"); 2629 if (Result->isVoidTy()) 2630 return tokError("pointers to void are invalid - use i8* instead"); 2631 if (!PointerType::isValidElementType(Result)) 2632 return tokError("pointer to this type is invalid"); 2633 Result = PointerType::getUnqual(Result); 2634 Lex.Lex(); 2635 break; 2636 2637 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2638 case lltok::kw_addrspace: { 2639 if (Result->isLabelTy()) 2640 return tokError("basic block pointers are invalid"); 2641 if (Result->isVoidTy()) 2642 return tokError("pointers to void are invalid; use i8* instead"); 2643 if (!PointerType::isValidElementType(Result)) 2644 return tokError("pointer to this type is invalid"); 2645 unsigned AddrSpace; 2646 if (parseOptionalAddrSpace(AddrSpace) || 2647 parseToken(lltok::star, "expected '*' in address space")) 2648 return true; 2649 2650 Result = PointerType::get(Result, AddrSpace); 2651 break; 2652 } 2653 2654 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2655 case lltok::lparen: 2656 if (parseFunctionType(Result)) 2657 return true; 2658 break; 2659 } 2660 } 2661 } 2662 2663 /// parseParameterList 2664 /// ::= '(' ')' 2665 /// ::= '(' Arg (',' Arg)* ')' 2666 /// Arg 2667 /// ::= Type OptionalAttributes Value OptionalAttributes 2668 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2669 PerFunctionState &PFS, bool IsMustTailCall, 2670 bool InVarArgsFunc) { 2671 if (parseToken(lltok::lparen, "expected '(' in call")) 2672 return true; 2673 2674 while (Lex.getKind() != lltok::rparen) { 2675 // If this isn't the first argument, we need a comma. 2676 if (!ArgList.empty() && 2677 parseToken(lltok::comma, "expected ',' in argument list")) 2678 return true; 2679 2680 // parse an ellipsis if this is a musttail call in a variadic function. 2681 if (Lex.getKind() == lltok::dotdotdot) { 2682 const char *Msg = "unexpected ellipsis in argument list for "; 2683 if (!IsMustTailCall) 2684 return tokError(Twine(Msg) + "non-musttail call"); 2685 if (!InVarArgsFunc) 2686 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2687 Lex.Lex(); // Lex the '...', it is purely for readability. 2688 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2689 } 2690 2691 // parse the argument. 2692 LocTy ArgLoc; 2693 Type *ArgTy = nullptr; 2694 AttrBuilder ArgAttrs; 2695 Value *V; 2696 if (parseType(ArgTy, ArgLoc)) 2697 return true; 2698 2699 if (ArgTy->isMetadataTy()) { 2700 if (parseMetadataAsValue(V, PFS)) 2701 return true; 2702 } else { 2703 // Otherwise, handle normal operands. 2704 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2705 return true; 2706 } 2707 ArgList.push_back(ParamInfo( 2708 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2709 } 2710 2711 if (IsMustTailCall && InVarArgsFunc) 2712 return tokError("expected '...' at end of argument list for musttail call " 2713 "in varargs function"); 2714 2715 Lex.Lex(); // Lex the ')'. 2716 return false; 2717 } 2718 2719 /// parseRequiredTypeAttr 2720 /// ::= attrname(<ty>) 2721 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) { 2722 Result = nullptr; 2723 if (!EatIfPresent(AttrName)) 2724 return true; 2725 if (!EatIfPresent(lltok::lparen)) 2726 return error(Lex.getLoc(), "expected '('"); 2727 if (parseType(Result)) 2728 return true; 2729 if (!EatIfPresent(lltok::rparen)) 2730 return error(Lex.getLoc(), "expected ')'"); 2731 return false; 2732 } 2733 2734 /// parsePreallocated 2735 /// ::= preallocated(<ty>) 2736 bool LLParser::parsePreallocated(Type *&Result) { 2737 return parseRequiredTypeAttr(Result, lltok::kw_preallocated); 2738 } 2739 2740 /// parseInalloca 2741 /// ::= inalloca(<ty>) 2742 bool LLParser::parseInalloca(Type *&Result) { 2743 return parseRequiredTypeAttr(Result, lltok::kw_inalloca); 2744 } 2745 2746 /// parseByRef 2747 /// ::= byref(<type>) 2748 bool LLParser::parseByRef(Type *&Result) { 2749 return parseRequiredTypeAttr(Result, lltok::kw_byref); 2750 } 2751 2752 /// parseOptionalOperandBundles 2753 /// ::= /*empty*/ 2754 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2755 /// 2756 /// OperandBundle 2757 /// ::= bundle-tag '(' ')' 2758 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2759 /// 2760 /// bundle-tag ::= String Constant 2761 bool LLParser::parseOptionalOperandBundles( 2762 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2763 LocTy BeginLoc = Lex.getLoc(); 2764 if (!EatIfPresent(lltok::lsquare)) 2765 return false; 2766 2767 while (Lex.getKind() != lltok::rsquare) { 2768 // If this isn't the first operand bundle, we need a comma. 2769 if (!BundleList.empty() && 2770 parseToken(lltok::comma, "expected ',' in input list")) 2771 return true; 2772 2773 std::string Tag; 2774 if (parseStringConstant(Tag)) 2775 return true; 2776 2777 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2778 return true; 2779 2780 std::vector<Value *> Inputs; 2781 while (Lex.getKind() != lltok::rparen) { 2782 // If this isn't the first input, we need a comma. 2783 if (!Inputs.empty() && 2784 parseToken(lltok::comma, "expected ',' in input list")) 2785 return true; 2786 2787 Type *Ty = nullptr; 2788 Value *Input = nullptr; 2789 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2790 return true; 2791 Inputs.push_back(Input); 2792 } 2793 2794 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2795 2796 Lex.Lex(); // Lex the ')'. 2797 } 2798 2799 if (BundleList.empty()) 2800 return error(BeginLoc, "operand bundle set must not be empty"); 2801 2802 Lex.Lex(); // Lex the ']'. 2803 return false; 2804 } 2805 2806 /// parseArgumentList - parse the argument list for a function type or function 2807 /// prototype. 2808 /// ::= '(' ArgTypeListI ')' 2809 /// ArgTypeListI 2810 /// ::= /*empty*/ 2811 /// ::= '...' 2812 /// ::= ArgTypeList ',' '...' 2813 /// ::= ArgType (',' ArgType)* 2814 /// 2815 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2816 bool &IsVarArg) { 2817 unsigned CurValID = 0; 2818 IsVarArg = false; 2819 assert(Lex.getKind() == lltok::lparen); 2820 Lex.Lex(); // eat the (. 2821 2822 if (Lex.getKind() == lltok::rparen) { 2823 // empty 2824 } else if (Lex.getKind() == lltok::dotdotdot) { 2825 IsVarArg = true; 2826 Lex.Lex(); 2827 } else { 2828 LocTy TypeLoc = Lex.getLoc(); 2829 Type *ArgTy = nullptr; 2830 AttrBuilder Attrs; 2831 std::string Name; 2832 2833 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2834 return true; 2835 2836 if (ArgTy->isVoidTy()) 2837 return error(TypeLoc, "argument can not have void type"); 2838 2839 if (Lex.getKind() == lltok::LocalVar) { 2840 Name = Lex.getStrVal(); 2841 Lex.Lex(); 2842 } else if (Lex.getKind() == lltok::LocalVarID) { 2843 if (Lex.getUIntVal() != CurValID) 2844 return error(TypeLoc, "argument expected to be numbered '%" + 2845 Twine(CurValID) + "'"); 2846 ++CurValID; 2847 Lex.Lex(); 2848 } 2849 2850 if (!FunctionType::isValidArgumentType(ArgTy)) 2851 return error(TypeLoc, "invalid type for function argument"); 2852 2853 ArgList.emplace_back(TypeLoc, ArgTy, 2854 AttributeSet::get(ArgTy->getContext(), Attrs), 2855 std::move(Name)); 2856 2857 while (EatIfPresent(lltok::comma)) { 2858 // Handle ... at end of arg list. 2859 if (EatIfPresent(lltok::dotdotdot)) { 2860 IsVarArg = true; 2861 break; 2862 } 2863 2864 // Otherwise must be an argument type. 2865 TypeLoc = Lex.getLoc(); 2866 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2867 return true; 2868 2869 if (ArgTy->isVoidTy()) 2870 return error(TypeLoc, "argument can not have void type"); 2871 2872 if (Lex.getKind() == lltok::LocalVar) { 2873 Name = Lex.getStrVal(); 2874 Lex.Lex(); 2875 } else { 2876 if (Lex.getKind() == lltok::LocalVarID) { 2877 if (Lex.getUIntVal() != CurValID) 2878 return error(TypeLoc, "argument expected to be numbered '%" + 2879 Twine(CurValID) + "'"); 2880 Lex.Lex(); 2881 } 2882 ++CurValID; 2883 Name = ""; 2884 } 2885 2886 if (!ArgTy->isFirstClassType()) 2887 return error(TypeLoc, "invalid type for function argument"); 2888 2889 ArgList.emplace_back(TypeLoc, ArgTy, 2890 AttributeSet::get(ArgTy->getContext(), Attrs), 2891 std::move(Name)); 2892 } 2893 } 2894 2895 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2896 } 2897 2898 /// parseFunctionType 2899 /// ::= Type ArgumentList OptionalAttrs 2900 bool LLParser::parseFunctionType(Type *&Result) { 2901 assert(Lex.getKind() == lltok::lparen); 2902 2903 if (!FunctionType::isValidReturnType(Result)) 2904 return tokError("invalid function return type"); 2905 2906 SmallVector<ArgInfo, 8> ArgList; 2907 bool IsVarArg; 2908 if (parseArgumentList(ArgList, IsVarArg)) 2909 return true; 2910 2911 // Reject names on the arguments lists. 2912 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2913 if (!ArgList[i].Name.empty()) 2914 return error(ArgList[i].Loc, "argument name invalid in function type"); 2915 if (ArgList[i].Attrs.hasAttributes()) 2916 return error(ArgList[i].Loc, 2917 "argument attributes invalid in function type"); 2918 } 2919 2920 SmallVector<Type*, 16> ArgListTy; 2921 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2922 ArgListTy.push_back(ArgList[i].Ty); 2923 2924 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2925 return false; 2926 } 2927 2928 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2929 /// other structs. 2930 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2931 SmallVector<Type*, 8> Elts; 2932 if (parseStructBody(Elts)) 2933 return true; 2934 2935 Result = StructType::get(Context, Elts, Packed); 2936 return false; 2937 } 2938 2939 /// parseStructDefinition - parse a struct in a 'type' definition. 2940 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2941 std::pair<Type *, LocTy> &Entry, 2942 Type *&ResultTy) { 2943 // If the type was already defined, diagnose the redefinition. 2944 if (Entry.first && !Entry.second.isValid()) 2945 return error(TypeLoc, "redefinition of type"); 2946 2947 // If we have opaque, just return without filling in the definition for the 2948 // struct. This counts as a definition as far as the .ll file goes. 2949 if (EatIfPresent(lltok::kw_opaque)) { 2950 // This type is being defined, so clear the location to indicate this. 2951 Entry.second = SMLoc(); 2952 2953 // If this type number has never been uttered, create it. 2954 if (!Entry.first) 2955 Entry.first = StructType::create(Context, Name); 2956 ResultTy = Entry.first; 2957 return false; 2958 } 2959 2960 // If the type starts with '<', then it is either a packed struct or a vector. 2961 bool isPacked = EatIfPresent(lltok::less); 2962 2963 // If we don't have a struct, then we have a random type alias, which we 2964 // accept for compatibility with old files. These types are not allowed to be 2965 // forward referenced and not allowed to be recursive. 2966 if (Lex.getKind() != lltok::lbrace) { 2967 if (Entry.first) 2968 return error(TypeLoc, "forward references to non-struct type"); 2969 2970 ResultTy = nullptr; 2971 if (isPacked) 2972 return parseArrayVectorType(ResultTy, true); 2973 return parseType(ResultTy); 2974 } 2975 2976 // This type is being defined, so clear the location to indicate this. 2977 Entry.second = SMLoc(); 2978 2979 // If this type number has never been uttered, create it. 2980 if (!Entry.first) 2981 Entry.first = StructType::create(Context, Name); 2982 2983 StructType *STy = cast<StructType>(Entry.first); 2984 2985 SmallVector<Type*, 8> Body; 2986 if (parseStructBody(Body) || 2987 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2988 return true; 2989 2990 STy->setBody(Body, isPacked); 2991 ResultTy = STy; 2992 return false; 2993 } 2994 2995 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2996 /// StructType 2997 /// ::= '{' '}' 2998 /// ::= '{' Type (',' Type)* '}' 2999 /// ::= '<' '{' '}' '>' 3000 /// ::= '<' '{' Type (',' Type)* '}' '>' 3001 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 3002 assert(Lex.getKind() == lltok::lbrace); 3003 Lex.Lex(); // Consume the '{' 3004 3005 // Handle the empty struct. 3006 if (EatIfPresent(lltok::rbrace)) 3007 return false; 3008 3009 LocTy EltTyLoc = Lex.getLoc(); 3010 Type *Ty = nullptr; 3011 if (parseType(Ty)) 3012 return true; 3013 Body.push_back(Ty); 3014 3015 if (!StructType::isValidElementType(Ty)) 3016 return error(EltTyLoc, "invalid element type for struct"); 3017 3018 while (EatIfPresent(lltok::comma)) { 3019 EltTyLoc = Lex.getLoc(); 3020 if (parseType(Ty)) 3021 return true; 3022 3023 if (!StructType::isValidElementType(Ty)) 3024 return error(EltTyLoc, "invalid element type for struct"); 3025 3026 Body.push_back(Ty); 3027 } 3028 3029 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 3030 } 3031 3032 /// parseArrayVectorType - parse an array or vector type, assuming the first 3033 /// token has already been consumed. 3034 /// Type 3035 /// ::= '[' APSINTVAL 'x' Types ']' 3036 /// ::= '<' APSINTVAL 'x' Types '>' 3037 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 3038 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 3039 bool Scalable = false; 3040 3041 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 3042 Lex.Lex(); // consume the 'vscale' 3043 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 3044 return true; 3045 3046 Scalable = true; 3047 } 3048 3049 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 3050 Lex.getAPSIntVal().getBitWidth() > 64) 3051 return tokError("expected number in address space"); 3052 3053 LocTy SizeLoc = Lex.getLoc(); 3054 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 3055 Lex.Lex(); 3056 3057 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 3058 return true; 3059 3060 LocTy TypeLoc = Lex.getLoc(); 3061 Type *EltTy = nullptr; 3062 if (parseType(EltTy)) 3063 return true; 3064 3065 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 3066 "expected end of sequential type")) 3067 return true; 3068 3069 if (IsVector) { 3070 if (Size == 0) 3071 return error(SizeLoc, "zero element vector is illegal"); 3072 if ((unsigned)Size != Size) 3073 return error(SizeLoc, "size too large for vector"); 3074 if (!VectorType::isValidElementType(EltTy)) 3075 return error(TypeLoc, "invalid vector element type"); 3076 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 3077 } else { 3078 if (!ArrayType::isValidElementType(EltTy)) 3079 return error(TypeLoc, "invalid array element type"); 3080 Result = ArrayType::get(EltTy, Size); 3081 } 3082 return false; 3083 } 3084 3085 //===----------------------------------------------------------------------===// 3086 // Function Semantic Analysis. 3087 //===----------------------------------------------------------------------===// 3088 3089 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 3090 int functionNumber) 3091 : P(p), F(f), FunctionNumber(functionNumber) { 3092 3093 // Insert unnamed arguments into the NumberedVals list. 3094 for (Argument &A : F.args()) 3095 if (!A.hasName()) 3096 NumberedVals.push_back(&A); 3097 } 3098 3099 LLParser::PerFunctionState::~PerFunctionState() { 3100 // If there were any forward referenced non-basicblock values, delete them. 3101 3102 for (const auto &P : ForwardRefVals) { 3103 if (isa<BasicBlock>(P.second.first)) 3104 continue; 3105 P.second.first->replaceAllUsesWith( 3106 UndefValue::get(P.second.first->getType())); 3107 P.second.first->deleteValue(); 3108 } 3109 3110 for (const auto &P : ForwardRefValIDs) { 3111 if (isa<BasicBlock>(P.second.first)) 3112 continue; 3113 P.second.first->replaceAllUsesWith( 3114 UndefValue::get(P.second.first->getType())); 3115 P.second.first->deleteValue(); 3116 } 3117 } 3118 3119 bool LLParser::PerFunctionState::finishFunction() { 3120 if (!ForwardRefVals.empty()) 3121 return P.error(ForwardRefVals.begin()->second.second, 3122 "use of undefined value '%" + ForwardRefVals.begin()->first + 3123 "'"); 3124 if (!ForwardRefValIDs.empty()) 3125 return P.error(ForwardRefValIDs.begin()->second.second, 3126 "use of undefined value '%" + 3127 Twine(ForwardRefValIDs.begin()->first) + "'"); 3128 return false; 3129 } 3130 3131 /// getVal - Get a value with the specified name or ID, creating a 3132 /// forward reference record if needed. This can return null if the value 3133 /// exists but does not have the right type. 3134 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 3135 LocTy Loc, bool IsCall) { 3136 // Look this name up in the normal function symbol table. 3137 Value *Val = F.getValueSymbolTable()->lookup(Name); 3138 3139 // If this is a forward reference for the value, see if we already created a 3140 // forward ref record. 3141 if (!Val) { 3142 auto I = ForwardRefVals.find(Name); 3143 if (I != ForwardRefVals.end()) 3144 Val = I->second.first; 3145 } 3146 3147 // If we have the value in the symbol table or fwd-ref table, return it. 3148 if (Val) 3149 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 3150 3151 // Don't make placeholders with invalid type. 3152 if (!Ty->isFirstClassType()) { 3153 P.error(Loc, "invalid use of a non-first-class type"); 3154 return nullptr; 3155 } 3156 3157 // Otherwise, create a new forward reference for this value and remember it. 3158 Value *FwdVal; 3159 if (Ty->isLabelTy()) { 3160 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 3161 } else { 3162 FwdVal = new Argument(Ty, Name); 3163 } 3164 3165 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 3166 return FwdVal; 3167 } 3168 3169 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc, 3170 bool IsCall) { 3171 // Look this name up in the normal function symbol table. 3172 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 3173 3174 // If this is a forward reference for the value, see if we already created a 3175 // forward ref record. 3176 if (!Val) { 3177 auto I = ForwardRefValIDs.find(ID); 3178 if (I != ForwardRefValIDs.end()) 3179 Val = I->second.first; 3180 } 3181 3182 // If we have the value in the symbol table or fwd-ref table, return it. 3183 if (Val) 3184 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 3185 3186 if (!Ty->isFirstClassType()) { 3187 P.error(Loc, "invalid use of a non-first-class type"); 3188 return nullptr; 3189 } 3190 3191 // Otherwise, create a new forward reference for this value and remember it. 3192 Value *FwdVal; 3193 if (Ty->isLabelTy()) { 3194 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 3195 } else { 3196 FwdVal = new Argument(Ty); 3197 } 3198 3199 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 3200 return FwdVal; 3201 } 3202 3203 /// setInstName - After an instruction is parsed and inserted into its 3204 /// basic block, this installs its name. 3205 bool LLParser::PerFunctionState::setInstName(int NameID, 3206 const std::string &NameStr, 3207 LocTy NameLoc, Instruction *Inst) { 3208 // If this instruction has void type, it cannot have a name or ID specified. 3209 if (Inst->getType()->isVoidTy()) { 3210 if (NameID != -1 || !NameStr.empty()) 3211 return P.error(NameLoc, "instructions returning void cannot have a name"); 3212 return false; 3213 } 3214 3215 // If this was a numbered instruction, verify that the instruction is the 3216 // expected value and resolve any forward references. 3217 if (NameStr.empty()) { 3218 // If neither a name nor an ID was specified, just use the next ID. 3219 if (NameID == -1) 3220 NameID = NumberedVals.size(); 3221 3222 if (unsigned(NameID) != NumberedVals.size()) 3223 return P.error(NameLoc, "instruction expected to be numbered '%" + 3224 Twine(NumberedVals.size()) + "'"); 3225 3226 auto FI = ForwardRefValIDs.find(NameID); 3227 if (FI != ForwardRefValIDs.end()) { 3228 Value *Sentinel = FI->second.first; 3229 if (Sentinel->getType() != Inst->getType()) 3230 return P.error(NameLoc, "instruction forward referenced with type '" + 3231 getTypeString(FI->second.first->getType()) + 3232 "'"); 3233 3234 Sentinel->replaceAllUsesWith(Inst); 3235 Sentinel->deleteValue(); 3236 ForwardRefValIDs.erase(FI); 3237 } 3238 3239 NumberedVals.push_back(Inst); 3240 return false; 3241 } 3242 3243 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3244 auto FI = ForwardRefVals.find(NameStr); 3245 if (FI != ForwardRefVals.end()) { 3246 Value *Sentinel = FI->second.first; 3247 if (Sentinel->getType() != Inst->getType()) 3248 return P.error(NameLoc, "instruction forward referenced with type '" + 3249 getTypeString(FI->second.first->getType()) + 3250 "'"); 3251 3252 Sentinel->replaceAllUsesWith(Inst); 3253 Sentinel->deleteValue(); 3254 ForwardRefVals.erase(FI); 3255 } 3256 3257 // Set the name on the instruction. 3258 Inst->setName(NameStr); 3259 3260 if (Inst->getName() != NameStr) 3261 return P.error(NameLoc, "multiple definition of local value named '" + 3262 NameStr + "'"); 3263 return false; 3264 } 3265 3266 /// getBB - Get a basic block with the specified name or ID, creating a 3267 /// forward reference record if needed. 3268 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 3269 LocTy Loc) { 3270 return dyn_cast_or_null<BasicBlock>( 3271 getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3272 } 3273 3274 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 3275 return dyn_cast_or_null<BasicBlock>( 3276 getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3277 } 3278 3279 /// defineBB - Define the specified basic block, which is either named or 3280 /// unnamed. If there is an error, this returns null otherwise it returns 3281 /// the block being defined. 3282 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 3283 int NameID, LocTy Loc) { 3284 BasicBlock *BB; 3285 if (Name.empty()) { 3286 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3287 P.error(Loc, "label expected to be numbered '" + 3288 Twine(NumberedVals.size()) + "'"); 3289 return nullptr; 3290 } 3291 BB = getBB(NumberedVals.size(), Loc); 3292 if (!BB) { 3293 P.error(Loc, "unable to create block numbered '" + 3294 Twine(NumberedVals.size()) + "'"); 3295 return nullptr; 3296 } 3297 } else { 3298 BB = getBB(Name, Loc); 3299 if (!BB) { 3300 P.error(Loc, "unable to create block named '" + Name + "'"); 3301 return nullptr; 3302 } 3303 } 3304 3305 // Move the block to the end of the function. Forward ref'd blocks are 3306 // inserted wherever they happen to be referenced. 3307 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3308 3309 // Remove the block from forward ref sets. 3310 if (Name.empty()) { 3311 ForwardRefValIDs.erase(NumberedVals.size()); 3312 NumberedVals.push_back(BB); 3313 } else { 3314 // BB forward references are already in the function symbol table. 3315 ForwardRefVals.erase(Name); 3316 } 3317 3318 return BB; 3319 } 3320 3321 //===----------------------------------------------------------------------===// 3322 // Constants. 3323 //===----------------------------------------------------------------------===// 3324 3325 /// parseValID - parse an abstract value that doesn't necessarily have a 3326 /// type implied. For example, if we parse "4" we don't know what integer type 3327 /// it has. The value will later be combined with its type and checked for 3328 /// sanity. PFS is used to convert function-local operands of metadata (since 3329 /// metadata operands are not just parsed here but also converted to values). 3330 /// PFS can be null when we are not parsing metadata values inside a function. 3331 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) { 3332 ID.Loc = Lex.getLoc(); 3333 switch (Lex.getKind()) { 3334 default: 3335 return tokError("expected value token"); 3336 case lltok::GlobalID: // @42 3337 ID.UIntVal = Lex.getUIntVal(); 3338 ID.Kind = ValID::t_GlobalID; 3339 break; 3340 case lltok::GlobalVar: // @foo 3341 ID.StrVal = Lex.getStrVal(); 3342 ID.Kind = ValID::t_GlobalName; 3343 break; 3344 case lltok::LocalVarID: // %42 3345 ID.UIntVal = Lex.getUIntVal(); 3346 ID.Kind = ValID::t_LocalID; 3347 break; 3348 case lltok::LocalVar: // %foo 3349 ID.StrVal = Lex.getStrVal(); 3350 ID.Kind = ValID::t_LocalName; 3351 break; 3352 case lltok::APSInt: 3353 ID.APSIntVal = Lex.getAPSIntVal(); 3354 ID.Kind = ValID::t_APSInt; 3355 break; 3356 case lltok::APFloat: 3357 ID.APFloatVal = Lex.getAPFloatVal(); 3358 ID.Kind = ValID::t_APFloat; 3359 break; 3360 case lltok::kw_true: 3361 ID.ConstantVal = ConstantInt::getTrue(Context); 3362 ID.Kind = ValID::t_Constant; 3363 break; 3364 case lltok::kw_false: 3365 ID.ConstantVal = ConstantInt::getFalse(Context); 3366 ID.Kind = ValID::t_Constant; 3367 break; 3368 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3369 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3370 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3371 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3372 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3373 3374 case lltok::lbrace: { 3375 // ValID ::= '{' ConstVector '}' 3376 Lex.Lex(); 3377 SmallVector<Constant*, 16> Elts; 3378 if (parseGlobalValueVector(Elts) || 3379 parseToken(lltok::rbrace, "expected end of struct constant")) 3380 return true; 3381 3382 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3383 ID.UIntVal = Elts.size(); 3384 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3385 Elts.size() * sizeof(Elts[0])); 3386 ID.Kind = ValID::t_ConstantStruct; 3387 return false; 3388 } 3389 case lltok::less: { 3390 // ValID ::= '<' ConstVector '>' --> Vector. 3391 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3392 Lex.Lex(); 3393 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3394 3395 SmallVector<Constant*, 16> Elts; 3396 LocTy FirstEltLoc = Lex.getLoc(); 3397 if (parseGlobalValueVector(Elts) || 3398 (isPackedStruct && 3399 parseToken(lltok::rbrace, "expected end of packed struct")) || 3400 parseToken(lltok::greater, "expected end of constant")) 3401 return true; 3402 3403 if (isPackedStruct) { 3404 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3405 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3406 Elts.size() * sizeof(Elts[0])); 3407 ID.UIntVal = Elts.size(); 3408 ID.Kind = ValID::t_PackedConstantStruct; 3409 return false; 3410 } 3411 3412 if (Elts.empty()) 3413 return error(ID.Loc, "constant vector must not be empty"); 3414 3415 if (!Elts[0]->getType()->isIntegerTy() && 3416 !Elts[0]->getType()->isFloatingPointTy() && 3417 !Elts[0]->getType()->isPointerTy()) 3418 return error( 3419 FirstEltLoc, 3420 "vector elements must have integer, pointer or floating point type"); 3421 3422 // Verify that all the vector elements have the same type. 3423 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3424 if (Elts[i]->getType() != Elts[0]->getType()) 3425 return error(FirstEltLoc, "vector element #" + Twine(i) + 3426 " is not of type '" + 3427 getTypeString(Elts[0]->getType())); 3428 3429 ID.ConstantVal = ConstantVector::get(Elts); 3430 ID.Kind = ValID::t_Constant; 3431 return false; 3432 } 3433 case lltok::lsquare: { // Array Constant 3434 Lex.Lex(); 3435 SmallVector<Constant*, 16> Elts; 3436 LocTy FirstEltLoc = Lex.getLoc(); 3437 if (parseGlobalValueVector(Elts) || 3438 parseToken(lltok::rsquare, "expected end of array constant")) 3439 return true; 3440 3441 // Handle empty element. 3442 if (Elts.empty()) { 3443 // Use undef instead of an array because it's inconvenient to determine 3444 // the element type at this point, there being no elements to examine. 3445 ID.Kind = ValID::t_EmptyArray; 3446 return false; 3447 } 3448 3449 if (!Elts[0]->getType()->isFirstClassType()) 3450 return error(FirstEltLoc, "invalid array element type: " + 3451 getTypeString(Elts[0]->getType())); 3452 3453 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3454 3455 // Verify all elements are correct type! 3456 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3457 if (Elts[i]->getType() != Elts[0]->getType()) 3458 return error(FirstEltLoc, "array element #" + Twine(i) + 3459 " is not of type '" + 3460 getTypeString(Elts[0]->getType())); 3461 } 3462 3463 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3464 ID.Kind = ValID::t_Constant; 3465 return false; 3466 } 3467 case lltok::kw_c: // c "foo" 3468 Lex.Lex(); 3469 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3470 false); 3471 if (parseToken(lltok::StringConstant, "expected string")) 3472 return true; 3473 ID.Kind = ValID::t_Constant; 3474 return false; 3475 3476 case lltok::kw_asm: { 3477 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3478 // STRINGCONSTANT 3479 bool HasSideEffect, AlignStack, AsmDialect, CanThrow; 3480 Lex.Lex(); 3481 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3482 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3483 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3484 parseOptionalToken(lltok::kw_unwind, CanThrow) || 3485 parseStringConstant(ID.StrVal) || 3486 parseToken(lltok::comma, "expected comma in inline asm expression") || 3487 parseToken(lltok::StringConstant, "expected constraint string")) 3488 return true; 3489 ID.StrVal2 = Lex.getStrVal(); 3490 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | 3491 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); 3492 ID.Kind = ValID::t_InlineAsm; 3493 return false; 3494 } 3495 3496 case lltok::kw_blockaddress: { 3497 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3498 Lex.Lex(); 3499 3500 ValID Fn, Label; 3501 3502 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3503 parseValID(Fn) || 3504 parseToken(lltok::comma, 3505 "expected comma in block address expression") || 3506 parseValID(Label) || 3507 parseToken(lltok::rparen, "expected ')' in block address expression")) 3508 return true; 3509 3510 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3511 return error(Fn.Loc, "expected function name in blockaddress"); 3512 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3513 return error(Label.Loc, "expected basic block name in blockaddress"); 3514 3515 // Try to find the function (but skip it if it's forward-referenced). 3516 GlobalValue *GV = nullptr; 3517 if (Fn.Kind == ValID::t_GlobalID) { 3518 if (Fn.UIntVal < NumberedVals.size()) 3519 GV = NumberedVals[Fn.UIntVal]; 3520 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3521 GV = M->getNamedValue(Fn.StrVal); 3522 } 3523 Function *F = nullptr; 3524 if (GV) { 3525 // Confirm that it's actually a function with a definition. 3526 if (!isa<Function>(GV)) 3527 return error(Fn.Loc, "expected function name in blockaddress"); 3528 F = cast<Function>(GV); 3529 if (F->isDeclaration()) 3530 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3531 } 3532 3533 if (!F) { 3534 // Make a global variable as a placeholder for this reference. 3535 GlobalValue *&FwdRef = 3536 ForwardRefBlockAddresses.insert(std::make_pair( 3537 std::move(Fn), 3538 std::map<ValID, GlobalValue *>())) 3539 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3540 .first->second; 3541 if (!FwdRef) 3542 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3543 GlobalValue::InternalLinkage, nullptr, ""); 3544 ID.ConstantVal = FwdRef; 3545 ID.Kind = ValID::t_Constant; 3546 return false; 3547 } 3548 3549 // We found the function; now find the basic block. Don't use PFS, since we 3550 // might be inside a constant expression. 3551 BasicBlock *BB; 3552 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3553 if (Label.Kind == ValID::t_LocalID) 3554 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3555 else 3556 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3557 if (!BB) 3558 return error(Label.Loc, "referenced value is not a basic block"); 3559 } else { 3560 if (Label.Kind == ValID::t_LocalID) 3561 return error(Label.Loc, "cannot take address of numeric label after " 3562 "the function is defined"); 3563 BB = dyn_cast_or_null<BasicBlock>( 3564 F->getValueSymbolTable()->lookup(Label.StrVal)); 3565 if (!BB) 3566 return error(Label.Loc, "referenced value is not a basic block"); 3567 } 3568 3569 ID.ConstantVal = BlockAddress::get(F, BB); 3570 ID.Kind = ValID::t_Constant; 3571 return false; 3572 } 3573 3574 case lltok::kw_dso_local_equivalent: { 3575 // ValID ::= 'dso_local_equivalent' @foo 3576 Lex.Lex(); 3577 3578 ValID Fn; 3579 3580 if (parseValID(Fn)) 3581 return true; 3582 3583 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3584 return error(Fn.Loc, 3585 "expected global value name in dso_local_equivalent"); 3586 3587 // Try to find the function (but skip it if it's forward-referenced). 3588 GlobalValue *GV = nullptr; 3589 if (Fn.Kind == ValID::t_GlobalID) { 3590 if (Fn.UIntVal < NumberedVals.size()) 3591 GV = NumberedVals[Fn.UIntVal]; 3592 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3593 GV = M->getNamedValue(Fn.StrVal); 3594 } 3595 3596 assert(GV && "Could not find a corresponding global variable"); 3597 3598 if (!GV->getValueType()->isFunctionTy()) 3599 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3600 "in dso_local_equivalent"); 3601 3602 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3603 ID.Kind = ValID::t_Constant; 3604 return false; 3605 } 3606 3607 case lltok::kw_trunc: 3608 case lltok::kw_zext: 3609 case lltok::kw_sext: 3610 case lltok::kw_fptrunc: 3611 case lltok::kw_fpext: 3612 case lltok::kw_bitcast: 3613 case lltok::kw_addrspacecast: 3614 case lltok::kw_uitofp: 3615 case lltok::kw_sitofp: 3616 case lltok::kw_fptoui: 3617 case lltok::kw_fptosi: 3618 case lltok::kw_inttoptr: 3619 case lltok::kw_ptrtoint: { 3620 unsigned Opc = Lex.getUIntVal(); 3621 Type *DestTy = nullptr; 3622 Constant *SrcVal; 3623 Lex.Lex(); 3624 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3625 parseGlobalTypeAndValue(SrcVal) || 3626 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3627 parseType(DestTy) || 3628 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3629 return true; 3630 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3631 return error(ID.Loc, "invalid cast opcode for cast from '" + 3632 getTypeString(SrcVal->getType()) + "' to '" + 3633 getTypeString(DestTy) + "'"); 3634 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3635 SrcVal, DestTy); 3636 ID.Kind = ValID::t_Constant; 3637 return false; 3638 } 3639 case lltok::kw_extractvalue: { 3640 Lex.Lex(); 3641 Constant *Val; 3642 SmallVector<unsigned, 4> Indices; 3643 if (parseToken(lltok::lparen, 3644 "expected '(' in extractvalue constantexpr") || 3645 parseGlobalTypeAndValue(Val) || parseIndexList(Indices) || 3646 parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3647 return true; 3648 3649 if (!Val->getType()->isAggregateType()) 3650 return error(ID.Loc, "extractvalue operand must be aggregate type"); 3651 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3652 return error(ID.Loc, "invalid indices for extractvalue"); 3653 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3654 ID.Kind = ValID::t_Constant; 3655 return false; 3656 } 3657 case lltok::kw_insertvalue: { 3658 Lex.Lex(); 3659 Constant *Val0, *Val1; 3660 SmallVector<unsigned, 4> Indices; 3661 if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") || 3662 parseGlobalTypeAndValue(Val0) || 3663 parseToken(lltok::comma, 3664 "expected comma in insertvalue constantexpr") || 3665 parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) || 3666 parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3667 return true; 3668 if (!Val0->getType()->isAggregateType()) 3669 return error(ID.Loc, "insertvalue operand must be aggregate type"); 3670 Type *IndexedType = 3671 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3672 if (!IndexedType) 3673 return error(ID.Loc, "invalid indices for insertvalue"); 3674 if (IndexedType != Val1->getType()) 3675 return error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3676 getTypeString(Val1->getType()) + 3677 "' instead of '" + getTypeString(IndexedType) + 3678 "'"); 3679 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3680 ID.Kind = ValID::t_Constant; 3681 return false; 3682 } 3683 case lltok::kw_icmp: 3684 case lltok::kw_fcmp: { 3685 unsigned PredVal, Opc = Lex.getUIntVal(); 3686 Constant *Val0, *Val1; 3687 Lex.Lex(); 3688 if (parseCmpPredicate(PredVal, Opc) || 3689 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3690 parseGlobalTypeAndValue(Val0) || 3691 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3692 parseGlobalTypeAndValue(Val1) || 3693 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3694 return true; 3695 3696 if (Val0->getType() != Val1->getType()) 3697 return error(ID.Loc, "compare operands must have the same type"); 3698 3699 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3700 3701 if (Opc == Instruction::FCmp) { 3702 if (!Val0->getType()->isFPOrFPVectorTy()) 3703 return error(ID.Loc, "fcmp requires floating point operands"); 3704 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3705 } else { 3706 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3707 if (!Val0->getType()->isIntOrIntVectorTy() && 3708 !Val0->getType()->isPtrOrPtrVectorTy()) 3709 return error(ID.Loc, "icmp requires pointer or integer operands"); 3710 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3711 } 3712 ID.Kind = ValID::t_Constant; 3713 return false; 3714 } 3715 3716 // Unary Operators. 3717 case lltok::kw_fneg: { 3718 unsigned Opc = Lex.getUIntVal(); 3719 Constant *Val; 3720 Lex.Lex(); 3721 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3722 parseGlobalTypeAndValue(Val) || 3723 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3724 return true; 3725 3726 // Check that the type is valid for the operator. 3727 switch (Opc) { 3728 case Instruction::FNeg: 3729 if (!Val->getType()->isFPOrFPVectorTy()) 3730 return error(ID.Loc, "constexpr requires fp operands"); 3731 break; 3732 default: llvm_unreachable("Unknown unary operator!"); 3733 } 3734 unsigned Flags = 0; 3735 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3736 ID.ConstantVal = C; 3737 ID.Kind = ValID::t_Constant; 3738 return false; 3739 } 3740 // Binary Operators. 3741 case lltok::kw_add: 3742 case lltok::kw_fadd: 3743 case lltok::kw_sub: 3744 case lltok::kw_fsub: 3745 case lltok::kw_mul: 3746 case lltok::kw_fmul: 3747 case lltok::kw_udiv: 3748 case lltok::kw_sdiv: 3749 case lltok::kw_fdiv: 3750 case lltok::kw_urem: 3751 case lltok::kw_srem: 3752 case lltok::kw_frem: 3753 case lltok::kw_shl: 3754 case lltok::kw_lshr: 3755 case lltok::kw_ashr: { 3756 bool NUW = false; 3757 bool NSW = false; 3758 bool Exact = false; 3759 unsigned Opc = Lex.getUIntVal(); 3760 Constant *Val0, *Val1; 3761 Lex.Lex(); 3762 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3763 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3764 if (EatIfPresent(lltok::kw_nuw)) 3765 NUW = true; 3766 if (EatIfPresent(lltok::kw_nsw)) { 3767 NSW = true; 3768 if (EatIfPresent(lltok::kw_nuw)) 3769 NUW = true; 3770 } 3771 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3772 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3773 if (EatIfPresent(lltok::kw_exact)) 3774 Exact = true; 3775 } 3776 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3777 parseGlobalTypeAndValue(Val0) || 3778 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3779 parseGlobalTypeAndValue(Val1) || 3780 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3781 return true; 3782 if (Val0->getType() != Val1->getType()) 3783 return error(ID.Loc, "operands of constexpr must have same type"); 3784 // Check that the type is valid for the operator. 3785 switch (Opc) { 3786 case Instruction::Add: 3787 case Instruction::Sub: 3788 case Instruction::Mul: 3789 case Instruction::UDiv: 3790 case Instruction::SDiv: 3791 case Instruction::URem: 3792 case Instruction::SRem: 3793 case Instruction::Shl: 3794 case Instruction::AShr: 3795 case Instruction::LShr: 3796 if (!Val0->getType()->isIntOrIntVectorTy()) 3797 return error(ID.Loc, "constexpr requires integer operands"); 3798 break; 3799 case Instruction::FAdd: 3800 case Instruction::FSub: 3801 case Instruction::FMul: 3802 case Instruction::FDiv: 3803 case Instruction::FRem: 3804 if (!Val0->getType()->isFPOrFPVectorTy()) 3805 return error(ID.Loc, "constexpr requires fp operands"); 3806 break; 3807 default: llvm_unreachable("Unknown binary operator!"); 3808 } 3809 unsigned Flags = 0; 3810 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3811 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3812 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3813 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3814 ID.ConstantVal = C; 3815 ID.Kind = ValID::t_Constant; 3816 return false; 3817 } 3818 3819 // Logical Operations 3820 case lltok::kw_and: 3821 case lltok::kw_or: 3822 case lltok::kw_xor: { 3823 unsigned Opc = Lex.getUIntVal(); 3824 Constant *Val0, *Val1; 3825 Lex.Lex(); 3826 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3827 parseGlobalTypeAndValue(Val0) || 3828 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3829 parseGlobalTypeAndValue(Val1) || 3830 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3831 return true; 3832 if (Val0->getType() != Val1->getType()) 3833 return error(ID.Loc, "operands of constexpr must have same type"); 3834 if (!Val0->getType()->isIntOrIntVectorTy()) 3835 return error(ID.Loc, 3836 "constexpr requires integer or integer vector operands"); 3837 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3838 ID.Kind = ValID::t_Constant; 3839 return false; 3840 } 3841 3842 case lltok::kw_getelementptr: 3843 case lltok::kw_shufflevector: 3844 case lltok::kw_insertelement: 3845 case lltok::kw_extractelement: 3846 case lltok::kw_select: { 3847 unsigned Opc = Lex.getUIntVal(); 3848 SmallVector<Constant*, 16> Elts; 3849 bool InBounds = false; 3850 Type *Ty; 3851 Lex.Lex(); 3852 3853 if (Opc == Instruction::GetElementPtr) 3854 InBounds = EatIfPresent(lltok::kw_inbounds); 3855 3856 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3857 return true; 3858 3859 LocTy ExplicitTypeLoc = Lex.getLoc(); 3860 if (Opc == Instruction::GetElementPtr) { 3861 if (parseType(Ty) || 3862 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3863 return true; 3864 } 3865 3866 Optional<unsigned> InRangeOp; 3867 if (parseGlobalValueVector( 3868 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3869 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3870 return true; 3871 3872 if (Opc == Instruction::GetElementPtr) { 3873 if (Elts.size() == 0 || 3874 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3875 return error(ID.Loc, "base of getelementptr must be a pointer"); 3876 3877 Type *BaseType = Elts[0]->getType(); 3878 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3879 if (Ty != BasePointerType->getElementType()) { 3880 return error( 3881 ExplicitTypeLoc, 3882 typeComparisonErrorMessage( 3883 "explicit pointee type doesn't match operand's pointee type", 3884 Ty, BasePointerType->getElementType())); 3885 } 3886 3887 unsigned GEPWidth = 3888 BaseType->isVectorTy() 3889 ? cast<FixedVectorType>(BaseType)->getNumElements() 3890 : 0; 3891 3892 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3893 for (Constant *Val : Indices) { 3894 Type *ValTy = Val->getType(); 3895 if (!ValTy->isIntOrIntVectorTy()) 3896 return error(ID.Loc, "getelementptr index must be an integer"); 3897 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3898 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3899 if (GEPWidth && (ValNumEl != GEPWidth)) 3900 return error( 3901 ID.Loc, 3902 "getelementptr vector index has a wrong number of elements"); 3903 // GEPWidth may have been unknown because the base is a scalar, 3904 // but it is known now. 3905 GEPWidth = ValNumEl; 3906 } 3907 } 3908 3909 SmallPtrSet<Type*, 4> Visited; 3910 if (!Indices.empty() && !Ty->isSized(&Visited)) 3911 return error(ID.Loc, "base element of getelementptr must be sized"); 3912 3913 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3914 return error(ID.Loc, "invalid getelementptr indices"); 3915 3916 if (InRangeOp) { 3917 if (*InRangeOp == 0) 3918 return error(ID.Loc, 3919 "inrange keyword may not appear on pointer operand"); 3920 --*InRangeOp; 3921 } 3922 3923 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3924 InBounds, InRangeOp); 3925 } else if (Opc == Instruction::Select) { 3926 if (Elts.size() != 3) 3927 return error(ID.Loc, "expected three operands to select"); 3928 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3929 Elts[2])) 3930 return error(ID.Loc, Reason); 3931 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3932 } else if (Opc == Instruction::ShuffleVector) { 3933 if (Elts.size() != 3) 3934 return error(ID.Loc, "expected three operands to shufflevector"); 3935 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3936 return error(ID.Loc, "invalid operands to shufflevector"); 3937 SmallVector<int, 16> Mask; 3938 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3939 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3940 } else if (Opc == Instruction::ExtractElement) { 3941 if (Elts.size() != 2) 3942 return error(ID.Loc, "expected two operands to extractelement"); 3943 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3944 return error(ID.Loc, "invalid extractelement operands"); 3945 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3946 } else { 3947 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3948 if (Elts.size() != 3) 3949 return error(ID.Loc, "expected three operands to insertelement"); 3950 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3951 return error(ID.Loc, "invalid insertelement operands"); 3952 ID.ConstantVal = 3953 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3954 } 3955 3956 ID.Kind = ValID::t_Constant; 3957 return false; 3958 } 3959 } 3960 3961 Lex.Lex(); 3962 return false; 3963 } 3964 3965 /// parseGlobalValue - parse a global value with the specified type. 3966 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3967 C = nullptr; 3968 ValID ID; 3969 Value *V = nullptr; 3970 bool Parsed = parseValID(ID) || 3971 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3972 if (V && !(C = dyn_cast<Constant>(V))) 3973 return error(ID.Loc, "global values must be constants"); 3974 return Parsed; 3975 } 3976 3977 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3978 Type *Ty = nullptr; 3979 return parseType(Ty) || parseGlobalValue(Ty, V); 3980 } 3981 3982 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3983 C = nullptr; 3984 3985 LocTy KwLoc = Lex.getLoc(); 3986 if (!EatIfPresent(lltok::kw_comdat)) 3987 return false; 3988 3989 if (EatIfPresent(lltok::lparen)) { 3990 if (Lex.getKind() != lltok::ComdatVar) 3991 return tokError("expected comdat variable"); 3992 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3993 Lex.Lex(); 3994 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3995 return true; 3996 } else { 3997 if (GlobalName.empty()) 3998 return tokError("comdat cannot be unnamed"); 3999 C = getComdat(std::string(GlobalName), KwLoc); 4000 } 4001 4002 return false; 4003 } 4004 4005 /// parseGlobalValueVector 4006 /// ::= /*empty*/ 4007 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 4008 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 4009 Optional<unsigned> *InRangeOp) { 4010 // Empty list. 4011 if (Lex.getKind() == lltok::rbrace || 4012 Lex.getKind() == lltok::rsquare || 4013 Lex.getKind() == lltok::greater || 4014 Lex.getKind() == lltok::rparen) 4015 return false; 4016 4017 do { 4018 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 4019 *InRangeOp = Elts.size(); 4020 4021 Constant *C; 4022 if (parseGlobalTypeAndValue(C)) 4023 return true; 4024 Elts.push_back(C); 4025 } while (EatIfPresent(lltok::comma)); 4026 4027 return false; 4028 } 4029 4030 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 4031 SmallVector<Metadata *, 16> Elts; 4032 if (parseMDNodeVector(Elts)) 4033 return true; 4034 4035 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 4036 return false; 4037 } 4038 4039 /// MDNode: 4040 /// ::= !{ ... } 4041 /// ::= !7 4042 /// ::= !DILocation(...) 4043 bool LLParser::parseMDNode(MDNode *&N) { 4044 if (Lex.getKind() == lltok::MetadataVar) 4045 return parseSpecializedMDNode(N); 4046 4047 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 4048 } 4049 4050 bool LLParser::parseMDNodeTail(MDNode *&N) { 4051 // !{ ... } 4052 if (Lex.getKind() == lltok::lbrace) 4053 return parseMDTuple(N); 4054 4055 // !42 4056 return parseMDNodeID(N); 4057 } 4058 4059 namespace { 4060 4061 /// Structure to represent an optional metadata field. 4062 template <class FieldTy> struct MDFieldImpl { 4063 typedef MDFieldImpl ImplTy; 4064 FieldTy Val; 4065 bool Seen; 4066 4067 void assign(FieldTy Val) { 4068 Seen = true; 4069 this->Val = std::move(Val); 4070 } 4071 4072 explicit MDFieldImpl(FieldTy Default) 4073 : Val(std::move(Default)), Seen(false) {} 4074 }; 4075 4076 /// Structure to represent an optional metadata field that 4077 /// can be of either type (A or B) and encapsulates the 4078 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 4079 /// to reimplement the specifics for representing each Field. 4080 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 4081 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 4082 FieldTypeA A; 4083 FieldTypeB B; 4084 bool Seen; 4085 4086 enum { 4087 IsInvalid = 0, 4088 IsTypeA = 1, 4089 IsTypeB = 2 4090 } WhatIs; 4091 4092 void assign(FieldTypeA A) { 4093 Seen = true; 4094 this->A = std::move(A); 4095 WhatIs = IsTypeA; 4096 } 4097 4098 void assign(FieldTypeB B) { 4099 Seen = true; 4100 this->B = std::move(B); 4101 WhatIs = IsTypeB; 4102 } 4103 4104 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 4105 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 4106 WhatIs(IsInvalid) {} 4107 }; 4108 4109 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 4110 uint64_t Max; 4111 4112 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 4113 : ImplTy(Default), Max(Max) {} 4114 }; 4115 4116 struct LineField : public MDUnsignedField { 4117 LineField() : MDUnsignedField(0, UINT32_MAX) {} 4118 }; 4119 4120 struct ColumnField : public MDUnsignedField { 4121 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 4122 }; 4123 4124 struct DwarfTagField : public MDUnsignedField { 4125 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 4126 DwarfTagField(dwarf::Tag DefaultTag) 4127 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 4128 }; 4129 4130 struct DwarfMacinfoTypeField : public MDUnsignedField { 4131 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 4132 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 4133 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 4134 }; 4135 4136 struct DwarfAttEncodingField : public MDUnsignedField { 4137 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 4138 }; 4139 4140 struct DwarfVirtualityField : public MDUnsignedField { 4141 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 4142 }; 4143 4144 struct DwarfLangField : public MDUnsignedField { 4145 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 4146 }; 4147 4148 struct DwarfCCField : public MDUnsignedField { 4149 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 4150 }; 4151 4152 struct EmissionKindField : public MDUnsignedField { 4153 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 4154 }; 4155 4156 struct NameTableKindField : public MDUnsignedField { 4157 NameTableKindField() 4158 : MDUnsignedField( 4159 0, (unsigned) 4160 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 4161 }; 4162 4163 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 4164 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 4165 }; 4166 4167 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 4168 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 4169 }; 4170 4171 struct MDAPSIntField : public MDFieldImpl<APSInt> { 4172 MDAPSIntField() : ImplTy(APSInt()) {} 4173 }; 4174 4175 struct MDSignedField : public MDFieldImpl<int64_t> { 4176 int64_t Min; 4177 int64_t Max; 4178 4179 MDSignedField(int64_t Default = 0) 4180 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 4181 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 4182 : ImplTy(Default), Min(Min), Max(Max) {} 4183 }; 4184 4185 struct MDBoolField : public MDFieldImpl<bool> { 4186 MDBoolField(bool Default = false) : ImplTy(Default) {} 4187 }; 4188 4189 struct MDField : public MDFieldImpl<Metadata *> { 4190 bool AllowNull; 4191 4192 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 4193 }; 4194 4195 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 4196 MDConstant() : ImplTy(nullptr) {} 4197 }; 4198 4199 struct MDStringField : public MDFieldImpl<MDString *> { 4200 bool AllowEmpty; 4201 MDStringField(bool AllowEmpty = true) 4202 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 4203 }; 4204 4205 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 4206 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 4207 }; 4208 4209 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 4210 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 4211 }; 4212 4213 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 4214 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 4215 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 4216 4217 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 4218 bool AllowNull = true) 4219 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 4220 4221 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4222 bool isMDField() const { return WhatIs == IsTypeB; } 4223 int64_t getMDSignedValue() const { 4224 assert(isMDSignedField() && "Wrong field type"); 4225 return A.Val; 4226 } 4227 Metadata *getMDFieldValue() const { 4228 assert(isMDField() && "Wrong field type"); 4229 return B.Val; 4230 } 4231 }; 4232 4233 struct MDSignedOrUnsignedField 4234 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 4235 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 4236 4237 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4238 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 4239 int64_t getMDSignedValue() const { 4240 assert(isMDSignedField() && "Wrong field type"); 4241 return A.Val; 4242 } 4243 uint64_t getMDUnsignedValue() const { 4244 assert(isMDUnsignedField() && "Wrong field type"); 4245 return B.Val; 4246 } 4247 }; 4248 4249 } // end anonymous namespace 4250 4251 namespace llvm { 4252 4253 template <> 4254 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 4255 if (Lex.getKind() != lltok::APSInt) 4256 return tokError("expected integer"); 4257 4258 Result.assign(Lex.getAPSIntVal()); 4259 Lex.Lex(); 4260 return false; 4261 } 4262 4263 template <> 4264 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4265 MDUnsignedField &Result) { 4266 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4267 return tokError("expected unsigned integer"); 4268 4269 auto &U = Lex.getAPSIntVal(); 4270 if (U.ugt(Result.Max)) 4271 return tokError("value for '" + Name + "' too large, limit is " + 4272 Twine(Result.Max)); 4273 Result.assign(U.getZExtValue()); 4274 assert(Result.Val <= Result.Max && "Expected value in range"); 4275 Lex.Lex(); 4276 return false; 4277 } 4278 4279 template <> 4280 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4281 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4282 } 4283 template <> 4284 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4285 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4286 } 4287 4288 template <> 4289 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4290 if (Lex.getKind() == lltok::APSInt) 4291 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4292 4293 if (Lex.getKind() != lltok::DwarfTag) 4294 return tokError("expected DWARF tag"); 4295 4296 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4297 if (Tag == dwarf::DW_TAG_invalid) 4298 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4299 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4300 4301 Result.assign(Tag); 4302 Lex.Lex(); 4303 return false; 4304 } 4305 4306 template <> 4307 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4308 DwarfMacinfoTypeField &Result) { 4309 if (Lex.getKind() == lltok::APSInt) 4310 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4311 4312 if (Lex.getKind() != lltok::DwarfMacinfo) 4313 return tokError("expected DWARF macinfo type"); 4314 4315 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4316 if (Macinfo == dwarf::DW_MACINFO_invalid) 4317 return tokError("invalid DWARF macinfo type" + Twine(" '") + 4318 Lex.getStrVal() + "'"); 4319 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4320 4321 Result.assign(Macinfo); 4322 Lex.Lex(); 4323 return false; 4324 } 4325 4326 template <> 4327 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4328 DwarfVirtualityField &Result) { 4329 if (Lex.getKind() == lltok::APSInt) 4330 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4331 4332 if (Lex.getKind() != lltok::DwarfVirtuality) 4333 return tokError("expected DWARF virtuality code"); 4334 4335 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4336 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4337 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4338 Lex.getStrVal() + "'"); 4339 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4340 Result.assign(Virtuality); 4341 Lex.Lex(); 4342 return false; 4343 } 4344 4345 template <> 4346 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4347 if (Lex.getKind() == lltok::APSInt) 4348 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4349 4350 if (Lex.getKind() != lltok::DwarfLang) 4351 return tokError("expected DWARF language"); 4352 4353 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4354 if (!Lang) 4355 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4356 "'"); 4357 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4358 Result.assign(Lang); 4359 Lex.Lex(); 4360 return false; 4361 } 4362 4363 template <> 4364 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4365 if (Lex.getKind() == lltok::APSInt) 4366 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4367 4368 if (Lex.getKind() != lltok::DwarfCC) 4369 return tokError("expected DWARF calling convention"); 4370 4371 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4372 if (!CC) 4373 return tokError("invalid DWARF calling convention" + Twine(" '") + 4374 Lex.getStrVal() + "'"); 4375 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4376 Result.assign(CC); 4377 Lex.Lex(); 4378 return false; 4379 } 4380 4381 template <> 4382 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4383 EmissionKindField &Result) { 4384 if (Lex.getKind() == lltok::APSInt) 4385 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4386 4387 if (Lex.getKind() != lltok::EmissionKind) 4388 return tokError("expected emission kind"); 4389 4390 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4391 if (!Kind) 4392 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4393 "'"); 4394 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4395 Result.assign(*Kind); 4396 Lex.Lex(); 4397 return false; 4398 } 4399 4400 template <> 4401 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4402 NameTableKindField &Result) { 4403 if (Lex.getKind() == lltok::APSInt) 4404 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4405 4406 if (Lex.getKind() != lltok::NameTableKind) 4407 return tokError("expected nameTable kind"); 4408 4409 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4410 if (!Kind) 4411 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4412 "'"); 4413 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4414 Result.assign((unsigned)*Kind); 4415 Lex.Lex(); 4416 return false; 4417 } 4418 4419 template <> 4420 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4421 DwarfAttEncodingField &Result) { 4422 if (Lex.getKind() == lltok::APSInt) 4423 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4424 4425 if (Lex.getKind() != lltok::DwarfAttEncoding) 4426 return tokError("expected DWARF type attribute encoding"); 4427 4428 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4429 if (!Encoding) 4430 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4431 Lex.getStrVal() + "'"); 4432 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4433 Result.assign(Encoding); 4434 Lex.Lex(); 4435 return false; 4436 } 4437 4438 /// DIFlagField 4439 /// ::= uint32 4440 /// ::= DIFlagVector 4441 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4442 template <> 4443 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4444 4445 // parser for a single flag. 4446 auto parseFlag = [&](DINode::DIFlags &Val) { 4447 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4448 uint32_t TempVal = static_cast<uint32_t>(Val); 4449 bool Res = parseUInt32(TempVal); 4450 Val = static_cast<DINode::DIFlags>(TempVal); 4451 return Res; 4452 } 4453 4454 if (Lex.getKind() != lltok::DIFlag) 4455 return tokError("expected debug info flag"); 4456 4457 Val = DINode::getFlag(Lex.getStrVal()); 4458 if (!Val) 4459 return tokError(Twine("invalid debug info flag flag '") + 4460 Lex.getStrVal() + "'"); 4461 Lex.Lex(); 4462 return false; 4463 }; 4464 4465 // parse the flags and combine them together. 4466 DINode::DIFlags Combined = DINode::FlagZero; 4467 do { 4468 DINode::DIFlags Val; 4469 if (parseFlag(Val)) 4470 return true; 4471 Combined |= Val; 4472 } while (EatIfPresent(lltok::bar)); 4473 4474 Result.assign(Combined); 4475 return false; 4476 } 4477 4478 /// DISPFlagField 4479 /// ::= uint32 4480 /// ::= DISPFlagVector 4481 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4482 template <> 4483 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4484 4485 // parser for a single flag. 4486 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4487 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4488 uint32_t TempVal = static_cast<uint32_t>(Val); 4489 bool Res = parseUInt32(TempVal); 4490 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4491 return Res; 4492 } 4493 4494 if (Lex.getKind() != lltok::DISPFlag) 4495 return tokError("expected debug info flag"); 4496 4497 Val = DISubprogram::getFlag(Lex.getStrVal()); 4498 if (!Val) 4499 return tokError(Twine("invalid subprogram debug info flag '") + 4500 Lex.getStrVal() + "'"); 4501 Lex.Lex(); 4502 return false; 4503 }; 4504 4505 // parse the flags and combine them together. 4506 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4507 do { 4508 DISubprogram::DISPFlags Val; 4509 if (parseFlag(Val)) 4510 return true; 4511 Combined |= Val; 4512 } while (EatIfPresent(lltok::bar)); 4513 4514 Result.assign(Combined); 4515 return false; 4516 } 4517 4518 template <> 4519 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4520 if (Lex.getKind() != lltok::APSInt) 4521 return tokError("expected signed integer"); 4522 4523 auto &S = Lex.getAPSIntVal(); 4524 if (S < Result.Min) 4525 return tokError("value for '" + Name + "' too small, limit is " + 4526 Twine(Result.Min)); 4527 if (S > Result.Max) 4528 return tokError("value for '" + Name + "' too large, limit is " + 4529 Twine(Result.Max)); 4530 Result.assign(S.getExtValue()); 4531 assert(Result.Val >= Result.Min && "Expected value in range"); 4532 assert(Result.Val <= Result.Max && "Expected value in range"); 4533 Lex.Lex(); 4534 return false; 4535 } 4536 4537 template <> 4538 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4539 switch (Lex.getKind()) { 4540 default: 4541 return tokError("expected 'true' or 'false'"); 4542 case lltok::kw_true: 4543 Result.assign(true); 4544 break; 4545 case lltok::kw_false: 4546 Result.assign(false); 4547 break; 4548 } 4549 Lex.Lex(); 4550 return false; 4551 } 4552 4553 template <> 4554 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4555 if (Lex.getKind() == lltok::kw_null) { 4556 if (!Result.AllowNull) 4557 return tokError("'" + Name + "' cannot be null"); 4558 Lex.Lex(); 4559 Result.assign(nullptr); 4560 return false; 4561 } 4562 4563 Metadata *MD; 4564 if (parseMetadata(MD, nullptr)) 4565 return true; 4566 4567 Result.assign(MD); 4568 return false; 4569 } 4570 4571 template <> 4572 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4573 MDSignedOrMDField &Result) { 4574 // Try to parse a signed int. 4575 if (Lex.getKind() == lltok::APSInt) { 4576 MDSignedField Res = Result.A; 4577 if (!parseMDField(Loc, Name, Res)) { 4578 Result.assign(Res); 4579 return false; 4580 } 4581 return true; 4582 } 4583 4584 // Otherwise, try to parse as an MDField. 4585 MDField Res = Result.B; 4586 if (!parseMDField(Loc, Name, Res)) { 4587 Result.assign(Res); 4588 return false; 4589 } 4590 4591 return true; 4592 } 4593 4594 template <> 4595 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4596 LocTy ValueLoc = Lex.getLoc(); 4597 std::string S; 4598 if (parseStringConstant(S)) 4599 return true; 4600 4601 if (!Result.AllowEmpty && S.empty()) 4602 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4603 4604 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4605 return false; 4606 } 4607 4608 template <> 4609 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4610 SmallVector<Metadata *, 4> MDs; 4611 if (parseMDNodeVector(MDs)) 4612 return true; 4613 4614 Result.assign(std::move(MDs)); 4615 return false; 4616 } 4617 4618 template <> 4619 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4620 ChecksumKindField &Result) { 4621 Optional<DIFile::ChecksumKind> CSKind = 4622 DIFile::getChecksumKind(Lex.getStrVal()); 4623 4624 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4625 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4626 "'"); 4627 4628 Result.assign(*CSKind); 4629 Lex.Lex(); 4630 return false; 4631 } 4632 4633 } // end namespace llvm 4634 4635 template <class ParserTy> 4636 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4637 do { 4638 if (Lex.getKind() != lltok::LabelStr) 4639 return tokError("expected field label here"); 4640 4641 if (ParseField()) 4642 return true; 4643 } while (EatIfPresent(lltok::comma)); 4644 4645 return false; 4646 } 4647 4648 template <class ParserTy> 4649 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4650 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4651 Lex.Lex(); 4652 4653 if (parseToken(lltok::lparen, "expected '(' here")) 4654 return true; 4655 if (Lex.getKind() != lltok::rparen) 4656 if (parseMDFieldsImplBody(ParseField)) 4657 return true; 4658 4659 ClosingLoc = Lex.getLoc(); 4660 return parseToken(lltok::rparen, "expected ')' here"); 4661 } 4662 4663 template <class FieldTy> 4664 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4665 if (Result.Seen) 4666 return tokError("field '" + Name + "' cannot be specified more than once"); 4667 4668 LocTy Loc = Lex.getLoc(); 4669 Lex.Lex(); 4670 return parseMDField(Loc, Name, Result); 4671 } 4672 4673 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4674 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4675 4676 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4677 if (Lex.getStrVal() == #CLASS) \ 4678 return parse##CLASS(N, IsDistinct); 4679 #include "llvm/IR/Metadata.def" 4680 4681 return tokError("expected metadata type"); 4682 } 4683 4684 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4685 #define NOP_FIELD(NAME, TYPE, INIT) 4686 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4687 if (!NAME.Seen) \ 4688 return error(ClosingLoc, "missing required field '" #NAME "'"); 4689 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4690 if (Lex.getStrVal() == #NAME) \ 4691 return parseMDField(#NAME, NAME); 4692 #define PARSE_MD_FIELDS() \ 4693 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4694 do { \ 4695 LocTy ClosingLoc; \ 4696 if (parseMDFieldsImpl( \ 4697 [&]() -> bool { \ 4698 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4699 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4700 "'"); \ 4701 }, \ 4702 ClosingLoc)) \ 4703 return true; \ 4704 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4705 } while (false) 4706 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4707 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4708 4709 /// parseDILocationFields: 4710 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4711 /// isImplicitCode: true) 4712 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4713 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4714 OPTIONAL(line, LineField, ); \ 4715 OPTIONAL(column, ColumnField, ); \ 4716 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4717 OPTIONAL(inlinedAt, MDField, ); \ 4718 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4719 PARSE_MD_FIELDS(); 4720 #undef VISIT_MD_FIELDS 4721 4722 Result = 4723 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4724 inlinedAt.Val, isImplicitCode.Val)); 4725 return false; 4726 } 4727 4728 /// parseGenericDINode: 4729 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4730 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4731 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4732 REQUIRED(tag, DwarfTagField, ); \ 4733 OPTIONAL(header, MDStringField, ); \ 4734 OPTIONAL(operands, MDFieldList, ); 4735 PARSE_MD_FIELDS(); 4736 #undef VISIT_MD_FIELDS 4737 4738 Result = GET_OR_DISTINCT(GenericDINode, 4739 (Context, tag.Val, header.Val, operands.Val)); 4740 return false; 4741 } 4742 4743 /// parseDISubrange: 4744 /// ::= !DISubrange(count: 30, lowerBound: 2) 4745 /// ::= !DISubrange(count: !node, lowerBound: 2) 4746 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4747 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4748 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4749 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4750 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4751 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4752 OPTIONAL(stride, MDSignedOrMDField, ); 4753 PARSE_MD_FIELDS(); 4754 #undef VISIT_MD_FIELDS 4755 4756 Metadata *Count = nullptr; 4757 Metadata *LowerBound = nullptr; 4758 Metadata *UpperBound = nullptr; 4759 Metadata *Stride = nullptr; 4760 4761 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4762 if (Bound.isMDSignedField()) 4763 return ConstantAsMetadata::get(ConstantInt::getSigned( 4764 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4765 if (Bound.isMDField()) 4766 return Bound.getMDFieldValue(); 4767 return nullptr; 4768 }; 4769 4770 Count = convToMetadata(count); 4771 LowerBound = convToMetadata(lowerBound); 4772 UpperBound = convToMetadata(upperBound); 4773 Stride = convToMetadata(stride); 4774 4775 Result = GET_OR_DISTINCT(DISubrange, 4776 (Context, Count, LowerBound, UpperBound, Stride)); 4777 4778 return false; 4779 } 4780 4781 /// parseDIGenericSubrange: 4782 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4783 /// !node3) 4784 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4785 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4786 OPTIONAL(count, MDSignedOrMDField, ); \ 4787 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4788 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4789 OPTIONAL(stride, MDSignedOrMDField, ); 4790 PARSE_MD_FIELDS(); 4791 #undef VISIT_MD_FIELDS 4792 4793 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4794 if (Bound.isMDSignedField()) 4795 return DIExpression::get( 4796 Context, {dwarf::DW_OP_consts, 4797 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4798 if (Bound.isMDField()) 4799 return Bound.getMDFieldValue(); 4800 return nullptr; 4801 }; 4802 4803 Metadata *Count = ConvToMetadata(count); 4804 Metadata *LowerBound = ConvToMetadata(lowerBound); 4805 Metadata *UpperBound = ConvToMetadata(upperBound); 4806 Metadata *Stride = ConvToMetadata(stride); 4807 4808 Result = GET_OR_DISTINCT(DIGenericSubrange, 4809 (Context, Count, LowerBound, UpperBound, Stride)); 4810 4811 return false; 4812 } 4813 4814 /// parseDIEnumerator: 4815 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4816 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4817 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4818 REQUIRED(name, MDStringField, ); \ 4819 REQUIRED(value, MDAPSIntField, ); \ 4820 OPTIONAL(isUnsigned, MDBoolField, (false)); 4821 PARSE_MD_FIELDS(); 4822 #undef VISIT_MD_FIELDS 4823 4824 if (isUnsigned.Val && value.Val.isNegative()) 4825 return tokError("unsigned enumerator with negative value"); 4826 4827 APSInt Value(value.Val); 4828 // Add a leading zero so that unsigned values with the msb set are not 4829 // mistaken for negative values when used for signed enumerators. 4830 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4831 Value = Value.zext(Value.getBitWidth() + 1); 4832 4833 Result = 4834 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4835 4836 return false; 4837 } 4838 4839 /// parseDIBasicType: 4840 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4841 /// encoding: DW_ATE_encoding, flags: 0) 4842 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4843 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4844 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4845 OPTIONAL(name, MDStringField, ); \ 4846 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4847 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4848 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4849 OPTIONAL(flags, DIFlagField, ); 4850 PARSE_MD_FIELDS(); 4851 #undef VISIT_MD_FIELDS 4852 4853 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4854 align.Val, encoding.Val, flags.Val)); 4855 return false; 4856 } 4857 4858 /// parseDIStringType: 4859 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4860 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4861 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4862 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4863 OPTIONAL(name, MDStringField, ); \ 4864 OPTIONAL(stringLength, MDField, ); \ 4865 OPTIONAL(stringLengthExpression, MDField, ); \ 4866 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4867 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4868 OPTIONAL(encoding, DwarfAttEncodingField, ); 4869 PARSE_MD_FIELDS(); 4870 #undef VISIT_MD_FIELDS 4871 4872 Result = GET_OR_DISTINCT(DIStringType, 4873 (Context, tag.Val, name.Val, stringLength.Val, 4874 stringLengthExpression.Val, size.Val, align.Val, 4875 encoding.Val)); 4876 return false; 4877 } 4878 4879 /// parseDIDerivedType: 4880 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4881 /// line: 7, scope: !1, baseType: !2, size: 32, 4882 /// align: 32, offset: 0, flags: 0, extraData: !3, 4883 /// dwarfAddressSpace: 3) 4884 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4885 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4886 REQUIRED(tag, DwarfTagField, ); \ 4887 OPTIONAL(name, MDStringField, ); \ 4888 OPTIONAL(file, MDField, ); \ 4889 OPTIONAL(line, LineField, ); \ 4890 OPTIONAL(scope, MDField, ); \ 4891 REQUIRED(baseType, MDField, ); \ 4892 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4893 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4894 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4895 OPTIONAL(flags, DIFlagField, ); \ 4896 OPTIONAL(extraData, MDField, ); \ 4897 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4898 PARSE_MD_FIELDS(); 4899 #undef VISIT_MD_FIELDS 4900 4901 Optional<unsigned> DWARFAddressSpace; 4902 if (dwarfAddressSpace.Val != UINT32_MAX) 4903 DWARFAddressSpace = dwarfAddressSpace.Val; 4904 4905 Result = GET_OR_DISTINCT(DIDerivedType, 4906 (Context, tag.Val, name.Val, file.Val, line.Val, 4907 scope.Val, baseType.Val, size.Val, align.Val, 4908 offset.Val, DWARFAddressSpace, flags.Val, 4909 extraData.Val)); 4910 return false; 4911 } 4912 4913 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4914 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4915 REQUIRED(tag, DwarfTagField, ); \ 4916 OPTIONAL(name, MDStringField, ); \ 4917 OPTIONAL(file, MDField, ); \ 4918 OPTIONAL(line, LineField, ); \ 4919 OPTIONAL(scope, MDField, ); \ 4920 OPTIONAL(baseType, MDField, ); \ 4921 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4922 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4923 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4924 OPTIONAL(flags, DIFlagField, ); \ 4925 OPTIONAL(elements, MDField, ); \ 4926 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4927 OPTIONAL(vtableHolder, MDField, ); \ 4928 OPTIONAL(templateParams, MDField, ); \ 4929 OPTIONAL(identifier, MDStringField, ); \ 4930 OPTIONAL(discriminator, MDField, ); \ 4931 OPTIONAL(dataLocation, MDField, ); \ 4932 OPTIONAL(associated, MDField, ); \ 4933 OPTIONAL(allocated, MDField, ); \ 4934 OPTIONAL(rank, MDSignedOrMDField, ); 4935 PARSE_MD_FIELDS(); 4936 #undef VISIT_MD_FIELDS 4937 4938 Metadata *Rank = nullptr; 4939 if (rank.isMDSignedField()) 4940 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4941 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4942 else if (rank.isMDField()) 4943 Rank = rank.getMDFieldValue(); 4944 4945 // If this has an identifier try to build an ODR type. 4946 if (identifier.Val) 4947 if (auto *CT = DICompositeType::buildODRType( 4948 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4949 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4950 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4951 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4952 Rank)) { 4953 Result = CT; 4954 return false; 4955 } 4956 4957 // Create a new node, and save it in the context if it belongs in the type 4958 // map. 4959 Result = GET_OR_DISTINCT( 4960 DICompositeType, 4961 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4962 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4963 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4964 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4965 Rank)); 4966 return false; 4967 } 4968 4969 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4970 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4971 OPTIONAL(flags, DIFlagField, ); \ 4972 OPTIONAL(cc, DwarfCCField, ); \ 4973 REQUIRED(types, MDField, ); 4974 PARSE_MD_FIELDS(); 4975 #undef VISIT_MD_FIELDS 4976 4977 Result = GET_OR_DISTINCT(DISubroutineType, 4978 (Context, flags.Val, cc.Val, types.Val)); 4979 return false; 4980 } 4981 4982 /// parseDIFileType: 4983 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4984 /// checksumkind: CSK_MD5, 4985 /// checksum: "000102030405060708090a0b0c0d0e0f", 4986 /// source: "source file contents") 4987 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4988 // The default constructed value for checksumkind is required, but will never 4989 // be used, as the parser checks if the field was actually Seen before using 4990 // the Val. 4991 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4992 REQUIRED(filename, MDStringField, ); \ 4993 REQUIRED(directory, MDStringField, ); \ 4994 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4995 OPTIONAL(checksum, MDStringField, ); \ 4996 OPTIONAL(source, MDStringField, ); 4997 PARSE_MD_FIELDS(); 4998 #undef VISIT_MD_FIELDS 4999 5000 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 5001 if (checksumkind.Seen && checksum.Seen) 5002 OptChecksum.emplace(checksumkind.Val, checksum.Val); 5003 else if (checksumkind.Seen || checksum.Seen) 5004 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 5005 5006 Optional<MDString *> OptSource; 5007 if (source.Seen) 5008 OptSource = source.Val; 5009 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 5010 OptChecksum, OptSource)); 5011 return false; 5012 } 5013 5014 /// parseDICompileUnit: 5015 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 5016 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 5017 /// splitDebugFilename: "abc.debug", 5018 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 5019 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 5020 /// sysroot: "/", sdk: "MacOSX.sdk") 5021 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 5022 if (!IsDistinct) 5023 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 5024 5025 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5026 REQUIRED(language, DwarfLangField, ); \ 5027 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 5028 OPTIONAL(producer, MDStringField, ); \ 5029 OPTIONAL(isOptimized, MDBoolField, ); \ 5030 OPTIONAL(flags, MDStringField, ); \ 5031 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 5032 OPTIONAL(splitDebugFilename, MDStringField, ); \ 5033 OPTIONAL(emissionKind, EmissionKindField, ); \ 5034 OPTIONAL(enums, MDField, ); \ 5035 OPTIONAL(retainedTypes, MDField, ); \ 5036 OPTIONAL(globals, MDField, ); \ 5037 OPTIONAL(imports, MDField, ); \ 5038 OPTIONAL(macros, MDField, ); \ 5039 OPTIONAL(dwoId, MDUnsignedField, ); \ 5040 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 5041 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 5042 OPTIONAL(nameTableKind, NameTableKindField, ); \ 5043 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 5044 OPTIONAL(sysroot, MDStringField, ); \ 5045 OPTIONAL(sdk, MDStringField, ); 5046 PARSE_MD_FIELDS(); 5047 #undef VISIT_MD_FIELDS 5048 5049 Result = DICompileUnit::getDistinct( 5050 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 5051 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 5052 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 5053 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 5054 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 5055 return false; 5056 } 5057 5058 /// parseDISubprogram: 5059 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 5060 /// file: !1, line: 7, type: !2, isLocal: false, 5061 /// isDefinition: true, scopeLine: 8, containingType: !3, 5062 /// virtuality: DW_VIRTUALTIY_pure_virtual, 5063 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 5064 /// spFlags: 10, isOptimized: false, templateParams: !4, 5065 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 5066 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 5067 auto Loc = Lex.getLoc(); 5068 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5069 OPTIONAL(scope, MDField, ); \ 5070 OPTIONAL(name, MDStringField, ); \ 5071 OPTIONAL(linkageName, MDStringField, ); \ 5072 OPTIONAL(file, MDField, ); \ 5073 OPTIONAL(line, LineField, ); \ 5074 OPTIONAL(type, MDField, ); \ 5075 OPTIONAL(isLocal, MDBoolField, ); \ 5076 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5077 OPTIONAL(scopeLine, LineField, ); \ 5078 OPTIONAL(containingType, MDField, ); \ 5079 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 5080 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 5081 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 5082 OPTIONAL(flags, DIFlagField, ); \ 5083 OPTIONAL(spFlags, DISPFlagField, ); \ 5084 OPTIONAL(isOptimized, MDBoolField, ); \ 5085 OPTIONAL(unit, MDField, ); \ 5086 OPTIONAL(templateParams, MDField, ); \ 5087 OPTIONAL(declaration, MDField, ); \ 5088 OPTIONAL(retainedNodes, MDField, ); \ 5089 OPTIONAL(thrownTypes, MDField, ); 5090 PARSE_MD_FIELDS(); 5091 #undef VISIT_MD_FIELDS 5092 5093 // An explicit spFlags field takes precedence over individual fields in 5094 // older IR versions. 5095 DISubprogram::DISPFlags SPFlags = 5096 spFlags.Seen ? spFlags.Val 5097 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 5098 isOptimized.Val, virtuality.Val); 5099 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 5100 return Lex.Error( 5101 Loc, 5102 "missing 'distinct', required for !DISubprogram that is a Definition"); 5103 Result = GET_OR_DISTINCT( 5104 DISubprogram, 5105 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 5106 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 5107 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 5108 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 5109 return false; 5110 } 5111 5112 /// parseDILexicalBlock: 5113 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 5114 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 5115 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5116 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5117 OPTIONAL(file, MDField, ); \ 5118 OPTIONAL(line, LineField, ); \ 5119 OPTIONAL(column, ColumnField, ); 5120 PARSE_MD_FIELDS(); 5121 #undef VISIT_MD_FIELDS 5122 5123 Result = GET_OR_DISTINCT( 5124 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 5125 return false; 5126 } 5127 5128 /// parseDILexicalBlockFile: 5129 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 5130 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 5131 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5132 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5133 OPTIONAL(file, MDField, ); \ 5134 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 5135 PARSE_MD_FIELDS(); 5136 #undef VISIT_MD_FIELDS 5137 5138 Result = GET_OR_DISTINCT(DILexicalBlockFile, 5139 (Context, scope.Val, file.Val, discriminator.Val)); 5140 return false; 5141 } 5142 5143 /// parseDICommonBlock: 5144 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 5145 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 5146 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5147 REQUIRED(scope, MDField, ); \ 5148 OPTIONAL(declaration, MDField, ); \ 5149 OPTIONAL(name, MDStringField, ); \ 5150 OPTIONAL(file, MDField, ); \ 5151 OPTIONAL(line, LineField, ); 5152 PARSE_MD_FIELDS(); 5153 #undef VISIT_MD_FIELDS 5154 5155 Result = GET_OR_DISTINCT(DICommonBlock, 5156 (Context, scope.Val, declaration.Val, name.Val, 5157 file.Val, line.Val)); 5158 return false; 5159 } 5160 5161 /// parseDINamespace: 5162 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 5163 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 5164 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5165 REQUIRED(scope, MDField, ); \ 5166 OPTIONAL(name, MDStringField, ); \ 5167 OPTIONAL(exportSymbols, MDBoolField, ); 5168 PARSE_MD_FIELDS(); 5169 #undef VISIT_MD_FIELDS 5170 5171 Result = GET_OR_DISTINCT(DINamespace, 5172 (Context, scope.Val, name.Val, exportSymbols.Val)); 5173 return false; 5174 } 5175 5176 /// parseDIMacro: 5177 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 5178 /// "SomeValue") 5179 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 5180 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5181 REQUIRED(type, DwarfMacinfoTypeField, ); \ 5182 OPTIONAL(line, LineField, ); \ 5183 REQUIRED(name, MDStringField, ); \ 5184 OPTIONAL(value, MDStringField, ); 5185 PARSE_MD_FIELDS(); 5186 #undef VISIT_MD_FIELDS 5187 5188 Result = GET_OR_DISTINCT(DIMacro, 5189 (Context, type.Val, line.Val, name.Val, value.Val)); 5190 return false; 5191 } 5192 5193 /// parseDIMacroFile: 5194 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 5195 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 5196 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5197 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 5198 OPTIONAL(line, LineField, ); \ 5199 REQUIRED(file, MDField, ); \ 5200 OPTIONAL(nodes, MDField, ); 5201 PARSE_MD_FIELDS(); 5202 #undef VISIT_MD_FIELDS 5203 5204 Result = GET_OR_DISTINCT(DIMacroFile, 5205 (Context, type.Val, line.Val, file.Val, nodes.Val)); 5206 return false; 5207 } 5208 5209 /// parseDIModule: 5210 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 5211 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 5212 /// file: !1, line: 4, isDecl: false) 5213 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 5214 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5215 REQUIRED(scope, MDField, ); \ 5216 REQUIRED(name, MDStringField, ); \ 5217 OPTIONAL(configMacros, MDStringField, ); \ 5218 OPTIONAL(includePath, MDStringField, ); \ 5219 OPTIONAL(apinotes, MDStringField, ); \ 5220 OPTIONAL(file, MDField, ); \ 5221 OPTIONAL(line, LineField, ); \ 5222 OPTIONAL(isDecl, MDBoolField, ); 5223 PARSE_MD_FIELDS(); 5224 #undef VISIT_MD_FIELDS 5225 5226 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 5227 configMacros.Val, includePath.Val, 5228 apinotes.Val, line.Val, isDecl.Val)); 5229 return false; 5230 } 5231 5232 /// parseDITemplateTypeParameter: 5233 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 5234 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 5235 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5236 OPTIONAL(name, MDStringField, ); \ 5237 REQUIRED(type, MDField, ); \ 5238 OPTIONAL(defaulted, MDBoolField, ); 5239 PARSE_MD_FIELDS(); 5240 #undef VISIT_MD_FIELDS 5241 5242 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 5243 (Context, name.Val, type.Val, defaulted.Val)); 5244 return false; 5245 } 5246 5247 /// parseDITemplateValueParameter: 5248 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 5249 /// name: "V", type: !1, defaulted: false, 5250 /// value: i32 7) 5251 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 5252 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5253 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 5254 OPTIONAL(name, MDStringField, ); \ 5255 OPTIONAL(type, MDField, ); \ 5256 OPTIONAL(defaulted, MDBoolField, ); \ 5257 REQUIRED(value, MDField, ); 5258 5259 PARSE_MD_FIELDS(); 5260 #undef VISIT_MD_FIELDS 5261 5262 Result = GET_OR_DISTINCT( 5263 DITemplateValueParameter, 5264 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 5265 return false; 5266 } 5267 5268 /// parseDIGlobalVariable: 5269 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 5270 /// file: !1, line: 7, type: !2, isLocal: false, 5271 /// isDefinition: true, templateParams: !3, 5272 /// declaration: !4, align: 8) 5273 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 5274 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5275 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 5276 OPTIONAL(scope, MDField, ); \ 5277 OPTIONAL(linkageName, MDStringField, ); \ 5278 OPTIONAL(file, MDField, ); \ 5279 OPTIONAL(line, LineField, ); \ 5280 OPTIONAL(type, MDField, ); \ 5281 OPTIONAL(isLocal, MDBoolField, ); \ 5282 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5283 OPTIONAL(templateParams, MDField, ); \ 5284 OPTIONAL(declaration, MDField, ); \ 5285 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5286 PARSE_MD_FIELDS(); 5287 #undef VISIT_MD_FIELDS 5288 5289 Result = 5290 GET_OR_DISTINCT(DIGlobalVariable, 5291 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 5292 line.Val, type.Val, isLocal.Val, isDefinition.Val, 5293 declaration.Val, templateParams.Val, align.Val)); 5294 return false; 5295 } 5296 5297 /// parseDILocalVariable: 5298 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 5299 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5300 /// align: 8) 5301 /// ::= !DILocalVariable(scope: !0, name: "foo", 5302 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5303 /// align: 8) 5304 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5305 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5306 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5307 OPTIONAL(name, MDStringField, ); \ 5308 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5309 OPTIONAL(file, MDField, ); \ 5310 OPTIONAL(line, LineField, ); \ 5311 OPTIONAL(type, MDField, ); \ 5312 OPTIONAL(flags, DIFlagField, ); \ 5313 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5314 PARSE_MD_FIELDS(); 5315 #undef VISIT_MD_FIELDS 5316 5317 Result = GET_OR_DISTINCT(DILocalVariable, 5318 (Context, scope.Val, name.Val, file.Val, line.Val, 5319 type.Val, arg.Val, flags.Val, align.Val)); 5320 return false; 5321 } 5322 5323 /// parseDILabel: 5324 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5325 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5326 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5327 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5328 REQUIRED(name, MDStringField, ); \ 5329 REQUIRED(file, MDField, ); \ 5330 REQUIRED(line, LineField, ); 5331 PARSE_MD_FIELDS(); 5332 #undef VISIT_MD_FIELDS 5333 5334 Result = GET_OR_DISTINCT(DILabel, 5335 (Context, scope.Val, name.Val, file.Val, line.Val)); 5336 return false; 5337 } 5338 5339 /// parseDIExpression: 5340 /// ::= !DIExpression(0, 7, -1) 5341 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5342 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5343 Lex.Lex(); 5344 5345 if (parseToken(lltok::lparen, "expected '(' here")) 5346 return true; 5347 5348 SmallVector<uint64_t, 8> Elements; 5349 if (Lex.getKind() != lltok::rparen) 5350 do { 5351 if (Lex.getKind() == lltok::DwarfOp) { 5352 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5353 Lex.Lex(); 5354 Elements.push_back(Op); 5355 continue; 5356 } 5357 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5358 } 5359 5360 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5361 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5362 Lex.Lex(); 5363 Elements.push_back(Op); 5364 continue; 5365 } 5366 return tokError(Twine("invalid DWARF attribute encoding '") + 5367 Lex.getStrVal() + "'"); 5368 } 5369 5370 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5371 return tokError("expected unsigned integer"); 5372 5373 auto &U = Lex.getAPSIntVal(); 5374 if (U.ugt(UINT64_MAX)) 5375 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5376 Elements.push_back(U.getZExtValue()); 5377 Lex.Lex(); 5378 } while (EatIfPresent(lltok::comma)); 5379 5380 if (parseToken(lltok::rparen, "expected ')' here")) 5381 return true; 5382 5383 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5384 return false; 5385 } 5386 5387 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) { 5388 return parseDIArgList(Result, IsDistinct, nullptr); 5389 } 5390 /// ParseDIArgList: 5391 /// ::= !DIArgList(i32 7, i64 %0) 5392 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct, 5393 PerFunctionState *PFS) { 5394 assert(PFS && "Expected valid function state"); 5395 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5396 Lex.Lex(); 5397 5398 if (parseToken(lltok::lparen, "expected '(' here")) 5399 return true; 5400 5401 SmallVector<ValueAsMetadata *, 4> Args; 5402 if (Lex.getKind() != lltok::rparen) 5403 do { 5404 Metadata *MD; 5405 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5406 return true; 5407 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5408 } while (EatIfPresent(lltok::comma)); 5409 5410 if (parseToken(lltok::rparen, "expected ')' here")) 5411 return true; 5412 5413 Result = GET_OR_DISTINCT(DIArgList, (Context, Args)); 5414 return false; 5415 } 5416 5417 /// parseDIGlobalVariableExpression: 5418 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5419 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5420 bool IsDistinct) { 5421 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5422 REQUIRED(var, MDField, ); \ 5423 REQUIRED(expr, MDField, ); 5424 PARSE_MD_FIELDS(); 5425 #undef VISIT_MD_FIELDS 5426 5427 Result = 5428 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5429 return false; 5430 } 5431 5432 /// parseDIObjCProperty: 5433 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5434 /// getter: "getFoo", attributes: 7, type: !2) 5435 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5436 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5437 OPTIONAL(name, MDStringField, ); \ 5438 OPTIONAL(file, MDField, ); \ 5439 OPTIONAL(line, LineField, ); \ 5440 OPTIONAL(setter, MDStringField, ); \ 5441 OPTIONAL(getter, MDStringField, ); \ 5442 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5443 OPTIONAL(type, MDField, ); 5444 PARSE_MD_FIELDS(); 5445 #undef VISIT_MD_FIELDS 5446 5447 Result = GET_OR_DISTINCT(DIObjCProperty, 5448 (Context, name.Val, file.Val, line.Val, setter.Val, 5449 getter.Val, attributes.Val, type.Val)); 5450 return false; 5451 } 5452 5453 /// parseDIImportedEntity: 5454 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5455 /// line: 7, name: "foo") 5456 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5457 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5458 REQUIRED(tag, DwarfTagField, ); \ 5459 REQUIRED(scope, MDField, ); \ 5460 OPTIONAL(entity, MDField, ); \ 5461 OPTIONAL(file, MDField, ); \ 5462 OPTIONAL(line, LineField, ); \ 5463 OPTIONAL(name, MDStringField, ); 5464 PARSE_MD_FIELDS(); 5465 #undef VISIT_MD_FIELDS 5466 5467 Result = GET_OR_DISTINCT( 5468 DIImportedEntity, 5469 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5470 return false; 5471 } 5472 5473 #undef PARSE_MD_FIELD 5474 #undef NOP_FIELD 5475 #undef REQUIRE_FIELD 5476 #undef DECLARE_FIELD 5477 5478 /// parseMetadataAsValue 5479 /// ::= metadata i32 %local 5480 /// ::= metadata i32 @global 5481 /// ::= metadata i32 7 5482 /// ::= metadata !0 5483 /// ::= metadata !{...} 5484 /// ::= metadata !"string" 5485 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5486 // Note: the type 'metadata' has already been parsed. 5487 Metadata *MD; 5488 if (parseMetadata(MD, &PFS)) 5489 return true; 5490 5491 V = MetadataAsValue::get(Context, MD); 5492 return false; 5493 } 5494 5495 /// parseValueAsMetadata 5496 /// ::= i32 %local 5497 /// ::= i32 @global 5498 /// ::= i32 7 5499 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5500 PerFunctionState *PFS) { 5501 Type *Ty; 5502 LocTy Loc; 5503 if (parseType(Ty, TypeMsg, Loc)) 5504 return true; 5505 if (Ty->isMetadataTy()) 5506 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5507 5508 Value *V; 5509 if (parseValue(Ty, V, PFS)) 5510 return true; 5511 5512 MD = ValueAsMetadata::get(V); 5513 return false; 5514 } 5515 5516 /// parseMetadata 5517 /// ::= i32 %local 5518 /// ::= i32 @global 5519 /// ::= i32 7 5520 /// ::= !42 5521 /// ::= !{...} 5522 /// ::= !"string" 5523 /// ::= !DILocation(...) 5524 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5525 if (Lex.getKind() == lltok::MetadataVar) { 5526 MDNode *N; 5527 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5528 // so parsing this requires a Function State. 5529 if (Lex.getStrVal() == "DIArgList") { 5530 if (parseDIArgList(N, false, PFS)) 5531 return true; 5532 } else if (parseSpecializedMDNode(N)) { 5533 return true; 5534 } 5535 MD = N; 5536 return false; 5537 } 5538 5539 // ValueAsMetadata: 5540 // <type> <value> 5541 if (Lex.getKind() != lltok::exclaim) 5542 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5543 5544 // '!'. 5545 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5546 Lex.Lex(); 5547 5548 // MDString: 5549 // ::= '!' STRINGCONSTANT 5550 if (Lex.getKind() == lltok::StringConstant) { 5551 MDString *S; 5552 if (parseMDString(S)) 5553 return true; 5554 MD = S; 5555 return false; 5556 } 5557 5558 // MDNode: 5559 // !{ ... } 5560 // !7 5561 MDNode *N; 5562 if (parseMDNodeTail(N)) 5563 return true; 5564 MD = N; 5565 return false; 5566 } 5567 5568 //===----------------------------------------------------------------------===// 5569 // Function Parsing. 5570 //===----------------------------------------------------------------------===// 5571 5572 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5573 PerFunctionState *PFS, bool IsCall) { 5574 if (Ty->isFunctionTy()) 5575 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5576 5577 switch (ID.Kind) { 5578 case ValID::t_LocalID: 5579 if (!PFS) 5580 return error(ID.Loc, "invalid use of function-local name"); 5581 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5582 return V == nullptr; 5583 case ValID::t_LocalName: 5584 if (!PFS) 5585 return error(ID.Loc, "invalid use of function-local name"); 5586 V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall); 5587 return V == nullptr; 5588 case ValID::t_InlineAsm: { 5589 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5590 return error(ID.Loc, "invalid type for inline asm constraint string"); 5591 V = InlineAsm::get( 5592 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, 5593 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); 5594 return false; 5595 } 5596 case ValID::t_GlobalName: 5597 V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5598 return V == nullptr; 5599 case ValID::t_GlobalID: 5600 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5601 return V == nullptr; 5602 case ValID::t_APSInt: 5603 if (!Ty->isIntegerTy()) 5604 return error(ID.Loc, "integer constant must have integer type"); 5605 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5606 V = ConstantInt::get(Context, ID.APSIntVal); 5607 return false; 5608 case ValID::t_APFloat: 5609 if (!Ty->isFloatingPointTy() || 5610 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5611 return error(ID.Loc, "floating point constant invalid for type"); 5612 5613 // The lexer has no type info, so builds all half, bfloat, float, and double 5614 // FP constants as double. Fix this here. Long double does not need this. 5615 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5616 // Check for signaling before potentially converting and losing that info. 5617 bool IsSNAN = ID.APFloatVal.isSignaling(); 5618 bool Ignored; 5619 if (Ty->isHalfTy()) 5620 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5621 &Ignored); 5622 else if (Ty->isBFloatTy()) 5623 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5624 &Ignored); 5625 else if (Ty->isFloatTy()) 5626 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5627 &Ignored); 5628 if (IsSNAN) { 5629 // The convert call above may quiet an SNaN, so manufacture another 5630 // SNaN. The bitcast works because the payload (significand) parameter 5631 // is truncated to fit. 5632 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5633 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5634 ID.APFloatVal.isNegative(), &Payload); 5635 } 5636 } 5637 V = ConstantFP::get(Context, ID.APFloatVal); 5638 5639 if (V->getType() != Ty) 5640 return error(ID.Loc, "floating point constant does not have type '" + 5641 getTypeString(Ty) + "'"); 5642 5643 return false; 5644 case ValID::t_Null: 5645 if (!Ty->isPointerTy()) 5646 return error(ID.Loc, "null must be a pointer type"); 5647 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5648 return false; 5649 case ValID::t_Undef: 5650 // FIXME: LabelTy should not be a first-class type. 5651 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5652 return error(ID.Loc, "invalid type for undef constant"); 5653 V = UndefValue::get(Ty); 5654 return false; 5655 case ValID::t_EmptyArray: 5656 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5657 return error(ID.Loc, "invalid empty array initializer"); 5658 V = UndefValue::get(Ty); 5659 return false; 5660 case ValID::t_Zero: 5661 // FIXME: LabelTy should not be a first-class type. 5662 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5663 return error(ID.Loc, "invalid type for null constant"); 5664 V = Constant::getNullValue(Ty); 5665 return false; 5666 case ValID::t_None: 5667 if (!Ty->isTokenTy()) 5668 return error(ID.Loc, "invalid type for none constant"); 5669 V = Constant::getNullValue(Ty); 5670 return false; 5671 case ValID::t_Poison: 5672 // FIXME: LabelTy should not be a first-class type. 5673 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5674 return error(ID.Loc, "invalid type for poison constant"); 5675 V = PoisonValue::get(Ty); 5676 return false; 5677 case ValID::t_Constant: 5678 if (ID.ConstantVal->getType() != Ty) 5679 return error(ID.Loc, "constant expression type mismatch"); 5680 V = ID.ConstantVal; 5681 return false; 5682 case ValID::t_ConstantStruct: 5683 case ValID::t_PackedConstantStruct: 5684 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5685 if (ST->getNumElements() != ID.UIntVal) 5686 return error(ID.Loc, 5687 "initializer with struct type has wrong # elements"); 5688 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5689 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5690 5691 // Verify that the elements are compatible with the structtype. 5692 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5693 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5694 return error( 5695 ID.Loc, 5696 "element " + Twine(i) + 5697 " of struct initializer doesn't match struct element type"); 5698 5699 V = ConstantStruct::get( 5700 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5701 } else 5702 return error(ID.Loc, "constant expression type mismatch"); 5703 return false; 5704 } 5705 llvm_unreachable("Invalid ValID"); 5706 } 5707 5708 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5709 C = nullptr; 5710 ValID ID; 5711 auto Loc = Lex.getLoc(); 5712 if (parseValID(ID, /*PFS=*/nullptr)) 5713 return true; 5714 switch (ID.Kind) { 5715 case ValID::t_APSInt: 5716 case ValID::t_APFloat: 5717 case ValID::t_Undef: 5718 case ValID::t_Constant: 5719 case ValID::t_ConstantStruct: 5720 case ValID::t_PackedConstantStruct: { 5721 Value *V; 5722 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5723 return true; 5724 assert(isa<Constant>(V) && "Expected a constant value"); 5725 C = cast<Constant>(V); 5726 return false; 5727 } 5728 case ValID::t_Null: 5729 C = Constant::getNullValue(Ty); 5730 return false; 5731 default: 5732 return error(Loc, "expected a constant value"); 5733 } 5734 } 5735 5736 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5737 V = nullptr; 5738 ValID ID; 5739 return parseValID(ID, PFS) || 5740 convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5741 } 5742 5743 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5744 Type *Ty = nullptr; 5745 return parseType(Ty) || parseValue(Ty, V, PFS); 5746 } 5747 5748 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5749 PerFunctionState &PFS) { 5750 Value *V; 5751 Loc = Lex.getLoc(); 5752 if (parseTypeAndValue(V, PFS)) 5753 return true; 5754 if (!isa<BasicBlock>(V)) 5755 return error(Loc, "expected a basic block"); 5756 BB = cast<BasicBlock>(V); 5757 return false; 5758 } 5759 5760 /// FunctionHeader 5761 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5762 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5763 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5764 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5765 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5766 // parse the linkage. 5767 LocTy LinkageLoc = Lex.getLoc(); 5768 unsigned Linkage; 5769 unsigned Visibility; 5770 unsigned DLLStorageClass; 5771 bool DSOLocal; 5772 AttrBuilder RetAttrs; 5773 unsigned CC; 5774 bool HasLinkage; 5775 Type *RetType = nullptr; 5776 LocTy RetTypeLoc = Lex.getLoc(); 5777 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5778 DSOLocal) || 5779 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5780 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5781 return true; 5782 5783 // Verify that the linkage is ok. 5784 switch ((GlobalValue::LinkageTypes)Linkage) { 5785 case GlobalValue::ExternalLinkage: 5786 break; // always ok. 5787 case GlobalValue::ExternalWeakLinkage: 5788 if (IsDefine) 5789 return error(LinkageLoc, "invalid linkage for function definition"); 5790 break; 5791 case GlobalValue::PrivateLinkage: 5792 case GlobalValue::InternalLinkage: 5793 case GlobalValue::AvailableExternallyLinkage: 5794 case GlobalValue::LinkOnceAnyLinkage: 5795 case GlobalValue::LinkOnceODRLinkage: 5796 case GlobalValue::WeakAnyLinkage: 5797 case GlobalValue::WeakODRLinkage: 5798 if (!IsDefine) 5799 return error(LinkageLoc, "invalid linkage for function declaration"); 5800 break; 5801 case GlobalValue::AppendingLinkage: 5802 case GlobalValue::CommonLinkage: 5803 return error(LinkageLoc, "invalid function linkage type"); 5804 } 5805 5806 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5807 return error(LinkageLoc, 5808 "symbol with local linkage must have default visibility"); 5809 5810 if (!FunctionType::isValidReturnType(RetType)) 5811 return error(RetTypeLoc, "invalid function return type"); 5812 5813 LocTy NameLoc = Lex.getLoc(); 5814 5815 std::string FunctionName; 5816 if (Lex.getKind() == lltok::GlobalVar) { 5817 FunctionName = Lex.getStrVal(); 5818 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5819 unsigned NameID = Lex.getUIntVal(); 5820 5821 if (NameID != NumberedVals.size()) 5822 return tokError("function expected to be numbered '%" + 5823 Twine(NumberedVals.size()) + "'"); 5824 } else { 5825 return tokError("expected function name"); 5826 } 5827 5828 Lex.Lex(); 5829 5830 if (Lex.getKind() != lltok::lparen) 5831 return tokError("expected '(' in function argument list"); 5832 5833 SmallVector<ArgInfo, 8> ArgList; 5834 bool IsVarArg; 5835 AttrBuilder FuncAttrs; 5836 std::vector<unsigned> FwdRefAttrGrps; 5837 LocTy BuiltinLoc; 5838 std::string Section; 5839 std::string Partition; 5840 MaybeAlign Alignment; 5841 std::string GC; 5842 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5843 unsigned AddrSpace = 0; 5844 Constant *Prefix = nullptr; 5845 Constant *Prologue = nullptr; 5846 Constant *PersonalityFn = nullptr; 5847 Comdat *C; 5848 5849 if (parseArgumentList(ArgList, IsVarArg) || 5850 parseOptionalUnnamedAddr(UnnamedAddr) || 5851 parseOptionalProgramAddrSpace(AddrSpace) || 5852 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5853 BuiltinLoc) || 5854 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5855 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5856 parseOptionalComdat(FunctionName, C) || 5857 parseOptionalAlignment(Alignment) || 5858 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5859 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5860 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5861 (EatIfPresent(lltok::kw_personality) && 5862 parseGlobalTypeAndValue(PersonalityFn))) 5863 return true; 5864 5865 if (FuncAttrs.contains(Attribute::Builtin)) 5866 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5867 5868 // If the alignment was parsed as an attribute, move to the alignment field. 5869 if (FuncAttrs.hasAlignmentAttr()) { 5870 Alignment = FuncAttrs.getAlignment(); 5871 FuncAttrs.removeAttribute(Attribute::Alignment); 5872 } 5873 5874 // Okay, if we got here, the function is syntactically valid. Convert types 5875 // and do semantic checks. 5876 std::vector<Type*> ParamTypeList; 5877 SmallVector<AttributeSet, 8> Attrs; 5878 5879 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5880 ParamTypeList.push_back(ArgList[i].Ty); 5881 Attrs.push_back(ArgList[i].Attrs); 5882 } 5883 5884 AttributeList PAL = 5885 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5886 AttributeSet::get(Context, RetAttrs), Attrs); 5887 5888 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5889 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5890 5891 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5892 PointerType *PFT = PointerType::get(FT, AddrSpace); 5893 5894 Fn = nullptr; 5895 if (!FunctionName.empty()) { 5896 // If this was a definition of a forward reference, remove the definition 5897 // from the forward reference table and fill in the forward ref. 5898 auto FRVI = ForwardRefVals.find(FunctionName); 5899 if (FRVI != ForwardRefVals.end()) { 5900 Fn = M->getFunction(FunctionName); 5901 if (!Fn) 5902 return error(FRVI->second.second, "invalid forward reference to " 5903 "function as global value!"); 5904 if (Fn->getType() != PFT) 5905 return error(FRVI->second.second, 5906 "invalid forward reference to " 5907 "function '" + 5908 FunctionName + 5909 "' with wrong type: " 5910 "expected '" + 5911 getTypeString(PFT) + "' but was '" + 5912 getTypeString(Fn->getType()) + "'"); 5913 ForwardRefVals.erase(FRVI); 5914 } else if ((Fn = M->getFunction(FunctionName))) { 5915 // Reject redefinitions. 5916 return error(NameLoc, 5917 "invalid redefinition of function '" + FunctionName + "'"); 5918 } else if (M->getNamedValue(FunctionName)) { 5919 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5920 } 5921 5922 } else { 5923 // If this is a definition of a forward referenced function, make sure the 5924 // types agree. 5925 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5926 if (I != ForwardRefValIDs.end()) { 5927 Fn = cast<Function>(I->second.first); 5928 if (Fn->getType() != PFT) 5929 return error(NameLoc, "type of definition and forward reference of '@" + 5930 Twine(NumberedVals.size()) + 5931 "' disagree: " 5932 "expected '" + 5933 getTypeString(PFT) + "' but was '" + 5934 getTypeString(Fn->getType()) + "'"); 5935 ForwardRefValIDs.erase(I); 5936 } 5937 } 5938 5939 if (!Fn) 5940 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5941 FunctionName, M); 5942 else // Move the forward-reference to the correct spot in the module. 5943 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5944 5945 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5946 5947 if (FunctionName.empty()) 5948 NumberedVals.push_back(Fn); 5949 5950 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5951 maybeSetDSOLocal(DSOLocal, *Fn); 5952 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5953 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5954 Fn->setCallingConv(CC); 5955 Fn->setAttributes(PAL); 5956 Fn->setUnnamedAddr(UnnamedAddr); 5957 Fn->setAlignment(MaybeAlign(Alignment)); 5958 Fn->setSection(Section); 5959 Fn->setPartition(Partition); 5960 Fn->setComdat(C); 5961 Fn->setPersonalityFn(PersonalityFn); 5962 if (!GC.empty()) Fn->setGC(GC); 5963 Fn->setPrefixData(Prefix); 5964 Fn->setPrologueData(Prologue); 5965 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5966 5967 // Add all of the arguments we parsed to the function. 5968 Function::arg_iterator ArgIt = Fn->arg_begin(); 5969 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5970 // If the argument has a name, insert it into the argument symbol table. 5971 if (ArgList[i].Name.empty()) continue; 5972 5973 // Set the name, if it conflicted, it will be auto-renamed. 5974 ArgIt->setName(ArgList[i].Name); 5975 5976 if (ArgIt->getName() != ArgList[i].Name) 5977 return error(ArgList[i].Loc, 5978 "redefinition of argument '%" + ArgList[i].Name + "'"); 5979 } 5980 5981 if (IsDefine) 5982 return false; 5983 5984 // Check the declaration has no block address forward references. 5985 ValID ID; 5986 if (FunctionName.empty()) { 5987 ID.Kind = ValID::t_GlobalID; 5988 ID.UIntVal = NumberedVals.size() - 1; 5989 } else { 5990 ID.Kind = ValID::t_GlobalName; 5991 ID.StrVal = FunctionName; 5992 } 5993 auto Blocks = ForwardRefBlockAddresses.find(ID); 5994 if (Blocks != ForwardRefBlockAddresses.end()) 5995 return error(Blocks->first.Loc, 5996 "cannot take blockaddress inside a declaration"); 5997 return false; 5998 } 5999 6000 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 6001 ValID ID; 6002 if (FunctionNumber == -1) { 6003 ID.Kind = ValID::t_GlobalName; 6004 ID.StrVal = std::string(F.getName()); 6005 } else { 6006 ID.Kind = ValID::t_GlobalID; 6007 ID.UIntVal = FunctionNumber; 6008 } 6009 6010 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 6011 if (Blocks == P.ForwardRefBlockAddresses.end()) 6012 return false; 6013 6014 for (const auto &I : Blocks->second) { 6015 const ValID &BBID = I.first; 6016 GlobalValue *GV = I.second; 6017 6018 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 6019 "Expected local id or name"); 6020 BasicBlock *BB; 6021 if (BBID.Kind == ValID::t_LocalName) 6022 BB = getBB(BBID.StrVal, BBID.Loc); 6023 else 6024 BB = getBB(BBID.UIntVal, BBID.Loc); 6025 if (!BB) 6026 return P.error(BBID.Loc, "referenced value is not a basic block"); 6027 6028 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 6029 GV->eraseFromParent(); 6030 } 6031 6032 P.ForwardRefBlockAddresses.erase(Blocks); 6033 return false; 6034 } 6035 6036 /// parseFunctionBody 6037 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 6038 bool LLParser::parseFunctionBody(Function &Fn) { 6039 if (Lex.getKind() != lltok::lbrace) 6040 return tokError("expected '{' in function body"); 6041 Lex.Lex(); // eat the {. 6042 6043 int FunctionNumber = -1; 6044 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 6045 6046 PerFunctionState PFS(*this, Fn, FunctionNumber); 6047 6048 // Resolve block addresses and allow basic blocks to be forward-declared 6049 // within this function. 6050 if (PFS.resolveForwardRefBlockAddresses()) 6051 return true; 6052 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 6053 6054 // We need at least one basic block. 6055 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 6056 return tokError("function body requires at least one basic block"); 6057 6058 while (Lex.getKind() != lltok::rbrace && 6059 Lex.getKind() != lltok::kw_uselistorder) 6060 if (parseBasicBlock(PFS)) 6061 return true; 6062 6063 while (Lex.getKind() != lltok::rbrace) 6064 if (parseUseListOrder(&PFS)) 6065 return true; 6066 6067 // Eat the }. 6068 Lex.Lex(); 6069 6070 // Verify function is ok. 6071 return PFS.finishFunction(); 6072 } 6073 6074 /// parseBasicBlock 6075 /// ::= (LabelStr|LabelID)? Instruction* 6076 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 6077 // If this basic block starts out with a name, remember it. 6078 std::string Name; 6079 int NameID = -1; 6080 LocTy NameLoc = Lex.getLoc(); 6081 if (Lex.getKind() == lltok::LabelStr) { 6082 Name = Lex.getStrVal(); 6083 Lex.Lex(); 6084 } else if (Lex.getKind() == lltok::LabelID) { 6085 NameID = Lex.getUIntVal(); 6086 Lex.Lex(); 6087 } 6088 6089 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 6090 if (!BB) 6091 return true; 6092 6093 std::string NameStr; 6094 6095 // parse the instructions in this block until we get a terminator. 6096 Instruction *Inst; 6097 do { 6098 // This instruction may have three possibilities for a name: a) none 6099 // specified, b) name specified "%foo =", c) number specified: "%4 =". 6100 LocTy NameLoc = Lex.getLoc(); 6101 int NameID = -1; 6102 NameStr = ""; 6103 6104 if (Lex.getKind() == lltok::LocalVarID) { 6105 NameID = Lex.getUIntVal(); 6106 Lex.Lex(); 6107 if (parseToken(lltok::equal, "expected '=' after instruction id")) 6108 return true; 6109 } else if (Lex.getKind() == lltok::LocalVar) { 6110 NameStr = Lex.getStrVal(); 6111 Lex.Lex(); 6112 if (parseToken(lltok::equal, "expected '=' after instruction name")) 6113 return true; 6114 } 6115 6116 switch (parseInstruction(Inst, BB, PFS)) { 6117 default: 6118 llvm_unreachable("Unknown parseInstruction result!"); 6119 case InstError: return true; 6120 case InstNormal: 6121 BB->getInstList().push_back(Inst); 6122 6123 // With a normal result, we check to see if the instruction is followed by 6124 // a comma and metadata. 6125 if (EatIfPresent(lltok::comma)) 6126 if (parseInstructionMetadata(*Inst)) 6127 return true; 6128 break; 6129 case InstExtraComma: 6130 BB->getInstList().push_back(Inst); 6131 6132 // If the instruction parser ate an extra comma at the end of it, it 6133 // *must* be followed by metadata. 6134 if (parseInstructionMetadata(*Inst)) 6135 return true; 6136 break; 6137 } 6138 6139 // Set the name on the instruction. 6140 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 6141 return true; 6142 } while (!Inst->isTerminator()); 6143 6144 return false; 6145 } 6146 6147 //===----------------------------------------------------------------------===// 6148 // Instruction Parsing. 6149 //===----------------------------------------------------------------------===// 6150 6151 /// parseInstruction - parse one of the many different instructions. 6152 /// 6153 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 6154 PerFunctionState &PFS) { 6155 lltok::Kind Token = Lex.getKind(); 6156 if (Token == lltok::Eof) 6157 return tokError("found end of file when expecting more instructions"); 6158 LocTy Loc = Lex.getLoc(); 6159 unsigned KeywordVal = Lex.getUIntVal(); 6160 Lex.Lex(); // Eat the keyword. 6161 6162 switch (Token) { 6163 default: 6164 return error(Loc, "expected instruction opcode"); 6165 // Terminator Instructions. 6166 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 6167 case lltok::kw_ret: 6168 return parseRet(Inst, BB, PFS); 6169 case lltok::kw_br: 6170 return parseBr(Inst, PFS); 6171 case lltok::kw_switch: 6172 return parseSwitch(Inst, PFS); 6173 case lltok::kw_indirectbr: 6174 return parseIndirectBr(Inst, PFS); 6175 case lltok::kw_invoke: 6176 return parseInvoke(Inst, PFS); 6177 case lltok::kw_resume: 6178 return parseResume(Inst, PFS); 6179 case lltok::kw_cleanupret: 6180 return parseCleanupRet(Inst, PFS); 6181 case lltok::kw_catchret: 6182 return parseCatchRet(Inst, PFS); 6183 case lltok::kw_catchswitch: 6184 return parseCatchSwitch(Inst, PFS); 6185 case lltok::kw_catchpad: 6186 return parseCatchPad(Inst, PFS); 6187 case lltok::kw_cleanuppad: 6188 return parseCleanupPad(Inst, PFS); 6189 case lltok::kw_callbr: 6190 return parseCallBr(Inst, PFS); 6191 // Unary Operators. 6192 case lltok::kw_fneg: { 6193 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6194 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 6195 if (Res != 0) 6196 return Res; 6197 if (FMF.any()) 6198 Inst->setFastMathFlags(FMF); 6199 return false; 6200 } 6201 // Binary Operators. 6202 case lltok::kw_add: 6203 case lltok::kw_sub: 6204 case lltok::kw_mul: 6205 case lltok::kw_shl: { 6206 bool NUW = EatIfPresent(lltok::kw_nuw); 6207 bool NSW = EatIfPresent(lltok::kw_nsw); 6208 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 6209 6210 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6211 return true; 6212 6213 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 6214 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 6215 return false; 6216 } 6217 case lltok::kw_fadd: 6218 case lltok::kw_fsub: 6219 case lltok::kw_fmul: 6220 case lltok::kw_fdiv: 6221 case lltok::kw_frem: { 6222 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6223 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 6224 if (Res != 0) 6225 return Res; 6226 if (FMF.any()) 6227 Inst->setFastMathFlags(FMF); 6228 return 0; 6229 } 6230 6231 case lltok::kw_sdiv: 6232 case lltok::kw_udiv: 6233 case lltok::kw_lshr: 6234 case lltok::kw_ashr: { 6235 bool Exact = EatIfPresent(lltok::kw_exact); 6236 6237 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6238 return true; 6239 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 6240 return false; 6241 } 6242 6243 case lltok::kw_urem: 6244 case lltok::kw_srem: 6245 return parseArithmetic(Inst, PFS, KeywordVal, 6246 /*IsFP*/ false); 6247 case lltok::kw_and: 6248 case lltok::kw_or: 6249 case lltok::kw_xor: 6250 return parseLogical(Inst, PFS, KeywordVal); 6251 case lltok::kw_icmp: 6252 return parseCompare(Inst, PFS, KeywordVal); 6253 case lltok::kw_fcmp: { 6254 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6255 int Res = parseCompare(Inst, PFS, KeywordVal); 6256 if (Res != 0) 6257 return Res; 6258 if (FMF.any()) 6259 Inst->setFastMathFlags(FMF); 6260 return 0; 6261 } 6262 6263 // Casts. 6264 case lltok::kw_trunc: 6265 case lltok::kw_zext: 6266 case lltok::kw_sext: 6267 case lltok::kw_fptrunc: 6268 case lltok::kw_fpext: 6269 case lltok::kw_bitcast: 6270 case lltok::kw_addrspacecast: 6271 case lltok::kw_uitofp: 6272 case lltok::kw_sitofp: 6273 case lltok::kw_fptoui: 6274 case lltok::kw_fptosi: 6275 case lltok::kw_inttoptr: 6276 case lltok::kw_ptrtoint: 6277 return parseCast(Inst, PFS, KeywordVal); 6278 // Other. 6279 case lltok::kw_select: { 6280 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6281 int Res = parseSelect(Inst, PFS); 6282 if (Res != 0) 6283 return Res; 6284 if (FMF.any()) { 6285 if (!isa<FPMathOperator>(Inst)) 6286 return error(Loc, "fast-math-flags specified for select without " 6287 "floating-point scalar or vector return type"); 6288 Inst->setFastMathFlags(FMF); 6289 } 6290 return 0; 6291 } 6292 case lltok::kw_va_arg: 6293 return parseVAArg(Inst, PFS); 6294 case lltok::kw_extractelement: 6295 return parseExtractElement(Inst, PFS); 6296 case lltok::kw_insertelement: 6297 return parseInsertElement(Inst, PFS); 6298 case lltok::kw_shufflevector: 6299 return parseShuffleVector(Inst, PFS); 6300 case lltok::kw_phi: { 6301 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6302 int Res = parsePHI(Inst, PFS); 6303 if (Res != 0) 6304 return Res; 6305 if (FMF.any()) { 6306 if (!isa<FPMathOperator>(Inst)) 6307 return error(Loc, "fast-math-flags specified for phi without " 6308 "floating-point scalar or vector return type"); 6309 Inst->setFastMathFlags(FMF); 6310 } 6311 return 0; 6312 } 6313 case lltok::kw_landingpad: 6314 return parseLandingPad(Inst, PFS); 6315 case lltok::kw_freeze: 6316 return parseFreeze(Inst, PFS); 6317 // Call. 6318 case lltok::kw_call: 6319 return parseCall(Inst, PFS, CallInst::TCK_None); 6320 case lltok::kw_tail: 6321 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6322 case lltok::kw_musttail: 6323 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6324 case lltok::kw_notail: 6325 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6326 // Memory. 6327 case lltok::kw_alloca: 6328 return parseAlloc(Inst, PFS); 6329 case lltok::kw_load: 6330 return parseLoad(Inst, PFS); 6331 case lltok::kw_store: 6332 return parseStore(Inst, PFS); 6333 case lltok::kw_cmpxchg: 6334 return parseCmpXchg(Inst, PFS); 6335 case lltok::kw_atomicrmw: 6336 return parseAtomicRMW(Inst, PFS); 6337 case lltok::kw_fence: 6338 return parseFence(Inst, PFS); 6339 case lltok::kw_getelementptr: 6340 return parseGetElementPtr(Inst, PFS); 6341 case lltok::kw_extractvalue: 6342 return parseExtractValue(Inst, PFS); 6343 case lltok::kw_insertvalue: 6344 return parseInsertValue(Inst, PFS); 6345 } 6346 } 6347 6348 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6349 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6350 if (Opc == Instruction::FCmp) { 6351 switch (Lex.getKind()) { 6352 default: 6353 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6354 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6355 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6356 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6357 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6358 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6359 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6360 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6361 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6362 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6363 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6364 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6365 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6366 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6367 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6368 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6369 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6370 } 6371 } else { 6372 switch (Lex.getKind()) { 6373 default: 6374 return tokError("expected icmp predicate (e.g. 'eq')"); 6375 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6376 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6377 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6378 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6379 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6380 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6381 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6382 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6383 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6384 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6385 } 6386 } 6387 Lex.Lex(); 6388 return false; 6389 } 6390 6391 //===----------------------------------------------------------------------===// 6392 // Terminator Instructions. 6393 //===----------------------------------------------------------------------===// 6394 6395 /// parseRet - parse a return instruction. 6396 /// ::= 'ret' void (',' !dbg, !1)* 6397 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6398 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6399 PerFunctionState &PFS) { 6400 SMLoc TypeLoc = Lex.getLoc(); 6401 Type *Ty = nullptr; 6402 if (parseType(Ty, true /*void allowed*/)) 6403 return true; 6404 6405 Type *ResType = PFS.getFunction().getReturnType(); 6406 6407 if (Ty->isVoidTy()) { 6408 if (!ResType->isVoidTy()) 6409 return error(TypeLoc, "value doesn't match function result type '" + 6410 getTypeString(ResType) + "'"); 6411 6412 Inst = ReturnInst::Create(Context); 6413 return false; 6414 } 6415 6416 Value *RV; 6417 if (parseValue(Ty, RV, PFS)) 6418 return true; 6419 6420 if (ResType != RV->getType()) 6421 return error(TypeLoc, "value doesn't match function result type '" + 6422 getTypeString(ResType) + "'"); 6423 6424 Inst = ReturnInst::Create(Context, RV); 6425 return false; 6426 } 6427 6428 /// parseBr 6429 /// ::= 'br' TypeAndValue 6430 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6431 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6432 LocTy Loc, Loc2; 6433 Value *Op0; 6434 BasicBlock *Op1, *Op2; 6435 if (parseTypeAndValue(Op0, Loc, PFS)) 6436 return true; 6437 6438 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6439 Inst = BranchInst::Create(BB); 6440 return false; 6441 } 6442 6443 if (Op0->getType() != Type::getInt1Ty(Context)) 6444 return error(Loc, "branch condition must have 'i1' type"); 6445 6446 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6447 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6448 parseToken(lltok::comma, "expected ',' after true destination") || 6449 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6450 return true; 6451 6452 Inst = BranchInst::Create(Op1, Op2, Op0); 6453 return false; 6454 } 6455 6456 /// parseSwitch 6457 /// Instruction 6458 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6459 /// JumpTable 6460 /// ::= (TypeAndValue ',' TypeAndValue)* 6461 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6462 LocTy CondLoc, BBLoc; 6463 Value *Cond; 6464 BasicBlock *DefaultBB; 6465 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6466 parseToken(lltok::comma, "expected ',' after switch condition") || 6467 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6468 parseToken(lltok::lsquare, "expected '[' with switch table")) 6469 return true; 6470 6471 if (!Cond->getType()->isIntegerTy()) 6472 return error(CondLoc, "switch condition must have integer type"); 6473 6474 // parse the jump table pairs. 6475 SmallPtrSet<Value*, 32> SeenCases; 6476 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6477 while (Lex.getKind() != lltok::rsquare) { 6478 Value *Constant; 6479 BasicBlock *DestBB; 6480 6481 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6482 parseToken(lltok::comma, "expected ',' after case value") || 6483 parseTypeAndBasicBlock(DestBB, PFS)) 6484 return true; 6485 6486 if (!SeenCases.insert(Constant).second) 6487 return error(CondLoc, "duplicate case value in switch"); 6488 if (!isa<ConstantInt>(Constant)) 6489 return error(CondLoc, "case value is not a constant integer"); 6490 6491 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6492 } 6493 6494 Lex.Lex(); // Eat the ']'. 6495 6496 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6497 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6498 SI->addCase(Table[i].first, Table[i].second); 6499 Inst = SI; 6500 return false; 6501 } 6502 6503 /// parseIndirectBr 6504 /// Instruction 6505 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6506 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6507 LocTy AddrLoc; 6508 Value *Address; 6509 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6510 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6511 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6512 return true; 6513 6514 if (!Address->getType()->isPointerTy()) 6515 return error(AddrLoc, "indirectbr address must have pointer type"); 6516 6517 // parse the destination list. 6518 SmallVector<BasicBlock*, 16> DestList; 6519 6520 if (Lex.getKind() != lltok::rsquare) { 6521 BasicBlock *DestBB; 6522 if (parseTypeAndBasicBlock(DestBB, PFS)) 6523 return true; 6524 DestList.push_back(DestBB); 6525 6526 while (EatIfPresent(lltok::comma)) { 6527 if (parseTypeAndBasicBlock(DestBB, PFS)) 6528 return true; 6529 DestList.push_back(DestBB); 6530 } 6531 } 6532 6533 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6534 return true; 6535 6536 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6537 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6538 IBI->addDestination(DestList[i]); 6539 Inst = IBI; 6540 return false; 6541 } 6542 6543 /// parseInvoke 6544 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6545 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6546 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6547 LocTy CallLoc = Lex.getLoc(); 6548 AttrBuilder RetAttrs, FnAttrs; 6549 std::vector<unsigned> FwdRefAttrGrps; 6550 LocTy NoBuiltinLoc; 6551 unsigned CC; 6552 unsigned InvokeAddrSpace; 6553 Type *RetType = nullptr; 6554 LocTy RetTypeLoc; 6555 ValID CalleeID; 6556 SmallVector<ParamInfo, 16> ArgList; 6557 SmallVector<OperandBundleDef, 2> BundleList; 6558 6559 BasicBlock *NormalBB, *UnwindBB; 6560 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6561 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6562 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6563 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6564 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6565 NoBuiltinLoc) || 6566 parseOptionalOperandBundles(BundleList, PFS) || 6567 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6568 parseTypeAndBasicBlock(NormalBB, PFS) || 6569 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6570 parseTypeAndBasicBlock(UnwindBB, PFS)) 6571 return true; 6572 6573 // If RetType is a non-function pointer type, then this is the short syntax 6574 // for the call, which means that RetType is just the return type. Infer the 6575 // rest of the function argument types from the arguments that are present. 6576 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6577 if (!Ty) { 6578 // Pull out the types of all of the arguments... 6579 std::vector<Type*> ParamTypes; 6580 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6581 ParamTypes.push_back(ArgList[i].V->getType()); 6582 6583 if (!FunctionType::isValidReturnType(RetType)) 6584 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6585 6586 Ty = FunctionType::get(RetType, ParamTypes, false); 6587 } 6588 6589 CalleeID.FTy = Ty; 6590 6591 // Look up the callee. 6592 Value *Callee; 6593 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6594 Callee, &PFS, /*IsCall=*/true)) 6595 return true; 6596 6597 // Set up the Attribute for the function. 6598 SmallVector<Value *, 8> Args; 6599 SmallVector<AttributeSet, 8> ArgAttrs; 6600 6601 // Loop through FunctionType's arguments and ensure they are specified 6602 // correctly. Also, gather any parameter attributes. 6603 FunctionType::param_iterator I = Ty->param_begin(); 6604 FunctionType::param_iterator E = Ty->param_end(); 6605 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6606 Type *ExpectedTy = nullptr; 6607 if (I != E) { 6608 ExpectedTy = *I++; 6609 } else if (!Ty->isVarArg()) { 6610 return error(ArgList[i].Loc, "too many arguments specified"); 6611 } 6612 6613 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6614 return error(ArgList[i].Loc, "argument is not of expected type '" + 6615 getTypeString(ExpectedTy) + "'"); 6616 Args.push_back(ArgList[i].V); 6617 ArgAttrs.push_back(ArgList[i].Attrs); 6618 } 6619 6620 if (I != E) 6621 return error(CallLoc, "not enough parameters specified for call"); 6622 6623 if (FnAttrs.hasAlignmentAttr()) 6624 return error(CallLoc, "invoke instructions may not have an alignment"); 6625 6626 // Finish off the Attribute and check them 6627 AttributeList PAL = 6628 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6629 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6630 6631 InvokeInst *II = 6632 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6633 II->setCallingConv(CC); 6634 II->setAttributes(PAL); 6635 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6636 Inst = II; 6637 return false; 6638 } 6639 6640 /// parseResume 6641 /// ::= 'resume' TypeAndValue 6642 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6643 Value *Exn; LocTy ExnLoc; 6644 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6645 return true; 6646 6647 ResumeInst *RI = ResumeInst::Create(Exn); 6648 Inst = RI; 6649 return false; 6650 } 6651 6652 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6653 PerFunctionState &PFS) { 6654 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6655 return true; 6656 6657 while (Lex.getKind() != lltok::rsquare) { 6658 // If this isn't the first argument, we need a comma. 6659 if (!Args.empty() && 6660 parseToken(lltok::comma, "expected ',' in argument list")) 6661 return true; 6662 6663 // parse the argument. 6664 LocTy ArgLoc; 6665 Type *ArgTy = nullptr; 6666 if (parseType(ArgTy, ArgLoc)) 6667 return true; 6668 6669 Value *V; 6670 if (ArgTy->isMetadataTy()) { 6671 if (parseMetadataAsValue(V, PFS)) 6672 return true; 6673 } else { 6674 if (parseValue(ArgTy, V, PFS)) 6675 return true; 6676 } 6677 Args.push_back(V); 6678 } 6679 6680 Lex.Lex(); // Lex the ']'. 6681 return false; 6682 } 6683 6684 /// parseCleanupRet 6685 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6686 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6687 Value *CleanupPad = nullptr; 6688 6689 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6690 return true; 6691 6692 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6693 return true; 6694 6695 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6696 return true; 6697 6698 BasicBlock *UnwindBB = nullptr; 6699 if (Lex.getKind() == lltok::kw_to) { 6700 Lex.Lex(); 6701 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6702 return true; 6703 } else { 6704 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6705 return true; 6706 } 6707 } 6708 6709 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6710 return false; 6711 } 6712 6713 /// parseCatchRet 6714 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6715 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6716 Value *CatchPad = nullptr; 6717 6718 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6719 return true; 6720 6721 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6722 return true; 6723 6724 BasicBlock *BB; 6725 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6726 parseTypeAndBasicBlock(BB, PFS)) 6727 return true; 6728 6729 Inst = CatchReturnInst::Create(CatchPad, BB); 6730 return false; 6731 } 6732 6733 /// parseCatchSwitch 6734 /// ::= 'catchswitch' within Parent 6735 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6736 Value *ParentPad; 6737 6738 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6739 return true; 6740 6741 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6742 Lex.getKind() != lltok::LocalVarID) 6743 return tokError("expected scope value for catchswitch"); 6744 6745 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6746 return true; 6747 6748 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6749 return true; 6750 6751 SmallVector<BasicBlock *, 32> Table; 6752 do { 6753 BasicBlock *DestBB; 6754 if (parseTypeAndBasicBlock(DestBB, PFS)) 6755 return true; 6756 Table.push_back(DestBB); 6757 } while (EatIfPresent(lltok::comma)); 6758 6759 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6760 return true; 6761 6762 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6763 return true; 6764 6765 BasicBlock *UnwindBB = nullptr; 6766 if (EatIfPresent(lltok::kw_to)) { 6767 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6768 return true; 6769 } else { 6770 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6771 return true; 6772 } 6773 6774 auto *CatchSwitch = 6775 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6776 for (BasicBlock *DestBB : Table) 6777 CatchSwitch->addHandler(DestBB); 6778 Inst = CatchSwitch; 6779 return false; 6780 } 6781 6782 /// parseCatchPad 6783 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6784 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6785 Value *CatchSwitch = nullptr; 6786 6787 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6788 return true; 6789 6790 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6791 return tokError("expected scope value for catchpad"); 6792 6793 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6794 return true; 6795 6796 SmallVector<Value *, 8> Args; 6797 if (parseExceptionArgs(Args, PFS)) 6798 return true; 6799 6800 Inst = CatchPadInst::Create(CatchSwitch, Args); 6801 return false; 6802 } 6803 6804 /// parseCleanupPad 6805 /// ::= 'cleanuppad' within Parent ParamList 6806 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6807 Value *ParentPad = nullptr; 6808 6809 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6810 return true; 6811 6812 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6813 Lex.getKind() != lltok::LocalVarID) 6814 return tokError("expected scope value for cleanuppad"); 6815 6816 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6817 return true; 6818 6819 SmallVector<Value *, 8> Args; 6820 if (parseExceptionArgs(Args, PFS)) 6821 return true; 6822 6823 Inst = CleanupPadInst::Create(ParentPad, Args); 6824 return false; 6825 } 6826 6827 //===----------------------------------------------------------------------===// 6828 // Unary Operators. 6829 //===----------------------------------------------------------------------===// 6830 6831 /// parseUnaryOp 6832 /// ::= UnaryOp TypeAndValue ',' Value 6833 /// 6834 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6835 /// operand is allowed. 6836 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6837 unsigned Opc, bool IsFP) { 6838 LocTy Loc; Value *LHS; 6839 if (parseTypeAndValue(LHS, Loc, PFS)) 6840 return true; 6841 6842 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6843 : LHS->getType()->isIntOrIntVectorTy(); 6844 6845 if (!Valid) 6846 return error(Loc, "invalid operand type for instruction"); 6847 6848 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6849 return false; 6850 } 6851 6852 /// parseCallBr 6853 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6854 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6855 /// '[' LabelList ']' 6856 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6857 LocTy CallLoc = Lex.getLoc(); 6858 AttrBuilder RetAttrs, FnAttrs; 6859 std::vector<unsigned> FwdRefAttrGrps; 6860 LocTy NoBuiltinLoc; 6861 unsigned CC; 6862 Type *RetType = nullptr; 6863 LocTy RetTypeLoc; 6864 ValID CalleeID; 6865 SmallVector<ParamInfo, 16> ArgList; 6866 SmallVector<OperandBundleDef, 2> BundleList; 6867 6868 BasicBlock *DefaultDest; 6869 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6870 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6871 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6872 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6873 NoBuiltinLoc) || 6874 parseOptionalOperandBundles(BundleList, PFS) || 6875 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6876 parseTypeAndBasicBlock(DefaultDest, PFS) || 6877 parseToken(lltok::lsquare, "expected '[' in callbr")) 6878 return true; 6879 6880 // parse the destination list. 6881 SmallVector<BasicBlock *, 16> IndirectDests; 6882 6883 if (Lex.getKind() != lltok::rsquare) { 6884 BasicBlock *DestBB; 6885 if (parseTypeAndBasicBlock(DestBB, PFS)) 6886 return true; 6887 IndirectDests.push_back(DestBB); 6888 6889 while (EatIfPresent(lltok::comma)) { 6890 if (parseTypeAndBasicBlock(DestBB, PFS)) 6891 return true; 6892 IndirectDests.push_back(DestBB); 6893 } 6894 } 6895 6896 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6897 return true; 6898 6899 // If RetType is a non-function pointer type, then this is the short syntax 6900 // for the call, which means that RetType is just the return type. Infer the 6901 // rest of the function argument types from the arguments that are present. 6902 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6903 if (!Ty) { 6904 // Pull out the types of all of the arguments... 6905 std::vector<Type *> ParamTypes; 6906 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6907 ParamTypes.push_back(ArgList[i].V->getType()); 6908 6909 if (!FunctionType::isValidReturnType(RetType)) 6910 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6911 6912 Ty = FunctionType::get(RetType, ParamTypes, false); 6913 } 6914 6915 CalleeID.FTy = Ty; 6916 6917 // Look up the callee. 6918 Value *Callee; 6919 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6920 /*IsCall=*/true)) 6921 return true; 6922 6923 // Set up the Attribute for the function. 6924 SmallVector<Value *, 8> Args; 6925 SmallVector<AttributeSet, 8> ArgAttrs; 6926 6927 // Loop through FunctionType's arguments and ensure they are specified 6928 // correctly. Also, gather any parameter attributes. 6929 FunctionType::param_iterator I = Ty->param_begin(); 6930 FunctionType::param_iterator E = Ty->param_end(); 6931 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6932 Type *ExpectedTy = nullptr; 6933 if (I != E) { 6934 ExpectedTy = *I++; 6935 } else if (!Ty->isVarArg()) { 6936 return error(ArgList[i].Loc, "too many arguments specified"); 6937 } 6938 6939 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6940 return error(ArgList[i].Loc, "argument is not of expected type '" + 6941 getTypeString(ExpectedTy) + "'"); 6942 Args.push_back(ArgList[i].V); 6943 ArgAttrs.push_back(ArgList[i].Attrs); 6944 } 6945 6946 if (I != E) 6947 return error(CallLoc, "not enough parameters specified for call"); 6948 6949 if (FnAttrs.hasAlignmentAttr()) 6950 return error(CallLoc, "callbr instructions may not have an alignment"); 6951 6952 // Finish off the Attribute and check them 6953 AttributeList PAL = 6954 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6955 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6956 6957 CallBrInst *CBI = 6958 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6959 BundleList); 6960 CBI->setCallingConv(CC); 6961 CBI->setAttributes(PAL); 6962 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6963 Inst = CBI; 6964 return false; 6965 } 6966 6967 //===----------------------------------------------------------------------===// 6968 // Binary Operators. 6969 //===----------------------------------------------------------------------===// 6970 6971 /// parseArithmetic 6972 /// ::= ArithmeticOps TypeAndValue ',' Value 6973 /// 6974 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6975 /// operand is allowed. 6976 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6977 unsigned Opc, bool IsFP) { 6978 LocTy Loc; Value *LHS, *RHS; 6979 if (parseTypeAndValue(LHS, Loc, PFS) || 6980 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6981 parseValue(LHS->getType(), RHS, PFS)) 6982 return true; 6983 6984 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6985 : LHS->getType()->isIntOrIntVectorTy(); 6986 6987 if (!Valid) 6988 return error(Loc, "invalid operand type for instruction"); 6989 6990 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6991 return false; 6992 } 6993 6994 /// parseLogical 6995 /// ::= ArithmeticOps TypeAndValue ',' Value { 6996 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6997 unsigned Opc) { 6998 LocTy Loc; Value *LHS, *RHS; 6999 if (parseTypeAndValue(LHS, Loc, PFS) || 7000 parseToken(lltok::comma, "expected ',' in logical operation") || 7001 parseValue(LHS->getType(), RHS, PFS)) 7002 return true; 7003 7004 if (!LHS->getType()->isIntOrIntVectorTy()) 7005 return error(Loc, 7006 "instruction requires integer or integer vector operands"); 7007 7008 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 7009 return false; 7010 } 7011 7012 /// parseCompare 7013 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 7014 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 7015 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 7016 unsigned Opc) { 7017 // parse the integer/fp comparison predicate. 7018 LocTy Loc; 7019 unsigned Pred; 7020 Value *LHS, *RHS; 7021 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 7022 parseToken(lltok::comma, "expected ',' after compare value") || 7023 parseValue(LHS->getType(), RHS, PFS)) 7024 return true; 7025 7026 if (Opc == Instruction::FCmp) { 7027 if (!LHS->getType()->isFPOrFPVectorTy()) 7028 return error(Loc, "fcmp requires floating point operands"); 7029 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 7030 } else { 7031 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 7032 if (!LHS->getType()->isIntOrIntVectorTy() && 7033 !LHS->getType()->isPtrOrPtrVectorTy()) 7034 return error(Loc, "icmp requires integer operands"); 7035 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 7036 } 7037 return false; 7038 } 7039 7040 //===----------------------------------------------------------------------===// 7041 // Other Instructions. 7042 //===----------------------------------------------------------------------===// 7043 7044 /// parseCast 7045 /// ::= CastOpc TypeAndValue 'to' Type 7046 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 7047 unsigned Opc) { 7048 LocTy Loc; 7049 Value *Op; 7050 Type *DestTy = nullptr; 7051 if (parseTypeAndValue(Op, Loc, PFS) || 7052 parseToken(lltok::kw_to, "expected 'to' after cast value") || 7053 parseType(DestTy)) 7054 return true; 7055 7056 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 7057 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 7058 return error(Loc, "invalid cast opcode for cast from '" + 7059 getTypeString(Op->getType()) + "' to '" + 7060 getTypeString(DestTy) + "'"); 7061 } 7062 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 7063 return false; 7064 } 7065 7066 /// parseSelect 7067 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7068 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 7069 LocTy Loc; 7070 Value *Op0, *Op1, *Op2; 7071 if (parseTypeAndValue(Op0, Loc, PFS) || 7072 parseToken(lltok::comma, "expected ',' after select condition") || 7073 parseTypeAndValue(Op1, PFS) || 7074 parseToken(lltok::comma, "expected ',' after select value") || 7075 parseTypeAndValue(Op2, PFS)) 7076 return true; 7077 7078 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 7079 return error(Loc, Reason); 7080 7081 Inst = SelectInst::Create(Op0, Op1, Op2); 7082 return false; 7083 } 7084 7085 /// parseVAArg 7086 /// ::= 'va_arg' TypeAndValue ',' Type 7087 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 7088 Value *Op; 7089 Type *EltTy = nullptr; 7090 LocTy TypeLoc; 7091 if (parseTypeAndValue(Op, PFS) || 7092 parseToken(lltok::comma, "expected ',' after vaarg operand") || 7093 parseType(EltTy, TypeLoc)) 7094 return true; 7095 7096 if (!EltTy->isFirstClassType()) 7097 return error(TypeLoc, "va_arg requires operand with first class type"); 7098 7099 Inst = new VAArgInst(Op, EltTy); 7100 return false; 7101 } 7102 7103 /// parseExtractElement 7104 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 7105 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 7106 LocTy Loc; 7107 Value *Op0, *Op1; 7108 if (parseTypeAndValue(Op0, Loc, PFS) || 7109 parseToken(lltok::comma, "expected ',' after extract value") || 7110 parseTypeAndValue(Op1, PFS)) 7111 return true; 7112 7113 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 7114 return error(Loc, "invalid extractelement operands"); 7115 7116 Inst = ExtractElementInst::Create(Op0, Op1); 7117 return false; 7118 } 7119 7120 /// parseInsertElement 7121 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7122 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 7123 LocTy Loc; 7124 Value *Op0, *Op1, *Op2; 7125 if (parseTypeAndValue(Op0, Loc, PFS) || 7126 parseToken(lltok::comma, "expected ',' after insertelement value") || 7127 parseTypeAndValue(Op1, PFS) || 7128 parseToken(lltok::comma, "expected ',' after insertelement value") || 7129 parseTypeAndValue(Op2, PFS)) 7130 return true; 7131 7132 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 7133 return error(Loc, "invalid insertelement operands"); 7134 7135 Inst = InsertElementInst::Create(Op0, Op1, Op2); 7136 return false; 7137 } 7138 7139 /// parseShuffleVector 7140 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7141 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 7142 LocTy Loc; 7143 Value *Op0, *Op1, *Op2; 7144 if (parseTypeAndValue(Op0, Loc, PFS) || 7145 parseToken(lltok::comma, "expected ',' after shuffle mask") || 7146 parseTypeAndValue(Op1, PFS) || 7147 parseToken(lltok::comma, "expected ',' after shuffle value") || 7148 parseTypeAndValue(Op2, PFS)) 7149 return true; 7150 7151 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 7152 return error(Loc, "invalid shufflevector operands"); 7153 7154 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 7155 return false; 7156 } 7157 7158 /// parsePHI 7159 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 7160 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 7161 Type *Ty = nullptr; LocTy TypeLoc; 7162 Value *Op0, *Op1; 7163 7164 if (parseType(Ty, TypeLoc) || 7165 parseToken(lltok::lsquare, "expected '[' in phi value list") || 7166 parseValue(Ty, Op0, PFS) || 7167 parseToken(lltok::comma, "expected ',' after insertelement value") || 7168 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7169 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7170 return true; 7171 7172 bool AteExtraComma = false; 7173 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 7174 7175 while (true) { 7176 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 7177 7178 if (!EatIfPresent(lltok::comma)) 7179 break; 7180 7181 if (Lex.getKind() == lltok::MetadataVar) { 7182 AteExtraComma = true; 7183 break; 7184 } 7185 7186 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 7187 parseValue(Ty, Op0, PFS) || 7188 parseToken(lltok::comma, "expected ',' after insertelement value") || 7189 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7190 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7191 return true; 7192 } 7193 7194 if (!Ty->isFirstClassType()) 7195 return error(TypeLoc, "phi node must have first class type"); 7196 7197 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 7198 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 7199 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 7200 Inst = PN; 7201 return AteExtraComma ? InstExtraComma : InstNormal; 7202 } 7203 7204 /// parseLandingPad 7205 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 7206 /// Clause 7207 /// ::= 'catch' TypeAndValue 7208 /// ::= 'filter' 7209 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 7210 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 7211 Type *Ty = nullptr; LocTy TyLoc; 7212 7213 if (parseType(Ty, TyLoc)) 7214 return true; 7215 7216 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 7217 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 7218 7219 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 7220 LandingPadInst::ClauseType CT; 7221 if (EatIfPresent(lltok::kw_catch)) 7222 CT = LandingPadInst::Catch; 7223 else if (EatIfPresent(lltok::kw_filter)) 7224 CT = LandingPadInst::Filter; 7225 else 7226 return tokError("expected 'catch' or 'filter' clause type"); 7227 7228 Value *V; 7229 LocTy VLoc; 7230 if (parseTypeAndValue(V, VLoc, PFS)) 7231 return true; 7232 7233 // A 'catch' type expects a non-array constant. A filter clause expects an 7234 // array constant. 7235 if (CT == LandingPadInst::Catch) { 7236 if (isa<ArrayType>(V->getType())) 7237 error(VLoc, "'catch' clause has an invalid type"); 7238 } else { 7239 if (!isa<ArrayType>(V->getType())) 7240 error(VLoc, "'filter' clause has an invalid type"); 7241 } 7242 7243 Constant *CV = dyn_cast<Constant>(V); 7244 if (!CV) 7245 return error(VLoc, "clause argument must be a constant"); 7246 LP->addClause(CV); 7247 } 7248 7249 Inst = LP.release(); 7250 return false; 7251 } 7252 7253 /// parseFreeze 7254 /// ::= 'freeze' Type Value 7255 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 7256 LocTy Loc; 7257 Value *Op; 7258 if (parseTypeAndValue(Op, Loc, PFS)) 7259 return true; 7260 7261 Inst = new FreezeInst(Op); 7262 return false; 7263 } 7264 7265 /// parseCall 7266 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 7267 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7268 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 7269 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7270 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 7271 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7272 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 7273 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7274 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 7275 CallInst::TailCallKind TCK) { 7276 AttrBuilder RetAttrs, FnAttrs; 7277 std::vector<unsigned> FwdRefAttrGrps; 7278 LocTy BuiltinLoc; 7279 unsigned CallAddrSpace; 7280 unsigned CC; 7281 Type *RetType = nullptr; 7282 LocTy RetTypeLoc; 7283 ValID CalleeID; 7284 SmallVector<ParamInfo, 16> ArgList; 7285 SmallVector<OperandBundleDef, 2> BundleList; 7286 LocTy CallLoc = Lex.getLoc(); 7287 7288 if (TCK != CallInst::TCK_None && 7289 parseToken(lltok::kw_call, 7290 "expected 'tail call', 'musttail call', or 'notail call'")) 7291 return true; 7292 7293 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 7294 7295 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7296 parseOptionalProgramAddrSpace(CallAddrSpace) || 7297 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7298 parseValID(CalleeID) || 7299 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 7300 PFS.getFunction().isVarArg()) || 7301 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 7302 parseOptionalOperandBundles(BundleList, PFS)) 7303 return true; 7304 7305 // If RetType is a non-function pointer type, then this is the short syntax 7306 // for the call, which means that RetType is just the return type. Infer the 7307 // rest of the function argument types from the arguments that are present. 7308 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 7309 if (!Ty) { 7310 // Pull out the types of all of the arguments... 7311 std::vector<Type*> ParamTypes; 7312 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 7313 ParamTypes.push_back(ArgList[i].V->getType()); 7314 7315 if (!FunctionType::isValidReturnType(RetType)) 7316 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7317 7318 Ty = FunctionType::get(RetType, ParamTypes, false); 7319 } 7320 7321 CalleeID.FTy = Ty; 7322 7323 // Look up the callee. 7324 Value *Callee; 7325 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7326 &PFS, /*IsCall=*/true)) 7327 return true; 7328 7329 // Set up the Attribute for the function. 7330 SmallVector<AttributeSet, 8> Attrs; 7331 7332 SmallVector<Value*, 8> Args; 7333 7334 // Loop through FunctionType's arguments and ensure they are specified 7335 // correctly. Also, gather any parameter attributes. 7336 FunctionType::param_iterator I = Ty->param_begin(); 7337 FunctionType::param_iterator E = Ty->param_end(); 7338 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7339 Type *ExpectedTy = nullptr; 7340 if (I != E) { 7341 ExpectedTy = *I++; 7342 } else if (!Ty->isVarArg()) { 7343 return error(ArgList[i].Loc, "too many arguments specified"); 7344 } 7345 7346 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7347 return error(ArgList[i].Loc, "argument is not of expected type '" + 7348 getTypeString(ExpectedTy) + "'"); 7349 Args.push_back(ArgList[i].V); 7350 Attrs.push_back(ArgList[i].Attrs); 7351 } 7352 7353 if (I != E) 7354 return error(CallLoc, "not enough parameters specified for call"); 7355 7356 if (FnAttrs.hasAlignmentAttr()) 7357 return error(CallLoc, "call instructions may not have an alignment"); 7358 7359 // Finish off the Attribute and check them 7360 AttributeList PAL = 7361 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7362 AttributeSet::get(Context, RetAttrs), Attrs); 7363 7364 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7365 CI->setTailCallKind(TCK); 7366 CI->setCallingConv(CC); 7367 if (FMF.any()) { 7368 if (!isa<FPMathOperator>(CI)) { 7369 CI->deleteValue(); 7370 return error(CallLoc, "fast-math-flags specified for call without " 7371 "floating-point scalar or vector return type"); 7372 } 7373 CI->setFastMathFlags(FMF); 7374 } 7375 CI->setAttributes(PAL); 7376 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7377 Inst = CI; 7378 return false; 7379 } 7380 7381 //===----------------------------------------------------------------------===// 7382 // Memory Instructions. 7383 //===----------------------------------------------------------------------===// 7384 7385 /// parseAlloc 7386 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7387 /// (',' 'align' i32)? (',', 'addrspace(n))? 7388 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7389 Value *Size = nullptr; 7390 LocTy SizeLoc, TyLoc, ASLoc; 7391 MaybeAlign Alignment; 7392 unsigned AddrSpace = 0; 7393 Type *Ty = nullptr; 7394 7395 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7396 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7397 7398 if (parseType(Ty, TyLoc)) 7399 return true; 7400 7401 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7402 return error(TyLoc, "invalid type for alloca"); 7403 7404 bool AteExtraComma = false; 7405 if (EatIfPresent(lltok::comma)) { 7406 if (Lex.getKind() == lltok::kw_align) { 7407 if (parseOptionalAlignment(Alignment)) 7408 return true; 7409 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7410 return true; 7411 } else if (Lex.getKind() == lltok::kw_addrspace) { 7412 ASLoc = Lex.getLoc(); 7413 if (parseOptionalAddrSpace(AddrSpace)) 7414 return true; 7415 } else if (Lex.getKind() == lltok::MetadataVar) { 7416 AteExtraComma = true; 7417 } else { 7418 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7419 return true; 7420 if (EatIfPresent(lltok::comma)) { 7421 if (Lex.getKind() == lltok::kw_align) { 7422 if (parseOptionalAlignment(Alignment)) 7423 return true; 7424 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7425 return true; 7426 } else if (Lex.getKind() == lltok::kw_addrspace) { 7427 ASLoc = Lex.getLoc(); 7428 if (parseOptionalAddrSpace(AddrSpace)) 7429 return true; 7430 } else if (Lex.getKind() == lltok::MetadataVar) { 7431 AteExtraComma = true; 7432 } 7433 } 7434 } 7435 } 7436 7437 if (Size && !Size->getType()->isIntegerTy()) 7438 return error(SizeLoc, "element count must have integer type"); 7439 7440 SmallPtrSet<Type *, 4> Visited; 7441 if (!Alignment && !Ty->isSized(&Visited)) 7442 return error(TyLoc, "Cannot allocate unsized type"); 7443 if (!Alignment) 7444 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7445 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7446 AI->setUsedWithInAlloca(IsInAlloca); 7447 AI->setSwiftError(IsSwiftError); 7448 Inst = AI; 7449 return AteExtraComma ? InstExtraComma : InstNormal; 7450 } 7451 7452 /// parseLoad 7453 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7454 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7455 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7456 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7457 Value *Val; LocTy Loc; 7458 MaybeAlign Alignment; 7459 bool AteExtraComma = false; 7460 bool isAtomic = false; 7461 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7462 SyncScope::ID SSID = SyncScope::System; 7463 7464 if (Lex.getKind() == lltok::kw_atomic) { 7465 isAtomic = true; 7466 Lex.Lex(); 7467 } 7468 7469 bool isVolatile = false; 7470 if (Lex.getKind() == lltok::kw_volatile) { 7471 isVolatile = true; 7472 Lex.Lex(); 7473 } 7474 7475 Type *Ty; 7476 LocTy ExplicitTypeLoc = Lex.getLoc(); 7477 if (parseType(Ty) || 7478 parseToken(lltok::comma, "expected comma after load's type") || 7479 parseTypeAndValue(Val, Loc, PFS) || 7480 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7481 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7482 return true; 7483 7484 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7485 return error(Loc, "load operand must be a pointer to a first class type"); 7486 if (isAtomic && !Alignment) 7487 return error(Loc, "atomic load must have explicit non-zero alignment"); 7488 if (Ordering == AtomicOrdering::Release || 7489 Ordering == AtomicOrdering::AcquireRelease) 7490 return error(Loc, "atomic load cannot use Release ordering"); 7491 7492 if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) { 7493 return error( 7494 ExplicitTypeLoc, 7495 typeComparisonErrorMessage( 7496 "explicit pointee type doesn't match operand's pointee type", Ty, 7497 cast<PointerType>(Val->getType())->getElementType())); 7498 } 7499 SmallPtrSet<Type *, 4> Visited; 7500 if (!Alignment && !Ty->isSized(&Visited)) 7501 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7502 if (!Alignment) 7503 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7504 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7505 return AteExtraComma ? InstExtraComma : InstNormal; 7506 } 7507 7508 /// parseStore 7509 7510 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7511 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7512 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7513 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7514 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7515 MaybeAlign Alignment; 7516 bool AteExtraComma = false; 7517 bool isAtomic = false; 7518 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7519 SyncScope::ID SSID = SyncScope::System; 7520 7521 if (Lex.getKind() == lltok::kw_atomic) { 7522 isAtomic = true; 7523 Lex.Lex(); 7524 } 7525 7526 bool isVolatile = false; 7527 if (Lex.getKind() == lltok::kw_volatile) { 7528 isVolatile = true; 7529 Lex.Lex(); 7530 } 7531 7532 if (parseTypeAndValue(Val, Loc, PFS) || 7533 parseToken(lltok::comma, "expected ',' after store operand") || 7534 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7535 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7536 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7537 return true; 7538 7539 if (!Ptr->getType()->isPointerTy()) 7540 return error(PtrLoc, "store operand must be a pointer"); 7541 if (!Val->getType()->isFirstClassType()) 7542 return error(Loc, "store operand must be a first class value"); 7543 if (!cast<PointerType>(Ptr->getType()) 7544 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7545 return error(Loc, "stored value and pointer type do not match"); 7546 if (isAtomic && !Alignment) 7547 return error(Loc, "atomic store must have explicit non-zero alignment"); 7548 if (Ordering == AtomicOrdering::Acquire || 7549 Ordering == AtomicOrdering::AcquireRelease) 7550 return error(Loc, "atomic store cannot use Acquire ordering"); 7551 SmallPtrSet<Type *, 4> Visited; 7552 if (!Alignment && !Val->getType()->isSized(&Visited)) 7553 return error(Loc, "storing unsized types is not allowed"); 7554 if (!Alignment) 7555 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7556 7557 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7558 return AteExtraComma ? InstExtraComma : InstNormal; 7559 } 7560 7561 /// parseCmpXchg 7562 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7563 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7564 /// 'Align'? 7565 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7566 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7567 bool AteExtraComma = false; 7568 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7569 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7570 SyncScope::ID SSID = SyncScope::System; 7571 bool isVolatile = false; 7572 bool isWeak = false; 7573 MaybeAlign Alignment; 7574 7575 if (EatIfPresent(lltok::kw_weak)) 7576 isWeak = true; 7577 7578 if (EatIfPresent(lltok::kw_volatile)) 7579 isVolatile = true; 7580 7581 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7582 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7583 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7584 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7585 parseTypeAndValue(New, NewLoc, PFS) || 7586 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7587 parseOrdering(FailureOrdering) || 7588 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7589 return true; 7590 7591 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 7592 return tokError("invalid cmpxchg success ordering"); 7593 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 7594 return tokError("invalid cmpxchg failure ordering"); 7595 if (!Ptr->getType()->isPointerTy()) 7596 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7597 if (!cast<PointerType>(Ptr->getType()) 7598 ->isOpaqueOrPointeeTypeMatches(Cmp->getType())) 7599 return error(CmpLoc, "compare value and pointer type do not match"); 7600 if (!cast<PointerType>(Ptr->getType()) 7601 ->isOpaqueOrPointeeTypeMatches(New->getType())) 7602 return error(NewLoc, "new value and pointer type do not match"); 7603 if (Cmp->getType() != New->getType()) 7604 return error(NewLoc, "compare value and new value type do not match"); 7605 if (!New->getType()->isFirstClassType()) 7606 return error(NewLoc, "cmpxchg operand must be a first class value"); 7607 7608 const Align DefaultAlignment( 7609 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7610 Cmp->getType())); 7611 7612 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7613 Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering, 7614 FailureOrdering, SSID); 7615 CXI->setVolatile(isVolatile); 7616 CXI->setWeak(isWeak); 7617 7618 Inst = CXI; 7619 return AteExtraComma ? InstExtraComma : InstNormal; 7620 } 7621 7622 /// parseAtomicRMW 7623 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7624 /// 'singlethread'? AtomicOrdering 7625 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7626 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7627 bool AteExtraComma = false; 7628 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7629 SyncScope::ID SSID = SyncScope::System; 7630 bool isVolatile = false; 7631 bool IsFP = false; 7632 AtomicRMWInst::BinOp Operation; 7633 MaybeAlign Alignment; 7634 7635 if (EatIfPresent(lltok::kw_volatile)) 7636 isVolatile = true; 7637 7638 switch (Lex.getKind()) { 7639 default: 7640 return tokError("expected binary operation in atomicrmw"); 7641 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7642 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7643 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7644 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7645 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7646 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7647 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7648 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7649 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7650 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7651 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7652 case lltok::kw_fadd: 7653 Operation = AtomicRMWInst::FAdd; 7654 IsFP = true; 7655 break; 7656 case lltok::kw_fsub: 7657 Operation = AtomicRMWInst::FSub; 7658 IsFP = true; 7659 break; 7660 } 7661 Lex.Lex(); // Eat the operation. 7662 7663 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7664 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7665 parseTypeAndValue(Val, ValLoc, PFS) || 7666 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7667 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7668 return true; 7669 7670 if (Ordering == AtomicOrdering::Unordered) 7671 return tokError("atomicrmw cannot be unordered"); 7672 if (!Ptr->getType()->isPointerTy()) 7673 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7674 if (!cast<PointerType>(Ptr->getType()) 7675 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7676 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7677 7678 if (Operation == AtomicRMWInst::Xchg) { 7679 if (!Val->getType()->isIntegerTy() && 7680 !Val->getType()->isFloatingPointTy()) { 7681 return error(ValLoc, 7682 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7683 " operand must be an integer or floating point type"); 7684 } 7685 } else if (IsFP) { 7686 if (!Val->getType()->isFloatingPointTy()) { 7687 return error(ValLoc, "atomicrmw " + 7688 AtomicRMWInst::getOperationName(Operation) + 7689 " operand must be a floating point type"); 7690 } 7691 } else { 7692 if (!Val->getType()->isIntegerTy()) { 7693 return error(ValLoc, "atomicrmw " + 7694 AtomicRMWInst::getOperationName(Operation) + 7695 " operand must be an integer"); 7696 } 7697 } 7698 7699 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7700 if (Size < 8 || (Size & (Size - 1))) 7701 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7702 " integer"); 7703 const Align DefaultAlignment( 7704 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7705 Val->getType())); 7706 AtomicRMWInst *RMWI = 7707 new AtomicRMWInst(Operation, Ptr, Val, 7708 Alignment.getValueOr(DefaultAlignment), Ordering, SSID); 7709 RMWI->setVolatile(isVolatile); 7710 Inst = RMWI; 7711 return AteExtraComma ? InstExtraComma : InstNormal; 7712 } 7713 7714 /// parseFence 7715 /// ::= 'fence' 'singlethread'? AtomicOrdering 7716 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7717 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7718 SyncScope::ID SSID = SyncScope::System; 7719 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7720 return true; 7721 7722 if (Ordering == AtomicOrdering::Unordered) 7723 return tokError("fence cannot be unordered"); 7724 if (Ordering == AtomicOrdering::Monotonic) 7725 return tokError("fence cannot be monotonic"); 7726 7727 Inst = new FenceInst(Context, Ordering, SSID); 7728 return InstNormal; 7729 } 7730 7731 /// parseGetElementPtr 7732 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7733 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7734 Value *Ptr = nullptr; 7735 Value *Val = nullptr; 7736 LocTy Loc, EltLoc; 7737 7738 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7739 7740 Type *Ty = nullptr; 7741 LocTy ExplicitTypeLoc = Lex.getLoc(); 7742 if (parseType(Ty) || 7743 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7744 parseTypeAndValue(Ptr, Loc, PFS)) 7745 return true; 7746 7747 Type *BaseType = Ptr->getType(); 7748 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7749 if (!BasePointerType) 7750 return error(Loc, "base of getelementptr must be a pointer"); 7751 7752 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 7753 return error( 7754 ExplicitTypeLoc, 7755 typeComparisonErrorMessage( 7756 "explicit pointee type doesn't match operand's pointee type", Ty, 7757 BasePointerType->getElementType())); 7758 } 7759 7760 SmallVector<Value*, 16> Indices; 7761 bool AteExtraComma = false; 7762 // GEP returns a vector of pointers if at least one of parameters is a vector. 7763 // All vector parameters should have the same vector width. 7764 ElementCount GEPWidth = BaseType->isVectorTy() 7765 ? cast<VectorType>(BaseType)->getElementCount() 7766 : ElementCount::getFixed(0); 7767 7768 while (EatIfPresent(lltok::comma)) { 7769 if (Lex.getKind() == lltok::MetadataVar) { 7770 AteExtraComma = true; 7771 break; 7772 } 7773 if (parseTypeAndValue(Val, EltLoc, PFS)) 7774 return true; 7775 if (!Val->getType()->isIntOrIntVectorTy()) 7776 return error(EltLoc, "getelementptr index must be an integer"); 7777 7778 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7779 ElementCount ValNumEl = ValVTy->getElementCount(); 7780 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7781 return error( 7782 EltLoc, 7783 "getelementptr vector index has a wrong number of elements"); 7784 GEPWidth = ValNumEl; 7785 } 7786 Indices.push_back(Val); 7787 } 7788 7789 SmallPtrSet<Type*, 4> Visited; 7790 if (!Indices.empty() && !Ty->isSized(&Visited)) 7791 return error(Loc, "base element of getelementptr must be sized"); 7792 7793 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7794 return error(Loc, "invalid getelementptr indices"); 7795 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7796 if (InBounds) 7797 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7798 return AteExtraComma ? InstExtraComma : InstNormal; 7799 } 7800 7801 /// parseExtractValue 7802 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7803 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7804 Value *Val; LocTy Loc; 7805 SmallVector<unsigned, 4> Indices; 7806 bool AteExtraComma; 7807 if (parseTypeAndValue(Val, Loc, PFS) || 7808 parseIndexList(Indices, AteExtraComma)) 7809 return true; 7810 7811 if (!Val->getType()->isAggregateType()) 7812 return error(Loc, "extractvalue operand must be aggregate type"); 7813 7814 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7815 return error(Loc, "invalid indices for extractvalue"); 7816 Inst = ExtractValueInst::Create(Val, Indices); 7817 return AteExtraComma ? InstExtraComma : InstNormal; 7818 } 7819 7820 /// parseInsertValue 7821 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7822 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7823 Value *Val0, *Val1; LocTy Loc0, Loc1; 7824 SmallVector<unsigned, 4> Indices; 7825 bool AteExtraComma; 7826 if (parseTypeAndValue(Val0, Loc0, PFS) || 7827 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7828 parseTypeAndValue(Val1, Loc1, PFS) || 7829 parseIndexList(Indices, AteExtraComma)) 7830 return true; 7831 7832 if (!Val0->getType()->isAggregateType()) 7833 return error(Loc0, "insertvalue operand must be aggregate type"); 7834 7835 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7836 if (!IndexedType) 7837 return error(Loc0, "invalid indices for insertvalue"); 7838 if (IndexedType != Val1->getType()) 7839 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7840 getTypeString(Val1->getType()) + "' instead of '" + 7841 getTypeString(IndexedType) + "'"); 7842 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7843 return AteExtraComma ? InstExtraComma : InstNormal; 7844 } 7845 7846 //===----------------------------------------------------------------------===// 7847 // Embedded metadata. 7848 //===----------------------------------------------------------------------===// 7849 7850 /// parseMDNodeVector 7851 /// ::= { Element (',' Element)* } 7852 /// Element 7853 /// ::= 'null' | TypeAndValue 7854 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7855 if (parseToken(lltok::lbrace, "expected '{' here")) 7856 return true; 7857 7858 // Check for an empty list. 7859 if (EatIfPresent(lltok::rbrace)) 7860 return false; 7861 7862 do { 7863 // Null is a special case since it is typeless. 7864 if (EatIfPresent(lltok::kw_null)) { 7865 Elts.push_back(nullptr); 7866 continue; 7867 } 7868 7869 Metadata *MD; 7870 if (parseMetadata(MD, nullptr)) 7871 return true; 7872 Elts.push_back(MD); 7873 } while (EatIfPresent(lltok::comma)); 7874 7875 return parseToken(lltok::rbrace, "expected end of metadata node"); 7876 } 7877 7878 //===----------------------------------------------------------------------===// 7879 // Use-list order directives. 7880 //===----------------------------------------------------------------------===// 7881 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7882 SMLoc Loc) { 7883 if (V->use_empty()) 7884 return error(Loc, "value has no uses"); 7885 7886 unsigned NumUses = 0; 7887 SmallDenseMap<const Use *, unsigned, 16> Order; 7888 for (const Use &U : V->uses()) { 7889 if (++NumUses > Indexes.size()) 7890 break; 7891 Order[&U] = Indexes[NumUses - 1]; 7892 } 7893 if (NumUses < 2) 7894 return error(Loc, "value only has one use"); 7895 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7896 return error(Loc, 7897 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7898 7899 V->sortUseList([&](const Use &L, const Use &R) { 7900 return Order.lookup(&L) < Order.lookup(&R); 7901 }); 7902 return false; 7903 } 7904 7905 /// parseUseListOrderIndexes 7906 /// ::= '{' uint32 (',' uint32)+ '}' 7907 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7908 SMLoc Loc = Lex.getLoc(); 7909 if (parseToken(lltok::lbrace, "expected '{' here")) 7910 return true; 7911 if (Lex.getKind() == lltok::rbrace) 7912 return Lex.Error("expected non-empty list of uselistorder indexes"); 7913 7914 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7915 // indexes should be distinct numbers in the range [0, size-1], and should 7916 // not be in order. 7917 unsigned Offset = 0; 7918 unsigned Max = 0; 7919 bool IsOrdered = true; 7920 assert(Indexes.empty() && "Expected empty order vector"); 7921 do { 7922 unsigned Index; 7923 if (parseUInt32(Index)) 7924 return true; 7925 7926 // Update consistency checks. 7927 Offset += Index - Indexes.size(); 7928 Max = std::max(Max, Index); 7929 IsOrdered &= Index == Indexes.size(); 7930 7931 Indexes.push_back(Index); 7932 } while (EatIfPresent(lltok::comma)); 7933 7934 if (parseToken(lltok::rbrace, "expected '}' here")) 7935 return true; 7936 7937 if (Indexes.size() < 2) 7938 return error(Loc, "expected >= 2 uselistorder indexes"); 7939 if (Offset != 0 || Max >= Indexes.size()) 7940 return error(Loc, 7941 "expected distinct uselistorder indexes in range [0, size)"); 7942 if (IsOrdered) 7943 return error(Loc, "expected uselistorder indexes to change the order"); 7944 7945 return false; 7946 } 7947 7948 /// parseUseListOrder 7949 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7950 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7951 SMLoc Loc = Lex.getLoc(); 7952 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7953 return true; 7954 7955 Value *V; 7956 SmallVector<unsigned, 16> Indexes; 7957 if (parseTypeAndValue(V, PFS) || 7958 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7959 parseUseListOrderIndexes(Indexes)) 7960 return true; 7961 7962 return sortUseListOrder(V, Indexes, Loc); 7963 } 7964 7965 /// parseUseListOrderBB 7966 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7967 bool LLParser::parseUseListOrderBB() { 7968 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7969 SMLoc Loc = Lex.getLoc(); 7970 Lex.Lex(); 7971 7972 ValID Fn, Label; 7973 SmallVector<unsigned, 16> Indexes; 7974 if (parseValID(Fn) || 7975 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7976 parseValID(Label) || 7977 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7978 parseUseListOrderIndexes(Indexes)) 7979 return true; 7980 7981 // Check the function. 7982 GlobalValue *GV; 7983 if (Fn.Kind == ValID::t_GlobalName) 7984 GV = M->getNamedValue(Fn.StrVal); 7985 else if (Fn.Kind == ValID::t_GlobalID) 7986 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7987 else 7988 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7989 if (!GV) 7990 return error(Fn.Loc, 7991 "invalid function forward reference in uselistorder_bb"); 7992 auto *F = dyn_cast<Function>(GV); 7993 if (!F) 7994 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7995 if (F->isDeclaration()) 7996 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7997 7998 // Check the basic block. 7999 if (Label.Kind == ValID::t_LocalID) 8000 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 8001 if (Label.Kind != ValID::t_LocalName) 8002 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 8003 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 8004 if (!V) 8005 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 8006 if (!isa<BasicBlock>(V)) 8007 return error(Label.Loc, "expected basic block in uselistorder_bb"); 8008 8009 return sortUseListOrder(V, Indexes, Loc); 8010 } 8011 8012 /// ModuleEntry 8013 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 8014 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 8015 bool LLParser::parseModuleEntry(unsigned ID) { 8016 assert(Lex.getKind() == lltok::kw_module); 8017 Lex.Lex(); 8018 8019 std::string Path; 8020 if (parseToken(lltok::colon, "expected ':' here") || 8021 parseToken(lltok::lparen, "expected '(' here") || 8022 parseToken(lltok::kw_path, "expected 'path' here") || 8023 parseToken(lltok::colon, "expected ':' here") || 8024 parseStringConstant(Path) || 8025 parseToken(lltok::comma, "expected ',' here") || 8026 parseToken(lltok::kw_hash, "expected 'hash' here") || 8027 parseToken(lltok::colon, "expected ':' here") || 8028 parseToken(lltok::lparen, "expected '(' here")) 8029 return true; 8030 8031 ModuleHash Hash; 8032 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 8033 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 8034 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 8035 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 8036 parseUInt32(Hash[4])) 8037 return true; 8038 8039 if (parseToken(lltok::rparen, "expected ')' here") || 8040 parseToken(lltok::rparen, "expected ')' here")) 8041 return true; 8042 8043 auto ModuleEntry = Index->addModule(Path, ID, Hash); 8044 ModuleIdMap[ID] = ModuleEntry->first(); 8045 8046 return false; 8047 } 8048 8049 /// TypeIdEntry 8050 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 8051 bool LLParser::parseTypeIdEntry(unsigned ID) { 8052 assert(Lex.getKind() == lltok::kw_typeid); 8053 Lex.Lex(); 8054 8055 std::string Name; 8056 if (parseToken(lltok::colon, "expected ':' here") || 8057 parseToken(lltok::lparen, "expected '(' here") || 8058 parseToken(lltok::kw_name, "expected 'name' here") || 8059 parseToken(lltok::colon, "expected ':' here") || 8060 parseStringConstant(Name)) 8061 return true; 8062 8063 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 8064 if (parseToken(lltok::comma, "expected ',' here") || 8065 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 8066 return true; 8067 8068 // Check if this ID was forward referenced, and if so, update the 8069 // corresponding GUIDs. 8070 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8071 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8072 for (auto TIDRef : FwdRefTIDs->second) { 8073 assert(!*TIDRef.first && 8074 "Forward referenced type id GUID expected to be 0"); 8075 *TIDRef.first = GlobalValue::getGUID(Name); 8076 } 8077 ForwardRefTypeIds.erase(FwdRefTIDs); 8078 } 8079 8080 return false; 8081 } 8082 8083 /// TypeIdSummary 8084 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 8085 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 8086 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 8087 parseToken(lltok::colon, "expected ':' here") || 8088 parseToken(lltok::lparen, "expected '(' here") || 8089 parseTypeTestResolution(TIS.TTRes)) 8090 return true; 8091 8092 if (EatIfPresent(lltok::comma)) { 8093 // Expect optional wpdResolutions field 8094 if (parseOptionalWpdResolutions(TIS.WPDRes)) 8095 return true; 8096 } 8097 8098 if (parseToken(lltok::rparen, "expected ')' here")) 8099 return true; 8100 8101 return false; 8102 } 8103 8104 static ValueInfo EmptyVI = 8105 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 8106 8107 /// TypeIdCompatibleVtableEntry 8108 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 8109 /// TypeIdCompatibleVtableInfo 8110 /// ')' 8111 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 8112 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 8113 Lex.Lex(); 8114 8115 std::string Name; 8116 if (parseToken(lltok::colon, "expected ':' here") || 8117 parseToken(lltok::lparen, "expected '(' here") || 8118 parseToken(lltok::kw_name, "expected 'name' here") || 8119 parseToken(lltok::colon, "expected ':' here") || 8120 parseStringConstant(Name)) 8121 return true; 8122 8123 TypeIdCompatibleVtableInfo &TI = 8124 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 8125 if (parseToken(lltok::comma, "expected ',' here") || 8126 parseToken(lltok::kw_summary, "expected 'summary' here") || 8127 parseToken(lltok::colon, "expected ':' here") || 8128 parseToken(lltok::lparen, "expected '(' here")) 8129 return true; 8130 8131 IdToIndexMapType IdToIndexMap; 8132 // parse each call edge 8133 do { 8134 uint64_t Offset; 8135 if (parseToken(lltok::lparen, "expected '(' here") || 8136 parseToken(lltok::kw_offset, "expected 'offset' here") || 8137 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8138 parseToken(lltok::comma, "expected ',' here")) 8139 return true; 8140 8141 LocTy Loc = Lex.getLoc(); 8142 unsigned GVId; 8143 ValueInfo VI; 8144 if (parseGVReference(VI, GVId)) 8145 return true; 8146 8147 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 8148 // forward reference. We will save the location of the ValueInfo needing an 8149 // update, but can only do so once the std::vector is finalized. 8150 if (VI == EmptyVI) 8151 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 8152 TI.push_back({Offset, VI}); 8153 8154 if (parseToken(lltok::rparen, "expected ')' in call")) 8155 return true; 8156 } while (EatIfPresent(lltok::comma)); 8157 8158 // Now that the TI vector is finalized, it is safe to save the locations 8159 // of any forward GV references that need updating later. 8160 for (auto I : IdToIndexMap) { 8161 auto &Infos = ForwardRefValueInfos[I.first]; 8162 for (auto P : I.second) { 8163 assert(TI[P.first].VTableVI == EmptyVI && 8164 "Forward referenced ValueInfo expected to be empty"); 8165 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 8166 } 8167 } 8168 8169 if (parseToken(lltok::rparen, "expected ')' here") || 8170 parseToken(lltok::rparen, "expected ')' here")) 8171 return true; 8172 8173 // Check if this ID was forward referenced, and if so, update the 8174 // corresponding GUIDs. 8175 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8176 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8177 for (auto TIDRef : FwdRefTIDs->second) { 8178 assert(!*TIDRef.first && 8179 "Forward referenced type id GUID expected to be 0"); 8180 *TIDRef.first = GlobalValue::getGUID(Name); 8181 } 8182 ForwardRefTypeIds.erase(FwdRefTIDs); 8183 } 8184 8185 return false; 8186 } 8187 8188 /// TypeTestResolution 8189 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 8190 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 8191 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 8192 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 8193 /// [',' 'inlinesBits' ':' UInt64]? ')' 8194 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 8195 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 8196 parseToken(lltok::colon, "expected ':' here") || 8197 parseToken(lltok::lparen, "expected '(' here") || 8198 parseToken(lltok::kw_kind, "expected 'kind' here") || 8199 parseToken(lltok::colon, "expected ':' here")) 8200 return true; 8201 8202 switch (Lex.getKind()) { 8203 case lltok::kw_unknown: 8204 TTRes.TheKind = TypeTestResolution::Unknown; 8205 break; 8206 case lltok::kw_unsat: 8207 TTRes.TheKind = TypeTestResolution::Unsat; 8208 break; 8209 case lltok::kw_byteArray: 8210 TTRes.TheKind = TypeTestResolution::ByteArray; 8211 break; 8212 case lltok::kw_inline: 8213 TTRes.TheKind = TypeTestResolution::Inline; 8214 break; 8215 case lltok::kw_single: 8216 TTRes.TheKind = TypeTestResolution::Single; 8217 break; 8218 case lltok::kw_allOnes: 8219 TTRes.TheKind = TypeTestResolution::AllOnes; 8220 break; 8221 default: 8222 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 8223 } 8224 Lex.Lex(); 8225 8226 if (parseToken(lltok::comma, "expected ',' here") || 8227 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 8228 parseToken(lltok::colon, "expected ':' here") || 8229 parseUInt32(TTRes.SizeM1BitWidth)) 8230 return true; 8231 8232 // parse optional fields 8233 while (EatIfPresent(lltok::comma)) { 8234 switch (Lex.getKind()) { 8235 case lltok::kw_alignLog2: 8236 Lex.Lex(); 8237 if (parseToken(lltok::colon, "expected ':'") || 8238 parseUInt64(TTRes.AlignLog2)) 8239 return true; 8240 break; 8241 case lltok::kw_sizeM1: 8242 Lex.Lex(); 8243 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 8244 return true; 8245 break; 8246 case lltok::kw_bitMask: { 8247 unsigned Val; 8248 Lex.Lex(); 8249 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 8250 return true; 8251 assert(Val <= 0xff); 8252 TTRes.BitMask = (uint8_t)Val; 8253 break; 8254 } 8255 case lltok::kw_inlineBits: 8256 Lex.Lex(); 8257 if (parseToken(lltok::colon, "expected ':'") || 8258 parseUInt64(TTRes.InlineBits)) 8259 return true; 8260 break; 8261 default: 8262 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 8263 } 8264 } 8265 8266 if (parseToken(lltok::rparen, "expected ')' here")) 8267 return true; 8268 8269 return false; 8270 } 8271 8272 /// OptionalWpdResolutions 8273 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 8274 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 8275 bool LLParser::parseOptionalWpdResolutions( 8276 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 8277 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 8278 parseToken(lltok::colon, "expected ':' here") || 8279 parseToken(lltok::lparen, "expected '(' here")) 8280 return true; 8281 8282 do { 8283 uint64_t Offset; 8284 WholeProgramDevirtResolution WPDRes; 8285 if (parseToken(lltok::lparen, "expected '(' here") || 8286 parseToken(lltok::kw_offset, "expected 'offset' here") || 8287 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8288 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 8289 parseToken(lltok::rparen, "expected ')' here")) 8290 return true; 8291 WPDResMap[Offset] = WPDRes; 8292 } while (EatIfPresent(lltok::comma)); 8293 8294 if (parseToken(lltok::rparen, "expected ')' here")) 8295 return true; 8296 8297 return false; 8298 } 8299 8300 /// WpdRes 8301 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 8302 /// [',' OptionalResByArg]? ')' 8303 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 8304 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 8305 /// [',' OptionalResByArg]? ')' 8306 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 8307 /// [',' OptionalResByArg]? ')' 8308 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 8309 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 8310 parseToken(lltok::colon, "expected ':' here") || 8311 parseToken(lltok::lparen, "expected '(' here") || 8312 parseToken(lltok::kw_kind, "expected 'kind' here") || 8313 parseToken(lltok::colon, "expected ':' here")) 8314 return true; 8315 8316 switch (Lex.getKind()) { 8317 case lltok::kw_indir: 8318 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8319 break; 8320 case lltok::kw_singleImpl: 8321 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8322 break; 8323 case lltok::kw_branchFunnel: 8324 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8325 break; 8326 default: 8327 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8328 } 8329 Lex.Lex(); 8330 8331 // parse optional fields 8332 while (EatIfPresent(lltok::comma)) { 8333 switch (Lex.getKind()) { 8334 case lltok::kw_singleImplName: 8335 Lex.Lex(); 8336 if (parseToken(lltok::colon, "expected ':' here") || 8337 parseStringConstant(WPDRes.SingleImplName)) 8338 return true; 8339 break; 8340 case lltok::kw_resByArg: 8341 if (parseOptionalResByArg(WPDRes.ResByArg)) 8342 return true; 8343 break; 8344 default: 8345 return error(Lex.getLoc(), 8346 "expected optional WholeProgramDevirtResolution field"); 8347 } 8348 } 8349 8350 if (parseToken(lltok::rparen, "expected ')' here")) 8351 return true; 8352 8353 return false; 8354 } 8355 8356 /// OptionalResByArg 8357 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8358 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8359 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8360 /// 'virtualConstProp' ) 8361 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8362 /// [',' 'bit' ':' UInt32]? ')' 8363 bool LLParser::parseOptionalResByArg( 8364 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8365 &ResByArg) { 8366 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8367 parseToken(lltok::colon, "expected ':' here") || 8368 parseToken(lltok::lparen, "expected '(' here")) 8369 return true; 8370 8371 do { 8372 std::vector<uint64_t> Args; 8373 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8374 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8375 parseToken(lltok::colon, "expected ':' here") || 8376 parseToken(lltok::lparen, "expected '(' here") || 8377 parseToken(lltok::kw_kind, "expected 'kind' here") || 8378 parseToken(lltok::colon, "expected ':' here")) 8379 return true; 8380 8381 WholeProgramDevirtResolution::ByArg ByArg; 8382 switch (Lex.getKind()) { 8383 case lltok::kw_indir: 8384 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8385 break; 8386 case lltok::kw_uniformRetVal: 8387 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8388 break; 8389 case lltok::kw_uniqueRetVal: 8390 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8391 break; 8392 case lltok::kw_virtualConstProp: 8393 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8394 break; 8395 default: 8396 return error(Lex.getLoc(), 8397 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8398 } 8399 Lex.Lex(); 8400 8401 // parse optional fields 8402 while (EatIfPresent(lltok::comma)) { 8403 switch (Lex.getKind()) { 8404 case lltok::kw_info: 8405 Lex.Lex(); 8406 if (parseToken(lltok::colon, "expected ':' here") || 8407 parseUInt64(ByArg.Info)) 8408 return true; 8409 break; 8410 case lltok::kw_byte: 8411 Lex.Lex(); 8412 if (parseToken(lltok::colon, "expected ':' here") || 8413 parseUInt32(ByArg.Byte)) 8414 return true; 8415 break; 8416 case lltok::kw_bit: 8417 Lex.Lex(); 8418 if (parseToken(lltok::colon, "expected ':' here") || 8419 parseUInt32(ByArg.Bit)) 8420 return true; 8421 break; 8422 default: 8423 return error(Lex.getLoc(), 8424 "expected optional whole program devirt field"); 8425 } 8426 } 8427 8428 if (parseToken(lltok::rparen, "expected ')' here")) 8429 return true; 8430 8431 ResByArg[Args] = ByArg; 8432 } while (EatIfPresent(lltok::comma)); 8433 8434 if (parseToken(lltok::rparen, "expected ')' here")) 8435 return true; 8436 8437 return false; 8438 } 8439 8440 /// OptionalResByArg 8441 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8442 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8443 if (parseToken(lltok::kw_args, "expected 'args' here") || 8444 parseToken(lltok::colon, "expected ':' here") || 8445 parseToken(lltok::lparen, "expected '(' here")) 8446 return true; 8447 8448 do { 8449 uint64_t Val; 8450 if (parseUInt64(Val)) 8451 return true; 8452 Args.push_back(Val); 8453 } while (EatIfPresent(lltok::comma)); 8454 8455 if (parseToken(lltok::rparen, "expected ')' here")) 8456 return true; 8457 8458 return false; 8459 } 8460 8461 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8462 8463 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8464 bool ReadOnly = Fwd->isReadOnly(); 8465 bool WriteOnly = Fwd->isWriteOnly(); 8466 assert(!(ReadOnly && WriteOnly)); 8467 *Fwd = Resolved; 8468 if (ReadOnly) 8469 Fwd->setReadOnly(); 8470 if (WriteOnly) 8471 Fwd->setWriteOnly(); 8472 } 8473 8474 /// Stores the given Name/GUID and associated summary into the Index. 8475 /// Also updates any forward references to the associated entry ID. 8476 void LLParser::addGlobalValueToIndex( 8477 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8478 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8479 // First create the ValueInfo utilizing the Name or GUID. 8480 ValueInfo VI; 8481 if (GUID != 0) { 8482 assert(Name.empty()); 8483 VI = Index->getOrInsertValueInfo(GUID); 8484 } else { 8485 assert(!Name.empty()); 8486 if (M) { 8487 auto *GV = M->getNamedValue(Name); 8488 assert(GV); 8489 VI = Index->getOrInsertValueInfo(GV); 8490 } else { 8491 assert( 8492 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8493 "Need a source_filename to compute GUID for local"); 8494 GUID = GlobalValue::getGUID( 8495 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8496 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8497 } 8498 } 8499 8500 // Resolve forward references from calls/refs 8501 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8502 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8503 for (auto VIRef : FwdRefVIs->second) { 8504 assert(VIRef.first->getRef() == FwdVIRef && 8505 "Forward referenced ValueInfo expected to be empty"); 8506 resolveFwdRef(VIRef.first, VI); 8507 } 8508 ForwardRefValueInfos.erase(FwdRefVIs); 8509 } 8510 8511 // Resolve forward references from aliases 8512 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8513 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8514 for (auto AliaseeRef : FwdRefAliasees->second) { 8515 assert(!AliaseeRef.first->hasAliasee() && 8516 "Forward referencing alias already has aliasee"); 8517 assert(Summary && "Aliasee must be a definition"); 8518 AliaseeRef.first->setAliasee(VI, Summary.get()); 8519 } 8520 ForwardRefAliasees.erase(FwdRefAliasees); 8521 } 8522 8523 // Add the summary if one was provided. 8524 if (Summary) 8525 Index->addGlobalValueSummary(VI, std::move(Summary)); 8526 8527 // Save the associated ValueInfo for use in later references by ID. 8528 if (ID == NumberedValueInfos.size()) 8529 NumberedValueInfos.push_back(VI); 8530 else { 8531 // Handle non-continuous numbers (to make test simplification easier). 8532 if (ID > NumberedValueInfos.size()) 8533 NumberedValueInfos.resize(ID + 1); 8534 NumberedValueInfos[ID] = VI; 8535 } 8536 } 8537 8538 /// parseSummaryIndexFlags 8539 /// ::= 'flags' ':' UInt64 8540 bool LLParser::parseSummaryIndexFlags() { 8541 assert(Lex.getKind() == lltok::kw_flags); 8542 Lex.Lex(); 8543 8544 if (parseToken(lltok::colon, "expected ':' here")) 8545 return true; 8546 uint64_t Flags; 8547 if (parseUInt64(Flags)) 8548 return true; 8549 if (Index) 8550 Index->setFlags(Flags); 8551 return false; 8552 } 8553 8554 /// parseBlockCount 8555 /// ::= 'blockcount' ':' UInt64 8556 bool LLParser::parseBlockCount() { 8557 assert(Lex.getKind() == lltok::kw_blockcount); 8558 Lex.Lex(); 8559 8560 if (parseToken(lltok::colon, "expected ':' here")) 8561 return true; 8562 uint64_t BlockCount; 8563 if (parseUInt64(BlockCount)) 8564 return true; 8565 if (Index) 8566 Index->setBlockCount(BlockCount); 8567 return false; 8568 } 8569 8570 /// parseGVEntry 8571 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8572 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8573 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8574 bool LLParser::parseGVEntry(unsigned ID) { 8575 assert(Lex.getKind() == lltok::kw_gv); 8576 Lex.Lex(); 8577 8578 if (parseToken(lltok::colon, "expected ':' here") || 8579 parseToken(lltok::lparen, "expected '(' here")) 8580 return true; 8581 8582 std::string Name; 8583 GlobalValue::GUID GUID = 0; 8584 switch (Lex.getKind()) { 8585 case lltok::kw_name: 8586 Lex.Lex(); 8587 if (parseToken(lltok::colon, "expected ':' here") || 8588 parseStringConstant(Name)) 8589 return true; 8590 // Can't create GUID/ValueInfo until we have the linkage. 8591 break; 8592 case lltok::kw_guid: 8593 Lex.Lex(); 8594 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8595 return true; 8596 break; 8597 default: 8598 return error(Lex.getLoc(), "expected name or guid tag"); 8599 } 8600 8601 if (!EatIfPresent(lltok::comma)) { 8602 // No summaries. Wrap up. 8603 if (parseToken(lltok::rparen, "expected ')' here")) 8604 return true; 8605 // This was created for a call to an external or indirect target. 8606 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8607 // created for indirect calls with VP. A Name with no GUID came from 8608 // an external definition. We pass ExternalLinkage since that is only 8609 // used when the GUID must be computed from Name, and in that case 8610 // the symbol must have external linkage. 8611 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8612 nullptr); 8613 return false; 8614 } 8615 8616 // Have a list of summaries 8617 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8618 parseToken(lltok::colon, "expected ':' here") || 8619 parseToken(lltok::lparen, "expected '(' here")) 8620 return true; 8621 do { 8622 switch (Lex.getKind()) { 8623 case lltok::kw_function: 8624 if (parseFunctionSummary(Name, GUID, ID)) 8625 return true; 8626 break; 8627 case lltok::kw_variable: 8628 if (parseVariableSummary(Name, GUID, ID)) 8629 return true; 8630 break; 8631 case lltok::kw_alias: 8632 if (parseAliasSummary(Name, GUID, ID)) 8633 return true; 8634 break; 8635 default: 8636 return error(Lex.getLoc(), "expected summary type"); 8637 } 8638 } while (EatIfPresent(lltok::comma)); 8639 8640 if (parseToken(lltok::rparen, "expected ')' here") || 8641 parseToken(lltok::rparen, "expected ')' here")) 8642 return true; 8643 8644 return false; 8645 } 8646 8647 /// FunctionSummary 8648 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8649 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8650 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8651 /// [',' OptionalRefs]? ')' 8652 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8653 unsigned ID) { 8654 assert(Lex.getKind() == lltok::kw_function); 8655 Lex.Lex(); 8656 8657 StringRef ModulePath; 8658 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8659 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8660 /*NotEligibleToImport=*/false, 8661 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8662 unsigned InstCount; 8663 std::vector<FunctionSummary::EdgeTy> Calls; 8664 FunctionSummary::TypeIdInfo TypeIdInfo; 8665 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8666 std::vector<ValueInfo> Refs; 8667 // Default is all-zeros (conservative values). 8668 FunctionSummary::FFlags FFlags = {}; 8669 if (parseToken(lltok::colon, "expected ':' here") || 8670 parseToken(lltok::lparen, "expected '(' here") || 8671 parseModuleReference(ModulePath) || 8672 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8673 parseToken(lltok::comma, "expected ',' here") || 8674 parseToken(lltok::kw_insts, "expected 'insts' here") || 8675 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8676 return true; 8677 8678 // parse optional fields 8679 while (EatIfPresent(lltok::comma)) { 8680 switch (Lex.getKind()) { 8681 case lltok::kw_funcFlags: 8682 if (parseOptionalFFlags(FFlags)) 8683 return true; 8684 break; 8685 case lltok::kw_calls: 8686 if (parseOptionalCalls(Calls)) 8687 return true; 8688 break; 8689 case lltok::kw_typeIdInfo: 8690 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8691 return true; 8692 break; 8693 case lltok::kw_refs: 8694 if (parseOptionalRefs(Refs)) 8695 return true; 8696 break; 8697 case lltok::kw_params: 8698 if (parseOptionalParamAccesses(ParamAccesses)) 8699 return true; 8700 break; 8701 default: 8702 return error(Lex.getLoc(), "expected optional function summary field"); 8703 } 8704 } 8705 8706 if (parseToken(lltok::rparen, "expected ')' here")) 8707 return true; 8708 8709 auto FS = std::make_unique<FunctionSummary>( 8710 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8711 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8712 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8713 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8714 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8715 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8716 std::move(ParamAccesses)); 8717 8718 FS->setModulePath(ModulePath); 8719 8720 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8721 ID, std::move(FS)); 8722 8723 return false; 8724 } 8725 8726 /// VariableSummary 8727 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8728 /// [',' OptionalRefs]? ')' 8729 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8730 unsigned ID) { 8731 assert(Lex.getKind() == lltok::kw_variable); 8732 Lex.Lex(); 8733 8734 StringRef ModulePath; 8735 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8736 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8737 /*NotEligibleToImport=*/false, 8738 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8739 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8740 /* WriteOnly */ false, 8741 /* Constant */ false, 8742 GlobalObject::VCallVisibilityPublic); 8743 std::vector<ValueInfo> Refs; 8744 VTableFuncList VTableFuncs; 8745 if (parseToken(lltok::colon, "expected ':' here") || 8746 parseToken(lltok::lparen, "expected '(' here") || 8747 parseModuleReference(ModulePath) || 8748 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8749 parseToken(lltok::comma, "expected ',' here") || 8750 parseGVarFlags(GVarFlags)) 8751 return true; 8752 8753 // parse optional fields 8754 while (EatIfPresent(lltok::comma)) { 8755 switch (Lex.getKind()) { 8756 case lltok::kw_vTableFuncs: 8757 if (parseOptionalVTableFuncs(VTableFuncs)) 8758 return true; 8759 break; 8760 case lltok::kw_refs: 8761 if (parseOptionalRefs(Refs)) 8762 return true; 8763 break; 8764 default: 8765 return error(Lex.getLoc(), "expected optional variable summary field"); 8766 } 8767 } 8768 8769 if (parseToken(lltok::rparen, "expected ')' here")) 8770 return true; 8771 8772 auto GS = 8773 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8774 8775 GS->setModulePath(ModulePath); 8776 GS->setVTableFuncs(std::move(VTableFuncs)); 8777 8778 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8779 ID, std::move(GS)); 8780 8781 return false; 8782 } 8783 8784 /// AliasSummary 8785 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8786 /// 'aliasee' ':' GVReference ')' 8787 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8788 unsigned ID) { 8789 assert(Lex.getKind() == lltok::kw_alias); 8790 LocTy Loc = Lex.getLoc(); 8791 Lex.Lex(); 8792 8793 StringRef ModulePath; 8794 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8795 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8796 /*NotEligibleToImport=*/false, 8797 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8798 if (parseToken(lltok::colon, "expected ':' here") || 8799 parseToken(lltok::lparen, "expected '(' here") || 8800 parseModuleReference(ModulePath) || 8801 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8802 parseToken(lltok::comma, "expected ',' here") || 8803 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8804 parseToken(lltok::colon, "expected ':' here")) 8805 return true; 8806 8807 ValueInfo AliaseeVI; 8808 unsigned GVId; 8809 if (parseGVReference(AliaseeVI, GVId)) 8810 return true; 8811 8812 if (parseToken(lltok::rparen, "expected ')' here")) 8813 return true; 8814 8815 auto AS = std::make_unique<AliasSummary>(GVFlags); 8816 8817 AS->setModulePath(ModulePath); 8818 8819 // Record forward reference if the aliasee is not parsed yet. 8820 if (AliaseeVI.getRef() == FwdVIRef) { 8821 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8822 } else { 8823 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8824 assert(Summary && "Aliasee must be a definition"); 8825 AS->setAliasee(AliaseeVI, Summary); 8826 } 8827 8828 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8829 ID, std::move(AS)); 8830 8831 return false; 8832 } 8833 8834 /// Flag 8835 /// ::= [0|1] 8836 bool LLParser::parseFlag(unsigned &Val) { 8837 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8838 return tokError("expected integer"); 8839 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8840 Lex.Lex(); 8841 return false; 8842 } 8843 8844 /// OptionalFFlags 8845 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8846 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8847 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8848 /// [',' 'noInline' ':' Flag]? ')' 8849 /// [',' 'alwaysInline' ':' Flag]? ')' 8850 8851 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8852 assert(Lex.getKind() == lltok::kw_funcFlags); 8853 Lex.Lex(); 8854 8855 if (parseToken(lltok::colon, "expected ':' in funcFlags") | 8856 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8857 return true; 8858 8859 do { 8860 unsigned Val = 0; 8861 switch (Lex.getKind()) { 8862 case lltok::kw_readNone: 8863 Lex.Lex(); 8864 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8865 return true; 8866 FFlags.ReadNone = Val; 8867 break; 8868 case lltok::kw_readOnly: 8869 Lex.Lex(); 8870 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8871 return true; 8872 FFlags.ReadOnly = Val; 8873 break; 8874 case lltok::kw_noRecurse: 8875 Lex.Lex(); 8876 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8877 return true; 8878 FFlags.NoRecurse = Val; 8879 break; 8880 case lltok::kw_returnDoesNotAlias: 8881 Lex.Lex(); 8882 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8883 return true; 8884 FFlags.ReturnDoesNotAlias = Val; 8885 break; 8886 case lltok::kw_noInline: 8887 Lex.Lex(); 8888 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8889 return true; 8890 FFlags.NoInline = Val; 8891 break; 8892 case lltok::kw_alwaysInline: 8893 Lex.Lex(); 8894 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8895 return true; 8896 FFlags.AlwaysInline = Val; 8897 break; 8898 default: 8899 return error(Lex.getLoc(), "expected function flag type"); 8900 } 8901 } while (EatIfPresent(lltok::comma)); 8902 8903 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8904 return true; 8905 8906 return false; 8907 } 8908 8909 /// OptionalCalls 8910 /// := 'calls' ':' '(' Call [',' Call]* ')' 8911 /// Call ::= '(' 'callee' ':' GVReference 8912 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8913 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8914 assert(Lex.getKind() == lltok::kw_calls); 8915 Lex.Lex(); 8916 8917 if (parseToken(lltok::colon, "expected ':' in calls") | 8918 parseToken(lltok::lparen, "expected '(' in calls")) 8919 return true; 8920 8921 IdToIndexMapType IdToIndexMap; 8922 // parse each call edge 8923 do { 8924 ValueInfo VI; 8925 if (parseToken(lltok::lparen, "expected '(' in call") || 8926 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8927 parseToken(lltok::colon, "expected ':'")) 8928 return true; 8929 8930 LocTy Loc = Lex.getLoc(); 8931 unsigned GVId; 8932 if (parseGVReference(VI, GVId)) 8933 return true; 8934 8935 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8936 unsigned RelBF = 0; 8937 if (EatIfPresent(lltok::comma)) { 8938 // Expect either hotness or relbf 8939 if (EatIfPresent(lltok::kw_hotness)) { 8940 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8941 return true; 8942 } else { 8943 if (parseToken(lltok::kw_relbf, "expected relbf") || 8944 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8945 return true; 8946 } 8947 } 8948 // Keep track of the Call array index needing a forward reference. 8949 // We will save the location of the ValueInfo needing an update, but 8950 // can only do so once the std::vector is finalized. 8951 if (VI.getRef() == FwdVIRef) 8952 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8953 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8954 8955 if (parseToken(lltok::rparen, "expected ')' in call")) 8956 return true; 8957 } while (EatIfPresent(lltok::comma)); 8958 8959 // Now that the Calls vector is finalized, it is safe to save the locations 8960 // of any forward GV references that need updating later. 8961 for (auto I : IdToIndexMap) { 8962 auto &Infos = ForwardRefValueInfos[I.first]; 8963 for (auto P : I.second) { 8964 assert(Calls[P.first].first.getRef() == FwdVIRef && 8965 "Forward referenced ValueInfo expected to be empty"); 8966 Infos.emplace_back(&Calls[P.first].first, P.second); 8967 } 8968 } 8969 8970 if (parseToken(lltok::rparen, "expected ')' in calls")) 8971 return true; 8972 8973 return false; 8974 } 8975 8976 /// Hotness 8977 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8978 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8979 switch (Lex.getKind()) { 8980 case lltok::kw_unknown: 8981 Hotness = CalleeInfo::HotnessType::Unknown; 8982 break; 8983 case lltok::kw_cold: 8984 Hotness = CalleeInfo::HotnessType::Cold; 8985 break; 8986 case lltok::kw_none: 8987 Hotness = CalleeInfo::HotnessType::None; 8988 break; 8989 case lltok::kw_hot: 8990 Hotness = CalleeInfo::HotnessType::Hot; 8991 break; 8992 case lltok::kw_critical: 8993 Hotness = CalleeInfo::HotnessType::Critical; 8994 break; 8995 default: 8996 return error(Lex.getLoc(), "invalid call edge hotness"); 8997 } 8998 Lex.Lex(); 8999 return false; 9000 } 9001 9002 /// OptionalVTableFuncs 9003 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 9004 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 9005 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 9006 assert(Lex.getKind() == lltok::kw_vTableFuncs); 9007 Lex.Lex(); 9008 9009 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") | 9010 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 9011 return true; 9012 9013 IdToIndexMapType IdToIndexMap; 9014 // parse each virtual function pair 9015 do { 9016 ValueInfo VI; 9017 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 9018 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 9019 parseToken(lltok::colon, "expected ':'")) 9020 return true; 9021 9022 LocTy Loc = Lex.getLoc(); 9023 unsigned GVId; 9024 if (parseGVReference(VI, GVId)) 9025 return true; 9026 9027 uint64_t Offset; 9028 if (parseToken(lltok::comma, "expected comma") || 9029 parseToken(lltok::kw_offset, "expected offset") || 9030 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 9031 return true; 9032 9033 // Keep track of the VTableFuncs array index needing a forward reference. 9034 // We will save the location of the ValueInfo needing an update, but 9035 // can only do so once the std::vector is finalized. 9036 if (VI == EmptyVI) 9037 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 9038 VTableFuncs.push_back({VI, Offset}); 9039 9040 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 9041 return true; 9042 } while (EatIfPresent(lltok::comma)); 9043 9044 // Now that the VTableFuncs vector is finalized, it is safe to save the 9045 // locations of any forward GV references that need updating later. 9046 for (auto I : IdToIndexMap) { 9047 auto &Infos = ForwardRefValueInfos[I.first]; 9048 for (auto P : I.second) { 9049 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 9050 "Forward referenced ValueInfo expected to be empty"); 9051 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 9052 } 9053 } 9054 9055 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 9056 return true; 9057 9058 return false; 9059 } 9060 9061 /// ParamNo := 'param' ':' UInt64 9062 bool LLParser::parseParamNo(uint64_t &ParamNo) { 9063 if (parseToken(lltok::kw_param, "expected 'param' here") || 9064 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 9065 return true; 9066 return false; 9067 } 9068 9069 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 9070 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 9071 APSInt Lower; 9072 APSInt Upper; 9073 auto ParseAPSInt = [&](APSInt &Val) { 9074 if (Lex.getKind() != lltok::APSInt) 9075 return tokError("expected integer"); 9076 Val = Lex.getAPSIntVal(); 9077 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 9078 Val.setIsSigned(true); 9079 Lex.Lex(); 9080 return false; 9081 }; 9082 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 9083 parseToken(lltok::colon, "expected ':' here") || 9084 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 9085 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 9086 parseToken(lltok::rsquare, "expected ']' here")) 9087 return true; 9088 9089 ++Upper; 9090 Range = 9091 (Lower == Upper && !Lower.isMaxValue()) 9092 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 9093 : ConstantRange(Lower, Upper); 9094 9095 return false; 9096 } 9097 9098 /// ParamAccessCall 9099 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 9100 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 9101 IdLocListType &IdLocList) { 9102 if (parseToken(lltok::lparen, "expected '(' here") || 9103 parseToken(lltok::kw_callee, "expected 'callee' here") || 9104 parseToken(lltok::colon, "expected ':' here")) 9105 return true; 9106 9107 unsigned GVId; 9108 ValueInfo VI; 9109 LocTy Loc = Lex.getLoc(); 9110 if (parseGVReference(VI, GVId)) 9111 return true; 9112 9113 Call.Callee = VI; 9114 IdLocList.emplace_back(GVId, Loc); 9115 9116 if (parseToken(lltok::comma, "expected ',' here") || 9117 parseParamNo(Call.ParamNo) || 9118 parseToken(lltok::comma, "expected ',' here") || 9119 parseParamAccessOffset(Call.Offsets)) 9120 return true; 9121 9122 if (parseToken(lltok::rparen, "expected ')' here")) 9123 return true; 9124 9125 return false; 9126 } 9127 9128 /// ParamAccess 9129 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 9130 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 9131 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 9132 IdLocListType &IdLocList) { 9133 if (parseToken(lltok::lparen, "expected '(' here") || 9134 parseParamNo(Param.ParamNo) || 9135 parseToken(lltok::comma, "expected ',' here") || 9136 parseParamAccessOffset(Param.Use)) 9137 return true; 9138 9139 if (EatIfPresent(lltok::comma)) { 9140 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 9141 parseToken(lltok::colon, "expected ':' here") || 9142 parseToken(lltok::lparen, "expected '(' here")) 9143 return true; 9144 do { 9145 FunctionSummary::ParamAccess::Call Call; 9146 if (parseParamAccessCall(Call, IdLocList)) 9147 return true; 9148 Param.Calls.push_back(Call); 9149 } while (EatIfPresent(lltok::comma)); 9150 9151 if (parseToken(lltok::rparen, "expected ')' here")) 9152 return true; 9153 } 9154 9155 if (parseToken(lltok::rparen, "expected ')' here")) 9156 return true; 9157 9158 return false; 9159 } 9160 9161 /// OptionalParamAccesses 9162 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 9163 bool LLParser::parseOptionalParamAccesses( 9164 std::vector<FunctionSummary::ParamAccess> &Params) { 9165 assert(Lex.getKind() == lltok::kw_params); 9166 Lex.Lex(); 9167 9168 if (parseToken(lltok::colon, "expected ':' here") || 9169 parseToken(lltok::lparen, "expected '(' here")) 9170 return true; 9171 9172 IdLocListType VContexts; 9173 size_t CallsNum = 0; 9174 do { 9175 FunctionSummary::ParamAccess ParamAccess; 9176 if (parseParamAccess(ParamAccess, VContexts)) 9177 return true; 9178 CallsNum += ParamAccess.Calls.size(); 9179 assert(VContexts.size() == CallsNum); 9180 (void)CallsNum; 9181 Params.emplace_back(std::move(ParamAccess)); 9182 } while (EatIfPresent(lltok::comma)); 9183 9184 if (parseToken(lltok::rparen, "expected ')' here")) 9185 return true; 9186 9187 // Now that the Params is finalized, it is safe to save the locations 9188 // of any forward GV references that need updating later. 9189 IdLocListType::const_iterator ItContext = VContexts.begin(); 9190 for (auto &PA : Params) { 9191 for (auto &C : PA.Calls) { 9192 if (C.Callee.getRef() == FwdVIRef) 9193 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 9194 ItContext->second); 9195 ++ItContext; 9196 } 9197 } 9198 assert(ItContext == VContexts.end()); 9199 9200 return false; 9201 } 9202 9203 /// OptionalRefs 9204 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 9205 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 9206 assert(Lex.getKind() == lltok::kw_refs); 9207 Lex.Lex(); 9208 9209 if (parseToken(lltok::colon, "expected ':' in refs") || 9210 parseToken(lltok::lparen, "expected '(' in refs")) 9211 return true; 9212 9213 struct ValueContext { 9214 ValueInfo VI; 9215 unsigned GVId; 9216 LocTy Loc; 9217 }; 9218 std::vector<ValueContext> VContexts; 9219 // parse each ref edge 9220 do { 9221 ValueContext VC; 9222 VC.Loc = Lex.getLoc(); 9223 if (parseGVReference(VC.VI, VC.GVId)) 9224 return true; 9225 VContexts.push_back(VC); 9226 } while (EatIfPresent(lltok::comma)); 9227 9228 // Sort value contexts so that ones with writeonly 9229 // and readonly ValueInfo are at the end of VContexts vector. 9230 // See FunctionSummary::specialRefCounts() 9231 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 9232 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 9233 }); 9234 9235 IdToIndexMapType IdToIndexMap; 9236 for (auto &VC : VContexts) { 9237 // Keep track of the Refs array index needing a forward reference. 9238 // We will save the location of the ValueInfo needing an update, but 9239 // can only do so once the std::vector is finalized. 9240 if (VC.VI.getRef() == FwdVIRef) 9241 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 9242 Refs.push_back(VC.VI); 9243 } 9244 9245 // Now that the Refs vector is finalized, it is safe to save the locations 9246 // of any forward GV references that need updating later. 9247 for (auto I : IdToIndexMap) { 9248 auto &Infos = ForwardRefValueInfos[I.first]; 9249 for (auto P : I.second) { 9250 assert(Refs[P.first].getRef() == FwdVIRef && 9251 "Forward referenced ValueInfo expected to be empty"); 9252 Infos.emplace_back(&Refs[P.first], P.second); 9253 } 9254 } 9255 9256 if (parseToken(lltok::rparen, "expected ')' in refs")) 9257 return true; 9258 9259 return false; 9260 } 9261 9262 /// OptionalTypeIdInfo 9263 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 9264 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 9265 /// [',' TypeCheckedLoadConstVCalls]? ')' 9266 bool LLParser::parseOptionalTypeIdInfo( 9267 FunctionSummary::TypeIdInfo &TypeIdInfo) { 9268 assert(Lex.getKind() == lltok::kw_typeIdInfo); 9269 Lex.Lex(); 9270 9271 if (parseToken(lltok::colon, "expected ':' here") || 9272 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9273 return true; 9274 9275 do { 9276 switch (Lex.getKind()) { 9277 case lltok::kw_typeTests: 9278 if (parseTypeTests(TypeIdInfo.TypeTests)) 9279 return true; 9280 break; 9281 case lltok::kw_typeTestAssumeVCalls: 9282 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 9283 TypeIdInfo.TypeTestAssumeVCalls)) 9284 return true; 9285 break; 9286 case lltok::kw_typeCheckedLoadVCalls: 9287 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 9288 TypeIdInfo.TypeCheckedLoadVCalls)) 9289 return true; 9290 break; 9291 case lltok::kw_typeTestAssumeConstVCalls: 9292 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 9293 TypeIdInfo.TypeTestAssumeConstVCalls)) 9294 return true; 9295 break; 9296 case lltok::kw_typeCheckedLoadConstVCalls: 9297 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9298 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9299 return true; 9300 break; 9301 default: 9302 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9303 } 9304 } while (EatIfPresent(lltok::comma)); 9305 9306 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9307 return true; 9308 9309 return false; 9310 } 9311 9312 /// TypeTests 9313 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9314 /// [',' (SummaryID | UInt64)]* ')' 9315 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9316 assert(Lex.getKind() == lltok::kw_typeTests); 9317 Lex.Lex(); 9318 9319 if (parseToken(lltok::colon, "expected ':' here") || 9320 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9321 return true; 9322 9323 IdToIndexMapType IdToIndexMap; 9324 do { 9325 GlobalValue::GUID GUID = 0; 9326 if (Lex.getKind() == lltok::SummaryID) { 9327 unsigned ID = Lex.getUIntVal(); 9328 LocTy Loc = Lex.getLoc(); 9329 // Keep track of the TypeTests array index needing a forward reference. 9330 // We will save the location of the GUID needing an update, but 9331 // can only do so once the std::vector is finalized. 9332 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9333 Lex.Lex(); 9334 } else if (parseUInt64(GUID)) 9335 return true; 9336 TypeTests.push_back(GUID); 9337 } while (EatIfPresent(lltok::comma)); 9338 9339 // Now that the TypeTests vector is finalized, it is safe to save the 9340 // locations of any forward GV references that need updating later. 9341 for (auto I : IdToIndexMap) { 9342 auto &Ids = ForwardRefTypeIds[I.first]; 9343 for (auto P : I.second) { 9344 assert(TypeTests[P.first] == 0 && 9345 "Forward referenced type id GUID expected to be 0"); 9346 Ids.emplace_back(&TypeTests[P.first], P.second); 9347 } 9348 } 9349 9350 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9351 return true; 9352 9353 return false; 9354 } 9355 9356 /// VFuncIdList 9357 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9358 bool LLParser::parseVFuncIdList( 9359 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9360 assert(Lex.getKind() == Kind); 9361 Lex.Lex(); 9362 9363 if (parseToken(lltok::colon, "expected ':' here") || 9364 parseToken(lltok::lparen, "expected '(' here")) 9365 return true; 9366 9367 IdToIndexMapType IdToIndexMap; 9368 do { 9369 FunctionSummary::VFuncId VFuncId; 9370 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9371 return true; 9372 VFuncIdList.push_back(VFuncId); 9373 } while (EatIfPresent(lltok::comma)); 9374 9375 if (parseToken(lltok::rparen, "expected ')' here")) 9376 return true; 9377 9378 // Now that the VFuncIdList vector is finalized, it is safe to save the 9379 // locations of any forward GV references that need updating later. 9380 for (auto I : IdToIndexMap) { 9381 auto &Ids = ForwardRefTypeIds[I.first]; 9382 for (auto P : I.second) { 9383 assert(VFuncIdList[P.first].GUID == 0 && 9384 "Forward referenced type id GUID expected to be 0"); 9385 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9386 } 9387 } 9388 9389 return false; 9390 } 9391 9392 /// ConstVCallList 9393 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9394 bool LLParser::parseConstVCallList( 9395 lltok::Kind Kind, 9396 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9397 assert(Lex.getKind() == Kind); 9398 Lex.Lex(); 9399 9400 if (parseToken(lltok::colon, "expected ':' here") || 9401 parseToken(lltok::lparen, "expected '(' here")) 9402 return true; 9403 9404 IdToIndexMapType IdToIndexMap; 9405 do { 9406 FunctionSummary::ConstVCall ConstVCall; 9407 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9408 return true; 9409 ConstVCallList.push_back(ConstVCall); 9410 } while (EatIfPresent(lltok::comma)); 9411 9412 if (parseToken(lltok::rparen, "expected ')' here")) 9413 return true; 9414 9415 // Now that the ConstVCallList vector is finalized, it is safe to save the 9416 // locations of any forward GV references that need updating later. 9417 for (auto I : IdToIndexMap) { 9418 auto &Ids = ForwardRefTypeIds[I.first]; 9419 for (auto P : I.second) { 9420 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9421 "Forward referenced type id GUID expected to be 0"); 9422 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9423 } 9424 } 9425 9426 return false; 9427 } 9428 9429 /// ConstVCall 9430 /// ::= '(' VFuncId ',' Args ')' 9431 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9432 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9433 if (parseToken(lltok::lparen, "expected '(' here") || 9434 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9435 return true; 9436 9437 if (EatIfPresent(lltok::comma)) 9438 if (parseArgs(ConstVCall.Args)) 9439 return true; 9440 9441 if (parseToken(lltok::rparen, "expected ')' here")) 9442 return true; 9443 9444 return false; 9445 } 9446 9447 /// VFuncId 9448 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9449 /// 'offset' ':' UInt64 ')' 9450 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9451 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9452 assert(Lex.getKind() == lltok::kw_vFuncId); 9453 Lex.Lex(); 9454 9455 if (parseToken(lltok::colon, "expected ':' here") || 9456 parseToken(lltok::lparen, "expected '(' here")) 9457 return true; 9458 9459 if (Lex.getKind() == lltok::SummaryID) { 9460 VFuncId.GUID = 0; 9461 unsigned ID = Lex.getUIntVal(); 9462 LocTy Loc = Lex.getLoc(); 9463 // Keep track of the array index needing a forward reference. 9464 // We will save the location of the GUID needing an update, but 9465 // can only do so once the caller's std::vector is finalized. 9466 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9467 Lex.Lex(); 9468 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9469 parseToken(lltok::colon, "expected ':' here") || 9470 parseUInt64(VFuncId.GUID)) 9471 return true; 9472 9473 if (parseToken(lltok::comma, "expected ',' here") || 9474 parseToken(lltok::kw_offset, "expected 'offset' here") || 9475 parseToken(lltok::colon, "expected ':' here") || 9476 parseUInt64(VFuncId.Offset) || 9477 parseToken(lltok::rparen, "expected ')' here")) 9478 return true; 9479 9480 return false; 9481 } 9482 9483 /// GVFlags 9484 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9485 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9486 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9487 /// 'canAutoHide' ':' Flag ',' ')' 9488 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9489 assert(Lex.getKind() == lltok::kw_flags); 9490 Lex.Lex(); 9491 9492 if (parseToken(lltok::colon, "expected ':' here") || 9493 parseToken(lltok::lparen, "expected '(' here")) 9494 return true; 9495 9496 do { 9497 unsigned Flag = 0; 9498 switch (Lex.getKind()) { 9499 case lltok::kw_linkage: 9500 Lex.Lex(); 9501 if (parseToken(lltok::colon, "expected ':'")) 9502 return true; 9503 bool HasLinkage; 9504 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9505 assert(HasLinkage && "Linkage not optional in summary entry"); 9506 Lex.Lex(); 9507 break; 9508 case lltok::kw_visibility: 9509 Lex.Lex(); 9510 if (parseToken(lltok::colon, "expected ':'")) 9511 return true; 9512 parseOptionalVisibility(Flag); 9513 GVFlags.Visibility = Flag; 9514 break; 9515 case lltok::kw_notEligibleToImport: 9516 Lex.Lex(); 9517 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9518 return true; 9519 GVFlags.NotEligibleToImport = Flag; 9520 break; 9521 case lltok::kw_live: 9522 Lex.Lex(); 9523 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9524 return true; 9525 GVFlags.Live = Flag; 9526 break; 9527 case lltok::kw_dsoLocal: 9528 Lex.Lex(); 9529 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9530 return true; 9531 GVFlags.DSOLocal = Flag; 9532 break; 9533 case lltok::kw_canAutoHide: 9534 Lex.Lex(); 9535 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9536 return true; 9537 GVFlags.CanAutoHide = Flag; 9538 break; 9539 default: 9540 return error(Lex.getLoc(), "expected gv flag type"); 9541 } 9542 } while (EatIfPresent(lltok::comma)); 9543 9544 if (parseToken(lltok::rparen, "expected ')' here")) 9545 return true; 9546 9547 return false; 9548 } 9549 9550 /// GVarFlags 9551 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9552 /// ',' 'writeonly' ':' Flag 9553 /// ',' 'constant' ':' Flag ')' 9554 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9555 assert(Lex.getKind() == lltok::kw_varFlags); 9556 Lex.Lex(); 9557 9558 if (parseToken(lltok::colon, "expected ':' here") || 9559 parseToken(lltok::lparen, "expected '(' here")) 9560 return true; 9561 9562 auto ParseRest = [this](unsigned int &Val) { 9563 Lex.Lex(); 9564 if (parseToken(lltok::colon, "expected ':'")) 9565 return true; 9566 return parseFlag(Val); 9567 }; 9568 9569 do { 9570 unsigned Flag = 0; 9571 switch (Lex.getKind()) { 9572 case lltok::kw_readonly: 9573 if (ParseRest(Flag)) 9574 return true; 9575 GVarFlags.MaybeReadOnly = Flag; 9576 break; 9577 case lltok::kw_writeonly: 9578 if (ParseRest(Flag)) 9579 return true; 9580 GVarFlags.MaybeWriteOnly = Flag; 9581 break; 9582 case lltok::kw_constant: 9583 if (ParseRest(Flag)) 9584 return true; 9585 GVarFlags.Constant = Flag; 9586 break; 9587 case lltok::kw_vcall_visibility: 9588 if (ParseRest(Flag)) 9589 return true; 9590 GVarFlags.VCallVisibility = Flag; 9591 break; 9592 default: 9593 return error(Lex.getLoc(), "expected gvar flag type"); 9594 } 9595 } while (EatIfPresent(lltok::comma)); 9596 return parseToken(lltok::rparen, "expected ')' here"); 9597 } 9598 9599 /// ModuleReference 9600 /// ::= 'module' ':' UInt 9601 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9602 // parse module id. 9603 if (parseToken(lltok::kw_module, "expected 'module' here") || 9604 parseToken(lltok::colon, "expected ':' here") || 9605 parseToken(lltok::SummaryID, "expected module ID")) 9606 return true; 9607 9608 unsigned ModuleID = Lex.getUIntVal(); 9609 auto I = ModuleIdMap.find(ModuleID); 9610 // We should have already parsed all module IDs 9611 assert(I != ModuleIdMap.end()); 9612 ModulePath = I->second; 9613 return false; 9614 } 9615 9616 /// GVReference 9617 /// ::= SummaryID 9618 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9619 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9620 if (!ReadOnly) 9621 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9622 if (parseToken(lltok::SummaryID, "expected GV ID")) 9623 return true; 9624 9625 GVId = Lex.getUIntVal(); 9626 // Check if we already have a VI for this GV 9627 if (GVId < NumberedValueInfos.size()) { 9628 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9629 VI = NumberedValueInfos[GVId]; 9630 } else 9631 // We will create a forward reference to the stored location. 9632 VI = ValueInfo(false, FwdVIRef); 9633 9634 if (ReadOnly) 9635 VI.setReadOnly(); 9636 if (WriteOnly) 9637 VI.setWriteOnly(); 9638 return false; 9639 } 9640